
Estimating Head Orientation

with Stereo Vision

Diplomarbeit

Edgar Seemann

Interactive Systems Labs

Universität Karlsruhe (TH)

Advisors:

Prof. Dr. Alex Waibel
Dr.-Ing. Rainer Stiefelhagen

November 27, 2003

Hiermit versichere ich, die vorliegende Diplomarbeit persönlich und ohne
unzulässige Hilfsmittel angefertigt zu haben. Alle verwendeten Quellen sind
im Literaturverzeichnis aufgeführt.

Karlsruhe, 30. November 2003

Abstract

Interpretation of human behaviors in video data is essential for natural
and intuitive human-computer interfaces. In this context, the estimation of a
person’s head pose plays a major role, since heads and faces are continuously
used in interaction between people.

In this work we present a method for estimating a person’s head pose
with a stereo camera. Our approach focuses on the application of human-
robot interaction, where people may be further away from the camera and
may move freely around in a room.

First, the 3D scene is reconstructed from the images of a stereo camera
by calculating depth information. Subsequently, the face is extracted with
a color-based face tracking approach. Finally, the resulting 3D face model
is preprocessed by a number of normalization algorithms. The estimation is
based on neural networks, which are trained to compute the head pose from
gray scale and depth information.

We show that depth information not only helps improving the accuracy
of the pose estimation, but also improves the robustness of the system when
the lighting conditions change.

The system can handle pan and tilt rotations from −90◦ to +90◦ and
achieves high accuracy in a realistic environment. It doesn’t require any
manual initialization and doesn’t suffer from drift during an image sequence.
Moreover, the system is capable of real-time processing.

Acknowledgements

This work was conducted at the Interactive Systems Labs as part of my
studies at the Universität Karlsruhe (TH). I would like to thank all members
of the laboratory for participating in the various data collections performed
during this work. I am particularly grateful for the help of Kai Nickel who
was always there for advice regarding the stereo camera and implementation
details. Furthermore I thank my advisor Rainer Stiefelhagen for his constant
support.

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Possible Applications . 5
1.3 Requirements for a Head Pose Estimation Technique 6
1.4 Related Work . 7

1.4.1 Feature-Based Techniques 7
1.4.2 View-Based Techniques 8
1.4.3 Summary . 10

2 The Head Pose Tracking Technique 12
2.1 Overview . 13
2.2 Stereo Vision . 14

2.2.1 Stereo Algorithm . 14
2.2.2 Finding Corresponding Pixels 15
2.2.3 Calculating Object Distance 16

2.3 Face Detection and Extraction 18
2.3.1 Pattern-Based Vs. Color-Based Face Detection 18
2.3.2 Finding A Skin Color Region 20
2.3.3 Building The Color-Model 21
2.3.4 Face Extraction . 22

2.4 Preprocessing . 27
2.4.1 Resizing 3D Face Model 27
2.4.2 Downsampling . 28
2.4.3 Depth normalization 29
2.4.4 Gray Value Normalization 29

2.5 Estimating Head Pose With Neural Networks 31
2.5.1 Neural Network Topology 31
2.5.2 Advantages Of This Approach 33

2

CONTENTS

3 Experimental Results 35
3.1 Data Collection “Portrait View” 35
3.2 Experiments “Portrait View” 37

3.2.1 Test 1 - Known Users 38
3.2.2 Test 2 - Unknown Users 40
3.2.3 Test 3 - Changed Lighting Conditions 42
3.2.4 Error Analysis . 43

3.3 Data Collection “Robot Scenario” 45
3.4 Experiments “Robot Scenario” 46

3.4.1 Test 1 - Known Users 47
3.4.2 Test 2 - Unknown Users 49
3.4.3 Error Analysis . 50
3.4.4 Filtering . 51

4 Head Pose Estimation in Applications 54
4.1 The Real-Time System . 54
4.2 Tracking Of Pointing Gestures With The Help Of Head Ori-

entation . 55

5 Conclusion and Future Work 58

A Neural Networks 60
A.1 Introduction To Neural Networks 60
A.2 Advantages Of Neural Networks 60
A.3 Building Blocks Of Neural Networks 61
A.4 Learning With Neural Networks 63

A.4.1 Linear Discriminant Functions and Single-Layer Net-
works . 63

A.4.2 The Perceptron . 65
A.4.3 Multi-Layer Networks 66

A.5 Generalization Of Neural Networks 70

B Pattern-Based Face Detection 72
B.1 Learning Classification Functions 73

C Discrete Kalman Filter 76
C.1 Basic Kalman Filter Equations 77
C.2 The Predictor-Corrector Process 78

References 80

3

Chapter 1

Introduction

1.1 Motivation

Advancing human-robot interaction has been an active research field in re-
cent years [Perz2001, Agah2001, Koku2000, Adam2000, Mats1999]. A major
challenge is the tracking and interpretation of human behaviors in video data,
since it is essential for enabling natural human-robot interaction.

In order to fully understand what a user does or intends to do, a robot should
be capable of detecting and understanding many of the communicative cues
used by humans. This involves in particular the recognition and interpre-
tation of human faces. In interaction between people faces are continuously
used to signal interest, emotion and direction of attention. Monitoring such
information therefore can be used to make interaction with a robot more
natural and intuitive.

Monitoring a person’s head orientation is an important step towards building
better human-robot interfaces. Since head orientation is related to a person’s
direction of attention, it can give us useful information about the objects or
persons with which a user is interacting. It can furthermore be used to help
a robot decide whether he was addressed by a person or not [SYW2001].

While eye gaze certainly is another important cue for a person’s direction of
attention [Stie2002], in most realistic scenarios image resolution of a person’s
eyes isn’t sufficiently high to see the pupils or irises.

4

1.2 Possible Applications

Hence, in this work we propose a method for estimating a person’s head pose.
Estimation is based on image pairs obtained from a stereo camera.

1.2 Possible Applications

We distinguish three main application areas for head pose estimation:

• Active control applications

• Passive understanding

• Applications for which head pose estimation is a prerequisite

In active control applications a user directly controls an interface with his
head pose. He can, for example, use it for pointing when hands are otherwise
engaged or as a complementary information when desired action has many
input parameters. This is also of particular importance for users with dis-
abilities. Another scenario in this area is car headlight control. If a driver
perceives, for example, the silhouettes of pedestrians next to the road, chang-
ing the focus of the headlights a little to the road border might help him to
better see and avoid dangerous situations.

Passive understanding techniques might be used in dialog applications, where
the computer tries to understand what is going on in a room, meeting etc. It
is, for example, interesting to know who is talking to whom during a meeting.
In human-robot applications it is crucial to identify whether the user was
talking to the robot, another person or referring to a different object. For
all these applications the head pose gives an indication of the user’s focus of
attention and therefore helps to understand the context of the dialog.

Applications for which head pose estimation is a prerequisite include face
recognition and emotion detection. Knowing the head pose of a person helps
finding facial features like eyes, nose, mouth etc. which might be useful
to determine a person’s identity. These facial features are also crucial for
emotion detection. Since these are mostly expressed by the mimic.

In this work, the application we are particularly interested in is a human-
robot interaction scenario. A robot should be able to detect the direction of
attention of a person in his field of view. In particular, the robot should be

5

1.3 Requirements for a Head Pose Estimation Technique

able to determine if a person is looking at him and execute speech commands
if he was addressed. Additionally, he should be able to process a user’s
pointing gestures, which he recognizes via the tracking of hands and the
head orientation.

1.3 Requirements for a Head Pose Estima-

tion Technique

Current head pose estimation techniques are still error-prone. They are gen-
erally unable to accurately track large rotations under rapid illumination
variation, which are common in interactive environments (and airplane or
automotive cockpits) [MRC2002].

On the other hand special head tracking hardware (like magnetic sensors)
provides an accuracy which is sufficient for most applications. However this
hardware is expensive and intrusive. Users often feel discomfort because the
hardware restricts their natural motion.

In order to be feasible in practice a head pose estimation technique for
human-robot interaction consequently has to satisfy certain criteria. Based
on [MA2000] we state these six criteria:

• Non-intrusive (no markers, magnetic sensors etc.)

• Passive

• Robust to occlusions, deformations and lighting fluctuations

• Accurate

• Able to track rotations from -90 to +90 degrees

• Capable of real-time processing

In this work we are proposing a technique which has been designed by taking
into account all of these six criteria.

Our focus is especially on robustness under different lighting conditions. This
is an obstacle for current image-based techniques. Not only do the color

6

1.4 Related Work

values vary if there is artificial light or day light, but additionally the image
edges and shadows change if the position of the light source is altered.

This is one of the reasons why we propose a technique that uses stereo vision.
Depth information is largely invariant to changing lighting conditions and can
therefore improve the result of head pose estimation.

1.4 Related Work

Head pose estimation techniques can be divided into two main approaches:

• Feature-Based Head Pose Estimation

• View-Based Head Pose Estimation

Feature-based techniques try to find facial feature points in an image from
which it is possible to calculate the actual head orientation. These features
can be both obvious facial characteristics like eyes, nose, mouth etc. and
“artificially” computed points.

View-based techniques on the other side, try to analyze the entire head image
in order to decide in which direction a person’s head is oriented.

We will continue to describe and analyze these two main approaches in detail.

1.4.1 Feature-Based Techniques

Feature-based techniques mainly differ in the method they use for finding
the facial features. Azarbeyajani et al. [AHP1993] presented a recursive
estimation method based on tracking of small facial features using a extended
Kalman-Filter framework. Matsumoto and Zelinsky [MZ2000] proposed a
template-matching technique for facial feature detection. Six templates of
eye and mouth corners are stored and their position is updated each frame.

In general, the calculation of the head pose from the position of the facial
feature points is rather straight forward. Usually a 3D head model is used.
The feature points of the 3D model are projected onto the image plane. If

7

1.4 Related Work

the orientation of the 3D model corresponds to the head orientation in the
image, the projected feature points must lie close to the found feature points
in the image. Matsumoto and Zelinsky [MZ2000] are using stereo vision
to calculate the head orientation. The projection onto the image plane is
therefore not necessary any more. In this case the problem results in the
calculation of a rotation matrix R and a translation vector t which minimize
the squared fitting error E in the following equation:

E =
N−1∑
i=0

wi(Rxi + t− yi)
T (Rxi + t− yi)

where N is the number of features, xi the coordinate of a feature in the 3D
model and yi the coordinate of a feature acquired via feature detection. wi is
a weighting factor for each measurement. This problem can be solved using
least squares.

Feature-based methods usually have the limitation that the same points must
be visible over the entire image sequence, thus limiting the range of head
motions they can track [YZ2001]. For a human-robot application where
users move freely in the room such a limitation is a serious drawback.

Another drawback of this approach is that robust detection of facial features
is extremely difficult under unconstrained conditions and large variations in
head position. [SB2002]

1.4.2 View-Based Techniques

There is a wide range of view-based approaches for head pose estimation. In
this section we want to introduce some of these and approaches and present
different techniques they apply.

Template Matching

Template matching is probably the easiest and most straight forward ap-
proaches. For each person and angle range a reference image is stored in
a database. Captured images are afterwards compared to these reference
frames. The reference frame which has the most similarity to the image is

8

1.4 Related Work

selected as head pose. Since angle ranges of 30 degrees are common, this
technique gives only a rough estimate of the head pose.

Ellipse Fitting

Ellipse fitting tries to align an ellipse with the outline of the head. The actual
head pose is subsequently estimated from the shape of this ellipse. Ellipse
fitting is rather fast, but not very accurate.

Eigenspace-based

Srinivasan and Boyer [SB2002] proposed a head pose estimation technique
using view-based eigenspaces. They used principal component analysis to
build seven eigenspaces for different angle ranges from example images. Any
test image x could afterwards be projected onto an eigenspace by evaluating
the inner product of x with the eigenvectors yi. The norm of the resulting
vector ci = xT yi gives the fraction of energy of the test image lying in the
eigenspace. The eigenspace with the highest fraction of energy should finally
correspond to the angle range of the test image.

Since head orientation can only be matched to one of the seven eigenspaces,
this technique gives only a rough estimate of the actual head pose.

Optical Flow and Motion Detection

Optical-flow-based approaches try to estimate the velocity and direction with
which a pixel has moved from one image to another. The relative motion of
an object can directly be calculated from these pixel velocities. Horn and
Schunck [HS1980] have proposed a technique to calculate the optical flow in
arbitrary image sequences efficiently. Morency et al. [MRC2002] applied this
technique to head pose estimation and extended it for the use with stereo
information.

However, calculating the relative head rotation from each image frame to the
next, causes an accumulation of the estimation error. This phenomenon is
called drift and leads to a degrading performance on long image sequences.
Another drawback of this technique is the fact that the initial head pose has

9

1.4 Related Work

to be known. Manual initialization is therefore required.

Neural-Network-based

Stiefelhagen et al. [SYW2001] proposed a neural network based approach for
head pose estimation in human-robot interaction. They normalize the his-
togram of the face image and map it to neural network input units. Further-
more they are retrieving image edges and feed them as additional information
into the neural network.

This technique is accurate when lighting conditions do not change. Under
changing lighting conditions, however the performance degrades considerably.

1.4.3 Summary

Feature-based approaches tend to be rather accurate. Moreover facial fea-
tures can be used for additional applications like face recognition or emotion
detection. However, it is difficult to find facial feature points, especially when
heads in an image are small and camera resolution is not sufficiently high.

View-based approaches work also if heads are small. Furthermore they do
not limit the angle range because of occlusions. The combination with stereo
vision, however, is sometimes complex.

Figure 1.1 shows a quick overview of the two main approaches.

10

1.4 Related Work

Figure 1.1: Feature-based versus view-based approaches

11

Chapter 2

The Head Pose Tracking
Technique

In order to have a technique which is feasible for human-robot interaction,
we have decided to use a view-based approach in our work. This is mainly
due to the fact, that view-based approaches promise better performance in
non-restricted environments, where the user is allowed to move freely (see
1.4.3).

A neural network approach was chosen because it promised to be accurate,
fast and requires no manual initialization. Moreover the stereo information
can be added easily.

Figure 2.1 shows the advantages of neural networks compared to other view-
based approaches.

Figure 2.1: Advantages of neural networks

12

2.1 Overview

2.1 Overview

The head pose estimation system consists of four main parts (see figure 2.2).

In the first step depth information is calculated from the left and right camera
image of the stereo camera. By combining color and depth information we
obtain a 3D reconstruction of the scene.

During the second step the head of the user is extracted. We use a sophis-
ticated head tracking technique on the basis of [NS2003]. The technique
searches for skin color regions and uses the additional depth information to
select the skin color region which is most likely to correspond to the user’s
head. In the end we obtain a 3D head model of the found head.

The third step transforms the 3D head model into an input pattern for neural
networks.

In step four this input pattern is propagated through a trained neural net-
work, which outputs an estimation for the head orientation. The head pose
estimates are subsequently filtered to smooth occurring noise.

Figure 2.2: The components of the head pose estimation system

In the following sections we give a detailed overview of the system compo-
nents and their theoretical backgrounds.

13

2.2 Stereo Vision

2.2 Stereo Vision

In our system a Mega-D digital stereo head from Videre Design was used (see
figure 2.3). The camera is capable of resolutions of up to 1280x960 pixels at
a frame rate of 15 fps.

Figure 2.3: The stereo camera used in our application

Calibration of the camera is accomplished with a set of checkerboard images
(see figure 2.4) and is based on a camera calibration technique developed by
Zhang [Zhan2000].

Figure 2.4: Example calibration image

The Small Vision System (SVS) library which is delivered with the camera,
provides a computational efficient algorithm for calculating depth informa-
tion. The algorithm is optimized for real-time computation and will be briefly
described in the following subsections.

2.2.1 Stereo Algorithm

The stereo algorithm to calculate the image’s depth information can be di-
vided into two parts (see figure 2.5).

First, corresponding pixels have to be found. If we know which pixel in the
left image correspond to a pixel in the right image we can determine the real
world distance of the object the pixel belongs to. This is done in step two of

14

2.2 Stereo Vision

Figure 2.5: The stereo process in detail

the stereo algorithm. We obtain a so-called disparity image, where color val-
ues represent the distance of an object (see figure 2.6). The 3D reconstruction
of the scene can afterwards be calculated from this disparity image. OpenGL
is used to be able to look at the reconstruction under different angles.

Figure 2.6: Disparity image (left) and 3D reconstruction (right)

2.2.2 Finding Corresponding Pixels

In this processing step for each pixel in the left image a corresponding pixel
in the right image is searched. Of course, if there is no texture in a certain
image area it is difficult to find a matching pixel, since it might be mistaken
with its neighbors. That is why a Laplacian-of-Gaussian feature is computed
on each image to enhance edge information.

In order to match a pixel pl in the left image to the corresponding pixel pr in
the right image, sub windows around these pixels are used. The sub window
sl around pl stays fixed and we scan for the sub window sr in the right image
with the largest correlation to sl (see figure 2.7). The correlation is measured
by summing the absolute value of differences over the two sub windows.

15

2.2 Stereo Vision

Figure 2.7: Finding corresponding pixels via the comparison of image windows

To double-check if the matched pixels pr and pl really belong together, the
same procedure is performed the other way round. The sub window sr around
the pixel pr in the right image stays fixed and the most correlated subunit in
the left image is searched. If this results in the known sub window sl around pl

the search has been consistent and will be accepted. This technique is called
left-right check and is particularly effective in eliminating match errors in
non-textured regions of the image, and at disparity boundaries.

Finally, post-filtering is performed. A confidence measure based on edge
energy is used to eliminate matches whose confidence is below a certain
threshold. This threshold can be adjusted manually.

2.2.3 Calculating Object Distance

If we know which pixel in the left image correspond to which pixel in the
right image, we can now calculate the distance a pair of pixels. This is
accomplished by a simple formula which follows from the intercept theorems.

As you can see in figure 2.8, we have the following interrelationship:

r

b
=

f

dl − dr

(2.1)

where r is the object distance, b the length of the camera baseline, f the
focal length of the camera lens. dl and dr are the distances of the pixels
matched pixels pl and pr from the sensor center. The difference dl − dr is
called disparity (see [Jähn1997]).

16

2.2 Stereo Vision

The disparity is anti-proportional to the object distance r. The closer an
object is, the further away are there images on the two camera sensors.
Consequently, if an object gets to close to the camera, the disparity cannot
be computed any more. The range in which the distance of an object can be
calculated is called horopter.

Figure 2.8: Calculating the distance of an object

By multiplying formula 2.1 by b, we obtain the formula for the object dis-
tance:

r =
b · f

dl − dr

(2.2)

17

2.3 Face Detection and Extraction

2.3 Face Detection and Extraction

Robust face detection is crucial for head pose estimation. Without the correct
position of the head no useful head orientation can be computed. In this
section a head detection and extraction technique will be presented which is
reliable and operates in real-time.

2.3.1 Pattern-Based Vs. Color-Based Face Detection

Two main approaches for face detection are distinguished.

Pattern-based techniques scan for image areas that have the characteristics
of a human face. They do not depend on color information and are hardly
sensible to illumination changes. Unfortunately, pattern-based techniques
tend to be computational expensive, especially on high-resolution images.
Moreover, faces may be found on random structured surfaces like trousers, t-
shirts etc. A further disadvantage is that non-frontal faces are hard to detect
with pattern-based methods.

Color-based techniques on the contrary are rather fast, since they restrict the
search area to skin-colored regions. However, to determine these regions a
color-model has to be built. Skin color changes under different lighting con-
ditions and the color-model has therefore to be adapted to ensure robustness.
An advantage of color-based methods is that they are easily able to detect
non-frontal faces. On the other hand, wood and hair are often confounded
with skin-colored regions.

Figure 2.9 shows a quick comparison of the two face detection approaches.

In order to incorporate the advantage of both techniques, we implemented a
combination of them in our system. A pattern-based face detector is used to
find an initial skin-colored region. On the basis of this region a color-model
is built. Subsequently, a color-based face detector extracts the face from
the image. To improve detection performance the color-based face detector
makes use of the depth information obtained from the stereo algorithm.

Figure 2.10 shows an overview of the face detection process.

18

2.3 Face Detection and Extraction

Figure 2.9: Pattern-based vs. color-based face detection

Figure 2.10: The face detection process

19

2.3 Face Detection and Extraction

2.3.2 Finding A Skin Color Region

A skin-colored region can be used to create a color-model, which is adapted
to the current lighting conditions (see 2.3.3). There are various possibilities
for retrieving such a region from the image.

The most obvious method is to select a region manually. Since this has
to be done only once at the beginning, it is a feasible solution. However,
the resulting system wouldn’t be passive any more (see system requirements
section 1.3).

Another possibility is to analyze the silhouette of a person in the image. As
the depth information is available, the background can be separated easily
from the rest of the image. With the help of a body model, we afterwards
select a foreground object which has the shape of a human silhouette. Subse-
quently the top part of the silhouette can be chopped off. A drawback of this
approach is the fact, that it is not ensured that the person is in a frontal po-
sition. Therefore the selected region may contain also non-skin-colored pixels
like dark hair. This approach was used in Nickel and Stiefelhagen [NS2003].

The finally implemented method uses a pattern-based face detection algo-
rithm based on [VJ2001]. The algorithm consists of a cascade of simple
feature classifiers which are evaluated on different scales of the image. It is
able to detect all frontal faces in an image. For a more detailed description
of the algorithm see appendix B.1. In order to double check if the found
regions really represent a human face, the depth information of the stereo
camera is used. We verify not only the face dimensions (height and width),
but can also check if the found region is the top part of a human silhouette
in the image.

Figure 2.11: Obtaining a skin-colored region

20

2.3 Face Detection and Extraction

2.3.3 Building The Color-Model

The Chromatic Color Space

Yang, Lu and Waibel [YLW1997] showed that skin color agglomerates in
a small region in the chromatic color space (also referred to as rg-space).
Therefore skin color classification can be done by defining a skin color distri-
bution in rg-space. Two different representations for skin color distribution
are distinguished. Parametric models like e.g. a mixture of Gaussians and
non-parametric models like i.e. histograms. In this work an adapted version
of the color-model from [NS2003] is used which is based on histograms.

The transformation from the RGB color space to the rg-space is done by the
following equations:

r =
R

R + G + B
, g =

G

R + G + B
(2.3)

Colors in the rg-space are intensity normalized, which means that RGB-colors
with the same hue, but different intensity values are projected to the same
rg-color.

A Histogram-Based Color-Model

Starting from the known skin color region (see subsection 2.3.2), histograms
can be build. We define the histograms H+ and H−:

H+(x) = Number of x in skin color region, x ∈ rg-space (2.4)

H−(x) = Number of x not in skin color region, x ∈ rg-space (2.5)

The histogram value H+ represents the frequency of a certain color value in
the skin color region. Thus, the relative frequency:

P+(x) =
H+(x)

n
with n total number of pixels in the region (2.6)

21

2.3 Face Detection and Extraction

represents the empiric probability for x under the condition that x is skin
color. Hence, we have:

p(x|skin) = P+(x) (2.7)

However, we are actually interested in the probability p(skin|x), which means
the probability for skin color under the condition, that we observe a pixel
with color x. Luckily, Bayes’ Rule helps us to compute this probability:

p(skin|x) =
p(x|skin) · p(skin)

p(x)
(2.8)

Like p(x|skin) the terms p(skin) and p(x) can be calculated empirically.
P (skin) is just the ratio of the number of pixels in the known skin color
region to the total number of pixels n. And p(x) is the ratio of the number
of pixels with color x to n.

Analogously, the probability p(notskin|x) can be computed out of the his-
togram values H−(x). Consequently, a pixel l with color x is only considered
to be skin-colored, if the following holds:

p(skin|x)

p(not skin|x)
> 1 (2.9)

Moreover, the higher this ratio, the more probable is pixel l skin-colored.

The above color-model is adapted to the current lighting conditions. If the
illumination changes, the color-model has to be readapted accordingly. This
is done, when the detection of a head in the image fails for several frames.

2.3.4 Face Extraction

As mentioned in the last subsection the color-model can be used to classify
pixels by skin color probability. Figure 2.12 shows the result of such a clas-
sification. Darker points represent pixels with high skin color probability,
brighter ones pixels with low skin color probability. White pixels represent
pixels where equation 2.9 does not hold. In the following, we will refer to
this representation as probability map.

22

2.3 Face Detection and Extraction

Figure 2.12: Pixels classified by skin color probabilities

Morphological Filtering

In order to obtain skin color regions from the above probability map, we have
to find clusters of skin-colored points. For this purpose we use morphological
filtering, which forms connected regions in the probability map.

Morphological filtering is based on two operations: dilatation and erosion.
The dilatation operation sets the value of a pixel in the probability map to
the the maximum of its neighbors. The erosion operation, on the other hand,
sets the value to the minimum of its neighbors.

The neighborhood of a pixel can be defined arbitrarily. Common neighbor-
hoods are 4-connectivity or 8-connectivity (see figure 2.13). The neighbor-
hood is also referred to as structuring element.

Figure 2.13: Structuring elements for morphological filtering

In our system, we utilize the 8-connectivity structuring element.

On binary images dilatation augments the number of pixels with value 1,
erosion on the other side removes them. dilatation and erosion are often
applied in combination. An erosion operation followed by a dilatation is
called morphological opening, a dilatation operation followed by an erosion
morphological closing. Figure 2.14 shows how morphological closing with a
2x1 structuring element removes a hole in an object.

23

2.3 Face Detection and Extraction

Dilatation Erosion

Figure 2.14: Morphological closing with a 2x1 structure element removes hole in
object

This is exactly what we want to do in our application. The isolated skin
color pixels should be grouped to skin color region or blobs. By applying
a morphological closing operation we can obtain these connected skin color
regions (see figure 2.15).

Figure 2.15: Skin color blobs resulting from morphological filtering

Verifying Position and Dimensions

What still needs to be done, is the selection of the skin color blob, which
corresponds to a head in the original image. This is accomplished by verifying
the position and dimensions of the blobs.

In section 2.2 it has been showed how the distance of an object can be
determined with stereo vision. Knowing the distance of an object enables us
not only to calculate the 3D position of the object, but also to compute the
real-world size of the object. As for the distance calculation this can be done
by applying intercept theorems:

ps

f
=

rs

b
(2.10)

24

2.3 Face Detection and Extraction

mean variance
head width 0.20 0.04
head height 0.275 0.04
head area 0.03 0.013
head ratio 1.41 0.35

Figure 2.16: Parameters of the body model

where ps is the size in pixels of the object, f the focal length of the camera,
b the object distance and rs the real-world size. Multiplying equation 2.10
by b yields a formula for the real-world size of an object.

The real-world position and size of an object can be compared to a pre-
defined body model. In accordance to [NS2003] the body model is defined
via Gaussians with the following parameters:

For each blob a head score S is computed by simply multiplying the probabil-
ities resulting from the different Gaussians of the body model (see equation
2.11).

S =
∏

i

1

σi

√
2π

exp
(x−µi)

2

2σ2
i (2.11)

with σi and µi the parameters from the body model displayed in figure 2.3.4.

Subsequently, the blob with the highest head score is selected. Additionally
we check whether the y-coordinate is above a certain threshold, since we do
not expect faces to occur close to the ground.

The presented technique for head detection is robust and real-time processing
is possible. Another advantage of this technique is the fact, that we not only
get a bounding box of the found face, but also the face mask. Meaning
that we also know the contour of the found face. As we learned from head
pose estimation techniques like ellipse fitting, the contour of the face is an
important cue in the estimation of head orientation.

When combining the found face blob, with the depth information from the
stereo algorithm, we obtain in the end a 3D face model of the person in the
image (see figure 2.17). This model can be used to estimate the head pose.

25

2.3 Face Detection and Extraction

Figure 2.17: 3D face model obtained by face detection and extraction algorithm

26

2.4 Preprocessing

2.4 Preprocessing

In order to prepare the the head data obtained during face extraction for the
neural network, the face model has to be converted and mapped to the input
units of the neural network. This process is divided into four small steps
(see figure 2.18). Step 1 consists of scaling the face to a fixed size. Step 2
executes a downsampling of the face resolution. In step 3 the z-values of the
face pixels are normalized. Finally, step 4 converts the color values to gray
values and normalizes them with histogram-normalization.

Figure 2.18: Mapping the 3D face model to the input units of a neural network

2.4.1 Resizing 3D Face Model

As we will see in section 2.5 neural network input patterns have a fixed size.
Consequently, if we want to map a found head to the input units, we should
resize it to a specific size. Otherwise, the head may be mapped only to a
subset of the input units of the neural network. In its training phase the
neural network would try to learn these size variations, which is clearly not
what it is supposed to learn.

The resizing of the head is done by an affine transformation. We start from
the 3D reconstruction of the face, which consists of the 3D position of the
face’s pixels. The 3D position of the pixels is given in real-world coordinates.
Firstly, the pixels are translated to the origin of the coordinate system. Then,

27

2.4 Preprocessing

we scale the face by multiplying the pixel coordinates with a diagonal trans-
formation matrix. For the new 3D coordinate of a pixel, we obtain the
following formula:

 xnew

ynew

znew

 =

 x
y
z

−

 tx
ty
tz

 ·

 sx 0 0
0 sy 0
0 0 sz

 (2.12)

where tx, ty, tz denote the translation vector to the origin and sx, sy, sz denote
the scaling factors in x-, y- and z-direction.

Since we use 24x32 input units for the neural network the scaling factors are
calculated such that the bounding box of the head is resized to 24x32cm.
Remember that the pixel are given in real-world coordinates. The bounding
box is defined as the smallest box to enclose all pixels of the face model.

2.4.2 Downsampling

To obtain exactly 24x32 gray respectively depth values from the face model,
we divide the bounding box of the head into a three dimensional grid with
grid distance 1 cm. For every 1 cm cube within this grid, we calculate a
representative pixel out of the information of all pixels in the cube.

This representative pixel may be computed in various ways, e.g.:

• taking the average of colors and coordinates

• taking the median of color and coordinates

• taking the values of a random pixel

Since pixels in a cube tend to be very similar, in our system we simply
selected a random pixel.

As a result of this step we obtain a face model consisting of solely 24x32
pixels in 3D space.

28

2.4 Preprocessing

2.4.3 Depth normalization

Before the depth values are normalized, color and depth information are
separated. This needs to be done, because the activation of the input units
of the neural network may only be described by a single value. Hence, in
the following we map the depth information of the face pixels to 24x32 input
units of the neural network and we map the color model to another 24x32
input units of the neural network. In total we therefore obtain a neural
network input layer with 2x24x32 units.

As we will see in section 2.5 each neural network unit has an associated
activation function. The activation function we use in our system is a logistic
function yielding values between 0 and 1. Therefore our initial activations
(the activations of the input units) should also be in the range of 0 to 1. An
affine transformation in z-direction scales down our face model accordingly.

2.4.4 Gray Value Normalization

The intensities of gray values differ under changing lighting conditions. As
for the size variations, we do not want the neural network to learn different
intensity levels. Consequently a way of compensating these differences has
to be found.

In our system a technique has been implemented, which tries to equalize
the gray value histogram H of a input pattern. It starts off by building the
accumulated histogram M . M is defined in the following manner:

M(x) =

∫
z≤x

H(z)dz for the continuous case (2.13)

M(x) =
∑
z≤x

H(z) for the discrete case (2.14)

The new gray value xnew of a pixel with the current gray value x is subse-
quently computed from M with the below formula:

xnew = M(x) (2.15)

29

2.4 Preprocessing

As a result of this mapping, we obtain a histogram of the new gray values
xnew which is distributed equally. This is due to the fact that the values
xnew change faster in areas where M grows rapidly. Since rapid growth of
M at x corresponds to a high number of pixels with gray value x, this kind
of mapping spreads the new gray values in this region and therefore lessens
extrema of the histogram.

A further enhancement of this technique is also utilized in [HB1995]. There,
this technique is used not only to equalize histograms, but also to match
an image’s histogram to an arbitrary distribution. They call this technique
histogram matching.

30

2.5 Estimating Head Pose With Neural Networks

2.5 Estimating Head Pose With Neural Net-

works

In the previous sections we have seen how the data has been prepared for
the final estimation of the head pose. Now, we want to have a look at how
the estimation is actually performed with a neural network.

For a quick theoretical introduction to neural networks and neural network
learning algorithms please refer to appendix A.

2.5.1 Neural Network Topology

When dealing with neural networks, we first have to decide which topology
we want to use. Determining an optimal topology is a difficult problem and
has been studied extensively (see for example [SM2002] and [Matt2002]).

Usually one starts out by first determining the number of input units. In
most cases their number is rather obvious, since there have to be as much
input units as the number of elements in the data vector we want to classify.
However, the more input units a neural network has the more training data is
necessary to train it appropriately. Consequently, techniques for reducing the
dimensionality are often applied to the initial data vector in preprocessing.

In our system, the dimensionality reduction has been performed by simply
sampling down the 3D face model to the relatively small size of 24x32 points.
In other applications techniques like principal component analysis (PCA) are
used for this purpose.

Thus, in our system the input layer of the network consists of 1536 units,
which corresponds to 24x32 units for the gray value information and 24x32
pixels for the depth information. As we will see in chapter 3, additionally we
trained a network which uses only the gray value information. This network
has 768 input units.

The next problem that is usually considered, is the number output units.
Again, this number is in most cases straight forward, since there have to be
as much output units as classes which we try to distinguish.

For our application, this means that we would have to divide our continuous

31

2.5 Estimating Head Pose With Neural Networks

output space, the rotation angles between −90◦ and +90◦, into angle ranges.
Consequently, an output unit corresponding to a certain angle range would
have a high activation, if the real rotation angle is contained in this angle
range. All other output units might also have an activation, however, their
activation should be smaller.

In experiments, however, a function approximation approach proved supe-
rior results. Unlike neural network classification, in this case only a single
output unit is used. The activation of this output unit isn’t interpreted as
a probability measure for classification, but directly as the desired rotation
angle. Hence, during training the neural network was provided by an input
pattern containing gray value and depth information and the target angle for
the output unit normalized between 0 and 1.

Another performance improvement has been obtained by training separate
networks for each degree of freedom. Thus, in the final network for estimating
one of the rotation angles, the network contained 1536 input units and a single
output unit.

What still needs to be decided is the number of hidden layers and hidden units
the neural network should contain. As mentioned in appendix A feed-forward
networks with two-layers of weights and sigmoidal activation functions can
approximate any decision boundary to arbitrary accuracy (see [Krei1991]),
if the number of hidden units is sufficiently high.

Consequently, a neural network containing the 1536 input units, one output
unit and a hidden unit layer with a so far undefined number of units should
be able to estimate the angles accurately. A pre-condition, however, is that
there is a sufficiently large training data.

Our experiments showed that an amount of 60 to 80 units in the hidden
layer of the neural network was suited best for estimating the head orien-
tation accurately. In the experiments each unit layer was fully-connected
with the successive layer. This means that each unit of the input layer was
connected to each unit of the hidden layer and each unit of the hidden layer
was connected with the output unit. Surprisingly, even with a much higher
and smaller number for the hidden units, the network still achieved rather
good results.

To sum it up, our neural network contained three layers of units:

• 1536 units in the input layer

32

2.5 Estimating Head Pose With Neural Networks

• 60-80 units in the hidden layer

• 1 unit in the output layer

These layers were fully connected and contained only forward connections,
meaning that there are no cycles of weights in the network.

Figure 2.19 shows a picture of the network.

Figure 2.19: The topology of the neural network

2.5.2 Advantages Of This Approach

There are several advantages of this approach. Firstly, there exist a powerful
and computational efficient algorithm for neural network learning: error-
backpropagation. Next to the standard back-propagation algorithm which
was used in this work, there are even more sophisticated learning algorithm
like, for example QuickProp or RProp. These algorithms improve the con-
vergence speed during neural network training.

Unlike other head pose estimation techniques (see section 1.4), the neural
networks do not estimate the relative head rotation from one frame to an-
other, but directly compute the orientation from a single image frame. That
is why the estimation errors aren’t accumulated over an image sequence. This

33

2.5 Estimating Head Pose With Neural Networks

effect is called drift and is a significant drawback of approaches using, for ex-
ample, optical flow. Furthermore when only relative rotations are estimated,
the initial head orientation of a person has to be known. Thus, a manual
initialization is required. For neural networks no manual initialization is
necessary.

Another advantage is, that the above network topology does not divide the
estimation in angle ranges or classes. Consequently, the real head orientations
can be approximated very precisely.

Once neural networks are trained, they are extremely fast in computation.
The activation levels of the input patterns have simply to be propagated
through the three layers of the network. Hence, they are well suited for a
real-time head pose estimation technique.

34

Chapter 3

Experimental Results

For evaluating the system described in the previous chapter, video data sets
in different environments have been recorded. On the acquired data, a num-
ber of experiments have been run and the system’s performance has been
analysed. In the following we’ll describe the results of these experiments and
the conditions under which the video data has been recorded.

3.1 Data Collection “Portrait View”

The “Portrait View” data collection has been recorded in a relatively re-
stricted environment. People were sitting in about 2 meter distance in front
of the stereo camera. Therefore the position of the head in the image did not
change considerably.

However, the people’s movement wasn’t restricted in any way. They were
free to move their heads in pan, tilt and roll direction (see figure 3.1).

Figure 3.1: Pan, tilt and roll angles (image based on [Fitz2001])

35

3.1 Data Collection “Portrait View”

Since one of our main goals was to improve robustness under changing light-
ing conditions. The data was recorded under two different illuminations.
One consisted of a room illuminated by day light, the other was illuminated
artificially with neon lamps. In order to obtain an even stronger effect of the
illumination change, we tried to place an additional lamp next to the per-
son. This was done to intensify the shadows in the face. Shadows shouldn’t
have an effect on the stereo reconstruction, but certainly affect the angle
estimation with a conventional image-based technique.

Figure 3.2 shows some sample pictures from the data collection. One can
easily see the difference in lighting conditions.

Figure 3.2: Sample images from the “Portrait View” data collection

In total we recorded image sequences of 10 persons looking around freely.
The image sequences consisted of 250-500 pictures and were recorded under
both of the lighting conditions described above. The image resolution was
640x480 pixels.

In order to be able to train the neural networks, the real head orientations
for each image had to be recorded somehow. To accomplish this, we used
a magnetic sensor, which was mounted on the person’s head. It recorded
reference angles for pan, tilt and roll direction.

For the evaluation we mainly focused on the pan angle. Pan direction is on
the one hand the direction where the most movement occurs, on the other
hand the pan angle seems to be the most useful angle for identifying the
object a person is focusing on.

Figure 3.3 shows the histogram of the recorded pan angles in the image
sequences. As you can see, more training data is available for angles ranges
close to 0.

36

3.2 Experiments “Portrait View”

Figure 3.3: Angle histogram for pan direction in the ”Portrait View” data col-
lection

3.2 Experiments “Portrait View”

Three experiments have been performed for the “Portrait View” data col-
lection. We evaluated the system’s performance on known users, unknown
users and under changed lighting conditions. The experiments focus on the
estimation of the pan angle, however, we provide the results for the tilt angles
as well.

Furthermore we compared the results to the work of Stiefelhagen [Stie2002].
He developed a head pose estimation technique which is based on neural
networks, as well. Gray value images of similar size as in our application serve
as neural network input. However, instead of depth information obtained
from a stereo camera, he uses edge information to further improve his results.

Even though Stiefelhagen’s results were obtained with another data set, we
argue that they are comparable with ours. Firstly, this is due to the fact,
that they were recorded under similar conditions and achieved with a similar
neural network. Secondly, on gray value images, Stiefelhagen’s results are
almost equivalent to ours. It therefore can be assumed that the data set he
used in his system, is equally difficult for head pose estimation.

37

3.2 Experiments “Portrait View”

3.2.1 Test 1 - Known Users

For the known user test, we divided the whole data set from the data collec-
tion into three different parts:

% of data
Training set 80%

Cross evaluation set 10%
Test set 10%

The division was done by choosing the cross evaluation and test set randomly
from the data set.

In order to have results, which are comparable to the system of [Stie2002]
and to see the difference of performance with and without the calculated
stereo information, we ran the known user test three times with different
input patterns:

1. Patterns consisting of histogram normalized gray value images (24x32
pixels)

2. Patterns consisting of depth images (24x32 pixels)

3. Patterns consisting of both gray value and depth images (2x24x32 pix-
els)

Possibility 1 corresponds to taking just the lower part of the input pattern
described in section 2.4. Possibility 2 corresponds to taking the upper part.

Figure 3.4 shows the results obtained with the different input patterns.

The mean deviation from the reference angles using patterns which contain
solely gray values is 4.2◦. The system of [Stie2002] achieves slightly better
results. This is due to the fact, that these results were obtained with a
different data set, which seems to be easier for the neural networks.

When only depth information is used in the input patterns, the neural net-
works are less accurate. We obtain only a mean deviation of 5.1◦ from the
reference angles.

38

3.2 Experiments “Portrait View”

Figure 3.4: Mean deviation from the reference angle for head pan and direction
recognition rates for known users

mean deviation

gray values 4.2◦ / 2.9◦

depth info 5.1◦ / 3.8◦

depth+gray 3.2◦ / 2.6◦

Table 3.1: Mean deviation for the pan/tilt angle

Now, if we combine both gray value and depth information, the performance
of the system is further improved and a deviation of 3.2◦ is achieved.

Stiefelhagen also managed to improve his results by adding images of the
horizontal and vertical images to the input patterns. But even though his
data set seems to be slightly easier for the neural networks, he achieved only
a mean deviation of 3.5◦.

For the the tilt angles, we obtain even better results (see table 3.1). This is
mainly due to the fact that there was less head movement in tilt direction.
Thus, there are no large errors during estimation.

Consequently, we can deduce that the addition of depth information is better
able of improving the performance of head pose estimation than the addition
of edge information.

Next to the mean deviation from the reference angle, we analysed a value
called direction recognition rate. The direction recognition rate was defined
in the following manner. If the estimated angle differs by less than 10◦

39

3.2 Experiments “Portrait View”

respectively 20◦ (see figure 3.4) from the reference angle, we consider the
direction to be recognized by the neural network.

Under these circumstances we obtain recognition rates of 91.8% and 98.1%
(depending on the allowed deviation) with patterns consisting of gray value
images. The depth information alone leads to recognition rates of 87% and
95.9%. Neural networks that use patterns with a combination of gray value
and depth information recognize 94.3% and 99.7%.

As you can see the estimation of the pan angle for known users is rather
accurate. However, for practical applications, we do not want the system to
depend on the user. This would imply to retrain the network for every new
user. Since neural network training is computational expensive we want to
avoid retraining.

In the next subsection we are evaluating the system’s performance on new
users.

3.2.2 Test 2 - Unknown Users

In order to evaluate the performance of the neural networks on new users,
we trained them using the ”Leave-One-Out method”. This means that we
trained the neural network on 9 persons and tested it on the remaining per-
son. Since performance fluctuates depending on the choice of the remaining
person, the training was done for every combination possible. The final re-
sults presented in figure 3.5 represent the average of the 10 training and test
cycles that have been performed.

For new users the system’s mean deviation from the reference angle is 9.6◦

with gray value input patterns. Patterns containing the depth information
achieve a mean deviation of 11◦, whereas combined patterns consisting of
both depth and gray value information achieve only 7.2◦ mean deviation.

Stiefelhagen achieved with his system a mean deviation of 7.5◦, which is close
to what we achieved with our system. However, if we compare the result
achieved with gray value patterns again, it seems that his data is slightly
easier for the neural networks.

As for the known user case, the estimates for the tilt angle provide better
results. The mean deviations are printed in table 3.2.

40

3.2 Experiments “Portrait View”

Figure 3.5: Mean deviation from the reference angle for head pan and direction
recognition rates for unknown users

mean deviation

gray values 9.6◦ / 8.8◦

depth info 11.0◦ / 7.6◦

depth+gray 7.5◦ / 6.7◦

Table 3.2: Mean deviation for the pan/tilt angle for unknown users

These values are considerably worse than the results for known users. This
is due to a number of circumstances. On the one hand the heads of person
differ in appearance and aspect ratio. For example, some people’s heads
are rather longish, whereas others have heads which are quite broad. On
the other hand, the algorithm who extracts the heads from the image (see
section 2.3) might consider a person’s hair to belong or not to belong to the
head. Especially for people with long hair this is an issue.

As mentioned above, the presented values are average values. The range
of the mean deviation was rather high. We observed values form 5◦ mean
deviation up to 10.5◦ mean deviation depending on the person (with depth-
gray input patterns).

As a matter of course the accuracy of the direction recognition rate decreased
also when compared to the known user case. With gray value patterns recog-
nition rates of 62.3% and 88.9% have been achieved. Depth information alone
led to a recognition rate of 51.8% and 84.3%. Depth and gray value infor-
mation together resulted in an direction recognition accuracy of 75.2% and

41

3.2 Experiments “Portrait View”

95.1%.

It can be concluded that the use of depth information improves head pose
estimation for unknown users, as well. Depth information alone, however, is
not sufficient for an accurate estimation.

3.2.3 Test 3 - Changed Lighting Conditions

Changing lighting conditions are one of the main problems of image-based
techniques and particularly neural networks. Neural networks approximate
functions, which map the neural network input to the output. Now, if the
input changes due to a different illumination, the learned function isn’t the
same any more.

As Stiefelhagen [Stie2002] has shown, histogram normalization helps com-
pensating changing lighting conditions to a certain amount. However, the
results are still rather bad.

As we argued in the introduction of this work, depth information should
be greatly invariant towards illumination changes. Therefore, we trained
a neural network under some lighting conditions and afterwards tested the
already trained network under the new illumination conditions.

Figure 3.6 shows the results obtained in this case.

Figure 3.6: Mean deviation from the reference angle and direction recognition
rates for unknown users

42

3.2 Experiments “Portrait View”

The mean deviation from the reference angle with gray value patterns in-
creases to 13.9◦. The combination of gray value and depth information leads
to a mean deviation of 10.6◦, whereas under these circumstances depth in-
formations is with 9.6◦ mean deviation the most stable.

This is exactly what we expected. Depth information is indeed rather in-
variant to illumination change and improves head pose estimation under the
new conditions considerably. In fact, when we compare this result to ”Test
2” with unknown users from above, it can be seen, that the mean deviation
is the same.

Stiefelhagen achieved with his system a mean deviation of 13.8◦. Edge infor-
mation seems to be less suited for changing lighting conditions. This seems
to be reasonable, since edge information is strongly influenced by the illumi-
nation conditions. Shadows, for example, produce edges in the face image,
that are not really existent in the three dimensional scene.

For the direction recognition rates, the following results have been obtained.
40.7% and 75.1% accuracy for gray value input patterns. Depth and gray
value information yielded an accuracy of 56.9% and 86.2%. As for the mean
deviation the best results, however, have been obtained with depth informa-
tion alone. Here the direction recognition rates were 60% and 87.6%.

We conclude that depth information is suited best for head pose estimation
under changing lighting conditions. To have a versatile method working well
under all conditions, we propose nevertheless to combine depth and gray
value information for head pose estimation. With this configuration the
conventional intensity image-based approach is still 31% worse.

3.2.4 Error Analysis

Error analysis cannot only help to understand where and why the errors
occur, but also be useful to improve the performance of the estimation.

So, in order to better understand the head pose estimates, we analysed the
pan estimation errors for different pan and tilt angle ranges. We expected
the error of the estimation to be worse for large angles. On the one hand
because less training data was available, on the other hand because less of the
face is visible and therefore it might be more difficult for the neural network
to find appropriate features.

43

3.2 Experiments “Portrait View”

Figure 3.7 shows the the pan estimation errors for known users divided in
pan angle ranges.

Figure 3.7: Pan estimation error for the different pan angle ranges

The expected effect is visible. The estimation errors are indeed slightly higher
for large pan angles. So far, we don’t yet know whether this is due only to
the lack of training data or not. We therefore postpone a further analysis
to section 3.4.3 where we analyse the errors for the second data collection.
There, the number of recorded images is distributed almost equally for all
pan angles.

For unknown users, it can sometimes be observed that the estimation is
displaced, meaning that estimated angles are, for example, to small most of
the time. This is due to the fact that the shape of faces differ from person
to person. A neural network which is trained on a number of persons can
therefore commit the same error for every pan angle, if the face shape of the
new person differs from the mean face of the training samples. Figure 3.8
shows an error histogram which shows this effect.

Another question was, whether the pan angle estimation errors differ for
different tilt angles. In fact, the estimation might be expected to work better
for small tilt angles than for large ones. However, this effect couldn’t be
verified in our experiments. Obviously, for the neural network it is sufficient
if the number of training samples is high for all tilt angle ranges.

Figure 3.9 shows the distribution of the pan estimation errors for the different
tilt angle ranges for an unknown user.

For the “Portrait View” data collection it can be concluded, that the estima-
tion angles of the neural network are accurate, if sufficient training samples
are available. Further results have to be postponed to the analysis of the

44

3.3 Data Collection “Robot Scenario”

Figure 3.8: Error histogram for an unknown user

Figure 3.9: Pan estimation error for the different tilt angle ranges

“Robot Scenario” data collection.

3.3 Data Collection “Robot Scenario”

As mentioned above, in the “Portrait View” data collection, we have a rela-
tively restricted environment. For a human-robot interaction scenario, how-
ever, it cannot be assumed that the user is sitting directly in front of the
camera. That is why another data set has been collected under a more real-
istic environment.

During the “Robot Scenario” data collection the users were standing further
away from the camera. Moreover, they were free to move around in the room.
As image three in figure 3.10 illustrates, the user could, for example, move
to the side or go closer to the camera. The head movement, of course, wasn’t
restricted in any way neither.

45

3.4 Experiments “Robot Scenario”

Since we later want to incorporate the recognition of hand gestures in the
system. The users were additionally asked to execute pointing gestures on
pre-defined targets in the room.

Figure 3.10: Sample images from the ”Robot Scenario” data collection

A total of six users have been recorded under these conditions. The data
sequences consist of about 1000 images per person. Even though the heads
in the images were smaller than for the ”Portrait View” data collection, the
image resolution wasn’t changed and remained at 640x480 pixels. Conse-
quently the afterwards extracted head models consisted of fewer pixels. But
since the data is downscaled for the neural network anyways, this shouldn’t
have an effect on the system’s performance (as long as the heads are still
sufficiently large).

As for the “Portrait View” data collection the reference angles were captured
with a magnetic sensor, which was mounted on the user’s head. Again we
captured pan, tilt and roll angle for every frame in the data sequence. For
the evaluation we focused on the pan angle.

Figure 3.11 shows the histogram of the recorded pan angles in the image
sequences. Unlike for the “Portrait View” data collection the histogram
values for the different angle ranges are pretty much the same. This is due to
the pointing gestures the users executed. The targets the users had to point
at, were spread equally in the room. Since people tend to look at the target
they are pointing to, the head orientations were also distributed equally.

3.4 Experiments “Robot Scenario”

Under the new conditions in the “Robot Scenario” two experiments have been
performed. One experiment evaluated the neural network’s performance on
known users, the other on unknown users.

The goal of these experiments was to compare the system’s performance to

46

3.4 Experiments “Robot Scenario”

Figure 3.11: Angle histogram for pan direction in the “Portrait View” data col-
lection

the results under the more restricted conditions in the “Portrait View” data
collection. There, the system was doing well and it had yet to be shown, if
the system was capable to operate under a realistic environment.

3.4.1 Test 1 - Known Users

The known user experiment was carried out with similar conditions as in
section 3.2.1. Hence, 80% of the data served as training set, 10% as cross
evaluation set and 10% as test set.

Figure 3.12 shows the results of the experiment.

The mean deviation from the reference angle is 4.6◦ for gray value patterns.
With depth information alone, we achieve only a mean deviation of 8◦. Ob-
viously the 3D reconstruction of the head becomes worse, if the head is small
in the stereo image. This is due to the fact that the depth resolution of the
stereo algorithm becomes worse the farther away an object is. This effect is
clearly visible when we look at the 3D reconstruction in an OpenGL window,
where the head can be viewed under various perspectives. Consequently, we
do not expect the depth information to improve the head pose estimation
considerably. The obtained results with gray value and depth information
are therefore only slightly better than gray value information alone. The
mean deviation for this case is 4.3◦.

47

3.4 Experiments “Robot Scenario”

Figure 3.12: Mean deviation from the reference angle and direction recognition
rates for known users

mean deviation

gray values 4.6◦ / 2.4◦

depth info 8.0◦ / 3.3◦

depth+gray 4.3◦ / 2.1◦

Table 3.3: Mean deviation for the pan/tilt angle for known users

The results for the tilt angle are shown in table 3.3.

The direction recognition rates with gray values as input for the neural net-
work are 89.53% and 98.26%. Input patterns with depth information lead to
recognition rates of 73.98% and 94.37%. The best result is achieved by com-
bining depth and gray value information. For this case the neural networks
recognize 91.47% and 98.64% of the directions.

Compared to the “Portrait View” data collection, we have seen that the re-
sults for the less restricted conditions get slightly worse. Particularly affected
is the depth information whose quality is worse with the “Robot Scenario”
data. However, even in the “Robot Scenario” the performance of the system
is still quite good.

48

3.4 Experiments “Robot Scenario”

3.4.2 Test 2 - Unknown Users

For the test on unknown users, we applied the “Leave-one-out” method again.
Hence, in this case we trained the neural nets on 5 persons and tested them
on the remaining one.

Figure 3.13 shows the obtained results.

Figure 3.13: Mean deviation from the reference angle and direction recognition
rates for unknown users

As expected the performance on unknown users was considerably worse. The
mean deviation for neural networks which use gray value images as input
patterns was 9.9◦. Input patterns containing the depth information achieved
a mean deviation of only 15.5◦. As mentioned above, this is due to the fact
that the stereo reconstruction becomes worse for objects which are far away
from the camera. Consequently, combining depth information with gray
value information did only improve the mean deviation a little to a value of
9.7◦.

The results for the tilt angle are shown in table 3.4.

The direction recognition rates were 62.75% and 88.29% for gray value pat-
terns. With depth information alone 47.39% and 74.66% recognition rate
were achieved. The results for patterns containing depth information and
gray value information have been 63.12% and 90.44%.

Even though the mean deviation from the reference angle is considerably

49

3.4 Experiments “Robot Scenario”

mean deviation

gray values 15.5◦ / 6.3◦

depth info 11.0◦ / 5.7◦

depth+gray 9.7◦ / 5.6◦

Table 3.4: Mean deviation for the pan/tilt angle for unknown users

higher. The estimated angles can still give a robot a good hint on where a
person is looking. Recognition rates of up to 90% seem to make the method
applicable in practice (see also chapter 4.1).

3.4.3 Error Analysis

As for the “Portrait View” data collection, we analysed the pan estimation
errors for the different pan and tilt angle ranges.

Figure 3.14 shows the pan estimation errors for the various pan angle ranges.

Figure 3.14: Pan estimation error for the different pan angle ranges

Unlike for the “Portrait View” data collection, in this case, we do not ob-
serve higher estimation errors for large angles. Obviously, this time there is
sufficient training data available to estimate all pan angles accurately.

For the different tilt angle ranges, we obtained the similar results as for
the “Portrait View” data collection. The estimation error obviously doesn’t
depend on the tilt angle. However, it could nevertheless be useful to train
separate neural networks for different tilt angle ranges. Thus, we would have
more specialized neural networks, which might achieve better results.

50

3.4 Experiments “Robot Scenario”

We conclude that the neural network’s head pose estimation is almost equally
accurate for all pan and tilt angle ranges. Obviously the neural network is
able learn the head orientations well even if the rotation angles are large.

3.4.4 Filtering

During the analysis of the estimated rotation angles, we observed that the
neural networks pose estimates are rather noisy (see figure 3.15).

Figure 3.15: Estimation of the rotation angles is rather noisy

In order to further improve the estimation results, it therefore seemed to be
useful to filter the neural network output with some filter technique. Kalman
filters are widely used for such tasks and have proven excellent performance.
Given the nature of our application, the smooth movement of head in time,
Kalman filters should perform well on our application data, too.

The Kalman filter estimates the state xk ∈ Rn of process, that is governed
by a linear stochastic difference equation:

xk = Axk−1 + wk−1 (3.1)

with a measurement z ∈ Rm that is

zk = Hxk + vk (3.2)

The wk and vk represent the process and measurement noise. For a more
detailed description of the Kalman filter, please refer to appendix C.

51

3.4 Experiments “Robot Scenario”

Hence, in order to implement a Kalman filter for our application, we have to
define a state vector xk, a process matrix A, a measurement vector zk and
a measurement matrix H. Moreover, we have to know something about the
nature of the measurement and process noise wk and vk.

Obviously, in our application the pan angle at time step k can be calculated
from the pan angle at time step k − 1 and the rotation velocity at time
step k − 1. Consequently, we can define the state of the process by a two-
dimensional vector consisting of the pan angle nk and the rotation velocity
lk.

Equation 3.1 yields in this case:

xk =

(
nk

lk

)
= Axk−1 + wk−1 =

(
1 dt

a21 a22

) (
nk−1

lk−1

)
+ wk−1 (3.3)

with dt the time difference between time step k and time step k − 1.

With the values for a21 and a22 we could model additional velocity changes.
However, since we know nothing about a person’s behavior a modeling of
these parameters isn’t possible. It is therefore assumed that the velocity is
constant. We obtain: 1

A =

(
1 dt
0 1

)
(3.4)

A measurement in our application consists solely of the angle output of the

neural network. H is therefore the simple 1× 2 matrix

(
1
0

)
.

For applying the predictor-corrector algorithm of the Kalman filter (see ap-
pendix C.2), what still needs to be determined are the covariance matrices
Q and R of the process and measurement noise.

The measurement error covariance may be calculated by taking some sam-
ple measurements. In our application, the measurements correspond to the
output of the neural network. Since, we also have the real head orientations
from our magnetic sensor, we can calculate the measurement error covariance
easily from our data.

The process noise is somewhat more complicated, since the user may move his
head arbitrarily fast or slow. However, we can deduce a mean process noise
from our recorded data. In this case, the filter achieves worse performance,
if a user moves for example too fast.

52

3.4 Experiments “Robot Scenario”

In our tests the Kalman filter was able to improve the performance of the
head pose estimation. In the “Robot Scenario” we achieved the following
results for the mean error on new users:

Without Kalman 9.7◦

With Kalman 9.1◦

This is a relative improvement of 6.2%.

Figure 3.16 displays the result of the Kalman filter graphically.

Figure 3.16: The Kalman Filter smooths the angle estimates

The result of the Kalman filter still isn’t very smooth. If we adjusted the
process and measurement covariance of the filter to make it change slower,
we would obtain a smooth curve. However, in this case, the Kalman filter
wouldn’t be flexible enough and the overall error would increase considerably.

53

Chapter 4

Head Pose Estimation in
Applications

4.1 The Real-Time System

Real-time capability is one of the crucial points in computer vision. In
human-computer interaction, the estimation of head pose only makes sense,
if the robot can immediately respond to it and thus if the estimation can be
done in real-time.

In order to prove the practicability of our approach, we implemented a real-
time system of for the head pose estimation technique. In our tests, we
achieved calculating 10 frames per second with a resolution of 320x240 pixels
(Pentium 4, 2, 8 GHz). This is due to the fact, that once neural networks are
trained, they are extremely fast in computation. The activation levels of the
input patterns have simply to be propagated through the three layers of the
network. Face tracking with the color-based technique presented in section
2.3 is rather fast as well. Taking skin color as selection criterion restricts the
search space for algorithm considerably. The only issue for our system is the
calculation of the depth information. The stereo algorithm is computational
expensive and restricts the frame rate considerably.

Figure 4.1 shows a screenshot of the real-time system. The two small windows
in the upper right corner display one of the current camera images and the
skin color regions found in it. The windows below and left of these windows
show the 3D reconstruction of the found head and the subsequently calculated

54

4.2 Tracking Of Pointing Gestures With The Help Of Head Orientation

input pattern for the neural network. The slider at the bottom displays the
current head orientation (pan angle). The control panel on the left may be
used to load different trained neural networks, change the camera exposure
etc.

Figure 4.1: Screenshot of the real-time system

4.2 Tracking Of Pointing Gestures With The

Help Of Head Orientation

As argued in the introduction of this work, for intuitive human-robot inter-
action the robot needs to know a person’s attention and intention. Pointing
gestures are often used by people to indicate directions or to refer to objects.

It has been observed that pointing gestures are often accompanied by a head
movement in the same direction. Combining pointing gesture recognition
and head orientation estimation should therefore lead to a more accurate
and robust system.

55

4.2 Tracking Of Pointing Gestures With The Help Of Head Orientation

Nickel and Stiefelhagen [NS2003] proposed a framework to track pointing
gestures with hidden markov models. In their setup, they marked several
targets, at which a user had to point (see figure 4.2). They computed the
number of pointing gestures, which have been recognized. Moreover they
calculated the difference of the target angle to the angle of the recognized
gesture (angle error).

1

23

4
5

6

7

8

-2
-1

0
1

2
x [m]

-1

0

1

2

3

4

z [m]

0

1

2

3

y [m]

Targets Setup

Figure 4.2: Targets and setup of the gesture recognition system (images taken
from [NS2003])

In order to improve their recognition results, head orientation information
was added to the feature vector. Table 4.1 shows the obtained results.

Recall Precision angle error
No Head-Orientation 79.8% 73.6% 19.4◦

Sensor Head-Orientation 78.3% 86.3% 16.8◦

Estimated Head-Orientation 78.3% 87.1% 16.9◦

Table 4.1: Performance of gesture recognition with and without including head-
orientation to the feature vector

The pointing gesture recognition without any head orientation information
achieved a recall of 79.8%. The precision was 73.6% and the average error
from the target angle to the estimated pointing angle was 19.4◦.

When head orientation information from a magnetic sensor was added, the
recall decreased by 1.5%. However, the precision increased significantly by
an absolute 12.6%. Moreover the angle error was only 16.8◦. Obviously, the
head orientation information does improve the recognition performance of
the pointing gesture system.

56

4.2 Tracking Of Pointing Gestures With The Help Of Head Orientation

Surprisingly, even though the head orientations from the magnetic sensor are
more accurate than the ones estimated with the neural network, the results
improve slightly. The precision increases by 0.8%.

It can be concluded that the visual estimation of head orientation is capable
of improving the results of the pointing gesture recognition.

57

Chapter 5

Conclusion and Future Work

In this work, a new approach to head pose estimation was presented. It
is based on neural networks and uses depth information to improve estima-
tion results. The approach was evaluated under various conditions including
the performance on known, unknown user and under lighting fluctuations.
Furthermore different scenarios have been considered: A “Portrait View”
scenario where the user only moves his head and a “Robot Scenario” which
is more realistic and allows the user to move around freely.

The results obtained with the proposed approach are rather promising. De-
pending on the environments, a mean deviation between 3.2◦ and 9.7◦ has
been achieved. Direction recognition rates range between 90.44% and 99.7%
for the various scenarios, if a deviation of 20◦ is allowed. The accuracy seems
to be suitable for pratical applications.

We have seen, that stereo information helps improving the estimation of the
head orientation angles considerably. Moreover it improves the robustness of
the system under changing lighting conditions. Kalman Filtering can further
improve the obtained results.

We proved the practicability of the approach by implementing a real-time
head pose estimation system which operates at 10 frames per second. The
implemented system has proven to be enhance human-robot interaction. It
has, for example, been used to improve the results of a pointing gesture
recognition system by adding the estimated head pose to the feature vector
[NSS2004].

58

Even though adding stereo information has improved the robustness of the
system significantly, the performance still degrades noticeably under new
lighting conditions. Here further work is necessary.

Further improvements of this approach could be obtained incorporating in-
formation about the tilt angle into the neural network for estimating the pan
angle. This could, for example, be accomplished by training three different
pan estimation networks for large, average and small tilt angles. A neural
network trained on the tilt angle could be used to determine which network
to use.

Other enhancements could be made in the preprocessing stage. By applying
techniques like principal component analysis, the dimensionality of the input
patterns could be reduced and important information extracted. This should
lead to better recognition results especially for unknown users.

Speed improvements could be achieved by calculating depth information only
on a small window around the current position of the head. Only in this area
depth information is necessary for head pose estimation. This could lead to
real-time capability even on higher resolutions.

59

Appendix A

Neural Networks

A.1 Introduction To Neural Networks

Artificial Neural Networks are inspired by the way biological nervous systems,
such as the brain, work. They are composed of a large number of highly
interconnected processing elements (neurones) working together to solve a
specific problem.

Until now, neural networks have been applied to a great number of problems.
This is due to the fact that neural networks are a very versatile technique.
They have been particularly popular in the area of pattern recognition and
image analysis.

A.2 Advantages Of Neural Networks

Neural networks have the remarkable ability to derive meaning from compli-
cated or imprecise data. They may be used to extract patterns and detect
trends that are too complex to be noticed by either humans or other com-
puter techniques. A trained neural network can generalize, meaning that it
is not only able to reproduce what it has been trained, but also to interpolate
new results.

Other advantages include [SS1996]:

60

A.3 Building Blocks Of Neural Networks

• Adaptive learning: An ability to learn how to do tasks based on the
data given for training or initial experience.

• Self-Organization: A neural network can create its own organisation
or representation of the information it receives during learning time

• Real Time Operation: Neural network computations may be carried
out in parallel, and special hardware devices are being designed and
manufactured which take advantage of this capability.

• Fault Tolerance via Redundant Information Coding: Partial
destruction of a network leads to the corresponding degradation of per-
formance. However, some network capabilities may be retained even
with major network damage.

A.3 Building Blocks Of Neural Networks

A neural network consists of units (neurones) and links or connections be-
tween these units. In analogy to activation passing in biological neurons,
each unit receives the output of its prior units as input.

Figure A.1 shows a small sample network.

Figure A.1: A simple neural network

The direction of a connection shows the direction in which the activations
are passed. Each connection has an associated weight. The effect of a unit
on its successor is influenced by this weight. Negative values decrease the
activity of the succeeding units, positive values enhance it.

Depending on the function of a unit, we distinguish three different types.
Units which have no predecessors are called input units. Their activation

61

A.3 Building Blocks Of Neural Networks

levels are set by the application/problem data itself or are fixed (for exam-
ple, special “ON” units). Units whose output represents a part of the result
of a neural network computation are called output units. For classification
problems there is usually one output unit for each possible class. All remain-
ing units are called hidden units, since their inputs can not be directly set
and their outputs not directly observed.

The actual information processing within the units is accomplished by the
activation and the output function which are associated with each unit.

First, the activation function computes the net input from the weighted out-
puts of the prior units. Then, the new activation level of the unit is calcu-
lated. The general formula for an activation function is:

aj(t + 1) = fact(netj(t), aj(t), θj) (A.1)

where:

aj(t) activation level of unit j at time/step t
netj(t) net input in unit j at time/step t
θj threshold (bias) of unit j

The net input netj(t) is computed with

netj(t) =
∑

i

wijoi(t) (A.2)

where:
oi(t) output of unit i at time/step t
wij weight of the connection between unit i and j

The output function takes the activation value as input and subsequently
computes the output of the unit. The general formula is:

oj(t) = fout(aj(t)) (A.3)

with aj(t) and oj(t) as defined above.

In the literature, there often doesn’t exist both an activation and an output
function for a neural network unit. In this case there is only one process-

62

A.4 Learning With Neural Networks

ing function per unit defined, which is also called activation function. This
function receives the net input as input parameter.

A.4 Learning With Neural Networks

A.4.1 Linear Discriminant Functions and Single-Layer
Networks

Single-layer neural networks consist of a single layer of adaptive weights.
They can be used to distinguish two or more classes with linear decision
boundaries.

Consider a linear discriminant function y of the form of A.4, which separates
two classes C1 and C2.

y(x) = wT x + w0, x ∈ Rd (A.4)

y(x) = 0 represents a hyperplane in the d-dimensional space Rd. The vector
w is chosen to fulfill the following formula:

y(x) =

{
< 0 if x ∈ C1

> 0 if x ∈ C2

Such a decision boundary can be modeled with a simple neural network as
shown in figure A.2 (left) in the following manner. The weights of the network
are defined as the values of the vector w, the activation function fact of the
output unit is defined as y and the output function as the identity.

Figure A.2: Single-layer neural networks

63

A.4 Learning With Neural Networks

To distinguish more than two classes we can extend the above formula. We
define a discriminant function yk for each class Ck with:

yk(x) = wT
k x + wk0, x ∈ Rd (A.5)

Then, a new point x is assigned to a class Ck if yk(x) > yj(x),∀j, j 6= k. The
decision boundary separating Cj from Ck is given by yk(x) = yj(x). Figure
A.3 shows an example of a multi-class decision boundary.

Figure A.3: Example decision boundary produced by a multi-class linear dis-
criminant

Again, the decision boundaries can be modeled with a single-layer neural
network as we can see in figure A.2 (right). The weights leading to output
unit j are set to the values of wj. The activation functions of the output
units are the discrimination functions yk.

So far, we have constructed our neural networks from known decision bound-
aries of classes. However, what we are really interested in, is to have the neu-
ral network learn the decision boundaries automatically from sample data.

For this purpose we consider the sum-of-squares error function:

E(w) =
1

2

∑
i

∑
k

{yk(xi, w)− tik}2 (A.6)

where xi are sample vectors and tik their target values for the different classes.
Since yk is linear, E is a quadratic function in w and hence, the derivatives of
E are linear. The solution of the minimization of this function can therefore
be found quite easily by setting the derivatives to 0. We even can find a
closed form for the solution.

64

A.4 Learning With Neural Networks

Consequently, for arbitrary linear decision boundaries in Rd we can find
weights w such that a neural network with the activation functions yk for the
output units, can classify all vectors correctly.

When considering different error functions or a non-linear function as activa-
tion function, such an explicit solution is not possible any more. However, if
the activation function is differentiable, we can still calculate the derivatives
of the error function E. These derivatives can be used to perform a gradient
descent to find a suitable solution.

We may adopt the following procedure. We begin with an initial guess of
the weights w. Subsequently, we move a small distance in w-space in the
direction where E decreases the most rapidly. By iterating this process, we
create a sequence of weights wr whose components may be calculated with
the following formula:

wr+1
kj = wr

kj − η
∂E

∂wkj

∣∣∣∣
wr

(A.7)

where η is a small positive number called learning rate. Under suitable condi-
tions the values of w will converge to a point where E is minimal. The choice
of η is rather important, since low learning rates lead to a slow convergence,
whereas high learning rates may lead to oscillation and divergence.

A.4.2 The Perceptron

A perceptron is a single-layer neural network with one output unit. To im-
prove the performance the perceptron has a layer of fixed processing elements
to transform the raw data. These processing elements can be considered as
the basis function of a generalized linear discriminant.

Consequently, the output of the perceptron is given by

y = g

(∑
j

wjφj(x)
)

= g(wT φ) (A.8)

where φ is the vector of activations. The activation function of the output is
defined by a threshold function of the form:

65

A.4 Learning With Neural Networks

g(a) =

{
−1 if a < 0
+1 if a ≥ 0

(A.9)

For the perceptron often a continuous, piecewise-linear error function called
perceptron criterion is considered. It is a measure for the number of misclas-
sifications the perceptron has performed. Suppose that with each activation
vector φn we obtain an associated target value tn. With tn = −1 if φn belongs
to class C1 and tn = +1 if phin belongs to class C2. Then the perceptron
criterion Eperc can be written as:

Eperc(w) = −
∑

φn∈M

wT (φntn) (A.10)

with M the set of vectors φn which are misclassified by the current weight
vector w.

Now, if we apply the pattern-by-pattern gradient descent rule from equation
A.7, we obtain the following learning rule:

wr+1
j = wr

j + ηφn
j t

n (A.11)

Hence, we have a very simple learning algorithm, that can be summarized as
follows. Cycle through all input patterns in the training set with the current
weights. If a pattern is misclassified simply add/subtract the pattern vector
multiplied by η to the weights.

There is an interesting result which states that, for any data set which is
linearly separable, the learning rule is guaranteed to find a solution in a
finite number of steps. This property is known as the perceptron convergence
theorem.

A.4.3 Multi-Layer Networks

As we have seen, single-layer networks have the limitation, that classes have
to be linearly separable. Any problem requiring non-linear decision bound-
aries can not be classified by these networks. This is for example true for the
XOR problem A.4.

66

A.4 Learning With Neural Networks

� �
� �
� �
� � � �� �

� �
� �

class 1 class 2

� �� �
� �
� �� �
� �

� �� �
� �
� �� � �� � �

	 	 	
	 	 	

� � �� � �
� � �

Figure A.4: The classes in the XOR problem are not linearly separable and thus
a single-layer network cannot classify the elements correctly

Now, we want to have a look at the capabilities of multi-layer networks. We
concentrate on networks consisting of successive layers of adaptive weights.
These networks are easier to analyze theoretically than more general topolo-
gies. Moreover they can be implemented more efficiently in software or hard-
ware. This kind of network can be viewed as a transformation of the in-
put data by successive single-layer networks. Meaning that the output of
one single-layer network is processed by the succeeding single-layer network.
Therefore these networks are also called feed-forward networks. Figure [REF-
ERENCE], for example, shows a two-layer network, which can solve the XOR
problem.

Figure

It can be shown that even neural networks with two-layer of adaptive weights
are capable of approximating an arbitrary continuous mapping from one
finite-dimensional space to another, provided the number of hidden units is
sufficiently large. For the classification problem, we can obtain an impor-
tant corollary of this property. Two-layer networks with sigmoidal activation
functions can approximate any decision boundary to arbitrary accuracy (see
[Krei1991]). Thus, such networks also provide universal non-linear discrimi-
nation functions.

Next to this theoretical result, feed-forward networks are used because there
exists a powerful and computational efficient method for finding the deriva-
tives of an error function with respect to the weights. Provided that, the
activation function are differentiable. This method can be used to train the
neural network and is called error back-propagation.

67

A.4 Learning With Neural Networks

Error-Backpropagation

For the error-backpropagation, we consider each training pattern separately.
The error function E is defined as:

E =
∑

n

En (A.12)

where En is the error function for the pattern with index n. We suppose
that En is differentiable for all n.

The unit input is in the following denoted by aj and computed as we already
have seen above:

aj =
∑

i

wjizi (A.13)

with zi the activations of the predecessing units, which are calculated from
their own unit inputs as follows:

zj = g(aj) (A.14)

where g may be a non-linear activation function.

For each pattern, we now suppose that we have supplied the corresponding
input vector to the neural network and calculated the activations of all hidden
and output units by successive application of equation A.13 and A.14. This
process is called forward propagation, since the activations are calculated
from one layer to the next.

Our goal is to find a procedure for evaluating the derivatives of En with
respect to the weights. Since En depends on the weight wji only via the unit
input aj, we can apply the chain rule for partial derivatives:

∂En

∂wji

=
∂En

∂aj

∂aj

∂wji

(A.15)

Using A.13, we can write:

68

A.4 Learning With Neural Networks

∂aj

∂wji

= zi (A.16)

Thus, in order to evaluate the derivative of En we only have to calculate ∂En

∂aj

for each hidden and output unit in the network.

For the output units the evaluation can be done easily using equation A.14:

∂En

∂ak

= g ′(ak)
∂En

∂yk

(A.17)

The values on the right hand side of the equation are known from the defi-
nition of the activation and error function as well as from the forward prop-
agation phase.

For the hidden units we again make use of the chain rule for partial deriva-
tives:

∂En

∂aj

=
∑

k

∂En

∂ak

∂ak

∂aj

(A.18)

where the sum runs over all units with index k to which unit j sends a
connection.

By making use of the equations A.13 and A.14 we obtain the following back-
propagation formula:

δj =
∂En

∂aj

= g ′(aj)
∑

k

wkj
∂En

∂ak

(A.19)

Consequently, now we can evaluate the derivatives of En with respect to the
weights with the following algorithm:

1. Apply an input pattern to the network and forward propagate the
activations through all layers

2. Evaluate the δk for all output units

69

A.5 Generalization Of Neural Networks

3. Back-propagate the δ’s using the backpropagation formula

4. Use the resulting δ’s to calculate the derivatives of En and E

To perform a learning step, what still needs to be done is alter the weights
with a gradient descent technique. For example:

∆wji = −η
∂En

∂wji

(A.20)

with η the learning rate.

There exist a number of other learning techniques for neural networks. Quick-
prop and Rprop, for example, try to improve convergence speed for the learn-
ing algorithm. It is not intended to cover these techniques in this work. For
a detailed description see [SNNSRef].

A.5 Generalization Of Neural Networks

Neural networks have the ability to generalize. This means that a trained
neural network can classify data that has never been seen before. In real
world applications developers normally have only a small part of all possible
patterns. To reach best generalization, the data set is generally split into
three parts:

• Training set

• Cross evaluation set

• Test set

the training set is used to train the neural network. Backpropagation or other
learning techniques is used to minimize the error during training. The cross
evaluation set is used to determine the performance of the neural network on
patterns, which are unknown to the network. This is a measure of whether
the network generalizes well. Finally, the test set is used for checking the
over all performance of the neural network.

70

A.5 Generalization Of Neural Networks

Usually during training the performance of the network is continuously tested
on the cross evaluation set. If the error on the cross evaluation set reaches
a minimum the training is stopped. The error on the training set may still
decrease if further training is applied. However, this is the point where the
neural network is considered to generalize best. Remember, our goal hasn’t
been to obtain the best possible results on the training set, but to obtain a
neural network which performs well on all possible data. If we would continue
to train the neural network, we would see an effect called over-fitting, meaning
that the general performance of the network decreases.

Figure A.5 shows an example of a typical error development during neural
network training.

Error on training set Error on cross evaluation set

Training cycles

E
rr

or

Figure A.5: Development of the error during neural network training

A crucial point when dealing with neural network is the availability of train-
ing data. The more units the neural network contains, the more training
data is needed to achieve good performance. Next to the quantity of train-
ing data, it is important that there are enough training patterns for each
class we want to classify.

71

Appendix B

Pattern-Based Face Detection

This chapter describes the face detection technique developed by Viola and
Jones [VJ2001], which is used in our system to find a skin color region.

The technique classifies images based on the value of simple features. Fea-
tures have the advantage that the can act to encode ad-hoc domain knowl-
edge, which might be difficult to learn from the image data itself. Specifi-
cally, four kinds of features are used in this algorithm: horizontal and vertical
two-rectangle features, a vertical three-rectangle feature and a four-rectangle
feature (see figure B.1).

Figure B.1: Example rectangle features shown relative to a detection window

The value of a feature is computed by summing up all pixels in the gray areas
and calculating the difference to the pixels in the white areas.

In order to compute these features efficiently, a so-called integral image is
used. For an image i(x, y) the integral image ii is defined by:

72

B.1 Learning Classification Functions

ii(x, y) =
∑

x<x1,y1<y

i(x1, y1) (B.1)

The integral image itself can be computed with a single pass over the image
by the following pair of recurrences:

s(x, y) = s(x, y − 1) + i(x, y) (B.2)

ii(x, y) = ii(x− 1, y) + s(x, y) (B.3)

where s(x, y) denotes the pixel sum of column x till the row y is reached.

Consequently the sum of the pixels in a rectangle can be calculated by taking
the integral image values at its corners. Figure B.2 shows an example.

BA

C D

1 2

3 4

Figure B.2: The sum of the pixels in rectangle D can be computed by adding the
integral image values at point 1 and 4 and subtracting the values at
point 2 and 3

B.1 Learning Classification Functions

Given the feature set and a training set with positive and negative images,
in their system AdaBoost is used to both select the appropriate features and
to actually train the classifier. AdaBoost helps to improve simple learning
algorithms called weak learner, which might only have recognition rates of
51%.

AdaBoost provides rather strong formal guarantees. It has been proved that
the training error of the resulting classifier approaches to zero exponentially.
Moreover AdaBoost provides good generalization performance. AdaBoost

73

B.1 Learning Classification Functions

helps finding a small set of good classification functions which have significant
variety nevertheless.

In their face detection algorithm these classification functions or weak learn-
ers correspond to finding a rectangle features and a threshold, which can
perform the classification task with low error. The weak learners hj there-
fore can be written in the following manner:

hj(x) =

{
1 ±fj(x) < σj

0 otherwise
(B.4)

with x a detection window, fj a rectangle feature, and σj a threshold value.

The boosting algorithm based on these weak learners works as follows (see
[VJ2001]):

• Given example images (x1, y1), . . . , (xn, yn) where yi = 0, 1 for negative
and positive examples respectively.

• Initialize weights w1,i = 1
2m

, 1
2l

for yi = 0, 1 respectively, where m and l
are the number of negatives and positives

• For t = 1, . . . , T :

1. Normalize the weights,

wt,i =
wt,i∑n

j=1 wt,j

(B.5)

so that wt is a probability distribution.

2. For each feature j train a classifier hj which is restricted to using
a single feature. The error is evaluated with respect to wt, ej =∑

i wi|hj(xi)− yi|.
3. Choose the classifier ht with the lowest error et.

4. Update the weights:

wt+1,i = wt,iβ
1−ei
t (B.6)

where ei = 0 if example xi is classified correctly, ei = 1 otherwise,
and βt = et

1−et
.

74

B.1 Learning Classification Functions

• The final strong classifier is:

h(x) =

{
1

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 otherwise
(B.7)

where αt = log 1
βt

.

Figure B.3 shows the first and the second features selected by the boosting
algorithm. The two-rectangle feature represents the fact, that eyes are darker
then the upper cheeks. The three-rectangle feature compares the intensities
in the eye regions to the intensity across the bridge of the nose.

Figure B.3: First and second features selected by AdaBoost (images taken from
[VJ2001])

In order to improve detection performance, Viola and Jones implemented a
so-called attentional cascade. The image windows pass through some kind of
degenerated decision tree with a classifier at each node. The cascade helps
filtering out a great number of images with the computation of a single or
several simple classifiers. Only the image windows which pass all the cascade
nodes are considered to be a face. For more details and experimental results
please refer to [VJ2001].

75

Appendix C

Discrete Kalman Filter

The Kalman filter has been subject of extensive research. It has been used
for all kinds of applications where measurements of a continuous process was
noisy and results had to be filtered.

The discrete Kalman filter addresses the general problem of estimating a
state x ∈ Rn of a discrete-time controlled process. The underlying stochastic
equation has the following form:

xk = Axk−1 + wk−1 (C.1)

where xk is the state of the process and at time k and wk the process noise.
Apart from the process noise, the matrix A defines how a state xk is calculated
from its previous state.

A measurement z ∈ Rm is derived from a state k with:

zk = Hxk + vk (C.2)

where vk is the measurement noise. The matrix H computes the measurement
vector from a state xk.

We assume the random variables wk, vk to be distributed normally with
covariance matrices Q and R:

76

C.1 Basic Kalman Filter Equations

p(w) ∼ N(0, Q) (C.3)

p(v) ∼ N(0, R) (C.4)

The measurement noise covariance R and the process noise covariance Q
might change with each time step of measurement. However we assume the
matrices to be constant.

C.1 Basic Kalman Filter Equations

We define xprior
k to be the a priori state estimate given the knowledge of

the process states prior to step k. Moreover, we define xposter
k to be the a

posteriori state estimate given the knowledge of the process states prior to
step k and the measurement vector zk. The corresponding errors eprior

k and
eposter

k are consequently:

eprior
k = xk − xprior

k (C.5)

eposter
k = xk − xposter

k (C.6)

The a priori and a posteriori covariance matrices follow from eprior
k and

eposter
k :

P prior
k = E[eprior

k eprior
k

T
] (C.7)

P poster
k = E[eposter

k eposter
k

T
] (C.8)

Now the Kalman filter equation can be derived from the above equations. In
this equation, the a posteriori state xposter

k is computed from its corresponding
a priori state xprior

k , as well as the weighted difference of the measurement
vector zk and a measurement prediction Hxprior

k . We obtain the following
formula:

xposter
k = xprior

k + K(zk −Hxprior
k) (C.9)

77

C.2 The Predictor-Corrector Process

The justification for this equation comes from the probabilistic origin of the
filter. For further details see [Jaco1993]. The difference (zk−Hxprior

k) is called
measurement innovation and denotes the discrepancy between the predicted
measurement and the actual measurement value. A difference value of 0
means that the actual measurement is conform with the predicted one. The
a priori state estimate therefore has not to be updated.

The n×m matrix K in equation C.9 is chosen to minimize the a posteriori
error covariance P poster

k . The minimization can be accomplished by substitut-
ing the Kalman filter equation into the definition of eposter

k and substituting
this into the definition of P poster

k . Subsequently, the derivative of the trace
of P poster

k with respect to K can be calculated and set to 0. We obtain the
resulting matrix Kk for step k of the process:

Kk = P prior
k HT (HP prior

k HT + R)−1 (C.10)

Obviously, the more the measurement error covariance approaches 0 the
larger is the weight Kk gives to the measurement innovation. In this case, the
a priori state estimate has to be updated to conform to the measurement.
We also might say that we trust the actual measurement more than the a
priori estimation. On the other hand, as the a priori estimate error covari-
ance P prior

k decreases, the less weight is given to the measurement innovation.
In that case, the a priori state estimation is rather good and can be trusted.
Therefore the a priori estimation has only to be slightly changed.

C.2 The Predictor-Corrector Process

As might be imagined from the above section the Kalman filter estimates
the process by using a form of feedback control also referred to as predictor-
corrector approach. The filter predicts the state of the process at some step
k and then obtains feedback in form of a possibly noisy measurement.

As such, we define two groups of equations:

• time update equations (prediction step)

• measurement update equations (correction step)

78

C.2 The Predictor-Corrector Process

The specific equations for the time updates are:

xprior
k = Axposter

k−1 (C.11)

P prior
k = AP poster

k−1 AT + Q (C.12)

Notice again, that these equations project the state and the covariance esti-
mates forward from time step k − 1 to k.

For the measurement updates, we obtain:

Kk = P prior
k HT (HP prior

k HT + R)−1 (C.13)

xposter
k = xprior

k + Kk(zk −Hxprior
k) (C.14)

P poster
k = (I −KkH)P prior

k (C.15)

So, the first task during the measurement update is computing the matrix Kk

which minimizes the a posteriori error covariance (see section C.1). Subse-
quently, the process is actually measured and the a posteriori state estimate
is calculated with the help of this measurement. Finally, we need to compute
the a posteriori covariance estimate for the next time update step.

Now, we can continue with another time update step. This two stage process
is repeated from each time step k − 1 to k (see figure C.1).

Measurement
Update

Time Update

Figure C.1: Predictor-Corrector cycle of the Kalman filter

79

BIBLIOGRAPHY

Bibliography

[Adam2000] B. Adams et al., Humanoid robots: a new kind of tool, IEEE
Intelligent Systems, pages 25-31, 2000

[Agah2001] A. Agah, Human interactions with intelligent systems: research
taxonomy, Computers and Electrical Engineering,pages 71-107, 2001

[AHP1993] A. Azarbayejani, B. Horowitz and A. Pentland, Recursive esti-
mation of structure and motion using the relative orientation constraint,
Proceedings of the Computer Vision and Patteern Recognition Confer-
ence, pages 70-75, 1993

[Bish2000] Christopher M. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, 2000

[DTB2002] Darrell, T., Tollmar, K., Bentley, F., Checka, N., Morency, L.-
P., Rahimi A., and Alice Oh, Face-responsive Interfaces: from Direct
Manipulation to Perceptive Presence, International Conference of Ubiq-
uitous Computing, 2002

[Fitz2001] Paul Fitzpatrick, Head pose estimation without manual initializa-
tion, AI Lab, MIT, Cambridge, USA, 2001

[HB1995] D. Heeger and J. Bergen, Pyramid-based texture analy-
sis/synthesis, Proceedings of SIGGRAPH 1995, pages 229-238

[HH2002] Y. Huang, T. S. Huang, Facial Tracking with Head Pose Esti-
mation in Stereo Vision, IEEE Int. Conference on Image Processing,
Rochester, New York, US, September 22-25, 2002

[HRD1999] Michael Harville, Ali Rahimi, Trevor Darrell, Gaile G. Gordon,
John Woodfill, 3D Pose Tracking with Linear Depth and Brightness
Constraints, ICCV 1999, pp. 206-213

80

BIBLIOGRAPHY

[HS1980] B.K.P. Horn and B.G. Schunck, Determining optical flow, AI Memo
572, Massachusetts Institute of Technology, 1980

[Jaco1993] O. Jacobs, Introduction to Control Theory, 2nd Edition, Oxford
University Press, 1993

[Jähn1997] B. Jähne, Digitale Bildverarbeitung, Springer-Verlag, Berlin-
Heidelberg, 4. Auflage, 1997

[KBS2000] Volker Krüger, Sven Bruns, Gerald Sommer, Efficient Head Pose
Estimation with Gabor Wavelet Networks, Proc. British Machine Vision
Conference, Bristol, UK, Sept. 12-14, 2000.

[Koku2000] , A.B. Koku et al., Towards socially acceptable robots, Proceed-
ings of 2000 IEEE International Conference on Systems, Man and Cy-
bernetics, pages 894-899, 2000

[Kono1997] K. Konolige, Small Vision System: Hardware and Implementa-
tion, IEEE Conference on Computer Eighth International Symposium
on Robotics Research, Hayama, Japan, 1997

[Krei1991] V. Y. Kreinovich, Arbitrary nonlinearity is sufficient to represent
all functions by neural networks: a theorem, Neural Networks 4 (3),
pages 381-383, 1991

[Mats1999] , Y. Matsusaka et al., Multi-person conversation via multi-modal
interface - A robot who communicates with multi-user, Proc. Eurospeech
99,pages 1723-1726, 1999

[Matt2002] Matteo Matteucci, ELeaRNT: Evolutionary Learning of Rich
Neural Network Topologies, Center for Automated Learning and Dis-
covery, Technical Report, CMU-CALD-02-103, 2002

[MA2000] Yoshio Matsumoto, Tsukasa Ogasawara, Alexander Zelinsky, Be-
havior Recognition Based on Head Pose and Gaze Direction Measure-
ment, Proceedings of 2000 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS’2000), pp.2127-2132, 2000

[MC1993] B.S. Manjunath and R. Chellappa, A unified approach to boundary
perception: edges, textures and illusory contours, IEEE Trans. Neural
Networks, 1993

[MRC2002] Louis-Philippe Morency, Ali Rahimi, Neal Checka, and Trevor
Darrell, Fast stereobased head tracking for interactive environment, In

81

BIBLIOGRAPHY

Proceedings of the Int. Conference on Automatic Face and Gesture
Recognition, 2002.

[MZ2000] Yoshio Matsumoto, Alexander Zelinsky, An Algorithm for Real-
time Stereo Vision Implementation of Head Pose and Gaze Direction
Measurement, Proceedings of IEEE Fourth International Conference on
Face and Gesture Recognition (FG’2000), pp.499-505, 2000

[NS2003] K. Nickel and R. Stiefelhagen, Pointing Gesture Recognition based
on 3D tracking of Face, Hands and Head Orientation, Fifth International
Conference on Multimodal Interfaces, Vancouver, Canada, Nov. 5-7,
2003

[Nick2003] Kai Nickel and Rainer Stiefelhagen, Detection and Tracking of
3D-Pointing Gestures for Human-Robot-Interaction, Proceedings of the
Third IEEE International Conference on Humanoid Robots - Humanoids
2003, Karlsruhe, Germany, October 1-3, 2003

[NSS2004] Kai Nickel et al., Tracking Head and Hands for Pointing Ges-
ture Recognition in a Human-Robot Interaction Scenario, submitted to
International Conference on Automatic Face and Gesture Recognition
(FG2004), Seoul, Korea, 2004

[Perz2001] D. Perzanowski et al., Building a multimodal human-robot inter-
face, IEEE Intelligent Systems, pages 16-21,2001

[SA2000] Sangho Park, J.K. Aggarwal, Head Segmentation and Head Orien-
tation in 3D Space for Pose Estimation of Multiple People, 4th IEEE
Southwest Symposium on Image Analysis and Interpretation, p. 192,
Austin, April 02-04, 2000

[SB2002] S. Srinivasan and K. L. Boyer, Head Pose Estimation Using View
Based Eigenspaces, Intl. Conf. on Pattern Recognition, Quebec, 2002

[SM2002] Kenneth O. Stanley and Risto Miikkulainen, Efficient Evolution
of Neural Network Topologies, Proceedings of the 2002 Congress on Evo-
lutionary Computation (CEC ’02). Piscataway, NJ: IEEE, 2002

[SNNSRef] Stuttgart Neural Network Simulator User Manual, Version 4.2

[SS1996] C. Stergiou and D. Siganos, Neural Networks, SURPRISE 96 Jour-
nal, Department of Computing, Imperial College of Science Technology
and Medicine, London, 1996

82

BIBLIOGRAPHY

[Stie2002] Rainer Stiefelhagen, Tracking and Modeling Focus of Attention in
Meetings, Dissertation, Universität Karlsruhe, Fakultät für Informatik,
2002

[SYW2001] R. Stiefelhagen, J. Yang, A. Waibel, Tracking Focus of Attention
for Human-Robot Communication, IEEE-RAS International Conference
on Humanoid Robots - Humanoids 2001, November 22-24, 2001, Tokyo,
Japan

[VJ2001] P. Viola and M. Jones Robust real-time object detection, Technical
Report 2001/01, Compaq CRL, February 2001.

[WB2003] Greg Welch and Gary Bishop, An Introduction to the Kalman
Filter, Technical Report TR 95-041 University of North Carolina at
Chapel Hill, 2003

[YLW1997] J. Yang, W. Lu and A. Waibel, Skin-Color Modeling and Adap-
tion, Technical Report, School of Computer Science CMU-CS-97-146,
CMU, USA, 1997

[YZ2001] R. Yang and Z. Zhang, Model-based Head Pose Tracking With
Stereovision, In Proc. Fifth IEEE International Conference on Auto-
matic Face and Gesture Recognition (FG2002), pages 255-260, Wash-
ington, DC, May 20-21, 2002

[Zhan2000] Z. Zhang, A flexible new technique for camera calibration, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-
1334, 2000

83

	Introduction
	Motivation
	Possible Applications
	Requirements for a Head Pose Estimation Technique
	Related Work
	Feature-Based Techniques
	View-Based Techniques
	Summary

	The Head Pose Tracking Technique
	Overview
	Stereo Vision
	Stereo Algorithm
	Finding Corresponding Pixels
	Calculating Object Distance

	Face Detection and Extraction
	Pattern-Based Vs. Color-Based Face Detection
	Finding A Skin Color Region
	Building The Color-Model
	Face Extraction

	Preprocessing
	Resizing 3D Face Model
	Downsampling
	Depth normalization
	Gray Value Normalization

	Estimating Head Pose With Neural Networks
	Neural Network Topology
	Advantages Of This Approach

	Experimental Results
	Data Collection ``Portrait View''
	Experiments ``Portrait View''
	Test 1 - Known Users
	Test 2 - Unknown Users
	Test 3 - Changed Lighting Conditions
	Error Analysis

	Data Collection ``Robot Scenario''
	Experiments ``Robot Scenario''
	Test 1 - Known Users
	Test 2 - Unknown Users
	Error Analysis
	Filtering

	Head Pose Estimation in Applications
	The Real-Time System
	Tracking Of Pointing Gestures With The Help Of Head Orientation

	Conclusion and Future Work
	Neural Networks
	Introduction To Neural Networks
	Advantages Of Neural Networks
	Building Blocks Of Neural Networks
	Learning With Neural Networks
	Linear Discriminant Functions and Single-Layer Networks
	The Perceptron
	Multi-Layer Networks

	Generalization Of Neural Networks

	Pattern-Based Face Detection
	Learning Classification Functions

	Discrete Kalman Filter
	Basic Kalman Filter Equations
	The Predictor-Corrector Process

	References

