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Figure 5.1: Self coverage of Morph-based language
model corpora.

The analog information for the corpus Test-Utts using the same corpora as
above is shown in figure D.2 and D.3, respectively. These figures do not differ
significantly from the cross coverage figures for Test and, as a consequence,
are presented in the appendix. We see from these diagrams that the coverage
for morpheme units is more consistent than for eojeols; the self coverage and
the cross coverage diagrams are almost identical. For the eojeol units the
cross coverage is about five percent lower than the corresponding self cover-
age as can be seen from the respective diagrams in section 4.2.

The Morph and MorphTag based vocabulary growth is drawn in figure 5.5.
We see that the vocabulary grows significantly slower than on an eojeol based
corpus. Cross coverage is far above 90% for both Morph and MorphTag when
using a 64k vocabulary. To be precise, the Morph system has an OOV rate
of 2.37% with a vocabulary of 64k, for MorphTag the rate is at 2.78%. These
figures are calculated on the corpus PartChosun+Train. See table 5.2 for a
summary of the OOV information. To summarize, morpheme units are much
more suitable for a Korean recognition system than eojeol units.
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Figure 5.2: Self coverage of MorphTag-based language
model corpora.
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Figure 5.3: Morph-based cross coverage of Test with
different language model corpora.
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Figure 5.4: MorphTag-based cross coverage of Test with

different language model corpora.

[ Test

| Test-Utts |

Morph

Train 7.44% (1631) | 8.40% (176)
PartChosun+Train || 1.95% (427) 2.20% (46)

Chosun+ Train 0.93% (203) 0.96% (20)

MorphTag

Train 8.37% (1837) | 9.50% (199)
PartChosun+Train || 2.22% (486) 2.67% (56)

Chosun+ Train 1.12% (245) 1.19% (25)

Table 5.2: Summary of OOV rates and, in paran-

theses, OOV words.
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Chapter 6

Data-Driven Unit
Determination

6.1 Motivation

Our goal is to generate vocabulary units which on one hand are longer than
characters, reducing acoustic confusability, and increasing the range of the
3-gram language model. On the other hand, the units must be shorter than
eojeols to retain the OOV rate at a manageably low level.

In preliminary experiments we developed a speech recognition system based
on characters as vocabulary units. We presented results of character based
recognition systems in [27]. An analysis of the recognition results revealed
one dominant type of recognition error: The confusion of pairs of character
pairs which share the same sequence of phones from the center vowel of the
left character to the center vowel of the right character. We will refer to this
phone sequence as vowel-to-vowel transition, or simply transition. Consider
the following examples: The two character pairs sin eop and si neo share the
same vowel-to-vowel transition: I N EQ. The transition of math neun and
manh eun is A N EU, for ceon hyeo and cheo nyeo it is EO N iEQ. It is such
pairs that are often confused during recognition.

A good language model would certainly help to avoid this type of confusion
error. But from an eojeol perspective, the 3-gram language model based on
character units has a very limited scope. And in fact, experiments show that
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this language model does not help to avoid these errors.

The data-driven approach taken here tries to address this problem. De-
creasing the average number of confusable vowel-to-vowel transitions between
vocabulary units should result in a significant increase in recognition perfor-
mance. The basic idea of this approach is to repeatedly merge specific unit
pairs and thus to lock the vowel-to-vowel transition between these pairs in-
side the newly created units. This reduces the number of unit pairs that
share a particular vowel-to-vowel transition. In addition the increased aver-
age length of vocabulary units should also help the 3-gram language model
by increasing its scope.

6.2 Determination of Units

6.2.1 Preprocessing

For the further explanation we consider the sentence o-neul han-kuk-e ka-yo*
as an example.

First, we retrieve all character pairs that appear in the text corpus. The
example sentence contains the character pairs o neul, neul han, han kuk, kuk
e, e ka and ka yo. Then, for each character pair its vowel-to-vowel transition
is generated, for example han kuk — A N G U. Pronunciation generation is
done automatically as described in section 4.3.

For each such character pair we count how often it appears in the text corpus.
A hash table with two keys is used to store this information. The first key
in the table is the phone sequence of a vowel-to-vowel transition, the second
key is the character pair that produces this transition. The value that is
associated with these two keys is the occurence count of this character pair.
So, if for instance the character pair han kuk occured 48,952 times in the
text corpus, the hash table would have a key (“A N G U”, “han kuk”) that
would be associated with the value 48,952. For each first key in the hash
table we also store the total sum of occurrences. This value is stored using
“total” as second key. Thus, the total number of times that the pronuncia-
tion transition A N G U appears in the text material could be accessed as

!Today I go to Korea.
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table.value(“A N G U”, “total”)?.

For illustration purposes we list some example entries of the resulting hash
table:

table.value(“A N G U”, “total”) = 83,021
table.value(“A N G U”, “han kuk”) = 48,952
table.value(“A N G U”, “san ku”) = 314
table.value(“A N G U”, “pan kun”) = 239
table.value(“A N G U”, “than kuk”) =1
table.value( “eEO N Ph iEO”, “total”) = 1,008

table.value( “iEO N Ph iEQ”, “yeon phyeong”) = 533
table.value( “eEO N Ph iEQ”, “myeon phyeong”) = 127

table.value( “eEO N Ph iEO”, “myeon phyeo”) =1

6.2.2 Unit Merging
The unit merging process is controlled by the following iterative procedure:

1. Choose the vowel-to-vowel transition ¢ that has the highest occurrence
count, i.e. the highest total value in the hash table:
t = argmaxy,, {table.value(key, “total”)}

2. Select a certain set P of one or more character pairs which produce
this transition:

P C {(pi1, pi2) | table.isKey(t, (pi1, piz))}

3. Merge all character pairs in set P in the text corpus:
V (pi1, piz) € P : mergelnCorpus(p;1, pi2)

2We use pseudo code to describe operations on the table data structure: table.value(a,b)
returns the value that is associated with the key pair (a,b), table.isKey(a,b) returns a
boolean value indicating whether the key pair (a, b) is in the table, table.delete(a,b) removes
the key (a,b) and the associated value from the table. Additionally, mergelnCorpus(a,b)
names a method that merges all occurences of the syllable pair (a,b) in the text corpus.
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4. Remove the respective entries from the hash table.
V (pi1, piz) € P : table.delete(t, (pi1, pi2))}

One can think of different stop criteria for this algorithm, e.g. perplexity or
OOV rate based. We chose an OOV rate of 5% as the stop criterion. The
JRTk can handle a maximum of 64k words in the recognition vocabulary.
The OOV rate, however, is still below 1% for the resulting systems when
the maximum vocabulary has been reached. Thus, in practice we use the
vocabulary limit of 64k as stop criterion for the algorithm.

To preserve the eojeol boundaries we limit the unit merging process to unit
pairs that lie in the same eojeol unit (IntraEojeol). But as the text data
is not free of errors we consider a second variation where also units over
eojeol boundaries may be merged (InterEojeol). This way, we also find out
whether knowing the eojeol boundaries is an important source of information.

Two ways of selecting character pairs in step 2 of the above procedure are
evaluated:

MergeAll Select all character pairs that produce the transition ¢:
P = {(pi1, piz) | table.isKeyPair(¢, (p;1, pi2)) }
As the transition ¢t between units disappears from the corpus, the acous-
tic confusability for this transition is eliminated.

MergeMax Select the most frequent character pair(s) that produce t:

P = {(pi1, pi2) | table.isKeyPair(t, (pi1, piz)) A

table.value(t, (pil;pi?)) >

table.value(t, (pjl;pj?)); VJ # Z}
With this approach, the transition ¢ is not necessarily eliminated from
the corpus. But, merging the most frequent character pair(s) reduces
confusability and, in practice, many of the selected pairs are phrase-like
pairs which to merge makes sense also from a language modeling point
of view.

As it is not feasible to apply this algorithm to very large text corpora in
RAM, the algorithm is split up into two passes: In the first pass we use the
hash table to calculate a list of candidate pairs for merging. Then chunks of
these candidates are merged in the large text corpus on disk. This process is
repeated until a vocabulary of no more than 64k units is reached.
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6.3 Speech Recognition Systems

Each of the MergeAll and the MergeMaz approach are evaluated with both
the InterFojeol and the IntraFEojeol variation. This results in four systems.
The naming convention for these systems is as follows: MergelntraAll com-
bines the MergeAll and IntraFojeol approaches. MergelnterMaz, Mergeln-
traAll and MergelntraMaz are analogous.

The number of character pairs that were joined before the stop criterion
was reached is 5,393 for MergelntraMaz, 19,951 for MergelntraAll, 1,581 for
MergelnterMax and 15,069 for MergelnterAll. See table 6.1. The Merge-
Mazx approach merges less unit pairs than the MergeAll approach. This is
because the unit pairs merged with MergeMax have, on an average, a higher
frequency in the text data than the MergeAll units and therefore the poten-
tial of creating new vocabulary units is higher for MergeMaz pairs.

Number of character
pairs merged

MergelntraMaz 5,393
MergelntraAll 19,951
MergelnterMazx 1,581
MergelnterAll 15,069

Table 6.1: Number of character pairs that were merged.

Table 6.2 summarizes the corpus and vocabulary size of the four systems for
the corpora Train and PartChosun+ Train. The figures listed are in terms of
units that result from the respective merging process. Interestingly, although
MergeMaz merges less different unit pairs than MergeAll, the MergeMazx cor-
pus size is smaller than that of the corresponding MergeAll system. Again,
this is because the average frequency of each merged pair is higher in the
MergeMaz approach.

The OOV rates of the corpora Test and Test-Utts for the four systems are
summarized in table 6.3. Both OOV rate and number of OOV words are
calculated on both Train and PartChosun+Train. For all four systems the
OOV rate using PartChosun+ Train is around one percent. Such a low OOV
rate is very good for large vocabulary speech recognition.
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PartChosun+ | Train
Train
MergelntraMaz
corpus size 4,032,575 174,387
vocabulary size 65,498 17,124
MergelntraAll
corpus size 4,707,499 203,623
vocabulary size 65,495 14,766
MergelnterMax
corpus size 4,992,805 221,377
vocabulary size 65,479 10,924
MergelnterAll
corpus size 5,466,419 239,158
vocabulary size 65,491 10,836

Table 6.2: Summary of merge based language model corpora.

The vocabulary growth on PartChosun+Train for all four merge based sys-
tems is shown in figure 6.1. The vocabulary grows significantly slower than
on an eojeol based corpus. Also, the vocabulary grows faster for MergeMax
than for MergeAll.

| || Test | Test-Utts |
MergelntraMaz
Train 5.40% (1159) | 6.08% (121)
PartChosun+Train || 0.98% (210) 1.31% (26)
MergelntraAll
Train 4.61% (1147) | 4.88% (111)
PartChosun+Train || 1.14% (283) 1.14% (26)
MergelnterMax
Train 2.77% (750) 2.78% (69)
PartChosun+Train || 0.85% (231) 0.93% (23)
MergelnterAll
Train 2.93% (850) 3.35% (89)
PartChosun+Train || 0.96% (280) 1.13% (30)

Table 6.3: Summary of OOV rates and, in parantheses, OOV
words.

The eight figures 6.2 to 6.5 and D.4 to D.7 show coverage characteristics
of the four merge systems. They show for each system the self coverage of
both Train and PartChosun+Train and their cross coverage on Test and
Test-Utts. The coverage diagrams for the Train corpus are in the appendix.
These diagrams show that the coverage for merge based units is more consis-
tent than for eojeols; the self coverage and the cross coverage diagrams are
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Figure 6.1: Vocabulary growth for the four merge based sys-
tems in corpus PartChosun+ Train.

almost identical. For the eojeol units the cross coverage is up to five percent
lower than the corresponding self coverage as can be seen from the diagrams
4.1 and 4.2. Comparing the figures shows us that coverage grows slightly
slower in the MergeAll setup than in the MergeMaz setup.
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Figure 6.2: MergelntraMaz-based self coverage of PartCho-
sun+Train and cross coverage of Test and Test-Utts.
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Figure 6.3:  MergelntraAll-based self coverage of PartCho-
sun+Train and cross coverage of Test and Test-Utts.
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Figure 6.4: MergelnterMaz-based self coverage of PartCho-
sun+Train and cross coverage of Test and Test-Utts.
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Figure 6.5:  MergelnterAll-based self coverage of PartCho-
sun+Train and cross coverage of Test and Test-Ultts.
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In addition to these four systems we also evaluated the MergelntraMazx ap-
proach, which performed the best of the four merge based systems, on the
whole corpus Chosun+ Train. This system will be referred to as Mergeln-
traMaxWole. With this approach 3,125 character pairs were merged. The
characteristics of the resulting text corpora are as follows: Chosun+Train
consists of 28,968,433 units and 65,328 vocabulary entries. The OOV rate
and OOV words of Test are 0.12% and 28, respectively. For Test-Utts the
according figures are 0.14% and 3. The Train corpus has a size of 196,185
units and a vocabulary size of 11,478. In this case the OOV rate and OOV
words of Test are 2.84% and 682, respectively and for Test-Utts they are
3.01% and 67. Table 6.4 summarizes this information.

Chosun+ Train

Train
Corpus characteristics
corpus size 28,968,433 196,185
vocabulary size 65,328 11,478
OOV rates and OOV words
Test 0.12% (28) | 2.84% (682)
Test-Utts 0.14% (3) 3.01% (67)

Table 6.4: Summary of characteristics of MergelntraMaz-
Whole corpora, and summary of OOV rates and, in paran-
theses, OOV words.

The vocabulary growth on MergelntraMazWhole is displayed in figure 6.6.

The figures 6.7 and D.8 show the coverage characteristics of the approach
MergelntraMaxWhole on the corpora Chosun+ Train and Train.
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Figure 6.6: Vocabulary growth for MergelntraMaxWhole
based system in corpus Chosun+ Train.
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Figure 6.7: MergelntraMaxWhole-based self coverage of
Chosun+Train and cross coverage of Test and Test-Utts.
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Chapter 7

Experiments

This chapter presents and discusses the results of the evaluated speech recog-
nition systems. The necessary prerequisites for the experiments are discussed
in section 7.1. Section 7.2 contains additional information on context depen-
dent phone modeling. The experimental results are given in section 7.3.

7.1 Introduction

7.1.1 Recognition Accuracy

To determine the recognition performance of our systems, we measured the
word error rate (WER), defined as:

substitutions + deletions + insertions
Word Error Rate = 100 -

number of spoken words

As there is no straightforward Korean word unit error rates are given for sev-
eral unit sets, namely eojeols, characters and phones. A value comparable to
the word error rate in English is about the average of eojeol and character
error rate. The following example illustrates the concept “error rate”. The
upper line in the example shows the transcription of an utterance, the lower
line shows the recognized hypothesis.

o4
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= A ofu} ol 7 HA & %17
B obus ool HAE £U%

ZF+& is recognized correctly. €14 causes a deletion error as it does not
appear in the hypothesis. o}® ol | is confused with o} J =}, o d o
Al is an insertion error in the hypothesis. The remaining two eojeols are
recognized correctly. With five reference eojeols in total this leaves us an
eojeol based error rate of 100 - H1% = 60%.

To determine the character based error rate we break up each eojeol into
its character components and calculate the error rate of the resulting two
sequences of characters. In our example that is:

e e

& A of ¥ W o A WA B
of ¥ o] v ol A A A &

—d d

5
5

A total of 14 characters is recognized correctly. Two characters are deleted,
four are inserted. Thus, the character error rate is 100 - %;4% = 37.5%.

To calculate the phone based error rate of these two sentences we look up
the phonetic transcription of each eojeol unit in the dictionary and align the
two resulting phone strings:

DONGMUNEUNEONJEABEONIM EGE...
DONGMUNEUN ABEONIMGOAEOMEONIMEGE ...
...PhiEONJIREULSSEUMNIGG A
...PhiEONJIREULSSEUMNIGG A

The phone based error rate is 100 - 252% = 36.11%.

7.1.2 Lattice Rescoring

Using Bayes’ formula, acoustic probabilities and language model probabilities
can be combined. Generally, the means and variances of these two classes
of probabilities do not match and, as a consequence, either the acoustic or
the language model side dominates the overall probability of a hypothesis.
To compensate for this effect, the probabilities are weighted before they are
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multiplied. In addition, the JRTk decoder uses a word transition penalty ¢
to control the length of the produced word sequence. The following variation
of Bayes’ formula is used:

P(X |W)-P(W)"-¢™
P(X)

P(W[X)=

The exponent z is called the language model weight.

The use of z and ¢ is very common in speech recognition research [44]. As
it is not clear how to find the “optimal” (z,q) pair, the following strategy is
used: A range of values is specified for both z and ¢q. Then for each combina-
tion the overall recognition accuracy on the test set is calculated by rescoring
the word lattice of each test utterance using these values. Finally, the pair
(21,q1) is picked which produces the highest recognition accuracy.

For our systems, we used the following heuristically determined ranges for z
and ¢: z € {5,10,...,55} and g€ {—30,—-25,...,15}.

Our systems work with sub-eojeol units in the dictionary. However, we want
to have a high-performance recognition on eojeol units. Thus, we must be
able to determine which sub-eojeol units in a hypothesis have to be joined to
form one eojeol unit. This issue is addressed as follows: each sub-eojeol unit
that is inside an eojeol unit, as opposed to at the beginning, is prepended
with a marker symbol, a dash. Then a sequence of sub-eojeol units can be
transformed into a sequence of eojeols simply by connecting each “marked”
unit to its predecessor. This applies to any type of sub-eojeol units we use;
merge based units and morpheme units.

The lattice rescoring, i.e. determination of the “optimal” (z,q) pair, is then
done as follows: for each combination of z and ¢ we generate the eojeol
versions of each sub-eojeol based reference and its respective hypothesis using
the above strategy. On the resulting strings the eojeol word error rate can be
calculated. We then pick the (z,¢) pair that minimizes this eojeol error rate.
For the speaker specific test results, minimal eojeol error rate is reported by
determining a speaker-specific optimal (z, ¢) pair.
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7.2 Context Modeling

Each phone is modeled context-dependently using a decision tree. These
trees are generated using a set of 63 phonetically motivated context ques-
tions which are listed in table C.3 in the appendix.

In addition to the phonetically motivated questions we use two more ques-
tions that are related to the boundary characteristics of a phone. The first
question asks whether a phone is at the boundary of a dictionary unit. This
is a commonly used question in context-dependent modeling to capture cross-
word effects. The second question asks whether a phone is at the left bound-
ary of a dictionary unit which itself is not the left-most unit of an eojeol.
This question gives the decoder component a mean to discriminate cross-
unit models that are inside the same eojeol from cross-unit models over eo-
jeol boundaries. In other words, this question helps the decoder to decide
whether to stay within an eojeol unit or to start a new one.

7.3 Results And Discussion

7.3.1 Baseline

The complexity of a recognition task is generally measured in terms of its
perplexity. The perplexity indicates the average word branching factor, i.e.
the average number of words that can follow the current word. For an in-
formation theoretic discussion of the perplexity measure see [24]. Table 7.1
summarizes the perplexity information and also repeats the OOV rate for
each system. These values are based on the corpora PartChosun+ Train and
Test. We see from the table that all merge based systems have significantly
lower OOV rates than the morpheme based systems. The main reason is
that the vocabulary size of the morpheme based corpora is much higher than
64k, see table 5.1. But only the most frequent 64k words can be used in
the recognizer. On the other side, the merge based corpora contain no more
than 64k different units. Unfortunately, the perplexity values displayed in
table 7.1 are not directly comparable as they are calculated on different unit
sets.

Table 7.2 shows the error rates for the four merge based systems and the two
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H 010)Y% ‘ Perplexity ‘
MergelntraMax || 0.943% 481.7
MergelntraAll || 1.102% 206.3
MergelnterMax || 0.830% 149.5
MergelnterAll | 0.939% 104.7
Morph 2.371% 209.2
MorphTag 2.784% 216.4

Table 7.1: Recognition task complexities on Chosun+ Train.

morpheme based systems. Lattice rescoring is done on the eojeol level. Char-
acter and phone error rate is then determined as described in section 7.1.1
with the same (z,¢) pair. Note, that the reported character and phone error
rates do not necessarily have to be maximal using this evaluation scheme. In
the first column, the table shows the error rates on the whole test set. The
columns labelled “1” to “10” show the speaker-specific error rates. These
results were obtained using the corpus data PartChosun+ Train.

We see from table 7.2 that the plain morpheme system Morph is not out-
performed by MorphTag. The appended POS-tag gives the MorphTag units
additional information, but this also increases the size of the vocabulary
which leads, due to the 64k test vocabulary limitation, to a higher OOV rate
than for the system Morph. Also, the language model is less reliable as more
3-gram models have to be estimated from the same amount of text data.
In combination, these effects make both morpheme systems perform equally
well.

The performance of MergeInterMaxz and MergelnterAll is significantly worse
than that of either the IntraFojeol based systems or the morpheme systems.
This tells us that the eojeol boundaries are an important structural element
and that merging units over eojeol boundaries seems to destroy this struc-
ture, leaving us with units which are not well suited for 3-gram modeling.

We see from table 7.2 that MergeMax outperforms MergeAll in both the In-
terEojeol and the IntraFojeol case. There are two reasons for this behavior:
First, the character pair which is merged is in many cases part of a suffix
combination or a multiple-character stem that occurs very frequently. These
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| [ Ar ] 1 [ 2 [ 3 ] 41 5 [ 6 [ 71 8 11T 9 ] 10|
MergelntraMaz
Phone ER 16.2 | 19.3 | 21.3 | 12.3 10.3 | 13.4 | 16.0 | 12.6 | 18.1 15.5 | 27.4
Character ER 24.2 | 274 | 28.6 | 17.0 17.0 | 19.4 | 23.2 | 20.1 | 26.8 | 22.8 | 37.1
Eojeol ER 39.8 | 41.4 | 43.2 | 244 | 31.9 | 35.0 | 37.3 | 32.5 | 38.6 | 38.8 | 64.8
MergelntraAll
Phone ER 17.9 | 209 | 21.3 | 12.5 11.1 14.4 | 15,5 | 13.9 | 17.8 | 17.0 | 27.2
Character ER 25.9 | 30.4 | 28.4 | 18.8 179 | 21.4 | 22.8 | 21.6 | 26.8 | 24.4 | 38.6
Eojeol ER 44.2 | 48.1 | 48.6 | 31.5 | 34.8 | 37.5 | 39.1 | 36.8 | 38.6 | 42.9 | 59.2
MergelnterMaz
Phone ER 19.9 | 21.7 | 22.8 | 14.7 | 13.0 | 14.3 | 20.1 18.1 | 20.5 | 17.4 | 23.2
Character ER 29.5 | 32.7 | 35.3 | 21.7 | 20.9 | 19.9 | 30.5 | 28.4 | 32.1 | 25.2 | 32.2
Eojeol ER 48.6 | 52.6 | 60.6 | 33.1 | 37.7 | 41.7 | 46.4 | 45.6 | 49.1 | 42.1 | 57.7
MergelnterAll
Phone ER 20.2 | 21.3 | 229 | 12.2 16.6 | 11.4 | 16.1 | 20.4 | 27.6 | 19.7 | 24.6
Character ER 29.7 | 31.0 | 324 | 17.3 | 254 | 174 | 244 | 33.3 | 38.0 | 294 | 37.6
Eojeol ER 50.0 | 50.0 | 60.2 | 32.3 | 42.8 | 33.3 | 40.9 | 52.6 | 57.9 | 50.0 | 57.7
Morph
Phone ER 15.6 | 20.0 | 17.4 | 10.8 11.6 | 10.6 | 13.9 | 13.1 | 20.2 | 12.9 | 20.8
Character ER 22.4 | 29.5 | 24.9 | 15.5 17.9 | 14.5 | 21.5 | 18.2 | 26.8 | 18.9 | 30.7
Eojeol ER 38.1 | 42,9 | 43.1 | 26.0 | 30.4 | 28.3 | 35.5 | 32.5 | 44.7 | 31.7 | 52.1
MorphTag
Phone ER 15.8 | 17.3 | 19.0 | 13.9 12.6 | 10.3 | 14.0 | 14.5 | 17.5 | 14.4 | 24.8
Character ER 23.3 | 27.1 | 27.1 19.6 | 20.9 | 15.1 | 21.2 | 22.5 | 24.0 | 20.7 | 34.2
Eojeol ER 38.2 | 39.1 | 41.4 | 30.7 | 34.1 | 29.2 | 33.6 | 38.6 | 41.2 | 33.3 | 59.2

Table 7.2: Summary of recognition error rates, %.

are units that would be combined in a phrase based language model and
merging them thus makes sense from a language modeling perspective. The
MergeMaz approach only merges such max-pairs, therefore generating more
phrase-like units. This seems to increase the language model suitability of
the resulting units. Second, merging every pair that produces a pronuncia-
tion transition, as done in the MergeAll approach, eliminates this transition
totally. But at the same time this increases the size of the vocabulary, de-
creasing the number of further transitions to merge.

The most interesting result that we can extract from table 7.2 is that the sys-
tem MergelntraMaz and the morpheme based system perform about equally
well. The speaker-specific error rates show that on some speakers the mor-
pheme systems perform better while on others they are worse than Mergeln-
traMaz. In fact, the total eojeol error rate of the morpheme system is about
1.5% smaller than for the merge based system. But as the eojeol error rate
is a very sensitive measure!, we can not imply that the morpheme systems

!Consider for example the eojeol sequence “a-b-c d-e f-g”, where the letters symbolize



60 CHAPTER 7. EXPERIMENTS

perform better than MergelntraMax in general.

7.3.2 Pronunciation Variant LM

We can further improve the recognition performance by using a “pronun-
ciation-variant based language model”. As said in section 4.3, the pronun-
ciation of a unit depends on its context. Different pronunciations of a unit
are handled as pronunciation variants in the dictionary, distinguished by ap-
pended variant indizes. To estimate a variant based language model, each
unit in the text corpus gets appended the index of its pronunciation variant
in the dictionary. The 3-gram model is calculated on the resulting text cor-
pus. Thus, pronunciation variants of a unit are considered different language
model units. One disadvantage is that the number of units is increased and
therefore more 3-grams have to be estimated from the same amount of text
material. In addition, these variant language models have slightly higher
perplexities and OOV rates than their counterparts that do not distinguish
pronunciation variants. Each pronunciation variant of a unit is considered a
distinctive vocabulary unit in the recognizer. With the 64k vocabulary size
limitation less different words can be used in the vocabulary and as a con-
sequence the OOV rate will increase. We evaluated this idea on the systems
MergelntraMaxz and MorphTag. The task perplexity and the OOV rate of
these systems are given in table 7.3.

‘ H 010)% ‘Perplexity‘

MergelntraMax || 1.518% 498.3
MorphTag 3.575% 224.4

Table 7.3: Recognition task complexities on Chosun+ Train,
pronunciation variants not mapped on baseform in language
model.

Table 7.4 shows the performance results. Introducing a variant-LM decreases
the eojeol error rate of the system MergelntraMaz to 35.6%, an error reduc-

syllable components. While both the character and phone error rate for “a-b c-d-e f-g”
are 0%, the eojeol error rate would be 66%. Small errors can yield big differences in the
eojeol error rate.
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tion of 10.5%. For MorphTag the eojeol error rate is reduced by 15.4% to
32.3%.

| [ A ] 1 [ 2 [ 3 ] 4 15 [ 6 [ 7 8 19 ] 10|

MergelntraMaz

Phone ER 14.3 | 15.2 | 164 8.9 10.7 | 10.1 | 134 9.6 18.3 | 13.0 | 22.7
Character ER 21.2 | 242 | 243 | 11.4 | 17.0 | 15.7 | 20.3 | 15.1 | 24.9 | 17.6 | 33.2
Eojeol ER 35.6 | 36.1 | 41.5 | 21.3 | 30.4 | 25.8 | 34.5 | 27.2 | 36.0 | 29.5 | 59.2
MorphTag

Phone ER 13.5 | 14.2 | 18.5 | 10.0 9.7 7.5 12.0 8.2 12.0 | 11.1 | 22.2
Character ER 19.8 | 21.2 | 26.9 | 14.7 | 14.5 | 10.8 | 16.4 | 12.7 | 16.8 | 16.0 | 33.7
Eojeol ER 32.3 | 33.1 | 40.6 | 25.2 | 24.6 | 21.7 | 26.4 | 22.8 | 28.1 | 30.9 | 57.7

Table 7.4: Summary of recognition error rates using a variant-

LM, %.

7.3.3 More Data

In addition, we evaluated the two above systems, using the variant-LM, on
the full text corpus Chosun+ Train. The resulting systems are called Mergeln-
traMaxWhole and MorphTagWhole. Using a larger amount of text data im-
proves the robustness of the language model. To keep the vocabulary size
of the merge system at 64k, the merging has to be done on the bigger text
corpus again. The recognition task characteristics of the resulting systems
are shown in table 7.5. The OOV rate and perplexity values show us that
the merge based system profits a lot from the enlarged amount of text data.
The OOV rate is reduced by more than one percent and the perplexity is
almost reduced by a factor of five. But again, the perplexity values cannot
be compared directly as the unit sets of the two MergelntraMax systems dif-
fer. This is because less units can be merged on the big corpus before a 64k
vocabulary is reached. The OOV rate of MorphTag remains around 3.5%
but the perplexity increases by a factor of two. The reason for this is the
increase in vocabulary size by a factor of about four.

The performance results of MergelntraMaxWhole and MorphTagWhole are
listed in table 7.6. The increased amount of text data results in an eojeol er-
ror rate of 28.0% for MergelntraMaxzWhole, an error reduction of 21.3%. For
MorphTagWhole the eojeol error rate is reduced by 3.1% to 31.3%. While
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‘ H OOV ‘ Perplexity‘

MergeIntraMaxWhole || 0.233% 136.6
MorphWhole 2.886% 143.1
MorphTagWhole 3.513% 485.9

Table 7.5: Recognition task characteristics.

the merge based system profits from the increased amount of text data, the
improvement for the morpheme system is not very significant. The main
reason for this difference in improvement should be that the vocabulary for
MergelntraMaxWhole is kept at 64k resulting in a very low OOV rate of
0.23%.

T Aan ] 1 [ 2] 3] 45 [ 6 ] 7819 10|

MergelntraMax Whole

Phone ER 11.6 | 14.7 | 14.7 7.3 9.1 9.2 12.4 | 10.3 | 12.3 9.1 19.9
Character ER 16.4 | 20.4 | 21.0 9.7 14.8 | 12,5 | 174 | 15.1 | 17.1 | 12.3 | 29.7
Eojeol ER 28.0 | 29.3 | 33.7 | 164 | 26.1 | 22.5 | 27.3 | 254 | 24.6 | 22.3 | 47.9
MorphTagWhole

Phone ER 12.2 | 10.6 | 16.8 9.4 11.2 6.4 12.9 | 10.8 | 13.5 9.1 18.5
Character ER 18.1 | 14.7 | 24.5 | 13.5 | 18.2 | 10.0 | 18.6 | 18.5 | 18.4 | 12.9 | 26.2
Eojeol ER 31.3 | 23.1 | 389 | 25.0 | 32.1 | 19.8 | 31.8 | 29.8 | 29.8 | 24.5 | 47.9

Table 7.6: Summary of recognition error rates on Chosun+ Train, %.

7.3.4 Corrected Speech Database

An analysis of the recognition errors revealed that one major type of error
was made, namely the deletion of one syllable in the beginning or the end
of an utterance. As a consequence, the segmentation of the audio waveform
files was checked and it was found that most of them were segmented too
sharply. In many cases, as much as a whole syllable was cut away. Subse-
quently, the whole database was resegmented. New labels were created with
the repaired database and the acoustic models were retrained on these new
labels. With the new acoustic models we repeated the last experiment on
the new database. In addition to MergelntraMaxWhole and MorphTagWhole
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the system MorphWhole was also evaluated.

Table 7.7 shows the performance results. Working on the corrected database
decreases the eojeol error rate of MergelntraMazWhole to 24.6%, an error
reduction of 12.1%. For MorphTag the eojeol error rate is reduced by 4.1%
to 30.0%. MorphWhole has an eojeol error rate of 24.0%

| JAar] 1 ] 2 [ 3 [ 4] 5 ] 6 [ 718 1] 9 ] 10|
MergelntraMaz Whole
Phone ER 9.9 11.4 | 11.3 8.0 6.7 7.5 11.8 8.2 9.6 6.6 12.9
Character ER 14.5 | 186 | 15.5 | 11.4 | 10.1 | 12.0 | 16.4 | 11.1 | 12.8 | 10.2 | 20.3
Eojeol ER 24.6 | 24.8 | 29.1 | 16.5 | 20.3 | 21.7 | 26.4 | 21.1 | 184 | 18.6 | 29.6
MorphWhole
Phone ER 9.4 5.8 13.0 | 4.8 6.5 9.0 11.7 | 8.9 8.9 7.0 15.9
Character ER 13.0 7.4 18.2 6.7 10.3 | 11.4 | 18.6 | 11.1 | 10.6 | 10.0 | 22.3
Eojeol ER 24.0 | 134 | 343 | 141 | 16.7 | 20.8 | 28.2 | 184 | 17.5 | 18.0 | 38.0
MorphTagWhole
Phone ER 10.7 | 6.7 14.2 8.2 9.7 8.5 11.5 7.5 9.4 8.2 17.1
Character ER 16.2 | 11.2 | 21.8 | 12.3 | 14.0 | 13.1 | 18.0 | 13.0 | 12.5 | 12.1 | 21.8
Eojeol ER 30.0 | 19.4 | 37.1 | 21.9 | 27.0 | 27.5 | 35.5 | 27.2 | 21.9 | 21.1 | 42.3

Table 7.7: Summary of recognition error rates on Chosun+ Train with cor-
rected speech database, %.

7.3.5 Discussion

The best merge based baseline system, MergelntraMazx, has an eojeol error
rate of 39.8%. The error rate of the system MorphTag is 1.6% lower, 38.2%.
Introducing pronunciation-variant based language models reduces the eojeol
error rate of MergelntraMaz by 10.5% to 35.6%. The error rate of Mor-
phTag using a variant based language model is 32.3%, an error reduction
of 15.4%. Increasing the amount of training data for the language model
yields a further error reduction of 21.3% for MergeIntraMaz, but only 3.1%
for MorphTag. The resulting eojeol eror rates are 28.0% for MergelntraMax
and 31.3% for MorphTag. We found out that most utterances in the speech
database were segmented too sharply. As a consequence, we corrected the
segment boundaries of each utterance and used the repaired database to re-
train the acoustic models. Using the variant-LM and the large text corpus
on the new database, MergelntraMaz has an eojeol error rate of 24.6%, Mor-
phTag has an error rate of 30.0%. This is an error reduction of 12.1% and
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4.1%, respectively. To summarize, we reduced the eojeol error rate of 39.8%
of the baseline MergelIntraMax system to 24.6%, a total error reduction of
38.2%. The eojeol error rate of the baseline MorphTag system, which was
38.2%, was reduced by 21.5% to an error rate of 30.0%. This information is
summarized in table 7.8

The system Morph has an eojeol error rate of 24.0% on the corrected database.
It outperforms the system MorphTag due to two reasons. First, the vocab-
ulary size of MorphTag is significantly higher than the one of Morph. As
a consequence, MorphTag has a higher OOV rate when its vocabulary is
limited to 64k. Also, the MorphTag language model is less robust than the
Morph language model as more 3-grams have to be estimated from the same
amount of training data.

MergelntraMazx MorphTag
Eojeol Error Eojeol Error
Error Rate | Reduction | Error Rate | Reduction
Baseline 39.8 - 38.2 -
Variant-LM 35.6 10.5 32.3 15.4
More Data 28.0 21.3 31.3 3.1
Corrected Database 24.6 12.1 30.0 4.1

Table 7.8: Summary of the performance of the recognition systems.

All these experiments consistently show that the dictionary units determined
by the data-driven approach MergelntraMaz are no worse than the morpheme
units determined by a complex morpheme analyzing system.



Chapter 8

Conclusions

8.1 Conclusions

The “agglutinating” nature of the Korean language makes the choice of ap-
propriate dictionary units for a large vocabulary speech recognition system
difficult. Eojeols, the units that result from the agglutination process, are
highly inappropriate. They have an inherent severe OOV problem and show a
linear with task size vocabulary growth rate. Sub-eojeol units must therefore
be determined. A natural choice of sub-eojeol unit is the morpheme as each
eojeol is composed of a sequence of morphemic components. The develop-
ment of a system that automatically splits eojeol units into their morpheme
components is very expensive, involving a lot of aprior: expert knowledge on
the morphological structure of the Korean language.

This work describes a new approach to finding appropriate dictionary units.
Because morpheme units are not proven to be the optimal choice of sub-
eojeol units from a language modeling perspective we discarded the mor-
phemic structure and approached the problem from an acoustic, data-driven
perspective instead. We developed an approach which, in a first pass, splits
each eojeol into its syllable components. Then, iteratively, syllable pairs are
merged in order to reduce acoustic confusability of syllable transitions.

Our results show that this data-driven approach generates units that are
equally suitable for a large vocabulary speech recognition dictionary as the
morpheme units. As a consequence, we do not have to rely on complex expert
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systems for the unit determination process. It can be done automatically
using a data-driven approach.

8.2 Future Work

To further improve the performance of these speech recognition systems, a
number of possibilities might be explored:

o “LM-related” merging criterion:

A language model related extension of the function that chooses the
unit pairs to merge could improve the quality of the determined unit
set in terms of language model suitability. A simple example of such
an extension would be the integration of mutual information.

It would also be interesting to compare the unit merging approach to
a purely LM motivated approach where iteratively the most frequent
pair of syllables is merged, without taking into account the frequency
of phone transitions.

e “More Data”:

A famous expression in the area of pattern recognition is: “There is no
data like more data”. One way to improve the recognition performance
would be to collect more speech data for the acoustic models. Not
only can the models be estimated more reliably but the system also
increases its speaker independent robustness by learning more about
“new speakers”. Analogous, more text data would improve the quality
of the statistical language model.

e Higher-order LMs:
The employment of higher order n-gram language models (n > 3) would
very likely yield an increase in performance. As the language model is
based on sub-eojeol units, it is not always guaranteed that the 3-gram
provides enough range to ensure valid eojeol unit connection.

o System Tuning:
A general way to improve the performance of a speech recognition
system is to tune its parameters. This would include the number of
polyphone models, the dimension of the feature vector, the number of
Gaussians and also variations in the preprocessing.



Appendix A

Transcription Systems for

32 | McCune- | Yale | North | South | hcode
Reischauer Korea | Korea
H p,b p p b p
iz p’ ph ph p ph
HH pp pp pp bb pp
= t,d t t d t
E t’ th th t th
tC tt tt tt dd tt
A s s s s s
A ss ss ss ss ss
PN ch,j ¢ ts J ¢
S ch’ ch tsh ch ch
AR tch cc tss Ji cc
-1 k,g k k g k
= kK’ kh kh k kh
T kk kk kk gg kk
o m m m m m
‘—- n n n n n
e} ng ng ng ng ng
& h h h h h
= Lr 1 r Lr Lr
] i i i i i

g

Table A.1: Transcription systems for the = consonants.
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APPENDIX A. TRANSCRIPTION SYSTEMS FOR

gl=Z | McCune- | Yale | North | South | hcode
Reischauer Korea | Korea
] i i i i i
7 wi wi wi wi wi
) e ey e e e
al ye yey ye ye ye
i we wey we we we
83 oe oy oi oe oe
H ae ay ai ae ae
H yae yay yai yae yae
H wae way wai wae wae
— a u a eu eu
. o} e o} €0 €o
9 yo ye yo yeo yeo
hE| wo we wo weo weo
F a a a a a
E ya ya ya ya ya
1} wa wa wa wa wa
T u wu u u u
m yu yu yu yu yu
2 ) ) ) 0 )
AL yo yo yo yo yo
- ui uy ui eui yi

Table A.2: Transcription systems for the g3 vowels.



Appendix B

Text Corpus Mappings

Acronym s Acronym | 33

3D 2>t IBM ol-o]u] )
ABC of] o] 1] | ISDN ofo]of At all
ADAC o o] t]of o] 4 JPEG A o] =

Al of o] o} o] LAPD ol of o] 7] T
AMD of o] 3t MBA uef o]
ATM of o] g] 3l MRI ol ofolo]
AT&T o o] E] A E=FE] NYSE qll ofo] o 2 0]
AWACS o] &l & OEM Q0|9
BASF Hlofojo| 2o = || PCMCIA | 3] #] gl % o}o]of o]
CDU/CSU | A t]$ R o A% || PDA 1)t o] o]
CeBIT Ru|E R&D Aol =t
CEO # o] Q. RAM 2

CGI 2] &) o} o] TOEFL | EZ

CIA #| ofo]ef o] UCLA FrA| e o]
CMOS I UEFA fro] 3}

CPU ») 5] & UN Srall
DAEWOO | tj ¢ UNESCO | frul&x
EPROM o ZTE UNICEF | fUA =
FBI o] L u]o}o] UsS Foll &

FIFA ¥ 5} WTO &2
HBO o o] A | 2 YMCA gfo] o) # of o]

Table B.1: Some examples of acronym mappings.
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APPENDIX B. TEXT CORPUS MAPPINGS

Descriptor | 33 Descriptor | 33

% HAE m? A A F w9 g
ce 2 R m? A2 2 g
cm A E]m| g m k=]

dB o) A] 8 MB W 7hufo] =
g I MHz ) 7}el 22
GB 7] 7}uafo] E mm = 2] u) g
ha s e} mW Hzele
Hz 2z kW A7 9lE
kbps Zzn]3]e £ || pH 7] o] o] X
kg Az ppm 7] ]9l

kHz AR =X t E

km Z 2 g \% Z2E

kV Az EE

Table B.2: Mapping table for units.




Appendix C

Janus Toolkit

C.1 Phoneme Models

IPA- | Janus- | Example
symbol | Phone
a A shah
€ AE cat
e E bet
i I inn
o O oil
9 EO about
? OE German Goethe, but also wet
u U goose, but shorter (rounded lips)
i EU | broken (unrounded lips)
y UE German funf
i eul squeeze
pedantically as [i]
but usually initial as [i],
in other position as [i],
and as particle meaning “of” as [e]
ia iA yarn
ie iE yellow
io iEO | yerba
io iO yoke
iu iu youth
oa 0A wash
uo uEO | wonderful

Table C.1: Korean vowel models.
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APPENDIX C. JANUS TOOLKIT

IPA- Janus- | Example and explanation

Symbol | Phone
¢ CHh | hitchhike, strong aspiration
j J rejoice, fully voiced
¢’ JJ pitcher, tight throated release
s S sing, weaker than its English counterpart
s’ SS assail, with tension in the throat and tongue
m M momentum
n N newtonian, tongue tip behind upper teeth
| NG singing
h H hat
p Ph uphill, strong aspiration
b B obey, fully voiced
P’ P stop, unreleased
p’ BB spin, tight throated release
t Th hothouse, strong aspiration
d D ado, fully voiced
t” t yet, unreleased
t’ DD stay, tight throated release
k Kh blockhead, strong aspiration
g G ago, fully voiced
k" k tic, unreleased
k’ GG sky, tight throated release
c R very (in British English)
1 L tail

Table C.2: Korean consonant models.




C.2. PHONEME CONTEXT QUESTION SETS

C.2 Phoneme Context Question Sets

CONSONANTS PhBBBpThDDDt KhGGGkCHhJJJMNNGRLSSSH
VOWEL A EO OUIEU AE E OE UE iA iEO iO iU iE oA uEO eul
VCD BBBDDDGGGJJJNGMNRL
VELAR Kh G GG k NG SILENCE SIL
BILABIAL Ph B BB p NOISE +hGH
PALATAL CHh J JJ NASAL M N NG
AFFRICATE CHh J JJ LATERALAPPR L
EMPHASED BB DD SS JJ GG FRICATIVE SSSH
ASPIRED Ph Th Kh CHh FRIC-ALVEO S
PLOS-VCD B BB D DD G GG FRIC-GLOTTAL H
PLOS-UNVCD Ph Th Kh EMPH-UNVCD SS
CLOSE-VOW IUEEUU EMPH-BILABIAL BB
EMPH-VCD BB DD GG JJ EMPH-VELAR GG
VOW-I TiA iEO iO iU iE EMPH-ALVEO DD SS
ALVEO-VCD DDDNRL EMPH-PALATAL JJ
ALVEO-UNVCD Tht S SS IMPL-BILABIAL p
DIPH-I iA iEO iO iU iE IMPL-ALVEO t
ROUND O U OE UE IMPL-VELAR k
UNROUND EOEUI A AEE BILABIAL-VCD B BB M
FRONT-VOW I E AE A UE OE BILABIAL-UNVCD Php
BACK-VOW EUEOOU PALATAL-VCD JJJ
VOW-U U UE uEO PALATAL-UNVCD CHh
ALVEO ThDDDtNRLSSS VELAR-UNVCD Kh k
PLOSIVE Ph B BB Th D DD Kh G GG DIPH-O 0A
TRILL R DIPH-U uEO
UNVCD PhpTht Khk CHh SSS H DIPH-EU eul
DIPHTHONG iA iEO iO iU iE oA uEO eul DIPH-DOWN eul
DIPH-UP iA iEO iO iU iE oA uEO OPENMID-VOW AE EO
VOW-O O OE oA OPEN-VOW A
PLOS-BILABIAL Ph B BB VOW-EU EU eul
PLOS-ALVEO Th D DD AFFR-VCD JJJ
PLOS-VELAR Kh G GG AFFR-UNVCD CHh
VELAR-VCD G GG NG IMPLOSIVE ptk
GLOTTAL H CLOSEMID-VOW E OE O

Table C.3: Phone sets used for decision tree based context
dependent phone modeling.
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Appendix D

Coverage
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Figure D.1: Eojeol-based cross coverage of Test-Utts with dif-
ferent language model corpora.
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Figure D.2: Morph-based cross coverage of Test-Utts
with different language model corpora.
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Figure D.3: MorphTag-based cross coverage of Test-Utts
with different language model corpora.
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Figure D.4: MergeIntraMazx-based self coverage of Train and
cross coverage of Test and Test-Utts.
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Figure D.5: MergelntraAll-based self coverage of Train and
cross coverage of Test and Test-Utts.
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Figure D.6: MergelnterMax-based self coverage of Train and
cross coverage of Test and Test-Utts.
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Figure D.7: MergelnterAll-based self coverage of Train and
cross coverage of Test and Test-Utts.
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Figure D.8: MergelntraMaxWhole-based self coverage of

Train and cross coverage of Test and Test-Utts.
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