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Abstract

Recent advances in speech recognition technology have shown that automatic speech
recognition systems can help to overcome language barriers in educational and sci-
entific lectures. However, speech recognition of lectures involves many difficulties
because the spoken words, such as technical terms and phrases, are very differ-
ent between lectures of different topics. Therefore, speech recognition accuracy for
new, previously unseen lectures is often poor. To overcome this problem, related
work has used manually selected lecture-specific documents to adapt the system to
the current lecture topic. Nevertheless, this manual approach is too expensive and
time-consuming to allow effective speech recognition of all the diverse lectures at a
university. Thus, in this work, an effective adaptation is introduced that solves this
issue. Based on an initial text document that is available before the lecture begins,
such as lecture slides. the proposed approach automatically adapts a speech recogni-
tion system without any human input. By automatically searching and downloading
text documents from the world wide web, a document corpus is built. which is then
used to adapt the speech recognition vocabulary and language model to the lecture
topic. The adaptation is focused on the selection of a lecture-specific vocabulary by
applying a novel vocabulary ranking scheme based on word features. In an experi-
mental evaluation of this approach on six German lectures with different topics and
speakers, the proposed approach showed significant improvements compared to a
topic-independent baseline system. By using a lecture-specific vocabulary that was
selected by applying the proposed method instead of a topic-independent baseline
vocabulary, the out-of-vocabulary rate was relatively reduced on average by 53.0%
per lecture. The adaptation of the language model to the lecture topic relatively
improved the language model perplexity on average by 23.0% per lecture compared
to a topic-independent baseline. Finally, the word error rate was relatively lowered
on average by 12.5% per lecture by employing the lecture-specific vocabulary and
language model compared to a topic-independent baseline system. These results
show the effectiveness of the proposed approach.



Kurzfassung

Aktuelle Forschungsergebnisse haben gezeigt, dass automatische Spracherkennungs-
systeme dazu verwendet werden konnen, um Sprachbarrieren in Vorlesungen und
Vortrigen zu iiberwinden. Allerdings beinhaltet die Spracherkennung von Vor-
lesungen viele Schwierigkeiten, da sich die verwendeten Worter, wie z.B. Fach-
worter, in Vorlesungen zu verschiedenen Themen stark unterscheiden. Daher ist die
Spracherkennungsgenauigkeit bei neuen oder unbekannten Vorlesungen oft schlecht.
Um dieses Problem zu ldsen, werden Spracherkennungssysteme mit Hilfe von manuell
ausgewihlten, themenspezifischen Dokumenten adaptiert. Aber dieser manuelle
Ansatz ist zu zeitaufwendig und teuer um gute Spracherkennung von allen unter-
schiedlichen Vorlesungen an einer Universitat zu ermoglichen. Daher wird in dieser
Arbeit ein neuer effektiver Adaptionsansatz zur Losung dieses Problems vorgestellt.
Das entwickelte Verfahren adaptiert ein Spracherkennungssystem automatisch an
das Thema einer Vorlesung nur basierend auf einem initialen Textdokument, wie
z.B. Vorlesungsfolien, ohne weitere Eingaben eines Menschen. Relevante Textdoku-
mente werden automatisch im Internet gesucht und heruntergeladen. Anschlieflend
wird die entstandene Dokumentensammlung fiir die Adaption des Spracherken-
nungsvokabulars und des Sprachmodells verwendet. Hierbei liegt der Fokus auf der
Auswahl eines vorlesungsspezifischen Vokabulars mit Hilfe eines neuartigen Vokab-
ularsortierungsverfahrens basierend auf Wortmerkmalen. In einer experimentellen
Evalnation auf sechs deutschen Vorlesungen mit unterschiedlichen Themen und von
unterschiedlichen Sprechern konnten mit Hilfe des vorgestellten Verfahrens deutliche
Verbesserungen im Vergleich zu einem themenunabhiingigen System erzielt werden.
Die Verwendung eines vorlesungsspezifischen Vokabulars an Stelle eines themenun-
abhéngigen Vokabulars verbesserte die Vokabularabdeckung, gemessen durch die
sogenannte .out-of-vocabulary rate”, relativ um durchschnittlich 53,0% pro Vor-
lesung. Die Adaption des Sprachmodells verringerte die Perplexitiit des Sprachmod-
ells relativ um durchschnittlich 23,0% im Vergleich zu einem themenunabhéngigen
Sprachmodell. Abschliefilend wurde durch die Verwendung des vorlesungsspezifis-
chen Vokabulars und Sprachmodells die Wortfehlerrate relativ um durchschnittlich
12.5% pro Vorlesung reduziert, verglichen mit einem themenunabhéngigen System.
Mit diesen Ergebnissen konnte die Effektivitit des vorgestellten Ansatzes gezeigt
werden.
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1. Introduction

Recent advances in streaming technologies allow research talks and lectures to be
broadcast live from educational institutes around the world. This provides students
with an unprecedented access to educational content no matter of their physical
location. A recent example is Stanford’s lecture “Introduction to Artificial Intelli-
gence”, which was offered to every student for free in the fall of 2011. More than
100,000 students from around the world signed up for this lecture. With this bold
experiment, Stanford showed the potential that lies in distributed education. How-
ever, although physical barriers are reduced through web streaming technologies,
language barriers remain. Lectures may be presented in a language the student
cannot understand thus limiting the usefulness of such content. Similarly, due to
the lack of subtitles, live audio-video content is unsuitable for the hearing impaired.
To overcome these barriers, recent works have investigated both the use of speech-
translation technologies to translate lectures in real-time [KWKN™08] and real-time
lecture transcription for the hearing impaired [KaNAOQ8]. Although it was shown in
these papers that the methods are useful, the biggest downfall of these technologies
is portability. The particular technologies rely on antomatic speech recognition sys-
tems that are generally optimized to a specific lecture topic, as described in the next
paragraphs.

Imagine a speech recognition system to be a human being who has just learnt a
new language. The task of this person is to correctly write down every single word
that will be said in this language. It is nearly impossible for this person to write
down a word correctly that he has never seen or read hefore. To solve this problem
for speech recognition systems, a word list is provided that contains all words that
could be said. This list is called the speech recognition vocabulary. Creating this
vocabulary is particularly difficult when dealing with a lecture of unknown topic.
Every lecture has specific words, such as technical terms, which are common for the
specific lecture topic but not for other lecture topics. Table 1.1 shows a list of exam-
ples of different topic-specific words of six different lecture topics. For example, in a
chemistry lecture about polyamino carboxylic acids, the word “Ethylenediaminete-
traacetic acid” might occur, but probably not in a math lecture. Another example:
The name of “Jawaharlal Nehru”, the first Prime Minister of independent India, is
likely to occur in a history lecture about India, but not in a physics lecture. These
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are only a few examples of topic-specific terms that can exist in lecture speech. A
speech recognition vocabulary has to be specially adapted to correctly recognize
these specific terms and create the correct lecture transeription.

[ Topic | Example group of words | Example [
Chemistry Different acids Ethylenediaminetetraacetic acid
Biology Different organisms Family of Erethizontidae
History Historic figures Jawaharlal Nehru
Physics Different particles Higgsino
Arts Artists, Names of paintings Guernica by Pablo Picasso
Mathematics | Mathematical functions, symbols Dirichlet eta function

Table 1.1: Examples of Lecture-specific Technical Terms and Names

If the system is not trained for the lecture topic, spoken words might be recognized
as different words with a similar pronunciation. For example, if a system is not
built for a specific physics lecture, it might not recognize words like “Newton™ and
“kinetics” correctly. When the lecturer says a sentence like “Today, I'm going to talk
about Newton's second law, the kinetics of particles.”, the system might recognize
“Today, I'm going to talk about new tones second law, the genetics of particles.”
This sentence is not understandable anymore even though most of its words are
recognized correctly. This example shows the importance of an adapted vocabulary.

Even more difficult to recognize correctly are homophones, which are words that have
the same pronunciation but separate meanings [Brid06]. The only way to determine
which word is meant is to use context information. For example, if the professor in
a history lecture about ancient cities said: “Your homework for next week: Rome,
the city.”, it is clear that he is speaking about the Italian capital “Rome”. However,
imagine a social studies class in which the students have to conduct a survey in
their local city. In this class, the phonetically identical sentence could have meant:
“Your homework for next week: Roam the city.” To recognize such a sentence
correctly, specific information about the context, like topic of the current lecture,
is needed. For the best performance, the system needs word sequence probabilities
that enable the system to choose the correct word. In a speech recognition system,
these probabilities are estimated by employing a statistical language model. The
language model is trained by using sentences that are similar to the sentences that
will be used in the lecture.

Therefore, for each new topic, significant effort and cost is required to manually
transcribe similar lectures, without which the system will generally perform poorly.
Only some work is already done for a more automatic adaptation process but these
approaches are either ineffective in terms of vocabulary adaptation or they need an
amount of human input that is too expensive for real world applications.

In the work at hand, an approach is developed that allows a speech recognition
system to cope with the diverse educational and scientific lectures that are offered
at a university, by automatically adapting itself to the lecture. The main part of this
approach consists of an effective vocabulary selection method with as little human
input as possible to allow a fast and cost effective solution.
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2. Theoretical Background

This chapter provides an overview of the theoretical background of this work. The
main techniques are automatic speech recognition (ASR), machine translation (MT),
and text mining. The following introduction into ASR is mainly based on the book
“Spoken Language Processing: A Guide to Theory, Algorithm and System Develop-
ment” by Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon [HuAHO1].

2.1 Automatic Speech Recognition

Automatic speech recognition (ASR) describes methods that convert speech into
text. The components of a speech recognition system are illustrated in figure 2.1. In
the first step (signal processing), the spectral features are extracted from the input
speech waveform. The most commonly used spectral features for speech are Mel-
frequency cepstral coefficients (MFCC). In [DaMe80], Davis and Mermelstein showed
that the MFCC representation is beneficial for speech recognition. More details
about MFCC can be found in [HuAHO1]. Let X = 21, 2,,...,zx be the spectral fea-
ture representation sequence of the acoustic observations and W = wy, ws, ..., way
denote the corresponding word sequence. The speech decoder chooses the word se-
quence W that is the best match for the input speech representation X.

Speech Recognition

i

|

Acoustic i

Model |
|
:m Signa| szl Xy X3 eee SpEECh W=W1 Wiy w4 WNE
' (speech) Processing  ((spectral features)|  Decoder (word sequence) |

Figure 2.1: Components of a Speech Recognition System
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Due to the high variability of speech, current ASR systems rely on statistical meth-
ods. These methods are based on the Bayes’ theorem:

p(X[W)P(W)

P(W|X) = S—"rs

(2.1)

The speech recognition decoder chooses the word sequence W that has the highest
probability P(W|X) given the acoustic observation X, This means W is defined as:

W = arg max P(W|X)
W
By using the Bayes’ theorem, we can write:

p(X[W)P(W)
p(X)
Since we are seeking the maximum, we do not have to divide the last term by

p(X) because p(X) is common across all possible values for W. Consequently, the
equation can be simplified:

W = argmax P(W|X) = arg max
W W

W = arg max P(W|X) = arg max p(X|W)P(W) (2.2)
w w

where probability density p(X|W) is known as the acoustic model and the proba-
bility P(W) is called the language model. Equation 2.2 is called the “fundamental
equation of speech recognition”.

2.1.1 Vocabulary and Dictionary

The fundamental equation of speech recognition (eq. 2.2) is used to search across
all possible word sequences W = wy, ws, ... for the word sequences with the highest
probability W. To allow search across all possible word sequences, the number of
possible words has to be limited. Thus, each word w; is part of a predefined and
limited vocabulary V with w; € V and |V| € N. In vocabulary V', an inflected form
is considered as a different word. The reason for that is that inflected forms usually
have different pronunciations and usage patterns. Accordingly, the words “talk”,
“talks”, “talked”, and “talking” are counted as four different words in vocabulary V.
Only words that are present in the active system vocabulary can be recognized by
the ASR system because only these words are considered as possible word sequences.
From this it follows that a larger vocabulary allows the ASR system to recognize
more words. Nevertheless, a smaller vocabulary is preferred because this reduces the
number of confusable words, leading to an improved speech recognition accuracy.
In addition to that less words in the vocabulary decrease the number of possible
word sequences and thus, lead to an increased processing speed. However, a smaller
vocabulary obviously leads to a less flexible system. Furthermore, the user is usually
not aware of which words the system can recognize. Spoken words that are not in
the system’s vocabulary are called out-of-vocabulary words (OOV words). In the
best scenario, each OOV word leads to only one error in the ASR output. But
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usually an OOV word also effects the speech recognition output of the surrounding
words because the speech decoder tries to match the input sequence with words from
the vocabulary. Thus, the number of OOV words directly effects speech recognition
accuracy. Therefore, the out-of-vocabulary rate (OOV rate, eq. 2.3) is used to
determine the quality of a vocabulary. Giving a text or transcript, the OOV rate is
defined as follows:

WRTI.. T, o t
OOV 4té = Number of OOV words in tex . 100% (2.3)

Total number of words in text

The vocabulary is selected to achieve the lowest OOV rate given the available vo-
cabulary size.

Since the system input is a spoken word and not a written word, a conversion from
text to spoken word is needed. For this reason, the speech recognition dictionary
creates this connection between words and pronunciations. For each word in the
vocabulary, the dictionary contains one or more pronunciations, i.e. phoneme se-
quences. In [Ass099], a phoneme is defined as “the smallest segmental unit of sound
employed to form meaningful contrasts between utterances in a language or di-
alect”. By using phoneme sequences to represent words, the acoustic model only has
to model the relationship between phonemes and spectral features. Therefore, it is
independent from the vocabulary. The pronunciations are either determined man-
ually or generated automatically by employing a text-to-speech (speech synthesis)
system. An open-source system is the Festival speech synthesis system, which offers
a general framework for building speech synthesis systems. The architecture of the
Festival speech synthesis system is described by Paul Taylor et al. in [TaBC98]. The
system is available at http://www.cstr.ed.ac.uk/projects/festival/.

2.1.2 Acoustic Model

In the search for the best word sequence W given the input speech signal X, the
acoustic model provides the probability distribution p(X|W) of a speech signal given
a word sequence. In modern ASR systems, the acoustic model usually models the re-
lationship between small parts of the words, usually phonemes, and the input speech.
The large number of words in modern ASR systems makes this approach more effi-
cient. Additionally by focussing on phonemes, the acoustic model is independent of
the vocabulary and the language model. Building an acoustic model is challenging
since it is affected by the speaker, the microphone used, and the environment (small
room, large hall, etc.) in which the recording took place. However, the acoustic
model is not affected by the topic of the speech. The acoustic model is often built
by applying hidden Markov models (HMM) and the probability density function is
modeled by employing Gaussian mizture models (GMM). Each HMM models one
phoneme. The model of a word is the concatenation of the HMMs of its phoneme
sequence. More details on HMM and GMM. and their application in speech recog-
nition can be found in [HuAHO1]. As mentioned before, the acoustic model differs
between different speakers and a new acoustic model training is needed to improve
speech recognition. However, speaker adaptation can also be performed in an un-
supervised manner. One unsupervised speaker adaptation approach is described in
[LBGA*09].
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2.1.3 Language Model

The recognition of the correct word sequence W is guided by the word sequence
probability P(W) provided by a statistical language model. The following descrip-
tion of language models is based on [ChGo98]. The language model provides the
probability P(W) over a given word sequence W = wy, wa, . .., Wy This probability
reflects how often the word sequence W occurs in a language. The most common lan-
guage models are n-gram models. The most simple n-gram model is called unigram
(1-gram) model. It provides the probability of a single word without taking any
previous words into account, P(w;), bigrams (2-grams) models give the probability
of a word given the previous word, P(w;|w;_,), and trigrams (3-grams) models give
the probability of a word given the previous two words, P(w;|wi—2, wi—1). In general,
an n-gram model provides the probability of a word given the n — 1 previous words:
P(w;|wi_(n-1), - - -, Wi-1). Theidea of a langnage model based on an n-gram model is
that the probability P(W) of a word sequence W composed of the words wy ... wyy
can be expressed as:

M
P(W) = P(wy)P(wa|w: )P (ws|wiws) . .. Plwpr|wy ... wy—-1) = HP(w,;]-wl oo Wi—1)
i=1

We can approximate the probability P(W) by employing n-gram models if we assume
that the probability of a word depends only on the n — 1 immediately preceding
words. For example, we can use a bigram model to approximate P(W) if we make
the assumption that the probability of a word depends only on the immediately
preceding word. With this assumption P(W) can be expressed as:

M M
P(W) = H P(wi|w; ... wi—1) = HP(‘WTJ‘“H—O
i=1

i=1

The n-gram probabilities are usually estimated by using a text corpus, simply count-
ing the n-gram occurrences, and normalizing them. Let ¢(w;_jw;) be the number of
times the bigram w;_jw; occurs in the given text corpus. Then, we can take:

ClW; -1 W
Poare (wi|wi1) = Z(‘f#l_’u))_)
5 o ]

iy

This estimate is called the mazimum likelihood (ML) estimate of P(w;|wi-1)

Now. consider the following small example. Let the given text corpus be composed
of three sentences (“MARY WALKED AROUND", “TIM WALKED TO PETER", “SHE
WALKED TO HIM") and let us calculate P(TIM WALKED AROUND) by applying a
bigram language model. Let “<gTART=" mark the start of the sentence and let
«~pND=" indicate the end of the sentence. We have the following bigram probabil-
ities:
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¢(<START> Tmm) 1
S c(<START> w) 3

e(TiM WALKED) 1
P(WALKED|TIM) = S~ (TTM w) =

!
¢(WALKED AROUND) 1
S c¢(WALKED w) 3

w
: ¢(AROUND <END>) 1
P(<END>|AROUND) = S linotis = of

u!

P(TIM|<START>) =

P(AROUND|WALKED) =

This gives us

P(TIM WALKED AROUND)
= P(TIM|<START>) - P(WALKED|TiM) - P(AROUND|WALKED) - P(<END>|AROUND)
1 1 1 3 1

Smoothing

In practice. the given text data is often sparse. A problem occurs in the current ap-
proach, when we observe a previously unseen bigram. If we calculate the probability
of the sentence PETER WALKED AROUND. We get

PriE) & ¢(PETER WALKED) . 0

>_ c(PETER w) 1

o
and therefore, P(PETER WALKED AROUND) = (. This means that the probability
of P(PETER WALKED AROUND|X) given any acoustic input X will be zero. Thus,
the speech recognition system will never recognize this sentence. Obviously, this is
undesired. There is at least some probability that this sentence occurs.

P(WALKED

This problem is addressed by smoothing. In [ChGo98|, Chen and Goodman provide
a good description of what smoothing is: “The term smoothing describes techniques
Jor adjusting the mazimum likelihood estimate of probabilities to produce more ac-
curate probabilities. The name smoothing comes from the fact thatl these techniques
tend to make distributions more uniform, by adjusting low probabilities such as zero
probabilities upward, and high probabilities downward. Not only do smoothing meth-
ods generally prevent zero probabilities, but they also attempt to improve the accuracy
of the model as whole. Whenever a probability is estimated from few counts, smooth-
ing has the potential to significantly improve estimation.”

A simple smoothing method is absolute discounting (AD) described in [NeEK94].
The idea of this smoothing technique is to reduce the probability of n-grams that
did occur in the text corpus by a fixed value. The now free probability mass is



Pap(A|THAT) = P Ap(THOU|THAT)

However, it seems that we should have

P(A|THAT) > P(THOU|THAT)

hecause the word A is much more common than the word THOU. This problem is
engaged by Jelinek-Mercer smoothing (JM) [JeMe80]. Their approach is to linearly
interpolate higher-order n-gram models with lower-order n-gram models. For the
example above, this means to interpolate the bigram model and the unigram model
with the following equation:

PJM(’M’H"'”-.:—l) =A- PML('w-eil’wi.—l) o (1 e :\) : PML(T-U;T)

where 0 < A < 1. Because P (A|THAT) = P (THOU|THAT) = 0 and if Pur(A) >
Pmb(THOU), we get

Py (A|THAT) > Py (THOU

THAT)
as desired.

One of the best smoothing techniques was proposed by Kneser and Ney in [KnNe95].
To introduce their approach, let us now consider a small example. Imagine a training
corpus in which a word, say FRANCISCO, occurs often but it only occurs after a single
word, say SAN. This means that the unigram probability PML(FR.AN(_JISCD) will
be high because the c(FRANCISCO) is high. Therefore, a smoothing approach like
Jelinek-Mercer would assign a relatively high probability to the word FRANCISCO
occurring after any different words in a previously unseen bigram. However, given
the training data, it seems to be unlikely that FRANCISCO occurs after a different
word because it occurs only after SAN in the training data. Kneser and Ney’s
idea was that the unigram probability should not be proportional to the occurrence
counts of a word, but instead to the number of different words it follows. Chen and
Goodman have shown in [ChGo98] that Kneser-Ney smoothing (KN) works well
and outperforms most other smoothing techniques. More details of the introduced
smoothing approaches can be found in [ChGo98].

Interpolation

When dealing with different topics, it can be useful to combine language models from
different sources. The most common approach is linear interpolation. In [Rose96],
linear language model interpolation is defined as follows:
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Given k language models {P;(w|h)}i=1,.x (h is the word history, for example the
two previous words for a trigram model), we can combine them linearly with:

ke
Plnterpn]ated(wlh) = Z /\1P1(W[h) (24)

i=1

where 0 < \; < 1 and E Xi=1.

Evaluation

The guality of a language model can be determined by calculating the language
model perplexity. The perplexity of a language model measures how unexpected a
given text is. This means the smaller the perplexity, the better the language model
fits the given text. In [HuAHO1], the perplexity PP(W) of a language model P(W)
is defined as follows: .

PP(W) = 2~ Fw o8 FW) (2.5)

where Ny is the length of the text W measured in words.

2.1.4 Summary and Evaluation

Automatic speech recognition is used to convert an input speech signal into text.
This is realized by performing search across all possible word sequences. First, the
input speech waveform is converted into a spectral feature representation. Then, the
word sequence is selected that has the highest probability given a spectral feature
input sequence. This probability is determined by applying the “fundamental equa-
tion of speech recognition” (Eq. 2.2). The application of the fundamental equation
relies on a vocabulary /dictionary, a acoustic model, and a language model. The vo-
cabulary provides the list of all possible words and the dictionary contains phoneme
sequences for all words in the vocabulary (section 2.1.1). The acoustic model is
used to determine the probability of a spectral feature sequence given a phoneme
sequence (section 2.1.2). And, the language model offers the probability that a word
sequence occurs in language (section 2.1.3). By using these probabilities, the ASR
svstem calculates the most likely output word sequence.

The output of a ASR system is evaluated by calculating the word error rate. In
[HuAHO1], the word error rate (WER) is defined as follows:

Subs 4+ Dels + Ins _ |
WER = . . g
Number of words in correct sentence 00% (2.6)

where (Subs + Dels + Ins) stands for the minimum sum of the following three types
of word recognition errors:

e Substitution: An incorrect word was substituted for the correct word.
e Deletion: A correct word was omitted in the recognized sentence.

e [nsertion: An extra word was added in the recognized sentence.
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2.2 Machine Translation

Statistical machine translation (MT) component translates a given text W, in lan-
guage A into a text Wp in language B. This translation is generated by determining
which string Wy maximizes the probability p(Wp|W,) that the string Wp is the
translation of the given string Wa4. The probability is approximated by using a
translation model, which provides the probability p(W4|Wp) that a string W in
language A is the translation of the string Wp in language B, and a language model
for language B (section 2.1.3), which offers the probability p(Wp) that the string
W occurs in the language B. By applying the Bayes™ theorem (eq. 2.1), p(Wg|Wa)
can be expressed as:

p(Wp|Wa) o p(Wa|Wp)p(W)

By using this relation, the optimal translation W can be expressed as:

Wp = arg max p(Wp|Wa) = arg max p(Wa|Wg)p(Ws)
B §:]

The translation model is trained by employing parallel corpora, which contain mul-
tiple sentences in language A and their translation into language B. Initially, trans-
lation models were word-based [VoNT96]. However, in [KoOMO3], Koehn et al.
showed improvements in translation quality by applying phrase-based translation
models. More details about statistical machine translation can be found in [Koeh10].

2.3 Text Classification

This section introduces measures to weight words and compare documents. These
measures have been used successfully for text classification in several text mining
and information retrieval tasks.

Term frequency-inverse document frequency

The TF-IDF measure (term frequency-inverse document frequency) is a well-known
measure to determine how important a word is to a document in a document corpus.
The main idea of TF-IDF was introduced by Karen Spérck Jones in 1972; the paper
was reprinted in the year 2004 in [Jone04]. She discovered that words that occur In
many documents are usually less specific and, thus, often not important to a specific
document. Based on this idea, the inverse document frequency (IDF) is used as a
weighting factor [SaBu88]. TF-IDF is defined as follows:

Total number of documents

idf, = log - —
" (Nmnber of documents containing word w

tRdf gy = tha - idfy (2.8)

where the term frequency tfy, is defined as the frequency of the word w in the
document d.
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Google Book n-gram dataset

To calculate IDF, a document corpus is needed that contains documents on different
topics. A large document corpus is the Google Book n-gram dataset. 1t can be down-
loaded for free at http://books.google.com/ngrams/datasets. This corpus contains
n-gram counts (up to 5-gram) for all digitalized books in Google Books in July 2009.
For each n-gram, the dataset contains how often the word occurs in total (match
count), on how many pages (page count), and in how many books (volume count).
These numbers are listed by the year the book was published. The Google Book
n-gram data set is available for multiple languages. The data collection is described
by Jean-Baptiste Michel et al. in [MiSA11].

TF-IDF vector

The TF-IDF vector for any document d is defined as follows:

thdfy = (tAdfuy, ... thdfg,,)" (2.9)
where wy, ..., w, are all unique words occurring in a predefined vocabulary, tfidfa,.,
is the TF-IDF measure of the word w; given the document d.

Word frequency vector

The word frequency vector for any document d is defined as follows:

freq, = (ca(wy) ... cd(wﬂ,))T (2.10)

where 1wy, ..., w, are all unique words occurring in a predefined vocabulary, cq(w;) is
the number of occurrences of the word w; in document d.

Cosine similarity

The cosine similarity (equation 2.11) is a similarity measure, which has been found
to be effective in information retrieval. The cosine similarity calculates the cosine
Z il T
distance between two vectors a= (a; az ... an) andb= (b by ... bn)J in

the following manner:

i
>0 by
=1

\/ > @)t \/ > ()"

(2.11)

cosine(a, b) =




3. Related Work

This chapter provides an overview of related work. First, the interACT simulta-
neous lecture translation system is described. Then, several vocabulary selection
techniques are described, followed by an introduction of language model adapta-
tion and translation model adaptation approaches. In the last part of this chapter,
several papers on lecture-specific adaptation are discussed.

3.1 Simultaneous Lecture Translation

Figure 3.1: The interACT Lecture Translation System with Head-up Display (left)
and Targeted Audio Speakers (right) [WaFg]

The approach introduced in this thesis will be evaluated on the interACT simul-
taneous lecture translation system. The interACT simultaneous lecture translation
system is a real-time lecture translation system developed at the International Cen-
ter for Advanced Communication Technologies (interACT) at Karlsruhe Institute of
Technology. Germany, and Carnegie Mellon University, USA. A detailed description
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of the system and its components can be found in [FO7]. This lecture translation
system, illustrated in figure 3.1, simultaneously translates lectures in real-time from
the speaker’s langnage into multiple languages required by the audience. To mini-
mize the distraction to the audience, the system delivers translation as either text or
speech output. The translated text is displayed either on screens in the lecture room,
on a website accessible on mobile devices or on head-up displays. These technolo-
gies are especially useful for listeners who have partial knowledge of the speaker’s
language and want to have supplemental language assistance. Spoken translation
output can be listened to either via headphones or targeted audio speakers [OIPLO5],
which make it possible to send the translated audio stream only to a small group of
people while the other listeners are not disturbed.

Source Language Target Language

| 1
|| Acoustic Translation || Language Sibice |
i | Model Model Model ,
i \\/ i
| Speech i Speech !
| m Speech Text . Machine | Speech m |
H — 3 p i 3 - |
: Recognition Translation Synthesis L
| 1

Figure 3.2: Components of a Simultaneous Lecture Translation ystem

Figure 3.2 illustrates the three main components of this lecture translation system:
Automatic speech recognition (ASR, section 2.1), machine translation (MT, section
2.2), and speech synthesis (Text-to-Speech, TTS). They used the Janus Recognilion
Toolkit (JRTk) as ASR component [SMFWO1] to recognize the input speech. The
resulting text output is segmented into sentence-like units, which are then passed to
MT. The resulting segments are then translated into one or more target languages via
the statistical machine translation (SMT) engine STTK [VZHT*03]. The translated
text is either directly displayed to attendees or optionally converted into speech
output by employing a TTS engine.

The interACT Simultaneous Lecture Translation System relies on topic-independent
models. The topic-independent system vocabulary was selected based on word occur-
rence counts in both in-domain and out-of-domain corpora and lecture-independent
models for speech recognition were built by using these corpora. In [F07], Christian
Fiigen et al. identified topic-specific words (special terms, named entities, special ex-
pressions) as one of the main issues in lecture speech recognition and lecture speech
translation. Muntsin Kolss et al. also encountered this problem in [KWKN*08].
They improved their system by adding manually selected topic-specific data to the
vocabulary. This approach improved their OOV rate from 3.1% to 2.3% (25.8%
relative improvement).
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Topic Adaptation

As illustrated in figure 3.2, the simultaneous lecture translation system relies on
three subsystems, automatic speech recognition (ASR). machine translation (MT),
and speech synthesis (text-to-speech, TTS). These subsystems need several different
models. The ASR system uses three models, an acoustic model (section 2.1.2), which
models the phonetic units in the input speech, a recognition dictionary (section
2.1.1), which contains the pronunciation of all individual words in the recognition
vocabulary, and a language model (LM, section 2.1.3), which provides the likelihood
of word sequences. The MT system (section 2.2) needs a translation model, which
models the likelihood of translations from the source language to the target language,
and a language model of the target language. The T'TS system needs a pronunciation
dictionary for the target language. The question arises, which of these models need
to be adapted when the lecture translation system is applied on a different lecture
topic?

As described in section 2.1.2, the acoustic model is affected by the speaker, by the
microphone used. and by the environment in which the recording took place, but
not by the topic. Therefore, it is not necessary to adapt the acoustic model to the
lecture topic. Differing from the acoustic model, the recognition vocabulary has to
be adapted to include the different scientific terms depending on the lecture topic
(see examples in chapter 1). When a new vocabulary is selected, the recognition
dictionary can be built by using automatic approaches to create the pronunciations
for all words in the vocabulary (see section 2.1.1). Additionally to the vocabulary, the
probability of word sequences change with the lecture topic (see examples in chapter
1 and in section 2.1.3). Hence, the LM has to be adapted to the lecture topic. The
LM adaptation data should contain enough text to cover the adapted vocabulary.
Since a new topic means new vocabulary, translations have to be provided for these
new words, too. Consequently, the translation model has to be adapted. Lastly, the
target language model needs to be adapted to cover the new vocabulary of the new
topic in the target language. The TTS system does not have to be adapted to the
topic because most of these systems already perform well enough on any text input.
To conclude, vocabulary, language model, and translation model have to be adapted
to the lecture topic. This leaves the question, what is needed to adapt these models
and how can it be done?

3.2 Adaptation Techniques

Vocabulary Selection

The quality of a vocabulary depends on its OOV rate while not exceeding its limited
size, as described in section 2.1.1. The goal is a low OOV rate and a low vocab-
ulary size. It is clear that, in general, a smaller vocabulary means a higher OOV
rate. Therefore, some vocabulary selection technique is needed. The selection of a
vocabulary is generally performed in two steps. First, a text corpus is chosen and
then, a vocabulary is selected from this corpus. The vocabulary selection method
depends on the quality of the text corpus. As described in [HuAHO1], if the text
corpus has the same word distribution as the spoken words, the minimum OOV rate
vocabulary is selected by choosing the most frequent words of the text corpus for
the vocabulary.
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In [KWKNT08], the vocabulary coverage was improved by simply adding topic-
specific words to the vocabulary. The words were chosen with the knowledge of
which words are missing in current vocabulary. In a realistic scenario, this knowledge
is usually not available before the lecture has started and can only be used for a
second pass.

A comparison of four different vocabulary selection techniques was performed by
Venkataraman et al. in [VeWa03]. All techniques depended on a training corpus
that contains multiple documents. Additionally, one document is needed that has
to be a partial observation of the actual transcript. They called it partially visible
held-out data. In their evaluation, they tried to select an optimal vocabulary for
English broadcast news and they used a 3 hour transeript of broadcast news as
held-out data. All four techniques selected the vocabulary based on the estimated
real counts ; of each word w;. Venkataraman et al. defined z; by using the function
®; as follows:

I = (i)'i(n??.ls ¥ g ni‘m) = Z )‘jnin}' (‘31)
.

where n;; are the normalized counts of the word ¢ in document j, m is the total
number of documents, and 0 < A; < 1 is a weight for each document j. Each vocab-
ulary selection method used a different approach to choose the document weights
P

i

e Uniform: Their baseline method assigned each document j the same weight
P
T

) 1
V_’] )\j=m

e Maximum likelihood count estimation: This technique used the normal-
ized counts n,; as probability estimates of the word w; given the document
j. Formally, P(w;|j) = nij. The document weights \; are determined by
optimizing the following equation:

Vi

n - ) CJ(m;)
Alyeoos A = afglnax]:[ (Z ‘;\JP(U"*U))

l.muAm r‘=l J

where C(w;) is the count of w; in the partially observed held-out data and V
is the set of all words.

e Document-similarity based on Euclidean distance: In this approach.
the document weights A; were chosen based on the Euclidean distance between
the document and the held-out data. Formally, they defined:

V] ]
Dgyctiaj = E (ﬂqz,n — N, j)
i=1
where n, o are the normalized counts of w; in the held-out data. The document
weights were defined as:

1/ Dguctid,j
Z (1/DEuch'd.k)

}\_?' =
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¢ Document-similarity based on Kullback-Leibler divergence: A similar
approach is based on the Kullback-Leibler (KL) divergence [KuLe51]. The
distance between the held-out data and a document was defined as follows:

Vi

nin
Dgrj= E nipolog, (n- )
i=1 .

+d

Based on Dy ;, the document weights were defined as:

1/Dxr,;
> (1/Dkri)

.«"\j:

In the evaluation presented in [VeWa03], the maximum likelihood count estimation
achieved the lowest OOV rate. The performance of the approach based on the En-
clidean distance was about the same as the approach with uniform weights. The
worst results were obtained by the approach based on the Kullback-Leibler diver-
gence. These results showed the advantage of the maximum likelihood approach.
However, this approach needs data, such as a transcript of a similar lecture. to
estimate the real counts. This data might not be available.

Language Model

Similar to vocabulary selection, the language model adaptation is based on a text
corpus (see 2.1.3) that provides topic specific data. In [KaNAOg|, this data is used
to train a language model. This language model is than interpolated by using the
previous language model with an approach like the one described in section 2.1.3 eq.
2.4. Multiple text corpora were used in [YISFT07] and interpolated with different
weights with the previous language model. The weights were optimized manually
to achieve the best results. In [MaTNO8|, the weights were determined based on a
maximum likelihood estimation. Similar to the maximum likelihood estimation for
vocabulary selection, this approach needs text data, such as a transcript of a similar
lecture, to perform this estimation.

Translation Model

Translation models are usually trained by using parallel corpora that contain a text
in language A and the translation of this text in language B. These corpora are
usually scarcely available especially when dealing with many different topics. How-
ever, A. Eisele and J. Xu have developed a method to improve translation quality by
employing comparable corpora [EiXul0]. For this approach, a preliminary machine
translation (MT) model and two corpora in two different languages on the same
topic are needed. The preliminary MT models are used to identify parallel parts in
these two corpora. The parallel parts are used to improve the MT model. These two
steps are repeated in a bootstrapping loop to improve the MT model further. Since
two topic-specific corpora are needed anyway to adapt the two language models in
source and target language, this approach seems to be useful to adapt the translation
model.
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3.3 Lecture-specific Adaptation

Recent Progress in the MIT Spoken Lecture Processing Project

In [GHHWO04], Glass et al. analyzed lecture speech and found out that the lec-
ture vocabulary can be considered as a combination of a topic-independent and a
topic-specific vocabulary. The topic-independent vocabulary consists of words com-
mon in lecture speech, and is similar to words used in conversational dialogues. In
contrast to that, the topic-specific vocabulary contains words that are specific to
the topic, such as technical terms. These words are usually highly relevant, thus it
is important to recognize them. However, these words are rarely used in common
domains usually used in speech recognition, such as broadcast news. Neverthe-
less, these topic-specific words uttered in lectures are often the same topic-specific
words written in related text documents. When dealing with different lectures, the
topic-independent vocabulary has to be selected only once, while the topic-specific
vocabulary usually changes between lectures. Within the MIT Spoken Lecture Pro-
cessing Project [GHCMT07], Glass et al. performed lecture adaptation by leveraging
from any supplemental text material that is available prior to the lecture, including
lecture slides, journal articles, and book chapters. They used one topic-independent
vocabulary and then added any vocabulary from supplemental text material to it
to create a topic-specific vocabulary. The language model was adapted by inter-
polating a topic-independent language model with a language model built by using
the supplemental text material. This interpolation was implemented by employing
the SRI Language Modeling Toolkit. By applying these approaches, Glass et al.
were able to lower the out-of-vocabulary rate (OOV rate) from 1.03% to 0.64% and
reducing the word error rate (WER) from 33.6% to 31.3%. The WER was further
reduced to 28.4% by applying unsupervised acoustic model adaptation. Although
this approach improved vocabulary coverage and speech recognition accuracy, it re-
lied on many manually provided text documents. These documents have to contain
all topic-specific vocabulary and offer enough content to adapt the language model.

Dynamic Language Model Adaptation by Using Presentation Slides

Yamazaki et al. introduced an approach for joint vocabulary and language model
adaptation in [YISF*07] to aid the archiving and search of lectures. They focused
their work on language model adaptation based on the lecture slides. Their adap-
tation is performed in three steps: vocabulary adaptation, global language model
adaptation, and then local language model adaptation. First, they added missing
words from the lecture slides to the active system vocabulary. No vocabulary selec-
tion was performed. Second, they adapted their baseline language model by using
the text on the lecture slides (global adaptation). In detail, they adapted the n-gram
counts by adding the weighted n-gram counts of the slides to the n-gram count of
the baseline training corpus. For each n-gram N, the globally adapted frequency
ca(N;) was calculated as follows:

ce(N;) = cg(Ni) +wica(Vs)

where cz(N;) is the frequency of n-gram N; that appear in the baseline training
data, e4(N;) is the frequency of the n-gram N; that appear in all slides, and w; is a
weight coefficient. They optimized w; experimentally. In the last step, they adapted
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the language model locally to the individual slide that is currently shown in the
lecture. They calculated the locally adapted frequency cz(N;) as follows:

(.:L(N-i) = C(,(Nq) + “JQCC'(N!:)

where ¢¢(V;) is the frequency of n-gram N; in the current slide, and w; is a weight
coefficient. They constructed a new language model for cach slide by using the
frequency ¢z (N;) for all n-grams. They applied the Witten-Bell method [WiBe91]
for back-off smoothing. They evaluated their approach on four Japanese lectures.
Their results showed improvements compared to a baseline system. The OOV rate
was reduced from 4.3% to 3.4%. The word error rate was reduced by 3.0% (absolute
values were not provided by the authors).

Automatic Lecture Transcription by Exploiting Presentation Slides

A similar approach was used by Kawahara et al. in [KaNAO8|. They applied the
approach for automatic subtitling of lectures for the hearing impaired in [Kawal0)].
For vocabulary adaptation, all out-of-vocabulary words that appeared in the slides
were added to the active recognition vocabulary. This brought a small improvement
in WER of 0.2% absolute!. For language model adaptation, Kawahara et al. com-
pared two global approaches. The first approach used PLSA (Probabilistic Latent
Semantic Analysis) to select documents similar to the lecture slides from a large
corpus of lecture transcripts. These text documents were then used to adapt the
language model. The second approach adapted the language model integrating re-
lated web text. They selected three keywords based on the tf-idf measure [rom each
slide, and then used these keywords as one search query. They evaluated these two
approaches on two different kinds of lectures (computer science course and automatic
speech recognition tutorial). Both approaches improved word accuracy. The best
results on the CS lecture were achieved with web text adaptation. The word error
rate improved from 41.20% (baseline) to 39.50% (web text) (40.59% with PLSA).
The PLSA approach performed better on the ASR tutorial. In this case, the word
error rate improved from 28.17% (baseline) to 27.60% (PLSA) (27.63% with web
text). Their explanation was that the topic of the CS lecture was not well covered
in the corpus used for the PLSA approach, while the topic of the ASR tutorial was
covered. In an additional evaluation, they applied local adaptation by applying a
cache model additionally to the PLSA adaptation. In a cache model, the probabil-
ities of preceding words (cache) that were recognized during ASR is heightened in
the language model, assuming that they are more likely to be re-used. Additionally,
they extended the scheme of the cache model by including the current slide’s words
to the cache. By employing the cache model, they were able to improve word error
rate further to 39.03% for the CS lecture and 26.89% for the ASR tutorial.

Web-based Language Modeling for Automatic Lecture Transcription

A different approach for language model adaptation was introduced by Munteanu
et al. [MuPBO07] to improve the search for lectures in a lecture archive. They
built a new language model entirely based on documents available in the world
wide web (hereafter referred to as web). Their method was to search the web for

'"Kawahara et al. did not published the OOV rate improvement in absolute numbers.
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PDF documents by using the text from the lecture slides. They assumed that
the lecture slides were mostly organized in bullet form (one idea constitutes a line
on a slide). Thus, they used every single line in the lecture slides as one search
query even when the line is part of a larger text. They limited the search to PDF
documents in English language. For each of their four test lectures, they collected
three different text corpora by searching for 10, 20, or 30 documents per query. Next,
they performed corpus filtering by comparing each line in the corpus with two initial
dictionaries. Every line with at least four words and more than one non-dictionary
word was removed. As initial dictionaries they used the Sk-word WSJ dictionary,
which ig included in the SONIC toolkit, and the 100K-word CMU pronunciation
dictionary, for further details see [MuPBO07]. All remaining words in the corpus were
used as vocabulary. For language model training they used only these web corpora
and a vocabulary size of 40k words. The average OOV rate on their four English
lectures were on average 0.3% for the baseline and below 0.1% for all other models.
They did not use specific vocabulary selection techniques. They evaluated their
system on four lectures of the same course by the same lecturer. They used three
different scopes for the language models of each lecture: Adaptation on all lecture
slides, adaptation on each individual slide, and adaptation on a cluster of slides.
This approach improved transcription accuracy compared to a lecture-independent
baseline. The best results were received by adapting on all lecture slides. The word
error rate (WER) dropped on average from 48.63% (baseline) to 43.54% (20 docs
per query) and 43.43% (30 docs per query). The WER results were very similar
for the different numbers of documents per queries. For two lectures 20 documents
per query received the best results, for the other two lectures the best results were
received by using 30 documents per query. On average, 30 documents per query
achieved the lowest WER.

3.4 Summary

Related work showed the opportunities for modern education that lie in speech
recognition technologies. Especially, the interACT simultaneous lecture translation
system, which simultaneously translates lecture speech into multiple languages, has
the potential to break down language barriers. Nevertheless, the interACT lecture
translation system has difficulties dealing with different lecture topics, such as topic-
specific terms. Recent works showed improvements in speech recognition accuracy by
applying approaches for topic adaptation. However, these approaches were mainly
focused on the adaptation of the language model, the improvement of the vocabulary
was barely addressed. Furthermore, most approaches relied on manually selected
data that might not be available. In addition to that, the manual selection of data
is very time-consuming. In the next chapter, the adaptation problem is analyzed by
performing two exploratory experiments.



4. Problem Analysis

To overcome the language barrier in distributed education, recent works applied
speech recognition and machine translation technologies on lectures. The use of
simultaneous transcription and translation systems can allow more students and
researchers access to exceptional lectures and would help the free distribution of
knowledge around the globe. These systems rely on a well-performing automatic
speech recognition (ASR). The related work, introduced in chapter 3, has shown that
ASR systems can be improved significantly by performing topic adaption. Especially
in lectures, the diversity between topics is severe, as shown in the examples in chapter
1. Furthermore, there are hundreds of different lectures at a university. Only for very
few of these lectures, the extensive data required for adaptation is already available.
However, the effort needed to acquire these data manually is unjustifiable high, due
to the many topic-specific data necessary. In this work, it is assumed that for each
lecture only the lecture slides are available. The targeted adaptation approach is
entirely based on this input data and no further human input is needed during the
entire adaptation process.

In the related work, introduced in chapter 3, lecture adaptation was mainly focused
on language model adaptation. The vocabulary selection was not described as a
challenge. The reason might be that those works were not dealing with multiple
diverse lecture topics. Additionally, most of the described approaches used manually
selected documents for adaptation. Manual selection of data is reasonable for single
lectures. However, due to the extensive costs, it might not be applicable for large-
scale adaptation tasks, like adapting a system to every single lecture at a university.
For these scenarios, the amount of manual input has to be limited. An approach
for vocabulary adaptation used in several related works was adding the vocabulary
from the lecture slides to the baseline vocabulary. For this approach, only slides
need to be provided by the lecturer. But is this approach sufficient fo reach a
high vocabulary coverage for many different lecture topics? And what impact does
an optimal vocabulary have on speech recognition accuracy? To answer these two
questions, two exploratory experiments were performed.
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Figure 4.1: Out-of-Vocabulary Rate - 40k Baseline and 40k Baseline+Slides

In this project, the interACT German-English lecture translator, described in chap-
ter 3.1, is available and will be used as our test system. All adaptation approaches
will be applied on this system. First, it was tested if including vocabulary from
the lecture slides to the recognition vocabulary improves the out-of-vocabulary rate
(OOV rate, see section 2.1.1). Three different vocabulary sizes were compared: 40k,
90k. and 300k. The experiments are performed on six German lectures held at
Karlsruhe Institute of Technologies. Each lecture has a different topic and a dif-
ferent speaker. The lectures topics were: Data Structures (Lecture 1), Machine
Translation (Lecture 2), Mechanics (Lecture 3), Population Geography (Lecture 4),
Computer Architecture (Lecture 5), and Copyright Law (Lecture 6). For further
information about the data and the setup see chapter 7. The baseline vocabularies
with 40k, 90k, and 300k words were selected from combined corpora of broadcast
news, parliamentary debates, printed media, and university web data by applying
the method described in [StKN10]. When using these vocabularies, the average out-
of-vocabulary rate (OOV rate) across the six lectures were 5.6% (40k), 3.8% (90k),
and 2.8% (300k). Adding vocabulary that occurred in the lecture slides (“Base-
line+Slides”) relatively reduced OOV rate on average by 22.4%, obtaining average
OO0V rates of 4.4% (40k), 3.0% (90k), and 2.2% (300k). Figure 4.1 illustrates the
OOV rate results for the 40k baseline vocabulary with and without slides added.
A detailed breakdown per lecture for all three vocabulary sizes is shown in the ap-
pendix in table A.2. This shows that the slides contain words that are uttered during
a lecture. However, many words are still missing and the OOV rate after adding the
slides’ vocabulary was still high.

In the next experiment, the improvement that can be gained by using a perfect
vocabulary was determined. Recent work on topic adaptation barely focused on the
issue of vocabulary selection, especially for changing topics. Therefore, it seems to
be advisable to determine how much enhancement can be gained by improving the
vocabulary coverage. In order to do this, the vocabulary was replaced with a vocab-
ulary that includes exactly the words that are uttered during the specific lecture.
The speech recognition accuracy of a system that used this “oracle” vocabulary was
compared with the a system that used the 40k baseline vocabulary, the same acoustic
model, and the same language model data. The results were beyond the expecta-
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tions. Just by changing the vocabulary, on average a 10 point lower word error rate
(WER) could be achieved, a 30% relative improvement. A detailed breakdown of
the results is shown in table 4.1. These results encouraged us to focus on improving
vocabulary coverage. The similarity between the six oracle vocabularies was also
determined. It was surprising that on average only 5% of the words in the oracle
vocabularies were common across the six oracle vocabularies. These 5% common
vocabulary represent on average 47% of the words uttered per lecture. Nevertheless,
over 50% of the spoken words depended on the lecture topic on the available test
set. This shows to which extent the vocabulary can differ between lecture topics
and how important an effective adaptation is.

Word Error Rate (%)

| 40k Baseline Vocabulary | Oracle Vocabulary |
Lecture 1 43.1 37.8 (12.4%)
Lecture 2 34.9 29.7 (14.7%)
Lecture 3 33.4 21.0 (37.0%)
Lecture 4 28.3 16.6 (41.2%)
Lecture 5 284 13.8 (51.3%)
Lecture 6 374 28.3 (24.3%)

Average Improvement - 30.1%

Table 4.1: Word Error Rate - Oracle Vocabulary

The goal in this work is to develop an approach that could be used to adapt a
speech recognition system to all individual lectures at a university. Therefore, one
constraint is that the adaptation needs as little human input as possible. Most
related works did not focus on vocabulary selection. However, the exploratory ex-
periments showed that when only a limited amount of data is available per lecture
current approaches were not sufficient. An additional challenge is that the vocabu-
laries between different lectures have only a few words in common. Thus, vocabulary
selection is a challenge for every new lecture. Nevertheless, the experiment with or-
acle vocabularies indicated that a significant performance gain is possible. Recent
works have adapted speech recognition systems by using lecture slides. One advan-
tage of employing lecture slides is that they are available before the lecture begins
and can therefore be used for transcription of live lectures. Another advantage is
that the majority of current lectures are held with lecture slides.

For this project, a strong ASR system' is given and lecture slides are available for
each lecture. The speech recognition vocabulary and the language model are adapted
to the lecture topic. This adaptation is entirely based on the unedited lecture slides.
no further human input is used. Additional data is antomatically collected from
the world wide web. The main focus of this adaptation is the selection of a lecture-
specific vocabulary by investigating a novel vocabulary ranking approach.

IThe ASR system of the interACT German-English lecture translator deseribed in chapter 3.1
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5. Concept

In this section, the concept of the implemented adaptation approach of the speech
recognition component is described. The main focus is hereby on an approach to
automatically select a lecture-specific vocabulary. The exploratory experiments have
shown significant improvements in speech recognition accuracy just by changing
the vocabulary. Although vocabulary selection is a key component for effective
adaptation, it has often been overlooked by prior works.

The vocabulary used by a presenter during a lecture can be seen as a combination of
two vocabularies as described in the related work in section 3.3: A topic-independent
lecture vocabulary, which contains vocabulary common to spontaneous speech, and
a topic-specific vocabulary. The proposed approach for vocabulary selection uses
a similar breakdown. The lecture-independent vocabulary contains common topic-
independent words like stop-words and common words that are used in spontaneous
lecture speech. The main goal is to cover words that are used in lectures but not in
written text documents. For example, “good morning” and “thank you” are phrases
that are commonly uttered during a lecture but they are usually not written in
scientific text documents, such as journal articles. The topic-specific vocabulary is
selected by using a corpus of topic-specific text documents like in the MIT Spoken
Lecture Processing Project introduced in section 3.3. However, in contrast to this
related project. not only a few manually selected documents are used but a vast
amount of automatically collected documents from the web. This makes the vo-
cabulary selection more challenging but it allows adaptation without further user
input.

Figure 5.1 illustrates the proposed approach, which is separated into three steps:
Document collection, vocabulary selection, and language model adaptation. Start-
ing with one initial seed document, such as lecture slides, a large corpus of related
documents is automatically collected from the world wide web during the document
collection step. The vocabulary of the web document corpus is usually too large
to be incorporated directly into an ASR system. Therefore, it is necessary to rank
the vocabulary to select an optimal vocabulary maintaining the targeted vocabu-
lary size. A novel feature-based vocabulary ranking approach is used to select the
active recognition vocabulary. The last step is language model adaptation by using
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Figure 5.1: Vocabulary Selection and Language Model Adaptation

the new selected vocabulary and the collected document corpus. In the following
sections, the three steps, document collection, vocabulary selection, and language
model adaptation, are described in detail.

5.1 Document Collection

The document collection process is divided into four steps. It begins with one seed
document from which words and key phrases are extracted. Search queries are then
automatically generated and a large number of web documents are collected by
performing a web-search. Then, language verification is performed on the resulting
documents. The single steps of the document collection process are described in
detail in the following.

1. Word Extraction: The first step in document selection involves extracting
text from the seed document. Symbols and punctuation are removed and
the text is lowercased and split into individual words. The resulting word-
list is then verified against an extremely large dictionary to remove erroneous
words that are introduced during the extraction process. In the experimental
evaluation (chapter 7), the unigram occurrences from the Google Book n-grams
dataset (described in section 2.3) were used.

{ R}

Query Selection: Next, search queries are generated from the seed doc-
ument. Here, short phrases of up to three words that do not contain any
topic-independent vocabulary are selected as search queries.

3 Web-Search: Web-search! is then performed by using this query list. The
search is limited to find only results in the source language and for each query,

18earch is performed by using the Microsoft Bing search engine.
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a fixed number? of the highest ranked documents was selected. Then, the text
from the resulting documents (web page or PDF file) is extracted.

4. Language Verification: For each document, language verification is per-
formed to ensure that it is actually in the required language. When the per-
centage of topic-independent vocabulary in the document is below 30%. the
document is removed from further processing.

5.2 Vocabulary Selection by using Feature-based
Ranking

After document collection, the document corpus is used to select a lecture-specific
vocabulary. However, if all words in the document corpus are included, the resulting
vocabulary is too large to be incorporated directly into an ASR system (in the
experimental evaluation vocabularies between 135k and 844k were observed). Thus,
a smaller active recognition vocabulary has to be selected. To select words for
this smaller vocabulary, a ranking score for each word is computed. Words with
the highest score are added to the vocabulary until the desired vocabulary size is
reached. Three different ranking scores that are based on the different word features
(see section 5.3) were applied. For vocabulary ranking, these ranking score functions
s(w) were compared to compute the ranking of each word w based on its i** word
feature f;(w):

1. Single Feature Score: The score s,ng..i(w) is based on one single feature
fi(w).
S.Binglc.zl(u}) = fr(w) (51)

2. Linear Feature Combination Score: The score sjjneq(w) is defined as a
linear weighting of two features.

Stinear,ij(w) = a X fi(w) + (1 = a) x f;(w) (5.2)

3. Gaussian Mixture Model Score: The score sy, (w) is based on the likeli-
hood ratio of two Gaussian Mixture Models (GMMs). Two GMMs are trained:
One for the words that occur in a specific lecture and one for the words that do
not occur. The score sgmm(w) is the difference in the log-likelihood of a word
feature vector for each of these GMMs. For example with the word feature
vector fi;(w) = (filw) f3(w))":

Sg-m-m:i,j(w) = lOg P-iﬂ(fi,j('w)) - ng Paut{fi,j(w)) ('33)

2In the evaluation chapter, section 7.3, the 50 highest ranked documents were used for vocab-
ulary selection and language model adaptation. In a second experiment, a document corpus was
collected by including the 500 highest ranked documents. Then, this corpus was used for language
model adaptation.
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5.3 Features for Vocabulary Selection

The vocabulary ranking scores, described in section 5.2, relies on the features defined
in this section. The following annotations for the feature definitions were used:

D Set of all documents
Q Set of all queries
W Set of all words

de D Single document
g € Q  Single query
w e W Single word

D, Set of documents that contain the word w

D, Set of documents that where found by query ¢

Qi Set of queries that found documents that contained the word w
Wy Set of all words in the document d

cq(w) Number of oceurrences of the word w in document d

5.3.1 Document Features

For each document, two similarity metrics between the document and the lec-
ture slides are caleulated. These similarities are based on the cosine similarity
cosine(a, b), which is described in section 23 eq: 21L:

A simplified version of the cosine similarity that only compares the words that occur
0 the slides was used. This modification speeds up the calculation. It also has the
offect that if the document contains additional words that are not in the slides the
similarity score is not effected. Since the goal is to find documents that contain new
previously unseen words, this effect is desired. However, a detailed analysis of this
modification might be useful.

1. Cosine Similarity based on Word Frequency: Equation 5.4 shows the
first similarity metric WFS(d) between the slides s and the document d. The
metric compares the documents based on word frequency vectors, described in
section 2.3, eq. 2.10.

WFS(d) = cosine(freq,, freq,) (5.4)

where freq, is the word frequency vector of the slides s and freq, is the word
frequency vector of the document d. The word frequency vectors are built
based on the words in the slides.

9. Cosine Similarity based on TF-IDF: The second similarity metric TIS(d)
(eq. 5.5) is similar to the first, however, instead of the word frequency vectors,
it uses approximated TF-IDF vectors (section 2.3, eq. 2.9). IDF is calculated
based on the Google Book n-gram dataset (section 2.3).

TIS(d) = cosine(tfidf,, tfidf,) (5.5)

where tAdf, is the TF-IDF vector of the slides and tfidf, is the TF-IDF vector
of the document d. Both are built for the vocabulary in the slides.
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5.3.2 Query Features

Two features are calculated for the set of resulting documents D, of each query
g. The first feature QWF(q) (eq. 5.6) is the average similarity WFS(d) (eq. 5.4)
between the slides and each document d € D, found by this query based on the word
frequency. The second feature QTI(g) (eq. 5.7) is the average similarity TIS(d) (eq.
5.5) between the slides and each document d € D, found by the query based on

TF-IDF. —_—
QWF(q) = Laen, WES(d) (556)
D]
TIS(d
QTI(g) = ———zc‘ej’b | b (5.7)

5.3.3 Word Features

For each word w, 21 features (f; (w), ..., fz1(w)) are caleulated (equations 5.8 to 5.23).
The majority of the features leverages from the document and query features listed
above. The main idea of these word features is the higher the value the more relevant
is the word for the vocabulary.

1. DocCount: Number of documents in which the word occurs.
f]_('HJ) = 1D1r1| (58)

where [, is the set of documents in the document corpus that contain the
word w.

2. VocCount: Number of occurrences in all documents.

fo(w) = Z ca(w) (5.9)

de D

where D is the set of all documents in the document corpus and ey(w) is the
number of occurrences of the word w in document d.

The next three features (eq. 5.10, 5.11, 5.12) are calculated by using the normalized
frequency of the word w in a document.

3. tfSum: Sum of term frequencies. This feature is derived Tf-idf. The assump-
tion is that words that occur with a high ratio in the documents of the corpus
are more relevant for the vocabulary.

() = 3 e (5.10)

agh w; Wy

where Wy is the set of all words in document d.
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4. tfCosineCount: Sum of term frequencies weighted by the document cosine
similarity based on word frequency (eq. 5.4). This feature is similar to tfSum
(f;) with the difference that the ratios are weighted by the similarity of each
document to the slides.

fw) =Y WFS(d)% (5.11)
sed wiEWy = l

. tfCosineTAdf: Sum of term frequencies weighted by the document cosine
similarity based on tf-idf (eq. 5.5). Like tfCosineCount (fy), this feature is a
weighted version of tfSum (f3) but it uses a different similarity measure than
tfCosineCount (fy).

oy

. a(w)
f(w) = 3 TIS(d) —= o (5.12)

The following three features (eq. 5.13, 5.14, 5.15) are based on the document feature
WEFS (eq. 5.4) that calculates the cosine similarity between a document and the
lecture slides by using word frequency vectors.

6. DocCosineCount (Max): Maximum of the document feature WFS (eq. 5.4)
of all documents (D,,) in which the word w occurs. The idea of this feature
is that words are more relevant for the vocabulary if they occur in documents
that are very similar to the slides. The document similarity is determined by
applying the cosine similarity based on word frequency (eq. 5.4).

fg(w) = max(WFS(d)) (5.13)

de Dy,

7. DocCosineCount (Min): Minimum of the document feature WFS (eq. 5.4)
of all documents (D,,) in which the word w occurs. This feature ranks words
high that do not occur in documents with low similarity to the slides. Words
that do not occur in low ranked documents might be more relevant for the
vocabulary.

fz(w) = jé‘,i:}'l (WFS(d)) (5.14)

8. DocCosineCount (Avg): Average of the document feature WES (eq. 5.4)
of all documents (D,,) in which the word w occurs. If the documents in which
the word occurs are on average ranked high, the word might be more likely to
occur in the lecture.

5= WFS(d)

deDu -
fy(w) = = N (5.15)

The idea of the following three features (eq. 5.16, 5.17, 5.18) is the same as the idea
of features f5(w), f7(w), and fs(w). The only difference is that the similarity measure
is based on TF-IDF (TIS, eq. 5.5).
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9. DocCosineTfidf (Max): Maximum of the document feature TIS (eq. 5.5)
of all documents (D,,) in which the word w occurs.
fo(w) = élé%::(Tlﬁ(d)) (5.16)
10. DocCosineTfidf (Min): Minimum of the document feature TIS (eq. 5.5) of
all documents (D,,) in which the word w occurs.

fio(w) = min (TIS(d) (5.17)

11. DocCosineTfidf (Avg): Average of the document feature TIS (eq. 5.5)
of all documents (D,,) in which the word w occurs. This feature is similar
to feature fs(w) (DocCosineCount (Avg), eq. 5.15) while using a different
similarity measure.

3" TIS(d)
d€Dy

fu(w) ===5 1

(5.18)

The query feature QWF (eq. 5.6) is the foundation of the next three word features
(eq. 5.19. 5.20. 5.21). These word features are based on the assumption that if
queries have found on average similar documents to the slides, every doc

12. QueryScoreCount (Max): Maximum of query feature QWF (eq. 5.6) of all
queries ((),;) that found the word w.

f12(w) = max(QWF(q)) (5.19)

JEQw
where (), is the set of all queries that found a document that contains the
word w.

13. QueryScoreCount (Min): Minimum of query feature QWF (eq. 5.6) of all
queries ((),,) that found the word w.

fiy(w) = min (QWF(g)) (5.20)

14. QueryScoreCount (Avg): Average of query feature QWF (eq. 5.6) of all
queries (@Q,,) that found the word w.

Y. QWF(q)

fia(w) = ‘?EQT (5.21)

The following ‘QueryScoreTfidf -features (eq. 5.22, 5.23, 5.24) are like the previous
three ‘QueryScoreCount’-features except for using a different query feature (QTI,
eq. 5.7).

15. QueryScoreTfidf (Max): Maximum of query feature QTI (eq. 5.7) of all
queries () that found the word w.

fis(w) = égg?f(QTI(CJ)) (5.22)
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16. QueryScoreTfidf (Min): Minimum of query feature QTI (eq. 5.7) of all
queries (Q,,) that found the word w.

fi6(w) = min (QTI(q)) (5.23)
qEQu

17. QueryScoreTfidf (Avg): Average of query feature QTI (eq. 5.7) of all
queries ((,,) that found the word w.

S° QTI(q)

fir(w) = %—— (5.24)

18. GoogleBookIDF: Inverse document frequency (IDF, section 2.3, eq. 2.7)
based on the Google Book n-gram dataset.

f5(w) = idf (w) (5.25)

The last three features (eq. 5.26, 5.27, 5.28) are the three unigram counts (‘match
count’, ‘page count’, ‘volume count’) from the Google Book n-gram dataset (section
2.3).

19. GoogleBookNgrams (match): The word feature fiq is the value match_count
(total number of oceurrences of the word) from the Google Book n-gram
dataset (section 2.3) for the word w.

fio(w) = match_countgeogleBook (W) (5.26)

20. GoogleBookNgrams (page): The word feature f5g is the value page_count
(number of pages that contain the word) from the Google Book n-gram dataset
(section 2.3) for the word w.

fa0(w) = page_countoogre ook (W) (5.27)

21. GoogleBookNgrams (volume): The word feature f; is the value volume_count
(number of books that contain the word) from the Google Book n-gram dataset
(section 2.3) for the word w.

fa1 (w) = volume_countgongte Book (W) (5.28)

5.4 Lecture-specific Language Modeling

After the selection of a lecture-specific vocabulary, the lecture-specific document
corpus is used for language model adaptation. An approach similar to the web text
adaptation approach used by Kawahara et al. (summarized in section 3.3) is used.
A topic-independent baseline language model is interpolated with a second lecture-
specific language model trained by using the lecture-specific document corpus. This
approach is chosen for two reasons. The first reason is that the lecture-specific
document corpus does not include sufficient data of spontaneous speech because it
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contains mainly written text documents. The second reason is that the lecture-
specific document corpus is relatively small and might not contain enough data for
a broad n-gram coverage. Both issues can be fixed by including topic-independent
corpora that contain various spontaneous speech transcripts and other large text
corpora.

The lecture-specific language models are built in three steps. The first step is to train
a topic-independent baseline language model based on the n-gram counts in large
topic-independent corpus. The resulting language model is called P (jniependent corpus) (W).
The second step is to train a second language model by using the lecture-specific
document corpus. This language model is called P(agocument corpus)(W). Then, these
two language models are interpolated to create a lecture-specific language model.
The universal interpolation method is described in section 2.1.3. The interpolation
is performed by applying a fixed interpolation weight. An interpolation weight of
0.5 was used in the experimental evaluation in chapter 7. This weight has been
found to be close to optimum in a small test subset experiment. Formally, the new
lecture-specific language model Pm,m,,,_d(W) is defined as follows:

Pﬂdﬂﬁtr‘:d(w) =05- P(l’.ndcpcndrmt corpus) (W) +0.5: P(dar.‘-ument corpus) (W) (529)

The all language models were smoothed by using Kneser-Ney smoothing (see section
2.1.3)

5.5 Summary

The proposed adaptation approach starts with a seed document, such as lecture
slides. Based on this seed document, similar documents are collected from the world
wide web. For vocabulary selection, the words in the collected document corpus
are ranked by applying ranking scores best on word features. The highest ranked
words are added to a topic-independent vocabulary to form the adapted lecture-
specific vocabulary. For language model adaptation, a topic-independent language
model is interpolated with a language model based on the collected documents to
create the lecture-specific language model. Finally, the lecture-specific vocabulary
and language model can be used for lecture-specific speech recognition.
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6. Implementation

In this chapter, the implementation of the proposed adaptation approach (chapter 5)
is described. Figure 6.1 illustrates the three steps (‘document collection’, ‘vocabulary
selection’, ‘language model adaptation’) and shows what was used to implement
each part. The document collection was realized by employing a Java program, the
vocabulary selection was done by Python scripts, and the language model adaptation
was performed by using the Stanford Research Institute language model toolkit
(SRILM toolkit, [Stol02]). In the following sections, the implementation is described
in more detail.

Seed document(s)

FARLEERRLL L LR LY lIllllllllllllIlIIIIIIIIIihﬂUI‘P“"llllll-.
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Figure 6.1: Vocabulary Selection and Language Model Adaptation - Implementation
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6.1 Document Collection

The document collection was programmed in the programming langnage Java. The
resulting software tool is called CorpusBuilder. It handles the collection of a docu-
ment corpus and the calculation of the features, both described in chapter 5. One
topic-independent lecture vocabulary is needed for every language for which this
tool should be able to collect a document corpus. As mentioned in chapter 5, this
vocabulary is a list of words without topic information, which are commonly used
in lecture. For every lecture, the CorpusBuilder needs three input parameters:

1. The location of the slides or a different seed document
2. The desired language of the output document corpus

3. The output directory

When the corpus collection and feature calculation is finished, the CorpusBuilder
writes the following output into the output directory:

1. One text file containing all found words with their word features

2. A directory containing one text file for every document in the corpus

Object Structure

The object structure was chosen to make the feature calculation easier and to avoid
unnecessary operations. The UML diagram (Unified Modeling Language) of Cor-
pusBuilder can be found at the end of the appendix. A part of the UML diagram
is shown in figure 6.2, which is briefly described in this paragraph. A document is
represented by the class Doc, a word or a short phrase with up to three words is
represented by the class Ngram, and a query is represented by the class Query. Each
Doc-object contains 0 to n different Ngram-objects. The class NgramCount saves
the occurence counts of each word or phrase in a document. A Doc-object has three
NgramCount-objects for words, two-word-phrases, and three-word-phrases. Each
Ngram-object is found in 0 to n different Doc-objects. Each Query-object finds 0 ton
different documents (depending on the number of search results). Every Doc-object
is found by 0 to n different Query-objects since seed documents are not found by
a search query. Every Ngram-object is uniquely described by its word-string, every
Doc-object is uniquely described by its location-string, and every Query is uniquely
described by its query-string. Every Query-, Document-, and Ngram-object was
handled by the classes QueryManager, DocManager, and NgramManager to ensure
that each object is unique. The manager-objects are also used to apply operations
on all Query-, Doc-, or Ngram-objects. The class NgramMap is just used to sort the
words.
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Figure 6.2: Object Structure - Part of UML Diagram

Parallel Processing

It is very time-consuming to perform every step necessary for document collection
and feature calculation sequentially. Therefore, parallel processing was performed
to speed up the processing. The program starts with extracting text from the seed
documents and selecting a list of search queries. It is not necessary to wait for the
result of one search query before performing the next search. Thus, these search
queries are executed in parallel. The object structure, described in the previous
paragraph, makes sure that each search query is only used once. After all search
queries are completed, they return a list of multiple URLs that point to the resulting
documents. The next step is to download and extract the text from all documents.
Again, the processing speed is increased by processing all documents in parallel.
Once the text of all documents is available, the words are extracted and the features
are calculated. The features of all documents, queries, and words are also calcu-
lated in parallel while the object structure ensures that the same calculation is not
performed twice. The parallel processing is illustrated in figure 6.3.

6.1.1 Used Packages

An advantage of Java as programming language is that common problems are already
solved and the solutions are available as Java libraries. This section gives a short
introduction into the packages that were used in the Java program CorpusBuilder
to extract the text from PDF documents and webpages, and to perform web search
by using the Microsoft Bing search engine.
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Figure 6.3: Illustration of Parallel Processing in CorpusBuilder

Apache PDFBox™: Java PDF Library

Lecture slides are often available as PDF documents or they can easily be converted
into PDF documents. Additionally, many documents on the web are available as
PDF documents. such as scientific papers. Therefore, it was important that PDF
documents can be processed by the document collection tool CorpusBuilder. The
problem is that there are many different versions of PDF documents with different
encoding. Luckily, there is already a tool available to handle PDF documents in
Java. The Apache PDFBox™ library is an open source Java tool for working with
PDF documents, available at http://pdfbox.apache.org. It is constantly updated
and offers a variety of different tools to work with PDF documents. For this project,
PDFBox was only used to extract the text from PDF documents.

jsoup: Java HTML Parser

Similar to extracting text from PDF documents, extracting text from random web
pages is often difficult due to different structures and encodings. Fortunately, there
is also a library available to solve this problem. jsoup, available at http://jsoup.org/,
is a Java library for working with real-world HTML. It provides a very convenient
API for extracting and manipulating data. This powerful API was used to extract
text from web pages found as search results.

bing-search-java-sdk: A Java wrapper for Bing Search API 2.0

Microsoft Bing was used as search engine for the document collection. Microsoft
Bing offers a powerful API, called Bing Search API 2.0, and good search results.
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The Bing Search API provides a JSON interface, which accepts search requests in
URL format and returns the search results in JSON (JavaScript Object Notation)
format. In CorpusBuilder, the Bing Search API was used via the Java wrapper
bing-search-java-sdk, available at http:/ /code.google.com/p/bing-search-java-sdk/.
The bing-search-java-sdk uses this interface. It converts the search query into URL
format and sends the request to Bing. All information of the response in JSON
format is automatically parsed into an Java object, which makes further processing
much easier.

6.2 Vocabulary Selection and Language Model Adap-
tation

The vocabulary selection is performed by scripts written in Python. Python is a
powerful programming language with a clear syntax. Therefore, Python can easily
be used for fast development of scripts. The seripts were applied on the output of the
CorpusBuilder. They rank the words by using the three ranking scores, described in
section 5.2. The Gaussian mixture model ranking was aided by scikit-learn, which
is a Python module integrating classic machine learning algorithms in Python. It is
available at http://scikit-learn.org/.

The language models are trained and interpolated by using the SR/ language model-
ing toolkit (SRILM toolkit, [Stol02]) by the Stanford research institute. The n-gram
counts are received with the binary make-batch-counts and the language model is
created based on these counts by using the binary make-big-lm. The interpolation
of the langnage models, described in section 5.4, is realized by employing the binary
ngram with the -miz-Im option. For more details about the usages of the SRILM
toolkit, see http://www.speech.sri.com/projects/srilm/manpages/.
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7. Evaluation

The effectiveness of the proposed method was evaluated on the German speech
recognition component of the interACT Simultaneous Lecture Translation system
(section 3.1). Figure 7.1 illustrates the adaptation process. The following sections
present the evaluation of each step of the adaptation approach. The preparation
of the adaptation approach by selecting a topic-independent vocabulary and topic-
independent corpora is described in section 7.1. The available lecture data and seed
documents are described in section 7.2. The results of the document collections
are presented in section 7.3. The different vocabulary selection approaches were
evaluated by calculating the out-of-vocabulary rate in section 7.4. The effectiveness
of the language model adaptation approach was determined based on the language
model perplexity in section 7.5. Finally, the speech recognition performance of the
adapted speech recognition ::y::tem was evaluated in section 7.6.

l Seed document(s)
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Figure 7.1: Vocabulary Selection and Language Model Adaptation - Evaluation
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7.1 Preparation

To evaluate the proposed adaptation approach on German lecture, a topic-independent
lecture vocabulary for German lectures and a topic-independent corpora are needed.
To select a topic-independent lecture vocabulary, it would be best to analyze many
transcribed German lectures of many different topics to determine this vocabu-
lary. Unfortunately, such data were not available for German during the evaluation.
Therefore, the topic-independent lecture vocabulary was manually selected from ex-
tended stop word lists for German'? and lists of frequent German words®*. The
words that were selected had no topic information and included words that are com-
monly used in spontaneous German speech. The selected German topic-independent
lecture vocabulary contained 1788 words.

The language model training corpora of the German lecture translation system (see
section 3.1) are used as topic-independent corpora. The topic-independent corpora
(1280M words) consisted of broadcast news transeripts (110M words), transcribed
parliamentary debates (160M words), printed media (160M words), and web data
(850M words).

7.2 Lecture Data

The evaluation was performed on six lectures held at Karlsruhe Institute of Technol-
ogy, in 2009 and 2010. The lectures consisted of a variety of topics: Data Structures
(Lecture 1), Machine Translation (Lecture 2), Mechanics (Lecture 3), Population
Geography (Lecture 4), Computer Architecture (Lecture 5), and Copyright Law
(Lecture 6). Each of the six lectures was held by a different speaker in German.
The lectures 1, 2, and 4 were completely transcribed while lectures 3, 5, and 6 were
only partially transcribed. The evaluation is performed on a total of 5.7 hours of
transcribed lecture audio. For each lecture, the topic, the length of the transcribed
audio, the number of spoken words, and the used language are shown in table 7.1.

| H Topic [ Duration [ #words ‘ Language }
Lecture 1 Data Structures 5491 s | 11,495 | German
Lecture 2 Machine Translation 5,002s | 11,959 | German
Lecture 3 Mechanics 766 s 1,315 | German
Lecture 4 || Population Geography 5,253 s | 12,168 | German
Lecture 5 || Computer Architecture 296 s 531 | German
Lecture 6 Copyright Law 3710 s 9,162 | German

Table 7.1: Lecture Data - Recording

For each lecture, the lecturer provided the set of lecture slides that he or she used
during the lecture. Table 7.2 shows for each lecture the number of slides provided,
the total number of words in those slides, the number of unique words in the slides,
and the language used in the slides. It is noticeable that the lecturer of lecture 2

Yhttp://www.ranks.nl/stopwords/german.html
http:/ /solariz.de/649/deutsche-stopwords.htm
*http://german.about.com/library /blwfreq01.htm
Thitp://wortschatz.uni-leipzig.de/html/wliste. html
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used English slides even though she presented in German. Those slides were used
to collect a German document corpus in the same manner in which German slides
were used.

| [ #slides | #words | #words (unique) | Language |
Lecture 1 109 5,866 875 | German
Lecture 2 42 2,233 449 | English
Lecture 3 3 165 72 | German
Lecture 4 61 1,326 469 | German
Lecture 5 89 4,781 1,222 | German
Lecture 6 16 1,134 520 | German

Table 7.2: Lecture Data - Lecture Slides

7.3 Document Collection

The slides provided for each lecture were used as seed document to collect related
documents in German by applying the document collection approach described in
section 5.1. The provided slides were not altered in any way before extracting the
text for document collection. The resulting document corpora of the six lectures
varied in size. This is due to the different number of words in the slides and therefore
different number of search queries. Furthermore, some search queries did not receive
the maximum amount of 50 search results because the total number of results was
lower. Table 7.3 shows for each document corpus the number of documents, the
number of words, and the size of the corpus in megabytes (MBytes). Additionally,
an extended document collection searching for up to 500 documents per query was
performed. These extended document corpora were collected while working on the
language model adaptation to have more data. Thus, the extended corpora were
not used for vocabulary selection. To get 500 documents per query, it was necessary
to sent 10 separate requests to Bing because the Bing Search API only returns up
to 50 documents per search requests. This slowed down the extended document
collection significantly. The extended document corpora of the six lectures varied
in the same manner as the smaller document corpora. A detailed breakdown of
extended document corpora is shown in the appendix in table A.1.

| [ #documents | #words | #words (unique) | size (MBytes) |
Lecture 1 21,254 | 38,889,465 631,217 253
Lecture 2 5,259 | 8418297 212,614 39
Lecture 3 1.469 | 4,695,643 134,939 29
Lecture 4 10.430 | 21,023,728 458,238 140
Lecture 5 33.654 | 64,831,722 844,369 419
Lecture 6 14,314 | 30,837,822 688,894 206

Table 7.3: Document Collection Results (Up to 50 Results per Query)
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7.4 Vocabulary Selection

After the document collection, the proposed vocabulary selection approach was eval-
uated by calculating the out-of-vocabulary (OOV) rate for different vocabularies.
The results of the baseline vocabulary on each of the six lectures was shown in chap-
ter 4, figure 4.1. A detailed breakdown per lecture is shown in the appendix in table
A2

7.4.1 Boundaries

The OOV rate of the selected lecture-specific vocabularies is limited by two bound-
aries, the OOV rate of the topic-independent lecture vocabulary and the OOV
rate of the Google Book unigrams. Every selected vocabulary contains the topic-
independent lecture vocabulary. Thus, the highest OOV rate a vocabulary can
achieve is the OOV rate of the topic-independent vocabulary. On the six lecture
the average OOV rate of the topic-independent vocabulary was 17.59%. Addition-
ally, the new vocabularies were verified against an extremely large vocabulary to
remove erroneous words that are introduced during the extraction process. In this
evaluation, the unigram occurrences from the Google Book n-gram dataset were
utilized (described in section 2.3), which in total contains about 3 million unique
word entries. The Google Book unigram vocabulary was tested to determine the
lowest OOV rate that could be achieved. The average OOV rate of the Google Book
unigrams on the six lectures was 0.51%. Detailed results for this two vocabularies
are shown in table 7.4.

Out-of-Vocabulary Rate (%)
Topic-Independent Lecture Vocabulary | Google Book unigrams
(1788 words) (2=3M words)
Lecture 1 12.90 0.43
Lecture 2 15.85 1.20
Lecture 3 16.50 0.23
Lecture 4 1775 0.22
Lecture 5 22,41 0.19
Lecture 6 20.62 0.80
Average 17.59 0.51

Table 7.4: Out-of-Vocabulary Rate - Topic-Independent Lecture Vocabulary and
Google Book Unigrams

7.4.2 Feature-based Vocabulary Selection

The usefulness of the three different vocabulary ranking scores and the 21 different
word features was evaluated by calculating the OOV rate for vocabularies selected
by the different methods. This evaluation was performed only on lectures 1-4 as
transcripts of lectures 5 and 6 were not available when this evaluation took place.
The document corpora that were collected by searching for up to 50 documents per
search query were used for vocabulary selection.
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Single Feature Score Ranking

In the first experiments, vocabularies were selected by applying the single feature
ranking score (see section 5.2, eq. 5.1). The average OOV rate of 40k vocabularies
that were selected by using the single feature scores of all 21 features is shown in
figure 7.2. The lowest OOV rate was obtained by employing feature 1, DocCount
(fy), delivering average OOV rates of 2.4% (40k), 1.6% (90k), and 1.1% (300k). The
feature 2, VocCount (f3), obtained similar OOV rates, on average 2.6% (40k), 1.7%
(90k), and 1.1% (300k). Vocabulary selection based on either of these two features
leads to a significantly lower OOV rate than the OOV rate of the three baseline
systems. The single feature score ranking with the DocCount feature improved the
baseline OOV rate on average by 56.8% while maintaining the same vocabulary
size. A detailed breakdown of all single feature results for all features, vocabulary
sizes, and lectures is shown in the appendix, table A.3. The vocabularies selected by
using feature 1, DocCount, or feature 2, VocCount, had a better vocabulary coverage
than the baseline vocabulary with the same size. For lecture 1 and 3, the vocabulary
coverage was higher by using the 40k DocCount vocabulary than by using the 300k
baseline vocabulary. The DocCount vocabularies for lectures 1, 3, and 4 had also
a better vocabulary coverage than the baseline vocabularies with slides added. For
lecture 2, this was only true for the 40k case while the 90k and 300k baseline-+slides
vocabularies obtained a lower OOV rate. For lecture 2 and 3, the OOV rate of all
300k single feature score vocabularies was the same because the vocabulary size for
the document corpora were below 300k (see section 7.3, table 7.3).

OO0V Rate (%)

Figure 7.2: Average OOV Rate for all Features - 40k Vocabulary
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Linear Feature Combination Score Ranking

The effectiveness of combining multiple features for vocabulary ranking was investi-
gated in the next experiments. Pairs of features were linearly combined by applying
the linear feature combination score (section 5.2, eq. 5.2) with e € {0.1,0.2...,0.9}.
All 210 feature pairs of the 21 features were evaluated, leading to 1890 feature
combinations. For most feature combinations, the linear combination vocabular-
ies obtained an OOV rate that was between the OOV rates of the two single fea-
ture vocabularies. However, combining DocCount and VocCount with a = 0.5
(*Doc+VocCount”) obtained in most cases a better or equal vocabulary coverage
and an average reduction of OOV rate of 1% compared to using the DocCount fea-
ture alone, obtaining average OOV rates of 2.32% (40k), 1.62% (90k), and 1.14%
(300k). The largest relative reduction in OOV rate was 84.9%, which was obtained
on lecture 3 for a 300k vocabulary, reducing the OOV rate from 5.0% (Baseline) to
0.76% (Doc+VocCount). The results of DocCount, VocCount, and Doc+VocCount,
are compared in table 7.5. Overall, the result of the linear score Doc+VoeCount is
better.

Out-of-Vocabulary Rate (%)

40k Lecture 1 | Lecture 2 | Lecture 3 | Lecture 4 | Average
DocCount 1.50 3.66 1.52 2.86 2.39
VocCount 1,72 3.57 1.67 3.31 2.57
Doc+VoeCount 1.50 3.55 1.37 2.86 2.32
90k Locture 1 | Lecture 2 | Lecture 3 | Lecture 4 | Average |
DocCount 1.10 2.83 0.84 1,73 1.63
VocCount 1.22 2.80 0.84 1.98 1.71
Doc+VocCount 1.10 2.80 0.84 1.72 1.62
300k Lecture 1 | Lecture 2 | Lecture 3 | Lecture 4 | Average
DocCount 0.73 2.12 0.76 0.92 1.33
VocCount 0.70 2.12 0.76 0.98 1.14
Doc+VoeCount 0.75 2.12 0.76 0.94 1.14

Table 7.5: Out-of-Vocabulary Rate - DocCount, VocCount, and Doc+VocCount

Gaussian Mixture Model Score Ranking

Next. the GMM-based vocabulary ranking (Gaussian Mixture Model Score, section
5.2, eq. 5.3) was evaluated. This evaluation began with an oracle test, by training
the GMMs based on a lecture transcript and testing it on the same lecture. The
evaluation was started with an oracle test to determine the best parameters and to
ensure that this approach could lead to better results. Two GMMs were trained, one
GMM for words that did occur in the transcript and one GMM for words that did
not occur. All feature-pairs of the 21 features on all four lectures were evaluated.
CGMMs with one, two, three, and four components were tested. The goal of this
oracle test was to identify a feature combination that received a lower OOV rate
than the Doc+VocCount ranking for all four lectures. Although slight improvements
were gained for specific lectures, no feature-pair consistently improved performance
across all lectures. Since it was not possible to identify a promising feature-pair
for Gaussian mixture model score ranking, this approach was not investigated any
further.
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Selected Ranking Score

After comparing the different ranking scores and features, it was clear that the linear
score Doc+VocCount achieved the best results. Therefore, vocabularies selected by
using this score were used in the following evaluations. Fig. 7.3 shows the effective-
ness of the proposed linear score Doc+VocCount on the six lectures compared to the
baseline over varying vocabulary sizes. The proposed approach relatively reduced
the OOV rate on average by 50.6%, 49.3%. and 59.2% for the 40k, 90k, and 300k
systems per lecture. More significantly the 40k vocabulary selected with the pro-
posed approach obtained on average an OOV rate similar to the average OOV rate
of the 300k baseline system, showing the effectiveness of this approach. A detailed
breakdown per lecture is shown in the appendix in table A.4.

6
g, _
@ E Baseline
®
o 2T 7T ™ Baseline+Slides
= 3 .
8 Doc+VocCount

40k 90k 300k

Figure 7.3: Average OOV Rate of Baseline compared with Doc+VoeCount

7.5 Lecture-dependent Language Model Adapta-
tion

After the vocabulary selection, the method described in section 5.4 was used to train
a lecture-specific language model (LM) by employing the topic-independent corpora
(see section 7.1) and one of the lecture-specific corpora collected in section 7.3. For
each lecture, the lecture-specific vocabulary selected in the last section were used.
The SRILM [Stol02] toolkit was used for LM training and LM interpolation. Two
different lecture-specific LMs were built: One based on the lecture-specific docu-
ment corpus collected by searching for up to 50 document per query (“search30”),
and one based on the lecture-specific document corpus collected by searching for
up to 500 documents (“search500”). These lecture-specific LMs are compared with
the baseline LMs in terms of perplexity on the specific lecture transeripts. The re-
sults for the 40k vocabularies are shown in tables 7.6, the results for the 90k and
300k vocabularies are shown in the appendix in table A.5, and in table A.6. The
lecture-specific LMs obtained a significantly lower perplexity compared to the base-
line lecture-independent model. However, the larger document corpus “search500”
did not improve language model perplexity. On average for the 40k vocabularies,
the relative improvement was 23.2% with the “Search50” corpus and 22.8% with the
“Search500” corpus.
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Language Model Perplexity
Baseline Adapt LM Adapt LM
| Documents per query - 50 (“Search50”) | 500 (“Search500”)
Lecture 1 I 3440 | 2614 (24.0%) | 266.2 (22.6%)
Lecture 2 352.0 285.7 (18.8%) ‘?91 3 (17.3%)
Lecture 3 325.0 | 199.9 (38.5%) 2 (40.9%)
Lecture 4 247.1 210.0 (15.0%) 207 1(16.2%)
Lecture 5 274.3 170.0 (38.0%) 184.0 (32.9%)
Lecture 6 241.3 229.9 (4.7%) 225.1 (6.7%)
Avg. Improvement - 23.2% 22.8%

Table 7.6: Language Model Perplexity - 40k Vocabulary

7.6 Lecture-dependent Speech Recognition

Speech recognition of each lecture was performed by using the automatic speech
recognition (ASR) component of the interACT lecture translation system (section
3.1). The ASR component used the Janus Recognition Toolkit (JRTk) [SMFWO1].
The acoustic model training was described in [KWKNT08]. For the lecture-specific
recognition dictionaries, the pronunciations from the baseline dictionaries were used.
The pronunciations of words that did not occur in the baseline dictionaries were gen-
erated automatically by employing the Festival Speech Synthesis System [TaBC93|.

The speech recognition accuracy of four different systems was evaluated, the un-
adapted topic-independent baseline system (“Baseline”), a system with adapted
lecture-specific vocabulary and baseline language model (“Only Vocab”), a system
with adapted lecture-specific language model and baseline vocabulary (“Only LM"),
and the proposed system with adapted lecture-specific vocabulary and language
model (“Both Vocab & LM"). Unsupervised speaker adaptation was performed for
each lecture. The WER results of the four systems with a 40k vocabulary and lan-
guage model adaptation based on the “search30™-document corpora are shown in
table 7.7. The lecture-independent baseline system obtained an WER of 35.6% for
all the six lectures combined. The proposed approach to adapt the vocabulary and
the language model lowered the WER of all six lectures. The combined WER was
32.8% (a 7.9% relative reduction compared with the baseline). Applying only vocab-
ulary adaptation or only language model adaptation showed that the adaptation of
the vocabulary had the greater impact. When only vocabulary selection (described
in section 5.2) based on the linear feature combination score (Doc+VocCount) was
performed, a WER of 34.1% was obtained for all six lectures combined, a relative
reduction of 4.2% compared to the baseline system. A WER of 35.4% for all lecture
combined (a relative improvement of 0.4%) was received when only applying lan-
guage model adaptation (described in section 5.4). The lecture-specific vocabularies
led to bigger improvement in WER than the language model adaptation. But, the
biggest gain was obtained by combining both, vocabulary selection and language
model adaptation. On average, the WER was lowered by 12.5% per lecture by us-
ing the proposed combination of vocabulary and language model adaptation. The
proposed approach improved speech recognition accuracy on all six lectures even
though the improvement varied between the lectures. The WER results of systems
with larger vocabularies, and language model adaptation based on the large docu-
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ment corpora showed similar results with similar fluctuations. A detailed breakdown
can be found in the appendix in tables A.14, A.15, A.16, A.17, A.18. The result of
tests with speaker unadapted acoustic models are shown in the appendix in tables
A7 A8 A9 A0, A11, A.12.

Word Error Rate (%)

Adaptation || Baseline [ Only Vocab | Only LM | Both Vocab & LM
Lecture 1 43.1 424 (1.7%) | 42.7 (1.0%) | 41.0 (5.0%)
Lecture 2 349 | 357 (-2.3%) | 343 (1.6%) | 33.9 (2.7%)
Lecture 3 334 | 273 (18.2%) | 34.7 (-3.8%) | 27.5 (17.6%)
Lecture 4 283|239 (156%) | 285 (-0.6%) | 22.7 (20.0%)
Lecture 5 284 | 288 (-1.3%) | 255 (10.4%) | 21.2 (25.3%)
Lecture 6 374|364 (26%)|37.6 (-0.6%) | 35.7 (4.4%)

Lectures 1-6 35.6 | 341 (4.2%) [ 354 (0.4%) | 32.8 (7.9%)

Y, i bl 5 5.8% 1.3% 12.5%
| per lecture

Table 7.7: Word Error Rate - Speaker Adaptation - 40k Vocabulary - “Search50-
Language Model

7.7 Discussion

Although improvements in WER were achieved across all test lectures, the improve-
ment of some lectures was relatively lower. For example on lecture 2, only a relative
improvement of 2.7% in WER was obtained compared to the baseline. A possible
explanation for this small improvement can be the high percentage of English words
in the German lecture (see table 7.8). In the available test lectures, lecture 2 had the
highest percentage of English words (7.42% of all spoken words). In some German
lectures, professors use many technical terms in English. It was shown by Kolss et
al. in [KWKN*08] that recognition of such words are often problem due to differ-
ent phonemes and pronunciation rules in the English language. Another issue is the
combination of English words and German declension or conjugation, which often
occurs in today’s spoken German. An example is the word “boosten”, which was
used in lecture 2. It is a combination of the English verb “to boost” and the German
ending of an infinitive “-en”. Another example is the word “downgeloadet”, which
is a combination of the English verb “to download” and German conjugation rules.
These two words are used in today’s spoken German but they are usually not found
in written German documents. Therefore, these examples indicate a new problem
that occurs in speech recognition of German lectures. Solving these problems might
improve the speech recognition accuracy of lectures, such as lecture 2.

Percentage of English words in German transcripts
Lecture 1 | Lecture 2 | Lecture 3 | Lecture 4 Lecture 5 | Lecture 6
2.49% 7.42% 0.15% 0.42% 1.13% 0.82%

Table 7.8: Percentage of English Words in the six German Test Lectures.
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7.8 Summary

The proposed approach was successfully evaluated on six German lectures with
different lecture topics and different speakers. By applying the vocabulary selec-
tion approach described in section 5.2, the out-of-vocabulary rate was relatively im-
proved on average by 53.0% per lecture and vocabulary size compared to a lecture-
independent baseline vocabulary. The language model adaptation approach de-
seribed in section 5.4 lowered the language model perplexity on average by 23.2%
per lecture compared to a lecture-independent baseline. By combining the vocabu-
lary selection and language model adaptation, the word error rate was reduced on
average by 12.5% per lecture compared to a lecture-independent baseline system by
using a 40k vocabulary .



8. Conclusion

Speech recognition technologies and especially the introduction of the interACT
lecture translation system have shown that speech recognition of lectures can reduce
language barriers in today’s education. However, due to the variety of different
lecture topics and the huge differences between each topic, current systems perform
poorly. To solve this problem, related work has shown significant improvements in
speech recognition accuracy by adapting the speech recognition system to the topic
of the lecture. Nevertheless, the existing approaches are either too time-consuming
or ineffective. The approach proposed in this work is different. Assuming that one
document, such as lecture slides, is available for every lecture, the proposed approach
automatically adapts a speech recognition system to the topic of the current lecture
without any further human input. Based on the initial document, related documents
are collected from the world wide web. The adaptation is focused on the selection of a
lecture-specific vocabulary from the collected documents. The vocabulary is selected
by using a novel unsupervised vocabulary selection approach that uses feature-based
ranking scores. Additionally, the language model is adapted to the lecture topic by
leveraging the collected documents. During the evaluation of the proposed approach
on six German lectures with different topics and speakers, the effectiveness of this
adaptation approach was shown in comparison to a lecture-independent baseline.
By selecting a lecture-specific vocabulary for each lecture, the out-of-vocabulary
rate was relatively improved on average by 53.0% per lecture compared to a lecture-
independent baseline vocabulary. Furthermore, the language model perplexity was
lowered on average by 23.0% per lecture by using the proposed adaptation method.
Finally, the word error rate was reduced hy 12.5% per lecture with the help of
a lecture-specific vocabulary and language model for each lecture compared to a
lecture-independent baseline system.

The proposed adaptation method has shown improvement for every lecture in the
test set. However, the improvement varied considerably between each lecture. In
future works, this variation should be examined further on large test sets. Addition-
ally, the proposed method relies on a vocabulary verification to remove erroneous
words by using the large Google Book n-gram data set. Although this data set
contains a huge number of words, it did not contain all words that were spoken in
the test lectures. The reason for that might be a mismatch between written and
spoken words. For future works, it could be useful to investigate the use of different
verification data sets.
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} H #documents 1 #words | #words (uniquc)T Size (MBytes) }
Lecture 1 92,331 | 214,863,487 1,441.029 1,340
Lecture 2 12,754 | 34,421,841 429,582 148
Lecture 3 5,725 | 65,069,621 411,433 289
Lecture 4 44 365 | 102,523,661 1,004,376 707
Lecture 5 190,852 | 366,410,550 1,613,089 2,342
Lecture 6 83,551 | 170,852,776 1,314,576 1,132

Table A.1: Extended Document Collection Results (up to 500 Results per Query)

Vocabulary Selection

Baseline

Out-of-Vocabulary Rate (%)
Baseline Size || 40k | 40k | 90k | 90k | 300k | 300k
Slides added - Yes - Yes - Yes
Lecture 1 3.67 1291 (202|171 1.70 | 1.43
Lecture 2 5.90 | 4.29 | 3.80 | 2.36 | 3.12 | 1.97
Lecture 3 6.62 | 6.31 | 5.48 | 5.17 | 5.02 | 4.71
Lecture 4 6.30 | 4.96 | 4.79 | 3.64 | 2.24 | 1.83
Lecture 5 546 | 3.01 | 2.45 | 1.51 | 2.07 | 1.32
Lecture 6 0.69 | 4.87 | 4.20 | 3.46 | 247 | 2.00
Average 5.60 | 4.39 | 3.79 | 2.98 | 2.77 | 2.21

Table A.2: Out-of-Vocabulary Rate - Baseline vocabularies
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Out-of-Vocabulary Rate (%)

Lecture
1 | 2 l 3 | 1 | 5 | 6 | Average
Baseline 40k | 3.67 | 5.90 | 6.62 | 6.30 | 5.46 | 5.69 5.60
Baseline+Slides || 40k | 2.91 | 4.29 | 6.31 | 4.96 | 3.01 | 4.87 4.39
Doc+VocCount || 40k | 1.50 | 3.55 | 1.37 | 2.86 | 3.39 | 3.96 297
Baseline 90k | 2.02 | 3.80 | 5.48 | 4.79 | 2.45 | 4.20 3.79
Baseline+Slides || 90k | 1.71 | 2.36 | 5.17 | 3.64 | 1.51 | 3.46 2.98
Doc+VocCount || 90k | 1.10 | 2.80 | 0.84 | 1.72 | 2.26 | 2.82 1.92
Baseline 300k | 1.70 | 3.12 | 5.02 | 2.24 | 2.07 | 2.47 27T
Baseline+Slides || 300k | 1.43 | 1.97 | 4.71 | 1.83 | 1.32 | 2.00 2.21
Doc+VocCount || 300k | 0.75 | 2.12 | 0.76 | 0.94 | 0.56 | 1.62 1.12

Lecture-dependent Language Model Adaptation

Language Model Perplexity

Baseline | Adapt LM Adapt LM
Documents per query - 50 (“Search50”) | 500 (“Search5007)

Lecture 1 356.1 | 270.0 (24.2%) 275.6 (22.6%)
Lecture 2 382.1 | 305.7 (20.0%) 312.6 (18.2%)
Lecture 3 342.6 | 207.3 (39.5%) 200.3 (41.6%)
Lecture 4 277.5 | 232.3 (16.3%) 229.5 (17.3%)
Lecture 5 305.3 | 188.6 (38.2%) 204.5 (33.0%)
Lecture 6 269.3 | 256.9 (4.6%) 251.1 (6.8%)

Avg. Improvement

23.8%

23.2%

Table A.5: Language Model Perplexity - 90k Vocabulary

Language Model Perplexity

Baseline | Adapt LM Adapt LM
Documents per query - 50 (*Search50”) | 500 (“Search5007)

Lecture 1 369.2 | 279.0 (24.4%) 285.1 (22.8%)
Lecture 2 409.2 | 325.9 (20.4%) 333.3 (18.6%)
Lecture 3 3445 | 208.2 (39.6%) 201.4 (41.5%)
Lecture 4 302.9 | 251.1 (17.1%) | 248.1 (18.1%)
Lecture 5 367.9 | 222.3 (39.6%) 237.8 (35.4%)
Lecture 6 302.1 | 287.5 (4.8%) 281.0 (7.0%)

Avg. Improvement

24.3%

23.9%

Table A.6: Language Model Perplexity - 300k Vocabulary

Table A.4: Out-of-Vocabulary Rate - Baseline, Baseline+Slides, and Doc+VoceCount
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Lecture-dependent Speech Recognition

Word Error Rate (%)
| Adaptation || Baseline | Only Vocab | Only LM | Both Vocab & LM
Lecture 1 51.2 50.7  (1.0%) | 51.4 (-0.4%) | 49.6 (3.1%)
Lecture 2 39.0 |394 (-11%) | 383 (1.6%) | 38.0 (2.5%)
Lecture 3 38.3 334 (12.8%) | 37.6 (1.9%) | 30.9 (19.4%)
Lecture 4 31.3 26.8 (14.4%) | 314 (-0.5%) | 25.7 (18.0%)
Lecture 5 316 |306 (29%) 292 (7.6%) | 26.0 (17.6%)
Lecture 6 46.1 | 45.1 (2.0%) | 45.8 (0.5%) | 44.4 (3.5%)
Lectures 1-6 413 [39.7 (3.7%) | 411 (0.4%) | 38.5 (6.6%)
iveeage i 5.3% 1.8% 10.7%
Improvement

Table A.7: Word Error Rate - No Speaker Adaptation - 40k Vocabulary - “Search50™-
Language Model

Word Error Rate (%)

Adaptation Only Vocab | Only LM | Both Vocab & LM
Lecture 1 51.2 50.7  (1.0%) | 50.3 (1.7%) | 49.3 (3.7%)
Lecture 2 300 |[394 (-L1%)|385 (1.2%) | 38.2 (2 0%)
Lecture 3 333 | 334 (12.8%) | 384 (-0.4%) | 31.2 (18.6%)
Lecture 4 31.3 26.8 (14.4%) | 31.3 (-0.1%) | 25.5 (18.5%)
Lecture 5 31.6 |306 (29%)|316 (0.0%) |28.6 (9.4%)
Lecture 6 46.1 45.1 (2.0%) | 46.0 (0.2%) | 44.7 (2 9%)

Lectures 1-6 41.3 [ 397 (3.7%) | 409 (0.8%) | 38.6 (6.4%)
AveraRe g 5.3% 0.4% 9.2%

Improvement

Table A.8: Word Error Rate - No Speaker Adaptation - 40k Vocabulary -
“Search500"-Language Model

Word Error Rate (%)
Adaptation | Baseline [ Only Vocab | Only LM [ Both Vocab & LM
Lecture 1 504 | 515 (-2.0%) 492 (2.4%) | 49.5 (1.9%) |
Lecture 2 379 | 386 (-1.8%) |37.1 (2.0%) | 37.5 (1.0%)
Lecture 3 384 |335 (12.6%) | 368 (4.1%) | 30.6 (20.3%)
Lecture 4 209 |254 (15.1%) | 29.6 (0.8%) | 24.2 (19.1%)
Lecture 5 203 | 31.9 ( 8.8%) | 24.9 (15.1%) | 24.0 (18.2%)
Lecture 6 45.5 442  (2.9%) | 45.0 (1.0%) | 43.5 (4.3%)
Lectures 1-6 | 40.3 | 39.2 (2.8%) | 395 (1.8%) | 37.8 (6.2%)
I lAvergge _ - 3.0% 4.2% 10.8%
mprovement

Table A.9: Word Error Rate - No Speaker Adaptation - 90k Vocabulary - “Search50"-
Language Model



Word Error Rate (%)

Adaptation | Baseline [ Only Vocab | Only LM [ Both Vocab & LM
Lecture 1 504 | 515 (-2.0%) | 49.0 (2.9%) | 49.5 (1.8%)
Lecture 2 37.9 386 (-1.8%) | 37.2 (1.9%) | 37.3 (1.6%)
Lecture 3 384 33.5 (12.6%) | 36.8 (4.1%) | 30.7 (19.9%)
Lecture 4 299 | 254 (15.1%) | 29.3 (2.1%) | 24.1 (19.5%)
Lecture 5 293 (319 (-8.8%)|288 (1.9%) |25.5 (13.2%)
Lecture 6 455 | 442 (2.9%) | 44.9 (1.4%) | 434 (4.5%)

Lectures 1-6 403 392 (2.8%) (394 (2.2%) | 37.7 (6.4%)

1 Pories - 3.0% 2.4% 10.1%
mprovement

Table A.10: Word Error Rate - No Speaker Adaptation - 90k Vocabulary -
“Search500"-Language Model

Word Error Rate (%)
Adaptation || Baseline | Only Vocab | Only LM | Both Vocab & LM
Lecture 1 504 [505 (-0.3%) |49.9 (1.0%) | 48.8 (3.2%)
Lecture 2 372 (379 (-1.8%) 369 (0.7%) | 36.9 (0.7%)
Lecture 3 37.3 | 330 (114%) | 363  (2.6%) | 30.0 (19.6%)
Lecture 4 254 | 248 (2.7T%) | 251 (1.3%) | 234 (7.9%)
Lecture 5 209 |20.7 (0.6%) | 266 (11.1%) | 21.8 (27.2%)
Lecture 6 43.8 (433 (1.1%) |43.7 (0.1%) | 42.6 (2.6%)
Lectures 1-6 38.6 |384 (0.5%)|38.2 (0.9%)|37.1 (3.9%)
I Ayerege - 2.3% 2.8% 10.2%
mprovement

Table A.11: Word Error Rate - No Speaker Adaptation - 300k Vocabulary -
*Search50"-Language Model

Word Error Rate (%)

Adaptation || Baseline | Only Vocab | Only LM [ Both Vocab & LM
Lecture 1 504 | 50.5 (-0.3%) | 49.1 (2.5%) | 48.7 (3.2%)
Lecture 2 372 | 379 (-1.8%) | 37.0 (0.6%) | 37.1 (0.1%)
Lecture 3 37.3 33.0 (11.4%) | 36.2 (2.8%) | 30.4 (18.4%)
Lecture 4 254 | 248 (2.7%) | 24.8 (2.6%) | 23.2 (8.7%)
Lecture 5 209 1297 (0.6%) | 286 (4.3%) | 25.1 (16.1%)
Lecture 6 43.8 | 433 (1.1%) | 43.5 (0.5%) | 42.8 (2.1%) |

Lectures 1-6 386 |[384 (0.5%) |37.9 (1.6%) | 37.2 (3.7%) |
Average

Improvement ) 287 32% B

Table A.12: Word Error Rate - No Speaker Adaptation - 300k Vocabulary -
“Searchb00™-Language Model
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Word Error Rate (%)

Adaptation || Baseline | Only Vocab |  Only LM | Both Vocab & LM
Lecture 1 43.1 424  (1.7%) | 42.7 (1.0%) | 41.0 (5.0%)
Lecture 2 349 |357 (-2.3%) | 343 (1.6%) | 33.9 (2.7%)
Lecture 3 334 | 273 (182%) | 347 (-3.8%) | 275 (17.6%)
Lecture 4 28.3 | 239 (156%)|285 (-0.6%) | 22.7 (20.0%)
Lecture 5 28.4 | 288 (-1.3%) | 25.5 (10.4%) | 21.2 (25.3%)
Lecture 6 374 | 364 (26%)|37.6 (-0.6%) | 357 (4.4%)

Lectures 1-6 35.6 341 (4.2%) | 354 (04%) | 32.8 (7.9%)
ATRLASE - 5.8% 1.3% 12.5%

Improvement

Table A.13: Word Error Rate - Speaker Adaptation - 40k Vocabulary - “Search50"-

Language Model

Word Error Rate (%)

Adaptation || Baseline | Only Vocab | Only LM | Both Vocab & LM
Lecture 1 431 [424 (1.7%) | 425 (1.5%) | 40.8 (5.5%)
Lecture 2 349 |35.7 (-23%)|347 (0.6%) |34.2 (2.0%)
Lecture 3 334|273 (182%) | 33.1 (0.9%) | 262 (21.6%)
Lecture 4 283 [239 (15.6%) | 28.6 (-0.8%) | 22.5 (20.6%)
Lecture 5 28.4 | 288 (-1.3%) | 26.2 (7.8%) | 23.6 (16.9%)
Lecture 6 374 | 364 (26%) |375 (-0.5%) | 35.6 (4.7%)

Lectures 1-6 35.6 34.1 (42%) | 354 (0.4%) | 32.7 (8.1%)

_ Average . 5.8% 1.6% 11.9%
Improvement

Table A.14: Word Error Rate - Speaker Adaptation - 40k Vocabulary - “Search5007-

Language Model

Word Error Rate (%)

Adaptation || Baseline | Only Vocab | Only LM | Both Vocab & LM
Tecture 1 101 | 426 (L11%) 408 (32%) ] 40.3 (4.2%)
Lecture 2 337 | 345 (-23%) | 328 (2.7%) | 33.2 (1.5%)
Lecture 3 329 | 280 (14.9%) |33.2 (-0.7%) | 26.6 (19 2%)
Lecture 4 26.8 |22.3 (16.8%) | 26.6 (0.7%) | 21.2 (21.1%)
Lecture 5 25.5 | 277 (-8.7%) | 20.7 (18.9%) | 19.2 (24 6%)
Lecture 6 362 |352 (2.7%)|36.7 (-1.5%) | 34.6 (4.3%)

Lectures 1-6 || 344 | 332 (34%) | 338 (1.6%) | 31.7 (7 6%)

; AVETREE . 3.7% 3.9% 12.5%
1m prf)vel‘fl@llt

Table A.15: Word Error Rate - Speaker Adaptation - 90k Vocabulary - “Search50™-

Language Model
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Word Error Rate (%)

Adaptation || Baseline | Only Vocab |  Only LM | Both Vocab & LM
Lecture 1 42.1 426 (-1.1%) | 40.7 (3.2%) | 40.5 (3.9%)
Lecture 2 33.7 | 345 (-2.3%) |33.0 (21%) | 33.5 (0.7%)
Lecture 3 329 28.0 (14.9%) | 334 (-1.3%) | 25.6 (22.3%)
Lecture 4 26.8 |223 (16.8%) | 26.5 (1.2%) | 21.3 (20.7%)
Lecture 5 255 | 27.7 (-8.7%) | 21.4 (15.9%) | 21.0 (17.4%)
Lecture 6 36.2 35.2 (2.7%) | 36.1  (0.1%) | 344 (4.9%)

Lectures 1-6 344 |[332 (3 4%) | 33.7  (1.8%) | 31.8 (7.3%)
Average . 3.7% 3.5% 11.7%

Improvement

Table A.16: Word Error Rate - Speaker Adaptation - 90k Vocabulary - “Search500"-

Language Model

Word Error Rate (%)

Adaptation || Baseline | Only Vocab | Only LM { Both Vocab & LM
Lecture 1 42.1 | 423 (-04%) | 413 (2.0%) | 40.3 (4.4%)
Lecture 2 331 | 338 (-20%) 327 (1.2%)|32.8 (1.0%)
Lecture 3 33.1 276 (16.7%) | 33.6 (-1.6%) |27.1 (18 0%)
Lecture 4 22.2 215 (2.9%) | 219 (1.4%) | 20.2 (9.0%)
Lecture 5 26.0 |25.7 (14%)|20.7 (20.6%) | 19.4 (2’5 5%)
Lecture 6 344 [338 (1L7%)|344 (-0.1%) | 334 (3.1%)

Lectures 1-6 32.7 (324 (0.7%) | 322 (1.3%) | 31.1 (4.6%)
Average - 3.4% 3.9% 10.2%

Improvement
Table A.17: Word Error Rate - Speaker Adaptation - 300k Vocabulary - “Search50"-

Language Model

Word Error Rate (%)

Adaptation “ Baseline ‘ Only Vocab | Only LM | Both Vocab & LM
Lecture 1 42.1 | 423 (-0.4%) | 40.8 (3.3%) | 39.9 (5.3%)
Lecture 2 33.1 338 (-2.0%) | 331 (0.2%) | 33.1 (0.1%)
Lecture 3 33.1 276 (16.7%) | 33.2 (-0.2%) | 26.8 (19.1%)
Lecture 4 222 |215 (29%)|21.7 (2.2%) | 204 (8.0%)
Lecture 5 26.0 257 (1.4%) | 214 (17.7%) | 20.9 (19.8%)
Lecture 6 344 338 (L7%)|343 (04%) | 33.1 (3.8%)

Lectures 1-6 32.7 [324 (0.7%) | 32.1 (1.7%) | 31.1 (4.7%)
Avecage - 3.4% 3.9% 9.4%

Improvement

Table A.18 Word Error Rate - Speaker Adaptation - 300k Vocabulary - “Search500"-

Language Model
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