Using Domain Knowledge to
Improve End to End Performance
in a Speech Translation System

Oren Glickman
May 12, 1995

Masters Project
Computational Linguistics
Carnegie Mellon University

Committee:
Alex Waibel
Bob Carpenter
Lori Levin

Copyright © 1995 Oren Glickman

Abstract

My work consists of using domain knowledge to reduce ambiguity and improve end to end
performance in a multi-lingual spoken language translation system. I take advantage of domain
knowledge, such as current date and context, to help reduce the difficulties of spoken language and
errors introduced during speech recognition.

The main feature of the work is that the system works on the recognizers lattice rather then the
top-best hypothesis. Parsing a word lattice involves finding a path of connecting words within the
lattice that is grammatical. In this way more information is obtained from the recognition state and
hence forcing disambiguation to a later state where more knowledge is available.

44 Lattice Re-scoring and Shrinking« . o oo e e e

..... 20
44.1 Calendar Knowledge
21
R T 1 Y 21
5.1 IMHOAOCHON ©7u s« e w e cx v n 20T e e 21
52 TriggerPaifs 22
S21 Method ... 23
522 SelfTriggers« cccvvre T 24
53 RESUILS . .« v v v v v o e e e N
6 ParseDisambiguation 25
61 Inmoduction ec o 23
62 Word skipping penalties . . .+ Y
6.3 Full Turn Disambiguation . . - - -« - - oo oo nmnnnn 27
6.4 Language Modeling of Generation Output
’ 28
T T LD 28
7.1 Theintegratedmodel ... 28
72 Buallaion 2
e ek N 30
74 Conclusiono .
8 Future Work a2
A OutputFromthesystem . 32
Al Examplel ... ovoeee et 33
A2 Bxample2 34
3 Example 3 . . .o e e
A P 36

B Lattice Proccessing Example

Chapter 1

Introduction

1.1. Problem Statement

Machine Translation of spoken language encounters all of the difficulti
as ambiguity) with the addition of problems that are s
disfluencies, errors introduced during s
boundaries.
restarts, pauses and both human and non human noises. Co
involves, if then, a large search space.

1.2. Outline of Work

es of written language (such
pecific to spoken language such as speech
peech recognition, and the lack of clearly marked sentence
Normal speech is imperfect it contains misspoken words, incomplete sentences,

ping with spontaneous spoken speech

My work consists of using domain knowledge to reduce ambiguity and improve end to end per-
formance in a multi-lingual spoken language translation system. The work involves a specific
restricted domain that of two people scheduling a meeting. I take advantage of domain knowledge,

such as current date and context, to help reduce the difficulties of spoken language and errors
introduced during speech recognition.

Due to the limitations of current recognition and

nizer lattice (see Chapter 3) rather than the top-best hypotheses. In this way information obtained
by the recognizer is not lost and more than Just the best hypotheses is considered.disambiguation
is forced if then to a later state. Parsing a word lattice involves finding a path of connecting words
within the lattice that is grammatical. It is my belief that even when perfect recognition spoken
speech is ambiguous in a way that still more than Just one hypotheses should be involved.

The techniques described in this paper were essential to help prune the large number of ambi-
guities involved.

The techniques involve statistical models as well as knowled
robust end to end speech translation system.

parsing technology my system uses the recog-

ge-based models, resulting in a

Chapter 2

Overview and Related Work

2.1. Introduction

A traditional speech translation system has a few stages - a recognition stage a parsing stage and a
discourse processing stage.

In the next sections I will go over the following modules and the current techniques they use.l
will emphasize on how discourse context and domain specific knowledge could be incorporated at
each stage to achieve robustness, and on how the different modules could interact.

2.2. Language Modeling

Language modeling is the attempt to characterize, capture and exploit regularities in natural lan-
guage.

A language model assigns a probability value to every string of words wi, wa, ... , Wy taken from
the prescribed vocabulary. In speech recognition, this value is interpreted as the a priori probability
that the speaker will say that string.These probabilities guide the search of the recognizer among
various (partial) text hypotheses and are a contributing factor in determining the final transcription.

In statistical language modeling, large amounts of text are used to automatically determine the
model’s parameters, in a process known as training.

In automatic speech recognition language modeling plays an important rule, because more
knowledge most be brought to bear on the recognition process.

2.2.1. Statistical Language Modeling

In speech recognition, an acoustic signal A is given, and the goal is to find the linguistic hypothesis
L that is most likely to have given rise to it. Namely we seek the L such that :

arg max Pr(L | A) = argmLaxPr(A | L) x Pr(L) (2.1)

Where Pr(L) is given by the language model.

2.2.2. Conventional N-grams

Using elementary rules of probability theory, the language model’s probability Pr(L) can be for-
mally decomposed as

PI'(L) = ﬁ Pr(wi l Wigeoe ,w,-_l) (2.2)

i=1

Where Pr(w; | wr,...,w;i_1)is the probability that w; will be spoken given that words wy, . .. , wi—1
were said previously. For even moderate values of i, Pr(w; | wi,..., w;_1) would be impossible
to estimate.different conditioning histories, if then, must be distinguished as belonging to some
manageable number of different equivalence classes.

A N-gram language model makes the assumption that only the previous N-1 words have any
effect on the probabilities for the next word. Hence a 3-gram (trigram) takes the following form:

Pr(wl,. oo ,wn) = Pr(wl) PI‘(UJ2 I wl) H Pr(w,' | Wi—2, wi_l) (23)

=1

The bigger the N is the greater the differencing power of the corresponding N-gram is . But, the
greater N is more training data is needed to provide a reliable model.

The N-gram models are easy to implement and are easy to interface to the application. They
seem to capture well short term dependencies and surprisingly difficult to improve on [4]. The two
obvious limitations of N-grams are:

e They are completely “blind” to any phenomenon outside of their limited scope.

e No linguistic role is taken into consideration.

2.2.3. Class Based N-grams

In order to reduce the parameter space spanned by N-gram models, words could be clustered into
classes. If g(w) denotes the class a word w is assigned, then Pr(w; | w;_2, w;—1) in 2.3 could be
estimated as :

Pr(w; | wi—z, wi—1) = Pr(w; | wi_1,g(wi-2)) (2.4)

Clustering could be done by :

e By linguistic role.
(Part Of Speech, for example).

e By Domain Knowledge.
(Example:days of week, restaurant names, . . .

¢ Automatically derived by statistical means.

2.2.4. Syntactic Constraints

Syntactic knowledge could be incorporated by using a grammar, which ensures that no syntactically
or semantically inaccurate words are matched in the speech signal.

ATE labs, developed a speech recognition algorithm using Hidden Markov Models (HMMs)
and predictive LR parsing [17]. Predictive LR parsing is an extension of generalized LR parsing,
and makes it possible to predict phonemes in speech according to a context-free grammar.Predicted
phonemes are then verified by using corresponding HMMs.

In the MINDS system [12, 13], a dynamically constructed lexicon and grammar are used to
control the search for words in the acoustic phonetic lattice of alternate segmentations and features.
They use the grammar to compute the semantic word categories which could appear in a certain

8

segment of speech and expanding these concepts into words which are contained in a dynamically
generated lexicon. The parser accesses all the word models for those words and selectively calls
the word matcher with word models and locations in the speech signal. In this manner, the parser
forms a rank-ordered set of phrase hypotheses to span the utterance.

2.2.5. Incorporating Past Information
Long distance

Rosenfeld [11] worked on capturing the information present in the longer distance history. He
introduced the notion of a trigger pair - a pair of words ,(A,B), were A is significantly correlated
with B. When A occurs in the past history it triggers B causing it’s probability estimate to change.
In his work a set of trigger pairs was derived from a large corpus, Each trigger pair partitioned the
history into two classes, based on whether the trigger LA, occured or did nor occur in it.

He noted that self triggers (that means triggers of the form (A,A)), are particularly powerful and
robust.

When interfaced with a speech system his work reduced error rate by 10%-14%.

Context

Context could be any of semantic, pragmatic or discourse knowledge.

In the MINDS system [12, 13], predictions derived from the problem- solving dialog situation
to limit the search space of the recognition.
At each point in the dialog, they asses the possible states a user could logically progress toward
in the next utterance.Associated with each state is a static set of concepts which may or may
not be applicable during a specific problem solving session with the system.Thus, the concepts
associated with each state are evaluated in light of the current context and the constraints derived
from previous dialog information to dynamically create a set of concepts that may be expressed
in the next utterance. The result is a dynamically constructed semantic network grammar, which
reflects all the constraints derived from the knowledge sources, (see Section 2.2.4).

The predictions are derived from the set of concepts which the user could logically mention to
further either progress toward their current goal or their understanding of prior answers.

2.3. Combining Information Sources

When considering a new word, w, there might be different knowledge sources (h1, ha, . . . , h,) that
you want to take into consideration. There are a few ways to combine them all , I will discuss the
two basic ones following.

Linear Interpolation

Given n sources of knowledge - hi, ha,...,h, , and the appropriate conditional probabilities -
Pr(w | h1),Pr(w | h2),...,Pr(w | h,) they can be combined linearly with:

Pr(w | hl,hz,..,,hn) = Z/\iPI(’w I h,) (25)
=1

Where 0 < \; <land Y ; A =1.
Any schema for choosing the weights should work, though an Estimation-Maximization type
algorithm could be used to determine the optimal weights for a specific test data.

Linear interpolation is easy implement and extremely general - any model can be used as a
component. And it cannot hurt, the interpolated model is guaranteed to be no worse than any of
its components. The substantial draw-back of this schema is that the different information sources
are consulted “blindly”, without regard to their strengths and weaknesses in particular contexts.

Back-off

In the back-off method, the different information sources are ranked in order of detail or speci-
ficity.At run time, the most detailed model is consulted first.

The back-off method does not actually reconcile multiple models, it chooses among them.

A trigram-backoff model takes the following form :

k3 Pr(wy, | Wn—1,wn—2) if C(wn-2, Wp_1,Wy) >0
ky Pr(wy, | wn-1) if C(wn—2,Wn—1,wy) =0

and C(wp—2, Wyp—1) >0
ky Pr(wy,) otherwise

(2.6)

Pr(w'n | wn—lawn—Z) =

Where ki, ks, k3 are factors that depend on the counts C and assure that the probability P when
summed over all words adds up to 1.

2.4. Mutual Information

There are many potentially useful information sources in the history of a word. A way to asset
their potential before incorporating them into the language model in desired.

Such a measure is the mutual information, which is defined as the reduction in entropy once the
information source is known.

I(X:;Y) S H(Y) - HY|X) = Y Pr(z,y)log % (2.7)

The mutual information ,/(k; w), is the information history, h, provides about the word, w.

2.5. Perplexity

Perplexity is a measure of language model quality.
Given a language model, the per word difficulty of the recognition of speech generated by a given

10

(large) text ,wi, . .. , Wy, is measured by it’s logprob:
- .o
LP = ——logPr(wi,...,wy) (2.8)
n

Where Pr is the estimate the language model provides the recognizer. The perplexity , PP, of a
language model relative to a text ,wy, ..., Wy, is defined as :

3=

PP 2P = [Pr(wy, ..., w,)] (2.9)

Thus, the task of recognizing the given text with a language model is as difficult as would the
recognition of a language with PP equally likely words.Perplexity is therefore a measure of the
average “branching” of the text when presented to the language model. To compare two language
models, you will prefer the one that gives a lower perplexity when tested on the same representative
text.

2.6. Parse disambiguation

Almost any natural language sentence is ambiguous in it’s structure or meaning. When a sentence
has more than one parse one would like to know which parse was intended. The following are
some ways to achieve this.

2.6.1. Probabilistic Parsers

The motivation of probabilistic parsing is the assumption that a more probable parse is more likely
to be the correct parse of an input sentence.

Probabilistic parsers give an ordering of the parses by assigning each one a probability.

In a probabilistic grammar, each rule has a probability assigned to it. (One simply counts the
number of times each rule is used in a corpus containing parsed sentences). The probabilities for
all the rules that expand the same non-terminal must some to one. An algorithm is used to find the
most likely parse tree that could have generated a given sentence.

The technique involves making certain independence assumptions about rule use. In particular,
you must assume that the probability of a constituent being derived by a rule R is independent of
how the constituent is used as a subconstituent.For example, this assumption would imply that the
probabilities of NP rules are the same whether the NP is a subject, the object of a verb, or the object
of a preposition. _

A probabilistic parser, if then, assigns higher probability to parses that use common constructions
than to those with less common ones.

2.6.2. History-based Grammars

At IBM [3] a model incorporating lexical, syntactical, semantical and structural information was
composed to help parse disambiguation. Their motive was that humans overcome these ambiguities
by examining the context of the sentence.

Decision trees were used to allow any information anywhere in the partial derivation tree to
determine the probability of different expansions of a non-terminal. They reporta 25% increase in
parse accuracy.

11

2.6.3. Semantic and Pragmatic Knowledge

In the MINDS-II project [14, 15], Pragmatic and semantic knowledge was used to correct or reject
parses of spoken language utterances.
The system corrects the following types of problems:

e Information that is missing from the output of the recognizer.
e Constraint violations.

e Inaccurate parses.

e Unanswerable queries and commands.

When the system receives a query involving information not included in the current, restricted
database, out of the chosen domain or when the user is asking the system to perform a function it is
not designed to do - it outputs specific error codes and specific corrective information to the user.

2.6.4. Context

Context other than the current sentence and it’s tree structure exist. This includes the last sentences
and their structure. From a probabilistic point of view the parse tree T for which (2.10) holds is
desired.

T= P Ti,.ooySn_1,T0-1,5n 2.1
argTéngegn) (515 Fhyos 50 5 O 1,5n) (2.10)
Where Si,...,S,_1 are the different sentences and Ti,...,T,—; are their parse trees respec-

tively.And (S) is the set of all parses produced by the grammar for the sentence S.
However how to fully exploit this information is still an open field of research.

2.7. Discourse Processing

As noted in Sections 2.6.4 and 2.2.5, a good discourse processor could help improve the overall
performance of a speech recognition system.

2.7.1. Conventional

Many researchers have contended that a coherent discourse consists of segments that are related one
another through some type of structuring relationship. To quote a few - Man and Thompson, Hobbs,
Polani, Allen, and Grosz and Sidner. Most of the above do not consider plan inference, model
goals or extended discourse. Furthermore are limited to handle only specific types of discourse.
One of the main limitations of the current systems is that many of them are theoretical in nature
and have no implementation.

The work of Lambert [7] presents a plan-based model for understanding cooperative negotiation
dialogues.It infers both the communicative actions that people pursue when speaking and the beliefs
underlying them, and identifies the relationship of utterances to one another.

12

2.7.2. Statistical Approaches

ATR [8], proposed a purely statistical model of dialogue based on an information-theoretic inter-
pretation of a discourse. Their model predicts the illocutionary force type of the next utterance.It
consists of a second order Markov model of utterances classified by their illocutionary force type,
such as request, inform,

They report a 60% percent accuracy in prediction.

Both approaches currently show poor results.
A combined system which incorporated statistical techniques is strongly suggested.

2.8. Verbmobil

Verbmobil is speech to speech translation system, translating spoken dialogs between two persons
who want to find a date for a business meeting. The system uses top-down predictions of the speech-
act to narrow down the set of words which are likely to occur in the following utterance.Top down
predictions are also used to limit the set of applicable grammar rules to a specific subgrammar. To
use contextual knowledge a discourse history is maintained. A combined statistical and knowledge-
based model is used to predict the next speech-act where the statistical unit is used as a backup.

2.9. Lattice Parsing Algorithms

A word lattice is a set of hypothesized words with different starting and ending positions in the
input signal. Parsing a word lattice involves much more search than conventional typed natural
language parsing, and a very efficient algorithm is desired. Tomita ([9]) offers an efficient LR
lattice parsing algorithm, where the LR parsing tables are utilized. The algorithm is based on a
Generalized LR style substring parser, that can parse an input string in arbitrary order. An efficient
computation strategy is achieved by using an A* heuristic to determine the order in which words
of the lattice are parsed.

Chow and Roukos ([19]) describe a bottom-up CYK style parsing algorithm that does not suffer
from the uni-directionality restriction. The algorithm uses Dynamic Programing and Chart Parsing
techniques in order to parse the word lattice and find the highest scoring grammatical path.

I don’t know of any running system that uses the above implementation.

13

Chapter 3

Framework

3.1. Janus

Janus is a speech-to-speech translation system for dialogs in the scheduling domain (two people
scheduling a meeting with each other). The main modules of Janus are speech recognition, parsing,
discourse processing, and generation. A system diagram is shown in Figure 3.1.

Processing starts with speech input in the source language. Recognition of the speech signal is
done with acoustic modeling methods, constrained by the language model. The output of speech
recognition is a list of the N-best sentence candidates or a word lattice. The current system uses
only the best hypothesis from the N-best list which is then sent to the translation components of
the system. The system currently does not use the word lattice.

3.2. the GLR* parser

Translation begins with analysis by the GLR* parser ([2]) . The GLR* parser skips parts of the
utterance that it cannot incorporate into a well-formed structure. Thus it is well-suited to domains
in which extra-grammaticality is common. Multi-sentence conversational turns are broken into
separate sentences automatically during parsing with the help of a statistical method that determines
the probability of sentence breaks at each point in the utterance. The output of parsing is an
interlingua, or ILT, which is intended to be a language-independent representation of meaning.

The parser has an attached statistical module in which shift and reduce actions of the LR parsing
tables are directly augmented with probabilities. Training of the probabilities is performed on a
set of disambiguated parses. The probabilities of the parse actions induce statistical scores on
alternative parse trees, which are then used for parse disambiguation. The GLR* parser used 1050
sentences from 1440 sentences in the 30 dialog training set for training.

Currently only the best scoring ILT is sent on for farther processing.

3.2.1. ILTs

The core of the translation system is the interlingua, which is intended to be a languageindependent
representation of meaning. Multi-sentence conversational turns are assumed to be broken down

into separate sentences or or sentence fragments represented by a list of ILTs. The interlingua for
the sentence :

14

Speech in source Language

Recognizer e |

J |
(oot) ﬁ-bft Y (s)

GLR* Parser

Generation(GenKit)

Speech Synthesizer
¢

Speech in target Language

Figure 3.1 Janus System

15

“T have something ten to noon”.
[SPEECH-ACT *state-constraintSENTENCE-TYPE *state
FRAME *booked
WHO [FRAME* I]
WHAT [FRAME *something]
" FRAME *interval
FRAME *simple-time

START HOUR 10

FRAME *simple-time
END [HOUR 12

AM-PM pm

1s:
WHEN

L L

3.2.2. The GLR* scoring mechanism

The parser assigns each ambiguity a score by combining the following features:
1. The number and position of skipped words.
2. The fragmentation of the parse analysis.
3. The statistical score of the disambiguated parse tree.

The penalty scheme for skipped words is designed to prefer parses that correspond to fewer skipped
words.

3.3. Discourse Processing

I After parsing, the ILT is modified by the discourse processor. The discourse processor, dis-
ambiguates the speech act of each sentence, normalizes temporal expressions, and incorporates
the sentence into a discourse plan tree. The discourse component also updates a calendar in the
dynamic discourse memory to keep track of what the speakers have said about their schedules.
Once the ILT is fully specified, it can be sent to the generator to be rendered in the target language.

3.4. Databases

The Spanish scheduling database used consists of 150 push-to-talk dialogs and and 150 cross talk
dialogs totaling in 300 dialogs or 5,472 utterances. Analysis training and development was done
on a training set of 30 dialogs.Target ILTs were hand written for the training set and for a test set
of 15 dialogs.

1Still not incorporated in the system

16

Chapter 4

Word lattice Processing

4.1. Introduction

A word lattice is a set of hypothesized words with different starting and ending positions in the
input signal. Parsing a word lattice involves much more search than parsing the best hypotheses
of the recognizer. parsing a word lattice is equivalent to parsing a large n-best list in an efficient
manner. The GLR* parser was modified to parse such lattices. The problem of a very large search
space and running time brought me to develop the following tools to pre process the lattice.

4.2. Lattice Cleaning

The lattice given by the recognizer is contain many different noise words and contains redundant
paths. The lattice cleaner maps all non human noises and pauses to a generic pause. Consequent
pauses are then adjoined to one long pause. Redundant paths are then removed keeping the highest
acoustically scoring one. two paths are redundant if they begin and end in the same nodes, and
contain the same sequence of words.

In Figure 4.1 the three paths through the lattice are redundant, and after cleaning only the middle
path, that is the highest scoring one, will remain as shown. An important note is that no linguistic
information is lost in the process of cleaning, any hypothesis existing in the original lattice will
appear in it’s cleaned version.

4.3. Lattice Breaking

The lattice is broken into smaller lattices, Corresponding(hopefully) to the sentence breaking of the
utterance. This is done by breaking the lattice at time points where no human input is recognized in
the speech signal. A threshold of time length is set to determine optimal breaking. Where a small
threshold might break the utterance at wrong places, and a too big threshold leaves the utterances
to long for the current parser to handle. The lattice breaking reduces the complexity of the parsing
significantly and forces the parser to break the sentences at certain points and hence avoiding
ambiguities as in the utterance: “...I’'m busy Monday and Tuesday I am free ...”. Breaking
also forces the parser to recover from mistakes in the case that one or more of the sentences in the
utterance are out of domain, misrecognized or just not covered by the current state of analysis.

In Figure 4.2 the lattice could be broken into two independent lattices as shown.

17

Figure 4.1 Lattice Cleaning - Example

18

#PAUSE#
B1500

Figure 4.2 Lattice Breaking - Example

19

4.4. Lattice Re-scoring and Shrinking

The Lattice contains at this point only the linguistically important information and therefore it’s
vertices could be re-scored now by the same or a new language model. A tool to shrink the
lattice was written to leave a lattice in a size we are currently able to handle efficiently. The
shrinking process removes the arcs in a decreasing order by the score of the best hypothesis they
can contribute to. The re-scoring forces that the correct hypothesis will not be lost shrinking the
shrinking stage.

4.4.1. Calendar Knowledge

In the shrinking process the knowledge of the current day and date was used. I found that some
words in the vocabulary have different probabilities depending on the current month. For example,
if the current month is June, words like June and July will have higher probabilities and words like
Thanksgiving, class, and February will have lower probabilities. A different language model with
the above changes was made. Another use of calendar knowledge involved sentences containing
phrases like Sunday the fifth and Wednesday December 5. Using transcribed dialogs, we calculated
the percentage of cases in which the day and date actually go together. (When speakers make
mistakes, or when the wrong month is used in calculating the date, the day and date might not
match.) The probability of the path in the lattice containing a day and a date is altered accordingly
from its original probability in the language model. This knowledge is easy to test when you have
the lattice representation.

20

Chapter 5
Triggers

5.1. Introduction

In this chapter I describe an experiment involving modifying the speech recognizer’s language
model to be sensitive to certain features of context and by this reducing search space. The goal of
language modeling, in speech recognition, is to identify and exploit sources of information in the
language stream, so as to bring the perceived entropy down as close as possible to its true value.
Most current systems use different types of N-gram models to constrain speech. Such models
use the last N-1 words as their sole information source. Therefore they are totally blind to any
phenomenon that is out of their scope. A way to exploit long-distance information is desired. Work
to incorporate long-distance information was done ([6, 11]) where Trigger Words were examined
and used. Trigger words are words that bear a predictive power on future words. In [6, 11], trigger
words were considered in the last M words of text, for a constant M. My work involves dialogs,
which are different from text in that there are two speakers. Because of this, the history of a specific
word should be accounted for differently depending on the speaker. In my case, therefore, I only
look at the last speaker’s words.

Examples of trigger words are shown in Figure 5.1. For example, lunch, restaurant and office
could be trigger words that give a higher probability to the words lunch and office respectively.

Speaker 1: Okay do you wanna go to a restaurant or something, we could have lunch or else we
could have it at the office.

Speaker 2: No, I don’t wanna go out for lunch because I’ll have a brunch meeting just before
that, but the office is good.

Figure 5.1 Sample Dialog

5.2. Trigger Pairs

A trigger pair is an ordered pair of words (A, B), were A is significantly correlated with B. When
A occurs in the past history it triggers B, causing its probability estimate to change. To find such

21

words all word pairs from the lexicon were tested. For a pair (word,;, word,) the average mutual
information of the events

P = {word;was uttered by previous speaker} and

Q = {word,was spoken by current speaker }

was calculated by Formula (5.1). The probabilities Pr(P, Q) were smoothed because they might
be zero. This enabled me to extend the work in [6] by accounting for negative trigger pairs where
the trigger word causes the other word to have a lower probability.

Pr(P, Q)
I(P;Q) =Pt(P,Q)log =————F—
(7Q) = PP Q) o8 B Py e Q)
Running over the corpus of dialogs, all the pairs with average mutual information greater in
absolute value than 0.0001 (where the log is base 10), were listed. Examples from the resulting list

are:

(5.1)

e Positive triggers: (bye, goodbye), (lunch, restaurant), (fine, sounds),
(first, second), (brunch, O’clock), (where, at) ...

e Negative triggers: (fifth, nineteenth), (goodbye, hello), (O’clock, day),
(dinner, morning), (can’t, bye), (how, Hi) ...

5.2.1. Method

To show how the trigger pairs can be incorporated into an existing language model, I assume a
regular bigram is being used. In a regular bigram you calculate P(w;|w;_1), but we are interested
in

P(w,-]wi_l, L) (52)

where L is the previous utterance by the other speaker.

I cluster all such sentences by the set of all trigger words that appeared in them. For example,
in the case of the utterance of speaker 1 in the sample dialog, L = {lunch, restaurant, office }.
However, due to sparse data Equation (5.2) can not be evaluated directly. The way to overcome
this is to notice that the events of the last utterance, L, and previous word, w;_;, could be assumed
to be independent. If this is the case we have:

Pr(wz- | wi_l)Pr(w,- ‘ L)
Pr(w,-)
Pr(w,- | L)

o] W— X Pr(wi l w,-_l) (5-3)

Pr(wi | ’wi_],L) =

Equation (5.2) is therefore equivalent to multiplying the regular bigram value by the coefficient
Awl, = Il;é?”;—%l. Once again these coefficients were calculated only for the set of trigger pairs
and not for all word pairs due to sparse data. Because there could be more than one trigger in
the history, L, a difficultly in computing A,z occurs. To avoid this for every word only it’s best

trigger is considered. For each word a constant coefficient, y was used for all non-trigger pairs.

22

The coefficient, 1i,,, was determined by Equation (5.4) in order to make sure that I end up with a
correct probability measure.

Pr(w; | wio1) = Cp Pr(wi | wioy, L) Pr(L) =
Yr ALw X Pr(w; | wi—1) Pr(L)

= 1 = EL /\L,w PI'(L) ==
MiwwPr(t € L) + po, Pr(t € L)
_ 1=Xsy,wPr(tw€L)
= HPw = ~1_Pr(t4€L) (5.4)

5.2.2. Self Triggers

Among the positive triggers, the class of self-triggers — triggers of the form (A, A) — turns out to
be very robust. In fact, for more than a third of the words, the highest trigger turned out to be the
word itself. The self-trigger list contains the following categories:

1. months - January, February . ..

(38

. days - Sunday, Monday . ..

3. dates - first, second ...

4. times - one, two ...

5. time expressions - tomorrow, noon, PM . ..

6. others - Mr., lunch, busy, office, bye . ..

An example of the coefficients of the self-triggers can be seen in Table 5.1. The table shows,
for example, that when the word office appears in an utterance it will get ten times the regular
bigram probability if it appearers in the previous utterance as well.

Sunday 15.3 | Monday 3.5 | Tuesday 3.6
October 9.6 | August 11.9 | June 10.6
one 3.1 | two 1.6 | there 3.2
first 5.0 | second 5.3 | ninth 6.6
tomorrow 22.4 | today 15 | noon 6.1
bye 7.1 | Mr. 26.4 | lab 48.0
class 4.5 | lunch 3.4 | office 9.8
busy 3.4 | available 5.3 | free 1.4

Table 5.1 Self Triggers - Coefficients

23

5.3. Results

The technique described above is very easy to incorporate into a running system because it does
not change a language model but rather uses it. An existing language model is adapted to different
contexts by multiplying it by different coefficients.

Some additional improvement resulted from changing the definition of the history in the ways
listed below. Using these improvements, training was done on a collection of 750 scheduling
dialogs (155,000 words). Perplexity was then calculated on a test set of 14 dialogs (approximately
3,700 words), taking triggers into account the resulting value was 5% lower than the regular bigram

perplexity.

e A beginning history, L = {beginning}, which is different from the empty history {}, was
added as the history of the first sentence in a dialog. This causes certain words, like /i or
hello, to have a higher probability in the first sentence of a dialog.

e Once the second member of a trigger pair is encountered, the trigger is removed from the
history list. This causes the trigger pair to have a bigger coefficient.

e The same trigger cannot appear in two consecutive history lists. For example, lunch will be
in the history list obtained from Speaker 1 in the dialog of Figure 5.1, but it will not be in the
history obtained from Speaker 2.

24

Chapter 6

Parse Disambiguation

6.1. Introduction

When working on lattices the system needs to choose between parses due to differ ant recognition
hypotheses, and not just between ambiguities coming from the same hypothesis. A good and robust
scoring mechanism is needed, if then, to distinguish between such ambiguities.

6.2. Word skipping penalties

The GLR* Parser skips parts of the utterance that it cannot incorporate into a well-formed structure.
Words are assigned weights as a skipping penalty. In English a word’s penalty is computed by
comparing it’s frequency in our domain, to it’s frequency in other domains, and hence a higher
skipping penalty for domain specific words. For Spanish, a weighting heuristic that doesn’t depend
on an existence such of a general corpus was needed.

A function to compare two ILTs was derived that gives you a score rather than equal/not equal
result. To do so The possible slots in an ILT where weighted by importance. An example of a few
weights can be seen in Table 6.1. In Figure 6.1 you can see how these weights are used to return
the resulting score. Alignment is then used to compare sequences of ILTs corresponding to full
turn output.

To calculate word skipping penalties the parser was applied over all sentences of the training set
and the words where counted for if they appeared among the skipped words of the parse giving the
highest score when compared to the target ILT. Each word is then assigned a skipping probability

which is : ber of fi Kioed
. __ number of times w skippe
Pr(w skipped) = number of times w appeared
Note that it is essential to use also non perfect matches for they usually do not require any skipping.

SENTENCE-TYPE 10
FRAME 30
WHO 25
WHAT 10
WHEN 25
HOUR 30

Table 6.1 ILT slot weights

25

- " SENTENCE-TYPE *state
FRAME *booked
WHO [FRAME* I]
WHAT [FRAME *something]
FRAME *simple-time
| AR [HOUR 9
" SENTENCE-TYPE *state [SENTENCE-TYPE *state
FRAME *booked FRAME *free
WHO [FRAME* I WHO [FRAME* I]
WHAT [FRAME *something] WHAT [FRAME *something]
FRAME *simple-time FRAME *simple-time
| WHEN [HOUR 2 | WHEN | gooRg
30
Score = lotgigzi;iﬁiﬁ’; D —(.8725 Score = pyAi = (.70

Figure 6.1 Comparing ILTs

6.3. Full Turn Disambiguation

As 1 described above, the parser uses statistical scores to choose the most likely parse based on
sentence structure without taking the context of surrounding sentences into account. In this section
I describe a statistical approach that uses context to help parse disambiguation. This work involved

assigning a probability to a full turn parse given information from previous ILTs.

Given a full turn hypothesis — ILT;, ILT, ... ILT,
it could be assigned a probability by Equation 6.1.

Pr(ILTy, ILT,, ... ILT,) = Pr(ILT;) x Pr(ILT; | ILTy) ...Pr(ILT, | ILT,)

Where any n-gram approach could be used and Probabilities could be derived from the training

set of target ILTs.

My preliminary work involved checking the sentence-type and top-level frame of the

ILTs and using bigram probabilities.

Note that in this current stage of the system no unique speech-act is assigned to the ILTs and
hence cannot be used to assign probabilities. The amount of training data was not sufficient to

calculate more complex N-grams such as

Pr(ILT, | ILT,; , ILT,) =

Currently information from the past (previous speakers) turn, is not taken into account.

26

- Pr(sentence-type,, , frame, | sentence-type,_, , frame,_; , sentence-type,_, , frame,,—»)

6.4. Language Modeling of Generation Output

The output from generation could be assigned a probability as well. The generation output follows
certain forms and is restricted in style. Therefore a regular n-gram model could be applied to assign
a probability to each ambiguity of the system. The assumption here is that strange generation
output comes from “strange” ILTs, which are allowed by the grammar roles, but are not correct.
The training set for the bigram was the generation output of all English and Spanish training set
target ILTs. In order not to give preference to shorter sentences, the average word probability was
calculated and compared for every output sentence.

27

Chapter 7

Results

7.1. The integrated model

The heuristics described were integrated in a system that is outlined in Figure 7.1. Note that in
the new model no information is lost, the parser gets a processed lattice and it passes it’s best
hypotheses on for disambiguation. After post generation processing the system has a list of target
language hypotheses and the following score for each one of them:

1. acoustic score.

2. parser’s score.

3. Full turn probability.

4. Generation Language modeling probability.

All the above are combined with hand set weights and a final score is assigned to each hypothesis.

7.2. Evaluation

To test the end-to-end performance, the integrated system was run over a set of 3 dialogs (1
push-to-talk and 2 cross-talk) with a total of 62 utterances. All data was unseen by recognition
or analysis. The output was compared to the current systems output and graded by a Spanish and
English speaker. The grader was asked to grade each utterance as perfect,acceptable or bad.

7.3. Results

My system Current
My system | no domain knowledge | System | Phoenix
perfect matches | 13 12 11 6
acceptable 19 17 15 15
performance 52% 47 42% 34%

Where the ouput of my system using lattices and combining acoustic score and parse score was
added for comparesment.

28

Speech in source Language

(Recognizer }

lattice

v

[Lattice Processor]

Il B

lattice REEEEEEEEREEEEREREEE lattice
i {
GLR* Parser] {GLR”< Parser }
VR | A A R A
Disambiguation J
) { { J y { {
[Generation J
{ { {
C Languz‘lvgemodel)

Speech in target Language

Figure 7.1 System Diagram

29

7.4. Conclusion

A nice improvment of 24% increase in system performance was atchieved. One needs to take
into consideration the current limits of recognition,analysis and generation to fully understand the
reported results. My estimate is that only in around 60% of the shrunk lattices an acceptable path
exists.

Another Problem arises from the fact that the acoustic score and parse score are not probabilities
but just penalty scores and that linear weights to combine the different scores might not be effective.

30

Chapter 8
Future Work

My system takes advantage of the recognizer’s graph representation of hypotheses, to parse effi-
ciently a set of hypotheses rather than the top-best one. Currently the post-processing stage works
on the list of hypotheses given by the parser. In my future work I am interested in modifying the
parser so to get a graph representation of the different hypotheses. Anexample of suchaLattice
of ILTs can be seen in Figure 8.1. Such a representation will be very time efficient and easy to

process farther on.

ILT1) —————> ILTQ)

ILT(7)

ILT(3) ILT(6)

breaking = 0.3
ILT@4) ILTG)

acostic score = 0.46

acostic score =0.12

parser score = 0.78 parser score =0.32

Figure 8.1 Lattice of ILTs

31

Appendix A

Output From the system

A.1. Example 1

Transcribed:
pos ¢ {uh} cua’ndo cua’ndo esta’s libre ?
Recognizers top best:

+NONHUM+ PODER +H#+ SIL +LS+ QUE+ HACER ESTE ESTA+S LIBRE PARA
SIL PARA COMER

(%3% (0 1) 0.973)

(%4% (0 2) 1.265)

(%4% (0 3) 1.714)
(PUES (1 4) 11.295)
(PUES (1 5) 14.345)
(PUES (1 6) 14.345)
(POS (2 5) 13.728)
(POS (2 6) 13.728)
(POS (2 7) 13.728)
(TODOS (3 7) 13.614)
(%17% (4 8) 6.279)
(%11% (5 8) 3.188)
(211% (6 8) 3.292)
(%11% (7 8) 2.846)
(TODO (8 9) 14.871)
(CUAINDO (9 10) 13.52)
(CUAINDO (9 11) 13.52)
(cosas (10 13) 15.852)
(cosas (10 14) 15.852)
(colMo (11 12) 8.549)
(ESTALS (12 14) 8.702)
(DE (13 15) 3.806)

(DE (13 16) 4.542)

(DE (13 17) 5.694)
(LIBRE (14 18) 14.076)
(ABRIL (15 18) 10.869)
(HORAS (16 18) 9.735)
(UNA (17 18) 8.624)
(%1% (18 19) 0.831)

"WELL... WHAT IS GOOD ?"

32

A.2. Example 2

Transcribed:
pos a comer. a do’nde quieres ir a comer ?
Recognizer:

POS A COMER DOS DE QUE ES QUE COMER +NONHUM+

(%13% (0 1) 3.802)
(POS (1 2) 6.224)

(A (2 3) 3.278)
(COMER (3 4) 10.282)
(COMER (3 5) 10.971)
(COMER (3 6) 11.825)
(DOINDE (4 12) 9.015)

(DOS (5 8) 4.945)

(O (6 7) 4.102)
(DE (7 10) 3.342)
(DE (7 11) 3.342)
(DE (8 9) 2.991)
(DE (8 10) 2.991)
(DE (8 11) 2.991)

QUELl (9 13) 5.213)
TRES (10 16) 10.828)
QUE (11 13) 5.298)
QUE (11 14) 6.265)
QUE (11 15) 6.265)
QUIERES (12 16) 9.701)
QUIERES (12 18) 9.701)

(13 16) 5.017)

(13 17) 5.017)
SEA (14 20) 6.782)
SER (15 20) 6.899)
SER (15 21) 7.277)

(16 21) 3.56)
QUE (17 21) 3.769)

(18 19) 2.623)

(19 21) 1.843)
(20 22) 1.491)

COMER (21 23) 15.343)
COMER (22 23) 14.894)
%$24% (23 24) 7.95)

"WELL..." " EAT WHERE YOU WOULD LIKE TO EAT"

(
(
(
(
(
(
(
(E
(E
(
(
(
(D
(
(I
(A
(A
(
(
(%

33

A.3. Example 3

Transcription:

#beep# #rustle# si’. me parece bien, a la a las dos en punto. porque a las cuatro tengo
que #begin-mike-noise# que salir del del trabajo. #end-mike-noise#

Recognizer:

+LS+ SI+ ME PARECE BIEN A LAS +HUMAN+ A LAS DOCE EN PUNTO
PORQUE A LAS CUATRO TENGO QUE +H#+ +HUMAN+ QUE ESTA+ BIEN
EL TRABAJO +NONHUM+ +CLICK+ SIL +CLICK+ SIL +LS+ SIL +CLICK+
+NONHUM+ +CLICK+

(%95% (0 1) 23.973)
(811 (1 2) 8.979)
(ME (2 3) 3.943)
(PARECE (3 4) 14.219)
(BIEN (4 5) 9.247)
(BIEN (4 6) 11.292)
(BIEN (4 7) 11.292)
(BIEN (4 8) 11.697)
(NO (5 10) 5.28)
(A (6 11) 3.365)
(A (6 12) 3.642)
(A (6 13) 3.642)
(A (6 14) 3.642)
(A (7 9) 2.1565)
(A (7 16) 4.6595)
($73% (8 20) 24.819)
(EL (9 15) 2.1565)
(EL (10 17) 6.378)
(EL (11 17) 6.099)
($63% (12 20) 21.609)
(LAS (13 19) 8.119)
(LA (14 18) 7.064)
($61% (15 20) 20.442)
(EL (16 17) 4.6595)
(%$45% (17 20) 15.504)
(%$42% (18 20) 14.547)
(%39% (19 20) 13.606)
Parse of input utterance :
(SI1 ME PARECE BIEN $)
(%$45% (0 1) 15.504)
(A (1 2) 6.296)
(LAS (2 3) 7.101)
(LAS (2 4) 7.101)
(DOCE (3 6) 8.866)
(DOS (4 5) 8.137)
(EN (5 7) 5.65)
(EN (6 7) 4.82)
(PUNTO (7 8) 21.47)
(PORQUE (8 9) 13.549)

34

(PORQUE (8 10) 14.387)

(A (9 11) 1.557)

(LAS (10 12) 7.692)

(LAS (11 12) 7.261)

(CUATRO (12 13) 17.401)

(TENGO (13 14) 10.869)

(QUE (14 15) 8.857)

(%$50% (15 16) 18.178)

Parse of input utterance :
(A LAS DOS EN PUNTO PORQUE A LAS CUATRO $)

($50% (0 1) 18.178)

(%51% (0 2) 18.673)

(QUEL1 (1 3) 4.657)

(QUEL1 (1 4) 4.657)

(QUEL (1 7) 5.704)

(QUE (2 5) 4.536)
(QUE (2 6) 4.536)
(QUE (2 8) 5.555)
(QUE (2 9) 5.555)

(ES (3 12) 9.042)
(ESTA1 (4 10) 8.434)
(ES (5 12) 8.731)
(ESTAL1 (6 10) 8.122)
(SE (7 11) 7.623)
(SE (8 11) 7.202)
(SER (9 13) 10.11)
(BIEN (10 16) 10.454)
(BIEN (10 18) 11.653)
(BIEN (10 19) 23.07)
(VIVEN (11 20) 22.451)
(MI (12 14) 7.244)
(MI (12 16) 9.264)
(MI (12 17) 9.713)
(EN (13 19) 20.393)
(%4% (14 15) 1.993)
(EN (15 19) 13.237)
(EN (16 19) 12.805)
(%$33% (17 19) 12.541)
(%$31% (18 19) 11.678)
(EL (19 21) 5.834)
(DE (20 21) 5.996)
(TRABAJO (21 22) 21.217)
(%$116% (22 23) 38.164)
Parse of input utterance :
(QUE ESTA1l BIEN $)

"YES" "THAT IS GOOD FOR ME" "EXACTLY TWELVE O+CLOCK" "BECAUSE FOUR
0O+CLOCK" "THAT IS GOOD"

35

Appendix B

Lattice Proccessing Example

Example of the lattice proccessing on the lattice given for the sentence :

{h} twenty seventh, {uh} I have a seminar from nine thirty to four thirty. {um} I take it
the earl, any earlier in that week isn’t good for you. {h} let me see,{um} #microphone#
you’re out through June second ? did you say ? #key-click#.

Figure B.1 _Example lattice

Figure B.2 Clean lattice

36

Figure B.3 Broken lattice

37

Figure B.4 Shrunk lattice

38

Bibliography

[1] Lavie Alon. An integrated heuristic for partial parse evaluation. In ACL, 1994.

[2] Lavie Alon and Tomita M. GLR* - an efficient noise-skiping parsing algorithm for context-
free grammars. In Third International Workshop on Parsing Technologies, 1993.

[3] Black Ezra. Towards history-based grammars : Using richer models for probabilistic parsing.
In ACL 31, 1993.

[4] Jelinek Fred. Up from trigrams. In Eurospeech-91, 1991.

[5] Alexandersson J., Maier E., and Reithinger N. A robust and efficient three-layered dialogue
component for a speech-to-speech translation system, 1994.

[6] Raymond Lau, Ronald Rosenfeld, and Salim Roukos. Trigger-based language models: a
maximum entropy approach. In ICASSP, April 1993.

[7]1 Lambert Lynn. Recognizing Complex Discourse Acts:A Triplate Plan-Based Model of
Dialogue. PhD thesis, University of Delaware, 1993.

[8] Nagata Masaaki. An experimental statistical dialogue model to predict the speech act of the
next utterance. Technical report, ATR, 1993.

[9] Tomita Masaru. An efficient word lattice parsing algorithm for continuous speech recognition.
In ICASSP 86, Tokyo, 1986.

[10] Brown Peter. Maximum entropy methods and their applications to maximum likelihood
parameter estimation of conditional exponential models. Technical report, IBM, 1990.

[11] Ronald Rosenfeld. Adaptive Statistical Language Modeling: a Maximum Entropy Approach.
PhD thesis, Carnegie Mellon University, April 1993.

[12] Young Sheryl. Towards habitable systems: Use of world knowledge to dynamically constrain
speech recognition. Technical report, CMU, 1988.

[13] Young Sheryl. Using dialog level knowledge sources to improve speech recognition. In
International conference on Al, 1988.

[14] Young Sheryl. Using pragmatic and semantic knowledge to correct parsing of spoken language
utterances. In Eurospeech-91, 1991.

[15] Young Sheryl. Using semantics to correct parser output for atis utterances. In DARPA speech
recognition workshop, 1991.

[16] Morimoto T. Linguistic knowledge for spoken dialog processing. In ICSLP-90, 1990.

39

[17] Takezawa T. Atr hmm-Ir continuous speech recognition system. In /ICASSP-90, 1990.

[18] Monica Woszczyna, Alon Lavie, Tomas Polzin, Ivica Rogina, Bernard Suhm, and Alex
waibel. Janus 93: Towards spontaneous speech translation. In ICASSP, 1994.

[19] Chow Y. and Roukos S. Speech understanding using a unification grammar. In /CASSP 89,
1989.

40

