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Kurzfassung

Fiir das effiziente Programmieren von Servicerobotern wurde in den letzten
Jahren eine neue Technik vorgestellt, das Programmieren durch Vormachen
(PdV). Nach diesem neuen Konzept sollte ein Roboter in der Lage sein, die
Ausfithrung einer neuen Handlung in einer &hnlichen Weise zu erlernen, wie
es auch Menschen tun: Durch Beobachten einer Benutzervorfithrung und an-
schliessendes Herleiten einer abstrakten symbolischen Repréasentation dessen,
was getan wurde. Wenn ein Mensch in einer solch natiirlichen Weise mit ei-
nem Roboter kommunizieren kann, indem er Objekte manipuliert, Zeichen
gibt oder durch Sprache Anweisungen erteilt, dann 6ffnet das die Tiir zu
vollig neuen Anwendungsgebieten.

Die Ausfithrung einer Handlung beinhaltet iiblicherweise das Greifen oder
sonstige Manipulieren von Objekten. Deswegen wurde viel Forschung ueber
die Erkennung von menschlichen Handgriffen betrieben. Viele der Ansétze
konzentrieren sich auf einfache Aufgaben, wie Pick & Place, d.h. sie erken-
nen nur den Zeitpunkt eines Griffes, die behandelten Objekte und ihre Lage.
Andere beschrinken sich auf Einzelgrifferkennung. Bis jetzt wurden Syste-
me, die in der Lage sind, ganze Sequenzen von Gesten zu klassifizieren, nur
auf einem anderen Gebiet, mit unterschiedlichen Anforderungen, entworfen:
die Erkennung von kommunikativen Gesten, wie Fingerdeuten, symbolische
Kommandos oder Zeichensprachen. Sie kénnen nicht ohne weiteres auf die
Erkennung von Griffsequenzen angewandt werden, denn im Gegenteil zu
kommunikativen Gesten, konnen Griffe meist nicht einfach auf Grund der
Handform erkannt werden.

Hier wird ein System zur Erkennung von kontinuierlich ausgefiihrten Sequen-
zen von Griffbewegungen vorgestellt. Durch Verwendung von Hidden Markov
Models erreicht es sowohl die Segmentierung der Benutzervorfithrung, d.h.
die Erkennung der Zeitpunkte, an denen ein Objekt gegriffen und wieder
losgelassen wird, als auch die Klassifizierung der benutzten Griffe in einem
Schritt, mit einem soliden, statistisch fundierten Ansatz. Keine bedeutenden
Einschriankungen des Handlungsflusses wihrend der Vorfiihrung, der Anzahl
Benutzer, der betrachteten Objekte, oder der Arbeitsumgebung werden vor-
genommen.

Eine Kombination von Eingabemodalitdten wird verwendet, um die Benut-
zerhandlung zu beobachten. Sowohl ein Cyberglove Datenhandschuh, als
auch ein Satz kapazitiver Drucksensoren wird eingesetzt, um genaue Daten



iiber die Lage der Finger und ihre Kontaktpunkte mit gegriffenen Objekten
zu erhalten. Die Drucksensoren erwiesen sich als besonders niitzlich zur Ver-
besserung der Segmentierungsqualitét, da sie erlauben, den genauen Start-
und Endzeitpunkt eines Griffes zu ermitteln, selbst wenn keine klare greifende
Bewegung mit den Fingern ausgefiihrt wird.

Das System wurde fiir die Erkennung der 14 Griffe aus Kamakuras Klassi-
fikationstabelle entwickelt. Diese Taxonomie beriicksichtigt den Zweck eines
Griffs, die Form der Hand sowie seine Kontaktpunkte mit gegriffenen Objek-
ten, und ist generell genug, um in den meisten Handhabungsaufgaben An-
wendung zu finden. Eine grosse Auswahl an Objekten verschiedener Gréssen
und Formen, die in Alltagssituationen benutzt werden, wird beriicksichtigt.
Fiir jeden Grifftyp in der Tabelle wurde ein Hidden Markov Modell mit fla-
cher Topologie erzeugt. Es wurde auch ein spezielles “Garbage” -Modell en-
wickelt, um unbeabsichtigte, stérende Handbewegungen herauszufiltern. Die
Hidden Markov Model Parameter wurden offline auf einem Trainingssatz von
112 Vorfithrungen angepasst, die von 4 Benutzern geliefert wurden. Dieselben
Benutzer lieferten auch einen unabhéngigen Testsatz, der fiir die Auswertung
der Erkennungsrate benutzt wurde.

Die Ergebnisse zeigen, dass eine robuste Klassifizierung méglich ist, selbst
fiir mehrere Benutzer, und mit Beriicksichtigung einer grossen Vielfalt von
Objekten. Das System kann sich an verrauschte Sensordaten anpassen, an
grossere Unterschiede in der Handgeometrie der Benutzer, an unterschiedlich
oder ungenau ausgefiihrte Griffe, und an verschiedene Ausfiihrungsgeschwin-
digkeiten. Techniken, die bisher nur fiir die Erkennung von kommunikativen
Gesten angewandt wurden, konnten erfolgreich auf die Erkennung von Grif-
fen angepasst werden, und eine Erkennungsrate von 92,2% fiir ein Einzel-
benutzersystem und 90,9% fiir ein Mehrbenutzersystem wurde erreicht. Das
vorliegende System konzentriert sich nur auf die Art der Griffe und ihren
Ausfithrungszeitpunkt. Es erkennt nicht die Objekte, die gegriffen werden,
oder ihre Lage, liefert also nur begrenztes Wissen iiber die ausgefiihrte Hand-
lung. Es eignet sich aber gut als Baustein fiir ein grosseres, allgemeineres PdV
System.



Summary

For the efficient programming of personal or service robots, a new technique,
Programming by Demonstration (PbD), has been proposed in recent years.
Following this concept, a robot should be able to learn to execute a task
much in the same way a human does: by simply observing a user demon-
strate the task and inferring from this demonstration a high level, symbolic
description of what has been done. If a human can communicate with a ro-
bot in such a natural way, using his hands to manipulate objects, making
signs or using speech to give instructions, numerous new applications of robot
systems become possible.

Executing a task mostly involves grasping or otherwise manipulating ob-
jects. That's why lots of research has been made on recognizing human hand
grasps. Many of the existing approaches focus only on simple operations like
Pick and Place, meaning they recognize only the time point of a grasp, the
objects involved, and their placement. Others are limited to the classifica-
tion of single hand gestures. Until now, systems designed to classify whole
sequences of gestures are applied to a domain with different requirements: the
recognition of communicative gestures, such as pointing motions, symbols, or
sign languages. They cannot be directly applied to the recognition of grasp
sequences because grasps, unlike communicative gestures, are generally not
expressive enough to be classified based only on the hand shape.

Here, a system to recognize continuously executed sequences of grasping ge-
stures is presented. Using Hidden Markov Models, it both segments the user’s
demonstration, detecting the moments in time where objects are grasped or
released, and classifies the performed grasps in a single step, with a stati-
stically sound approach. No significant restrictions are made on the flow of
execution, the number of users, the objects involved, or the task environment.
A combination of input modalities serves to capture the user demonstration.
Both a Cyberglove and an array of pressure sensitive sensors are used to
gain precise information about the shape of the hand and its contact points
with grasped objects. The tactile sensors were found to be particularly useful
in improving the quality of segmentation, as the starting and end points of
grasps could be recognized with high accuracy even in the absence of clear
grasping finger motion.

Recognition is performed for the 14 different grasps from Kamakura's classi-
fication table. The taxonomy focuses on the purpose of a grasp as well as the



hand shape and its contact points with objects and remains general enough
to be used for most manipulation tasks. A large selection of objects of dif-
ferent shapes and sizes used in everyday life is considered. For every grasp
class, a flat topology Hidden Markov Model was created. Also, a special gar-
bage model with ergodic topology was designed to filter out unintentional
non-gesture hand movement. The Hidden Markov Model parameters were
trained offline on the sample demonstrations from 4 different users. Each
user delivered 28 recordings for a total of 112 training demonstrations. The
recognition accuracy was measured on an independent test set of equal size.

The achieved results show that a good classification can be obtained, even
for multiple users and considering a great variety of objects. The designed
system is able to robustly adapt to noisy sensor data, big changes in user
hand geometry, variability in the way grasps are performed, or their imprecise
execution, different grasping speeds, etc. The techniques used so far only
for communicative gesture recognition could be succesfully adapted to the
recognition of grasping gestures and an accuracy of up to 92.2% for a single
user system, and 90.9% for a multiple user system could be achieved. The
presented system focuses only on grasps and the time of their execution. It
cannot recognize the grasped objects or track their positions, and therefore
only provides limited knowledge on the performed task. But it is a useful
building block that can easily be used in a more complete Programming by
Demonstration system.
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Abstract

A Hidden Markov Model based system is presented for the recognition of con-
tinuously, naturally executed grasp sequences, within the Programming by
Demonstration framework. Existing systems concentrate on the recognition
of communicative gestures, signs, or are limited to single gesture recognition.
This system achieves high recognition rates for whole sequences of grasps in
better than real time, while imposing as little restrictions as possible on the
work environment, the types of objects grasped, user comfort and smoothness
of execution, and with only little training.

To observe the grasping hand, Virtex Technology’s Cyberglove is used in
combination with an array of pressure sensitive sensors fixed on the finger
and palm surfaces. The glove delivers finger joint angle measurements while
the tactile sensors provide the system with information on the contact points
of the hand with grasped objects.

Classification is made according to Kamakura’s grasp taxonomy. It separates
grasps into 14 different classes, according to their purpose, the hand shape
and its contact points with grasped objects, and allows to distinguish all
the various grasps used by humans in everyday life. Every grasp class is
assigned a distinct HMM, the parameters of which are adjusted by Baum-
Welch reestimation on a set of 112 training demonstrations. Recognition is
then performed using the Viterbi algorithm on an equally large, independent
set of test demonstrations.

The results show that a good classification can be obtained, even for multi-
ple users and considering a great variety of objects. The designed system is
able to robustly adapt to noisy sensor data, changes in user hand geometry,
variability in the way grasps are performed, or their imprecise execution, dif-
ferent grasping speeds, etc. Through the efficient use of tactile information, a
correct recognition of the beginning and end points of grasps in the sequence
is made, even in the presence of noise or involuntary hand movement. An
accuracy of up to 92.2% for a single user system, and 90.9% for a multiple
user system could be achieved.
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Chapter 1

Introduction

1.1 Programming by Demonstration

For the efficient programming of personal or service robots, a new technique,
Programming by Demonstration (PbD), has been proposed in recent years.
As opposed to textual programming or the recording and playback of user de-
monstrations, this technique would allow robots to operate in unstructured,
unknown environments or communicate and interact with humans, without
the need for time consuming and painstaking reprogramming by an expert,
every time the task description changes.

Following this concept, a robot should be able to learn to execute a task much
in the same way a human does: by simply observing a user demonstrate the
task and inferring from this demonstration a high level, symbolic description
of what has been done.

When executing complex tasks or operating in unstructured environments,
simply repeating exactly the moves done by the demonstrator will not yield
success, because the robot does not possess the same dexterity, the same
manipulative degrees of freedom, because the conditions are not initially the
same or change over time. The robot must rely on sensory information to
understand its surroundings and adapt to changing conditions. Therefore,
it must possess a series of skills, much the same way humans do, such as
grasping an object, placing it on another object, avoiding obstacles, etc, and
rely on these skills to execute the task [29]. Understanding a demonstration
sequence would then, for the robot, mean recognizing what primitive skills
were used at what time to achieve success.



1.2 Applications

One main advantage of the PbD technique is the simplicity and speed with
which a robot system could be reprogrammed for a new task, without the
need for a programming expert. Robots are already widely used for appli-
cations in a well known and controlled environment, such as welding, spray
painting in factories, etc. But other areas such as the assembly of objects
with possibly movable parts or cables, the disassembly of old engines or
equipment, require the robot to possess a great degree of skill, such that con-
ventional programming techniques either fail or result in unacceptably long
development times.

This is where the PbD technique could be effectively used. If a factory robot,
for example, could be taught to assemble a simple device from spare parts,
just by showing it the required steps, a general purpose robot could be built
and used for a number of different tasks without the need for a specialized
design or special programming.

The classical bottleneck in human-robot communication has always been the
interface. The need to use a keyboard or mouse and the difficulty of giving
complicated commands through these has always been one of the reasons
limiting the spread of robotic systems in everyday human environments. If
a human could communicate with a robot in a natural way, such as signs,
gestures and speech, as he would with other humans, it would open the door
to numerous new applications.

One of them could be a service robot operating in a kitchen, a typically
unpredictable, constantly changing environment. Ideally, the robot would
have to recognize speech or gesture commands from the user, and be able to
observe and mimic the handling of a multitude of quite different objects in
its workspace.

Manipulator arms, such as required in this scenario, are especially hard to
program. One of the main problems is to decide how to grasp an object,
since the required grasp depends on many factors, such as the size, shape and
weight of the object, its rigidity and its intended use. It is extremely difficult
to automatically decide on the optimal grasp while taking into account all
these factors. In the PbD framework, the robot profits from the knowledge of
the human demonstrator: It simply observes which grasp was used for a given
task and uses either the same one or a grasp with similar properties, according
to its manipulator’s capabilities. The idea is that the demonstrator can take

2



into account many more factors than the robot, with its limited knowledge,
ever could.

Lots of research has therefore been made on recognizing human hand grasps,
and the points in the demonstration sequence where they occur [24, 11, 19,
20]. Many of the approaches recognize only simple operations like Pick and
Place, meaning they focus only on the time point of a grasp and on the ac-
tions performed with the grasped object [25]. Only few, like [19, 8] actually
analyze the type of grasp used. In fact, most of the work on analyzing the
hand shape is done for a domain with slightly different requirements: the
recognition of communicative gestures, such as pointing motions, symbols,
or sign languages [40]. Some of the techniques developed here offer the ad-
vantages of considering the dynamic information included in the gesture and
allowing the recognition of continuous sequences of gestures. But they can-
not be applied directly to the recognition of grasp sequences because unlike
communicative gestures, which are generally expressive enough to be clas-
sified based only on the hand shape, manipulative gestures, grasps, can be
quite different while exhibiting very similar shapes. In this thesis, a techni-
que to exploit dynamic hand movement data and achieve segmentation and
classification for continuous sequences of grasps is presented.

1.3 Approach

The field of gesture recognition presents many parallels to speech and hand-
writing recognition. In each of these domains, the main task is to recognize
configurations, patterns that evolve with time. The main difference lies in
the type of input and the way it is treated before it is fed to the pattern
recognizer. Whereas the field of gesture recognition is still relatively new and
many approaches still focus on recognizing static hand poses, the techniques
developed for speech recognition are already advanced, allowing to handle
continuously spoken sentences, coarticulation effects, speaker variability, a
relatively large vocabulary and much more. The most successful speech reco-
gnition systems nowadays are statistical recognizers based on Hidden Markov
Models (HMMs). This is because HMMs are particularly well suited for reco-
gnizing long sequences of multiple patterns without clear boundaries between
conceptually distinct segments and offer a clear Bayesian approach for doing
50.



Here, a Hidden Markov Model based system is presented for the recognition
of continuously, naturally executed grasp sequences, within the framework
of Programming by Demonstration. While systems capable of continuous
recognition have already been developed for communicative gestures, signs,
this has not yet been done for the domain of manipulative gestures, grasps,
for which the requirements are different. The system aims to impose as little
restrictions as possible on the work environment, the types of objects grasped,
user comfort and smoothness of execution, to keep training time and effort
low and to stay as close as possible to real-time recognition.

To capture the user demonstration, Virtex Technology’s Cyberglove is used.
This data glove provides information on the shape of the hand by measuring
its finger joint angles. To provide the system also with information on the
contact points of the hand with grasped objects, an array of tactile sensors
has been fixed on the inner side of the glove. These sensors cover parts of
the hand where detection of contact is essential for distinguishing between
grasps that are hard to recognize by hand shape alone.

The chosen grasp classification table has been introduced by Kamakura in
[17]. In addition to the purpose with which an object was grasped, it con-
siders both the hand shape and the contact points with objects to separate
the grasps used by humans in everyday life into 14 different classes. The aim
is to make a classification that remains general enough to be used for most
manipulation tasks. Every grasp class is assigned a distinct HMM and trai-
ned on user demonstrations using the Baum-Welch Algorithm. The trained
HMMs are then used together with the Viterbi algorithm for recognition of
independent test demonstration sets.

The achieved results show that a good classification can be obtained, even
for multiple users and considering a great variety of objects. The designed
system is able to robustly adapt to noisy sensor data, big changes in user
hand geometry, variability in the way grasps are performed, or their impre-
cise execution, different grasping speeds, etc. The tactile sensors were found
to play a key role in detecting the beginning and end points of a grasp in the
presence of involuntary hand movement. While not all the objectives con-
cerning freedom of execution, user comfort, and a natural task environment
could be met, the techniques used so far only in communicative gesture re-
cognition could be succesfully adapted to the recognition of grasping moves.

4



An accuracy of up to 92.2% for a single user system, and 90.9% for a multiple
user system could be achieved. The presented system focuses only on grasps
and the time of their execution, not on the recognition of objects and object
positions also needed for a true understanding of the task. But it can very
well serve as a module in a more general Programming by Demonstration
system.

1.4 Outline

Following this introduction, chapter 2 first describes previous work done in
the domain of hand gesture recognition. In Chapter 3, the main problems
to be tackled in grasp recognition and reasons for using an HMM approach
are presented. Chapter 4 explains the design of the grasp recognition system
while Chapter 5 shows the experiments performed and analyzes the obtained
results. Finally, Chapter 6 gives a summary and an outlook to future research.



Chapter 2

State of the art in hand gesture
recognition

Lots of work has been done on recognizing the human hand. This is becau-
se after speech, the hands are perhaps the most expressive tools people use
to communicate amongst themselves. Depending on the configuration of its
fingers, its movement in space, its speed or orientation, the hand can con-
vey a great variety of information quickly and efficiently. Hand gestures are
therefore a very convenient tool for human-computer interaction. A variety
of recognition approaches have been proposed. They can be distinguished
according to the type of devices used to capture the hand data, the type of
gestures considered (static or dynamic, isolated or continuous, communica-
tive or manipulative) and the algorithms used for their recognition. Here,
for simplicity, we will first split the approaches according to the observation
devices into vision-based and glove-based approaches, and later focus on the
recognition algorithms used.

2.1 Vision-based systems

Many researchers use vision-based techniques to recognize human hand ge-
stures [35, 39, 19, 25, 7, 47]. The reason why they are so popular is that
tracking the hand with a CCD camera, for example, frees the user from cum-
bersome interface devices such as gloves or pens, which are often attached
by cables to the recognition hardware or otherwise impair the naturalness
of the interaction. The ideal is to allow the user to communicate with the
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computer just like with another human being, without any special prepa-
ration, interface device or environmental setup. They require that the hand
first be spotted in the scene and then tracked. Depending on the application,
its position, orientation and the configuration of its fingers, or other simpler
features like edges, contours, etc are extracted for further processing.

One of the most cited contributions in this domain is the recognition scheme
by Kang and Ikeuchi [19], which proposed the recognition of grasp gestures
based on the contact points of the hand with an object. To detect these
points, range and intensity images of the manipulating hand, obtained from
a light-stripe rangefinder and a CCD camera, are taken and the position of
the finger and palm segments is tracked by fitting the data to a hand model.
Model based tracking is also made for the object and the fingers and palm
are deemed to be in contact with the object if they are within a 5mm range of
distance from it. The system relies on three basic assumptions, though: that
the hand itself does not move during tracking, that the grasp gesture starts
from an initial configuration and that there is no significant interphalangeal
occlusion. It detects the positions of the fingers at the beginning of the gesture
and continuously adapts the model in subsequent frames.

The approach uses the concept of virtual fingers, first introduced by Iberall et
al. [15] to calculate a grasp cohesive index and the type of grasp is determined
based on this index and by checking if the palm was involved or not. The
grasp taxonomy itself is based on the number and spatial distribution of the
effective contact points and distinguishes first between grasps with or without
use of the palm, and then subdivides further according to the number of
fingers, etc...

The classification algorithm is purely analytical and is based on the static
part of the grasp, i.e. the shape of the hand at the moment when the fingers
stabilize around the object. The correct calculation of virtual finger values
is crucial for classification. Thus, high accuracy is required in tracking the
finger segments. Moreover, the time point of the static grasp phase has to
be determined with a separate algorithm. The detection of this time point
is part of the segmentation problem, where a continuous user demonstration
is separated into grasping phases, free movement, manipulation phases, etc.
The authors themselves have proposed a segmentation technique in [20], using
information from a data glove and tracker.

A technique to achieve segmentation using only visual information was pro-
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posed by Kuniyoshi et al. in [25]. The authors note that, using vision, it is
difficult to detect the typically small movements involved in grasping and
releasing reliably, making a segmentation based solely on positional informa-
tion impossible. Therefore, besides features such as hand and object position,
others like silhouette differences, coplanar edges of objects, etc are also used,
and the segmentation is made based on qualitative changes in the scene. For
this, a world model consisting of the table top and the locations of the hand
and other objects is being constantly updated.

The approach focuses on Pick and Place operations and does not analyze the
shape of the hand when grasping the object. It uses snapshots of the sce-
ne taken at specific segmentation points to classify the observed motion into
actions such as “approach”, “fine motion”, “depart”, etc. Only the manipula-
tion of simple building blocks was considered and a simple table construction
operation using these blocks could be recognized in 3min. 50 sec.

Both approaches have in common that the workspace is relatively small and
the camera is placed near the hand allowing more precise recognition of the
hand action without significant outside disturbance or background noise. In
a natural, noisy environment, or when the camera is placed further away
from the user, finding the hand itself in the image, or special points on it can
become a problem. Even in a controlled environment, the feature extraction
algorithms can be quite complicated. To alleviate this, a few techniques have
been proposed. One of them is the use of colored gloves.

In [7], Davis and Shah achieve the tracking of hand fingertips by using speci-
ally marked gloves. The system is designed to recognize 7 hand gestures used
as commands for a computer system: Left, Right, Up, Down, Grab, Rotate,
and Stop. The fingertip locations were extracted from the images by histo-
gram segmentation. The hand is required to be in a fixed start position at
the beginning of the gesture and the finger movement to be executed slowly
until the end position. The start and end points of the finger tip trajectories
are then analyzed to extract a set of fingertip vectors, which are compared
to reference vectors for classification. A finite state machine is used to model
four qualitatively distinct gestural phases: Initial phase, motion to gesture
phase, gesture recognition phase and motion to initial phase.

Other researchers attempt to locate the hand in the camera image without
such special gloves, using for example skin color based detection and tracking,
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which has proven quite effective in recent years. Though an extraction of hand
features using only color information is not sufficient for detailed analysis
of finger configurations, it can serve as a starting point for more detailed
algorithms. In [47], Wilson and Bobick present a system to recognize gestures
executed by users in a common workplace environment without any kind of
special interface device. Using a wide baseline stereo camera system collecting
views from the top of the scene, and flesh tracking, the 3D position of the
head and hands can be obtained at about 20Hz. The reason why a color space
based analysis is applicable, in spite of illumination changes and differing skin
tones, is that the human skin possesses a characteristic footprint that can
be distinguished in the image. While skin color systems could theoretically
allow to recognize the gestures of multiple users in the scene, this issue raises
a number of other questions, such as occlusions and assignment of gestures
to users, that are not too easily resolved.

2.2 Glove based systems

Compared to input devices such as a mouse or pen, instrumented gloves that
measure the finger joint angles of the hand directly allow for input of mo-
re complicated commands quickly because of the much greater number of
degrees of freedom. They also allow a much more natural interaction than
the keyboard. Compared to vision-based techniques, data gloves offer the
advantage that the information about the hand shape is measured directly
and is not affected by its position or orientation. Furthermore, additional
sensors can be attached on the glove, such as force or tactile sensors that can
be useful for detecting grasps of real objects, or force feedback devices for
reporting back grasps of virtual objects. Gloves are often used when recogni-
zing manipulative gestures, because they do not suffer from the problem of
occlusions that occur when grasping objects or passing behind them, while
delivering relatively precise data. For communicative gestures, this advanta-
ge disappears, as one can in general expect a relatively occlusion-free view
from the camera on the hand, and so they are often considered unnecessarily
obstructive.

Still, to avoid the problems caused by changes in hand orientation, illumina-
tion, or to avoid the use of complex or computationally expensive tracking

algorithms, some researchers also use data gloves for communicative gestures.
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In [30], Nam and Wohn present a system to recognize command like gestures
for interaction with virtual reality systems. They use a VPL Dataglove to
measure the hand shape and a Polhemus magnetic tracker [34] to determine
its position and orientation. In this work, the main focus point was on the
recognition of movement primes, shapes drawn by the hand when moving,
while its actual configuration remained fixed. The 3D positional data of the
tracker is first fitted to a 2D plane before gestures, such as “put down”, “zig
zag’ or “ball” are recognized.

Weissmann and Salomon [16], on the other hand, focus on the recognition of
the hand posture itself. They use a Virtex Technologies Inc. Cyberglove to
recognize 20 static gestures such as “index finger”, “gun”, etc. The classifica-
tion is done by neural networks trained with the data of 5 different users. One
of the problems of glove-based approaches is that the gloves fit differently on
users with different hand geometry and can thus produce somewhat different
sensor outputs for a same gesture. The results obtained here show that a
good recognition can be achieved with gloves even for multiple users if a suf-
ficiently robust algorithm is used. But the approach concentrates on isolated
static gestures and cannot recognize continuously executed sequences.

The most useful application fields of data gloves, however, are in recognition
of manipulative gestures or grasps [32, 23, 44, 20, 8]. In [23], Kawasaki et
al. show an application using a data glove equipped with force feedback
devices. It is intended to recognize Pick-and-Place operations of a human
demonstrator effectuated in a virtual environment. The aim is automatic
programming of a multi-fingered robot. The system is designed to recognize
Pick-and-Place operations consisting of six segments: move, approach, grasp,
translate, place and release. 5 parameters, based on the object and hand
velocities, finger positions, speeds and fingertip virtual forces are calculated
and their profiles used for the segmentation.

Similarly, Voyles and Khosla [44] use data from a Cyberglove and Polhemus
tracker to segment Peg-in-Hole tasks. However, since their system is meant for
real-world manipulation demonstrations, the gloves are equipped with special
force sensing fingertips. Instead of speed or force profiles, an agent-based
approach is used. Recognition agents for “touch” gestures, “hand motion”,
“force”, and the “volume sweep rate” , a measure defined by Kang and Ikeuchi
in [20] to detect breakpoints, run in parallel. Their output is then used by
interpretation agents for segmentation of the demonstration into primitives
such as straight-line motion, guarded moves, gripping, etc.
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Again, these approaches recognize the time point at which objects are grasped
or ungrasped in the sequence, but they stop short of analyzing the type of
grasp used, a valuable piece of information when teaching a robot to grasp
objects of different sizes, shapes and functions.

A system to achieve both task segmentation and grasp classification is pre-
sented by Kang and Ikeuchi in [20]. The authors show a combined approach,
using a glove-based system for segmentation before vision-based classification
of the used grasp is made. They distinguish 3 phases in a grasp: The pregrasp,
grasp and manipulation phases. To find the segmentation breakpoints bet-
ween grasp phases and other hand movement, a measure, the volume sweep
rate, the product of the fingertip polygon area and the hand speed is used.
The input devices are a Cyberglove and a Polhemus tracker. Minima in the
temporal profiles of the hand speed and volume sweep rate serve to detect
the segmentation bounds. Once this is achieved, the classification into grasps
is done vision-based according to the technique presented in [19]. Thus, this
approach makes the complete recognition in two steps.

A similar path is followed by Dillmann et al. in 8, 12]. A Programming by
Demonstration (PbD) System is designed, fusing both the information from
a ceiling mounted stereo vision system and from a VPL data glove and Pol-
hemus combination. The camera is used to track the objects and the hand,
locate fingertips and touch points, while the data glove provides detailed
information on the hand posture. As for Kang and Ikeuchi [20], the segmen-
tation is done using only the data from the glove. After the breakpoints have
been set, the segment identified as grasping segment can be analyzed by a
hierarchical neural net which classifies the grasp type according to Cutkosky’s
taxonomy [5].

In [50], a method for fusing the glove data with that of force sensors is pre-
sented. For manipulation tasks, the recognition of contact between the hand
and object is useful to effectively determine grasp and ungrasp breakpoints.
Therefore, Force Sensing Resist (FSR) sensors are attached on the glove’s
fingertips. The obtained force profiles are used in combination with the fin-
ger pose and velocity profiles, and a search with respect to minima is done
to find the breakpoints. The authors have shown that tactile sensors can well
be used to achieve a robust segmentation. The system offers the advantage,
that even in the event of heavy occlusion or failure of the camera system,
a task segmentation and subsequent grasp classification can still be made,
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based only on the glove data. The vision system simply increases the overall
accuracy of the recognition.

2.3 Recognition techniques

The techniques employed for recognition of hand gestures differ greatly ac-
cording to the requirements of the task and the types of gestures conside-
red. While some researchers concentrate solely on the classification of static
gestures, others go a step further to assure naturalness of execution and in-
corporate dynamic properties in their recognition routines. In tasks where
a single user command or sign must be recognized, and the beginning and
end of the gesture are approximately known, isolated gesture recognition is
employed. For other complex tasks, like the recognition of sign language for
example, advanced techniques that recognize continuous sequences of signs
are required.

2.3.1 Static gesture recognition

Since only a feature vector representing the hand pose at a specific point
in time must be classified, analytical approaches, EM-classifiers and neural
network techniques can be applied.

The recognition system by Kang and Ikeuchi [19] uses an analytical method.
Information about the contact points of the hand with the object, together
with the derived grasp cohesive index was used to classify grasps into a
taxonomy similar to that of Cutkosky [5]. Depending on palm contact, the
grasp is first classified as volar or non-volar grasp. Then, considering the
value of the grasp cohesive index, the number of fingertip contact points
and the degree of thumb abduction, a progressive matching to more detailed
subclasses is made.

With an EM-based technique, Wu and Huang, in [49] designed a classifi-
cation system for 14 command gestures. The authors used preprocessed 2D
hand images and both mathematical features extracted by PCA and physical
features. Their approach is based on the combination of Multiple Discrimi-
nant Analysis with Expectation Maximization techniques to include great
amounts of unlabeled data in the training of their classifier. They so alle-
viate a problem common in many statistical classification algorithms: the
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chronic lack of training data. Their system has shown good results in reco-
gnizing the static hand gestures regardless of the orientation of the hand with
respect to the camera.

A powerful tool for static pattern recognition is the neural network classifier.
It has been used with success by Weissmann and Salomon [16] for the reco-
gnition of sign gestures such as “index finger”, “gun”, etc. and by Friedrich
et al. [13] for grasp recognition. The latter work was used by Dillmann et al.
in [8] for their PbD system. The network is able to classify grasps according
to Cutkosky's taxonomy, taking into account only the finger flexion values
delivered by a data glove. The authors note, however, that for certain simi-
lar grasps, such as the disc-shaped, spheroid and circular precision grasps,
a distinction based only on static joint angle data is difficult, and propose
the use of visual information to gain features about the shape of the grasped
object, that could aid in the classification.

Neural network techniques are popular because they form their internal struc-
ture automatically, can classify raw sensor data and are robust in the presence
of noise or incompleteness. They however have serious drawbacks such as the
need for thousands of labeled examples, lengthy training times and the need
to repeat training from the start when a new gesture is added ([46]).

2.3.2 Dynamic gesture recognition

Lately, more and more research is concentrating on recognizing dynamic ge-
stures. These comprise not only gestures done by moving the hand in space,
but also signs and grasps for which the static configuration of fingers is the
main distinctive characteristic. This is because the movement of the fingers
before reaching the static phase of the sign or grasp also contains useful in-
formation that can be used for classification. The techniques used range from
Finite State Machines (7] over Support Vector Machines [51] to Hidden Mar-
kov Models [36, 38, 10, 4, 27, 26]. As opposed to static gesture recognition,
the temporal pattern of a gesture is analyzed by considering features from
multiple sequential time frames in the demonstration.

In [51], Zoellner et al. show a system for the recognition of dynamic grasps
that occur during fine manipulations. Dynamic grasps are defined as ope-
rations in which the finger joints are changed while an object is grasped. 3
types are recognized: Screwing, twisting and insertion motions. For obser-
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ving the user demonstration, a camera, a Polhemus device and a data glove
with mounted force sensors are used. If a dynamic grasp occurs, it is classi-
fied using a Support Vector Machine (SVM), a statistical tool that recognizes
patterns by classifying their feature vectors in a high order dimensional space
using a small set of support vectors learned in through training on an ex-
ample database. The advantage of the SVM over neural network techniques,
for example, is that it requires less training data and shows good generali-
zation performance. However, the length of a sequence that can be classified
by a SVM is limited and a prior separation into segments is necessary. This
was done here by analyzing finger position, speed and force profiles, and
identifying the grasping phases.

A tool that has gained tremendous popularity in recent times in the domain
of gesture analysis is the Hidden Markov Model. Its success in speech and
handwriting recognition has prompted researchers to apply it also to gesture
recognition. HMMs are well adapted to temporal pattern recognition because
they allow for dynamic time warping (DTW) of the input sequence. They
also have elegant and efficient algorithms for learning and recognition, such
as the Baum-Welch algorithm and the Viterbi search algorithm. Also, they
allow for recognition of continuous sequences of patterns, without the need
for prior segmentation.

Bobick and Wilson [48], present a system for adaptive recognition of a simple
“up”-“down” gesture from whole body color images of a demonstrator. They
use a simple 3-state Markov Model comprising the states “rest”, “down” and
“up”. Their work focuses less on the recognition procedure but more on the
training of the Markov Model parameters and the selection of features in
the images. While they do not use a traditional HMM approach, they have
shown that with an online training approach, the problem arising when train
and test conditions differ can be overcome.

Ehrenmann et al. [10] built a system based on HMMs to recognize dynamic
gestures for directing a mobile robot. Using skin color segmentation, the hand
is tracked and its trajectory filtered. A Hidden Markov Model is designed
for each of 5 hand movement gestures to be recognized, and trained with
10 distinct examples. However, in recognition, a prior segmentation of the
demonstration was made to find the start and end points of the gesture, and
meaningless motion could not be efficiently filtered out.
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Lee and Kim, in [27] designed a HMM-based system to recognize continuous-
ly executed sequences of gestures without prior detection of breakpoints. The
segmentation is done automatically by the HMM recognizer and a set of 10
gestures used in browsing Power Point slides are classified. They point out
the difficulty for HMM recognizers to represent non-gesture patterns and
propose the use of a specially trained garbage model to threshold the output
of the other gesture models. Their technique allows to correctly identify and
segment out transitional non-gesture moves that occur between two conse-
cutively executed gestures. Thus the command gestures could be spotted in
a continuous sequence with an accuracy of 93.14%.

Starner and Pentland [40] deserve special mention for their research on re-
cognition of the American sign language (ASL). The ASL is a good example
of a complicated gesture recognition task, if the naturalness of execution is
not to be limited. Both the hand posture and its movement have to be con-
sidered, sequences have to be properly segmented without requiring specific
pauses between gestures, coarticulation effects, variability in user hand sha-
pes and in the execution of a gesture have to be handled, a large vocabulary
has to be considered. Starner and Pentland’s system is designed to recognize
40 different signs: six personal pronouns, nine verbs, twenty nouns, and five
adjectives. They were chosen so as to provide coherent sentences when used
by a random generator.

Visual features of the hands are used for input. The user demonstrations are
recorded by color video cameras mounted on the desk or on a cap worn by the
user. The data from 494 demonstrations was recorded and both the Baum-
Welch algorithm for training and the Viterbi search algorithm for testing
were used. The authors report a word accuracy of 92% for the desk-mounted
system and of 98% for the head-mounted version. The approach has shown
that HMM-based techniques can handle a variety of problems occurring in
the recognition of continuous hand gestures, even with a large vocabulary.

Until now, HMMs have been applied to the field of communicative gestu-
res, but the achieved results encourage their application also in the domain
of manipulative gestures, for example to recognize grasping movements of
a user in a programming by demonstration system. As opposed to the now
existing systems, that separate a manipulation task into segments and subse-
quently analyze the gesture in the grasping segment, a system could then be
built that both spots and classifies the grasps in the manipulation sequence

16



Chapter 3

The problem of analyzing
manipulation sequences

In this section, the main problem points to be overcome when recognizing
continuously executed manipulative gestures are analyzed. The main objecti-
ves of our grasp recognition system are presented and differences to previous
research are shown. For a correct recognition of grasps, the following questi-
ons have to be answered:

1. How do we capture the data used for recognition, i.e. what devices do
we use to observe the hand of the demonstrator.

2. What kind of grasps do we wish to recognize and what kind of appli-
cation are they useful for.

3. What algorithms and techniques do we use to find and identify the
grasps in the manipulation sequence.

3.1 Observing human hand motions

When using video cameras to observe the human hand manipulate objects,
a basic problem arises: The objects themselves occlude the hand. For mea-
ningful manipulation applications, one can expect the environment to contain
many different objects the user wishes to interact with. So when reaching for
an object or moving it to another location, the hand can pass behind other
objects and become temporarily invisible, depending on the location of the
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camera. Furthermore, the grasped object itself can become an obstacle pre-
venting the camera to detect features or details on the hand, such as fingertips
or contours.

When Pick-and-Place operations of simple objects are considered, it may
be enough to track the location of the hand and determine which object
was grasped or released at what time. When repeating the task, the robot
would use a standard grasping technique when the time comes to pick up an
object. In applications that require the grasping of more complicated objects
of different shapes and sizes, however, the grasp used by the robot has to
be adapted to fit the attributes of the object. Also the purpose of the grasp
plays an important role. For example the grasp we use for picking up a pen is
different from the one we use to write with it or to point with it. A program
that would automatically take into consideration the size, shape and weight of
the object, its rigidity, the points at which it should be grasped (for example
in the case of a coffee cup to prevent spilling or burning of the fingers) and
the purpose with which it was grasped would be a welcome solution, but it
is not realizable at the current state of knowledge.

The solution proposed by the Programming by Demonstration technique is
to gain as much information as possible about the type of grasp used by the
demonstrator and to use the same kind of grasp or at least a grasp with
similar properties during repetition. Here the knowledge the human demon-
strator has about the task is used to reduce the planning effort of the robot.
Therefore, it is necessary to analyze the configuration of the demonstrator’s
fingers during the grasp, the contact points with the object or the forces
exerted.

This is where the occlusion of hand parts becomes a problem. If too little
visual features can be extracted by the camera, a correct classification of the
grasp type may be impossible. Of course the careful placement of the camera,
or the use of multiple cameras can alleviate this problem, but not eliminate
it completely.

This brings up another drawback of the vision-based systems: The visual
features obtained can be quite different, depending on the location of the
camera. Starner and Pentland, in [41] already report a notable difference in
recognition accuracy for their subset of the American sign language, depen-
ding on whether the camera is desktop-based or mounted on a cap worn by
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the user. The position of the hands and their size in the image also plays
a role and some effort must be spent on finding the hand and tracking it
(47, 49, 10, 27].

Moreover, the extracted visual features are generally not invariant to the
orientation of the hand with respect to the camera. This is why many systems
require a fixed position, orientation or distance of the hand to the camera
[19, 7] or at least assume that the hands will always be seen under a relatively
constant angle [47, 10, 27, 41].

Lighting conditions and changing backgrounds can also affect the extraction
of visual features, which is why some systems require a fixed background or
the use of colored gloves 25, 7).

The data glove based techniques overcome all these problems since the in-
formation about the finger joint angles is read directly by a physical device
from the hands. Occlusions are not possible, the position and orientation of
the hand, illumination and background play no role. If a magnetic tracker is
used, the hand position and orientation can also easily be determined. These
systems do have their drawbacks, though. The magnetic tracker is generally
not very precise and can be confused by metallic objects. This is why Dill-
mann et al. (8] have proposed to use it in conjunction with a camera system,
which delivers quite accurate position information, but cannot cope with oc-
clusion. Then, both systems work together to cancel out their respective weak
points.

The data glove, on the other hand can impair the mobility and sensitivity
of the user’s hands and render fine manipulations difficult. Also, the cables
used to attach the glove to the computer system can be heavy and cum-
bersome, or collide with other objects in the manipulation environment. As
a whole, gloves tend to reduce the naturalness of execution, which is why
many researchers use vision systems, despite the restrictions required, or the
complicated algorithms to overcome them.

One more point to be considered in the recognition of manipulative gestu-
res is the precision reached by vision systems in detecting finger positions.
Kuniyoshi et al. [25] note that it is difficult to detect hand-object contact
points using vision only. It can be very difficult to detect if 2 or 3 fingers are
involved in a grasp, if the palm is in contact with the object, etc. To do this,
the fingertips have to be detected and tracked with high precision, a precise
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object model used and fitted even under possible occlusion and geometric
calculations made to detect the contact points.

The problem is more severe if the hand is not at a fixed position or distance
from the camera. When the hand is close to the camera, details may well be
extracted, but if it has to be tracked and segmented out of a bigger scene,
image resolution problems can also diminish the accuracy. While detection
of contact points can be used in determining the grasp type [19], detection
of contact itself is very useful for recognizing when a grasp starts and when
it stops. This is why in segmenting grasp sequences, some researchers resort
to tactile sensor information [50, 44, 51, 14]. With tactile sensors attached to
the inner side of the hand, the information about contact points and even the
force used in grasping can be obtained simply and directly, with the expense,
of course, of adding more cables and reducing further the dexterity of the
user and the naturalness of the interaction.

3.2 Choosing task independent grasps

In their review of hand recognition techniques [33], Pavlovic et al. propose
a classification of hand/arm movements as follows (see figure 3.1): They are
first divided into gestures and unintentional movement. The gestures them-
selves can have two modalities: communicative or manipulative. Communi-
cative gestures have an inherent communicational purpose and are usually
accompanied by speech in a natural environment. They are further subdivi-
ded into acts and symbols and those are further classified into mimetic or
deictic acts, and referential or modalizing symbols. Manipulative gestures,
on the other hand, are used to act on objects in an environment.

Most of the work in human-computer interaction focuses on symbolic gestures
since they can often be represented by static hand postures. The problem is
that there are a great number of possible symbolic gestures. In ASL for
example, there are literally thousands. Also in most applications, the set of
gestures to be recognized, and their associated meaning, is determined ad
hoc [1, 2, 30, 49, 48, 10, 27]. No general set of gestures that could be used
in many applications is defined. This is due to the communicative nature of
the interaction. The gestures we use when controlling a Power Point slide
presentation [27] differ a lot from those used for musical conducting [48].

22



HandJ'Arnl Movements

Gestures Unintentional Movements

Manipulative Communicative

Acts Symbols

Mimetic Deiclic Relerential Modallzing

Figure 3.1: A general classification tree for hand/arm movements.

But for teaching of manipulation tasks to robots, the requirements differ
somewhat. Not the precise shape of the gesture or its temporal evolution,
but the purpose of the gesture is most important. When holding up a small
coin for example, the position of the middle, ring and index fingers may be
completely unimportant. The main point is that the object is very small and
needs to be carefully manipulated. That is why a grasp is chosen, where only
the thumb and index finger are in contact with it. This is even more evident,
when one considers that the majority of robot hands are different from human
ones, have a different number of fingers, etc. Even today’s humanoid hands
do not reach the level of sensitivity or dexterity of their human counterparts.
Nevertheless, for some tasks, they may suffice: A primitive but well designed
robot gripper could hold a closed book or a block with almost the same
stability as a human hand could.

So the objective here should be to make a more general distinction into grasp
classes that would reflect the type of grasped object and its use. Of course, in
everyday life, we use a variety of purely playful grasps also. For example when
holding up a pen and letting it revolve around our fingers. Considering this,
the amount and variability of grasps to be classified seems huge. However, if
we consider only grasps that are purposely used for manipulation tasks, they
can be separated into a reasonable number of classes. For the pen example,
we use a grasp type to pick it up from a table, one to write with it, one to
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point with it, with very little variation.

Thus, a relatively concise grasp taxonomy can be decided on. The defined
grasp classes should be general enough to span through many different tasks.
As the objects to be manipulated and their purpose vary greatly, choosing
a small set of task specific or arbitrary grasps would limit the use of the
system.

Most of the research on manipulation sequences nowadays focuses on simple
operations like Pick-and-Place, where the type of grasp is not considered at
all. These systems are limited to experimental setups or very limited tasks
with simple objects [25, 23, 44]. A notable exception is the system developed
by Friedrich [13] which performs a neural net classification according to the
taxonomy presented by Cutkosky in [5].

According to this taxonomy, which is based on previous work done by Napier
[31], grasps are first divided into power grasps and precision grasps. Power
grasps are those where the palm of the hand is involved in the grasp to
allow for maximum stability, whereas in precision grasps, only the fingers
are in contact with the object to allow for greater mobility. The grasps are
then further subdivided into cylindrical and spherical grasps, according to
the shape of the grasped object. Power grasps are then further classified
according to the object size, the position of the thumb, and precision grasps
according to the number of fingers involved. A total of 16 grasps is considered.

While the taxonomy has the merit of separating the grasps considering the
shape and purpose of the objects, it has a few limitations. First of all, it is li-
mited to manufacturing tasks, and to circular and prismatic grips. A number
of grasps used in everyday life, such as when holding a spoon or a plate, or
when taking a book out of a shelf are not included. Secondly, the separation
done below power and precision grasps sometimes requires special a priori
knowledge of the task requirements, such as additional information on the
object itself, for classification. For example the disc and spheroid precision
grips do not differ either in the hand shape or in the contact points with the
object. Sometimes, the classification appears too detailed. The separation
between thumb -4 finger or -3 finger prismatic precision grips, for example,
seems irrelevant when considering the purpose of the grasp. Since many ma-
nipulator arms do not have the same amount of fingers as the human hand,
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the grasp is not directly transmittable to the robot architecture and reco-
gnizing the number of fingers involved without identifying a new meaning to
the grasp does not bear any advantage.

Another grasp taxonomy was presented by Kang and Ikeuchi in [19]. It is ba-
sed on the effective contact points of the hand with the object. By matching
the contact points to virtual fingers and calculating a grasp cohesive index,
it also allows to distinguish grasps into a more abstract classification table,
roughly similar to that of Cutkosky. This table first distinguishes between
grasps with or without palm contact an then further subdivides according
to the number of contact points and their spatial distribution. In [21], the
authors show how to map these grasps to robot grasps. As opposed to Cut-
kosky’s table, no a priori information about the object is required. But it
suffers the same drawbacks concerning the application domain and for pre-
cision (non-volar) grasps, focuses more on the number of contact points and
their configuration than on the grasp purpose.

For the recognition of grasping gestures occurring in everyday manipulation,
we would like a classification of grasps that covers as many applications
and task domains as possible. To remain as concise as possible and to be
transmittable to many robot manipulator architectures, it should abstract
as much as possible from the exact hand shape and number of contact points
involved and focus on the utility of the grasp relative to the objects and their
use.

3.3 Analyzing continuous sequences

Just as important as the chosen grasp types are the algorithms used to re-
cognize them. To allow a natural interaction with the robot system, user
demonstrations of various lengths containing multiple grasping and ungra-
sping actions should be recognized. Some of the research on hand gestures
concentrates on isolated gesture recognition [47, 16, 49]. For the recognition
of continuous sequences, two main problems have to be solved:

1. To find a meaningful temporal partition of the sequence into gestures
and non-gesture movement, and

2. to determine the class membership of the contained gestures.
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The solution of the second problem presupposes that the parts of the demon-
stration sequence that can be assigned to one gesture have been identified.
A gesture, be it manipulative or communicative is comprised of three pha-
ses [28]. They are described as preparation, nucleus (peak or stroke), and
retraction. The preparation phase consists of a preparatory movement that
sets the hand in motion from some resting position. The nucleus of a gesture
has some definite form and enhanced dynamic qualities. Finally, the hand
either returns to the rest position or repositions for a new gesture phase.
Grasps are dynamic gestures as well, consisting of a pregrasp, a grasp and
a release phase. For static gesture recognition, only one of the frames of the
demonstration sequence belonging to the nucleus (grasp phase) is considered.
Dynamic gesture recognition techniques make use of many frames, including
those contained in the preparation (pregrasp) phase. To make the classifica-
tion, the representative feature vectors are mapped to a class based on their
minimum distance to class representatives. These are either given ad hoc
or determined through some learning algorithm, like averaging, K-means, or
Hidden Markov Models. Thus, if the boundaries for a grasp are not well set,
feature vectors from another grasp or from non-gesture movement may be
wrongfully used.

So the solution of the temporal partitioning problem has a big influence on the
outcome of the classification. Some of the proposed methods make restrictions
such as requiring the user to make a pause between gestures [10] or to start or
stop with the hand in a specific position [7]. Often, the segmentation is made
using heuristics such as performing minimum search or applying thresholds
on hand, finger speed or contact force profiles [20, 23, 8, 51].

In some cases arising in natural manipulation, such as transiting from one
grasp to another without releasing the object, these approaches can not be
applied. For example, when picking up a small hammer from the table top, we
may take it using only our fingertips, then wrap our hand around it to hold it
tightly, without releasing it. In such a case, a method that uses contact force
profiles would have difficulties to segment the action into distinct grasps.

Since many approaches rely on the result of the segmentation to do the sub-
sequent classification of gestures, they will fail to recognize this kind of action
correctly. For methods that do static gesture analysis within the grasp seg-
ment (20, 8], using the start point or end point would result in classifying only
one of the two grasps performed. Taking an intermediate value or the mean
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of the hand configurations included in the segment would yield unpredictable
results. Even approaches that attempt dynamic grasp analysis like [7, 51, 10]
would fail to recognize two grasps and try to fit the information from both
grasps to one class. To overcome this problem, we would like an algorithm
that performs both segmentation and classification simultaneously.

Hidden Markov Models are quite well adapted to the task. Their states can
easily be associated with the temporal gesture phases and their topology can
be adjusted to suit the complexity of the task. The recognition procedure uses
dynamic time warping (DTW) and finds both the optimum classes and their
optimum boundaries to fit a set of feature vectors from the demonstration
sequence. They also allow the use of a task grammar to reduce the amount
of possible sequences that the user may execute, constraining the recognition
problem and increasing recognition accuracy. So far, HMMs have been used
for communicative gesture recognition with notable success [47, 36, 30, 10,
27, 40].

3.4 Goals

We would like to apply the same advanced techniques that have been used so
far for communicative gestures to the recognition of manipulative gestures,
grasps, as well. While a few systems exist that analyze and classify grasping
hand shapes, they are limited to single gesture recognition. A unified ap-
proach that spots grasping phases in a demonstration sequence and classifies
them in one step has not yet been proposed. The system should be designed
to recognize and classify grasps occurring in everyday manipulation tasks, wi-
thout significant restrictions on the flow of execution, the users, the objects
involved, or the workspace. It should meet the following requirements:

- Allow continuous, natural movement of the hands. The user should
not be required to start or stop in a fixed position, to make specific
pauses for segmentation, or to hold the hand at a specific angle when
grasping objects. He should be able to move at natural speeds, without
having to wait for slow recognition hardware. This is directly influenced
by the type of hardware used for observation of the hand movement
and interaction, the type of features extracted and above all, by the
algorithm employed to segment the demonstration.
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- Retain task independence. The system should be able to recognize
grasps used in all kinds of situations of everyday life, with objects of
different sizes, shapes and uses. A careful selection of grasps that are
general enough to be used across tasks, yet specific enough to convey
enough information for a successful later repetition by the robot system
is necessary. The chosen grasp taxonomy should focus on the type of
object grasped and its intended use and the grasp classes should be
distinguishable with the chosen observation devices and input features.

- Allow multiple users. If the system is limited to one user (the one
providing the training samples for example), its application is greatly
limited. Demonstrations from different users should be recognized with
only little or no extra effort for adapting the system parameters to the
new conditions. This implies a robust algorithm that can cope with
variations in the user hand geometry or small differences in the way
the grasps are executed and that can be adjusted at a later time with
examples provided by new users.

- Allow a natural manipulation environment. In manipulation tasks, the
user interacts with many objects that can become obstacles for the
recognition. The system should function in a relatively noisy, cluttered
workspace, impose no specific setup like a fixed background, clean table
top or small number of objects. This again is directly related to the type
of input features used.

- Stay as close as possible to real-time recognition. If the system is to
remain user friendly, the result of the recognition should be available
after a short period of time, preferably during or immediately at the
end of the demonstration, so errors could be found and if need be, the
demonstration repeated without significant loss of time.
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Chapter 4

The recognition of continuous
grasp sequences using Hidden

Markov Models

Here, an HMM-based system is presented for the recognition of continuously,
naturally executed sequences of grasps within the framework of Program-
ming by Demonstration. In order to allow a natural working environment
and avoid the problems common in vision-based systems, such as occlusion,
hand tracking, dependency of the visual features on hand orientation, etc,
a glove-based approach is chosen. Furthermore, to gain information about
the hand-object contact points useful for task segmentation, grasp detection
and analysis, an array of tactile sensors is attached to the glove’s surface. A
task independent grasp classification table is chosen that allows to work with
all kinds of objects of different shapes and sizes, a Hidden Markov Model
is built and trained for each of the 14 grasps of the table and recognition
is performed using the Viterbi algorithm, taking advantage of its Dynamic
Time Warping capabilities and robustness.

4.1 Hidden Markov Model Recognition

Just like speech, gesture recognition is about analyzing temporal sequences
of patterns. The domains are closely related and share a number of common
problems. In speech we may sometimes stutter or swallow word parts; when
grasping we can break off a started grasp, or rearrange the fingers to a better,
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more stable position. Just as in speaking, we sometimes produce sounds, like
“err” “hum”, etc that are not words, when manipulating objects, our hand
may also make unwanted moves in between actions. Problems arising from
different speaking speeds or styles, made more acute when multiple users are
to be considered, also find their equivalent in the gesture domain.

Of course, compared to speech, in gesture recognition the main complexity of
the problem lies in a different area. While speech recognizers have to battle
with a huge vocabulary containing, depending on their application domain,
tens of thousands of words, complicated concatenation rules, grammatical
or not, and with the immense search space complexity this induces, gesture
recognizers (with the exception of sign language recognizers) usually have a
much smaller set of patterns to recognize. The main problem here is the in-
put dimensionality as our hands evolve in a complex three dimensional space
with plenty of objects they may interact with and where relative orientation
and position play a big role. Concepts such as pointing directions, trajecto-
ries, distances to other objects, may be used to describe, on a higher level,
what has been done. It is hard to determine in advance what information is
generally needed, what features should be extracted from the manipulation
scene to understand it.

Still, there are enough common points to justify the application of techniques
that have been developed and refined over the years in speech recognition
to the field of grasp recognition. Hidden Markov Models have established
themselves as the tool of choice in speech recognition for some years already as
they allowed a great leap in recognition of continuous, natural language. This
is why, in the following, a brief overview is given of Hidden Markov Models
and their training and evaluation techniques. A more detailed description
can be found in [37, 45, 9].

4.1.1 Description

Hidden Markov Models are based on the assumption that the process being
modeled can be described as a first order Markov process. This is a process
in which the system possesses a set of discrete states between which it can be
expected to switch from time to time. The system’s parameters at any given
time are described by the state in which it currently resides. So, when the
system changes in time, its parameters might change and a different state
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might be more appropriate to describe it. The process of changing states itself
is stochastic. The Markovian property states that for a first order Markov
process, the probabilities of transitions between states depend only on the
current state. For a second order Markov process, the transitions between
states depend only on the last two states, etc.

The difference between a Hidden Markov Model and a first order Markov
process, is that in the HMM framework, the current state of the system is
not observable. Instead, at each time step the system outputs a symbol, ge-
nerated stochastically by whichever (unobservable) state in which the system
currently resides. This means there is a stochastic process determining the
state in which the system is in, and another stochastic process, characteri-
stic of the current state, determining which observable symbol the system
ouputs. Such a system is called doubly stochastic.

A Hidden Markov Model with n states can be completely described by the
following quantities:

- the initial probablilities, 7: a vector of dimension n where m; is the
probability of starting in state ¢

- the transition probabilities, A: an n X n matrix where a;; is the proba-
bility of jumping from state ¢ to state j

- output probabilities, B: HMMs can be either discrete or continuous.
The output of discrete HMMs is one of m possible symbols. In this
case, B is an n X m matrix and b;; describes the probability of state
J outputting symbol k. In the continuous case, the observable symbol
output by the system is a continuous random vector. B now descri-
bes parameters for a set of probability density functions (typically a
mixture of Gaussians) which give probabilities for different observable
vectors.

Thus, an HMM can be fully described by A = (, A, B).

4.1.2 Topology

To use HMMs as a recognition tool, several steps must be taken. First, a to-
pology should be chosen for each HMM. In general, knowledge of the physical
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properties of the system modeled can help to select an appropriate topology.
For example, imagine an HMM to model the weather for the days over the
year, specifically if it is sunny or rainy. In summer, there should be some
more sunny days than in spring, and there should be a lot of rainy days in
autumn. The HMM to model this behavior may consist of four sates (one for
each season), and every state would have a quite different output probability
function.

Figure 4.1: Example Hidden Markov Model topologies. Left, a 4-state HMM
with flat topology. Right, a 4-state HMM with ergodic topology.

Of course, in practice we rarely consider such simple systems. Sometimes it
is not easy to make a clear distinction of the states and their transitions.
That’s why in general, one starts with a topology which is suspected to
be more complicated (i.e. it has more states and more paths between the
states) than the system to be modeled. While training the model, it is then
possible to prune the topology by removing states and links which are seldom
used. Attempts to build the HMM topology automatically based on training
evidence by gradually increasing the number of states have been made in [3].

4.1.3 Feature vectors

Another question to be answered when designing an HMM system is the
choice of what to use as the observation vector. Consider the example of the
weather again. The observation vector is the sky condition on a day. In our
simplified case, the HMM would be a discrete system. The observations are
simply one of two choices: sunny or rainy. The state (the season of the year)
remains hidden because there is no directly observable quantity which imme-
diately specifies it. We can only deduce the state by analyzing the pattern of
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an observation sequence in time. For example, we could observe the number
of rainy and sunny days over a given period, and then compare this to our
knowledge from previous years to try to discern what season we are in today.
This step is exactly what the HMM recognition system will eventually do:
determine the most likely state by analyzing the observation sequence. Of
course, the final result is not guaranteed to be accurate, for we cannot be
sure the system switched, for example, from spring to summer at exactly the
right day.

The choice of observation vectors when implementing real systems is affected
by issues such as available sensors, desired invariances (e.g. invariance to hand
rotation, user independence, etc.), and the amount of available training data.

4.1.4 Training

The next task to accomplish is training the system, using example data to
learn appropriate transition and output probabilities. The goal is to take an
observation sequence known to have come from a specific model and change
this model’s parameter set A such that the probability that the given model
produced the observation sequence is maximized. In general, the Baum-Welch
algorithm is used to accomplish this task. This algorithm is an iterative re-
estimation routine, guaranteed to find a local maximum of the probability.
While the probability surface is likely to be quite complex, experience has
shown that the Baum-Welch algorithm can quickly and effectively arrive at
adequate models.

4.1.5 Recognition

Finally, once models have been trained for all of the patterns to be identi-
fied (i.e. words in a speech recognition system, grasps in a grasp recognition
system), the Viterbi algorithm is used to perform recognition. The Viterbi
algorithm is based on dynamic programming techniques and bears close re-
semblance to dynamic time warping. The task of recognition in the HMM
framework is to take a given observation sequence and determine which of
the HMMs was most likely to have emitted it.

The procedure works by maintaining a lattice structure of probabilities. Each
column in the lattice, d;, has n nodes, each of which represents the probability
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of being in a given state. There are as many columns in the lattice as there
are observations in the sequence. The lattice gets filled recursively, starting
with the first observation. The initial nodes are given a probability of :

5'1 - ﬂgb,‘(ol)
Then, nodes at time ¢ are filled in with:
8; = maz;[5; " ay;]b; (Or)

The lattice gets filled in until the last observation, at which point the no-
de with the maximum final probability is chosen, and the sequence can be
recovered by backtracking through the lattice.

Of course, the described procedure is for isolated recognition only. To re-
cognize sequences containing many patterns, a few adjustments have to be
made. Instead of just one simple HMM, a composite HMM is constructed
by taking the models of all the patterns (words, grasps) that could occur in
the sequence and allowing transitions from the end state of one model to the
starting states of all the others. If there is knowledge on what combinations
of patterns are allowed, for example in form of a task grammar, these tran-
sitions can also be weighted. Then, the composite HMM is used to recognize
the entire sequence.

4.2 Grasp taxonomy

Now let us turn our attention to the main object of the recognition: The
grasps themselves. As explained in the previous chapter, the types of grasps
we wish to recognize greatly influence the buildup of our system. To stay
relatively task-independent and allow for grasping of all kinds of objects,
the taxonomy presented by Kamakura in [17] has been adopted (although
shorter and older, an English version can be found in [18]. It aims to divide
all grasps used by humans in everyday life manipulations into a small set
of representative classes, based on the purpose of the grasp, the shape of
the hand, and the contact surfaces of the fingers or palm with the grasped
objects.
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It distinguishes 14 types of grasps divided into 4 main categories: 5 power
grasps, 4 mid-power-precision grasps, 4 precision grasps, and one thumbless
grasp. See Table 4.1.

Table 4.1: Grasp Taxonomy by Kamakura

Category Class Notation
Power Grips Power Grip-Standard Type PoS
Power Grip-Hook Type PoH

Power Grip-Index Extension Type Pol

Power Grip-Extension Type PoE

Power Grip-Distal Type PoD

Mid-Power- Lateral Grip Lat
Precision Grips Tripod Grip-Standard Type Tpd
Tripod Grip-Variation I TVI

Tripod Grip-Variation II TVII

Precision Grips Parallel Mild Flexion Grip PMF
Circular Mild Flexion Grip CMF

Tip Grip Tip

Parallel Extension Grip PE

Thumbless Grips Adduction Grip Add

As one can see, the initial separation into power grasps and precision grasps
that has been made by Napier [31] and adopted by Cutkosky [5] and Kang
[22] is also made here. This reflects the most basic distinction humans make
when grasping an object. If the object is heavy, if great forces are to be
exerted on it during manipulation, or if the focus is to keep it as stable as
possible in the hand, a power grasp is chosen, and the palm of the hand is
used to increase the contact surface with the object. This however limits the
mobility of the object which is kept firm in the hand and all movement comes
essentially out of the wrist.

If the focus is to be put more on fine manipulation a precision grasp is chosen.
This occurs when picking up small objects like coins or needles, when taking
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objects from difficult to grasp positions, such as picking up a spoon from a
table or taking a book out of a shelf. Precision grasps are also used if fast and
precise moves have to be executed with objects, such as when unscrewing a
bottle cap. Only the fingers are in contact with the object, often only the
fingertips.

Between these two main categories of power and precision grasps, an inter-
mediate category is distinguished whose focus lies somewhere between power
and dexterity. For the grasps in this category, the sides of the fingers are
used instead of the palm, to better secure the object which is grasped by the
fingertips. Here, we find the tripod (pen-) grip and the lateral pinch grip,
also distinguished by Cutkosky and Kang. Such a grip is useful for example
when turning a key in a lock, as it is too small to be held firmly using the
palm, and the fingertips alone are not strong enough to make it turn.

In the last category, we find just one grip which is very often used for holding
pens (or cigarettes). It differs from all the others in that the thumb is not
used to hold the object.

In the following, a short explanation of the grasps in Kamakura’s taxonomy
is given, by stressing their differences with respect to their purpose and the
object shape.

1. The Power Grips:

The Power Grip Standard Type (PoS). It is one of the most stable grips
and is commonly used. The fingers are well wrapped around the object
and almost all the inside of the hand is in contact with it. It offers
good stability in all directions. It is used when holding a hammer, an
umbrella, a frying pan, etc.

The Power Grip Hook Type (PoH). It differs from the PoS in that
the hand is somewhat more open, the stress being put on countering
pulling forces from the direction of the fingers. It is used when pulling
on a lever, carrying a suitcase, etc.

The Power Grip Index Extension Type (Pol). In this power grip, the
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Figure 4.2: The Power Grip Standard Type (PoS)

index finger is extended and touches the extremity of the object. It is
used when great forces are expected to act in one direction on the tip
of the object and the finger serves as extra stabilizing support. It is
used when picking with a fork, cutting with a knife, etc.

The Power Grip Extension Type (PoE). This grip is used when the
object has to be held stably, firmly, but is too flat to allow the fingers

37



1 ‘ '_'..

Figure 4.3: The Power Grip Hook Type (PoH)

to wrap around it completely. The edge of the object rests in the palm of
the hand and the fingers are bent as much as possible to exert pressure.
The PoE is used when carrying a plate, securing a large bowl on a table,
ete.

The Power Grip Distal Type (PoD). This is an exception in the power
grasp category, in that the palm is not used for grasping. This occurs
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Figure 4.4: The Power Grip Index Extension Type (Pol)

when the object is small compared to the hand and can be fully wrap-
ped in by the fingers alone. It is also used for big objects whose contact
surface (gripper, handle) is small and can help put the object better
into the main axis of the arm. It is used for toothpicks, nail clippers,
scissors, etc.

2. The Mid-Power-Precision Grips:
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Figure 4.5: The Power Grip Extension Type (PoE)

The Lateral Grip (Lat). This grip is used for fine manipulations when
the object or the task requires a greater degree of stability than could
be achieved with the fingertips alone. The side of the index finger is
used to increase the contact surface. This grip is similar to some forms
of the PoD, but is much looser and well adapted to flat object surfaces.
It is used for keys, at it puts them well into the rotational axis of the
wrist, for handing over credit cards, etc.
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Figure 4.6: The Power Grip Distal Type (PoD)

The Tripod Grip Standard Type (Tpd). In this grip, the thumb, index
and middle finger are used to make dexterous manipulations with the
tip of a generally cylindrical tool. It allows for great mobility. The
object is basically held between the tips of the thumb and index, and
pressed by them against the side of the middle finger for more stability.
Often, the posterior extremity of the tool is in contact with the side of
the hand also. It is used when writing with a pen, holding lipstick, etc
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Figure 4.7: The Lateral Grip (Lat)

The Tripod Grip Variation I (TVI). This is a slightly altered version
of the standard tripod grip. The distinction into a separate class is ju-
stified by considering the purpose of the grasp. In the standard tripod
grip the tool tip is held to perform precise manipulations in the exten-
sion of the thumb and index fingers. In this variation, the tool tip is
perpendicular to the orientation of the thumb, and the tool is pressed
on the side of the index. This allows for greater mobility through flexi-
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Figure 4.8: The Tripod Grip (Tpd)

on of the index finger or rotation of the wrist. It is used when holding
spoons, mixing liquids with a pipe, etc.

The Tripod Grip Variation II (TVII). Yet another tripod grip. Compa-
red to the variation I, the middle finger tip is used and even the ring
finger is involved, and both are more extended. This is because the
emphasis is put more on precise control of the long tool’s tip than on
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Figure 4.9: The Tripod Grip Variation I (TVI)

mobility. It is used for handling brushes or chopsticks.

3. The Precision Grips:

The Parallel Mild Flexion Grip (PMF). This is a basic grip we use
when picking up objects or holding them lightly. Only the finger tips
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Figure 4.10: The Tripod Grip Variation II (TVII)

are involved to allow for very fine movement. The tips of the fingers
in contact with the object form a roughly straight line opposed to the
thumb, as dictated by the object’s shape. It is used for all kinds of
objects, pens, cups, tubes, etc.

The Circular Mild Flexion Grip (CMF). It is basically the same as the
PMF, except that the finger tips form a rather circular shape. It is
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Figure 4.11: The Parallel Mild Flexion Grip (PMF)

often used when a better form closure is needed, as when opening a lid
or unscrewing a cap, even if the object itself is not really round.

The Tip Grip (Tip). In this grip, only the very tips of the thumb and
index fingers are in contact with the object. This is to manipulate
very small objects that could hardly be touched by more fingers si-
multaneously, and to perform very fine manipulations. It is used when
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Figure 4.12: The Circular Mild Flexion Grip (CMF)

holding needles, coins, pins, etc.

The Parallel Extension Grip (PE). The PE grip is used for flat objects
to keep them relatively stable while avoiding to touch one side, either
so it remains visible, or because it is intended to be put in contact
with other objects. The fingers are in a line opposed to the thumb, but
compared to the CMF grip, they are kept extended to present more
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Figure 4.13: The Tip Grip (Tip)

support surface for the object. It is applied when using a handkerchief,
showing game cards, etc.

4. The Thumbless Grips:

The Adduction Grip (Add). This is the only grip where the thumb is
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Figure 4.14: The Parallel Extension Grip (PE)

not used. It offers very little stability and is used simply for relaxed
holding of the object, for example a pen or a cigarette.

Figure 4.15: The Adduction Grip (Add)

As mentioned before, the taxonomy can be used to classify all grips that
are used by humans in everyday manipulation. It offers an analysis of the
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finger positions and the contact points to be expected in every grasp class,
which is useful for selecting features for the recognition algorithm. However
the separation into grasp classes itself is not done by putting the focus on the
number of fingers involved or the shape of the hand, but according to general
object and manipulation requirements. This will be of great help for making
the mapping from human to robot grasps when manipulator configurations
differ.

4.3 Input features

Let us now concentrate on the features used to classify the grasp types. The
type of input features chosen greatly affects the performance of the recogni-
zer. They in turn depend on the model we use to represent the hand. Two
dimensional models, which are often used in vision systems, are suited to re-
cognize communicative gestures, as these are very expressive and are meant
to be recognized (by other humans) through shape or movement of the hand
alone. They require the extraction of visual features from the image, such as
edges, contours, 2D finger positions or relative distances. Since the object is
communication, the sender generally orientates his hands towards the obser-
ver and shapes them in a way, such that the message is easily understandable,
resulting in unambiguous 2D features. These models are not well suited to
recognize the much less expressive manipulative gestures, though, as these
same assumptions generally do not hold. Of course, one could require from
the demonstrator that, when showing grasps to the robot, he does so in a
“communicative style”, i.e. that he orientates his hands in a certain way,
and uses slow, demonstrative, easy to understand moves. His gestures would
then have both manipulative and communicative character. But this would
require the user to learn the “proper” way to execute a grasp and distance
us from our goal of allowing natural execution.

3D models, on the other hand are well applicable to both communicative and
manipulative tasks. Their drawback is that they are computationally more
expensive when used with vision systems, as they require the extraction of
precise positional data, geometric calculations, fitting, etc.

For these reasons, a 3D model of the hand is used in combination with a data

glove, bypassing the problems of tracking the hand, extracting and fitting the
features. Of course, the glove has its disadvantages, as it reduces the dexterity
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of the operator, but for our system, the benefits outweigh the drawbacks.

4.3.1 Data glove

The very popular Cyberglove by Virtual Technologies Inc. [42, 43] is used.
This glove is light weight, made of soft, flexible but robust fabric, and rela-
tively non-obstructive (Figure 4.16).

Figure 4.16: The Virtex Technologies Inc. Cyberglove.

The 18-sensor version of the glove is used. It has open fingertips and an
array of bend sensors on its back to measure the flexion of the fingers. It is
connected by a 3m cable to its instrumentation box which delivers the joint
angle values through a serial interface at a rate of 38400 baud.

The Cyberglove is usually used in conjunction with a Polhemus Fastrak ma-
gnetic tracker which locates the position of the hand and its rotation in a
world coordinate frame. However, since as long as the hand configuration
doesn’t change, a grasp is the same regardless of its orientation or the place
where it occurs, the information from the tracker is not used in recognition.
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The glove can be calibrated to fit the hand geometry of many users. Every
sensor value can be tuned and adjusted separately. For this system however,
only a very simple calibration was made. The user is asked to make two
distinct gestures:

1. The hand is held out open and flat, the fingers and thumb are on the
same plane, joined and extended.

2. The thumb and index finger touch at the tips, describing approximately
a circle. The rest of the fingers are joined and extended (Figure 4.17).

Figure 4.17: Calibrating the Cyberglove.

The joint angle values for these gestures are recorded and an automatic
calibration for all the sensors is made based on this information. Of course,
this simple calibration can not account for all the variations in the user’s
hand geometry. However, more precision is not required, as the goal is not
to gain an exact representation of the actual hand posture, but to classify
it into a grasp type, and the various object sizes or unintentional differences
in the used grasping style account for more variation than the calibration
ErTors.
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4.3.2 Hand model

A simple skeleton model of the hand is used, the parameters being the values
returned by the Cyberglove. A total of 16 parameter values are used. These
are: 15 values for the finger joint angles (4 for flexion of the thumb and its
abduction, 2 for flexion of each finger, and 3 for relative finger abduction
angles), and 1 value for the arching of the palm.
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Medial Phalanges
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Thumb Distal
Phalanx

Thumb
Interphalangeal
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Figure 4.18: Skeleton model of the right hand (palmar view).
In the following, the joints are referred to as:

- MPJ (Metacarpophalangeal Joint): This is the junction point where
the finger and palm meet.
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- P1J (Proximal Interphalangeal Joint): This is the finger joint that comes
directly after the MPJ.

- DIJ (Distal Interphalangeal Joint): This is the finger joint closest to
the end of the finger.

- TMJ (Trapeziometacarpal Joint): This is the joint where the thumb
metacarpal connects to the carpals.

The 18-sensor Cyberglove does not have sensors to measure the flexion of
the distal interphalangeal joints (D1J) of the index through pinkie fingers.
However, this value is correlated to that of the PIP joints. It is natural
for most people to bend their fingers so that both the DIJ and PLJ bend
together in some proportion. For simulation purposes, the value of the DLJ
can therefore be estimated, using some simple heuristics. But for recognition
purposes, the estimated values would only hold redundant information. They
are therefore ignored.

The thumb is modeled to rotate first at the TMJ around the axis going
through the index MPJ, and then rotate by the abduction angle towards or
away from the index.

The abduction values for the other fingers are delivered by 3 sensors on
the dorsal side of the glove: The index-middle, middle-ring, and ring-pinkie
abduction sensors. These sensors do not measure the absolute abduction of
the fingers relative to the palm, but their relative abduction to each other,
i.e. the spread between two adjacent fingers. To obtain the absolute values for
the index, middle and ring finger, a tradeoff is made. The proportion with
which the middle finger should respond to values of the index-middle and
middle-ring abduction sensors is set. The absolute abduction for the pinkie
is then calculated from the relative value, after the position of the ring finger
was determined. Although this induces some error, it is not judged to be
crucial for the distinction of the grasps.

The Cyberglove also includes a sensor to measure the arching of the palm.
When the tip of the thumb reaches for the tip of the pinkie finger, the me-
tacarpus arches somewhat, changing the plane through which the ring and
pinkie fingers flex. This also occurs is certain grasps, such as the Tripod Va-
riation II (TVII) or some forms of the Circular Mild Flexion Grip (CMF),
and the degree of arching can be useful for recognition.
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The last two values returned by the glove, the wrist pitch and yaw values,
are not used in the recognition procedure, as they rarely contain informa-
tion useful for the distinction of grasps. On the contrary, when performing
movements with an object during grasping, such as hammering or scooping,
the changing wrist angle values introduce additional, unwanted variation, in-
creasing the configuration space of the grasp class and thus, the number of
training examples needed to stably define its boundaries.

4.3.3 Tactile sensors

The following main requirements were determined for the tactile sensors co-
vering the hand surface:

1. They should cover large enough surfaces on the hand. Even when ma-
king the same grasp on the same object, the contact surfaces vary
somewhat. If the sensor (e.g. on the fingertip) is too small it may not
be activated, or only in part, decreasing recognition accuracy. To re-
medy this, the user can be led to change his way of grasping to make
sure all sensors get used effectively. But this reduces the naturalness of
execution.

2. They should be sensitive enough to detect light contact. The user
should not be asked to exert untypical forces for a given grasp or object,
just to insure sensor activation.

3. They should be flexible and thin, so they can be fit to the finger or
palm shape. Hard sensors would greatly impair dexterity and sensitivi-
ty. Also, since the palm itself is very flexible, a good coverage can only
be achieved using flexible sensors.

For this system, a custom set of capacitive pressure sensitive sensors has been
used. The sensors are manufactured by Pressure Profile Systems, Inc. (PPS)*.
They operate by the following principle (see figure 4.19): Two electrodes made
from conductive cloth are separated by an air gap of distance d. They are
kept apart by a compliant layer, which compresses under pressure to allow
the air gap to change. As the distance d changes, so does the capacitance of

! Pressure Profile Systems Inc. (PPS). 5757 Century Boulevard, Suite 600. Los Angeles,
CA 90045. www.pressureprofile.com
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the sensor. This change of capacitance is measured to determine the applied
pressure. Since the two electrodes are non-contacting, the results are more
repeatable and the sensor’s performance is less likely to degrade over time. It
is also more sensitive and resistant to changes in temperature. The sensors are
0.85mm thick, their size and shape is customizable. They possess a full scale
range (FSR) of 60psi, are sensitive up to 0.06psi and have a non-repeatability
scale factor of 0.1%. They produce analog output, which must be transformed
by an analog / digital converter before being further processed. They are
quite flexible and provide accurate information even when bent around the
fingers.

ntezrated applied force changes an wap. o,
aud thus capacitance, C, between clectrodes.

il 7T

d,

PPS™ Sensors meanire the remiting
chmge m copacitanc e to detamine the
pressue ppplied o the elechodes.

Figure 4.19: Anatomy of a capacitive pressure sensor.

For the recognition of the grasps in our classification table, precise informa-
tion on contact points or the exerted force are not important, since these
may vary greatly with the object. Only the information about occurrence of
contact at a few main hand regions is needed.

These regions were chosen in order to maximize the chance of distinguishing
grasps of the classification table that show too much similarity based on the
hand shape alone. An analysis of the different grasps in the table and of
their expected contact surfaces was made (Figure 4.21). Since covering the
whole hand with sensors would be too costly and too obstructive for the user,
the main surfaces used in the grasps were identified and only the ones most
frequently used or most useful for recognizing a specific grasp were covered.
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Figure 4.20: The flexible capacitive sensors.

As expected, the surfaces of the fingertips, especially the ones from index
finger and thumb are the most often used. The palmar sides of the proximal
finger segments are also often used in power grasps, but were not judged
useful for distinguishing grasps, since the recognition can be made based on
the activation of the palm.

The distribution of sensors on the palm was found not to be so critical. The
palm is used almost exclusively for power grips. However, for the different
classes, one can notice slight differences. While in the PoS and Pol the whole
surface of the palm is covered evenly (except for small objects), the PoH
tends to concentrate more on the distal part and the PoE on the radial part.
The proximal ulnar metacarpal part is rarely used.

Some regions on the finger sides were found of particular interest to distin-
guish grasps. Especially the radial distal and middle parts of the index finger
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Figure 4.21: Analysis of the contact regions of the hand. The numbers are
on an abstract scale representing how often the respective region is used
throughout the different grasp classes. 10 means the region is generally active
for almost all grasp classes. 1 means the region is used only by one or two
grasp classes. The thumb and index fingertips are the most frequently used
regions.

are used in the lateral grip (Lat). They can be useful for distinguishing the
Lat from the distal power grip (PoD) and tripods. The radial proximal part
of the index, on the other hand, can be used to distinguish the tripod varia-
tions (TVI, TVII) from the standard tripod (Tpd) or the PoD. The side of
the middle finger facing the index is useful for detecting the PoD and some
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tripods.

Based on this analysis, the following configuration for the tactile sensor array
has been chosen:

Figure 4.22: Configuration of the tactile sensors, front view.

For the thumb and finger tips, a cylindrical pressure sensor adapted to the
shape of the fingertips was used. It covers not only the palmar region, but
also the very tip, which is useful for detecting grasps like the Tip Grip.

The palm itself is covered with 4 large flat sensors. Here it is not important
to recognize the precise contact points, since these can differ greatly for one
same grasp depending on the shape of the object. Rather the general surfaces
where contact occurs are to be determined. The distal radial sensor is the
most important and is used in all power grips. The activation of only radial
sensors can be a sign for a PoE, and the activation of only distal ones, a sign
for a PoH. Simultaneous activation of all sensors is a good sign for a PoS or
Pol, and the distinction is best made using the index’s shape.

The sides of the fingers are covered as follows: one sensor each for the radial
side of the distal, middle and proximal phalanges of the index finger. These
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Figure 4.23: Configuration of the tactile sensors, side view.

are most useful for detecting the lateral grip and tripod variations. One sensor
each for the radial side of the distal and middle phalanges of the middle finger,
for detection of tripods. Finally, one sensor at each side of the distal phalanx
of the thumb.

The total amount of sensors is 16, distributed as shown in Figures 4.22 and
4.23.

4.3.4 Sensor fusion

The Hidden Markov Model based architecture of the recognizer allows to
integrate the data from the Cyberglove and the tactile sensors in a very
elegant way. A fusion of similar hand posture and contact point information
was already proposed in [51]. However, the data from the tactile sensors was
used only for segmenting the user demonstration using force profile analysis,
and the analysis of the grasp itself was based solely on the finger joint angles
measured by the glove.

In this approach, both positional and tactile information are simply used as
inputs to the HMM recognizer and both the segmentation and classification
are made based on the combined input stream.

The data is captured from the Cyberglove and transmitted by its instru-
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Figure 4.24: The tactile glove. The sensors are attached to the inside of a
slim elastic fiber glove to assure they always fit on the right place. It is to be
worn under the Cyberglove. The design still allows to use both input devices
separately.

mentation box through a serial cable to a Pentium III 550 MHz Windows
NT machine at 38400 baud. The data from the tactile sensors is first passed
through a 1m cable to their instrumentation box, where it is processed and
then further sent to the A/D converter board of the capture machine. All
data is first buffered by a Corba server architecture where synchronization
is made and a time stamp is attached to it. Then it is passed on to other
machines at a maximum refresh rate of 10ms. The software for recording
demonstrations, training and recognition itself runs on a separate Linux ma-
chine and the data must first be passed to it by the Corba server. Due to
network latency, the constant refresh rate of 10ms could not be maintained
during recording and occasionally a 10 ms frame was skipped. This had howe-
ver no significant effect on the recognition accuracy, as the HMM recognizer
was robust enough to efficiently filter out the resulting noise.
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Figure 4.25: The Cyberglove-tactile glove combination.

4.4 Implementation of the HMM recognizer

The commercially available Hidden Markov Model toolkit HTK was used for
implementation of the HMM recognizer routines. It offers libraries for defini-
tion of HMM topologies, performing Viterbi search, calculating forward and
backward probabilities, Baum-Welch reestimation, handling of large training
and label files, etc. The routines can be included in source code or accessed
from the command shell. Since lots of training with different parameters and
demonstration sets was intended, a more comfortable graphical user inter-
face was designed in Qt [6] to allow for fast execution of the various routines,
experimenting with parameters, such as the HMM topologies, the number of
training iterations, sorting, editing, labeling training and test data, etc. Also
it allows to play back a simulation of the demonstration, viewing hand shape
and tactile sensor activation together with classification and segmentation
results.
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4.4.1 Feature vectors

As features for the HMM recognizer, the finger joint angle values, their deri-
vatives, and the tactile sensor output values were used. The derivatives are
calculated by the Corba server. Also, the maximum value of the tactile sen-
sor activation was considered. The values of the tactile sensors for a given
time frame were taken, their maximum calculated and the resulting value
used as separate input feature. It is expected that the tactile maximum will
increase the quality of segmentation when little training data is available,
for the following reason: Consider a grasp such as the Parallel Mild Flexion
Grip. Sometimes all the fingertips are involved in the grasp, sometimes the
ring or pinkie finger is left out. Also, it can happen that, depending on the
shape of the object, the sensor on the inner side of the thumb, not the thumb
tip sensor gets activated. So the system cannot depend on a particular tac-
tile sensor or configuration of sensors to recognize the time of contact with
the object. It can only approximate the region in feature space which can
be considered as grasp, after being presented enough training examples con-
taining the necessary variability. The tactile maximum, on the other hand,
presents an unambiguous way of determining when contact occurs. It qui-
te stably marks the beginning point of a grasp, no matter what particular
sensors were activated. It allows an easy separation of the high dimensional
feature space that can be learned even with little training data.

4.4.2 Topology

In speech recognition, the objects of recognition, the words, can be decom-
posed according to their pronunciation into smaller units, the phonemes, or
even into phoneme parts, and HMMs created and trained for these basic
units. The justification is that the phonemes reduce the amount of models
needed and, since they appear much more often than words, can be trained
more robustly. For gestures, it is not easy to define what basic units should
be made of. For gestures which involve hand movement, units such as lines
or arcs could be used and a more complex move understood as a sequence of
those. For grasps, such intuitive decompositions cannot be made. But since
the number of grasps to be recognized is very small (as compared to words),
a robust training can be achieved even when taking a whole grasp as basic
unit.

Another decomposition often made in speech is the separation of phonemes
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into three parts, beginning, middle and end, often combined with context
dependent modeling. This is because the middle part of a phoneme does
not vary as much as the beginning or end, depending on the preceding and
following phonemes. However, context modeling requires a lot of training
data. Even if a grasp type is represented often enough in the data to be
trained robustly, the possibility of it appearing in all possible contexts is small
and a training of the context dependent models would require exponentially
larger training sets. Since the process of recording demonstrations is still
relatively time consuming, and there are no commonly available databases
as in speech recognition, a splitting and context dependent training of the
models was not made.

Therefore, in this system, every grasp is modeled by one HMM. A flat topo-
logy is chosen, where every state has a transition to itself and to its successor.
In principle, when using Hidden Markov Models, one should be able to as-
sume that the modeled process is made up of discrete states. Of course, the
hand movement when grasping is continuous and when modeling it with dis-
crete states, an approximation is made. Determining the optimal number of
HMM states is a difficult matter. Choosing a too small number means our
approximation would be too imprecise. Choosing a large number would slow
down the recognizer and, more importantly, reduce the number of training
samples per HMM state. Here, the exact number of states is to be determined
experimentally, by observing when an increase in HMM sizes yields no more
significant increase in recognition accuracy.

Thus, a HMM was created for each of the 14 grasps in the classification table
(PoS, PoH, Pol, PoE, PoD, Lat, Tpd, TVI, TVII, PMF, CMF, Tip, Add). A
common HMM was also used to model the releasing motion after the grasps
(RLS). The idea is that since we want to recognize the moment an object is
ungrasped, we model this movement and let the recognizer find its occurrence
in the sequence during automatic segmentation just as it does for a normal
gesture. Of course, we could define that ungrasping occurs at the end of a
grasp segment. But since garbage motion can occur during the grasp before
the release motion or directly after it, the end of the grasp segment is not
always placed precisely at the right time frame. The use of a distinct model
to detect ungrasping improves the placement of boundaries in the presence
of garbage motion. Since a classification of release moves depending on the
previous type of grasp would bring us no important information, one and the
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same model is used for all cases. It has the same topology as a grasp model.

A garbage model (GARBAGE) to filter out noise, involuntary moves, etc was
also created. As Lee and Kim pointed out in [27], when performing sequences
of gestures, non-gesture moves are sometimes made in between two gesture
moves. If these non-gesture segments are not correctly identified, they are
wrongfully deemed part of the gestures and hurt the classification process.
When performing grasps, we also make voluntary or involuntary moves that
make the classification process more difficult. For example, we may break
off an initiated grasp for a fraction of a second to make minor adjustments
with the fingers. Or we may involuntarily make some moves with the fingers
while going from one object to the other. Since movement occurs, the system
will try to classify it and the grasp class whose model outputs the highest
probability will be chosen.

Lee and Kim solve the problem by introducing a special type of garbage
model, the output of which is used to threshold the output of other models.
This “threshold” model contains as states copies of the states of all the
getsure models and has an ergodic topology. When a correct gesture is made,
the output of the correct model is still higher than that of the garbage model
and it is chosen as classification result. But when a non-gesture move is made,
the output of all gesture models is relatively low, and the garbage model fits
the observation best. This helps find the bounds for the gesture segments
more precisely and increases recognition accuracy.

In this system, the garbage model has been implemented with a fixed number
of states: the same as in the grasp models. As for Lee and Kim, an ergodic to-
pology was chosen: a transition exists from every state to every other state.
It is not a threshold model, like the one Lee and Kim used, as its states
are not copies of gesture model states, but it serves the same purpose: To
threshold the output of the grasp models. The garbage model was trained
using segments of non-gesture data that occur in between grasps. It is expec-
ted that the Baum-Welch algorithm profits from the maximum complexity
of the model and automatically trains states to best fit the very irregular
garbage data.

4.4.3 Task grammar

As in speech recognition, accuracy can be increased by the use of a grammar
that dictates which sequences of actions are allowable and which not, reducing
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the search space for the dynamic programming algorithm.

Grammars may be obtained, for example, by analyzing big text databases
from newspapers, accumulated over the years, and calculating the probability
of co-occurrence of two or more words. In this case they are called bigrams.
Grammars that associate three words are called trigrams.

Whereas these statistical grammars are useful in speech, where the vocabu-
lary is generally very big, in the case of gesture recognition a small grammar
can be built manually, considering the requirements of the task, for example
in form of a regular expression.

Here, only a very simple constraint has been imposed: A grasp motion is
always followed by a release motion (RLS). So only simple grasp and release
sequences, no grasp transitions are considered. Thus, the following grammar
for recognition of an entire sequence is used:

([GARBAGE | SIL| GRASP [GARBAGE] RLS [GARBAGE | SIL])*
with

GRASP = (PoS | PoH | Pol| PoE | PoD | Lat | Tpd
| TVI | TVII | PMF | CMF | Tip | Add)

Optional arguments are in brackets and the operator “*” represents, as usual
in regular expressions, one, many or no repetitions of the preceding argument.
As can be seen, the system is allowed to introduce garbage motion at any
point between other symbols in the sequence and to insert silence between
grasp - release groups.

4.4.4 Training and test

The training of HMMs is done with supervised learning techniques, which
means that two things are required:

1. The training data consisting of the actual sequence of feature vectors
from the user demonstration and

2. A transcription, or label, describing the desired segmentation and clas-
sification result, i.e. the actual symbol sequence and the time frames
where they start and stop.
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To obtain the labels, one can of course view the demonstration data offline
and manually set bounds, assign segments to classes. But this is a tedious
and time consuming procedure and rarely done. Instead, a suboptimal but
convenient procedure is used. Only the transcriptions of the executed move-
ments is needed, i.e. the sequence of symbols describing the action, without
any segmentation information:

A flat start is made to initialize the models. The training set is scanned and
all the component means and covariances are set to the global data mean
and covariance. So initially, all the models are given the same parameters.
Embedded training is then made using the Baum-Welch algorithm. Since
continuous recognition of whole sequences of grasps is to be made, it has to
be determined, which models to train on which part of the demonstration.
For each training demonstration, a composite model is therefore synthesized
by concatenating the models listed in its transcription. All model parameters
are then adjusted simultaneously by performing a standard Baum-Welch pass
over each training demonstration using the composite model, the algorithm
iteratively adjusting the segmentation bounds to maximize the observation
probability.

For recognition, HTK’s Viterbi recognizer was used. The result is a text
output of the recognized symbol sequence which can be compared to the
initial transcription for error calculation. Accuracy is measured as usual in
the continuous speech recognition literature. The substitutions, insertions
and deletions are added and the total number divided by the number of
symbols contained in the transcription to obtain the error rate.

__ #Subt#ins+#Del
Err = B ol

The accuracy rate is then obtained as:

Acc=1-— Err
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Chapter 5

Experiments

In this chapter, the experimental results of the designed grasp recognition
system are presented. First the workspace, manipulated objects and training
and test conditions are presented. A comparison of recognition results for a
variety of input feature configurations is made first for single user systems,
and later for a multi-user system with four users. The effect of the tactile
sensor data on the segmentation quality is analyzed and the usefulness of the
garbage model is demonstrated on a few sample recognition outputs. Finally,
an analysis of the results is made and the level of naturalness achieved in the
user execution is discussed.

5.1 Experimental setup

All demonstrations were performed on a flat table top, in front of the robot
system. Theoretically, considering the way the input features are obtained,
they could have been performed at any place inside the room. But the small
length of the cable connecting the glove to its interface unit at the current
time have restricted the their execution to this relatively small workspace.
A variety of objects of different shapes and sizes have been used (see Figure
5.1). Special care was taken to insure that for every grasp type, multiple
objects with different properties were available. For example, the Power Grip
Standard type could be performed with the jars, the hammers, the heavy
marker, etc.

Training and testing were performed offline. The training and test demon-
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Figure 5.1: The objects used for recognition. As can be seen, a broad palette
of objects was considered. For one same grasp type, many objects of different
shapes and sizes were available (For example: Jars, cup, cassette for the PMF;
plate, book for the PoE; ruler, key for the Lat; etc).

strations were collected from 4 users. Every user delivered 56 short demon-
strations containing 3 different grasps from the classification table. In total,
224 demonstrations were recorded. These were then evenly split into a trai-
ning and a test set. The training set contains 112 demonstrations, with 28
demonstrations from each user. Usually, the size of the training set is chosen
to be somewhat larger than that of the test set. But here, 112 demonstrations
were judged to be sufficient to train the 14 grasp classes and the test set was
deliberately chosen very large. Since the performance of the system depends
on a lot of parameters, such as the input features, the Hidden Markov Model
topologies, the number of training iterations, even small changes in recogni-
tion accuracy should be noticeable in order to evaluate the importance of
parameter changes.

As the complete test data set contains 336 grasps, one insertion error, for
example, would cause an increase in recognition error (and consequently a
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reduction in accuracy) of 1/336 = 0.3%. Therefore, with this test set size,
accuracy rate values are still meaningful up to the first decimal digit. As
minute changes in the parameters can quickly cause a few insertion, deletion
or substitution errors, choosing a too small test set would cause the accuracy
rate to fluctuate greatly due to statistical noise. Thus the size of the test set
gives more soundness to the presented results, even if this means less training
data is available.

The four users (in the following referred to as Userl - Userd) had quite
different hand sizes and shapes, ensuring that enough variation is included
for a good evaluation of the multi-user system performance. Unfortunately,
the author himself could not provide any training or test data, as his hands
were too big to fit in the Cyberglove. This problem was made more acute
by the fact the Cyberglove had to be worn on top of the tactile glove. All
demonstrations were therefore performed by relatively unexperienced users
that had no precise prior knowledge of the Kamakura table and the difference
between its grasp types. They therefore performed the grasps more naturally
than an expert probably would have.

The demonstrations were recorded in the following manner: First, a set of
labels for the demonstrations were created beforehand, and the users then
asked to perform the demonstrations corresponding to these labels.

[t was intended to recognize grasp and release sequences. That’s why for every
user, a set of labels was automatically created, containing three grasp-release
pairs in sequence. The sequences were not purely random, but the generating
algorithm ensured that there was sufficient combinational variation and that
in the resulting label set, all grasps were represented approximately the same
amount of times. When recording, the user was instructed which sequence of
grasps to perform, and the demonstrations captured one by one.

This method has the advantage, that the demonstration labels, used for ad-
apting the HMMs in training and for evaluating recognizer hypotheses in
test, can be easily created. It is much less time consuming than recording the
demonstrations and labeling them correctly afterwards. But it comes with a
slight disadvantage: the label may not match the demonstration perfectly. For
example, if the user hesitates slightly or moves his fingers in between grasps,
it would be useful to add a GARBAGE symbol at the appropriate point in
the label. Otherwise, the label does not match the demonstration, hurting
training efficiency. To remedy this, when training with a garbage model, the
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label set was preprocessed. Garbage symbols were automatically added in
between each grasp-release pair indistinctively, even where the execution was
made very smoothly. Although this in turn introduces unnecesary garbage in
labels for very clean demonstrations, it is expected that the ergodic garbage
model copes well with the situation due to its extremely flexible topology.

One notable problem complicated the recording and deserves to be mentioned
here. While the surface of the tactile sensors itself proved to be very flexible
and robust, the fixation points of their connector cables are relatively stiff and
sensitive to contact. As the sensors are fixed on the surface of the fingers and
hands, these points often get bent or come into contact with objects during
manipulation, causing the sensors to produce erroneous data. This problem
was getting more and more acute in some of the sensors, as demonstrations
were being recorded. The affected sensors were the thumb inner and outer side
sensors, the pinkie and middle finger tips, the radial palm sensors, the distal
side sensor of the middle finger and the proximal side sensor of the index.
Since the use of uncertain data definitely hurt recognition performance, the
affected sensor values were taken out of the input stream completely and
training and test done only with data from those sensors that showed robust
behavior. Of course, this reduces the richness of tactile information obtained.
But it was hoped that the system performs well even with a reduced set of
tactile sensors, until the problem could be corrected. It is intended to redesign
or consolidate the cable connection points to make them more robust and
prevent the problem from reoccuring in the future.

5.2 Classification results

5.2.1 Explanation of figures

In the following, snapshots of window parts of the created GUI are used to
illustrate graphically the recognition results (Figure 5.2).

The top two windows represent the scene at a given time frame. The left
window shows the activation of the tactile sensors. The colors range from
blue, when the sensor is not activated, to bright orange, when its output is
maximal. Sensors that were left out because of instable behavior are displayed
in much darker colors. The right window shows the shape of the hand. Under
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Figure 5.2: Recognition results. The upper windows show hand shape and tac-
tile sensor activation. The colored bar shows the segmentation result. Black
means silence. Red intervals are grasp, green intervals release, and blue inter-
vals garbage segments. The recognizer hypothesis is printed above the bar.

the two windows, the label corresponding to the current demonstration is
printed.

The colored bar represents the result of the segmentation and classification
process. The horizontal direction shows the progression in time, starting on
the left at time frame 0. Black segments represent silence. Red parts represent
grasp segments, green parts represent release segments and blue parts stand
for garbage. The thin white bar represents the time frame currently displayed
in the upper windows. Just above the result bar, the hypothesis output by
the recognition system for the current demonstation is printed.

This view allows to analyze every demonstration in detail and to find out
where the system may have made avoidable or rectifiable mistakes.

5.2.2 Results for single user systems

Multiple trials were performed using different HMM sizes, starting with 5
state flat models, all the way up to 11 state models. Also, the number of
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training iterations required was probed, and a variety of input feature com-
binations was tested. A topology with 9 states was found to yield the best
results. Also, the system was found to stabilize after just 8 training itera-
tions. The results for the different input vector configurations are shown in
table 5.1.

Ang | Tac | Ang+Tac | Ang+AngDiff+Tac
User 1 | 84.5% | 76.8% 92.2% 88.7%
User 2 | 86.9% | 82.1% 88.7% 85.1%
User 3 | 81.5% | 67.8% 85.7% 95.2%
User 4 | 81.5% | 57.1% 76.8% 79.2%

Table 5.1: Results for single user systems. The values represent the accuracy
rate in percent. The column denoted as Ang shows the results for the sy-
stem using only the finger angle values from the Cyberglove for recognition.
Tac is the system using only information from the tactile sensors (and the
tactile maximum value). Ang+Tac uses both finger angles and tactile data.
Ang+AngDiff+ Tac also uses the finger angle derivatives.

Four configurations were tested. First, the recognition accuracy using the
Cyberglove alone (Column “Ang” in table 5.1) was measured. The system al-
ready achieves quite good recognition rates using only the finger joint angles.
As much as 86.9% accuracy could be reached. Also quite noticeable, although
quite different for every user, is the result achieved with tactile sensors alone
(Column “Tac”). The accuracy ranges from 57.1% for User4 to more than
80% for User2. Although these figures seem very encouraging, one must re-
member that they are not too precise, since the respective test sets for every
user contain just 28 demonstrations. But they show that a recognition using
only one of the two input modalities is feasible up to a certain degree. As
expected, much better results were achieved by the combined system using
finger angle values and tactile data, reaching up to 92.2% for User 1 (Column
“Ang+Tac”). The only exception is User4, for which the system using Cyber-
glove data alone showed better results. This could be explained by the fact
that User4, as opposed to other users, made particularly loose, weak grasps,
making the tactile information much less reliable for recognition (only 57.1%
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achieved). The addition of the tactile information has therefore decreased the
accuracy of the combined system, as compared to using finger angles alone.

For most users, the addition of finger angle differentials showed no significant
improvement in system performance (Column “Ang+AngDiff+Tac” in table
5.1). The speeds at which the grasps where performed varied greatly during
execution even for a same user and this information was therefore useless.
One exception is User3, who took great care in executing every grasp at a
constant speed, which made the finger speeds valuable features for avoiding
insertion or deletion errors. In a multi-user system however, it should be im-
possible to guarantee such a smooth execution by all users. On the contrary,
such a requirement would hurt our goal of not disturbing the naturalness of
execution.

5.2.3 Results for the multiple user system

In table 5.2, the results for the multiple user system are presented. The
system is trained and tested on the demonstrations from all four users.

Ang | Tac | Ang+Tac
Users 1-4 | 88.8% | 64.1% 90.9%

Table 5.2: Results for the multiple user system. The values represent the
accuracy rate in percent. The column denoted as Ang shows the results for the
system using only the finger angle values from the Cyberglove for recognition.
Tac is the system using only information from the tactile sensors (and the
tactile maximum value). Ang+Tac uses both finger angles and tactile data.

As one can see, again the system combining the finger angle and tactile data
yields the best results, at 90.9% accuracy. Although the difference is small,
this value is higher than for most single user systems. No drop in efficien-
cy is registered when passing from single to multiple user recognition. But
this should be no surprise, as demonstrations from all users were conside-
red, multiplying the amount of training data by four. The system using only
Cyberglove data, on the other hand, achieved an accuracy of 88.8%. This is
because the system still has problems finding the right segmentation bounda-
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ries when the users move their hands without grasping objects and produces
unnecessary insertions. The addition of tactile information helps alleviate
that problem. Using just tactile data, the accuracy stayed at a moderate
64.1%. The variety of ways the users grasped the objects, the different hand
sizes and the resulting contact point differences did not allow to raise the
system to a higher performance level.

In table 5.3, the results of the multiple user system using finger angle and
tactile data are shown, when trained with all training demonstrations, but
tested on each test set separately. As one can see, the results for User4 in
particular have been improved dramatically, compared to those of the single
user system. This may indicate the training demonstrations of User4 did not
contain enough variety for a robust HMM parameter adjustment. The other
results are quite similar to those of the single user systems.

User 1 | User 2 | User 3 | User 4
Users 1-4, Ang+Tac | 91.1% | 89.9% | 90.5% | 92.2%

Table 5.3: Results for the multiple user system when applied to the separate
test sets. The system is trained by all users using both finger angles and
tactile data. The results are quite stable, staying at about 90% regardless of
the user.

5.3 Segmentation results

An important goal for our recognition system was, aside from identifying
grasp types, to recognize the precise moments when the grasping and re-
leasing motions occur. This offers the advantage that, if the time frame at
which an object is grasped can be accurately determined, other input moda-~
lities such as magnetic trackers or vision systems can be subsequently used
to find the position of the hand at that time and narrow down the search
for the grasped object. The above section showed the quality of classification
achieved. This section examines the segmentation in more detail.
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5.3.1 A look at a few sample segmentations

To show the achieved segmentation quality, the output of the system for a
few sample demonstrations is presented. Three cases are considered: A correct
recognition trial, one where an insertion occured, and one where a deletion
occured. All examples were taken from the multi-user system using finger
angle and tactile data as input features.

1. Correct recognition:

Figures 5.3 to 5.8 show the result for the correctly recognized sequence
consisting of a PMF, a Lat and a POH. The black segments are silence
phases, where no significant movement has been performed. The red
segments are the grasping phases, the green ones the releasing phases,
and the blue ones represent garbage motion.

As can be seen from the figures, the grasp segments start at the moment
the fingers close and the tactile sensors are activated. They last for all
the length of the grasp. Very practical is the short length of the release
segments, which mark the precise moments when the tactile sensors
show no more activation. As explained in chapter 4, section 4.4.2, the
release model was implemented to detect the exact moment an object
is released, even in the presence of garbage motion before or after the
release motion. Therefore, short segments that bound the event well are
desired. As we can see in the figure, garbage motion has been detected
between grasp-release groups, well constraining grasping segments. This
is the general case and most demonstrations were segmented in a similar
manner.

2. One insertion:

Figures 5.9, 5.10, and 5.11 show the recognition result for a PoS, PoH,
Pol sequence, where an additional PoH has been mistakenly inserted.
This is because the start and end of the PoH grip were hard to recogni-
ze. For a PoH, the tactile sensors are not necessarily activated and the
grasp is recognized based mostly on the hand shape. At the time the
user ungrasped the object, a slight releasing move was made, but then
the hand closed back a bit and another PoH was wrongfully recognized
in place of silence, until the Pol started. A simple way of eliminating
this problem would be to require a minimum amount of silence between
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Figure 5.3: Correct classification: At this time frame, the hand does not move
and only silence is detected.

Figure 5.4: Correct classification: The fingers have started to close, but gra-
sping itself has not yet occured. The system labels this part as garbage.

grasps, and to force the system to unify segments that are not separa-
ted by silence through the use of a strong grammar, for example. But
requiring such a silence phase would definitely hurt the natural flow
of execution and force the user to act in a slow, demonstrative style.
Since the number of insertions is quite low (only 8 wrongfully inserted
grasps for 336 demonstrated ones), this option was rejected.

3. One deletion:
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Figure 5.5: Correct classification: The tactile sensors start to show weak
activation. This is the start of the grasping phase.

Figure 5.6: Correct classification: The tactile sensors are fully activated in the
stroke of the grasp. The activation is also characteristical for a Lateral Grip,
with strong activation of the middle index side sensor. The index fingertip
sensor is weakly activated, as its border was also slightly in contact with the
object.

Figure 5.12 shows the result for a TVI, Add, Lat sequence. Here, the
Adduction Grip has been overseen. This may be attributed to many
factors, such as unclean or untypical execution, insufficient activation
of tactile sensors, etc. The system skips the affected time frames and
recognizes the rest of the sequence correctly, starting the Lat segment
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S8 POM LS GARBAGE

Figure 5.7: Correct classification: The release segment is placed at the mo-
ment the tactile sensors are deactivated and the fingers start to open.

Figure 5.8: Correct classification: The fingers finish the release motion and
stop moving. At this time, the user is moving his hand towards another
object. This is labeled as silence.

at the moment the hand closes on the object. In total, only 7 grasps
out of 336 were mistakenly ignored. The majority of deletions occured
for the Adduction Grip. This grip, involving no thumb or finger tips,
often produced no tactile activation at all. That's why the recognition
had to be made based only on the hand shape, which does not show
much difference to the resting position.
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Figure 5.9: An insertion error: Lack of tactile data and unintentional move-
ment caused the system to recognize two grasps instead of one. Here we see
the shape of the hand before the object is released.

Figure 5.10: An insertion error: At this point, the object is released. Only
slight finger movement is made.

5.3.2 The effect of the tactile data

Here the effect of the tactile values and their maximum on the segmentation
is shown. The tactile maximum feature was introduced to allow the system
to better detect the time point at which an object is grasped or released.
Although information on contact is already available through the other tactile
inputs, the grouping into one feature holds certain advantages.
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Figure 5.11: An insertion error: After the object is released, the hand ta-
kes back a shape close to the grasping shape, causing the recognition of an
additional Power Grip Hook Type.

Figure 5.12: A deletion error. The Adduction grip has not been recognized
by the system. The rest of the sequence was correctly recognized.

In the Tip Grip, for example, only the thumb and index tip sensors are acti-
vated. In the Lateral Grip, only the thumb tip and the index side sensors are
used, and the activation level can be quite different, depending on the way
the object is taken, its weight distribution, etc. So the separate values may
be useful for classifying grasps, but a lot of training examples are still needed
to clearly separate the feature space into grasp and ungrasp subspaces. The
garbage and release models can therefore not adapt their parameters well
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enough and the segmentation bounds are not precisely placed. The tactile
maximum, on the other hand, provides clear information about contact, whe-
rever it occurs. This allows a simple separation of feature space in two parts,
“grasp” and “no grasp”, reducing the amount of training samples needed.

To illustrate this effect, we again consider a sample recognition result from
the multi-user system using finger angle and tactile features, with or without
addition of the tactile maximum feature.

Figure 5.13 shows the results using finger angle data and tactile data with
or without maximum, and 5.14 shows the results using or not using tactile
data at all. As can be seen in figure 5.13, with the tactile maximum, the
exact points when grasping and ungrasping occur have been detected and
the three grasp-release groups are well separated by silence segments. When
the tactile maximum is not used, the system sometimes misses the correct
grasp-release bounds and tends to fill most gaps with garbage.

When no tactile information is used at all (bottom bar in figure 5.14), the
grasp and release segments are often completely connected. This shows that
not the points where grasping and ungrasping occur are actually detected,
but rather the points where a grasp motion becomes more probable than a
release motion and vice versa. These boundaries can even be set in between
grasps, where no motion occurs at all.

5.3.3 The effect of the garbage model

To show the effect of the garbage model on segmentation, the recognition
result of the multi-user system using finger joint angles and tactile data
on a Pod, PMF, PoS sequence is presented in figure 5.15. If the system
is trained with clean labels (the garbage model is not trained at all), the
segmentation boundaries are not well found. The grasp and release segments
are very lengthy and there is almost no pause from the time of release to the
next grasp. This is because, when the fingers do not stop moving, no silence
can be detected. Instead, the system tries to assign all movement to a grasp
or release class, even if the probability for this class is very low.

If a well chosen threshold on the probabilities were applied, this could be
avoided. The garbage model serves this purpose, as its probability is higher
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TIP LS 1 GARBAGE TVI ALS GARBAGE POE RLS GARBAGE

GE TP RLS GARBAGE TVi GARBAGE RLS POE ALS GARBAGE

Figure 5.13: The effect of the tactile maximum. At the current time frame,
the user had already released the object after a TVI Grip. The system using
tactile maximum (top result bar) correctly recognized that fact. The system
without tactile maximum (bottom result bar) wrongfully placed the end of
the grasp segment some time after the object had already been released.
Silence phases are also not well distinguished.

than that of other grasps in these movement phases. Using the technique of
automatically inserting GARBAGE labels between release and grasp labels
before training, the garbage model is always trained on a small part of the
demonstration sequence. If there actually is garbage in the demonstration,
many frames are used in training. If there is none, only small fragments at the
beginning of grasp moves or at the end of release moves are used. Still, thanks
to the complexity of the model, a good adaptation can be achieved by the
Baum-Welch algorithm. The results are much more compact grasp-release
groups, and better placed segmentation bounds.

Another good example of the usefulness of the garbage model is shown in
figures 5.16 to 5.19. After executing the CMF grip, the user releases the
object. His hand, however does not stop moving, and does not go back into a
resting position. Instead, it preshapes into what may seem like a Power Grip
Index Type (Pol) before closing on the object in a Tripod Grip. The system

84



Figure 5.14: The effect of tactile data on segmentation. At the current time
frame, the PMF grasp is not executed yet. The system using only finger
joint angles (bottom result bar) failed to recognize this. It generally tends to
place the starting bounds for the grasp segments too soon, producing mostly
connected grasp-release groups.

correctly recognizes this preshaping motion as garbage (not as a Pol) and
puts the starting point for the next grasp segment at the time the fingers close
and the tactile sensors are activated. The system did make a classification
mistake by identifying a TVI instead of a Tpd, two very similar grasps, but
the segmentation did not suffer.

5.4 Analysis and Discussion

The results show that the main advantage of the tactile sensors is in achieving
a good segmentation. The system using only the finger angle data achieves
good classification, but suffers from noise, unintentional hand movement,
too small changes in hand shape, etc. Also, we can see that even with a
reduced set of tactile sensors (not using the middle and pinkie finger tip, the
thumb sides, etc), we get a very high recognition accuracy. This suggests that
very rich and detailed tactile information is not necessary. Some regions that
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Figure 5.15: The effect of the garbage model on segmentation. At the current
time frame, the grasp is not yet made. The system without garbage model
failed to recognize this.

Figure 5.16: The effect of the garbage model: At the current time frame, the
user is still holding an object with a Circular Mild Flexion Grip (CMF).

were separated could perhaps be grouped (for Ex. on the palm or the finger
sides). The most important thing is to insure contact is registered wherever it
occurs. Therefore, large, flat, sensitive sensors, that cover as much surface as
possible should be well suited to the task. It can also be seen that the garbage
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Figure 5.17: The effect of the garbage model: Here, the user released the
object. This also shows the usefulness of the tactile sensors. The user made
almost no finger movement at the time of release. Only the tactile information
allowed to detect it.

Figure 5.18: The effect of the garbage model: The fingers do not stop in a
resting position, but quickly take a shape that resembles a Power Grip Index
Type (POI). The system classifies this preshape phase as garbage.

model works well in conjunction with tactile information. If the tactile data
is left out, the segmentation quality suffers. The same happens if tactile input
features are used but the garbage model is left out. Only a combination of
both could bring good results.
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Figure 5.19: The effect of the garbage model: Only now does the user close
his fingers to grasp a new object with a Tripod Grip.

However, alone the absence of a garbage model, or of tactile data, is not
enough to explain all the segmentation errors made. It should be remem-
bered here that a very simple labeling strategy, one that does not provide
segmentation boundaries for training, is used. Instead, only a transcript of
the executed demonstration is provided, i.e. a sequence of symbols without
attached temporal information. The start and stop frames of grasp and re-
lease moves are not given beforehand, they are iteratively estimated during
Baum-Welch training of the HMMs. This means that if a grasp is almost
always preceded by a phase of slight finger motion in the training data, the
system might mistakenly take this for the starting part of the grasp and in-
clude it in the training of the corresponding model. This can prevent correct
detection of the beginning of even those grasps for which a closing motion of
the fingers clearly indicates the start. When very large training databases are
available, there should be enough variability to ensure the true bounds of the
grasp are found. But this is not the case here. A solution could be to manually
segment training labels by replaying the demonstrations offline and carefully
identifying grasps, garbage, silence, and their start and stop points. But this
is long and painstaking work, and is avoided whenever possible. The use of
the garbage model and tactile information allows to obtain good results with
only limited training data, and without resorting to manual labeling.

At this point, a few things should be noted about the naturalness of execu-
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tion.

First, it is interesting to notice how the users adapted their grasps automa-
tically to the object and its assumed purpose. Instead of asking to perform a
specific grasp, it was easier to present the right objects to the user directly.
Of course, sometimes, instruction was still necessary: It is not really clear if
a cup should be taken with a PoS or a PMF, if no further manipulation is
planned. Even when specifically asked to perform a Tripod Grip (TPD), if
the user was not presented with a pen, but with a larger cylindrical object
of unclear purpose, he or she sometimes inadvertently shifted into a Tripod
Variation I (TVI). The two grips are used on very similar objects and when
a clear purpose is not given, there is no criterion to choose between them.

The main restriction came from the input devices. The gloves did impair
the movements of the users, despite efforts to keep this factor as low as
possible. The users had difficulty picking up small objects, such as coins,
directly from the table. They also experienced some difficulty making tripod
grips on smaller objects. Paticularly the Tripod Variation Il was found very
hard to execute. Furthermore, some users complained that their dexterity is
reduced, and objects tend to slip out of their hands. This seems obvious, as
the tactile sensors are placed on the finger contact surfaces. But not all the
difficulty comes from this fact. The tactile sensors are attached to the inner
side of a thin stretchable glove, and this glove is worn under the Cyberglove,
to measure the combined input. This design has a few advantages: The cables
for the tactile sensors pass on the back of the user’s hand inside the gloves, and
cannot get entangled with objects outside. This also insures that the tactile
sensors are placed quite precisely at the right points on the hand, regardless of
the user. But the disadvantage is that the user has to wear two gloves instead
of one. Since the Cyberglove has open fingertips, the problem is not acute at
those points, but particularly the palm region feels bulky and uncomfortable,
and the finger side sensors are harder to activate. Placing the tactile sensors
outside, directly on top of the Cyberglove could increase the user comfort,
but would expose them much more to damage from the outside. A custom
designed glove, that would incorporate both joint angle measurement and
contact point detection sensors inside the glove fabric would be ideal.

Finally, The type of manipulations the users performed with the objects also
reduced the execution naturalness somewhat. It is a known phenomenon
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in speech recognition, that users tend to change their communication style
somewhat when they know they are interacting with a machine. Here, the
users knew that the focus was not on performing real manipulations, but to
show grasp examples to the robot system. Objects were simply picked up at
one place and put down at another. Some symbolic movement was sometimes
made while grasping the object (such as scooping with a spoon), but a key
pinched in a Lateral Grip was not, for example, really used to open a lock, a
ruler was not used to actually measure, a book was not actually taken and put
back on a shelf. This surely resulted in slightly different grasping movement
and the overall effect on recognition accuracy has yet to be investigated.



Chapter 6

Summary and future work

6.1 Conclusions

- The main objective stated in chapter 3 has been reached. As shown in
chapters 4 and 5, a Hidden Markov Model recognizer for continuous
recognition of grasping gestures has been created. The techniques de-
veloped for speech recognition and succesfully applied to sign gesture
recognition have been adapted to the domain of grasping gestures. By
combining finger joint angle data obtained from a Cyberglove device,
and information about hand-object contact points obtained from an
array of tactile sensors, a high degree of accuracy could be reached.

- The principal mechanism needed to achieve this continuous recognition
is the Hidden Markov Model. By using a dynamic programming algo-
rithm, the Viterbi algorithm, whole sequences of grasps can be analyzed
at once. The segmentation bounds are placed at the same time classi-
fication decisions are being made, while maximizing the probability of
the output hypothesis.

- While the global aim is to achieve recognition of any type of natu-
rally executed object manipulation, a restriction to grasp and relea-
se sequences has been made here. No manipulation movement while
the object is grasped and no grasp transitions are considered. Also,
the length of the analyzed sequences has always been limited to three
grasps. This latest restriction, however, was made only for convenience
of recording the demonstration data and is not enforced by the task
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grammar; the same system could be used to recognize grasp sequences
of any length. Apart from this, the users are free to make their demon-
strations in a natural way, paying no attention to the start or end shape
of their hands when grasping, to the speed with which they grasped,
and without having to make explicit pauses betwen grasps.

The thickness of the data gloves does reduce dexterity somewhat, and
makes picking up and handling of some objects difficult. Still, no restric-
tions are made on the kinds of objects to be manipulated. A multitude
of objects commonly handled in everyday life are considered, the Kama-
kura classification table providing an appropriate class for every type
of grasp used on them. Most of the 14 grasp classes can be correctly
recognized, with exception of the Adduction Grip, which is sometimes
hard to detect and the Tripod Variation 11, which is hard to execute
with the data glove and sometimes gets confused with other tripods.

Recognition has been achieved for multiple users, the results surpas-
sing, on average, those of the single user systems. This shows that the
Hidden Markov Model recognizer can robustly handle all the input va-
riability coming from different hand shapes and sizes, grasping styles
and strengths, and execution speeds. The system has been so far trained
and tested for four users, but the results indicate that a grasp recogni-
tion system applicable to any kind of user operating in unstructured
environments is feasible.

Because of the small number of grasps considered and the relatively
simple HMM topologies used, the system is quite compact and fast.
An exact measurement of the recognizer speed was not made, but the
evaluation of the test demonstrations on a 500MHz Pentium III ma-
chine was made more than five times faster than real time. Since the
purpose is teaching manipulation tasks by showing, online recognition
is not a priority. The robot can wait for the end of the demonstration
and then analyze it, before repeating the task. But the actual speed of
the offline recognizer shows that the development of an online system
is feasible, in principle.
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6.2 Summary

A system to recognize continuously executed sequences of grasping gestures
has been presented. The main difference to most other systems for analysis
and classification of gesture sequences is that they are designed only for the
recognition of communicative gestures, for which the requirements are diffe-
rent. The few existing systems that consider manipulative gesture sequences
either ignore the types of grasps used, or analyze them in a two step fashi-
on, first segmenting the sequences and then classifying grasps. Using Hidden
Markov Models, a system was designed for manipulative gestures, that both
detects the grasping phases in a user demonstration and classifies them with
a single, statistically sound approach. For a total of 14 grasp classes, a re-
cognition accuracy of up to 92.2% for a single user system and 90.9% for a
multiple user system was reached.

A glove based approach was used to capture the user demonstration. Both a
Cyberglove and an array of pressure sensitive capacitive sensors was used to
gain precise information about the shape of the hand and its contact points
with grasped objects. The influence of the tactile sensors on the recogniti-
on was analyzed and they were found to be particularly useful in improving
the quality of segmentation, when used in combination with a well designed
garbage model. While a system using no tactile information was still ab-
le to produce good classification results, the precise bounds for the grasp
segments could not be accurately set. Whereas this may not be crucial for
communicative gestures, in a programming by demonstration scenario, the
time point where a grasp is made may well be a valuable piece of information
for subsequent inference steps.

Kamakura’s grasp classification table, containing 14 graps classes, was used.
It considers grasping techniques for all objects used in everyday life. The
fact that the grasp classes could be well distinguished in tests, with the given
input devices, even for a multiple user system, and with such a broad range
of objects, shows that the taxonomy is indeed well adapted to the task. In
total, 112 user demonstrations were used for the training of the multiple
user system. Considering the number of Hidden Markov Model parameters
to adjust, this is still a relatively small amount, which shows that the system
is able to learn quickly and adapt robustly to noisy data, even with little

training.
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6.3 Future work

While the current system concentrates on grasp-release sequences, it should
be interesting, in the future, to consider also grasp transitions, i.e. changes
in the way an object is held, without releasing it. This should be a simple
extension of the current Hidden Markov Model based design. Only the task
grammar must be adapted, new training demonstrations recorded, and the
corresponding labels created. As no release move is made, the time point of
transition cannot be detected by the presence or absence of contact, but if
the contact point distribution changes in between grasps, the tactile sensors
can still be useful for finding the correct segmentation bounds.

It should also be possible, with the current system, to recognize both mani-
pulative and communicative gestures. This could simplify teaching the robot
system: the user would first make signs to give instructions to the robot (for
example a sign to indicate the beginning of the demonstration), then start
manipulating objects, demonstrating the task, and then give additional si-
gns, for example to indicate how strongly or carefully the robot should grasp
objects. Although the tactile sensors are not needed when making signs, the
same basic system should be usable. The model for the sign gesture would
just learn to ignore the tactile inputs and rely only on the finger joint angles.
On the other hand, one could recognize non-prehensile grasps, where the
object is touched, but not held, and where an analysis based on hand shape
alone would not be possible. This happens, for example, when pressing a
button, pushing a box, when holding down a lid, etc.

Humans very often use both hands when manipulating objects. Often, an
object is first picked up at an easily reachable part with one hand, before
it is held tightly at the correct spot with the other hand. Often, actions are
performed with two objects at once: holding a nail with one hand and the
hammer with the other, holding a bowl firmly while cleaning it with a tissue.
If complex manipulations are to be analyzed, the movement of both hands
should be considered.

Concerning the design of the Hidden Markov Model recognizer itself, some
future extensions should also prove advantageous. At present, only a simple
context independent recognizer is used. A context dependent version could
increase accuracy, especially for the recognition of grasp transitions. The
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beginning and end parts of a grasp vary greatly depending on the moves
preceding and following it, but the most important part, the nucleus or stroke,
stays mostly the same. Thus, context dependent modeling could yield better
results when the grasps are not clearly separated by silence.

One could also, as is done in many speech recognition systems, let the reco-
gnizer adapt progressively to a new user while he is performing demonstrati-
ons. The recognition results of the first few demonstrations would be used to
run a quick Baum-Welch reestimation and adjust the Hidden Markov Model
parameters to better fit the new user, resulting in better recognition of subse-
quent demonstrations. This reduces the negative effects of different user hand
shapes, for example, which cause a constant bias in the input features. Also,
it allows to adapt to the user’s style of grasping (for example, some users
systematically extend the free fingers when performing a Tip Grip, some flex
them).

Finally, one could incorporate and fuse other input modalities, such as vision.
The distance from the hand to the closest object lying on its current path
could, for example, be detected by a vision system and used as feature. When
the object is grasped, the distance becomes very small, and stays small until
it is released again. Such a feature could be useful to recognize that the object
has not been released, even if the tactile sensors are temporarily deactivated,
for example because the object is shifted to a new position between the
fingers. The distance from the hand to the table top or to other objects,
while an object is held, could also be used to distinguish, for example, if an
object has been simply “released” or more precisely “put down”.
Theoretically, any kind of input modality can be added (also speech), as
long as it produces a well defined set of features to be used as input for the
Hidden Markov Model recognizer. The richer the variety of inputs, the more
robust the system becomes. Of course, the more input features are added, the
bigger and slower the system also becomes, and the more training examples
are needed to adjust its parameters. Thus, it will always be a matter of the
expert’s skill in designing the recognizer, to distinguish which input features
are useful and which are not, which preprocessing, which filtering is needed,
etc... until a method can be found to somehow select the input features
automatically.
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