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Abstract

Automatic speech recognition systems that operate in the “real world™ are often confronted
with acoustic conditions that do not resemble those seen in training data. If the training
data is clean, noise that is present at recognition time will result in a mismatch between

training and test conditions, and thus lead to a degradation in recognition performance.

This thesis investigates the effectiveness of spectral envelopes derived by the minimum
variance distortionless response (MVDR), both with and without speciral subtraction, to

reduce the negative impact of such additive noise.

In addition, a novel scaling for the MVDR envelope is proposed, as is the performance of

Mel-warping before the calculation of the MVDR.

These investigations have confirmed the superiority of the MVDR to the linear prediction,
but the superiority of the MVDR to the Fourier transform could not be confirmed. The
methods of spectral subtraction, scaling and pre-warping in combination with MVDR did,
however, provide significant improvements in recognition performance as compared with

the Fourier transform in most cases of interest.



Zusammenfassung

Automatische Spracherkennungssysteme, werden oft in der "realen Welt” mit einer akustis-
chen Umgebung konfrontiert, die nicht immer der trainierten entspricht. Wurde zum
Beispiel mit klaren Sprachdaten trainiert, fithren Gerdusche wihrend der Erkennung zu
ciner Abweichung des vorliegenden zum gelernten Muster. Dies kann zu einer fehlerhaften

Erkennung und somit zum Verlust an Wortakkuratheit fithren.

In der hier vorliegenden Arbeit wird untersucht inwieweit Spekirale Einhiillende, berechnet
tiber die Minimum Variance Distortionless Response (MVDR), mit und ohne Kombination
von Spektraler Subtraktion in der Lage sind den negativen Effekt additiver Gerdusche zu

mindern.

Uber die Aufgabenstellung der Diplomarbeit hinausgehend wurden ecine neuartige
Skalierung der tiber die MVDR berechneten Einhiillenden vorgeschlagen sowie die Ver-

legung des Mel-Warpings vor die Berechnung der MVDR Einhiillenden.

Die Untersuchungen konnten die prinzipielle Uberlegenheit der MVDR gegeniiber der Lin-
earen Prediktion bestitigen, nicht aber gegentiber der Fouriertransformation. Die hier zum
ersten Mal untersuchten Methoden, Spektraler Subtraktion, Skalierung und Pre-Warping
in Kombination mit MVDR brachten eine leichte Verbesserung der Wortakkuratheit in den

meisten hier untersuchten Fillen gegeniiber der Fouriertransformation.

Vi
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1 Introduction

In an ideal environment, where there is a single speaker wearing a head-mounted, close-
talking microphone, automatic speech recognition (ASR) achieves recognition rates up to
99%, which are eminently usable. When confronted with "real world” conditions, however,
recognition rates drop significantly, because many of acoustic conditions seen in actual use
do not resemble those present in the training data. Significant causes of mismatch be-
tween training and test conditions are ambient noise, reverberation and speaker variation.
A similar mismatch will occur if the noise at training differs from the noise occurring at
recognition. Because such mismatches degrade recognition performance, additional tech-
niques, applied either before recognition or as an integral component thereof, are needed to
mitigate their harmful effects. Loosely speaking, we can identify three different approaches

for increasing robustness:

|. Feature-based approach
This approach attempts to increase the robustness of the features used for ASR, which

can be achieved in two different ways:

o Robust feature selection
Selection of features that are relatively insensitive to the unwanted variations,
while eliminating features which are sensitive and thus contain significant dis-

tortions which may result in an errorful decision.

e Speech or feature enhancement
In this approach the speech signal is manipulated in a way to enhanced quality

for the ASR; e.g.. spectral subtraction.
Essentially the rest of the system is the same as for the recognition of clean speech.

2. Model-based approach

In a model-based approach, all information concerning various kinds of variability



| Introduction

is retained after the acoustic pre-processing. One of the model-based approaches for
robustness of ASR is to separately model the different parts of speech by different
parts of the model structures. For example, separate sets of hidden Markov models
(HMM)s parameters (e.g. the mean and variance of the Gaussians) are defined for

the useful information and the distortion part, respectively.

3. Microphone-array approach
In this case, the additional structure that tries to separate the speech and distorting sig-
nals is physically located outside the recognizer. The geometrical relations between
the different sound sources will result in different signals arriving at the microphones
in the array which makes it possible to focus on one particular direction and thus

suppress noises from other directions.

1.1 Review of Prior Work

In an investigation by de Wet, Cranen, de Veth, and Boves it was found that Mel-
frequency cepstral coefficients (MFCC) derived by the spectral envelope (SE) based on
linear prediction (LP) could lead to features which are inherently more robust to at
least some kind of background noise than their counterparts derived from the Fourier
transform [Wet00][Wet01]. Although LP is popular in speech recognition, it tends to
overestimate and overemphasize the spectral peaks in medium- and high-pitched voiced
speech [Mur00, Kab00], and provides a resolution far beyond the Fourier transform. These

drawbacks result in a loss of recognition accuracy in clean speech.

Murthi and Rao introduced a SE based on the minimum variance distortionless response
(MVDR), which can be easily obtained from the LP coefficients (LPC)s. Unlike LP, the
MVDR provides an elegant envelope representation of the spectrum for both medium- and
high-pitched voices [Mur97]. Furthermore, combining the MVDR with a smoothing tech-
nique for reducing the variance in the features can improve the word error rate (WER) in

robust speech recognition (RSR) [Dha01].

An all-pole model approximates spectra equally well at all frequency bands. Usually the

spectrum is warped after all-pole analysis, which does not lead to an improvement of the

(]



1.2 Contributions of this Work

frequency resolution of the envelope. To improve the frequency resolution in low fre-
quencies, Strube [Str80] proposed a method based on a linear transform to apply warping
before the all-pole analysis. Applied to LP using the Mel-frequency as a warping factor
and thus dubbed Mel-LP, this approach could provide a significant improvement in recog-
nition accuracy over LP and a slightly higher recognition accuracy for male speakers over

Mel-frequency cepstral coefficients [Mat01]

Boll [Bol79] proposed the technique of spectral subtraction (SS), where an estimate of the
noise spectrum is subtracted from the spectrum of the noisy signal. It has been shown that
this method can successfully increase the signal-to-noise ratio (SNR) of speech signals
corrupted by additive noise [Ars95]. Unfortunately, the remaining signal tends to consist
of short duration random tones, known as musical tones/noise. The appearance of musical
tones in a speech signal can be very objectionable to human ears and limit the gain in word
accuracy of a ASR system achieved by the increased SNR. To suppress the appearance of

musical tones, a broad variety of techniques were suggested [Cap94][KotO1].

1.2 Contributions of this Work

This thesis aims to reduce the negative impact of noise on recognition performance follow-
ing the feature-based approach, or to be more specific, by enhancing the speech features.
Based on the MVDR spectrum additional methods were suggested, implemented into the

Janus Recognition Toolkit' (JRTK) and investigated:

I. Spectral subtraction based on the spectral envelope to suppress musical tones
Most approached to overcome musical tones are post-processing steps which try to
limit the effects of musical tones after their appearance. Here we propose and in-
vestigate spectral subtraction (SS) based on the SE instead of the Fourier transform,
which is similar to the smoothing of the spectrum already suggested by Boll [Bol79].
Similar to the smoothing, the SE reduces the variance of the spectral estimate and
therefore successfully prevents musical tones from occurring. It also overcomes the
drawback of spectral smoothing which decreases the spectral accuracy resulting in

smeared formants which are very important in speech recognition.

'For a detailed description see Chapter 7.2
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2. Introduction of a novel scaling technique of the MVDR envelope
The MVDR envelope is able to overcome the main problems of the LP envelope in
medium and high pitched voices, but a high variance of the amplitude remains. To
reduce this variance we propose a novel scaling technique which adjusts the maxi-
mum of the envelope to the maximum of the Fourier spectrum, which in average is

less distorted than the averaged energy.

3. Adaptation of pre-warping to the MVDR approach
Mel-LP do not provide a good SE for medium- and high-pitched voiced speech. High
order MVDR all-pole models have been shown to be superior to LP all-pole models
for medium and high pitched voiced speech, and therefore an adaptation of high
order MVDR all-pole models to "Mel-MVDR" could provide a spectrum envelope
which models medium and high pitched voiced speech very well in the Mel-spectra.
The Mel-MVDR followed by a filterbank could also lead to an improved frequency
resolution in low frequencies over the MVDR followed by a Mel-filterbank leading

to a better word error rate.

To measure and compare recognition performances of the proposed techniques, the JRTK
using different speech recognition pre-processing approaches was trained on clean speech
and tested in different acoustic conditions. Adverse acoustic conditions were simulated by
“artificially” adding noise (white noise at different SNRs and noise recorded from robots)
and through recordings in a meeting room. A second data set containing telephone speech

was also investigated.

It should be kept in mind that observations with “artificial” disturbance may not always
generalize to “real world” applications; clean signals with “artificially” added noise are by
no means exact representations of “real world” noise conditions. For instance, they do not
capture the way in which people tend to change their rate and manner of speaking if the
acoustic condition gets noisy (Lombard effect) [Lom11] entailing a higher pitch, slightly
different formants and a different coloring of the spectrum. Nevertheless, these simula-
tions are widely used for experimental purposes, because they provide a framework within
recognition performance in clean and noisy acoustic conditions may easily be compared.
Such a framework also provides the possibility to measure the impact of additive noise on

the statistical properties of the data at acoustic feature level.



1.3 Organization of this Work

1.3 Organization of this Work

We now outline the balance of this thesis. Chapters 2—4 review briefly well known mate-
rial to lay the ground work for the development which follows. Chapter 2 reviews quality
factors in speech recognition which allow system performances to be measurable. Chap-
ter 3 reviews the components of a widely used model of acoustic pre-processing in ASR
and reviews and discusses how the aspects of the human auditory system are or could be
implemented in the pre-processing. Chapter 4 reviews the concepts of LP and its interpre-
tation in the frequency-domain. Chapter 5 reviews the basic ideas of the MVDR and offers
a fast way for its computation. Furthermore, novel MVDR scaling and warping techniques
are proposed and their effects are discussed. Chapter 6 reviews spectral estimation and
subtraction and introduces SS based on the envelope and discusses why it should perform
superior. In Chapter 7, speech recognition experiments are conducted to measure the recog-
nition performance of the novelties which are so far only discussed theoretically. Finally,
Chapter 8 summarizes the work and suggests ways in which the MVDR approach might
lead to further improvement in word accuracy in speech recognition and suggest the use of

the MVDR in other applications.



2 Quality Factors

To quantify the effectiveness of the robustness measures proposed in this work, quality
factors are needed which correspond well with the performance of an ASR system and/or

the quality of the processed speech. Such measures fall into two primary categories:

[. Subjective Quality Measures
This category of quality measures is based on the opinion of a group of test subjects

and can be classified as:

e Listening Test where a group of listeners judge the quality and/or intelligibility
of the speech. Here, a consistent listening environment is required since the
perceived distortion can vary with the playback volume and type of listening

instrument; e.g., headphones, speakers.

¢ Understandability where a group of persons render opinions about the under-
standability of the output of an ASR system. A subjective judgment is necessary
in this case, because the meaning of a sentence may be preserved even if one or

more words are incorrectly recognized or deleted.

In general, these measures are time-consuming and costly.

]

Objective Quality Measures

This category of quality measures can be evaluated automatically from the speech
signal, its spectrum or some parameters obtained therefrom. Since they do not re-
quire listening tests, these measures can give an immediate estimate of the perceptual
quality of an algorithm. In addition, they can serve as a mathematically tractable cri-
terion to minimize. The two main factors in selecting an objective distortion measure
are performance and complexity. The performance of an objective distortion mea-

sure can be established by its correlation with a subjective distortion measure of the

6



2.1 Time-Domain Distortion Measures: Signal-to-Noise Ratio

same features (quality or intelligibility). Objective quality measures can be broadly

classified into four categories:

e Time-domain distortion measures are most useful for waveform coders which
attempt to reproduce the original speech waveform. The most frequently en-

countered measures of this type are the several forms of signal-to-noise ratio.

e Frequency-domain distortion measures are used to determine the perfor-

mance of the magnitude spectrum; e.g., log spectral distortion.

e Word Error Rate & Word Accuracy are the most important measures of an

ASR system, because they directly state the recognition performance.

e Perceptual-domain distortion measures are based on human auditory mod-
els. They transform the signal into a perceptually relevant domain and take

advantage of psychoacoustic masking effects.

Performance analysis of distortion measures are given in [Dim89][Dim95][Qua88].

2.1 Time-Domain Distortion Measures:
Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) represents an average error over time or frequency for a
processed signal and is defined as the ratio between the power of the signal to the power of
the noise. Usually the SNR is defined in decibels (dB) as:

5 oo g2 [‘H‘]

ON [ : Lig =
N B T T, s = e 0 .
. 1 0810 By Yo (s[n] — 3[n])?

(2.1.1)

where &[n| denotes the estimate of the original speech sample s[n|. The principal benefit of
the SNR quality measure is its mathematical simplicity. The fact that the SNR is not partic-
ularly well related to any subjective attribute of speech quality and that it weights all time
domain errors in the speech waveform equally, makes it a poor measure for a broad range
of speech distortions. Furthermore, in the case of speech recognition, an improvement in

the SNR does not necessarily increase the word accuracy (WA).



2 Quality Factors

2.2 Frequency-Domain Distortion Measures

Generally speaking, the spectral distortion should measure the discrepancies between the
original signal and its estimated version, which will unavoidably contain distortions that
might lead to errors in phonetic classification [Rab93]. The disparities between the original

signal and its estimate may include the following:
e Significant differences in the center frequencies of resonances or formants.

e Alteration of the formant bandwidths due either to the distortion or the estimation

Process.

To measure spectral distortion, a function d( f, f) of two spectral densities, the true spec-

trum f and it’s counterpart f, is defined with following properties:

e Non-negativity: d(f, f) = 0

o f=Ffedff)=0
e Symmetry: d(f, f) = (.zf(f. f)
e Satisfaction of the triangular inequality: d(f, g) < d(f, h) + d(h. g)

The final performance measure is then the long term average of a given distortion measure,

expressed as follows:
M

1 .
B B & ; : ;
D= ﬂ}l_l‘l"gc. M r"‘(.fm- jm) (...2 1)

m=1

One of the important spectral distortion measures which is also used throughout this the-

sis is discussed below. Further examples of spectral distortion measures can be found

in [Bat98].

2.2.1 Logarithmic Spectral Distortion

The logarithmic spectral distortion (LSD), for a given frame, is defined as the root mean
square difference between the original logarithmic power spectrum (LPS) S and the esti-

mated LPS S. Mathematically, the L, norm-based logarithmic spectral distance measure is



2.3 Word Error Rate & Word Accuracy

defined as
F/2

5 2 f ; 55
disp = 7 / |10g1p S(w) — log;p 5(w)|"dw (
0

]‘\J
b
2

where F' denotes the sampling frequency. As usual, for the discrete case we can replace the
integration with a summation. For the balance of this thesis, the LSD will be defined as the

second (p = 2) norm-based LSD, such that:

M

= 1 1 a 19
LSD = || - > [logyg S(m) — logy, S(m))? (2.2.3)

m=1

Paliwal and Atal [Pal93] have suggested that the average spectral distortion alone is not
adequate to measure perceived quality. They introduced the notion of spectral outliers

which represent the fraction of frames with large spectral distortions.

2.3 Word Error Rate & Word Accuracy

The most often cited performance measure for an ASR system is word error rate (WER),

which 1s typically expressed as the percentage:

I'ler‘ - ﬁrﬁ'll‘h + jvdr;'( - -!V-:‘n.w

WER = 2.3.1
N N ( )
or the word accuracy (WA), which is given by:
1 ; ]V g -N*au = j\f el — *Nin\: :
WA = 100% — WER = i R : (2.3.2)
N
In the above, N denotes the number of tokens, V., the number of substitution errors, Ny

the number of deletion errors and Ny, the number insertion errors.'

2.3.1 Relative Error Reduction

When comparing different acoustic modeling algorithms, it is not useful to use absolute
WERs, because a reduction of 1% in WER from, e.g., 3% to 2% WER is more significant

than a reduction from, e.g., 30% to 29% . Therefore a measure is more useful which is able

'In the case of non-continuous speech recognition Ny and Ny, can’t appear and thus are set to zero.
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to state the significance of the error reduction. This can be achieved by the relative error

reduction (RER); A -
Sl JEF £ = WE '{1 ;
RER = 2.3
WERz 2:3:3)

For the given example, the RER would be 33.3% (WER reduced from 3% to 2%) compared

to 3.3% (WER reduced from 30% to 29 %).

Empirically, you need to have a test set containing more than 8000 words from at least 10

different speakers to reliably estimate the WER and RER [HuaO1].

2.4 Computation Cost & Memory Usage

Among the WA of an ASR system, factors like computation cost and memory usage play
a major role. Usually for the computation cost the real time factor (RTF) is used; e.g., an
RTF of 2.0 means that the computer needed twice as long to recognize a recording as the
speaker took to say it. As my investigations are only addressing a small part of an ASR
system and the RTF is strongly dependent on the used system, we prefer to compare the
calculation cost between different implementations. Memory usage should not addressed,

because in my investigations it plays no mayor role as it is always very low.

10
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3.1 Acoustic Pre-Processing for Speech Recognition

In this chapter we introduce the acoustic pre-processing in a speech recognizer, also termed
speech recognition frontend because it refers to the first stage of an ASR system. Its task 1s
to transform the acoustic input signal to a sequence of acoustic feature vectors preserving
all the perceptually important information for phonetic distinctions, while being insensitive

to phonetically irrelevant variations.

Over the years many different speech recognition frontends have been developed. The
variety of frontends are distinguished by the extent to which they incorporate information
about the human auditory processing and perception. Figure 3.3 shows a widely used ASR
frontend, which is also the basic approach in the JRTK used throughout the evaluations

presented in this thesis.

Speech Waveform

The speech waveform is commonly sampled at 16 kHz, 16-bit A/D precision which is
sufficient for the speech bandwidth of 8 kHz. Reducing bandwidth generally decreases the
word accuracy; e.g., a down sampling from 16 kHz to 8 kHz (typical for telephone speech)
results in an increase of relative word error by 20% [HuaO1].

.

I Preemphasis I

<

To compensate for the unusual sensitivity of human hearing across frequency equally-

loudness pre-emphasis a first-order high pass filter

Hiz)=1=-a-z"" (3.1.1)
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is used [Mil02].

l

‘ Windowing n

v

Speech is a so-called guasi-stationary signal, which implies that the vocal tract shape,
and thus its transfer function, remain nearly fixed over short time intervals of 5-25 ms
duration. The signal processing performed by a typical ASR frontend assumes a stationary
signal; hence it is necessary to split a given utterance into short segments. The length of
each segment must be short enough to give the required time resolution, which involves a
tradeoft with adequate frequency resolution. In addition, during voiced speech the signal
must be long enough to be insensitive to exact positioning relative to the glottal cycle. The
advantages of a long segment is that it smooths out some of the temporal variations of

unvoiced speech while it blurs rapid events such as the releases of stop consonants.

a) Rectangle Window b) Hamming Window

Figure 3.1: Rectangle and Hamming window

To apply the segmentation, the total speech signal is multiplied every 10 ms (frame shift)
by an analysis window of a fixed duration between 16 and 25 ms (frame size). Choosing
the right window shape is very important, as this shape determines the resolution of the

speech segment in the frequency domain. The simplest analysis window is a rectangular

i) = { 1 0= Ny —1 (3.1.2)

window:
0 otherwise
Because of its abrupt discontinuity at the edges, the rectangular window introduces spurious

high-frequency components in the frequency domain. To reduce the discontinuities at the

edges of the selected regions, a window without abrupt discontinuities in the time domain
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should be used. One window of this type commonly used in speech processing is the
Hamming window:

Nuy—1

3.13
0 otherwise ( )

{ 0.54 — 046 cos(:22;) 0< Ny —1
w(n) =

Descriptions of other types of tapered windows (e.g., Hanning, Blackman, Kaiser, Bartlett)
can be found in any digital signal processing book [Kam9§, Opp89].

To derive the PS, first the fast Fourier transform (FFT) is computed, then it’s absolute value

18 squared.

\ VILN |

Due to gross differences in the length of the vocal tract, which is strongly correlated with a
person’s height, the locations of the spectral resonances or formants seen in voiced speech
vary widely across speakers. To reduce inter-speaker variability a vocal tract length nor-
malization (VTLN) may be applied shift the formants for a given speaker back to their
nominal locations. This shift, also called a warping factor, is estimated for each speaker
by computing the likelihood of the training data for feature sets obtained with different
shifts. This simple normalization can provide a relative reduction in WER of as much as
10% [HuaO1].

S

Mel Filterbank ﬂ

v

To immitate the frequency dependent spectral resolution of the human ear, the PS 1s warped

according to the Mel-scale by the following transformation

. Tz
fI\-’It-.‘] % 2595 108;”] (1 + m (3.14)
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Figure 3.2: Critical band filters for the Mel-frequency/-cepstrum

To reduce the number of features, a filterbank of uniformly half overlapping triangular

shaped filters could be used.

A smarter solution combines Mel-warping and feature reduction by placing the triangular
filters non-uniformly at the unwarped spectrum, as in Figure 3.2, and thereby implicitly
incorporate Mel-frequency scaling [Sha87]. This Me/ filterbank will be used throughout

the remainder of this thesis, unless the contrary is specifically stated.

|

[ Logarithm "

+

This processing stage models the non-linear relation between the intensity of sound and its

perceived loudness.
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A further reduction of recognition errors may be obtained through a transformation of the
feature vectors into a new space that is less sensitive to environmental noise, channel dis-
tortion, and speaker variations. One useful transformation of this type is the discrete cosine
transformation (DCT) which transforms the feature vectors into the cepstral space where

the cepstral coefficient are calculated as

\/QIiA TR 08Y v RER -1 (3.1.5)
T = g 5 1= e T - T = = iy
Cm N n LG N = =

n=1

resulting in the Mel-frequency cepstral coefficient (MFCC) vector. The cepstral sequence
is truncated to 12-15 components to smooth the spectrum and to minimize the influence of
the pitch which is irrelevant for the speech recognition process.

[ Channel Norm |

v

The channel is normalized by a subtraction of the mean for each cepstral component. This
step reduces the RER by 5% while increasing the robustness of the system to different

environments [Lee96]

A | (24

Because temporal changes in the spectra play an important role in human speech percep-
tion, the static cepstral coefficients are typically augmented by first and second order delta
coefficients, which measure the change in the static coefficients over time. This leads to an
RER of 20% [Hua01].
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Figure 3.3: Typical frontend of a speech recognition system
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To further reduce the dimension of the feature vector, a dimension reduction technique
to map the feature vector into a more effective representation may be used. A simple
criterion is to use within-class and between-class scatter matrices to formulate criteria of
class separability, this is also referred to linear discriminant analysis (LDA). For a detailed
description of this technique, see [HuaOl].

.

Acoustic Feature Vectors
The acoustic features are then used for higher level processing; see [Rab93, Hol01].

Further details of the acoustic pre-processing for speech recognition can be found
in [HolO1, Mol01].

3.2 Aspects of the Human Auditory System

It is widely known that in speech recognition an adaptation of the aspects of the human au-
ditory system can reduce calculation costs and increase word accuracy [Her90]. Therefore,
in this chapter, we want to review several aspects of the human auditory system and discuss

how the same can be applied to an ASR system.

¢ Phase insensitivity
The phase components of a speech signal play a negligible role in speech perception,
with weak constraints on the degree and type of allowable phase variations [Del00].
The human ear is fundamentally phase “deaf” and perceives speech primarily based

on the magnitude spectrum.

This can easily applied in a speech recognition approach by using the absolute of the
complex spectrum am/ju.s‘t{ﬁex the use of a minimum-phase system to represent the

possibly non minimum-phase impulse response of the vocal tract.

e Perception of spectral shape

Spectral peaks (corresponding to poles in the system function) are more important to

17
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perception than spectral valleys (corresponding to zeros) [Sai85].

This can be applied by using an all-pole model as we will see in Section 4.1.

e Frequency masking
Every short-time PS has an associated masking threshold. The shape of this masking
threshold is similar to the spectral envelope of the signal, and any noise mserted

below this threshold is "masked” by the desired signal and thus iaudible.

This feature may be applied by a spectral envelope.

¢ Frequency dependent spectral resolution

Spectral information in the human auditory system is processed on a non-uniform
frequency scale.
This can be applied by frequency-warped spectral features; e.g., by the Mel filter-

bhank.

e Temporal masking
Sounds can mask noise up to 20 ms in the past (backward masking) and up to 200
ms in the future (forward masking) given that certain conditions are met regarding

the spectral distribution of signal energy [Sha00].

As far as we know this principle has not been applied to speech recognition yet.

3.3 Speech Production Model

Knowledge of the vocal system and the properties of the resulting speech waveform is es-

sential in designing an approximate model of speech production.

Due to the inherent limitations of the human vocal tract, speech signals are highly redun-
dant and contain a variety of different, speaker dependent speech parameters, e.g., pitch,
formants, spectra, phase and vocal tract area function. By removing the irrelevant informa-
tion, contained in the waveform, a simple model of human speech production is obtained.

In the case of ASR, for example, only the formants and the spectra are of interest.

The human speech production process reveals that the generation of each phoneme, the

basic linguistic unit, is characterized by two basic factors:
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e the random noise or impulse train excitation
e the vocal tract shape

In order to model speech production, we must model these two factors. To understand the
source characteristics, it is assumed that the source and the vocal tract model are indepen-

dent [Del93].

Speech consists of pressure waves created by the flow of air through the vocal tract. These
pressure waves originate in the lungs as the speaker exhales. The vocal folds in the larynx
can open and close quasi-periodically to interrupt this airflow. This results in voiced speech,
which is characterized by its periodic and tends to have relatively high energy. Vowels are

typical examples.

Some consonants like /f/, /s/ (here /-/ denotes a phoneme) on the other hand are examples of
the so called unvoiced speech. These sounds are noisy in nature due to turbulence created
by the flow of air through a narrow constriction in the vocal tract. The positioning of the
vocal tract articulators acts as a filter, amplifying certain sound frequencies while attenuat-

ing others.

Unvoiced Voiced

Figure 3.4: A speech segment (time domain) of unvoiced and voiced speech

A time-domain segment of unvoiced and voiced speech is shown in Figure 3.4. A general

linear discrete-time system to model this speech production process is shown in Figure 3.5.
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In this system. a vocal tract filter V(z) and a lip radiation filter 2(z) are excited by a
discrete-time excitation signal. The local resonances and anti-resonances are present in the
vocal tract filter V'(z) which has an overall flat spectral trend. The lips behave as a 1°* order

high-pass filter and thus the lip radiation filter F(z) grows at 6 dB/octave.

Random ,
Unvoiced Noise Gaiy
Generator
Voiced/Unvoiced
Switch
. P Glottal Filter Vocal Tract
Voiced 1 Train G(2) Filter V
‘ Generator terviz)
I ” h 4
Pitch Period p Lip Radiation
Filter R(z)

—

Speech Signal s(n)
Figure 3.5: Block diagram of the simplified source filter model of speech production

To get the excitation signal for unvoiced speech, a random noise generator with a flat spec-
trum is typically used. In the case of voiced speech the spectrum is generated by an impulse
train with pitch period p and an additional glottal filter G/(z). The glottal filter is usually
represented by a 2" order low-pass filter, falling off at 12 dB/octave.

The periodicity of voiced speech gives rise to a spectrum containing harmonics of the fun-
damental frequency of the vocal fold vibration. A truly periodic sequence, observed over an
infinite interval, will have a discrete-line spectrum but voiced sounds are only locally quasi-
periodic. The resonances in the PS of voiced speech, known as formants, are a product of

the shape of the vocal tract. The spectrum for unvoiced speech ranges from flat spectra
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to those lacking low frequency components. The variability is due to place of constriction
in the vocal tract for different unvoiced sounds — the excitation energy is concentrated in
different spectral regions. Due to the continuous evolution of the shape of the vocal tract,
speech signals are nonstationary. The gradual movement of vocal tract articulators, how-
ever, results in speech that is quasi-stationary over short segments of 5-25 ms which allows
a splitting of the speech signal in short frame segments of 16-25 ms to perform frequency

analysis.

3.4 Spectral Envelope

A spectral envelope (SE) is a curve in the amplitude-frequency plane of the signal energy

with following desirable properties:

s Envelope fit
The curve of the SE should wrap tightly around the PS, linking the peaks. If it is not
possible to link every peak, e.g., when the additive analysis finds a group of peaks
close to each other with high energies, then it should find a resonable intermediate

path.

e Robustness
The estimation method to derive the envelope has to be applicable to a wide range of
signals with very different characteristics, from high pitched harmonic sounds with

their wide spaced partials to noisy sounds or mixtures of harmonic and noisy sounds.

e Smoothness
The SE should provide a certain smoothness. This means it must not oscillate too
much, but it should give a general idea of the distribution of the signal energy over

frequency.

s Stability

The estimation method to derive the envelope should be stable.

e Locality
The SE should be local which states that it should be possible to achieve a local

change of the SE, i.e., without affecting the intensity of frequencies further away
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from the point of manipulation. Ideally, the representation would fulfill the require-
ment of orthogonality, where one component of the SE can be changed without af-

fecting the others at all.

Speed of synthesis

The calculation cost to derive the SE should be as small as possible.

Insensitivity to noise

The requirement of insensitivity to noise mandates that the representation be resilient
to small changes in the data to be represented. Small changes, e.g., in the presence of
noise, must not lead to big changes in the representation, but must result in equally

small or even smaller (see chapter 3.4.2) changes.

Minimal Variance

The variance of the envelope of the same phoneme should be as small as possible.

3.4.1 The Advantage of Spectral Envelopes over Smoothed

Spectra

Smoothing a spectrum results in three drawbacks which can be overcome by the SE [GuO1]:

2
]

e Limited ability to remove undesired harmonic structures

In order to maintain adequate spectral resolution, the standard filter bandwidth is
usually in the range of 200Hz-300Hz in the low frequency region. Hence, it is suf-
ficiently broad for typical male speakers, but not broad enough for high pitch (up to
450Hz) female speakers. Consequently, the formant frequencies are biased towards

pitch harmonics and their bandwidth is misestimated.

The characteristics of the vocal tract is widely believed to be the spectral enve-
lope and not the gross spectrum

It is widely agreed in the speech community that it is the SE and not the gross spec-
trum that represents the shape of the vocal tract [Jel99]. Although the smoothed
spectrum is often similar to the SE of unvoiced sounds, the situation is quite dif-
ferent in the case of voiced and transitional sounds. Experiments show that this
mismatch substantially increases the spectrum variation within the same utterance.

This phenomenon is illustrated in Figure 3.6 which demonstrates that the imaginary
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“upper” envelope of the PS sampled at pitch harmonics is nearly unchanged, while
the variation of the imaginary “lower” envelope is considerable. The conventional
smoothed spectrum representation may be roughly viewed as averaging the “upper”
and “lower” SEs. It therefore exhibits much more variation than the "upper” SE

alone.

e High spectral sensitivity to background noise
As mentioned in the former paragraph the conventional smoothed spectrum may be
roughly viewed as averaging the "upper” and the "lower” SEs. Because regions with
low energy are stronger distorted than the regions with high energy (see chapter 5.3)

the combination of “both™ SE exhibits lower SNR as the "upper” SE alone.

Log Power Amplitude

0 2000 4000 6000 8000
Frequency (Hz)

Figure 3.6: Power spectrum of 5 consecutive frames (2ms steps) over a stationary part

3.4.2 Spectral Envelopes in Noisy Environment

Distortion effects due to additive noise in the logarithmic power domain is most evident in
the spectral valleys. The spectral peaks, on the other hand, remain relatively unchanged (for
an explanation see Section 5.3). The main difference between the SE and Fourier transform

is this difference in the description of the spectral valleys:

The SE describes the peaks in the spectrum with high accuracy while the representation of

the valleys includes no detailed information about their fine spectral structure. In contrast,

]
1



-

3 Acoustic Pre-Processing

non-parametric descriptions of spectra, such as the Fourier transform, describe spectral

peaks and valleys in equal detail.

Therefore, if the spectral valleys are filled by additive noise, the spectral fluctuations intro-
duced by the noise should have little effect on SEs while in the Fourier case the spectral
fluctuations are described in just as much detail as the spectral peaks, resulting in a higher

overall distortion of the spectrum in comparison to the clean spectrum.
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Estimation

The classic method of spectral estimation considers the spectra of short time sections un-
der the implicit assumption that the data values outside the window are zero or repeat the
spectra cyclical. This is usually not the case and results in a smeared spectrum and side-
lopes [Kay88]. Therefore, to increase the spectral resolution and to suppress sidelopes, an
estimation of the values outside the window is needed. Linear prediction (LP) is a popular

method to achieve this.

The term linear prediction was coined by Wiener in 1966 [Wie66] and applied for speech
analysis two years later by Itakura and Saito [Ita68]. Since then it has become one of the

most powerful speech analysis and coding methods.

4.1 Linear Predictive Modeling of Speech Signals

Ideally, the output of a prediction filter //(z) in Figure 3.5 should correspond to the physi-
cal excitation of the vocal tract that produced the speech segment. Limitations of the model
and the error introduced in estimating the model parameters, however, allow only an ap-
proximation to the actual excitation signal. The selection of the order p of the LP model is
a trade-off between spectral accuracy, computational complexity and, in the case of speech
coding, transmission bandwidth. As a general rule, two poles are needed to represent each
formant and two to four additional poles are used to approximate spectral nulls (where ap-
plicable) and for overall spectral shaping. Based on simple acoustic tube modeling of the
vocal tract, the first formant occurs at 500 Hz and the remaining formants occur at roughly
| kHz intervals (i.e., 1.5 kHz, 2.5 kHz, ...). Therefore, a model order of 8 to 14 is typically
used for a sampling frequency of 8 kHz, to model the first three to five formant peaks.

Typically this model order increases with higher sampling rates; e.g., at 16 kHz a model

]
N
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order of 20 is common. Conversely, in the case of speech corrupted by noise, studies have
shown that the order of the LP all-pole filter should also increase, to model both, speech

and noise [Tie80].

To mimic the human auditory system, which has higher resolution in lower frequencies
and lower resolution in higher frequencies, a selective LP analysis was developed by
Makhoul [Mak73, Sch75]. Its function is to apply the LP analysis on a selected portion
of the spectrum rather than uniformly over the entire spectral range. Another approach
inspired by the frequency-dependent resolution present in the human auditory system is to

pre-warp [Str80, Kar01] the spectrum before linear prediction.

4.1.1 Basic Principles of Linear Prediction Analysis

Referring to Figure 3.5, the combined spectral contribution of the glottal pulse, the vocal
tract and the radiation of the lips can be represented by a time varying filter with a steady
state system function, as given by a pole-zero model, which is also known as an autore-

gressive moving average or ARMA model:

M —i

L LD 02
H;mlc\—-zc:ro(z) =G N R
1= Z,.__l 2~

Here, poles as well as zeros exist in the transfer function. As previously mentioned, an

(4.1.1)

all-pole model gives a good approximation for a speech signal and provides for increased
noise robustness. Thus, we can simplify to an all-pole model, which is also known as
autoregressive or AR model:

G G
= ]_—ZN ﬂiz_‘i = A(N)(.E)

i=1

j':[n‘ll—[)r_)lci:(z) = (4.1.2)

Transforming (4.1.2) into the sampled time domain we get the LPC difference equation
N
s(n) =G zn) + Z a;s(n — 1) (4.1.3)
i=1

This equation states that the value of the present output s(n) is dependent on the gain (7, the
present input z(n) and a weighted sum of the past output samples s(n — ) ,i =1,..., N.
Hence, the problem of linear prediction can be stated as the determination of the parameters

a,, i = 1,.--,p directly from the speech signal so as to obtain a good estimate of the
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spectral properties thereof.

Letting a; denote the estimate of a; we can define the (forward) prediction error

e(n) = s(n) — Zr};.ﬁ'(n — i) (4.1.4)

Similar to the forward prediction error we can define the backward prediction error

N
b(n) =s(n—-N) - Z(?.,.S{‘H —i+1) (4.1.5)
i=
Now a good estimate can be found by a set of predictor coefficients that minimize the
(forward) mean-square prediction error

N 2
E,=E{*n)} =E {g(n) =Y as(n — 1) (4.1.6)

i=1
over a short segment of speech. Similarly, with (4.1.28) we can define the backward mean-
square prediction error. The resulting parameters are then assumed to be the parameters of
the system function /(=) as given in the model of speech production (4.1.2). The mean-
square prediction error can be minimized by setting the partial derivatives of the mean-

square prediction error with respect to the LP parameters equal to zero dF,/da; = 0 to

arrive at p linear equations for the p unknown LP parameters aq, ..., Qi
P
Zr.'r‘,l.,-qh.”(i,j) =¢a(i,0) i=1,....p 4.1.7)
=1
where
tnli,g) = E{s(n—i)s(n—7j)} (4.1.8)

In deriving (4.1.7), our major assumption was that the signal is stationary, which in the case
of speech holds only for short segments of speech. As a consequence, we must replace the

expectation of (4.1.8) by finite summations over a short length of speech samples:
du(i ) = sa(m—=i)su(m—3) i=1,....p;j=1....p (4.1.9)
T
There are two different ways of interpreting the last equation, leading to two different

methods for estimating the prediction coefficients:
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e the autocorrelation method
e the covariance method

These two methods along with lattice based methods, like the Burg method, are efficient
and popular all-pole spectral estimation techniques. A detailed description of these meth-

ods follow in the next sections.

[t is worth noting that in this section the least mean square approach was used to derive the

equations for LP analysis. The maximum likelihood method can also be used. [Sri79].

4.1.2 The Autocorrelation Method (Levinson-Durbin Recursion)

The autocorrelation approach assumes that the segment s, (m) is zero outside the interval
0 < m < N — 1 where N is the length of the sample sequence. Introducing a finite length
window w(m) that is identically zero outside the given interval, the speech segment can be
expressed as:

sn(m) = s(m + n)w(m) (4.1.10)
Assuming that the interest is only in the future prediction performance, the limits of (4.1.9)
can be expressed as

N=1—(i—j)

bulij)= Y salmsa(m+i—j) i=1...,pj=1,..., p (41.11)

m=I)

The last can be rewritten as the short-time autocorrelation function:

(;'J,,‘(‘i.j) = R(|i—7|) =10 D3 = Ly P (4.1.12)
where
N=1-j
R(j)= 3 su(m)sa(m+ ) (4.1.13)
m=1

Therefore (4.1.7) can be expressed as

P
S aR(li—jl)=R(E) :1<i<p (4.1.14)

i=1
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The set of equations (4.1.14), which are known as the Yule-Walker equations, can also be

expressed as

R(0) R(1) -+ Rp-1) a R(1)
R(_l) H(.(]) - R(p-2) _ u;g _ /_1'(-'2) @.115)
R(p = 1) R(p.— 2) -~ R(0) czj,, ]?(-p)

where the matrix is Toeplitz. That means the matrix is symmetrical and all the elements
along a given diagonal are equal. Equation (4.1.15) can be solved by inverting the relevant
p % p matrix, although this is usually not done due to its high computational cost and
the associated accumulation of finite precision errors. In light of the special properties
of a Toeplitz matrix, this inversion problem can be solved much more efficiently than is
generally possible. The well known Levinson-Durbin recursion, which we now summarize,

is designed to do exactly that. Set
ay) =1; e = R(0)

with the reflection coefficients

n—1

—1 fz ¢ n—1) ; :
kn=—Y R(i—n)al" m=1<i<N (4.1.16)
En—1 ; ( I
where
1 ta={)
a.,iﬂ') = (1,‘5"_” + k, rJ.:,_(_'°,£_l) ti=1,,n—1 (4.1.17)
k.. i=n

and the modelling error
Ep = En—l(.E - “':n‘]!) (4118)

After solving (4.1.16) to (4.1.18) recursively for7 = 1, ... , p the parameters are given by
ca.,EN} fori =1,--. ., N. An example can be found in [Kon94]
Key properties conducing to a preference for the autocorrelation method over other LP

methods for speech processing applications are:

e Computational Efficiency
Since the LP parameters are typically updated 100 times every second, algorithmic

complexity is a key issue. As mentioned above, the simultaneous equations R, - a =
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r, can be solved efficiently using the Levinson-Durbin. In addition, the reflection
coefficients, to which we shall return in Section 4.3, are computed as a by-product of

the Levinson-Durbin recursion.

e Minimum-Phase Solution
The solution of the Yule-Walker equations guarantees that the prediction filter H(z)
is minimum-phase; i.e., all zeros fall within the unit circle. This implies that the LP

synthesis filter /{(z) is stable.

4.1.3 The Covariance Method (Cholesky Decomposition)

The second approach commonly used to define the speech segment s, (/) and the limits
on the summation is to fix the interval over which the mean-square error is computed

N-1

E = Z 2 (m) (4.1.19)

m=0
so that (4.1.7) can be rewritten as

N—1—i
¢s(t,7) = Z sulmlsslm4+i=13) i8=1usD §= LisuusD (4.1.20)

m=—i
This equation is slightly different than (4.1.11), which was used to derive the auto-
correlation method, inasmuch as it involves the interval —i < m < N — 1 — i instead
of 0 =m < N —1— (i —j). Actually (4.1.11) is not a true auto-correlation function, be-
cause it is approximated through a cross-correlation between two very similar finite length
samples. Using (4.1.20), we can express (4.1.7) as

5
Zf-;.‘jm,‘,_(»;.,j) =¢,(1,0) :1<i<p (4.1.21)

or equivalently,

"f-"u‘(l]' 1) d“'ﬁ(l' 2) f"J,I(l.p) a1 qbrr(l* 0)
(2, 1 b2, 2 ho (2. 1 o (2,0
62 1) 622 o Ga@p) | || | 6a(20) L8 s
du(p,1) dulp—2) -+ oulpp) ap ¢n(p, 0)

Although the differences between (4.1.14) and (4.1.21) appear to be minor, the solution

of (4.1.21) is not as straightforward as the other case because ¢ is not Toeplitz. It is a
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4.1 Linear Predictive Modeling of Speech Signals

symmetric positive definite matrix, however, and thus can be solved via the Cholesky de-

composition method.

Let us express ¢ as
¢ =VDVT (4.1.23)

where V is a lower triangular matrix whose main diagonal elements are all unity, and D
is a diagonal matrix. The superscript 7" indicates matrix transposition. The elements of V
and D are readily determined from (4.1.23) by solving for the [7, j|'"" element of both sides.

An example can be found in [Rab78].

Because ¢ has the properties of a covariance matrix, this came to be known as the covari-
ance method. This method does not guarantee the stability of the LP synthesis filter, nor
1s it computationally efficient for large p. Since the energy of the prediction error is mini-
mized and the input speech signal is not windowed, however, the covariance method yields

a residual signal with the highest achievable prediction gain.

The modified covariance method involves essentially the same steps as the covariance
method. The final solution, however, is derived from the so-called partial correla-

tions [Kay88], resulting in a minimum phase, and thus stable, LPC filter.

4.1.4 Basics of Lattice Methods

Both the autocorrelation and covariance methods involve two basic steps:
1. Computation of a matrix of correlation values ¢, (7, j)
2. Solution of a set of linear equations

Although both steps can be performed efficiently, another class of auto-correlation methods
has evolved, wherein the two steps are combined in a recursive manner. We now consider

such lattice methods.

The basic idea of the lattice method (LM) for LP, which was first introduced by Itakura
[Ita71], is that during calculation of the intermediate stages of the predictor parameters, the
forward and the backward prediction error is considered. To see how the above mentioned

steps are combined, we must recall the Levinson-Durbin recursion where the coefficients
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th

r'r.j-”. 7 = 1,2, ..,1 are the optimal LPCs of an i*" order filter. Using these coefficients, the

inverse filter can be written as
(4.1.24)
j=1
Using windowed segment of the signal s,,(m) = s(n + m)w(m) as the input to this filter,

the forward prediction error becomes

.

e (m) = s(m) u (m—j) (4.1.25)
=1

and the backward prediction error becomes

b (m) = s(m—1i) =Y al's(m+j — i) (4.1.26)

J=1

In the z-transform domain, this can be written as
Ei(z) = AW ()5(2) (4.1.27)

and
BO(2) = 27 AN (z7)5(2) Wikl

By substituting (4.1.17) into (4.1.25), we obtain a recursion formula for A®(z) in terms of
AB=H(z):
A(z) = ASD(2) = k2 AU (271 (4.1.29)

th

Using (4.1.27) with (4.1.29), we obtain the z-transform of an i*" order prediction error from

the (i — 1)™ order predictor error ££0~") and a backward predictor error B

Ei(z) = AG-D(2)8(2) —k; - 2P AN (2718 (2) (4.1.30)
e e - ~ e
EU-1(z) Bl (z)
or
e®(m) = e V(m) — k; - bt (m) (4.1.31)

In light of (4.1.28) and (4.1.29), we may rewrite the backward prediction error as

BY(z) = 27 A% 1(A;_l).bw(zl—lsvi-A“_”(,Z)S(zl (4.1.32)

N

2
1

Bli- 1)(3) E©1(2)
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or
B (m) =" Vm=1) =k - "V (m) (4.1.33)

Equations (4.1.31) and (4.1.33) clearly define the forward and backward prediction error
of an i*" order predictor in terms of the corresponding prediction errors of order (i — 1)

A prediction of order zero can be said to be no prediction at all, which implies
e (m) = b (m) = s(m) (4.1.34)

This process can be depicted with the lattice network in Figure 4.1, which is a direct conse-
quence of the Levinson-Durbin recursion (4.1.16) to (4.1.18), where the parameters £; can
be obtained. Relating these k; parameters directly to the forward and backward prediction

errors [1ta68] we find
Zﬁ{ tll(? Hm)b=D(m — 1)
ke m) Do (b — 1)

The last equation has the form of a normalized cross-correlation function; hence the £, are

(4.1.35)

known as partial correlation coefficients or PARCOR coefficients.

E%(z) EM(z) E@)N(z E®-1)(z) E®)(z)
o E(2)
5@ |
—D-J 20 L —I-‘ Z
f——— | . b=
Bz B')(z) B@(z) B®1)(z) BP)(z)

Figure 4.1: Block diagram of lattice methods

The calculation of the PARCOR coefficients (4.1.35) replaces (4.1.16) in the Levinson-
Durbin recursion, and leads to an alternative method of matrix inversion. The coefficients
thereby obtained are identical to those found with the autocorrelatation method. Both meth-

ods minimize the mean-squared forward prediction error.

The lattice approach is not limited to the Levinson-Durbin-type approaches and opens up

33



4 Linear Prediction Spectral Estimation

for a whole new class of procedures based on the lattice configuration of Figure 4.1, e.g.
Burg method (see next section), feed-back PARCOR ladder form and Makhoul covariance
ladder algorithm. These and more approaches with self-contained algorithm summaries
can be found in [5tr90]. Also see [Hay02].

4.1.5 Burg Method

One lattice based approach is of particular interest, because it guaranties stability and min-

imizes the sum of the mean-squared forward and backward prediction error,
Ep = [e?(m) + b%(m)] (4.1.36)

This is known as the Burg Method [Rab78] or Burg’s Harmonic Mean PARCOR Ladder

Algorithm [Str90], after its discoverer.

Forward Prediction x[n+1]
AL

. o time

Backward Prediction x[n-5]

Figure 4.2: Illustration of forward and backward prediction at time n

There are actually two ways to derive the Burg method. One is through the harmonic mean
of the forward and backward ladder reflection coefficients

. B

S ] 4.137
* ke + ki ( )

which will not further considered here and is only mentioned to give an explanation for the

alternative name of this method. The second is through the aforementioned minimization
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of the forward and backward prediction error; see Figure 4.2. The desired minimum is

obtained by differentiating Fy, as given in (4.1.36) with respect to &;.

drm - ‘:Z (m) — k; - B D=0 pl= (g, — 1)

m=0

(4.1.38)
_9 Z (i— |) (m—1)—k - ‘?U_])(M)J (,f(i—l)(,m‘)

tn=(]

Setting this derivative to zero and solving for k;, we obtain Burg's PARCOR coefficients:

b _E:: rlj i l (m) b(i 1) (m -1) (4.1.39)
LN el (m))? 4 SN (b6 (m - 1))2 s

This can be expressed in vector form as

2(6“ -1) )'1"])(1'— 1)

- (eli-1)Teli=1) 4 (Bi-DTH{-1)

(4.1.40)

A mayor advantage of the Burg method is that the coefficients A; always satisfy |£,| < |

which guarantees a stable filter.

To prove this, we must recall the fundamental geometrical property e’ b = |e||b|cosp <

le||b| and recognize that (4.1.40) is of the form

2|e[|b| cos ¢
p e SU LS5 4.1.41
o>+ [bP? Al
[t remains only to show that
2lellb] _ (4.1.42)
eP = P = -

It is sufficient to demonstrate that the difference between the denominator and the numera-

tor above is greater than or equal to zero. This follows from the inequality

lef* + [b[* — 2le|[b| = (|e| — [b])* = 0 (4.1.43)

4.1.6 Additional Linear Prediction Approaches

Although the previously discussed approaches are widely used and lead to good results, a
variety of alternative solutions has appeared, some of which will be briefly discussed in this

section.
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e Extended correlation matching:
The autocorrelation method only matches the first p correlations of the weighted
speech signal with the impulse response of the synthesis filter while extended correla-
tion matching is a weighted mean-square error match to N, = p correlations [Jac96].
A recursive procedure is necessary, and the minimum phase property does not hold

in general.

¢ Discrete all-pole modelling:
This is another iterative procedure that improves the spectral fit for segments cor-
responding to voiced speech. Introduced by El-Jaroudi and Makhoul [Jar91], this
method fits an LP spectrum to a finite set of spectral points by minimizing a form of
the Itakura-Saito distance measure. This 1s especially effective for the discrete line
spectra exhibited in voiced speech. The improved spectral fit comes at the expense

of possibly unstable synthesis filters.

e Pole-zero methods:
Although pole-zero models can more accurately match the spectra of speech con-
taining anti-resonances [Lim96], the computational complexity associated with these
algorithms has been a compelling argument against their use in any real-time sys-
tem. Obtaining the coefficients of pole-zero system typically involves a set of highly
non-linear equations that must be solved iteratively. The Steiglitz-McBride algo-

rithm [Jac96] is an example of such a method for finding a pole-zero fit.

This methods is not of interest, as we shall confine our attention to spectral estimation

techniques based on all-pole modeling.

4.1.7 High Resolution through Linear Prediction

The promising aspect of LP, and in particular the forward and backward LP, 1s that it makes
more realistic assumptions concerning the values outside the measured interval which re-
sults in an extension of the measured autocorrelation sequence. This 1s apparent on com-

paring a) and b) with ¢) of Figure 4.3,

As a result, the window function can be eliminated without incurring any addtional dis-

tortions. This provides a higher resolution of the spectral estimate due to the fact that
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a) True Autocorrelation Spectrum

oKl
1T TN T T Tk

b) Hamming Windowed Estimate of the Autocorrelation Spectrum
oKl

Dy il e

\. &
e

Estimated Values

c) Prediction of the Autocorrelation Spectrum

oKl
o?7%e TTTTT
_W '*lll*‘ t‘llll :
L A A\ 1
N e e
Predicted Values Estimated Values Predicted Values

Figure 4.3: [llustrations of true and estimated autocorrelations
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4 Linear Prediction Spectral Estimation

windowing reduces the available information [Kay88].

4.2 Interpretation of Linear Prediction in the
Frequency-Domain

Up to this point, we have discussed LP methods in the time domain as represented by
difference equations and correlation functions. Now we wish to relate these discussions to
spectral estimation, our primary interest. The power spectral density function is defined as

+co

\51(“!) — Z (Jb-r-;{;—”f_jw.”‘(ﬂ,) (421}
fi=—0Q
From this defintion, we see readily that the power spectral density (PSD) is the Fourier

transform of the autocorrelation sequence

n = %L ()x(t = n) (4.2.2)
Determining the PSD requires knowledge of the entire infinite autocorrelation sequence.
But in practice, spectral estimation can only be performed on a finite observation interval.

Hence, a contradiction exists between theory and practice. A convenient way out of this

situation lies in the parameterization of the observed process.

Using the most general pole-zero model discussed in Section 4.1.1, the desired PSD is
approximated by the squared absolute value of the pole-zero transfer function evaluated
on the unit circle. Applying this approxmation, we obtain the pole-zero-power spectral

estimate: _ n
ho + bye ™% + bae Y 4 .o — hePIv "

1 —aei% — gge2iv — ... — C'l.,;f"r'_q-j"""

(4.2.3)

! 1
*Spc‘:lca —Zero ('-‘-‘ )

Any continuous PSD can be approximated to arbitrary precision by a pole-zero model

whose numerator and denominator are of sufficiently high order.

This approach reduces the spectral estimation problem to a signal identification problem,
where it is desired to determine the system parameters from a given set of data. The data
set is then assumed to be the output of an unknown system with white Gaussian excitation

modelled by a pole-zero filter.
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4.3 Alternative Representations of Spectral Parameters

Using an all-pole model, instead of the general model derived above, to get the all-pole-
power spectral estimation of speech
2 1 ) g 5
*'-;Ja.ll--j.mlt:-("-*") = : = (4_4)

l — a7 7% — goe™2% — ... — g e W%

has the advantage that it models the perceptually important spectral peaks better than the

spectral valleys.

As derived, LP analysis can be viewed as a method of short-time spectrum estimation. It
is widely used for this purpose in speech processing and coding, as well as having found

numerous applications in other fields.

4.3 Alternative Representations of Spectral
Parameters

So far we have shown that LP analysis produces an N-vector a of real prediction coeffi-
cients, which represents an optimal spectral estimate of a windowed speech signal. It is
also possible to represent this set of NV real predictor coefficients in other formats, some of
which are more useful for applications like speech recognition, or can be more easily in-
terpreted than others. In this chapter, two commonly used representations are given. More

representations can be found in [Rab78]

4.3.1 Reflection and PARCOR Coefficients

Unlike the prediction coefficients, the reflection coefficients &; guarantee stability provided
|k;) < 1forall 1 <i < N. This fact is useful when implementing LP filters whose values

are interpolated over time.

The reflection coefficients can be calculated from the LP using a backward recursion of the

form
ki=a" i=p,...,1 (4.3.1)

=1 S 1z e (4.3.2)

where we initialize o/ = a;.
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The negatives of the reflection coefficients are called partial correlation, or PARCOR, co-

efficients.

4.3.2 LP Cepstrum

The cepstrum' [Rab78] is the inverse Fourier transform of the logarithm of the magnitude

spectrum of a signal:

ko G
i s i <o Jwy pdwn g,
on = 5= / log, H(e)e! " dw (4.3.3)
-7

where
&

C1-=37P_ ape-iwk

H(e™)

(4.3.4)

and the complex logarithm log,(e’%) = In |e/*|+jf(w) is used. This can be shown [Hua01]

to simplify to the following recursion

0 in=0
Ind =1

il = tn + S ope Eh[klan—x :0<n<p ¢33
z::i_w %h[k}an_ E N> p

Note that although the number of LP cepstral coefficients (LPCC) are limited, the number
of cepstral coefficients are infinite. Using the LPCC as direct input in a speech recognition

system a number between 12 and 20 has to be empirically shown to be significant [HuaO1].

To adapt several concepts of the psychology of hearing to the LPCC approach Hermansky

[Her90] introduced the perceptual linear predictive (PLP).

More details about cepstral coefficients in general can be found in [Opp89].

4.4 LP-Based MFCC Speech Recognition Frontend

The LP-based MFCC approach is basically the same as the FFT-based MFCC approach.
But the MFCC are derived from a SE based on a reconstructed PS of the LPC instead of a

PS based on the Fourier transform, also compare Figure (3.3) with Figure (4.4).

'In 1963 the word cepstrum was first used by Bogert, Healy and Tukey which is derived from the interchange
of the first two characters in the word spectrum. They called it cepstrum because “in general, we find
ourself operation on the frequency side in ways customary on the time side and vice versa”,
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4.4 LP-Based MFCC Speech Recognition Frontend

A comparison of LP- and FFT-based MFCC for noise robust ASR can be found in [WetO1].
There is shown that the LP approach outperforms their FFT counterpart in most of the

investigated adverse acoustic conditions, intraocular in mismatched acoustic conditions.
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Figure 4.4: LP-based MFCC speech recognition frontend
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5 Minimum Variance Spectral
Estimation

All-pole filters based on LP methods lead to filters that model unvoiced speech well and
perform relatively well for low-pitched voiced speech. But in the case of medium- and
high-pitched voiced speech, they do not provide a good spectral estimate [Jar91]. This
15 because LP based all-pole filters tend to envelope the spectrum as tightly as possible,
and will under certain conditions descend down to the level of residual noise in the gap
between two harmonic partials (sounds with a prevalent partial structure). This will happen
whenever the space between partials is large, as in high pitched sounds, and when the order
is high enough;i.e., there are enough poles to cover every partial peak [Sch98]. Therefore,
filters which yield SE with a smoother contour than LP based all-pole filters are desired.
Murthi and Rao [Mur97] proposed the minimum variance distortionless response (MVDR)
as a spectral estimation technique for speech, and demonstrated that it provides superior

modelling for medium- and high-pitched voices.

5.1 Theoretical Background

The minimum variance spectral estimation (MVSE) was originally introduced by
Capon [Cap69] and is also known as Capon’s method [Li98] or the maximum-likelihood
method' [Mus85]. It belongs to the class of filterbank approaches, which are in general

implemented in the following steps:

|. Passing of the observed signal through a bandpass filter with a variable frequency of

interest (FOI) wig;.

'As this formula has no bearing on the classical principle of maximum likelihood and the expres-
sion MVDR, which owes its origin to Owsley [Hay91]. is commonly used in the recent litera-
ture [Hay91][Mur00][Dha01], we prefer to use the terminology MVDR, which in the case of spectral
estimation is shortened to MVSE which is also used in Kays book on speetral estimation [Kay88].




5.1 Theoretical Background

2. Measuring of the output power of the filter.

3. Calculating of the spectral power estimate by dividing the measured power by the

bandwidth of the filter.

Hence, spectral estimation, from the viewpoint of filterbank analysis, is a problem of filter
design subject to some specific constraints [Lag84]. For MVDR, the relevant constraint is
the distortionless constraint, which can be stated as: The signal at the frequency of interest

Wioi must pass undistorted (i.e., unity gain).

fuJ:ul Z h —jwiaik =1 (5 1.1 )

k=0
In vector form this simplifies to
s (wrei) + Wi = 1 (5:1.2)
where s(w) 1s the fixed frequency vector
s(w) = (1,7, e iMT (5.1.3)

and he; = (R(0), R(1), ..., R(M))T.

The distortionless filter hg,; can now be obtained by the constrained minimization problem
which minimizes the output power of the overall frequency domain:

min h{f,icz&M b subject to 8" (g ) Bgey = 1 (5.1.4)

fual

In the above, ¢y is the (M + 1) - (M + 1) Toeplitz autocorrelation matrix of the filter

output,
Zh (s — 1) (5:1.5)
=M
where hg. hi, . .., hy are the transversal filter coefficients and u denotes the inputs of the
filter.

In order to solve this constrained minimization problem, let us define the constrained cost
Sfunction:

N
E= Y |y +)\(Zh -Mﬂ"'—]) (5.1.6)

i=M-+1 k=0

"

output energy linear crmrmtmints
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where A denotes the complex Lagrange multiplier [Hay91]. At the optimum, the gradient

vector V E must be zero. Thus, we find the £'" element of the gradient vector of (5.1.6) as

Vill=2 Z (i — k)y*(i) + A*eFwrik (5.1.7)
i=M-1

Substituting (5.1.5) into (5.1.7) and rearranging the terms, we may write

j\ﬂ
Yok = )Zh Z (4 — kyu" (i — 1)+ \* e Iwik (5.1.8)
i=M+1
Given the time average on 5, h(l) 55154, w(i — k)u* (i = 1), we may represent the time
averaged autocorrelation function of tap inputs as ¢(l, k) = Zﬁ vy i — k)ut(i—1) and

thus, we can replace (5.1.8) by
M
= ;Z Dol k) + Nt e iwmeik (5.1.9)

With V. 2 = 0 for & = 0,1,..., M to minimize the constrained cost function £ we find
from (5.1.9) that the tap-weights of the optimized transversal filter has to satisfy the M + 1

simultaneous equations

i " J_ : I ‘
> T h(l)(l k) = —EA*E»-\"“"--'L*- hk=0,1,....M (5.1.10)

=0

Rewriting this in matrix notation we get:
e :
¢h = —5,\ 3{Wroi) (5.1.11)

Under the assumption that the time-averaging correlation matrix ¢ is nonsingular and there-

fore its inverse ¢! exists we may solve (5.1.11) for the optimum tap-weight vector
. 1
H= —Ef\*qb_'s(uur”i) (5.1.12)

Now. only the evaluation of the Lagrange multiplier A remains and can be solved by the use
of the distortionless constrained of (5.1.2), evaluations of the inner product of the vectors

s and h in (5.1.12) and setting the results equal to unity and solving for A.

2
= 5.1.13
A st (wioi )0~ 18 (wioi) ( )
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5.2 Fast MVDR Spectrum Computation

Finally, we obtain the MVDR estimate of the tab-weight vector by substituting this value of

Ainto (5.1.12)
i (‘-’_‘J_lﬁ(ub’l'u‘x)
— i j 2 5 - 1 - 14
11 SH (Mjl'n'l)r.—b_ : S("‘Jmi ) ( )

For further simplification, let Syrv (wi;) denote the minimum value of the output energy £

which can be expressed as
Smv (Weoi) = ﬁ”<f’£ (5.1,15}

and with its substitution into (5.1.14) we get

1
S ) = 5.1.16
5MV (L"Jr‘-”) S” (L'-'ani)d)_ : S("""']fc.ai) ( )

Recalling the definition of the fixed frequency vector *
s(w) = [1,—e™, ... e M7 (5.1.17)

and replacing the frequency of interest wy,; by the variable w discovering the whole
frequency-band of interest we get a more general interpretation called the Minimum Vari-
ance Spectrum Estimation:

1

I S 5.1.18
P T A aeleg

Sl\‘l\-' (w’)

5.2 Fast MVDR Spectrum Computation

In the last section we have derived the principles of the MVDR spectrum. In this section
we derive a fast algorithm for computing the MVDR spectrum, due to Musicus [Mus85],

which exploits the Toeplitz property of the correlation matrix.

Recall (5.1.18) where the MVSE is defined in terms of the inverse matrix ¢! of the (/V
1)- (N +1) Hermitian Toeplitz correlation matrix ¢» with the [l, k]'" element R, = R(k—1)
under the assumption that the matrix is positive definite and thus invertible. If 2} denotes

the (1, k]"™™ element of ¢~', we may rewrite (5.1.18) in the form

: 1
SI\'IV(L,J) == : (5'2'])
ﬁf——M p(k)e-iwk

?Also known as the frequency-scanning vector [Hay91]
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where
min(N—k N)

pk) = Y it (5.2.2)

l=max(0,—k)

Let the order N prediction error e = ey and prediction coefficients

alM) = [”'(()N) (’J.EN) af\j,v)]T
where a") = 1 satisfy
3 e
| a™ 0
@ ; =1 5 (3.2:3)
o) '
ay 0

Then the Gohlberg-Semencul formula [Goh72, Kai78] states that the [[. k]'" entry of a
Toeplitz matrix ¢~ ! can be written as

[

1 = r 7
I (N) _*(N) #(N) (N) :
Wk = 2 L”‘f Cittk—t) — EN+F1—iEN+1—i=(k-0) k=l (5.2.4)
T =0
Substituting (5.2.4) into (5.2.2) with restriction to £ = (), we get
L Nk | Nk Nk
f\f) * N) #(N) (N\) ’
: DY ey = = DY . (5.2.5)
[=0 i=0 " =0 i=0

Interchanging the order of summation and setting j = N + 1 — i — k we can rewrite ju(k)

as
N-k N-k g Ntick
N) »(N N ;
E 2 al )(JH(_A) . E E u&+iuf+£ (5.2.6)
e i=0 =i & i=1 I=N+l1-j—k

The terms that do not involve the index [ permit us to collapse the summation over [ into
a multiplicative integer constant. Thus, the summations can then be combined. Moreover,
using the Levinson-Durbin recursion, or any other method for solving the LP problem of
the prediction-error filter of (5.2.3), we may now formulate a fast algorithm for computing

the MVDR spectrum as follows:
1. Calculate the LPC as given in (4.1.16) to (4.1.18).

2. Compute the parameters

N-=k (N)* L [ 7
e { SO bo ) k0N
/i  k ‘-
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3. Compute the MVDR spectrum according to

€

a1 ek (5.2.8)
Z}l:!:_jw iﬂk.f‘_‘}iLHA:

Smv(w) =

5.3 Scaled Minimum Variance Spectral Estimation

Spectral peaks have been shown to be particular robust to additive noise in the logarithmic
domain, since log(a + b) = log(max{a, b}) [Bar97]. Therefore we propose to match the

MVDR derived spectrum to the highest spectral peak.

Logaritmic Signal Power

0 100 200 300 400 500 600 700 800 900 1000
Signal [s|

Figure 5.1: Logarithmic power of a signal disturbed by additive noise.

To fully understand why the suggested scaling should be useful, we must first investigate

how additive noise influences the features in the LPS. Define the logarithmic domain sig-

nals
Siog = log(|s[*) (5.3.1)
L"JI,L,L = log(|*) (3.3.2)
For additive noise n» we may write
Siog + Diog = log(|s + n[?) (5.3.3)
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5 Minimum Variance Spectral Estimation

S‘mg + f)mg = log(|§ + n|*) (5.3.4)

where Dy, and D;,.,F denote the logarithmic power differences between the noise free and

noisy signals. Now we can solve the equations for Dy, and D,

Dy, = 2log|s +n| — 2log |s| = 2log i n‘ = 2log ‘1 4 2‘ (5.3.5)
s 5
Dioe = 210g |5 + n| — 2log |3| = 2log 8 + n“ = 2log ‘1 + f‘ (5.3.6)
& &
Assuming |n| < |s|, we wish to prove that
18] > |8| = |Diog| < | Diog] (5.3.7)

This can be established with the following chain of inequalities:

|s] = ||
= 1+ >14
= 1+2|> 1+ | < |s|
_ 2log|1+%| > 2log |1+ % n| < |s|AZ2 >0
T 2log|1+2 > —2log 1+ :lal<[s|AR <0
> |2log|t+2[] > [2lgt+2]|  slnl< s
= | Diog| > | Dig| tfn| < |s|

This result is also apparent from Figure 5.1, where the grey plane is getting smaller to the

right for |s| > |n|. Given (5.3.7), we can calculate the effects on the LSD as follows:

| Diog| < | Diog| (5.3.8)
This can be extended as
Siog — (Stog + Diog)| < |Siog — (Siog + Diog)| (5.3.9)
and subsequently rewritten as
|log (13[*) = log (1 +n[*)| < |log (|s*) — log (|s + n|?)| (5.3.10)
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5.3 Scaled Minimum Variance Spectral Estimation

SNR max(FFT) | max(SFFT) "’:l:‘t(x\(‘;?f) ma"éﬁ"x]ﬂm

variance 10 dB +0.0065 | +0.0062 | +0.0154 | +0.0158
8dB + (0.0083 +0.0081 +0.0189 +0.0193

6dB +0.0103 +0.0098 +0.0225 +(0.0230

4 dB +0.0118 +0.0117 + 0.0253 +0.0268

2dB +0.0148 +0.0145 +0.0301 + 0.0306

robot noise* | + 0.0206 +0.0196 +0.0264 +0.0268

bias 10 dB + 0.0359 +0.0103 + 0.0549 +0.0415
8dB + 0.0306 +0.0176 + 0.0562 +0.0429

6 dB + 0.0508 +0.0256 + 0.0563 +0.0431

4dB + 0.0570 +0.0320 + 0.0556 +0.0412

2dB + 0.0685 +0.0439 + 0.0521 +0.0392

robot noise* | + 0.0962 +0.0702 -0.0770 -0.0882

Table 5.1: Distortions of maxima of logarithmic power spectrum (* SNR 5dB).

Now lets denote § = max s(m) and 7 = n(argmax[s(m)]), which means that the noise is
taken at the frequency where the highest spectral peak occurs. We may generalize®(5.3.10)

as

log (|8%) — log (|5 +nl*)

m=1

Y '
< J A_Ij Z [log (|s(m)[?) — log (|s(m) + n|!)j" (5.3.11)

assuming that the noise is equally distributed where

S(m) = |s(m)|? (5.3.12)
Suoise(m) = |8(m) + E {n}|? (5.3.13)
S =3 (5.3.14)

Shoise = |4+ E{n}|? (5.3.15)
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5 Minimum Variance Spectral Estimation

denote the expected power values of the noise free and noisy signals. We may then further

generalize as

M
log (5) — log (S,.,D;ﬁ,,)‘ < 4| 77 E [log (S(m)) — log (S,mm.,_(*rn.))] (5.3.16)

m=1

The left hand side of (5.3.16) is the expected LSD at the highest amplitude in noise while
the right hand side is the expected LSD over a given frequency band. Thus, we just have
proved that the LSD is smaller at the highest amplitude than the expected LSD averaged

over all considered frequencies.

This theoretical result can be verified by comparing the highest point of the FFT and
smoothed FFT (SFFT) spectra to the highest point of the MVDR spectral envelope which
uses the prediction error variance € for scaling. Comparing the figures of Table 5.1, we
clearly see that the variance of the MVDR approach, caused by additive noise, is much

higher.

Therefore, we can increase our expected LSD, caused by additive noise, by scaling the
amplitude of the envelope to match the highest point in the spectrum to the highest point
of the spectrum defined by the Fourier transform. And not, as 1s commonly done, by con-
sidering all frequency bands to calculate the height of the SE. In the case of MVDR, this
novel method should has been dubbed scaled minimum variance distortionless response
(SMVDR). A schematic illustrating the derivation of the scaled SE using the MVDR ap-

proach is given in Figure 5.2

Further insight into this phenomenon can be obtained by visualizing how additive noise
influences the log-spectral features (L.SF)s. Thus, let us plot the undisturbed energies of
the LPS on the z-axis and the disturbed energies of the LPS on the y-axis. The black line
in Figure 5.3 a) shows the ideal case of a noise free speech signal; here all points fall on
the line # = 7. In the case of additive noise (see gray line), the lower values of the PS
are lifted to higher energies; i.e., the low-energy components are masked by noise and their
information is lost, which results in missing features. To cope with this problem, missing

feature theory [Co097, Lip97] was developed.

Comparing Figure 5.3 b) with c¢), the problem which follows upon using the conventional



5.3 Scaled Minimum Variance Spectral Estimation

Speech Waveform
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Figure 5.2: Block diagram of the SMVDR derived envelope

MVDR in the presence of additive noise is readily apparent: Because of the high variance
of the noisy signal in the MVDR approach, there is a broad band instead of narrow ribbon,
even in the high energy regions. As proposed, the scaling of the maximum of the MVDR
spectrum to the spectral peak of the FFT to obtain the SFFT spectrum results in a decrease
of spectral distortion. Thereby the SFFT provides more useful features and has fewer miss-
ing features than both conventional MVDR, which is clear upon comparing Figure 5.3 b)

with d), and FFT spectral estimates, which can be seen by comparing Figure 5.3 ¢) with d).

Comparing the LSF in Figure 5.3 ¢) and d) with the Mel-filtered LSF of Figure 5.4, we see
that the reduction of the features provided by the Mel filterbank from commonly 256 to
30 results in a reduction of missing features in the FFT case and a further reduction in the
SMVDR case.
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5 Minimum Variance Spectral Estimation

a) Influence of Noise c) FFT Features
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Figure 5.3: a) LSFs of a noise free signal (black line) and a disturbed feature (gray line).
b-d) LSF disturbance of FFT, MVDR and SMVDR at SNR = 8 dB.
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5.3 Scaled Minimum Variance Spectral Estimation

a) FFT Mel Features d) SMVDR Mel Features
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Figure 5.4: Mel-filtered LSF (MLSF) of FFT and SMVDR Spectrum at SNR = 8 dB.

To compare the LSD of one speech utterance using different spectral estimates, we must

normalize the LSD by dividing the logarithmic clean speech energy

M =
\/7117 Zm. [lUE,m S(m) — logy, S(m)]?
Z?rf—l log,, S(m)

because different approaches of spectral estimates results in different energies.

normalized LSD = (5.3.17)

Comparing b) with ¢) and d) with e) of Figure 5.6, we see that the scaling of the MVDR
spectra reduces the variance significantly. The same conclusion follows upon examining
Table 5.2.

As mentioned in Section 3.4, in the case of voiced and transitional sounds, the spectral
variation within the same utterance is higher using the Fourier spectrum in comparison to
the SE. This should be demonstrated here in more detail. Therefore, plots of SEs are given
in Figure 5.5 as a comparison to the Fourier spectrum of Figure 3.6. As well as Table 5.3

of the normalized LSD over consecutive frames which states the claimed.
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5 Minimum Variance Spectral Estimation

a) MVDR Log Power Spectrum
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Figure 5.5: Power spectrum of 5 consecutive frames (2ms steps) over a stationary part

LPC spectrum bias variance
FFT 1.3318 3.6766

autocorr. | MVDR 1.447 7.6121
SMVDR 1.3262 3.50937

Burg MVDR 1.0541 7.1795
SMVDR 1.35629 4.3663

Table 5.2: Comparison of bias and variance of the normalized LSF over all frames in noise
SNR = 2 dB using different spectra. ((S)MVDR of order 120)
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LSD a) Normalized LSD in noise using the FFT spectrum
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Figure 5.6: Adjusted LSD over frames in noise SNR = 2 dB using different spectra.
((S)MVDR of order 120)
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5 Minimum Variance Spectral Estimation

Frame FFT MVDR SMVDR
1-2 2.444 0.831 0.735
2-3 2.670 0.368 0.379
3-4 1.791 0.306 0.280
4-5 2.029 0.412 0.513

average 2.234 0.479 0477

Table 5.3: Comparison of LSD (normalized energy, all values are multiplied by 1000) of 5
consecutive frames (2ms steps) over a stationary part.

5.4 Warped Minimum Variance Spectral Estimation

In the conventional form, the MVDR of a sample is obtained from the correlation of pre-
vious elements, in the case of the autocorrelation method, where the z-transform of the

synthesis filter is given as
£

Suv(z) = _z:”—.”"‘ (5.4.1)
k=M k=

This scheme may be generalized by replacing the unit delay elements z=* with all-pass

1 1 =2 \"
77l = Di(z7Y) = [ —— 4.2
=D = () (5.42)

sections of the form

where \ is a warping parameter and Dy(z71) is a warped delay element. The phase func-

tion of a first-order all-pass filter D, (z~")is [Mat01]

Asinw

Y(w) = arg (Dy(e™*)) = @ = w + 2arctan (5.4.3)

1— Acosw

This last equation is also known as the fiequency mapping function. Therefore, the lin-
car frequency axis w is tranformed by (5.4.3) to a non-uniform frequency resolution (the

warped frequency axis @), resulting in the frequency-warped spectrum S(e’).
Using a particular warp factor enables us to simulate the Mel-frequency or Bark-frequency

Frak 2 13- arctan(0.00076 - fy,) + 3.5 - arctan(( fu,/7500)%)
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5.4 Warped Minimum Variance Spectral Estimation

as shown in Figure 5.7. Furthermore, an adjustment of the warp factor can be used to
achieve formant frequency shifts. In this way, the spectrum can be normalized to compen-

sate for speaker-dependent differences in vocal tract length [Don00].

a) Warping @ 4000 Hz b) Warping @ 8000 Hz
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Figure 5.7: The frequency warp function in the bilinear transformation.

The prediction error minimization in the frequency-warped-domain is equivalent to mini-
mize the mean square prediction error Fyy of the inverse filter

M

Auv(E(2) = > iz (5.4.4)

k==M
in the linear-frequency-domain. Given the relation to LP by the fast MVDR spectrum
computation, the problem can be simplified to the minimization problem of the mean square

prediction error £y p of the inverse filter

N
Alz) = A(Z(2)) =1+ > a2 "(2) (5.4.5)

n=1

where d,, denotes the n-th warped LPC (WLPC).

Warped LP (WLP) was first introduced by Strube [Str80] and systematically employed by
other researchers [Tok95][EdI00], where in the latter a slightly different approach to WLP
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5 Minimum Variance Spectral Estimation

was introduced. To calculate the WLPC we have to apply the bilinear transformed signal

to the autocorrelation method by the frequency-warped signal 3[n| which is defined by

o0 N=1
S(z)=) 3[n]-#"=8(z) =) sln]:z™" (5.4.6)
n=>0 n=0

The inverse filter (5.4.5) on the Mel-frequency axis is therefore estimated by the Levinson-
Durbin recursion, (4.1.16) to (4.1.18), replacing the short time autocorrelation coefficients

R(7), (2?), by the Mel-autocorrelation coefficients:

o0

R(j) =" 3u(m)3n(m + j) (5.4.7)

m=1
As (5.4.6) shows, the bilinear transformation of a finite sequence results in an infinite se-
quence, and thus, the direct calculation of the Mel-autocorrelation coefficients (5.4.7) is
not feasible. To overcome this problem different approaches were proposed [Str80]. In our
work we want to follow an efficient implementation by Matsumoto et al. [Mat98] which is

a Mel-autocorrelation method on the linear frequency axis.

The total prediction error on the Mel-frequency axis can be written in the linear frequency

: 1 il
[ TRy —
E]‘u‘:.\c'ii{:t‘ion (( } = /

2 J=x

domain as

2 : 2
A(e=1)§(e™ )W (w)| dw (5.4.8)

where

Mw) VI=R |
= Tow 1= e (5.4.9)

Thus, the error minimization is equivalent to minimize the output error of A(e™/*) excited

W(w)

by the pre-filtered signal
sw(n) = Ww)s(n) (5.4.10)
Since s,,(n) is an infinite sequence, and thus not tractable, Matsumoto et al. have proposed

to remove W (w). This is possible trough the introduction of the filter

Su(z) = 8(2)W1(2) (5.4.11)

resulting in a different inverse filter A,,(z). Now, as a result of minimizing the total predic-
tion error over the infinite time interval, the warped predictors can be obtained by solving
P

> Gugdliid) = —4(0,5) ti=1,..,p (5.4.12)

J=1
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5.4 Warped Minimum Variance Spectral Estimation

where .
$li.3) =D yiln)yi(n) (5.4.13)

n=>0
using the output sequence y;(n) of the i*" order all-pass filter exited by yy(n) = s(n).

In terms of Parceval’s theorem [Bro95] ¢(i, j) is proved to be equal to the autocorrelation
function 1,,(i — j) whose Fourier transform is equal to the warped and frequency-weighted
PS |S(e 3%) W (e=79)|2. Therefore (5.4.12) becomes an autocorrelation equation as in con-
ventional LP analysis. Since ¢(i, j) is a function of the difference |i — j|, it can be calculated
as the sum of finite terms

N=1

6(i.3) = Ru(li = j1) = 3 s(n)yi—y(n) (5.4.14)

n=I[)

Frequency (Hz)
0 1000 20}00 3000 4000 5000 6000 7000 8000
H | ; H | i

Warped Frequency

Figure 5.8: Comparison of unwarped and warped MVDR SE, both of order 120.



5 Minimum Variance Spectral Estimation

After obtaining the prediction coefficients a,,; by solving the Levinson-Durbin recursion,
(4.1.16) to (4.1.18), with R(j), (5.4.14) instead of (??) the WLPC can be easily obtained
by

(_'L?' = )\(]a’w,r} == A] ((}'w,i -1k a"w.'&'+1) (5415)

where
Ao = (14 X%)(1 -2~ (5.4.16)
Xy = X1 =x3)yhe (5.4.17)

As already mentioned before, these WLPC can now be used to calculate the WMVDR by
the fast MVDR spectrum computation.

a) MVDR-based b) WMVDR-based
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Figure 5.9: Extract of the MVDR and the WMVDR frontend.

Figure 5.8 illustrates the ordinary and warped MVDR SE. While the MVDR exhibits
frequency-independent inherent spectral resolution, the warped MVDR (WMVDR) pro-
vides a high resolution on frequencies below 2000 Hz (warp factor 0.4595 ~ Mel) with
decreasing resolution to higher frequencies. The warping of the MVDR provides an inter-
esting property which can’t be established equally by a MVDR followed by a frequency-

warping:
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5.5 MVDR Spectral Estimation in Noise

Similar to WLP [Kar01] the WMVDR residuals show spectral flattering and level com-
pensation similar to the adaptation of the firing rate in the auditory nerve, resulting in
information of the residuals which resembles the overall information in the auditory nerve

firing.

Figure 5.9 shows an extract of the MVDR and the WMVDR frontend. Note that the Mel-

frequency warping is achieved differently.

5.5 MVDR Spectral Estimation in Noise

The effect of additive noise on the SE broadens the spectral peaks and displaces them from
their true positions. Compare a) with b) and ¢), and d) with e) and f) of Figure 5.10. In
other words, the spectral resolution decreases as the SNR decreases [Kay88]. This effect
can be explained by the fact that the all-pole assumption is no longer valid if additive noise
is present. Under the assumption of uncorrelated white noise of variance a2, the PSD can

be written as

S (2) = _L 5 f + 02 A(z)A*(1/z") .
b_nr(‘-') = ‘4(:)‘4*(1/3,?) + Oy = 4(3)"4*(]/:‘) (5.5.1)

Thus, the PSD is characterized by zeros as well as poles while the dynamic range is re-
duced. Since the prediction error filter A(z) attempts to whiten the PSD, the zeros of A(z)
are located near the unity circle for low SNR, because the PSD is already flat due to noise.
Thus the subsequent filtering will not whiten the PSD further. It follows that the AR spec-
tral estimate in the presence of noise is a smoothed version of the SE which would have

been obtained if no noise was present. For a detailed discussion, see [Kay88].

Note that due to additive noise the various methods derived on the ML principles are no

longer ML solutions. Instead for large data records a function given by Hosoya [Hos79]

+1/2

Spr :
/ [1115“(.1’)+ﬁ% df (5.5.2)
—1/2 "y
where g
o ey & 3 ,\
bm(f) |A(/‘)F - l'T“, (55.’))
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5 Minimum Variance Spectral Estimation

and

N-1 =

. 1 |
‘SPER(JC) — j\a}- Z _’r:['r,-,](-_»—;f.hr,f'u (5'5'4)

n=i0

has to be minimized. This is a difficult nonlinear minimization problem. To our knowledge,

only two solutions have so far been proposed, both of which are based on the Newton-

Raphson approach and suffer from the usual problems of local minima and lack of conver-

gence.

To deal with this, some suboptimal estimators have been proposed. They involve:

e Use of pole-zero estimators

This approach recognizes that the noisy model becomes a pole-zero model. But, as
we have seen, the all-pole model has the advantage of modelling the perceptually im-
portant spectral peaks better than the spectral valleys. Hence, the pole-zero approach

is not very useful for present purposes.

Pre-filtering
Before an all-pole estimator is applied, the signal is enhanced by a Wiener filter
which can be shown to be an implicit part of the ML estimation. This approach is

quite successful for speech data [Lim78].

all-pole parameter compensation (noise compensation)

In this method, the bias due to additive noise is removed. A drawback of this
method 1s that it results in overly peaky estimates. Moreover, the autocorrelation
matrix (4.1.15) may become ill conditioned leading to a spectral estimator with large

variance [Kay88].

High order all-pole modelling

To reduce the bias due to the model mismatch, a high order may be used. The feasi-
bility is guaranteed by the Kolmogorov theorem [Pri81], which states that an all-pole
model of infinite order adequately models any wide sense stationary process. The
shortcoming of this approach is that, as we have already mentioned, spurious peaks

may appear with increasing model order.
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Figure 5.10: Comparison of the behavior of FFT (thin line), LP of order 20 and SMVDR
of order 100 in different noise levels.
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5 Minimum Variance Spectral Estimation

5.6 Comparisons of MVDR and LP

Before closing the present chapter, we develop several important relations between MVDR

and LP spectral estimates. An understanding of these relations leads to useful insights.
Recalling that the Cholesky decomposition of ¢} is
&2} = BP'B" (5.6.1)

we can analytically relate the LP spectral estimator to the MVDR spectral estimate [Bur72].
Substituting (5.6.1) into (5.1.18) provides
1

Swv(w) = ‘ (5.6.2)
MY SH (W) BPBPs(w)
with the relation of
M1 0 @ 2 @7 [ 1 1
g 1 B8 i O el
Bfs = uf) cr,.g” L .es B | B
i a}f!) C“',—Er’}—j] "I’.E"?)—)Q vez 4 ] I elp !
. ) :
al) + e
= uf) + r:r,{lg)r;f"'“J + el (5.6.3)
i a;fn + ﬁf,f’_)l el 4 o 4 @]
_ ; :
et*all) (W)
= @.‘."Qwa(ﬂ)(w)
r\”’""ﬂ()')(u_))
where i
a®(w) =1+ Z al¥)e=di (5.6.4)
g==]
we may rewrite (5.6.2) as
Sav (w) d (5.6.5)
omvw) = =; : 6.
£=n |Bi{5|i—/ﬂk
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5.6 Comparisons of MVDR and LP

if p, denotes the prediction error power for the k" order predictor and the elements of Bs

are indexed & = 0. .. p. Rewriting the denominator we yield

BYs? _ a9 _ 1

Pr Pr S¥(w)

(5.6.6)
where 'l“,,) (w) is the k-th order LP spectrum. Now we can write the relationship betrween
MVDR and LP spectra:
P
1 1 .
ek = N Ve e (5.6.7)
e ¥, (k)
Smv =0 Sip (W)
This implies that the MVDR spectrum Sl(\]fz,(m) of p'™ order is the harmonic mean of the
LP spectra of order 0 to p. This relationship is also a good explanation why, in general, the
MVDR spectrum exhibits a smoother frequency response with decreased variance than the

corresponding LP spectrum [Mur00].
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Figure 5.11: Mutual relationships between spectrum, coefficients and cepstrum



5 Minimum Variance Spectral Estimation

Figure 5.11 shows the relationships between different representations of speech parameters.
An arrow with one end symbolizes a transformation which is not invertible while an arrow
with two ends symbolizes a transformation with an existing inverse. Note that even if two

or more arrows end in the same knot, it doesn’t mean that the parameters are the same.
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6 Noise Estimation and Subtraction

The underlying principle of spectral subtraction (SS) is the subtraction of the noise from
the noise-contaminated signal in the spectral domain. The prerequisite for this technique,
is that the noise spectrum is known or can be estimated. In some applications, it is pos-
sible to use two microphones, the first of which receives the noise corrupted speech from
the speaker, the second of which is positioned so as to receive only noise. In this case the
noise spectrum is obtained directly from the second microphone. In applications where the
use of two microphones is impossible, whole utterances can be segmented into speech and
non-speech regions, and the noise spectrum can be estimated from those regions containing

no speech.

SS has proven useful in increasing the perceptual quality of speech signals corrupted by
additive noise. The main drawback of this technique is that the noise remaining after the
processing has a very unnatural quality [Bol79, Cap94]. This can be explained by the fact
that the magnitude of the short-time PS exhibits strong fluctuations in noisy areas. After the
spectral attenuation, the frequency bands that originally contained the noise consist of ran-
domly spaced spectral peaks corresponding to the maxima of the short-time PS. Between
these peaks, the short-time PS values are close to or below the estimated averaged noise
spectrum, which results in strong attenuations. As a result, the residual noise is composed
of sinusoidal components with random frequencies that come and go in each short-time
frame [Bol79]; e.g., see spectra of Figure 6.1 a) and the arrow in Figure 6.2 b). These ar-
tifacts are known as musical' tones/noise phenomenon. One way to reduce this unwanted
effect is to median smooth the signal after spectral subtraction. Unfortunately, this leads to
audible signal distortions [Lin97]. To overcome this problem, we propose the use of a high
resolution SE, such as that provided by SMVDR, instead of smoothing. As we will show,

cascading spectral subtraction and SMVDR spectral estimation provides for effective noise

!'This term is a reference to the presence of pure tones in the residual noise.
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6 Noise Estimation and Subtraction

a) Log Power Spectrum of Spectral Subtracted FFT Spectrum
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Figure 6.1: Logarithmic Power Spectra of Spectral Subtracted FFT and SMVDR Spectrum,
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Figure 6.2: Spectral subtraction applied on FFT- and SMVDR spectra
(EMNS = Ephraim and Malah noise suppressor)
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6 Noise Estimation and Subtraction

reduction, while simultaneously minimizing the introduction of musical tones and other

audible signal distortions.

6.1 Noise Estimation

Noise estimation is not our primary concern here. The noise estimator, however, has a
major impact on the overall quality of a SS system, especially if the algorithm should be
capable of handling nonstationary noise. Hence, the noise estimation method used in our

evaluations will be described here briefly.

Speech enhancement based on minimum statistics was proposed in [Mar94] and modified
in [Dob95]. In contrast to other methods, the minimum statistics algorithm does not use any
explicit threshold to distinguish between speech activity and speech pauses and is therefore
more closely related to soft-decision methods than to the traditional voice activity detection
methods. As in other soft-decision methods, it can update the estimated noise PSD during
speech activity. It was recently confirmed [Mey97] that the minimum statistics algorithm

performs well in nonstationary noise.

The minimum statistics method rests on two observations, namely that the speech and the
disturbing noise are statistically independent and that the power of a noisy speech signal
frequently decays to the power level of the disturbing noise. It is therefore possible to derive
an accurate noise PSD estimate by tracking the minimum of the noisy signal PSD. Since the
minimum is smaller than the average value, the minimum tracking method requires a bias

compensation. A detailed description about minimum statistics can be found in [Mar01].

6.1.1 The Advantage of Spectral Envelopes over Fourier
Spectra for Noise Estimation

Comparing frame based autocorrelations over different spectra (Fourier, MVDR and
SMVDR) of different speech- and noise environments of Figure 6.3, it is immediately
apparent that the frames of MVDR and SMVDR spectra are more strongly correlated than
the frames of the Fourier spectrum. An examination of the LP spectrum leads to a similar
conclusion, and hence is not shown here for reasons of conciseness. Since noise estimation

is dependent on the assumption of short-term stationarity, any improvement in stationarity,
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6.1 Noise Estimation
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Figure 6.3: Frame based autocorrelation (mean subtracted and averaged over all frequen-
cies), black: SMVDR Spectrum, pointed: MVDR Spectrum, gray: FFT Spec-
trum
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6 Noise Estimation and Subtraction

measurable through an improvement in autocorrelation, results in a better approximation
of the noise. This in turn leads to a further improvement of the reconstructed signal with

fewer musical tones.

6.2 Spectral Subtraction

Assuming that the clean speech signal s(¢) is corrupted by uncorrelated additive noise n (1),

the disturbed signal can be written as:
y(t) = s(t) + n(t) (6.2.1)
This implies that the PSD can be expressed as
Y(wg) = S(wk) + N(wg) (6.2.2)

Thus, to get an estimate of the undisturbed signal 5(wy), we must subtract the estimated
noise power N(wk), as estimated from regions without speech activity, from the noisy

speech power at every frequency band.

X(we) = Y(wk) — N(wy) (6.2.3)

Thus the name spectral subtraction. Since the estimated noise power N(wy) can be
larger than the disturbed signal power, thereby resulting in a negative signal power,

equation (6.2.3) must be modified to suppress negative power:
X (wy) = max {)---'(W-A.) ~ M), a2 o} (6.2.4)
In the above, the parameter o represents the spectral floor.

The use of noise subtraction for ASR has proven more successful than it has for speech
enhancement [Mor88]. This is due to its use of spectral representation as the feature space
which makes it unnecessary to recreate the speech signal requiring a phase information

which is commonly approximated by the phase information given by the disturbed signal.

Different modifications of the basic SS have been proposed to reduce musical tones [Bol79,
Vas92], but all have failed to completely eliminate them. Ephraim and Malah [Eph84] have

been proposed a noise suppression technique which is able to avoid musical tones while

still obtaining a significant noise suppression; see Figure 6.2 ¢).



6.2 Spectral Subtraction

6.2.1 The Advantage of Spectral Subtraction over Smoothed
Spectra for Noise Subtraction

Smoothing a spectrum by applying a low-pass filter S =94 Flowpass results in a higher

correlation p of neighbored frequencies under the drawback of information loss (measured

- Z p(7) log p(z z]) Yogp(z) N <x (6.2.5)

TEX TEX

in entropy)

because the size of the frequency-band and thus the number of possibilities are reduced.

A higher correlation between neighboring frequency spectra result in fewer musical tones
[Bol79] which increase the accuracy of a speech recognition system, while the loss of
information decreases the accuracy. Therefore, we are confronted with a tradeoff; we seek a
feature which is able to increase the correlation of neighboring frequencies without loosing
relevant information. As hearing or, more precisely spoken word understanding, is not
fully understood, it is difficult to quantify what information is relevant. Nevertheless, in the
speech recognition community it is widely believed that most of the relevant information
lies in the spectral peaks. Therefore we already have investigated a feature providing a high
correlation of neighbored frequencies while remaining a high grade of information; to wit,
the spectral estimate derived from the MVDR or SMVDR.

6.2.2 Influence of Spectral Subtraction on the Log-Spectral
Features

Figure 6.4 a) clearly demonstrates the ability of SS to reduce the negative effect of additive
noise on the features. Its drawback is a splitting of the features into two conurbations
resulting in attenuations of the spectra by randomly spaced spectral peaks. Figure 6.4 b)
demonstrate that using the Ephraim and Malah noise suppressor (EMNS), instead of 55,
is indeed able to overcome the problem of conurbation separation, but with the obvious

drawback of a limited reduction of feature distortion.
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Figure 6.4: Comparison of log-spectral features in the power-spectral domain.
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6 Noise Estimation and Subtraction

As seen in Chapter 5.3, the SMVDR based features are less distorted by additive noise
than the Fourier based features. A further reduction of feature distortion is possible by
applying SS on the SMVDR based features. Here a separation into different conurbations
does not occur, thereafter no randomly spaced spectral peaks are occurring which makes
SS based on the SMVDR envelope a suitable method to reduce feature distortion without

the appearance of musical tones.
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7 Speech Recognition Experiments

In this chapter we present the results of several speech recognition experiments undertaken
to determine the effectiveness of spectral estimation based on the MVDR and their varia-

tions.

7.1 Training and Test Conditions

Recognition performance was tested in different acoustic conditions using different degrees
of mismatch between training and test. The term matched conditions refers to an experi-
mental set-up wherein the acoustic conditions during training and recognition were iden-
tical. The term mismatched conditions, on the other hand, refers to experiments wherein
the acoustic models were trained on clean data, but recognition was performed on noisy
data. Recognition performance was also determined for an intermediate condition, where
the acoustic models were trained on noisy data that matched the noise at recognition time.

Two distinct spontaneous speech corpora were used for the experiments described below.

Switchboard Corpus

For the first set of speech recognition experiments, training and testing was conducted on
the Switchboard Corpus. Switchboard consists of spontaneous conversations collected over
standard American T1 telephone lines. Switchboard contains approximately 240 hours
of speech and about 3 million words of text, contributed by 500 speakers of both sexes
from every major dialect of American English. The total corpus is divided into 2,430
conversations, each averaging 6 minutes in length. To reduce the experimental turnaround
time, we used a gender balanced subset of approximately 31 hours of speech for training.

Our test set contained 8,186 words of speech contributed by 16 speakers of both sexes.

For the Switchboard experiments, we used a baseline model with 32 Gaussians for each of
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7 Speech Recognition Experiments

4,166 codebooks for a total of 133,312 Gaussians. All features were calculated every 10 ms
from speech data sampled at 8 kHz, using either a 20 ms Hamming window for FFT and
autocorrelation based methods, or a rectangular window for Burg based method. FFT-, LP-,
MVDR- and SMVDR-based MFCC were used followed by a speaker-dependent frequency
domain VTLN. Thirteen cepstral components, along with their first and second differences
were derived using a Mel-Filterbank with 30 half-overlapping triangularly shaped filters
followed by a DCT. LDA was used to reduce the final feature length to 32.

English Spontaneous Scheduling Task (ESST)

The second set of speech recognition experiments was conducted on speech material from
the English Spontaneous Scheduling Task (ESST) corpus, which consists of spontaneous
speech collected during dialogues between two persons who are making business travel
arrangements. This speech was recorded with Sennheiser close-talking microphones in
a noise-free environment. Testing was done using the original clean speech, as well as
clean speech plus additive noise. Additional testing was conducted on the ESST data in
the presence of reverberant distortion, as described below. The ESST training set contains
approximately 35 hours of speech contributed by 242 speakers of both sexes. The test set

contains 22,899 words spoken by 15 speakers of both genders.

For these experiments, we used a baseline model with 48 Gaussians for each of 2,339
codebooks, giving a total of 112,272 Gaussians. All features were calculated every 10 ms
from speech data sampled at 16 kHz, using either a 20 ms sliding Hamming window for
FFT and autocorrelation based methods, or rectangular window for Burg based methods.

Subsequent processing was identical to that described above.

Noise and Reverberation

To test the proposed spectral estimation techniques under mismatched and intermediate
conditions, several different types of noise were used. The first of these was simple white
noise while the next type of noise was collected from a variety of humanoid robots; robot
noise has, in turn, a number of distinct sources: Background noise, says Yoshihiro Kuroki
[Wil02], a senior manager at the Digital Creators Laboratory (Sony Humanoid Robot
project) “is proving particularly difficult for the engineers to tackle.” Also additional dis-

tortions may arise when, for example, two or more people speak simultaneously: The
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7.1 Training and Test Conditions

attention tracking problem — whom to listen to and the so-called cocktail party effect —

if noise appears, people change there style of speaking.

b) Xavier

Figure 7.1: Photo of the robots used for noise recording.

For our experiments two robots where used to record noise. A brief description of the

robots, see Figure 7.1, is given below:
e Pearl is a Nursebot who has two primary functions:

1. reminding people about routine activities such as eating, drinking, taking

medicine, and using the bathroom, and
2. guiding them through their environments.
It is equipped with a differential drive system, two on-board Pentium PCs, wireless
Ethernet, SICK laser range finders, sonar sensors, microphones for speech recogni-

tion, speakers for speech synthesis, a touch-sensitive graphical display, a actuated

head unit, and a stereo camera system.
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7 Speech Recognition Experiments

e Xavier was designed to provide a test-bed for research.
The base 1s a 24 zoll diameter, four-wheeled, synchro-drive mechanism. Sensors in-
clude bump panels, a Denning sonar ring, Nomadics laser light striper, and a Sony
color camera mounted on a Directed Perception pan/tilt head. On-board computation
consists of two 66 MHz Intel 486 computers, and an on-board color 486 laptop, all
connected to each other via Ethernet and connected to the outside world via a Wave-
lan wireless card. Communication with Xavier is graphical, remote, and speech-
driven. An off-board Next computer runs the Sphinx real-time, speaker independent

ASR system and a text-to-speech board provides speech generation.

Whenever speech is recorded in an enclosed space using microphones in the medium or
far fields, the resulting speech is distorted by reverberation. This is so because the final
signal contains not only the speech emanating directly from the speaker’s mouth to the mi-
crophone, but also delayed and filtered versions of the same which are caused by multiple
reflections from walls and other sufaces. Since reverberation has a long duration in com-
parison to the typical speech analysis frame, this distortion manifests itself as a temporal
smearing of the short-term power spectrum typically used as the basis for speech recogni-
tion features [Gel02]. In order to determine the effectiveness of MVDR spectral estimation
for this type of distorted speech, the ESST data was played through a loud speaker into a
meeting room, and subsequently recorded with an array of microphones located approxi-
mately two meters from the loudspeaker. The 16 channels of the microphone array were

subsequently combined using the simple delay and sum algorithm.

7.2 Janus Recognition Toolkit

All speech recognition experiments presented in this thesis were conducted with the Janus
Recognition Toolkit (JRTk), which is developed and maintained jointly at the Universitét
Karlsruhe (TH), Germany and at the Carnegie Mellon University in Pittsburgh, Pennsyl-
vania, USA. Janus provides a flexible Tel/Tk scripting environment, which allows for the

rapid development of state-of-the-art speech recogmizers.
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7.3 Experimental Results

7.3 Experimental Results

Here we present and discuss the results of our initial speech recognition experiments.

Switchboard Experiments

Our first set of experiments were conducted on the Switchboard Corpus. Due to the dis-
tortions introduced when speech is transmitted over T1 telephone lines, the results can be
viewed as falling under the intermediate condition. The absolute and relative word error
rates given in Tables 7.1 and 7.2 respectively show that using the right model order (e.g.,
80) and LPC type (i.e., autocorrelation), the SMVDR based approach is able to outperform
the Fourier based approach. A clear superiority of the MVDR based approaches over the
Fourier based approaches, is not evident. In particular the reduction in WER is dependent
on the model order and shows no clear trend; i.e., the SMVDR based speech recognizer of
model order 80 and 120 performs better than the Fourier based speech recognizer, but in
the case of model order 100 its performance is worse. This is not surprising given that the
distortion introduced by telephone lines is not primarily additive in nature. Indeed, using
SS on the SMVDR based MFCC using the autocorrelation method, order 80, increased the
WER from 35.9% to 37.9% .

order | 60 | 60 80 100 120
;/erage 36.2 * | * * * *

mean 37.2 * * * * *

autocorr. | average * 36.8 36.2 35.9 36.5 35.9
mean * LY 37.2 36.7 37.4 36.8

Burg |average * 36.4 36.8 36.8 36.9 37.5
mean * 37.4 37.9 37.8 37.9 38.5

Table 7.1: Comparison of word error rates (in percentage) on telephone speech.

In Appendix B the WER and RER are given for every speaker of the test set.
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7 Speech Recognition Experiments

type speaker MVDR-b. | SMVDR-based
MFCC MFCC
ordet 60 60_ 80 100 120
autocorr. |average| -1.7 +00 | +08 -0.8 +0.8
mean -1.3 +0.0 +1.3 -0.5 + 1.1
Burg |average| -0.6 -1.7 -1.7 -1.9 -3.6
mean -0.5 -1.9 -1.6 -1.9 -3.5

Table 7.2: Comparison of relative error reductions (in percentage) on telephone speech.

speaker| SMVDR-based MFCC, autocorrelation, order 80
smooth 1 | 2 3 4
average 36.3 35.9 36.0 36.1
mean | 372 | 36.7 36.8 37.1

Table 7.3: Comparison of word error rates (in percentage) on telephone speech using dif-

ferent smoothing factors.

speaker | SMVDR-based MFCC, autocorrelation, order 80
smooth 1 ' 2 3 E _
__;\ferage -0.3 +0.8 +0.6 +03
mean +0.0 ¥1.3 + 1.9 +0.3

Table 7.4: Comparison of relative error reductions (in percentage) on telephone speech us-

ing different smoothing values.




7.3 Experimental Results

Tables 7.3 and 7.4 show the effect of different smoothing factor using SMVDR-based

MFCC, autocorrelation of order 80.

Experiments with Warped Envelopes on Telephone Speech

The speech recognition experiments conducted in this section where similar to the former,
except that no VTLN was conducted. The results given in Tables 7.5 and 7.6 show that
using the right model order (50) of the warped spectrum is superior to the Fourier and

SMVDR based approaches.

FET-b. | SMVDR-b. | SWMVDR-based
MFCC | MFcC MFCC
order 80 40 50 60 1 70 80 90

average | 39.1 387 387 | 384 38‘7] 385 | 387 | 385
mean | 40.0 39.8 399 | 395 | 397 | 394 | 397 | 394

speaker

Table 7.5: Comparison of word error rates (in percentage) on telephone speech.

SMVDR-b.| SWMVDR-based
MFCC | MFCC

arder 80 40 50 60 70 80 | 90
average| + 1.0 +1.0 +1.8 +1.0 +1.5 + 1.0 +1.5
mean +0.5 +0.3 +1.3 +0.7 +15 + 0.7 +1.5

speaker

Table 7.6: Comparison of relative error reductions (in percentage) on telephone speech.
In Appendix C the WER and RER are given for every speaker of the test set.

ESST Experiments

The speech recognition experiments described in this section differ from those described
in the last section inasmuch as the speech recognizer is trained on clean speech sampled at

16 kHz; testing was conducted on:
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1. clean speech;

2. speech distorted by additive white noise and robot noise;

3. meeting room speech with significant reverberant distortion.

The results given in WER Table 7.7 and RER Table 7.8 show that the novel method of

SMVSE outperforms its MVDR counterparts in all cased with two exceptions, the white

noise at 6 dB and the meeting-room task. Applying SS the SMVDR outperforms all tested

approaches.

noise lype spectral | FFT-based | LP-based MVDR-based SMVDR-b.
SNR (variance) | subtraction MFCC MFCC MFCC MFCC
type autocorr. | autocorr. Burg autocorr.
order 20 120 120 1 20__
clean speech without 23.3 251 247 292 240
white noise without 46.9 46.7 45 1 45.9 46.5
6 dB (6 dB) with 424 434 43 .1 43.4 41.2
white noise without 62.7 62.8 63.3 62.1 61.0
4.dB (6 dB) with 54.9 53.8 54.6 55.5 53.3
white noise without 12.9 73.8 74.5 73.9 72.8
2 dB (6 dB) with 64.6 62.0 63.5 63.6 61.0
robot noise without 402 42 .4 41.2 40.3 42.5
5dB (7 dB) with 38.7 45.1 43.0 425 37.8
meeting-room without 68.0 71.9 68.3 67.5 705
10 dB (6 dB) with 72.0 755 T2 73.8 67.1
delay&sum without 47.8 56.6 493 48.9 48.2
10 dB (6 dB) with 55.5 67.1 59.8 58.1 54.5

Table 7.7: Comparison of word error rates (in percentage) in different acoustic conditions
on continuous speech.
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noise type spectral LP-based MVDR-based SMVDR-b.
SNR (variance) | subtraction MFCC MFCC MFCC
type autocorr. autocorr. Burg autocorr.
order = 20 . 120 1_30 120
clean speech without | -7.7 -6.0 .83 -3.0
white noise without +0.4 +3.8 + 2.1 +0.9
6 dB (6 dB) with -24 “1.0 -24 + 2.8
white noise without -0.2 -1.0 +1.0 + 2.7
4 dB (6 dB) with +2.0 +0.5 cq1 +29
white noise without -1.8 -2.8 -1.9 -0.4
2 dB (6 dB) with +4.0 +1.7 +1.5 +56
robot noise without -55 -2.5 -0.2 -5.7
5dB (7 dB) with -16.5 -11.1 -9.8 2.3
meeting-room without -57 -04 +0.7 -3.7
10 dB (6 dB) with -49 -1.0 _25 + 6.8
delay&sum without -18.4 -3.1 -2.3 -0.8
10 dB (6 dB) with -20.9 73 _47 +1.8

Table 7.8: Comparison of relative error reductions (in percentage) in different acoustic con-
ditions on continuous speech.

In general, it can be seen that the SMVDR approach does relatively well for clean speech,
only 0.7% worse in WER than the Fourier approach, and shows an overall performance
which performs best in 7 out of 13 tested cases; see Figure 7.2. Considering only cases

with additive noise, it even performs best in 5 out of 8 cases.

Computation Cost

Table 7.9 shows the computation costs of the different spectral estimation techniques com-
pared to that of the FFT derived spectrum. While the autocorrelation and Burg approach
remain in an acceptable range in comparison with the overall calculation time of the ASR
system, the calculation cost of the modified covariance method is exorbitant. Moreover,
the higher resolution provided by the modified covariance method is not expected to result

in WER reductions. Hence, no experiments were conducted using this method
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OFFT-based MFCC

B MVDR-based MFCC
(autocorrelation)

OMVDR-based MFCC
(Burg)

B SMVDR-based MFCC
(autocorrelation)

Figure 7.2: Overview in how many cases which approach performs best.

lype LP scaled LP MVDR scaled MVDR
order 20 20 60 120 60 120
~ autocorr. 181 | 298| 303| 544| 420 6.61
Burg 2.10 3.27 4.79 8.50 5.96 9.67
mod. covar. 13.04 14.21 91.57 | 286.80 92.74 | 287.97
warp 3.03 4.20 5.91 e 6.98 11.94

Table 7.9: Time needed for computation in comparison to the computation time of the FFT
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8 Conclusion and Future Work

8.1 Conclusion

In this thesis, novel feature extraction methods and their application to additive noise ro-
bustness in ASR have been investigated. We have seen that noise added to a signal distorts
mainly the spectral valleys while the spectral peaks remain relatively unchanged. Therefore
a SE instead of the Fourier spectrum was used to apply the feature extraction. To provide
a good SE estimate, we have followed Dharanipragada and Rao [Dha01] in proposing the
use of the MVDR instead of LP. One of the primary results of this thesis is a confirmation
of their earlier finding that the spectral envelope estimate provided by MVDR is superior

to that obtained with LP.

To further improve the robustness of the MVDR based approach to additive noise, a novel
scaling method was introduced which adjusts the highest point of the envelope to the high-
est point of the Fourier spectrum. This could be shown to be, in average, less distorted by
additive noise. Moreover, other well known techniques were adapted in this work: Spectral
subtraction [Bol79] which could be shown to overcome the musical tones when applied on
the envelope. Pre-warping [Mat98] which provides a better approximation of the aspects

of the human auditory system than the envelope followed by a Mel-filterbank.

On telephone speech, SS did not lead to an improvement of accuracy, because the dis-
tortions seen in this speech are not, for the most part, additive in nature. Applying the
proposed scaling of the MVDR derived envelope, however, lead to a slight improvement in
accuracy. A further improvement could be obtained through the proposed pre-warping of

the scaled MVDR envelope.

On continuous speech disturbed by additive noise, combining SS with the MVDR envelope

and the proposed scaling could be shown to be superior to the Fourier transform, LP and
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8 Conclusion and Future Work

MVDR derive MFCC in most of the cases involving a mismatch between training and test

conditions.

8.2 Future Work

8.2.1 Optimization of Parameters

Time constraints did not permit the several parameters pertaining to MVDR and SMVDR
spectral estimation, such as the model order, the smoothing factor in SMVDR and the
warping factor in WMVDR, to be tuned. Hence, further reductions in word error may

come from optimizing these parameters empirically.

8.2.2 Mel Filterbank

The characteristic of a Mel filterbank results in different performances [Hyu99], which in
the tested cases are optimized for the Fourier spectrum. For the MCDR-based MFCC,
a particular filterbank refinement could lead to further improvements in the recognition
performance. For example, it may prove beneficial to use a critical-band filter which is
flat topped and non-symmetric as shown in Figure 8.1; such a filter is typical of the PLP

approach [Mil02] to spectral estimation.

8.2.3 MVDR variations

As the MVDR approach is based on LPC, it opens up for a wide variety of suggested
variations suggested and investigated for LP; e.g., an adaptation of PLP or Rasta-PLP to
perceptual MVDR (PMVDR) or Rasta-PMVDR.

8.2.4 Speech Enhancement and Restoration of Wide Band
Speech Signals from Narrow Band Speech Signals

[n our investigations of the MVDR envelope and its variations, we saw that the MVDR
approach successfully improves the robustness of an ASR system. Future work could con-
centrate on the enhancement of disturbed speech or on the restoration of wide band speech

signals from narrow band speech signals to provide a more pleasant impression of the
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8.2 Future Work
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Figure 8.1: Critical band filters as applied in perceptual LP

speech to the human ear and an improvement of speech understanding for humans. In par-
ticular, it could be interesting in combination with SS, as it successfully prevents musical

tones from occurring.
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Appendix A
New JRTK Functions

A.1 SPECEST

The function specest estimates the SE of the PS using LP or MVDR through the auto-
correlation method, the Burg method, the modified covariance method or the pre-warping

approach.

A.1.1 Syntax

[FeatureSet] specest [Output] [Input] [Order] [Optionall]

[FeatureSet] Name of the featureset.
[Output] Name of the output feature (type: FMatrix).
[Input] Name of the input feature (type: FMatrix).
[Order] Order of the prediction

(typical values: LP 13..20, MVDR 60..120).
-type [Type] Define the type of the estimate (LP or MVDR).

-lpmethod [Method]  Define the used method
(autocorrelation, burg, modcovarianz or warp).

-correlate [Number]  Defines the number of used correlations. Only used by Burg and
modified covariance. The number is calculated as
windowsize (in ms) - samplingrate (in kHz).

-warp [Factor] Warp factor of the warped spectral estimate

90



A.2 SPECADI]

A.1.2 Example

This example calculates the MVDR spectrum using the Burg approach of order 120 all 10
ms using a window size of 20 ms.

set type MVDR

set method burg

set order 120

set wintype rect

set winsize 20

set shift 10

set filename e06lachl_034.16.shn

set random [expr{int (rand()*1000000)}]
set fs fs${random}

FeatureSet S5fs
$fz readADC ADCL Sfilename -bm shorten -v 0

5fs offset ADC ADC1 -mean 0 -alpha 0.02

set samplingrate [expr 1000%* [5fs:ADC configure -gamplingRate] ]
set correlate [expr (samplingrate*winsize)]

&fs adc2spec ADC ${winsize}.ms -win $wintype -adc sADC \
-shift ${shift}.ms

5fs specest SPEC sADC Sorder -type $type -lpmethod Smethod N
-gcorrelate Scorrelate

$fs log 1SPEC SPEC 1.0 1.0

5fs show 18PEC

A.2 SPECADJ

The function specadj adjusts the hight of a feature given a second feature to be adjusted to.

Useful to derive the SMVDR given the MVDR and FFT spectrum, see Example below.

A.2.1 Syntax
[FeatureSet] specadj [Output] [Inputl] [Input2] [Optionall]

[FeatureSet] Name of the featureset.

[Output] Name of the output feature (type: FMatrix).
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Appendix A New JRTK Functions

[Inputl] Name of the feature which should be adjusted (type: FMatrix).
[Input2] Name of the feature [Inputl] should be adjusted to (type: FMatrix).
-smooth [Type] Smooth the [Input2] feature (0,1,2,3,4).

-show [Type] Show the multiplication factor for the scaling. (on,off)

A.2.2 Example

This example calculates the SMVDR spectrum by extending the last example with the
following lines.

get blur 1
5fs spectrum FFT ADC Swinsize -shift &Sshift

$fs specad] SPECad] SPEC FFT
$fs log 1SPECadj SPECadj 1.0 1.0 -blur sblur

5fs show 1SPECadj



Appendix B
Detailed WER & RER of Telephone

Speech Experiments

speaker | FFT-:[ MVDR-b. SMVDR-based
MFCC| MFCC |MFCC
type auto. | Burg | autocorrelation Burg

order 60 | 60 | 60 | 80 | 100 | 120 | 60 | 80 | 100 | 120
1 17.9 [194[194[16.9][16.9[19.4][ 18.1[204[ 18.3[ 19.0 ][ 21.9
g 279 | 287 |262|286[284|278|274[27.9]|286|27.8]|30.0
3 224 | 250 24.8|23.0[241[234)|241[218]237)|249]26.0
4 31.1 | 32.833.1|30.8[29.7[291)|294 (320308299317
5 30.3 | 31.229.1/29.8(289[292|280291[292]316] 291
6 384 | 358 36.1|37.4[355[382]36.1[376|347|361]368
7 415 | 38.9(389[411[413[415]|42.0[413]|426|426435
8 32.3 | 30433.2|329[321[332)342[364|353|359]356
9 43.8 | 43.8 | 42.6|41.2[450|449|44.0|441|449|426|426
10 214 | 228|253|242(224(240)|23.2[232|253|251 257
11 36.0 | 37.9]|37.3|36.9[355[369|36.0/37.1]358]36.0] 371
12 453 | 451|438 (417417421447 |432 434465459
13 361 | 354 370|366 [370[37.8]|37.2[375]36.2383375
14 383 | 414 |406391[389[37.7]|37.7 403|406 417|406
15 66.8 | 69.7 | 68.5| 656 | 63.7| 685|663 [709|704 632|668
16 656 | 653|623 |68.9[658|644|59.7|632]644|651]646
average | 362 [36.8]36.4]36.2]|359[365[359]|368[368[369]375
mean | 37.2 | 37.7|37.4]372[36.7]37.4[36.8]37.9]37.8][37.9] 385

Table B.1: Comparison of word error rate (in percentage) on telephone speech.
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Appendix B Detailed WER & RER of Telephonespeech Experiments

speaker | MVDR-b. | SMVDR-based
MFCC | MFCC
type auto. | Burg | autocorrelation Burg

order 60 | 60 | 60 | 80 | 100 | 120 | 60 | 80 | 100 | 120
1 -84 -84 [+56[+56]-84]-11]-140]-22 [-6.1 [-223
2 -29 |+61[-25[-18 [+04 [+18[+0.0[-25|+04[-75
3 |-116]-107|-27[-76|-45]|-76 |+27]|-58 |-11.2]-16.1
4 -55[-64 [+1.0[+45]|+64 |+55]|-29 |+1.0[+39[-1.9
5 -3.0 [+4.0 |+17 |+46 [+36 [+76 [+40[+36|-43 |+40
6 +6.8 |+6.0|+26 |[+76[+05[+60[+21[+96|+60|+4.2
7 +6.3|+63|+10[+05[+00[-12 [+05[-27[-27 |-48
8 +59|-28 |-19 [+06[-28 [-59 [-127[-93 |-11.1]-10.2
9 +00 |+27|+59|-27 [-25[-05[-07 [-25 |+27 |+27
10 |-6.5 [-182(-13.1]|-4.7 |-12.1| -84 | -84 [-18.2[-17.3 |- 20.1
11 -53 | -36 [-25[+14|-25[+00]|-31|+06|+0.0[-3.1
12 | +04 [+33[+79|+79|+71|+13 |+46|+42[-26 |-13
13 |+19|-25|-14]|-25|-47|-30|-39|-03 [-6.1[-3.9
14 |-81[-60[-21]-16|+16|+16|-52|-60 [-89 |[-6.0
15 |-43|-25|+18|+46|-25|+07|-6.1|-54 [+54[+0.0
16 |+05[+50|-50|-03 |+18 |+90 |+37 [+18[+08|+15
average | -1.7 | -0.6 | +00 [ +08[-08 [+08[-17 [-17 [-19 [-3.6
mean |-13 |-05 [+00 [+13]-05[+11[-19[-16]-19[-35

Table B.2: Comparison of relative error reductions (in percentage) on telephone speech.
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Appendix

C

Detailed WER & RER of Warp

Experiments
speaker | FFT-D:|SMVDR-b. SWMVDR-based
MFCC [MFCC MFCC

type auto. | autocorrelation
order 80 40 | 50 | 60 | 70 | 80 | 90
1 22.3 200 | 204 [208[202[202[219] 196
2 29.0 283 | 279|288 282274288295
3 26.8 268 |259|275| 261|259 257|258
4 32.8 326 |31.7]31.7|31.7]305] 302308
5 31.4 337 | 301 323|31.0]319([305] 324
6 40.0 392 | 411413 413] 411|429/ 442
7 42.8 411 | 424 424|435 424|433 424
8 35.6 386 | 361370370342 367|342
9 46.9 449 | 458|461 | 473|460 461|476
10 23.8 244 |230]|205(230]224[228](216
11 39.8 377 | 392|389 385|406 379 394
12 47.6 476 |495] 430|476 488|465 | 467
13 40.7 407 | 389 396|408 407|421 402
14 41.7 471 | 494|454 | 449 440|457 | 443
15 70.4 69.0 | 706|718 709 69.0]| 709|697
16 684 | 656 | 665|642 630]658]|635]625
average | 39.1 | 387 | 387384387 385]38.7]385
mean | 40.0 39.8 [399]395|397 (394397394

Table C.1: Comparison of word error rate (in percentage) of warped envelopes on telephone

speech.



Appendix C Detailed WER & RER of Telephonespeech Experiments

speaker |SMVDR-b. SWMVDR-based
MFCC MFCC
type auto. autocorrelation

order 80 40 50 60 70 80 90
1 +103 [ +85 | +67 | +94 | +94 | -74 | +58

2 + 2.4 +38 | +0.7 | +28 | +55 | -3.2 | -24

3 +0.0 +34 | -26 | +26 | +34 | +08 | +69

4 + 0.6 +34 | +34 | +34 | +7.0 | +47 | +2.8

5 -7.3 + 4.1 -29 [+13 | -16 -1.3 -0.3

6 +20 -28 -3.2 -32 -2.8 -4.4 -7.0

7 +4.0 +09 [+09 [ -16 [ +09 | -2.1 + 0.0

8 -84 -1.4 -3.9 -39 | +38 | =17 | +76

9 +4.3 +23 | #4.F | <09 | +49 | 0.7 -3.3

10 -2.5 +34 |[+139 | +34 | +59 | +09 | -54

11 +53 +1.8 | #2383 | +833 | =20 | +33 | =1.3

12 + 0.0 -40 | +97 | +00 | -25 | +6.1 -86

13 +0.0 +44 | +27 | -02 | +00 | -82 -1.5

14 -12.9 -185 | -89 -7.7 =56 | +75 | +24

15 +2.0 -0.3 -2.0 -07 | +20 | -04 | +29

16 + 4.1 +28 | #61 |79 | +38 | #45 | +26

average +1.0 +1.0 | +18 | +10 [ +15 | +0.0 | -0.3

mean + 0.5 +0.3 | #4.3 | +#08 | +15 | #0.5 | +0,3

Table C.2: Comparison of relative error reductions (in percentage) of warped envelopes on
telephone speech.
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Glossary

Notational Convention

all vectors are column vectors and written in boldface
i*" element of a

vector/prediction of order i

transpose of vector

all matrixes are capitalized and written in boldface
i, 7]*" element of A

transpose of matrix

complex conjugate of a

estimate of «

warped value of a

smoothed value of a

“1s distributed according to”

denote the phoneme as a basic linguistic unit

Principal Symbols

B(z),b(n)
d

D

Dy(z2)

!

linear prediction coefficient
backward prediction error
cepstral coefficient

spectral distortion

power difference

Z-transform of a &' sub-filter

frequency
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Glossary

B mean-square prediction error

E(z),e(n) (forward) prediction error

h tab-weight vector

H(z) transfer function of discrete-time linear filter
k partial correlation coefficient, reflection coefficient
M final order

mn element n of a discrete time series

N data length, noise

R correlation matrix

R.. autocorrelation matrix

s fixed frequency vector

S(w) power spectral density

Spp(w) linear prediction spectrum

Sarv(w) minimum variance distortionless response spectrum
w(n) window function

€ modelling error

A warping parameter

Iy correlated prediction coefficient

0 short-time autocorrelation function

W frequency

Wisi frequency of interest
Abbreviations

AR AutoregRessive

ARMA AutoregRessive Moving Average

ASR Automatic Speech Recognition

dB deciBel

DCT Discrete Cosine Transformation

ESST English Spontaneous Scheduling Task
EMNS Ephraim and Malah Noise Suppressor
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FET
FOI
HMM
JRTK
LDA
LM

LP

LEC
LPCC
LPS
LSD
LSF

MA
MFCC
ML
MLSF
MMSE
MV
MVDR
MVDRCC
MVSE
PARCOR
PLP
PMVDR
PS

PSD
RER
RSR
RTF

SE
SFFT
SMVDR

Abbreviations

Fast Fourier Transform

Frequency Of Interest

Hidden Markov Model

Janus Research ToolKit

Linear Discriminant Analysis

Lattice Method

Linear Prediction

Linear Prediction Coefficient

Linear Prediction Cepstral Coefficient
Logarithmic Power Spectrum
Logarithmic Spectral Distortion
Logarithmic Spectral Feature

Moving Average

Mel-Frequency Cepstral Coefficients
Maximum Likelithood

Mel-filtered Log Spectral Feature
Minimum Mean Squared Error
Minimum Variance

Minimum Variance Distortionless Response
Minimum Variance Distortionless Response Cepstral Coefficients
Minimum Variance Spectral Estimation
Partial Correlation

Perceptual Linear Predictive

Perceptual Minimum Variance Distortionless Response
Power Spectrum

Power Spectral Density

Relative Error Reduction

Robust Speech Recognition

Real Time Factor

Spectral Envelope

Smoothed Fast Fourier Transform

Scaled Minimum Variance Distortionless Response
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Glossary

SMVSE
SNR

SP

SS

VTLN
WA

WER
WLP
WMVDR

100

Scaled Minimum Variance Spectra Estimation
Signal-to-Noise Ratio

Spectral Distortion

Spectral Subtraction

Vocal Tract Length Normalization

Word Accuracy

Word Error Rate

Warped Linear Prediction

Warped Minimum Variance Distortionless Response
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