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Abstract

The task of simultaneously tracking the three-
dimensional positions of both hands in a human-robol
mteraction scenario imposes significant challenges on
the tracking application. In this diploma thesis. I focus
on the problem of occlusion handling using particle
flters. I show how disparity information can be used
to improve the stability of the tracked trajectory in
three-dimensional space.  In addition, I present fast
methods for tracking failure detection and automatic
initialization. To conclude my diploma thesis. I demon-
strate how the tracker can be used in gesture recognition
tasks focusing on both the trajectory as well as the
configuration.
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Zusammenfassung

In meiner Diplomarbeit untersuche ich das Problem des sogenannten Hand
Trackings in einem Szenario aus der Mensch-Maschine-Interaktion. Wenn
beide Hinde gleichzeitie getrackt werden. ergeben sich zusétzlich Schwierig-
keiten vor allem in Bezug auf die Modellierung des Zustandsraumes nnd die
Behandhmg von Selbstverdeckungen.

Beide Probleme hingen sehr stark miteinander zusammen. Umn Selbstverdeck-
ungen erkennen zu kénnen, ist eine Modellierung beider Hiinde in einem Zu-
standsraum nétig. Dadurch wiichst der Zustandsramm jedoch exponentiell
an. In meiner Diplomarbeit prisentiere ich eine Losung dieses Problems,
welche auf der Arbeit von Lanz und Manduchi basiert. In [12] stellten sie
den sogenannten Hybrid Joint-Separable Filter vor. eine Variante des Par-
tikelfilters. der eine getrennte Modellierung des Zustandsraumes erlaubt nnd
gleichzeitig die Beobachtungsdaten unter Beriicksichtigung des vereinigten
Zustandsraumes evaluiert. In meiner Diplomarbeit zeige ich. wie dieser Filter
fiir die Aufgabe des Hand Trackings angepasst werden kann, welche Modi-
likationen dabei not wendig und welche Optimiernngen méglich sind,

Ein weiterer Fokus meiner Arbeit ist das Tracken im dreidimensionalen Raun.
Die Verwendung von echten dreidimensionalen Koordinaten relativ zur Kam-
era ist inshesondere in der Mensch-Roboter-Interaktion von groker Beden-
tung. da diese fiir die Bewegungsplanmmg des Roboters benotigt werden.
Zudem wird dadurch einerseits die Behandlung von Verdeckungen und an-
dererseits die Weiterverarbeitung der extrahierten Trajektorie durch andere
Anwendungen erleichtert. Durch die Verwendung von drei Dimensionen wird
die Auswertung der Foatures im Bildraum erschwert, da projektionshedingt
Mehrdeutigkeiten entstehen konnen. welche die Trackingergehnisse sehr stark
verfilschen. Ich zeige, wie durch die Integration eines speziellen Disparitiits-
features diese Fehlerquelle beseitigt werden kann.

Beim Tracken einer Person kann diese ganz oder teilweise aus dem Blickfeld
der Kameras verschwinden. Ich stelle zwei Heuristiken vor. welche Mechanis-
men zur Verfiigung stellen, win Trackingfehler zu erkennen und s belieben.

Der im Folgenden vorgestellte Tracker ist in der Lage, beide Héinde simultan
zu tracken. Er ist robust gegeniiber Verdeckungen, liefert stabile Ergebnisse
i dreidimensionalen Raum und bietet Mechanismen zur Fehlerbehandlung
und antomatischen Initalisierung. Der Tracker kanm sowohl fiir die Extrak-
tion der Hand-Trajektorien. als auch als Grundlage fiir Gestenerkennung
verwendet werden.
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1 Introduction

The vision of human-robot interaction is the realization of a shared environ-
ment where both humans and robots live and work together hand-in-hand.
The following situation introduces some of the challenges that still lie ahead
of us before this vision comes true.

In the not so distant future, John Q. Public is standing in his kitchen. Today.
he has kitchen duty, and. after a tasty meal. the not so enjoyable task of
cleaning up is up to him. But things are not that bad in the vear 2015
becanse his roommate is here to help hin.

His roommate is new in the household. It was bought just a couple of weeks
ago. The robot manufacturer advertised it as a nice little helper that can
support humans in their daily lives. And it especially likes cleaning up.

John stands up from the table, and, facing his new robot while pointing to
the dishes. he says, “Please bring those to the sink.” But the robot is just
standing there, computing which dishes John is talking about. not able to
understand the pointing gesture. John is a little annoyed about this. and
he takes the plates himself, handing them to the robot. Finally, the robot,
being able to recognize objects, knows that dirty plates should be brought
to the sink. But unable to track them in three-dimensional space, its hands
collide with John's, and the plates fall down to the foor.

The robot is afraid now. “Oh no! What should I do? T do not understand
gestures! And I am unable to cooperate in joint object-manipulation tasks!
What will happen to me now? I cannot even track hands in 3D! Will T he
returned to AEKI and replaced by one of these shiny new KIT robots?”

1.1 Hand-Tracking in Human-Robot Interaction

As the above example shows, we need more than spoken words to commu-
nicate with each other. Even though John explicitly told the robot what
to do, it still needs much more information that cannot be given hy speech
alone. And this is just a simple situation. When looking at the bigger picture
of unconstrained human-robot interaction. more human modalities must be
understood by robots.

Through the power of language we can express arbitrarily complex ideas
and share our thoughts. One could think that this is more than enongh to
understand each other. But things are different. Humans not only use their
ability to talk, they also nuse the most complex and versatile manipulation



tool they possess: their hands. By using the hands. it is not only possible
to manipulate objects. They can also be used to express abstract ideas or to
explain certain things faster than possible with speech alone.

One example is the simple task of opening a screw top. It can be explained
by saying that one hand has to hold the base of the bottle, the other hand
the screw top. The upper hand moves in a counterclockwise, the lower hand
in a clockwise direction, Repeat this until the bottle is open. Of course. a
demonstration using the hands would explain the same — just faster,

To understand human gestures and hand movements. it is necessary to ex-
tract their trajectory in three-dimensional (3D) space. In the remainder of
this chapter. I will review the cirrent research in the field of hand tracking.
explain the different approaches, and present the focus of my diploma thesis.

1.2 Related Work

Gestures are a powerful way of interacting with robots and machines in gen-
eral, To fully incorporate gestures as an interaction modality. both spatial
and temporal dimensions must be modeled. The spatial dimension is the
configurarion of the hand. whereas the temnporal dimension refers to the rra-
jectory of the hand in space. Current approaches, however, usually focus on
only one dimension.

1.2.1 Tracking Framework

In computer vision. tracking is the process of extracting the state of a system
in a video sequence over time. Tracking is done in discrete time steps due to
the discrete nature of video sequences. In hand tracking, the states usually
refer to either the configuration of the hand. e.g. angles for every joint in a
hand model, or they refer to the position of the hand in space to reconstruct
the hand’s trajectory.

Tracking serves mainly three purposes: First, it reduces the search space by
assuming that the state of the system in the next time step will be similar to
the current state. Second, tracking provides robustness against noise in the
observation data. Third, tracking allows the localization of objects that are
hard to detect, e.g. the hands, by reasoning about cues that are present in
the image.

Omne way to track an object involves two steps that are repeated alternately
for every frame. During the first step, prediction. the state of the system
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is propagated in time. Depending on the system model, the propagation
can either be deterministic or stochastic. The second step, update, rates or
adjusts the prediction according to the observation. The better the prediction
matches the observation. the higher it is rated.

An alternative to the prediction-update approach is to detect the object in
every video frame and combine these detection to one tracking sequence.
Additionally. incorporating the last known or assumed state can improve the
object detection.

Different tracking approaches exist, each addressing a different task. When
the state of the tracked object is detectable or when the object can be iden-
tified using strong image cues. tracking-by-detection can be applied. Here,
the object’s state, e.g. its position, is detected in every video frame. These
states are later combined to the final track. One attempt to detect hands
was done by Kolsch and Turk in [10]. However, their system only detects a
small number of well-defined hand configurations and can only be used to
support tracking. as they showed in [9], but not for tracking-by-detection
alone. Another approach is the CAMSHIFT algorithm proposed by Brad-
ski et al. [4] that is based on the mean shift algorithm. They successfully
applied CAMSHIFT to track objects of known color. e.g. the head. These
approaches can also be referred to as single-hyvpotheses trackers.

If it is not possible to reliably detect the object’s state in every single frame
or to use one strong image cue to identify it. keeping track of multiple hy-
potheses can be a solution. That way. recovery from temporary failure is
possible. Usually, a limited set of hypotheses is kept and rated in every time
step. The most likeliest hypotheses can then be combined to get the final
track, as Nickel et al. did in |15].

The state of the tracked system can also be modeled as a probability density.
The prior probability density refers to the density before the observation.
the posterior to the one after the observation. If the posterior probahility
is Gaussian, then the Kalman filter is optimal. One example of Kalman
filtering can be found in [20] where Stenger et al. used an unscented Kaliman
filter to track a hand configuration model,

However, in hand tracking applications, the posterior probability is often
assumed to be multimodal. thus being non-Gaussian. In this case. a very
common framework for tracking applications is the so-called particle filter.
One very popular particle filter. the Condensation algorithm, was introduced
by Isard and Blake |7]. They can track arbitrary probability densities by
using a sample-based approach and are often applied in tracking applications
7. 6, 5. 14, 18].



1.2.2 Hand Configuration Tracking

Many gestures require that the observer exactly recognizes the configuration
of the hand. Popular examples are the "peace gesture” (extended index and
middle finger), or the “ok gesture™ (where the index finger and thumb form
a circle). One of the major challenges to detect this kind of gestures is the
highly articulated nature of human hands. Depending on the hand model
used. the degrees of freedom (DOF) of one single hand can be as high as
30 [5]. The more DOF are tracked. the more increases the computational
complexity of the tracking application. As many applications require real-
time performance, this is a serious constraint.

Model-based approaches build an anatomical model of the hand. Depending
on the application. simplifications in the model can reduce its complexity.
Stenger et al. tracked a 27 DOF hand using a hierarchical Bayesian filer
in |21]. Bray et al. [5] used a model with 26 DOF to track one hand in
3D-space. Bretzner et al. [6] reduced the dimensionality by building a less
detailed model of the hand approximated by connected blobs and by tracking
only well-defined hand configurations in the image space.

Instead of using a skeletal model, Isard and Blake |7] tracked arbitrary shapes.
e.g. the shape of a human hand, and approximated them using parametric
splines. These shapes can later be used to recognize gestures, e.g. by match-
ing the detected shapes against known gesture shapes that are stored in a
database.

Appearance-based approaches recognize hand configurations without the need
of an underlying model. Instead. they match an observation against a set
of stored appearances of know configurations trying to find the best match.
For example. Athitsos and Sclaroff 3| matched an input image of a hand
against a database containing synthetic hand images to retrieve the 3D hand
configuration.

Becanse of the high complexity of most hand models. these approaches track
only one hand and fully coneentrate on retrieving the hand configuration.
In the context of this diploma thesis. however. the hand configuration is not
very important for understanding most of the gestures. like pointing, or to
engage in joint object manipulation tasks. Therefore, in the remainder of my
diploma thesis, I will focus more on applications that track the trajectory of
one or both hands instead of the configuration.



1.2.3 Single-Object Trajectory Tracking

In contrast to applications tracking the hand configuration, trajectory track-
ers concentrate on the temporal evolution of the hand's spatial position.
Many gestures. like the “waving gesture”, depend on exactly this aspect and
are mostly independent of the hand configuration. Applications tracking the
trajectory do not need a sophisticated hand model. Instead, they have to
cope with fast and abruptly changing movements. background clutter, and
occlusions.

Tracking-by-detection is very difficult because there exists no robust and uni-
versal hand detection right now. (As mentioned above, Kélsch and Turk [10]
developed a hand detection algorithm for a limited number of configurations.)
Similar approaches identify features on the hand and track these instead of
the hand as a whole. Kélsch and Turk [9] used a pyramid-based Kanade-
Lucas-Tomasi (KLT) feature |13, 19| tracking approach with so-called “Aock
coustraints™ to track a single hand in two-dimensional (2D) image space.

Shan et al. [18] combined a particle filter with mean shift to track a single
hand, also in 2D image space. Iu contrast to pure mean shift based tracking.
the combination with a particle filter allowed the simultancons fracking of
multiple hypotheses and prevented from getting stuck in local maxima.

These approaches work very well for tracking a single object: however, for
unconstrained human-robot interaction, both hands must be tracked, There-
fore, single-object tracking alone is not sufficient for the task presented in my
diploma thesis.

1.2.4  Multiple-Objects Trajectory Tracking

Many gestures require the trajectory of both hands to be known at the same
time, e.g. the “clapping hands gesture”. Besides the challenges mentioned
for single-object tracking, multiple-object trackers also have to deal with self-
occlusion. This problem is especially challenging due to the same appearance
of both hands.

Argyros et al. |1] tracked multiple 2D skin-colored objects by introducing
one hypothesis for every skin-colored blob in the image. The hypotheses are
then associated with the blobs depending on their distance to each other
aud on the presence of other hvpotheses. Nickel et al. [15] also used a
multi-hypotheses tracker. but tracked in 3D-space. They included additional
constraints like the position of the head and knowledge about human postures
to better distinguish between left and right hands.



Mammen et al. [14] used a particle filter to simultaneously track both hands
in the 2D image space. Lanz and Manduchi used particle filtering for trackinge
multiple persons at the same time [12, 11]. They achieved very good results,
even in case of severe occlusions.

The versatility of particle filters, their good performance in person tracking.
and their well-researched theoretical basis make them an excellent choice for
the task of tracking the hands. However, if only two dimensions are being
tracked, the extracted trajectories cannot be used for gesture recognition in
general,

1.2.5 State Space in Trajectory Tracking

Most of the previously mentioned approaches primarily track in 2D-space.
meaning x- and y-coordinates in image space |9, 18, 1, 14]|. The shape of the
hand is often approximated by a rectangle [14], or by an ellipsis [1]. Because
the size of the hand depends on the distance to the camera. introducing
additional parameters for the shape size improves the matching in image
space |14, 1].

Reducing the state space to 2D imposes constraints on the tracker. Objects
move in 3D-space and only tracking two dimensions leads to disambiguities
that require additional mechanisms to resolve them. In addition, 2D tracking
requires the introduction of additional parameters for the size of the objects.
Therefore, tracking in 3D world coordinates seems to he the more powerful
and appropriate approach for human-robot interaction.

Nickel et al. |15] used 3D hypotheses in their tracking framework together
with a calibrated sterco camera. This approach has the advantage that it is
more robust against background clutter. Skin-colored objects that are at the
same position in image space, but at different positions in world coordinates,
might be distinguishable by adding depth information. The ability to use 3D
information improves the tracker’s robustness.

Tracking multiple objects can either be done in a joint state-space (e.g. [15])
or separately (e.g. [1]). The first has the advantage that occlusion reasoning
can be done implicitly in the tracking framework. but the state space grows
exponentially with the number of objects. The latter has no effect on the
state space. but additional mechanisms have to be introduced to handle
occlusions.

One approach that tracks multiple objects in a joint-separate manner was
introduced in [12] and is called Hybrid Joint-Separable (HJS) filter. It com-



bines the advantages of both approaches, and 1 will show in my diploma
thesis how I applied it to hand tracking,

1.2.6 Features

Features are characteristic properties of the tracked object. The use of the
word “feature” can sometimes be confusing, It can refer to cues that give
information about the tracked object, e.g. its most likeliest position. Or it
can refer to real features that are part of the tracked object, e.g. an extracted
image of the face.

The quality of most tracking applications depends highly on the incorporated
features and how they are used. Depending on the features, the strengths of
the tracker are determined, but also its weaknesses. The choice of the right
features and their correct integration in the tracking framework is essential
for good tracking results.

Skin-color is a widely used feature in applications that track humans. It is
very robust, distinet from most objects in our environment, but still very
similar across humans, In addition, it is easy to use and mostly independent
of the applied color space, as Phung et al. showed in [16].

Skin-color can either be used as the main cue to rate a hypothesis [1, 15].
to remove specific parts of the image that are considered to not contain the
object in question [5]. or to initialize the tracker 9].

Motion is another strong indicator for lnunan activity. Usually. the back-
ground is more stationary than the tracked object. This is often true for
the fast-moving hands. Motion can be used directly as a cue if it is part
of the state space, or by identifying relevant areas in the image [18]. The
latter is especially useful in case of cluttered background, e.g. when other
skin-colored objects are present: if they are not moving. they can be removed
from the skin-color map because they are most likely irrelevant |18],

Depth information is important if the tracker’s state space contains 3D real-
world coordinates. Then it can be used as a cue to rate the current hyv-
potheses. Another application of the use of depth information can be the
separation of objects in the skin-color map that both share the same color
but are positioned at different depths [15].

In contrast to the image cues described above, KLT features can be used
to track the hand over time. Kolsch and Turk [9] combined “Hocks” of KLT
features to successfully track a single hand in front of cluttered background.



Adding features to an application is very useful because they enable us to use
additional information. However, there is a downside. Every introduced fea-
ture also adds an additional source of errors. Therefore. the use of additional
features and their integration must be done very carefully.

1.2.7 Oecclusion Handling

Occlusions are a major source of errors when tracking multiple objects. There
are two kinds of occlusions: In case of self-occlusion, one tracked object
oceludes another tracked object. In case of backeround occlusion, one of
the tracked objects is oceluded by objects belonging to the background of
the image. In this context, every object that is not being tracked is said
to belong to the background. This means that background occlusions also
include ocelusions caused by other body parts, like the upper body. if only
hands are being tracked.

Self-occlusion can cause serious problems, especially if the tracked objects
share the same appearance. If this is the case, the hypotheses of both oh-
jects can get stuck at only one object during occlusion and remain there
even if the objects separate again, To prevent this. Nickel et al. [15] intro-
duced a posture score that rated the typical positions of the hands. Becaunse
non-overlapping hands are more common than overlapping hands. the non-
overlapping hvpotheses got rated higher, and the tracks separated again.
Mammen et al. [14] took a more direct approach and introduced a penalty
term for occluding hypotheses.

A solution from the domain of person tracking was proposed by Lanz and
Manduchi [12]. They used depth information to reason explicitly about oc-
clusions. That way, the tracker can detect occlusions and process observa-
tions accordingly. Modeling occlusion reasoning inside the tracking frame-
work seems preferable to correcting the track afterwards by introducing con-
stralnts,

Background occlusion easily leads to tracking failure. One way to cope with
backeround occlusions is by detecting tracking failures. In case of failure,
eITONEOUS hypotheses are removed from the tracker, As soon as the object
reappears, a tracking failure recovery method reinitializes the track.

1.3 Research Topics

In my diploma thesis, I will introduce a framework for simultaneous tracking
of multiple objects based on particle filters. The particle filter is based on
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the Hybrid Joint-Separable filter that was developed by Lanz and Manduchi
[12] and later improved by Lanz [11]. to track multiple persons. I chose this
approach because reasoning about occlusions is one of its explicit advantages.
In addition, its mathematical definition is very sound and the particle filter
framework extendable,

The HIS filter heavily relies on correct 3D-information about the tracked
objects to explicitly reason about occlusions. However. in its current appli-
cation, the state vector contains only 2D-information, and the objects are
assumed to move on a calibrated plane. In contrast, I tracked objects in
real-world 3D-coordinates. This means that the resulting filter relied less
on external constraints, and the tracked positions could be used directly by
other applications without the need of further processing. On the downside.
tracking in 3D increased the difficulty of feature integration. and, as I will
show later, relying on skin-color alone is unfeasible.

[ theory, the HJS filter is able to track objects that share the same appear-
ance model. However, T found that problems arise when these objects are
very close to each other. T will show how I addressed this problemn.

The tracker is based mainly on skin-color cues. But, as mentioned above.
using skin-color alone severely decreased the robustness of the filter. T will
show different solutions that are based on disparity information to improve
the tracker’s robustness. In addition. I will show how 1 incorporated a motion
feature to improve robustness against background clutter.

Tracking the hands in presence of severe occlusions was very challenging, and
failures occurred. To improve the robustness of the tracker. 1 implemented a
tracking failure detection that is symmetric to the features used. Symmetric
means that the tracking failure detection relied on exactly the same features
as the tracker. To recover from tracking failures, I implemented a fast recov-
ery method based on binary search. The recovery method is also based on
the same features the tracker used. In addition. it was used for automatic
nitializatiown.

[ made several assumptions in my diploma thesis. First, I assumed that the
robot stands still. During interaction, it is not very likely that the robot
moves. However, the tracker is able to work almost immediately after the
robot stops moving. Second. I assumed the skin-color to be known. In
human-robot interaction, it is possible to detect the face and extract skin-
color on-the-fly. Therefore, this is only a small constraint. Third. | assumed
that the lighting conditions do not change abruptly.

I'made no assumptions about the visibility of body parts. Many applications
rely on additional information to track hands, c.g. the position of the head.
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In human-robot interaction, especially in joint object-manipulation tasks. the
head is not alwavs visible in the robot’s field of view. Therefore. the tracker
must be able to track one, or both, hands. disregarding whether the face is
visible or not. In addition. I designed the tracker to work stand-alone and to
be mostly independent of additional information.

The remainder of my diploma thesis is organized as follows. In chapter 2. 1
will intfroduce particle filters in general and explain a special implementation,
the HIS filter. that forms the basis of my tracking application. In chapter
3. 1 will show how I modified the HJS filter to fit the task of hand tracking.
introduce the features that I used for tracking., and explain the automatic
initialization and failure recognition methods. Together, these parts form my
tracking framework. In chapter 4, I will evaluare different conlignrations of
this framework and show the significant nuproveinent made 1)()HHi])]l;‘ I)y the
disparity feature. Finally, I will conclude my diploma thesis and point out
future work in chapter 5.

10



2 Particle-Filter Based Tracking

[ used a particle-filter based approach to simultancously track both hands.
In this chapter. I will explain the basic principles of particle-filter based
tracking. After that, I will introduce the Hybrid Joint-Separable (HIS) filter
proposed by Lanz and Manduchi [12]. a particle filter with explicit focus on
ocelusion handling.

2.1 Particle Filter

Iuterpreting the task of tracking the hands as estimating their position trans-
forms the tracking problem into a state estimation problem. Depending on
the available features. the observation density can be either unimodal or mul-
timodal. Tn case of an unimodal observation density, Kalman filtering is the
optimal solution for the state estimation problem. However, due to clutter in
the observation data, the observation density is almost always multimodal.
Hence. the Kalinan filter is not optimal.

2.1.1 Condensation Algorithm

The particle filter algorithin is able to estimate any arbitrary probability
density. A very popular implementation in computer vision is the so-called
Condensation algorithm proposed by Isard and Blake [7]. The Condensation
algorithm follows the “factored sampling” approach where samples are used
to approximate the probability distribution. These samples are later referred
to as “particles”.

Every particle represents exactly one hypothesis about the observed svstem.
e.g. 3D-coordinates in a tracking task, The hypothesis represents one sample
of the state space. In the remainder of this document. z stands for a particle
or a hypothesis. x is a set of particles, and ' € x, with i € {1..... N}.
represents one specific hypothesis out of the set of all hypotheses. ]
particle 7 at time ¢, and 2}, is the set containing the state sequence of particle
i from time 1 to time ¢. In the remainder of this document, the size of the
particle set is fixed over time. and N refers to the number of particles.

is

To represent a probability density. each particle ' has an associated weight
T, i € {1,..., N}, with
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Figure 1. Factored Sampling. The probability density is represented by
weighted samples (particles). This image is taken from |7].

Figure 1 shows how the particles approximate the probability density. With
infinite particles, it is possible to perfectly approximate every probability
density. In practice, however, usually only a small set is required.

The Condensation algorithm propagates these particles over time using a dy-
namical model (also called system model). The Condensation algorithm (and
particle filters in general) assumes that the state of the system only depends
on the previous time step. It follows that the system model implements a
first-order Markov chain:

Pl ‘4?‘1:1—1 ) = p(zy }--1-'1.—| )i

The system model is usually time-independent: however, there are no restric-
tions, and time-dependent system models are possible.

The Condensation algorithm is a state estimator based on observed image
data z. Observations are available at discrete time steps 1. The observation
al time 1 is z,. and the observation sequence from time 1 to time t is zy.,.
The Condensation algorithm assumes that all observations are independent:

State estimation. The state iy is estimated using all available observation
data:

play) = 1’(-’"r|31:.")-

The estimation follows Bayes’s rule:
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The density p(z|2z1, 1) is independent of x and can be subsumed in a constant
ke Inaddition, 2, in p(z . 214-1) is independent of observations z;.4_1:

play|zr) o kyp(z|ze)plae] 210-1). (2)
The observation model is p(z]x;) and describes the process of observing
image data given the current state. Again. the observation model usually is
time-independent. Because of clutter in the observation data. the observation
density can be multimodal. This results in the posterior also being potentially
multimodal. The prior p(;|z,-1) is interpreted as the prediction of the state
at time f. (It is called prediction because only information up to time ¢ — 1
are available.) The prior can be computed using the system model and the
posterior from the previous time step:

(x| z1:4-1) = /].)(.:',.|.J'?f_|)‘,'J(.‘I‘; 1211 )dxi 1. (3)

To summarize both equations above. equation (2) represents the update step

that computes the posterior: equation (3) represents the prediction step that
vields the prior.

Given an observation = and a set of particles x. the weights are updated
according to the observation model:

; plzla")
TI- 'X f.
Zj=| plz|zd)

The Condensation algorithimn is basically a recursive state estimator based
on Bayes™ rule. There are several advantages of this approach. First, being
recursive, there is no need to store the image data of previous time steps.
Together with a fixed particle set size, this results in constant memory re-
quirements. Second. there are no restrictions to the system model and obser-
vation model. Depending on the available information about the system and
the observations, both models can be adjusted accordingly. Third. simulta-
neously tracking multiple modes is similar to tracking multiple hypotheses.
Thus, the Condensation algorithim can be used as a well-defined basis for
every multiple-hypotheses tracker.
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A specific particle filter implementation is completely described by a set of
particles x encoding the system’s state, a set of weights {='}. i € {1..... N}.
an initial distribution p(xy). the system model p(a|a ). and the observation
model p(z|z).

2.1.2 Condensation Implementation

Figure 2 shows one iteration of the Condensation algorithm. First, N par-
ticles of the particle set x,_; are sampled according to their weight. Tt is
possible that particles get sampled multiple times resulting in identical ele-
ments in the new sampled set. Now, the particles are propagated according
to the system model p(ry|z,-;) resulting in a new set x,. (In figure 2. sample
si , refers to particle 2y

Depending on the implementation and on system noise, a diffusion step is
applied to every sample. If the system noise is high enough, this also prevents
the particle set from collapsing into a single particle.

At the end of each step. new weights are assigned according to the observation
density. This results in a new set of particles x; together with new weights
.?T’ ;

Pseudo-code implementation. Algorithm 1 shows a pseudo-code imple-
mentation of the Condensation algorithm as 1 presented it here.

2.1.3 Particle Filter Variations

The Condensation algorithm belongs to the class of sequential Monte Carlo
filters. It provides a good basis to understand the many modifications that
exist to address the needs of different applications. Arulampalam et al. pre-
sented a good overview of different particle filter implementations in [2]. The
remainder of this chapter is based on their work.

The sequential importance sampling (SIS) algorithin samples particles from a
so-called importance density. The weights are propagated over time, and, in
contrast to the Condensation algorithm, are not reset in each time step. This
can lead to the so-called degeneracy problem where one particle accumulates
almost the whole weight rendering the other samples useless.

Arulampalam et al. 2] mentioned three wavs to address the degeneracy
problem. First, increasing the sample size to delay this effect. However, this
approach can be ignored due to limited resources and the high amount of
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Figure 2: Overview of one time step of the Condensation algorithm. The
picture is taken from [7].

Algorithm 1 particle filter
sample:
create new set x; = {}
WHILE |%| < N
sample .r'j_, € X;_1 according to '
add z}_; as ! to x

END WHILE

predict:
FOR EACH z; € x,
propagate | according to p(xi|at_y)

END FOR

update:
FOR EACH 7 € x,
assign new 7' according to p(z|x})
END FOR
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samples needed. The second possibility to meet this problem is to choose
a good importance density. The third solution is called resaipling. Re-
sampling means to eliminate all particles with very low weights and replace
them by clones of particles with very high weights. Resampling can be ap-
plied whenever degeneracy occurs.

However. resampling leads to another problem called sample impoverishment.
Because samples with high weights are chosen more often. the sample set’s
diversity will decrease if no diffusion step (see chapter 2.1.2) is applied or if
the svstem noise is too small.

Resampling is an inherent part of the sammpling importance resampling (SIR)
filter. Other common filters are the anxiliary sampling importance resamn-
pling (ASIR) filter and the regularized particle filter (RPF). A detailed de-
scription and comparison to other estimation techniques can be found in
[2].

2.2 Hybrid Joint-Separable Filter

The performance of the Condensation algorithm, or particle filters in general.
highly depends on the number of particles. The more particles are processed.
the higher is the computational load. The number of particles required de-
pends on the number of dimensions of the system being tracked. Generally
speaking, the higher the dimensionality of the systemn’s state space. the more
particles are needed.

When tracking multiple objects at the same time, self-occlusions are a major
source of errors. To explicitly handle ocelusions, the particle filter must relate
the positions of the objects to each other. Without this. implicit occlusion
handling i1s not possible. This means that the particle filter must track the
state spaces of every object in a joint state space,

This. however. leads to a linear increase of the munber of dimensions and an
exponential increase of the number of particles necessary. If. for example,
each object is represented by 3D-coordinates, the state space would be R,
Jointly tracking two objects results in an exponential increase in the state
space, R = RY, which in turn leads to an increase of the mumber of particles
required.

One way to address the dimensionality problem is to track each object in
a separate filter. However. implicit occlusion reasoning is then not possible

AllV1NOore.
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Lanz and Manduchi proposed a solution for multiple object tracking in [12]
that extends the particle filter ramework. Their solution handles ocelusions
without leading to an explosion of the state space’s dimensionality. It was
suceessfully tested in tracking multiple persons.

The key idea of their approach is to separately propagate the particles, hut
jointly update them. This way, the state space does not increase, but rea-
soning about occlusions is still possible. They named their approach Hybrid
Joint-Separable (HJS) filter. The remainder of this chapter is based on the
work of Lanz and Manduchi [12] and the improvements by Lanz [11].

2.2.1 Separating the Prediction and Observation Model
As Lanz and Manduchi pointed out in [12], one approach is to separate the

prediction and the update step. This leads to two separability hypotheses:

F o
p(xilxi-1) = [ ] plaili_,) (4)

i=1

and

¥y, (!

o
St

I
])'(.-:fJXf) o HIJ(.’J;:

=1

In the context of the HIS filter, x refers to a state vector containing the
states of all tracked objects, and 2" refers to one particle out of the particle
set representing the state of one single object i. If A objects are being
tracked, then x = (2!, 2%, ... ™). If both hypotheses hold, then the prior (2)
and the posterior (3) can be computed separately. The question is if both
hypotheses are valid.

As Lanz and Manduchi showed in [12]. separability hypothesis I (equation
(4)) means that the objects move independently of cach other, Clearly, this
hypothesis holds most of the time. However. separability hypothesis IT (equa-
fion (5)) states that the observation is independent of the relation of the
objects to each other. This is clearly not the case if ocelusions oceur because
the relationship of objects heavily affects the observation. Therefore. this
approach is wrong,
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2.2.2 Separating the Prior and the Posterior
Lanz and Manduchi showed that it is possible to separate the posterior and
prior by approximating them by their outer product

pixi|

A.
) B HP(-W |21:2 )
b
(in case of the prior)

The parameter T can either stand for (111 case of the posterior). o1
marginalization

(6)
i aoes o ko
The density p(zF|z1.-) is given by a process called
s o Ve -
P( “1: -r) = p(x.'l-vl:r)r‘x.' (f)
I'he vector x;* is the state vector x; with the state of object k removed
Lanz showed that (6) is a valid approximation [11|
marginal density in (6) results in
k.
px{ | 21—

Following (3), the
H) / /P (3¢ |- 1 )p(xi—1]210-1) fixz—lffx

(:"?) / / ?’(X-r|X:.-1)1f—[p(.r';'
| [Tl f

Zi—1)dx_ f]X,

ilzia ])r.le_"”fxr pdx; .
Splitting the product into one part containing every object except & and one
part containing only & leads to

P(xf |214 / /P X% 1) / ""M:m ‘)"“z

Reorganizing the int'vj_;mla into (Juv over X

vl (! |2y
it
the two integrals over x;*

A.
a5
Je ‘ ko . ”
and one over x” and combining
Cand %%, into one over x;7, results in the final
formula for computing the prior:

vy |210-1) = / /[)(,Xf|xv'—|)f]('-rllfll'l'-1 dagy_plag_y[zra-1)dx .

8)
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Similar to the particle filter in equation (3). the prior is the result of combin-
ing the system model p(ay|,—;) with the posterior from the previous time
step play-1|z14-1). As shown in |12], splitting the system model is valid in
multiple-object tracking. The remaining question is how the posterior can
be correctly computed.

2.2.3 Joint Observation Model

According to equations (2) and (7). the posterior is defined as

plg]z14) s /p(:,x,)p(x,:,;,_l)dxf"'

(b)_/)'J JX, Hn” r|~11_|)ffx'.

Splitting the product into one part containing af and one part containing
27" and applying (6) in reverse direction vields

P(-"':‘:|F—'1:f) /1) ~J|Xf HP 21:4-1 ("Xf 2 '-'rl 1i—1)

hk

5
/p (z%0) (x4
(6)

This is the final formula for computing the posterior. It contains a non-
separate observation model p(z [x,) and separate versions of the prior (x;%]z1,_;).
respectively 1,}(.r'f'|:]:,_| ).

214 |)f1"xfkl’(-"’?lj31:f 1)

2.2.4 Final HJS Filter
To summarize the HIS filter, the prediction and update steps proposed in
|12, 11] are:

.")("'-’H»?I:J 1) = /!J(M“f (4|2, 1—1)"’1 (9)

p(:rf‘|:1;,) o p(-:,\.I‘f"‘)p(:‘rf"’:_--;;, 1) (10)
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The system and observation models are;
coregs § _ of k| N
plag|ayy) /I’(xflxr 1)p(%)] |J~‘|.-r—1)“’x:—|;r (11)
p(zilaf) = / (21 [%)p(x7 " 2101 )l (12)

2.2.5 HJS Occlusion Handling

To understand occlusion handling. it is important to understand image for-
mation principles first. Lanz used a rendering function g(x) to describe it
[11]. The observation data = is the combination of image background =", ren-
dered by g(z"). with a perspective projection of all objects into the 2D image
plane. Perspective projection means that the visibility of objects depends on
their position relative to the camera.

At pixel u, the rendering function gives

o of ik Yh#£k:a* <ah
gux)={ ) ok (13)
gal%™) [ e .

o=

1

where g, (2%) is the resulting pixel u for object 2%, If, for example, object k is
a skin-colored object, then g, (") would vield a skin-colored pixel at position
u. But, according to image formation prineiples, this pixel is only visible if
no other object is closer to the camera at u. Camera closeness is described

pixelwise by &' < 2/ | meaning that object i is closer to the camera than
i
object 7 at u.

This is the key for constructing an efficient observation model p(z|x) that
cannot be expressed in a separate form without ignoring occlusions. In case
that image region z* belongs to object k. we can express the observation
model as follows:

pzlx) = p(z°) [T p("1x)-
L.

In log-likelihood domain, equation (12) can be expressed as

Pz ff) = / p(‘:f"lm)p{xf"'lcm_ I)fix:k " / !J(-31_'A€|Xr)ﬁ(xrk|-3'1:-r— | }dx:k-
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Lanz interpreted this equation as the combination of a foreground term

/p(:k|x;)p(x,_'k|:,:,_, Jdx; (14)

with a background term

[t

Evaluating equations (14) and (15) is computationally ineflicient. To com-
£ ¢q ‘ ‘ )

pute these terms for one particle belonging to object k. all other particles
have to be taken into account.

X )p(X7 " | 211 )dx, " (15)

To understand how both terms can be computed efficiently, it is essential
to understand their meaning first. The foreground and backeround term
form the probability density for a given hypothesis of object k. This density
depends on the visible parts of object & in the image. represented by the
foreground term, as well as the parts not visible, represented by the back-
ground term. In case an object is occluded, it simply means that it is not
visible in observation z. but is does not mean that the observation density
is zero. With knowledge about all other objects —k. it is still possible to
reason about object & even if it is occluded. Therefore, it would be wrong
to not account for non-visible parts in the observation density. This is the
advantage of a joint propagation and implicit occlusion reasoning inside the
particle flter.

Still, the question remains how both terms can be computed efficiently for
each particle. As mentioned above, the answer resides in image formation
principles. The foreground term accounts for visible parts of each object.
and the background term for non-visible ones. But to reason about occlu-
sions (meaning which parts are visible and which are not), all other particles
must be taken into consideration. This cumbersome task is circumvented by
ordering the particles according to their distance to the camera. By starting
with the particle nearest to the camera, a so-called occlusion map can be
built.

The occlusion map wy(u) for object & simply represents the probability for
every pixel u in the image that object k& is visible (or not). This means that
the occlusion map is as big as the observation image and wi(u) € [0, 1]Vu.
Of course. this occlusion map is different for every object. To compute it
eficiently. a foreground buffer is introduced for every object.



The occlusion map is nsed to decide how much support each particle gets
by directly evaluating the observation image. In case of no occlusion. the
occlusion map is 1. meaning full support. In case of complete occlusion. the
occlusion map is 0, resulting in no support.

Betore explaining the foreground buffer, it is very important to keep in mind
that the particles are propagated in every update step according to their
distance to the camera. starting with the nearest one.

Foreground buffer. The task of the foreground buffer is to store all avail-
able position information. Each object & has one associated foreground buffer
hﬁ,ﬁ. Like the occlusion map, the foregronnd bufler has the same size as the
observation image. At the beginning of each update step. the foreground
buffer is set to N (the number of particles used to track one single object).
If a particle belonging to object & is evaluated. the foreground buffer gets
updated as follows: at the predicted position, the foreground buffer is de-
creased by 1. Let A, (a*, u) be the silhouette of object & at the pixel position
u specified by particle +* with

ko
_ 1 i ol
Ag(a¥ u) = u

) otherwise

Then

bi(u) = l}f{-(u) — Ay(a*, u).

Now. the occlusion map for object & can easily be computed by taking all
other foreground buffers into account:

| b (u)
wi(u) = H I*T

h#k

The occlusion map is zero at pixel u if and only if at least one foreground
buffer is zero at u, This is only the case when all hypotheses of one object
indicated that this object is present at u. To increase speed. the occlusion
map can only be evaluated at positions where A_q(.r‘“, ) =1,

Figure 20 shows the visualization of an occlusion map.
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Figure 3: Occlusion map. The occlusion map shows the image regions where
object 1 iz occluded by object 2. The lower the value on the z-axis, the
higher the likelihood that the object is occluded.

Background buffer. The task of the background buffer ) is to account
for occluded hypotheses. The more likely it is that one particle of object
k is occluded. the less support the particles belonging to object kb can get
from the image data due to the ocelusion map. However, if object & really is
occluded, it is wrong to assume the observation density to be zero. Therefore,
the background buffer stores support of all other objects —k at position u.

The background buffer is updated after the support of a particle has been
determined. Let ¢ ¢ be the reduced foreground support of particle x*. Then

bE (1) = b (u) + l:f'.‘_,‘A_,,(.r;“, ).

The background buffer has the same size as the observation image and is set
to zero at the beginning of each update step. Again, each object has exactly
one hackground buffer.

Determining the weight. The final weight of each particle is determined
by its foreground and background term. depending on the occlusion map
and its background bufler, respectively. The foreground buffer is only nsed
to construct the occlusion map. The image data is evaluated at each pixel
where the silhouette is not zero. The same is true for the background buffer.
This can be formalized by
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/ Ay (a*, u)bf (u)du.

Lanz gave a very detailed description of the HJS filter, together with the proof
of correctness, and an implementation in pseudo code in |11]. In contrast to
[11]. T changed some formulations to better fit the style I used for the formulas
in my diploma thesis.



3 Hand Tracking with Particle Filters

The particle filter framework I applied to the hand tracking task is based on
the HIS filter proposed by Lanz and Manduehi [12]. However, my task varies
from theirs as the munber of objects I am tracking is at most two, and all
of the tracked objects share exactly the same appearance model. Particu-
larly the latter imposes additional constraints in practice. I will explain the
modifications and optimizations of the HJIS filter first.

In chapter 2.1, T mentioned that a complete description of a particle filter
includes the particles, the syvstem model, the observation model. a set of
weights, and an initial distribution. After the explanation of the modified
HIS filter, I will explain these parts in detail.

In the remainder of this chapter. I will focus on antomatic initialization
and on tracking failure detection. Both are essential for robust tracking
applications. In addition. I will explain how extensions. e.g. face detection,
can be integrated.

3.1 Particle Filter Framework

The HIJS filter. that was originally designed for person tracking. forms the
basis of my application. After showing an alternative way for deriving the
HJS filter, T will introduce the components of my filter implementation and
explain the modifications that were necessary for the hand tracking task.

3.1.1 HJS implementation

Compared to Lanz's work in [11]. T found a different way of separating the
posterior probability density. It follows a more direct approach and is. there-
fore, shorter. However, it is completely based on Lanz's work.

As Lanz pointed out [11]. any joint probability density p(x[z.,) can be
approximated by the outer product of its marginal distributions p(a#|z..)
with 7 € {t — 1.t}. Instead of focusing on the prior first. as Lanz did. T will
directly split the posterior. The marginal distributions of the posterior can
be computed by marginalization:

T

plaf|z) = /P(X:|3|:A)flek-



According to Bayes' rule (1). the update step (2), and the prediction step
(3). it can be written as

j)(.:':"|:|:,') (31(3 /p(;,|x,:}p(.f'r|:;:,_|){fx;!"

) /'”(:"Ixi)/i’(x!|xr—|}P(Xz_;|31_-;_-| }t!x,_|([x;"",

(3

Following Lanz’s assumption, I can write the previous posterior p(x,_1|z1.-1)
as the product of its marginal distributions:

(6,

plarF|z) = /p(:.,lx,)/p(x,|x,_|)Hp(.rf | 21a-1 )Xy dx*.
h

Splitting the product into a component with & and one without £ and moving
the component without k outside the inner integral. leads to

pl(af|210) = / plalx0) / p(xilx-1) [T (s 210 AT platy 21— e,
’ # h# ke

The marginal distributions p(af | |z,-1) in the product can be computed by
marginalization, resulting in

[}(.l";‘. Z14) : /p(:,]x,) /p(x,|x, 1) /p(x,_'_""‘.’:H_l}rfxf_*'lffxf";.l(;r:"_l|3|:;_1)r.7..rﬁ‘_l_

7)

A final reorganization step that combines the integrals over dx; | and dx;
leads to the final formula to compute the posterior:

!1{-1':"|31;r) = /P(lr|xr) /!-’(thxr- ,)p(xf_‘"l[.:1:,_,](lx:f'_l,'f.J(..r':"_l{:m_,):[,r:" |
' ' (16)
This formula matches exactly the results of Lanz and is entirely based on

his idea. However. the derivation is shorter and more comprehensible in my
view. The parts of equation (16) can be interpreted as follows:
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To form the posterior. the observation density p(z|x;) is used to update the
prediction which is formed by the system model p(xy]x;—1) together with the
posteriors from the previous time step, p(x,"|z1.-1) and p(af | [z10-1).

The observation density p(z|x;) is the non-separable part of the particle
filter. The system model p(x;|x,-1) can be separated as explained in (11).

[ will show now how I implemented these equations in my particle filter
framework.

3.1.2 State Space

The state space encoded by the particles determines what the tracker is
actually tracking. 1 decided to track both hands in 3D world coordinates
relative to the camera. To account for the fact that hands are fast moving
objects, I focused on the velocities day, dy,. and dz,. Thev are measured in
meters per frame (=2—).

Jrame

To be able to determine the current position of the hands. I also included
the 3D positions: #,. y,. and z. Similar to the velocities, the positions are
measured in meters (m) with respect to the camera (meaning that the camera
is the point of origin). Together with the velocities, it is easy to recover
the position of the previous time step by simply subtracting the velocities
from the positions. That way the filter can reason about the last trajectory
position without additional information:

T €Ty (i.}r,
vier | = w | = | du | x frame.
Zi-1 2z dz

Each particle is associated to exactly one object. This is necessary to cor-
rectly propagate the particles. as I will show in chapter 3.1.3. The object is
identified by parameter ¢, with ¢ € N,,.

Each particle x} encodes the state of one object at time 7. The state is given
by the seven-dimensional vector




As the implemented particle filter is based on the HJS filter. it is necessary
that the particles belonging to one object can be propagated independently of
particles belonging to another object. By defining the particles in a separate
manner as shown above, this is made possible.

Even though the particles representing one object are separated from par-
ticles associated with another object. they still are used jointly to compute
the observation density. Therefore, let K = {1..... &} be the number of ob-
jects.  All particles belonging to object A are combined in the particle set
x{ = {r}|¢ = k}. Furthermore, the particle set containing all particles used
in the filter is referred to as x;, = {x|vk € K} .

3.1.3 System Model

The system model propagates the particles over time by changing the state
variables. In my particle model, however. there are many redundancies.
First, the state element ¢ is fixed during the entire duration of the tracking
process. Second. by only propagating the velocities (diryyq, dyir. dziiq), the
positions can easily be derived:

T T driy
Yi1 = Ui + | dyi x frame.
Z+1 =1 dz141

Bv applying these redundancies, the effective search space dimension for my
particle filter implementation is reduced from seven to three.

All available additional information about the evolution of the state of a
system can be incorporated into the system model. In hand tracking, 1
asstmed that the hands continue at a speed similar to their enrrent speed.
To model this. T added noise with a zero-mean Gaussian distribution to the
velocities:

dr g dr, 1
dyi41 = | dy |+ | v
dzi dz U3

Values ¢ were chosen according to




T

with H = [}?"r'u'mr-
v € [-0.15-2 0152,

- Trame? frame

and ¢ = 0.015--1 The values of ¢ were limited to

frame”

The advantage of tracking the velocities instead of the positions lies in the
inertia of fast moving objects. If an object moves at high speed in one
direction, it is unlikely that it will abruptly change this direction. Instead. it
will most likely continue its path with slight deviations of its direction and
speed. This is true for the movements of the hands even though they are
able to change their direction and speed very fast. Plamondon showed this
in [17] where he investigated velocity profiles of fast human movements.

By keeping the velocities of the previous time step. this behavior can casily
be modeled. As 1 will show later, this results in very stable tracking of fast
moving hands even if their movements are erratic.

The alternative to this approach would have been to propagate the posi-
tions instead of the velocities. Then, however, the Gaussian noise must he
increased to be able to track fast movements. An increase in the noise param-
eter would require more particles to achieve a similar tracking performance.

3.1.4 Observation Model

The observation model is the most important part of the particle filter be-
cause it determines if the tracked probability density correctly represents the
true state of the observed system. In addition. the observation model takes
explicitly care of occlusion handling, as T described in chapter 2.2, It also
evalnates the features in the observation image. and it takes care of feature
fusion.

Algorithim 2 shows the update step based on the work of Lanz [11] with mod-
ifications to meet the hand tracking task. In the remainder of this chapter,
I will explain each step in detail.

Sorting the particles The particles must be sorted according to the dis-
tance to the camera. However, this is easy for the particle state space that [
proposed because the particles’ position information already are relative to
the camera. Therefore. the distance d to the camera is given by

29



Algorithm 2 Update step

update:
sort all particles a7 according to camera distance

FOR EACH object &
set h_"f‘ to N
set b to ()

END FOR

FOR EACH particle 1) € x;

identify object k represented by x}

: . : bt (n)
build occlusion map wy(u) = Hh#, o
compute foreground term ¢

compute background term ¢
compute reduced foreground term ¢,

assign new weight 7' = ¢} + ¢
apdate foreground buffer b5 (u) = bf(u) — Ag(a}, u)

update background buffer bf (u) = b (u) + ¢} ;A (2}, u)
END FOR




Rendering function. The rendering function A, (a). «) plays an impor-
tant role in the particle filter as it specifies the region of inferest in the
image. The region of interest is the area in image space where the hands
are supposed to be according to the hypothesis. 1 approximated the size of
the hands by a square with a side length of 10em. The rendering function
projects this square into image space with respect to its distance to the cam-
era. The further away the hands are, the smaller is the region of interest in
the image.

The evaluations of the features in the image depend highly on the render-
ing function as it defines which features are nsed. This leads to additional
challenges when tracking in 3D-coordinates as [ will explain in chapter 3.2.

Occlusion map. The occlusion map was build as described in chapter 2.2

Optimizing the occlusion map. In hand tracking, the number of objects
k18 between zero and two. Therefore, the use of the occlusion map can be
optimized. In case only one object is present (or none at all), the occlusion
map equals

h=1
h# k

11 case of two objects, the ocelusion map equals the foresround buffer divided
by the number of particles:

wy(u) =

h=1
h# k

By taking this into account, there is no need to compute the ocelusion map

anvimore because the foreground buffer can be used directly. In addition. one

multiplication per particle evaluation can be saved if the foreground buffer is
1

initialized by 1 and decreased by & in each step, instead of N, respectively
1.



Foreground term. The evaluation of the foreground term heavily depends
ou the features used. The features are explained in chapter 3.2.

However. it is important to note that the evaluation of the foreground term
Is very important for the performance of the particle filter. Here. evaluation
of the features as well as their integration is done. Both are very crucial steps
in particle filter implementations.

Lauz evaluated the foreground term as the distance hetween the color dis-
tributions of the rendering function and the observation image [11]. This
means that the best match has zero distance. 1 followed another approach.
meaning that my foreground term increases when the image cues match the
hypothesis. Therefore. 1 have to process the foreground, background, and
the reduced foreground term differently than Lanz did.

Background termi. The background term is evaluated as described in
chapter 2.2,

Reduced foreground term. The reduced foreground term is used to up-
date the background buffer. As mentioned above, Lanz's foreground term
15 zero in the best case. Thus, he can just add it to the background buffer.
In my case, however, just adding it would result in very high background
buffer values that would be higher than any foreground term. This would
reward particles if they stay in the shadow of another object even though
they are not occluded. To prevent this, T added a scaled-down version of the
foreground termn to the background buffer instead of the full amount.

Updating the foreground buffer. The foreground buffer can be updated
as explained in chapter 2.2.

Modified foreground buffer update. As [ will show in chapter 3.2.1.
problems arise when tracking multiple objects that share the same appear-
ance and that are very close to each other. Both things are the case in hand
tracking. and they complicate occlusion reasoning significantly. This is ob-
vious when thinking of the situation where both hands approach each other.
and one hand overlaps the other with no space in between. Without perfect
depth information or object recognition, it is nearly impossible to correctly
reason about which hand is on top.

The problem is that, even though both hands share the same appearance.
one hand will almost always get a higher feature rating than the other. e.g.
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due to different lighting conditions. If both hands are verv close and at the
same depth with respect to the camera. there is no reason for the particle
filter to prevent the particles from the hand with the lower rating to jump
to the one with the higher rating. The occlusion map will not prevent this
because both hands are at the same depth.

The HIS filter was originally developed for person tracking where the depth
information (and often the appearances. too) differ significantly. Unfortu-
nately. this is hardly never the case in hand tracking if occlusions oceur.
The nature of most object-manipulation tasks requires the hands to be at
roughly the same position in space and. therefore, they have almost the same
distance to the camera. Due to the fact that noise is added to the particles,
it is very likely that both particle clouds overlap thus rendering the ocelusion
map inefficient. This required a modification of the HIS filter in my diploms
thesis.

One way to counter this is to compute the foreground buffer before the loop.
That way not only the depth information is crucial for the ocelusion map. but
also the number of particles with similar hypotheses. Algorithim 3 shows the
modified code snippet. This, however. removes the ability of the foreground
buffer to reason about occlusions depending on the depth information. But.
on the other hand, it adds the ability to prevent particles from jumping
on objects already tracked by other particles. This would not have been
prevented by the original version of the occlusion map.

However, the ability to reason about occlusions depending on the depth in-
formation is not lost completely. The particles still get evaluated and the
background buffer updated depending on their distance to the camera. That
way. long term occlusions can be handled correctly.

Updating the background buffer. The backeround buffer is updated
with the reduced foreground term as explained above.

3.2 Features

The particle filter is a probabilistic approach where each particle’s weight
represents the probability that its hypothesis is correct. To get this proba-
bility. the hypothesis must be checked against the observation and a relation
between these two must be established.

In 2D-1racking, it is often difficult to decide which part of the iinage helongs
to the hypothesis. Often, a fixed window size is assumed or additional scaling
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Algorithm 3 Modified update step
update:

FOR EACH particle z} € x;
identify object k represented by
update foreground buffer h_’,‘l(u} = (}j}f(u) A

END FOR

gl o u )

FOR EACH particle ! € x,
identify object & represented by ]

s — " : b ()
g ¥ & l'\. — '!
build occlusion map wi(u) =], %

N
assign new weight 7' = ¢} + ¢}

update background buffer by (u) = by (u) 4 ¢ Ay (z]. u)

e

Figure 4: Feature window. The nearer the 3D-position is to the camera, the
bigger the resulting feature window.

parameters are introduced to represent the area of interest. However, one
advantage of 3D-tracking is that the hypothesis can be correctly projected
into the inage without the need of additional parameters.

[ used this perspective projection for every feature | incorporated. [ approx-
imated the hand shape by a square with fixed side length (10em). Each
particle tracked the center of the hand. According to the size and the posi-
tion of the hand. the square was projected into the image thus defining the
area of interest used for further feature evaluation. In the remainder of this
chapter, I will refer to this square as the “feature window”. Figure 4 shows
how the 3D-position affected the feature window’s size.

One note on probabilities: The true probabilities are not known. To approx-
imate them. a score is used that is proportional to the true probabilities.
Therefore, it would be more correct to speak of “scores” instead of “probabil-
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Figure 5: Features used for tracking. (a) shows the skin-color image, (h)
the disparity image. and (¢) the motion lmage. Images (a) and (¢) were
brightened to improve the visibility of the features.

ities”. In the remainder of my diploma theses. both notations will he used
interchangeablv.

As mentioned in chapter 3.1.4. the features evaluated here are used as the
foreground terms in the modified HIS filter, Figure 5 shows examples of each
feature used.

3.2.1 Skin Color

Skin-color is a widely used feature in applications that track parts of the
human body. Skin-color is very distinet from most ohbjects present in typical
human environments, and, at the same time, it is largely person-independent.
These qualities make skin-color one of the first choices in hand-tracking.

Skin-Color Segmentation A good overview of skin-color segmentation
can be found in [16] where Phung et al. analyzed skin-color segmentation
with respect to different color spaces and classifiers: the remainder of this
chapter is based mainly on this source.

Many color spaces exist (e.g. RGB. HSV. YChCr, CIE-Lab). However.
Phung et al. showed |16] that skin-color segmentation is largely independent
of the choice of the color space, as long as the color space includes more than
just chirominance information.

Plhung et al. [16] analyzed four dilferent c¢lasses of c¢lassifiers: piecewise linear
classifiers. Bayesian classifiers with histogram technique. Gaussian classifiers.
and multilayer perceptron classifiers. They found that Bavesian classificrs
with histogram technique and multilayer perceptron classifiers performed
best. In my diploma thesis. I used a Bavesian classifier for skin-color seg-
mentation because of its good performance and its fast trainine.
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Bayesian classifier with histogram technique. As the name indicates.
the Bayesian classifier is based on Baves’ rule. Given the classes Cotein 212
Cron—shin. & pixel w 1s classified as skin-color if

]-}( t ’("n!.-v‘n ) ~ P(f"nmw —akin )
IU('“ I(‘m.m —akin ) - P(.f‘.w',-m)

The prior probabilities p(c.,) and p(e,on skin) can be subsumed in a con-
stant 7, because they are independent of v and do not change after training.
In addition. the class-conditional quotient E%"‘"% can be expressed in
one histogram after training is complete. The final Tule is

p(”l(‘e-lrm) "

P( ""‘J(:‘.'Hm—.*k.iu) -

-

The class-conditional probabilities can be estimated by a histogram-based
approach. The histograms are build from training data hy simply counting
the pixels belonging to each class. The probability p(ule;) is given by the
numnber of pixels with value u belonging to class i normalized by the number
of all pixels in the training data belonging to i. To reduce the dimensionality
and improve the generalizability, this analysis is not done for every possible
pixel value, but for pixel-value ranges called bins. Phung et al. [16] showed
that 64 bins per color channel is enough to get good results.

Implementation. [ extracted skin-color using a histogram-hased Bayesian
classifier as described above. The result of the skin-color segmentation was
a greyv-value image where each pixel deseribed the likelihood of being skin-
colored, ranging from 0 (no skin-color) to 255 (skin-color). Typical values of
skin-colored pixels were hetween 25 and 45.

I implemented two skin-color based approaches. The first approach was
based on averaging the skin-color values, the second approach was based
on correctly matching the skin-color region. Both approaches vielded higher
values for the hypothesis the better it matched the observation.

Average-based skin-color feature. The first approach simply sumimed
up all pixels inside the feature window. The skin-color values were weighted
by the corresponding values of the occlusion map w"(u«). The resulting sum
was then averaged by the size of the window.
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Figure 6: The fleeing-particles problem. Frames 0. 21. and 16 show how
the particles moved away from the camera. The red dots represent single hy-
potheses, the red rectangle the perspective projection of the joint hypothesis.
The sequence was captured with 30 frames per second.

Let S be the region of interest in the skin-color map and u € S one pixel
value. The score ¢, can then be computed as

Z‘,“.;H (% w*(u))
G

Cy =

The idea was that a good match in image space would result in a high average
rating. This is true in case only two dimensions are being tracked (e.g. in
image space coordinates). In 3D tracking, however, it leads to the fleeing-
particles problem.

The fleeing-particles problem. The particle filter tries to maximize the
weight for each particle. If this weight is based on an averaged sum. it tries
to maximize this sum. But skin-color segmentation is not always perfect and
most of the time the segmentation quality varies strongly. The result is that
some pixels are rated higher than others.

The particle filter, being able to track in 3D, tried to maximize the score by
focusing on exactly these higher-rated particles. One way of maximizing the
averaged score is to solely focus on the highest-rated particle and minimizing
the size of the feature window at the same time. Because the filter tracked
in 3D, it achieved this by moving the particles far away from the camera
resulting in a very small square (because of the perspective projection) and
a high average score. However. the result was completely wrong. Figure 6
shows the fleeing-particles problem.

Region-based skin-color feature. To prevent the particles from foeus-
ing on only one skin-colored pixel. the score must increase with every addi
tional skin-colored pixel. This excludes the average-based approach deseribed
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above. However, just sunmming up all particles without averaging would result
in the other extreme: all particles would move towards the camera resulting
in a bigger feature window and. therefore, a higher score.

The solution was to penalize every non-skin-colored pixel inside the window.
That way the square was as big as the skin-colored region, but did not exceed
it. I chose the penalty to be dependent on the average skin-color value inside
the square because a fixed penalty term could lead to strongly segientation-
dependent performance. Let n be the number of non-skin-colored pixels.
Then

Cs = Z (u*w"(u)) - ,,__L-“E.w (u* w'(u))

5 |S
\ 1

= (w*w"(u)) = (] - —) :
2 E

The size of the feature window can be determined by setting a threshold
when a pixel is classified as being skin-colored or not.

Figure 7 shows the same sequence as figure 6. but this time with the region-
based approach. It proved to be much more stable and adapted quickly
to changing hand sizes. However, in case both hands came close to each
other, there was a large connected skin-color area in the image. Following
this approach. the particles tried to cover it completely. This effect was by
far not as severe as the fleeing-particles problem because the tracker usually
recovered after both hands separated again. However, this effect led to an
ervor as the tracked 3D-position was incorrect. The solution for this problem
was the introduction of the disparity feature. 1 will show its effect in chapter

3.2.2 Motion

In computer vision. motion is a strong indicator to distinguish between rele-
vaut parts of the scenery and irrelevant background. It is possible that many
skin-colored objects are present in the image. but usually only the moving
ones are of interest. Using motion as an additional feature could. therefore,
add robustness against backeground clutter.

To extract motion, one straightforward approach is to build a background
model of the observed scenery and subtract the current image from it. Let
= be the background model and 2, the greyscale image at time f. The
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Figure 7: The fleeing-particles problem solved. Frames 0, 21, and 46 show
how the particles stayed at the correct depth instead of moving away from
the camera. The red dots represent single hypotheses. the red rectangle the
perspective projection of the joint hypothesis. The sequence was captured
with 30 frames per second.

background model can be build and adjusted by parametric adaptation using
learning rate A:

_::J = (J_ - /\)--_';.,J_| + f\:f'

The learning parameter A takes values between zero and one. The higher A.
the faster the background model adapts to the observation.

Implementation. 1 built a motion image as described above. Because |
was only interested in the binary decision if a pixel belonged to a moving

region or not. I restricted the resulting motion image to a binary motion
mmage (1 indicated a moving region. (0 a non-moving one).

To score a hypothesis. I summed up all pixels inside the corresponding feature
window (again weighted by the occlusion map w*(u)) and computed the
average. The higher the likelihood that this area belongs to a moving part.
the closer is the score to one. Similar to the skin-color score. the motion

score ¢, 18 given by

Oy = Z(”* ”'*(”))* (] = %) 4

i S

The motion feature should add robustness against background clutter, like
other skin-colored objects. 1 will show the results of the motion feature in
chapter 4.2.5.
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3.2.3 Disparity

In stereo vision. the cameras are always translated and rotated to each other,
This results in slightly different images for the left and the right camera.
meaning that the same object is located at different positions in each image.
The amount of pixels which both object projections are apart from each other
is referred to as disparity.

In classical sterco vision, the images are nsually parallel to each other. There-
fore, the horizontal disparity is of interest when the disparity map is com-
puted.

Finding corresponding points in both images is referred to as the correspon-
dence problem and is in general computationally expensive. Hence. the cal-
culation of the disparity map is expensive as well. However, a preprocess-
ing step called rectification reduces the complexity of finding corresponding
points.

In general. the corresponding point can be anywhere in the two-dimensional
image. Through rectilication. this search is reduced from a two-dimensional
problem to a one-dimensional one by assuring that the corresponding point
is on the same horizontal row.

Rectification requires the internal camera parameters to be known. They can
be computed by calibrating the cameras.

In addition to computing the disparity of a given object in the image. the
disparity can also be directly computed if the 3D-coordinates are known. 1
will show now how this can be used to implement a robust disparity feature.

Implementation. The disparity information of one hypothesis can be com-
puted according to the 3D-information given by the particle. This results in
the predicted disparity. d,,..4. that can be compared to the observation data
to score the hypothesis,

Inn order to get the disparity score, the feature window was projected into the
left camera image. Now. the best match for the specified area was searched
for in the right image. The best mateh is defined by the difference of the
feature window and the search window. The lower the difference. the better
the match. Then. the best match is used to compute the second disparity
value. dy,...

As the disparity feature evaluates the whole feature window at once, it is not
possible to weight every pixel by its corresponding occlusion value. Therefore,
I computed the mean ocelusion
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i Z“‘_.__H w* (u)
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The disparity score ¢; is then given hy

1
Cqg = 5 - ( -I-T)
1 -+ w* (r'{b( s d;u'r d)u

Weighting the disparity feature with the mean occlusion was especially im-
portant in case of long-term occlusions. If one hand overlapped the other
hand. the occluded hand’s disparity feature was obviously completely wrong,
(This is not always the case for the skin-color and motion feature.) By weight-
ing it as described above, its influence was annihilated in case of complete
occlusions and no additional error introduced.

The disparity feature represents the spatial correspondence. It should add
robustness against wrong depth information. In addition. it should stabi-
lize the effect of the region-based skin-color feature as desceribed above. |
also tested it to stabilize the average-based skin-color feature. However. the
average-based approach is too unstable and the disparity feature did not
help.

3.2.4 Feature Fusion

If multiple features are used. they have to be combined. Because the features
presented above all have different value ranges. they cannot just be summmned
up. Therefore. 1 normalized them first. 1 chose to normalize the particles
so that the sun for each feature over all particles equals one. Let ('j, be the
value of feature p for particle 7. Then the normalized feature ¢, is

o

-5 fil

(';” = 7
Z‘j p

With exception of the disparity feature. fusion was done by summing up the
normalized features of every particle. To emphasize on certain features, the
sum can be weighted. Let 0, be the weight for feature p. The final weight wt
for particle ¢ is determined by

Z_j (SJ (,;
ZJ‘ 0

T =
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Disparity Tracking the hands in 3D had the result that the disparity fea-
ture greatly affected tracking quality as will be shown in chapter 4.2.2. There-
fore. T tried two different feature fusion approaches for the disparity feature,

Additive combination. Similar to the other features, it is possible to
simply add the disparity feature to the other features. The impact of the
feature can then be adjusted by its weight.

Multiplicative combination. By fusing the disparity feature in a multi-
plicative way. its impact is highly amplified. However. the importance of the
disparity feature justifies this approach.

3.3 Automatic Initialization

In the context of human-robot interaction, humans enter and leave the field
of vision of the robot all the time. This required the tracking application to
provide a way of antomatic initialization. In addition, automatic initializa-
tion was used to determine the initial distribution of the particles.

One way would be to detect the hands in the image and take their posi-
tions for initialization., However, a robust hand detection method is not vet
available.

[ implemented a way to initialize the filter that is based on the features which
were used for tracking. The idea behind this was that the likeliest position
for initialization contained skin-colored pixels in motion.

I used the integral image of the skin-color map. as well as the integral image
of the binary motion map (see chapter 3.2.2). I used integral images to
increase computational speed. They were first described by Viola and Jones
in |22].

Binary search for skin-colored clusters in motion. Skin-color is the
most reliable feature to make a first decision whether an image area is a
candidate for containing a hand or not. Therefore, I searched the skin-color
map for skin-colored clusters using a recursive binary search. Taking the map,
I split it into four equally sized parts. Each of these four parts was split again
in the same manner until a certain size determined by a small threshold was
reached. Then the small patch was classified as containing skin-color or not

)

using integral images and a threshold. Figure 8 shows the skin-color immage
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(a) (h)

Figure 8: Automatic initialization. (a) shows the skin-color image, (b) the
atomic areas identilied by the tracking failure recovery method hefore mere-
ing then,

together with the rectangles of interest identified by the binary search. If one
of these rectangles contained skin-color. it was combined with neighboring
skin-color patches. The patches were combined in a way that they alwavs
contained the smallest and largest r-. and respectively y-values.

The resulting patches were then rated according to three factors. First.
their size (the larger, the better). Second. their position in the image. The
further at the bottom the patch was, the higher its score. This prevented
an initialization on the face in case it was present in the image. Third. the
motion. The more pixels in the area of interest were moving, the higher the

sCOre.

All three indicators were combined by multiplyving them. If the motion indi-
cator was below 0.01 (meaning that less than one percent of all pixels inside
the area of interest were moving), it was set to 0.01. This was necessary
because in case of non-moving hands the motion indicator would be 0 and
thus would prevent the hand from ever getting initialized.

The antomatic initialization was also used for tracking failure IeCOVery.

3.4 Failure Detection

Tracking failure detection added significantly to the trackers performance.
Particles occasionally got stuck at background clutter, e.g. other skin-colored
objects, and did not recover by themselves. A method detecting tracking
failures removed the erroneous track from the filter and. using the method

described above for antomatic initialization. reinitialized it.



In my framewaork. I based the tracking failure detection on using three indi-
cators. First, when no skin color was present at the position of a hypothesis,
the track most likely failed. Second, if no motion was present at the indicated
position, it was also very likely that the track failed. Third, if the computed
disparity information deviated greatly from the measured disparity. the track
can he considered a failure,

I connted the munber of consecutive frames where at least one of the above
heuristics indicated a failure. When the number exceeded a certain threshold.
the track was removed and reinitialized. The threshold should be set in a
way that the tracker has enough time to recover. but not too high to prevent
long sequences without a correct track. Setting the threshold to the munber
of frames captured during one second yielded satisfving performance.

3.5 Extensions

The particle filter was designed to work stand-alone. However. in a final
implementation on a robot, it is very likely that the hand tracking application
works together with other applications and shares information, e.g. with a
face tracker. Therefore, it is important to enable the particle filter to include
external information.

One way to enable this is by allowing tracks to be added or removed from
outside the particle filter framework. This could, for example. be used to
remove a track that got stuck at the face using a face detector. Also. the
available observations could be altered depending on additional information.
If one region in the skin-color map was already assigned to the face, it conld
he excluded for the hand tracking application.

A more subtle way of adding additional information is by using the occlusion
map. If the tracker should be prevented from tracking objects within certain
areas. an occlusion could be simulated. The magnitude of the artificial ocelu-
sion can be used to determine how unlikely it is for objects to be observed in
specific image areas. For example, adding a full occlusion to the upper region
of an image to prevent the tracker from getting stuck at the face would be
wrong. Waving hands on head level would then not be correctly tracked. A
less severe occlusion. however. could support the tracker by not getting stuck
at the face, but returning in lower image areas after the moving motion ends.
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4 Experiments

In this chapter, I will present the evaluation of different particle filter im-
plementations. First, I will introduce the scenarios used to test the hand
tracking applications. Then, I will explain how I captured video files of the
experiments and show how I constructed the ground truth data.

In the second part of this chapter. I will present the results of the evalua-
tions of the two different HJIS variations, the effect of the different features
implemented. and the impact of the two disparity feature integrations. At
the end of this chapter, | will show the runtime evaluation.

4.1 Experimental Setup

I will now introduce the experimental setup used to test the tracking appli-
cation. First. I will present the different scenarios. After that. the technical
details will be explained.

4.1.1 Scenarios

The goal of the hand tracking application was twofold. First, I wanted to
show its performance in case of multiple occlusions. Second, 1 wanted to
demonstrate the trackers capabilities in a nunan-robot interaction task.

To test the tracker’s robustness against occlusions, 1 chose a shell game sce-
nario. The task was to switch three cups on a table. Here. the hands often
occluded each other when switching the positions of the cups. 1 recorded five
videos with three different people playing the shell game. One additional
challenge was the fact that the hands were moving fast and changed their
directions abruptly and frequently. Figure 9 shows one representative frame
from each of these video files. Table 1 shows a list with additional details,

In case of human-robot interaction. there are two different sub-scenarios. The
first one is joint object-manipulation, like giving or receiving objects to or
from the robot. but also one or two hand manipulation of objects (e.g. using
a mobile phone. opening a folding rule). The second one is gesture recog-
nition. I captured five videos with two different people interacting with an
lmaginary robot. In contrast to the shell game scenario, the challenges here
were background clutter (wood-colored objects): the fact that hands were
often not visible hecause they either left the feld of view or were oceluded
by the upper body: and big changes in position with respect to the distance

45



Name | Number Description Frames Frames
with
hands

OneHandSG | one hand 462 162 |

HandsOnlySG 2 two hands 492 492

AlexanderSG 3 upper body including 479 479
face, both hands

KaiSG 4 upper body including 768 768

face, both hands
KeniSG 5 upper body including 808 808
face, both hands

Table 1: The ShellGame video files.

to the camera. Figure 10 shows an exemplary picture of each video: table 2
lists additional information.

In the remainder of my diploma thesis. 1 will refer to the group of videos
showing the shell game scenario as the ShellGame videos and to the group
of videos showing human-robot interaction examples as HRI (lnmman-robot
interaction) videos.

4.1.2 Capturing

To capture video data. I used a bumblebee” ™ stereo camera developed by
POINT GREY RESEARCH (see http://www.ptgrey.com/ ). The videos
were recorded with a resolution of 640 x 480 pixels and a frame rate of 30
frames per second (fps). To decrease the computational load and to increase
speed, I downscaled the video frames to 320 x 240 pixels. The intrinsic and
extrinsic camera 1]&'1.1'511].'1(;‘1'-(‘.1'5 were known,

4.1.3 Processing

I carried out all experiments on a Lenovo 5000 N200 laptop. The CPU is an
Intel(R) Core(TM) 2 Duo CPU T7250 2.00 GHz, the size of the memory is
2 GB. and the graphic card is an NVIDIA GeForce 7300 Go.

I did not use parallel programming techniques. nor did 1 implement any
special hardware-dependent optimizations.
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Figure 9: The ShellGame videos.
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Name Number Description Frames Frames
with
hands
AlexanderHRI 1 full body, object 1242 1242
manipulation. gestures,
hands leave field-of-view
Kﬂ-ﬁ_‘IRIﬂb.jE(:tH 2 full body, object 1272 1272
manipulation, gestures,
hands leave field-of-view
IKaiHRThands 3 two hands, no face, many 1891 1691
occlusions, hands leave
field-of-view
KaiHRIdisp 4 full body. gestures, many G40 441
position changes and
occlusions at different
depths, hands leave
field-of-view
KaiHRI 5 full body. gestures, hands 1072 926

leave field-of-view

Table 2: The HRI video files.
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Figure 10: The HRI videos.
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4.1.4 Implementation Details

I'implemented my hand tracking application in C+ 4. For image processing.
I used the open source library Intel openCV 1.0. In addition. I used the
ISL Computer Vision Toolbox (ICV) developed at the Interactive Systems
Labs (ISL) of the University of Karlsruhe. The ICV toolbox contains, among
others, GUI functions, writing of image sequences (that can later be used to
generate video files for demonstration purposes), algorithms for skin-color
segmentation using a histogram-based Gaussian classifier. and algorithms to
process sterco camera information (e.g. rectification, disparity image com-
putation, perspective projection, search for best disparity).

4.1.5 Ground Truth Data

I labeled all video files manually. Each label contained the center of the hand
in image coordinates together with the side length of the square surrounding
the hand.

[ labeled every fifth frame in the image and interpolated the frames in between
resulting in one label per frame per object. I checked the interpolated frames
manually to ensure that they were correct.

4.1.6 Additional Parameters

Additional parameters were necessary to control the behavior of the heuristics
nsed for antomatic initialization and tracking failure detection.

Automatic initialization. The minimun window size used in the binary
search algorithm was limited to 5 pixels. The minimum value of the motion
feature was limited to .01 as mentioned in 3.3. The other features were not
limited. The positions chosen as initialization points had to be at least 50
pixels apart from each other to prevent initialization of both tracks on one

single hand.

Tracking failure detection parameters. A track was considered a fail-
ure when either the skin-color feature, the disparity feature or the motion
feature indicated an error during a sequence of 30 frames as explained in 3.4.
In the setting chosen for this diploma thesis. this equals the duration of one

second,



4.2 Results

To evaluate the tracking application, I analyzed two indicators. First, how
many frames were tracked correctly, 1 normalized this value for every video
file due to varying number of frames. Second. how many tracking failures
were detected by the module described in chapter 3.4.

A frame was considered a success if all objects tracked were matched by
exactly one associated hypothesis. This means that the track was considered
a failure when only one object was tracked correctly.

The munber of tracking failures shows how often the hand was lost during
tracking. It does not account for situations where both tracks were on the
same hand or where one or two tracks were on the face. Therefore. it is mainly
an indicator for the quality of the tracker. but not for occlusion handling.
However. the number of failures can be useful to analyze the tracking rate. A
low tracking rate together with a low failure count usually occurred in cases
where one track got stuck on the face. These cases were especially difficult
to handle, and they reduced the significance of the HRI video evaluations as
will be shown later. Without a face detector, the tracks often got initialized
right on the face because one or both hands were not visible. After the
tracks were stuck at the face, they usually did not recover because, from the
perspective of the tracking failure detector, no failure oceurred.

On the other hand. a high tracking rate together with many tracking failures
indicated that the reason for the good results were frequent and well-chosen
reinitializations instead of good tracking performance.

In the remainder of this chapter, T will first determine the optimal nmunber of
particles for further experiments. This was necessary to exclude experiments
where the reason for bad tracking rates was just the fact that too few particles
were used. After that. T will show different ways of integrating the disparity
feature. Then I will explain how the motion feature was incorporated. and
I will focus on two different ways to build the ocelusion map. Finally. 1
will show examples how the tracks could be used by other applications. e.g.
gesture recognition.

4.2.1 Determining the Optimal Number of Particles

To determine the necessary nmumber of particles to get reliable tracking re-
sults. I chose to first evaluate the tracker using skin-color only. Figures 11
and 12 show the performance depending on the number of particles. As
both figures show, the tracking performance stabilized at approximately 80
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Determining the optimal number of particles. This figure shows

the tracking performance depending on the number of particles used for the
video file HandsOnlySG. Ouly skin-color was used as a feature. (a) shows
the tracking quality, (b) the number of detected tracking failures.

particles per object. Therefore, 1 decided to vary the number of particles
used between 80 and 100 for future experiments. By inereasing the munber
of particles stepwise by five, I received five different parameter configura-
tions. Averaging the results of these five configurations limited the impact of
outliers and introduced randommness in the experiment.

Figure 11 shows that the tracker performed very well when only one object
was tracked without disturbances. This indicated that the system model
performed well with fast-moving hands and that the region-based skin-color
feature had no problems with tracking in 3D.

In contrast to figure 11, the results presented in figure 12 are much worse. As
mentioned in chapter 3.2.1, this was due to the fact that the tracker failed
when tracking two objects without additional information. When both hands
partially overlapped in image space, the region-based skin-color feature was
not able to distinguish between them. Therefore, it tried to cover both hands
simultancously. This effect was expected due to the construction of the skin-
color feature. The solution was the introduction of the disparity feature.

4.2.2 Disparity Feature

When both hands partially overlapped. only one big skin-color region was
visible in the skin-color segmented image. Every skin-color based feature,
which is designed to match this area, will fail in this case without additional
information. One way to solve this problem is by introducing additional
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Figure 12: Determining the optimal number of particles. This figure shows
the tracking performance depending on the number of particles used. The
results were normalized for all ShellGame video files, Only skin-color was
used as a feature. (a) shows the tracking quality. (b) the number of detected
tracking failures.

constraints that limit the size of the feature window. That was not possible
in 3D-tracking because the window size depended on the position in space.
Another way is to split one skin-color area if multiple hypotheses are assigned
to it. But this would arbitrarily alter the observation data.

[ chose to include disparity information to solve this problem. If the skin-
color feature window tries to include all visible skin-colored pixels. it must
et bigger. In 3D-tracking, this means that the hypothesis must choose a
position nearer to the camera than the object being tracked. Therefore. the
disparity information would differ a lot from the observation. This can be
used to prevent the particles from tracking both hands simultaneously.

To show the effect of the disparity feature, I chose to fuse it with the skin-color
feature by multiplying them with each other. That way. the disparity fea-
ture highly influenced the particles’ weight. Figure 13 shows the comparison
between the pure skin-color based approach and disparity-based approach.
The latter one yields higher tracking rates and less failures. Later, I will also
show another way of integrating the disparity feature.

4.2.3 Disparity Feature Integration
As motivated by Kittler et al. [8]. there are two main ways of integrating

the disparity feature: Either by multiplying it with the skin-color score or
by summing both up with varying weights. The multiplicative approach put
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high emphasize on the disparity feature. As equation (17) in chapter 3.2.3
shows, a difference of only 1 between the predicted and measured disparity
values led to a reduction of the skin-color score by the factor of 2. The
question was whether this strong impact is applicable.

Feature integration by summing both features up was the other approach.
Here. the features can be weighted. First experiments showed that skin-color
should be weighted higher than the disparity feature. I chose the skin-color
weight to be 3 and tried three different weights for the disparity feature: 1.
2. and 3.

Figure 14 shows the results of the experiments. I used all ShellGame videos
and averaged the results for 80, 85. 90, 95, and 100 particles. The bars from
left to right show: multiplicative integration (dark blue). additive integration
(3:1, light blue), additive integration (3:2. green). additive integration (3:3,
orange), and skin-color stand-alone (red).

The multiplicative integration performed better than all the other approaches.
It achieved by far the overall highest tracking rate and the lowest number of
failures.

The additive feature integration resulted in lower tracking rates than the
multiplicative approach. The higher the disparity feature was weighted. the
worse the results. This is due to an introduced error of the disparity feature
when it is integrated by adding it. For example, if the hypothesis got stuck
at a cup on the table, the disparity feature would still be right thus resulting
in an error. This would not happen by multiplicative integration because
the skin-color feature’s score would be zero. Thus, the combination of both
features would still be zero.

Figure 14 (a) shows that the additive feature integration proofed to vield even
lower tracking rates than the skin-color only approach. Figure 14 (b) reveals
that this is due to the fact that the skin-color-only tracks got often reset
during the video sequences. This indicated that the additive disparity feature
integration vielded better results than skin-color alone and demonstrated the
benefit of using disparity information.

Based on these results. I chose multiplicative disparity feature integration for
the remainder of my experiments.

To show the significance of the disparity feature. it is immportant to look ar the
extracted trajectory of the track, Without disparity information, the track
might make sense in image space, but its 3D-position could he completely
WIOng.
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Figure 14: Disparity feature integration. The dark blue bars show multiplica-
tive integration. Additive integration (weighted skin:disparity) is represented
by the light blue (3:1), green (3:2), and orange (3:3) bars. The red bars show
the skin-color stand-alone feature. The numbers on the z-axis represent the
corresponding video numbers of the ShellGame videos.

Figure 15 shows two different views of two extracted trajectories, one with
the disparity feature and one without it. The video used was HandsOnlySG.
The movements in this video were mostly along the r-axis with only very
small deviations along the y- and z-axis. With the disparity feature, the
track is very stable and the 3D-position is tracked correctly. Without it.
however, the tracker tried to cover as much skin-color as possible and, by
doing this, was not able to correctly follow the hand movement. Therefore,
the data would be no use for other applications.

4.2.4 Tracking Performance in Human-Robot Interaction Exam-
ples

The videos of the second group, HRI, are significantly harder to track than
the ShellGame videos. Many background occlusions, initialization issues
due to the hands leaving and entering the field of view, different lighting
conditions when the persons were moving, and big distance changes with
respect to the camera accounted for the increased difficulty.

The most severe difficulties, however, arised from the fact that tracks got ini-
tialized verv often on the face when the hands were outside the field-of-view.
Onee a track got initialized on the face, it is very unlikely to recover because
the skin-color and disparity feature did not indicate a failure. Therefore, the
HRI results shown in figure 16 are not significant because it is not possible
to tell where the tracks were initialized.
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Figure 15: Extracting trajectories. The video used was HandsOnlySG and
only the first object’s track is shown. (a) shows the tracker with the disparity
feature, (b) without it. The top row shows the trajectory in 3D. the bottom
row in 2D from bird’s eye view. That way incorrect depth information can
casily be seen. During the shell game, movements followed mostly the a-axis.
and movements along the z-axis should be minimal. The bottom row shows
that the 3D-position is not tracked correctly without the disparity feature.
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Figure 16: Tracking performance for the HRI videos. As explained in the
text. the tracking rate is very low. The reason for this is confusion with the
face. The nmunbers on the r-axis represent the corresponding video numbers
of the HRI videos.

One solution to this problem is the introduction of a face detector to exclude
the face from the observation. However. this would go beyoud the scope
of my diploma thesis. To simulate a face detector, I labeled the faces in
the HC!I videos manually and excluded them from the skin-color images.
Figure 17 shows the results with the modified observation data. Except for
video immber 3. where no face is present. and video number 4. the tracking
performance increased significantly.

Compared to the ShellGame videos, the tracking rate is still significantly
lower. This can be explained when looking at the skin-color segmentation.
In the HCI videos, the persons interacting with the robot moved freely
the room. This affected the skin-color segmentation due to varying lighting
conditions. In the worst case, the skin-color segmentation failed almost com-
pletely. In future work, this problem could be addressed by introducing a
dynamical adaptation of the skin-color model used in the histogram-based

Bayesian classifier.

4.2.5 Motion Feature

[ included the motion feature to add robustness against background clutter
and against non-moving skin-colored objects. However, the introduction of
a new feature often also adds another source of errors as can be seen by the

additive disparity feature integration discussed above.

Concerning the motion feature, it turned out that the tracker yielded worse
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Figure 17: Tracking performance for the HRI videos with and without ex-
cluded face region. The blue bars show the performance without modification
of the skin-color map. The red bars show the results with the face excluded.
The numbers on the r-axis represent the corresponding video numbers of the

HEI videos.

results with than without it because particles also got support when their
corresponding feature window included motion. This can. for example. lead
to the situation where particles “climb up” the moving arms and get stuck
at the face. Figure 18 shows such a sitnation where the moving arm built a
bridge up to the face.

Figure 19 shows the tracking results using the motion feature. The skin-color
and the motion feature were weighted before they were summed up. Then.
the resulting sum was multiplied with the disparity feature. Again. 1 chose
3 as the skin-color weight, and analyzed the results with motion weights of

Figure 18: Motion feature leads to error. The motion feature builds a bridge
from the hands to the face where the particles can get stuck. The image was
brightened to improve visualization.
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Figure 19: Integration of the motion feature. Skin-color and motion were
weighted before summing them up. Then. disparity was integrated by multi-
plication with the resulting sum. The bars show the results for the ShellGame
videos with different weights (skin:motion): dark blue (3:0). light blue (3:1).
vellow (3:2), red (3:3). The numbers on the r-axis represent the correspond-
ing video munbers of the ShellGame videos.

1. 2. and 3. The tracking quality decreased with increasing motion weights
leading to the conclusion that the introduced error outweighed the benefits
of the feature.

Omne solution to improve the quality of the motion feature could be the inte-
gration in a multiplicative way as | did with the disparity feature. However.
sometimes the hands are not moving which would then result in tracking
failure. This is different from the disparity feature because disparity infor-
mation can always be measured as long as the hand is visible. Therefore.
trading one error for the other seemed not to be appropriate in this case.

4.2.6 Occlusion Map

In chapter 3.1.4. I explained that problems can arise when two objects look
similar and are very close to each other. In these cases. the particles of one
object can “jump” to the other object. The original occlusion map imple-
mentation would not prevent this because there is no way of distinguishing
both objects from the particles’ perspectives.

To solve this problem. I computed the ocelusion map before all particles got
evaluated instead of afterwards. Figure 20 shows the comparison of hoth
approaches. I used the ShellGame videos because there the most occlusions
were present. The blue bar represents the computation of the occlusion map

GO
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Figure 20: Comparison of two different approaches to build the occlusion
map. The blue bar shows the performance of the tracker when the occlusion
map was build before rating the particles. the red bar the original imple-
mentation. The numbers on the r-axis represent the corresponding video
numbers of the ShellGame videos,

before the evaluation of the particles, the red bar the computation during
the evaluation.

In case of hand tracking, first computing the occlusion map resulted in an
improved tracking performance. The downside. however, was the fact that
the concept of the ocelusion map got partially lost.

4.2.7 Extracting Information for Gesture Recognition

As I mentioned in the introduction chapter, hand-tracking can be used for
gesture recognition. One way is to analyze the trajectory to get temporal
information about the gesture. Another way is to extract an image of the
hand and use it for further processing.

[ already showed extracted trajectories in figure 15. The extracted trajecto-
ries can be used by other applications to reason about the temporal dimension
of the movement. That way. it would be possible to identify, for example.
waving gestures.

Figure 21 shows extracted hand images from a tracking sequence. They were
extracted using the projected feature window and adding a small offsct to
assure that the whole hand is visible. These extracted images could be nsed
by other applications to extract the spatial hand configuration.
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Figure 21: Extracting gestures. By extracting the area around the hypoth
esis. the resulting pictures can be used by other applications. e.o. gesture
recognition.

[ Name | Computing timme in ]r.u.-»'nﬂ
image processing 33 i
stereo processing 50
skin-color segmentation 1
background adaptation I
particle filtering 35
failure detection and recovery < 1
total 123

Table 3: Computing time. This table shows the averaged computing time
of the single parts of the tracking application. The number of particles was
100. The video used for evaluation was the third ShellGame video.

4.3 Runtime

[ analyzed the average computing time needed to process one frame in my ap-
plication. The program consists of six different parts: basic image processing
(e.g. loading image frame, resizing), stereo processing. skin-color segmen-
tation, background adaptation, particle filtering, and failure detection and
recovery. Table 3 shows the average computing time of these parts.

As table 3 shows. the tracking application processed approximately 8 frames
per second. To be able to run in real-time. this is too slow. However. much
computation was necessary for image and stereo processing. The particle
filter itself needed only 35ms resulting in a theoretical speed of approximately
28 fps. This would be almost enough to process the video data used for this
diploma thesis in real-time.



5 Conclusion

In my diploma thesis. I presented a hand tracking framework based on pai-
ticle filters for human-robot interaction. I tracked two hands simultancously
in real-world 3D-coordinates.

My tracker is a modification of the HJS filter that is originally used in person
tracking tasks. I showed how it can be modified to better fit the task of
hand tracking. The main challenges were that both hands shared the samne
appearance model, that they were often very close in image space, and that
the depth information was tracked instead of heing measured externally. |
modified the occlusion map computation to account for these situations and
showed that the results improved for hand tracking tasks.

I used skin-color as the main feature. However, tracking in 3D introduced
instabilities that could not be compensated by skin-color alone. T introduced
a second feature, disparity information. to stabilize the results. 1showed that
multiplicative feature integration is superior to additive integration in case
of disparity information. The results achieved with disparity information
were very stable in all three dimensions and improved the tracking quality
significantly.

I showed that the integration of a third feature, motion. did not improve
the tracking results. In fact, the results were worse due to additional error
SOUTCes,

I implemented a tracking failure detection method that was symmetric to
the tracker, meaning that it relied on the same features. In addition. I
implemented a fast tracking failure recovery method based on binary search
in integral images. The integration of both methods added significantly to
the tracker’s performance.

Future Work

As shown in chapter 4. the tracker performed very well when both hands were
present during the whole video sequence and only self-occlusion oceurred. In
scenarios where the tracked hands were not present the whole time or where
they were occluded by other body parts. its performance was worse. As
pointed out, the error mainly occurred due to initializations on the face and
because of changing skin-color segmentation quality. The integration of a
face detection module and adaptive skin-color segmentation could increase
the tracking quality.

63



The computations required by the tracker were expensive because multiple
image areas were evaluated multiple times during each time step. With the
hardware configuration used for the experiments. real-time performance was
not possible.  Optimizing the computation of the occlusion map was one
step in reducing the computational load. However. in future work. further
optimizations could improve computation time and, therefore. the overall
runtime.

One problem of many hand tracking applications arises when the lower arms
are not covered by clothing. e.g. when wearing a T-shirt. This is also true for
niy tracker and limits its usefulness, In future work. it is worth investigating
it it is possible to solve this problem without relying on a model of the whole
body. One possibility could be the introduction of an additional parameter
that accounts for the orientation of the lower arm with respect to the hand.
The position of the lower arm could then be removed from immage data. e.g.
by using the occlusion map as mentioned in 3.5.
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the z-axis, the higher the likelihood that the object is occluded.
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Features used for tracking. (a) shows the skin-color image.
(b) the disparity image. and (¢) the motion image. Images (a)

and (c) were brightened to improve the visibility of the features.

The fleeing-particles problem. Frames 0, 21, and 46 show how
the particles moved away from the camera. The red dots repre-
sent single hypotheses, the red rectangle the perspective pro-
jection of the joint hypothesis. The sequence was captured
with 30 frames per second. . .

The fHeeing-particles problem solved, Frames 0, 21, and 46
show how the particles stayed at the correct depth instead of
moving away from the camera. The red dots represent single
hypotheses. the red rectangle the perspective projection of the
joint hypothesis. The sequence was captured with 30 frames
per second.

Automatic initialization. (a) shows the skin-color image. (b)
the atomic areas identified by the tracking failure recovery
nethod before merging them.

The ShellGame videos,

The HRI videos,

Determining the optimal number of particles. This figure
shows the tracking performance depending on the nmunber of
particles used for the video file HandsOnlySG. Only skin-color
was used as a feature. (a) shows the tracking quality. (b) the
number of detected tracking failures.
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Determining the optimal number of particles. This figure
shows the tracking performance depending on the number of
particles used. The results were normalized for all ShellGame
video files. Only skin-color was used as a feature. (a) shows
the tracking quality, (b) the number of detected tracking fail-
ures.

Comparison of tracking qualities with multiplicative feature
fusion. The multiplicative fusion of the skin-color and dis-
parity feature (blue) is superior to the skin-color feature only
(red). The upper row shows the tracking quality, the lower
row the number of detected tracking failures. (a) shows the
results for the video file OneHandSG. (b) for all ShellGame
videos averaged. (Detailed information regarding the video
files can be found in table 1.)

Disparity feature integration. The dark blue bars show multi-
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plicative integration. Additive integration (weighted skin:disparity)

is represented by the light blue (3:1), green (3:2), and orange
(3:3) bars. The red bars show the skin-color stand-alone fea-
ture. The nmunbers on the a-axis represent the corresponding
video numbers of the ShellGame videos.

Extracting trajectories. The video used was HandsOnlySG
and only the first object’s track is shown. (a) shows the tracker
with the disparity feature, (b) without it. The top row shows
the trajectory in 3D, the bottom row in 2D from bird’s eye
view. That way incorrect depth information can easily be
seenr. During the shell game, movements followed mostly the
r-axis, and movements along the z-axis should be minimal.
The bottom row shows that the 3D-position is not tracked
correctly without the disparity feature.

Tracking performance for the HRI videos. As explained in
the text, the tracking rate is very low. The reason for this is
confusion with the face. The numbers on the z-axis represent
the corresponding video numbers of the HREI videos. .

Tracking performance for the HRI videos with and without
excluded face region. The blue bars show the performance
without modification of the skin-color map. The red bars show
the results with the face excluded. The numbers on the r-axis

represent the corresponding video numbers of the HRI videos.
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20

Motion feature leads to error. The motion feature builds a
bridge from the hands to the face where the particles can get
stuck. The image was brightened to improve visualization.

Integration of the motion feature. Skin-color and motion were
weighted before summing them up. Then, disparity was in-
tegrated by multiplication with the resulting sum. The bars
show the results for the ShellGame videos with different weights
(skin:motion): dark blue (3:0), light blue (3:1), vellow (3:2).
red (3:3). The numbers on the r-axis represent the corre-
sponding video numbers of the ShellGame videos.

Comparison of two different approaches to huild the ocelusion
map. The blue bar shows the performance of the tracker when
the oeclusion map was build before rating the particles, the red
bar the original implementation. The numbers on the r-axis
represent the corresponding video munbers of the ShellGame
videos.

Extracting gestures. By extracting the area around the hiy-
pothesis. the resulting pictures can be used by other applica-
tions, e.g. gesture recognition.
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