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Zusammenfassung

Koreanisch ziahlt zu den agglutinierenden Sprachen. Verwendet man die
aus dem Agglutinationsprozef3 entstehenden Einheiten — genannt Eojeols —
als Worterbucheintrage fiir ein Spracherkennungssystem, wéachst die Grofe
des Vokabulars etwa linear mit der Grofle des vorliegenden Textmaterials.
Auflerdem erreicht die out-of-vocabulary (OOV) Rate Gréfenordnungen, die
ein leistungsfahiges Spracherkennungssystem unmoglich machen. Es werden
folglich geeignete sub-Eojeol-Einheiten als Worterbucheintrage benotigt.

Bisherige Arbeiten verwenden hierzu aufwendige Expertensysteme, die die
Eojeols in ihre Morphemkomponenten zerlegen. Diese Morphemeinheiten
werden dann als Worterbucheintrage verwendet.

In der vorliegenden Arbeit wird ein neues Verfahren zur Findung geeigneter
Einheiten vorgestellt, das ausschliellich datengetrieben arbeitet. Ausgangs-
punkt ist Textmaterial, in dem samtliche Eojeols in ihre Silbenkomponenten
zerlegt sind. Dann werden wiederholt bestimmte Paare von Einheiten zusam-
mengefiigt. Die Wahl der zu verbindenen Paare wird dabei so gefallt, dafl
die akustische Verwechselbarkeit der Einheiten reduziert wird.

Die Erkennungsleistung der resultierenden Systeme wird prasentiert und
mit der Erkennungsleistung entsprechender morphembasierter Systeme ver-
glichen. Das beste, auf dem datengetriebenen Ansatz basierende System
erreicht eine Eojeol-Fehlerrate von 24.6%. Das entspricht einer Silben-Fehler-
rate von 14.5% und einer Phonem-Fehlerrate von 9.9%. Dies vergleicht sich
mit einer Eojeol-Fehlerrate von 24.0%, einer Silben-Fehlerrate von 13.0% und
einer Phonem-Fehlerrate von 9.4% fiir das beste morphembasierte System.
Die beiden Anséitze bringen vergleichbare Leistung, und man kann folglich auf
die aufwendige Konstruktion von Morphemzerlegungssystemen verzichten.
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Abstract

Korean is an “agglutinating” language, i.e. verbs and nouns consist of a stem
and various appended suffixes which have grammatical function. Using the
units that result from the agglutination process, called eojeols, as dictionary
entries for a speech recognition system makes the vocabulary size grow lin-
early in the task size. Furthermore, an extremely high out-of-vocabulary
(OOV) rate has to be dealt with which makes the development of a high
performance speech recognition system almost impossible. A solution to this
problem is to work with sub-eojeol units.

Previous work has used complex expert systems that split eojeol units into
their morpheme components. These morpheme components are then used as
dictionary units.

This work presents a new data-driven approach to determine appropriate dic-
tionary units. The approach starts with a text corpus where the eojeols are
split up into their syllable components. Then it repeatedly merges certain
pairs of units. The choice of the unit pair to merge is done so as to reduce
acoustic confusability of the units.

The recognition performance of the resulting systems is presented and is com-
pared to the performance of morpheme based recognition systems. The best
data-driven system we present has an eojeol error rate of 24.6%. This corre-
sponds to a syllable error rate of 14.5% and a phone error rate of 9.9%. The
best morpheme based system has an eojeol error rate of 24.0% corresponding
to a syllable error rate of 13.0% and a phone error rate of 9.4%. Thus, the
two approaches show comparable performance yet we did not need to rely
on expert knowledge to generate an appropriate set of dictionary units.
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Chapter 1

Introduction

1.1 Motivation

Speech is the primary mode of communication among humans. In order
to make the interaction between humans and computers more user-friendly,
speech must be considered an essential input component.

Over the last two decades, intensive research in the field of automatic speech
recognition and a significant increase in available and affordable comput-
ing power have led to practical solutions to this problem. Current systems
achieve a recognition accuracy between 90% and 100% under certain re-
stricted conditions. Examples of these conditions are a limited vocabulary
size in a well defined task domain, a good-quality microphone and a non-noisy
environment. One focus of current speech research is to eliminate these lim-
itations.

A great deal of effort is spent developing high performance speech recognition
systems for large vocabulary recognition tasks. Each new language that is
explored for large vocabulary speech recognition has its own characteristics
which can impose difficulties to the development of a high-performance recog-
nition system. This thesis describes our efforts to develop a large vocabulary
speech recognition system for the Korean language.

1.2 Problem Definition

For most Western languages, e.g. English, the word is an appropriate choice of
vocabulary unit. But for Korean, thejchoice is much more difficult. Korean
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is an “agglutinating” language. The structure of verbs and nouns is sub-
ject to the following rules: A verb consists of a stem and various appended
morphemes that have certain grammatical functions, i.e. indicate tempus,
modality or social relationship between the communication partners. The
syntactic role of a noun is indicated by appending case suffixes to its stem.
We call the resulting “meta”-units eojeols’.

Using eojeols as vocabulary units? makes the size of the vocabulary grow
linearly in the task size. Furthermore, this leads to an extremely high out-of-
vocabulary (OOV) rate. This makes the development of a high performance
large vocabulary continuous speech recognition (LVCSR) system almost im-
possible.

Eojeols are built from only about 3600 different syllables®. Each such syllable
consists of one to four phonemes. Using these syllables as vocabulary units
provides a small vocabulary and the OOV rate is 0%. Unfortunately, due to
their shortness, two problems arise when this approach is used:

e acoustic confusability of syllable units is very high,

e a standard 3-gram language model has very limited scope.

To overcome the difficulties of using either eojeols or syllables we have to
find a more “appropriate” set of vocabulary units that lie inbetween these
two extremes.

Recent work on Korean LVCSR makes use of expert systems which are com-
monly referred to as morpheme tagging systems. These split eojeol units
into their morpheme components. As presented in [33], the resulting mor-
pheme units can indeed be used as an appropriate set of vocabulary units for
a Korean speech recognition system. Unfortunately, it requires a great deal
of effort to develop such a morpheme analyzing system as it involves a lot of
apriori expert knowledge about the morphological structure of the Korean
language.

!Pronunciation: [ajal].

2We use the same set of units in the vocabulary, the dictionary and the language model.
These notions are used synonymously throughout this work.

3Synonymously called characters.
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1.3 Contribution of this Work

This work presents a new data-driven approach to determine appropriate
vocabulary units for Korean LVCSR. The morphemic structure of the Ko-
rean language is ignored for the unit determination. Instead, the problem
is approached from an acoustically motivated side. Roughly speaking, the
data-driven procedure works as follows: In a first pass, each eojeol is split
into its character components. Then, repeatedly, syllable pairs are merged in
order to reduce acoustic confusability of the phone transitions between units.
A vocabulary size of 64k units is used as termination criterion.

The recognition performance of the resulting systems is presented and is
compared to the performance of morpheme based recognition systems. This
demonstrates whether appropriate vocabulary units for Korean LVCSR may
be determined using data-driven methods, without extensive use of aprior:
expert knowledge.

1.4 Organization of the Thesis

This thesis is organized as follows: chapter 2 describes the structural elements
of the Korean language which are relevant to this work. In chapter 3 we give
a short overview of state-of-the-art speech recognition. The intention is not
to give an extensive introduction but to present key concepts and important
notations that are needed as a foundation for this thesis. In chapter 4 we
describe the speech and text data we used. In addition, we explain how
automatic dictionary generation is done and present the baseline structure
of our speech recognition system. Chapters 5 and 6 describe the morpheme
based approach and our new data-driven approach, respectively. In chapter
7 we present and discuss the recognition performance results of the systems.
Finally, chapter 8 draws conclusions and suggests ideas for future work on
Korean speech recognition.



Chapter 2

The Korean Language

2.1 Historical Remarks

A common hypothesis is that the Korean language belongs to the Altaic
family [18]. Other languages in this family include Manchu, Mongolian and
Turkish. But other theories consider Korean an isolated language. It is not
clear how long the Korean language has been spoken. Despite geographic
proximity of the countries, Korean is quite unlike Chinese and Japanese.

The Chinese writing system and the Chinese culture came to Korea about
two thousand years ago. The Chinese influence was very strong and the ex-
isting cultural tradition was widely repressed. It is unknown what writing
systems existed in Korea before the Chinese era.

The Chinese system was used in Korea until the 15th century. Due to its
complexity and difficulty to learn, most people remained illiterate. People
from the upper class were able to use the “foreign” Chinese system because
of their education, but there is evidence that even they found it difficult.
This was due to the significant differences of the two languages, concerning
their phoneme inventories as well as their sentence structure.

The Chinese language consists of innumerous single characters which are
pronounced monosyllabically and have a morphemic function. They can be
pronounced using different tones in order to distinguish homophonic char-
acters. The language is said to be tonal. In contrast, Korean is a syllabic

4
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language, i.e. words are generated by combination of syllables.

After unsuccessful attempts to solve this conflict, King Se-Jong (reign 1419
—1450) initiated the development of a totally new writing system for the Ko-
rean language in the 15th century. In 1420, a Royal institute was established
to develop a Korean alphabet system. Thirteen years later these scientists
presented their results to King Se-Jong. In 1446 — after this language system
had been tested for three years — the King introduced it in a publication
known as &% %2 (Hun-min Jeong-eum)!. A book was published with the
same name, containing the background on this system, the reasons for its
creation, information on its usage and so forth. King Se-Jong wrote in the
book: “Our language is unique, different from that of China therefore we
needed an alphabet of our own. Only scholars or people from the upper class
get the opportunity to read or write. I felt it is my responsibility to enlighten
people as a King so [ have made a new 28 letters and [ wish everyone can
learn this new alphabet easily and use these new letters comfortably in daily
life”.

The &%l A& alphabet was built on a purely phonetic basis and consisted of
28 letters. It has evolved into the modern Korean alphabet, -2 (han-geul),
which has 24 letters. Although Chinese characters are still used today in
conjunction with the Korean alphabet, especially in newspapers, high-level
communication in Korea is possible without using them.

That is why the Korean language often offers two expressions for a notion, a
Chinese one and a pure Korean one. The Chinese characters that are used in
Korean evolved over time, especially concerning their pronunciation. Their
writing form remained mostly unchanged since the Han dynasty (206 BC —
220 AD).

For over 400 years the new alphabet has been ill-treated by nobilities who
still claimed that the Chinese language was the only option. But then the
new system became gradually popular among people of literature.

During the 36 years of Japanese invasion in the early 20th century, it was
forbidden to read or write han-geul or to speak Korean. During that time
the name §FZ was used for the first time to refer to the Korean system. Af-

!The right sound to teach people.
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ter independence of Japan, g2 became the official alphabet for the Korean
country.

Currently, Korean is natively spoken by about 67 million speakers, 63 million
of which live inside Korea. The Korean language is commonly divided into six
main dialects. The Seoul dialect is usually referred to as “standard Korean”.

2.2 3Z (Han-geul) — The Korean Writing
System
The complete Korean alphabet consists of 40 letters. There are 10 basic

vowels and 14 basic consonants. In addition, there are 11 compound vowels
which are combined among the basic vowels, and 5 double consonants.

Vowel | Symbolizes | Actual Form | Phoneme | Romani-
sation
Heaven Not used in isolation - -
— Earth — /i/ eu
| Man | /i/ i

Table 2.1: The three basic vowels.

This section describes the definition of the letters of the Korean alphabet.
The following tables show the original form of the letters, their actual form,
the respective IPA [1] phoneme symbol for their pronunciation and the re-
spective roman transliteration symbol that will be used throughout this the-
sis. Romanisation of the Korean language will be discussed in section 2.5.

The symbols of the three most important cosmic elements heaven “ - 7, earth
“—” and man “ | 7 are used as a foundation for the vowel system. With these
three symbols as building blocks a total of ten basic vowels are created. Two
of these are the earth and man symbols themselves, pronounced as /i/ and
/i/, respectively. These three basic symbols are shown in table 2.1.



2.2. (HAN-GEUL) - THE KOREAN WRITING SYSTEM
Old | Actual | Phoneme | Romani-
Form | Form sation
-~ L /o/ 0
- T /u/
k F /a/ a
1 1 /o/ eo

Table 2.2: Primary vowels.

Four primary vowels are then created by building combinations of earth and
man with heaven. Earth is combined with heaven above it to form the letter
-1, which is pronounced as /o/. Situating heaven below earth creates the
vowel T, pronounced as /u/. Combining man with heaven to its left or
right results in the letters 4 and } which are pronounced as /a/ and /o/,
respectively. The primary vowels are summarized in table 2.2.

Old | Actual | Phoneme | Romani-
Form | Form sation
o A /io/ yo
- T /iu/ yu
; F /ia/ ya
i 3 [ia/ yeo

Table 2.3: Secondary vowels.

Four more vowels — the secondary vowels — are built by combining earth and
man with two heaven symbols. Following the same combination concept for
the primary vowels, this results in the letters 2L, 77, F and 9 with two
heaven symbols to the top, bottom, right and left, respectively. The pronun-
ciations for these vowels are /io/, /iu/, /ia/ and /ia/. See table 2.3 for a
summary.

These ten basic vowels are combined in pairs to form a total of 11 compound
vowels. A summary of the original and actual form of all these letters along
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with their [PA phoneme and roman transliteration symbol is given in ta-
ble 2.4.

Old | Actual | Phoneme | Romani-
Form | Form sation

I-I H /e/ ae

I H /ie/ yae
A 9l /e/ e

Al 9] /ie/ ye
= 1} /oa/ wa
= 1 Joe/ wae
= i Jua/ weo
- Y /o/ oe
~ u /y/ wi
=l il Jue/ we
— - /i/ yi

Table 2.4: Compound vowels.

Five basic symbols were created as a foundation for building consonant let-
ters. These five symbols were shaped after organs in the human articulation
system which produce the sounds. Namely these five basic symbols are 71,
L, @, A and O. The tongue is pressed against the molar teeth to produce
the phoneme /k/ associated with —1. The phoneme /n/ is represented by -
which shows the shape of the tongue while this sound is produced. A front
view of the lips looks like ™@ while producing an /m/. Teeth and tongue
are used to produce an /s/ sound. The symbol A represents this “tooth”
sound. And finally, the circle shaped pharynx (throat) is used to produce
the phoneme /y/. The pharynx is symbolized by ©.

Several more consonants are built by increasing the level of articulation
among these five basic ones. This increasing articulation is represented by

adding further strokes to a letter.

As stated before, the 3+Z letters were developed on a pure phonetic basis.
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While the pronunciation of vowel letters is fixed and an IPA sound symbol
can be associated easily, we can not provide one simple sound symbol for
consonants. This is because the acoustic realisation of a letter is highly de-
pendent on its context. We call this a “variant realisation” or an “allophone”.
So, to introduce the consonant letters here we associate them with their ro-
man transliteration symbol only. For a detailed discussion of the phonetic
and allophonic characteristics of the consonant letters see section 4.4.1.

The definition form of all 19 consonant symbols is displayed in table 2.5.
These symbols are grouped according to the five basic consonant sets defined
above. Table 2.6 lists the original symbols again along with their actual form
and their roman transliteration symbol.

‘ Producing Organ ‘ Basic Consonants Extensions Exceptions ‘
Molar Tooth 1 — T
Tongue L L EL =
Lips ] = II td
Tooth AN AN MM
Pharynx (Throat) O O

Table 2.5: The five basic consonants and their extensions.

2.3 Syllable Construction

The Korean writing system is letter based which makes it fairly easy to learn.
The letters are not written sequentially like in the roman writing systems but
arranged in syllable complexes, also called characters.

The notion of a syllable in Korean is different than in English. A Korean
consonant by itself can not form a syllable. This is because a consonant, if
not followed by a vowel, can not be released. However, a vowel by itself can
form a syllable. In English, a syllable is a sound or a group of sounds accom-
panied by one of four stresses, whereas in Korean it is a sound or group of
sounds which takes up a certain relative space of time like metronome beats.
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Old | Actual | Romani- | Old | Actual | Romani-

Form | Form sation Form | Form sation
] - k [ o m
— 3 kh H H p
T T kk I hva ph
L L n il HH pp
C ot t AN A s
E E th A = c
[C o, t A = ch
o =l r/1 M M Ss
O o ng M FX ce
O & h

Table 2.6: Original and actual form of the consonant
symbols and their romanisation.

A syllable is built according to one of the three structural types CV, CVC
and CVCC, where C stands for consonant and V stands for vowel. These
letters are arranged in an imaginary square according to the following rules:

e The nine vowels that have the stroke standing in a vertical position,
namely }, 4, H, F, 9, H, J, 9] and ], are situated to the right
side of the syllable’s initial consonant, e.g. 1}, ©f, vJ.

e The five horizontal vowels -, a1, 77, T and — are situated below the
syllable’s initial consonant, e.g. 4=, =, 1.

e The seven diphthongs 1], 2}, 3§, 7], d, Hl and - have the syllable’s
initial consonant on the top of their left sides, e.g. =, &, 3].

e The final consonant (CVC) or consonant pair (CVCC) is put at the
bottom edge of the character.

— With a horizontal vowel it is centered horizontally, e.g. &, 55, <,
=
E)\ .

— With a vertical vowel it is located slighty to the right of the hori-
zontal center position, e.g. Z}, 7}, A, W, Zk, 4.
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In the past, the character blocks were commonly lined up top-to-bottom,
right-to-left. Nowadays, they are arranged left-to-right, top-to-bottom.

2.4 Phonetics and Phonology

From a phonetic point of view the following types of syllables are present in
the Korean language: V, CV, VC and CVC. This differs from the graphical
syllable structure presented above in two aspects:

1. A phonetic syllable can have a vowel as its inital sound (V, VC) but a
graphical syllable cannot. This phenomen has historic reasons. These
syllable types will have the consonant character © as initial consonant
in their graphical form but acoustically this consonant is silent, i.e. it
does not have a pronunciation, for example: o] is graphical CV but
phonetical V, g} is graphical CVC but phonetical VC.

2. The graphical type CVCC does not have a phonetic equivalent. One
of the two final consonants is silent unless the second one can be pro-
nounced as initial consonant of the following syllable. This is possible
if the following syllable has a vowel as initial phoneme.

A consonant that stands between two vowels is always pronounced as initial
consonant of the latter syllable.

Korean letters represent phonemes rather than sounds. Phoneme and sound
are sometimes the same, as is the case for the Korean vowels. These phonemes
have a fixed acoustic realisation. See section 2.2 for the IPA based descrip-
tion. A detailed description of the proper articulation of these sounds can
be found in [18,39].

It is more complex for consonant characters. Here, most phonemes are re-
alised with different sounds depending on their position in a word and their
surrounding sounds. These different realisations are called variant realisa-
tions or allophones. The rules for these variants are relatively simple, but to
make the description easier, we define the following abbreviations for groups
of phonemes beforehand: C=consonants, V=vowels, S=sonorants={11,1-,
0,2} and O=obstruents={ 71,=, 0 , A X X, ,3 E 3, T1,TC, 0, A, AK}. Dur-
ing the description, we make use of the basic set operator “\”. A\B means
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“set A minus set B”.

e The phonemes H, © and 1 are lenis plosives that are articulated with
little tension and without aspiration. They are bilabial, apico-alveolar and
dorso-velar, respectively. For each of these phonemes, three allophones exist:

1. Voiceless: [p], [t], [K]

(a) As word initial sound, e.g. ¥], ©} or L.
(b) Inside a word after C\S, e.g. H in 3}4-.

2. Voiced: [b], [d], [¢g]

(a) Inside a word between vowels, e.g. H in 1}n].

(b) Inside a word after S, e.g. H in F3.

3. Unreleased: [p7], [t7], [k7]

(a) Word final position, where the word is followed by an articulation
break, e.g. H in ¢J.
(b) Inside a word before C\{m=,, 2,5}, e.g. 71 in 3HH.

e The phoneme X is a lamino-alveolar affricate articulated with little tension
and without aspiration. The variants are:

1. Voiceless: [¢]

(a) As word initial sound, e.g. %Z.
(b) Inside a word after C\S, e.g. =4}

2. Voiced: [j]

(a) Inside a word between vowels, e.g. 7}&.

(b) Inside a word after S, e.g. FA}.
3. Unreleased: [t7]

(a) Word final position, where the word is followed by an articulation
break, e.g. Hl.
(b) Inside a word before C\{@,, & A, R}, eg. ZHr}.
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e The phonemes iz, E, 3 and X are strongly aspirated sounds correspond-
ing to H, &, 71 and X, respectively. Two positional variants exist:

1. Voiceless: [ph], [t"], [k"], [¢]
(a) As word initial sound, e.g. .
(b) Inside a word after C or between vowels, e.g. \F3, 2ko]|.

2. Unreleased: [p], [t7], k], [t7]

(a) Word final position, where the word is followed by an articulation
break, e.g. ®r.
(b) Inside a word before C\{1@, v & A R} eg. ¢}

e The phoneme A is a voiceless apico-alveolar fricative. Before | and ] it
is slightly palatalised. The variants are:

1. Voiceless: [s]

(a) As word initial sound, e.g. 4.
(b) Inside a word between vowels, e.g. F-<=.

(c) Inside a word after C, e.g. A}

2. Unreleased: [t]

(a) Word final position, where word is followed by an articulation
break, e.g. Hl.
(b) Inside a word before C\{1@, & A R} eg. 3t7.
e The phonemes HH, TC, 77, AKX and A are voiceless unaspirated fortis sounds
produced with a partially constricted glottis and additional subglottal pres-

sure. They are bilabial, apico-alveolar and dorso-velar stops, lamino-alveolar
affricate and apico-alveolar fricative, respectively. Two variants occur:

1. Glottalized: [p’], [t’], [k], [¢’], [s']

(a) As word initial sound, e.g. #-2].

(b) Inside a word after C or between vowels, e.g. 2t ZFX].
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2. Unreleased: [k7], [t]

(a) Syllable final position, followed by an articulation break, only 77
and A appear in this position, e.g. ¥}, 9l 31.

e The phoneme 1@ is a voiced bilabial nasal. It is pronounced as [m] in all
positions.

e The phoneme L is a voiced apico-alveolar nasal. It is pronounced as [n].
In connection with 2 it is subject to assimilation effects. See further below.

e The phoneme © occurs only in syllable final position and is pronounced
as [p].

e The phoneme 2 is a liquida phoneme which has the variants [¢], a voiced
apico-alveolar flap, and [l], a voiced apico-alveolar lateral. These variants
appear in the following situations:

1. Flap: [¢],

(a) As word initial sound, e.g. #}t] 2.
(b) Inside a word between vowels, e.g. 1}2}.
(c) Inside a word before &, e.g. wa}t}.
2. Lateral: [l],

(a) Word final position, e.g. &.
(b) Inside a word before C\{& }, e.g. At}
(c) Inside a word after 2, e.g. E&.

e The phoneme & is a voiceless glottal fricative. Generally it is pronounced

as [h]. In front of |, 7, F, 9, o, 77, 9] and H it is slightly palatalised.
In front of T, Y, 7], 3}, A, ¥ and | it sounds like a bilabial [f]. The

positional variants are:

1. Word initial position, according to above rules, e.g. a}1}.

2. Inside a word, syllable initial position:
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(a) After {m,0,2}, according to above rules.
(b) After O\{ A}, aspiration of preceding consonant, e.g. 13|t}

(c) After V or ., & weakens or even mutes, e.g. B}&.
3. Inside a word, syllable final position:

(a) In front of 71, © and X, aspiration of that consonant, e.g. 1.

(b) In front of A and v, & mutes; A is glottalized, v is lengthened,

e.g. T4, FY.

(c) In front of V, & weakens or even mutes, e.g. .

These allophonic rules specify a consonant’s pronunciation. In the case of
two neighbouring consonants, so called assimilation effects additionally take
place which further alter the pronunciation of the involved consonants. These
effects can be divided into three groups: 1) neighbouring of two sonorants,
2) neighbouring of an obstruent and a sonorant and 3) neighbouring of two
obstruents. These rules are rather complicated. Instead of covering them
extensively, here are some examples. A detailed discussion of the assimilation
effects can be found in [18,53].

Two neighbouring sonorants: If @ is followed by & then this & will change
its pronunciation to [n].

A sonorant neighbours an obstruent: If v is preceded by H then this H
will change its pronunciation to [m].

Two neighbouring obstruents: If A is followed by = then this © will change
its pronunciation to [s].

2.5 Romanisation

The definition and development of the Unicode character coding system since
19912 made it possible to represent the letters and characters of most lan-
guages on a computer system. But up to now, most systems have relied on

2The Unicode Standard Consortium was founded in 1991. Its goal is to develop
“a character coding system designed to support the interchange, processing, and dis-
play of the written texts of the diverse languages of the modern world.”. Visit
http://www.unicode.org for further information.
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the 7 or 8-bit ASCII standard which only provides codes for the characters of
Western languages. To represent non-Western writing systems, for example
the Korean one, it is necesssary to define a mapping of its characters onto
(combinations of) ASCII characters. This is called a transcription system or
a romanisation.

Many systems exist for the Korean language, but none is internationally
accepted as standard. The McCune-Reischauer transcription system is con-
sidered the traditional one and despite its inconsistencies and use of diacritic
marks, it is the most widely used.? Further transcription systems include the
ones proposed by the North Korean and South Korean governments. The
Yale transcription system has been developed with simplicity and consis-
tency. At present, this system is used by most technical papers in linguistics.

The unix tool hcode [72] can convert between several code representations for
3= characters. We use this tool to convert all our 3+= text data into the
hcode-specific transcription system. This system is different from the above
mentioned ones, yet it is very similar to the one proposed by the South Ko-
rean government.

Tables A.1 and A.2 in the appendix show a summary of these transcription
systems.

3Libraries have adopted the McCune-Reischauer system as their standard. Switching
to a new transcription system would be very expensive as for instance all the library
references where alphabetical ordering is used would have to be rewritten or updated.



Chapter 3

Speech Recognition

3.1 Motivation

Speech input is more natural than keyboard input as it is less intrusive to the
user and he is not bound to a hardware device and does not have to keep his
focus on the screen constantly. Therefore, to make the interaction of humans
and computers more user-friendly we have to consider speech an essential
input component. However, there are tasks, like drawing, where other input
modalities are superior to speech.

Applications for speech recognition systems are widespread. For the average
user it would be much more convenient to enter text to a word processing
program via talking than via typing. However, it would, for example, not be
feasible to let several employees use speech input for their word processing
purposes in a big shared office. Speech recognition systems can be used as
part of a speech-to-speech translation system which would allow people to
communicate using different languages [31]. Large amounts of speech data
(broadcast news, interviews, meetings, talk shows etc.) are stored on audio
tape and speech recognition could be employed to create a transcription of
these sources [55,66]. This transcription can then be fed into a database and
be indexed for information retrieval purposes [25]. Car drivers can keep both
hands on the steering wheel while they access speech-recognition enabled con-
trol instruments like navigation system, radio and cellular phone [59].

Intensive research efforts are still underway to further improve speech recog-

17
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nition technology. Areas of focus include large vocabulary speech recogni-
tion [46,47,50-52], recognition of spontaneous speech [12] and robust speech
recognition in noisy environments [59].

3.2 Overview

Current large vocabulary speech recognition systems are based on the prin-
ciples of statistical pattern recognition. A front-end acoustic processor (3.1)
converts an unknown speech signal S into a sequence of feature vectors
X =x1,29...,%,. The speech recognition system has to find the most prob-
able sequence of words W = wy,w, ..., w, given the parameterised acoustic
signal X, i.e. it has to find the word sequence W that maximizes P(W | X).
Using Bayes’ rule [10] (3.2) and the fact that P(X) is a constant term in re-
spect to the maximization (3.3), the desired probability can be decomposed
as follows:

W = argmaxy,, P(W |S)
= argmaxy, P(W | X) (3.1)
— argmax,, PW) P](D)(())( W) (3.2)
= argmaxy, (P(W) - P(X |W)) (3.3)

The term P(W) represents the apriori probability of observing the word se-
quence W, independent of the observed speech signal. For instance, the word
sequence “how are you” is apriori much more likely than the sequence “are
how you”. A language model (LM) is used to capture this information.

The second term P(X | W) represents the probability of observing the sig-
nal X given the word sequence W. This value is determined by an acoustic
model (AM).

The practical determination of the most likely word sequence W requires the
solution of a number of difficult problems. The process for finding W is called
decoding and the design of efficient decoders is crucial to the realisation of
practical LVCSR systems.

In the description above we assumed that a sentence can be decomposed into
word units W = wy,ws ..., w,. While this is straightforward for languages
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like English where the notion of a word, as a syntactical spacing unit, is very
suitable, the choice of the w;’s is not at all clear in many other languages.
Some languages do not use spacing at all and therefore do not have the no-
tion of a word. Other languages, like Korean, do have syntactical spacing
units, but using these units as w;’s is not suitable for a LVCSR system. This
thesis focusses on the determination of appropriate w;’s for a Korean large
vocabulary speech recognition system.

In the next four sections we briefly describe each of the components of a
speech recognition system. In 3.7 the technique of speaker adaptation is de-
scribed. It is used to improve recognition performance of speaker independent
speech recognition systems. We end the chapter with a short introduction to
the Janus Speech Recognition Toolkit in section 3.8.

3.3 Front-End

Computers can only work with discrete data. So, to make computer based
speech recognition possible a digital representation of the continuous speech
signal is needed. A microphone transforms sound into a continuous electrical
signal, then an analog-to-digital converter transfers the continuous electrical
signal into discrete time slices and discrete amplitude values. Commonly,
this yields 16,000 16-bit samples per second.

It is not usual to use this signal representation directly for the recognition
process. First, the amount of data is rather large. Second, the signal still con-
tains a lot of unwanted information like background noise, speaker properties
or microphone channel. Thus, several preprocessing steps are used to reduce
the amount of data and to extract only the relevant speech information from
the signal. The first step in preprocessing is to transform the signal into a
spectral representation. Usually, preprocessing systems use a sliding window
with a length between 5 ms and 20 ms to extract “frames” of samples from
the speech waveform. These frames are commonly extracted every 10 to 20
ms, i.e. the frames usually overlap. Then the discrete Fourier transform [6]
is used to transform a frame of time samples into a spectral representation.

Knowledge about the sensitivity of the human ear can be applied to reduce
the, commonly over 100, resulting spectral coefficients to about 16 values.
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This mapping results in features such as Mel-scale [45].

In order to capture signal changes the feature vector is usually appended
with information about neighbour frames. Generally, first and second order
differences between the successor and predecessor feature vectors are used.
Further features such as signal energy can be added to the vector.

To summarize, the preprocessing is used to obtain a feature vector of around
40 coefficients for about every 10 milliseconds of speech.

Commonly, additional techniques are applied to the resulting feature vector.
Among these are:

Mean Normalization The additive stationary parts which are introduced
by the channel noise are removed by subtracting the mean of all obser-
vation vectors.

Linear Discriminant Analysis (LDA) This is a very efficient technique
to reduce the dimension of the feature vector without loss of relevant
information. A linear transformation matrix is created based on the
classes of the feature vectors. The goal is to build a matrix, with which
the feature can be projected into a subspace while keeping or increasing
the separability of the classes. The usefulness of linear discriminant
analyis in a speech recognition front-end has been widely shown [2,57,
68].

Vocal Tract Length Normalization (VTLN) One major source of inter-
speaker variability is the variation in vocal tract shape. Different speak-
ers have different vocal tract lengths. Different vocal tract lengths im-
ply different pitch and formant frequencies. In order to normalize for
the length of the vocal tract a maximum likelihood linear or piecewise-
linear warping in the frequency axis of the speech signal is performed
for each speaker. See [11,54,58,69-71] for more information.
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3.4 Language Modeling

The language model captures the probability of a sequence of words W =
wi, Way, ..., w, and is given by:

P(W) = P(wy) - P(wy | wy)- P(ws | wi,ws) - Pwy | wy,..., wy_1)

n

= HP(wi | wy, ..., w;i 1)

=1

A word’s likelihood is calculated based on its word history wy, ..., w;_;. For
a vocabulary of size L there are Li~! different histories, and so to specify
the probability completely, L’ values would have to be estimated. This is
an extremely large number for practical values of L. As a consequence,
the histories must be considered to belong to only a manageable number
of different equivalence classes. Let m(-) denote a mapping of histories into
some number of equivalence classes. Then the probability P(W) may be
approximated by

PW) =~ ﬁP(wi|7r(w1,...,wi,1))

=1

In practice, different equivalence class definitions can be used. The most
widely employed approach is the so called $-gram model. Here histories are
considered equivalent if they end in the same two words. Thus

P(W) ~ HP(’LUl | wi,g,wi,l)

=1

The estimation of the basic probabilities P(w; | w; o, w; 1) is not trivial. For
example, complicated smoothing techniques are used to avoid zero proba-
bilites for 3-grams that do not occur in the text corpus.

For a detailed discussion of LM probability estimation and further LM re-
lated issues see [24,28].
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3.5 Acoustic Modeling

Acoustic probabilities can be calculated by representing each word unit with
a statistical model. Using a separate model for each word has proven un-
feasible for large vocabulary speech recognition systems. It is necessary to
obtain several samples of a word from different speakers to train reasonable
speaker-independent models for each word, and there are simply too many
words to be trained. Also the extension of the recognition vocabulary is very
complicated as the training process must be repeated for each new word.

This problem is solved by creating acoustic models for subword units. Com-
mon choices for subword units are syllables or phones. In fact, phones are
most frequently used. As there is only a small and fixed set of phones per
language (e.g. about 50 for English) these models can be trained well with
a reasonable amount of training data. Adding new words to the recogni-
tion vocabulary is then as simple as defining their pronunciation in terms of
phones.

Unfortunately, the acoustic realisation of a phone highly depends on the
neighbouring phones. This can be addressed by using context-dependent
phone models. The first such proposed models took into account the direct
predecessor and successor phone and were called triphones [3,34]. Models
that consider the two predecessors and the two successors are called quint-
phones. A general context-dependent phone model is called polyphone. How-
ever, the acoustic features of a phone unit are not constant but change within
its boundaries. Consequently, many state-of-the-art recognition systems split
each phone into a number of states. These are subsequently called subpho-
netic units. Context-dependent subphonetic units are called subpolyphone
models [19,21]. For our systems, we use subquintphone models, meaning we
split each phone into three states and model each state with a context width
of two.

The key issue in building context-dependent models is to maintain a balance
between the desired model complexity and the number of parameters which
can be robustly estimated from the available training data [64]. The solu-
tion here is to use sufficiently complex models, more than can be trained
robustly, and then to cluster similar ones. This can be done bottom-up or
top-down. The bottom-up approach is easier to implement, as it works data-
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dependently. The top-down method involves linguistic expert knowledge but
it has proven much more powerful in providing suitable models for contexts
that do not appear in the training material [35].

The main algorithmic instrument to implement the top-down approach is
a phonetic decision tree [5,8,38]. At the root of the tree is the set of all
polyphones corresponding to a phone. Each node has a binary “question”
regarding their left and right contexts. These questions are created using
expert knowledge and are designed to capture classes of contextual effects.
In general, they are of the form “Does the {next, second-next, previous,
before-previous, ...} phone belong to phonetic class x”, for example “Is the
previous phone a consonant?”.

Constructing such a tree is a sequential optimization process which recur-
sively partitions the set of states based on a goodness-of-split criterion. The
tree leaves contain the acoustic models. To find the corresponding leaf for
a specific polyphone model, the tree is traversed by answering the questions
attached to each node, until a leaf node is reached. All models that fall in
the same leaf are then represented by the same acoustic model.

Most state-of-the-art systems use hidden Markov models (HMMSs) as a sta-
tistical representation of the subword units [31,37,60]. An HMM is a set of
discrete states connected by transitions. Each state can produce an observed
feature vector with a certain output probability. Each HMM transition from
any state ¢ to state j has a static transition probability. Mainly left-to-right
HMM models are used for speech recognition because speech only “goes for-
ward” and hence no back transitions are needed. Commonly, a phone model
is represented by a three state left-to-right HMM as three frames roughly
correspond to the average length of a phone unit. Each state has a self-loop,
a transition to the next state and sometimes even transitions that skip one or
several states. See figure 3.1 for a simple left-to-right hidden Markov model.
An HMM state represents a small subspace of the overall feature space. The
shape of this subspace is sufficiently complex that it is commonly character-
ized by a multivariate Gaussian distribution.

Word models can be built by retrieving their subword model representation
from a pronunciation dictionary and connecting the HMMs of those subword
units.
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282

NN

Figure 3.1: Example of a left-to-
right hidden Markov model.

There are several reasons why HMMs are the most widely used approach
to calculating P(X | W). Speech production can be modelled as a stochas-
tic process. A phone is pronounced differently by different speakers; even
the same speaker will pronounce a phone differently at different times. The
statistical nature of HMMs along with their ability to model temporal pro-
cesses make them very suitable for this task. Furthermore, HMMs have been
researched for a long time and efficient algorithms exist for training and eval-
uation of these models.

The theory and the practical use of HMMs in speech recognition is covered
very well in the literature. The first theoretic work on HMMs was done by
Baum [4] in 1972. A detailed introduction to the theory of HMMs can be
found in [20,42]. A general overview of the speech recognition problem may
be found in [43,44,61]. They also have very extensive bibliography sections.
A good introduction into statistical speech recognition is given in [23]. A
very good overview of large vocabulary speech recognition systems is given
in [65], and [56] contains a broad spectrum of selected speech recognition
related papers.

3.6 Decoding

Finding the most likely sequence of words W is a complicated search prob-
lem. As with all search problems, there are two main approaches: depth-first
and breadth-first. In depth-first designs, the most promising hypothesis is
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pursued until the end of the utterance is reached. Depth-first decoders are
commonly called stack-decoders or A*-decoders [22,26,40,41]. In breadth-
first designs, all hypotheses are pursued in parallel. Breadth first decoders
are often referred to as Viterbi decoders [62]. Sophisticated pruning tech-
niques are employed to reduce the very complex search space. A process
called beam search is typically used for this purpose [17].

3.7 Speaker Adaptation

Speaker adaptation is a technique used to adjust the acoustic models of
a speaker independent recognition system to a specific speaker in order to
increase recognition performance. Its general usefulness has been widely
proven [36]. Adaptation is divided into two classes: supervised and unsuper-
vised. In the case of supervised adaptation the real textual transcription of
an utterance is known. In the case of unsupervised adaptation the transcrip-
tion is unknown.

We used speaker adaptation for two purposes: Firstly, supervised adaptation
is employed to improve the “labeling”! of the training utterances. This tech-
nique is also referred to as label-boosting. Secondly, we use speaker adaptation
in the recognition stage to improve performance. As the actual transcription
of a test utterance is not known beforehand, the following strategy is used:
in a first recognition pass the best hypothesis is calculated. This hypothesis
is assumed to be the actual transcription of the test utterance. Using this
transcription, supervised speaker adaptation can be performed. Finally, a
second recognition pass is done with the speaker adapted acoustic models.

3.8 The Janus Speech Recognition Toolkit

The Janus Recognition Toolkit (JRTk) [12,31,32,62,63,67,68] is a speech
recognition system for research and development. It has been developed at
the Interactive Systems Labs jointly at Carnegie Mellon University and the
University of Karlsruhe. This toolkit is embedded into a Tcl/Tk interpreter

!For time efficiency reasons, generally the mapping of speech frames to acoustic models
of a training utterance is not done dynamically during training but a fixed mapping is
calculated before the training stage. This process is usually called “labeling”.
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which allows a user to create a complex recognition system easily while still
retaining control over every single variable of the recognition backend. Main
benefits from this scripting language interface are a maximum flexibility and
a very good extensibility.

The JRTk allows for a large variety of recognition system architectures. It
can handle semi-continuous to fully-continuous Gaussian mixture observa-
tion models. The Gaussians can be modeled with radial, diagonal or full
covariance. Neural nets can also be used to do the acoustic modeling [14,15].

A common architecture of a JRTk recognition system uses three sub-polyphone
models per phone. These sub-polyphones are clustered to around 3,000 sub-
allophones [13]. To model each of them a multivariate Gaussian with 16 to
48 diagonal covariance components is used.

JRTk uses a multi-pass search strategy for the decoding of an utterance.
The two first passes are Viterbi beam search based and produce a word
hypothesis graph, also referred to as word lattice. The third pass, which
is called lattice rescoring, can make use of higher order language models to
extract hypotheses from that word lattice. See [13,61,62] for further details.
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System Description

4.1 Speaker Database

We use the Korean portion of the GlobalPhone database [46-52] for the
development and evaluation of our systems. This section consists of 20 hours
of speech data spoken by 100 native Korean speakers. Each speaker read
several articles from a Korean national newspaper. The articles were chosen
from the areas: national politics, international politics and economy. The
speech data was recorded in stereo at a sampling rate of 48kHz using a close-
talking microphone connected to a DAT-recorder. After the sound data was
transferred from the DAT-recorder to a hard disc, it was downsampled to

16kHz, 16bit.

| | Training | Test | Test subset |
Speakers 80 10 10 (same)
Utterances 6,350 798 84
Vocabulary (eojeols) 41,876 7,338 923
OOV rate (OOV words) — 40.07% (4535) | 41.43% (440)
Total utterances 7,148
Total vocabulary (eojeols) 45,983

Table 4.1: Summary of acoustic database.

Eighty of the speakers were used for training the acoustic models. They
spoke a total of 6,350 utterances with a vocabulary size of 41,876 eojeols.

27
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Ten speakers were chosen as test speakers. The remaining ten speakers are
kept as a further cross-validation set. The test speakers spoke a total of
798 utterances with a vocabulary size of 7,338 eojeols and an OOV rate of
40.07%.

A subset of 84 uniformally selected utterances from the ten test speakers was
used to carry out our experiments. The vocabulary size of this test set is 923
at an OOV rate of 41.43%. See table 4.1 for an overview of the database.

4.2 Language Model Data

To overcome the sparse data problem in language model generation, we col-
lected a large corpus of text data from the internet. We retrieved the online
articles of the Korean newspaper Chosunilbo [72] from October 1995 to Au-
gust 1998. A text preprocessing script cleaned the text data by removing
all HTML-related code. Numbers were mapped onto their textual transcrip-
tion. Acronyms were replaced by mapping each letter onto a transcription
of its pronunciation. See table 4.2 for the mapping table. Table B.1 in the
appendix shows some examples of acronyms along with their transcription.
We mapped acronyms that are pronounced as a word rather than a sequence
of letters (e.g. FIFA, OPEC, RAM, UEFA) onto a transcription of that pro-
nunciation. Table B.2 in the appendix summarizes mappings that translate
units like mm, GB, % or kbps into an appropriate textual description. The
text processing script finally dropped all sentences which still contained non-
3FZ characters (such as Chinese) as our speech recognition system is based
on a pure &= database.

In the following description, we will refer to the transcription text data of the
training speakers as Train. The transcription text data of the test speaker
transcription will be called Test and the subset thereof which is actually
used for system evaluation (84 utterances) will be called Test-Utts. Refer to
table 4.1 for an overview.

The text corpus that was retrieved from the internet plus the corpus Train
will be referred to as Chosun+ Train. This corpus has a total size of 14,770,769
eojeols and consists of 1,494,509 different eojeols. In terms of characters the
total corpus size is 43,332,100 and the vocabulary size is 3,583. To ensure a
time efficient evaluation of our unit determination process and the resulting
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Roman 3= and Roman 3= and
letter transcription letter transcription

A of| o] (e-i) N ol (en)

B ] (pi) 0 2 (0)

C A (ssi) p 1] (phi)

D g (ti) Q 7 (khyu)

E o] (i) R o (al)

F o] = (e-pheu) S ol 2 (e-seu)

G A (ci) T E] (thi)

H | ollo]#] (e-i-chi) | U F (yu)

I o}o] (a-i) Vv H o] (peu-i)

J A o] (ce-i) W & (teo-peul-yu)

K Al o] (khe-i) X ol ~ (ek-seu)

L a (el) Y 2}o] (wa-i)

M ol (em) Z A E (ce-theu)

Table 4.2: Mapping table for acronyms.

systems we decided to use only about 15% of the large corpus plus the cor-
pus Train. This data is referred to as PartChosun+ Train. The large corpus
is only used for some selected experiments. PartChosun+ Train has a total
size of 2,354,072 eojeols. It consists of 417,648 different eojeols. In terms
of characters the corpus size is 6,854,294 and the vocabulary size is 3,002.
Table 4.3 summarizes the language model corpora information.

Chosun+ PartChosun+ | Train
Train Train
Number of eojeols 14,770,769 | 2,354,072 92,378
Eojeol vocabulary size 1,494,509 417,648 41,876
Number of characters 43,332,100 | 6,854,294 303,203
Character vocabulary size 3,583 3,002 1,963

Table 4.3: Summary of language model corpora.

The self-coverage of a text corpus is a one-dimensional function f(x) where x
runs from 0 to the size of the vocabulary (vocabSize). f(z) lies between 0 and
1 and indicates what fraction of the words of a text is covered when those x
words which occur the most often in that corpus are known. Figure 4.1 shows
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the eojeol-based self-coverage for the corpora Train, PartChosun+ Train and
Chosun+ Train.

100
90
80
70
60
50
40
30

Coverage [%]

20 Train ———
10 e PartChosun+Train _

= ‘ Chosun+Train -
1 10 100 1000 10000 100000 1e+06 1e+07

Number of vocabulary entries

Figure 4.1: Self coverage of language model corpora.

The cross-coverage indicates the percentage of Test text words covered when
the x words are known which occur the most often in the language model cor-
pus. Again, f(z) lies between 0 and 1 but it is not necessarily f(vocabSize) =
1. This is because OOV words in the test text cannot be covered as they
do not appear in the language model corpus. Figure 4.2 shows the eojeol-
based cross-coverage of Test using the corpora Train, PartChosun+ Train and
Chosun+ Train, respectively.

Figure D.1 shows the eojeol-based cross-coverage of Test-Utts using the same
corpora as above. Figures 4.2 and D.1 illustrate the problems using eojeol-
based Korean speech recognition. The complete vocabulary of Train (41,876
words) covers around 60% (59%) of Test (Test-Utts) which corresponds to
a OOV rate as high as 40.07% (41.43%). PartChosun+ Train covers up to
80.21% (79.38%) of Test (Test-Utts). In terms of OOV this is a rate of
19.79% (20.62%). When the complete vocabulary of over 1.2 million eojeols
of Chosun+ Train is used 87.67% (88.80%) of Test (Test-Ults) are covered.
This corresponds to an OOV rate of 12.33% (11.20%). Even this OOV rate is
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Figure 4.2: Cross coverage of Test with different language
model corpora.

still unacceptably high for an LVCSR system. The Janus speech recognition
toolkit allows for a maximum recognition vocabulary of 64k words. In this
case, neither of the mentioned language model corpora cover more than 70%
of Test or Test-Utts, an OOV rate of 30% and above. See table 4.4 for a
summary of the OOV information.

| [[ Test | Test-Utts |
Train 10.07% (4535) | 41.43% (440)
PartChosun+Train || 19.79% (2239) | 20.62% (219)
Chosun+ Train 11.20% (1268) | 12.33% (131)

Table 4.4: Summary of OOV rates and, in paran-
theses, OOV words.

Assuming that a speech recognition toolkit did not have any limit for the
recognition vocabulary, then gathering as much text data as possible, as the
above figures suggest, could be a means of lowering the OOV rate. Unfor-
tunately, this would not work as the vocabulary grows almost linearly in
the text data size as figure 4.3 shows. Thus, satisfactory eojeol-based text
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coverage can not be reached in practice.
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Figure 4.3: Vocabulary growth in corpus Chosun+ Train.

4.3 Pronunciation Generation

An essential component of an HMM based speech recognizer is the pronunci-
ation dictionary. This dictionary defines a sequence of HMM phone models
for each vocabulary unit. For many languages, such a dictionary can only
be built by manually editing, which is a strenuous task. Fortunately, this is
not the case for Korean. A complete collection of the rules for the allophonic
variants of consonant phonemes, as described in 2.4, and the phonological
rules, like assimilation, reinforcement and weakening for neighbouring conso-

nants, also in 2.4, makes it possible to generate the pronunciation dictionary
automatically.

The basic strategy for automatic dictionary generation is to take a corpus
of text data and then generate the pronunciation for each word found by
applying the above set of rules.
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As an example, we consider the word “cheon-ku-paek-o-sip-nyeon”!. Apply-
ing the set of rules returns the phone sequence [¢ongubegosimnion]. As we
can see, the allophonic rules are processed correctly, for example the letter k
of the syllable paek is mapped on the voiced sound [g] because of its inter-
vocalic position. The neighbouring letters p and n between the characters
sip and nyeon show an example for the correct treatment of the phonological
rules. The two letters are mapped onto the phones [m| and [n], respectively.

Handling phonological changes inside a vocabulary unit is straightforward —
simply apply the defined set of rules. However, phonological changes can also
occur at unit boundaries. To handle these cases, we extract the last charac-
ter of the preceding unit and the first character of the succeeding unit and
connect them respectively to the beginning and end of the current unit. Now
the set of rules can be easily applied, phonological changes happen within
the newly created meta-unit. After the corresponding sequence of phones is
created, the phones that belong to the two added characters are removed. As
a result, we obtain the pronunciation of the current unit in the given context.

Consider the sentence “u-ri cip ro-cheon-ne mal-i-ci”. To create a pro-
nunciation for “ro-cheon-ne” in this context, we first build the meta unit
“cip-ro-cheon-ne-mal” by connecting the two neighbouring characters. Ap-
plying the allophonic and phonological rules results in the phone sequence
[jimno¢eonnemal]. Removing those phones that belong to the neighbouring
syllables which here are [jim] and [mal] leaves us [no¢onne| as the pronunci-
ation. Of course this procedure might return different pronunciations for a
specific unit depending on the context. These are handled as pronunciation
variants in the recognizer’s dictionary.

4.4 HMM Recognizer Structure

4.4.1 Phone Set

Based on the results presented in section 2.4 a total of 41 phones, 10 vowels,
8 diphthongs and 23 consonants were defined. A list of these phone models
can be found in the appendix. The vowel models are listed in table C.1, the
consonants are presented in table C.2. The two tables show for each model

'Korean for: year 1950.
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its IPA representation, the Janus phone model name and an example English
word which contains (an approximation of) the specific phone.

We chose not to represent the diphthongs [og], [ie] and [ue] as separate acous-
tic models but rather to break them up into the two respective monophthong
models. These three diphthongs are not well enough represented in the acous-
tic training material to ensure a reliable model parameter estimation. For
the same reason we joined the consonants [p] and [p"], [t] and [t*] and also

k] and [K").

In addition to the phone models we have one silence model (SIL) and one
acoustic model that represents human non-speech articulatory noises (+hGH).

The phone models and the noise model are represented as a three-state,
left-to-right HMM (see figure 3.1). For the silence model one four-state left-
to-right HMM is used. The output probability of each of these HMMs is
modeled with a mixture of 16 diagonal 24-dimensional Gaussians.

4.4.2 Speech Preprocessing

The general problem of turning speech data into a form that can be processed
by an automatic speech recognition system was described in section 3.3.
Based on that section we describe here the final speech feature vector and
which preprocessing steps were used.

A window of size 20ms was shifted over the discretized speech data with
an offset of 10ms. For each window 13 Mel-frequency cepstral coefficients
were calculated. Mean substraction was applied to remove the stationary
characteristics of the recording channel. Then a composite 43 dimensional
feature vector was generated from the 13 Mel-coefficients, their first and sec-
ond order derivatives and zero crossing plus logarithmic signal energy and
its first and second order derivative. The final 24 dimensional feature vec-
tor is computed by an LDA transformation of this 43 dimensional feature
vector. Vocal tract length normalization is applied to minimize speaker dif-
ferences. See section 3.3 for references to literature covering these techniques.



4.4. HMM RECOGNIZER STRUCTURE 35

4.4.3 Context Dependent Phone Modeling

All context-dependent systems presented in this work consist of 3000 sub-
quintphone models. Crossword models were used to capture contextual ef-
fects between words. For algorithmic reasons, maximum context width across
words is one. The decision tree used for the context dependent models was
generated using a set of 63 phone sets. These sets are listed in table C.3 in
the appendix. Further information on context dependent modeling can be
found in section 3.5.

4.4.4 Model Initialization

An initial context-independent Korean recognition system was trained using
the labels generated by a multi-lingual speech recognition system. Among
the languages of this system are German, English, Japanese and Spanish.
The Korean phone models were initialized with heuristically chosen close
equivalents in the multi-lingual system.



Chapter 5

Morpheme Based Recognition

5.1 Motivation

As described in chapter 1 an eojeol unit consists of a combination of mor-
pheme components. For large vocabulary speech recognition, this structure
is a severe problem. Consider as an example the noun &+x which means
school. Tt can occur in a text corpus in many different ways. In the subject
form the word would appear as &3 7}, in the genitive form it would appear
as 831 2], in the direct object form it would appear as g3 Z- and so forth.
Each time a grammatical suffix is added to the noun’s stem to indicate its
case. In fact, suffix appending to nouns is not only used to indicate their
case, but also to indicate the number or prepositional function. For verbs,
among the functions of a suffix are indication of tempus, modality and social
relationship between the communication partners. It is easy to see that one
or more forms of a noun may appear in the text corpus that is used to build
the recognition system. Also, when presented with new text to recognize, we
can expect to encounter a previously unseen form of that noun. This is also
the case with verbs.

A straightforward approach to Korean speech recognition is to use morpheme
units instead of eojeols as the base vocabulary. The OOV rate of morpheme
based systems is below 5% which makes these units much more suitable. As
described in [29] the morpheme units can be used effectively as dictionary
units for Korean LVCSR.

36
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5.2 Determination of Units

It is very time consuming and unfeasible to edit very large text corpora by
hand in order to split up each eojeol into its morpheme components. Auto-
matic morpheme analyzing systems must be built which break up an eojeol
into its morpheme components. These systems are also referred to as part-of-
speech (POS) tagging systems and generally use a knowledge based approach.
Each resulting morpheme unit receives a part-of-speech tag which indicates
its grammatical function.

Unfortunately, the development of a morpheme analyzer involves a lot of
human expert knowledge about the morphological structure of the Korean
language. And as is always the case with rule-based approaches, these sys-
tems include errors and omissions. But generally, these errors are tolerable
as they are consistent throughout the underlying text data.

The morpheme segmentation was provided by Oh-Wook Kwon from the
ETRI lab in Seoul, Korea.

5.3 Speech Recognition Systems

We evaluated two morpheme unit based approaches. The first one — called
Morph — uses the pure morpheme components that are generated by the
morpheme analyzing system as vocabulary units. The second system — called
MorphTag — makes use of the POS tag which is associated with each mor-
pheme unit. In this case, the combination of each morpheme with its POS-
Tag, morpheme+<P0S-tag> is used as vocabulary units. The idea is to give
the recognition system a means, via the language model, to determine which
POS-tags can follow each other, and thus increase the score for hypotheses
that consist of valid morpheme sequences.

As the system Morph does not use POS information but only the plain
morpheme units it can be compared directly to the units generated by our
data-driven approach. It allows us to compare whether the morphemes are a
better choice than an automatically generated set of units. The system Mor-
phTag will demonstrate whether the use of the additional POS information
helps to increase the performance of the morpheme based recognition system.
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For the baseline comparison of the morpheme approach and the data-driven
approach, we used the corpus PartChosun+ Train instead of Chosun+Train
for efficiency reasons. In further selected experiments we also evaluated the
morpheme systems on the complete corpus Chosun+ Train. These systems
will be referred to as MorphWhole and MorphTagWhole.

In the rest of this section we will describe the characteristics of the mor-
pheme based systems. Performance analysis and discussion of the two unit
determination approaches is presented in section 7.3.

Chosun+ PartChosun+ Train Test

Train Train
Number of morphemes 26,781,814 | 4,249,723 185,608 | 21,973
Morph vocabulary size 349,264 116,529 17,408 4,981
MorphTag vocabulary size 411,697 134,081 20,038 5,621

Table 5.1: Summary of morpheme based language model corpora.

The corpus Train has a size of 185,608 morphemes, its Morph-based vo-
cabulary size is 17,408 units, for MorphTag it is 20,038. The Test corpus
contains 21,973 morphemes, 4,981 different ones and 5,621 MorphTag units.
The total size of Chosun+Train is 26,781,814 morphemes and it consists of
349,264 morphemes or 411,697 MorphTag units. PartChosun+ Train con-
tains 4,249,723 morphemes at a morpheme vocabulary size of 116,529 and
a MorphTag vocabulary of 134,081 units. Of course, the vocabulary size of
MorphTag is bigger than Morph. This is because a Morph unit can have
more than one morphemic function and so can be associated with several
POS tags, resulting in more than one MorphTag unit. Table 5.1 summarizes
this information.

The Morph-based self-coverage for the corpora Train, PartChosun+ Train
and Chosun+Train is displayed in figure 5.1. Figure 5.2 shows the self-
coverage for the corpora Train, PartChosun+Train and Chosun+ Train in
the MorphTag-based setup. The Morph and MorphTag-based cross-coverage
of Test using the corpora Train, PartChosun+Train and Chosun+ Train, re-
spectively is shown in figure 5.3 and 5.4, respectively.



