Interactive Systems Labs
estl

Carnegie Mellon University

Pittsburgh, PA, USA

University of Karlsruhe
Germany

Model-Based Recovery of Dynamic

Information from Static Handwriting

DIPLOMA THESIS
Ralph Grof

Supervisors:

Prof. Dr. Alex Waibel

Dipl.-Inform. Stefan Manke

January 1998

Hiermit erkléare ich, daB ich diese Diplomarbeit selbstdndig verfaBt und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Pittebubgh
Pitts g,denSﬁlllQ% /'—“\

/ --‘j
W e %j O N -
¥

Zusammenfassung

Im Bereich der Handschriftenerkennung kann zwischen On-line und Off-line Systemen
unterschieden werden. On-line Systeme erhalten ihre Eingabe in Form einer zeitlich
geordneten Sequenz von x-y Koordinaten der Stifttrajektorie, wihrend Off-line Sys-
teme aufl einer statischen Reprisentation, iiblicherweise einer Bitmap, arbeiten. Die
Forschungsbemiihungen der vergangenen Jahre haben gezeigt, daB On-line Systeme
deutlich bessere Erkennungsraten erzielen als Off-line Systeme. Die Ursache hierfur ist
vor allem das Vorhandensein der zeitlichen Schreibinformation bei On-line Erkennern.
Die vorliegende Arbeit prasentiert ein modell basiertes System zur Riickgewinnung der
zeitlichen Schreibinformation aus einer Off-line Reprasentation von handgeschriebe-
nen Worten. Auf die daraus resultierenden Daten kann ein On-line Handschriften-
erkenner angewendet werden.

Das vorgestellte System extrahiert withrend der Vorverarbeitung eine abstrakte Re-
prasentation des Eingabewortes. Mit Hilfe dieses sogenannten Segmentgraphen kann
das Grundproblem, als Suche nach einem besten Pfad durch den Graphen formuliert
werden. Die Hauptaufgabe dabei ist die Entwicklung einer Strategie zur Festle-
gung der Ausgangskante aus einem Knoten des Segmentgraphen bei gegebener Ein-
gangskante. Die in der vorgelegten Arbeit realisierte Losung benutzt ein Knoten-
modell, das in Form eines vorwéartsgerichteten neuronalen Netzes implementiert ist.
Basierend aul der im Rahmen dieser Arbeit entwickelten Merkmalsreprasentation er-
reichen die mit Backpropagation trainierten Netze eine Erkennungsrate von 93.8%.
Unter Verwendung der Ausgaben des Knotenmodells errechnet eine nachgeschaltete
Suchkomponente die wahrscheinlichsten Pfade durch den Segmentgraphen. Aus der
Liste der Gesamtwortpfade wird abschliefend unter Benutzung eines On-line Hand-
schriftenerkenners der beste Pfad ausgewihlt.

Um die Leistung des vorgestellten Systemes zu messen, wird ein On-line Hand-
schriftenerkenner auf die errechneten Daten angewandt. Dabei wurden Erkennungs-
raten von 84%, 77.3% und 67.8% unter Verwendung ven Worterbiichern mit 120,
1000 und 5000 Worten erzielt.

A bstract

Research efforts conducted in the field of handwriting recognition resulted in a num-
ber of systems for on-line and off-line data. It is a known fact that on-line systems
perform significantly better than off-line systems. This can be attributed to the lack
of dynamic writing information in the case of off-line data. This thesis presents a
model-based system for the extraction of dynamic writing information from static
representations of handwritten words. The resulting data can be used as input to an
on-line handwriting recognizer.

The proposed system generates an abstract representation of the input word during
preprocessing. Using this so-called segment graph, the task is transformed into the
search for an optimal path through the graph data structure. The main problem
within this task is the determination of the outgoing edge of a node in the segment
graph given the input edge. The solution proposed here uses a node model, imple-
mented by a feedforward neural network. Together with the feature representation
developed in this thesis, the neural network achieves a classification accuracy of 93.8%.
With the help of the node model a subsequent search algorithm calculates the best
paths through the segment graph. The optimal path is chosen using an on-line hand-
writing recognizer.

In order to evaluate the presented approach, an on-line handwriting recognizer is
applied to the data produced by the system. The recognizer achieves accuracies of
84%, 77.3% and 67.8% with dictionary sizes of 120, 1000 and 5000 words.

Acknowledgments

This work could not have been done without the help from a number of people. First
I would like to thank Prof. Alex Waibel for the opportunity to conduct my research
at our lab at Carnegie Mellon University, Pittsburgh. I would also like to thank:
Stefan Manke for his advice and guidance during this project. Klaus Ries for the
countless discussions we had on many related subjects. They helped me develop a
deeper understanding of the problems involved in this project. Wolfgang Hiirst for the
productive cooperation we had during his stay at Carnegie Mellon. Matthias Denecke
for technical advice and proofreading of this thesis. My fiancee Aleksandra for all the
support she gave me especially during the last months of this project. Last but not
least, my parents who supported me in every possible way during all the years of my
studies.

Contents

1 Introduction

1.1 Motivation
1.2 Problem Definition e e
1.3 Contribution of this Work
1.4 Organization of the Thesis
2 Background
2.1 Handwriting Recognition
2.2 Properties of Cursive Script

2.3 On-line Handwriting Recognizer NPen™™
24 Neural Networks

3 Related Work

3.1 Stroke-level systems00
3.2 Word-level systems

4 System Overview
4 CVeTVIBW ¢ 5 SeE ¥ PR BB PG SES v SEE 5 NI s 8 uAls
48 Toput Data ¢ sme @ sms o9 o pws on

5 Preprocessing
5:1 Scan Conversion :« ¢w i s @ @ 855 69 s 5 fWs B EE s B s o §a
52 CoptourExtraction : ¢ .« ¢ oo ¢ va s ¢4 6 5% & da s ediu e daa
5.3 Segment Graph Extraction000 0000
G4 Performance; 55 5 o@y 0 By DB T BEY S pRE T Eg
5.5 Problems and Shortcomings L.
5.6 Contribution of this Thesis

6 Node Models
6.1 Formulation as Classification Problem
6.2 Features of the Model
6.3 Representation of Input and Output Values
6.4 Training of the Neural Network
6.5 Analysisofthe Results

CONTENTS

6.6 Importanceofthelnputs

6.7 Contribution of this Thesis . . ;. . ¢ o 0o h oo v i 8 v 2 v 5s
T Search

7.1 Requirements for Search Strategy

7.2 BearchEngine . . o o6 v v s vad v i dhmedL ¢ ads s 855

7.3 Selectionof Best Path vy

T4 Evaluation o 0 i i e e e e e e e e e e e e e e e e e e

8 System Evaluation

8.1 Recognition ACCUFACY v o s st s e v st s v s 0 s s o s s o
8.2 Error ATBlVsis . v - sows wmas coewa w un s mie et a8 s
8.3 Contribution of this Thesis
8B4 Examples . .5 o vv v o von v vms s o wm s ie s v e s owax o a v

9 Summary and Future Work
0.1 SUMIMALY o cws e s #55 & s § fms & 2mm ¢ me s Lmms 5 6o
02 Future Work o c coi 5 siws 2 sw s § 8@ 5 § v 3 5.8 4 € w6 a

Chapter 1

Introduction

1.1 Motivation

Despite the large number of computers in business offices and private homes and the
omnipresence of telephones, a high percentage of our daily communication is still
done by exchanging machine-printed and handwritten notes on paper, such as letters,
letter envelopes, faxes or bank checks. Distribution and further processing of these
messages can be accomplished more efficiently by computers. However, converting
the information captured on paper into a computer-accessible format is difficult. Re-
searchers in the field of OCR (Optical Character Recognition) have been working
for decades on the task of recognizing machine-printed texts. The software resulting
from these efforts achieves high recognition accuracies when used under good condi-
tions. The recognition of handwritten text on the other hand is still far away from
this performance.

The increasing computer power available for mobile systems such as laptops or palm-
tops raises the interest in on-line handwriting recognition which deals with handwrit-
ten input made on pressure sensitive displays or digitizer tablets. This allows the
design of new interfaces offering mouse, keyboard and/or pen as input devices. The
recognition rates of systems processing on-line data are noticeably higher than those
for off-line data. This can be attributed to the lack of dynamic writing information
in the case of off-line data.

Two questions arise out of this observation. First, is it possible to retrieve the lost
temporal information? Second, how can additional dynamic information be used to
perform off-line recognition? This thesis aims at answering both of these questions
by proposing a system for recovering dynamic writing information from static images
of handwritten words. The resulting data is used as input to an on-line recognizer.

CHAFPTER 1. INTRODUCTION 2

1.2 Problem Definition

The problems associated with the above outlined task become obvious if one tries to
imagine how a virtual pen traces along a bitmap such as the one depicted in figure
1.1.

o]

possible startpoints intersections

Figure 1.1: Example word with possible starting points and intersections highlighted

The first difficulty concerns identifying the starting point of the trace. The fact that
English words are written from left to right and top to bottom suggests to search for
the best starting point at the upper left end of the input image. As will be shown
later on this heuristic does not cover all words, hence a more sophisticated algorithm
has to be applied.

Following the edge out of the starting point, the next problem arises as the pen
encounters an intersection. A decision strategy has to determine the edge on which
the pen should leave the intersection again. This decision depends on the type of the
intersection, the local context and the history of previous contacts with this node.

The overall goal is to find a consistent trace for the whole word. Any kind of de-
cision strategy for intersections is likely to make mistakes. It is therefore necessary
to employ a global strategy which combines the local decisions in intersections and
optimizes for maximal coverage of the underlying word.

Finally, the input words as shown in figure 1.1 are given as binary images or bitmaps.
This simple format encodes the image as a 2D raster grid. In order to be able to
apply higher level algorithms, the input data has to be transformed into a more suit-
able data structure. The new representation should preserve as much information as
possible while still being efficient to compute.

CHAFTER 1. INTRODUCTION 3

Figure 1.2: Example word with its trace

1.3 Contribution of this Work

This thesis provides solutions for all of the problems described in the last section. In
particular new methods are proposed for the decision on local level, the identification
of the correct starting point and the global search strategy. Furthermore, a new input
representation is developed. The different contributions can be detailed as follows:

¢ Segment Graph
The preprocessing stage extracts a new data structure, the so-called segment
graph, from the image of the handwritten word. This representation preserves
a maximum of information and is still efficient to compute.

e Integrated Starting Point Search
The search for the best starting point is integrated into the overall search for
the best path. Every visible endpoint is considered as potential starting point,
therefore avoiding a separate heuristic.

s Node Models
The decisions on local level are based on a statistical model for the nodes of the
segment graph. These models are implemented by feedforward neural networks.
Using a suitable feature representation developed as part of this thesis, the
neural network achieves a classification accuracy of 93.8%.

¢ Heuristic Word Search
The results of the neural networks are combined with a new heuristic search
procedure. With the help of efficient pruning rules, this algorithm generates
a list of path hypotheses. The optimal path is selected using a word model
implemented by an on-line handwriting recognizer. ‘

The result of all these efforts is a complete trace through the whole word as depicted
in figure 1.2,

CHAPTER 1. INTRODUCTION 4

1.4 Organization of the Thesis

Following the introduction of some basic concepts in chapter 2, the related work
from literature is reviewed in chapter 3. Chapter 4 gives an overview of the whole
approach. The different parts of the system are then described in greater detail:
preprocessing (chapter 5), node models (chapter 6) and search (chapter 7). The
results of the evaluation of the complete system are presented and discussed in chap-
ter 8. The thesis concludes with a summary and an outline of possible future work
in chapter 9.

Chapter 2

Background

'This chapter reviews some basic techniques and notations used within this thesis.
After a more detailed introduction to handwriting recognition in general, the on-line
handwriting recognizer NPen'™ is described. The chapter continues with a list of
properties of cursive script, which are used in many parts of this work. As stated
in the introduction, the proposed system uses neural networks to model the nodes
in the segment graph. This chapter reviews the basic concepts of artificial neural
networks. After introducing perceptrons as building blocks for the type of neural
networks relevant to this work, multilayer networks and the backpropagation training
algorithm are presented. The overview concludes with some extensions to standard
backpropagation and remarks on the representational power of feedforward networks!.

2.1 Handwriting Recognition

2.1.1 Handwriting Recognition Taxonomy

Research in handwriting recognition can be classified into different groups. The fol-
lowing sections highlight the major points which define different problem areas within
the field of handwriting recognition (see [Sen94], [Kas95]). This taxonomy only in-
cludes systems based on the Latin character set.

On-line versus Off-line

The first distinction to be made is concerned with the type of input data that the
recognition system deals with.

On-line recognition systems receive their input data from touch-sensitive devices such
as graphic tablets or touch-screens. The data consists of the time ordered sequence of
X-y coordinates, sometimes augmented by related parameters such as pressure, veloc-
ity or acceleration. As an one-dimensional stream of information, handwriting data

'The part on neural networks was written using [Mit97], [HKP91], [Bis96] and [Zel24].

CHAPTER 2. BACKGROUND 6

is similar to speech data. Therefore, techniques developed in the context of speech
recognition systems have been successfully applied to on-line handwriting recogni-
tion. This includes Hidden Markov Models [BNNB94], time-delay neural networks
[MFW95], [SGH94] and even speech recognizers [SMSC94]. Tappert et al. [TSW90]
published an extensive survey article on on-line handwriting recognition.

On the other hand off-line recognition systems get an image of the handwriting ob-
tained from a scanner or a video camera as input. The recognition process and the
production of the data do not have to take place at the same time. The type of in-
put makes off-line handwriting recognition a subset of Optical Character Recognition
(OCR), although OCR systems usually only deal with machine printed documents.
Refer to [SLN*93] for an overview of recent advances in off-line handwriting recogni-
tion.

Writer Independence

Different people have significantly different handwritings and it is not likely that two
words, written by two writers, look the same. Therefore, recognizers have to handle
a large amount of variability. There are different ways of dealing with this variability.
One possible solution is to require sufficient amounts of data from each writer in order
to train the system for that specific user. The result is a writer dependent system,
which usually shows the best recognition performance. If the amount of data available
from a user is limited or if the application does not allow a training period, a writer
independent system has to be used. These recognizers are usually trained with data
from many different writers in order to capture as much variation as possible. The
recognition performance of a writer independent system is usually significantly lower
than the performance of a writer dependent system (when used on data provided by
the user on which the writer dependent system was trained on).

Writing Style

Besides the variability found between the handwriting of different writers, there are
also significantly different ways how a single writer can write a word. Figure 2.1 shows
the word “caffeine” written in 4 writing styles: boxed, printed, cursive and a mixture
of printed and cursive.

The task of recognizing cursive words turns out to be the most challenging one for on-
line and off-line recognizers. The major difficulty lies in the segmentation of a cursive
word into its letters. This is similar to the problem of segmenting continuous speech
into its component words. In both speech recognition and handwriting recognition,
it has been found that systems performing segmentation during the recognition pro-
cess usually perform better than systems that try to do the segmentation within a
preprocessing step.

Dictionary Size

Virtually all existing handwriting recognition systems use a language model, usually
in the form of a dictionary to restrict the search space. The recognizers are not able

CHAFTER 2. BACKGROUND T

ﬂ@IMIM C@(T(elne,

boxed printed
;? o o
mixed cursive

Figure 2.1: Examples for the different writing styles boxed, printed, mixed and cursive

to recognize arbitrary character sequences, but only words out of this fixed set. As
the recognition task becomes harder with larger dictionaries, the performance of a
given system always has to be seen in relation to the size of the dictionary in use.
The literature describes systems for both on-line and off-line recognition, which can
handle dictionary sizes of up to 100 000 words (see [MFW96], [Sen94] as examples for
on-line and off-line systems, respectively).

2.1.2 Dynamic Writing Information

Due to the lack of standardized test sets, it is hard if not impossible to compare the
performance of different recognizers. This applies in particular to the comparison
of on-line with off-line recognition systems. Experience shows that on-line recogniz-
ers usually achieve higher recognition accuracies than off-line recognizers. On-line
data provides the recognition system with an ordering of the input coordinates which
makes it easy to distinguish overlapping stroke segments or strokes?. This advantage
seems to outweigh additional variability only visible in on-line data (e.g. in writing
speed, direction, acceleration or stroke order).

The results of a number of experiments suggest that the higher performance of on-line
systems can mostly be credited to the availability of temporal information. Mandler
et al. [MOD85] have shown that the conversion of on-line data into equivalent off-
line data leads to a degradation in recognition performance. In older experiments by
Fujimoto et al. [FKH*76] the opposite effect is noticed. They manually estimated
directional information from static images and used that data as input to an on-line
recognizer. The recognition rates obtained through that procedure are higher than
those resulting from the use of an off-line recognizer on the original data. Finally, psy-
chology experiments conducted by Freyd [Fre83] revealed that humans can recognize
static characters faster if they are distorted in a manner consistent with the drawing

2The usage of the term stroke is not consistent in the handwriting recognition literature. Through-
out this thesis it denotes the sequence of coordinate points between a pen-down and a pen-up.

CHAPTER 2. BACKGROUND 8

method than if they are distorted in an inconsistent manner. This suggests that even
for humans the use of dynamic information enhances the perception of static forms
(citations following [DR95]).

2.2 Properties of Cursive Script

Some basic characteristics of cursive words are valuable for the task of this thesis (see
[DR95]). These “rules” also apply to printed characters or words, although they are
not as significant as they are for cursive script. The scope of these considerations is
again limited to words formed out of the Latin character set.

o Writing Direction
The overall writing direction is from left to right. Strokes beginning in one zone
(upper, middle or lower) usually end in or below that zone.

e Energy Minimization
The stroke order is influenced by the attempt to minimize the energy required
to produce them. This can be seen in minimal changes of curvature and smooth
continuations at junctions.

e Local Continuity
All parts of an uninterrupted isolated stroke segment follow the same direction.

As emphasized throughout this listing, the properties are not valid for every word.
This for example can be seen in the so-called delayed stroke problem (see [Hue97]).
It denotes strokes such as i-dots or t-crosses, whose placement in the time ordered
sequence is not consistent among writers. They may occur right after the correspon-
ding character or at the end of the input after the whole word was written. The
principle of energy minimization does not seem to apply in this case. Nevertheless,
these properties give important leads on how to design a system for the retrieval of
temporal writing information.

The literature also contains work on the mathematical modeling of handwriting and
the handwriting generation system (see [Hol81], [ST94], [Pla89], [P1a95]). As will be
shown in chapter 4, the system presented here uses a different model.

2.3 On-line Handwriting Recognizer NPen™™

NPen't is a writer independent, large vocabulary on-line handwriting recognizer
((MFW95], [MFW96], [Gro97] for a detailed description). The system combines a
robust preprocessing with a Multi-State Time Delay Neural Network (MS-TDNN)
for the recognition of single words. Figure 2.2 gives an overview of the system.

During preprocessing, the time-ordered sequence of x-y coordinates is normalized
to reduce meaningless variability. The procedures applied during this stage include

CHAPTER 2. BACKGROUND 9

resampling, smoothing and a baseline normalization. For each data point of the nor-
malized coordinate sequence, a 17-dimensional feature vector is calculated. The idea
is to capture low-level topological information and leave the extraction of high-level
features to the connectionist recognizer. The most important features are direction
and curvature of the curve described by the pen motion and the so-called context
bitmaps (first proposed in [MFW94]). The context bitmaps provide a coarse-grained
view of the vicinity of each data point. They are able to model temporal long range
and spatial short range dependencies as occurring in pen trajectories.

The MS-TDNN architecture was originally proposed for continuous speech recognition
tasks [HW92]. It combines the high accuracy pattern recognition capabilities of a
Time Delay Neural Network [WHH*89] with a non-linear time alignment algorithm
(dynamie time warping) in order to find an optimal alignment between stroke and
characters in handwritten words. The characters are modeled by a three state Hidden
Markov Model (HMM) (for an introduction to HMMs [Rab89]). In order to guarantee
a fast search even for large dictionaries, the MS-TDNN architecture 1s extended to
a tree-based TDNN. This allows real-time performance with dictionary sizes up to
100000 words [MFW96]. NPen't* achieves a word accuracy of 92% using a 20000
word dictionary.

CHAPTER 2.

BACKGROUND

ECEte

=

ZOo=~H=ZOoNmex

—

l‘ /// Tree-bused dictionary scarch
"

Bl Time-Delay Neural Nelwork

rnz—wurﬁﬁcxﬂu LT] I

17 dimensional featwro vocior

normalized inpul sequence

—“Howaz-

time ordered saquence of coordinale points

Figure 2.2: Overview of the NPen'*- system (from [Hue97])

10

CHAPTER 2. BACKGROUND 11

2.4 Neural Networks

Neural Networks are highly parallel information processing systems. They consist ofa
large set of densely interconnected units (cells or neurons), where each unit produces
a single real-valued output out of a number of real-valued inputs. The result of this
calculation serves either as input to one or more other cells or is part of the system
output.

The study of Artificial Neural Networks (ANN) started in the context of Biology,
where artificial neurons are used to model the basic units in biological information
processing systems. Their capability of learning how to solve certain tasks from
training examples makes them interesting to computer science.

2.4.1 Perceptrons
Structure

One basic unit used in certain ANNs is the perceptron as shown in figure 2.3.

Summation Thresholding

Figure 2.3: Perceptron (from [Mit97])

The perceptron calculates a linear combination of its real-valued inputs and produces
the output 1 if the result of the combination exceeds a certain threshold and —1
otherwise. For given input values zi,...,2,, the output o(z;,...,z,) is computed
as:

O(J: sl = 1 if wo+wizy +wazrs+ ...+ wpz, =0
AR A I otherwise,

where the wy, . .., w, are so-called weights which determine the contribution of each
z; to the output. The above stated condition is equivalent to

Ty + wals + ...+ WpEy > —wo,

—wp being the threshold which the weighted sum of input values has to surpass. In
order to simplify the notation, an additional input zy with value 1 is added. Therefore,
the condition can be written as

CHAPTER 2. BACKGROUND 12

Ti
> wizi >0 (2.1)
i=0

Given a set of input values and corresponding output values the learning task consists
of finding a weight vector which enables the perceptron to output the correct values
for the given input.

Sigmoid Unit

It is important for the backpropagation training algorithm, which will be introduced
later in this chapter, that the transfer function of a neuron is differentiable. This is
not the case for the perceptron as the weighted sum of the inputs is thresholded using
a discontinuous step function. One possible alternative is a szgmoid unit as show in
figure 2.4.

Thresholding

Figure 2.4: Sigmoid unit (from [Mit97])

This unit only differs in the transfer function which is applied to the weighted sum
of inputs. For inputs y, the output of the sigmoid function is computed as

_ 1
T l4ev

o(y)

Figure 2.5 compares the sigmoid and the tanh function, the latter being sometimes
used in place of the sigmoid function.

2.4.2 Multilayer Networks

The simple neurons, as described in the last section, are combined into networks in
order to support the solving of more complicated problems. Figure 2.6 shows an
example of a typical structure. This kind of networks using perceptrons as building
blocks are sometimes called multi layer perceptrons.

The network is organized into three layers. Each circle in the diagram stands for the
output of a single network unit and the lines entering the node are the inputs (lines

CHAPTER 2. BACKGROUND 13

Sigmord Function Tanh

a8

aik B

o2

Qutput Layer
Relaad
".t--%eé‘
VAV
() Q) Hidden Layer
7/
Input Layer

Figure 2.6: Example of a neural network

into the nodes of the input layer are omitted). As the nodes in the second layer are
not visible from the outside, they are called hidden units, their layer hidden layer. The
information flow within the network is directed from the input layer to the output
layer. This class of networks 1s called feedforward networks. Notice furthermore, that
the graph is acyclic.

The question left to discuss is how to train such a network.

2.4.3 Learning in Neural Networks

The optimal choice for network structure and corresponding training algorithm de-
pends heavily on the type of the learning problem the neural network is supposed to
solve. Generally, it is possible to distinguish between two types:

e supervised learning
For each sample in the training set an output pattern is given. The task for
the neural network is to learn to produce the correct output for a given input
pattern of the training set. Supervised learning includes the special case of
reinforcement learning. The only feedback given to the network is whether the

CHAPTER 2. BACKGROUND 14

output is correct or not, not what the output pattern should be.

e unsupervised learning
In this case only input patterns are available to the network. The network is
supposed to find similarities within the given data and to categorize the input
accordingly.

The reminder of the chapter will focus on the task of supervised learning.

Gradient Descent

There are a lot of ways how a neural network can learn how to solve a given problem.
In most cases, the method of choice is to initially define a net structure with a fixed
number of neurons and fixed connections between them and to alter the weights
associated with the connections.

In the given context, the objective of the training procedure is to minimize the dif-
ference between the net output and the target output by changing the weight matrix
W = {w;x} of the network. As the network structure stays constant throughout the
training, the difference or error E the network makes is a function of the weight ma-
trix E(W).

A good heuristics for the training is to alter the weights so that the error function is
changed in the direction of the steepest descend, i.e. in the direction of the negative
gradient. The algorithm implementing this idea is called gradient descend. Due to
the fact that gradient descent only uses local information, it is only guaranteed to
find a local minimum, which might be suboptimal. Practice has shown that in the
case of neural network training gradient descent produces excellent results in many
cases.

Backpropagation Training Algorithm
The backpropagation algorithm learns the weights in a neural network by applying
gradient descent. The algorithm proceeds as follows [Mit97]:

s Create a feedforward network of desired structure
e Initialize weights with small random values
e Until the termination condition is met, do
For each sample (Z,1) of the training set, do
Propagate input forward through the network
1. Give input ¥ to the network and ealculate the output of each unit
Propagate the errors backward through the network

2. For each output unit calculate the error between the actual output and
the target output

3. Calculate the error for each hidden unit

4. Update each weight according to its contribution to the overall error

CHAPTER 2. BACKGROUND 15

This version of the backpropagation algorithm were each weight is updated after every
training sample is called on-line or stochastic training. The counterpart is batch or
off-line training. There the weight update is done only once after every sample of the
training set was presented to the network.

2.4.4 Remarks on Backpropagation Learning

The mechanisms behind gradient descent learning in ANNs are still only poorly un-
derstood. Therefore, the training of an ANN involves a number of trials with different
learning parameters. The following section compiles some heuristics and variations
often used in the context of the backpropagation algorithm.

Learning Rate

The learning rate n in the backpropagation algorithm moderates the degree to which
the weights change in each step. The correct selection of 7 is crucial for the success
of the training. If the value of 7 is too high, the network might miss good minima or
jump out of them. If the value is too low, the training time might be unacceptably
long. One suggestion to overcome this problem is to start with a relatively high value
(e.g. 0.9) and to reduce the value slowly (e.g. to 0.1). The best solution for a given
problem has to be found experimentally.

Momentum Term

The size of the weight update during training is proportional to the size of the gradient
of the error function. Therefore, the training stagnates on flat plateaus of the error
function. One common variation of the backpropagation algorithm which deals with
this problem alters the weight update rule by making the update in the nth iteration
depend partially on the update occurring during the (n — 1)th iteration:

Awji(n) =nd5 x5 + aAwji(n — 1) (2.2)

The constant o with 0 < @ < 1 is called momentum. In order to visualize the
effect of adding a momentum, imagine the gradient descent search trajectory being a
(momentumless) ball rolling down the error surface. With the new update rule from
equation (2.2) the ball has a momentum that tends to keep it rolling in the same
direction. This sometimes helps the training procedure to “roll over” small minima
or to increase the step size in regions where the absolute value of the gradient is small.

Generalization

In any real world application the data used during the training stage of a neural
network only samples a small fraction of the input space. The objective behind the
training is to learn the characteristics of the distribution of the input data and not
the characteristics of the given set of training samples. The network is supposed to

CHAFTER 2. BACKGROUND 16

generalize from the training data to the distribution of the input data. To ensure gen-
eralization the error that the network makes during training is usually also measured
on an independent validation or test set. Figure 2.7 shows a typical example. The er-
ror over the training set is constantly decreasing until it reaches almost zero, whereas
the error over the test set only decreases up to a certain point and then increases
again. Beyond this minimum, the neural network is said to overfit the training data.
It picks up idiosyncrasies of the samples in the training set which are not representa-
tive of the general distribution of the input data.

The most obvious solution to the problem of overfitting is to simply stop training
when the error over the validation set reaches its minimum. Of course this is only
possible if enough data is available to set up an independent validation set. A differ-
ent approach to the problem is to alter the error function in a way that prevents the
network from learning very complex decision surfaces. This will be discussed in the
next section.

Error over training and validation sel
01 T T T T T T
Train —
sk e

Error

Tteration

Figure 2.7: Example error curves over training and test set

Alternative Error Functions

The weight update rule for the backpropagation algorithm is derived using the sum of
squared errors of the network as error function. Of course, this is not the only possible
choice. In fact, any differentiable function that is minimized when its arguments are
equal to each other could be used. In the following two variations of the error function
are given. Note that for both functions a new weight update rule has to be derived.

e Adding a penalty term for weight magnitude
Once common variation adds a penalty term to the error function (from [Mit97]):

= 1
E(®) = = Z z (tea — oka)® + 7 Z w?,—
deD kcoutputs 1,3

Here D denotes the training set. This definition of the error function forces
the gradient descent search to seek weight vectors with small magnitudes. This
reduces the risk of overfitting.

CHAPTER 2. BACKGROUND 17

e Minimizing the cross entropy of the network with respect to the target values

It can be shown that in a specific context the sum-of-squares error function is the
optimal choice if the target data follows a Gaussian distribution (see for example
[Bis96]). For classification problems where the neural network is supposed to
learn to output the correct class label given a certain input vector, the output is
usually encoded using a 1-of—c coding scheme: the network is trained to output
a 1 in the unit associated with the class of the training sample and 0 in all the
other output units. The underlying target function might be best modeled by
outputting the probability that a given sample belongs to a certain class. It
turns out that in a specific context the best probability estimates are produced
by networks trained with the so-called cross entropy error function, defined as ;

E=- z th,i IOEDd',' + (1 — tdli)log{] _ ‘:'d.i) (23)
deD i

Here, i iterates over the output classes. As the output values are required to lie
in the range [0, 1] and to sum to unity, a different activation function is chosen
for the units in the output layer. The output of unit i is calculated as:

i

v = ZET (2.4)

where z; denotes the input into unit 2. This function is called softmaz function.

2.4.5 Representational Power of Feedforward Networks

Feedforward Networks have been proven to be very useful for a variety of tasks.
The range of existing applications goes from handwriting recognition, steering of au-
tonomous vehicles and face recognition to credit rating and evaluation of marketing
decisions. Some results of theoretical work show that limited depth feedforward net-
works are capable of representing a large set of functions [Mit97):

e Continuous functions
Every bounded continuous function can be approximated with arbitrarily small
error (under a finite norm) by a network with two layers of units.

e Arbitrary functions
Any function can be approximated to arbitrary accuracy by a network with
three layers of units.

Chapter 3

Related Work

This chapter gives an overview of related work relevant to the thesis. In comparison
to the large amount of publications in the field of handwriting recognition in general,
the number of publications dealing specifically with the dynamic writing information
is relatively small. The review covers systems operating on the siroke level and on
the word level. The approaches classified into the latter group aim at recovering the
writing information of a whole word, which is not the case for the systems of the first
group. The stroke-level systems are restricted to the processing of single characters
or single strokes within a word. The most important systems are compared to the
approach proposed in this thesis.

3.1 Stroke-level systems

3.1.1 Lee and Pan

Lee and Pan [LP92] describe a system for the tracing of signatures. They stress that
the intention is not the retrieval of the original sequence as written by a particular
person or group, but the transformation of a given 2-D spatial pattern into a 1-D
temporal pattern in a consistent manner. Their approach consists of four stages:

e Preprocessing
The main step is the application of a thinning procedure on the original image.
This results in a one pixel! wide skeleton of the signature. Several thinning-
artifact-removal and noise-reduction procedures are applied.

e Tracing
They use a set of low-level (for determining the next pixel) and high-level (for
global stroke order) rules to find a possible trace.

e Critical-point segmentation and normalization
In order to characterize the signature, they apply a multi-resolution critical-
point segmentation and normalization.

! Pirel denotes a point on a 2D raster grid

18

CHAFPTER 3. RELATED WORK 19

In contrast to most of the other approaches dealing with the recovery of temporal
information, Lee and Pan do not convert the skeleton of the signature into a more
abstract graph representation. Instead, they directly operate on the pixel level.

The proposed rules use the properties described in section 2.2. For the decision on
how to continue the trace in a junction point, they implement a criterion which mini-
mizes the directional variation between incoming and outgoing branches. In order to
optimize the global stroke sequence, two performance measures are introduced. These
indices enforce the writing direction within a stroke and over the whole signature to
follow a top-bottom-left-right trend.

The authors apply their method to 20 signatures. They evaluate the resulting traces
manually and conclude that they are very similar to sequences a human would have
produced. However, they admit having problems with letters, such as “a”, “d”, “g”

W, n

or “q”, which involve counterclockwise circular movements.

3.1.2 Boccignone et al.

Boccignone et al. [BCCM93] follow a similar approach for handwritten characters.
The objective of their work is not the recovery of the frue order in which the strokes
were written, but the proper connection or separation of contiguous line pieces at
junctions.

Their method is based on the assumption that consecutively drawn strokes share more
similar features than strokes which, although they may be joint, are not temporally
subsequent. Starting from the bitmap of the character, they construct a skeleton
using Medial Axis Transformation. This thinning algorithm preserves information
about the thickness of the original curve. In order to be able to compute the direc-
tions of lines merging at a line joint, they approximate the skeleton with a piecewise
continuous curve. As curves produced by thinning algorithms show a lot of distor-
tions, especially around branch points (those points being the most important for
the task discussed here) the authors apply a number of correction algorithms to the
polygonally approximated skeleton. The tracing step uses three features to determine
which line segments should be grouped together at branch points:

¢ angle between the segments

¢ ratio between the length of the shortest and the longest segment of each possible
line pair

¢ absolute value of the difference between the average widths of each line pair

The underlying assumption is that the optimal trace is the one which most closely
follows the energy minimization criterion.

For each feature, a function determining the probability that the underlying segment
pair has been drawn sequentially is empirically constructed. A linear combination
integrates the resulting functions into a single score. The ordering of the stroke
segments is then derived on a purely local basis. For every possible pair of segments
in a given branch point, the continuity score is calculated and the pair with the highest
score 1s selected. In case four edges are joining in a point, this rule is slightly altered.

CHAPTER 3. RELATED WORK 20

The authors evaluate their method on a test set of approximately 6600 handwritten
characters, containing upper and lower case letters in hand printed and cursive style.
They report that their method finds the correct result in 97% of all test cases. As
mentioned above, the proposed method only decides which stroke segments have been
drawn sequentially. Therefore, a sequence containing two consecutive segments in the
wrong order would still be considered correct.

3.1.3 Huang and Yasuhara

Huang and Yasuhara [HY95] propose a method for the recovery of the drawing order
of single-stroke cursive script. The scope of the input data is further restricted by
excluding strokes containing junctions of three or more stroke segments and strokes
containing segments which are traced more than once.

After applying Medial Axis Transformation to the original image, the authors examine
the Eulerian paths in the resulting skeleton. They propose a good continuity criterion,
which takes the whole stroke into account and not only local regions around branch
points. This definition aims at overcoming the problem that thinning algorithms tend
to be error prone around the crucial junction points. The authors report that they
tested their method extensively. However, they do not offer any supporting evidence,
such as number of test cases or success rates, for this claim.

3.1.4 Ludemann-Ravit

The author presents an approach [LR95] which is based on decision trees produced by
the symbolic learning algorithm C4.5 [Qui93]. Using a standard thinning procedure,
the systermn first derives a word skeleton. With the help of this data structure the
task is formulated as a classification problem: given the feature representation of a
node determine the outgoing edge. The bitmap data used as input for the system
is produced from on-line data, hence the original sequences are available and can be
used for the generation of the decision trees. With the feature set determined by the
author the trained classifier achieves accuracies between 90% (writer independent)
and 95% (writer dependent). However, the system does not provide a search compo-
nent for the whole word. After the starting point is manually selected, the skeleton
is traced until the classifier outputs a pen-up. In order to continue, a new starting
point has to be manually chosen.

The system of Ludemann-Ravit is similar to the approach presented in this thesis in
that it tries to solve the problem using a classifier for the nodes of a graph structure.
The feature representation developed by Liidemann-Ravit is based solely on the word
skeleton produced by a thinning algorithm. These algorithms tend to produce errors
egpecially around intersections. The approach proposed in this thesis uses the com-
plete crossing region as feature, therefore avoiding similar problems. Furthermore the
system of Lidemann-Ravit does not contain a search procedure for the recovery of
the writing order of a whole word.

CHAPTER 3. RELATED WORK 21

3.2 Word-level systems

3.2.1 Doermann and Rosenfeld

Doermann and Rosenfeld [DR93, DR95] present extensive work on the recovery of
temporal information from static handwriting. They observe that a large amount
of the information necessary to determine the correct stroke order is destroyed by
standard skeletonization. Hence, their system is based directly on the gray-scale
image. In contrast to most of the other approaches presented in this review, their
goal is to recover the true order in which the strokes were constructed. They develop
a stroke recovery platform, which provides a hierarchical representation of stroke-like
features in a document, reaching from pixel-level information up to an abstract stroke
graph.

The first step of the proposed approach comprises the identification of maximum-
gradient pixels. For each of those pixels, a scan line in direction of the gradient is
generated to locate an opposite edge. In cases where an edge is found, properties of
this cross-sections such as width or slope, are computed. Groups of cross-sections with
consistent widths and orientations are then combined to candidate stroke segments.
With the help of these groupings, the remaining non-stroke-like regions are classified
as junctions, endpoints or noise. Using all previously collected information a partial
stroke graph is constructed. In order to reconstruct the trajectory underlying the
stroke segments, the non-stroke regions which are represented by nodes in the stroke
graph are further examined. The interpretation of the intersection regions is based
on:

e smoothness of segment pairings
The score quantizing the smoothness of a segment pairing is calculated using
properties of the boundaries of the involved stroke segments (angles, sign and
orientation of the curvatures).

o compatibility of the stroke reconstruction with the region in question

e constraints imposed by higher level understanding of the writing
This may include stroke continuity, temporal ordering or global positioning.

The interpretation is supported by temporal clues extracted from various stages of
the stroke recovery platform. The authors distinguish between three different classes
of clues:

e Local clues
¢ Regional clues
e Global clues

Local clues are directly obtained from the static image of the writing sample. They try
to capture marks such as striations, endpoint intensity variations, feathers or hooks.
Regional clues are derived from relationships between neighboring strokes captured

CHAPTER 3. RELATED WORK 22

in the stroke graph. They include stroke segment curvatures in various zones (lower,
middle and upper), distances between stroke endpoints and junction interpretations.
Global clues contain the basic properties described in section 2.2, With the help of
the temporal clues and the constraints mentioned above, a globally consistent inter-
pretation of the motion which created the given sample of writing is derived.

The authors examined a set of approximately 1000 hand printed and cursive word
images extracted from U.S. mail pieces. They claim that more than 90% of the images
have some clues. No further results are reported.

The stroke recovery platform proposed by Doermann and Rosenfeld makes strong
usage of information directly extracted from scanned bitmaps. Therefore, their ap-
proach is hard to compare with this thesis which is based on bitmaps created from
on-line data. As the authors do not provide an evaluation of their method, it is not
possible to judge the soundness of this approach.

3.2.2 Bunke et al.

Bunke et al. [BASS97] propose a system based on graph search. After applying
a set of standard preprocessing algorithms (normalization, thinning, filtering) the
word skeleton is split vertically in places where the connection between letters is
assumed. The resulting pleces are represented by directed attributed graphs. In
order to derive the drawing order, a set of likelihood criteria is defined. They aim
at capturing the basic properties of cursive script concerning writing direction and
energy minimization as described in section 2.2. The authors use a best-first search
algorithm with pruning to generate possible traces through the different graphs. The
best path is found by minimizing cost functions based on the likelihood criteria.
The resulting coordinate sequences are then recognized with an on-line handwriting
recognizer. After re-training the recognizer with data produced by their system, they
achieve a recognition accuracy of 75.6% on a data set of 150 words (using a dictionary
with 25000 words). Without training the system recognizes 26.1% of the test words.
The words used for testing where written by cooperative writers.

The system of Bunke et al. is similar to most of the other work presented so far in
that it uses a set of manually derived criterion functions to determine the quality of
a certain path. The system proposed in this thesis differs from these approaches by
using a model trained from data. In order to keep the search procedure computational
feasible, Bunke et al. perform a segmentation step during preprocessing. Based on the
experience gained in on-line and off-line handwriting recognition, it is questionable
that this kind of segmentation works reliably on words which are not written by
cooperative writers. The search algorithm proposed in this thesis is able to deal with
whole words without performing a segmentation.

Chapter 4

System Overview

The purpose of the system presented in this report is to recover the dynamic writing
information from static handwriting. This chapter gives an overview of NTime,
which has been developed within this project. All data structures and algorithms
mentioned here are covered in greater detail in subsequent parts of the report. This
chapter also provides a description of the input data used during training and testing
of the system.

4.1 Overview

Figures 4.1 to 4.3 depict the different components of NTime and the data structures
used in the processing stages. During the first step of the preprocessing, the on-
line data is converted into bitmaps using an algorithm called scan conversion. In
order to obtain a more compact description the contour of the bitmap is calculated.
Using this contour it is possible to calculate the angular variations along the outside
boundary of the bitmap, which is useful for the identification of certain regions of
interest (e.g. endpoints or intersections). All these different sources of information
(together referenced as enhanced bitmap) are used to build an abstract representation
of the underlying word. The so-called segment graph describes the given word as a
set of graphs, where each connected component of the segment graph corresponds to
a connected part in the given bitmap. Every subsequent module of the system makes
use of this important data structure.

With the help of the segment graph, the task of recovering the writing information
from a bitmap is transformed into the task of finding the best path through the graph.
Assuming that the correct starting point is given and that no pen-up events occur,
the main problem is the determination of the output edge of a node. This can be
interpreted as a classification task with the node and the incoming edge as input and
the outgoing edges as possible output classes. In NTime a neural network is used
to model the nodes of a segment graph. The network is trained using labels derived
from the on-line data.

23

CHAPTER 4. SYSTEM OVERVIEW

. Contour ! { Scan |
| Extraction i Conversion |

Path i
Hypotheses |

Sequence E
E

e P T T T s D

Figure 4.1: Overview of the NTime system

24

25

CHAPTER 4. SYSTEM OVERVIEW

Binary Image Online Data
i 7 :
(O
i

Enhanced Bitmap

Segment Graph

Figure 4.2: Visualization of the data structures used during preprocessing. The depicted

data structures correspond to the top part of figure 4.1.

"HAPTER 4. SYSTEM OVERVIEW 26

Segment Graph

A k.

L/Q/\//l_i_, Path Hypothesis

"cafleine”

Online Sequence Recognition Result

Figure 4.3: Visualization of the data structures used during search. The depicted data
structures correspond Lo the bottom part of figure 4.1.

CHAPTER 4. SYSTEM OVERVIEW 27

In order to determine a path through a connected component of the segment graph,
the results of the model evaluation for the various nodes have to be combined. This
is done using a heuristic approach. The path hypotheses calculated during the search
process are finally evaluated using the NPen™ handwriting recognizer. The sequence
with the highest score is picked as the output. The result of the recognizer run, namely
the word of the dictionary which most likely was written, is returned as a by-product.

4.2 Input Data

In order to keep the task computationally feasible, the assumption has to be made
that the direction of the pen trajectory is only changed in intersections and not within
an edge. This assumption seems reasonable, although not every word complies to it
(see figure 4.4 for an example).

Figure 4.4: The pen direction is changed in the area marked by the red circle where no
intersection is visible in the bitmap.

Furthermore it is assumed that pen-ups occur only in distinct places such as endpoints
and nodes, and not within an edge. Following a pen-up the pen can only be put down
in an endpoint.

As shown in chapter 1, the cursive and printed writing styles are fundamentally
different. The system proposed in this work is currently limited to cursive words.
The changes necessary to extend the range of input to printed and mixed style words
are described in chapter 9. On-line data of good quality is used as source for the
algorithms generating the bitmap representations. Figure 4.5 gives some examples of
words in the data set.

Table 4.1 summarizes the distribution of words and samples used for training and
testing of the system. Here sample refers to a feature vector calculated from a node
in the segment graph. The two sets are build with words contributed from 160 different
writers.

Training | Test || Total
_nbr words 1029 120 1149
nbr samples 24060 2740 || 26800

Table 4.1: Distribution of words and samples in training set and test set

CHAPTER 4. SYSTEM OVERVIEW

otlypnnact) mipialie)
WMZIL

Figure 4.5: Examples of words in the data set

28

Chapter 5

Preprocessing

Most of the work which deals with the problem of recovery of dynamic writing infor-
mation follows similar preprocessing strategies (see chapter 3). The major step is the
application of a standard skeletonization or thinning algorithm in order to derive a
one-pixel wide graph-like representation of the input bitmap. Unfortunately almost
all skeletonization procedures have problems with intersections in the trajectory of
the handwritten word. Therefore, a different approach was taken in the NTime sys-
tem. The details of this algorithm are explained in section 5.3. This procedure relies
heavily on the use of the contour of the input bitmap. The proposed system contains
an efficient algorithm for contour calculation which is sketched in section 5.2. The
chapter starts with a short explanation of the scan conversion algorithm used to con-
vert the on-line data into binary images. To prove the efficiency of the preprocessing
algorithms extensive test runs have been conducted. The results are summarized in
section 5.4. The chapter concludes with a description of known problems.

5.1 Scan Conversion

The original data as collected for the on-line handwriting recognizer is a time ordered
sequence of points from the pen trajectory. For the purpose discussed in this section,
only the spatial information (i.e. the x-y coordinates of the data point) is used. In
order to obtain a binary image of the on-line data the problem of calculating a line
connecting the points of the input sequence has to be solved. This task constitutes a
standard problem in Computer Vision, for which a number of algorithms have been
proposed. Within this work the so-called midpoint line algorithm [FvFH90] is used.
Given two endpoints (zg,y0) and (2,), the algorithm computes the coordinates
of the pixels that lie on or near an ideal line connecting the given endpoints. Figure
5.1 depicts this situation. It is assumed that the slope of the line to be approximated
is between 0 and 1. All other cases can easily be reduced to this one by a suitable
reflection.

29

CHAPTER 5. PREPROCESSING 30

Figure 5.1: Example of a scan converted line between the two given endpoints (zo, o) and
(%r,n). The solid black pixels are found by the algorithm.

The algorithm proceeds incrementally. With (z,,y,) being the last calculated point,
the candidate pixels for the next point are (zp4+1,¥p) (called east pixel, E) and
(2p+1, Yp+1) (called northeast pixel, NE) (see figure 5.2).

4

NE

M
P
(Kp, YP) T \r

Figure 5.2: Details of the scan conversion algerithm. The procedure chooses pixel NE or £
as follow-up pixel to (zp, yp), depending on which side of the middle point M the intersection
peint Q is located.

Let ¢ be the intersection point of the interpolation line L and the vertical grid line
z = zp4;1. The algorithm calculates on which side of L the midpoint M of the line
connecting E and NE lies. If M is located above the line, pixel E is closer to L
and should consequently be selected, otherwise N F is the optimal choice. If L passes
through M the lower point E is picked. A criterion which determines the current
location of M can easily be computed out of the function definition for the line L (for
the details refer to [FvFH90]). In order to obtain a line of width greater than 1 the
algorithm is extended to write multiple pixels in each step. Furthermore, the ends of

CHAPTER 5. PREPROCESSING 31

line segments are rounded to ensure smooth connections between adjoining segments.
In a final step, the resulting bitmap is filtered and thresholded using a Gaussian
filter mask. The actual values used for the different steps in the scan conversion are
summarized in table 5.1. They have been found to produce the best results. Figure
5.3 shows an example generated by the algorithm. The time consumption of the
different steps of the scan conversion are summarized in section 5.4.

Parameter I Vﬂlu_J

Pen Wldth T
Filter Mask Size 7
Threshold Value 0.5

Table 5.1: Parameter values used for scan conversion

on-line data bitmap

Figure 5.3: Scan conversion algorithm applied to on-line data

CHAPTER 5. PREPROCESSING 34

5.3 Segment Graph Extraction

The most important step during preprocessing is the derivation of an abstract de-
scription of the input image. A more compact representation reduces the amount
of information to be processed and facilitates the analysis of the given word. The
standard strategy for this problem is the application of a thinning algorithm on the
input image. The following section discusses standard thinning methods and their
shortcomings and then presents the algorithm used in NTime.

5.3.1 Standard Thinning Algorithms

The term thinning algorithm refers to a class of methods which reduce a given elon-
gated pattern into a line drawing representation. The result is a one pixel wide skele-
ton of the input image. The literature on document and image processing contains
a vast amount of thinning algorithms (refer to [LLS92] for a survey). Two different
approaches to thinning can be identified: topological thinning and medial azis ertrac-
tion from distance maps [0192].

Algorithms belonging to the first class iteratively test the topological relevance of each
pixel. This is either done by performing a raster scan over the image or by following
the object contour. If the pixel is not needed to preserve the current topology, it is
deleted.

The methods of the second group aim at extracting the medial azis of the object. For
a given set S in the plane with boundary B, it is always possible to find the closest
neighbor on B of any point X belonging to 5. If X has more than one of those
neighbors it belongs to the medial axis. Possible ways of calculating this axis include
the computation of the centers of largest inscribed disks or the computation of the
Voronoi Diagram of the boundary points.

Algorithms for both approaches are designed to handle arbitrarily shaped objects.
When applied to handwritten words, they exhibit a number of typical problems (see
figures 5.7 and 5.8). The examples were generated using the algorithm proposed in
[0192]'. In the skeleton depicted in figure 5.7 two so-called elongation artifacts can
be seen. This artifact appears when two line segments converge into a point with a
small angle. The length of the elongation depends on the thickness and the converging
angle of the involved line segments (refer to [AHD96] for further explanations).

In figure 5.8, the second common error made by standard thinning algorithms is
shown. This bifurcation artifact may occur in points where two or more lines are
crossing. The original junction is thinned into two (or more) connected crossing
points. In the case of two intersecting lines, the bifurcation artifact can be seen as
two overlapping elongation artifacts in opposite direction. Since junctions in the word
skeleton are especially important for the problem addressed in this work, bifurcation
artifacts severely affect the quality of the resulting skeleton for subsequent processing
steps.

!This was done using the publicly available software package of the author.

CHAPTER 5 PREPROCESSING

5 /
o A

Figure 5.7: Elongation artifact in skeletons of handwritten words

7 K

Figure 5.8: Bifurcation artifact in word skeletons

CHAPTER 5. PREPROCESSING 36

5.3.2 Thinning by Line Following

In order to avoid the problems of standard thinning algorithms, the proposed system
uses a different approach (introduced in [CP92]) which was specifically designed to
deal with handwritten input. The main idea is to use two pointers Py and Pg lo-
cated on either side of the current line to define a rectangular window. The pointers
are moved along the contour and the middle points of the consecutive windows are
joined to form the skeleton. Figure 5.9 depicts this situation. The following sections
explain the different parts of the line-following algorithm: window definition, start-
ing point localization, window moving, handling of intersections and the resulting
segment graph.

window

skeleton point

Figure 5.9: Moving window with skeleton points

Window Definition

The window definition takes the distance of the pointers P and Pg to each other into
account. The offsets D, and D, used to determine the window corners are defined
as:

D, = max(|Prs — Pr:|,2)
Dy = max(|PrLy — Pry|,2)

(with P, = (Pps, Py) and Pr = (Prz, Pry))
Figure 5.10 visualizes this definition. By using D for the offset in y-direction and D,
for the x-direction it is ensured, that the currently important dimension is stressed.

CHAPTER 5. FPREPROCESSING 38

Window Moving

The process of moving the window is accomplished by moving the pointers P, and Pg.
As stated earlier, the contour finding algorithm returns a linked list of contour points.
The points are ordered counterclockwise around the given object and clockwise around
holes. Therefore, subsequent contour points can simply be determined by traversing
the linked list. Based on the results of Chouinard and Plamondon [CP92] a step size
of 2 was chosen. In order to be able to move around curves where the pointers have
different distances to cover, a special moving scheme has to be used. In each step the
new possible locations P} and Pp for Py and Pg are obtained by determining the
contour points with distance 2 to the original pointers. Then the Euclidean distances
P} +— Pg, PL +— Pp and P} +— Pg are calculated. The point pair with the
smallest distance is picked as new Pr and Pg. Figure 5.12 depicis an example of this
process.

Figure 5.12: Sequence of point locations along a curve (after [CP92])

Handling of Intersections

After each movement, the situation in the window is analyzed. This i1s done by
following the contour and the window boundary from Pr to Pr as shown in figure
5.13. The number of times a window edge is traversed can be used fo determine the
type of the underlying intersection:

e one time
the line continues

e two times
T shaped intersection (as in the example)

e three times
X shaped intersection

e four and more times
freely shaped intersection

CHAFPTER 5. PREPROCESSING 39

Figure 5.13: Analysis of moving window (after [CP92]). The procedure follows the contour
from peoint Pr to point P and counts the number of times the window boarder is encountered
in order to determine the situation in the window.

This categorization together with the distribution of discontinuity points around the
intersection could be used to derive the correct thinning. In order to preserve as
much information as possible the intersections are not thinned. Chapter 6 will show
how the whole intersection is used as feature for the node model. Therefore only the
location of the starting points of the outgoing branches (points Py, P; and Ps, P, in
figure 5.13) is important. The window which “discovered” the intersection is stored
as node window and new windows are installed for every branch detected during the
analysis. Figure 5.14 shows this situation for the example introduced in figure 5.13.

Q

o
R

Figure 5.14: Two windows emerging out of a “window split”

CHAPTER 5. PREPROCESSING 4]

already visited earlier. If this is the case, the corresponding node in the graph is
retrieved and the connection for the actual branch is added. This procedure also
identifies loops as branches where start- and endpoint are located in the same node.
Figure 5.15 shows an example. The edges of the component graphs are denoted by
red dotted lines. The black lines correspond to the points obtained by thinning the
lines of the original bitmap. They are not part of the segment graph and are only
shown to facilitate the understanding of the segment graph. The red rectangles rep-
resenting the nodes in the graph have position and dimension of the windows which
first encountered the underlying intersection.

5.4 Performance

The following tables 5.3 and 5.4 summarize the time consumption of the various pre-
processing steps. The numbers are based on a test run over the data set described in
section 4.2°. The average sizes of the main data structures used during preprocessing
were also calculated. The results are compiled in table 5.5.

2The experiments were conducted on an AMD K6 233MHz PO running under Linux.

CHAPTER 5. PREPROCESSING

[Performance of Preprocessing |

Scan Conversion Avg. Time Consumption ms)]
Point Calculation 139.3
Gaussian Filtering 44454
Thresholding B 2279
[Total » ~ 4812.6
Preprocessing o
Contour Calculation 345.2
Curvature Calculation 161.7
Move Windows 105.0
| Analyze Windows 3919
[Total | 1003.8

Table 5.3: Performance evaluation of preprocessing

| __Performance of Preprocessing

Scan Conversion Rel. Timﬁonsumption
Point Calculation 2.9%
Gaussian Filtering 92.4%

| Thresholding 4.7%
Total 1 _ - 100%
Preprocessing o . .|
Contour Calculation 34.4%
Curvature Calculation 16.1%
Move Windows 10.5%
Analyze Windows 39.0%

| Total 100%

Table 5.4: Performance evaluation of preprocessing

avg. number of points
contour length 38552 B
B — avg. number of nodes
nbr. endpoints 8.73
nbr. intersection nodes 10.95

Table 5.5: Average sizes of preprocessing data structures

CHAPTER 5. PREPROCESSING 44

5.6 Contribution of this Thesis

This chapter described the preprocessing algorithms used within the NTime system.
The combination of a number of known procedures results in a new representation
specific for bitmaps of handwritten words. This so-called segment graph preserves a
maximum of information for subsequent parts of the system. The efficient implemen-
tation of the preprocessing algorithms keeps the computational costs low.

Chapter 6

Node Models

The purpose of this thesis is to develop a system which recovers the dynamic writing
information from static handwriting. Using the segment graph described in the last
chapter, this task is transformed into the problem of finding an optimal path through
this data structure.! The main question to be answered is how to proceed with a
given path in nodes of the graph.

This chapter addresses the decision strategy implemented in NTime. After restating
the task as classification problem, a feature representation for the node model is
developed. The chapter continues with the description of the training processes for
the neural networks which implement the model and concludes with an evaluation.

6.1 Formulation as Classification Problem

Assuming that a path into a node of the segment graph is given, the task is to
determine the outgoing edge of the node or to decide for a pen-up. This can be
seen as classification problem with the node and the incoming edge as input and
the possible outgoing edges (including pen-up) as target classes. As pen-up labels
comprise only 0.5% of all labels in the data set, they are not further considered as
output class. Figure 6.1 depicts the resulting classification problem. In the above
situation the node (together with the input edge) should be mapped to output class
“17. Figure 6.2 shows the example in a more abstract way.

As with most real world problems, it is not possible to directly determine a concise
form for this mapping. Therefore, a statistical classifier trained on examples of nodes
and corresponding classification is applied. Due to their robustness and their known
ability to perform well in pattern classification tasks, a neural network model was
chosen as classifier.

!More specifically through the component graphs of the segment graph.

45

CHAPTER 6. NODE MODELS 47

6.2 Features of the Model

In order to be able to successfully apply a neural network model, a suitable repre-
sentation of input and output values has to be found. The system proposed in this
work combines a set of features taking the properties of cursive script (see section 2.2)
and the results found in the related work (see chapter 3) into account. The following
features are used:

Bitmap representation of the node

Local context of the node

Node configuration

History of edge usage

e Energy necessary to connect different edges

The following sections describe these features in greater detail.

6.2.1 Bitmap Representation

The work of Doermann and Rosenfeld [DR95] proves that a lot of clues for the extrac-
tion of temporal information are observable directly in the bitmap. As these clues are
beyond mere connectivity information, most of them get lost during the conversion
of the original bitmap into a skeleton. An example for this situation can be found in
figures 6.3 and 6.4. The magnified node region of the character “d” clearly shows that
the pen passed twice along the upper arch of the loop. Figure 6.4 depicts the corre-
sponding part in the skeleton of the word?. The clue visible in the original bitmap is
not present in the skeleton. In order to overcome this situation the neural network
is provided with a down-sampled bitmap of the node region. Some examples for the
resulting representation are shown in figure 6.5. Notice that the thicker arch in the
last “d” is visible in the feature representation. Experiments show that a bitmap size
of 6 % 6 gives the best results.

?The skeleton was produced using the software package introduced in section 5.3.

CHAFPTER 6.

NODE MODELS

Figure 6.4: Magnification of the corresponding intersection in the skeleton

48

CHAPTER 6. NODE MODELS 49

Figure 6.5: Bitmap representation of nodes

6.2.2 Local Node Context

The decision on how to leave a given node can not be made based only on a bitmap
image of the node. Figure 6.6 shows an example of two almost identical bitmap
representations from nodes in completely different contexts.

Figure 6.6: Similar bitmap representations in different contexts

Therefore, a feature which captures the local context of a node is added. For each
branch originating in a node the type of the node (endpoint, node with certain edge
degree, self-loop) located on the other end of the connection is noted. Figure 6.7
shows an example.

6.2.3 Node configuration

This simple feature tells the neural network the edge degree of a given node.

CHAFPTER 6. NODE MODELS a0

Figure 6.7: Local context feature. The nodes and edges belonging to the context of the
highlighted node are connected by dashed lines.

6.2.4 History of Edge Usage

In the course of writing a word, every intersection is visited at least twice. Therefore,
the correct outgoing edge in a given situation does not only depend on the incoming
edge, but also on the history of encounters of the pen trajectory with the node so
far. Figure 6.8 depicts an example of this situation. The highlighted node is first
entered via edge 1. After leaving the node along the same edge, it is reentered by
traversing edge 2. For the decision on the outgoing edge the temporal context is
crucial. Without this context, the trajectory would most likely be continued via edge
1 and not via edge 0 as it should be.

Figure 6.8: Edge usage of a node (with edges 0, 1 and 2). The highlighted node is first
entered via edge 1.

In order to store this information the system uses counters for every edge of a given
node. Experiments show that it is more beneficial in terms of recognition results to
have separate counters for incoming and outgoing connections.

CHAFTER 6. NODE MODELS a2l

6.2.5 Energy Criterion

The last of the proposed features aims at capturing the energy necessary to connect a
given incoming edge with a different outgoing edge. As mentioned in section 2.2 the
stroke order is influenced by the attempt to minimize the energy required to produce
the strokes. The standard way of quantifying this energy is to measure the angular
deviation between the incoming edge and the possible outgoing edges (see figure 6.9).

Figure 6.9: Standard way of measuring energy with angular deviation. The deviation
between edges 2 and 1 is set to o, the one between edges 2 and 0 is approximated by 3.

This method depends heavily on a correct placement of the control points for the
calculation of the angles which is hard to guarantee. Therefore, an alternative ap-
proach is implemented in the proposed system. The energy that is needed to connect
two edges of a node is usually defined by the curvature of the line through the node
in question. It seems natural to measure the energy in the same way. This is done
by fitting a Bézier curve through the two edges in question (incoming and outgoing
edge) and using the curvature along the line as measurement for the energy (see figure
6.10).

Bézier curves of degree 3 which are used in the system are defined by four control
points. These points should be close enough to the node to capture just the local
situation without being located directly in the node. A polygonal approximation to
the pen trajectory is used to find these positions®. The so-called Wall algorithm
[WD84] maximizes the length of the approximating segments. These polygon edges
are guaranteed to lie within a predefined distance of the curve. The first two control
points of these line segments satisfy the conditions set above. Figure 6.11 shows the
example from above with highlighted control points.

Bézier curves have a couple of properties which make them particularly useful for the

#This algorithm is applied in [LR95] to position the control points for the calculation of the
angular deviation.

Lue 1o tne 1act tnat oniy tne conurol PULLLE o @lld r3 are Hierpoianca, vne UpuLLLLeL

CHAPTER 6. NODE MODELS 54

6.3.2 Output Encoding

As described in chapter 2, a neural network is trained by providing the network with
input patterns and desired output patterns. The system proposed in this thesis uses
a l-of-c coding for the network output with ¢ = 4. The output classes correspond
to the different edges of the generic node following the numbering scheme described
above. Figure 6.13 illustrates this situation.

0 1 2 3
. Cf ? Output Pattern

Neural Network

Input Pattern

Preprocessing
and
Feature
Extraction

Figure 6.13: 1-of—c encoding for the output of the neural network

CHAPTER 6. NODE MODELS 55

6.4 Training of the Neural Network

Due to the lack of generally available automatic procedures to determine the optimal
structure of a neural network, a large number of training runs have been conducted
to determine the parameters of the model. Unfortunately, this process does not
guarantee that an optimal solution is found.

6.4.1 Single Network

As a first approach a single feedforward neural network was trained with standard
backpropagation®. The best results could be obtained with a three layer network
consisting of input, one hidden and output layer. The neurons in the hidden layer
use a sigmoidal activation function, while the output of the units in the last layer
is computed with the softmax function. The network is trained by minimizing the
cross entropy error. As described in section 2.4.4, this is the optimal setup for the
classification problem of this work. Table 6.2 summarizes the parameters used for the
best network. Figure 6.14 shows classification and cross entropy error of this network.
Based on the training and test sets described in section 4.2 the network achieves a
classification accuracy of 93.4%.

| Parameter Value |

[Input Layer [nodes] 92
Hidden Layer 200
Output Layer 100
momentum 0.2
learning rate 0.2

[training iterations || 50 |

Table 6.2: Parameters of the best single network

Classification Error
0.3 T T T T T T T T a7

o xn 40 L] 0 100 120 140 160 1%a o o Ay L 10 o0 120 140 160 115]

lteration lteration

Figure 6.14: Error curves for a single network

*The implementation of the neural networks was taken from the JANUS speech recognizer, de-
veloped at the Interactive Systems Labs (see [Friog]).

=TT
o

CHAPTER 6. NODE MODELS

6.4.2 Multiple Networks

It is possible to identify a couple of typical connection patterns for the different node
types (see figure 6.15). In order to correctly model the given data, separate networks
for nodes of edge degree 3 (network A) and 4 (network B) have been trained. The
small amount of training data available for nodes with higher edge degrees did not
allow to train networks for those nodes. The parameters for the best networks are
compiled in table 6.3. The corresponding error curves are shown in figure 6.16.

Figure 6.15: Connection patterns for different node types. The numbers indicate the order
in which the pen passes through the intersection.

network A network B
Parameter | Value Parameter Value
Input Layer [nodes] 92 Tmut; Layer [nodes] 92
Hidden Layer 120 Hidden Layer 50

| Output Layer 80 Output Layer 50
momentum 0.1 momentum 0.1
learning rate 0.1 learning rate 0.1 |
training iterations 25| | training iterations [26 |

Table 6.3: Parameter values for the networks for nodes with edge degree 3 (network A) and
edge degree 4 (network B)

The classification accuracies of network A and B are 94.01% and 92.22% respectively.
This results in an overall accuracy of 93.8%. A summarization of the different network
performances can be found in table 6.4.

CHAPTER 6.

NODE MODELS

XEntropy (edge degree 3) i Classification Error (edge degree 3)
Tram = ‘ Train =
e sk L S
] 0z E
st Y X 018

(A ot

lieration lteration
XEntropy (edge degree 4) o Classification Error (edge degree 4)
Taain T T —
] o = T e |
4
x J‘O &0 L 100 120 140 120 140

Iteration

Figure 6.16: Error curves for networks A and B.

classification accuracy

single network 93.4%
network A 94.01%
network B 92.22% 23.8%

Table 6.4: Classification accuracies of the different networks

CHAFTER 6. NODE MODELS 58

6.5 Analysis of the Results

The results of the last section show that the neural networks are able to solve the
classification problem defined in section 6.1. In order to identify the reasons behind
the errors that the neural networks are still making, so-called confusion matrices are
calculated for the different networks. In row 7 and column j of the matrix the cases
labeled class j and classified by the network as belonging to class 7 are listed. Using
the class definitions of section 6.1 the matrices distinguish classes 0 to 2 for the nodes
of edge degree 3 and classes 0 to 3 for nodes of edge degree 4. The tables 6.5, 6.6 and
6.7 contain the confusion matrices for the single network and the separate networks
A and B.

confusion matrix for single network (abs. freq.)
label
classification || class 0 | class 1 | class 2 class 3
class 0 1238 34 22 2
class 1 38 1050 18 0
class 2 25 22 260 1
class 3 3 6 1 11
confusion matrix for single network (rel. freq.)
label
classification || class 0 | class 1 | class 2 | class 3
class 0 95.5% | 2.6% 1.7% 0.2%
class 1 3.4% 94.9% 1.6% 0%
class 2 8.1% 71% | 84.4% | 03%
class 3 14.3% | 28.6% 4.8% | 52.4%

Table 6.5: Confusion matrix for single network

confusion matrix for network A (abs. freq.)
label
classification || class 0 | class 1 class 2
class 0 1063 74 27
class 1 47 895 10
class 2 28 38 220
confusion matrix for network A (rel. freq.)
label
classification || class 0 | class 1 class 2
class 0 91.3% | 6.4% 2.3%
class 1 4.9& 94% 1.1%
class 2 9.8% 13.3% 76.9%

Table 6.6: Confusion matrix for network A

CHAFTER 6. NODE MODELS

confusion matrix for network B (abs. freq.)
label
classification || class 0 | class 1 | class 2 | class 3
class 0 130 5 2 2
class 1 2 151 1 0
class 2 1 3 16 1
class 3 4 4 1 11

confusion matrix for network B (abs. freq.)

label
classification || class 0 | class 1 | class 2 | class 3
class 0 93.5% | 3.6% 1.4% 1.4%
class 1 0.6% | 98.1% | 0.6% 0%
class 2 4.3% 13% 69.6% | 4.3%
class 3 20% 20% 5% 55%

Table 6.7: Confusion matrix for network B

59

It can be concluded from these matrices that the networks have problems with the
correct classification of samples belonging to classes 2 and 3. As the classification
problem does not appear to be harder for those classes, it seems that insufficient
training data is the reason behind this weakness. This conjecture is supported by the
distribution of classes in the training set as shown in table 6.8.

Distribution of classes in the training set

class label
node type class 0 | class 1 | class 2 | class 3
edge degree 3 (a) || 0726 | 8050 | 2506 =
edge degree 3 (r) || 47.9% | 39.7% | 12.4% -
edge degree 4 (a) 1446 1504 314 338
edge degree 4 (r) || 40.1% | 41.8% | 8.7% 9.4%

Table 6.8: Distribution of classes in the training set (a = absolute frequency, r = relative

frequency

It is reasonable to expect that the classification results can be improved by adding
more data to the classes in question.

CHAPTER 6. NODE MODELS 60

6.6 Importance of the Inputs

In general, it is hard to find an optimal set of input features for a neural network.
Therefore, the common practice is to use a priori knowledge of the given problem
to define a number of features and determine the best subset by experiments. The
feature set described earlier in this chapter is the result of this approach.

In order to get more inside into the relevance of the different features in the proposed
feature set, their predictive importance is determined. This is done by measuring the
classification error of networks obtained by omitting a certain feature from the input
set. As the nodes with edge degree 3 represent the biggest subset in the training data,
networks with the parameters of network A are trained. The resulting classification
errors are compiled in table 6.9. Based on these results, the two most important
features are the history and the bitmap representation.

feature set classification Error
orig. set | 5.99%

w/o history || 11.78%

w/o bitmap 10.57%

w/o local 8.49%

w/o curvature 8.45%

w/o config 7.99%

Table 6.9: Classification errors of reduced feature sets

Figures 6.17 and 6.18 show the curves of classification and cross entropy error for the
five different setups.

6.7 Contribution of this Thesis

This chapter described the feature representation developed as part of this thesis.
Together with a neural network classifier the new representation has been proven to
be highly effective. The results of this chapter show that an independent modeling
of nodes with edge degrees 3 and 4 is beneficial for the performance of the neural
networks. The proposed classifier achieves a classification accuracy of 93.8% on an
independent test set.

CHAPTER 6. NODE MODELS

Classification Error w/o History
: : . T T

Error

Tram =
Tem Tt

& 1 130 00 150 WKy

Iteration

Classification Error w/o Bitmap
: T . T T

Emror
{4
c

Trum =

Tem 77"

0.8

0 100 i%0 m 30 0
Iteration
Classification Error w/o Local
T T : :
Tras — <

Tea s |

Iteration

Error

XEntropy Error w/o History

ox

o A .
o 100 150 0 50
Iteration
s XEntropy Error w/o Bitmap
- T T
o7 " Treim — 4
Lo
Py 2 i,

XEnlmpy Error wio Local

Tesin —

Temt "

A &0 B0 100

Iteration

Figure 6.17: Error curves for reduced feature sets (1)

61

CHAPTER 6. NODE MODELS

Classification Error w/o Curvature 2 XEnwopy Error w/o Curvature
03 - - . . T T 1 ;
Tiaia === Teals —
kb 4
o | Test § by (2

0.

E o138

13] A
o4

o 0 100 130 200 50 o 30 100 130 00 250
Iteraton Iteration

Classification Error w/o Configuration XEntropy Error w/o Configuration

Trsin — Traln =
Test *o°" at Tom 221 o

o i i i i L i o1

o o 40 L By 100 120 0 0 ey a0 5] 100 120

Iteration Iteration

Figure 6.18: Error curves for reduced feature sets (2)

Chapter 7

Search

After introducing the algorithms for the extraction of the segment graph, the main
task was identified as finding the best path through this graph (see chapter 6). Given
the node models developed in the last chapter, one may think that the problem of
the recovery of the writing trace can be solved by simply applying these models. The
first section of this chapter explains why this is not the case. Afterwards the search
approach implemented in the proposed system is presented and it is shown how to
use the on-line handwriting recognizer NPent™ to find the best path through the
segment graph.

7.1 Requirements for Search Strategy

The neural network model proposed in the last chapter only uses the [ocal spatial and
temporal context of a node. A search strategy solely based on the node models would
most likely fail in finding a complete path through a given word.

The following list points out the problems that a search strategy for the whole word
has to address:

¢ Neural Networks
The networks presented in the last chapter achieve a high classification accuracy,
but they still make mistakes. The search algorithm has to take that into account,
possibly deviating from the top choice of the network.

s Starting Points
The question of how to choose the right starting point has to be solved in the
context of the whole word. Simply selecting the endpoint!® closest to the upper
left corner is not sufficient.

¢ Endpoints
As the node models are only trained for intersection nodes, a strategy has to be
developed on how to proceed in an endpoint.

L “Endpoint” refers to a node of the segment graph with edge degree 1. Depending on the current
path this endpoint might be starting point, point in the middle or last point of the path.

63

CHAPTER 7. SEARCH 64

¢ Global Optimization
The overall goal is to find a trace for the whole word which should be reflected
in the optimization criteria of the search approach.

7.2 Search Engine

The most straightforward approach to the search problem is to follow every possible
path through the graph. Due to the exponential growth of the resulting trees this
exhaustive search is not practicable.

The search algorithm implemented in NTime is guided by the results of the neural
network evaluation of the nodes without completely relying on it. The next sections
highlight the main points of this approach, following the list of problems given above.

7.2.1 Starting Points

Figure 7.1 gives an example of a word where a simple heuristics picking the endpoint
to the far left side would produce the wrong result.

startpoint candidate

b

Figure 7.1: Word with two starting point candidates

As any kind of heuristics is likely to fail in certain situations, the system proposed in
this thesis incorporates the search for the best starting point into the overall search
by considering every endpoint of the given word as possible starting point. The path
pruning which will be presented in section 7.2.5 quickly cuts off unlikely node se-
quences, so that the proposed approach stays computationally feasible. This method
does not consider intersection nodes as starting points, hence assuming that the lead-
ing character of every word has a detectable endpoint.

7.2.2 Node Expansion

As explained above, the search strategy should not restrict the search space to the top
choice of the neural network only. Therefore, the algorithm follows the best two paths
suggested by the node model. The original path leading into the node is split into
two paths which only differ by the last node. The probability of either alternative,

CHAPTER 7. SEARCH i

as determined by the neural network, is stored as accumulated score in each path.
Figure 7.2 depicts this procedure.

First Path Score
Q123
Class Probabilities IE l
Second Path Score

Figure 7.2: Expansion of a node in the segment graph. Following the class probabilities the
path is expanded along edges 1 and 0.

This strategy still leads to an unbounded exponential growth in numbers of different
paths which have to be followed in parallel.

7.2.3 Endpoint Handling

In the situation shown in figure 7.2, path 1 encounters an endpoint. In principle,
there are there ways of proceeding out of an endpoint:

s Retrace
Continue the path by retracing the edge taken into the endpoint back into the
node.

¢ Jump
Issue a pen-up and continue the path in another endpoint of the segment.

¢ Terminate Path
End the current path in this endpoint.

In order to avoid making decisions based only on a local context, the search engine
always considers the first two alternatives and produces new paths into every endpoint

CHAPTER 7. SEARCH 66

which has not been visited and into the preceding node. The distance between the
given endpoint and any target endpoint is stored with the resulting path and used
during the pruning stage. Figure 7.3 shows an example of this approach.

A given path is terminated if the conditions for a continuation are not fulfilled, namely
if there is no endpoint or node in which the path could be continued.

expansion into node expansion into endpoints

Figure 7.3: Handling of endpoeints. The path ending in the endpoint highlighted in the center
picture can be expanded into the endpoints shown on the right side or into the predecessor
node as depicted in the bottom picture.

CHAPTER 7. SEARCH 67

7.2.4 Search Procedure

Combining the points mentioned so far, the search algorithm consists of two steps:

1

Initializing a search path for every endpoint of the segment graph

2. until the termination condition is met do

foreach active node a; do
if a; is intersection node then
expand original path into top two nodes as determined by the node
model
else if a; is endpoint node then

expand original path into every unvisited endpoint and into preceding
node if node has at least one unused edge

The expression “active nodes” refers to all nodes which are currently last node of a
search path and therefore subject to expansion.

7.2.5 Path Pruning

Following the algorithm described in the last section, the number of active paths
grows exponentially. A two stage pruning algorithm is used to keep this approach
computationally feasible.

Consistency Check

In the first step, only paths which violate one of the following simple rules are cut off.
A path is identified as incorrect, if:

it contains the same intersection node three times in a row
Explanation: This case only occurs if a loop is traced twice, which is not correct.

the same edge is taken three times in a row

the same segment node appears more often than the type of the node allows
Explanation: Depending on the edge degree of a given node, a correct path
will contain the node only a certain number of times. A specific endpoint for
example will not be seen three times in a valid path.

the total distance bridged by jumps exceeds a multiple of the word length

the search successively adds nodes without increasing the path length
Explanation: This occurs in paths which move “backwards”, retracing parts of
the graph which were already visited.

These rules are targeted at identifying erroneous paths which can be eliminated with-
out loss of information. This technique already reduces the number of paths by 28%
(see section 7.4).

CHAPTER 7. SEARCH 68

Vertical Pruning

Unfortunately, the reduction obtained by performing the consistency check is not
sufficient to keep the approach computationally feasible. If the number of paths
remaining after the application of above stated rules exceeds a certain threshold, a
second pruning step is applied. For the vertical pruning, a search beam of predefined
width b is used. The currently active paths are ranked using the sum of two different
scores and the top b paths are selected for further expansion.

In order to be able to compare the quality of different paths, two measures are used:
completion score and local penalty.

Looking at traces through cursive words it is observable that all occurrences of a
certain intersection node happen within a close temporal context. Figure 7.4 shows
a typical example.

Search Path
Figure 7.4: Motivation for completion score

The intersection node /; appears exactly twice in the whole path, only separated by
the endpoint F;. This property is exploited by the completion score. The score is
calculated for every active path by following the path back into the root and scoring
each intersection node with edge degree 3 depending on its compliance with the above
scheme. The scope of this score is restricted as nodes of edge degree higher than 3
are not always traced in such a way. The intersection node of the horizontal “t”-bar
with the vertical “t” line for example is likely to appear at completely different points
in the search path as the “t”-bar is often written after the word is finished.

The local penalty score summarizes a number of general rules of handwriting which
held in most but not in every place. Disregard of these rules is therefore only recorded
in the penalty score of a given path and the path is not immediately pruned. The
rules and the corresponding penalty cases are:

e The trajectory of a word usually starts in the upper left corner
The distance to the endpoint closest to the upper left corner is used as penalty
score for all paths which do not start in this point.

CHAPTER 7. SEARCH 69

e The overall writing direction is from left to right
A penalty is added 1if paths are expanded in the opposite direction.

e There are only a small number of pen-ups in cursive words
For each pen-up a value proportional to the distance between the endpoint where
the pen was lifted and the endpoint where the pen was put down is added to
the penalty score.

e In cursive words, pen-ups usually take place at the end of a segment
For pen-ups occurring in the middle of the word with the subsequent pen-down
point lying to the right, a value proportional to the distance between these two
endpoints is added to the penalty score.

7.2.6 Objective Function

The objective function implements an optimization criterion for search paths. [t
incorporates all available information including the two scores introduced in the last

section. More specifically it uses:
e completion score S
e penalty score Pen

e probability score P
This 1s the accumulated score from the neural network evaluation.

e path length L

For a given search path path; the value under the objective function is calculated as:
f(path;) = a; = S(path;) + aa * Pen(path;) + as = P(path;) + a4 * L(path;)

The parameters ay, ..., a4 are determined experimentally.

The ranking produced by applying this function is also used to terminate the search.
The straightforward approach of searching until every node in the given segment is
included in a path can lead to infinite search runs in case a certain node can not be
reached. In order to avoid this problem, the listing produced by the objective function
is monitored. If the best path remains unchanged over a number of consecutive search
steps the search is terminated. Alternatively, the search is aborted if the length of
the longest path does not change over a long time.

CHAPTER 7. SEARCH 70

7.3 Selection of Best Path

One of the goals of the NTime system is to use the on-line handwriting recognizer
NPen'™ to recognize the coordinate sequence produced by NTime. It is possible
to simply select the best path emerging from the search procedure as path to be
returned by the system. As NPen™™ recognizes input sequences using the model it
built during training, this approach only succeeds if the sequences emitted by NTime
are in compliance with the model. Without retraining of the handwriting recognizer
with data produced by NTime the results are likely to be poor. Therefore NPen™
is used to determine the best sequence.

The best n paths as calculated by the search engine of NTime are given to NPen*+.
In case the underlying word consists of more than one segment, the best paths of every
segment are combined to sequences. As the input data is restricted to cursive words,
the number of segments occurring in a word is either 1 or 2. The score which NPen**
produces along with the recognition result can be used, after normalization with the
length of the recognized word, to rank the different hypotheses. The sequence with
the highest score is selected, using NPent™ as model for handwritten words. Figure
7.5 depicts this approach.

7.4 Evaluation

Table 7.1 summarizes some figures of the search approach described in the last sec-
tions. The results were obtained on the data set introduced in section 4.2.

Category Value
nbr paths 34 356.3
nbr paths pruned 9609.8
nbr search steps 31.8
length best path 28.7

Table 7.1: Evaluation of the search engine

The average number of paths produced during the different search runs was 34 356.3.
Approximately 28% or 9609.8 of these paths were cut off by the consistency check.
The search beam applied during the vertical pruning was set to a width of 800 paths.
This value was found to produce the best results. The search performed 31.8 iteration
steps on average with the length of the best path being 28.7. The three additional
steps can be attributed to the termination criterion.

CHAFTER 7. SEARCH 71

—

NTime

Path 1 Path 2 Path 3 Paih n
MNPen+s+ NPen++ NPen++ L AL NPen++
}'ministry" 2.09 "ministry” 2.8 "minion" 1.1 ‘minimum” 1.8
Sorting
o= J{__ = "ministry” 2.8
Path 2

Figure 7.5: Selection of the best path. The numbers behind the hypatheses are scores
produced by NPentt.

Chapter 8

System Evaluation

There are a number of ways to evaluate the system presented in this work. One
possible approach is to measure the correspondence of the sequences produced by
NTime with the on-line data used to create the bitmap representations of the words.
However, following this idea it is hard to distinguish between variances in writing
style and errors in the sequences produced by the system. Therefore, the recognition
accuracy of NPent? is used as performance measure.

This chapter presents the results obtained by using the coordinate sequences returned
by the system proposed in this thesis as input to NPen**. The errors made by
NTime are examined and a detailed error analysis is given. The chapter concludes
with some examples of traces derived by the system.

8.1 Recognition Accuracy

The test data is used in three different variations in order to determine the system
performance. The set S; contains the original on-line data as collected for the hand-
writing recognizer. S» combines the coordinate sequences of the test words obtained
by applying the preprocessing steps to the bitmap representation and using the cor-
rect labels extracted from the on-line data. Finally, the third set, S3, consists of
the sequences produced by NTime. The accuracy is measured for three different
dictionary sizes: 120, 1000 and 5000 (denoted as Dicty, Dicts and Dicts)'. The
first dictionary contains only the words occurring in the test set. The recognition
accuracies resulting from the test runs are shown in table 8.1 and figure 8.1.

The recognition accuracy of the handwriting recognizer on the data produced by the
proposed system is on average 12.2% below the accuracy achieved on on-line data.
Out of this amount 1.1% are already lost when using data set S instead of set Sj.
Possible reasons for this loss are preprocessing errors and the fact that the sequences
resulting from this process are slightly different from those NPen** was trained with.

!'The dictionaries are build out of a 50000 word dictionary from the Wall Street Journal corpus.

T2

CHAFPTER 8. SYSTEM EVALUATION 73

Recognition accuracies
Dicty Dicts Diets
Sy || 95% | 90.8% 80%
Sy 95% | 89.1% | 78.3%
Ss || 84% | 77.3% | 67.8%

Table 8.1: Recognition accuracies of the different data sets using the dictionaries Dict;,

Dictz and Diets

Data Set 1

40 80 a0 100

Figure 8.1: Recognition accuracies for different dictionaries

CHAFTER 8. SYSTEM EVALUATION 74

8.2

Error Analysis

In order to get more insight into the nature of the errors NTime is making. a detailed
analysis was conducted. The errors can be classified into the following categories:

Assumption Error

Errors occurring due to assumptions made within the system (no direction
changes within an edge, at least one endpoint detectable for the leading char-
acter).

Bad Preprocessing
Preprocessing fails to extract the segment graph correctly. This usually results
in additional intersection nodes which highly disturb the structure of the graph.

Problems with character “t"
The calculated sequence branches off into an edge of the “t”-bar during the
tracing of the body of “t”.

Parts left out
Edges are left out when the corresponding node is first visited. This leads to
more errors as the search tries to include the missing parts later on.

One character error
One error occurring in one character of the word with the rest of the sequence
being correct.

Wrong Jump
Pen is lifted (and put down) in the wrong position

Figures 8.2 to 8.4 depict some of the error categories. The results of the analysis are
summarized in table 8.2 and figure 8 5%,

Figure 8.2: Error resulting from bad preprocessing. The segment graph extraction places
three nodes on top of each other.

2The analysis is based on the manual examination of 85 cases.

CHAFPTER 8. SYSTEM EVALUATION 75

Figure 8.3: Frror in character “t”. The t-bar is traced before the body of the “t*. This
results in the erroneous edge sequence 3—2—+2—0, where the correct sequence would be
3—+1-+123 and 20 some time afterwards.

Figure 8.4: Edge is left out from sequence

In the following list, possibilities to reduce the different errors are discussed:

e For most of the assumption errors an immediate solution is not obvious. It is
especially not clear how to handle directional changes occurring between two
nodes. However, the errors emerging from missing endpoints in the leading
character can, most likely, be avoided by an additional heuristics targeted at
this problem.

* The errors related to bad preprocessing can be tackled by a more robust prepro-
cessing. Ideas for this task are mentioned in section 5.5.

® The category of one character errors subsumes small irregularities occurring in
an otherwise correct sequence. It is reasonable to believe that the robustness of
NPen'™ towards these variations can be increased by training the recognizer
on data produced by NTime.

CHAPTER 8. SYSTEM EVALUATION 76

| Error type || Peruentag?l
Assumption Error 71%
Bad Preprocessing 15.5%
Character “4” 13.1%
One Character Error 16.6%
Others 1.2%
Parts left out 22.6%
Wrong Jump 23.8%

Table 8.2: Error analysis with the two mast frequent cases highlighted

—

Assumption Error

Bad Preprocessing

Character "t"

168
One Character Error

Others

Parts Left Out

Wrong Jump

o 5 10 15 20 25 30

Figure 8.5: Results of the error analysis

* The errors related to the character “” and to left out parts are orthogonal to
each other. The tracing of “t” demands for relaxed optimization criteria which
allow the completion of the missing edges belonging to the “t”-bar after the rest
of the word is written. In cases where parts of the graph were left out a more
restrictive optimization would be better. It is not clear how this problem can
be overcome effectively. Possible solutions include the restriction of pen-ups (as
“t"-bars disturb the handwriting recognizer anyhow) and the extension of the
optimization criteria,

e Errors emerging from wrong jumps also indicate that pen-ups should be more
restricted,

8.3 Contribution of this Thesis

This chapter proposed a new heuristic search algorithm for the determination of the
best path through the segment graph of a given word. The approach directly incor-
porates the search for the best starting point therefore avoiding the use of a separate
procedure. With the help of effective pruning algorithms the described method stays

CHAFTER 8. SYSTEM EVALUATION

|

-]

computationally feasible. When applied on the sequences produced by the NTime
system, the on-line handwriting recognizer NPen™™ achieves recognition accuracies
of 84%, 77.3% and 67.8% with dictionary sizes of 120, 1000 and 5000 words, respec-
tively.

8.4 Examples

This section provides some examples of traces found by the system.

-
-

calculated trace

Figure 8.6: Example showing the correct tracing of characters “a” and “e”

CHAFPTER 8. SYSTEM EVALUATION

i' i
i \
Il]
1
' '
1 i
! \
H 1
i
! i
\
1 1
! |
i
i
i
1
i 1 |
r 1 f A
]] X 1
P 7oA
P P
1 1 : !
1] ! t
I i]
i ! oy
i i = i i

| calculated trace

Figure 8.7: Example showing the correct tracing of characters “u” and “o”

Chapter 9

Summary and Future Work

9.1 Summary

The previous chapters proposed a system for the model-based extraction of dynamic
writing information from static handwriting. The results presented in this thesis

support the following hypotheses:

¢ The segment graph is an appropriate representation for handwritten
words.

Based on bitmap data produced from on-line sequences fast preprocessing algo-
rithms are used for the extraction of contour and segment graph. The segment
graph is an abstract representation of the underlying bitmap which provides a
maximum of information for subsequent parts of the system.

Neural networks are excellent models for nodes in the segment graph.
Using the segment graph the core problem of the task can be identified as the
determination of the outgoing edge of a node when given the node and the
incoming edge. This classification problem is solved using feedforward neural
networks. With the feature representation developed in this thesis, the neural
networks achieve a classification accuracy of 93.8%.

Search on the whole segment graph is computationally feasible

Due to the use of a two stage pruning procedure the search on the whole seg-
ment graph is feasible. The algorithm determines a set of path hypotheses
of maximum length and picks the best one using the handwriting recognizer
NPen*™.

The proposed system is able to produce on-line data out of off-line
data.

The quality of the on-line data generated by the proposed system is measured by
using the on-line handwriting recognizer NPen®™. The results are recognition
accuracies of 84%, 77.3% and 67.8% when running NPen'™" with dictionary
sizes of 120, 1000 and 5 000 words, respectively. The corresponding recognition

79

CHAPTER 9. SUMMARY AND FUTURE WORK 80

rates for the original on-line sequences are 95%, 90.8% and 80%, which averages
to a loss of 12.2% in accuracy when using the sequences calculated by NTime.

9.2 Future Work

Throughout this report a number of possible extensions of the methods currently
used within the system were indicated. The following list stresses the most important
points,

e Eztension of the scope of the input data
The system is currently limited to cursive words. [t is planned to extend the
scope of the input data by including printed and mixed style words. While
the preprocessing is relatively unaffected by the change of the input, the neu-
ral networks have to be retrained with the new data. The fact that pen-ups
are occurring more frequently within printed words should be reflected by an
additional output class for the neural networks.

e Different neural network architectures
The classification problem of finding the outgoing edge of a node given the input
edge was solved by applying standard backpropagation feedforward networks.
This leaves room for investigations of different network architectures possibly
with different feature representations.

o Training of handwriting recognizer NPen™*

It has to be assumed that sequences recorded from a digitizer tablet and se-
quences produced by the system proposed in this thesis are always going to
look different. In order to increase the recognition accuracy of NPen™™ on
data converted from bitmaps, the recognizer has to be retrained on this data.
It is reasonable to believe that this is also going to increase the tolerance of the
handwriting recognizer towards small variances in the sequences generated by
NTime.

e (Graph algorithms for search
Some of the work reviewed in chapter 3 successfully uses graph algorithms. It
is planned to investigate possibilities to incorporate standard graph algorithms
into the search engine.

List of Figures

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16

6.1

Example word e e e e e e 2
Example word with trace 3
Writing Styles e 7
Overview of the NPen™ -system 10
PEICEDMON & rowy » wowis siws 5 596 & wie ¥ dw s &8ss § 058 5 11
SO OGN oowos pommra wien ¥ G S EEE VRN SRS BN ¥ 12
Activation functions . - - ¢ v u v a5 e o s FoeaE FEA G § e aE B 13
Example of neural network 13
Example for generalization. 0 00 L. L. 16
System OVEIVIEW & : s s s e s 5w s § & o8 & wiea s 8 aa d 5o 24
System overview: preprocessing data structures 25
System overview: search data structures 26
Assumption about input data oL o0 oL, 27
Examplesofinput words, 28
Scan conversion: general L. ... 30
Scan conversion: detail L ... 30
Scan conversion: example 31
Contour extraction: example 32
DOS approach for curvature caleulation, .. 33
Contour with interesting points 33
Blongation ARk « o s e comowin swms vy 5 m e b s s £ 35
Bifvircation AXFAEE o« w05 so0 v veais fe R s Se W E YA G A 35
Moving window approach Gww VUEE R BRAE FaE v EE 36
Definition of moving windew 37
Endpoint detection 4 PTES F EWT O3 oSG 37
Windowmeoving . a s o vos 58S s 088 08 it s iih i 38
Analysis of moving window 39
Windowsplit 39
Segment graph 40
Exaniples of small Holes . . . v w0 o ws smwis p s 5 ee s ww e i 43
Classification problem 46

81

LIST OF FIGURES 82

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

T.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
§.4
8.5
8.6
8.7

Decision strategy as classification problem 46
Local clues in an intersection 0., 48
Local cluesinskeleton o 48
Bitmap representation of nodes L 49
Bitmap representation in different contexts 49
Local context feature 50
History of edpgs USAKE. . o + v von » swm » nmn sm v vms s on 5w e 50
ATERlar GEVIEEON oo s sovmn 5 puwn b s simd swm e B £ 51
Measuring energy with Béziercurves 52
Control points of Bézier curve 52
Numbering scheme foredges 53
Outpirt Scoding & 757 FEEE ¥ PRy pET R pEae 2ul diaa 54
Error curves for asinglenetwork 0 0000 55
Connections patterns for node types 56
Error of separate networks oL BT
Error curves for reduced featureset (1) 61
Error curves for reduced featureset (2) 62
Selection of starting point 0o e 64
NOdE EXDANTION & « w5 5 5 F 5 5 & o0 % 95§ s ¥ @& 5 &% 50 65
Handling of endpoints 66
Motivation for completionscore 68
Selection of best patho L., 71
Recognition RECUTBCY « & 5 & 494 & v v 444 a®d = 65 % ¥ 54 €08 4 73
Error category “Bad Preprocessing” 74
Error category “Character t” 75
Error category “Left out Parts” 75
Ertor digtribistlon . . . 0 ¢ S 098 ¢ 0o s @0 i e s e d i 76
Exampletrace 1 i i i i it e e e e e e e 77
Exampletrace 2 e 78

List of Tables

4.1

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1

Training aRd 1Ea4 888 . » v v vww v v u s pa Ema s sma 8 5 27
Parameter values used for scan conversion 31
Parameter values used for curvature calculation 33
Performance evaluation of preprocessing (1) 42
Performance evaluation of preprocessing (2) 42
Average sizes of preprocessing data structures 42
Distribution of node types 53
Parameters values of best single neural network 55
Parameter values for separate networks 56
Classification accuracies it h e 57
Confusion matrix for single network 58
Confusion matrixfornetwork A 58
Confusion matrixfornetwork B. 59
Distribution of classes in trainingset 59
Classification errors of reduced featuresets 60
Evaluation of the search engine 70
Recognition accuracy o o ittt e e 73
Error gnalysid 5 0 0 .05 60 0 P b s 4 e e s ree s e 76

83

Bibliography

[AHD96]

[BASS97)

[BCCMY3]

[Bis96]

[BNNB94]

[Cap84]

[CP92)

[DR93)

[DR95)

I.5.1. Abuhaiba, M.J.J Helt, and S. Datta. Processing of binary images
of handwritten text documents. Pattern Recognition, 29(7):1161-1177,
1996.

H. Bunke, R. Ammann, M. Schenkel, and R. Seiler. Recovery of temporal
information of cursively handwritten words for on-line recognition. In
Proceedings of the International Conference on Document Analysis and
Recognition, pages 931-935, 1997,

G. Boccignone, A. Chianese, L.P. Cordella, and A. Marcelli. Recover-
ing dynamic information from static handwriting. Pattern Recognition,
26(1):409-418, 1993.

C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, Oxford, England, 1996.

J.B. Bellegarda, D. Nahamoo, K.5. Nathan, and E.J. Bellegarda. Su-
pervised hidden markov modeling for on-line handwriting recognition. In
Proceedings of the International Conference on Accustics, Speech and Sig-
nal Processing, volume 5, pages 149-152, 1994.

D.W. Capson. An improved algorithm for the sequential extraction of
boundaries from a raster scan. Computer Vision, Graphics and Image
Processing, 28(1):109-125, October 1984.

C. Chouinard and R. Plamondon. Thinning and segmenting handwritten
characters by line following. Machine Vision and Applications, (7):185—
197, 1992.

D.S. Doermann and A. Rosenfeld. The interpretation and reconstruc-
tion of interfering strokes. In International Workshop on Frontiers in
Handwriting Recognition, pages 41-50, 1993.

D.S. Doermann and A. Rosenfeld. Recovery of temporal information from
static images of handwriting. Internation Journal of Computer Vision,
15:143-164, 1995.

84

BIBLIOGRAFPHY 85

[Far93)

[FKH*76]

[Fre83]
[Frig6)
[FVFHO0]
[Gro97]
[HKP91]
[Hol81]
[Hueg7]

[HW92]

[HY95)

[Kas95]

[LLS92]

[LP92)

G.E. Farin. Curves and Surfaces for Computer Aided Geometric Design.
Academic Press, 3rd edition, 1993.

Y. Fujimoto, 5. Kadota, S. Hayashi, M. Yakamoto, S. Yajima, and M. Ya-
suda. Recognition of handprinted characters by nonlinear elastic match-
ing. In Proceedings of the International Conference on Pattern Recogni-
tion, pages 113-118, 1978.

J.J. Freyd. Representing the dynamics of a static form. Memory and
Cognition, (4):342-346, 1983.

J. Fritsch. Modular neural networks for speech recognition. Technical
Report CMU-CS5-96-203, Carnegie Mellon University, August 1996.

J.L. Foley, A. van Dam, 5.K. Feiner, and J.F. Hughes. Computer Graph-
ics: Principles and Practice. Addison-Wesley, 2nd edition, 1990.

R. GroB. Run-on recognition in an on-line handwriting recognition sys-
tem. Project Report, University of Karlsruhe, June 1997,

J. Hertz, A. Krogh, and R.G. Palmer. [Introduction to the Theory of
Neural Computation. Addison-Wesley, 1991.

J.M. Hollerbach. An oscillation theory of handwriting. Biological Cyber-
netics, 39:139-156, 1981.

W. Huerst. Repair in on-line handwriting recognition. Master’s thesis,
University of Karlsruhe, 1397.

P. Haffner and A. Waibel. Multi-state time delay neural network for con-
tinous speech recognition. In Advances in Neural Information Processing
Systems (NIPS-4). Morgan Kaufman, 1992.

T. Huang and M. Yasuhara. A total stroke slalom method for searching for
the optimal drawing order of off-line handwriting. In Proceedings of the
International Conference on Systems, Man and Cybernetics, volume 3,
pages 2789-2794. IEEE, 1995.

R.H. Kassel. A Comparison of Approaches to On-line Handwritten Char-
acter Recognition. PhD thesis, Massachusetts Institute of Technology,
June 1995.

L. Lam, 5.-W. Lee, and Y. Suen. Thinning methodologies - a compre-
hensive survey. [EEFE Transactions on Pattern Analysis and Machine
Intelligence, 14(9):869-885, September 1992.

S. Lee and J.C. Pan. Offline tracing and representation of signatures.
[EEE Transactions on Systems, Man, and Cyneretics, 22(4):755-771,
1992.

BIBLIOGRAPHY 86

[LR95)

[MFW94]

[MFW95]

[MFW96]

[Mit97]
[MOD85)

[O’G88a]

[0°G88b]

[0192]

[Pla89]

[Pla95]

[Qui93]
[Rab89]

[Sen94]

B. Liidemann-Ravit. Extraktion von temporaler Information mit Hilfe
eines symbolischen Lernverfahrens in der Offline-Handschriftenerkennung.
Master’s thesis, University of Karlsruhe, November 1995.

S. Manke, M. Finke, and A. Waibel. Combining bitmaps with dynamic
writing information for on-line handwriting recognition. In Proceedings
of the International Conference on Pattern Recognition, 1994.

S. Manke, M. Finke, and A. Waibel. NPen™*: A writer independent, large
vocabulary on-line cursive handwriting recognition system. In Proceedings
of the International Conference on Document Analysis and Recognition.
IEEE Computer Society, 1995.

S. Manke, M. Finke, and A. Waibel. A fast search technique for large
vocabulary on-line handwriting recognition. In International Workshop
on Frontiers in Handwriting Recognition, Colchester, England, 1996.

T. Mitchell. Machine Learning. McGraw-Hill, 1997,

E. Mandler, R. Oed, and W. Doster. Experiments in on-line script recogni-
tion. In Image Analysis: Proceedings of the Jth Scandinavian Conference,
pages T7-86, 1985.

L. O'Gorman. An analysis of feature detectability from curvature esti-
mation. Computer Vision and Pattern Recognition, pages 235-240, June
1988.

L. O’Gorman. Curvilinear feature detection from curvature estimation. In
International Conference on Pattern Recognition, pages 1116-1116, 1988.

R. Ogniewicz and M. Ilg. Voronoi skeletons: Theory and application. In
Proc. of Computer Vision and Pattern Recognition (CVPR), pages 63-69.
IEEE, 1992.

R. Plamondon. A handwriting model based on differential geometry. In
R. Plamondon, C. Y. Suen, and M. Simner, editors, Computer Recognition
and Human Production of Handwriting, pages 179-192. World Scientific,
1989.

R. Plamondon. A delta-lognormal model for handwriting generation.
In Proceedings of the Seventh Biennal Conference of the International
Graphonomics Society, pages 126-127, 1995.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, Inc., San Mateo, California, 1993.

L.R. Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proc. IEEE, T7(2):257-286, February 1989.

A. W. Senior. Off-line Cursive Handwriting Recognition using Recurrent
Neural Networks. PhD thesis, University of Cambridge, September 1994.

BIBLIOGRAFPHY 87

[SGH94]

[SLN*93]

[SMSC94]

[ST94]

[TSW90]

[WD84]

(WHH*89]

[Zel94]

M. Schenkel, I. Guyon, and D. Henderson. On-line cursive script recog-
nition using time delay neural networks and hidden markov models. In
Proceedings of the International Conference on Accustics, Speech and Sig-
nal Processing, volume 2, pages 637-640, 1994,

C.Y. Suen, R. Legault, C. Nadal, M. Cheriet, and L. Lam. Building a
new generation of handwriting recognition systems. Pattern Recognition
Letters, 14:303-315, April 1993.

T. Starner, J. Makhoul, R. Schwartz, and G. Chou. On-line cursive hand-
writing recognition using speech recognition methods. In Proceedings of
the International Conference on Accustics, Speech and Signal Processing,
volume 5, pages 125-128, 1994,

Y. Singer and N. Tishby. Decoding cursive scripts. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural Information
Processing Systems 6. Proceedings of the 1993 Conference, pages 833-
840, San Francisco, CA, 1994. Morgan Kaufmann.

C.C. Tappert, C.Y. Suen, and T. Wakahara. The state of the art in
on-line handwriting recognition. JEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:787-808, August 1990.

K. Wall and P.-E. Danielsson. A fast sequential method for polygonal
approximation of digitized curves. Computer Vision, Graphics and I'mage
Processing, 28:220-227, 1984.

A. Waibel, T. Hanazawa, G. Hinton, K. Shinao, and K. Lang. Phoneme
recognition using time-delay neural networks. IEEE Transactions on
Acoustics, Speech and Signal Processing, March 1989,

A. Zell. Stmulation Neuronaler Netze. Addison-Wesley, 1994,

