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Abstract

Human vision is of remarkable nature. We barely notice the amazing variety of
(visual) conditions, under which it performs day-to-day, and the high complexity
behind our perception. As self-evident and trivial it seems for a human being, it
challenges researchers around the world even more in their goal to achieve com-
parable results in the field of pattern analysis, as a part of artificial intelligence.
Thus, the recent development addresses more complex problems with increasing
relaxation of restrictions in application’s conditions. This leads to reinforced al-
lusion to human vision (i.e. [42]).

In the scope of this work, we propose a new representation approach which depicts
a complex pattern, based on local descriptors [30] and geometrical constraints be-
tween them. This achieves bridging local representation and global representation
in order to obtain a non-rigid appearance perception as an imitation of human
vision. We present and examine the simplest such representation: a pair of local
descriptors. In terms of textual categorization, we call the feature pattern a “vi-
sual word” [27] and assign a set of visual words to “describe” the target class in
the best way. In human language we would call them “keywords™. For finding the
best keywords we present a feature selection method based on feature relevance
definitions [26] and document frequency for ranking,

As application for our approach, we chose car manufacturer’'s logo recognition.
This scenario features many classic challenges like image transformations and en-
vironmental challenges in the corresponding data (car images). The variety of
logo appearances represent a good basis for measurement and comparison of rep-
resentation methods and their impact in recognition process, rather than that of
classifiers’ performance.

The experimental results show partially significant improvement of recognition
performance when utilizing the proposed representation method. Further, accord-
ing to the achieved recognition rates our representation method exhibits less sensi-
tive behavior to object appearance and thus captures the overall object “structure”
in a better manner, but still distinctive enough for recognition process.

We conclude on the interest on more complex patterns beyond the pair repre-
sentation, where a single feature vector can represent a single object as in global
representation, and where it can have a correlation with the words of human
language like “face”, “chair”, “window” in terms of categorization problems.






Acknowledgements

This work was conducted at the Interactive System Labs (ISL) of Carnegie Mellon
University, USA, and the Institut fiir Logik, Komplexitat und Deduktionssyteme
at the Universitat Karlsruhe (TH), Germany. I would like to thank Prof. Dr.
Waibel for the InterACT student exchange program, which gave me the oppor-
tunity to do my research in Pittsburgh, PA, provided an insight into American
culture and enabled a memorable, unique experience.

[ am grateful to my advisors Jie Yang, Ph.D. for his support of my work and
the open-hearted help with the organization of my stay and beyond research, as
well as Datong Chen, Ph.D. for the conduction, discussions and suggestions to my
work. I would like to thank Dr. Rainer Stiefelhagen for the support in Karlsruhe,
Germany.

I would like to thank Dr. Thomas Schaaf, Linda Hager, Celine Carraux, and
Kristen Messinger for their help in administration and organization of my stay at
CMU, Jan Nichues and Kay Rottmann for their hospitality during the first days,
and all other fellow students and ISL colleagues for the great time in Pittsburgh.






Contents

List of Figures

List of Tables

1. Introduction

1.1.
1.2.

Goal of this Research . . . . .

Possible Fields of Application

1:8: Oubliners 7 5 5o 5 3 88 55 W § 0 @ 08 00588 %Fes % ey @

2. Related Work

2L

b

o]

S
R

o

gl

Symbol and Shape Recognition

2.1.1. Textual Logos and Shapes . . . . .. ... ... ... ...

2.1.2. License Plates . . . . .
2.1.3. Traffie Signs : . : ¢ ¢ :
Face Recognition . ... ...
Local Representation . . . . .
Textual Categorization . . . .

Feature Selection . . . . . . .

Conclusions on previous work

. Details of the Developed System
Local Representation . . . . .
3.1.1. Key point detection . .

3.1.2. Region description . .
Codebook . . .. .. ... ..

13
15
17
17
19
19



. Pattern Analysis via Ordering Local Features

B, MR TIIEE » wo pv woov s 5w 588 %580 88T a8 EE0y 0
4.1.1. Global Representation . ... .. ............. .
4.1.2. Local Representation . . . . ... ... ... . .... .. .

4.2, Bigram LoCal Featurs « « « : s v v s 5w s 8 v 2 8 s 6 m 53509 353
421 Visnal Words i v 6 65 08 5 0 it v v s r e v ne e
4.2.2. Pairs creation . . . . .. ... ... ..
4.23. Beteofewords . . v v v v v v s s e s

. Keyword Selection
5.1, Scoring Funetiof - : ¢ . w05 m e e v asa e et na iy
5.2. Subset Selection . . . . . . ... ...

5.3. Conclusion . . . . ... ...

. Experiments and Evaluation

6.1. System Setup . . . .. .. ... ...
D11, DabaBets < o o v 5w v v s v s R B R EE S 4 b
6.12. FeatureSets . . . . ... ... ... ... . ...
619, PIeprotesfitg . o o v ¢ 6 5 % 5 65 ® 5 556 8 e s By EE G
6.1.4. Training Classifiers . & . .« ¢ . 000 o v v i v oo

6.2. Performance Comparison . . . . . . . . . ... ... ... .....
621, Global Feafiifes . . , « « « 5 sow e 355 59 @58 58 & 4 4
6.2.2. Individual Local Features . . ... ... ... .......
6.2.3. Pairs Features . . . . . ... .. ... ... ... ......
6.2.4. Evaluation Summary . . . ... ... ... ... .. ....

. Conclusions and Future Work

. Representation Methods

A.1. Scale Invariant Feature Transform . . . . . . . . ... . ... ...
A.1.1. Orientation assignment . . . . . ... ... .........
A1 Key polnt deseription & ¢ ¢ 5 4 5 &5 5 6 5 4 5 % ¢t o v

A2, Self Quotient Image . . . . . . .. ... ... L.

31
31
32
32
33
34

36

39
40
42
43

55

57
a7
a7
58
29



B. Classification Methods

B.1. Support Vector Machine

B.2. k-Nearest Neighbor

Bibliography

1if §



12



List of Figures

1.1

3.1,

[ |
—

2.2

6.1.

Visual examples of encountered challenges in car logo recognition

SCONATION % 5 ¢ & 5 5 § £ 5 5 € § %5 8 % v 6 % & % 5 6 E W b E S 4 ¥4

A schematic view of our approach. This diagram presents the out-
line of our system for car manufacturer’s logo recognition. During
testing the dashed lined steps provide the results from the training
phase. (1) Chapter 3, application independent initialization; (2)
Chapter 4, our approach; (3) Chapter 5, feature selection method;

(4) Chapter 6, application dependent system setup. . . . . . . ..

Estimation of the number of clusters for the “pair” feature. . . . .

A graphical overview of the bigram local feature. Bridging global
and local features: a pair relationship of two individual local de-

seriptors. Aside the image descriptor, each individual local feature

A comparison of given document frequencies of a small number of
words of one specific class and their importance (scores) considering
a cross-class correlation. . . . . ... ... 0 o000
Scores among all classes. This heatmap reveals the distribution of

the scores for all classes and for the best 50 keywords. . . . . . . .

Sample images from the database. Actual images used for recogni-
tion with obvious challenging appearance: (1) Chevrolet, (2) Nis-
gan; (3) Bulick, (4) Dodge. . o - o« s 0 wos 5 6 m ¢ 83 0 5 5 50

18

29

34

41

43

46

13



List of Figures

14

6.2. Feature set creation and inheritance. This diagram shows the
schematic way from data sample to feature vector. We use identi-
cal data samples for feature creation. Thus, a comparison on the
feature level is possible. . . . . . . . ... ... ... ...

6.3. Experimental results. Comparison between applied preprocessing
methods for three feature sets and two classification methods kNN
Ao VM & c v v cs sy m s s Wiy R ST ERELE ALy

A.l. Local image descriptors of the SIFT approach as in [30]. . ... .
A.2. Sample images with SQI preprocessing from [23]. . .. ... ...

47



List of Tables

6.1. Summary on recognition rates (2-fold CV in %) for all preprocessing
methods. Gabor as comparison to global features, not in the average.
6.2. Dimension reduction with PCA and 32 x 32pix input (2-fold CV in

6.3. Stability of features over different preprocessing methods (in %).
It is evident, that global features need a most careful choice of
image preprocessing. The proposed bigram local feature is the most
insensitive in this comparison. . . . . . . . . . . . ... ... ...



List of Tables

16



1. Introduction

Pattern analysis has been under continuous and intense exploration since the be-
ginning of artificial intelligence. However, there are still many unsatisfactorily
solved problems and high number of challenging conditions - but generic ap-
proaches are barely available [3]. Human vision and cognitive capabilities are still
unreachable for any algorithmic solution in terms of robustness and accuracy, es-
pecially, under permanently changing conditions and with application in manifold
environments.

The recent development in the field of pattern analysis [10, 17, 21, 30, 40, 41, 42|
reveals a broad examination of new challenging tasks. Moreover, despite the clas-
sic application fields, a new bias toward the human-related recognition (visual
categorization [27, 33, 35, 40, 41], traffic signs [18, 19, 20, 21, 22, 23, 24|, etc.) can
be observed. This enhances the aspects of human-computer interaction: recogni-
tion of key objects which create communication basis both for vision and speech.
In the everyday life we often use trademarks and brand names for depicting and
distinguishing a specific object out of its kind. This information characterizes
this object in the same way color, size, and shape already do in such situations.
This “label” extends the precision of our communication and often facilitates it by
reducing the needed information amount. Hence, the recognition of trademarks
and brands in form of a logo has been already of interest but rather limited to the
document domain [1, 2, 3, 4, 5, 17].

In this work we are going to discuss a novel problem of car manufacturer’s logo
recognition, as an example application setting for our proposal of a new represen-
tation method for challenging conditions and uncontrolled environment.

1.1. Goal of this Research

Although logo recognition is an already well-known and in the past often explored
problem, our extent to a new out-of-text domain of car manufacturers meets a
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1. Introduction

Figure 1.1.: Visual examples of encountered challenges in car logo recognition sce-
nario.

new challenge of the three dimensional real life world. With the new setting, new
constraints are to be defined and new challenges ought to be met.

In addition to well-known “classic” challenges, like translation, rotation, and scale,
as well as the environmental ones — due to the illumination and weather changes,
we see following issues, as shown in figure 1.1, requiring special attention. First of
all, car logos in particular are not planar structures and change their appearance
with varying light direction by casting shadows. Further, low contrast images
are common due to similar or shiny background which makes luminance infor-
mation barely useful. Both luminance and color information lose, further, their
importance as robust representation by reason of partially significant appearance
changes among the samples of one class (compare figure 6.1). As some objects
tend to have the same shape form or dimensions, this is not true for car logos, too

they reveal many variations in size and partial resemblance to other structures,
i.e. letter shapes on license plates.

In terms of a recognition task, there exist multiple fields we can tackle to meet
the above-named challenges. We want to consider the most early stage of the
recognition process: representation phase and explore the additional impact of
preprocessing. Representation proposals of previous work can be coarsely divided
in two groups: global representation and local representation. While global ap-
proaches are common in many appearance-based pattern recognition tasks, they
often fail with even small changes in lighting conditions and poses. Local deserip-
tion, on the other side, is more insensitive to common image deformations [28]
and has gained more attention in recent years [8, 27, 28, 30, 33, 35, 40, 41].

In this work we are going to propose and a novel representation approach: bigram
local feature and discuss it within the introduced scenario of car logo recognition



1.2. Possible Fields of Application

by using its challenging conditions. We see this approach as the first step in
bridging global and local features - from an individual local feature to creation
of a local “pair”. Extending this to more complex and/or sequential pattern
eventually leads to global representation, but rather based on local(!) appearance.
Hence, these complex patterns incorporate the structural perception, rather than
the captured appearance.

1.2. Possible Fields of Application

Car manufacturer’s logo recognition can be used in multiple scenarios with ver-
satile goals, which can be obviously separated in application as a primary or
supporting task.

In the field of parking lot surveillance, car model recognition can be used to create
an intelligent environment. Often, car owners leave their vehicles without noticing
its correct location or forgetting it by the time of pick up. Only some of them
would remember the license plate number, but surely most of them would know
the car manufacturer and the color of their vehicle. These details would be enough
to locate the few possible candidates on the whole parking lot area.

Another application field with primary priority to car manufacturer’s recognition
— as a part of an automated system — would be car registration. Either such
system would be employed for toll-paid highways or for car identification in a
regular inspection.

The field of intelligent vehicles presents a major candidate for car make recognition
in a supporting role. First, a human-understandable identification of surround-
ing and approaching vehicles facilitates the interaction with the information and
warning systems of an intelligent vehicle. On the other hand, logo recognition in
common sense can be employed for interactive navigation systems using buildings
of general known fast-food and coffee franchising chains as landmarks.

Besides the car related logo recognition, environment or scene representation ben-
efits in general from logo recognition for a more precise object description and
characterization.

1.3. Outline

The structure and contents of the next chapters summarizes our system as appli-
cation independent initialization (3), our approach (4) with feature selection (5),
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1. Introduction

and application dependent setup (6) (compare figure 3.1).

In chapter 2 we present a survey on recent work. Due to wide range of related
approaches on the side of our proposed method and the new application scenario,
it covers the fields of symbol and shape recognition, face recognition, local repre-
sentation, textual categorization, and feature selection.

Chapter 3 describes some initialization steps and details of the implemented sys-
tem for car logo recognition. We show how the approaches of local representation
and of document categorization are combined for recognition task, as found in
recent work.

We present the proposal of our bigram local feature in chapter 4. The advantages
of local and global representation are discussed and represent the motivation for
bridging both representation manners. Further, we describe the construction of
our bigram local feature vector out of a pair of local descriptors and its utilization
as a “visual word”.

In chapter 5 we explain our linear feature selection filter. It is based on three
rules of feature relevance. They aggressively adjust the computed document fre-
quency ranking accordingly, in a class-wise relation in order to select some number
of (class-)distinctive features. This number is identified by the subset selection
function.

The results of the conducted experiments are discussed in chapter 6. We explain
the application dependent system setup, collected data, and composition of data
sets. Then we define the comparison set: different representation methods and
evaluate the achieved performance of each in the car logo recognition scenario.

Finally, in chapter 7 we conclude the results of this work and discuss future im-
provements to our approach and further application fields.



2. Related Work

In first place, car manufacturer’s logo recognition essentially belongs to a superior
class of classic symbol and shape recognition. Thus, it has a wide range of common
problems within this field. On the other hand, it features some specific challenges,
only found beyond the classic two dimensional approaches like analysis of textual
symbols and shapes. Therefore, an abstraction to application in real world envi-
ronment and problem extension to the third dimension are needed. Appropriate
candidates for such problems are the related fields of traffic sign and license plate
recognition. They share a large subset of environmental challenges we defined in
chapter 1. Still, even if used in 3D environment they exhibit only two dimensional
or planar nature of patterns. Specific to car manufacturer logos, the 3D structure
of the objects creates new challenges within the pattern itself. Thus, we are going
to reference some basic approaches of face recognition to explore their relevance
and impact in our scenario.

2.1. Symbol and Shape Recognition

2.1.1. Textual Logos and Shapes

Although, in recent time the focus in the document analysis has moved from the
re-engineering problems to indexing and information retrieval (6], symbol recog-
nition is a still interesting research domain. As for discussion on invariance and
robustness of current approaches under real-world conditions, problems of geo-
metric invariance of logos in the document domain has been of interest for a while
4], Further, utilization of local context within shape matching task has gained
attention some years later [13]. This represents the first stage of using local con-
text (descriptors, in terms of recent research) in the neighborhood of the interest
points. Indeed, in the recent update [8] to [13], a comparison to the SIFT local
descriptor [30] is discussed. Finally, exploration of further new challenging prob-
lems like occlusion and noise (8, 17] has become an interesting research subject in
more recent time.



2. Related Work

An overview on recognition of symbols in documents is given in [1]. Even some
statistics may be a little outdated, the major categories of textual symbol and
shape recognition problems are: technical and facility drawings, maps of various
types, musical scores, logos and others. Classification phase of the investigated
approaches often uses template matching. Neuronal nets seem to be not well rep-
resented by the time of the survey, although they can be variably used for logo
recognition beyond controlled environment and conditions |5, 17]. Nevertheless,
many of proposals in this survey deal with more document specific or algorithmic
solutions (e.g. [7, 25]). This survey makes clear the distance between the docu-
ment logo recognition and application in uncontrolled environment — as in case of
car maker recognition — because the proposed methods in the document domain
address different set of problems.

As summarized in a further, more recent survey on symbol recognition [3], a
dominant symbol recognition technique is missing among the many approaches
available. A generic symbol recognition remains a challenge because of the domain
dependent design and knowledge.

2.1.2. License Plates

In the domain of license plate recognition, the change of priorities is evident.
Developing a stable system for uncontrolled environment becomes more interesting
than a novel matching solution. The range of such problems varies from expanding
dynamic range [14], which is a well-known hardware limitation, to utilization of
tracking methods [15, 16] to achieve more robust and accurate detection and
recognition.

In [9] a coarse-to-fine strategy for multi-class shape detection is presented. The
search for instances from multiple classes is followed by arrangement of the de-
tected subsets to a global interpretation. The recognition of alphanumerical char-
acters on license plates showed very good results. Again, we meet a combination of
local representation, in this work edge segments, and global representation, which
was achieved by a structural interpretation of edge segments’ combinations.

2.1.3. Traffic Signs

In the same scenario of scene interpretation or environment perception, traffic
sign recognition plays a major role. Despite of its higher relevance in road traffic
understanding, as well as its navigation status, traffic signs share the same setting
and environmental conditions as our logo scenario. Nevertheless, the similarity in
recognition can be only narrowed down to the common aspects in environmental
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2.2. Face Recognition

challenges. To their advantage, traffic signs usually have a distinctive set of well
comprehensible and elementary rules, like shape, color, size, and placement in
the environment [18, 19] which are almost not transferable to logos in a sufficient
way.

In general, traffic sign recognition is meant to have real-time capability [18, 21]
and thus such systems are limited in computing power and apply fast, well-known
methods [18], i.e. Haar wavelets [21] and other [24]. It is usual to separate the
detection and recognition part. In this case, the detection phase attracts more
attention due to distinctive traffic sign content. Thus, examined methods for
detection vary from more sophisticated techniques like genetic algorithms [19] to
the simpler horizontal and vertical (color) projections [20, 22]. Further, some
systems capture a closer view at the detected sign either with the same camera
24] or using another telephoto camera [18] to obtain better recognition rates. For
the same reason some proposals exploit the advantage of in this field common
video systems and apply tracking, i.e. [21].

2.2. Face Recognition

A problem of three-dimensional lighting invariance gained a general importance in
the field of face recognition. Although these problems are of a more complex and
import nature than the one in our scenario, some essential and simple approaches,
in terms of computational complexity, could be of interest for our work.

Hence, there are two major categories of recent proposals: two dimensional image
processing and three dimensional model mapping. Obviously, any of the latter
approaches would be exaggerative for this scenario, but a possibly interesting ap-
proach from the first category came to our attention: self quotient image [23]. A
simple yet promising algorithm for a lighting invariant representation represents
an in-between stage of a gray-scale image and an edge map, eliminating any equal
intensity blobs and smoothing luminance changes. The achieved representation re-
veals additional parameter to the edges: thickness or intensity. While this method
is successfully used for global representation approaches, it is new to apply it in
local descriptors.

Further, an application of Gabor wavelets or filters has gained much attention in
recent research, i.e. [42], in the field of face recognition. Gabor kernels exhibit a
two-dimensional receptive field profiles similar to those of the mammalian cortical
simple cells. Gabor wavelets have the desired attributes to capture the object with
scale, orientation and illumination invariance if combined to a multi-orientation
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2. Related Work

and -scale feature vector. Typically, Gabor features are used in global representa-
tion approaches. We are going to utilize them for the baseline system with global
representation as well.

Well known and often applied in the field of face recognition PCA [12] and LDA
methods [11] attack similar lighting challenges as in our setting. While LDA is
sensitive to the number of class representatives in order to achieve robust discrim-
inative representation, we abstain from utilizing it in the developed system. For
sake of dimensionality reduction, as a possible problem of global representation,
we examine the impact of PCA for the logo recognition problem.

2.3. Local Representation

In order to solve occlusion and image transformation issues of the already explored
and upcoming problems, methods of local representation eventually gained atten-
tion over years. According to [30], the first attempt of matching by using local
interest points can be traced back to Moravec and 1981. With improved algorithm
by Harris “corner detectors” were broadly accepted for image matching tasks after
1992. But only in 1997 the local descriptors approaches could be extended so far.
that general image recognition was possible. Since then, local interest points have
gained a very high research attention.

According to Mikolajezyk and Schmid in their performance evaluation study [31],
SIFT [30] is the most resistant approach utilizing local descriptors on images with
real geometric and photometric transformations.

In general, local representation is done in two stages. First, some points of interest
must be detected. Typically, they have to be located on such spots, which are likely
to remain stable over transformations. Then, a description of the region around
those points has to be created. This last step has the major impact on recognition
performance [31]. That fact encouraged to search for further improvements on the
descriptors, for instance PCA-SIFT [28].

Local representation is successfully used for unsupervised learning [10], where an
attempt of global representation through a joint probability density function on
the shape of the constellation of local features is described. In this case, only the
positions of the local descriptors are concerned for the learning of the statistical
shape model.

24



2.4, Textual Categorization

2.4. Textual Categorization

Recently, some computer vision approaches have successfully dealt with adapta-
tion of text categorization problems for visual pattern recognition and categoriza-
tion [27, 40, 41]. Indeed, the problems of recognition and categorization have a
close relation to each other. While the first one engages the identification prob-
lem among the object within the same class or group, the latter one concerns
only the distinguishing those groups. Obviously, both of them are similar in their
approaches, but differ in the domain space and parameter significance. Thus,
for identification purposes we would utilize the approach with distinctive fea-
tures within one target class. On the other side, a categorization approach would
still utilize the distinctive features, but in the intra-class sense of multiple target
classes, and hence, requiring a more general representation within each class.

The importance of adopted approaches for computer vision is motivated by the
“semantics-oriented” results [35] as known in the text domain.

2.5. Feature Selection

With the parallels in the textual categorization new problems arise in managing
of large vocabularies. This motivated us to extend the related work survey to the
field of feature selection, as we expect to deal with large number of features when
creating pairs out of a set of individual features.

Initially, the term of feature relevance should be defined, as contributed in [26].
The authors suggest to concern three relevance definitions: (1) strongly relevant,
(2) weakly relevant and (3) irrelevant features. Obviously, the prediction accu-
racy is not affected by removing the irrelevant features. More interesting is the
difference of weak and strong relevance. While weak relevant features may con-
tribute to prediction accuracy, the loss of strong relevant features implies worse
performance.

Further in this work [26], two models of feature selection are discussed. The sim-
pler filter model can be regarded as a preprocessing step, where some designed
tunction assigns weights to the features according to some a priori assumptions.
With the wrapper model one has a more sophisticated way for relevance assign-
ment by analyzing the feedback of the induction algorithm in an iterative process,
which can be already of high computational complexity even with simple heuristic
search algorithms, i.e. backward elimination and forward selection.

On the practical side, in [29] a performance comparison of common feature selec-
tion methods in text categorization was presented. While information gain (1G)



2. Related Work

and x? achieved most effective results, a correlation of the both methods with
document frequency (DF) was observed. The minor drawback of DF was the less
aggressive term removal, but on the side of advantages, significant simplicity of
the approach and linear computational complexity. Thus, document frequency
proved to be a reliable measure for selecting informative features.

2.6. Conclusions on previous work

With our proposal and application scenario, we cover a wide range of previous
work. Obviously, recognition approaches of the document domain address different
problems oppose to our application scenario and concentrate more on versatile
shape representation and recognition techniques. In the field of license plates and
traffic signs, which share the same environment with our scenario, the content
plays significantly less important role due to more distinctive class of objects (and
their appearance). Here, the environmental challenges and detection are more
often discussed. That is, fusion between these fields is needed for our problem.

Even face recognition is from a entirely different domain, we keep trace of this field
which features the most intense exploration of illumination and three-dimensional
appearance problems. Their influence in recognition process is less significant in
our approach, though. Further, to solve three-dimensional problems and affine
image transformations we deploy local representation to achieve non-rigid object
description.

Textual categorization and document retrieval have already motivated others to
implement the techniques from that field in computer vision problems. We are go-
ing to use “visual word” representation and search for feature selection approaches
in order to find relevant ones.

With coverage and fusion of many different domains and problems we hope to
comply — at least partially — with the demand for generic symbol/pattern recog-
nition technique [3].



3. Details of the Developed System

Before we introduce the main approach of this work, a short overview of steps
prior to our method will be given to create the context for it. The content of this
chapter resembles the common part of some other local feature based recognition
methods found in recent related work. Thus, we discuss some implementation de-
tails as used in our system. In general, at the end of this chapter other researchers
complete the representation phase. Our contribution is going to be discussed
separately in the next chapter.

A visual outline of our system is shown in figure 3.1. This chapter explains the
application independent initialization process for our approach and leaves the ap-
plication dependent setup, like data sets, labeling, preprocessing, and classification
methods, for chapter 6.

Like in any other approach, some principal design decisions determine the choice
of the supplementary methods like mentioned above preprocessing, ete. For our
problem this major decision is to utilize local representation according to prevailing
conditions, in order to be able to meet the major challenges [41].

3.1. Local Representation

In general, local representation phase runs through two stages:

3.1.1. Key point detection

It is claimed in [31] that the performance of the local descriptors does not depend
on the choice of key point detector, but rather on the accuracy and repeatability
of the specific detection method. Therefore, we avoid utilizing some proposed
point detectors [30, 32, 33, 34] in order to minimize the error on such early stage
of the recognition process, as the algorithmic details of proposed detectors could
reveal some possible weakness within our challenges. Instead, we will use feature
selection, which will be discussed in chapter 5, at the end of the representation
process. This way we can create a relative big number of potential key points
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manual labeling and
logo selection

key point . key point
localization = descriptors

feature subset
selection

classification set-of-words |-—] Visudlwordsapproach, | | ooing pairs

class-wise histogram

Figure 3.1.: A schematic view of our approach. This diagram presents the outline
of our system for car manufacturer’s logo recognition. During testing
the dashed lined steps provide the results from the training phase.
(1) Chapter 3, application independent initialization; (2) Chapter 4,

our approach; (3) Chapter 5, feature selection method; (4) Chapter
6, application dependent system setup.

and thus, a high density coverage of the future point relationships — leaving the
decision making of their relevance as the last step to be class-wise(!).

For key point localization we apply the Canny filter for edge extraction. All the
coordinates of the edge points are mapped into a list of (z,y). However, we limit
the list's maximal size and take only the first 300 coordinates of spatially uniform
distributed grid points.

3.1.2. Region description

In the second stage of local representation, a robust region description around
the estimated key points is to be found. Characteristics like invariance to affine
image transformations and lighting independent representation are desired. In
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Figure 3.2.: Estimation of the number of clusters for the “pair” feature.

our system we utilize the description phase from SIFT approach [30], which is
described in appendix A.l.

For each key point of previously created list a SIFT description vector of 128
dimension is created. This step is iteratively done for all input images.

3.2. Codebook

In the next step we partition the extracted SIFT descriptors across all classes of
training images to reduce them to a some number of distinctive general repre-
sentatives. The number of clusters was determined experimentally. Our feature
based on 16 clusters delivered the best performance as shown in figure 3.2.

For the clustering task we utilize one of the simplest partitioning methods: A-
means [37]. After initialization of predefined k number of cluster centers, k-means
iteratively assigns the points to the closest center and then recalculates new center
points of the updated clusters. The iteration stops when all the points stay in the
previously assigned cluster and thus, their centers don't drift.



3. Details of the Developed System

There are some open issues about k-means: its convergence to local optima, ini-
tialization dependence and lack of knowledge about the parameter k. As a matter
of fact, even with those problems k-means algorithm is most successfully used
on large data sets, mostly because of simple implementation and computational
attractiveness [36].

Afterward, we assign each SIF'T descriptor its closest cluster center and thus,
reduce the dimensionality from 128 to one.
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4. Pattern Analysis via Ordering
Local Features

Since some problems of pattern analysis still reveal non-trivial challenges and the
proposed approaches exhibit qualifications to solve a dedicated kind of problems,
an effort on their fusion and combination has been always of interest. In gen-
eral, this effort leaned toward combination of rather different approaches with a
weighting function for prediction evaluation (i.e. [2]) or by a two-stage recognition
processes, like a coarse-to-fine strategy in [9] or joint probability density function
on the shape of the constellation of local features [10].

In this chapter we are going to present, to our best knowledge, a novel approach
of bridging global and local representation by rather designing a new feature than
utilizing existing ones with additional, feature-extern relational knowledge.

4.1. Main ldea

The abstract goal of our approach is to design a new representation approach
which depicts a complex pattern based on local descriptors. In this work we
examine the simplest such representation: a pair of local descriptors. In terms
of textual categorization we call such pair a “visual word”. In the training phase
each class is assigned a set of visual words which describe the target class in the
best way. In human language we call them “keywords”. During recognition we
match the detected visual words to our trained vocabulary and predict the labels
in the test data set.

First, let’s begin with advantages and disadvantages of global representation -

the initial point for the motivation. Then, we examine the local representation for
recognition with its pros and cons. At last we speak about bridging them together
in a bigram local feature.
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4. Pattern Analysis via Ordering Local Features

4.1.1. Global Representation

This method of representation is based on global appearance of the objects. In
general, it doesn’t matter which feature space we select to represent the images,
but rather that we use the whole object for that task. That is, PCA, LDA [11] or
any other feature space transform remain global representation if we apply them
on the entire image, for example, faces.

The biggest advantage of global features is, probably, the ease of application.
Representation phase can be proceeded with minimal computational and algo-
rithmic efforts. Most of the common methods are also fast and reliable under
some controlled conditions.

Beyond the controlled conditions, and thus in real world applications. begin the
disadvantages. The famous is certainly the lighting, as global appearance suffer
much when the source or direction of light changes. The second major contra ar-
gument is the lack of or insufficient invariance to common image deformations and
pose, depending on the method. Furthermore, most of the global methods require
a precise detection algorithm, which is usually independent of the representation
approach and makes the recognition process more error-prone.

4.1.2. Local Representation

This kind of representation was of high interest in recent research. Typically, some
smaller regions of the global image and relations between them create the basis
for recognition. In this case, the representation has no information about global
object appearance and “knows” only some local image patches.

With this comes the biggest advantage of local representation: robustness on
changing appearance. Though it can be extended only to a certain degree of
perspective image deformations, they achieve good results on affine image changes
[31]. Also the lightning invariance is easier to achieve due to small size of affected
image regions and their independent processing. Further, the detection process
of interest points is an integral part of representation phase. Key point detection
for local representation delivers robust performance [31] with different detection
algorithms [30, 32, 33, 34].

It seems, global and local features exchange their advantages and disadvantages,
which is also true for the fact of application simplicity. In this case, local rep-
resentation requires additional effort — a grouping or arranging constraint often
coupled with classification method.
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Especially, we want to keep and use all advantages, with candidate like in SIFT
130], for our approach.

A new approach in the scenario of local representation has been borrowed from
textual categorization. “Visual words” [27] are local features used for visual recog-
nition problems with methods from the textual field. For this, interest point de-
scriptors are usually matched by clustering in small partitions and thus, relatively
high cluster number. This quantization step creates a vocabulary which all the
point descriptors are assigned to in order to become a “word”. Analog to text
categorization problems they are used without any spatial context in bag-of~words
127, 35, 40, 41]. The distribution or histogram of the words is used for classifica-
t1iomn.

While geometric relations between the local descriptors may be unimportant for
categorization problems with a limited class number [27], we expect to prove their
high relevance in a recognition problem like ours in chapter 6.

With visual words a simple yet robust method is given for employing local repre-
sentation.

4.2. Bigram Local Feature

We are going to construct feature vectors from clustered (analog to [35]) SIFT
image descriptors with cluster numbers k; for i-th descriptor from the codebook
(see section 3.2) and additionally with their key point attributes:

e absolute image coordinates x; and y;
e scale s;
e orientation 6,

We define our bigram local feature as a pair of descriptors ¢ and 7 and their relative
spatial information. We choose such descriptor to be a “start” point, that k; < k;.
Then, our feature vector is

fig = (Bsij, A0, Az, Ay, ki, ki) (4.1)

This representation keeps the invariance attributes of individual features. This
is obvious for the first two elements: 9s;; and A¢;;. The Az;; and Ay, are
normalized to ¢; and thus, rotation/translation invariant'. The scale invariance
will be discussed some paragraphs later.

'By design this is true if both descriptors i and j have those invariance attributes.
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4. Pattern Analysis via Ordering Local Features

pair relationship spatial relationship

global local

Figure 4.1.: A graphical overview of the bigram local feature. Bridging global
and local features: a pair relationship of two individual local descrip-
tors. Aside the image descriptor, each individual local feature owns
coordinates (z;,y;), scale s; and orientation 6;.

At this point the choice of classification type determines further procedure, as we
have the first four continuous and the next two dimensions discrete values.

4.2.1. Visual Words

In our setting we chose to utilize the visual words’ matching as discussed above.
Therefore, discretization of the first feature vector elements is needed to make
them comparable by each dimension — a “visual character”®. This is, a quantiza-
tion step as required for this kind of representation [27], even our feature consists
of more than one dimension®. Aside the possibility to employ a clustering algo-
rithm one more time and to take some drawbacks of these methods into account,

Indeed, our bigram feature can be treated as “word” in the broad sense, because of its 6
degrees of freedom. Those can be regarded as letter positions in a string. The assignment of
this positions would be regarded as a character which can be grouped to an “alphabet”.

3This leads us to a “string matching” for visual words.




4.2, Bigram Local Feature

we decide to create a small number of bins, depending on the dimension of f;;
and its “meaning”.

Thus, often used number of eight bins with centers in {"T'”, k=0 7’} were pre-

defined for the orientation dimension, similar to [30].

The scale ratio has less predictable values and would fit the logarithmic scale the
best. Depending on scenario, five bins with centers at %, ]5, 1,2, 4 must be sufficient
for accurate results.

The remaining Az and Ay are separated in G bins, G is a constant depending
on the size of input images, the scale of image descriptors and objects’ struc-
ture. Paired with the maximum distance of the available individual features, we
normalize Az and Ay relative to GG, making them scale invariant.

4.2.2. Pairs creation

In respect to the application scenario, an algorithmic decision must to be made, in
which way the local descriptors are merged to a pair. Even with a small number of
local descriptors® the number of pairs could increase significantly. In our system
we implement the pair creation as follows:

Let L be the distance matrix for all 4,5 € {1,..., N}, where N is the number of
interest points:

Li=|[{ =*)]—1| ] ) (4.2)
JH(M) (w 2
Maximal distance for two local descriptors in a pair is defined as
s S0 L (4.3)
Pmax = E : i,;}ga:},‘(j\! ij z

We limit the maximum distance by the factor of % First of all, we obtain a smaller
list of possible pairs. Second advantage is the reduction of “outlier”-pairs across
the global appearance of an object, which are possibly sensitive to registration
errors. Instead, the key points in the margin areas of the images can be still
“connected” by multiple intermediate stops or “bridges” (that is, by a sequence
of pairs).

TWithin the scope of this work we chose to create more key points in each input sample, as it
would be necessary in a real world application. Thus, we obtain a high number of pairs and
determine their relevance later (see chapter 5). This procedure allows to control the error
before feature creation and to create comparable experimental settings.
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4. Pattern Analysis via Ordering Local Features

In respect, minimal distance is defined as:

1
Tinin = c i (4.4)

The number of bins, G, virtually creates a G x G grid over the image (see figure
4.1). The coordinates of all key points are correlated to the cells of this grid by
the quantization step. Thus, we set the minimal distance to 1 grid unit.

Then, let F be the pairs set, such that

ki < ]{.‘j, Lij < Tmax } (/1 5)

F={fi|_,-:V7j:Vj7ézi: :

k?? = k'j: T'min = LU < Tmaz

where 4,7 € {1,..., N}. In other words, we select such pairs with the maximum
distance of 7,4, between the key points if the key points correspond to descriptors
of different clusters. For pairs with descriptors from the same cluster we apply an
additional minimal distance requirement to limit the number of “uninteresting”®
pairs, as direct neighbor key points are most likely to have similar descriptors and
thus, to belong the same descriptor cluster.

4.2.3. Set-of-words

A subset selection on the above bigram local features is required to determine the
distinetive ones before we can use them for recognition. For that we create an
occurrence matrix of our features regarding them as visual words (i.e. by string
matching or a hashing function) and apply the method presented in chapter 5. As
result a subset for each class with distinctive visual words is returned.

Similar to the popular bag-of-words representation [27, 35, 40, 41] in context of
text categorization, we utilize “set-of-words” representation for the classification.
While bag-of-words has been proved to work with context-free features, it is not of
interest in our case, where visual words stand for spatial context and furthermore,
are of distinctive nature through the feature selection process. These two steps re-
place the statistical measure of bag-of-words on individual feature representation.
Even worse, the statistical aspect would introduce more error on the confidence of
the distinctive visual words by making them dependent on the number of similar
pairs, and thus, dependent on the key points — which number is in respect sensitive
to the method of key point localization.

. 7 . T .
°In terms of information theory, i.e. feature vector (1,0,0,0, &, k;)" represents only k; - which
is an individual feature.
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5. Keyword Selection

In this chapter we present an approach for feature selection. We combine the
definitions on feature relevance [26] and document frequency measure from text
categorization field to create a simple, yet promising linear scoring function for
discriminative features.

In general, there exist two main ideas which describe features’ role in classifica-
tion [11]. The first one gives the importance to the most common attributes,
where the classification depends on partitionability of feature values, for instance,
simple classification problem square vs. rectangle with “height” and “width” as
attributes. The second idea concentrates on the rare or discriminative features.
In this case, one or more dimensions belong to a specific class and build a class
specific sub-space. For the above problem, such attribute could be (a fuzzy defi-
nition of) “equal sides”. In our setting of car manufacturer’s logo recognition, a
distinctive feature set seems more desirable as car logo classes resemble each other
In many aspects of appearance and geometric constraints.

Further, two major types of feature selection are presented in [26]. Their important
difference lies in the utilizing the wrapper mechanism for decision evaluation using
the classification results with the last selected feature subset. The wrapper model
delivers better results as there is no need in defining principal factors, responsible
for the relevance of features. With the help of an induction function the previous
feature subset is modified and tested on some data set. Test results influence
the induction algorithm to find a better feature subset. The big disadvantage
of a wrapper method in contrast to its counterpart filter method is the iterative
approach and therefore, higher computational complexity. In a high dimensional
problem like ours, we decide to employ a filter method.

In general, our problem has a major characteristic, or even challenge, of text cate-
gorization: the high dimensionality of the feature space, which needs an aggressive
dimensionality reduction. Similar to text categorization, it is our task to elimi-
nate the non-informative terms and to select those terms which describe a specific
category in the best way. On the other hand, our “terms” may be uncorrelated in
their nature unlike the human language and its words. This behavior is interesting
enough to be kept traced in the future.
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5.1. Scoring Function

As shown in previous chapter, in our setting the transition from feature vectors to
visual words is likely to reveal a big number of keywords, due to the wide range of
possible assignments — unique words — in a bigram local feature vector. Therefore
a hard decision function is needed to reduce the set to only few of them while
assigning well distinguishable scores. The score should decrease fast enough from
1 to 0 in order to eliminate the mass of irrelevant keywords, and thus, to achieve
an aggressive dimensionality reduction.

As shown in [29], document frequency proved to be an adequate measurement
of term goodness and delivered almost the same results in comparison to more
complex methods of feature selection. On the other hand, since the document
frequency could not perform an aggressive dimensionality reduction, we don’t
intend to use it for feature selection itself in a direct way, but rather utilize it for
the initialization of our method to rank visual words.

The main idea is to construct a set of rules with compliance to definitions of
feature relevance found in [26]. However, in terms of the more complex wrapper
model, those definitions are based on prediction accuracy. In order to utilize the
simpler filter model, we use the document frequency as an estimation function for
recognition accuracy. Indeed, this assumption is not groundless if we examine the
document frequency in a class-wise manner. Obviously, a feature present in the
majority of instances of class ¢ would contribute to its recognition accuracy if it
doesn’t occur in classes j, 7 # 1.

Following rules were picked to define the major behavior of the scoring function:
1. ignore words occurring only in few documents of this class - irrelevance
2. prefer words with high ranks only in this class — strong relevance

3. degrade words with low ranks in other classes — weak relevance

Let 1. be a set of documents belonging to one class ¢

-Dc = {d;. : da € (.‘} (5}.)
and D, > 74|
" == [ 2} 1"1,.“' e
df(:‘w == |Dc| (0.2)

be a class specific document frequency for word z,,, normalized by the number of
documents of the corresponding class ¢. Previous approaches didn’t consider the
class-wise aspect and sum across all classes.
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Figure 5.1.: A comparison of given document frequencies of a small number of
words of one specific class and their importance (scores) considering
a cross-class correlation.

We further define two thresholds ¢, and ¢, which values are to be determined
empirically. The first threshold ¢, describes the document frequency at which a
word is good enough to be considered as relevant. t, stands for the tolerance
of some possible noise for a specific word across other classes. The document
frequency below t, will be ignored and considered to be zero. Therefore the
document frequency between t,, and ¢, will mean weak relevance®.

Using them we create a scoring function

d:fcw . Zz |{df:w : dfill’ = tﬁ}|
2 |{df¢'w : dzlfi-tn = [’w'}l c

Sew = |{d:fc'w : dfcw = fr}l z (5'3)

where i € {1,...,C} and where C' is the number of all classes. All the terms in
this equation represent the above rules in the same order as we defined above. The
score matrix S € [0, 1]0"”" consists of the elements s.,, where W is the number
of all words.

The returned result and the functionality should be understood in the following
way. The score is 1.0 if the word occurs in all of the documents in only one class
with no occurrences in any other class (except for noise). Any other significant
presence (= t,.) of this word in another class cuts its score in half (for further

lin this case, less degradation in score
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5. Keyword Selection

classes %, _];, ...) and less relevant occurrence reduces the score only marginal for

the first foreign class, but with increasing penalty for further classes.

As a rule of thumb, we can conclude that every score above 0.5 belongs to a
class-specific distinctive visual word.

An example of the effect on document frequencies after applying the scoring func-
tion can be found in figure 5.1. Here we can see that only some of the words with
high document frequency in a specific class are able to keep their scores after the
cross-class comparison. In other words, most of them have high document fre-
quencies in other classes making them useless as a distinctive feature. Similar to
text categorization, we have such “stop words” - but in our abstraction they just
mean general appearance or structural constraint. That is, all classes of round
logos would have visual words describing the geometry of a circle.

5.2. Subset Selection

After having computed the score matrix S, we have to choose a “good” subset of
features for each class. However, the number of distinctive visual words is going
to be various depending on the logo class and its similarity to remaining classes.
To reduce the computational overhead, we estimate the number of top highest
scores to be considered:

%]

1
N=FvZHSm:Siw}O,Vw=1,.‘.,W}' (5.4)

=1

Further, an average score for each class of the top N words is defined by

1 N
Ge= 5" gsd (5.5)
where such i is
I Seky = Seky VI =i ki=1,... WL (5.6)
Let v, be a partial set of visual word labels (indexes) for class ¢
Ve = {“}13 s u"n} sy Sew; = Qe (57)
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Figure 5.2.: Scores among all classes. This heatmap reveals the distribution of the
scores for all classes and for the best 50 keywords.

then the resulting visual words subset V' is

o
V = U V; (5

i=1

oo

5.3. Conclusion

In figure 5.2 a score matrix for the first 50 best words is presented. Truly, not all
of the classes could gain the highest score of 1.0. That is, there are no perfectly
distinctive visual words or bigram local features available. There are some evident
reasons for this behavior.

At first, if we consider, for instance, the class with highest number of distinctive
keywords number 2 and 16, which are Audi and Mercedes-Benz respectively, the
reason is self-explanatory: their form and shape differ in significant way from
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those of other car logos. Meantime, some poor candidates like class number 4, 5,
7, 17 and 27 - Buick, Chevrolet, Dodge, Mitsubishi and Pontiac -~ confirm the
above assumption on geometric appearance on the negative side. Especially logos
of the last three ones represent challenging shapes of square?, three triangles and a
single vertically stretched triangle. For such cases, a single bigram local feature is
not distinctive enough. We expect improvement with extension to more complex
feature structures. Further, the high variance in logo samples applies to all of
the negative list, but significantly to Buick and Chevrolet (compare figure 6.1).
This results in trouble finding common keywords for major portion of the class
data set, yet distinctive in contrast to similar looking logo classes. However, it is
likely to have diminished influence of the effect — as for pair representation — on
classification accuracy due to multi-dimensional (multiple visual words) represen-
tation. Higher complexity grade than a pair of the proposed bigram local feature
is required for better results when distinguishing similar, elementary shapes.

2details of Dodge’s bullhead are almost always lost, so there is only the boundary shape available
which is almost rectangular.



6. Experiments and Evaluation

After we have presented our approaches, a set of experiments need to be done to
do a comparison to other baseline systems in terms of recognition performance.
It is of high interest to explore the performance improvement between global and
local representation. The latter one is separated into individual feature represen-
tation in comparison to our bigram local feature. Furthermore, some variables
ought to be empirically estimated for an appropriate system initialization. While
presenting the results we are going to discuss them and to make an evaluation in
their deviation. But let’s describe the system setup first.

6.1. System Setup

6.1.1. Data Sets

For the upcoming experiments pictures of cars were taken on an outdoor parking
lot. In different sessions we were able to to capture various weather conditions, as
sunshine, overcast, rain, and snow. With the high number of cars and the frequent
alteration in their art (manufacturer, make and color, with additional changing
weather conditions), almost all of the captured samples reveal a unique shot of a
vehicle.

As this work emphasizes only the feature extraction and classification part of
a recognition process, we assume an a priori known position of a logo on each
image, and skip the detection part in our standalone system — for which the
detection is not less challenging as the classification problem itself. But in any
proposed scenario for car manufacturers’ logo recognition (see section 1.2), the logo
position will be either known or easy predictable from the higher knowledge of
the main system. For instance, knowing the position of the corresponding vehicle
or possessing knowledge of the image segmentation can deliver high probability
regions for the logo position. A local detection in this areas of interest will be a
much smaller effort in comparison to detection on the complete image. Thus, we
select the logo position in the images manually and crop them with randomized
size and horizontal /vertical shift in position to simulate an inaccurate detection.
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Figure 6.1.: Sample images from the database. Actual images used for recognition
with obvious challenging appearance: (1) Chevrolet, (2) Nissan, (3)
Buick, (4) Dodge.

All images were manually labeled into 27 classes of car manufacturers. FEach
class was divided in a training and a testing set with a proportion of 50%-50%.
For most of the experiments a twofold cross-validation is used to evaluate the
results to eliminate the random factor favoring better scores depending on sample
selection.

6.1.2. Feature Sets

To compare the proposed feature, we created several feature sets. All of them
base on the same data sets, that is, the features were built on exactly the same
logo samples in order to be able to measure and compare feature performance in
a credible way. Following three sets were defined:

e Global features: Often found in appearance-based approaches. We use the
whole logo crop normalized to the size of 16 x 16 pixels as input vector for the
utilized classifiers. However, the dimensionality of the input vectors is rather
high with 256. For comparison, we additionally apply principal component
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Figure 6.2.: Feature set creation and inheritance. This diagram shows the

schematic way from data sample to feature vector. We use identi-
cal data samples for feature creation. Thus, a comparison on the
feature level is possible.

analysis (PCA [12]) for dimension reduction. Further, we extract Gabor
feature for an alternate global representation.

Individual local features: Those are local features as used in broad sense
of this term in previous work. With clustering the local image descriptors
we obtain “visual words” and utilize the bag-of-words representation for
classification. For a plausible comparison to the proposed pair feature, the
local descriptors were extracted with the same SIFT approach ([30] and
introduction in appendix A.1) on the same set of interest points.

Pairs features: This feature set is based on in the chapter 4 presented pro-
posal. We used the same database of local features but clustered the image
descriptors differently to create our bigram local feature. Visual words ap-
proach was applied on them as well. By reason of high dimensionality we
utilized the own feature selection method (see chapter 5) and chose the set-
of-words representation (see section 4.2.3 and figure 3.1).

An overview and relations between the feature sets are shown in the figure 6.2.



6. Experiments and Evaluation

6.1.3. Preprocessing

In section 1.1 presented challenges require a careful choice of general, vet dis-
tinctive feature base for successful recognition process. According to our scenario
such classic information like color, size, or shape can be easily disregarded. With
shadow impact and alternating fore- and background luminance intensity even
gray-scale representation could result in unsatisfactory recognition rates. Thus,
we decide to choose the most robust representation under the given conditions:
edges.

SIFT features are known to be sensitive to non-linear lighting changes [30], i.e.
light source and direction alteration for 3D objects. Therefore, we are going
to apply multiple preprocessing methods for the input data and to evaluate the
impact on the results. We chose the following preprocessing arts:

e (ray: no preprocessing (except for obligatory normalization). Gray-scale
images are usually used for SIFT extraction.

e Fdges: edges representation, achieved with Canny filter.

e SQI: self quotient image approach [23] applied for lighting invariant repre-
sentation as known in face recognition.

With these three methods we want to do a basic exploration of preprocessing
impact on all feature sets described above. We expect to see different results on
the challenging conditions of the collected data.

6.1.4. Training Classifiers

Recognition performance is known to be dependent on the choice of the classifica-
tion method. Thus, two classifiers will be used for the experiments to reveal the
importance of representation and feature extraction.

e kNN: is broadly used for classification problems and therefore well-known
for its simplicity, fast performance and stable recognition rates. A summary
on this classifier is presented in appendix B.2.

e SVM: support vector machine algorithm proved to deliver state-of-the-
art high recognition performance even on complex distributions in high-
dimensional feature space. For optimal performance we referred to [39] and
utilized radial basis function (RBF) K(z,y) = e~ "l*=¥I° 5 = 0 as kernel.
Then, we searched for best parameters for RBF kernel, C' and 7, by cross-
validating the test data set. This ensured the optimal recognition perfor-
mance of support vector machine, which is known to be extremely parameter
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dependent [39]. An introduction to SVM classification is given in appendix
B.1,

All classification experiments are conducted as two-fold cross-validation by ex-
changing the test and training data sets. This way we are going to minimize
the dependence of recognition performance on the randomness factor of data sep-
aration. Further, we concern 50%-50% data sets to be more comparable to a
real world application, as opposed to, sometimes too often used, ten (or higher)
fold cross-validation. Obviously, with our data separation it is easier to judge on
the features’ role in the recognition task by stressing the classifiers under more
challenging conditions, in terms of amount of test and training data.

6.2. Performance Comparison

For performance comparison we are going to use the overall recognition rate:

) ? 1 | Di| My
H = =1 l i 12 (6-1)
i1 1Dl
where M is a confusion matrix
Jn"-[e,_) _ |{dk‘ € Dj ; h(dk) = Z.H (62)

| D]

where D; is the set of documents/images from class j, and h(dy) is the predicted
class label after the classification.

Further, we exchange the test and training data sets and rerun the experiments
to obtain a two-fold cross validation in order to get data set selection unbiased
results.

The experimental results are presented in figures 6.3 for visual comprehension and
in table 6.1 for numerical reference.

6.2.1. Global Features

Evidently, global representation methods fall back behind other two approaches -
regardless the classification method. While “gray” and “edge” preprocessed inputs
show low recognition accuracy, a 256-dimensional “SQI” [23| preprocessed feature
achieves equal recognition rates with 32-dimensional Gabor [42] representation. To



6. Experiments and Evaluation

ENN | Edges | Gray | SQI | Gabor | @
Global | 25.6 | 40.7 | 52.1 | 51.7 | 39.5
Indiv. local | 67.6 | 64.1 | 55.1 - 62.3
Bigram local | 82.8 | 78.8 | 76.2 - 79.3

SVM | Edges | Gray | SQI | Gabor | @
Global | 31.4 | 479 [51.8 | 51.8 | 43.7
Indiv. Local | 85.7 | 79.3 | 70.5 - 78.5
Bigram local | 87.4 | 83.8 | 81.8 - 84.3

Table 6.1.: Summary on recognition rates (2-fold CV in %) for all preprocessing
methods. Gabor as comparison to global features, not in the average,

investigate this, we further applied PCA [12] to all three 256-dimensional global
features. The results are presented in table 6.2 and show the same behavior analog
to Gabor filter. Thus, it was impossible to improve this score in a significant
manner. Then, we enlarged the crop size to 32 x 32 pixels to examine if it would
improve the recognition performance. As shown in the same table 6.2, it was not
the case. This is true for both classifiers. Obviously, neither further improvement
is able to replace the lack of representation information, as global features fail to
capture it in a class-wise close manner.

The impact of preprocessing method is high, especially for the ANN classifier.
Unprocessed, trivial gray-scale image has been confirmed to be unsatisfactory as
a feature. Though it was evident, that an edge map wouldn’t make much sense
for the given configuration, we used it in the global representation for the sake of
completeness.

ENN | SQIL | Gray | Edge | @ Gray 32 x 32 | Improvement

Global | 52.1 | 40.7 | 25.6 | 39.4 40.9 0.2

+ PCA 32dim | 46.6 | 41.4 | 26.3 | 38.1 40.9 -0.5
Improvement | -5.5 | 0.8 0.7 | -1.3

SVM | SQI | Gray | Edge | O Gray 32 x 32 | Improvement
Global | 51.8 | 47.9 | 31.4 | 43.7 45.1 -2.8
+ PCA 32dim | 48.9 | 54.8 | 33.0 | 45.6 54.4 -0.4
Improvement | -2.9 | 6.9 1.6 1.9

Table 6.2.: Dimension reduction with PCA and 32 x 32pix input (2-fold CV in %).
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Figure 6.3.: Experimental results. Comparison between applied preprocessing
methods for three feature sets and two classification methods ANN
and SVM.

6.2.2. Individual Local Features

While a comparison of our feature to global representation would be less fair, this
is the real baseline system, in terms of similar configuration and closer relation to
our approach.

First of all, our assumption on edge preprocessing has been proved to outperform
the common gray-scale appearance for SIFT region patches for this scenario.

However, SQI falls back behind on the local features, even by featuring the edge-
like appearance. We assume, that this behavior can be traced back to the “incom-
patibility” with SIFT local image description so far, that the important distinctive
edges of SQI are weaker or of low intensity in comparison to general high intensity
edges, which the SIFT image description is sensitive to.

If we compare the recognition rates of both classifiers, we see an overall improve-
ment of 15% for the SVM classification method. In our opinion, this an evidence
of challenging and probably non-linear distribution of feature vector projections
in the feature space. Thus, the bag-of-words representation of individual local
features is not optimal and has much room for improvement.

The advantage of local representation is obvious for our setting. The improvement
in prediction accuracy is very significant with =~ 15% for kNN and = 34% for SVM
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ENN || AR best/worst | rel. to worst | rel. to best || std. dev. o
Global 26.5 +103.5 -50.7 13.3
Individual 12.5 +22.7 -18.6 6.4
Bigram local 6.6 +8.7 -8.0 3.3

SVM || AR best/worst | rel. to worst | rel. to best || std. dev. o
Global 20.5 +65.6 -39.6 10.8
Individual 15.2 +21.6 -17.7 7.6
Bigram local 5.6 +6.8 -6.4 2.8

Table 6.3.: Stability of features over different preprocessing methods (in %). It is
evident, that global features need a most careful choice of image pre-
processing. The proposed bigram local feature is the most insensitive
in this comparison.

classification, for best results in the group accordingly.

Still, the results exhibit a high preprocessing dependent behavior, where kNN has
a large gap of &~ 12.5% between the best and worst preprocessing method, as well
as SVM with = 15% difference. This makes it clear, that this individual feature
representation is sensitive to image preprocessing methods as shown in the table
6.3. Despite the fact, that the proposed bigram feature is the most insensitive to
preprocessing methods, its robustness lies in the design as both our feature and
individual local feature use the SIFT approach for interest points description.

6.2.3. Pairs Features

The proposed bigram local feature showed best performance during all exper-
iments. This behavior can be observed regardless the choice of preprocessing
method. Further, the improvement was confirmed with both classification meth-
ods.

Before we compare the pair feature to other approaches, there are some points of
interest in the experimental results. Hence, the striking steadiness of the results
(in contrast to other representation approaches) across the different preprocessing
methods is summarized in the table 6.3. The differences between the maximal and
minimal recognition rate average out to around 6% for each classification method.
That is, the design of the proposed bigram local feature is less appearance depen-
dent in general. The information gain through incorporated spatial constraints
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makes it possible. On the other hand, the proposed edge preprocessing for image
descriptors enhances the prediction significantly relative to other experiments.

The comparison of the classifiers performances leads to a conclusion of almost
optimal representation for the given problem of logo recognition. The kNN method
closes on the SVM classification, which has in average 5% better accuracy in each
preprocessing method. We see, that there is still some room for improvement for
our features and thus, to extend the work to a more complex designs than pairs.

A major advantage is, on the other side, that the proposed bigram local feature
representation enabled us to achieve a comparable prediction accuracy with a
much simpler and, in terms computational complexity, cheaper algorithm as kNN,
which is significant.

If we compare this representation method to the baseline individual features, an
overall improvement is evident. On the side of SVM classification it is less with
4.9% in average and 1.7% for the best edge preprocessing. With kNN the proposed
representation achieves outstanding 17% average gain in prediction accuracy with
15.2% again for the best edge preprocessing.

The question of appearance independent design of the proposed bigram local fea-
ture can be further confirmed through the comparison to the individual local
representation. Thus, both of approaches use the SIF'T image descriptors for the
interest points, which is known to deliver most invariant representation [31], but
obviously they gain much more insensitivity to appearance when paired with our
geometric constraint.

6.2.4. Evaluation Summary

The set of experiments on car manufacturer’s logo recognition has confirmed the
advantage of local representation in contrast to global one under challenging con-
ditions. Among the two local approaches, the proposed pair feature has been
proved to capture the variety in the data in a better way, with less sensitivity
to appearance. Further, the feature was more generic such that both utilized
classification methods achieved comparable performance.

During the experiments an interesting behavior of prediction accuracy in relation
to image preprocessing was revealed. They correlated in such manner, that any
preprocessing method, which enhanced the recognition rate for global representa-
tion, showed worse results in local approaches and vice versa. Even this behavior
seems to be not have been of interest before and was discovered by accident in this
setting, it is of believable nature, as both of the global and local representation
have oppositional purposes and design attributes.

a1
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7. Conclusions and Future Work

The goal of this work was to design a new representation approach which depicts
a complex pattern or sequence based on local descriptors. We examined the
simplest of such representation: a pair of local descriptors. In terms of textual
categorization we called such pair “visual word” [27]. In the training phase each
class was assigned a set of visual words which describe the target class in the best
way — “keywords” in terms of human language. During recognition we matched
the detected visual words to our trained vocabulary in order to predict the labels
in the test data set.

In the scope of this work we applied our approach to the car manufacturer’s
logo recognition in a scenario with extreme challenging conditions. Among the
two local approaches, the proposed pair feature has been proved to capture the
variety in the data in a better way, with less sensitivity to appearance. Further,
the feature was more generalizable such that both utilized classification methods
achieved comparable performance. A significant prediction accuracy improvement
was observed for a simple, yet very popular kNN classifier in relation to both the
global and baseline local approaches.

We still see much future work. The visual words representation for proposed
bigram local feature proved to be good enough in the context of the pair relation-
ship. With extension to more complex relations and increasing number feature
members, new representation and classification ways are to be examined.

In a final state of this research we see a standalone — as usual for global repre-
sentation — n-gram local feature for distinctive object description and recognition.
In the context of human language we can imagine a complete meaning for “visual
word” as correlation to an object or a class of objects.

On the other hand, it is of interest to employ further optimizations on the feature
sub-level like different local description approaches. For instance, in [28] a new
PCA descriptor for the SIFT approach [30] is presented with even more robustness
to common image deformations.

While we utilized a simple key point detection for local descriptors with aggressive
feature selection in this work, an application of proposed methods like Harris [32],
Harris-Laplace [33], Difference of Gaussian [30], and Harris-Affine [34] for point
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detection would be of interest to evaluate how stable the detection process will
work in order not to disturb the geometric constraint of the proposed feature.

Finally, we presented an approach for feature selection. We combined the defi-
nitions of feature relevance [26] and the document frequency measure from text
categorization field to create a simple yet promising linear scoring function for
discriminative feature selection. Obviously, the method is not limited to our ap-
plication scenario and should be applied to classic feature selection benchmarks.

While we utilized our representation approach for a recognition problem, an ap-
plication in detection approaches is to be explored in the future. With structural
relations within the proposed feature detection of objects becomes more conve-
nient. For instance, face detection seems to be an attractive field of application.

Similar to detection task, we can imagine that our method by design can be utilized
for solving categorizations problems, though some modifications in parameters are
to be expected.



A. Representation Methods

A.1. Scale Invariant Feature Transform

As described in [30], scale-invariant feature transform (SIFT) mainly consist of
four stages:

1. Scale-space peak selection

1o

Key point localization
3. Orientation assignment
4. Key point description
Specific to our setting and a different application manner of SIFT, we utilized a

different approach in key point localization. Thus, we concentrate on introduction
to only the last two stages.

A.1.1. Orientation assignment

The third phase determines the major orientation of the image region around the
proposed key point. With this, any method of image representation of underlying
image patch obtains rotation invariance if the image patch is processed relatively
to its orientation.

The scale of the key point identifies the scale of the Gaussian smoothed image, L,
and makes the computation scale-invariant. For each image sample, L(z,y) the
gradient magnitude m(z, y) and orientation 6(z,y) are computed as following:

m(z,y) = (L(z + L,y) - Lz - L,y + (L(z,y + 1) — Liz,y — 1)) (A.1)

oo (Lzy+1) = L(z,y—1) .
f(z,y) = tan (L(;r. R T lqy)) (A.2)

o
zn
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Figure A.1.: Local image descriptors of the SIFT approach as in [30].

In the next step an orientation histogram is built based on # with 36 bins covering
the whole range of 360 degrees. Each sample is weighted by the gradient magnitude
and by a Gaussian-weighted circular window (¢ is 1.5 times the scale of the key
point). The dominant directions are identified by the peaks of the histogram. With
multiple peaks multiple key points are created with difference in the corresponding
orientation.

A.1.2. Key point description

In the final stage, using the orientation and scale from the previous step, a descrip-
tor is built with the property to remain invariant to affine image deformations,
based upon the image gradients in the neighborhood of the key point [28].

First, the gradient image around the key point is smoothed by Gaussian blur
depending on the key point scale. Magnitudes and orientations of this image are
then computed relatively to the key point orientation (by rotating the descriptor
coordinates and gradient orientations). Small arrows in figure A.1 represent the
orientation of each location.

Further, the magnitudes are weighted by a Gaussian window around the key point
in order to prevent high emphasis on the edge regions which are more sensitive to
misregistration errors and transformations.

The descriptor (illustrated on the right side of figure A.1) consists of 4 x 4! ori-

'Tn the figure a 2 x 2 subregions are presented for better visualization purposes.



A.2. Self Quotient Image

entation histograms. This allows significant shift in gradient positions by still
contributing to the same orientation histogram.

To avoid all boundary effects like abrupt histogram changes due to sample shift
from one to another histogram, trilinear interpolation is used to map each gradient
into the adjacent histogram bins. That is, each entry is weighted by the distance
to the central value of the bin.

The histogram values over all histograms create the descriptor vector, which has
128 dimensions with 8 orientations within the 4 x 4 array of histograms. This
representation is brightness invariant as it is computed on the image gradient. To
prevent contrast dependence, the feature vector is normalized to unit length (as
contrast affects the gradient magnitudes).

As to non-linear illumination changes, the author of [30] proposes a threshold of
empirically estimated value of 0.2 to reduce the influence of large gradients. Those
magnitude but not the orientations are most likely to be affected by not trivial
illumination changes.

A.2. Self Quotient Image

In our system we utilized the self quotient image (SQI) approach [23] as a simple
case of lighting independent representation, The method is based on smoothing
filtering, for example Gaussian filter.

The self quotient image @ of an image [ is defined as following:

1

I .
Q:f:F*I a-3)

where [ is the smoothed version of I, F' is the smoothing kernel. The division is
done pixel-wise.

The major advantage of this representation and its simplicity is the lack of neces-
sity of any training process of the target classes as it uses the original image itself
to obtain this representation.

Indeed, the result @@ depends much on the choice of F. Thus, with a small kernel
size we approximate to one and with too large values halo effects to be expected.
This influence is minimized by utilizing multiple kernel sizes:

1wz, |
=Y we=1 (A.4)
N
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Figure A.2.: Sample images with SQI preprocessing from [23)].

where W is the weight, G the Gaussian kernel, N normalization factor and Q is
the convolution kernel size. This creates an anisotropic smoothing filter.

The implementation of the SQI approach is summarized below:

1,

b

Choose some smoothing kernels Gy, G, ..., G, and compute corresponding
weights Wy, Wa, ..., W, then smooth I by each weighed anisotropic filter:

. 1 :
-[k =I® NMﬂAGk,.{i = 1,2,...,72. (AS)
Compute self-quotient image
I
I

Transfer it with a non-linear function 7" to compress the dynamic range for
recognition results (i.e. log, arctangent or sigmoid):

Dy = T(Qx) (A7)
Sum up the transferred results
Q=Y mD; (A.8)
k=1

where my. are the weights for the filters and can be set to 1.

In figure A.2 some examples of SQI are presented.



B. Classification Methods

B.1. Support Vector Machine

The support vector machine (SVM) classifier finds a linear hyperplane which sep-
arates two-class data with maximal margin [38]. The margin is defined as the
distance of the closest training point to the separating hyperplane. For given
observations x; € R", and corresponding labels y; € {=1,1}", one finds a classi-
fication function:

[(zx) = sign(w’z + b) (B.1)

where w, b represents the parameters of the hyperplane.

Data sets are not always linearly separable. The SVM takes two approaches to
this problem. Firstly it introduces an error weighting constant C' which penalizes
misclassification of samples in proportion to their distance from the classification
boundary. Secondly a mapping ® is made from the original data space of X to
another feature space. This second feature space may have a high or even infinite
dimension. One of the advantages of the SVM is that it can be formulated entirely
in terms of scalar products in the second feature space, by introducing the kernel

K(u,v) = ®(u) - d(v) (B.2)

Both the kernel K and penalty C' are problem dependent and need to be deter-
mined by the user.

As there exist some kernel functions, a radial basis function
K(u,v) = e Mlvl® o 5 (B.3)

can be considered as most reliable in terms of classification performance (39].

In the kernel formulation, the decision function can be expressed as



B. Classification Methods

f(z) = sign (Z oK (z, 1;) + b) (B.4)

where z; are the training features from data space X and y; is the label of z;.
Here the parameters a; are typically zero for most i. Equivalently, the sum can be
taken only over a select few of the z; . These feature vectors are known as support
vectors. It can be shown that the support vectors are those feature vectors lying
nearest to the separating hyperplane.

In order to apply the SVM to multi-class problems it is useful to utilize the
one-against-all approach. Given an m-class problem, m SVM's are trained, each
distinguishes images from some category ¢ from images from all the other m — 1
categories 7, 7 # i. The given query image is then assigned to the class with the
largest SVM output.

B.2. k-Nearest Neighbor

The kNN classification method belongs to the simplest and yet well performing
algorithms for many classification problems. The ranking in kNN is based on the
labels assigned to the k nearest training samples of the input. The similarity to
the neighbors is measured by the (Euclidean) distance between the two feature
vectors.

Thus, for a query y from the feature space K™ and m training features z; € K™,i =
1...m, the k closest neighbors are defined by

t = arg min ([lz; —yll,) (B.5)

and L(t) is the corresponding label.

The prediction result R is usually the label of the majority of the neighbors, such
as

R = L(arg max L(t;)) (B.6)

tid=lak
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