Speech Feature Enhancement
for Speech Recognition
by Sequential Monte Carlo Methods

Friedrich Faubel
Betreuer: Matthias Waolfel, Prof. Alex Waibel
[nstitut fuer Theorethische Informatik
Universitat Karlsruhe (TH), Germany

9. 8. 2006

Declarations

Hiermit erkliire ich an Eides statt, dass ich die vorliegende Diplomarbeit selbststéindig und ohne un-
zuliissige fremde Hilfe angefertigt habe. Die verwendeten Literaturquellen sind im Literaturverze-

ichnis vollstindig aufgefiihrt.

Pittsburgh, den 9. 8. 2006

Acknowledgments

I would like to thank the following people for their help and support: Matthias Wélfel for being
a good adviser, giving me a great degree of freedom, for being patient, encouraging and helping
me to write the paper for interspeech, which we finished in a Sunday night session at 4 am in the
morning (I don’t know too many advisers who would do that). Prof. Richard Stern for the nice and
profitable discussions and for practically "adopting" me into his robust speech recognition group
at the Carnegie Mellon University. Prof. Alex Waibel, for making it possible for me to write this
Diploma thesis at the Carnegie Mellon University (CMU) in Pittsburgh. My very international
friends in Pittsburgh for showing me around, for accommodation, friendship and help.

Abstract

Particle filters (PF)s, ak.a. sequential Monthe Carlo methods, originally developed for typical
tracking applications like pursuing airplanes in radars [21], or persons in video images 23], are
increasingly pervading other fields of engineering covering navigation, robotics, communications
and (indnstrial) process control. Recently, they have found their way into speech recognition [39,
14] where they are used for the enhancement of speech features corrupted by noise. The advantage
over classical methods like spectral subtraction [6] or Wiener filtering is that the PF allows the
noise to be non-stationary.

We have followed and extended Raj et al's approach [39], which is based on the Bayesian bootstrap
filter (the SIR particle filter). A complete statistical derivation of this approach is given in this
thesis together with several refinements and imporovements in computational time as well as
automatic speech recognition (ASR) accuracy. The general speech model — used for the particle
likelihood evaluations — was replaced by a phoneme-specific model that works on a phoneme
transcription hypothesis of a previous ASR pass, effectively coupling the particle filter to the ASR
system. Furthermore we have devised a [ast acceptance test and a reinitialization procedure for the
particle filter, which overcome some stability problems of the original approach. The acceptance
test also decreases the computational cost of the method by allowing us to use less particles.
Replacement of vector Taylor series (VTS) noise compensation by a much simpler and faster
method showed the greatest gain in computational time while outperforming the original method.
Finally we incorporated the relative phase between speech and noise, which showed a significant
gain in ASR accuracy in a special case. Further work in this direction should be performed, to see
whether this is generalizable.

=]

Contents

1 Introduction

2 Tracking Evolving Dynamical Systems

21 A General Model for Tracking. : 50 e v 5 vnie vma 5 58 4 Sms s s & ois s
2.2 The MMSE Solution to the Tracking Problem
23 ASequential Approach o . i « s ¢ it 8 el i i i v s e i e sana dEE
2.4 Approximating Expectations 0oL ool o 0o
2.5 The Bayesian Bootstrap Filter o o i e
2.6 Semi-Deterministic Resampling

3 The Bayesian Bootstrap Filter for Speech Feature Enhancement

3.1 A Dynamical System Model for the Noise
3.2 Relating States and Observations o000
3.3 Applying the Bootstrap Filter o o o000

3.4 Inferring Clean Speech

4 Refinements

4.1 QGetting the Filter to Work L e
4.2 Efficient Noise Compensation o
4.3 AR-Model Adaptation Lo e
4.4 Using Linearly Transformed Spectra
4.5 Warped MVDR Spectra L L e e e

5 A Phoneme Specific Filter

6 Incorporating the Relative Phase

6.1 A New Relation between States and Observations
6.2 A Distribution for the Phase
6.3 An Efficient Approximation Lo L
6.4 Inferring the Phase o 0 o e e e e e e e
6.5 Inferring Clean Speech - Take 2o o o

7 Experiments

8 Conclusions

i)

15
13
16
16
18
23
25

27
27
29
31
32

37
37
33
39
39
42

10

1 Introduction

An automatic speech recognition (ASR) system basically consists of two stages: a feature extraction
stage (also called frontend) and a decoding stage. In the feature extraction stage the audio signal is

i v L ~
audio (Feature | Loy -
: : F'(Decoding M= transcription
signal _ Extraction | feamyres . 4,

Figure 1.1: ASR overview

processed to obtain those aspects of the audio signal that are relevant for the recognition of speech.
At the same time the dimension is reduced to cut the amount of data necessary for learning as well
as the computational complexity of the decoder. Decoding means to obtain a transcription of the
spoken utterances contained in the audio signal by aligning the features with states of acoustic,
word and langnage models. The acoustic model deseribes the smallest acoustic units, phonemes or
subphonemes, via the probability distribution of the corresponding features. Often phonemes are
combined to larger units like triphones or — more general — n-phones. The word model specifies
which sequences of states (phonemes or n-phones) are valid words. The language model gives the
probability of a succession of words.

Employing ASR systems in a noise environment that differs from the training environment leads
to a mismateh between features to be decoded and features used to train the acoustic model of
the decoder. Since this discrepancy results in a severe degradation of the recognition performance
[4], a variety of techniques have been devised to overcome this problem. Those techniques ba-
sically belong to one of the following categories: use of noise robust fealures, model adaptation,
hidden Markov model decomposition (HMM) of speech and noise by the decoder and speech feature
f""J'ﬂh.f.HM’.'i‘.‘TF.’;ﬁ'ﬂt.

Model Adaptation

An extreme case of model adaptation consists in training different models for different environ-
ments. That, however, introduces new problems. First of all this only works for static noise
environments, since the variance of the acoustic models greatly increases in the presence of non-
stationary noises, which leads to increased overlaps of different phonetic units. Furthermore this
is practically infeasible for large ASR systems which need a lot of training data. Therefore the
acoustic model is typically trained with clean speech features and adapted by modifying the means
and covariances of ifs Gaussian mixture distributions to compensate for the noise.

Hidden Markov Model - Decomposition

Varga and Moore's Hidden Markov Model (HMM) - decomposition approach [49] is entirely dif-
ferent. It uses separate models for speech and noise and searches the combined state space by an
extended Viterbi algorithm in the decoding stage. Further work in this direction was performed
by Gales and Young [16, 17| under the name parallel model combination (PMC). The drawback of
this method is that it becomes computationally immensely expensive as the noise HMM become
more complex.

Speech Feature Enhancement

Another powerfull approach is speech feature enhancement. It does not necessitate changing the
decoder or adapting the models and it can be performed either in a pre-processing stage — com-
pletely independent of the ASR system — or during the feature extraction stage. The latter
is more restrictive, but computationally less expensive, since signal processing is just performed

11

once. Furthermore, it is a good idea to conduct the enhancement in a domain as close as possible
to the feature domain, since cleaning parts of the signal that are insignificant in the feature do-
main is probably useless. To discuss possible "entry points" for speech enhancement in our speech
recognizer (Janus') we give a short summary of its feature extraction stage. In "Windowing" the

I { : : Perceptual ' [Combine | _/ ‘
= Wind ; | N i
il e lF:-ix Spectral Estimation /‘ :L\ e ‘ 4\ Adjacent /. 5--.)__ tha Jr ﬁh

Figure 1.2: Janus Feature Extraction

digitized audio signal (1) is cut into overlapping frames of fixed length. Furthermore, a window
function is multiplied (componentwise) with each frame to minimize leakage of spectral energy
into neighboring frequency bands in the following spectral estimation step. Perceptual spectral
estimation basically estimates the power of the different frequency bands using Fourier transfor-
mation FT, linear prediction (LP) or minimum variance distortionless response (MVDR), while
miricking the perception of frequency and loudness of the human auditory system. This is rea-
sonable since it can well be assumed that production of speech and its perception are evolutionary
tuned to each other. Experimental findings support this kind of reasoning. The perception of
both frequency and loudness is logarithmic, which reflects the importance of the relative differ-
ence, not the absolute one. Note that the relative difference between 100 and 200 hertz (100%)
is much higher than the relative difference between 1100 and 1200 hertz (= 9%), while the abso-
lute difference is the same. An example for a perceptual spectral estimation step implemented in
Janus is given by figure 1.3. Fust Fourier transformation (FFT) is applied to each window of 256

N
>{ FFT power J > MelFilterbank — B~ log | B
256 129 30 30

Figure 1.3: Perceptual Spectral Estimation

samples. The power spectrum is obtained by calculating the componentwise magnitude square of
the DET’s result, a complex vector of dimension 129. The Mel filterbank maps the linear into the
logarithmic frequency domain and at the same time reduces the spectral dimension to 30, before
componentwise application of the logarithm (log) transforms the power spectrum into the log Mel
power domain.

After, dicrete cosine lransform (DCT) is used to further reduce the spectral dimension while
decorrelating the components. A DCT log mel spectrum is typically called cepstrum. The DCT
log mel domain is also known as the cepstral domain. "Combine adjacent" merges successive
cepstra, which are then processed with linear diseriminant analysis (LDA) to extract the features
that are most relevant for discrimination between acoustical units.

The ideal placement of speech feature enhancement is clearly at the end of the feature extraction
stage — as close as possible to the features used by the speech recognizer. That, however, requires
tracing the relationship of speech, noise and corrupted speech through the whole feature extraction
stage, which will pose a big problem with our approach later. The problem is related to the
application of the logarithm during the perceptual spectral estimation step, which makes it hard
or even impossible to get a certain stochastic relationship through the DCT and LDA (see sections
4.4 and 3.2). That’s why we will apply feature extraction before (see figure 1.4).

VJanus Recognition Toolkit (JRTk) is developed and maintained by the Interactive Systems Laboratories al two
sites: Universitit Karlsruhe (TH), Germany and Carnegie Mellon University, USA,

12

ol el L2l ey e
,'2--\“'.‘ Spectral Estimation ‘

‘ -

} Speech Feature
. Enhancement

S

e

Figure 1.4: Placement of Speech Feature Enhancement

Early noise compensation techniques typically assumed the noise to be stationary, which might be
true for thermal white or colored — not, however for environmental background noises. Members
of this family are spectral subtraction 6], Wiener filtering and Ephraim and Malah’s MMSE
log spectral amplitude estimator [11, 12]. The argument for removing noise in the log spectral
domain is that Minimization of the the mean square error (MSE) in the spectral domain does not
necessary lead to a minimum mean square error (MMSE) estimate in the log spectral domain,
where the speech recognizer gets its features from. The first serious attempts to non-stationary
noise compensation emerged in the mid to late 1990s. Among those, probably the most prominent
ones are Moreno’s vector Taylor series (VTS) [35] and Kim’s sequential EM approach [27] using
statistical linear approximation (SLA) — Kim's extension of VTS, Some people cite Segura's
"Model-based Compensation of the Additive Noise for Continuous Speech Recognition" [43], who
combined the VTS approach with a band pass filter to remove the resindal noise. Kim’s sequential
EM probably at least inspired Yao’s sequential EM [52] and Kullback Proximal [51] algorithmns,
which — contrary to Kim’s approach — use model adaptation to compensate for the noise. This
kind of dynamic maodel adaptation, however, becomes computationally incredibly expensive for
large ASR systems. That’s why we perform speech feature enhancement.

On a parallel development track there had been ongoing research into non-stationary noise com-
pensation for years. Paliwal and Basu [37] applied Kalman filtering as early as in 1987 to track the
linear prediction (LP) coefficients of speech — which they assumed to be a time-varying autore-
gressive (TVAR) process — contaminated by white noise. Gibson [20] extended this to colored
noise and developed an iterative signal and parameter estimation scheme, which was further ex-
amined by Gannot [18] and eventually enriched by usage of unscented Kalman filters (UKF)s [19]
for joint and dual estimation of clean speech and the parameters. Despite all those improvements,
there are some fundamental issues with the underlying approach to track LP coefficients. First of
all, LP coefficients are known to be instable, meaning small changes in the coefficients might not
translate to small changes of the corresponding signal. Moreover, linear prediction does not well
model the spectral envelope for medium and high pitched voices [36]. Fong, Godsill, Doucet and
West replaced the TVAR model by a time-varying partial correlation (TV-PARCOR) model to
overcome the instability problem with LP coefficients. Furthermore, they proposed to use a parti-
cle filter instead of the Kalman filter. This, however, still doesn’t overcome the major deficiency
that all methods in this paragraph have in common: they neither work in the log spectral nor in
the Mel domain, i.e. neglect perceptual relevance.

Kim [26] had the idea to track the noise spectrum — contaminating speech — in the (log Mel)
spectral (power) domain by employing a bank of Kalman filters, a so-called interacting multiple
model (IMM) widely used in the area of multiple target tracking [2]. Each Kalman filter represents
a Gaussian noise hypothesis in the spectral domain that is compensated by SLA alka. VTS, Kim's
work inspired Raj et al. [39] to apply a sequential sampling importance resampling (STR) particle
filter — called Bootrap filter throughout this thesis like in the Gordon’s original work [21] — to
overcome the linear approximation of the relationship between clean speech, noise and corrupted
speech in the (Mel) log spectral domain necessary for the application of the Kalman filter. We

13

followed this approach. Chapter 2 introduces the Bootstrap filter in the general framework of
tracking. Chapter 3 gives a complete statistical derivation of Raj et al.'s approach.

14

2 Tracking Evolving Dynamical Systems

The objective of tracking is to estimate a sequence of system states on the basis of observations.
To have a concrete scenario, let’s say the system states describe the trajectory of an airplane and
the observations are measurement values obtained by a radar. Then the tracking problem can
be formulated as to reconstruct the target trajectory by evaluating of the relationships between
possible trajectories and given measurements. For this we need a model that describes the system
under consideration. Using a general model yields a general tracking algorithm.,

2.1 A General Model for Tracking

The most general description of a system that facilitates tracking is the observed stochastic dy-
namical system model'. It consists of two stochastic processes that are interlocked with each
other: a state process (X;);en representing the evolution of a hidden, inner system and a corre-
sponding observation process (Y););en-. The interlocking can be regarded as causal relationship
where system states cause observations. As the observation might be subject to random distur-
bances or measurement noise the relationship is described by the conditional probability density?
oy o), t € M. Choosing a state space determines which aspects of the real, physical system are

~

System

e

observation
process

hidden
process

e S

Figure 2.1: Observed Stochastic Dynamical System Model

incorporated into the model. For the airplane scenario one could choose the state vector (i.e. the
state space) to describe the target’s position (p,,p,.p.)7. A more sophisticated model would also
include its velocity and acceleration (pg, py, Pz, Vz, Uy, Uz, Gz, @y, a:)" . The neglected quantities —
speed of wind, variation in air presssure and gravity, maneuvering by a pilot etc introduce
indeterministic behavior into the model world. Therefore the evolution of the state process is
described by a probability density, p(zg.y), t € M. The observation process does not need to be
specified since it is implicitly described by p(yi|zo,) and plao.,):

(1) = /'p(m::.‘:‘m::.)d-'ru:p - /P{!ll:a\-ﬁ]:.') - pliowg) dag. (2.1)

Ycalled general state space model throughout most of the particle filter literature
“For a purely deterministic relationship, the density is a Dirac delta , i.e. the whole probability mass is concentrated
in one point.

where p(zo|yi.0) == plzo). We still need to find a way to sequentially update p(y:|y1.e—1), the
denominator of g(x;|Ti—1.y¢) in (2.7). Fortunately p(ye|y1:0-1) can be pulled out of the integral
(2.7). since it does not depend on x;. So

(T, .U:|‘5!1:f—1) = }'J(:lff.1'!!1:t) 'P('.-!j:l'!h:f—ﬂ
-~ / pye|ze) - plae|me—1) - plee—1|yre—1)dzi—1
and p(y|y1.—1) can be obtained as marginal density p(yelyie—1) = [plae, yelma—1)de,. This

vields a tracking algorithm that sequentially calculates the Ep, and requires only the computation
of fixed dimensional integrals (having the dimension of state space) at each time step ¢, ¢ = 1,.... 7.

Algorithm 2.1 Sequential Tracking

1. update p(z:|y1.4) by

a) caleulating p(zy, ye|yr:e-1) = p(yelTe) - [plz|zi—1) - plre-1 [th1:0—1)dT—1
b) calculating the marginal density p(y|y1:—1) = [p(@e, ve|yo:—1)dze
¢) combining those two densities to p(x;|y1.4) = p(x. yelure—1)/pluelina—1)

2. evaluate Ep, [h(x)|y1) = [h(xe) - plae|yre)dzy

The idea behind this sequential approach is to develop a closed form representation of the filtering
density, where p(z;|y1.¢) has the same distribution for all ¢ 5 The Kalman filter (KF) [24] gets its
closed form representation by assuming the filtering density to be Gaussian, which requires the
deterministic parts of the state transition and the output probability to be linear. It is idf}fil -
i.e. it can’t be outperformed by any other method — if all the assumptions hold. Kalman filters
can be applied to nonlinear problems by linearizing the nonlinearity through a first order Taylor
series approximation. This procedure is generally called extended Kalman filter (EKF). Aqothcr
way to obtain a closed form representation of the filtering density is to numerically approximate
the integrals in algorithm 2.1. The advantage of this approach is that it does not, impose the
restrictions of Gaussianity and linearity on the model.

2.4 Approximating Expectations

In this section we will establish a way to efficiently approximate expectations, i.e. integrals of
the form [h(z) - p(x)de as occurring in our sequential tracking algorithm. The examination is
restricted to numerical integration methods among which probably the most well-known one is
grid-based integration.

Grid-based approximation

Let G = {z1),j = 1,..., N} be a set of support points which are aligned to form an equidistant grid
(hence the name) and let V be the volume spanned by G. Then Ep) [h(x)] can be approximated
as

I/hh(.r)-p(.r)d.r = %—Zh(m(j))p(:ﬂu)) (2.8)

The number of support points where h(z) - p(z) has to be evaluated grows exponentially with the
dimension. This is generally unavoidable. And though, grid-based methods tend to be particularly
ineffective when it comes to higher dimensions. The reason for this is that they keep many points
in regions of space that are relatively unimportant, i.e. points for which h(x)-p(2) is close to zero.

% An essential requirement for this is that the dimension stays the same,

Example 2.4.1. Consider a two-dimensional normal distribution with density p(zy, ;) = 1/(27)-
e~ (£ +07)/2 Lt h{zo,x1) = ;‘l‘;_z, and let's say we want to approximate E,[h(zg,7;)] on the interval
[—5.5] x [-5, 5] with an equidistant grid of 5 x 5 points. The result of this approximation is 0.38
though we know the true result to be 1.0 since E,, is the variance of p(zy). Figure 2.3 depicts the
addressed problem with grid-based integration.

Figure 2.3: 27 - p(xp, ;) with underlying grid (25 points)

Monte Carlo Approximation

Other deterministic numerical integration methods like the trapezoidal rule or Simpson’s rule suffer
from the same problems. In contrast, Monte Carlo integration, a stochastic numerical integration
method and probably because of its use of randomness the method a gambler® would use, is known
to work reasonably well in higher dimensions. The randomness comes in by drawing support points
2 2™ at random from p(z) — meaning they are selected with probability p(z) among all
x, which ensures that they are primarily located in regions where the probability mass of p is
concentrated, i.e. not close to zero. Those points are now used to approximate p by the empirical
densily function

1
Blx) = = Zﬁ_-;m (z)
i=1

where 8, () == (2 — 7)) is the translated Dirac delta function. Looking at the densities alone
it might not be obvious that this is a reasonable approximation. As stated before, however, the
relevant aspect is that the probability mass is concentrated in the same regions, which means that
the cumulative density functions

PX <7)= / pla’)dz! P(X <z)= / pla)de!

— inf —inf

should be alike.

“Monte Carlo integration was given its name at the suggestion of Nicholas Metropolis in honor of Stanislaw Ulam’s
uncle, who reportedly was a gambler [48]. Monte Carlo is a district of Monaco which is known for its famous
"Casino Monte Carlo". Metropolis and Ulam were hoth pioneers in the field of what today is known as Monte
Carlo methods.

Example 2.4.2. Figure 2.4(a) is an illustration of a continuous, normal density function (solid
line) with an exemplary empirical normal density function (dashed lines with dots marking Dirac
deltas). Figure 2.4(b) shows the corresponding cumulative density functions.

(a) density (b) cumulative density

Figure 2.4: Continuous vs. Empirical Densities

Similar to this approximation of the cumulative density function, arbitrary expectations E,|h(z)]
can be approximated by replacing the continuous density function with the empirical density:
i 1 N
h{zx) plx)dz == Wx)plx)de = —) 2.
/ o(x) - p(x)de [h(z)p(z)dz = > hizy (2.9)

i=1
‘This is what is known as Monte Carlo integration.

Example 2.4.3 (Continuation of example 2.4.1). Let’s again approximate the expectation
By [h(x)] of example 2.4.1, but this time using Monte Carlo integration. Figure 2.5(a) shows
a possible two-dimensional empirical normal density p (there is one for each drawn sample-set
{«\V, .. 2™} with its continuous counterpart p(zg,z;). Figure 2.5(b) shows the function

(a) empirical p (dots) and continuous (b) empirical density below x7
normal density p (solid)

Figure 2.5: Monte Carlo Approximation
h(zg, 1) = xd together with the samples 1) (dots) where it it evaluated for the approxima-
tion by a sum (see equation 2.9). Depending on the drawn sample-set the result can be extremely

precise (i.e. close to 1.0) as well as extremely poor (worse than grid-based integration). The
following values show some possible outcomes:

0.91, 1.01, 1.00, 1.01, 1.70, 1.37, 1.09, 0.70, 1.26, 0.96

20

All but one of these values (1.70) are better than the grid-based result (0.38). The average of
the values is 1.1, their variance is 0.07. Results like these are quite common for Monte Carlo
integration. There is no guarantee for a good result, since the method is probabilistic. But the
more samples /) are used for the approximation, the more unlikely is the chance of a bad result.

The comparison is manipulated in a way, since we used a disadvantageous grid in example 2.4.1
to portray the problem. In low dimensional spaces — typically up to dimension 3 — grid based
integration outperforms Monte Carlo integration, if the grid is selected appropriately, but with
increasing dimension the problem with disadvantages support points will sooner or later show
up. A theoretical prove of almost sure convergence of the Monte Carlo approximation towards
Epey[h(2)] with N — =0 can be found in [40].

Importance Sampling

In practice it is often hard to obtain samples from p, since the distribution might be hard to model
or to "learn". Another problem is that h(z)- p(x) is not always dominated by p(z), meaning h(z)
is close to zero in the region where the probability mass of p is concenfrated, but conversely has
significant values in regions where p(z) is close to zero. Monte Carlo integration fails to provide
accurate results in these cases. The idea behind importance sampling is to draw samples from
another probability density with the aim of overcoming the mentioned problems. So, let’s say we
draw samples from 7(x) instead of p(z). Requiring 7(z) # 0 where p(z) # 0, w(z) == ple)/w(z)
is well defined and

Eplh(z)] = ff?-(;?:) cpla)dzg.,
/h{;x:) . % - (2 dxa.,
= [fl(:r) cw(z)w(z)deo,

This is called the importance sampling fundamental identity (Robert & Casella [40]). Furthermore,
E.[h(z)-w(zx)| can be approximated by Monte Carlo integration, L.e. by using the empirical density
7 obtained by drawing samples from 7. Thus E,[h(z)] can be approximated as

N
5, [h(2)] ~ % 3 @) - wiz?) (2.10)
i=1

The name importance sampling stems from the view that the samples are drawn from regions of
"importance". 7 is called importance or proposal density, the w(z) are called importance weights.
It isn’t hard to figure out that approximating Ep[h(z)| by replacing p with the weighted empirical
density

1.5 :
plx) = N Z""‘(-rm)é-f”’ ()

i=1
with samples) drawn from 7 vields the same result.

Example 2.4.4. Let p = N(0, 1) be the one-dimensional standard normal distribution, i.e. a zero
mean Gaussian distribution with covariance 1 and let 7 = [0, 3] be a uniform distribution on [0, 3].
Figure 2.6(a) shows a possible empirical density with samples #4) drawn from 7. Figure 2.6(b)
shows the weighted empirical density (z) resulting from the samples =) with the corresponding
importance weights w(z)) = 1/3- M (2:0,1).

LI YT T
(a) empirical density (b) weighted empirical density

Figure 2.6: Importance Sampling

The missing left side of the Gaussian distribution clearly portrays the problem arising if the
condition [w(z) # 0 where p(x) # 0] does not hold. Samples are never drawn from regions where
the probability mass is zero, i.e. outside of [0,3] and therefore importance sampling can only
represent the Gaussian on this interval. I

Importance Resampling

Any normalized weighted empirical density p(x) can be transformed into an empirical density
p simply by sampling from it. Note that the normalization of a weighted empirical density is
equivalent to the normalization of its weights

00 ()

LN w(@@)s, (z) B i w(z)
N ; = N i
‘g;\? Ej:]“-"(ﬂ"('ﬂ) i=1 Z«j:tw(i'('”)
‘-—v_n-"

=uo(xli)y

) =

Sampling from p(x) can be performed by drawing a sample u from the standard unitary distribution
1[0, 1], looking up in which interval [¢;_1,¢;], 7 € {1,..., N}, with

i
= 320(9)
=1

and cg = 0 it is located and returning the corresponding x'9), This basically multiplies samples
with high importance weights and eliminates samples with low importance weights.

Example 2.4.5 (Continuation of example 2.4.4). Figure 2.7(a) shows the weighted empirical
density of example 2.4.4. Figure 2.7(b) shows the corresponding cumulative density function ¢;,
figure 2.7(¢) a possible (there are many) resampled empirical density.

:

i

s T e

P i

oy I

i i be

Eo bR b b

PN o

P e e

oAl A L N L]]

o Ny P 1 '

L A S Lor P

A A | S I ' T—
(a) weighted empirical density (b) cumulative density o () resampled empirical density

Figure 2.7: Importance Resampling

22

2.5 The Bayesian Bootstrap Filter

The technique of approximating expectations E,[h(x)] by Monte Carlo integration and importance
sampling /resampling can now be applied to the sequential tracking algorithm (Algorithm 2.1) by
replacing the continuous filtering density p(x;|y;,) with its empirical counterpart. This way the
representation of the filtering density stays the same throughout time, which makes the problem
of caleulating the E,, [h(x)), t = 1,..., T tractable. So, let’s say we have p(xi_1|y1.4—1), the
empirical filtering density at time (¢ — 1). Then the update equation (Algorithm 2.1 - Step la)
EIVES Us

pla, wlina—1) = p(y,|:r:.,)“/p(,nf]:uh_l)-ﬁ(:z:,__1|y1:;_g)d;t‘g 1
1 «—N
= P(!ff|:m%/ﬁ(-’h|1‘: 1) ﬁlj__lcimgn]{;r;_]}dﬂ:f__}
= NZ p(yelze) _/P(Ir.lfﬂa—J)‘5;,._,._,:,n(m;_;)d:z:t_-[
= —Z. o(gelz) - plaeleiy) (2.11)

Our aim is to construct the empirical density of p(xi|yr.e) = p(ze velyra—1)/p(ye|yri—1) (Algo-
rithm 2.1 - Step 1c) by sampling from it. This can be achieved by drawing samples from (2.11)
instead, because the calculation of (Algorithm 2.1 - Step 1b) and division by p(y¢|y1.—1) can be
postponed as this term is constant as soon as the current observation y, is known. Since a sample
from (2.11) can come from any of the terms p(y|xy) - p(ay la:.ﬁ-l)l), we draw exactly 7 one sample
'm from each p(y|z,) - z,[,rgj_)l which can be obtained by using p(m|:r:§i).,) as an importance
clexmty The c‘orrcspondmg importance weight of such a sample T(J) is
(.
?Jf‘TU)) P(J)l_L. f)

PP |oP,)

A pood way to understand this is to rr'g.l.rd the samples as supposable state hypotheses and the

weights m(q.ﬁ)) as their likelithoods [(L, ;4;) given the observation y,. The resulting weighted

empirical density — constructed by using all N samples and their importance weights — is

Pl yelyre—1) NZ plyda ot 0 y(24)

which is now used to approximate the normalizing factor p(wy|y1e-1) = [(o vilyi.—1)dz; by
Monte Carlo integration:

1
P(ilyra—) = /W
- Nz yfle =t plwe|yi—1)

Dividing p(z, e |vii—1) by plye|uc—1) gives a weighted empirical density of p(x¢|y1.):

w(z!) = = p(w|zt”)

wilai) - 8,00 (i) da,

N L)y 5 &
R Pz, yelyrz—1) Y= Plule) -8, Mk (1)
plzilye) == —=] = (J)
Puelyri—1 L, 1 plye|zy
It might seem intriguing. but it is by design that this division is equivalent to normalizing the
importance weights:

w(:?:(j)) - p(y,_l:r:g"'))
— N N3
Y wE?) T T el

TWe want the number of samples, N, to stay constant, It is also possible to draw N/ = N samples and to reduce
the number of samples to N during the following resampling. This was originally proposed by Rubin [42].

(L'(:T:i‘”) =

23

Hence, the empirical fltering density p(z;|y.) for p{z|yi4) can be obtained by the method of
importance resampling, i.e. by sampling from the normalized weighted empirical density 5z |yi.).
The evaluation step (Algorithm 2.1 - Step 2) can be performed by using either this empirical
density p(x¢|y1.) or the weighted empirical density p(w¢|y1.¢) to approximate E,, [h(x,)|y14] by
Monte Carlo integration:

Blhedlnd = [he) - paunade,
~ 3 wEeE?)

=1

&
I\
=

This procedure can be formulated as an algorithm that is iterated over ¢ starting with ¢ = 1, where
the initial samples 1(") are drawn from the prior distribution p(xg).

Algorithm 2.2 The Boostrap Filter

1. update p(z,|y1..) by
WY forj=1,...,N.
o (@) = plwela?) /250 Pl

a) drawing one sample 7, J) from each p(xy|z,”
b) caleulating the normalized importance weights w

and constructing f(z, i) = ,{"_1 G:t” "’if-‘”(*r#)'
¢) obtaining the empirical density p(z¢|y1.4) i)y importance resampling, i.e. by sampling

;x.‘?) from p(x¢|yre) for j=1,...,N.

2. approximate E,, [hy(z)|y1.] as EN (@ (J)) (& Eﬂ) or as Z:;v:] ht(miﬂ)‘

This algorithm was first proposed by Gordon [21], though it seems to have been independently
developed by Kong, Lin and Wong in the slightly different context of Bayesian missing data
problems [30]. The method of Importance resampling was developed by Rubin — alongside a
comment [42] to Tanner and Wong's data augmentation algorithm [45]. It is clearly Rubin’s
brainchild though, motivated by his earlier work: the Bayesian bootstrap [41]|. Gelfand and Smith
[44] discovered that normalization of the importance weights as performed in Rubin’s importance
resampling implicitly approximates the normalizing constant p(y) in Bayesian Statistics, i.e the
denominator of

plylz) - plx) plylz) - plz)

py) _fp ylT) - (--)dm

The Bayesian Bootstrap filter, in turn, can be understood as an application of Smith and Gelfand’s
method to the tracking problem or more general to sequential Bayesian estimation. [t comes as
no surprise that Smith is a coauthor of Gordon’s paper. Kitagawa’s [29] idea to name samples
"particles" eventually coined the term particle filter for a peneralized version of the Bootstrap
filter, which is exhaustively treated in the monographs by Liu and Chen [33] and Doucet [10]. A
very good tutorial on particle filters can be found in [1].

plzly) =

The Importance of Resampling

Doucet [10], Liu and Chen [33] also consider sequential importance sampling (SIS). a Bootstrap
filter without the resampling stage hence not a bootstrap. This factually approximates the
continuous filtering density p(z,|y1.,) by a weighted empirical one, causing that hypotheses with
a low relative likelihood are kept. They are further propagated, evolve according to the state
transition probability and sonly span a big portion of state space — not however the regions
of importance. This phenomenon is called "weight degeneracy”. Doucet [10] gives a theoretical

24

proof that the variance of the importance weights can only increase over time, meaning weight
degeneracy has to occur. The resampling stage, in contrast, can be regarded as a pruning step
where likely hypotheses are multiplied, unlikely ones are removed from the particle population,
cansing the state space to be thoroughly explored in regions of high relative likelihood, less explored
in unlikely ones.

2.6 Semi-Deterministic Resampling

Real random resampling has a high variability and therefore necessitates a high number of samples
to give a reliable approximation of the weighted empirical density. Furthermore it is computation-
ally inefficient: the simple algorithm has a complexity of O(N?). Searching the cumulative density
with binary search yields a complexity of O(N log(N)). Kitagawa argued that it is not essential
to do random resampling, since the purpose of resampling is solely to obtain an empirical den-
sity that mimics the weighted empirical density function. With this motivation, he proposed two
new semi-deterministic resampling algorithms [29], which would later become known as systematic
resampling (SR) and residual resampling (RR)®.

Resampling can be divided into two stages: a stage that computes the multiplication factor m 7]
of each sample — giving the number of children the sample will have — and the actual resampling
stage in which the multiplication factors are realized. This provides a maximum of flexibility
when it comes to exchanging resampling algorithms. Algorithm 2.3 gives an implementation of
systematic resampling. Algorithm 2.4 is a very efficient implementations of systematic resampling,
proposed by Bolie, Djuric and Hong [5] under the name systematic residual resampling (RSR). 1t
is also the sampling method of our choice, since its computational complexity is O(N) and since
usage of systematic resampling is generally encouraged in [1].

Algorithm 2.3 computeSRMF(N, M, w@), j=1,... N)
calculate the stepwidth s = 1/M

draw initial u € L]0, 5]

initialize the cumulative weight: ¢ =0

for gi= 1255 N
update the cumulative weight: ¢ = ¢+ wld)
k=0
while (u < ¢)
count: k=4k+1

U=1u-+s
end while

store the jth multiplication factor m[j] = k
end for

Algorithm 2.4 computeRSRMF(N, M, w9, j=1,...,N)
calculate the stepwidth s = l/wf\?f

draw initial « € L{[0, s]

initialize the cumulative weight: ¢ =0

f(lt‘j = .l,...,N
k= (w9 —u)- M| +1
uw=1u+k-s—wl
store the jth multiplication factor m[j] = &
end for

SResidual resampling is an optimized implementation of Kitagawa's stratified resamnpling proposed in [3].

26

3 The Bayesian Bootstrap Filter for
Speech Feature Enhancement

This chapter formally derives the particle filter approach by Raj et al. [39], which applies a
Bayesian Bootstrap filter to track the noise spectra corrupting speech and infers the clean speech
spectra in step 2 of the Bootstrap filter (algorithm 2.2) by using the relationship between clean
speech, noise and corrupted speech spectra to construct an appropriate inference function hy. In
the following spectra will always be log Mel power spectra if not stated otherwise, x,. n, and
yr will always denote clean speech, noise and obsgerved corrupted speech spectra, respectively,
in the log Mel spectral power domain. Note that — differing from the previous section — the
state vector is ny (not), since we want to track noise spectra. The decision to use a Bootstrap
filter stems from the fact that the relationship between observations y; and state vectors n, is
nonlinear. So a Kalman filter can’t be used. It is, however, possible to use an eztended Kalman
filter (EKF) that linearizes the nonlinearity by a first order Taylor series approximation. Kim
employed a bank of EKFs in his IMM approach |26], which is strongly connected to this method.
It, however, necessitates reducing the Kalman gain in a way that is not mathematically justified
(see [39, 26]) to get any improvements in recognition performance. That’s why Raj et al. decided
to apply a Bootrap filter to the problem. For the Bootrap filter to be applicable we need to
specify an observed dynamical state space system for the evolution of noise spectra corrupted by
speech spectra, i.e. we have to specify the noise transition probability p(n|n;-;) and the output
probability p(iy|n:) (see section 2.3).

3.1 A Dynamical System Model for the Noise

Singh, Raj and Stern [39] proposed to model the evolution of noise spectra as an Ith order autore-
Eressive process

Thp—1
g2
ng=| | A1 | Az | ... | A |]- . +€ (3.1)
- ~~ & Ty—|
=:A
=ity

where 7, is a d dimensional column vector representing the noise spectrum at time # and A is
a (I -d) x d Matrix learned for a specific noise type. The deterministic part, iy = A - fiyuy =
ZL 1(Ai)-ny—1 can be compared to linear prediction (LP), which is very well known in automatic
speech recognition. It is typically performed in the time (signal) domain to obtain an all-pole
modell of speech. In this approach, however, the technique of linear prediction is used to predict
the current noise spectrum given the last | noise spectra. Hence, the scalar LP-coefficients are
replaced by d x d LP-matrices A;, i = 1,...,[. The indeterministic part, i.e. what can’t be learned
by linear prediction, is represented by the ¢, terms, which are considered to be (stochastically)
independent identically distributed (i.i.d.) zero mean Gaussian with diagonal covariance matrix

>‘Tlr)i.yfl

Learning the AR. Noise Model
The autoregressive noise model consists of two components that have to be learned for each
noise type: the LP matrix A and the covariance matrix ¥,,,... As stated without proof in [39],

minimization of the prediction error norm results in the following estimate of the LP matrix:
A=E[mal] - Elnal_ ™! (3.2)

where E[n,a]] is a d % (d - 1) matrix and E[fi,i{_,] is a (d-) % (d-) matrix. With noise data
Ti....,n. available, these matrices can be learned as

1 T 1 T

" e s s N L

Elnai_q] = = E Mefiay and Elnn, 4| = < > it
=l t=I

The diagonal covariance for the ¢; terms can be learned as

g 0 ... 0

0 ... 0 wy

with v; := E[(ny.i—(Afy—1)i)?]), where n, ; denates the ith component of the vector ;. In practice,
this variance should be increased to enlarge the search space. Figure 3.1 shows the prediction error
— the average of the v; — for different noise types.

13 T T T T - = !
—— Garbage Collection
—&— Hydroelectric Powerplant
= = = Train Station

12 —&— Busy Parking Lot

AR model order

Figure 3.1: AR-Model Training Error

The State Transition Probability
The noise model implicitly defines the noise transition probability p(ng|i;_1) as a Gaussian dis-
tribution with covariance ¥, ;.. around the predicted noise A7, _q:

plrg|ig—1) = A1 +ple) = N(ny; Afie—1, Eoise)

The state transition probability p(fi;|7;—1) is just dependent on the probability of n,, since the
Mi—1y .0y (i1 are already determined. They are given by 7,1, Hence p(fig|7,—1) = p(ng|i—1),
i,

P(ﬂ-r. ‘”.‘.— 1) = N(TL{_; Aht—‘l s E'n.u‘i..sﬂ) (3'3)

28

Sampling form p(fi;|fi;—1) — as required by the Boostrap filter — can be performed by sampling
n; from the noise transition probability p(n|i,—1) and adding the n,_1,... . ne_-1) t0 form 1, =
(nf.....n{__yy)". Using a model order I bigger than one factually circumvents the restrictive
assumption of the noise being a Markov chain, which presumes that the current noise spectrum
is just dependent on the last noise spectrum. This method of merging states to overcome the
limitations of the Markov assumption is well known in the statistical literature and for example

proposed in |34].

Problems with Higher Model Orders

We decided to use only first order models becanse of the problems introduced by higher model or-
ders. Reliably learning an Ith order LP matrix with dx (d-{) coefficients necessitates a huge amount
of training data. Furthermore, errors introduced by using noisy hypotheses of the 7,_1,.... 7
might sum up and actually worsen the particle prediction in the Bootstrap filter. Moreover, Raj
et al. concluded before that higher order models don’t result in better performance of the particle
filter since noise prediction does not significantly improve with higher model orders in the first
place [39].

The Prior Distribution

Initialization of the Bootstrap filter is performed by sampling from the (state) prior distribution.
Raj et al. did not say, how they initialized the samples at time ¢ = 0. We decided to learn p(ng)
— the distribution of noise spectra — as a Gaussian mixture distribution, since we only used first
order models in our experiments. Learning p(fip) for higher model orders is problematic, if few
noise data is available. It is, however, possible to use p(ny) to produce samples from p(ng) by
sampling n__1) from p(ne) and completing the vector by predicting the n_g_1-4, 1= 1,.-, (=1
using an ith order model or by sampling from the noise transition probability of the respective
AR model.

3.2 Relating States and Observations

Observations y, are corrupted speech spectra in our case. It is necessary to find a way to relate
them to the state vector i, so that the likelihood (weight) can be caleulated for a certain noise
hypothesis (sample) 'r'kﬁ“"). The current observation is caused by the current noise spectrum ny,
the current speech spectrum x; and — as we will see later — the current relative phase between
the both. Therefore it is reasonable to assume that preceding noise spectra 1n—1,n,——1) do not
induce new knowledge into the probability density p(y.|7;) as long as the noise is additive. Hence,
we assume that p(y|7:) = ply|n), Le.

plyelfe) = plyelne)

This might not be entirely true, if — what is considered to be "noise" — includes reverberations of
speech like for example in far distance recording. Taking this into consideration, it is sufficient to
investigate the relationship between n, and y;. The principle of superposition holds in the signal
domain, i.e. for frames or windows we have

4§ = 50

where superscript (s) denotes the signal domain for diserimination from @, n, and y;, which are
always in the Mel log spectral power domain. Since the Fourier transformation is linear, this gives

i =2l 0l?

where superseript (f) denotes the Fourier domain. The components of those vectors are complex
numbers, which can be represented by magnitude and phase

&= iy ~gths

29

with mdg_,mtude* o and plmsc =,9L Using this notation, the power spectrum of q(f) can be repre-
sented as HJt [|2 ||J',rt 4 [I7); where

(fl 2 i ¥ y) — Wi {
lyes @)1 = ey, €405 - (ay, ¥%)" = @y, Pt - gy o700 = a2,
) 4 D2 iy 4 i '
“T “t ny “ = c:’-':1.*“.&'":6, A “”-:.Jﬁ‘w A I e e¥rei 4 O, € W:“' !

_ 2 2 | i(pw, ; —Pn, ;) iige, y—@ny ;)
= m;ﬁ.m + C“"ﬂ:‘v. l ﬂwr.ie T W C'E-_-r-,lrf_l'nt.'ﬁ el bt
\

4

=

e PR -2 “f?l‘(‘PJr,',‘. =Pny)

Defining 8, ; := (¢, , — ¥n,;) to be the relative phase between ::U) and TE'C), we obtain

(£))2 ()2 ()2 : 1) (2
g 1P = Nz I? + Il 1% + 2 cos(Be,i)y/ 122 12 - [Ing? 12
The relative phase is typically |35, 26, 39| considered to be zero with the argument that it is
zero in average. That, however, leads to problems with the likelihood (weight) evaluations of the
Bootstrap filter as we will see later. In chapter 6 we will abandon this simplification, but here —
as in the original approach - the relative phase term is omitted, i.e. we have

(f) (f A2 \
w212 = 122112 + [Ini2)2 (3.5)

Denoting (e, ... e¥)T by e¥ this translates to e¥ = e + ™ in the log spectral (power)
domain with

i = log (2 12) . nei =tog (InfP11?) ;v = log (117 11)

Solving the equation (3.5) for the clean speech spectrum z, yields
= log(e¥ 4 &™) (3.6)

where log(ry,...,24) again denotes the componentwise application of the log function.

A General Speech Model
Knowing how typical speech spectra look like, we can learn p(z), the probability density for =
being clean speech, modelled as a Gaussian mizture

K

p(z) = N (@ e, Zg) (3.7)

k=1

with diagonal covariance matrices ¥; as common in speech recognition. Such a mixture can
easily be learned by using the ezpectation mazimization (EM) algorithm [7] or one of its variants
such as Split and Merge EM (SMEM) [47| and Monte Carlo EM (MCEM) [31]. This probability
distribution can be used to caleulate p(y,|ny) by exploiting (3.6), the relation between z, and v,
n, because of the following result. ‘

The Fundamental Transformation Law of Probabilities

It is possible to evaluate an "unknown" probability density p(y), if some other probability density
p(z) can be found such that z is functionally dependent on y: x = f(y). Then, provided the
derivative of f(y) with respect to y is well defined, p(y) can be caleulated as

4w)

puly) = pa(f¥)) - dy

(3.8)

30

where || is the absolute value if x and y are scalars, the absolute value of the Jacobian determinant
if and y are vectors of the same dimension. This is called the fundamental transformation law of
probabilities and it holds since the probability density p(y) is just the derivative of its cumulative
distribution function

' f) df (1
; J)
P) = [mdy= [" puren TPy,
S —inf J =1~ inf) Y
The substitution rule of integration was applied to obtain the rightmost term from the previous
one. We have to take the absolute value of the derivative, since probability densities are supposed
to be = 0.

Applying the Fundamental Transformation Law
In our case we have =, = f,, (1) = log(e? + e™) (see equation (3.6)) or split into the d
components — fr, i(yq) = log(e¥+ + &™), i =1,...,d which can be written

Frei(yei) = log (€% - (14 e™4704)) = gy, + log(1 + et ~¥es)

The f,, j(y:) are 0 for i # j. So, the corresponding Jacobian matrix is

Al 1 () dfn, .1 (u1) Jio 0.0
—ff:;:‘n.l Tt Tdyy 0 7 -
dimf o8 % 3 =2
Af oy alye) df o, alye) . 0
iy 1 T dye. o 0o ... 0 J,
with J; := 1/(1 — e™i—¥14) since

fjirw(_yf) = 1+ —1,__ cattaT U — —1_
d'yi.,j 1 + eftti—Yei 1 4 enea=de,i

for i = 7 and 0 for i # j. This gives us the Jacobian determinant needed for the application of
the fundamental transformation law of probabilities: det(J) = ["]"" 1/(1 — e™i~¥%4) and p(y,|ny)

i=]
can be evaluated as o (40)
Paldn, (Ut
Blylny) = ——=ne=t

Hf:j |1 — {e“r.a—yf,,l

(3.9)

There is one remaining problem, however.

Logarithm of a Negative Number
If a noise hypothesis (log spectrum) n; exceeds the observed (log) spectrum y, in just one spectral
bin, say the ith, then

Mg = Yo, = €708 2 gt = M i >]

So log(1 — e™~#) and therefore the weight w,(n,) = p(ye|ne) can’t be evaluated. This is not a
math problem but a modelling problem: we considered noise and speech power spectra (not in
the log domain) to be strictly additive (see equation 3.5) by omitting the phase term. Hence it
is impossible! that [[nf’)||? > |l || — at least in the model world. That can be translated
to probability by setting p(y|n,) := 0. Haeb-Umbach and Schmalenstroeer [22] explicitly set the
weight to zero for this case. Raj and Singh didn’t address the problem in their papers [38, 39].

3.3 Applying the Bootstrap Filter

Now that the noise transition probability p(7e|f—1) and the output probability ply|ng) are known,
the Bootstrap filter 2.2 can be applied to the problem. This is straightforward. The resulting

"The speech power spectrim H:r}”HB is always positive. Superscript () again denotes Lthe Fourier domain.

31

filter is outlined in Algorithm 3.1. Clean speech can be estimated in the inference step (step 4)
by selecting an appropriate function h;.

Algorithm 3.1 Bootstrap Filter for Noise Tracking

1. Generate noise hypotheses

At time zero (¢t = 0) noise hypotheses or particles TJU) (7 = 1,....N) are drawn from the
prior noise ds'nsny p(no) If t is bigger than zero, uf’) is sampled from the noise transition

probability p(n¢|n Jfor j=1,.,N.

2. Calculate the normalized weights

(7) s

The likelihood of each noise hypothesis 71,”’ is evaluated according to equation (3.9)

) K .) ! ﬂ.(”— Y.
plyialt) = § Ut lopU = €2 TR i)

k=1 Il 1‘1—ef’n‘“"
if n.g';j,;) <y fori=1,...,d Otherwise p(mjﬁfj)) is set to zero. The normalized weights are
calculated as
- (1) _ U-'{”{J)
e = N (m)
Zm—l plue |ﬂ

3. Resample among the noise hypotheses

The normalized weights are used to resample among the noise hypotheses n(") (7 = 1.4 IN)
by importance resampling.

4. Infer clean speech

Clean speech is inferred as L =1 h!(u,)) (nf'))

These steps are repeated with ¢ — (¢ + 1) until all time-frames are processed. It is still necessary
to construct an appropriate inference function h; for inferring clean speech.

3.4 Inferring Clean Speech

The basic idea is to infer clean speech spectra z; as the mean of z; given the observations yy.:

Elz|y1.4) = /:1:,_ - play |y)dx (3.10)

Analogous to section 2.2, this can be shown to be the MMSE estimation for clean speech. The
noise 1; can be introduced as a hidden variable since p(x;|y1.) can be calculated as marginal
density of plae. nlur):

plaelyig) = [p{:rr.,'w\ym.)dn:.
Further, using

p(rf, ne Y1) Pl Yise)
p(ne, y14) p(11:t)

p(e, nefyre) = p(@e|yazene) - p(nefynu)
and changing the order of integration we obtain

Elzi|mie] = /:‘n‘.‘ . /p{:::,,|y1:,_,n,_) - plra|yaae)dn d

= /[:ﬂ-;ﬂ(mly];e,m)dw p(ne|yre)dn (3.11)

=:hy ()

Since this is equivalent to caleulating Etny v e (me)|1n4], we can use the weighted empirical
density p(mn|y1.;) provided by the Bootstrap Filter to approximate (3.10) by Monte Carlo integra-
tion:

N
Eleyia] =~ Y h(n?)a(nd) (3.12)
j=1

Furthermore, z; can be represented as
Ty =y + log(l — ™™ ¥) (3.13)

where 1 = (1,...,1) denotes a d-dimensional vector of ones. We still need to determine /i (ns-ﬂ) =
J e plalyre g Y.
Approach 1

The straight forward approach would be to use the established deterministic relationship from
above: @y =y, + log(l — ™ ™). Then p(xi|yy, ne) = 6m+,,w{l_,,_w—m)(Tf-) which yields

(1 | ol il
hi'(ng) = /;t,'r_ : 5yf+!uy(l—:!”f‘”ﬂ)(J'f-)d"l‘f

= Y +log(l—e™™) (3.14)

This can be regarded as spectral subtraction in the logarithmic domain (for one noise hypothesis).

Approach 2

The approach proposed by Raj et al. [39] is to use Moreno’s vector Taylor series (VTS) method
[35] which approximates log(1 + e™~*t) by its Oth? order Taylor series expansion around the kth
Gaussian’s mean ji.. For the case of the Bootstrap filter, where the noise variance is implicitly
contained in the different noise hypotheses, this can be derived directly. There is no need of an
approximation as we will show in the following. The number of Gaussian in the Gaussian mixture
p(z) (see 3.7) can be introduced as a hidden variable k, since p(x,|y,) can be represented as the
marginal density p(z|y) = EE=11'J(.'rt,kf|1j,). So, using the equality p(a., kly) = plaolkow) -
p(k|e, e), the integral hy(ng) in (3.11) can be written

Yy 1) dixy

K
hilng) = /.‘;':1 : Z plak, yrom) - plk

k=1

K
Zp(ﬂyh) /tg splaxe|k,ye,) day

k=1

The question is still how to calculate the p(k|y, n;). First of all

].'J(k, ytJ”n'.) _ g’(ytl'ﬂ-t, ntu) . jr){fq:|ut)
plue|ne) p(ye|mg)

plkly,) =

Since k — the number of the Gaussian in the mixture that "produced" the clean speech spectrum
— can be considered to be stochastically independent of the noise spectrum n,, we have plklng) =
p(k) = ¢ (compare to 3.7) and therefore

e plu|ne. k)

Ry,) =
P(klye ™) pluelne)

*Higher order approximations were also examined in |35]

33

Note that p(yl

L,é_] ¢ - p(ye|ng, k). Now, the noise can be considered to shifts the means
g of clean qpr-e-rh to g,

The effect of n; to the kth Gaussian in the log domain is

E‘.'”"" = ghk 4 ™
(compare to equation (3.6)). Solving for). yields

Wi = pr + log(1 4 ™~ Fx) (3.15)
e —
=:Am‘.nf

Instead of shifting the mean, we could conversely shift the corrupted spectrum v, in the opposite
direction to obtain the clean spectrum
Ly =1 — Aﬁk,nt

such that N(y; p)., B) = N (x4 ik, k). Now, using p(ay|k, ye, ne) = Oy () yields

—Bp iy

) K
h‘ﬁn(n;} = Zp(k[y,_,n,_) /.-7: By, (21) diy
k=1

K
Zp(,klyh 'nf,) (‘.Ut - AI-"A‘-""')
k=1

K
Zp(.kflyh “T.}A,u.k,'n.i (3,16)

The algorithms 3.2 and 3.3 summarize how clean speech inference can be performed in step 4 of
the noise tracking bootstrap filter (Algorithm 3.1) using the two presented approaches.

Algorithm 3.2 Inferring Clean Speech - Approach 1

1. for j =1 to N do caleulate :z‘:f_'ﬂ = +log(l — e”ﬁ'”‘-‘”)

a -N
2. :I.‘L——Z_’j L @ie(m U)) (4)

Algorithm 3.3 Inferring Clean Speech - Approach 2
1. for j =1to N do

i
N (ue+log(l t‘"f“_ ¥ Yitie Ek)

d ; l_e"'gf,’ Wi

e for k=1 to K do calculate p(ut|n(‘),k) =

e caleulate p(y|ni”) = U, plula, k)
e fork=1to K do
(s |7y k)

caleulate p(k|y,. n)y — pluslny k)
»(| LTy } Py)

ald) —q
caleulate .f_\“k‘“:ﬂ =y + log(l — e™ ~¥)
end for
e calculate 1 U) = = Ziilp(kmhnf”)[_\ oy

HigsTty

end for

2_ infer estimated clean speech as 1, = }:f’_! an(n (")) (2)

4This i the model adaptation approach

34

When looking at estimated clean speech, the spectra obtain with h(") are typically more jagged,
while those obtained with) are smoother. Figure 3.2(a) shows a typical example of an estimated
clean speech spectrum obtained with A", Figure 3.2(b) shows the corresponding estimated clean
speech spectrum obtained with A2

— Gl Spanch ‘ — Ciean Speech
= #=Estimated Clean Speach| =#= Extimated Clean Speech
o - =~ Conptad Spanch - =~ Comuptea Epecen
P Gprypied Joenen | a :
] a0
] 8
E L
I
i a
E £
10 1a
o . o
¥
N i A ‘ 4 A A
5 0 " = El o 5 0 15 E S a
fraquancy bins frequency Ding
(a) obtained with A1 (b) obtained with A2

Figure 3.2: Estimated Clean Speech

Infer the noise first

Haeb-Umbach and Sehmalenstroeer [22| proposed another approach for estimating the clean speech
spectrum. It consists in inferring the noise spectrum ny in step 4 of algorithm 3.1 instead of the
clean speech spectrum ;. The inferred noise spectrum is simply the mean of n, given yo.:

N

My 1= /71,_-17(111\1;0,;_)6[?1{, = an_") -y (n)

=1

Haeb-Umbach and Schmalenstroeer only considered h,Em following Raj et al.’s approach. Usage

of h{") has — to our knowledge — never been considered in the context, neither for the inference
using equation (3.11) nor for this case.

4 Refinements

4.1 Getting the Filter to Work

In practice there are some issues that prevent the designed filter from working well. The major
issue is the problem explained in section 3.2 — that noise hypotheses are not allowed to exceed
the observed, contaminated spectrum. We assigned a zero weight in this case. Unfortunately,
this procedure comes with a side-effect: overestimations of the actual noise as well as cancellation
due to relative phase differences between noise and speech can cause severe decimation (attrition)
among the particles up to a complete annihilation of the "population", if all weights are zero. We
call the latter case a dropout. If a dropout occurs, the weights can’t be normalized by dividing
through their sum (the sum is zero). A reasonable workaround is to set the normalized weights
to 1/N, since all weights being zero means all noise hypotheses are equally bad. Furthermore,
the estimated clean speech spectrum #, should be replaced by its corrupted counterpart y, in this
case.

Reinitialization

Setting all weights to 1/N, however, introduces a new problem: the equal weighting causes the
particles to evolve only according to the noise transition probability, completely independent of the
observed corrupted spectra. Sometimes the noise trajectory is recovered, i.e. one of the weights
gets a non-zero weight after some time. As the trajectory might also be lost forever, the particle
filter should be reinitialized if the sum of weights

Zw Zp y,[nm

i=1

is zero or unusually small! for a continuous period of time (in our case 100 ms)?. Reinitialization
of the particle filter means repetition of step 1 of algorithm 3.1, i.e. initializing the particles
with samples from the prior distribution p(7t) of noise spectra. If the current noise spectrum is
"unusual" and therefore unlikely to be drawn from p(72), it is sometimes necessary to perform
several reinitializations in succession before the noise trajectory is recovered.

A More Sophisticated Initialization

Another point of criticism is that there is more knowledge available than the static prior distri-
bution of noise. We actually have the corrupted spectrum y,. Further, voice activity detection
(VAD) or a previous ASR run could be used to identify the last silence or noise frame before the
start of the current utterance. Denoting the corresponding log power spectrum by 7,1, we could
initialize the samples at the start of each ntterance with p(n,|f,—1). Unfortunately, this "perfect"”
initialization is problematic in praxis since VAD and ASR don’t work reliable. So, 7 is not really
guaranteed to be a noise frame. Moreover, this procedure can’t be used for reinitialization when
the current frame is a speech frame. Another approach consists in generating clean speech samples
) from p(x). Then, using the current observation i, the corresponding noise sample can be
inferred as

"=+ log(1 — e)

provided x) < Yt,w; for all 2. If this condition is not satisfied, another speech sample z) is drawn
and the whole procedure is repeated until £'7) is finally accepted or a certain number of iterations

"this is another indicator for divergence from the actual noise trajectory
*We have already described this method in [13] which will appear in Proc eedings of Interspeech 2006,

37

has passed. In the second case n(j) is sampled from p(7,) just to have a jth noise sample, though
it might get a zero weight. The advantage of this approach is that the obtained noise samples
have a very high acceptance rate, i.e. they get a weight # 0. The trajectory is often immediately
found again. Successive reinitializations occur only seldom. Moreover there is typically far more
data available for learning the distribution of clean speech than there is for the noise.

Underestimation

Occasionally noise hypotheses drop to unusually low levels (below —30 db) — especially when the
current noise is atypical, i.e. mismatched to the noise model. The problem is that the hypotheses
might stabilize there or just continue to drop without ever getting too low of a likelihood to be
reinitialized. To prevent this it might be a good idea not to allow them to "go" there in the first
place. That’s why we set a noise hypothesis’s likelihood to zero, if its average (over the dimensions)

1

o E ()

o T
-

drops below a certain lower bound like —30 db. Alternatively its median, maximum or minimum
could be used.

A Fast Acceptance Test

The best solution to handling sample attrition and dropouts would of course be not to let them
happen. In fact, the dropouts can be reduced by increasing the number of Samples (N). which
however greatly increases the computational time. We propose to use a fast acceptance test that
virtually increases the number of samples when necessary. It works as follows: when generating
noise hypotheses for time ¢ (Algorithm 3.1 - step 1) by sampling from the state transition proba-
bility, the drawn sample nﬁ‘” is rejected if not (ngf? < i Vi). In case of rejection we randomly

select s € {1,..., N} and sample n{” from p(ndﬁf_i)l) until it is accepted or a certain number B

of iterations has passed.

Algorithm 4.1 Efficiently Sampling from the Transition Probability
for j =1to N do

[=0

g=:

accept = false

while (I < B) and (accept == false)
sample n{" f Al
sample n, from p(ng|n,”)
if (ny,) <y Vi)
accept = true
else
randomly select s € {1,...,N}
I=1+1
end while
) = pi)
end for

The advantage of this approach iz that the number of samples stays constant. The worst case
computational time is limited by B.

4.2 Efficient Noise Compensation
Inferring clean speech using hs (see section 3.4) is computationally very inefficient, since the
logarithm and the exponential function have to be evaluated K — this is the number of Gaussians

in the mixture of the clean speech distribution — times more often than when using hy. This
matters since execution of those functions by the MPU typically takes several hundred clock eycles

33

while simpler operations like multiplications and additions take one. So, cutting down the number
of times one of those "expensive" functions is computed, can greatly enhance the speed of the total
algorithm, which is dominated by noise inference in case of hs. This can be achieved by reducing
the sum in equation 3.12

N) ;
> (i)an(nf?)

4=1
to the relevant summands, i.e. the ones with a &;:?t(ng_‘”) that is bigger than a certain weight
threshold /
- () l/a -1
max @y (n o e —
(o (g)) b-(N—1)
where a € [0,1] is the accuracy and where b is an assumed upper bound for the dimension-wise

distance between all ht(nE”), j=1,...,N. A value of b = 100 db worked good. If a is 1 the
accuracy is 100%, meaning every term of the sum has to be computed. A value of a = 0.9 means
that the resulting estimated clean speech spectrum might be imprecise by up to 10% in a worst-
case scenario, that will never occur in practice. We kept this value since it resulted in negligible
errors accompanied by a considerable gain in speed - up to 10 times faster. Further reduction did
not seem to greatly increase the execution time, which probably means that it is now dominated
by the computational time of the particle filter.

4.3 AR-Model Adaptation

In the log spectral domain an AR model learned for a noise type is dependent on the intensity of
the noise, since a mismatch in intensity is an additive term a = (a,...,a). So

A-(fu_14+a) = A-fmi +A-a #£ AT

This can be compensated by first subtracting an estimate a of the noise intensity difference from
i, before multiplying with A and then adding it again, afterwards:

Ty = A (ﬂq‘_] t'i) +

Using this equation for noise prediction instead of (3.1) enabled us to perform experiments with
different SNRs without retraining the noise models. In those cases, however, the noise was syn-
thetically added. In reality there will presumably be problems with this approach, since a noise
that is less loud is typically farer away. which means there is more distortion due to reverberation
or room acoustics. So the noise itsell is probably different and has to be relearned.

4.4 Using Linearly Transformed Spectra

As mentioned earlier, speech feature enhancement should be performed as close as possible to
the end of the feature extraction stage. This, however, is complicated by the fact that tracing
the relationship between speech, noise, corrupted speech troughout the feature extraction stage,
becomes increasingly complex. In section 3.2 we tacitly® assumed that applying a Mel filterbank
doesn’t change the established relationship in the log (spectral) power domain. To examine what
really happens, we will now investigate the more general case of a linear transformation, which is
applicable to Mel filterbanks as well as to discrete cosine transform (DCT) and linear discriminant
analysis (LDA). As we will learn, there is a fundamental difference between transformations that
were applied before and after going into the log domain.

Linear Transformation before Going into the Log Domain

FAs it will turn out now, this is not quite true — at least not in general,

34

Let B be the linear transformation that is performed before going into the log power domain and
let -_t,ufH) = log(B - ||y'/7||?) where yﬁf) again denotes the corrupted frame in the Fourier domain.
Using [lo¢7)12 = ll=i7112 + (7412, we have

WP = tog (B Iwf1M)
tog (B~ (1> + Inf 1)
log (B~ 1+] 12 + B - Inf)

e Gl losBIn 1))

g+

Solving for ﬂ’!.&_H) yields ':ﬁm = log (eygm = e“:m).

Comparison with equation (3.6) shows that the noise compensation filter does not need to be
modified. The clean speech distribution p(z) as well as the noise model, consisting of the noise
transition probability p(rg|me—1), the prior distribution p(n) and Epeise have to be relearned,
however.

Linear Transformation after Going into Log Domain

Denoting the linear (ransformation that is performed after going into the log domain by C and

writing C - log(||ly/||?) as gl we get

f9 = C-log (H'y{llz)
= ¢ tog (a1 + Inf 1)
= @ilee (Elngill\r{ 1%) 4 elosind n”))
log (
S!

(O Closlliaf IP) 4 € Clou(lind u?))
~=1_.(C} —1, ()
og (6" n el ™)

Solving for ‘r&m yields
o) i—1,,(€) o iple)
fo sl =2 = Gy log(eFT U — €5
where C;, denotes the ith row vector of C. We have to calculate the corresponding Jacobian
matrix to apply the fundamental transformation law of probabilities (see section (3.8). Defining
-1 =: D = (di ;)i its elements Jij = dfn, i(ye)/dye,j 2re
: c i ()
E;:':l cix log (EXD(ELl d-k..zy:”_.f)) — exp(2_j=1 Dk))
Jig (@)]
dyy
i)
i dk.j-ex13(25=1fiA-..:y§.z)
= Cipk o d B il
P (e et — X Tt et

k=1

d

dk,j
S e

1 [
o 1 —exp(3o1=i d}.‘..i(ﬂ’.(!.,l) — Uy

Thus, p(yim) can be calculated as

plyt”)) = P W€y - abs(|I])

40

Unfortunately, this procedure only works if the linear transformation has rank d, i.e. if the
transformation is really mapping the d-dimensional space onto itself and not just on a subspace,
In speech recognition actually all transformations (be it MEL-FB, DCT or LDA) are used to
reduce the dimension of the input space. So they don’t have rank d and this is very problematic!

Mel Filterbanks

Mel filterbanks are typically applied during the feature extraction stage to reduce the spectral
dimension while mimicking the logarithmic frequency perception of the human auditory system.
It is a set of filters of ascending frequency and increasing bandwith, whose power is individually
integrated over the frequency domain. In practice this is typically implemented by multiplying
the d dimensional power spectra with a d’ x d (d’ < d) MEL-FB matrix, whose rows represent the
different filters:

LA_ E) r) =) \eu____l

l— B e S —m— *

[; (- R L s 1

g |

i = — ¥ “ ﬁ_}
(a) some single rows (b) all rows in one figure

Figure 4.1: MEL-FB matrix

This is a linear transformation with rank < d. Therefore it should be applied before going into
the log domain, like it is specified for Sphinx III* — the speech recognizer used by Raj et al. [39].
' ‘, .\.‘ rr‘ \

— W= FFT power W : ll-{ Mel Filterbank W=/ log .

\--.

256 129 30 30

Applying it after going into the log power domain causes unresolvable mathematical problems
with the likelihood computations.

DCT & LDA

Discrete cosine transformation (DCT) and linear discriminant analysis (LDA) are always applied
after going into the log domain. Furthermore, the dimension of the respective output vector is
typically reduced by omitting the higher coefficients. However, the DCT can still be split into a
rank d linear transformation into the Mel Cepstral domain and a following dimensional reduction
step. Hence, the Bootstrap filter could be applied in the unreduced Cepstral domain and speech
feature enhancement would be closer to the end of the feature extraction stage. Moreover, the
assumption of stochastic independence of the frequency bins is closer to "satisfied" in the Cepstral
domain because of the DCT’s decorrelating property. For the LDA this gets more complicated.

*5phink is maintained and developed by both the computer science and electrical and computer engineering
departments at the Carnegie Mellon University in Pittsburgh.

41

4.5 Warped MVDR Spectra

Focusing on robust features, the disadvantage of using log Mel power spectra is the equal weight-
ing of spectral peaks and valleys as it is well known that noise is mainly present in low energy
regions. To overcome this drawback we estimate the spectrum by the warped and scaled mini-
mum variance distortionless response (MVDR) |50} spectral envelope as it provides an accurate
deseription only for spectral peaks. For the representation of valleys no information about the
fine spectral structure is preserved, limiting the description more or less to the energy levels.
Therefore, spectralenvelopes are more robust to noise than their power spectrum counterparts.
The MVDR is used instead of the widely known linear prediction (LP) as it has been shown that
MVDR spectral estimation OvVercomes the problems in modeling voiced speech associated with LP
spectral estimation technigques [36]. To provide a better approximation of the relevant aspects
of the human auditory system, We have applied the well-known technique of pre-warping — a
time-domain technique to estimate an all-pole model based on a warped frequency axis such as
the Mel scale — to the MVDR spectral estimate. A linear filterbank consisting of equispaced
isosceles triangular filters is used to reduce the spectral dimension to 30 like in the case of the Mel

filterbank.

» Warped MVDR [~ ®= Linear Filterbank j > g ™
l\“ & rd 4

256 129 30 30
Figure 4.2: MVDR Perceptual Spectral Estimation

It is mathematically unclear. how estimating the log Mel power spectra with the warped MVDR
affects the relationship between speech, noise and corrupted speech. We assumed the relationship
io be the same as the one derived in section 3.2, though this is probably not entirely true.

5 A Phoneme Specific Filter

In section 3.2 the likelihood evaluation of noise hypotheses nEJ for the Bootstrap Filter was derived
by using the fundamental transformation law of probability and a Gaussian mixture model for clean
speech (equation (3.7)). This general speech model, proposed by Raj et al. [38, 39] and earlier by
Moreno [35], is very general and in particular static: it just tells us the probability of a spectrum
x being a clean speech spectrum — completely independent of time. Speech however isn’t static.
It consists of different phonemes or subphonemes whose spectra are approximately stationary.
Therefore we propose to model speech as a time-dependent phoneme-specific Ganssian mixture
distribution

K

T)phm-n{t){-f) = Z r:k,:t'n'tﬂ‘n(_”N(“r;“k,]h’h’)ﬂ.(f.)! Ek—,,phmt(n)

k=1
where phon(t) denotes the phoneme spoken at time . This means that each phoneme is modelled
as a Gaussian mixture distribution and the clean speech madel at time # is the Gaussian mixture
distribution of phoneme phon(t). Figure 5.2 visualizes the differences of the models. While the
probability distribution of the general model (figure 5.2(a)) is comparably broad, the phoneme-
specific models (figures 5.2(b) - 5.2(d)) are more confined and obviously show more details. The
problem is that the phoneme sequence is not known in advance, which would render the proposed
approach purely hypothetical, if it wouldn’t be possible to obtain a phoneme sequence hypothesis
by using the following "two-pass’ approach:

P T, 7 B
di ‘ S |
audio o | General Feature »L Decoding | B transcription 1
Slgﬂﬂl \.H- Exmhm _J," featul'es 3)
‘ V /
(Specifi e g
| Specific Feature | .,_| Decoding B transcription 2

|
/

| Extraction f features
Figure 5.1: Two Pass Approach

In the first pass feature extraction includes speech feature enhancement with the Bootstrap filter
using the general speech model (general feature extraction). The resulting features are fed into
the decoder to obtain a first phoneme sequence hypothesis (transcription). In the second (and
following) pass(es), the hypothesis of the previous pass enables us to use the Bootstrap Filter with
the phoneme-specific speech model (specific feature extraction). This way the more sophisticated
acoustic, word and language models of the speech recognizer are incorporated into speech feature
enhancement.

Unfortunately, this procedure introduces a new problem: by correcting all corrupted speech spectra
towards the hypothesis from the previous pass we might tie ourselves too strongly to that hypoth-
esis. That hypothesis can, however, be wrong. Furthermore, the switching between phonemes can
cause a very sudden change of the noise hypotheses’ likelihoods which might destabilize the Boot-
strap Filter. Therefore we decided to interpolate the phoneme-specific with the general speech
model to form the mizture model

?’-ttai;‘(t)(QI:) = Pph.rm(f.)(m) + (1 —a)- P{"I")

with mixture weight . We used an equal weighting of the two models. Better results might be
achieved by learning these weights for the data, or by dynamical adaptation based on the the

speech recognizer’s confidence.

447
30 Intensity
a5~ 5 10

Intensity 20

15

Frequency Bin

15

35 5 10
Frequency Bin

(a) All of Speech (b) Phoneme "E"

30 Intensity
-85~ 5 10

20

Intensity

15

Frequency Bin

-35 5

Frequency Bin

(¢} Phoneme "M" (d) Phoneme "S"
Figure 5.2: Probability Distributions of Speech Spectra

It is worth mentioning that this phoneme-specific approach is not restricted to the Bootstrap
Filter. It can be regarded as a general extension to all methods that use this kind of general
speech model — starting with the vector Taylor series approach [35] — and it is easy to implement,
since replacement of the general speech model with a phoneme-specific or mixture model does not
necessitate fundamental changes to the algorithms. Note, that the three models p(x), pojnon(x),
Prmiciey () are all Gaussian mixture distributions. So, the only thing that has to be done is fo
dynamically switch the speech model according to the current phoneme hypothesis phon(t).

6 Incorporating the Relative Phase

In section 3.2 the relative phase was considered to be zero, which led to a simplified relation
(equation (3.5)) between speech, noise and corrupted speech. As stated in section 4.1, the effect
of this simplification is that noise hypotheses are not allowed to exceed the observed, contami-
nated spectrum. The result is that overestimations of the actual noise as well as cancellation due
to relative phase differences between noise and speech can cause severe sample attrition, which
prevents the Bootstrap filter from working well'. Section 4.1 was primarily concerned with lessen-
ing the repercussions. Here, however, we will approach the problem by not making the previous
assumption that the phase term 2cos(8,)||z|||n)] is zero.

6.1 A New Relation between States and Observations

Generally solving equation (3.4) for ||z']|? yields

52 = 20 + [0 + 2e08(6,) 0]
& oD + 2008(8)]|= D[] = 502 - D]

& (1D +cos(@)InD])” = cos(@) D2 = [y)2 — a2

2
& (IeD) + cos@In]) " = 9D = [+ cos(8)? InD||?

& |m<”||+m<9f.n|nm||=\/|r;uff>||'2+(rmwf.)? 1) [lnth2

&) = \/ Iy D12 + (cos(@)® — 1) [[nD]|2 — cos(@y)[n)|

2
&)2 = (\/ g 012 + (cos(@)® ~ 1) [nth)]2 - m(ef.nm”’i)

Substituting [|lz!"|2, Hni””z and ||Jm||" by

} 2
Hmif HZ — & f)“ ent, Hm(f)“"’ =

||“t

to move into the log spectral domain gives

et = (\/Ey' + (cos(8;)* — 1)em — c-o.s(e,_)\/,_v'r_'r)

2

= eMt= (\/E;‘T ; \/ﬁ'w Mt cos()” — 1 — cos(6,) Ve)

(\/{r_n (\/; " +C*-OS(9¢) —1—cos(8,)))

o et =g, (-\/e?ﬂ—”t + cos(B,)* — 1 — c-c:s(@,_))

2
= oz =+ log ((\/ew e 4 eos(y)? — 1 — rrfJ.«;(H,,)))

'This has before been identified as the source of the problem by Haeb-Umbach and Schmalenstrocer [22].

& et

& rp=m+ 2 log (\/eyr-“f e c:u.s(t'ﬁ’,_)ig —1- cos(Hz)) (6.1)

Analogous to section 3.2

Frpo,(pe) == ne +2 - log (\/E"”'_"’ + cos(f;)* — 1 ms(ﬁr.})

is defined in order to apply the fundamental transformation law of probabilities (equation (3.8)),
only this time dependent on #;. The elements of the required Jacobian matrix (fy,, .0, . (v2)/dye)i
are

ne o0, 02) B d (mﬂ- 2 log (\/t:!"““"“ + cas(Bm)z -1- COS(BL;)))
dys ; dy

a 1/2
("'y""""‘-‘ + cos(.4)” — 1) Bt
= 9.

\/lz_'l_ln'r.l =0 L E"C’S(f);.{)z = = CU-'J'(G'{_-,‘;)

Eyt,:‘ =T,

(\/ctﬂ'-l"‘w -+ 005(9“-)2 —-1- c.-os((ft',)) \/c-:y'-i—”'-i RS (".n.‘.-(f':)‘,.,-)"‘E — 1

= 2.

it i = j and 0 otherwise. Hence, the Jacobian determinant is the product of the diagonal elements
and p(y,|ng, #,) can be determined as

d

P('Htl”te EL) = P (f'”-r-eﬁ (yf)) f H

i=1

d’vfnl‘.hﬂf.l (1)
di i

(6.2)

if (e?“"'_"”‘*+w3{0¢,i)2—1) = 0 and (\/e'ﬁ"r"_““-" + co.‘f(ﬂf_,i)z — 1—cos(f,;) = 0). If these condition
are not met [, g, (1) can’t be computed. The reason is an impossible constellation of y,, n;, and
#; (compare to section 3.2) and thus p(y|n.. #:) is set to zero for this case. Now, assuming
that the noise spectrum n, and the relative phase 8, between speech and noise are stochastically
independent, i.e. p(f|n:) = p(#;), we have

plue Oelne) = plyelne 6r) - p(Belne) = plyelng, 0e) - p(6:)

and p(y|n,) can be caleulated as the marginal density of p(y, @|n,):

m w
plyelne) = f plye, Oc|ne) dby = / plyelne, 0,) - p(0;) do, (6.3)
-1 S
Figure 6.1 depicts the difference between this approach and the original calculation (equation 3.9)
of plyi|ng). The two figures show the likelihood p(y,;|ne:, k) for one spectral bin and for one
Gaussian under the assumption that the phase is uniformly distributed. The Gaussian has a
mean of 40 and a variance of 10. The corrupted speech spectrum is 50. It can clearly be seen
that the original likelihood (figure 6.1(a)) is cut off if the noise hypothesis exceeds the corrupted
speech spectrum, while the newly proposed method (figure 6.1(b)) still has some probability after
that point and is generally broader. This might look good, but there is a problem with the new
approach: the integral (6.3) does not seem to be analytical — at least we did not find an analytical
solution nor a good Taylor series approximation — even with the simplifying assumption that 8, is
uniformly distributed on [, 7). Therefore we decided to approximate the likelihood numerically,

which can be achieved by the Monte Carlo method with samples H:’jm), m=1,..., M drawn from

p(fh):
1 M

plwlne) = 57 3 plunlne,0™) (6.4)

m=1

16

12 1.2
1 1
3 i
Zos foa
& &
= T o
= E
£ %
04

o2
o S T -

55 &0 40 a5 55 e

A0 a5

50 50
e intenadty in db iz Intansity in db

(a) original likelihood (b} likelihood with incorporation of the phase
Figure 6.1: Comparison of the two approaches

() ()
¢ L

(m)
]

— meaning p(y,lng‘”}, f
must be evaluated (N - M) times. Furthermore, the approximation requires a lot of samples ¢
if a decent amount of precision is desired. So M should be large (close to = N), which renders
this approach computationally inefficient. Section 6.3 will point out how this can be handled more
efficiently, Before, however, we will investigate how the relative phase is distributed in the Mel
spectral power domain.

This approximation has to be performed for each noise hypothesis n

6.2 A Distribution for the Phase

In the Fourier domain the relative phase can be considered to be uniformly distributed in all
spectral bins. Further, it can be assumed that it is stochastically independent? for different
spectral bins. Thus, we consider the #; ,, i = 1,..., M, terms to be i.i.d. uniformly distributed.
Dimensional reduction by application of a Mel (FFT) or linear filterbank (MVDR) results in
a weighted sum of those random variables [9]. The distribution of such a sum was examined by
Kamgar-Parsi [25]°. Deng, Droppo and Acero [9] argue that such a weighted sum is approximately
Gaussian distributed because of the Central Limit Theorem, which states that a sum of i.i.d random
variables is Gaussian if the number of random variables approaches infinity. This, however, is not
perfectly true for the lower frequency bins of Mel spectra, which are barely the sum of one spectral
bin., We determined the relative phase distribution by simulation to verily those theoretical results.
This is possible since the relative phase can be reconstructed by solving (3.4) for 4,

[O = 12 P12 + 002 + 2cos(6)l|aP 0]
& 2c08(8,)}) [[nD] = gD - D)2 - n)]2
DI = D)2 ~ [n D)2
= cos(l) = — :
2|0 [lnt0]
lyPY2 — [l2t0])2 — D)2
2]t

&+ I} = arccos (

where y'* is obtained by synthetically adding known speech :r:ﬁ") and noise ﬂ.i“ signals. Note that

arccos doesn’t tell us the sign of §,. Hence, the resulting distribution of #; on the interval [0, 7]
is valid only if the distribution of @ is symmetric — which is not known — or if @, used as an

2In practice neighboring bins influence each other since multiplication with a window function in the time domain
causes simoothing (convolution) in the Fourier domain.
Funfortunately T couldn’t obtain a copy of that paper

argument of a symmetric function, like cos(#;). Since we are only concerned with the latter case,
we don't have to care. Figure 6.2 shows the empirical phase distribution for Mel spectra resulting
from a simulation with 45 minutes of speech. Frequency bin #1 is clearly distributed uniformly,

pve & ——

Frequency Bins

Empirical Phase

Figure 6.2: The Empirical Relative Phase Distribution

while higher frequency bins seem to follow a Gaussian distribution (on the interval [0, 7]). This
becomes clearer by looking at the figures 6.3(a) - 6.3(c) portraying the empirical phase distribu-
tion for different frequency bins (solid lines) and their corresponding Gaussian approximations
(dashed lines). While a Gaussian assumption with mean 7/2 is not exactly true for the lowest

a i:l\‘i“ ,;.'}2 4 il pi [pia pi:fE 3 i pi] pi/a m‘f:.’ VT,] pi

a) frequency bin #1 b) frequency bin #15 ¢) frequency bin #30
\ 1

Figure 6.3: Comparison of the two approaches

and highest frequency bins it seems to be quite a reasonable fit nevertheless — provided that
the Gaussian distribution is limited to [0,7]. The stochastic dependency of the relative phase
for the different frequency bins can be determined experimentally by again using the simulation
approach. The result is presented in figure 6.4, showing that the relative phase of Mel power
spectra is approximately stochastically independent for different frequency bins.

(a) side view (b) top down view

Figure 6.4: Correlation of the Phase among the Frequency Bins

6.3 An Efficient Approximation

Using the established assumption of stochastic independence among the 8., 1 = 1,..., d, it is
possible to caleulate (6.4) much more efficiently by splitting the d-dimensional integral (6.3) into d
one-dimensional ones. First of all, the Gaussians N (z;; ux, £g) with diagonal covariance matrices®
in the Gaussian mixture p(x) (see equation(3.7)) can be factorized

K

K d
po(T) = Z cre Nz e, 2i) Z H Nz is fkis Tleyi)

i=]
P (il k)

Using this decomposition of p, . p(y;|n.. &) (see equation 6.2) can be written

p(yelne, 0) = pa(fa,0.(m)) - H

dye:

Afn, .0, (Ut) '

(6.5)

K d 5
dfpn, 0, (1)
= L‘"F\-H Pai (fr, .00 (W) |K) {%Lﬁjﬁ. '

k=1 i=1

Replacing p(ayg|ng, #;) in the Monte Carlo approximation (6.4) and changing the order of the sums,
we obtain

M
1 - ’
plyne) = n—z plue|ng, 6™)

| MoK d
= 53 ST palty
df,,, . o (Ye)

K |
- j_l! Z Z H 0t (we,i) k) ‘fj‘.!;:‘:.l‘-.. (6.6)

u'p"Nr ol (1)

f[.!fr‘.‘,

k=1 m i=1
Ifthe @, ;,i=1,..., d are stochastically independent as assumed, it is possible to generate — let’s
say M’ — samples H“ _____ }HI) from p(#),i=1,..., M. Then each (j(”” (H“”'j _____ H::f..,f})
15 a valid sample for wiy,.. .. mg € {1,...,. MY with

"This means different dimensions @, ;, 7, ; of clean speech spectra x; are considered to be stochastically indepen-
dent.

49

iF = o M
Hﬁ) € 93(1)‘---35,1} ~ p(f)

o 1 M
gma = g 95,1) ~ ()

The computational complexity for the evaluation of

M d df s (Ul’)
1 L= Tt l';(’
M mz;l E P""‘('fm,;.ﬂi_”r,”(yi.i”k) ’—dy:.,;

in (6.6) using all those samples is O((M")" - d), since there are M = (M’)* possible combinations
for 6;"™). The law of distributivity, however, allows us to calculate the same expression in O(M’d)
by evaluating

d M’ () (Ye)
Ty, 'MH
= _M’ = P e .Uf,a':(yt'm) dy,:,

instead, because this is equivalent to calculating

d M’ M’ d
(;uf) Z Z 1_[P""*('fn.m,ﬁ:‘"""“(y’-)]k)

&, oimo W0)
dyy i

So, the weight p(y, |n§'”) of a noise hypothesis ni" ' can be approximated by Monte Carlo integration

with samples ﬂ,(”],-), S Sif) from p(f),i=1,...,d:

d 4 M d.f (7} plmy :(l}r)
1 E .ﬂ
P(EM”EJ)) ~= Z Ci i Do (F u ol y (o) k) |—”c-i—-—-—-—- (6.7)
k=1 ‘i=1 my=1 i |

=ply:|n’ k)

This can be regarded as independent approximation of the different dimensions of each Gaussian
mode of integral (6.3) by Monte Carlo integration

y M’ df) gomor (Yt)
/ plyrilnei Beink) - p(0es) b = > Pa, (£ ,jfrr;-.a(fflf,z)\k) ———"'*"ﬁ;: (6.8)
J=m my=1 P e

While Haeb-Umbach and Schmalenstroeer [22] proposed to infer the noise independently for each
dimension (for all noise hypotheses), we propose to do that only for the phase of each noise
hypothesis. Furthermore we propose to use a deterministic version of the Monte Carlo method for
the approximation (6.7) — motivated by the fact that the integrals (6.8) are one-dimensional and
that Monte Carlo integration does not perform as well as deterministic here®, especially if we try
to keep the number M’ of samples small. This can be performed by choosing the samples 9™
such that
i j+1/2
/s p(0y.)d, ; = T

which makes sure that the samples all represent the same probability mass.

5ag mentioned in section 6.3

6.4 Inferring the Phase

Additionally to incorporating the relative phase into the likelihood calculation, it is further possible
{0 estimate the relative phase f; with the aim of introducing it to clean speech estimation. Given
only iy, ny and p(fe |y, ¢), the optimal estimator for #; with respect to the MMSE eriterion is the
conditional mean

s

P:j,':(ﬂ'h“.'r“)lgt] =] 0y - p(Oe|ys,) db; (6.9)

—T
Assuming again that the noise spectrum 7, and the relative phase f, are stochastically independent,
ie. p(fing) = p(0i), p(Be|ye, i) can be expressed as

, plyefelne) p(ualfene) POy (|02, n1) - p(Be)
1’{9.'.\91‘,‘”5) i - =] —
p(yelne) plye|ne) plue|ne)

Applying this equality to (6.9) yields

/ﬂ 0, . I’('y-'wn"t) 5 P(Hf) dh,

3
oy plue|me)

1 mw
= | e, plyi|Br,) - p(O,) dO 10
plue|ne) /-n ¢ Pt/) - PG A% (6.10)

Ep@, [y (0]

As mentioned in 6.2, the empirical relative phase distribution should not be used in this case, since
0, is antisymmetric, p(ye|f;, 1) is symmetric (see its definition in equation (6.2)) and their product
is hence antisymmetric. If p(@;) should be symmetric, equation 6.10 is zero, which doesn’t help
us either. Fortunately 8, never occurs directly throughout the derivation of the relation befween
speech, noise, corrupted speech and the relative phase in section 6.1. It only occurs as an argument,
in cos(f;). Therefore the idea is to estimate cos(f;) instead:

™
E.(6: | npyleos(8y)] = / cos(8;) - p(Oi|ye, ne) dy (6.11)
Analogous to equation (6.10), this can be written

1 =70
E 0,15 = . e LBl o
?.'(fhl_u:.m)lgt] p(yelne) /_Tr cos(6y) - p(ye|6r. 1) p(f) do,

4 - 1 5 A .
Using the representation 6, = 591 0i1 - er, where ¢ is the Ith unit vector, this becomes

d 4
1 ™
E, e ——"-—E 2 (e |fe.me) - - ;
Pl lus, -:){91] olwelne) : lﬂt ‘/_Trm‘:(b't..l) Pl |0, ne) p(fy) do, (6.12)

Note that p(y|6;.m) can’t simply be split into the components p(yeg|6i.100). Replacing
plye|#, ny) by equation (6.5) and using the stochastic independence of the f;, i = 13 eyl
plf) =]_['r"__l p(f;4), we obtain

d
> a / cos(Bya) - p(ue| O, i) - plO;) dB
=1 L
d K i

= Y5 / bt [cos(0r) > e || 2o Faeio0, (i))
. ' k=1

I=1 =1 4

Af 10, (U2.7)
ey

iP(f)r.i) dfyy ... dba

-~
=plurilneifenk)

Changing the order of integration, exploiting the linearity of integration and using [[] =[] " i
yields

d i
ZWZCR / cos(y1) - p(ye|ne, 80, k) - p(B,.1) H /TJ(IIJ.,iIT?-z.;;,ﬂ:.»ek) p(Ora) dfy i | dbyy

=1 k=1 1=1
il

Since 8, is stochastically independent of 7, and k, i.e. p(6,,;) = P8y ilng i, k)

/ P(?jz,A|Tf-c,io 0.1, A':) ~p(by i) U{Br,,i = /.]J(Ht,f“”.'..hgt,is fi?)) P(f?r.,dﬂf.,n k) df; i

/P(y;,i~ ‘qt‘ilﬂft..ia k‘) dtty 4

"

=p(uslne,.k)

Applying this equality to the previous equation and pulling the product of the Pysi|nei k) ot
of the integral gives

d
ZEJZH H P Hn\”n -/9” UH|”H 9:31*) 1)(0,,3)({,3” (6.13)
=1 k=1
"1‘” —-ﬂutl,-.n.,‘,‘_,k

ity k) with the Monte Carlo

method using the samples 07" from (6.7), so that all those integrals are approximated with the
same samples:

The idea now is to approximate the @, , ., , » as well as the p(y, ;

/gm P(ye im0 k) - pl0ry) dbyy = Z 0 - plyealne, 6,70, k) (6.14)
my=1
; "’.’;
/P(?Ja.a‘lﬂr..-ei."?z,nk) -plfyq) dfy ;= L P(y.'.,-,:!??-un91(.?”, k) (6.15)
¥ =1

The normalizing constant p(y|n;) in (6.10) is approximated according to equation (6.7). Since

d
Pl k) = T plueilnea. k)
i=1

the product of the p(y, |my.;, k) in (6.13) can be expressed as

i
plye|ne, k)
plyralngi k) = —————
H Plilien B) p(yealne k)
il

This procedure can be summarized by the following algorithm that infers é := cos(#,) and at the
same time estimates the likelihood ply|n:). It has to be performed for each noise hypothesis n.i").

Cf T Ha)g(ndyde = [f(=) [al)dyde = [f(x)dr- [aly)dy

o
B

Algorithm 6.1 Phase Inference

1. fori=1,....d do

fork=1,...,K do

o M d‘.fﬂ_g.nluslr‘lﬂ(LU.'-.'&T)
e calculate ;ifl{y;_,-;|ﬂ,_f,;,k7) = Z ;U;m(f,,.,.u)gt"}n(’m,i)ik) = Jd_g‘, i
mi=1 e gl
M af sy gtmp (W2,4)
s calculate th":i,‘,‘k = ‘Zj cos(8, ;") P“‘(‘fv'*-ﬁf,-’.u{f'i"*’(‘Ut*‘)“") Ay ‘
my=)
‘ d)
2. for k=1,..., K do calculate -ﬁ(y,[ni-”, k) =]___[i n%ﬂ-), k)
i=1
3. calculate the normalizing constant ﬁ(y,,|n§‘”) = Z r.‘kﬁ(ynlﬂsﬂ, k)
k=1
K - ()
: 1 1 o(ie|ny” k)
4. fori=1.....d do calculate) = @ ch Pyl "'m') Gkl
e pllng”) kS Bluealng) k) et

Note, that this approach is not restricted to the bootstrap filter. It presents a general way to
caleulate the likelihood p(y|n;) dependent on the distribution of the relative phase. The same
thing applies to phase inferrence.

6.5 Inferring Clean Speech - Take 2

The clean speech spectrum can principally be inferred like in section 3.4, i.e. by using the general
approximation given in equation 3.12:

N

Blady] = Y hilng)an(n”)

j=1

The probability p(z;|y1., 1) in the term by = [- p(ay) -p(a|y1:, 71). however, has to be replaced
by its phase enriched version p(x|y1., e, 8;).

Approach 1p
Using the relationship 2, = n, +2-log (\/ U= | cto.s-(H,.,)"z -1- ms(ﬁ',)) established in (6.1) we

obtain

hilpj(n” =7y 2 log (\/{-'Ur—flr + r:ﬂ.?;(f?r_}z -1 L:r_w(Q,)) (6.16)

Approach 2p
Using equation (6.1) and writing o, = cos(#,), the effect of n; to the kth Gaussian mean can be
determined analogous to equation (3.15):

el = ek 4 Mt 4 oy \Jelih . gt
& ek = b (l + et THE Qe etk et ‘“")
& g = pg + log (1 + g™ 4 2(!,;\/&“"1’“«')

-

e

AHK (TR afiy

Using cvy, ,,, as an approximation to o, we get

K

2
h‘i)(TH) =t — ZP(H;U““.',)A,u,,.,u,,fr,,,_,l'
k=1

analogous to equation (3.16).

(6.17)

7 Experiments

We chose to evaluate the performance of the speech feature enhancing Bootstrap filter and the
proposed extensions under controlled conditions, i.e by artificially adding noise to approximately
45 minutes of seminar speech. This allows test with different signal to noise ratios (SNR)s and
facilitates analysis of how good clean speech spectra estimation works. The latter is achieved
by calculating the reduction of the mean square error (MSE) introduced by the noise. All the
following experiments were performed using dynamic noise with a broad variety of sounds coming
from a truck, slamming rubbish containers, distant voices, and shouts [46]. Warped MVDR
spectral estimation was used instead of Mel FFT spectra, since we found it was found to perform
better in earlier experiments [13].

First, we used a basic system to evaluate the performance of the the fast acceptance test proposed
in section 4.1 - algorithm 4.1. This system consists of the bootstrap filter for speech feature
enhancement as described in chapter 3 using a general speech model with 128 Gaussians plus the
reinitialization procedure proposed in section 4.1. All of the following experiments were performed
for a SNR of Odb. Figure 7.1(a) compares the dropout rates of the original sampling method and
algorithm 4.1 — with a maximum number of 100 iterations — in dependency of the number N
of samples used by the Bootstrap filter. Figure 7.1(b) shows the mean square error reduction
(MSER) of the error introduced by the noise for the two approaches.

14 e T — a5 v —
. [Original Sampling [_lOriginal Sampling
12 B Acceplance Test a0 Hl Acceptance Test
F g
10 25
® [] = E
=
5 9 §20|
3 B
g6 215
5 f
4 & 10
=
2 5
0 A | - 0 i
100 200 400 800 100 200 400 800
Samples Samples
(a) Dropout Rate (b) Reduction in MSER

Figure 7.1: Dropouts and MSE Reduction (GM128,LV)

The first thing that we see is that the dropout rate is significantly lower for the acceptance test.
While it decreases with the number of particles for the original approach it seems to vary around
3.9% for the acceptance test. The MSE reduction increases with the number of samples and is
significantly better with the fast acceptance test than with the original approach: 12% better (and
more than twice as good) at 100 samples and still 8% better at 800 samples. Statically setting
the noise variance (see section 3.1) to 20 instead of using the variance learned from the noise (VL)
drastically reduced the dropout rate as can be seen in figure 7.2(a). Comparing fgures 7.1(h) and
7.2(b) yields the interesting result that the MSE reduction with the acceptance test is stronger for
the real noise variance than for the static one (figure??), though its dropout rate is almost twice
as high. Without the acceptance test the MSER is conversely much lower. This however changes
with the number of samples, reflecting the ability of the fast acceptance test to virtually increase

o
o

the number of samples (if necessary) without calculating the computationally intensive likelihoods
or increasing the number of used samples.

14 * e — 35 = —
[__lariginal Sampling Original Sampling
12 I Acceptance Test 30} Bl Acceptance Test |
@
10 Eos
"" =
s 8 §
2 g
g- 6 'g 15¢ ‘
o
4 & 10 '
=
L ln [:
| IS .. &
100 200 400 800 100 200 400 800
Samples Samples
(a) Dropout Rate (b) Reduction in MSER

Figure 7.2: Dropouts and MSE Reduction (GM128,5V)

Next, we will have a look at the differences between the two clean speech inference methods
described in section 3.4: the simple, straight forward approach using A" and the VTS approach
h®). We compared the two approaches by using again the basic system with static noise variance
and fast acceptance test (FAT100). The differences in MSE reduction were negligible (below 0.5%),
but the word error rates (WER)s surprisingly differed noticeably. Figures 7.3(a) and 7.3(b) show
the WERs for the unadapted and adapted! passes for static noise variance (SV). As it turns
out, the simple approach h'Y) is not only considerably faster than the VTS2 approach but also
improves the word error rate by almost 2% absolute for both passes, which means a gain of around
5% relative for the adapted pass.

60 &0 T T
[_lApproach 1 [_JApproach 1
B Approach 2 (VTS) B Approach 2 (VTS)|
55 =i 45-
= - i
8 & E
2 2
g 50 1'5 40r — ‘
I
i
i
f E
45 3ar
ad 100 200 a0 800 i 100 200 a00 800
Samples Samples
(a) Unadapted (5V) (b) Adapted (5V)

Figure 7.3: Clean Speech Inference - AtY) vs A3 (GM128, SV, FAT100)

Figure 7.4 shows the Word error rates of the different approaches using clean speech inference
method 7). While the WERs of the unadapted pass (fgures 7.4(a) and 7.4(c)) seem to be
better, if the acceptance test is used, this is much more unclear for the adapted pass (figures
7.4(b) and7.4(d)). Those results compare to a WER of 60.2% for the unadapted pass and 42.4 for
the adapted pass without speech feature enhancement.

I'The adapted pass uses mazimum likelihood linear regression (MLLR) [32] and constrained MLLR (feature space

ab

80 i . S, 50 —
[|Original Sampling [l0Criginal Sampling
I Acceptance Test B Acceptance Test
o 55 £ - 45
E B B
[8
3 g
5 50 ® 40
i
@
i w
g =
45 35
4 - il !
0 100 200 400 800 W 100 200 400 BOO
Samples Samples
(a) static variance, unadapted (b) static variance, adapted
B0 = T 50 = e
[lOriginal Sampling [10Original Sampling
B Acceptance Test B Accoptance Test
55 i] B 4
: 2 ¥
=1 a2
S sop T 490 [
% |
o w
g =
45 35
N0 200 400 800 T 400 200 400 800
Samples Samples
(¢) learned variance, unadapted (d) learned variance, adapted

Figure 7.4: ' WERs for the Different Approaches (GM128, h)

A phase inferring bootstrap filter with 100 samples, learned noise variance, without the acceptance
test and using clean speech inference method 2™ conld not, improve upon those word error rates:
the unadapted pass WER was 52.6% (compared to 52.4% for a system with 400 samples, learned
noise variance, with acceptance test and using A1), the adapted pass WER was 42.6% (compared
to 39.4% for a system with 800 samples, learned noise variance, with acceptance test and using
A, This comparison might be unfair since h(* is known to perform worse than h'Y, but this
is not implemented yet for the phase inferring bootstrap filter as isn't the acceptance test. The
MSE reduction was 35.14%, the dropout rate 0.32%, which is by far the best result in this respect.
The best previous results where a dropout rate of 1.21 for a systemn with static noise variance,
acceptance test, and 400 samples and a MSE reduction of 25.35 percent for a system with 800
samples, acceptance test and learned noise variance.

The last experiments involve the phoneme-specific model. They were all performed by using 1000
samples, no acceptance test, static noise variance and clean speech inference method h(2). Fig-
ure 7.5(a) shows the unadapted pass WERs of the haseline system (without filtering), a bootstrap
filter with the general speech model (128 Gaussians), a bootstrap filter with the phoneme-specific
speech model (16 Gaussians) and one with a mixture model (16 4 128 Gaussians) — both work-
ing on the the phoneme sequence reference (ref) obtained from alignment with clean speech.
Figure 7.5(a) shows the adapted pass WERs for the same filters plus a phoneme-specific and a

adaptation) [15].
2 TR o't i i J
“even with its efficient implementation proposed in 4.2

mixture model filter working on the phoneme sequence hypothesis obtained from a first pass (see
chapter 5). While the filter with the general speech model shows good improvements for the un-

a0 L — T ————] 70 f r—————————— T——
[]Basaling [___|Baseling
[General Modal [_]Genaral Modal
70t [Phoneme-Specific Model (Ren 80 [Phoneme-Spacific Madal (Ret)
e Madel (Bef) B Phoneme-Specific Model (Hyp)
I Mixture Model (Rel)
2 60 = 50 I Mixture Model (Hyp)
i i
&
g s0f o a0
! o
i z
= a0 30
30 20
20 3 — 10
Clean 10db 5db 0db
SNR
(a) unadapted (b) adapted

Figure 7.5: Phoneme-Specific Models (128/16, 5V, hi2)y

adapted recognition pass, most of that gain levels off on the adapted pass. The phoneme-specific
filter on the hypothesis of the first pass resulted in worse performance than the baseline for higher
SNRs, which demonstrates the problem of 'model tying’. The mixture model filter, however, pro-
duced good results — not as good as the phoneme-specific filter on the reference (the theoretical
optimum), but still better than the general filter. To make sure that the improvement in WER
of the mixture model is not caused by the higher number of Gaussians (144 instead of 128), we
compared it to a general model with 256 Gaussians. Its WER was 41.6% for the adapted pass
at 0 db, while the mixture model had an adapted WER of 39.5. So it can be concluded that the
number of Gaussians is not the crucial factor here.

Figure 7 shows the WER results of the phase-inferring filter in combination with the phoneme-
specfic model on the reference. It performs much better than the phoneme-specific filter without
phase-inference. Especially interesting is the result for 10dB on the adapted pass: the phase
inferring filter on the phoneme-specific model is the only method showing a significant gain.

80 o 10 ; ‘
Basaling ____|Baseline
[| Genaral Model | General Model
70 [Phoneme-Specific Modal (Ref) || 80} [Phoneme-Specific Model (Ret)
I Fhonsme-Spocific + Phase (Ref) | I Fhoneme Specilic (Ref) + Phase
E 6or w 1 w50 1
2
i :
5 50 " 40 1
;
g g ;
£ . = 30}
; H HI i
20 -t ‘ | - 10 -
Clesan 10db sdb 0 db Claan 10db 5db odb
SNR SNR
(a) unadapted (b) adapted

Figure 7.6: Inferred Phase (128/16, SV, 1!?)

8 Conclusions

The Bootstrap filter for noise Tracking as well as clean speech inference — both derived as min-
imum mean square error MMSE methods — do what they are supposed to do: they reduce the
mean square error introduced by the noise. All proposed methods, the refinements as well as the
phase approach improve upon the basic method in this respect. This does not completely translate
to the word error rate (WER) of the speech recognizer. At times MSE reduction and WER even
seemed to behave antithetic.

The problem with the MMSE approach is that it minimizes the average (global) error, but does
not say too much about the local quality of the noise compensation. Hence, the MMSE approach
15 not guranteed to enhance the parts of speech that are relevant for speech recognition. This
might — at least partially — be caused by working in the log Mel spectral power domain, too far
away from the final features. Another problem might be that MMSE speech feature enhancement
on a frame by frame basis can cause variations among successive frames, which might distort the
speech recognizer. This could probably be improved by using a dy ncumml or switching linear
dynamical model for clean speech as proposed in [28, 8].

The methods that significantly improve the word error rate are clean speech inference approach
A" and the phoneme-specific (mixture) model. It should be examined whether those two methods
can be combined to good effect. Furthermore it should be investigated how h'Y) performs for lower
SNRs and for different noises.

The fast acceptance test allows a reduction in the number of samples without increasing the
number of dropouts. Furthermore it effectively facilitates using the learned noise variance, which
in combination with the acceptance test outperformed the static noise variance (with FAT) in
terms of MSE and WER while having a higher dropout rate. This motivates the development of
a method that dynamically increases the variance if the number of accepted samples gets low.

The phase approach yields by far the best MSE reduction and the fewest dropouts. For the
phoneme-specific model on the reference — though only hypothetical — this even translated to
the WERs. Tt should be noted, however, that the implementaion of the phase incorporating
boostrap filter is — deviating from its description in chapter 6 — still u:-:ing an assumptiun of
a uniformly distributed phase! and does not perform the weighting ﬁ{ydn,) ol ,ln, 41 k) in
algorithm 6.1 - step 4

K

Z Pl IJ:|”:) !‘"-
-“JPJ”U”O‘

yflﬂt k=1 P(U.t f|”r i1 ,‘

x (i)
Yoty

The missing weighting causes that the phase for one dimension is inferred independent of the other
dimensions. The results might get better, when those things are fixed.

Lwhich is not true, but for the lowest Mel frequency bin

60

Bibliography

(1]

2]

(3]

4

[5

6

7l

18]

19]

[10]

]

[12]

[13]

[14]

5. Arulampalam, 5. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online
nonlinear /non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, Vol. 50,
Issne 2:174-188, Feb. 2002.

A. Averbuch, 8. Ttzikowitz, and T. Kapon. Radar target tracking - viterbi versus imm. IEEE
Transactions on Aerospace and Electronic Systems, Vol. 27, Issue 3:550-563, May 1991.

E.R. Beadle and P.M. Djuric. A fast-weighted bayesian bootstrap filter for nonlinear model
state estimation. IEEE Transactions on Aerospace and Electronic Systems, Vol. 33, Issue
1:338-343, Jan. 1997.

J. R. Bellegarda. Statistical techniques for robust asr: Review and perspectives. Proceedings
of EuroSpecch 1997, Vol. 1:KN33-36, Sep 1997.

M. Bolic, P. M. Djurie, and 5. Hong. New resampling algorithms for particle filters. Proe. of
ICASP 03, Vol. 2:589-592, Apr. 2003.

S.F. Boll. Suppression of acoustic noise in speech using spectral subtraction. ASSP, 27:113-
120, Apr. 1979,

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, Series B (Methodological), Val.
39, No. 1:1-38, 1977.

J. Deng, M. Bouchard, and T. H. Yeap. Speech feature estimation under the presence of noise
with a switching linear dynamic model. Proceedings of ICASSP 2006, pages 497-500, May.
2006.

L. Deng, J. Droppo, and A. Acero. Enhancement of log mel power spectra of speech using a
phase-sensitive model of the acoustic environment and sequential estimation of the corrupting
noise. [EEE Transactions on Speech and Audio Processing, Vol. 12, No. 2:133-143, March
2004,

A. Doucet. On Sequential Stmulation-Based Methods for Bayesian Filtering, Technical report
CUED/F-INFENG/TR 310. Cambridge University Department of Engineering, 1998.

Y. Ephraim and D. Malah. Speech enhancement using a minimum mean-square error short-
time spectral amplitude estimator. [EEE Transactions on Accoustics, Speech and Signal
Processing, 32(6):1109-1121, Dec. 1984,

Y. Ephraim and D. Malah. Speech enhancement using a minimum mean-square error log-
spectral amplitude estimator. IEEE Transactions on Accoustics, Speech and Signal Process-
ing, Vol. 33, No. 2:443-445, Apr. 1985,

F. Faubel and M. Wélfel. Coupling particle filters with automatic speech recognition for
speech feature enhancement. to appear in Proc. of Interspeech, Sep. 2006.

M. Fujimoto and 5. Nakamura. Particle filter based non-stationary noise tracking for robust
speech feature enhancement. Proc. of ICASSP, 2005.

[15] M.1LF. Gales. Semi-tied covariance matrices. Proe. of ICASSP, 1998,

61

[16]
[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

23]

[26]

[27]

(28]

[29]

[30]

131]

[32]

33

M.J.E. Gales and S. Young. An improved approach to the hidden markov model decomposition
of speech and noise. Proceedings of ICASSP 1992, pages 233-236, 1992.

M.1.F. Gales and S.J. Young. Hmm recognition in noise using parallel model combination.
Proceedings of Eurospeech 1993, Vol. 2:337-840, Apr 1993.

. Gannot, D. Burshtein, and E. Weinstein. Iterative and sequential kalman filter-based
speech enhancement algorithms. IEEE Transactions on Speech and Audio Processing, Vol. 6,
Issue 4:373-385, Aug. 1998.

S, Gannot and M. Moonen. On the application of the unscented kalman filter to speech
processing. International Workshop on Acoustic Echo and Noise Control, Sept. 2003.

1.D. Gibson, B. Koo, and S.D. Gray. Filtering of colored noise for speech enhancement and
coding. IEEE Transactions on Signal Processing, Vol. 39, [ssue 8:1732-1742, Aug. 1991,

N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. IEEE Proceedings on Radar and Signal Processing, 140:107-113,
Sep. 1993.

R. Haeb-Umbach and J Schmalenstroeer. A comparison of particle filtering variants for speech
feature enhancement. Proe. of Interspeech, 2005.

M. Isard and B. Blake. Condensation - conditional density propagation for visual tracking.
Int. J. Computer Vision, 29, 1:5-28, 1994.

R.E. Kalman. A new approach to linear filtering and prediction problems. Transactions of
the ASME-Journal of Basic Engineering, 82(Series D):35-45, 1960.

B. Kamgar-Parsi and M. Brosh. Distribution and moments of the weighted sum of uniform
random variables, with applications in reducing monte carlo simulations. The Journal of
Statistical Computation and Simulation, Vol. 52, No., 4:399-414, 1995,

N. §. Kim. Imm-based estimation for slowly evolving environments. IEEE Signal Processing
Letters, Vol. 5, No. 6:146-149, Jun. 1998.

N. S. Kim. Nonstationary environment compensation based on sequential estimation. [EEE
Signal Processing Letters, Vol. 5, No. 3:57-59, Mar. 1993.

N.S. Kim, W. Lim, and R.M. Stern. Feature compensation based on switching linear dynamic
model. Signal Processing Letters, IEEE, Vol. 12, Issue 6:473-476, Jun. 2005.

G. Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space models.
Journal of Computational and Graphical Stalistics, Vol. 5, 1:1-25, Sep. 1996.

A. Kong, J.S. Liu, and W.H. Wong, Sequential imputations and bayesian missing data
problems. Journal of the American Statistical Association, Yol. 89, No. 425.:278 288, Mar.
1994.

M. Lauer. Entwicklung eines Monte-Carlo- Verfahrens zum selbststandigen Lernen von Gauss-
Mischverteilungen. Dissertation. Universitit Osnabriick, Nov. 2004,

C. J. Leggetter and P. C. Woodland. Maximum likelihood linear regression for speaker adap-
tation of continuous density hidden markov models. Computer Speech and Language, pages
171-185, 1995.

1.5. Liu and R. Chen. Sequential monte carlo methods for dynamic systems. Journal of the
American Statistical Association, 93(443):1032-1044, Sep. 1998.

[34] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Communication and
Control Engineering. Springer, second edition, 1993.

[35] P.J. Moreno, B. Raj, and R.M. Stern. A vector taylor series approach for environment-
independent speech recognition. Proe. of ICASSP, 1996.

[36] M.N. Murthi and B.D. Rao. All-pole modeling of speech based on the minimum variance dis-
tortionless response spectrum. IEEE Transactions on Speech and Audio Processing, 8(3):221-
239, May 2000.

[37] K. K. Paliwal and A. Basu. A speech enhancement method based on kalman filtering. JEEE
Transactions on Accoustics, Speech and Signal Processing, Vol. 12:177-180, Apr. 1987.

[38] B. Raj and R. Singh. Tracking noise via dynamical systems with a continuum of states. Proc.
of ICAS5P, 2003.

[39] B. Raj, R. Singh, and R. Stern. On tracking noise with linear dynamical system models.
Proe. of ICASSP, 2004.

[40] C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics.
Springer, second edition, 2004.

[41] D.B. Rubin. The bayesian bootstrap. The Annals of Statistics, Vol. 9, No. 1:130-134, Jan.
1981

[42] D.B. Rubin. A noniterative sampling /importance resampling alternative to the data augmen-
tation algorithm for creating a few imputations when the fraction of missing information is
modest: the sir algorithm. Journal of the American Statistical Association, Vol.82, No.398,
Theory and Methods:543-546, June 1987.

[43] 1.C. Segura. A. de la Torre, M.C. Benitez, and A.M. Peinado. Model-based compensation of
the additive noise for continuous speech recognition. Proc. of Eurospeech ‘01, Vol. 1:221-224,
Sept. 2001.

[44] A.F.M. Smith and A.E. Gelfand. Bayesian statistics without tears: a sampling-resampling
perspective. The American Slatistician, Vol. 46, No. 2:84-88, May 1992.

[45] M.A. Tanner and W.H. Wong. The calculation of posterior distributions by data ang-
mentation. Journal of the American Statistical Association, Vol.82, No.398, Theory and
Methods:528 540, June 1987,

[46] The Freesound Project. garbage.coll.serv.dsT0p.mp3. freesound.iua. upf.edu/samples ViewSingle. php %id = 6986

[47] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. Split and merge em algorithm for
improving gaussian mixture density estimates. Journal of VLSI Signal Processing Systems,
Vol. 26, Issue 1-2:133-140, Aug. 2000.

[48] S. Ulam. Adventures of a Mathematician. Charles Scribner’s Sons, 1983.

[49] A.P. Varga and R.K. Moore. Hidden markov model decomposition of speech and noise,
Proceedings of ICASSP 1990, Vol. 2:845-848, Apr 1990.

[50] M. Walfel and J.W. McDonough. Minimum variance distortionless response spectral estima-
tion, review and refinements. IEEE Signal Processing Magazine, 22(5):117-126, Sept. 2005.

[51] K. Yao, KK. Paliwal, and S. Nakamura. Sequential noise compensation by a sequential
kullback proximal algorithm. Proceedings of Eurospeech, pages 11391142, Sep. 2001.

52| K. Yao, B.E. Shi, S. Nakamura, and Z. Cao. Residual noise compensation by a sequential
em algorithm for robust speech recognition in nonstationary noise, Proceedings of ICSLP,
Vol.1:770-773, Oect. 2000.

63

