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Abstract

Statistical machine learning usually requires extensive corpora for training. In the case of

Machine Translation (MT) these corpora consist of large amounts of parallel texts in the

chosen source and target languages. Since acquiring corpora is usually time-consuming

and expensive, especially in the case of exotic language pairs such as Vietnamese- In-

donesian, a third pivot language is sometimes used for a pipelined translation. I.e. a

source language will be translated into the pivot language �rst, with the result �nally be-

ing translated into the actual target language. However, in a straightforward pipelining

systems like this the second MT system will tend to reinforce errors made by the �rst,

leading to an overall poor translation quality.

In this work we attempt to transfer the idea of pipelining to the model level and com-

bine this approach with an interlingua representation of language, leading to a multilin-
gual neural network based discriminative word lexicon (NNDWL). These models

are trained on various language pairs and are capable of translating between languages

even without having seen any sample sentences from that speci�c pair. Our pro-

posed multilingual architecture was able to outperform a simple pipelined unilingual

NNDWL. Compared to unilingual NNDWL, which used translated sentences from source

to intermediate language as input, the multilingual counterpart resulted in similar trans-

lation quality. If only the intrinsic objective function is considered, the error rates were

even nearly identical.

This approach allows for translation between rarely looked-at languages without hav-

ing to train a dedicated MT system for the speci�c pair. Moreover, using such a simple

model, the system is already capable of generating a translation fairly quickly. In future

works, we would like to adapt the concept to more complex models, in order to improve

the overall translation quality. In addition, the system could be extended via additional

languages and input modals, forcing the model to learn abstract or interlingua represen-

tation from the input data .
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Zusammenfassung

Statistisches maschinelles Lernen benötigt für gewöhnlich große Trainingskorpora. Im

Falle der Maschinellen Übersetzung (Machine Translation, MT) bestehen diese Korpora

aus zahlreichen Paralleltexten in der gewählten Quell- und Zielsprache. Da das erstel-

len solcher Korpora zeit- und kostenintensiv is, insbesondere im Fall exotischer Sprach-

paare wie z.B. Vietnamesisch-Indonesisch, wird manchmal eine dritte, sogenannte Pivot-

Sprache verwendet um eine sequentielle Übersetzungs-Pipeline zu scha�en. D.h. die Quell-

Sprache wird zuerst in die Pivot-Sprache übersetzt, und das Ergebnis dieser ersten Über-

setzung dann in die eigentliche Zielsprache. Allerdings neigt das zweite MT-System in

solch einer Pipeline dazu, Fehler des ersten Systems zu verstärken, was zu einer insge-

samt schwachen Übersetzungsleistung führt.

In dieser Arbeit versuchen wir, das Konzept des Pipelining auf die Modell-Ebene zu

übertragen und diese Herangehensweise mit einer Interlingua-Repräsentation zu verbin-

den. Dies führt zu einem Modell welches als multilinguales, neuronale Netz-basiertes
Diskriminatives Wortlexikon (NNDWL) bezeichnet wird. Diese Modelle werden auf

verschiedenen Sprachpaaren trainiert und sind in der Lage, zwischen Sprachen zu über-

setzen ohne Trainingsbeispiele des spezi�schen Sprachpaars gesehen zu haben. Die

vorgeschlagene multilinguale Netzwerkarchitekturen übertrafen ihr intuitiv kombinier-

tes Gegenstück (pipelined NNDWL). Im Vergleich zum unilingualen NNDWL, welches

die übersetzten Texte aus dem ersten MT-system im Pipeline verwendet, wurde von multi-

lingualen Modellen eine ähnliche Übersetzungsqualität erzielt. Gemessen an verwendeter

intrinsischen Lernzielfunktion waren die Fehlerraten sogar nahezu identisch.

Diese Herangehensweise erlaubt es, zwischen sonst selten betrachteten Sprachen zu

übersetzen, ohne ein MT-System für genau dieses Sprachpaar trainieren zu müssen. Über-

dies ist das System mit einem solch simplem Modell bereits in der Lage, relativ schnell eine

Übersetzung zu generieren. In zukünftigen Arbeiten möchten wir das Konzept auf kom-

plexere Modelle übertragen um die Übersetzungsleistung zu erhöhen. Zusätzlich, könnte

das System mittels zusätzlicher Sprachen und Eingabemodalitäten erweitert werden, um

es so zu zwingen eine abstrakte oder Interlingua-Repräsentation aus der Eingabe zu ler-

nen.
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1. Introduction

Contrary to the expectations that arose from the Georgetown Experiment in 1954, the

machine translation problem had not been solved "within a couple of years". Research

focus �rst shifted from direct to transfer approaches and �nally to studying interlingua

representations, such as bi-directional grammars from which sentences in a target lan-

guage could be generated. However, due to the complexity of natural languages and the

resulting di�culties in formalising them, in the late 1980s statistical machine translation

(SMT) experiments carried out by the IBM Research labs soon outperformed previous

approaches. This approach is still widely utilised in both commercial and research appli-

cations.

As is usually the case for machine learning problems, SMT requires a large amount of

training data i.e. parallel texts in the chosen source and target languages. Hence, data

sparseness is one of the most pervasive issues to be overcome in order to produce high

quality translations. Unfortunately, this data sparseness is quite common with rare lan-

guage pairs such as Indonesian-Vietnamese. One possible solution that does not require

additional e�ort is the usage of a pivot language, for example English. Since there is

usually a much larger quantity of aligned parallel text available for English than for other

languages this allows for training two systems - one that translates from the source lan-

guage to English, and one that translates from English to the actual target language.

Nevertheless, in a simple pipeline, the second Machine Translation system often rein-

forces errors made by the �rst, leading to an overall poor translation quality. Moreover,

since the pipelining happens on the system level, the models in each MT-system only

employ bilingual data. Therefore, the possible information gain from using multi-lingual

data is not fully realised. So the question is, how could the models be adapted to properly

utilise the data available in this scenario?

First, consider the research area of Deep Learning. "Deep" Neural Networks have

been applied successfully to problems in Natural Language Processing, Speech or Object

Recognition tasks etc. Although they are not well understood, they outperform many

other state-of-the-art approaches in their respective �elds. Recently, in [7] an e�ective

translation model, the so-called Discriminative Word Lexicon was designed using a very

simple, fully connected neural network architecture. Although discarding the syntactical

information present in the data, it can still be considered a good starting point to observe

the e�ects of adapting a model to a multilingual use-case.

1.1. Contribution

The approaches presented in this master thesis draw upon the work on Neural Network

based Discriminative Word Lexicon (NNDWL) in [7]. On one hand, the NNDWL is eas-
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1. Introduction

ily accessible and implementable in legacy Machine Learning Framework due to its sim-

plicity. On the other hand, it takes into account long-range context, which make it less

correlated/related/comparable to other modern models for MT.

Based on this model, we propose two types of Multilingual NNDWL, which were

both able to translate from various source to various target languages. They made use of

the large amount of available bilingual parallel data by implementing the idea of pipelin-

ing translation on the model-level and outperformed the intuitive system-level pipeline

architecture. For training, no sentence aligned corpora of the source and target languages

were required. The model can be used as a stand-alone translation model, without the

need of using more complex MT-systems in the background. Furthermore, an important

advantage of this approach is the capability of a single model to translate from/to various

languages.

If combined with more complex translation models, a light-weight multilingual MT-

system can be created which might be capable of translating sentences from various

source languages within a small time frame on very limited hardware. Furthermore, the

proposed approach can be extended to learn from an arbitrary number of source and

target languages, making the model more language-independent. Moreover, multimodal

inputs could also be incorporated in similar ways to enable the learning models the ex-

traction of abstract representation from information.

1.2. Structure of this work

In chapter 2 we will give a short introduction to modern SMT as well as Deep Learning.

These are prerequisites for understanding core concepts of recent research on the topic,

such as Discriminative Word Lexicon or its neural network based counterpart NNDWL,

which are presented in chapter 3. Since the approaches provided in this thesis were based

on multilingual NNDWLs, chapter 4 will explain the underlying idea in detail and com-

pare the multilingual approach to those using monolingual models. Here we also explain

why the changes made in the training procedure of the proposed architecture was neces-

sary. In chapter 5 these models are evaluated by measuring internal learning objectives,

as well as translation quality achieved by applying them to an actual MT-system. Fur-

thermore, experiments utilizing various training methods will explain the evolution of

the according model clearly. Finally, we summarize our work in chapter 6, providing a

short discussion of the inferred knowledge and showing research opportunities for future

works.

2



2. Background

2.1. Statistical Machine Translation

The statistical approach needs parallel corpus from source to target language for training.

More precisely it requires at least parallel sentences, which will be automatically aligned

on word (and often phrase) level. In contrast to the initially developed, rule-based ap-

proaches in Machine Translation, such a system assigns probability to a certain number

of di�erent hypothesis, given a word sequence in the source language. The most probable

candidate will be outputted as the �nal translation of the MT-system. State-of-the-art sys-

tems are based on statistical approaches, which are built upon various features to generate

and score hypothesis e.g. Language Model, Translation Model, Phrase Model, Reorder-

ing Model, Word Lexicon etc. Those are combined using a log-linear-model to produce a

single score, which shall approximate the desired probabilities.

Advantages of the statistical approaches are their minimal requirement of manual ef-

fort and therefore its scalability , transferability to other language pairs, ease of combin-

ing di�erent models by using a Log-Linear-Model. Moreover translation quality can be

improved by increasing computation speed and amount of data. However, compared to

ancient systems using prede�ned rules or transitional memory, much more parallel data

(and usually computing power) is required.

2.1.1. Bayesian and Log Linear Model

In order to choose a most probable translation for a given sentence f I , one can assign

the likelihood of all translation hypothesis e J due to Bayesian equation for conditional

probability as follows:

p (e J | f I ) =
p ( f I |e J ) ∗ p (e J )

p ( f I )
(2.1)

p ( f I ) describes the probability of the given source sentence and is constant during the

maximization process. Hence, the equation simpli�es to:

emax = arдmaxe
p ( f I |e J ) ∗ p (e J )

p ( f I )
= arдmaxep ( f

I |e J ) ∗ p (e J ) (2.2)

In order to determine the real underlining distribution structures, in�nite amount of data

is required, which is not true in practice. Thus, one can just use approximation of those

structures, which always di�er from the real models. Depending on the system design,

data and the task, the model which produces p ( f I |e J ) could be more correct and relevant

3



2. Background

than the other model or vice visa. A simple approach to address this problem is assign-

ment of arti�cial weights to those probabilities, which will be optimized in the end using

development data. The equation therefore changes into a log-linear form:

emax = arдmaxep ( f
I |e J )λTM ∗ p (e J )λLM = arдmaxeλTM logp ( f I |e J ) + λLM logp (e J ) (2.3)

As a generalization of the previous approach, a Log-Linear-Model can be extended by

features, which address various, relevant aspects of an appropriate translation, such as

word counts or orders etc. Generally speaking, the equation can be re-formulated to:

emax = arдmaxe

i∑
0

wihi ( f
I ,e J ). (2.4)

where hi ( f
I ,e J ) are scores produced by feature model i, based on the source sentence

and target hypothesis and wi are the weighting factor for those scores. In the next steps,

several most important features will be explained.

Translation Model Given a word sequence in source language, it computes the proba-

bility of a hypothesis in target language. This can be calculated by using translational

probability of word pairs (in a word table) or phrase pairs (phrase table) and additional

assumption about independence among sentence fragments to combine them by multi-

plying. Such a model produces p ( f I |e J ), which was mentioned before.

LanguageModel It controls the sentence’s �uency. Concretely, it approximates the like-

lihood of a given word sequence in the target language. Considering the above Bayesian

formula, it is responsible for producing p (e J ). Usually, the probability of the hypothesis

will also be taking into account as an additional feature for a modern MT-system.

Reordering Model Even correctly aligned phrases or words are not supposed to be at

the same positions in source and target language, due to grammatical variation. The

reordering model learns from training data how to arrange words in the target language

properly. Afterwards, It can be used to generate hypothesis and score them due to their

order’s suitability.

2.1.2. Rescoring

Instead of incorporating new features into the generation process of the n-best list, new

models can directly be used in the rescoring phase. Finding the weighting factors in

the log-linear-combination of di�erent feature models in 2.4 is called rescoring. In each

iteration, the candidates from n-best list are re-ranked due to weights factors updates,

which are derived from comparing current n-best-list ranking to target sentence corpus.

By adding the new model to this process, more complex and computationally expensive

models can be easily included. Usually, Minimum Error Rate Training is the traditional

4



2.1. Statistical Machine Translation

and most popular algorithm for statistical machine translation [22]. However, newer im-

proved methods, such as MIRA in [4] and [16] and PRO in [10], have been presented in the

last years. One of them, the ListNet algorithm as introduced to MT in [21] is a promising

technique; it was reported to improve the BLEU score up to 0.8 points and outperform

MIRA, PRO and MERT by up to 0.3 points.

While MERT can be grouped into the point-wise and PRO into pairwise techniques,

ListNet considers the entire list of feature models. It is applicable on more complex fea-

ture combinations than the log-linear variant and scales well even on a high number of

models. In ListNet for MT, a derivable loss function was designed, that measures the dif-

ference between probability distribution function of referenced and hypothesized ranking

by using cross-entropy. It can be computed as follows:

Loss (y (i ),z (i ) ) = −
n∑
j=1

Py (i ) (j ) log(Pz (i ) (j )) (2.5)

Whereby i stands for the i−th candidate in the generated n-best list, y for reference and z
for hypothesized score of corresponding candidate. Furthermore, n is the total number of

di�erent feature models, Py (i ) (j ) is the reference probability of the j-th model to be the �rst

ranked one. In analog way, Pz (i ) (j ) speci�es this probability due to current hypothesis.

Since this equation is partially derivable, optimization can be done using Stochastic

Gradient Descent.

2.1.3. Evaluation metrics BLEU

BLEU-scores are automatic metrics to measure the translation quality of a statistical sys-

tem and one of �rst metrics showing high correlation to human-evaluated translation

quality. It could be determined using following equation:

BLEU = min

(
exp

1− r
c ,1

)
exp(

N∑
1

wn logpn ) (2.6)

with r and c being the reference and candidate sentence’s length, N maximal number

of n-grams being considered, wn weight for each n-grams-score pn, which are computed

using precision scores on candidates, based on the reference list. Applying the logarithm

function to the equation upon, it leads to:

logBLEU = min

(
1 −

r

c
,0

)
+

N∑
1

wn logpn (2.7)

For more detailed explanation, please refer to [24]

2.1.4. Pivot translation

There exist about 5000 di�erent languages on earth. In order to provide direct translation

from a language A to B, (5000 ∗ 5001/2) di�erent pairs have to be considered. Unfortu-

nately, it is extremely di�cult to acquire parallel data for a seldom used language pair,
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2. Background

such as e.g. Indonesian - German. A a�ordable approach makes use of an interlingua,

intermediate language, which is more widely spread, such as English. In that case, the

process is called "pivot translation", because the text will be �rstly translated to the pivot

language, and afterwards into the given, desired target language. The advantage of this

approach is the dramatic reduction of the language pairs, which only have to be consid-

ered.

However, keeping in mind, that the Machine Translation problem is not completely

solved and therefore the state-of-the-art systems still produce signi�cant errors, those

will be reinforced by pipelining 2 di�erent MT-Systems to a single one.

2.2. Neural Networks

2.2.1. History of Deep Learning

Deep Learning has become popular in the last few years. Although Neural Networks were

continuously developed, their popularity in recent researches was thank to the work of

Hinton and his group in 2006. They enabled deep belief networks by training layer-wise

greedily in [8]. Along with increasing computing power and cheaply a�ordable memory

spaces, the trend of Neural Networks moves towards being larger, deeper and useful in dif-

ferent research �eld of interests, e.g. Natural Language Processing, Image Processing and

Object Recognition tasks. In 2012, a deep convolutional network architecture, provided

by Alex Krizhevsky et al. [15], outperformed state-of-the-art image recognition systems

on the popular Image-Net-Tasks, and reduced the error rate until this time from about 25

% to the half. Since then, this special architecture is often referred as "Alex-Net", which

is widely adapted by many researchers from di�erent �elds, like Natural Language Pro-

cessing and Machine Translation as well. However, despite of not understanding exactly

how neural networks could perform extraordinarily, neural networks architecture are in

many cases a good decision of choice [1], when it comes to classi�cation or regression

task.

2.2.2. Network components

Many hyper-parameters have to be chosen for a neural network. For example, how many

layers and neurons seem appropriate, how values should be forwarded through the net-

work, which activation functions and learning algorithm should be used etc. This work

only concentrate on some important components and aspects of Neural Networks. For

detailed explanation, please refer to [1] and [2].

2.2.2.1. Network layers and their hidden units

In general, the larger, deeper the network is, the better the networks performance on

training data would be. However, increasing the learning ability of a network does not

necessarily lead to better generalization on not-seen data. This problem is known as Over-

�tting, i.e. the network is so well adapted to the training data, that it only performs very

poorly on test data. Moreover, a more complex model means additional training time.
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In the other direction, under-�tting can also occur. If the network is too simple, it

might not be able to model the real, hidden structure of the given problem. Choosing a

appropriate architecture along with their hyper parameters is the most di�cult part in

using neural networks. It requires di�erent strategies and many empiric experiments.

A good design decision might be the usage of bottleneck features, which is done by

adding a small layer (i.e. with a low number of hidden units, relatively to the count of

neurons in neighboring layers) to the middle of the network. This way, the network can be

forced to learn more meaningful representation of input data, which could lead to better

overall performance. [7]. In this work, we oriented to previous researches in related �elds

and attempt to keep the network architecture as simple as possible.

2.2.2.2. Activation function

Sigmoid The Sigmoid-function is de�ned as

siдmoid (x ) =
1

1 + exp (−x )
(2.8)

The output lies between 0 and 1. It is useful to avoid out of range problems, once used

in combination with Cross-Entropy or NLL-Criterion. However, by using many Sigmoid-

activation function in a deep network, the vanishing gradient problem can occur.[1]

Tanh It can be easily shown, that Tanh is a re-scaled version of Sigmoid.

tanh(x ) = 2д(2x ) − 1 (2.9)

The relevant aspect lies in the derivative function of Tanh, which is due to delta rule

4 times higher than Sigmoid’s derivation. Hence, by using Tanh, one might does not

increase the vanishing gradient problem as Sigmoid does.

ReLU It is a partially linear unit, whose use does not reinforce the vanishing gradient

problem as the 2 previous ones. It became popular through the work in [15], which lead

to nearly 50 % error’s reduction of the state-of-the-art systems in 2012 .

ReLU (x ) =max (0,x ) (2.10)

2.2.2.3. Objective function

MSE Minimum squared error for 2 vectors X ,Y is computed as follows:

MSE (X ,Y ) = | |XY | |2 =
∑
i

(xi − yi )
2

(2.11)

It is well-known to be slow once applied to learning algorithm such as stochastic gradient

descent.

7
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Binary Cross Entropy For classi�cation tasks, where there are only binary values, BCE is

usually more preferred. It can be described as:

BCE (X ,Y ) =
∑
i

−(xi ∗ loд(yi ) + (1 − xi ) ∗ loд(1 − yi )) (2.12)

For more classes, a generalization of BCE, namely Negative Log Likelihood (NLL) can be

considered. Please refer to [1] for more detail.

2.2.2.4. Learning Algorithm

The most popular and widely used method is Stochastic Gradient Descent (SGD) in com-

bination with Back-Propagation. The later is a generalization of the delta rule; which

computes the error gradients for each component of the neural network, given an in-

put vector and w.r.t to a target vector. In SGD, based on those results on a given input

sequence, parameter updates can be performed by moving them towards the direction,

which is expected to reduce the error rate the most. This is done by choosing the oppo-

site direction of the error gradients. [1] Implicitly, SGD make use of those result from one

single training sample to approximate the real gradient-vector of the network w.r.t the

given training data set. This process will be executed over a certain number of iterations,

until the error rate is satis�ed or the maximum number of epochs is exceeded.

2.2.3. Theoretical aspects about learning

Theoretically, by increasing neural network’s complexity, the approximated function can

be more complicated. However there are two di�erent aspects to be considered here:

• Traditional learning approaches such as SGD could fail on very deep fully-connected

neural network architectures. Although it is possible, an normal optimization pro-

cess without any special mechanism results in an dead end of the parameter spaces

i.e. even the training errors stay high, w.r.t. less complex networks. To face that

problem, one could restrict the parameters spaces by using regularization mecha-

nism (such as convolutional architecture) or LSTM [9] in case of in�nite depth.

• From the theoretical point of view, the capability of a machine learning algorithm

can be expressed using the Vapnik-Chervonenkis-dimension. For example, a deep

network with a high number of free parameters is able to approximate very complex

functions and has therefore a large VC-Dimension. By using this metric, the error’s

upper bound on test data can be approximated. Unfortunately, the higher the VC-

dimension of an algorithm is, the larger its errors upper bound is. [27]. Hence,

on one hand, it is reasonable to perform restrictions on the network to reduce it’s

capability, on the other hand, avoid under-�tting caused by a too simple model.
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3.1. Discriminative Word Lexicon

Traditional features in a phrase-based MT-systems only make use of the bilingual context,

which is bounded by the phrase’s length on source and target side. Hence, in [17] and later

in 2013 in [20] improvement of translation quality could be achieved by using the whole

source sentence to predict target words. They proposed linear Maximum-Entropy models,

which translates a sentence to a target language, given its source sentence. Furthermore,

by extending the model with syntactical feature and feeding back errors from MT-systems,

the quality was improved by up to 0.8 BLEU points.

More precisely, given a sentence from a certain source language, the Discriminative

Word Lexicon predicts probabilities for words to appear in the target sentence. For each

word, a single Maximum-Entropy model was trained. For this purpose, the training sen-

tences from input language were described as bags-of-words, indicating which words

from the vocabulary actually appears in the sentence. More formally, let s be the in-

put sentence, s = s1s2 . . . sn that comprises n-words. The representation is described by

F (s ) =
{
fw (s ) |w ∈ source vocabulary V

}
with:

fw (s ) =



1 if w ∈ s

0 if w < s
(3.1)

On the target side, labels are generated in similar way, using:

labeltj (s,t ) =



1 if tj ∈ t

0 if tj < t
(3.2)

whereby the target sentence is described as t , and tj are words of the target language’s

vocabulary. After training one linear ME-model for each target words, p (tj |s )- the their

conditional probabilities given a certain source sentence, can be approximated. Assuming

all target words being independent, a sentence’s probability can be computed by multi-

plying individual values of it’s words:

p (t |s ) =
∏
ti∈t

p (ti |s ) (3.3)

By applying this approach, multiple occurrence of words will not be taken into account.

However, since this method requires additional book-keeping which words were already

considered and which not, a more e�cient approximation of the previous equation was

provided, with J being the targets’ sentence length:

p (t |s ) =

J∏
i=1

p (ti |s ) (3.4)
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The proposed models addressed long-range-context, since the entire source sentence was

taken into account. However, structural information was dismissed, the input represen-

tations contain no word positions or similar features. Hence, the authors introduced ad-

ditionally bags-of-ngrams, which were used to encapsulate small context of sentence’s

meaning. This was implemented in similar manner to bags-of-words, as in 3.1 and 3.2

Additionally, MT-errors were fed back to generate negative examples, leading to overall

improvement of up to 0.8 BLEU points.

3.2. Neural network based Discriminative Word Lexicon

Motivated by results from [20] and popularity of Deep Learning methods, Ha in [7] ap-

plied multilayer neural network in order to replace the Maximum-Entropy model in the

original DWL. He studied the impact of di�erent quite simple architectures, which were

intended to achieve bottle-neck-features. Overall translation performance was improved

by up to 0.5 compared to the traditional DWL. By his work, the potential of Neural Net-

works w.r.t. improvement of translation’s performance was shown up, which can be fur-

ther exploited by using di�erent, more complicate word representations, better adapted

architecture e.t.c.

Similar to the traditional NNDWL, bags-of-grams representation was used. The bi-

nary numbers were arranged into a vector v (s ) ∈ 0,1|V | with V being the vocabulary, s
the sentence to be mapped. For the target side, v (t |s ) can be derived in similar manner.

However, since the vectors were extremely sparse due to |V | >> |s |, there were nega-

tive e�ects on computation-time as well as memory-usage. Hence, the vocabulary was

restricted to a certain number of most frequent words, with an additional placeholder for

all other unknown words.

The model itself is shown in Fig. 3.1. It is symmetrical and the H2 layer was supposed

to be the Bottle-Neck-Feature (BNF) layer, by owning signi�cantly less neurons than the

neighboring layers. Except for the output layer, all layers were fully connected to its

subsequent layer. Activation in the i − th layer can be calculated as follows:

O (i ) = σi
(
W iT

(
Oi−1

))
(3.5)

With W i
being the weight matrix, σi the activation function, that was applied element-

wise on the vector.

From a theoretical point of view, more complex dependencies can be modeled using

a neural network than linear Maximum-Entropy models. Furthermore, parameters were

shared among di�erent target words by training only one single model, instead of one

model for each word. This could be one of the reasons for improvement as shown in this

work. Moreover, because of it’s simplicity, training and evaluation process can be done

very e�cient, require no signi�cant increase computation time.
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Figure 3.1.: Neural network based Discriminative Word Lexicon from [7]

3.3. Possible Extensions

3.3.1. In- and output representations

In order to apply a neural network to a typical Natural Language Processing problem like

translation, the �rst step is to decide, how the raw texts can be mapped into a real-valued

representation. Usually, this question is broken down to the representation of sentences,

whose aggregation corresponds to the entire text. However, this decision depends on

di�erent aspects, such as the task, available hard- and software resources.

Bags-of-words The easiest but still very e�ective approach is using one-hot-vectors rep-

resentation for words. By combining them, as used in [7], the resulting, constant-sized

vectors only indicate if the words from corresponding vocabulary occur in the a sentence

or not.

However, since the vocabulary may contain a huge amount of di�erent words, it can

cause memory and e�ciency problems. This would slow-down experiments with di�er-

ent architectures, especially the hyper-optimization process. However, this approach is

still preferred over some other representation like by using a binary vector. An important

of such a one-hot vectored representation is the equidistance from each word pair in the

vocabulary, which is not the case for binary vectors. A small distance between two un-

related word vectors could be interpreted as a strong connection between those two on
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some level, which might lead to huge negative impact on the training process and lastly

the overall performance of the network.

Vector of word indexes Instead of using any prede�ned word mapping, it is also possi-

ble to represent a sentence by a vectors of learn-able word embedding. The represen-

tation task can be transferred to a learning algorithm, for example a neural network.

Let s be the sentence that has to be transformed, v (s ) the corresponding mapping, V
the vocabulary,v (s )i the i-the element of vector v (s ). A sentence is then described as :

v (s ) ∈ {0,1} |s |,v (s )i = position of s[i] in V . I.e it is represented by it’s words’ indexes.

However, since the vector size is not �xed due to variable sentence length, traditional

fully connected network is not applicable. In combination with mechanism such as con-

volutional network layer, this can be e�ectively be solved.

Additional features In additional to the bag-of-words features described before, it is also

possible to represent a sentence by semantic preserving features like bags-of-n-grams or

syntactical models e.g. Part-of-Speech-Tags etc. Nevertheless, to keep the essence of this

work clear and simple, the main approaches are restricted to the use of bags-of-words-

features.

3.3.2. Convolutional architecture

Convolutional Networks i.e. those, which owns at least one convolution layer, received

increasing attention due to the fact, that they were the �rst, working deep architectures

at all [1]. They have gained more attention after their work in [15], the proposed network

reduced state-of-the-art error on the MNIST-dataset by the half.

Also known as Time-Delay-Neural-Networks (equal to convolutional network if the

convolution operation is done through time), in 1989, this approach was developed in

[28] for phoneme recognition. Firstly, instead of being dependent on the whole previous

layer, each neuron’s activation in the second layer is only in�uenced by input neurons

within a small window. Secondly, for the next sequence of neurons, the applied weights

are the same as before. In the other word, the previous was just slided to the next time

unit along the signal. In total, this time-delaying-operations were performed at 2 hidden

layers, which was followed by a summing-over-time operation.

Because of the special way of weight sharing, the proposed network resulted in tran-

sitional invariance and computational e�ciency, since less free parameters remain to be

trained. Thank to speci�ed window size, a time context could be encapsulated which

only seem to be relevant for production of a phoneme. Due to the pooling operation at

last layer, it can even handle variable-sized inputs. However, due to the limits of compu-

tational power and available data at that time, the networks used were small compared

to nowadays approaches.

Those ideas were adapted and applied to word tagging tasks from NLP by Collobert

in [6]. The proposed network contains a layer for learning word-embedding, one con-

volutional layers and 2 fully connected layers as well. In detail, the input sentence was

�rstly transformed into a high dimensional spaces, spanned by it’s word representations.
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Afterwards, convolution �lters were used, followed by a Max-pooling-layer. The output

are then transformed using 2 linear combinations layers and their activation functions.

However, despite its reported performance, convolution can be seen as a kind of regular-

ization, which can be too strict and hence cause under-�tting due to [1].
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4. Multilingual NNDWL

4.1. Idea

When providing an automatic translation system for a seldom language-pair by pipelin-

ing 2 systems via a pivot language, all applied features are restricted to the usage of the

corpora from their corresponding language pair. In other words, the usage of multilingual

data is happening on higher level of MT-Systems rather than of the models. Would it be

desirable to incorporate multilingual information into the models directly to built up just

a single MT-system ?

However, integrating multilingual information into all model used by state-of-the-art

system is not a trivial task and perhaps not meaningful. In order to examine the e�ect, we

started by investigating a simple, easily modi�ed feature. The central idea of this work

is to design a translation model, that pro�ts from availability of parallel data in di�erent

languages. They can be used to enable the model to learn abstractions over them, leading

the model to be language-independent.

In order to implement the idea, NNDWL was extended to �t the multilingual use-case.

Traditionally, once the input vectors from a certain language are provided, the network

produces activation in the hidden-layers, which are then combined to output correspond-

ing word probabilities. In a general point of view, it is forced to learn to translate from a

certain language to another. Now, imagine the situation, when it has to learn translations

from high number of input languages to the original target language. Since the number

of free parameters has not increased, the network has to come up with internal repre-

sentations, which are valid for all input languages. When output language also varies,

the networks’ activation at hidden layers also have to be adjusted to abstract over them.

In short, by sharing knowledge among di�erent languages, the model’s bias to a certain

language might be reduced, hence making it language-independent.

This idea can be extended to make the models being not only language but also modal

independent. For example, audio or image input can also act as inputs , since deep learning

models have been reported to perform well on tasks from image and audio processing.

4.2. Contribution

4.2.1. Network architectures

4.2.1.1. Unseparated Joint model

The Neural network based Discriminative Word Lexicon model in Fig. 4.1 from [7] is lim-

ited to usage of parallel data from 2 language only. Given a sentence from the original
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Figure 4.1.: NNDWL similar to [7]

side, it can be translated to a target language. If data from a di�erent, third language is

also available, it can not be fed into the network without any modi�cations, since the lan-

guage’s vocabulary cannot be the same. It’s widely known, that no one-to-one, bijective

word mapping exists between any language pair. Therefore, the place-holder neurons for

a certain language, namely the input and output neurons in a traditional NNDWL, cannot

be reused for another one.

This leads us to the architecture in �g 4.2, where in- and output neurons are divided

into di�erent sets, each responsible for a sentences from a certain language. This �gure

shows a model, which at least can process input from 3 di�erent languages to produce

also 3 languages. The number of in- and output neurons is now increased to 3∗m whereby

eachm-sized set of neurons is reserved for it’s corresponding language, indicating by Ili ,
i ∈ {1,2,3}. In this way, the network is able to handle data from di�erent languages,

without adding free parameters in the middle layers. Only at the in- an output layers, the

number of weight parameters is now:

|weiдhtsParametersinput&output | = |lanдuaдes | ∗m ∗ h ∗ 2 (4.1)

m is the number of neurons assigned to each language and h size of hidden layers 1 and

2.

Network activation The next important question is, how the network can be used in our

task. In such an architecture, inputs from 3 di�erent languages are always required to

produce any output vectors. The same is valid for the target side, once the error rate
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need to be computed. However, remind that in our task, the 2 available corpora for l1 − l2
and l2 − l3 are completely disjunct. In other words, there exist no input sentence, that

is available in all 3 occurring languages. For example, if the network shall be trained

from a sentence from l1 − l2, it is desirable to active the part of the network only, which

are relevant. In this situation, activation of neurons from Il2 , Il3 as well as Ol1 ,Ol3 have

to be suppressed. This can be done by zero-padding the original input and target data.

Furthermore, the error rate computed has to refer to the corresponding neuron set only (

Ol2 in this example)

Pro and Cons The middle layers (more precisely the weights vectors between them) are

shared among all languages, making the model not only multilingual but also in some way

language-independent. By applying this simple extension, the model’s bias to a certain

language can be reduced. Moreover, in a translation pipeline for l1−l2−l3 instead of taking

some noisy translated sentences from a MT-system for l1 − l2 , this model can translate

from l1 to l3 directly. How this knowledge can be learned implicitly will be topic of 4.2.2.

On the other hand, the number of introduced parameters can not be neglected. As-

suming m = 5000 and h = 1000, according to 4.1, the total amount of weights at input

and output layers is: 15 millions for 3 languages instead of 5 millions. This would lead to

much higher training time than usual. Another issue might be the language-dependent

part, which is only reserved for each language. That is, at the input layer, relating to l1 for

example, only the linear combination part, spanned by 5 millions di�erent weight factors

in our example. The language-independent part might fail to abstract over languages, if

the chosen mapping can not be compensated by previous layers.

In summary, the proposed architecture is 5-layers deep, the 3 hidden layers are sup-

posed to be shared across languages and therefore language-independent, the input and

output layers comprises di�erent sets of neurons, whereby each set can only accept sen-

tence from a certain language. Since the language dependent part only consist of a simple

linear combination, it might be a too strict regularization, which causes under-�tting in

the learning process w.r.t. the task. The name unseparated was chosen because of the

forms of hidden layers in this approach.

4.2.1.2. Separated Joint model

The previously proposed architecture might have an possible weakness: the language

dependent part of the network only includes a linear combination of neurons’ values.

However, since the correlations of sentence mappings of languages are highly non-linear,

the models’ modeling capacity can be too weak. Moreover, the language-independent

part could become biased to one of the input languages.

This e�ect was reported in experiments with a neural network for multi-modal learning

in [18]. By applying a similar architecture to audio and video data simultaneously, the

independent layers tend to be strongly attracted by one of those two input modal. To face

this problem, the authors extended the modeling capacity of the modal-dependent part

by adding one additional, fully connected layer. In this way, the correlation among inputs

mappings could better be modeled. Since the hidden layers are also divided into di�erent

parts, this model is identi�ed as Separated Joint Model
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Although the data and the task di�er from those in [18], theses ideas could be adopted

to the current task. By increasing modeling capacity not only at input, but also at output

layers, it lead to the network architecture in Figure 4.3. This way, the �rst and last two

layers of the network are separated into di�erent parts, which belongs to the correspond-

ing languages. Due to this change, the only language independent part consist of the

middle, bottle-neck layer, which is shared among all languages. So more free parameters

remain left for each language’s input. Notice that while the number of neurons at the 3.

hidden layers stays constant compared to the �rst proposed joint model, the number of

neurons at the �rst and third hidden layer is increased by 3. Intuitively, one may expect

also these 2 numbers to stay constant, that is, for example on the input side, each language

is then connected to a layer as wide as 1/3 of the �rst hidden layer in the not-separated

joint model. Assuming each neuron can only produce binary output; then there already

exist 2
|Neurons |

di�erent possible representation for input vectors. By reducing |Neurons |
to 1/3, the expression power of the �rst hidden layer will be dramatically reduced.

Pro and Cons Since the only, really shared parameters across all languages are only the

bias at the middle layer, it is also reasonable to increase the capability of the language-

independent part. A possible extension could be achieved by adding a hidden layer be-

fore and after the middle layer, to keep the network symmetrical (Encoding-Decoding-

Architecture). However, a depth of 7 layers might lead to e�ciency problem (owing to

larger network) or may even not converge at all. In [15], deep network for object recog-

nition which uses Sigmoid activation functions performed poorly. One of the reasons

for that could be the Vanishing/ Exploding Gradient Problem, which also can occur in the

proposed architecture, once it became too deep.

4.2.2. Training Procedure

Minimal data set In our task, parallel training data were only available for 2 language

pairs: l1−l2 and l2−l3. One can start by using those data sets directly to train the proposed

networks. However, this model will clearly fail to translate from l1 to l3, the 2 training sets

appeared to be di�erent tasks, from which the network has to learn. For example, assume

l1 stands for German (De), l2 English (En), and l3 French (Fr). Additionally, assume that

a sentence such as "I like you" is available in all 3 languages. Nevertheless, by learning

only from "Ich mag dich" -"I like you" and "I like you"- "Je t’aime", the network will even

fail on translating "Ich mag dich" to French.

To understand why this is the case, w.l.o.g. let us consider the unseparated joint model

as provided in Fig. 5.4.3.1. Since the sentence is represented in vector form and the word

mappings from di�erent languages are unrelated, there is no obvious connections be-

tween them. Hence, by inputting the German sentence, the network activation in the

next layers di�er strongly from those induced by the English sentence. Clearly, on the

training set, the network will probably reduce the error rate close to 0 without having any

problem. Nonetheless, once German input is applied, no useful French outputs can be ex-

pected, because the weights vectors connecting penultimate layers and French output

neurons were not prepared to process this unknown activation. They were only trained
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to handle those created by English input. In short, the model fails on translating from

German to French.

The solution is to force the input layer to learn connections between di�erent mappings

and the output layer to process language-independent activation in the penultimate layer.

This can be done by adding the same sentence from En-En to the training set. If the

network is trained on En-En and De-En, the only di�erent part is the connection weights

at input layer. Ideally, the network should force 2 di�erent mappings at input layers to

produce the very similar activation in the �rst hidden layer and also in it’s subsequent

layers. This would make the middle layers be language-independent. Moreover, if the

network is now trained on En-En and En-Fr, the connections at output neurons have to

be able to handle the new representations which does not depends strongly on the input

language.

Coming back to our task, remind that no sentence is available in all 3 languages. Only

a certain set of words or small parts of sentences occurs in both data sets. Hence, the net-

work has to learn from them and from a certain point of view, abstract over the meaning

of training sentences.

In conclusion, the minimal training data set that is needed comprises : l1− l2, l2− l2 and

l2 − l3 whereby l2 − l2 acts as a connector between the remaining data sets.

Learning generativemodel simultaneously In addition to the minimal training set as sup-

posed before,l1−l1 and l3−l3 can also be considered, since they also a�ect translation from

l1− l3 strongly. This idea results from another concept of neural networks: pre-training.

By forcing the network to reproduce the inputs themselves ( generic model), it also im-

prove the network’s performance on the discriminative task. In many applications, it was

applied successfully. Hence, in this work, those ideas were also evaluated compared to

the minimal data set.
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5.1. Data

For the later evaluation, parallel corpora from 3 di�erent languages namely : German,

English, French were chosen. Notice, that they will be identi�ed by their abbreviation

such as: De (German), En (English) and Fr (French). By referring to a combination like

dataset De-Fr, the parallel text corpus for the language pair from German to French was

meant.

The entire training, development and test data for those language pairs De-En, En-Fr,
De-Fr were taken from the Web Inventory of Transcribed and Translated Talks, provided

by [3]. They were used for the International Workshop on Spoken Language Translation,

in the category Machine Translation in 2014. In order to keep the experiments across

languages being comparable, the data from given corpus were only used, if they occurred

in all datasets of the 2 desired languages pairs De-En and En-Fr. For example, if there was

a training sentence such as I like you in the English data set, it remains in this set if and

only if there was also appropriate oracle translation like Je t’aime in the French and Ich
mag dich in the German data set.

After applying this restriction, the test data only contains 539 di�erent segments, not

su�cient to derive statistically stable inferences from the results. For that reasons, by

crawling from the web for additional 3-language-parallel data, the test data set was ex-

tended to 3547 sentences. Table in 5.1 shows the numbers of segments in the �nal datasets.

Datasets #Sentences

Training set 165723

Development set 887

Test set 3547

Table 5.1.: Overview of corpus size

Furthermore, the training data for each languages were also split into disjunct parts,

calling HALF-1 and HALF-2. The HALF-1 data set contains the �rst 82861 segments and

the rests were included in the HALF-2. By using only HALF-2 (De-En) and HALF-2 (En-

Fr), one can simulate the situation of having no parallel data from German to French, but

only De-En and En-Fr.

Preprocessing data for Neural Network Models Before being used as data for the neural

networks, all non-stop-words were �ltered out. The set of the remaining words of the

training in each language and their mapping to a unique integer, ranging from 1 to the
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set’s size, was referred as the vocabulary of the corresponding language. Furthermore,

since a neural network model can only handle real-valued input and output, an appropri-

ate choice had to be made.

One possible choice is the use of bags-of-words to ensure constant length of input and

output vectors. In that case, each sentence is represented by a vocabulary-sized-vector,

with some 1-values indicating which words were appearing in the sentence. Due to poor

performance of this approach as reported in [7] and it’s memory-wasting property, the

size of vocabulary used in this work was reduce to 5000 most frequent words plus 1 Un-

known wordUNK. Once, the neural net requires source context additionally, they will also

be preprocessed in similar manner. That is, the corresponding data will be represented as

bags-of-ngrams, whereby the vocabulary’s size of all existing n-grams was also restricted.

For example, if a network is identi�ed as NN-5000-2000-500, it means that the vocabulary

on the source side should contain for uni-grams 5001, bi-grams 2001 and tri-gram 501

most frequent elements.

More �exible architectures, such as convolutional neural networks can also handle dy-

namical input’s length. For that reasons, on the source language’s side, a sentence will

be mapped directly into it’s real-valued representation by taking it’s word’s mappings,

provided by the corresponding vocabulary.

In order to keep all architectures being comparable, the representation of the data for

target side also stays the same: bags-of-words, consisting of 5000 most frequent words.

5.2. Evaluation metrics

Binary Cross Entropy Error Rate Based on back-propagation of BCE errors w.r.t. target

data, as described in 2.2.2.3, the neural networks will be trained. Since some correlation

between this metrics and the outputs’ impact on translation quality can be expected, de-

velopment data will be used for hyper optimizing of di�erent nets, also using BCE as the

objective. It will be considered as an intrinsic evaluation metric on the given task.

BLEU-Score In the current setting, a new feature can either be integrated into the decod-

ing process, i.e. taking part at generating the translation lattices and hence the n-best-list

or only be applied on the generated list. The �rst is referred to as Optimizing/Decoding,

the later Rescoring, which currently could be done by using various algorithms; such as

Mert, KBMira, KitPro and ListNet [21]. Both methods result in candidate generations of

input sentences in a certain source language, whose translation quality can be measured

using BLEU-Score afterwards.

In this work, the proposed feature model, along with various models were mostly eval-

uated by integrating them into the rescoring process of existing MT-systems. Since the

application of new feature models in the optimizing process was quite time-consuming,

only few experiments were done using it.
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5.3. Environment

5.3.1. Torch7

Inspired from translation quality’s improvement by such a simple architecture as NNDWL,

achieved in [7], it was advantageous to move them from Theano into a easier-to-use,

matlab-like open-source framework, called Torch7. It is based on the language Lua, which

owns a powerful C API, that makes the language being able to be used as an extension for

C-applications. Moreover, it is also possible to control programs, which are written in C

by using Lua. Since many popular, highly optimized numerical libraries are written in C,

such as BLAS, LAPACK, Lua was an important and thoughtful choice of the authors [5].

Similar to Theano (which is based on Python ), a simple wrapper exist to start with.

For this purpose, DP is the corresponding part of pylearn2 in Python. In addition to dp,

the following torch package was used: Optim, which provides various, highly optimized

implementations of learning algorithms such as SGD or second-order-methods)

Additionally, the lua-extensions package Moses and Allen were included. They provide

very e�cient implementations for functions as in the _ (underscore) library from Java-

script. Furthermore, lua-utf8-Starwing was used to handle all possible printable charac-

ters.

5.3.2. MT-Systems

System’s configurations The baseline MT-Systems used in this work were similar but

slightly simpli�ed compared to those in [26],which were submitted for the IWSLT from

Karlsruhe Institute of Technology in 2014. The data were also preprocessed by pruning

possibly mismatched or inadequate translation pairs, e.g. if the sentences’ length on target

and source side di�er too strongly. Moreover, once German was the source language,

compounds were split up into words [13]. Additionally, a smart case model was used for

the �rst letter of each sentence. Afterwards, the preprocessed data were word-aligned

by using GIZA++ Toolkit [23] and summarized into phrases using grow-diag-�nal-and

heuristic [14]. The language model considers up to 4-grams and was smoothed by the

Witten-Bell-method. For reordering issues, POS-based short [25] and long range [19]

rules were used as well.

For the sake of comparison, Maximum-Entropy-based Discriminative Word Lexicon

[20] and it’s extension to using source context were considered. In the extended version,

up to 3-grams were taken into account.

5.4. Experiments & Results

5.4.1. Unilingual NNDWLs

These following neural network architectures were evaluated on the En-Fr-Half-2 dataset.

The ideas proposed in [7] were compared to more standard approaches such as the Col-

lobert architecture for word-tagging tasks [6] and their deeper convolutional counter-

parts. A detailed translation quality analysis of the En-Fr-Half-2 MT-systems after ap-
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plying di�erent architectures can be found in Tab.5.2. For this purpose, 4 rescoring algo-

rithms were considered: ListNet, KitPro, KBMira and MERT. In order to reduce the statis-

tical instability induced by these methods, the results were averaged and put into direct

comparison to the intrinsic evaluation using Binary Cross Entropy criterion in Table 5.2.

In the following sections, the network architectures will be described more precisely.

At the end, results were resumed and evaluated.

BCE BLEU
Dev Test Dev Test

Baseline - - 22.00 31.43

+NNDWL-5000 52.68 40.55 0.14 0.20

+NNDWL-5000.2000.500 54.13 41.24 0.09 0.25

+NNDWL-5000.5000.5000 56.24 43.15 0.17 0.23

+NNDWL-collobert 63.69 52.95 0.07 -0.05

+NNDWL.2ConvLayers 60.98 50.11 0.05 0.02

Table 5.2.: Overview of NNDWLs performance, after training on En-Fr-Half-2-Dataset,

measured by BLEU-score (higher is better) after rescoring and Binary Cross

Entropy criterion after training (lower is better)

5.4.1.1. Network architectures

NNDWL using most frequent words for uni-grams In NNDWL-5000 the number of most

frequent words that shall be considered was restricted to 5000. By adding an optional

tag for all remaining, not covered words by the vocabulary, the total number of words

sums up to 5001. By using bag-of-words representation for input sentences, the number

of input neurons also has to be 5001. For the output side, the same methods were applied,

led the network to possess the same number of output neurons.

Furthermore, similar to the neural network in [7], It was decided to include 3 hidden

layers + 2 (1 for the inputs and outputs each). One layer itself comprises a linear com-

bination, which was followed by a activation function. The choice of neuron’s number

in each layer underlines some heuristics. For example, the third layer was supposed to

be the bottle-neck-layer, which should enforce a e�ective, task-dependent coding of the

inputs. This could be done by making this layer signi�cantly smaller than it’s preceding

and subsequent layer. By designing the network symmetrically, the connections from 1.

to 3. layer could be seen as a encoding path, the later somewhat like a decoding path.

Moreover, for the rest of the network , number of neurons were chosen in way , that

was to be su�cient for this task i.e. avoiding under and over �tting on the training data.

This decision of network’s depth seems appropriate, because deeper network might suf-

fer from learning problems such as Vanishing or Exploding Gradient, which lead to not

converging learning process at all.

In the case of activation functions, for each layer, a nonlinear one can be more or less

arbitrary selected, depending on the desired behaviors on the network. However, since

the network ought to produce some probabilities, it was recommendable to apply the Sig-

moid activation function to the output layer. Furthermore, for the training process, the
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network was initialized using normalized weight randomization. Additionally, Stochas-

tic Gradient Descent was the learning algorithm of choice. A batch size of randomly

selected 10 examples were used for training. In order to calculate the error rate for back-

propagation, BCE-criterion was used. For the updating process, a learning rate of 0.002

was chosen. The whole training data set was shu�ed every iteration to avoid bias to

certain examples. After the limit of 70 epochs, the training process stopped and provided

the best model according to the development set.

In conclusion, the architecture can be described as in Fig. 4.1. Notice that the �rst 4

layers will be followed by the activation function : Tanh() and the last, output layer by

Siдmoid ().

NNDWL+SourceContext The modelsNNDWL-5000-2000-500 andNNDWL-5000-5000-
5000 only di�er to NNDWL-5000 in the way how many input information will be used.

Every remaining hyper-parameters stays the same. The input side was extended by ad-

ditionally considering bi- and tri-grams. The size of the vocabulary for relevant n-grams

was given by the number sequence. For example, 5000-2000-500 indicates , that the most

frequent 5000 uni-grams (or words), 2000 bi-grams, and 500 tri-grams only will be taken

into account.

Convolutional NNDWL (collobert) The network identi�ed as NNDWL-Collobert was

equivalent to the one used in [6] for general word-tagging tasks. Since it can handle

�exible-length input vectors due to special convolutional structure, no selection of most

frequent words has to be made as previously. The entire vocabulary can be considered by

representing each sentence as a list of it’s words mapping to a real valued number (given

by the vocabulary).

Hence, the number of input neurons was not restricted to a �xed constant. Assuming

an input sentence possesses 5 di�erent words; in that case, it’s representation consists of

5 di�erent real-valued numbers. In the second layer, each number was transformed into

a 40-dimensional space (word embedding size was hence 40). Our vectors can be viewer

in 2 dimensional space with a size of 5x40. Afterwards, zero-padding was applied before

the �rst row and after the last column of the sentence representation. The number of

zero-valued rows depends on the convolution �lter’s size, which was �xed to 3 . It can be

determined using this formula:

#zerosRowsOnEachSide =

⌊
FilterSize

2

⌋
(5.1)

The resulting 2D-Tensor has a size of 7x40. After applying an temporal (1D) convolution

along the �rst dimension (#�lters: 50, �lter size: 3) the results’ size was 5x50. A max

operation over the �rst dimension lead to an one-dimensional vector (1x50). Afterwards

were fed to a chain of 2 traditional linear combination layers, the �rst followed by the

Tanh() activation function whose output size was 1000, the second followed by Siдmoid ()-
function with an output size of 5000.

All other hyper-parameters of the learning process stays the same as inNNDWL-5000.
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Convolutional NNDWL (deep network) Motivated by the trend of neural networks com-

munity to develop wider and deeper architectures, the NNDWL-collobert will be ex-

tended to the NNDWL-2ConvLayers. The word embedding size was now changed to

64. However, the most relevant change was that the network now possessed a pipeline of

2 convolutional layers; both of them made use of 128 di�erent, learn-able �lters. The �rst

convolutional layer was characterized by a �lter length of 3, followed by Recti�ed Linear

Unit (ReLU), a zero-padding-mechanism as provided in 5.1 and a Temporal-Max-Pooling-

layer with a size of 2. The second layer was similar to the one used inNNDWL-collobert,
only the �lter-size was 2 and the activation function was changed to ReLU. The remaining

layers were exactly designed as in NNDWL-collobert.

5.4.1.2. Results

In table 5.2, due to BCE-Scores on development and test data, the evaluated architectures

can be divided into 2 groups: fully-connected architecture (BCE ~40 on test data) and

convolutional networks (BCE 52.95 and 50.11). The averaged BLEU-scores to measure

translation quality also shows up similar behavior.

Within the fully-connected group, considering source context additionally seem to lead

to worse BCE-scores (41.24 for NNDWL-5000.2000.500 and 43.15 for NNDWL-5000.5000.5000),

however after applying models which make use of source context, the translation quality

slightly improved. This indicates, that �rstly, although there was some correlation be-

tween the BCE-score and BLEU-scores, it can not be stated for sure that better BCE-scores

always result in improved translation quality. Moreover, since NNDWL-5000.5000.5000

led to better translation than both the NNDWL-5000 and NNDWL-5000.2000.500, one

might expect higher improvement due to increasing number of most n-grams being con-

sidered, given appropriate architecture and hyper-parameters for learning.

On the other hand, the convolutional architectures seem to perform poorly. In addition

to the baseline system, the Collobert architecture even decreased the overall translation

quality on the test set. Although the network with 2 convolutional layers was slightly

better according to BCE and BLEU scores, they were both far away from the performance

of NNDWL-5000. Since convolutional layers can be seen as regularization, it’s use seem

to be too strict. It would lead to the under-�tting e�ect, in which the neural network’s

capacity was not high enough to learn the real function’s complexity. Especially the Max-

pooling-layer, which dismissed a high amount of (possibly) relevant information to be able

to handle �exible-sized-input was a too strong restriction. Since the DWL-task was more

di�cult than the word-tagging-task, the network might require di�erent, more sophisti-

cated mechanisms to �lter and preserve the relevant information.

In conclusion, even without considering source context, such a simple architecture like

the NNDWL-5000 model still performed very well (+0.2 BLEU-score on test set). It can also

be trained e�ciently in sense of CPU-time and memory-usage. Moreover, transforming

it into the multilingual case is quite straightforward. For that reason, in next section,

scores of MT-systems using NNDWL in the optimizing process will also be considered.

More importantly, an overview of MT-systems’ evaluation on di�erent data set will be

provided, which shows up the weaknesses of a translation pipeline.
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5.4.2. Optimization using NNDWLs

5.4.2.1. Baseline systems

As explained in 5.1, there were 3 di�erent training data sets: the full dataset, and it’s 2

disjunct parts, identi�ed as Half-1 and Half-2. Based on the training set and the language

pair, the resulting MT-systems performs di�erently on the test set, as shown in 5.3. The

3 columns De-Fr, De-En, En-Fr, along with the training dataset identi�er, indicates the

translation quality of a MT-system, trained on the corresponding dataset and language

pair. The entries in De-En-Fr showed performances of a pipelined MT-System, in this case,

it consisted of one system for each De-En and En-Fr. While both systems were trained on

the same data in di�erent languages for De-En-Fr (Full-dataset), the last entry in the table

shows BLEU-score of a pipelined system, whose parts were trained on totally di�erent

corpus. The De-En system had only seen the �rst half and the En-Fr one only the second

half of the corpus. Moreover, notice, that translation quality measured by BLEU can only

be compared if the target data is the same. Hence, a system designed for De-En cannot

be trivially compared to the one for De-Fr.

System description De-Fr De-En En-Fr De-En-Fr

Full-Dataset Baseline 21.03 27.98 32.73 20.48

HALF1-Dataset Baseline 19.05 25.96 - -

HALF2-Dataset Baseline 19.11 - 31.06 18.48

Table 5.3.: Overview of translation quality of Baseline-MT-Systems

As shown in table 5.3, by doubling the corpus size, the translation quality induced

by the systems were improved by about 2 BLEU-points, independent of language pair.

Regardless of considering the full or half-dataset , both systems for De-Fr and De-En-Fr

produced far worse translations than the system for En-Fr (> −11.5 BLEU score). It can

be explained by taking account that German is more di�cult than English, due to it’s

morphological richness and long-range dependencies.

Once the systems were combined to build up a translation pipeline, the quality de-

creases by 0.55 Point in case of training on full data set and 0.63 on Half-Half corpus. This

is the entire gap between a direct and pipelined MT-systems.

5.4.2.2. Adding DWL-Models

In table 5.4, impact of Discriminative Word Lexicon features on the translation quality

was shown. While the Maximum-Entropy-based DWL (MEDWL) considers the entire set

of occurring words, the Neural Network based counterparts restrict the vocabulary size to

5001 (5000 most frequent words and an unknown word). In case of De-En-Fr, there exist

2 di�erent models: NNDWL (De->En->Fr) and NNDWL (En->Fr). The former adapts the

pipelining idea into feature level: by direct concatenation of the NNDWL-models trained

for De-En and En-Fr. For this purpose, the English vocabulary used in both cases had to be

identical. The later feature, namely NNDWL (En->Fr) was taken from MT-En-Fr. Since it

was trained on En-Fr corpus, it wasonly able to accept English sentences as inputs, while

the pipelined NNDWL (De->En->Fr) solely accepts German inputs.
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System description De-Fr De-En En-Fr De-En-Fr

Full-Dataset

Baseline 21.03 27.98 32.73 20.48

+MEDWL 21.07 28.32 32.44 20.45

+NNDWL (De->En->Fr) 21.07 28.47 32.36 20.19
+NNDWL (En->Fr) - - - 20.38

HALF1-Dataset

Baseline 19.05 25.96 - -

+MEDWL 19.4 26.51 - -

+NNDWL (De->En->Fr) 19.3 26.22 - -

HALF2-Dataset

Baseline 19.11 - 31.06 18.48

+MEDWL 19.17 - 30.75 18.44

+NNDWL (De->En->Fr) 19.16 - 30.81 18.37
+NNDWL (En->Fr) - - - 18.65

Table 5.4.: Overview of quality of MT-Systems on test data after adding DWL-models into

the optimizing process

After applying DWL-models to De-Fr-systems, signi�cant improvement (+0.35-MEDWL,

0.25 NNDWL (De->En->Fr) ) was obseved, once they were trained on the �rst half from

the corpus. The translation quality did not change very signi�cantly when trained on

the full corpus or the second half. A totally di�erent e�ect can be observed on De-En-

corpus. Both NNDWLs lead to high improvement of quality, which indicates that the

DWL being an appropriate complement to remaining models of that corresponding sys-

tems. However, the same statements are not valid for systems trained on En-Fr corpus.

The application of both DWL- models decreases the translation quality by up to 0.27

BLEU-points.

In the case of the translation pipeline, De-En-Fr, the pipelined NNDWLs were outper-

formed by NNDWL (En->Fr) by 0.19 (on full corpus) and 0.28 (on half-half data set). This

can be explained by looking at the way, how data wasforwarded through the pipelined

NNDWL (De->En->Fr). Given a sentence in German, the �rst part of the network (NNDWL

trained on De-En) produced word probabilities for all English words. While the most of

them should be assigned to a very small number near to 0, there will not be numbers

which are exactly 0 or 1. Moreover, since DWL only considers lexical dependencies on

word level, it would induce not negligible errors. The second part, NNDWL taken from

En-Fr, which solely were trained only on vectors consisting of 0 and 1, now had to handle

real-valued inputs between 0 and 1. Moreover, the error rate of the �rst model was then

reinforced by the later one, leading to overall su�ering of translation quality (0.29-Full-

Dataset, 0.11 Half-Half). In contrast to that, the NNDWL (En->Fr) received well-de�ned

sentences, that were generated by considering various aspects addressed by models from

MT-De-En.

The following experiments with multilingual architectures were aimed to close the

performance gap between NNDWL (De->En->Fr) and NNDWL (En->Fr) by incorporat-

ing multilingual data in a more e�cient way than a simple concatenation. Since pipelined

translations showed lower quality than outputs from direct systems De-Fr, the proposed
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architectures might even help to avoid errors made by the MT-system De-En by translat-

ing from German input directly.

5.4.3. Multilingual NNDWLs

5.4.3.1. Evaluated systems

In the following experiments, the proposed multilingual architectures were evaluated

against each other by adding them to a MT-baseline-system as provided in table 5.3. If

not stated otherwise, the hyper-parameters used for training process were as speci�ed in

5.4.1.1 The candidates to be considered were:

Baseline The basic MT-systems were con�gured as stated in 5.3.2. Depending on the

experiments, the used train, development or test corpus might di�er. However, it will be

speci�ed in the corresponding experiment and was valid for the succeeding analysis of

di�erent NN-DWL models.

NNDWL (En->Fr) The network’s architecture was identical to those used in [7]. It uses

English sentences as inputs and produces word probabilities for the French vocabulary.

Once it was applied on pipelined MT-system (De-En-Fr), it made use of translated texts

from De-En MT-system. This was the main drawback in contrast to multilingual models,

since training a high quality MT-system is a di�cult and time-consuming task.

NNDWL (De->En->Fr) This model consist of 2 separately trained NNDWLs, each for De-

En and En-Fr, which were afterwards simply concatenated. For that reason, this model

uses German sentences as input.

U.JointModel The unseparated joint models share the same architecture as described

in 4.2.1.1. Compared to the traditional NNDWL, the only di�erence was it’s input and

output layers, which consists of 3 sets of neurons, 5001 for each languages. Notice, that

depending on the language of data in- and output, only the corresponding neuron set

will be activated. Based on 2 corpus De-En and En-Fr, di�erent combinations of data

can be provided for the training phase of the network. U. JointModel indicates the min-

imal data set, consisting of De-En, En-En, En-Fr, which was needed to enable network

to learn language connections between German and French. U. JointModel+De-En and U.
JointModel+De-En,En-Fr etc. help to analyze the network’s capability to learn language

independent representations and it’s impact on the overall translation quality.

S.JointModel U. JointModel, U. JointModel+De-En, U. JointModel+De-En,En-Fr were de-

signed and trained in the similar way as in 5.4.3.1. The only architectural di�erences

show up in the second and the layer before the last layer. They were also separated into 3

di�erent neuron sets, which were assigned to the corresponding language. Each neuron

set comprises 1000 di�erent neurons.
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Figure 5.1.: Multilingual NNDWL : Evolution on di�erent training datasets

Random scores In addition to other evaluated models, also random scores were gener-

ated for the rescoring process. For this purpose, each candidate receives a integer, sampled

from a pseudo-random, uniform distribution form [0,32767]. Results induced by random

scores was considered as a control group for the evaluations of models.

5.4.3.2. Di�erent training procedure

In order to test e�ects of di�erent training procedures on a multilingual NNDWL, the

unseparated variant was considered. Note, that for the most models, the number of max-

imum was restricted to 60. Moreover, only 2 datasets were available, namely �rst half of

De-En and last half of En-Fr.

Fig. 5.1a shows the situation where it learned from the data sets De-En and En-Fr. At the

end of each epoch, translation quality for De-Fr was measured. Obviously, the network
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failed to make use of training data; the error rates increased over the entire optimization

process.

By providing En-En as a connector of both data sets, as shown in �g. 5.1b the network

could reduce the test error rate to 48.38 BCE points during the training process. The

network learned to abstract over meanings of words, since there was no parallel sentences

in both datasets.

Following those ideas from pre-training as explained before, De-De was also added

to the training procedure in �g. 5.1c or additionally even Fr-Fr in �g. 5.1d. While no

signi�cant change could be observed when added De-De, considering Fr-Fr appeared to

have strong negative e�ect on translation quality. After the 30-th epoch, It was over-�tted

to training data, loosing the generalization on dev. and test set as well.

Learning from Fr-Fr could be perceived by the network as a completely unrelated tasks

analog to learning from De-En and En-Fr solely. Hence, �g. 5.1e shows smoother perfor-

mance development on dev and test data if Fr-En was also taken into account. BCE-score

was reduced by ~1 Point compared to training without En-Fr.

In conclusion, the minimal data set, consisting of De-En, En-En, En-Fr was con�rmed

to be the �rst working training procedure. Moreover, by adding di�erent data set combi-

nations, the network’s behaviors according to BCE-metrics changed. In the next exper-

iments, the network trained on De-En and En-Fr as well as its counterpart from De-En,

En-En, En-Fr, De-De, Fr-En, Fr-Fr were no longer considered.

5.4.3.3. Unmatched corpus (Half-Half dataset)

In this situation, the pipelined MT-systems De-En-Fr consists of 2 systems, which were

trained on completely disjunct data sets. MT-De-En takes the �rst half of data into con-

sideration, while MT-En-Fr was relying on the latter half only. This should approximate

the use case of having no parallel data, as usual in practice. In table 5.5 and 5.6, networks

predictions were shown for 2 sample sentences. The words were ordered by their scores

or in other words; occurring probability in the target sentence.

The �rst example sentence was "Everybody talks about happiness these days", which

can be translated literally to "Aujourd’hui tout le monde parle du bonheur" (Aujourd’hui

~today, tout le monde ~the whole world, parle ~talks, du bonheur ~about happiness) In

this example, the unseparated Joint models as well as NNDWL (En->Fr) performed very

well and captured the most content-bearing words like parler (talk), bonheur (happiness),

Aujourd’hui or maintenant (now, today).

The second sentence was "there is a lot of happiness coaching" which can be translated

to "Il y a plein de techniques de coaching du bonheur" (Il y a ~there is, plein de ~a lot of

) In this case, "techniques" and "coaching" were out-of-vocabulary words for all models.

However, words such as beaucoup (a lot ), bonheur (happiness), il y a were still recognized

as most probable words. Moreover, all models could infer that at least one important,

content-bearing unknown word was missing.

More detailed, overall comparison of performance induced by di�erent models was

evaluated in 2 di�erent scenarios in the following. This resulted from the question, whether

the components of a pivot translation systems were re-optimized or not after their con-
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Source Everybody talks about happiness these days.

Reference Aujourd’hui tout le monde parle du bonheur.

NNDWL (De->En->Fr) est le de UNK c la ce bonheur en du tout d

U. JointModel UNK hui aujourd est de c monde bonheur parle ce parler d

U. JointModel + De-De aujourd hui bonheur de d est UNK bien la ce les à

U. JointModel + De-De, Fr-Fr aujourd hui bien la de à parler sujet qui le propos au

S. JointModel est UNK c de le tout ce que les en d à

S. JointModel + De-De est le UNK de ce jours aujourd hui tout bien les à

S. JointModel + De-De, Fr-Fr est UNK c la qui de ce hui que à aujourd le

NNDWL (En->Fr) bonheur le tout parle monde de est maintenant du c UNK

Table 5.5.: Example 1: Predicted words by di�erent NNDWLs, ordered by assigned prob-

abilities (descending order)

Source There is a lot of happiness coaching.

Reference Il y a plein de techniques de coaching du bonheur.

NNDWL (De->En->Fr) beaucoup il y a très de UNK bien d en grand le les qu

U. JointModel UNK a très beaucoup il y de est bonheur bien c en d une

U. JointModel + De-De beaucoup très y il UNK de a bien la d souvent les là et

U. JointModel + De-De, Fr-Fr beaucoup y UNK il très a de bien en d la peu avait tant

S. JointModel beaucoup très UNK de a est il y en d bien les le un

S. JointModel + De-De très beaucoup UNK il y de a une bien est le d un c

S. JointModel + De-De, Fr-Fr beaucoup UNK très y il a de la d c est les le là

NNDWL (En->Fr) bonheur il UNK y a de beaucoup le du d des un est la

Table 5.6.: Example 2: Predicted words by di�erent NNDWLs, ordered by assigned prob-

abilities (descending order)
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catenation. In both cases, unilingual models were also considered together with multilin-

gual counterparts, which were trained on di�erent data sets.

Pivot translation The pipelining process can be done directly, without any systems know-

ing about each other. In this case, both of them were trained separately, relying only on

data from their corresponding language pair. The development set used were also in clean

format as provided in the corpus. Detailed rescoring results can be found in Tab. A.2. A

shorter description was shown in Tab. 5.7.

BCE BLEU
Dev Test Test

Baseline - - 18.68

+NNDWL (De->En->Fr) 64.21 53.06 0.11

+U. JointModel 57.40 47.78 0.12

+U. JointModel+De-De 58.56 48.04 0.07

+U. JointModel+De-De, Fr-Fr 62.83 52.37 0.15
+S. JointModel 56.72 47.18 0.10

+S. JointModel+De-De 58.15 48.23 0.02

+S. JointModel+De-De, Fr-Fr 59.98 49.32 0.18
+NNDWL (En->Fr) 52.68 47.14 0.17
+UniformNoise - - -0.12

Table 5.7.: Translation quality of multi- and unilingual NNDWLs in addition to De-En-Fr-

system (pivot translation)

When considering BCE-scores, NNDWL (En->Fr), U. and S. JointModel shows similar

performance (Test score: approx. 47 BCE points). The second-best group was made up by

training multilingual data on De-De additionally. Lastly, by including Fr-Fr, performance

of unseparated JointModel decreases to the level of a pipelined NNDWL (De->En->Fr)

(test score approx. 52.5). However, when the second layer was separated, overall perfor-

mance only su�er slightly (test score 49.32).

After incorporating models’ score into rescoring process, no signi�cant improvement

could be observed. In contrast to results induced from BCE-scores, by adding De-De and

/ or Fr-Fr, translation quality tended to be improved. Especially JointModel+De-De, Fr-Fr

performed very similar to NNDWL (En->Fr) model. However, keep in mind that NNDWL

(En->Fr) requires a complex MT-system to translate German sentences to English for fur-

ther usage.

Re-optimized pivot translation The latter system MT-En-Fr in the translation pipeline

can be trained on translated sentences, produced by the �rst system MT-De-En. However,

due to lack of time, this work only considers a similar use case, that is, when the second

system was hyper-optimized on translation output of the �rst system. Detailed rescoring

results can be found in Tab. A.3. They were summarized by averaging by all algorithms,

leading to an overview in 5.8.
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BCE BLEU
Dev Test Dev Test

Baseline - - 14.66 18.72

+NNDWL (De->En->Fr) 64.21 53.06 0.15 -0.01

+U. JointModel 57.40 47.78 0.20 -0.13

+U. JointModel+De-De 58.56 48.04 0.22 -0.08

+U. JointModel+De-De, Fr-Fr 62.83 52.37 0.18 -0.08

+S. JointModel 56.72 47.18 0.19 -0.13

+S. JointModel+De-De 58.15 48.23 0.12 -0.11

+S. JointModel+De-De, Fr-Fr 59.98 49.32 0.17 0.04
+NNDWL (En->Fr) 58.10 47.14 0.14 0.11
+UniformNoise - - -0.25 -0.74

Table 5.8.: Translation quality of multi- and unilingual NNDWLs in addition to reopti-

mized De-En-Fr-system

The BCE-scores provided were identical to those in tab.5.8 and were supposed to help

deriving dependencies between translation quality in this setting and intrinsic error rate

measured by BCE.

The translation quality of the baseline was very similar to previous experiment, only

changed from 18.68 to 18.72 points. On the dev. corpus, multilingual models outperformed

the NNDWL (En->Fr) and NNDWL (De->En->Fr) by up to 0.08 BLEU points. Especially

the dataset extended by De-De and Fr-Fr helped both models to perform stably on dev.

set. Nevertheless, except for NNDWL (En->Fr) and S.JointModel + De-De,Fr-Fr, all re-

maining models resulted in decreased translation quality on test set. No model was able

to outperform NNDWL (En->Fr) score, that is +0.11 BLEU score.

In conclusion, based on results from those 2 scenarios, some points could be observed:

• The proposed multilingual architecture were able to reach intrinsic performance of

the unilingual NNDWL (En->Fr) , which itself required a complex MT-System for

translation from German to French in background.

• In a normal pivot translation system, multilingual NNDWLs performed very simi-

larly to unilingual NNDWL (En->Fr). However, if the latter systems MT-En-Fr was

re-optimized on translated output from 1. system, multilingual architectures helped

to improve translation quality at least on development dataset. However, the same

behavior could not be observed on the test data set.

• There was no linear correlation between intrinsic and extrinsic evaluation metrics

of translation quality measurement (BCE vs BLEU). Despite their small BCE error

on test sets, the joint models trained on the minimal data set De-En, En-En, En-Fr

were not always the best translation model.

• Although the separated model was less sensitive to addition of Fr-Fr data set, the

unseparated models produced more appropriate scores for candidates from the n-

best list
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5.4.3.4. Matched corpus (Full-Full dataset)

In this experiment, both MT-systems which made up the pipelined translation system

were trained on the same data from corresponding language pair. MT-De-En and MT-

En-Fr both made use of the full, available parallel corpus. Based on this decision, 2 dif-

ferent scenarios were evaluated as previously: pivot translation with and without re-

optimization.

Moreover, fewer models were taken into consideration due to lack of time and compu-

tational capacity. Uniform noise as well as U.JointModel and U.JointModel+De-De,Fr-Fr

were omitted.

Pivot translation In this scenario, the latter MT-system, namely MT-En-Fr was not re-

optimized on translated sentences of development set by MT-De-En. For comprehensive

explanation, please refer to paragraph 5.4.3.3. Rescoring results using di�erent algorithms

were shown in tab. A.4 which were summarized and compared to internal metric BCE in

tab 5.9.

BCE BLEU
Dev Test Test

Baseline - - 20.77

+NNDWL (De->En->Fr) 60.67 49.91 0.16
+U. JointModel+De-De 56.36 46.56 0.10

+S. JointModel 54.97 45.78 0.13

+S. JointModel+ De-De 56.47 46.97 0.08

+S. JointModel+De-De, Fr-Fr 57.34 47.45 0.11

+NNDWL (En->Fr) 49.53 44.24 0.16

Table 5.9.: Translation quality of multi- and unilingual NNDWLs in addition to De-En-Fr-

system

When considering BCE-scores solely, trends from previous experiment were con�rmed.

The simple concatenation of NNDWLs into one single model in order to implement trans-

lation pipeline on models’ level led to worse performance (BCE 60.67 on dev and 49.91 on

test data). The best model was again NNDWL (En->Fr) which relies on previous transla-

tion system. By training on De-En, En-En and En-Fr only, the network performs nearly

as well as NNDWL (En->Fr). By training on additional data combinations such as De-De

or Fr-Fr, networks’ performance drops down by up to o 1.5 BCE points. Same behavior

can be expected for not considered, unseparated models.

After applying models outputs to rescoring phase, no signi�cant change could be ob-

served by measuring translation quality of resulted sentences. All considered performed

very similarly.

Re-optimized pivot translation Analog to experiment described in 5.4.3.3, the last part of

translation pipeline (MT-En-Fr) was re-optimized on translated sentences of development

set by MT-De-En. For detailed explanation, please refer to paragraph 5.4.3.3.
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BCE BLEU
Dev Test Dev Test

Baseline - - 16.82 20.72

+NNDWL (De->En->Fr) 60.67 49.91 0.06 0.12

+U. JointModel+De-De 56.36 46.56 0.12 0.11

+S. JointModel 54.97 45.78 0.08 0.16

+S. JointModel+ De-De 56.47 46.97 0.08 0.17

+S. JointModel+De-De, Fr-Fr 57.34 47.45 0.10 0.08

+NNDWL (En->Fr) 54.71 44.24 0.10 0.12

Table 5.10.: Translation quality of multi- and unilingual NNDWLs in addition to reopti-

mized De-En-Fr-systems

The BCE-values were the same as provided in tab 5.9 and were supposed to help improv-

ing the overview of this scenario. Compared to previous experiment, translation quality

did not change despite of re-optimization on translated development set. On the test set,

again, all multilingual NNDWLs achieved similar performance to NNDWL (En-Fr). No

signi�cant improvement could be observed, since S.JointModel and S.JointModel+De-De

outperformed NNDWL (En->Fr) by only up to 0.05 BLEU points.

In conclusion, after these 2 experiments, some points were observed:

• Measured on BCE score, multilingual models perform as nearly as well as NNDWL

which relies on previous MT-system, and much better than a simply pipelined

NNDWL (De->En->Fr). However this e�ect could not be observed on translation

quality measured by BLEU-scores.

• By re-optimizing on translated output from MT-De-En, no signi�cant changes in

translation quality were discovered

5.5. Further analysis

5.5.1. Multilingual models

This experiment was aimed at making results from section 5.4.3.3 more transparent. In

this scenario, the applied multilingual models were trained on a unmatched corpus; namely

Half-Half-corpus (�rst half of the data set was De-En, the other half En-Fr).

For an example sentence: "Everybody talks about happiness these days" considered in

5.11, di�erent networks ranking did not vary much. The most models assign the best

scores to the 6 identical candidates. Slightly di�erent candidates were preferred by U.

JointModel, S. JointModel and S. JointModel+ De-De, Fr-Fr, although they were not accu-

rate as the other set of candidates.

Apparently, the multilingual models produce similar rankings for candidates from n-

best list. Therefore, the number of considered samples were extended to 20 source sen-

tences, score distributions were visualized for development data in �g. 5.2 and for test
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Model Highest scored candidates
NNDWL (En->Fr) tout le monde parle bonheur .

NNDWL tout le monde parle le bonheur .

U. JointModel + De-De tout le monde parle le bonheur . "

U. JointModel + De-De, Fr-Fr tout le monde parle bonheur . "

S. JointModel + De-De tout le monde parle le bonheur " .

tout le monde parle bonheur " .

U. JointModel hui tout le monde parle bonheur .

hui tout le monde parle le bonheur .

S. JointModel tout le monde est parler bonheur .

tout le monde est parler le bonheur .

S. JointModel + De-De, Fr-Fr tout le monde parle heureux .

Table 5.11.: Overview of best candidates according to NNDWLs, given the source sen-

tence "Everybody talks about happiness these days"

data in �g. 5.3. Given a certain source sentence, scores of the candidates were normal-

ized to [0,1]. For NNDWL (En->Fr) the candidates were sorted according to their ranking,

with the best candidate standing on the left side. All remaining models follow the ranking

provided by NNDWL (En->Fr). In fact, these �gures can be used to derive information

about how di�erent assigned scores of models were compared to NNDWL (En->Fr)

By looking at �gure 5.2 and �gure 5.3, obvious repeated patterns could be detected.

Especially the ranking on the left side of the graphs were very similar to those induced

by NNDWL (En->Fr). This means, that all NNDWL models agreed mostly about the ques-

tion, which candidates were the best one. However, there were very strong variations in

ranking of worse candidates. On the examples where NNDWL (En->Fr) could not dis-

tinguish clearly between good or bad candidates, other models also came up with very

di�erent rankings of candidates. This trend can also be observed in experiments with 10

or 50 examples (see Appendix A.2)

Moreover, a similar analysis was also applied to visualize network output probabili-

ties for development set in �g. 5.4 and for test set in �g. 5.5. Again, NNDWL (En->Fr)

act in some sense as a baseline, since word were ordered based ranking derived from

occurring probability, produced by NNDWL (En->Fr). By looking at the left side of all

graphs, one can see that the models agreed about a very small set of words, which might

occur in the target sentence. The most probable words in the graphs were almost quite

similar one, independent of which model was considered. Furthermore, it was observ-

able, that NNDWL (De->En->Fr) was quite similar to NNDWL (En->Fr) while all other

models produced strongly di�erent word probabilities. Moreover, outputs from the Sep-

arated JointModels were brighter and had lower contrast, suggesting they were worse at

distinguishing between more or less likely words.

Statistics about relative di�erence of di�erent models and NNDWL (En->Fr) were sum-

marized in 5.11. It was measured using Mean-Square-Error. As observed before, the out-

puts distribution of NNDWL (De->En->Fr) was signi�cantly more similar to NNDWL

(En->Fr) than other models. However, it’s scores distribution were very far away from
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NNDWL (En->Fr) (343.44 Points on dev., 280.14 on test data). Moreover, the more data

set was considered, the farther the distance became, whereby S. JointModels were less

sensitive to addition of training data. Furthermore, in general, outputs produced by un-

separated model were more similar to those of NNDWL (En->Fr) than the remaining

models.

In conclusion, by considering samples of 10, 20 and 50 sentences as well as overall

ranking di�erence, some trends could be observed:

• The highest scored candidates were nearly always the same among all models. This

can be resulted from the models’ agreement about most probable words, given a

certain source sentence.

• While candidate ranking provided by NNDWL (De->En->Fr) was very di�erent

from NNDWL (En->Fr), the JointModel trained on minimal dataset (De-En,En-En,

En-Fr) was much more similar. Moreover, ranking induced by JointModel +De-De,

Fr-Fr strongly di�ers from NNDWL (En->Fr), this could explain di�erent e�ects on

translation quality compared to NNDWL (En->Fr).

Dev Test

Word probability Scores Word probability Scores

NNDWL (De->En->Fr) 1.61 343.04 1.42 280.14
U. JointModel 1.72 167.70 1.56 133.19
U. JointModel + De-De 1.72 180.35 1.52 150.66

U. JointModel + De-De, Fr-Fr 1.83 259.23 1.64 219.03

S. JointModel 1.65 187.76 1.49 157.06
S. JointModel + De-De 1.68 184.35 1.50 153.07

S. JointModel + De-De, Fr-Fr 1.67 256.96 1.51 201.45

Table 5.12.: Relative distance of NNDWLs to NNDWL (En->Fr) measured by Mean-

Squared-Error (MSE) per sample

5.5.2. Dev. and test dataset discrepancy

Dev Test
Mean Variance Mean Variance

De 18.72 0.18 14.02 0.16

En 19.68 0.19 14.70 0.16

Fr 19.14 0.18 15.47 0.17

Table 5.13.: General statistical metrics applied on data sets

In the previous experiments, the networks’ performance measured by BCE was on de-

velopment data always much worse than on test data. In other words, the translation of
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(d) U. JointModel + De-De
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(e) U. JointModel + De-De, Fr-Fr

'-' matrix

 0  50  100  150  200  250  300

Candidate

 0

 5

 10

 15

S
o
u
rc

e
 s

e
n
te

n
ce

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(f) S. JointModel

'-' matrix

 0  50  100  150  200  250  300

Candidate

 0

 5

 10

 15

S
o
u
rc

e
 s

e
n
te

n
ce

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(g) S. JointModel + De-De
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(h) S. JointModel + De-De, Fr-Fr

Figure 5.2.: NNDWL scored candidates for the �rst 20 sentences of development data set
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Figure 5.3.: NNDWL scored candidates for the �rst 20 sentences of test data set
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5.5. Further analysis
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(h) S. JointModel + De-De, Fr-Fr

Figure 5.4.: NNDWL computed French words’ probabilities , given the 20 sentences from

development data set (loд2 scale)
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(h) S. JointModel + De-De, Fr-Fr

Figure 5.5.: NNDWL computed French words’ probabilities , given the 20 sentences from

test data set (loд2 scale)
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5.5. Further analysis

dev. data was more di�cult than test data. Moreover, behaviors of multilingual models

on translation quality using dev. data also di�ers from those on test data.

In order to examine the di�erence between development and test set, sentences lengths

in German, English and French were measured and shown in tab. 5.13. In the case of

German, the length distributions of both data set were visualized in �g. 5.6 and pruned

in �g. 5.7.

Figure 5.6.: Sentence length distribution of German dev- and test sets

Figure 5.7.: Pruned sentence length distribution of German dev- and test sets

Obviously, in �g. 5.7, there were more shorter sentences in the test set than in devel-

opment test. The test curve lies under the dev. curve, when considering sentence longer

than 10 words. In tab. 5.13, while values of standard variance were quite similar, the av-

eraged sentences in development set were signi�cantly longer (4-5 words), independent

of the considered language.

The sentences’ length discrepancy could be one of the reasons for poor performance

of NNDWLs on development set. Longer input sentences mean there were more context

and syntactical information in the structure, which gets lost by considering words only.

Imagine that inferring meaning from ("thank", "you") or ("you", "thank") is much easier
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5. Evaluation

than from a word combination consisting of 10 di�erent words, even for human testers.

Moreover, the a sentence is, the higher is the probability of dismissing information due

to a strict vocabulary (limited by most frequent words). This would additionally let a

sentence appear more like noisy data.

Another aspect which led to di�erent translation quality on dev. and test dataset was

the amount of sentences. Since the dev. set only possesses 887 sentences, this might be

su�cient to be used for hyper-optimizing.
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6. Conclusion

6.1. Summary

The aim of this work was to optimize statistical machine translation systems, which are

often used when there is no parallel aligned data for a targeted language pair. By transfer-

ring the idea of pipelining to the model-level and using an interlingua representation of

language, we proposed a multilingual, simple translation model. The model was trained

on various language pairs and was capable of translating between languages without
having seen any training data of that speci�c pair. Two di�erent network architec-

tures were introduced, referred to as separated and unseparated multilingual NND-
WLs. They di�er in the manner in which the second and penultimate layer of their neural

networks were designed. In the case of separate models, the corresponding layers were

divided into disjunct sets, each responsible for processing a certain language.

In the evaluation phase, we �rst compared ourselves to several mono-lingual models:

NNDWL as presented in [7], combined with source context from [20], as well as convo-

lutional architectures motivated by [28] and [6]. It turned out that using convolutional

architectures for word-tagging tasks in related works led to under-�tting on the DWL-

task. Moreover, although the chosen source context resulted in a slight performance im-

provement (up to +0.25 BLEU), it required more hyper-optimization in order to �nd a

good combination as in [7]. The traditional NNDWL was con�rmed as the most suitable

model for the multilingual task due to its simplicity while still providing an acceptable

performance (+0.2 BLEU on test data).

Afterwards we showed that pipelined translation quality was outperformed by direct

translation by approximately 0.6 - 0.7 BLEU points. Furthermore, adapting the pipelining

idea to NNDWL in an intuitive way resulted in poorer performance ( -0.2 BLEU) compared

to the monolingual model, which used the translated output from the previous system

directly. Therefore, more accurate multilingual NNDWLs could be applied to reduce this

performance gap, or even improve on the monolingual model.

Further experiments were aimed at analyzing the two proposed multilingual architec-

tures. For this purpose, di�erent training procedures were examined. The chosen lan-

guages were German (De), English (En) and French (Fr); although the experiments were

done on German, English and French only, we would expect similar results for any 3 ar-

bitrary languages. In the �rst experiment, using two parallel aligned sentence sets from

the language pairs De-En and En-Fr, we con�rm that the minimal training data set to al-

low the network translation from German to French is De-En, En-En and En-Fr. Adding

data from additional language pairs (e.g. De-De or Fr-Fr) resulted in poorer performance

according to the intrinsic metrics BCE.
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6. Conclusion

Another experiment, which we referred to as the unmatched corpus experiment, used

2 disjunct data sets De-En and En-Fr. This actually represents the common use case in

which there is no parallel data available for a certain language pair (in this constructed

case, De-Fr). Here the proposed multilingual architecture was able to reach the intrinsic

translation performance of the unilingual NNDWL (En->Fr), which, unlike the system

we propose, requires a preceding complex MT-System for translation from German to

French in the background. Moreover, in a normal pivot translation system, multilingual

NNDWLs per- formed very similar to unilingual NNDWL (En->Fr). However, when the

latter system’s translation from English to French was re-optimized on translated output

from the �rst system, multilingual architectures helped to improve translation quality at

least on the development data. However, the same behavior could not be observed on the

test data.

6.2. Discussion

Although the proposed multilingual architecture sometimes resulted in small improve-

ments regarding translation quality, these results were not statistically stable. In general,

all NNDWL models performed very similarly. Analysis suggested that they mostly agreed

on the best candidates out of the n-best-list; only low-scored candidates varied strongly

dependent on which model was considered. When considering the network’s outputs

based on the given source sentences, the NNDWLs also seemed to agree about a very

small set of the most probable words. It was also observable that the contrast of separate

joint models’ visualizations was lower than that of their unseparated counterparts, sug-

gesting that they were not good at distinguishing occurring words. Furthermore, the more

datasets multilingual models were trained on, the more the candidate ranking distribu-

tion di�ered. Since the translation quality did change when networks used more dataset

combinations, adding them could have led them to new search spaces and increased the

generalization capabilities of the networks w.r.t. encapsulating implicit meanings.

Another important aspect is that multilingual NNDWL could outperform its monolin-

gual NNDWL counterpart only on the development dataset, not on the test set. On one

hand, this could be due to a comparatively small development corpus, which was not

su�cient to train optimally generalising models. On the other hand, the discrepancy be-

tween these two datasets in terms of sentence length may have played an important role.

For all the NNDWLs, the longer the sentence are, the harder the translation taks might

be. Training models based on a more di�cult and less general validation set could lead to

poorly generalizing models.

Finally, although multilingual NNDWLs did not clearly outperform monolingual mod-

els, they were still advantageous, since they could translate using a single, much simpler

model. Combined with a monolingual language model, it is already possible to generate

low-quality translations from given source sentences within a short time frame and on

limited hardware. Also, these models are easier and faster to train, deploy and use than a

translation pipeline consisting of two complex MT-systems.
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6.3. Outlook

6.3. Outlook

The ideas used for the simple NNDWL translation model can be applied to other, more

complex models. For example, since convolutional networks for word-tagging tasks seemed

under�tted, [11] proposed an improved architecture by exploiting k-max-pooling instead

of dismissing too much information by using normal max-pooling. Another possibility

would be using a recurrent neural network, which is currently highly preferred in many

research �elds. Ideally, this would enable translations between many di�erent languages

using a single model, without requiring several complex MT-systems. Moreover, such a

model could be used to produce acceptable translations within a short time-frame and on

limited hardware.

Another aspect is the potential addition of additional data from other languages. In

this work, we restricted ourselves to the use of three languages. However, since learning

from a larger number of datasets seemed to slightly improve translation quality, the next

experiment could be aimed at using even more languages. Ideally, in this way, the neural

network models could be forced to derive abstract meaning from sentences, making it

more language-independent. Furthermore, we could extend the system to employ non-

textual data, adding e.g. video or audio to construct multi-modal inputs.
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A. Appendix

A.1. Example outputs of multilingual NNDWL

Source Everybody would like to make people happier.

Reference Tout le monde veut rendre les autres plus heureux.

NNDWL (De->En->Fr) gens monde heureux UNK tout les des comme à le de rendre que

NNDWL (En->Fr) gens UNK les qui personnes le des à de que monde personne faire

U. JointModel UNK gens les de est qui que des faire comme personnes d c le

U. JointModel + De-De les gens UNK des le de faire qui la personnes à personne que ont

U. JointModel + De-De, Fr-Fr gens que faire la des à UNK qui personnes personne aiment rendre

S. JointModel UNK gens les le que tout personnes pour à d tous de ça faire

S. JointModel + De-De gens les UNK le de la que ça à personnes faire qui des tout

S. JointModel + De-De, Fr-Fr UNK de ce les qui la que l à avait il avaient c qu ont le a été en est

Table A.1.: Predicted words by di�erent models, ordered by assigned probabilities (de-

scending order)

A.2. Detailed rescoring results & analysis of multilingual
NNDWL
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A. Appendix

ListNet KITPRO KBMira MERT
Dev Test Dev Test Dev Test Dev Test

Baseline 21.89 18.79 21.23 18.98 22.28 18.68 22.37 18.27

+NNDWL (De->En->Fr) 22.06 18.91 21.54 19.1 22.37 18.68 22.6 18.7

+NNDWL (En->Fr) 21.98 18.88 21.52 19 22.17 18.66 22.5 18.64

+U. JointModel 21.92 18.8 21.44 18.98 22.31 18.76 22.57 18.65

+U. JointModel+De-De 21.97 18.86 21.59 18.97 22.15 18.6 22.57 18.56

+U. JointModel+De-De, Fr-Fr 22.03 18.93 21.64 19.02 22.42 18.79 22.59 18.57

+S. JointModel 21.92 18.8 21.43 18.95 22.21 18.72 22.57 18.65

+S. JointModel+De-De 22.07 18.75 21.46 18.95 22.26 18.74 22.45 18.37

+S. JointModel+De-De, Fr-Fr 21.94 18.88 21.4 18.98 22.2 18.8 22.49 18.77

+UniformNoise 21.92 18.71 21.58 18.93 21.13 18.11 22.44 18.48

Table A.2.: Translation quality of multi- and unilingual NNDWLs in addition to De-En-

Fr-systems (unmatched corpus)

ListNet KITPRO KBMira MERT
Dev Test Dev Test Dev Test Dev Test

Baseline 14.52 18.73 14.39 18.85 14.74 18.79 14.98 18.5

+NNDWL (De->En->Fr) 14.82 18.85 14.53 18.9 14.81 18.98 15.04 18.58

+NNDWL (En->Fr) 14.71 18.66 14.57 18.79 14.86 18.8 15.09 18.58

+U. JointModel 14.85 18.55 14.55 18.74 14.92 18.48 15.1 18.59

+U. JointModel+De-De 14.81 18.66 14.51 18.88 14.99 18.75 15.19 18.28

+U. JointModel+De-De, Fr-Fr 14.81 18.63 14.64 18.88 14.8 18.65 15.11 18.39

+S. JointModel 14.85 18.55 14.53 18.79 14.9 18.62 15.11 18.39

+S. JointModel+De-De 14.68 18.57 14.5 18.83 14.86 18.84 15.05 18.19

+S. JointModel+De-De, Fr-Fr 14.76 18.72 14.55 18.91 14.91 18.83 15.1 18.59

+UniformNoise 14.63 18.56 14.3 18.86 13.76 16.04 14.95 18.46

Table A.3.: Translation quality of multi- and unilingual NNDWLs in addition to reopti-

mized De-En-Fr-systems (unmatched corpus)

ListNet KITPRO KBMira MERT
Dev Test Dev Test Dev Test Dev Test

Baseline 24.27 20.77 23.78 21.08 24.67 20.62 24.87 20.6

+NNDWL (De->En->Fr) 24.27 21.04 23.99 21.22 24.7 20.76 24.93 20.67

+NNDWL (En->Fr) 24.16 21.06 23.81 21.17 24.64 20.72 24.91 20.76

+U. JointModel+De-De 24.07 20.99 23.89 21.06 24.65 20.77 24.79 20.65

+S. JointModel 24.25 21.02 23.84 21.15 24.64 20.83 24.87 20.6

+S. JointModel+ De-De 24.16 20.98 23.93 21.09 24.68 20.7 24.91 20.62

+S. JointModel+De-De, Fr-Fr 24.13 20.98 23.95 21.15 24.66 20.7 24.91 20.69

Table A.4.: Translation quality of multi- and unilingual NNDWLs in addition to De-En-

Fr-systems (matched corpus)
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A.2. Detailed rescoring results & analysis of multilingual NNDWL
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(a) NNDWL (De->En->Fr)
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Figure A.1.: NNDWL computed French words’ probabilities , given the 10 sentences from

development data set
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Figure A.2.: NNDWL scored candidates for the �rst 10 sentences of development data set
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Figure A.3.: NNDWL computed French words’ probabilities , given the 10 sentences from

test data set
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Figure A.4.: NNDWL scored candidates for the �rst 10 sentences of test data set
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(h) S. JointModel + De-De, Fr-Fr

Figure A.5.: NNDWL computed French words’ probabilities , given the 50 sentences from

development data set
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(h) S. JointModel + De-De, Fr-Fr

Figure A.6.: NNDWL scored candidates for the �rst 50 sentences of development data set
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(h) S. JointModel + De-De, Fr-Fr

Figure A.7.: NNDWL computed French words’ probabilities , given the 50 sentences from

test data set
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Figure A.8.: NNDWL scored candidates for the �rst 50 sentences of test data set

62



A.2. Detailed rescoring results & analysis of multilingual NNDWL

ListNet KITPRO KBMira MERT
Dev Test Dev Test Dev Test Dev Test

Baseline 16.69 20.62 16.45 20.96 16.86 20.66 17.29 20.63

+NNDWL (De->En->Fr) 16.82 20.81 16.49 21.12 17.08 20.67 17.3 20.73

+NNDWL (En->Fr) 16.77 20.85 16.57 21.09 16.92 20.65 17.25 20.74

+U. JointModel+De-De 16.83 20.79 16.55 21.09 17.09 20.76 17.28 20.66

+S. JointModel 16.77 20.81 16.55 21.05 16.99 20.72 17.28 20.91

+S. JointModel+ De-De 16.85 20.82 16.57 21.07 16.92 20.78 17.28 20.9

+S. JointModel+De-De, Fr-Fr 16.83 20.79 16.53 21.09 17.03 20.6 17.28 20.71

Table A.5.: Translation quality of multi- and unilingual NNDWLs in addition to reopti-

mized De-En-Fr-systems (matched corpus)
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