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Zusammenfassung
Als eine der wichtigsten Aufgaben auf Gebiet von kunstlicher In-

telligenz, gilt Klassifizierung bis jetzt noch als ein hochaktuelles
Thema in Forschung und Industrie. Zum anderen stellt Zeitreihen-
prognose eine eher größere Herausforderung dar und kommt zur
Anwendung in Statistik, Finanz, Physik und vielen anderen For-
schungsfelder.
Um das erste der zwei erwähnten Problemen zu lösen, zahlrei-

che Untersuchungen sind durchgeführt worden über die letzten paar
Jahrzehnte. Darunter haben die tiefen neuronalen Netze (DNN)
sich hervorragend bewährt und symbolisieren den neusten Stand
der Technik. Zur Zeitreihenprognose ist Autoregressive Integrated
Moving Average weithin beherrschend verwendet worden. Aber es
weisen viele theoretische und empirische Literaturen darauf, dass
die Integration von verschiedenen Modellen zu einem besseren Vor-
hersagegenauigkeit führen könnte.
In dieser Masterarbeit bemühen wir uns, ein Klassifizierung- und

Prognosesystem für die Fahrmuster, Ladeverhalten sowie den ge-
samte Energieverbrauch von millionen Autos auf die virtuelle Insel
der La Réunion. Darüber hinaus werden mehrere unterschiedliche
Arten von Neuronalen Netzen analysiert und verwendet zur Zweick-
mäßigkeitsprüfung. Beim Teil der Prognose wird ein hybridisiertes
Modell implementiert, das ARIMA Modell und bidirectionales Long
short-term Memory kombiniert.
Außerdem, um das Problem des Energiemangels zu angehen, wird

ein Priorisierungsschema entwickelt, das entscheiden kann, welche
Autos vor anderem geladen werden sollten bei überbelegten Lade-
stationen.



Abstract
Classification is a fundamentally crucial task in the field of arti-

ficial intelligence and remains one of the hottest topics in research
and industry community. Forecasting, on the other hand, is even
more challenging and is of a far greater importance in statistics,
finance, physics and numerous other branches of study.
To tackle the first of the two tasks above, countless studies have

been conducted throughout the last couple of decades. Among all
those different approaches in the previous studies, deep neural net-
works (DNN) have shown the greatest performance and achieved
state-of-the-art results in a wide range of machine learning tasks.
As for forecasting, even though linear models such as autoregressive
integrated moving average (ARIMA) models are the most dominant
and widely used, several findings have indicated both theoretically
and empirically that integration of different models can, in many
cases, yield a better predictive performance.
In this thesis, we endeavor to build a classification and forecasting

system for the driving patterns, charging behaviors and the total
energy consumption of millions of electric vehicles on the island of la
Réunion. Different neural network structures and methodologies are
utilized and tested to examine their suitability for the specific tasks.
For the forecasting part, a hybridized model combining ARIMA
model and bi-directional long short-term memory is implemented.
Moreover, to address the problem of energy resource scarcity, a

prioritization scheme is developed, which determines which vehicles
should be charged prior to the others when the charging stations
are overcrowded.
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1 Introduction

1 Introduction

1.1 Motivation

In the last couple of centuries the world has undergone fundamental changes
with the advent of industrial and technological revolution. One of the most
significant byproduct of those changes is that human beings are consuming
energy resources at an ever-increasing pace. For this very reason, many estimate
that non-renewable energy reserves could be completely depleted in the near
future[ST09]. To avoid this catastrophic possibility, it has been argued that
sustainability by increasing the usage of renewable energy and environment-
friendly technology is of utmost importance[AB07].

One option to achieve the purpose of sustainability is the transition from fossil
fuel vehicles to electric cars[TT13]. Compared to conventional internal combus-
tion engine automobiles, they possess many obvious advantages. For example,
electric cars produce significantly less noise, emit no tailpipe pollutants and
reduce total greenhouse gas emission by a large margin. Economically, their
running costs and other energy related costs are not subject to the prices of
fossil fuels, which are not only extremely volatile but also is, in the long term,
prone to increase as the fossil fuel reserve dries out. Recently, as their driving
range is expanding with help of more powerful and reliable batteries, electric ve-
hicles are drawing more and more attention and a larger share of the automobile
market is also to be expected.

However, new problems arise with the massive introduction of renewable energy
sources (RES) and the transition from fossil fuel vehicles to electric vehicles.
Unlike traditional energy sources, renewable energy such as wind can have great
range of fluctuation due to changes in environment condition. This will lead to
unstable energy production and energy demand will in turn be more difficult
to be satisfied. Therefore, when introducing RES and electric vehicles, it is
imperative to provide smart power grid management. For example, we need to
figure out the daily, monthly and yearly development of energy consumption,
spot the rush hours and come up with adaptive power supply policies so that
the power grid system can be more reliable and stable regardless of fluctuations
in the environment.
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1 Introduction

1.2 Contributions

In this thesis, we utilize the electromobility model created by Kremers et.
al[Tor+15]. to generate a simulated island full of electric vehicles. The model
has been thoroughly discussed by Kremers et.al. in their original paper[Tor+15].
The dataset generated from the model will be discussed in Chapter 4 in detail.
The objective of the thesis is to construct a classification and forecasting system,
which can:

• classify the driving patterns and charging behaviors of the vehicles,

• make prediction on the total energy consumption of all the cars on the
island,

• foretell how one singular vehicle will behave based on historical knowledge
present.

In addition, a prioritization scheme is developed, which can output the order
in which the vehicles should be charged at the charging stations. This will be
instrumental in rush hours when the charging stations are overcrowded and
also in other situations when resources are limited and a more delicate coping
method is needed.

Other contributions are made in the system construction process. Specifically,
state-of-the-art neural networks are utilized in both classification and forecast-
ing parts. One dimensional convolutional neural network is constructed for the
classification task. In the forecasting part, a hybridized methodology combining
bi-directional long short-term memory and autoregressive integrated moving av-
erage (ARIMA) model is developed to achieve a better predictive performance.

Furthermore, the classification, forecasting and the prioritization models can be
utilized for analyzing and predicting energy consumption in a complex power
grid and can serve as crucial components to construct smart demand side man-
agement (DSM) which can flatten peak demand and allow for efficient and
flexible energy usage[Évo14].

1.3 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 and Chapter 3 serve the purpose of introducing the theoretical foun-
dations of this work. Fundamental methodologies in neural network research
community will be reviewed in Chapter 2, starting from the most basic feed-
forward neural networks to the newest bi-directional long short-term memory

2



1.3 Thesis Structure

networks. Afterwards, Chapter 3 reviews the related approaches in the field of
time series forecasting.

Chapter 4 starts by describing the problems of interest in this thesis and in-
specting the electromobility dataset. After that, the methodologies adopted in
this work will be introduced, which is divided into three parts, classification,
time series forecasting and the prioritization scheme.

The evaluation of the utilized methodologies can be found in Chapter 5. Exten-
sive experiments are conducted and their results are visualized and analyzed.

We conclude this thesis with Chapter 6, which summarizes the work and dis-
cusses the future prospects.

3



2 Neural Networks

2 Neural Networks

As this work is based mostly on neural networks, it is only fair that we begin
it with a review of the most relevant methodologies of neural networks, from
the most simplistic perceptron[Ros57] to the state-of-the-art bi-directional long
short-term memory[GS05].

Research in the field of neural networks took flight in the year of 1943, when
McCulloch and Pitts introduced the first model of artificial neurons in [MP].
Ever since then, the principal motivation has not yet changed, namely to emu-
late the structure and the computational process of the human brain. This is
inspired by the observation that the human brain is far more superior to any
von Neumann computer when facing numerous cognitive tasks, despite its com-
paratively low speed of serial computation. Therefore, the main differentiating
factor is not the processing speed, but the organization of the processing.

So how does the human brain perform information processing? The oversim-
plified answer would be parallelism, adaptability and self-organization. The
human brain contains approximately 1011 − 1012 elementary nerve cells called
neurons. This biological neural network is essentially a collection of intercon-
nected neurons that compute and generate impulses. Each neuron, connected
to 1000 other neurons on average, can be activated by inputs from elsewhere
and can stimulate other neurons as well. Thanks to the vast number of neurons,
the complex interconnections and the parallel way in which simple operations
are carried out simultaneously, the human brain can cope with complex cogni-
tive tasks very quickly. Furthermore, as a person grows older and gains more
and more experience each passing day, the brain also makes adaptations on its
own by assimilating the new knowledge or perspectives and re-organizing the
structure of the neural network accordingly.

2.1 Perceptron

To emulate the biological neuron network in the human brain, Frank Rosen-
blatt, an American psychologist, proposed the perceptron algorithm in [Ros57]
at the Cornell Aeronautical Laboratory. In a nutshell, a perceptron is a linear
classifier, the architecture of which is that of Figure 1. Each input vector x is
of the same dimension, here x = (1, x1, x2, . . . , xm). Moreover, each input vec-
tor is associated with a target output value t. An activation function f takes
the variable x as input and generates a binary output y through the following
formula:

4



2.1 Perceptron

y = f(
m∑
i=0

wjxj) = f(wTx), (2.1)

where w is the weight vector, also (m + 1)−dimensional. The training set is
denoted by D = {(x(i), t(i)), i = 1, . . . , N}. The error criterion is denoted by
E(w) = 1

2
∑
x∈X(tx − yx)2.

The training procedure of the perceptron algorithm consists of the following
steps:

(i) Parameter initialization and selection. this includes the weights w, the
learning rate η and the threshold γ.

(ii) Iterate:

• calculate the current output: y(t) = f(wT (t)x).

• updatew with the delta rule: w← w+∆w, where ∆w = −η∇E(w).

The following theorem as proven by Rosenblatt et.al. in 1962[JJ62] guarantees
the convergence of the perceptron algorithm:

Theorem 2.1 (Perceptron Convergence Theorem). If D = {(x(i), t(i)), i =
1, . . . , N} describes a linearly separable dichotomy, then the fixed-increment per-
ceptron algorithm terminates after a finite number of weight updates.

Originally, after the perceptron algorithm was introduced, much attention was
drawn to this simple yet powerful learning approach. However, in 1962, Minsky
and Papert in [MP69] demonstrated that perceptrons do not possess the ability
to learn an XOR function. After this publication, research on artificial neural
networks fell into a period of recession.

Activation
function

∑w2x2

......
wmxm

w1x1

w01

inputs weights

Figure 1: A simple (single-unit) perceptron[Ros57]
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2 Neural Networks

2.2 Feedforward Neural Networks

In comparison to perceptrons, feedforward neural networks (FNN) consist of a
input layer, at least one hidden layer and a output layer. Thanks to the more
complicated topology, FNN is able to solve learning tasks that are not linearly
separable. The architecture of a FNN is displayed in Figure 2. As we can see,
the information passes only in one direction, from the input layer via hidden
layers to the output layer.

x0

x1

...
xn(0)

y
(1)
0

y
(1)
1

...

y
(1)
n(1)

. . .

. . .

. . . y
(L)
0

y
(L)
1

...

y
(L)
n(L)

y
(L+1)
1

y
(L+1)
2

...

y
(L+1)
n(L+1)

input layer
1st hidden layer Lth hidden layer

output layer

Figure 2: Network graph of a (L+1)-layer perceptron with n(0) input units and
n(L+1) output units. The lth hidden layer contains n(l) hidden units

As in the perceptron algorithm, an activation function is needed when we pass
the information down to the next layer and want to determine whether the neu-
ron should be activated or not. There are many shapes of activation functions
available, respectively suitable for various kinds of tasks. For FNN, the most
commonly used activation functions are the sigmoid function σ(x), depicted in
Figure 3, and the hyperbolic tangent function φ(x) in Figure 7. Their general
forms are as follows:

σ(x) = 1
1 + e−x

(2.2)

φ(x) = 2
1 + e−2x − 1 (2.3)

The major characteristics of those two functions is that they are nonlinear,
differentiable and their input will be mapped into a certain area. Take sigmoid
function for example. Its output is "squashed" between 0 and 1. For specific
learning tasks like classification, this feature is quite desirable. However, for
other tasks, like time series forecasting, a linear activation function is the most
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2.2 Feedforward Neural Networks

suitable choice, as we want the normal, non-normalized values as output in this
case.

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

σ(x)

σ′(x)

Figure 3: Sigmoid and its first order derivative

Furthermore, when facing the challenge of classification for K > 2 classes, the
so-called softmax function is often applied at the output layer of FNNs. Softmax
function normalize the output values to be between 0 and 1 and has the effect
of making the output value of the most likely class to be close to 1 and the
rest 0. Just like the sigmoid function or the hyperbolic tangent function, the
softmax function is differentiable. The general form of the softmax function is
as follows:

φ(aj) = eaj∑
k eak

(2.4)

The process of adjusting the weights in the neural network and producing the
correct outputs for the inputs is called training. For feedforward neural net-
works, this is achieved with the backpropagation algorithm[RHW86].

In the training process of the FNN with backpropagation algorithm, we start by
initializing the weights with small random values. Afterwards, each propagation
can be decomposed in the following four steps:

(i) Feed-forward computation,

(ii) Backpropagation to the output layer,

(iii) Backpropagation to the hidden layers,

7



2 Neural Networks

(iv) Weight updates.

The four steps are to be repeated until the error criterion E(w) has converged,
which is defined as follows:

E(w) = 1
2
∑
x∈X

∑
k∈outputs

(tkx − okx)2 (2.5)

The weight wji from input i of node j is updated again with the delta rule:
wji ← wji + ∆wji, where ∆wji = −η ∂Ex

∂wji
. This time, different from the update

method in the perceptron algorithm, we need to consider two cases for the
weight update.

If the weight wji is between the last hidden layer and the output layer, then
∆wji = −η ∂Ex

∂wji
= η(tjx − ojx)ojx(1 − ojx)xji. Otherwise, ∆wji = −η ∂Ex

∂wji
=

ηoj(1− oj)
∑
k∈Downstream(j) δkwkjxji.

As the backpropagration algorithm is based on the gradient descent, which is
generally a slow process and takes a long time to converge, many researches
have been conducted in the effort to speed up the training process. A detailed
review can be found in Chapter 8: Fast Learning Algorithms of [Roj96]. An
overview of some algorithms to improve convergence speed of feedforward neural
networks is provided below:

(i) Stochastic gradient descent (SGD), which has been discussed in detailed in
[Bot12] and many other publications. It is a simplified version of gradient
descent algorithm and generally results in faster convergence.

(ii) AdaGrad[DHS11], first proposed in 2011, has gained considerable popu-
larity since its publication. It is also a variant of SGD algorithm and can
converge very fast on convex error surfaces.

(iii) RMSprop[TH12] is the modification of AdaGrad algorithm, which intro-
duces a decaying factor.

Additionally, since neural networks are prone to the overfitting problem, which
means that the network has learned well enough with the training set but fails
to generalize well later on when facing unseen data. This problem can also be
handled with help of cross-validation and some other more advanced techniques.
Recently, neural networks with dropout training[Sri+14] are favored to address
this issue, which allows the network to randomly drop units along with their
connections during the training process. This has proven to significantly reduce
overfitting and many state-of-the-art findings have been obtained as a result.

8



2.3 Convolutional Neural Networks

2.3 Convolutional Neural Networks

Traditional feedforward neural networks have already been used and had some
successes in vision-related machine learning subfields. However, as shown in
Figure 2, the neurons in a feedforward neural network are fully connected with
each other. This full connectivity gives rise to problems like curse of dimen-
sionality and poor scalability to high resolution images. To tackle these issues,
researchers turn to biological visual cortex for inspiration. In 1968, Hubel et.
al. discovered that “the cortex is seen as a system organized vertically and hor-
izontally in entirely different ways. In the vertical system (in which cells lying
along a vertical line in the cortex have common features) stimulus dimensions
such as retinal position, line orientation, ocular dominance, and perhaps direc-
tionality of movement, are mapped in sets of superimposed but independent
mosaics. The horizontal system segregates cells in layers by hierarchical orders,
the lowest orders (simple cells monocularly driven) located in and near layer IV,
the higher orders in the upper and lower layers.”[HW68] All in all, convolutional
neural networks (CNN) are a way to exploit the spatial information enclosed
in natural images. As follows, the fundamental building blocks in a CNN are
presented.

2.3.1 Convolution Operation

Convolution, in the most abstract sense, between functions f and g, is written
f ∗ g in literature. It is given by:

(f ∗ g)(t) ≡
∫ ∞
−∞

f(τ)g(t− τ)dτ

=
∫ ∞
−∞

f(t− τ)g(τ)dτ
(2.6)

A convolution on an image I, which is viewed as a matrix with dimension of
n1 × n2, with a filter K is defined by:

(I ∗K)r,s :=
h1∑

u=−h1

h2∑
v=−h2

Ku,vIr+u,s+v (2.7)

in which the filter K is also a matrix:

9



2 Neural Networks

K =


K−h1,−h2 . . . K−h1,h2... K0,0

...
Kh1,−h2 . . . Kh1,h2

 . (2.8)

It should be noted that special care needs to be taken towards the borders of
the image. The following filter, named as the discrete Gaussian filter [FP02],
could be used for smoothing:

(
KG(σ)

)
r,s

= 1√
2πσ2 exp

r2 + s2

2σ2

 (2.9)

When it comes to complicated tasks, several types of layers serving different
purposes are usually stacked[CMS12; KSH12]. A most simplistic convolutional
network (for CIFAR-10 classification challenge[Kri09] as example) could consist
of the following five sorts of layers:

(i) Input layer (INPUT) takes in the raw pixel values from the dataset, in
CIFAR-10’s case with width of 32, height of 32 and three color channels
R, G, B.

(ii) Convolutional layer (CONV) computes the output of the convolution op-
eration, which in turn will be used as input for the next layer (usually a
rectification layer).

(iii) Rectified Linear Units (ReLU) or the rectification layer applies an elemen-
twise activation function.

(iv) Pooling layer (POOL) performs a downsampling operation on the pre-
vious layer and result in a dimensionally smaller representation of the
original data.

(v) Fully connected layer (FC) serves as the final layer and could be considered
as a special sort of “softmax” function that computes the scores for the
different classes.

The above mentioned different kinds of layers in a convolutional neural network
are described in detail as follows.

2.3.2 Convolutional Layer (CONV)

The CONV layer is the vital building block in a convolutional neural network.
In the CONV layer, the usage of learnable kernels or filters is of utmost im-
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2.3 Convolutional Neural Networks

Figure 4: Activations of an example ConvNet architecture [CS231n Stanford]

portance. The kernels, although spatially small compared to the input image,
extend through the full depth of the input volume. When we pass input data
onto a convolutional layer, a convolution operation is conducted between the
filter and the input volume, resulting in a 2-dimensional activation map. The
activation maps can be visualized and used to interpret the performance of
the network and thus to improve the results. A detailed discussion regarding
that can be found in [ZF13]. Some relevant denotations and the formal way to
compute the output of a CONV layer are as follows:

A convolutional layer l takes n(l−1)
1 feature maps from layer (l − 1) as input,

each of which has the size of n(l−1)
2 × n

(l−1)
3 . In the special case when l = 1,

the raw data (images, videos, audios etc.) are accepted as input. In the end,
the layer l gives out n(l)

1 feature maps of size n(l)
2 × n

(l)
3 as output. Each output

feature map, in form of a two-dimensional array, consists of n(l)
2 · n

(l)
3 entries.

The entry at position (r, s) in the ith feature map Y (l)
i , is computed as

(
Y

(l)
i

)
r,s

=
(
B

(l)
i

)
r,s

+
n

(l−1)
1∑
j=1

(
K

(l)
i,j ∗ Y

(l−1)
j

)
r,s

=
(
B

(l)
i

)
r,s

+
n

(l−1)
1∑
j=1

h
(l)
1∑

u=−h(l)
1

h
(l)
2∑

v=−h(l)
2

(
K

(l)
i,j

)
u,v

(
Y

(l−1)
j

)
r+u,s+v

,

(2.10)

where B(l)
i represents the bias matrix and K(l)

i,j the filter between the jth feature
map in layer (l − 1) and the ith feature map in layer l [LKF10].

In essence, the CONV layer tries to learn specific features at spatially local
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positions of the input. The kernels will “fire up” or activate when those specific
features are observed. After stacking all the activation maps corresponding
to all the kernels used in the convolutional layer, the full output volume of
the CONV layer will be calculated. One element in the output volume can
be regarded as the activation output of a visual neuron that has a limited
receptive field size. Or in other words, this particular neuron will only be
responsible for visualizing a small region in the original image. This process,
imitating the character of local connectivity in biological visual systems, is the
essence of how convolutional neural network manages to share weights and to
avoid inefficient training of traditional fully connected artificial neural networks.

It can be concluded that a fully connected neural network is simply impractical.
This can be demonstrated with the following example. If we take a RGB-
colored image of size 32× 32× 3 as the input for the network, a single neuron
in a traditional fully neural network will have 3, 072 weights. To avoid this
problem, neurons in a convolutional layer are only connected to a small local
region of the input volume. This local region is often called the receptive
field[Ben09]. Moreover, it should be noted that, even though the connections
in space along width and height of the input image are limited into the receptive
field, a full connection along the depth of the input is always expected. So in
the previous example, a single neuron in a CONV layer has only 6×6×3 = 108
weights, provided that the receptive field has a size of 6× 6.

In addition to the local connectivity, three other hyperparameters can also be
manipulated to further reduce the complexity of the neural network. They are
listed and discussed as follows[ON15]:

(i) Depth: In standard artificial neural networks, all of the neurons in the
hidden layers are connected to all of the neurons in the previous layer.
In convolutional layers however, we add a new hyperparameter called
the depth, which allows us to decide the number of neurons that are
connected to the same region of the input volume. So essentially, depth
is a way to reduce the number of connections or weights in the network
model. When a convolutional neural network is trained, all the different
neurons will learn to “fire up” for different features from the input layer.
A very intuitive example can be seen in the activation maps of a ConvNet
for the MNIST dataset[LeC+98]. We can see that different neurons in the
convolutional layer will activate when facing up different sorts of shapes.
Also, as common practice, a group of neurons that are all connected to
the same region in the input layer can be referred to as a depth column.
Importantly, we should be aware that due care should be taken when
selecting the proper depth for a CONV layer, as reducing the depth of a
layer can lead to a significant reduction of the total number of neurons of
the model on one hand, and can cause a worsening learning capabilities
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for the classifier on the other hand.

(ii) Stride: To control the allocation mechanism of the depth columns around
the spatial dimensionality of the input, the hyperparameter of stride is
introduced. For instance, if the stride is set to 1, then the receptive field
will be heavily overlapped and very large activations will be produced.
Alternatively, a higher stride will lead to less overlapping receptive fields
and in turn an output volume of lower spatial dimensions.

(iii) Zero-padding: Just like its name suggests, zero-padding is the simple
process of padding the input with zeros on the border of the input volume.
By controlling the size of zero-padding, we can have better control as to
the spatial size of the output volumes.

If the input volume size is denoted by Vin = height×width× depth, the size of
the receptive field by R, the size of the zero-padding set by Z and the stride by
S, then the spatial dimensionality of the convolutional layer output, denoted
by Vout, can be determined with the following formula:

Vout = (Vin −R) + 2Z
S + 1 (2.11)

If the resulting Vout is not integer, then it means that the stride has not been
correctly set. And if we set zero-padding to be Z = R−1

2 and the stride S to be
1, then we have Vout = Vin, which means that the spatial sizes remain constant
after CONV layer. This has couple of advantages:

(i) It is easier to manage the sizes for the later on POOL layers, which alone
should be responsible for down-sampling the volumes spatially. Other-
wise, if S > 1, then it would be very tricky to keep track of the volume sizes
throughout the CNN structure, especially when very deep CNN structure
is utilized.

(ii) It turns out in practice that smaller strides yield better performance, even
though the previous compromise about the stride holds in general.

Even after the aforementioned hyperparameters and local connectivity are in-
troduced into the network model, then number of weights involved in many
real-world cases is more often than not unacceptably high. This is why further
methods like parameter sharing have been developed to reduce the number
of parameters into a more reasonable range.

Parameter sharing has a very simple intuition: if a regional feature is useful
for computation at one spatial region, then it should also be useful in another
region. If the same weights and bias are used in each individual activation map
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within the output volume, then the number of the parameters in the layers can
be reduced drastically.

Rectified Linear Units (ReLU). A Rectified Linear Units (ReLU) layer or
rectification layer l takes n(l−1)

1 feature maps from layer (l−1) as input, each of
which has the size of n(l−1)

2 × n(l−1)
3 . This layer applies activation function and

serves the purpose of increasing the nonlinear properties. It has been shown
in several experiments[Jar+09] that ReLU layer is crucial for achieving quicker
training process and better performance. The results of the layer l are computed
as follows:

Y
(l)
i =

∣∣∣∣Y (l)
i

∣∣∣∣ , (2.12)

where the absolute value is computed elementwise and the amount and the sizes
of the feature maps remain unchanged:

n
(l)
1 = n

(l−1)
1 (2.13)

n
(l)
2 × n

(l)
3 = n

(l−1)
2 × n(l−1)

3 (2.14)

2.3.3 Pooling layer (POOL)

One major issue with traditional multilayer perceptron structure is its inclina-
tion towards overfitting, mainly due to its full connectivity and the huge amount
of parameters that come along with it. To avoid this issue, the concept of pool-
ing is introduced in convolutional neural network. Very often, pooling layers
are inserted between convolutional layers periodically in a CNN framework. Es-
sentially, a pooling layer serves as a basic form of downsampling process and
results in a spatially smaller representation of the original data that is robust
when facing noise and distortions. The basic idea behind the POOL layer is
that the exact spatial information of a feature is less important than its rough
relative location.

A Pooling layer l takes n(l−1)
1 feature maps from layer (l − 1) as input. If each

feature map has the size of n(l−1)
2 × n(l−1)

3 , and we conduct pooling with a 2× 2
filter and the stride equals 2, then the pooling layer outputs n(l)

1 = n
(l−1)
1 feature

maps, each of which has the size of n
(l−1)
2
2 ×

n
(l−1)
3
2 . In every 2×2 non-overlapping

window, we keep one out of four element value as the output for the window.
Several pooling and other subsampling units are stated as follows:

(i) Max pooling: as the most popular pooling method, max pooling outputs
the maximum for each window.
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Input: Raw Image
(l = 0)

CONV
(l = 1)

Subsampling
(l = 2)

CONV
(l = 3)

Subsampling
(l = 4)

FC
(l = 5)

output: FC
(l = 6)

Figure 5: The architecture of a typical convolutional neural network, modified
from [ON15]. The input image data goes through several pairs of
convolutional layer, rectification layer and subsampling layer, just as
depicted in the figure, in which CONV stands for convolutional layer
including rectification, POOL for pooling layer and FC for fully con-
nected layer. In the end, after several rounds of CONV-ReLU-POOL,
the data goes through fully connected layer(s), which will work as the
high level classifier and uses softmax activation functions to output
the final results like class scores.

(ii) Average pooling: instead of using MAX operation, this pooling method
uses the average of each window as the output.

(iii) Skipping: a even more straightforward method is to skip a constant
amount of elements in horizontal as well as in vertical direction.

Fully connected layer (FC). As its name suggests, the neurons in a fully
connected layer (FC) l are fully connected to all the neurons in the previous
layer (l − 1). The output of the ith neuron in this layer is computed with the
following equation:

Y
(l)
i = f

m
(l−1)
1∑
j=1

w
(l)
i,j

(
Y

(l−1)
j

) . (2.15)

2.3.4 Architectures

In recent years, convolutional neural networks follow certain layer patterns to
allow for a better streamlined architecture designing procedure[Sze+14]. The
general idea behind the most of the layer patterns is:
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(i) to let the original data go through an arbitrary amount of CONV-RELU
layer pairs, which can exploit the local information hidden in the original
data and introduce non-linearities at the same time,

(ii) to input the data into POOL layers, or subsampling layers in a more
general sense, which reduces the amount the parameters and avoids over-
fitting problem,

(iii) to go through FC layers, which calculate the final outputs.

2.3.5 Applications

Interestingly, one of the earliest applications of convolutional networks was
found in 1989, when Waibel et.al. developed the time-delay neural network
(TDNN)[Wai+90] and successfully implemented it on speech recognition. In
the performance evaluation of their original paper, a superior recognition rate
of 98.5% has been achieved in comparison to 93.7% with traditional hid-
den markov models. In principle, time-delay neural network and convolutional
neural network have a lot in common when it comes to network parameter re-
duction. Due to page length constraint as well as the similarity between TDNN
and CNN, the details of TDNN will not be discussed here in this thesis.

Although the fundamental framework of CNNs has been introduced in the
1980s, one of more recent and the most significant success for convolutional
neural networks was in 2012, when Alex Krizhevsky et.al.[KSH12] managed to
train a large and deep CNN on the ImageNet dataset[Rus+15] and obtained
16.4% of error rate, whereas the next best non-CNN model achieved only
26.2%. The reason for the late blooming has less to do with the model itself
than with the advancements in computation speed with help of GPU comput-
ing and the fact that substantially more data is available nowadays than just
twenty years ago.

Since these early breakthroughs, convolutional networks have drawn a lot of
attention in the machine learning community and works as the foundation of
many sophisticated and very successful systems. Again take ImageNet challenge
as example, in 2014, CNNs have achieved human-level performance[Rus+14].

Even in the field of time series analysis, convolutional networks have also been
applied and have given the researchers a refreshingly new way to conduct stud-
ies. In 2014, Zhang et.al.[Zhe+14] proposed a novel deep learning framework
and utilized the framework in time series classification problem and have shown
that CNNs has the advantage of efficiency in comparison to other state-of-the-
art approaches and demonstrates competitive accuracy performance as well.
The main reason for their revelations is that a time series, in essence, can be
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regarded as a one dimensional image. As it generally holds that the historical
information as well as the future is relevant for time series analysis, we can
think of the this “informational continuity” as informational locality, which can
be exploited with help of convolutional neural networks.

It is for this very reason that we design a deep convolutional network framework
for the time series classification problem presented in this thesis. The exper-
iments in Chapter 5 show that deep CNN frameworks do manage to achieve
superior performance in comparison to other models.
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2.4 Recurrent Neural Networks

Similar to convolutional neural networks, recurrent neural networks (RNN) are
based on the simple observation that human beings excel at processing sequen-
tial data because of feedback connections between the neurons in the brain.
Principally different from other traditional machine learning algorithms, recur-
rent neural networks are more suited for problems such as natural language pro-
cessing, word prediction, speech processing, time series prediction etc, where the
objective is to find the mapping between arbitrary input sequences and output
sequences[Lip15]. Even though RNN is computationally more challenging and
represents a more difficult task than its feedforward counterparts, considerable
improvements have been accomplished during the last two decades along with
new network architectures and advanced computation techniques. The train-
ing of RNNs is becoming more and more efficient and its performance has also
improved greatly[Lip15]. Compared to other related models, the advantages of
RNNs can be highlighted as follows:

(i) Hidden Markov Models (HMM):

a) RNNs possess greater representational power,

b) RNNs do not rely on the Markov assumption and can deal with
long-term, dependencies

c) HMMs have no continuous internal states.

(ii) Feedforward Neural Networks (FFNNs): FFNNs have no internal states,
no feedback connections.

(iii) Support Vector Machines (SVMs): Same as FFNNs.

. . . . . .

yt−1 yt yt+1

ht−1 ht ht+1

xt−1 xt xt+1

Figure 6: Architecture of a simple recurrent neural network

As stated above, a recurrent neural network aims to find the mapping be-
tween arbitrary input sequences and output sequences. Given an input sequence
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(x1, . . . , xT ), the weight matrices between input and hidden layers, hidden and
hidden layers, hidden and output layers, respectively denoted byWxh,Whh,Why,
the bias vectors for input, hidden and output layers, respectively denoted by
by, bh, h0, the recurrent network calculates the sequences of hidden states and
outputs with the following steps:

Algorithm 1: RNN Output Computation
input : input sequence (x1, . . . , xT )
output: output sequence (y1, . . . , yT )

1 for t← 1 to T do
2 ht ← f(Wxhxt +Whhht−1 + bh)
3 ot ← Whyht + by
4 yt ← g(ot)

where f(·) and g(·) stand for the activation functions for the hidden layers and
output layer. The loss of the network is calculated with:

L(y; target) =
T∑
t=1

L(yt; targett) (2.16)

With the backpropagation through time algorithm[Wer90], the parameters of a
RNN can be computed with the following steps:

Algorithm 2: RNN Parameter Update

1 for t← T to 1 do
2 dot ← g′(ot) · dL(yt; targett)/dyt
3 dby ← dby + dot
4 dWhy ← dWhy + doth

>
t

5 dht ← dht +W>
hydot

6 dyt ← f ′(yt) · dht
7 dWxh ← dWxh + dytx

>
t

8 dbh ← dbh + dyt
9 dWhh ← dWhh + dyth

>
t−1

10 dht−1 ← W>
hhdyt

In 1989, the universal approximation theorem was proven by Hornik et.al., which
states that standard feedforward networks with only a single hidden layer are
universal approximators[HSW89]. Similarly, for recurrent neural networks, it
holds that “a recurrent neural network can be trained to approximate any
non-linear dynamical system with any accuracy, given that the network has
an appropriate initial condition and enough hidden units”[FN93]. With the
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publication of these two theoretical findings, the computational power and its
expressiveness can also be proven. A even more impressive characteristic of
recurrent networks was discovered by Siegelmann et.al. in 1991[SS91]:

Theorem 2.2 (Turing Completeness of RNNs (informal)). There exists a finite
neural network built of neurons with sigmoidal activation functions that can
simulate any turing machine.

However, with great computational power comes also a critical drawback. It
has been known that the training process of recurrent networks is impractically
slow due to the vanishing and the exploding gradient problems, which has been
discussed in great detail by Bengio et.al. in 1994[BSF] and Pascanu[PMB12].

The vanishing and exploding gradient problems. The two above men-
tioned issues come up as the standard recurrent neural networks have difficulties
when dealing with long-term dependencies. Formally speaking, the successful
prediction of an output at time point t is dependent on the input at an much
earlier time point τ � t[BSF].

When long-term dependencies are present and we try to conduct a backpropa-
gation all the way through so many time steps with help of the chain rules, the
gradients can be calculated with the following formulas. After rewriting and
reviewing the formulas, we can better understand why long-term dependencies
are the reason for the two fundamental problems of RNNs:

∂L

∂θ
=

∑
16t6T

∂Lt
∂θ

, (2.17)

∂Lt
∂θ

=
∑

16i6t

(
∂Lt
∂ht

∂ht
∂hi

∂hi
∂θ

)
, (2.18)

∂ht
∂hi

=
∏

t>j>i

∂hj
∂hj−1

=
∏

t>j>i
W>diag(f ′(hi−1)), (2.19)

where θ stands for the parameter set in the network which consists of the weight
matrices and the bias vectors. As Figure 7 depicts, the derivatives at the two
ends of the hyperbolic tangent function are close to zero. Also, the gradients
will shrink at an exponential rate after multiple rounds of matrix multiplication,
when the elements in the Jacobian matrix W in Equation 2.19 are small. On
the other hand, when the elements inW are big, the exploding gradient problem
will come up.

Several possible solutions have been published to address the exploding and
vanishing gradient problem and are summarized as follows:
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Figure 7: Tanh and its first order derivative

(i) A most early approach for the exploding gradient problem is the truncated
backpropagation through time (TBPTT) algorithm[WZ89]. It stops the
gradient propagation when a threshold for maximum number of time step
is reached. This is a compromise between capability of learning long term
memory and scale management of the gradients.

(ii) Usage of L1 or L2 penalty on the weights can alleviate the exploding
gradient problem, but costs the network to lose the ability to deal with
long term memory.

(iii) Jaeger and Haas introduced Echo State Networks in 2004[JH04], which
need only the weights of the output layer as its parameters in the model.

(iv) Teacher forcing[Jae02] requires a target for neurons in the hidden layers
at each time step. This method can be used to address the exploding
gradient problem and also speeds up convergence.

(v) Another very simplistic method to tackle the exploding gradient problem
is to rescale the weights if they increase up to a predetermined thresh-
old[PMB12].

(vi) Pascanu et.al. proposed a gradient regularization scheme to address the
vanishing gradient problem[PMB12].

(vii) Long short-term memory[HS97] recurrent neural network was proposed
by Hochreiter and Schmidhuber in 1997. This architecture can handle
long term dependencies much more efficiently and have been utilized in
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numerous applications. The following subsection will discuss long short-
term memory in more detail, the theoretical foundation for this thesis.
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2.5 Long Short-term Memory

As stated in the previous subsection, the training algorithm for traditional re-
current neural networks is impractically inefficient due to the well known van-
ishing and exploding gradient problem. Many studies have been conducted to
address this problem and some of them have been very successful. Amongst the
newer recurrent network architectures, long short-term memory [HS97] and bi-
directional recurrent neural networks[SP97] are considered two works of ground-
breaking significance. In the next two subsections, these two frameworks will
be discussed, as they are the direct theoretical foundations of this thesis.

The long short-term memory (LSTM) model was introduced in 1997 by Hochre-
iter and Schmidhuber for the purpose of tackling the vanishing gradient prob-
lem. One major difference between LSTM model and traditional recurrent
neural network is the concept of memory cell, which is depicted in Figure 8.
In standard RNN model, there are two types of memory passing through the
network. First type is the long-term memory which is stored in the weight
matrices and is updated constantly. The second type, the short-term memory
refers to the activations from neurons to neurons in the following layer. By
introducing the notion of memory cell, LSTM manages to store a third type
of memory, the long short-term memory. As a matter of fact, this is also the
origin of the term LSTM. The following equations describe how to calculate a
hidden state h(t) when the current input data and previous hidden state are
provided[Lip15]:

Input gate:
i(t) = σ(W ixx(t) +W ihh(t−1) + bi) (2.20)

Input node:
g(t) = φ(W gxx(t) +W ghh(t−1) + bg) (2.21)

Forget gate:
f (t) = σ(W fxx(t) +W fhh(t−1) + bf) (2.22)

Output gate:
o(t) = σ(W oxx(t) +W ohh(t−1) + bo) (2.23)

Internal cell state:
c(t) = g(t) � i(t) + c(t−1) � f (t) (2.24)

Hidden layer state:
h(t) = φ(c(t))� o(t) (2.25)
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Several remarks on the equations to help understand how long short-term mem-
ory model works are presented in the following:

(i) � in Equations 2.24 and 2.25 stands for pointwise multiplication.

(ii) The input, forget and output gates, respectively denoted by i(t), f (t), o(t),
are novel concepts that were not present in other traditional neural net-
work architectures. We can better understand these gates by seeing them
as the control panel for a indoor heating system. The room temperature
can be controlled by how wide open the gates are.

(iii) The input node g(t) is the equivalent of the hidden state in standard
recurrent neural networks. In some literature, the input node is denoted
by c̃(t). This is because the input node is also regarded as the candidate for
the internal cell state c(t). In LSTM’s case, the hidden state is dependent
on the combination of gated input node and gated previous cell state as
well as the output gate. Therefore, the input gate decides how much role
the input node g(t) plays in the forward passing procedure.

(iv) The internal cell state c(t) is the quintessential part in the memory cell.
This is where the long short-term memory is stored. Observing the equa-
tion 2.24, we can appreciate that current internal cell state depends on
both the previous internal cell state c(t−1) and the current input g(t). Af-
ter input gate and forget gate are introduced into the memory cell, we
can better adjust which of the two should be more relevant for specific
sequential data.

(v) The forget gate f (t) was proposed by Gers et.al. in 1999[GSC99]. The
purpose of introducing forget gates into LSTM model is to address the
issue that standard long short-term memory algorithm performs very
poorly when dealing with continual input streams. Even though the for-
get gate was only presented two years after the publication of the original
LSTM[HS97], it has been proven to be a very effective component and is
included in most of the modern LSTM architectures.

Another very important concept in modern LSTMs is the peephole connections,
introduced also by Gers et.al. in 2000[GS00]. Peephole connections can pass
information from the internal state c(t) to the input gate i(t) and the output gate
o(t) directly. To their surprise, the variation has shown great learning perfor-
mance and is said to be suited for challenging tasks where interval measurement
is required.

It has been shown by many studies that long short-term memory recurrent
networks is much superior to standard recurrent neural networks when facing
sequence learning that has long term dependencies. This is why this model has
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been a research focus for the last decade and also why so many variations have
been published. A thorough review and comparison for the several important
LSTM variations can be found in LSTM: A Search Space Odyssey[Gre+15] by
Greff et.al.

Amongst the numerous variations of LSTMs, the gated recurrent unit (GRU)
[Chu+14] is one of the simplest and has drawn much attention. Even though
it possesses a relatively simpler architecture than standard LSTMs, experi-
ments[Chu+14] have suggested that GRU displays competitive performance in
comparison to LSTMs while being more computationally efficient. A hidden
state h(t) is calculated with the following equations[Chu+14].

Update gate:
z(t) = σ(W zxx(t) +W zhh(t−1) + bz) (2.26)

Reset gate:
r(t) = σ(W rxx(t) +W rhh(t−1) + br) (2.27)

Input node:
g(t) = φ(W gxx(t) +W gh(r(t) � h(t−1)) + bg) (2.28)

Hidden layer state:
h(t) = (1− z(t))h(t−1) + z(t)g(t) (2.29)

As seen in the equations, the GRU model is quite similar to LSTM model. They
both rely on the concept of gates to control the flow of information. Whenever
we want to calculate a hidden state with a GRU or LSTM unit, the value of
the cell unit is always the combination of previous information and new input
data, shown through the similarity of Equations 2.24 and 2.29. Differently from
LSTMs however, GRU merges the forget gate f (t) and input gate i(t). Also, the
output of a GRU unit is not controlled with a output gate o(t) as in LSTM’s
case. All in all, a GRU model has a simpler structure and is for this reason
more efficient.
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Figure 8: LSTM memory cell
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2.6 Bi-directional Long Short-term Memory

Bi-directional recurrent neural network (BRNN)[SP97] is another important
architecture. It was first proposed by Schuster et.al. in 1997. The intuition
behind this model is that not only the previous information but the future
should be taken into consideration for sequence learning. With a standard
one-directional RNN, sequential information passes only in one direction, from
timepoint t = 1 to the end t = T . To allow for backwards information flow,
Schuster et.al. proposed that two types of hidden layers should be added in the
recurrent network. A simple bi-directional RNN structure is depicted in Figure
9.

y(t)

h
(t)
b

x(t)

y(t−1)

h
(t−1)
b

x(t−1)

y(t+1)

h
(t+1)
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h
(t)
fh

(t−1)
f h

(t+1)
f

. . .
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. . .

. . .

Forward

Backward

Figure 9: Architecture of a simple bi-directional recurrent neural network

As we can see from the figure, a simple three layer RNN with one hidden layer
becomes a four layer bi-directional RNN with two hidden layers, in which the
first hidden layer hf is responsible for the forward direction of the sequence,
and the second hidden layer hb for the backward direction. Both hf and hb are
directly connected to the input layer and the output layer. Although seemingly
complicated, a bi-directional RNN can still be trained with standard backprop-
agation after it is unfolded across time. The hidden states in a bi-directional
RNN can be calculated with the following equations:

h
(t)
f = σ(W hfxx(t) +W hfhfh

(t−1)
f + bhf

) (2.30)

h
(t)
b = σ(W hbxx(t) +W hbhbh

(t+1)
b + bhb

) (2.31)
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After the calculation of the hidden states is finished, the output state can be
calculated as well:

y(t) = f(W hfyh
(t)
f +W hbyh

(t)
b + by) (2.32)

where the function f stands for the final activation function. If the goal is
classification, then we can use Softmax function in its place.

It is important to note that bi-directional RNN has its own disadvantages too
in spite of its potential. The purpose of BRNN is to exploit both historical and
future information. But for online problems, where the future sequences are
not yet available, it is simply not possible to train the BRNN model.

After bi-directional recurrent network was proposed by Schuster et.al. in 1997,
it was viewed as inefficient just like one-directional recurrent neural networks.
Since LSTMs became widely utilized, BRNN also began to draw more and
more attention. In 2005, Graves et.al. came up with the bi-directional long
short-term memory[GS05]. In essence, the only difference between a BRNN
and a bi-directional LSTM architecture is that, in BLSTM, LSTM units are
used instead of simple hidden layer neurons that are made from connections
with the previous layer and activation functions as in BRNN’s case. Ever since
its publication, state-of-the-art results have been reported with bi-directional
LSTMs on handwriting recognition[GS05] etc.
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3 Time Series Forecasting

In this chapter, we will discuss some of the previous approaches on time se-
ries forecasting, including linear models like autoregressive integrated moving
average[Bar71], and more complicated hybrid models[Zha03].

Time series is conventionally defined as a sequential data vector or scalar in
a certain time period. Formally, a time series x which depends on time t is
denoted by x = {x0, x1, . . . , xt, . . . }. As for time series forecasting, it is the
research field that aims to find a suitable model f to predict the data values at
some future time point(s):

x̃t+s = f(xt−1, . . . ) (3.1)

where s stands for the horizon of the forecasting model. As the only informa-
tion available in a forecasting problem setting is the historical data {xt−1, . . . },
we see that the model f is actually a function mapping historical data to future
data. A lot of research studies have been dedicated to time series forecasting
and considerable improvements have been made. However, as it is always chal-
lenging to predict the future with limited data and computational resources,
this field remains one of the hottest research topics that interests researchers in
various completely different fields using different approaches.

A very straightforward idea that is the fundamental intuition of many forecast-
ing modeling methods, which are categorically called linear models, is that the
future could and should be a linear combination of the historical information.
For example, one of the most simplistic model is the so-called random walk
model:

x̃t = xt−1 + εt (3.2)

where εt denotes the i.i.d. error term. In random walk model, one believes that
the best guess for the data value at the next time point is the current data,
which is surprisingly banal yet has outperformed some other more complicated
models in some very volatile situations like in exchange rate estimation in the
last few decades[KT01].

Another important linear model that has been very popular and dominant in
time series forecasting is the autoregressive integrated moving average (ARIMA)
model. This model follows the famous Box-Jenkins methodology[BJ90] and
even overlaps with exponential smoothing models[Mck84], which is another
class of simple and widely used models. ARIMA model is a generalization
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of ARMA model, which stands for autoregressive moving average model. Its
major advantages are comprehensive incorporation of many types of models and
capability of capturing noise, trend and season component in a time series etc.
For example, autoregressive model, moving average model and ARMA model
are all subsets of ARIMA model. However, as ARIMA is essentially a linear
model which believes in the linear correlation between previous observations
and future values, it lacks in the much needed expressiveness when it comes to
more complicated and nonlinear modeling. This is the main reason why many
researchers turn their attention to developing nonlinear models that can fit with
real-world problems where many complex factors are at play and the correlation
between future and past can not be captured otherwise with a linear model.

Throughout the history of time series forecasting research, various types of ap-
proaches have been proposed. The traditional linear models such as random
walk, exponential smoothing and the autoregressive integrated moving average
model have been applied for decades and have had some limited success when
the time series are simple enough to be described with a linear model. Even
though they are very easy to comprehend and to implement, people in forecast-
ing community are focusing more and more on nonlinear models to overcome the
insufficient expressiveness of linear models. Some important nonlinear models
are listed as follows:

(i) Bilinear model[GA78] was introduced by Granger et.al. in 1978 and is
regarded as one of the most natural generalization of linear time series
models. This can be shown with the definition of a (p, q, P,Q) order
bilinear model:

x̃t =
p∑
i=1

bixt−i + εt +
q∑
j=1

ajεt−j +
P∑
i=1

Q∑
j=1

cijxt−iεt−j, (3.3)

where one believes in the assumption that the best guess for the next
observation is the weighted combination of previous observations xt − i,
error terms εt−j and the product of historical observations and error terms
xt−iεt−j.

(ii) Threshold autoregression (TAR) model[Ton83] can be viewed as “multi-
regime generalization” of autoregressive (AR) models, which consists of k
AR parts or regimes and can be defined as follows:

x̃t =
k∑
i=1
{bi0 + bi1xt−1 + · · ·+ bi,pi

xt−pi
+ σiεt}I(xt−d ∈ Ai), (3.4)

where k > 1, d denotes the delay, and I(A) stands for an indicator func-
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tion such that I(A) = 1 if event A occurs and I(A) = 0 if otherwise.

(iii) Autoregressive conditionally heteroscedastic (ARCH) model[Eng82] was
introduced by Engle et.al. in 1982. It was proven to be very successful
for daily finance data but has not yet found wide applications in other
fields. The definition of a p > 1 order ARCH model is as follows:

x̃t = σtεt (3.5)

σ2
t = c0 + b1x

2
t−1 + · · ·+ bpx

2
t−p, (3.6)

where c0 > 0 and bi > 0.

(iv) Neural Networks: as an algorithm designed originally for machine learn-
ing problems, neural networks have been applied in time series forecast-
ing[ZPH98] since 1990s and has shown its superiority to traditional sta-
tistical forecasting models thanks to its data-driven characteristics, gen-
eralizing ability, nonlinearity and its expressiveness[HSW89].

The basics for ARIMA models and neural network based forecasting models
are presented in the following subsections.

3.1 Autoregressive Integrated Moving Average

In comparison to an ARMAmodel, an autoregressive integrated moving average
model has another parameter d standing for differencing, which, if d = 1, is
the simple concept of computing the differences between data values at two
consecutive timepoints: ∇d=1 ≡ (xt − xt−1). For d > 1, the difference can be
denoted with help of the backward shift operator B:

∇d ≡ (1−B)d, (3.7)

where Bxt = xt−1. By definition, a time series x = {x0, x1, . . . , xt, . . . } follows
an ARIMA(p, d, q) model if the dth differences of the time series follow an
ARMA(p, q) model. The ARIMA model with order of (p, d, q) can now be
defined as:

θp(B)(1−B)dxt = φq(B)εt, (3.8)

where θp and φq respectively stand for polynomials of orders p and q. The
formula above seems complicated and unintelligible, but still conveys the main

31



3 Time Series Forecasting

idea of the ARIMA model, which says that the best guess of a variable can
be obtained with a linear combination of last p previous observations and q
random errors. This is exactly the same as in ARMA model’s case. Also, once
again, the random errors εt for all timepoints are independently and identically
distributed, which have also a mean of 0 and a variance of σ2.

From Equation 3.8, we can clearly appreciate why ARIMA is considered one
of the most generalized and impactful linear models. This model combines the
strengths of autoregressive models, moving-average models and the concept of
differencing. When we set p = 0, then we see that a moving-average model with
order of p is a special case of ARIMA model. The same goes for autoregressive
models too. When q = 0, we see that an AR model with order of q is also a
special case of ARIMA model.

Finally, to construct a ARIMA model for a specific time series, it is imperative
to find the appropriate order (p, d, q). This can be accomplished with the Box-
Jenkins methodology[BJ90], which consists of the following three steps:

(i) Identification: in this step, we try to determine the appropriate order of
the ARIMA model. According to Box-Jenkins’ initial proposal[BJ90], the
autocorrelation function and the partial autocorrelation function can be
used for this very purpose. The reason behind this is that autocorrelation
as well as partial autocorrelation features can be detected if an ARIMA
model holds for a time series. It should be noted that data preprocessing of
some sorts is more often than not necessary for the ARIMAmodel to work.
Common practices are to apply differencing and power transformation so
that potential trends can be removed and the variance be stabilized.

(ii) Estimation: after the order of the ARIMA is identified, the next step is
to use the available data and estimate the parameters by minimizing a
error measurement.

(iii) Diagnostic checking: lastly, we check if the prediction of the estimated
model is accurate enough.

Usually, the three steps are repeated for several times until an adequately fit
model has been found. Afterwards, the final model can be used later for pre-
diction purposes or for gaining deeper insights into the time series.
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3.2 Neural Networks

Neural networks have been successfully applied in time series forecasting since
early 1990s[TF93; BFC95; FDH01]. It gained its popularity largely due to its
data-driven property that does not require any assumption on the desired mod-
els and learns purely by training with sample data and to its universal approx-
imation capability[HSW89]. A general framework of network based forecasting
model is depicted in Figure 10. Note that the feedforward/recurrent network
architecture can be filled with any available network structure like feedforward
networks, long short-term memory or even bi-directional LSTMs.

x̃t

x(t−p)

x̃t+s

x(t−1). . .

. . .

Feedforward/Recurrent Network Architecture

Figure 10: General framework of neural network based time series forecasting
model

Just as in ARIMA’s case, it is very important to determine the order of the
model, which in NN means the number of input nodes and output nodes. The
number of the output nodes can be easily determined by the specific require-
ments in the model building process like how far into future we want to predict.
On the other hand, no solid theoretical findings have been published yet re-
garding the size of the input layer. Therefore, some trial and error experiments
are often expected to find a suitable input layer size.
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3.3 Hybrid Models

Similar to machine learning, a final predictive decision in forecasting problem
setting is often reached by combining several similar or principally different
approaches. The motivation behind forecasting method combination is to take
advantage of all the single models’ unique expressive features and to capture
and understand various patterns in complicated real-world time series data. A
couple of very early publications on this topic include: The Combination of
Forecasts by Bates et.al.[BG01] and another literature under the same name by
Winkler et.al. in 1983[Rob83]. Several experimental studies and thorough re-
views have been conducted to showcase and discuss the strengths of hybrid mod-
els in comparison to simple linear or nonlinear models[Win89; Cle89; Wal11].

Many a hybridizing approach has been introduced since the last several decades.
As early as 1963, Barnard has made an empirical argument that the simple aver-
age from two forecasting methods has smaller Mean Square Error and therefore
should be considered a better prediction[Bar63]. Even until recently, the very
simplistic intuition of simple average is still one of the most popular combining
techniques[Bun85]. Of course, the simple average has trouble outputting fruit-
ful results under certain circumstances. For example, one might argue that it
is more reasonable to put different weights on the the forecasts of individual
methods as they could have different precisions and have different importance
levels. In 1994, Deutsch et.al. proposed a regime-switching scheme that al-
lows the weights of different forecasts to change over time[DGT94]. A more
interesting and refreshing combining approach was introduced by Fiordalison
in 1998[Fio98]. This article is one of the earliest published nonlinear combin-
ing techniques, which ingeniously utilized fuzzy theory to construct a nonlinear
forecast combination system.

In real-world situations, it is very often to encounter a complex time series
system that exhibits linear and nonlinear features at the same time. In these
cases, a cooperative modular combination will be very instrumental to grasp
the full picture of the time series. Hybrid models that integrate some linear
model and nonlinear model have been discussed in this effort. It has been
shown that the hybridization of ARIMA model and artificial neural networks
can yield desirable forecasting performance[Zha03; KBR09; KB11].

One important note regarding the hybrid model scheme planning is that hybrid
techniques that are comprised of linear and nonlinear models do not guaran-
tee better estimation results. This phenomenon has been spotted by Terui
et.al.[TD02] and by Casey et.al.[TC05]. Therefore, it is imperative to under-
stand that prudent model selection is still much needed and combining linear
and nonlinear models is not always the answer despite its evident appeal.
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Zhang’s Hybrid Methodology. In 2003, Zhang et.al. developed the one
of the earliest hybrid schemes[Zha03] that integrates the auto-regressive inte-
grated moving average model and artificial neural network model. His original
motivation is simple. ARIMAs have been the dominant approach in time series
forecasting for several decades and has not yet lost its popularity. Artificial
neural networks have intrigued many researchers and have aroused quite some
discussions in time series analysis as well thanks to its previously mentioned
advantages. However, many experimental studies have shown neither of the
two approaches are suitable for every problems, which has been mentioned in
Zhang’s original paper too[Zha03]. This is very easy to imagine. As a linear
model class that assumes linear correlation, ARIMAs is not adequate for non-
linear settings. ANNs, on the other hand, do not always provide with better
results for linear problem modeling. For extremely complicated problems in
which fully capturing the linearity and nonlinearity is highly unlikely, a hybrid
methodology might be a better alternative.

According to Zhang’s methodology, a time series x is comprised of a linear
component Lt and a nonlinear component Nt. Also, he assumes that the data
value at a certain timepoint t is equal to the linear combination of the two
components. Formally, it says:

xt = Lt +Nt (3.9)

Zhang’s methodology contains two steps. Firstly, we try to model the linearity
of the time series. In this step, the linear component Lt should be calculated
with the ARIMA model using the available data. The residuals from this step
e will be used for the second step as it contains the nonlinear relationship.

Lt = L̃t + et, (3.10)

where L̃t denotes the estimated value for the linear component at timepoint t
and et the residual from the ARIMAmodel at timepoint t. Traditionally, in pure
ARIMAmodels, residuals are used in the third step of ARIMA procedure to give
indication whether the linear model is sufficient or not. After several rounds of
Box-Jenkins methodology, the ARIMA will give out the final configuration of
the models and it will be served later for predictive purposes. But as mentioned
before, in real-world problems, even after final model is presented, the ARIMA
might still perform poorly as it will fail to model the nonlinear relationships
hidden in the residuals e.

Therefore, we come to the second step of the hybrid methodology, which is
responsible for nonlinear modeling. In Zhang’s original paper, a feedforward
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neural network is used, which takes the previous residuals as the input data for
the network and outputs the residual at timepoint t:

ẽt = f(et−1, et−2, . . . , et−n) + εt, (3.11)

where f denotes the forward passing function of the FNN and εt the random
error. In this step, certain fine-tuning and optimization techniques need to be
applied, or εt might not be random after all. In the end, the final estimation of
Zhang’s methodology is determined with the following equations:

Ñt ≡ ẽt (3.12)

x̃t = L̃t + Ñt. (3.13)
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3.4 Forecast Evaluation and Accuracy Metrics

When it comes to performance evaluation of a time series forecasting model,
many accuracy measurements can be used. A thorough review can be found in
[HK06]. The following paragraphs list some commonly used metrics.

Same as before, the data value at timepoint t in a time series x is denoted as
xt. The forecast of xt is x̃t. Some more relevant definitions are:

(i) Forecast error et = xt − x̃t,

(ii) Percentage error pt = 100et

xt
,

(iii) Relative error rt = et

e∗
t
, where e∗t stands for the forecast error of a bench-

mark forecasting method. It is common practice to use random walk
model as the benchmark forecasting method.

(iv) Scaled error qt = et

1
n−1

T∑
i=2
|xi − xi−1|

Moreover, the notations of mean(xt),median(xt), gmean(xt) are utilized to
symbolize the sample mean, median and the geometric mean values respectively.
Categorically, there are five types of forecasting accuracy measurements.

Scale-dependent Metrics: the scale of these accuracy metrics is dependent
on the scale of the time series data. This type is particularly useful if we are
to compare the performance of different approaches on the same dataset or at
least dataset of same type.

Mean Square Error (MSE) = mean(e2
t)

Root Mean Square Error (RMSE) =
√

MSE
Mean Absolute Error (MAE) = mean(|et|)

Median Absolute Error (MdAE) = median(|et|)

Percentage Error based Metrics: their major advantage against scale-
dependent metrics is their scale-independence, which allows them to be used for
performance evaluation across different types of datasets. However, they have
also an annoying weakness. If the data value xt at any timepoint 1 6 t 6 T is
equal to 0, then the percentage error based metrics will be infinite.

Mean Absolute Percentage Error (MAPE) = mean(|pt|)
Median Absolute Percentage Error (MdAPE) = median(|pt|)
Root Mean Square Percentage Error (RMSPE) =

√
mean(p2

t)
Root Median Square Percentage Error (RMdSPE) =

√
median(p2

t)
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Relative Error based Metrics: by comparing the forecasting approach of
interest with a benchmark method, the aforementioned issues can be avoided.
However, as the forecast error of a benchmark method varies drastically when
facing with different datasets, the results for different datasets will lose their
significance.

Mean Relative Absolute Error (MRAE) = mean(|rt|)
Median Relative Absolute Error (MdRAE) = median(|rt|)

Geometric Mean Relative Absolute Error (GMRAE) = gmean(|rt|)

Scaled Error based Metrics:

Mean Absolute Scaled Error (MASE) = mean(|qt|)
Median Absolute Scaled Error (MdASE) = median(|qt|)
Root Mean Squared Scaled Error (RMSSE) =

√
mean(q2

t )

Relative Measures: Similar to relative error based metrics, this type of ac-
curacy measurements also makes comparison with a benchmark method. Their
difference is that relative measures use relative metrics rather than relative er-
rors. So if we take MAE for example, then a relative MAE (RelMAE) can be
defined as follows:

RelMAE = MAE
MAE∗ .
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4 Methodology

This chapter describes the problems that are to be solved with this thesis and
inspect the simulated dataset from the electromobility model in detail. After-
wards, solutions for the listed problems will be proposed.

4.1 Problem definition

The main research tasks of this thesis are the classification and the forecasting
of charging and energy consumption of electric vehicles on the island of la
Réunion. The specific problems will be described as follows:

3.1.1 Charging and Driving Behavior Classification. Electric vehicles
are, in a philosophical sense, the extension of their owners. So it is reasonable
to think that the behavioral tendencies of vehicle owners will have major impact
on energy consumption patterns the electric vehicles present. For example, some
questions such as where a person lives at night and how far away his working
place is, and what kind of life style the person represents, they will all play some
role in the situation. This is the reason why we would like to analyze and classify
the energy consumption patterns of different electric vehicles, try to understand
them better and make targeted decisions for those belonging in one pattern
and make decisional adjustments for some other. One specific example which is
relevant to the second problem in this thesis would be a predictive model that
takes advantage of already obtained behavior pattern information and make
different forecasting decisions for different sorts of vehicles accordingly.

In this thesis, we will use the simulated electromobility dataset[Tor+15] and
design neural network based schemes to classify different driving and charging
patterns that are demonstrated by different vehicle groups. A thorough intro-
duction to the original electromobility model that has been used for generating
the dataset can be found in [Tor+15].

3.1.2 Energy Consumption Forecasting.

(i) Total Energy Consumption: At a regional, national or even global level,
the capability of making reasonable and sufficiently accurate estimation on
future energy consumption will be crucial for long-term energy planning.
If applied to other fields like politics, finance etc, a reliable predictive tool
can bring even greater values. Therefore, we aim to predict total energy
consumption in a subgroup in the electromobility dataset using hybrid
forecasting models and compare the performance of the hybrid models
against the simpler linear and nonlinear counterparts.
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(ii) Individual Energy Consumption: Even though the energy consumption
of one vehicle will make no significant difference in the grand scheme
of things, sometimes it still makes sense to estimate what kind of future
behavior one vehicle will show. For example, the third problem this thesis
tries to solve is one possible area where a individual energy consumption
forecasting scheme can find its application.

3.1.3 Charging Prioritization. As is known to all, we are in a world with
limited resources. A simple manifestation of this can be seen also in electric
vehicle charging. Imagine we are at rush hour and many electric vehicles need
to go to the charging station to recharge the battery for their vehicles. When
several vehicles come to a station at the same time and not enough charging
slots are available, a charging prioritization scheme is very necessary to alleviate
the overcrowding situation as soon as possible. For this reason, we will design
a charging prioritization algorithm with help of individual energy consumption
forecasting.

4.2 The Dataset

The electromobility simulation model was designed by Enrique Kremers and
Johannes Wirges at European Institute for Energy Research in 2014. The
model simulates the collective and individual behaviors of electric vehicles on
the island of la Réunion. In the model, the driving behaviors of vehicles vary
according to different choosing of activities. In total, there are six types of
behaviors that owners of the vehicles can perform. The behaviors and their
corresponding abbreviations are listed below:

(i) Stay at House (H),

(ii) Full Time Job (W),

(iii) Part Time Job (HW),

(iv) Do Shopping (Sh),

(v) Social Recreation (SR),

(vi) Other activities (O).

For each day, each vehicle has a fixed starting location, which is set at home.
As different people have different ways of life and choose activities differently,
different driving patterns emerge. In the electromobility model, there are 16
possible patterns, based on distribution data originated from real studies. The
distribution frequency of all 16 driving patterns can be found in Table 1. Ad-
ditionally, there are 24 districts on la Réunion (see in Figure 11). All the
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activity locations for the vehicles are randomly selected following the activity
and population density from real geographic data.

Pattern Probability
H-W-H 23.3%
H-Sh-H 10.5%
H-W-H-SR-H 8.3%
H-SR-H 7.6%
H-Sh-H-SR-H 5.4%
H-W-H-Sh-H 4.8%
H-O-H-O-H 4.8%
H-O-H 4.4%
H-W-SR-H 4.1%
H-W-Sh-H 4.1%
H-O-W-H 3.9%
H-O-H-Sh-H 3.8%
H-HW-SR-HW-H 3.8%
H-W-H-O-H 3.8%
H-HW-Sh-HW-H 3.7%
H-Sh-Sh-H 3.6%

Table 1: Driving pattern frequency distribution

Figure 11: Districts on la Réunion [http://www.reunion.fr/]
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In addition to the sixteen driving patterns, there are three possible charging
behavior patterns in the dataset. They are:

(i) alwaysCharging, which means charging the vehicle whenever the vehicle
has stopped and a charging station is available.

(ii) onlyAtWork, which means only charging the vehicle at workplace.

(iii) onlyAtHome, which means only charging the vehicle at home.

The number of available training (#(Train)) and testing samples (#(Test)),
the dimensionalities of input (Din) and output data (Dout) for classification
and forecasting problems are listed in Table 2.

#(Train) #(Test) Din Dout

Classification 1869903 233744 1440 16/3
Forecasting 648000 72000 TBD TBD

Table 2: Dataset Size, Input and Output Dimensionality

Some additional remarks: as input data for the classifier, which is neural net-
works in this thesis, one row of input data corresponds to one day’s energy con-
sumption value with one minute as the smallest unit, resulting in 24×60 = 1440
timepoints of energy consumption value data for one vehicle in one day. There-
fore Din = 1440.

As there are 16 driving patterns, Dout = 16 for driving pattern classification.
Dout = 3 for charging pattern classification.

For the forecasting problem, 500 days of energy consumption data are used.
This equals 500 × 1440 = 720000 timepoints. The training, testing and val-
idation data have the ratio of 8 : 1 : 1. The reason why the dimensionality
for input and output of forecasting problem is TBD (to be determined) is that
they depend on how many historical observations are necessary for a optimal
forecasting performance and how far into future we want to look at (one day
later, one month later etc) respectively.
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4.3 Charging and Driving Behavior Classification

Time series analysis can be deeply impactful in many fields, including finance
when we want to make a prediction where the price of a stock will go in the
near or distant future, or bioinformatics, where we want to monitor the physical
activities of some patients and maybe to spot some underlying patterns and
gain keen insights on the patients’ current status and make adjustments on the
treatment strategy accordingly. The latter example refers to the problem of time
series classification. In last few years, various algorithms have been dedicated
to solving this problem. Even though distance-based algorithms such as a
combination of dynamic time warping (DTW) and k-nearest neighbor (kNN)
have been quite popular and successful in this domain[Rak+12], it has been
shown that a deep convolutional neural network architecture can accomplish
better performance in some datasets[Zhe+14].

In the classification part of this thesis, we construct a deep convolutional net-
work framework while regarding the temporal data as one dimensional images.
The rationale behind this is the simple observation that, in the electromobility
dataset, the energy consumption value at one timepoint is greatly related to
the values at its neighboring timepoints. This is the same as in a image where
strong local informational correlation manifests itself and exploitation of the
correlation can result in more efficient and accurate algorithms while needing
less parameters to describe the model.

The architecture of the deep CNN utilized in the electromobility classification
problem is illustrated in Figure 12. As we can see from the Figure, the time se-
ries input data go through two CONV-ReLU-CONV-ReLU-POOL rounds and
is fed into 2 FC layers (referred to in the figure as “keras.layers.core.Dense”) af-
terwards. In the actual experimentation, we constructed three different CNNs,
which have 1, 2 and 3 CONV-ReLU-CONV-ReLU-POOL rounds respectively.
Also, a DTW-kNN classifier and a standard feedforward MLP classifier have
also been trained and tested to serve as benchmarks. Meanwhile, charging
and driving patterns of the vehicles in the electromobility dataset are classified
separately with different label settings.

The deep convolutional neural networks are constructed under the Keras envi-
ronment[Cho15]. Some basic notes on Keras are:

(i) Keras is a minimalist and modular neural network library in Python.

(ii) It can run on TensorFlow or Theano. Just as Theano, a Keras program
can run both on CPU and GPU.

(iii) Algorithms in Keras are efficiently optimized and provide best possible
results while offering great extensibility and flexibility.

43



4 Methodology

(keras.layers.convolutional.Convolutional1D)

(keras.layers.core.Activation)

(keras.layers.convolutional.Convolutional1D)

(keras.layers.core.Activation)

(keras.layers.convolutional.MaxPooling1D)

(keras.layers.core.Dropout)

(keras.layers.convolutional.Convolutional1D)

(keras.layers.core.Activation)

(keras.layers.convolutional.Convolutional1D)

(keras.layers.core.Activation)

(keras.layers.convolutional.MaxPooling1D)

(keras.layers.core.Dropout)

(keras.layers.core.Flatten)

(keras.layers.coreDense)

(keras.layers.core.Dropout)

(keras.layers.core.Activation)

(keras.layers.core.Activation)

(keras.layers.coreDense)

Figure 12: Architecture of two round convolutional neural network used in the
electromobility classification problem
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4.4 Energy Consumption Forecasting

Total Energy Consumption Forecasting. As mentioned in Chapter 2 Sub-
section 2.2 - Time Series Forecasting, when both linear and nonlinear patterns
occur, it is beneficial to use a hybrid model that can capture both linearity
and nonlinearity at the same time. In the first part of our energy consumption
forecasting problem, we follow the following procedure1 (depicted in Figure 13)
to construct the hybrid model.

(i) Check the autocorrelation function (ACF) and the partial autocorrelation
function (PCF) to analysis the order of linear model ARIMA.

(ii) The ARIMA model outputs the estimated linear component L̃ and the
residuals et.

(iii) Train recurrent neural networks (LSTMs and bi-directional LSTMs) to
model the nonlinear component Ñt ≡ et.

(iv) Train a feedforward neural network to model the final hybrid result:

x̃t = f(L̃t, Ñt). (4.1)

Note the difference between Equation 4.1 in this subsection and Equation 3.13.
Here we use a function f() to symbolize the feedforward neural network at the
final step of our procedure. The reason we use a FNN to model the final hybrid
result instead of a linear combination as in Zhang’s original paper[Zha03] is that
the relationship between the linear component L̃t and the nonlinear component
Ñt can never be described with a simplistic addition and this underestimation
of the model complexity will result in a performance underachievement[TC05].
Therefore, it is reasonable to take advantage of FNNs’ universal approximation
feature in the final step of the procedure instead of making some oversimplified
assumptions. Also, another significant difference between our hybrid model
and previous hybrid methodologies is the usage of recurrent neural networks
to model the residuals of ARIMA, as RNNs demonstrate superiority when it
comes to sequential data modeling.

1The procedure here is very similar to the methodology originally proposed by Zhang et.al.[Zha03] and the
one by Khashei et.al.[KB11].
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ARIMA (Box-Jenkins)

L̃

e

(bd)LSTM

Ñ

x = {x0, x1, . . . , xt−1}

FNN

x̃t, . . . , x̃t+s

Figure 13: Architecture of the hybrid ARIMA+(bd)LSTM forecasting model

In addition to the hybrid model above, we also test the predictive performance
of ARIMA, MLP, simple LSTM and bi-directional LSTM (bdLSTM) on the
electromobility forecasting datasets and use their results as benchmark to study
the relative strength of the hybrid ARIMA+(bd)LSTM model.

Individual Energy Consumption Forecasting. Originally, we had the in-
tention of using the aforementioned hybrid ARIMA+(bd)LSTM forecasting
model to predict the individual energy consumption as well. However, as it
turns out in the experiment, the complex hybrid model does not yield the best
results for the individual vehicle consumption problem. In fact, the methodol-
ogy with the best performance in this setting is the daily random walk model
and will be further discussed in Subsection 5.2.

The daily random walk model is simply a direct application of the random walk
(Equation 3.2). In the electromobility dataset’s case, we predict the individual
energy consumption to be the same at the same timepoint of the previous day.
So the daily random walk model for the electromobility dataset can be described
with the following equation:

x̃t = xt−1440 + εt (4.2)
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4.5 Charging Prioritization

In comparison to the two previous problems, the charging prioritization is in
fact a direct use case of the individual energy consumption forecasting model in
Subsection 4.4. The detailed algorithm description of the charging prioritization
scheme can be found in Algorithm 5. One assumption for the algorithm is that
the concerned vehicles are waiting in line for charging all at the same timepoint
t. The forecasting function for individual energy consumption is denoted by
Idv_EC(), which is based on the individual energy consumption forecasting
model in Subsection 4.4. This function takes the vehicle id i and horizon s as
input for a vehicle and outputs the estimated individual energy consumption
at timepoint t + s. If Idv_EC() returns 1, it means the vehicle is charging.
Otherwise it means the vehicle is not at a charging station.

Algorithm 3: Required Charging Time Estimation (RCTE)
input : vehicle id i and maximum horizon smax
output: estimated charging time that is required for the vehicle ci

1 for t← 1 to smax do
2 if Idv_EC(i, t) == 1 AND Idv_EC(i, t+ 1) == 0 then return t
3 return NULL

Algorithm 4: Charging Prioritization Comparator (CPC)
input : vehicle ids i and j, maximum horizon smax
output: vehicle charging priority order

1 if RCTE(i, smax) < RCTE(j, smax) then return 1
2 else return 0

Algorithm 5: Charging Prioritization Scheme (n > 2)
input : vehicle ids {1, . . . , n}, maximum horizon smax
output: vehicle charging priority order (p1, . . . , pn)

1 return QSort({c1, . . . , cn}, n, CPC)

The intuition behind the scheme is pretty straightforward. We compare the pri-
ority of two vehicles by estimating their respective needed charging time. If one
vehicle needs less charging time, then we let it charge first to reduce the number
of vehicles waiting in line as fast as possible. And we use this idea to build a
priority comparator function and use it as the base comparator for QSort func-
tion which outputs the final vehicle charging priority order (p1, . . . , pn) for all n
vehicles waiting in line. A parameter smax is defined to confine the maximum
horizon the forecasting model is looking into.
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5 Experimental Evaluation

The experiments in the thesis have been conducted on a Linux system with
Intel i7 3630QM processor, GeForce GTX 670M graphic card and 32GB DDR3
memory. The methodologies are implemented with Keras[Cho15] library in
Python. The datasets for the classification as well as the time series problem
are originated from the electromobility simulation model. The details on the
datasets can be found in Subsection 4.2.

5.1 Charging and Driving Behavior Classification

Driving Behavior. The development of accuracy rate and categorical entropy
loss for driving pattern classification is illustrated in Figure 14. Meanwhile, the
confusion matrix for the final convolutional neural network model can be found
in Figure 15.

Figure 14: Accuracy and loss development over time for driving behaviors

The classifying performance (accuracy and loss) of the benchmark models: dy-
namic time warping - k-nearest neighbor (DTW-kNN) and standard multi-
layer perceptron (MLP or FNN) as well as three convolutional neural networks
(CNNs) with different numbers of CONV-ReLU-CONV-ReLU-POOL rounds
(1, 2 and 3) is presented in Table 3. From the table we can see that a deep con-
volutional neural network with 3 rounds of CONV-ReLU-CONV-ReLU-POOL
layers achieves the best classifying performance.
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MLP DTW-kNN CNN-1 CNN-2 CNN-3
Accuracy 84.2% 86.5% 89.7% 91.1% 91.6%
Loss 0.487 0.451 0.401 0.379 0.372

Table 3: Performance comparison between the models for driving behavior clas-
sification (best results in bold)

Figure 15: Normalized confusion matrix for driving behaviors

From the confusion matrix shown in Figure 15, we can gain some interesting
insights into the relationship amongst different driving behaviors:

(i) Firstly, H-W-H, H-Sh-H, H-SR-H, H-Sh-H-SR-H, H-O-H, H-O-H-Sh-H,
H-HW-SR-HW-H, H-HW-Sh-HW-H as well as H-Sh-Sh-H can be fairly
easily separated from other behavioral patterns.

(ii) H-W-H-SR-H, H-W-H-Sh-H, H-W-SR-H, H-W-Sh-H, H-W-H-O-H are not
easy to be classified and are often mistaken as H-W-H. One explanation
is that vehicles in these patterns have similar driving behaviors with ones
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in H-W-H. This means that when a driver leaves home in the morning
and decides to go to full time job, then no matter what other activities
he will choose later on, the driving pattern will be very similar.

(iii) Pairs of H-O-H and H-O-W-H, H-W-H-O-H and H-W-H-Sh-H are also
very difficult to discern from each other. This means that when differ-
ence between two patterns is small, the difference between the driving
behaviors in the two patterns will also be negligible.

Charging Behavior. The development of accuracy rate and categorical en-
tropy loss for charging pattern classification is illustrated in Figure 16. Inter-
estingly, we can see from Figure 16 that even after several epochs of training,
the accuracy rate still stays around 33%. The only plausible interpretation is
that the daily energy consumption for a vehicle does not change when different
charging patterns are selected.

Figure 16: Accuracy and loss development over time for charging behaviors
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5.2 Energy Consumption Forecasting

Total Energy Consumption. Firstly, before we conduct the hybrid fore-
casting procedure, let us take a look at the original time series data for al-
waysCharging strategy in Figure 17.

Figure 17: Original total energy consumption data - alwaysCharging

As we can clearly see from Figure 17, the temporal data shows a strong daily
seasonality with minor oscillations. Also, the daily energy consumption has
two peaks, one at morning rush hour when most of people begin going to work
and another at evening rush hour when people leave from work to return home.
After inspecting the form of original data, we check the autocorrelation function
(ACF) and the partial autocorrelation function (PCF) to analysis the order of
the linear model ARIMA. Figure 18 shows the ACF and PCF results for the
time series data. Once again, we only present the figure for alwaysCharging
strategy due to page length constraint.

From the autocorrelation ACF of the time series data, we recognize strong
seasonality that is consistent with what we first observed in Figure 17. Fur-
thermore, strong autocorrelation between the data and the lags of itself is shown
in the ACF. In PCF, a cutoff phenomena is observed indicating the order of p
in the ARIMA model.
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Figure 18: ACF (above) and PCF (below) of the total energy consumption data
- alwaysCharging

Adhering to the hybrid forecasting procedure stated in Subsection 4.4, we con-
duct diagnostic analysis on the linear model ARIMA and use the best linear
model to compute the linear component of the estimation. The residuals are
fed into long short-term memory networks and bi-directional LSTMs which are
implemented in Keras[Cho15]. In the implementation stage, we have found out
that the nonlinear component can be sufficiently modeled with a LSTM net-
work. Hybrid ARIMA+LSTM (HLSTM) model shows comparable predictive
performance in comparison to ARIMA+bdLSTM (HbdLSTM) model (shown in
Table 4). For evaluation, only mean square errors (MSEs) for alwaysCharging
strategy are shown in Table 4 for simplicity and page length constraint reasons.

Note that the forecasting experimentation on the total energy consumption
dataset concerns itself with a forecasting problem of horizon s = 1. By confining
the horizon, the running time for the algorithm implementation can also be
limited. Also, because strong seasonality is observed in the dataset, when the
requirement for horizon s > 1440, which means we want to see at least one day
ahead into future, we can simply take xt+s−1440 as the estimation.

ARIMA MLP LSTM bdLSTM HLSTM HbdLSTM
MSE 50.48 37.62 22.31 21.09 18.77 18.26

Table 4: Performance comparison between the models for total energy consump-
tion forecasting (best results in bold)
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The following three figures 19, 20, 21 show the forecasting results of hybrid
ARIMA+LSTM model for the three existing charging strategies.
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Figure 19: Forecasting result of ARIMA+LSTM for charging strategy - al-
waysCharging
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Figure 20: Forecasting result of ARIMA+LSTM for charging strategy - Only-
atWork
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Figure 21: Forecasting result of ARIMA+LSTM for charging strategy - Only-
atHome

Individual Energy Consumption. The aforementioned hybrid model can
also be applied for the individual energy consumption. But if we look at Figure
22 depicting the daily individual energy consumption of one vehicle, we will see
that this would not be recommendable.

Figure 22: Daily individual energy consumption of one example vehicle

Just as shown above, a individual person normally will charge his vehicle twice
(as in Figure 22) or three times a day. The form of individual energy con-
sumption will be noncontinuous and the energy consumption values of most
timepoints will be zero. We have explored the possibility of a hybrid model on
individual energy consumption time series data and the resulting performance
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is unsurprisingly disappointing. The reason for the poor performance of the
hybrid model is that almost all of predicted individual consumption values are
estimated as 0, because a dominant percentage of the consumption values in
the time series are 0 and the nonlinear component is poorly modeled as the
LSTM/bdLSTM neurons are not “fired up”.

Therefore, we propose a more straightforward and easier solution for this prob-
lem, namely daily random walk, which means the best consumption estimation
x̃t for timepoint t is xt−1440. Or in other words, we take the value at the same
timepoint of the last day as the estimate for any future observations. Inter-
estingly, this results in a mean square error (MSE) of 0.029. The low MSE
compared to the MSE in the total consumption forecasting problem comes also
from the fact that most of the data entries are zero and it is not difficult to
achieve a low MSE under this kind of problem setting.
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6 Conclusion

6.1 Summary

Time series classification and forecasting have always been considered challeng-
ing and extremely important tasks in research and industry communities. In
this thesis, we utilize the electromobility model, which simulates the collective
and individual activities of electric vehicles on the virtual island of la Réunion
and design:

(i) a classification framework based on deep convolutional neural network
(CNN) that is capable of classifying driving behaviors of various vehicles
whose owners behave in different manners. After comparison of the imple-
mented CNN model with other benchmark approaches, we confirm that
deep CNN can promise the best classifying performance. Also, during
the experimentation, we also have gained deeper insights into relation-
ships between different driving patterns. However, as far as the charging
pattern is concerned, we have come to the conclusion that the energy
consumption patterns of vehicles show no strong correlation with their
individual charging behaviors.

(ii) a hybrid forecasting model based on the integration of popular linear
model autoregressive integrated moving average (ARIMA) and nonlinear
model long short-term memory (LSTM). The hybrid model has demon-
strated superior predictive power against other simple linear or nonlinear
models for the total energy consumption forecasting problem in the elec-
tromobility dataset. On the other hand, a simple daily random walk model
has shown to be more suitable for the individual energy consumption fore-
casting problem. This also proves that no model is omnipotent in field of
time series forecasting and special care should be taken so that a tailored
and appropriate model can be chosen for any specific problem.

(iii) a charging prioritization algorithm that allows the charging stations on
the virtual island to determine the charging order when multiple vehicles
come into charging station and energy resources are limited. This scheme
is a special use case for the individual energy consumption forecasting
approach (discussed in Subsections 4.4 and 5.2) and can be applied in
real-life energy allocation and distribution systems.

Moreover, the classification, forecasting and charging prioritization models in
this thesis can be directly adopted for demand side management (DSM) in a
complex power grid. The results from the system can be utilized at the early
stage of smart power grid management which can monitor the trends of energy
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consumption demand and act accordingly[Évo14]. In the long run, the models
implemented in this thesis can be utilized for energy planning scenarios where
massive introduction of renewable energy source is needed and a large amount
of electric vehicles are present.

6.2 Future Work

Some possible suggestions for improvement and extension of the thesis project
include:

(i) taking geographic information into consideration for better classification
results. In our convolutional neural network approach, only the temporal
data of energy consumption is exploited. But as the energy consumption
of the vehicles is also directly related to the relative distances of all the
visited locations in a day, it is understandable to think that some im-
provement can be expected if we feed all the geographic information as
additional input into the classifying model.

(ii) acquiring real-life electric vehicle data and enhancing the generalizing
capacities of the classification model.

(iii) constructing comprehensive forecasting architecture that can handle both
linearity and nonlinearity, decide autonomously which model or hybrid
model to use for specific problem settings.

(iv) coming up with more use cases for the classification and forecasting models
to facilitate efficient energy allocation and precise long and short term
energy planning.
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