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Abstract

Existing methods for tracking facial expressions based on Active Appearance Models
(AAMs) are usually confined to perfect lab conditions, trained only on a particular
person and limited in detail resolution. In this work, we suggest incorporating dense
3D data obtained from a stereo camera into an existing AAM, thereby combining
the advantages of fast AAM fitting and dense 3D mesh alignment. We describe a
feedback cireuit allowing for continnous improvement of maodel fitting and immediate
error correction as part of a multi-level gradient descent method. Our system can
then be used for precise classification of facial expressions using Support Vector

Machines (SVMs).






Sununary

In order to build natural and intuitive hman-computer intertaces, it is of vital imn-
portance for the computer to have a certain level of knowledge on the situational
context of the interaction [30]. Similar requirements exist for unsupervised behav-
ioral analysis in healthcare applications [16]. One possible source of such contextual
information is the human face. Human faces convey a vast range of information
notably on emotions and the focus of attention. Moreover, the lips provide visual
clues on the spoken words that help communicating in a noisy environment [32]. It
is therefore necessary to develop a means of reliably identifving and tracking human
faces as well as changing facial expressions.

In this work, we present a method for tracking facial expressions using a stereo cam-
era. The focus of our approach is to improve stability and resolution of existing 2D
tracking methods based on Active Appearance Models [3] by adapting the tracking
results to stereo data. In particular, we aim at allowing the use of AAMs for low-
resolution input images and sparsely-textured face regions. Moreover, our system
achieves a processing speed of approximately 10 frames per second and allows for
movements of the face deviating up to 15 from the frontal view, at a distance of
2m from the camera.

Firstly, a 2D Active Appearance Model [3] is developed using a given hand-labeled
training set. The model is then initialized in a video sequence using a color-histogram
based face segmentation algorithm. Subsequently, the 2D AAM is iteratively opti-
mized using a least-squares steepest descent method to match facial deformations.
An initially tracked sequence of 2D face landmarks is then used to develop a 3D
model describing an equivalent set of deformations using a structure from motion
factorization method [41]. Based on this 3D extension to the 2D model, we can then
optimize in parallel a 3D representation of the 2D model. In a final optimization
step. this 3D representation is constrained to deformations corresponding to a stereo
depth map of the face that has been obtained from the stereo camera.

We conclude that precision and stability of existing 2D face tracking methods can
be significantly improved by allowing for feedback of depth information into the 2D
tracking process.






Résumé

Afin de pouvoir créer des interfaces homme-machine intuitives, il est d'une impor-
tance primordiale que l'ordinateur possede des informations sur Nutilisateur et sur
le contexte dans lequel se déroule Uinteraction. En ontre, les applications médicales
portant sur la surveillance de patients et sur U'interprétation psyehologique de leur
cotmportement nécessitent que N'ordinateur soit capable d'identifier les émotions des
personnes sots surveillance. Le visage est la source d'informations sur 'émotion hu-
maine la plus facilement accessible, car elle transmet des indices notamment sur la
direction du regard et sur les six émotions élémentaires de la peur. du dégortt, de la
joie, de la tristesse, de la colere et de la surprise. De plus. les lovres servent a fournir
des indices facilitant interprétation de la langue parlée dans les environnements
bruyants. Par consgéquent. nous souhaitons développer un moven de secmenter et
de snivre le visage humain et d'identifier les expressions faciales,

Dans le cadre de notre travail. nous présentons une méthode pour le suivi d'ex-
pressious faciales a l'aide d'une caméra stéréo. L'accent de notre approche revient
a amcliorer la stabilité des Active Appearance Models (modeéles d’apparence active)
en 2D en effectuant des optimisations itératives & partir des informations 3D. Cette
stratégie nous permet d’employer notre systéme dans des conditions réalistes. no-
tamnent de travailler avec des séquences vidéo i moyenne et a basse résolution et
d'analyser les régions du visage peu texturées tout en assurant une précision suff-
isante. De plus, notre implémentation atteint une vitesse denviron 10 itnages par
seconde ce qui correspond & un traitement de séquences vidéo en temps réel.

Dabord, un Active Appearance Model (modeéle d’apparence active) en 2D est crée
a partir dune séquence d'images d’entrainement dont les correspondances entre les
points caractéristiques ont été établies & la main. Ensuite, la position initiale du
modele est choisie en utilisant nne méthode de segmentation par histogramme de
couleur et un filtrage par profondenr stéréo. Puis. le modeéle 2D est itérativement
adapté aux déformations faciales a travers l'optimisation en moindres carrées par
descente de gradient. En meéme temps, nous nous servirons d'une autre séquence
d'images d'entrainement et d'un algorithme de Structure from Motion (structure
a partir de mouvement) afin de construire un modele 3D décrivant les déforma-
tions faciales 2D d'une maniere équivalente. Finalement, ce modéle 3D nous permet
d'optimiser en parallele une représentation en 3D du visage suivi et d'imposer des
contraintes sur les mouvements permis du modele 2D qui doivent correspondre aux
données de profondeur obtenues par la caméra stéréo. En résumant, nous établissons
un cercle de retour d'information 3D permettant 'amélioration et I'adaptation en
ligne d'un modeéle 2D dun visage.

Nous concluons que la précision et la stabilité des méthodes existantes pour le suivi
des déformations faciales peuvent étre considérablement améliorées en utilisant des
informations obtenues a aide d'une caméra stéréo. En outre, nous montrons corn-
ment cette méthode peut servir a classifier des expressions faciales d'nne maniere
tres efficace.






Zusammenfassung

[ntuitive Mensch-Maschine-Sehnittstellen sind nur méglich, wenn der Conmputer iiber
ein bestimmtes Mald an Information beziiglich des Handlungszusammenhanges ver-
fitzt. Ahnliche Anforderungen stellt die nniiberwachte Auswertung von Patienten-
daten im Ralhmen von Anwendungen des Gesundheitswesens. Eine mogliche Quelle
derartiger Kontextinformationen ist das menschliche Gesicht. Das Gesicht vermit-
telt eine grosse Anzahl von Informationen itber Stimmung und Aufmerksambkeit eines
Menschen. Zudem bieten die Lippenbewegungen eine Moglichkeit, visuelle Hinweise
zur Verbesserung der Verstandigung in geriduschbelasteten Umgebungen zu nutzen.
Aus diesen Griinden ist es angebracht, einen Weg zu finden, der die zuverlissige
Identifizierung und Verfolgung von menschlichen Gesichtern sowie die Analyse von
sich verandernden Gesichtsausdriicken erlaubt.

Iin Rahmen der vorliegenden Arbeit soll ein Ansatz zur Verfolgung von Gesichts-
ausdriicken mittels einer Stereokamera entwickelt werden. Ziel dieser Arbeit ist
die Verbesserung der Zuverliassigkeit und die Erhohung der Aullosung von beste-
henden Methoden, die auf zweidimensionalen sogenannten Active Appearance Mod-
els(AAM) bernhen, indem deren Ergebnisse durch die Einbindung von Stereodaten
anfeewertet werden. Insbesondere soll die Anwendung von AAMs anf Eingangsdaten
mit niedriger Auflosung sowie auf gering texturierte Gesichtsregionen ermoglicht
werden. Das entwickelte System erreicht eine Verarbeitungsrate von 10 Bildern pro
Sekunde bei Abweichungen des Gesichts um bis zu 15 von der Frontalansicht und
einem Kameraabstand von etwa 2 Metern.

Zunichst wird unter Verwendung handmarkierter Trainingsdaten ein zweidimen-
sionales AAM erstellt. Dieses Modell wird anschliessend innerhalb einer Bildfolge
initialisiert, indem das Gesicht durch Farbhistogramme und Filterung von Tiefen-
informationen segmentiert wird. In der Folge wird das zweidimensionale AAM
mit Hilfe eines Gradientenabstiegsverfahrens fiir kleinste Fehlerquadrate iterativ an
die auftretenden Gesichtsausdriicke angepasst. Eine anfinelich erstellte Folge von
zweidimensionalen Verfolgungsdaten eines Gesichts wird dann zur Erstellung eines
dreidimensionalen Gesichtsmodells genutzt, welches das Verhalten des bestehenden
zweidimensionalen Modells dquivalent beschreibt. Hierbei kommt ein sogenannter
Structure from Motion-Algorithmus zur Anwendung., Aufbauend auf dieser dreidi-
mensionalen Erweiterung des bestehenden Modells kann nun das gesamte Modell in
einlemn weiteren Optimierungsschritt an die durch die Stereokamera erstellten Tiefen-
daten der Szene angepasst werden.

Zusammentassend legen die Ergebnisse der vorliegenden Arbeit nahe, dass bestehen-
de zweidimensionale Ansitze zur Gesichtsverfolgung erheblich verbessert werden
komnen, indem Tiefeninformationen von Stereokameras in die Modellanpassung ein-
gebunden und zur kontinuierlichen Modellverbesserung genutzt werden.
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1. Motivation

Developing applications that make use of information on hmman emotions to un-
derstand the context of human-computer interaction has been an important field
of research for decades. As the face provides the most openly available source of
visual clues to a person’s emotional state of mind, identifving facial expressions is
an important step towards the development of such applications.

While much work has been dedicated to head tracking [23], head pose and gaze
estimation [30], facial expressions remain a challenging research topic due to the
difficulty in describing themn comprehensibly. Furthermore, applications requiring
detailed high-resolution tracking information, as is the case for lipreading and facial
expression recognition, cannot work reliably in just two dimensions. For example,
most deformations of the mouth region result in extremely small texture changes,
but cause significant variation in depth values. For lipreading applications, we need
to be capable of detecting movements not only of the mouth contours, but also of
the inner lip region. Stereo vision provides the most reliable and vet sufficiently fast
means of integrating depth information into tracking applications.

Existing tracking methods are often confined to perfect lab conditions, trained only
on a particular person and limited in detail resolution of facial features [3]. Cre-
ation of 2D or 3D facial models is usually done on a small number of different faces.
resulting in highly specific representations which are difficult to generalize. Addi-
tionally. model precision is rarely acceptable due to error-prone manual labeling of
training data. As a consequence, in this work we suggest an approach allowing to
track deforming shapes in general and deformations of facial muscles in particular
by incorporating stereo information of the scene into existing methods and thereby
improving their performance significantly. Furthermore, feedback of depth informa-
tion into the models as part of an on-line process allows for continnous improving of
the model fitting and for immediate ervor correction.

Furthermore, we would like to emphasize the main difference between our stereo-
hased method and other model fitting methods using multi-camera environments;
high-detail alignment in our approach is done on dense depth data, whereas multi-
camera methods only perform sparse 2D point correspondence over several 2D im-



2 _ L. Motivation

ages. As o consequence, we are able to achieve mmeh more precise and robust fittine

restlts,

[ contrast to directly modeling a 3D representation of the shape, we chose to use
a 2D representation as the basis of our litting process. The main advantaee of
this method is that training can be done on 2D hmages, instead of the more diffi-
cult labeling in three dimensions. Therefore, we intend to improve the existing 2D
model instead of replacing it by a more complex representation. Unlike traditional
3D mesh alignment, we use texture information explicitly for fitting, thus accessing
multiple sources of scene information. Moreover, the initial 2D fitting speed makes
the twodimensional approach extremely interesting as the starting point for more
detailed methods. The complete sequence of minimization steps of our systemn still
outperforms execution speed of existing direct 3D models. Similar to 2D fitting on
different resolutions, known as hierarchical processing on a Gaussian image pyramicd,
we perform hierarchical processing that is gradually refining from a simple twodi-
mensional representation towards a precise fit in 3D, In this processing sequence,
the 2D model provides a rough initialization. The remaining improvements to the
3D model done on the highest hierarchy level, the stereo fitting, are small since
the time-consuming coarse alipnments have already been done on the lower fast 2D

levels,

1.1 Goal

We aim at achieving stable detection of deforming shapes and tracking of a number
of landmarks sufficient for detailed analysis and interpretation of the occurring de-
formations. Stereo-assisted tracking should be possible even in environments that
are too noisy for traditional methods, and at a speed of approximately 10 [rames

per second.

1.2 Possible Fields of Application

More recently, the range of possible application fields for intelligent human-computer
interaction was extended to including contextual information on the emotional state
of mind of the user in order to dynamically adapt lninan-computer interfaces and

thus improving efficiency [26].

Similarly, in healtheare and geriatric applications it is desirable to individualize
treatinent strategies to achieve better results and a more humane care environment
[16]. Reliable couclusions on a patients health and treatment progress require a
detailed long-term analysis of a patient’s behavior. Since a continuously reducing
healtheare workforee cannot provide this analysis. an unsupervised computer-based

approach can be a possible remedy.

Finally, realistic creation of avatars in virtual reality environments necessitates the
online adaptation of facial expressions [5]. While laser-based sensors for surface
reconstrietion remain slow and expensive [7]. stereo-camera based facial expression
aualvsis represents a convenient and fast solution.



L3, Survey of Related Work

1.3 Survey of Related Work

1.3.1 Describing facial expressions

A signilicant amount of work lins been dedicated to deseribing facial muscle move-
ments and evaluating their psychologic signiticance., The most widely used and most
comprehensive classification scheme is the Facial Action Coding System FACS [8].
(25]. While its universal validity over different cultures is disputed, vet it is the
ouly objective description of facial expressions. FACS decomposes every facial ex-
pression info elementary units, each of which corresponds to the movement of one
major muscle group in the human face. In order to identify a large munber of FACS
units, [38] proposed a face model consisting of 68 feature points. More feature points
complicate hand-labeling of training data, less points reduce the practical usability.

1.3.2  Tracking Deformable Shapes

Early twodimensional shape tracking resorts to deformable contours known as snakes
[18]. similar techniques for 3D objects include deformable balloon models [7]. These
technicues enclose an object inside a contour and define rules and constraints on
the permitted shapes allowing these contours to contract around the ol vject on the
grayscale image surface similar to gradient descent. However, execution speed is
ustially slow and the techniques can easily fail in the presence of noisy or complex
objects. Moreover, multiple objects or internal object structures have to be repre-
sented by a new set of contours.

Eigenfaces [4] and Gabor wavelets [19] decompose an image into bases representing
its characteristic features. They allow identification of structures in unseen images,
but are usually limited to certain poses, for example full frontal or profile views of a
face.

Point Distribution Models (PDM) [10] rely on costly preprocessing steps and fail if
the given brightness distribution does not exactly correspond to the training condi-
tions.

Active Shape Models (ASM) [10], [9] are a model-based approach using only shapes
as structuring elements. They deform iteratively to fit an instance of a particular
shape. However, ASMs may vary only in ways seen in a training set of labeled
examples and require the presence of landmark points along strong edges.

[29], [28] suggest 3D Morphable Models (3DMM) to represent facial deformations
in shape and texture directly from a three-dimensional model. While this technique
s robust against noise and accurate, its fitting speed is extremely slow and the
construction of 3DMMs is laborious.

1.3.3 Shape Models from Depth Maps

Depth information is used in several approaches to obtain a precise 3D representation
ol the shapes present in a given scene. [44] use iterative mesh alisnment, nonlinear

subdivision and fitting, whereas [35] build face representations with adaptive meshes,
I general, execution time of the subdivision algorithms is prohibitive,
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Figure 1.1: Outline of this work

1.4 General Outline

Figure 1.1 on page 4 shows how the different levels of model fitting interact. Each
of the steps illustrated in fgure 1.1 will be discussed in one chapter of our report:

[ chapter 2, we outline how to build a 2D Active Appearance Model (AAM) capable
of modeling shape deformations and pose changes. Conunon landmarks in training
images are hand-labeled and the corresponding shapes are extracted and aligned.
Using the extracted shapes, a set of 2D bases describing the deformations and a set
of texture vectors representing characteristic appearance changes are derived.

Chapter 3 details how a set of 2D feature points is tracked using our 2D AAM by
aligning a model instance to a sequence of input images.

In chapter 4. we explain how the tracked feature locations are then fed into a struce-
ture from motion algorithin capable of computing a set of 3D bases that equivalently
describe the 2D movements as a projection of a 3D shape onto a plane. These 5D
bases are used to constrain the deformations of the 2D AAM, thus preventing the
creation of invalid shape instances.

Chapter 5 deals with the sterco extension. For each image, we build a KD-Tree (sce
appendix F for details on this space-partitioning data structure) containing depth
data from the stereo camera. We can then compute the distance between the 31
shape and the nearest points in the KD-Tree. This allows us to add another con-
straint on the 3D shape representation, aligning the 3D shape to minimize distance
to the stereo points, which in turn modifies the parameters of the initial 2D model,

Results of ground-truth and classification experiments are presented in chapter 6.

Finally, we give a conclusion in chapter 7 and analyze further improvements to our

solution,



2. Registration of Deformable
Shapes

The first step towards deriving a representation of shapes and their deformations is a
statistical analysis of a set of training images and their subsequent registration into a
comuon coordinate system. This task requires estimating similarity transformations
between the shapes such as rotation, translation and scaling which is known as
Generalized Procrustes Analysis [14] [31].

2.1 Choice of Suitable Landmarks

Feature points have to be chosen such that their presence is guaranteed in all in-
stances of a certain shape. Moreover, in facial expression recognition feature points
should be significative of the underlying facial muscle anatomy to allow for precise
detection even of small deformations. In general, suitable feature points are object

boundaries, junctions and biological landmarks. The face contains three so-called
stable points [25], the two inner corners of the eyves and the point between the nos-
trils. Since these points provide a frame of reference allowing for the pose estimation,
they should always be chosen as landmarks.

AT AP,
o A, A
2 \\;. =

Figure 2.1: Creation of a 2D model

Figure 2.1 on page 5 uses the landmark structure suggested by [24]. We assume that

o
I

landmarks over a number of images containing ditferent instances of a shape have



0 _ 2. Registration of Deformable Shapes

been labeled by hand. The choice of the training images should be representative
of the possible spectrium ol shape deformations one wishes to detect, However. up
to now no ceneral rles have been established that ean deseribe a good training set.
Some images of an example training set and the resulting shape wodel are shown in
Heure 2.1 We chose to represent a 21D shape S as a 2n element vector of its labeled
vertices s;.

EA N R —— (2.1)

2.2 Shape Alignment

The goal of shape alignment is to minimize the squared sum of distances of each
shape with respect to the mean. When supposing that the shapes ditfer only in
a set of rigid shmilarity transformations, one possible approach to shape alignment
is known as Procrustes Analysis [14] [31]. It consists of the following steps of an
iterative least squares minimization of the lunetion

]
]
—t

N
gpa(T ) = argmin Z I 7:(S) — S| (
T

i=1

where 7 15 a set of similarity transformations and S is the mean shape of the shape

set:

Translate each shape instance such that its center of gravity is at the origin.

e (hoose one example as the initial estimate of the mean shape, scale it to
zero-mean and use its reference frame as the default.

e Align all the remaining shapes with the current estimate of the mean shape.
The allowed transformations can be deseribed by

S = RS + T, (2.3)
where ¢; isa scale factor, F; is a rotation matrix and 7; is a translation,

e Re-estimate the mean from the newly aligned shapes and align it to default

frame of reference.

e Reiterate until convergence is reached, measured either in terms of residual
distance to the mean or as a change smaller than some e.

2.3 Limitations

The above mentioned procedure treats shape deformations as gaussian noise and
only considers rigid shape transformations. Such a generalization may only be ac-
ceptable when deformations are svinmetric with respect to the center of gravity. [40]
proposes a solution to this problem by incorporating linear shape variation into the
minimization function. however in this work we consider that deformations remain
small and accept a certain ervor during alignment, We could verify experimentally
that in applications working with face shapes. the only asymmetric deformation
changing the shape contour significantly is lifting one corner of the mouth, This
deformation should therefore be avoided in the training data.



2.4, Modeling Shape and Texture Variation

2.4 Modeling Shape and Texture Variation

We need a parameterized representation of the aligned shapes such that an instance
s of any shape deformation can be created as a weighted s of shape bases b; and

a mean shape s, using

N
8 =8y + Z bipi (2.4)

i=]1
where p; are parameters weighting the contribution of each shape base to the current
shape instance,

One possibility to reduce dimensionality of the training shape space and to derive
a simplified shape description is known as Principal Components Analysis [11] [10]
and consists of exploiting cross-correlation of the shape points; see appendix B for
details. As a result of this process, we obtain a set of shape bases (or shape modes).
It is advisable to retain only a certain munber of those shape modes in order to
reduce computation complexity in the following steps. Selection of shape modes
can be done such that a certain proportion (95%) of the variance exhibited in the
training set can be explained.

Similarly, PCA is performed on the texture vectors contained within the aligned
shapes. However, we normalize the textures for each instance by warping them
such that their corresponding shapes match the mean shape. For details on image
warping see appendix C. This step removes deformation-induced variation in the
textures. Moreover, it is advisable to perform some brightness normalization since
the AAM used in this work does not model brightness variations implicitely. As
a result of this process, we obtain a parameterizable set of eigenimages describing
texture variation in the training set, we will use the term appearances to denote its
the corresponding instances A:

M

A= Ag+ > AN (2.5)

i=1
where Ay is the mean appearance and the \; are parameters weighting each basis
contribution. A set of appearance bages for a training set is shown in figure 2.2 on
page 7.

Figure 2.2; The first 6 appearance variation modes of a model

A complete instance of the model can now be created by choosing shape and appear-
ance parameters and computing the shape and the texture that correspond to the
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chosen parameters using equations (2.4) and (2.5). Sinee the resulting appearance
instance is still in mean shape normalized orn, we have to warp the appearance
instance from the mean shape to the current shape instance. The following Hgure
2.3 on page 8 shows resulting instances of a face obtained by varving parameters of
shape and texture desceriptions,

While it is possible to perform another PCA on shapes and appearances at the
same time and thus obtaining a combined model. we have chosen not to use such
a combination. In the following steps. computation can be sped up by projecting
ont appearance variation as a pre-computation step, it is therefore advantageous to
separate shape and appearance representation from the beginning,

Figure 2.3: Examples of 2D AAM instantiation



3. Fitting Two-Dimensional Active
Appearance Models

The Active Appearance Model (AAM) [3] is a generalization of the Active Shape
Model (see [9] and chapter 1.3), but uses all the texture information in the im-
age recion covered by the target shape, rather than just that near modeled edges.
Shape and appearance are iteratively modified to optimally adapt to unseen shape
instances by minimizing a sum ot squares difference using gradient descent. Several
methods have been proposed to efficiently fit 2D AAMs [3], [1]. These methods
alm at precomputing most data structures to reduce execution time during the it-
erations. By far the most efficient method is the project-out inverse compositional
mnage alignment which we chose to use as the basis of our work.

3.1 Definition

An AAM can be defined by a set (p.S. A, A) where p are the shape parameters, S a
set of shape eigenvectors (called bases below), A a set of appearance parameters and
A a set of texture eigenvectors (called appearances below). The shape parameters
and bases together define the shape warp Wz, p) for every pixel r in an image. An
AAM instance then has the form

[(W(z.p)) = A(x. \) (3.1)

where [ is a 2D input image and A the appearance corresponding to the parameter
set. A, Since we would like to track a shape that is not only internally deform-
ing. but also undergoing pose changes, we need to account for possible similarity
transformations of the shape

N(r,q)=Rx+t (3.2)

where o = (. y) denotes a pixel within the shape, and R, t = (f,.1,) rotation resp.
translation. Choosing the representation of the pose changes of

|
N(z.q) = s+ >_blg; (3.3
i=l
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with the bases b

= t'.r'l'. r'_,' o 11‘1 fj'wi. _(/-'J. coen ) = 8y (3.4)
b, = (—.{/‘I'. —.q.{_,’. y— H:.), .r','_ .'tf £ B .r',f)

b o= (L1..., 1.0.0.....0)

b= (000,11 ... )

and s denoting the mean shape, we obtain an equivalent representation where the
parameters ¢; imstantiate the pose and can be used in the same way as the AAM
shape parameters. The bases b and b* are orthonormal since the mean shape is zero
mean and all shapes have been projected into an orthogonal subspace during PCA.
Since our shape alignment is sensitive to linear shape variations. orthonormality of b
and b* 1g explicitly reinforced. Given an input image /(). we now wish to minimize
the sum of squares diflerence between an instance created with our AAM and the
imput image:

i

Z [Ao(a) -+ Z NAj(2) = I(N(W (. p).a)]? (3.5)
#E80 i=1
The solution is obtained by simultaneously minimizing this difference with respect
to the parameters p, q and A.

3.2 Project-Out ICIA

We define the template image Ay as the mean appearance warped to the mean
shape. In order to compute the set of parameters that describe the eurrent input
image in the best possible way, we estimate the immage warp necessary to transform
the template mmage into the current image, When changing from one to the next
input image, the template image, warped to the previous frame fit, is warped again
to align with the current input image.

Traditional image alignment techniques determine this warp by solving the gradient
descent problem for an additive parameter update to the current warp in order take
into account pose and shape changes:

Py — P A/),j (3-(-”
__.'\!- — ,\‘- - A.’\,‘
¢ — @i+ Ag

This technique is known as forward additive image alignment [2]. However, in this
technique Jacobian, Hessian and steepest descent images need to be recomputed af
each iteration and reduce the fitting speed.

A solution has been suggested by [1]. known as inverse compositional image align-
ment. Instead of solving for an additive parameter update to the warp, we solve
for a compositional update to the current warp. Moreover, the incremental warp is
computed with respect to the template image and then inverted, thus allowing lor
a pre-computation of the Jacobian. The update now has the form

s
|

W(x.p) — W(x.p)oW(r, Ap) : (-
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The warp composition is detailed in appendix C. It should be noted however that
the warp inversion is based on a first-order approximation of 1W (. Ap) to achieve

a simplified warp composition
Wz, Ap)~' = W(x,— A p) (3.8)

[n practice. this results in a slight smoothing of the warp at each iteration which

may reduce precision.

In order to account for appearance variation, the appearance can be projected out of
the minimization as suggested in [3], thus avoiding re-computation of the updated
appearance variation in each iteration. The idea of this approach is to perform
steepest descent in an orthogonal complement to the appearance-affected subspace
to determine a set of minimizing shape parameters p, which can then be used to
determine the optimal appearance parameters A as the closed form dot-product of
the current error image with the appearance bases

Mg = Z Ai(x) - [[(N(W(x,p))) — Ao(z)] (3.9)

rESN

A detailed description of the project-out ICIA algorithm can be found in appendix
D.

3.3 Initialization

The steepest descent method described above will converge towards any local mini-
mmn present in the input image. To avoid incorrect fittings in image areas possessing
intensity caracteristics similar to the appearance of the AAM. we need to initialize
the AAM as precisely as possible.

We propose using an initialization based on the combination of a color histogram
back-projection and a stereo camera-based depth segmentation. In a first step, a
region corresponding to typical face colors is segmented. Its moments are estimated
to obtain a first estimation of size and orientation, for details see appendix A, In
parallel, the depth map corresponding to the current input image is passed through
a series of preprocessing filters, removing areas with erroneous depth values or small
siurface, These filters are described in appendix G.

Figure 3.1 on page 12 shows an example of the segmentation performed by our
implementation, using a face image. On average, the 2D AAM needs an acdditional
30 iterations to converge after initialization from a frontal view. However, heads
turned to one side during initialization require significantly more iterations until
convergence.

3.4 Summary

Based on the parameterized shape description obtained, the corresponding 2D AAM
is fitted to an input image. We can now track shape landmarks in iimages displayving
pose and shape variation.
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Figure 3.1: Segmentation: depth-based filter, histogram-based segmentation, initial
AANM position



4. Extending to Three Dimensions

We wish to adapt a 2D AAM to stereo data. As a consequence. we need to de-
rive a 3D description of the tracked object using the fitted 2D shape, otherwise no
comparison between sterco data and fitted shape is possible. While 2D AAMs can
generate states that cannot be attained by a 3D object [41], it is possible to impose
constraints such that the allowed deformations correspond to those of a 3D shape.
As a byproduct of the constrained fitting, we obtain an equivalent 3D representation
of the 2D model, 5. Tt is of particular interest to us since it will allow us to compute
its distance to a stereo data surface.

4.1 Factorization

Constraining the 2D AAM to 3D deformations requires knowledge of a set of 3D
bases which describe the 2D deformations in an equivalent way. Obtaining 3D
information of a given scene is the topic of Structure from Motion research [42] [43].
Given a measurement matrix W containing the locations of corresponding landmark
points in a sequence tracked by a 2D AAM, we perform factorization by singular
value decomposition such that

W = MB (4.1)

where M is a scaled projection matrix and B is a shape vector matrix. Since this
factorization is not unique, a corrective matrix G has to be determined such that

M = MG (4.2)
B = G'B

[43] proposes a method to perform this step by imposing basis and rotation con-
straints and by taking into account degenerated cases. We have been using his
method nnchanged.

The scene chosen for factorization should intuitively contain all pose and shape vari
ations one intends to track with the 3D model. We have experimentally determined
that the tracked sequence used for 3D base recovery should consist of at least 100
frames displaving strong deformations to avoid singularities and allow for sionificant
eicenvalues of 117,
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4.2 Extending an AAM from 2D to 3D

Given the optimally fitted 2D AAN in the input image and a set of equivalent
3D bases b, we now need to derive the 3D shape corresponding to the current
2D shape. Furthermore, we would like to constrain the 2D shape such that only
those deforinations and pose changes are allowed which can be represented by a
valid 31 shape. The constrained 3D extension described above can be achieved
by performing an additional minimization. The tern deseribing combined 2D /31
minimization now has the form

i

3 [Ao(z) + Y NAi(x) — I(N(W(z,p),aq))]?

RE= 11 =1
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where § is an instance of the 3D shape, P is a scaled 3D — 2D projection matrix. o
is an offset, and s describes the current 2d shape instance after pose transformation.
K is a constant, for K — oo the constraints imposed on the 2D shape deformations
and pose changes become hard constraints.  Details on the 2D/3D extension are
given in [41].

Unlike in the first minimization, Hessian and Jacobian matrices are no longer inde-
pendent of the current input shape, but depend on the 2D shape and pose parameter
sets.  As a consequence, those matrices have to be recomputed in each iteration.
However, the computation no longer needs to be performed on the whole image. but
only on the vertices of the shape. Gradient descent geometries with respect to the
2D parameter sets cannot be computed in a closed form. [3] proposes a numerical es-
timation by determining the warp perturbations caused by small parameter changes.
Analogue to the steepest descent method nsed for the 2D AAM, the steepest descent
ceometry of the 3D extension can be formulated, see appendix E for details.

We perform an initial calibration run to optimally align the internal 31 shape rep-
resentation with the initial 2D fit, otherwise large differences in pose can cause 2D
and 3D shapes to diverge. This is done by iterating the 3D fitting process until con-
vergence with the 2D input shape is reached, with the only difference that during
calibration iterations the feedback to the 2D shape is discarded.

I practice. the choice of the constant K is of crucial importance to tracking per-
formance. since a small K may not be sufficient to completely suppress invalid 2D
deformations. and a large K can significantly slow down and even prevent correct
fitting,
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Given a three-dimensional description of the Active Appearance Model, we would
like to change its underlying model parameters in order to adapt the 3D model, and
subsequently the 2D model, to the stereo data.

5.1 Obtaining and Structuring Stereo Data

[n stereo vision, two cameras are looking at the same scene with different angles of
view. The offset resulting from the different camera orientations is called disparity.
Disparity is proportional to the distance of an object to the camera, greater disparity
indicates that the object is nearer to the camera. Objects too far away do not vield a
significant disparity and are attributed the disparity value 0. Appendix G describes
stereo geometry and how to compute an object’s distance to the camera using its
disparity value.

In the given case, we need to efficiently calculate the distance between the 3D shape
and the stereo depth map. Resolution of the depth map is typically much higher
than the 3D shape resolution, it can be extremely noisy and it is likely to contain
outliers. Moreover, we cannot be sure to always find depth information for a given
point of the shape since stereo computation can fail due to lighting or lack of texture
of a region, see appendix G for details. As a consequence, in each minimization step
and for every point of the 3D shape we need to search for the sterco point closest to
a given 3D shape vertex. The most efficient data structure offering spatial lookup of
values is the KD-Tree, see appendix F for details. The KD-Tree is initialized with
the depth values obtained by the camera. and allows for efficient searching of nearest
neighbours to a given 3D point. For a set of 3D shape vertices, we need O{vlog(n))
to find corresponding nearest neighbours in the stereo data (where v denotes the
munber of vertices in the 3D shape and n is the number of points contained within
the KD-Tree). In practical implementation, subsampling of the input point cloud
can be performed in order to speed up generation of and search within the tree.

5.2 Fitting to Stereo Data

Analogue to 2D and 2D/3D fitting, we now wish to determine how well owr 3D
shape representation corresponds to the depth data obtained [rom the stereo camera,
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Moreover. we would like to adapt the 3D shape and its underlying 2D shape to better
fit the stereo data without noisy or erroneous stereo points affecting fitting quality.
This goal can be achieved by introducing a third constraint minimization step. In

this step. we wish to minimize

D =|| (so+ D mibi) —e - CP(e™ (so+ 3 pibi)) | (5.1)
=1 : =1

where 8§ represents an instance of the 3D shape after applying the 3D pose trans-
formation (we can easily compute the corresponding transformation matrix as a
byvproduct of the steepest descent 3D-extension described in chapter 4 and appendix
E).

(' P51(8) 15 the closest-point lookup funetion in three dimensions providing the near-
est neighbor to a given shape vertex, The closest-point lookup function C'F needs to
deal with outliers due to camera noise. When we assume that the initial 2D fitting
is suthiciently precise, we can then define a threshold such that all pixels possessing a
closest-point distance above this threshold are assigned the value 0. thus preventing
erroncous depth values from influencing the fitted mesh. This threshold can either
be determined as a fixed value (in practice, values around 10 pixels are reasonable).
or it can be computed dynamically as a function of the average distance of the last
fitted 3D mesh.

Finally, ¢ is a constant performing scale change from the camera coordinate system
to the frame of reference of our 3D shape. However, ¢ can assume matrix form when
a more general coordinate transformation is needed.

We chose to perform the above minimization using steepest gradient descent. The
steepest descent approach to iteratively minimizing the above 1) can be formulated
as follows:

Pap is the cwrrent complete 3D parameter set, and the initial value for the 3D
parameter update ApPsiereo 18 the value computed on the 3D extension level, Apgp.
This value is then modified using

= i L 2 ﬂ)Df\ = 2
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where by, denotes the components of the coordinate & in the ith 3D shape base
vector b, The contribution of the closest-point function C'F is

aCP oCP o8 (5.4)
- == —_ = b
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where b denotes the 3D shape base vectors. Finally, the Hessian matrix is computed

Hyoreo = Hipy + G+ 3 Z
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5.3, Overview of Performed Fitting Steps [7

where it denotes the number of 3D shape parameters and Hyp ;5 is the submatrie of
the Hessian of the 3D extension step that corresponds to the 3D shape parameters

(formed from [%]'[%])

The constant G allows weighting the contribution of the stereo fitting to the final 3D
shape parameters similar to A in the 3D extension step. G is necessary to prevent
erroneons stereo valies from interfering with the fitting process: when using the 2D
fitting as the basis of our algorithm. the sterco contribution should be limited to
siall mesh improvements with local impact instead of changing the global outline
of the mesh. Increasing G results in extending the potential sphere of influence of
the stereo fitting. We can describe this relation as weak vesp. strong coupling of 21-
and 3D /stereo-fitting.

In our implementation, the above described steepest descent is performed inside the
3D extension step (which is described in appendix E) as follows: the new 3D shape
parameter update Apsgp is fed into the above process before it is multiplied with
the Hessian of the 3D extension Hip. The modified 3D shape parameter update
Dstereo 15 then returned to the 3D extension together with Hyreo. Hopreo 15 added
to the submatriz inside Hsp that corresponds to p. As a result, the update to the
3D parameters computed by the 3D extension is at the same time constrained to
optimally fit the stereo data.

Since the result of the nearest neighbor search depends on the 3D shape, we have to
reevaluate in each iteration the steepest descent geometries on the stereo data as well
as on the 3D shape. The Jacobian on the stereo data, ajg’f can be interpreted as
the influence of a small change Ap to the 3D shape parameters on the computation
of the nearest neighbour for each vertex of the 3D shape 8. We suggest using the
following approximation: we compose the shape corresponding to the current 3D
parameters with a sequence of small changes, each of which has one parameter set
to a small value and all other parameters set to 0. We then perform a nearest
neighbor search for the resulting 3D shape and retain the change to the vertex
locations., Unfortunately, this operation has to be performed at each iteration and
for each 3D parameter once on all shape vertices. Figure 5.1 on page 18 illustrates
the steepest descent geometry on the stereo data.

Changes to the 3D parameters on this level of the fitting process are now fed back to
the 2D /3D extension computation and influence the internal 3D shape representa-
tion. This, in turn, modifies the 2D fit to better align not only with the 2D intensity
image, but also with the 3D stereo data.

5.3 Overview of Performed Fitting Steps

The following figure 5.2 on page 18 sunmnarizes once again which fitting steps have
been performed and how the different levels influence each other. By varving the
constants used, it is possible to tighten or loosen the strength of interaction between
the different levels.
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6. Experimental Results

6.1 Generic Example

6.1.1 Tools Used

In order to test our method nunder well-defined, reproducible conditions, we imple-
mented a testing tool allowing for the generation of faces using given 2D and 3D
models. The user mayv specify the shape and pose parameters used and can thus
reproduce all shape and appearance modes offered by the underlying models. The
depth data is created using the depth values of the 3D model. In order to produce
a smooth depth data surface between mesh vertices and around the face contours,
we apply a smoothing filter and add Gaussian noise. The GUI of the corresponding
tool is shown in figure 6.1 (the window on the right side). We now use the 2D image
of the generated 3D face as input for our fitting algorithm. The initialization can
be performed manually by the user. Since the exact shape and appearance para-
meters used for the creation of the generic face are known, we can easily compare
them with the resulting parameter sets computed by our algorithm. Furthermore,
we wish to compare fitting results of the 2D method and the 3D-extended stereo
method. We therefore compute both fitted meshes and their corresponding resid-
ual errors with respect to the mesh based on the ground truth generic parameters.
Errors are computed in pixels in city block distance between the 2D shape and the
2D-backprojected 3D shape. The left window of figure 6.1 shows the GUI of this
tool. the two meshes are drawn in white resp. black.

6.1.2 Initialization

The images in the following paragraph 6.1.3 compare the fitting results visually.
Fach image contains three subimages. The leftinost image of each set shows the
initialization, which is usually chosen to be the neutral average shape with a certain
pose offset from the face center to test both shape and pose fitting. One has to
take care to place the initial shape within the generic face, since our method relies
on gradient descent on the grayscale values which is not possible on the perfectly
homogeneous zero-gradient white background. Tests have shown that the fitting will
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Figure 6.1: Ground truth testing tool GUI

fail if the initialization places more than 15% of shape vertices on a homogeneous
background. This problem could be addressed by implementing an error function
resistant to partial occlusions, as deseribed in [15].

6.1.3 Comparison

Fizure 6.2: Ground truth example: pose and scale

Figure 6.2 shows the fitting results for a generic face with neutral expression and
an initial shape of 80% scale and 10% vertical and horizontal offset. 6 of the 68
shape vertices are initially placed outside of the generic face. The 2D fitted mesh is
correctly aligned with the nose feature. However, fitting of the mouth, eyes and chin
is not satisfactory, Its residual fitting error with respect to the generic parameters is
05 pixels (in city block distance). The 3D stereo-extended fitting results in a residual
crror of 69 pixels, thus redueing the ervor by ca. 27%. In particular the mouth region
is well aligned and models the lip contours correctly. Still, the fitting of the evelid
position is not perfect. We have observed that the distance between camera and face
nuder non-artificial ambient light results in shadows around the eyes which reduce
contrast in this region significantly, thus greatly reducing the quality of the 2D model
and consequently the fitting quality. For non-generic input, the stereo extension 1s
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unable to achieve correct fitting in this area since poor contrast and sparse texture
do not vield significant disparity valnes. We have not tested frontal lighting of the
face since we deliberately intended to work in a realistic setting.

Figure 6.3: Ground truth example: rotation

Figure 6.3 shows test results for a generic face in nentral shape, but rotated by 10°
to the right. 2D fitting achieves a residual error of 112 pixels, whereas 3D sterco-
extended fitting converges with a residual of 78 pixels. Once again, the stereo data
proves particularly useful for improving fitting of mouth and chin regions.

In general, extremely strong shape deformations (shown for example in the following
figure 6.4) in conjunction with a large pose variation (for example a rotation of more
than 15%) may cause our algorithm to fail: in those cases, the algorithm tends to
converge to a local error minimum that does not correspond to an acceptable glabal
fitting. It should be noted however that in realistic continuous fitting of an image
sequence, pose variations as large as the one displayed in figure 6.3 hardly ever occur:
even with a hitting rate as low as 5 frames per second, continuous fitting keeps inter-
image differences small and initialization should be performed on a frame of the
image sequence displaying a relatively neutral face in order to reduce initialization
f1rme.

Figure 6.4: Ground truth example: bie smile
. | g

Figure 6.4 compares the fitting results for an extremely large shape deformation. A
big smile does not only result in local deformations of the mouth, but changes the
eve and external face contowrs as well as the texture significantly. Tt is therefore
particularly difficult to fit, the more so as we work on a comparatively low image
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resolution. For an initialization with 1094 offset, 80% scale and additionally a slight
3D twn of 57) to the right, 2D fitting converges with 191 pixels of accumulated
residual error. mwostly in the eye, mouth and chin region. It can be explained by
the strong variation in appearance caused by the smile. By using depth information
to improve the fitting, we are left with a residual error of 102 pixels. While this
error is still significant. in particular in the eye region and along the external face
contours, the achieved improvement is apparent. For non-generic input data. the
fitting quality in these regions will typically be lower due to sparse depth data,

Figure 6.5: Ground truth example: eyes closed, initialization with 12% background
outliers

Figure 6.5 illustrates the results of a test focussing on two aspects: the initialization
contains 11% of vertices outside of the face image, and the eves are completely
closed. Both methods alien well and detect the closing of the eyes. While the 2D
fitting shows weaknesses in the chin and mouth regions, it does modify the shape
parameters designating the closing of the eyes. However, the eye contours are not
completely aligned with the closed eyelids and a residual error of 143 pixels remains.
The stereo-extended fitting achieves excellent fitting of external contours and the
mouth region while aligning correctly with the closed eyves, the remaining errvor is of
54 pixels, thus less than 1 pixel per shape vertex,

6.1.4 Table of Residual Errors

The following table 6.1 lists a series of experiments using the above described ground
truth tool.  All initializations have been identically choosen as a neutral shape,
completely within the gray-scale generic face image, downscaled by 20% and offset to
the right upper corner by 10% of the image size. The last line summarizes the average
crrors over all experiments. The deseriptions mention the type of deformation and
pose change present. For the model used in the experiments, the following 2 pose
and 4 shape changes are possible: the pose change is additional to translation and
scale, either a 2D rotation, a 3D head turn or both. The shape change can be a
bie smiile (changing the complete facial appearance). closing the eyes, raising the
evebrows, opening the mouth or a combination of all 4 modes.

[t should be noted that experiments 16 to 18 did achieve insufficient 2 convergence.
The better 2D result for experiment 17 is simply due to a reduction in face surface
due to the 3D turi. The 3D results of the combination experiments are not very
satisfactory either. In general. fitting errors of more than 3 pixels per vertex are
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Table 6.1: Residual errors during generic ground truth experiments

experiment resicual ervor lmprovement

[pixels] %]

No. | pose shape 2D stereo-

extended 3D

1 neutral | nentral 95 G0 274
2 neutral siile 191 102 46.6
3 neutral eves 148 54 63.6
1 neutral brows G4 He 9.4
3] neutral | mouth 141 88 37.6
G rotation | neutral 152 105 29
7 rotation | smile 233 196 25.9
o rotation eves 174 129 25.9
9 rotation | brows 180 136 24.5
10 | rotation | mouth 182 144 20.9
11 turn neutral 176 124 29.6
12 turn simile 242 210 13.3
13 turn eyves 185 132 28.7
14 turn brows 197 170 13.8
15 turn monuth 154 153 16.9
16 | rotation all 4 254 19 221
17 turn all 4 248 214 13.8
18 | turn+rot all 4 304 239 214
average over 50 exp. [ 176.1 | 1352 23.3

not admissible, given the low resolution of the input image. We have not vet been

able to determine the cause of this behavior, but we suppose that the underlying

2D model needs to be improved when complex combined shape deformations are
concerned. Still, the stereo extended fitting greatly improves combined shape defor-
mations even under strong pose changes. The observations confirm that 3D fitting
works particularly well for the mouth region, since even small mouth movements
ustally result in stronger changes in depth data.

6.2 CHIL Recordings

During a sequence of recorded staged meetings for the ongoing CHIL project [33] of

the ISL, we collected video and depth data of several participants. The emphasis of
the recordings was to test our system under realistic conditions showing fast head
movements and authentic expressions, in different environment settings. and under
varying camera distances and angles and thereby identifying the limitations of our
current system.

Figure 6.6 on page 24 shows examples of successful fitting of the same 2D model to
3 different faces by incorporating stereo information and thus improving the fitting
quality.  The model has been created for the person on the left image, but our
stereo extension is able to adapt it to completely different facial geometries and skin
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textures and even to connter distortions due to the glasses worn by the person in the
right image. During these tests, we implemented a simple color normnalization since
the videos have bheen recorded at diflerent times and with t']jelljgillg artiticial light.

The normalization had to be adapted manually for each sequence. The results of the
color normalization were acceptable. but could not prevent a high residual Atting
error and slight overfitting. We conclude that color normalization is insutficient and
that lighting changes need to be modeled as part of the error function.

Figure 6.6: CHIL meeting recordings: successful fittine

Figure 6.7 on page 25 shows some examples for the limitations of our current systemn.
o | = .

The image on the left illustrates failed convergence as a consequence of fast pose
variation of more than 15°. The fitting algorithm accounts for changes in the feature
positions correctly, but cannot adapt the pose variation (in this case a lowering of the
lead). This is due to the fact that translating the face results in a faster reduction
of the error in the beginning of the fitting process than varying the shape parameter
corresponding to a head nod. We believe that the quality of the 2D model creation,
particularly the shape alignment part, has to be improved in order to address this

j4511e.

The image in the center of figure 6.7 shows imprecisions caused by partial occlusion
of more than 20% of the face surface. This problem occurred during nearly one third
of the recording time. Since the 2D model error function does not explicitly deal with
occlusions and the stereo data available for the oceluded areas is either not present
or displaying strong variations and is thus ignored, the remaining data does not
allow for a sufficient fitting. Changing the 2D ervor function and improving stereo
distance computation, for example with an enhanced iterative reweighing method,
could be a possible remedy to this problem.

Finallv. the image on the right of figure 6.7 shows imprecise fitting results due to
an extremely low resolution of both the 2D face image and the corresponding stereo
data. taken at a camera distance of 2m, The 2D model without 3D extension usually
fails to converge on face surfaces of less than 150x150 pixels. Moreover, since we
have shown in chapter G.1 that at a distance of 2m from the camera we can expect
a depth computation ervor of up to Sem. we have to coucede that this problem
can only be solved by inereasing the sterco camera resolution of currently 640x430
pixels. However, a higher input resolution will inevitably result in a reduced fitting
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speed. As a consequence, we will have to develop a more efficient 3D gradient descent

method in order to compensate for the increased input resolution.

Figure 6.7: CHIL meeting recordings: unsolved issues

6.3 Application Example: Facial Expression Clas-
sification

Omne possible application of our system is facial expression classification. Since we
use a model-based approach, the complex problem of describing a facial expression
is reduced to the choice of a simple parameter vector. Depending on the complexity
of the model chosen, 7 to 12 parameters are sufficient for reliably describing most
clementary facial deformations and all possible pose changes. The classification task
thus consists of assigning a class label to a set of model parameters for each frame
of the input video.

In order to further simplify the problem, we have chosen to classify the parame-
ter vector of each video frame independently of previons frames and parameters.
Although as a consequence we loose the transition context of a given facial expres-
sion, we will show that due to the tracking precision of our 3D-extended system, we
can still achieve a surprisingly precise classiflication. Nevertheless, we concede that
context-aware classification will certainly lead to further improvements, see chapter
7.1 for sugeestions of future work.

We have tested the proposed classifier on elementary facial expressions as well as
mouth movements corresponding to vowels. Each two different facial expressions
shown in the training input video are separated by a neutral intermediate expression.
Whilst this might not be a realistic training setup and can therefore lead to difficulties
in correctly classifying expression transitions, it greatly simplifies manual training
labeling. See chapter 7.1 for a discussion of how to incorporate expression transitions
into the classifier.

Figure 6.8 on page 26 shows a confusion plot comparing 4 different pairs of emotion
classes (modeled after simplified FACS), confined to a twodimensional parameter
space. The image on the upper left plots the surprise-class (plotted as stars) against
the joy-class (plotted as rectangles), using only the parameters corresponding to
evebrow and mouth corner movement. Since separate muscle groups are creating
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the corresponding expressions, the parameters describing these movement bases can
be linearly separated even in input space. The other three images show class plots
of sorrow /fear. surprise/fear and anger/sorrow for different parameter pairs. Since
those emotions involve movelents of similar muscle groups and corresponding shape
bases, one can easily see that a linear separation of the data in input space is unlikely
to prodice satistactory results.
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Figure 6.83: Scatterplot of pairs of classes for a 2D parameter space

6.3.1 Support Vector Machines
6.3.1.1 General Outline

Given a sequence of tracking result parameters hand-labeled with their correspond-
ing classes, we would like to train a classifier such that the classes of unseen tracking
results can be identified correctly. The classification task therefore consists of choos-
ing a decision function capable of separating the training input into classes with
as much precision as possible, i.e. by maximizing their inter-class distance (called
Mazimal Margin Classifier). 1f this decision function has been established such that
it complics to certain conditions [37] [6], we can then suppose that its separation
performance generalizes well to unseen data.

Support Vector Machines (SVM) [37] are one technique to perform this task. As-
suming for example the simple two-class case, a set of [ labeled training vectors of
dimension n, x; € B¢ = 1...0 and a vector of training labels y € R’ with each
y; € {1. —1}. the decision function has the form

yi = hix;, w.b) = sgn((w-x3) + ) (G.1)



6.3, Application Example: Facial Expression Classilication 27

with w. b denoting the parameters of a separating hyperplane in feature space. The
problem can be extended to higher ditmensional input data in an analogous manner.

SVMs are usually trained using some algorithm from Lagrangian optimization the-
ory. [6] suggest using n-fold cross-validation on the training sets to improve train-
ing efliciency and to avoid overfitting of the classifier. During cross-validation, the
training data is divided into n subsets of equal size, the classifier is then sequentially
trained on n — 1 subsets and tested on the remaining subset,

When the input data cannot be separated linearly, a kernel function of the form
K(z, z) = (6(x) - ¢(z)) (6.2)

with ¢ as a nonlinear mapping is used to embed the input vectors into a higher-
dimensional feature space. Thus. nonlinear separation in input space is avoided and
hyperplanes can be used to separate data in feature space. Several kernels have been
proposed, notably linear. polynomial, radial basis and sigmoid functions.

6.3.1.2 Specifications

For our task, we have decided upon using a Radial Basis Function (RBF) as the

SVAIL kernel. The RBF has the form

piljx |

K(x,z)=¢e =0 (6.3)

All parameter values are linearly scaled to [—1,1] in order to prevent attributes
in greater numerie ranges from dominating those in smaller ranges as well as to
avoid numerical instabilities during computation. This scaling procedure has to be
performed on training as well as on unseen testing data. Training is performed using
tenfold cross-validation on a training sequence of 250 to 300 parameter state vectors.
including all face deformations allowed by the chosen model in the 4 basic facial pose
variations of scale, rotation, turn and nod. The classifier is then tested on a sequence
of usually 2 minutes of previously unseen input video. Since our fitting algorithm
is not yet able to deal with strong lighting changes, we used testing data collected
immediately after the training data under the same environment conditions. Each
classifier is inherently associated with one single facial expression model, since the
meaning of the describing parameter set depends on the choice of the shape and
appearance bases.

6.3.2 Results

We have tested our classification system on two different models. Training precision
is described as a confusion matrix, while the testing results are compared to ground-
truth manual labeling.

6.3.2.1 Basic Emotions

Our first model describes the 12 most frequently occuring FACS action units AU 1,
4.5, 6, 7.9, 10, 12, 15, 17, 20, 23 [§8], its associated classifier differentiates between 6
combinations of those action units, thus recognizing surprise, joy. sorrow. fear. anger
and disgust in addition to a neutral mean-shape, mean-appearance facial expression.
The interpretation of those combinations has to remain subjective, however we have
tried to use combinations already introduced in previons publications [20].
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Table 6.2: Training confusion matrix for emotion expressions. precision: 86.9%

|:H_m~nlrnl SUrprise ! jov ] SOTTOW l fear | anger | disgnst I

neutral G2 l 2 () () () ()
surprise () L7 I 2 0 0 0
joy 0 0 29 | 3 0 I 0
SOITOW 2 0 2 19 1 0 |
fear 3 () () 0 18 2 0
anger 1 If () 0 2 44
disgust 0 () Ol 5 | @ 3 24

Table 6.3: Classification of emotion expressions in unseen data (user estimation).
precision: 71.3%

[ erotion } detection rate ]

neutral 75%
surprise | 68%
joy 76%
SOITOW 639
fear 61%
anger 74%
disoust 22%

[_vg | FISH

Fisgure 6.2 shows the confusion matrix for training of a SVM on emotion expressions.
Separation precision of 86.9% is satisfactory, although some emotions are inherently
difficult to differentiate when no temporal context is provided.

Classification precision of T1% on unseen data (estimated by the test person), listed
in figure 6.3, is acceptable, despite the simple context-unaware approach used. Some
emotions, in particular the emotion pairs sorrow /fear and surprise /fear are inherently
difficult to separate, since they are based on similar facial muscle movements. while
other emotions such as disgust result in characteristic texture and shape changes
making them very easv to apprehend. Improvements can be expected from incor-
porating more sophisticated context-aware classification, but even so we doubt that
the above outlined difficult cases can be dealt with more reliably.

6.3.2.2 Mouth Movements: Vowels

Our second model describes 5 characteristic lip movements corresponding to the
vowel sounds a.e.i.o and n. While training has been performed on isolated vowels,
tosting sequences included spoken words, albeit using exaggerated, overly expressive
mouth movements, The goal of these tests was not to attempt lipreading, but to
cmphasize the high detail precision that our sterco-extended tracking approach is
capable of achieving,.

Figure 6.4 shows the confusion matrix for training data classification (V signifies a
nentral mouth position). Separation of vowels o and u proved particularly difficult,
but the overall training precision of 87.5% is acceptable.



(.3, Application Example: Facial Expression Classification 29

Table 6.4: Training confusion matrix for mouth movements (N=neutral). precision:

a7.5%
L | ” N [ a | T‘_i o | u
N 18 | O 01010 0
a O (2410101 0] 0
¢ (0 L 15101010
i O[Lo 1019010
ol O] 000170
ull 40100 8|15

Table 6.5: Classification of mouth movements in unseen data (user estimation),
precision: 73%

‘ vowel ‘ detection rate

N 76%
a 81%
e 75%
i | 13%
0 68%
1 65%

| avg. | 73% |

The results for unseen data (estimated by the test person) as shown in figure 6.5
show a reasonably good average detection rate of 73%, given the absence of context
information in our approach. However, the classifier failed in reliably differentiating
between the vowels o and u, since the small differences in lip positions were extremely
difficult to detect. Enhancing the classification and providing a different type of
input data (as suggested in chapter 7.1) is likely to improve classification in this
Case.
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7. Conclusion and Future Work

7.1 Problems Encountered and Future Work

7.1.1 Twodimensional Model

The approach to tracking deformable shapes outlined in this work has the advantage
of requiring the creation of a 2D model, instead of a difficult and error-prone 3D
training necessary for direct 3D tracking methods. However, even the creation of
a simple twodimensional model contains a munber of possible pitfalls. Whilst the
3D extension can improve fitting results of face details, the threedimensional steps
of our method still rely heavily on sufficient quality of the 2D tracking as a rough

initialization.

One of the most difficult parts of our work was the choice of training data for
2D model creation. As mentioned before, the deformations present in the training
data are not only of crucial importance for the type of deformations the final 2D
model will be able to track, but they also determine how these deformations will
he represented by the resulting bases. If the training data contains only a sequence
of single muscle movements (such as the raising of the evebrows without any other
simultaneous muscle action), then the resulting bases are likely to represent one
of those movements per base. However, since in reality muscle actions never occur
separately, but always in combination with other movements, the resulting 2D model
may contain too many separate bases. This will slow down fitting speed and may
cause ineffective steepest descent: supposing that some bases are strongly present
in the training data, but hardly ever oceur separately in reality. These bases will
cause the model to converge along certain dominant gradient directions whilst other
gradient directions will only contribute to a lesser degree since they are simply not
present or under-represented in the training data. However, these other gradient
directions might have resulted in a better overall model fitting. Further work will
have to [ocus on establishing criteria to objectively evaluate training data quality and
significance, before any improvements to the fitting process itself can be attempted.
Another erucial point was model sensitivity towards changes in lighting conditions.
The presence of indoor artificial light cansed significant changes in the color spec-
trum. When a model was created exclusively using video data under natural light
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conditions. it was certain to fail nnder artificial Ii;_‘;llf sinee the error between besi
fit and current input remained too important, thus causing the model to converge
towards incorrect instances, Several authors have proposed approaches to incorpo-
rating these variations into the model itself or into the error funection [15]. While
these suggestions were beyvond the scope of our present work, their evaluation and
infegration into future systems will be necessary in order to overcowe the deseribed
difficulties,

Similar aspects concern shadows and occlusions, notably self~ocelusions caused by
large head turns, A realistic face model will have to be designed to support view
changes from frontal to profile view. adapting internal model representations ac-
cordingly without requiring manual intervention. Some work as been dedicated to
modeling different views separately [26], but no conclusive strategies for dealing with
view transitions have emerged so far. We are of the opinion that stereo-assisted Ac-
tive Appearance Models can contribute to a solution since landmark equivalences
between different views can be established with greater reliability and better preci-

sion,

7.1.2 Stereo Extension

The stereo processing itself has shown several shortcomings. Among the most fre-
quent problems encountered were disparity values varying as a function of lighting
conditions and the fact that non-textured or similarly textured areas failed to vield
significant disparity to allow for stable processing. For the given application task of
tracking facial expressions, the areas most frequently affected were the cheeks (lack
of texture) and the eyve region (texture not visible due to shadows). While filter-
ing and interpolation can counter some of these effects, we would like to test wider
baseline stereo in order to compare precision in those areas particularly important
for accurate facial expression detection.

The results of our test implementation are suflicient as a proof of concept, but the
approach chosen for performing gradient descent on the stereo data is far from
efficient.  As part of future work on this topic, a more efficient gradient descent
algorithm ought to be developed. For image alignment algorithms, [1] have shown
that conventional approaches can be significantly improved by reformulating the
corresponding gradient descent problem. We are convinced that a similar redesign
of our stereo alignment method will speed up the fitting process, thus improving
fitting quality.

7.1.3 Classification
As outlined in chapter 6.3, our support vector machine classification leaves room for
improvement. We have not done an exhaustive comparison of our SVM approach

with other classification methodls,

Moreover, we do 1ot use context information, but instead classify each parameter
state vector independently of previous states. Clearly, by incorporating paraimeter
states of previous video frames into the classification process of the current frame,
a considerably improved classification precision can be expected.

Furthermore. it might be worthwhile using expression changes, i.e. transitions be-
tween parameter states, instead of the parameter states themselves as input data.
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7.2 Evalnation

In our classification tests, we analyzed facial expressions that began and ended with
a nentral face expression. For realistic tasks. the classifier should be able to deal
with any direct transition between two expressions. Modeling these transitions as a
stochastic process, for example as a Markov process. might be an interesting solution.

Alternatively, an unsupervised classification approach is likely to yvield interesting
results. By observing a sequence of facial deformations represented by the corre-
sponding model parameter sets, recurring patterns of those parameters, after suit-
able trausformation, can be clustered and automatically labeled as helonging to the
same class of facial expression. As a consequence, tedious and imprecise manual
training labeling would no longer be necessary, While this classification method
would not obey the FACS standard. it could be intrigning to compare the automat-
ically obtained classes and the FACS suggestions in order to determine whether the
FACS Action Units (see [8]) are capable of reliably describing facial expressions un-
der realistic conditions. Additionally, obtaining automatically labeled classes could
be useful for online adaptation of the input model to the actnal facial deformations
present in previously unseen video sequences.

7.2 Evaluation

Given the results obtained during experiments, we can conclude that the proposed
integration of stereo data fed back into 2D AAM creation can significantly improve
precision and stability. By combining ease of model creation and tracking reliability,
the described method could serve as a means of improving usability of Active Ap-
pearance Models in real-life applications. However, more work is required to tackle
the remaining issues, some of which have been mentioned in section 7.1. Moreover,
a unifying framework of all existing improvements to AAMs could prove extremely
valuable, given the vast range of publications on this topic. The stereo extension
could neatly integrate into such a framework as a means of providing quality feedback
and continuous online model improvement and adaptation.

In our opinion, the most promising fields of application of the approach presented in
this work are behavioral monitoring in healtheare environments [16] and lipreading
as a way of improving context awareness for speech understanding [32]. In both
domains, stable detection of small facial movements under realistic conditions are
required, which can be achieved using our stereo extension to 2D Active Appearance
Models.
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A. Histogram-Based Face
Segmentation

Histogram-based color segmentation is a suitable means of identifying image regions
possessing characteristic colors. A manual initialization provides a set of colors
characteristic of the region to be segmented, which is used to build a histogram
counting the occurrence of each color in the region of interest. Using this histogram
H,.i. the back-projection of anyv input image can be computed, assigning to each
pixel the probability of its belonging to a region of interest

- }:-{J‘(')i " : £
Bx|rof) = 2ra\®) (A.1)
N
where @ = (red, green. blue) is a color pixel, N the total number of pixels in the

histogram and H,.,; a function returning the number of oceurrences of the color of
pixel & in the region chosen for initialization. While this method is unable to track
a region over a longer period of time due to changing lighting conditions., it is well
suited for providing an initialization during a short period of time.

Based on the back-projection. we then derive additional information on the charac-
teristics of the region of interest by computing the following moments of the region,
where BP (. y) denotes the back-projected probability image:

e mean region size: size,, =3, 3., BP(x,y)

; Z >_-: e By SN B P )
® [meatl reglon center: r,;, = i—“’_t“— Ui = L—Z:f’r— ;

s mean region orientation using second moments analogously.
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B. Principal Components Analysis

[n the following. we give a rough outline of Principal Components Analyvsis (PCA,
Karhunen-Loewe-Transform) with application to the problem of shape representa-
tion. Details can be found in [10], [31].

B.1 Goal

We have a set of m planar shapes (in our case 2D), each consisting of n vertices or
landmarks s;, as introduced in section (2.1):

§= (38,87, 0 80 1, 8,8, el q) (B.1)
Since we know that the vertices deseribe deformations of face landmarks who ave
confined to a number of possible movements of the underlying facial muscles, and
since we further know that each facial muscle regroups a set of landmarks, we can
assume that the locations of the moving shape vertices are correlated up to a certain
degree. In order to obtain a simplified description of those vertex movements, we
can therefore try to exploit the existing correlation and reduce dimensionality of the
problem description.

B.2 Method Description

Given the m zero-mean shapes 8, their mean shape § = ﬁ >ty s and their (sym-

metric) covariance matrix

I

> (i —8)(si —5)" (B.2)
i1

y =L
g
m
we wish to achieve a linear, orthogonal transformation of the input shapes s such
that

r=As (B.3)
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with AT = A", The mean of 1 is consequently ¥ = A5. Covariance of r follows as

[ . ‘
Ty = — D .(ri—0)(1—1)

M =1
1

> A(si—8)(A(si —§))"

- ;\(IL-Z(si—g)(s;—g)"' AT

n i=1

i |

|
1

= AN A" (B.4)

Using the definition of our transformation. we have

S AT =AY, (B.5)
If AT represents the eigenvectors of ¥, then ¥, has diagonal form
Ao
)‘" (B.6)

/\H'!

where the \; are the corresponding eigenvalues. The dimensionality of r can now be
reduced by omitting eigenvaliies close to zero and their corresponding eigenvectors.
It 15 also possible to truncate those dimensions which contribute less than a certain
percentage to the overall model variation.

By inverting B.3 tos = A’y and assuming non-zero-mean shapes s, we finally obtain

r = A(s—8)
s = E+ATr (B.7)



C. Image Warping
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Figure C.1: Warping between two mesh triangles

C.1 Piecewise Affine Warp

Given two triangle meshes positioned at two image locations, we wish to copy the
image region underneath the first mesh to the image region underneath the second
mesh. Bach mesh is the result of triangulating the shape vertices of a shape created
from a parameter set p. The location of each pixel underncath a mesh can be
deseribed relative to the reference frame determined by the triangle containing the
pixel, as illustrated in figure C.1. Assuming the triangle origin at vertex AL A, YA),
the pixel location (r.y) is a function of vertices A(za.ya), Blag,yp) and Clee. ye)
as well as the relative coeflicients a and b given by

(z,y) = (@a:ya) + al(xp, yB) — (xa.ya)] + bl(xc, ye) = (€4, ya)] (.3
where the coefficients are given by the relative distances such that

i (E—zA)ye —ya) = W= ya)lre —xa) (C.9)

(g —xa)ye —ya) — (U — ya)lre — -r",x,)
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atnd
(4 — ya)@s —wa) — (@ —24)WB — Ya) (C3)

h =
(g = xallye — ya) — (s — ya)lee —x4)

The warp of pixel (r,y) into the second mesh triangle should conserve the relative
location of the pixel within the triangle. as defined by the coefficients a and b,
Therefore we can adopt the warp description in [3] as

W y).p) = (e yg)Fal(zg up) = (@p.y0)] +0l(@e yer) = (2o yy)] (C4)

’ _— -of v . 3
where A (a ;. yy). B (0 yy) and C (e, yer ) ave the vertices defining the second

friangle.

C.2 Warp Composition

Since the image alignment methods described in section 3.2 work on the template
image rather than directly on the current input image, the update to the warp
parameters is relative to the base shape on the template image. However, the current
warp W (. p) is relative to the destination shape on the current input image. In
order to perform the warp composition W (. p)oW (x, Ap) ! to the new destination
shape. we have to determine the warp update to the current destination shape that
is equivalent to the template warp update. As soon as the new destination shape
has been determined. we can invert the warp formula and extract the new warp
parameters,  [3] suggests computing this new destination shape by applying the
warp update to each of the current destination shape vertices. Since the rvesulting
new vertex location can lie outside its own reference triangle, the warp would be
undefined. We therefore apply the warp update to all triangles containing the vertex
that we wish to update and then compute the average location over all the resulting

locations.



D. Inverse Compositional Image
Alignment

Figure D.1: Steepest descent images (coutrast enhanced for visualization)

D.1 Algorithm

Using the project-out ICIA as described in section 3.2, the outline of the 2D AAM
fitting algorithm now consists of the following steps, as suggested in [1]:

¢ Pre-computation:

— Evaluation of the gradient of the template, AA,,

— Computation of the Jacobians for shape i‘:;; and pose warp ‘r% with re-

spect to the template iage,

— Computation of the steepest descent images for pose and shape para-
meters, SO, in an appearance-independent subspace (an example set of
steepest descent images is shown in figure D.1 on page 41),

- determine the Hessian matrix providing normalization of the steepest
descent images.

o [teration:
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perlorm an image warp of the current input image I using N(1W (. p). q).

determine the error between current best fit and current input image
Elr) = 1(N(W(x,p).q)) — Au(x) (D.1)
— compute the steepest descent parameter updates Ap and Aq from

(Ap.Aq) = H ' Y (SDi(x) - E(x)) (D.2)

HECE 1]
- compose the current and the updated warp

(NoW)(x,p,q) — (NoW){x,p.q) o (N oW)(z.p,q)(x, Ap, Aq) ™!
(D.3)
There is no closed form for this step. the apprommating solution is detailed
in appendix C.

Although not required, the optimal appearance parameters A can finally be deter-
mined using equation (3.5).

D.2 Steepest Descent Geometry

The above described algorithm requires computation of image gradients, Jacobians
as part of the steepest descent images and Hessian matrices. Their computation is
given below, as described in [3].

The Jacobians for pose warp N(r, q) on the template image has the form

UN. oW - rl-‘)j'\ - Z ON dx; z_)f\r Ay (D.4)
i iq = ()1 c)q ()(j, f)q ‘
where, using the warp formula C.4, we obtain
(N
;T-,.:U_”_b'”) (D.5)
(situilar for ¢;). and from the pose definition 3.3 follows
[:.).f',j " " # f -
C)_‘l = (-hf' L h-i'.':f' % R h;r\n‘) { ]-')()J

where b . is the x component of the pose base b (analogue for ;). The same applies
for the [(‘H}l?lrl“‘ shape warp W(r. p)

AN oIV oW’ — (oW dx; IV dy;

L =T =F b (D.7)
ip f)p . £ ()p hyy p

where. using the warp formula C1.4, we obtain

o’

(.J.{",‘

=(1l—a—>010) (D.8)



D.2. Steepest Descent Geometry [3

(sitnilar for ¢;). and from the shape definition 2.4 follows

Ly ;
: = (byi b oo by ) (D.9)
ip

where b, ; % the x component of the shape base b; (analogue for u; ).
The steepest descent images (Agure D.1 on page 41 shows an example of the steepest

descent hmages for a simplified face model with 4 pose and only | shape variation
modes) are computed by

ow M aw

Z Z '-_'1.':(};) g v-‘"j‘ij '-'JP

W A, (x) (D.10)
f)‘[)‘j i=1 LeEap

Lo #

SDy(x) = Yo

praject—out

where Ay ig the mean appearance image and the A; are the A appearance variation
modes. The last part of equation (D.10) projects the steepest descent images into
the subspace orthogonal to the appearance variation, thus avoiding a continuous
appearance recomputation for each iteration of the algorithim described in section
D.1. The steepest descent iimages for the pose warp NV relative to the pose parameters
q can be computed analogue to equation D, 10.

Using the steepest descent images, each element of the Hessian matrix is then given
by
Hjp= Y SDj(x) SD;(x) (D.11)

IesEn
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E. 3D Extension

E.1 Algorithm

We follow the algorithm structure suggested by [41]. The algorithm for imposing 3D
constraints on the 2D AAM requires the presence of a set of 3D bases describing the
2D model behavior equivalently. It iteratively computes updates to the 6 parameters

p, 4.5 P.6

where p and g govern pose and shape of the 2D model, p influences the equivalent
3D shape, P is a 2 % 3 projection matrix used to determine the projection of the 3D
shape on the 2D image plane, and o is the 2D translation vector accounting for the
correct alignment of the 2D-back-projected 3D shape with the 2D shape.

As outlined in section 4.2, the goal is the minimization of the term

" ) ) i =4 Yy ee. Op ) m ‘ 5
F(p.q.p.P.o)= K- || P(sy+ Zp,;f},-) + ( :)' (:‘ ) — N(sp + Zp,;b,;;q) II©
i=1 e % g o )

(E.1)

The algorithm intervenes in the 2D fitting process at equation D.2 by replacing it.

It therefore takes as input parameters the 2D Hessian matrix H and the 2D steepest
descent parameter updates before normalization,

(Apap. Agep) = Y (SDi(x) - E(x)) (E.2)

TEEn

and returns the constrained and normalized 2D parameter updates (Ap, Aq). One
iteration of the algorithin has the following structure:

e Compute the Jacobians used for steepest descent on the above term F for both
coordinates x and y, and each shape vertex 7,

. IF; GF; OF, @F; OF;
8Dps = | ST i3y, St 28 B (E.3)
p g dp OP o
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e Create the updated Hessian Hyp using the 2D Hessinn H as a submatrix as
outlined in the following section E.2 and comptte its mverse,

e Determine the updates to all G parameters,

o Update the internal parameters p — p+ Ap and o — o + Ao.

o [Update the internal projection matrix P. This matrix has 6 elements. but we
Lhave to take into consideration the orthonormality requirements by using the
update deseribed below;

e Return the updated and constrained 2D parameters p and q.

E.2 Steepest Descent Geometry

The Jacobians %’:—f.lp atd %’;L.Iq reflect the influence of a small change to the 2D warp
parameters on the 3D minimization term F. [41] suggests estimating these terms:
each parameter component is in turn set to a small value, while all others are set to
0. The warp update method described in section C.2 is then used to compute the

change of the current destination shape after applying this small parameter update.

The Jacobian 22 has the simple form

[4]=]
A F;
OFi; _ ( 1 0 ) (E.4)

Jo 0 1

for each 2D shape vertex 7. From equation 4.3 we see that

Jp; ' ;

where b; is the jth 3D shape base. We are left with the Jacobian of ' with respect
to the projection matrix, %ﬁ where

Pyl W ’) E.G
(./r T ( })

and the two rows of P are orthonormal.

To constrain the npdates of P to the allowed projection matrix structure, we use
the modified small-angle-optimization suggested in [34]. The update process is split
into four contributions representing matrix scale w and small angle updates 6,. 0,
f. along the three axes. When assuming small changes. we essentially have an
infinitesimal transformation of the projection matrix P of the form

P Pil+e) (E.7)

where T is the identity matrix and e an infinitesimal update. Since our transfor-
mation is supposed to be a rotation, we require A (I +e) to be an orthogonal
rotation matrix such that A" = A=, Since

AA ' = (I+e)(I-e)=F —e?~1 (E:8)
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we have A~ =1 —e. Moreover,
; i i I r o
AT=(I+e) =1"+e' =I+e (12.9)
md as a consequence e = e’ meaning that our infinitesimal update e has to be
an antisynmnmetric matrix

0 —0. 0

y
e = f. () f, (E.10)
6, 6, 0

The above conclusions lead to the following update to the projection matrix
L -0, 6,
Pe(w+Au)P| 6. 1 -8, (E.11)
-0, 6, 1
where the two rows of P are 1'(()t"rlmnm'umli/vf] before multiplication with the up-
dated scale (w4 Aw). The corresponding terms
oF, AF, OF, OF,
ow’ 00, 90, o0,

aF; oF, 0P e By s
o =] B W g (E-13)
G AP Ow Je Jv s

where § is the ith vertex of the current 3D shape §; this follows from equations E.6
and [.1. For each small angle update we use the derivative of the nupdated projection
matrix in equation E.11 with respect to each small angle update and obtain

are computed using

ey 0 0 ()

JF,

()? = BlE 0 =1 |& (E.14)

Pz 01 0

| 0 01

K, : :

Z)T = Plo 0 0 |s, (E.15)
v 10 0

- 0 —1 0

IF;

% = P[1 0 0|5 (E.16)

L 0 0 0

Now, we can compose the 3D Hessian using the 2D Hessian passed as a parameter,

‘ Hsypn 0 :
Hap = ( C‘,” ) L& ZL S T e (E.17)
2y =1
Finally we compute the updates to all 6 parameter vectors using
Ap Apa2p
Aq Aq2n N
Ap | = =Hg 0 Y (SDpi)" Flp.q.p.P.o) (E.18)
LP 0 2.y i=1
Ao 0

where AP consists of the 4 scale and small angle parameters as described above.
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F. KD-Trees
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Figure F.1: 2D points and their 2D KD-Tree

Several methods aim at structuring n-dimensional data sets such that efficient lookup
of nearest neighbors can be performed. Most of these methods nse trees in order to
exclude data not relevant for a given query as early as possible during the search.

For our stereo fitting, we have the following situation:
e Given: a dense 3D point cloud, typically containing around P=5000 elements.
noisy, ontliers;
e Query input: N 3D points (the shape vertices);

e Output needed: the nearest neighbor of each of the query points within the
given point cloud (we conld also use the mean of all neighbors within a given
radins);
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e Query frequency: a query of size N is performed per stereo fitting iteration:

ny, +ny, times during computation ol the Jacobian of the stereo surtace
(once for each swall change to the n, shape and n, pose parameters),

— once for the computation of the error function (distance between current
3D shape and current sterco point clond).

The data structure in question will be populated once for each new input frame
and does not need to offer any other functionality, neither adding nor deleting of
elements; no re-balancing is required after generation of the data structure,

As a consequence. we decided to employ a KD-Tree. Figure F.1 on page 49 shows
a 2D KD-Tree for the point set above. A KD-Tree is a space-partitioning data
structure for organizing points in a k-dimensional space. A KD-Tree uses only
splitting planes that are perpendicular to one of the coordinate system axes. In
addition, every node of a KD-Tree, from the root to the leaves, stores a point. As a
consequence, each splitting plane must go through one of the points in the KD-Tree.
Building a KD-Tree fromn the P 3D points is done in O(PlogP). The implementation
used in our application has eliminated recursion to achieve faster processing speed,

A KD-Tree is created respecting the following two conditions:

e At each level of the tree, selection of a subtree is done as a function of one
of the & dimensions. with each further level the dimension used for selection

alternates.

e At each step. the point selected to create the separating plane is the median
of the coordinates of all the points being fed into the KD-Tree.

Lookup is done in O(logP) in a balanced tree in the same way by cycling through
the dimensions and selecting on each level the next subtree as a result of comparing
the coordinates of the query and the node point on the current dimension. Range
queries use an Euclidian distance metric.

[ our implementation. KD-Tree creation and (approximate) nearest neighbour look-
up rely on the ANN library [22].
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G.1 Stereo Geometry

Stereo vision uses differences in viewpoint of two cameras looking at the same scene
to derive depth information on the objects visible.

Figure G.1: Point Grey’s Bumblebee stereo camera

In our system, we used a bumblebee stereo camera manufactured by Point Grey
Research [27] as shown in figure G.1. The camera consists of two Sony 1CX204 color
CCD cameras at a maximum resolution of 1024x768 working at 8-10Hz. Camera
baseline is 12cm, its lens focal length is 2mm resulting in a 100° horizontal field
of view. The camera system does not require in-field calibration due to a pre-
calibration for lens distortions and inter-camera misalignment. The manufacturer
provides a comprehensive stereo processing library optimized for fast undistortion,
image alignment, disparity computation and filtering which we have used in our
implementation.

In the following, we will provide a rough outline of the basic stereo camera geometry.

The disparity computation itself is done by matching features in the images obtained
from the left and the right camera. Typically, some edge detection is performed
using a Canny or Laplacian operator and the two images are aligned to reduce
overall distance between the detected image features. Lack of texture can cause the

matching process to fail,
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Figure (G.2: Stereo vision geometry

Given the internal camera parameters focal length f (which is identical for both
cameras) and baseline ¢ (the distance between the two cameras € and "), and
supposing coplanar retinal planes, we wish to obtain the distance z of a pixel A to
the camera plane. Figure G.2 illustrates the stereo camera geometry. The points
m = (u.v) and m" = (u',v") are the (virtual) projection points of the pixel M on
the retinal planes of the two cameras. We assume no vertical offset between the two

[ =

cameras, as a consequence v = v . The disparity associated with pixel A is
, e
d=u —u (G.1)

Using triangle similarities, we conclude that the distance z of the pixel M to the
camera center can be computed by

z=— (G.2)

After z is determined, the x and y coordinates of the pixel in the world veference
system can be caleulated using the projective camera equations
uz vz :
£r= f"sz (G,

where 1 and v are the pixel locations in the 2D image projection plane.

-
—

Sterco computation accuracy is difficult to quantity, since the depth computation
depends on the quality of the disparity value, and therefore on the accuracy of the
image alicmnent method.  Moreover, we caunot provide an absolute error value,
since the error depends on the distance of an object to the camera. For accuracy
evaluation. we therefore have to make the following two assumptions:

o 1 our application, we usually work with faces at an average distance ol I meter
to the camers. therefore we wish to evaluate depth aceuracy at that distance,
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G.2. Disparity Filtering

o The manufacturer of the disparity computation library claims to achieve an
average overall (matehing and calibration) error of less than 0.3 pixels [27].

Assuming a given distance = and using the above mentioned internal camera para-
meters and equation (G.2), we obtain a disparity d for a distance z of
_ Flitl 2
i = (G.4)

Supposing an overall error in depth computation of ¢ pixels. we obtain an erroncous
depth value = of

' fllt i
[+ ¢
Consequently, the corresponding depth error can be computed from
: FIIEL I ol
Az = llz—g|| = ||~ g G
I I=1= el (G.6)

Using typical numerical values for the internal camera parameters, f = 218 pixels
and [[t]| = 12em, and the disparity error of ¢ = 0.3 pixels as provided by the
manufacturer, we obtain the numerical value for the depth computation error of
Az = 1.13cm in a distance of z = 1m from the camera.

G.2 Disparity Filtering

By performing a sequence of filtering steps during disparity computation, we can
exclude depth values irrelevant for our task. Furthermore, we can select a region
of interest in the main 2D image based on the depth information obtained from
the stereo camera. In a first step, we discard all disparity and its corresponding
intensity image values based on a minimum and maximum disparity threshold. Ad-
ditionally, we discard pixels not possessing sufficient texture or contrast for reliable
disparity computation and we apply a morphological opening kernel to eliminate
small surfaces,
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