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Abstract

This thesis presents a hybrid language model, both statistic- and rule-based. having the

structure of a Hidden Markov Model with some nodes modeled with n-grams and

others with context free rules. An EM-algorithm is used to train the model parameters

from a manually annotated corpus of sentences.

The performance is evaluated from the results of the decoding \\,rith a speech

recognition engine integrated with the language model and compared to a baseline 3-

gram model. The designed model shows a similar word error rate than the baseline. but

outperforms it in understanding accuracy by 15.3%.
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1 Introduction

Language and speech technologies have been progressing enormously over the last

decades. Hundreds of applications have been successfully developed and many of them

are used daily by companies. handicapped persons, education centers, individuals,

public institutions. etc. More and more new scenarios can be imagined where a

language- or speech-based communication with a machine or a computer application

can be the best. fastest, and more natural or even the only solution. Hence the need to

render computers capable of treating and processing speech and language in an efficient

and natural way. Using technologies from speech signal processing to natural language

processing including artificial intelligence, there is a broad spread of disciplines that

already have achieved significant results in this human-machine interaction paradigm:

speech synthesis, speech recognition and understanding, machine (speech-to-speech)

translation, information retrieval and extraction, question answering, topic

identification, document summarization and classification, dialog management, etc.

The title of this diploma thesis "Semantic-based Hidden Markov/Context Free

Grammar Language Modeling" already announces that it deals with language modeling,

which is substantial area of research within the referred disciplines.

Generally, we can say that two main approaches to language modeling have been

widely used for many years, namely, statistic- and knowledge-based. Although all

statistical language modeling techniques get some inspiration from a previous

knowledge of language, the difference between both approaches is that the fonner is

data-driven while the latter is rule-based.
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In the last decades. the statistical methods have successfully played the main role in

language modeling for speech recognition. machine translation and other applications.

thanks to the increased availability of online corpora and the continuing grO\\lh of

computing power and storage capacity.

There is though an increasing interest in combining both approaches. The words of

the premier promoter of statistical techniques for language modeling. Fred Jelinek. "we

must put language back into language modeling" {JeI95]. and the paper by Ronald

Rosenfeld 'Two Decades of Statistical Language Modeling: \Vhere do we go from

here?' (RosOOa], are someho\' .." motivating remarks to continue the work of the

integrating of human linguistic knowledge with pure statistical methods.

• • •

Since this thesis uses a speech recognition system to integrate and evaluate the

language models developed, the next paragraph (1.1) will shortly introduce the basic

concepts of speech recognition to clarify the motivation and aim of this thesis.

explained later.

Chapter 2 introduces the concept of language modeling and sets out an overvie\v of

the t\VOmain trends of research in this area: statistic. and knowledge. based. The last

part of the chapter also deals with some hybrid models of recent research experiments.

Chapter 3 explains the core of the thesis: how the model structure is created, what

text corpus has been selected. how it is used to train the model. how the training

algorithms have been developed and how the resulting language model looks like.

Chapter 4 describes the speech recognition engine that has been used to test the

language models. the Janus Recognition Toolkit (JRTk), and presents some

functionalities of its decoder of importance to this thesis. This chapter deals as \liel1
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with the making of the test-set and the evaluation and analysis of the results in tenns of

Perplexity (PPL), Word Error Rate (WER) and Task Error Rate (TER).

Finally, Chapter 5 includes the conclusions of the present thesis, the discussion

about possible improvements and further work that still can be explored.

1.1 Basics of Automatic Speech Recognition

An automatic speech recognizer is a system able to transcribe human speech into

readable text. It can be represented with a black box with an input (speech signal) and

an output (transcribed text), as shown in Figure 1.1:

Speech Signal

Speech
Recognition

Transcnbed Text

"Do you understand me or do
you just reropize patterns?"

Figure 1.1: Black box diagram of a speech recognition system

Within this black box can be used any kind of process which achieves to output a

text similar to the transcription that any person would make from the input speech

signal. The more similar the two texts are (the one written by a human and the one

resulting from the processes within the speech recognizer), the better the speech

recognition system.

Optionally, an interpretation of the recognized utterance can be made, such that its

meaning or intention can be determined. Strictly speaking, speech recognition only

aims to transcribe text and therefore, subsequent semantic or pragmatic analysis is

usually classified as language or speech understanding.
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We usually distinguish between several levels in the structure of language: acoustic,

phonetic/phonological, morphological/lexical, syntactic/semantic and

discourse/pragmatic. Although these levels mainly work sequentially in speech

production and perception (i.c., in our speaking and hearing systems), man): processes

use resources of various levels at the same time. i.e. they work in parallel, in order to

improve their accuracy, their efficiency or even to be able to proceed.

Whcn building a speech understanding system. a similar layer model is used"

Therefore, within the black box of Figure 1.1, there is usually a chain of modules that

approximately fit with the structure of language described before. These modules

normally have the following names: acoustic model, pronunciation dictionary, language

model and dialog manager, and relate to the structure of language as shown in Figure

1.2.

Acoustic Level

Phonelic IPhonological Level

MorphologicallLexical Level

Syntactic/Semantic Level

Discourse/Pragmatic Level

} Acouslic Model

} Pronunciation Dictionary

} Language Modell Grammar

} Dialog Manager

Figure 1.2: Linguistic levels and modules of a speech understanding system

Every module plays a role when recognizing/understanding an utterance. The

acoustic model contains the information of the sounds or the features of the speech

signal, the pronunciation dictionary establishes a link bet",,"een the sounds or features

and the possible words to be recognized, the language model (or grammar) deals \•..ith

the feasible word sequences or sentence structures, and the dialog manager models the

meanings of word sequences or sentences to yield a top level interpretation of the
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recognized utterance and even to keep track of the dialog or sequence of sentences

spoken.

It is not yet completely known how these modules are to be created optimally and

\••..hat is the best way to handle them in the recognition process. Rabiner and luang

[Rl93] distinguish three approaches:

• the acoustic-phonetic approach

• the paUern recognition approach

• the artificial intelligence approach

The acoustic-phonetic approach is based on a set of feature detectors (e.g.

detectors offonnants, pitch, energy, frication, etc.) followed by a feature combiner and

a decision logic module that results in a lattice. which can be phoneme. syllable or even

word based. This lattice. together with a module containing the vocabulary features of

the words pennitted. is used by a hypothesis tester who decides what sentence was

spoken.

I YOC71~I,..,....
T....crt>.dT91

Fell\J,l'eCOfnboner LetIlce I~--~~
& I-_~I~S MD.,.•••••••.••_ ••••••

DecISIOnI.bgo: TesllM ,.... ;. •••.••<OpR. ••••••••• '!' •
•
•

•

i=eann L~_""_"_""~1 ,-

Featl6e L
DetactofO I -'- --'

i=ormlllllS
Pilch
VOlceOlUn'w'Olced
Energy
FncetlOl"l

'-----y~---_.1 ' y

Acoultic Modeling
Pronunciation Dictionary

&
L.nguage Modeling

Figure 1.3: Acoustic.phonetic approach to speech recognition
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Figure 1.3 shows the module diagram of this approach. The first module is the

speech analysis system, a step common to all approaches, which provides to the next

stages a spectral description of the speech over time with the help of filter bank, linear

predictive coding (LPC). or other methods. Although the design of this module is

critical for the perfonnance of the speech recognition, it is nonnally not included into

what is understood as acoustic modeling. The same happens with speech enhancement

techniques (which would come before the speech analysis system) such as pre-

emphasis filters, noise reduction methods and dereverberation algorithms, that are

classified into the so-called preprocessing step.

The core of this approach relies in the feature combiner and decision logic module.

It takes the feature infonnation from the detectors and tries to find stable regions (time

intervals where the features do not vary too much) and labels each segmented region

with the phonetic unit that matches best with its acoustic properties. There are multiple

strategies for the feature combining module to cover the sounds of a language, but all of

them are based on an extensive knowledge of the acoustic features of phonetic units.

The analog approach can be applied to pronunciation dictionary creation and

language modeling, e.g. with manually derived grammars, defining valid word

constructions and legal word sequences. A combination of all the rules of these

grammars can be integrated in between the decision logic, the hypothesis tester and the

vocabulary features modules resulting in a complex recognition system, strongly

dependent on the chosen strategy.

Since there is no parameter training nor any statistical inference in this approach.

but a purely manually designed recognition strategy, and considering the extension of

this approach to the other levels of language (not only the acoustic-phonetic), it should

be properly called a knowledge-based approach. Its weakness lies on the suboptimality

of the ad hoc methods, the lack of robustness and lack of adaptability to speaker,

domain or environment changes and its difficult and time demanding designing process.
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The pattern reco~nilion approach is shown in Figure IA. This approach consists

of two branches defining two phases:

•
•

pattern training

pattern classification and decision

)

Acouttlc Modtling

P,onunclallon O.e!jon••••.

L..,gUtg~ Modtlng

1'tmImh<dT""

-~---_"IPIlll"",clBs ••~erH~1..IIg" ~ ~o.,7__ --.l •••••:.
II'M1UI'es(l~&e<:~lObtI'8(;"'7"l~' '- .I ,... ••••••.••••• _, ••••.•••.

y~~~-

O.code,

Figure 1.4: Pattern recognition approach to speech recognition

In the training step, several feature measurements ofa set of training speech signals

are conducted to define some test patterns. These patterns represent classes of sounds

with similar characteristics. The pattern training module uses some type of averaging

technique or model training for defining the reference patterns. These reference patterns

can have the form of a template or what is commonly called an acoustic model.

The same approach applies as well to pronunciation dictionaries and language

models, that can also be created through several statistical inference techniques.

These acoustic and language models, having been generated by statistical methods,

have, in addition to some kind of model structure (c.g. a nct, a tree, a chain of nodes), a

set of parameters or estimated probabilities that discriminate between the several paths

throughout the net, the branches throughout the tree, the transition ben-veenchain nodes

or the feasible sound and word combinations. Once these parameters are calculated, the

training step is completed and the recognizer is ready to work.
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In the pattern classification and decision step. also called decoding step, the system

seeks for the best match (according to a measure of similarity or distance) bet\'.:een a

sequence of features of the speech to be recognized and the reference patterns contained

in the acoustic model. Depending on the decoder (also called search engine). the

decision of the transcription of the spoken utterance is made in conjunction with the

information of the pronunciation dictionary and the language model.

Given a sequence of observed speech features X , the decoder looks for the optimal

sequence of words ~f'that corresponds to the spoken utterance. This is mathematically

expressed as follows:

W=argmax P(WIX)
w

where W is the sequence of words under testing. Applying the Bayes rule to the

conditional probability peW I X) and afterwards eliminating the denominator P(X) ,

since it does not depend on ~v.we obtain:

W = arg max P(X IW)P(W) = arg max P(X IW)P(W)
w P(X) w

which is called the maximum a posteriori (MAP) criterion decision rule. This rule

coincides with the maximum likelihood estimate of IVwhen the prior peW) is uniform

(that is, a constant function). Thus, the main task of the decoder is to select in an

efficient manner the word sequence W with the highest result of the multiplication of

the modeled probability distributions P(X I IV) and peW) . These estimated

distributions are respectively the acoustic model and the language model computed in

the training step.

Training strategies other than MAP. such as maximum mutual information

estimation (MMIE) [RR95] [VO\V+97) or minimum classification error (MCE) {RR95]

have also been successfully applied.

20
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Because of the speaker pronunciation variability. the co~articulation effects and

channel transmission characteristics. speech is a complex signal to be modeled.

Nevertheless, over the last decades, Hidden Markov Models [Rab89J have shown

excellent performance for statistical acoustic modeling. at the expense of making some

simplifying assumptions on speech.

Statistical language models, typically n-grams, have also proven to be successful.

particularly for large vocabulary recognition tasks. In Chapter 2. the different

techniques for statistical language modeling will be discussed in detail.

The artificial intelligence approach is presented by Rabiner and Juang as a

combination of the acoustic-phonetic and the pattern recognition approaches. The main

idea is to incorporate linguistic knowledge from any language level (from acoustics to

pragmatics) into the models and its training and use this knowledge simultaneously in

the decoding process.

For example, errors in low level word or sentence hypotheses. say in the acoustic or

in the lexical level. could eventually be corrected by syntactic or semantic rules that

would detect the error and reject the given hypothesis or assign it a low probability.

The so-called machine learning and adaptation techniques would allow, for example,

automatic acquisition of new word and sentence forming rules or new model structures.

capability of real time parameter adjusting (in the decoding phase). etc. They could be

applied to data-driven modeling methods as well as to rule-based methods.

For example. some of the information in the decoding process can be used as

feedback to adapt the acoustic and/or language models to improve performance as new

speakers, environments or tasks are introduced.

• • •
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According to the nature of the utterances the system can deal with. there are four

main categories of speech recognizers to take into consideration:

Isolated words: only one word at a time is recognized and stops are required

between words. An acoustic model for each word is typically used. The language model

can be as simple as a list of possible words.

Connected words: a pause among words is no longer required. The acoustic models

are linked versions of isolated word acoustic models.

ColllinllOUS speech: subword units such as syllables, phonemes. subphonemes,

polyphones, context.dependent subpolyphones, etc. are the units modeled in each

acoustic model. Thus, utterance boundaries are determined by the recognizer itself.

Language modeling becomes more and more important as vocabulary grows.

Spontaneous speech: the recognizer tries to model speech as spoken by persons in

daily situations without a special effort to vocalize, to avoid disfluencies (typically

"uhs" or "ums") or repetitions and to construct perfectly built sentences. The acoustic

model. as well as the language model, has to be accordingly adapted to cover this

speech modality.

There are some other classification criteria for speech recognizers. such as number

of speakers, vocabulary size or complexity of the language model.

One last basic issue in speech recognition is the evaluation. Once the recognition

system is build and trained it is desirable to estimate its performance for comparison

with other methods, other systems, or even to decide if the training should continue.

To be able to evaluate the quality of the system, a similarity (or likeness) measure

has to be defined. typically the recognition accuracy or its complementary. the word

error rate (WER). the percentage of words not correctly recognized. or the sentence

error rate (SER), the percentage of sentences not perfectly recognized.
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1.2 Motivation and aim of this Diploma Thesis

When developing statistical language models. e.g. n.grams, for spontaneous speech

in a specific domain. usually there is not sufficient data available to obtain accurate

probability estimates. especially when the system has to be tested in several languages.

Even if enough text data were available. it has been shown that n-gram models begin to

saturate within a few billion of v,lords and are not likely to improve their quality by a

significant factor.

On the other hand. decoding along a knowledge-based model. e.g. a manually

derived context free grammar (eFG), in restricted domains gives a large advantage over

the standard n-gram approach in tenns of velocity and precision. but does not cover

satisfactorily characteristic spontaneous utterances. does not handle as \•...ell with

unknown words and does not provide enough robustness,

As Pereira states in [PerOO]. a great divide has existed in research on models of

spoken and written language in approximately the last forty years, Fonnallinguistics in

the Chomsky tradition and infonnation theory in the Shannon tradition have formed

two separate (and often opposed) fronts against the problem of language modeling.

Nevertheless. some considerable advances with a unified view have been made over

the last years, A mixture of both approaches reconciles concepts such as sentence

analysis and parsing with word occurrence counting, cognitive inference with

parameter estimation, ontology and knowledge base creation with text corpora

collection. heuristic processes de!>'ignwith probabilistic techniques programming,

machine learning with statistical training and finally, speech understanding with

speech recognition.

• • •
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The main aim of this Diploma Thesis is to create a language model for speech

recognition that takes advantage of both approaches and overcomes the problem of lack

of data. Based on the latest experiments by Wang and Acero [WAOI]-[WA03cl, a

combination ofn-grams and context free grammars will be developed.

The language model created will have the fonn ofa Hidden Markov Model (HMM)

based on a previously defined semantic schema. This schema is supposed to encode the

semantic constraints of the domain. A CFG Rule Library will model the emissions of

some HMM states, providing domain-specific and some cross-domain constraints. The

rest of HMM slates \vill be modeled with n-grams trained with semantically annotated

sentences against the semantic schema. This will provide the necessary statistical

infonnation to obtain a robust language model. The amount of required training

sentences will be significantly reduced since only parts of them will be used for the n-

grams. In addition, the CFG rules will be simpler than those of a grammar based

recognizer because they will not be expected to cover entire sentences, but only small

units.

In addition to Wang's system, this Diploma Thesis will introduce an expanded

IIMMlCFG structure with an extra node at the end of each task: the "PosHask node".

Further, a multilingual capability of the model, in the sense of fast and easy portability

to other languages, \",'iIlbe achieved by defining the semantic schema in an interlingua-

based fonnat. Thus. the system will be portable to other languages since the schema

will not have to be changed. Only the language dependent CFG rules will be translated

to the new language. The initial goal of this study was to test the system in Spanish,

English and Chinese, but only the English system has been built due to time limitations.

The portability to other domains is also simplified, since it can perfonned by simply

defining a new semantic schema and changing the domain-specific CFG rules. Herein,

only the hotel-reservation domain will be implemented. The domain used in this thesis

covers a considerably wider spectrum of tasks, sentence structures and vocabulary, in
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comparison to Wang's chosen domains (the calendar domain for MiPad [HuaOI] and

the ATIS "Airline Travellnfonnation System" domain [Dah94]).

The most significant advantage of this approach for developers is that they do not

have to be experts in linguistics to create the semantic schema, define the CFG rules

and annotate the training sentences. The manually written rules will not be excessively

complex since the n-grams and the statistical infonnation of the HMM are supposed to

supply the lack of syntactic constraints.

Another advantage of this language modeling technique is its semantic output

besides of the sentence hypothesis. The task and slots associated to the recognized

sentence is additional infonnation for the next step in the recognition or translation

system \••..here the language model is used. This means that a dialog manager, a

translation model. an infonnation retrieval engine, a topic detection or any higher level

module can make use of the semantic information provided by the language model.
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2 Overview of Language Modeling

Language is the means of communicating using sounds or conventional symbols.

Its study is made by different disciplines: linguistics, philology, sociology,

anthropology, philosophy, artificial intelligence. computer science, psychology,

mathematics. physical acoustics. etc. Each discipline provides a spotlight from a

different viewpoint and \••..ith different characteristics of light intensity, color, beam

width, etc., but all of them contribute with some light on the object that is natural

language. Other human languages such as gesture languages and artificial languages,

for instance programming languages. can also be modeled. but here we will focus on

human spoken or \',:rittcn language as it is usually understood.

The study of language can also have different purposes: a comprehension of

language itself, of its structure and operation, of its acquisition, perception and

generation, of its spoken usage and its various written literary forms, of its relation with

human knowledge, of its role in a social context, of its place in mental processes, etc.

and a comprehension of language in order to set up treatments for speech therapy,

enhance communication skills, improve pedagogical techniques, build e1ectro-

acoustical engines for speech recording, storage, transmission and generation or

computational systems dealing with language such as word processors, speech

recognizers, speech understanding systems, machine translators, speech synthesizers,

etc.

In a scientific context, a model is an object M (an artifact, a symbolic system, a

process, etc.) having some similarities with another object 0 (the original object being

modeled), which allow to set up analogies from M to 0 and infer properties of O. The
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analogies between M and 0 can refer to their structure. their functions. their behavior,

etc.

Language modeling in an engineering context is the attempl to create an object LAJ

(typically a computational structure) having similarities with a given language L

(human language is assumed). which allows to create a system that uses the analogies

between LM and L to make it capable of dealing with L, e.g. transcribing spoken

utterances of L. translating texts from L to another language L], correcting

automatically grammatical errors in texts that are supposed to be from L. generating

texts and spoken utterances of L. etc.

Since this definition of language modeling is general. a basic distinction bct\ •...een

language modeling and acoustic modeling is usually made. Within a speech recognition

framework, the difference between language modeling and acoustic modeling is not

that the former models \',:ritten language and the latter models spoken language. As

pointed out in Chapter I, the difference lies in that acoustic modeling focuses in the

structure and behavior of sounds and language modeling focuses in the structure and

behavior of sentences or word sequences. Therefore, there can be language models for

spoken language as well as for written language. A third component between both is the

pronunciation dictionary, that can also be called word pronunciation model, since it

models the multiple pronunciation forms of each word of the language based on the

sound set provided by the acoustic model.

Within this context, a key question is how a language model can be created. A first

principle is that the language model Lilt, as defined above, does not intent to be equal to

L, but just to have some similarities with L that allow to infer analogies. predictions.

hypotheses, etc. from LM. Consequently. the main aim of the language model in an

engineering context (in opposition to a linguistic or any other theoretical approach) is to

provide processing functionalities to the system to which it belongs. Thus.

consideration must be given to the goals of the language model within the system. For

instance. a language model for text generation will probably not look the same as a

language model for speech recognition since they have different purposes.
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Another often forgotten principle, is that an enhanced comprehension of language

increases the ability to improve the language model [Lee04]. There is a wide trend of

thought that tends to reject theoretical studies and concentrate their efforts only on

implementation issues, being satisfied with a superficial understanding of the object

modeled. One might say that they stopped focusing on the object being modeled and

almost only look at the model. However. serious research has a theoretical background

both on the procedures and techniques of research, and on the object of research. This is

similar to state that the object of the model is at least as important as the model itself.

Gaining understanding oflanguage in depth can only bring advantages.

Now rises the question of what similarities the created model, LM, will have with

the object modeled, L. Based on both principles, i.e. understanding how language works

and knowing what the language model has to accomplish, to provide the desired

functionalities to the system. it has to be decided what part of the structure of language

or which behavior of language within the syntactic/semantic level will be emulated.

The similarities chosen and the way the model acquires these similarities define the

language modeling technique. In addition, the feasibility of the idea and its

implementation issues have to be considered.

Depending on the nature of the language model and the system. different evaluation

criteria can be adopted. Language modeling techniques usually adjust the similarities of

LM and L \\Iith the goal of optimizing a prescribed evaluation parameter.

As a side note. in a speech recognition system, the language model can be usually

excluded. It is not necessary for recognition, even though it helps enormously in its

accuracy improvement. It is. however. indispensable for speech understanding.

Next we will examine the main language modeling techniques having the above

principles in mind.
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2.1 Statistic-based Language Modeling

In the introduction of his famous \••..ork "A mathematical theory of communication"

from 1948. Claude E. Shannon stated:

"Frequently the messages have meaning; that is they refer to or are

correlated according to some system with certain physical or conceptual entities.

These semantic aspects of communication are irrelevant to the engineering

problem. The significant aspect is that the actual message is one selected/rom a

set of possible messages. The system must be designed to operate for each

possible selection. not just the one which will actually be chosen since this is

unknown at the time of design." [Sha48]

This understanding of communication led Shannon to establish very fruitful

foundations of infonnation coding and transmission through noisy channels or what is

commonly known as information theory. Its underlying principles have also been used

successfully in the field of language modeling during about the last 25 years.

One of the basic concepts behind the infonnation theory is the treatment of the

message as a stochastic process \\lith defined measurable statistical characteristics. In

this fashion. what becomes important is the repetition of the symbols of the message or

of the symbol sequence structures in a representative corpus of sentences, since

statistics' sole "raw material" is the repetition of events. The basic unit of the whole

theory is the COllnt of each event, of each behavior and of any deep or surface structure

of the infonnation.

Now, we are able to identify what similarity between the language model LH and

the language L a statistical approach uses to make predictions. It is precisely the

frequency of words, word sequences, grammatical structures or even deeper linguistic

structures. Rosenfeld defines this approach as follows:

"Statistical Language Modeling (SLM) is the anempt to capture

regularities of natural language for the purpose of improving the performance
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of various natural language applications. By and large, statistical language

modeling amounts to estimating the probability distribution of various linguistic

units, such as words, sentences, and whole documents." [RosOOaJ

However, any statistical approach to language modeling requires some previous

knowledge of language, since it must know the kind of linguistic unit or structure

whose regularity is trying to capture and have at least a basic idea of how this unit or

structure behaves. Therefore, this approach can be also basically defined as data-driven,

since it departs from some elemental knowledge of the object modeled to capture the

distribution of the prior known units or of the prior known unit properties.

The statement that such an approach can even learn new things in addition to the

probability distribution of the underlying linguistic knowledge of the method is

certainly something that has to be meticulously analyzed. This subject, nevertheless,

cannot be treated herein. as it would lead to an extensive study.

Statistical language modeling techniques have mainly focused on estimating the

probabilities of surface units of language, typically words and \I,'ord sequences. Only a

few techniques have been successful in trying to capture hidden structure regularities of

language in the syntactic or semantic level and then use them to improve word accuracy.

This is why the main goal of practically all statistical language modeling techniques is

to estimate the so-called prior probability distribution over all possible sentences,

spoken utterances or some other word. based linguistic units:

P(W) (2.1 )

The tenn Wi should be understood in the broad sense of "word": besides the

entrances of a dictionary, other spoken utterance units like .'uhs" or "urns" or some

vocal noises might also be included for spoken language modeling. Other symbols in

written text, for instance, orthographic punctuation marks .•! ? .• ; ( )", abbreviations

"i.e. e.g. & $" or even smilies "@ :D ;)" can be considered "words" to be modeled,

even though they might have to be treated differently in some cases.
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Almost all malO statistical techniques decompose the probability of IV into a

product of conditional probabilities:

•
I'(W); l'(w,)I'(w, Iw,)I'(w, 1w,w,) ... l'(w.1 w,w,...w._,) =n1'(,,: Ih,)

,., (2.2)
~f

where hi = {W1W2 ... W'_I} is called the history ofw,

and differ from each other in the way they estimate P(w, IhJ.

An extension of this approach is to consider the estimation of a joint probability of

word sequences and syntactic structure (e.g. parts of speech or syntactic phrases),

P(W,Syn) , or word sequences and semantics (e.g. tasks or semantic classes),

P(IV,Sem) or even the three of them altogether, P(W,Syn,Sem), in order to usc word,

syntactic and semantic infonnation simultaneously in the recognition process.

The evaluation of a statistic-based language model is commonly done by computing

the probability that the model assigns to test data.. or the derivative measures of cross-

entropy and perplexity. For a given set of test sentences T = {f~,W;, ... , WN}, the

probability of the test set is the product ofthe probabilities of all sentences in the set:

N

P(T) ; nPUV.)
iEl

The cross-en/ropy H/T) of the model is defined as:

)
HJT);--Iog, peT), w

T

where WT is the length of the text T measured in words.
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The perplexity pp" (T) of the model is defined as:

Perplexity is the average branching factor of the language according to the model.

The difficulty of recognizing a language with perplexity PP is comparable to the

recognition of another language with a uniform distributed vocabulary of size PP.

Lower cross-entropies and perplexities are better. indicating that the language is more

"predictable" by the model.

Next we will look into the main and most successful technique. called n-grams. and

its major problems. namely, smoothing and vocabulary clustering. Then we will briefly

introduce several other methods with a main statistical basis.

2.1.1 N-grams

The n-gram attempt to estimate P( Wi Ihi) starts by treating language as a Markov

source of order n -I, using the approximation that the conditional probability of a word

depends only on the past n -I words:

where the value of n balances the variance and the bias of the estimate. Common

values of n are 2 (bigram). 3 (trigram) or 4. Large corpora usually demand trigrams or

4-grams. The estimation of the probability is done with large amounts of texts. The

quality of the corpus is determinant to get a representative probability distribution of

the domain. If the coverage is good. the more quantity of text is available for training

the more the accuracy of the model.
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A straightforward estimation can be done by simply counting in the corpus how

many times each word sequence of length 1.2•.... n appears in the text and normalizing

it:

maximum likelihood (ML) estimate for "-grams

A plain n.gram language model relies exclusively on the frequency of apparition of

each word sequence in the corpus and therefore has theoretical and practical limitations.

Regardless of how big the training corpus is. there \vill always be n-grams that

seldom appear or even appear just once. These n.grams get a probability very close to

zero. and most of them have no linguistic reason to be considered more improbable

than others. Several smoothing techniques and vocabulary clustering methods have

been developed to overcome this problem of lack of density of data for some word

combinations, called sparseness. As Rosenfeld states:

"Ironically. the most successful SLM lechniques use very little knowledge

of what language is. The most popular language models (n-grams) take no

advantage of the fact that what is being modeled is language - it may as well be

a sequence of arbitrary symbols. with no deep structure. intention or thought

behind them.

(... ] But one can only go 50 far without knowledge."

To outperform n-grams. we ought to analyze their weaknesses. A clear limitation is

that they do not capture long distance dependencies of words nor deep relationships

between linguistic units in a sentence. This often results in ungrammatical and

nonsensical errors. N-gram language models also suffer from data fragmentation and

lack flexibility to add new vocabulary and to adapt to new domains or genres.
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2.1.2 Smoolhing and counl cul-offs

Smoothing techniques basically reserve some of the probability mass of the ML

estimation for distribution among infrequent or unseen n-grams. They are also often

called discounting techniques, because the re-distribution of mass probability can be

seen as a re-distribution of counts. As explained in [CG96], almost all techniques can

be classified into back-off or interpolated models.

Back-off models can be described wilh the following equation:

{

( 1
H )P H _ a"i "i-ntl

s••.".h (~ f ltj_n+l) - y(wi-I)p (wlw.i-1)
I-IItt _It I l-nt2

if C("i~n+l) > 0

if c("i~ntl)= 0

d<f
q

W =w ...wp p q
(2.8)

Bad<-off snvoIhing pvbabilitydistnbution

i-I
\•...here a(wi I wi_, •.•l) is Ihe distribution used for n-grams wilh nonzero counts and

i-I
P,,,,,,,,,~(Wi I wi_nt2) is the lower-order distribution we baek-offlo v,.'ithunseen n-grams.

i-I '1

And y( wi_ntl ) is a scaling factor to making the sum of ~ •••oa1t (Wi IWi~~tl) equal to

unity. Katz smoothing and Kneser-Ney smoothing are some of the most popular back-

off n-gram models.

In addition to back-off smoothing techniques. interpolated models use the lower-

i-I
order distribution ~_ (wi I wi_n+2) for n-grams with nonzero counts. Thus, their

conditional probability distribution can be expressed as follows:
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{
'( I i-I) (i-I)I' (I i-I )

P ( I i-I) _ a""; Wi_n .•1 ~ r Wi_II.• 1 ......,..,"'l }t.-'i_Il .• 2
W. lV, I - (i-])I' ( I i-I )_ I 1-11+ Y W I W- W. 21_11+ ......,.., , I-,H.

if c(wf-Il+I) > 0
if c( "'1-11+1) = 0

v.1,ere
Of

•W =U' .••lV, , .
(2.9)

Inlerpolated -"mwIlling probahilitydistribution

The Jelinek-Mercer smoothing and the Witten-Bell smoothing are among the most

used interpolated n-gram language models.

Couflt cut-offs is a simple technique to prune language models in order to reduce

their size. It deletes those n-gram counts below a certain cut-off threshold. This

threshold has to be carefully chosen to prevent discarding significant n-grams, \\'hich

\vould lead to a perplexity increase.

2.1.3 Vocabulary clustering:

The sparseness problem of data can also be battled via vocabulary clustering. This

technique involves building classes of words or phrases and estimating the n-gram

probabilities replacing each word belonging to a class with a class 10. Named entities

are very suitable for being clustered into classes. but not always a manual classification

results in perplexity improvements. Automatic clustering methods, e.g. k-means. have

shown good results for large corpora and wide domains.

2.1.4 Other techniques

Even if n-grams are still in the top of statistical language modeling, some other

data-driven methods have been developed and tested in recent years; decision trees.

exponential models (also called Maximum Entropy models) and adaptive models

(cache-based). They try to overcome common problems of n-grams. such as data
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fragmentation, inflexible dependency of each word with its n -I preceding words,

equal treatment to all kinds of words and poor generalization capability.

2.2 Knowledge-based Language Modeling

"Evidently, one's ability to produce and recognize grammatical utterances

is not based on notions of statistical approximation and the like. The custom of

calling grammatical sentences those that 'can occur', or those that are 'possible',

has been responsible for some confusion here. It is natural to understand

'possible' as meaning 'highly probable' and to assume that the linguist's sharp

distinction between grammatical and ungrammatical is motivated by a feeling

that since the 'reality' of language is too complex to be described completely,

he must content himself with a schematized version replacing 'zero probability,

and all extremely low probabilities, by impossible, and all higher probabilities

by possible'. We see, however, that this idea is quite incorrect, and that a

structural analysis cannot be understood as a schematic summary developed by

sharpening the blurred edges in the full statistical picture."[Cho57]

The above statements from Syntactic Structures (1957) by Noam Chomsky along

with other principles fonnulated in his revolutionary work, motivated and set the

theoretical base of fruitful research in linguistics and computer science. His

contribution to the theory of fonnal languages and to the creation of generative

grammars is unquestionable. He has been criticized because of his apparent rejection of

statistical approaches to language. But what he really firmly pointed out was the

insufficient descriptive power of a statistic-based model because of its nature and the

lack of data, usually called the parse data problem.

Chomsky was the first to introduce systematically the logic formalism into

linguistics. On of his contributions is his understanding of language as an infinite set of

sentences generated by a grammar. He defined (for the first time) grammar as a formal

system characterized by a set of units and a set of well.formcd rules. The use of the
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notion of recursivity (originally from mathematics) in language anal}sis and his

hierarchy of generative grammars also have influenced many linguists and computer

scientists.

In this section we introduce the concept of knowledge-based language modeling.

Basically, the goal is to create a grammar that optimally accomplishes the required

function within the engineering system it is part of. Usually a grammar constitutes the

framework to parse an input sentence. Parsing is commonly understood as an alignment

of the sentence with a grammatical structure, e.g. a parse tree. Another function of

grammars can be to transfer a representation of a sentence into another representation,

e.g. to translate the sentence into another language. There are also grammars for

generation of language and grammars for semantic interpretation of an utterance.

Here \•...e will only examine what kinds of formal generative grammars exist and

why semantic grammars seem to be very suitable for speech recognition.

2.2.1 Phrase Structure Grammars

A language, in a general sense (artificial or natural), is a set of sentences; each

sentence is a chain of one or more symbols (words) belonging to the vocabulary of the

language. A grammar is a formal and finite specification of this set and can have

different forms. It usually consists of a formalism based in a set of rules. This method

of specification is called a generative grammar or a phrase structure grammar. It has

four components:

V.: non-terminal vocabulary

~: terminal vocabulW)' (or words of the language).

The union of both ~'ocabularies is defined as Y == (V. U ~)

1': sci of rules. also called productions with the form a -+ P
where a is a Sl.'quence of one or more symbols of V. (a E V')

and p is a sequence of zero or more s)mbols of V, (P E Y')

S: stan symbol from V.
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The basic operation of a phrase structure grammar is to rewrite a sequence of

symbols into another sequence according to the set of rules P. Any sentence of the

language can be generated by starting with the initial symbol S and doing rewriting

operations sequentially until a rewriting rule produces only terminal symbols.

Grammars have different generative power. The most powerful correspond to the

so-called recursively enumerable languages. They are basically infinite subsets of

sentences that can be enumerated even though it cannot always be determined if a given

sentence belongs to the language or not. They are generated by the so-called

unrestricted grammars, \••'hich include all other less powerful grammars classified into

the following Chomsky hierarchy table:

Type Grammars Rule rC!ifrictiom' Automaton

None:
0 Unrestricted or Free

a->/3 Turing Machine

The RHS includes at least the
symbols of the lHS:

linear-Bounded1 Context sensitive A->/3/X Y
Or ahematively: Automaton

xAz --) xl3z

In the LHS can only be one
Push.Down2 Context Free symbol:

A->/3 Automaton

The rules can only have this
two fonns:

3 Regular or Finite Stale A--)tB Finite State Automaton

A ->t

where Type 3 c Type 2 c Type I c Type 0, This means that each grammar type is

a subset of any higher type grammar (Type 0 is the highest one). The right column of

the table indicates the corresponding automaton of each grammar. The column in the

center specifies the restrictions to the rules. The capital letters A and B represent a

single non-terminal symbol. The expression X_Y represents a specific context where A

appears. The letter t denotes a single terminal symbol.
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The less powerful grammars adopt several names, depending on what field they are

used: regular grammars in fonnal grammar theory, finite stare automata in automata

theory. transition networks in symbolic computational linguistics. Markov chains in

infonnation theory and statistics. It is important to note that an n-gram model is simply

a Markov chain (of order n + J) with probabilities associated to each State and stale

transition.

Context free grammars (CFG) are among the most used. Many programming

languages are context free and can be parsed with a Push-Down automaton. Any CFG

can be equivalently converted into special normal forms. typically the Chomsky

Nonnal Form. \••..hich basically try to optimize the formalism for particular types of

processing. The question if natural language is context free has been a controversial

issue for many years. More recently. some examples of natural languages (Dutch. Swiss

German and others) have proven to be context sensitive. Nevertheless. CFGs are

powerful enough to cover the main phenomena of natural language and they are

sufficiently simple to allow efficient search through them.

Context sensitive grammars and unrestricted grammars require complex algorithms

to be treated and have not been particularly suitable to establish the most common

grammatical restrictions. Consequently. other grammars have been developed trying to

capture the natural language behaviors that pure CFGs do not cover.

Many other grammars exist, such as link grammars. transformational grammars.

unification grammars. feature grammars, augmented context free grammars,

dependency grammars. systemic grammars, tree adjoining grammars. etc. but their

treatment is beyond the scope of this thesis.

A grammar is normally not operative by itsel[ An algorithm that analyses the input

sequences in order to determine its grammatical structure with respect to the given

grammar is necessary to make the grammar functional. This computer program is called
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parser. Many parsing strategies exist responding to different needs. Common parsers

are LL, LR, CKY, Earley, etc.

A decoder able to read the grammar rules and use them to formulate the recognition

hypothesis together with the acoustic model is required for using a grammar as a

language model, e.g. in a speech recognizer. Such decoders already exist, though

limited to specific grammar types (usually regular or context free grammars) and still

not very efficient and fast.

2.2.2 Semanlic Grammars

Moreno Sandoval [Mor98) declares the autonomy of syntax from semantics \\'ithin

formal symbolic systems. He argues that a formal system consisls ofa syntax (defining

well-formed rules) and a semantics (which interprets the meaning of the well-formed

expressions) and that the inference rules of the syntax can be built without bearing the

semantics in mind. This is generally true; however, the relationship between them has

not yet been advantageously used in language modeling techniques.

A syntactic grammar describes the relationships between syntactic categories

(nominal phrase, adverb, adjective, etc.) and how they arc used to generate a sentence.

A semantic grammar normally uses phrase structure rules as well, but the constituents

are classified in terms of their function or meaning (e.g. time, direction, affirmation,

etc.) rather than in terms of syntactic categories.

Nevertheless, if onlv svntactic rules arc taken into account, ignoring the semantics

of an utterance, many sentences hypothesis would happen to be well-formed, but

meaningless. Chomsky's example from [Ch057] is very revealing:

(1) colorless green ideas sleep furiously

(2) furiously sleep ideas green colorles,~
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Sentence (I) \••..ould be probably considered well-formed by any syntactic parser

based on pas tags. but is obviously nonsensical. Sentence (2) is not well-formed and

also nonsensical. Let us consider these two further sentences:

(3) i would like a room with a shower

(4) iwOllld like a sho"'er with a room

Both (3) and (4) are syntactically well-formed. but (4) is not semantically clear. It

seems to be no syntactic knowledge that can determine that (I) and (4) are not

acceptable. A trigram model would probably assign a very low probability to (I),

because all sequences of 3 words arc very rare, if not unseen. Therefore. the semantic

problem with (I) could be solved with a trigram model (or even with a bigram model).

But all trigram probabilities of(3) will probably have similar values as those of(4) and

the model will have more difficulties in deciding that (4) is not acceptable.

Now. it becomes clear what a semantic grammar can contribute to recognition

tasks. besides of the semantic information that it may output to a dialog manager or to

any higher level module after it.

Another remarkable advantage of semantic grammars is that they are known to be

more robust against spontaneous speech effects [FMS04].

2.3 Hybrid Models and related work to this thesis

As early as 1989, Fred Jelinek stated:

"The purpose of a language model for speech recognition is not an exact

analysis for meaning extraction. but an apportionment of probability among

alternative futures. This provides an opportunity for creative use of appropriate

grammatical principles that are on the whole accurate even if open to counter-

examples."
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"The difficult-to-realize aim of language modeling should be to set up a

general model structure capable of self-organizing itself to an efficient (best is

too much to hope for) solution on the basis of a training corpus."[JcI89J

More than 15 years later, it seems that this aim of language modeling, a self-

organizing structure that appropriately uses grammatical principles open to counter-

examples, still has to overcome the over.simplistic most successful pure statistical

language model: n-grams.

Smoothing techniques and some vocabulary clustering methods have substantially

improved the accuracy ofn.grams, but human knowledge of language has still not been

successfully articulated in a suitable structure to achieve the goals of large vocabulary

language modeling. Only grammars for very restricted domains have shown good

results.

In this section. we describe different attempts to combine linguistic knowledge with

statistical corpus knowledge made in the last years. Since this area is still relatively

unexplored. many of these attempts were unsuccessful, although some have shown

promising results. We sort these techniques depending on their balance between the

data-driven and rule-based character.

2.3.1 Putting language into statistics

As Rosenfeld reports in (RosOOb], there are several levels of language that can be

exploited getting linguistic infonnation from them and using it in statistical language

modeling methods.

Lexical relations benveen words can serve to group similar words (in a lexical, not

phonetic sense) into so-called clusters. Each cluster is assigned a tag. e.g.

DAY_OF _TIlE_WEEK and an n-gram LM is trained substituting each cluster tag for

the words belonging to it. The clusters or classes can be semantic-based, Part-Of-
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Speech based or automatically generated through statistical methods. e.g. K.means. The

idea behind these techniques is to reduce the dimension of the estimation problem and

hence its variance. Ho\ •..ever, they only have shown improvements over the baseline n-

gram LM in very specific domains.

At a syntactical level. several efforts have tried to integrate linguistic knowledge

with statistical language modeling: inducing probabilistic eFGs out of an annotated and

parsed corpus, training a probabilistic link grammar or a dependency grammar.

collecting linguistic classifications of the history of words and creating a predictive

model Oul of it. Lately. an attempt to incorporate erG rules into n.grams has been

made (Fle04], but with little success. Generally speaking. experiments in these

directions yielded small improvements, but more and more new methodologies emerge

with promising approaches to language modeling.

The semantics is a especially interesting level of language to exploit. since many

applications that use a language model can also use a semantic or intentional

interpretation oFthe utterances they deal \••..ith. However. not all semantic approaches to

LM provide an interpretation as an additional output. For example. interpolation of

topic-based n-gram LMs, capture topic coherence and word correlations by using an n-

gram cache, reduction of dimensionality of the topic space using Singular Value

Decomposition (SVD) in combination \\'ith n-grams, etc. References to the experiments

can be found in the quoted paper by Rosenfeld,

2.3.2 Putting probabilities into language

The most common statistical approaches to language modeling estimate the prior

probability distribution:

,
peW) (2.10)
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and try to reduce the perplexity. which solely depends on these probabilities and the

length of each sentencc.

This approach results in an optimization of word accuracy in a speech recognizer

that can be of interest if the main objective is to exactly transcribe the spoken words.

Often systems seek a posterior semantic interpretation of the unerances in order to act

consequently to the speakers request, answer, infonnation given. order, etc. Thus, many

computational systems dealing with language have as ultimate goal language

understanding rather than word accuracy.

To this end. a syntactically or semantically structured language model should

probably be optimized on the basis of a joint probability distribution of the word

sequences Wand the syntactic structure behind the model Syn, or the semantic

underlying interpretation Sem respectively.

,
P( W, Syn, Sem )

This approach would start from a previously defined syntactic, semantic or

syntactic/semantic structure and would make this structure self.organizable (following

Jelinek's expression) and open to counter examples, i.e. making it trainable from an

annotated corpus. The self-organization and training can be made in two fonns:

departing from one or a couple of simple small structures or rules and

expandiuJt the model and making it more and more complex as far as the

training data requires.

departing from a fixed structure (e.g. a CFG in the fonn of a finite state

automaton) and aligning it with the annotated corpus, in a way that probabilities

can be assigned to the different parts of the model structure.
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Some similar experiments conducted in recent years can be classified into this

example-based grammar learning techniques: an l/nsupervised grammar induction

technique of HMMs presented in [5004]. a semi-supervised grammar learning

technique reported in [WMOI]. a supervised acquisition method for a statistical

understanding model detailed in [MBl504], an interesting "Iearning-by-doing" example

for grammar development in [GavOOb], a very recent work explained in (1on06]

creating n-gram models from interpretation grammar generated corpora. Many other

anempts are still under construction trying to benefit from the available knowledge of

language and from the newest estimation and machine learning methods.

2.4 Multilingual Models

In numerous ne\v scenariOs persons from different countries, with different

languages, have to communicate, triggering increasing interest in multilingual

applications such as multilingual speech recognition or even multilingual speech-to-

speech translation.

The teon multi[jngua[jty indicates a single system working simultaneously with

more than one language rather than several multilingual systems one besides another.

These systems, might have a multiligual front-end, as reported in [W1'5W02J, a

multilingual translation model, e.g. the interlingua-based machine translation system in

(SBVW06], or a multilingual language model as detailed in [FSS+03).

2.5 Multidomain Models

Mu/(idomain models are similar to multilingual models in the sense that they can

deal with various domains at the same time within a single system. The difTerence is

that while multilingual systems make both the acoustic and the language models

capable of treating multiple languages, multidomain systems only consist of a language
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model capable of dealing with several languages. The reason is that a change of domain

has usually no considerable impact on the phonetics. but it certainly has on the

vocabulary. the sentence structures and semantics.

[HHPOI} reports two methods for a multilingual model. one with a parallel search

mechanism and the other with a combination of two domains in a single joint nehvork.

However. the multidomain capability introduced into the system results in a small

accuracy degradation.

2.6 Portability

Language independent systems (also called interlingua) or easy portable systems to

other languages are very desirable. because of the potential savings of cost and time.

For domain specific systems. a simple portability to other domains is highly desirable

as well.

The following issues must be considered to make a language model easily portable

to other domains/languages:

the training of the model in another domain/language should require a

reasonably small amount of training data. since it is often very difficult to obtain

corpora for specific domains. specially in different languages other than English.

if required. a simple annotation of data is desirable. If possible. an automatic

annotation or parsing is obviously the most "portable" solution.

if domain/language specific rules are required. they should be as simple as

possible. precluding the need for assistance by a linguist expert.
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3 Semantic-based Hidden Markov/Context

Free Grammar Language Modeling

Ye-Yi Wang, in his paper ")s Word Error Rate a good indicator for Spoken

Language Understanding Accuracy?", poses an important question about the language

modeling paradigm for speech recognition as follows:

"Most (if not all) of the approaches treat undcrslanding as a separate

problem, independent of the speech recognition. A two pass approach is often

adopted. in which a domain-specific n-gram language model is constructed and

used for speech recognition in the first pass, and the understanding model

obtained with various learning algorithms is applied in the second pass to

'understand' the output from the speech recognizer." [WA03c}

But this two pass approach is suboptimal if we are looking for a reduction of the

overall understanding error rate and it yields poor accuracy \\'hen training the n.grams

for a specific application, since it is VCr)' diflicult to obtain large amounts of training

data for some domains. Adressing these two problems, Wang states:

"More important than word error rate reduction, the language model for

recognition should be trained to match the optimization objective for

understanding."

.'It is thus desirable to include prior knowledge (e.g., domain knowledge

and grammar models for domain-independent concepts) in a language model

whenever this is possible (... ] to compensate for the lack of language modeling

training data." (WA03c]

49



It could be added that both speakers and listeners have the experience of not

focusing on how to built a sentence, but on the content of what is to be communicated.

Indeed, in the process of acquisition of language a child learns to distinguish between

difTerent utterances motivated by their meaning and not by their syntactical or

superficial structure. The learning process of well-constructed sentences is therefore

understanding-based in the first stages of a child's life. Afterwards, usually in schoo!'

children are taught grammar rules directly. A person with a mature competence of

language has usually internalized grammar rules and speaks and understands seeing

language as a whole, always seeking for the meaning of what he/she says or what is

said. Recent philosophical investigations [Can87} show that "understanding something"

is equivalent to "saying in mental words" in a kind of mental language, that can be

transformed into oral or written language.

This unified view of language as a means and act of ullden.tanding (or

equivalently, an act of expressing something meaningful, previously understood) is

v•.'hat this thesis seeks in a theoretical level. A unified building process of the language

model, i.e. statistic- and rule-based has been chosen to take advantage of both

approaches. Limitations of time and resources have only permitted an initial attempt to

implement a system based on these principles.

This chapter describes the system built for this thesis. It is based on the last papers

of Ye-Yi Wang on SGStudio, an example-based grammar learning/development tool

designed basically for speech recognition purposes. The present work tries to generalize

and expand Wang's system from various vic\ •...points.

Basically nvo tools have becn programmed: SemanricTools and

GrammarDeveloper \\'hich can be integrated within a sale dcvelopment frame\',:ork.

Semantic Tools helps the developer to create the semantic schema that will be the basic

structure of the language model. GrammarDeveloper takes the semantic schema as

input together \vith the training data in order to train the model probabilities and outputs

a finished language model in a hybrid grammar/n-gram format.
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3.1 Defining the semantics

The title of this thesis announces that the language model proposed here is

semantic-based, i.e., it has an underlying structure that tries to cover the possible

semantic contents of any sentence within a previously chosen domain. We call this the

semantic schema. It can be seen as a simplified version of the so-called frames from the

artificial intelligence field, introduced by Minsky in [Min75].

The hotel-reservation domain has been chosen for this study. It is a subdomain of

the Basic Travel Expression Corpus (STEe) [TSK02], a kno\l,'n text corpus with

spoken dialogues of basic tourism and travel situations. Typical of this domain are

sentences asking for available rooms, indicating directions. greeting, ordering hotel

services, requesting price information, etc.

The tags used in the definition of the semantic schema are based on the Interlingua

format of the NESPOLE! Project [LG\V"03], also called Interchange Format. As

explained in the referred paper, the semantic tags, which define domain actions, are

composed of two parts: the speech act and its corresponding concepts.

For example, a domain action called "request_information-disposition-room", has

these two parts: the speech act "request_information", also called speaker intention or

task, and the concepts "disposition" and "room".

As the schema is defined in XML format, the tasks are top-level tags and the

concepts are nested within them in slots, as shown in the following box:
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<top-level tag>
<slot #11>
<slot #21>

<ftop-Ievel tag>

The decision of the tasks and slots that our semantic schema ought to have is critical.

Our idea is to define a generic semantic framc',\'ork rather than a very detailed and

exhaustively specified grammar. This flexible schema will leave to the statistical part of

the model more room for data-driven constraints. The choice of the tasks and slots has

been based on some initial semantic context free grammars from the Interactive

Systems Laboratories at the Universitat Karlsruhe (TH) that cover the whole hotel.

reservation domain. These grammars arc in the SOUP fonnat by Marsal Gavaldft

[GavOOa].

The following box shows two examples of top-level rules from these grammarsl:

sl rL'quest_ in fonnation-di sposition-room 1
(-+RIIETORICALS [super_disposition'" 1 [supcrJoom-spec=))

sl thank -action-person I
(-+FILLER-FOCAL -ACKNOWLEDGE gracia~ ]Xlr [super_action"') [superycrson-spcc"'l -+FILLER-FOCi\L)

Now, if we look, for example, at the part of the grammar with the rules for

'"[super _ room.spec= ]";

1 '+' preceding a token indicatt.'S repeatability
,-, preceding a token indicates optionality

'-+' preceding a token indicates optional it)' and repeatability
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Isuper_room-spec=]
(++FILLER +[operator=range) (room-spec"] ++C_ROO\I-SPEC)
(++FILLER DISJUNCT-PHRASE +con Iroom-siX"C"']C_ROOM-SPEC)

C_ROOM-SPEC
(++FILLER +(operator-] ++FILLER [room-spL"C"'J++FILLER)
(++FJLLER +(opt:rator=) ++FILLER [prc-mod:room-spec"']++FILLER)

[room-spec=]
(+ROOMS-PREP ++ROOM-MODS-PRE ROOMS ++ROOM-MODS-POST)

ROOM-\lODS-I'OST
([super_object-number= I)
(++FILLER-FOCAL [super_contain"') ++FJLLER-FOCAL)
(++FILLER-FOCAL Imod:supcr_cxclude=] ++FILLER-FOCAL)
(++FILLER-FOCAL Isuper_excluded-from") ++FILLER-FOCAL)

ROOM-MODS-PRE
(++FILLER-FOCAL ORDER-REF ++FILLER-FOCAL)
(++FILLER-FOCAL +OBJ-MODS-PRE.PRE Isuper_modifier=] ++FILLER-FOCAL)
(++FILLER-FOCAL +OBJ-MODS-PRE-PRE (superJX>r1ion=] ++FILLER-FOCAL)

ROO\1S
((bedroom])
([double_room))
([famil)'_roomJ)
((suileJ)
((room])

we see how complex and detailed these grammars are. even being semantic-based.

They are analysis grammars thought for pure rule-based parsing. For this reason. they

have to go above the limits of semantics and include implicitly many syntactic rules. In

addition. these rules have filler tags that cover spontaneous speech effects and make the

grammar more flexible.

The model we want to built has to leave some degrees of freedom to be used by its

data-driven approach. On the other hand. we desire a language independent semantic

schema that can be easily ported into any language. The SOUP grammars are obviously

extremely language dependent.

Therefore, we have simplified the given grammars keeping the domain sentences of

the BTEC corpus in mind. The top-level Left Hand Sides (candidates to be a root of a
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parse tree) have been directly taken as the tasks of the schema with little modifications.

The Right Hand Sides of the top-level rules have been analyzed more carefully. Fillers,

rhctoricals, post- and pre-arguments and, in general, optional terms of the rules (those

preceded by an asterisk) have been left out. Only tenns that are not optional and that

represent a semantic concept have been taken as the slots of the semantic schema.

Accordingly, the semantic schema corresponding to the two SOUP top-level rules

shown before looks as follows:

<T ask name=" reques t_ information-disposi tion -room" >
<Slot name="super_disposition"/>
<Slot name="super_room-spec"/>

</Task>
<Task name="thank-action-person">

<Slot name="super_action"/>
<Slot name="superyerson-spec" />

</Task>

As we will see in the next section (3.1.1.), the slots have to be additionally

simplified by taking lower tenns from the parse tree. For example, instead of

"super_room-spec'" the auxiliary non-tenninal "ROOMS" has been taken (auxiliary

non-terminals are arguments that almost are in the last level above the tenninal words).

Additionally, words are thus left out letting the data-driven method cover them. The

lower the tenns taken of the grammar are, the fewer the words corresponding to a slot.

This large simplification of the grammar rules is also done with another purpose.

The development of complex grammars as the above referred is very time-consuming

and requires qualified persons with deep linguistic knowledge and parsing experience.

Our goal is to built a system that can be easily ported by non experts into other domains

and languages.
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The final semantic schema defined in this thesis for the hotel-reservation domain

consists of26 tasks and 14different slots, listed in the following table:

Task n_ Slots
affirm no slots
apologize no slots
exclamation no slots
give information-arrival TEMPORAL
give information-direction DIRECTION, LOCATION
give information-existence-object OBJECT, LOCATION
give information-object property OBJECT, OBJECT-PROPERTY
give information-personal-data PERSONAL-DATA, PERSONAL-OBJECT
give information-price CURRENCY, PRICE
give information-time TEMPORAL
give information-wish OBJECT, ACTION
greeting no slots
how to ACTION
negate no slots
request information-accomodation ACCOM:10DATIONS
request information-direction LOCATION, ACTION, OBJECT
request information existence object LOCATION, OBJECT
request_information-feasibility- ACTIONaction
request infor~ation-object-property OBJECT, OBJECT PROPERTY
request information-personal-data PERSONAL-DATA
request information-price PRICE
request information-room ROOMS, ROOM-PROPERTY
request information-time ACTION, EVENT, TEMPORAL
request information wish ACTION, OBJECT
suggest-action ACTION, OBJECT, TEMPORAL
thank no slots

3.1.1 Context Free Grammar Library

A set of rules is needed in addition to the semantic schema to define the several

word sequences that each slot (LOCATION, TEMPORAL. ACTION, etc.) represents.

These rules, as already seen for the slot "ROOMS" (in the box with the rules for

"(super_room-spec=)"), can be taken directly from the SOUP grammars, though they
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can be slightly modified to adapt to the given corpus. Although the rules can be context

free (this is why the sct of these rules is named Context Free Grammar Library) they

often are as simple as a list of words.

ROOV.'s
(hotel room)
(reservation)
(room)
(rooms)
(twin room)
(suite)
(suite room)
(vacancies l
(vaca:'lcyl

CURRENCY
(cents)
(dollar)
(dollars)
(euro)
(euros)
(pounds)

Intending to make the system more universally compatible, a grammar fonnat

different from SOUP has been adopted for writing the rules ofthe CFG Library, namely

the Javan{ Speech Grammar Format (JSGF). which defines a BNF_style2, platform-

independent, and vendor-independent Unicode representation of grammars. Therefore,

a conversion from SOUP to JSGF has been made. Some rules within this Library are

domain dependent (e.g. those for ROOMS, OBJECT, LOCATION. etc.) while others

are domain independent (also called cross-domain, e.g., CURRENCY. PRICE,

TEMPORAL, etc.).

2 BNF is the "Backus-Naur Form", an often used grammar notation: non-terminals

are delimitated by '<' and '>" the symbol '=' is used to separate LHS and RHS

expressions, rules with the same LHS are grouped into a single BNF definition

separating each with T, etc.
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3.1.2 Annotation of the BTEC corpus

Once the semantic schema and its corresponding rules in the CFG Library are

defined, we are able to semantically annotate the corpus that will be used for training.

The BTEC corpus is a multilingual text corpus with spoken dialogues of basic

tourism and travel situations that was provided with a manual classification between the

following subdomains:

10
01 :
02:
03 :
04:
OS:
06:
07:
08:
09:
10:
11:
12 :
13:
Total:

SUBCOMA.IN
Restaurant
Airlines, airports
Ernporiu:n
Drinkery
Bank
Post office
Hospital
Personal services (haircut, etc.)
Transportation
Travel
Others
Hotel
Security and problem-solving

It OF SENTENCES
15,061
15,538
18,087
2,346
2,016
1.617
9,992
1, 460

18,926
23,963
26,467
16,741
7,886

162,320

In this thesis we have implemented a system for the hotel-reservation domain called

hotel domain (lD=12) in the classification of the BTEC. Not all sentences have a

translation into all languages of the corpus. In our case. only 8.777 sentences from the

16,741 of the hotel domain have all their English. Chinese and Spanish versions.

As usual In any initial contact with a given corpus. a first cleaning and

normalization step has been necessary to eliminate some detected errors and to

transform some punctuations marks or word/letter writing forms (e.g. abbreviations or

accents) into a single known. conventional form. It is false that the more data for

training. the better. Corpora should match the demanded domain and be consistent.

Having less data is better than to have large amounts of data with erroneous material

that may cause language model pollution [Fug04]. In our case. the corpus cleaning and
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normalization has been very time-consuming. since many errors were found. specially

for the Spanish version.

Then. the sentences have been semantically annotated against the schema. To this

end. the sentences were read one by one and cach of them was assigned to one of the 26

tasks from the schema. The words of each sentence that matched any of the slots of its

task. have been annotated as well. assigning them their corresponding slot tag. The

follO\l<'ingbox shows three examples. The annotation has been performed also in XML

format.

<request lnformatlon-room text=".l'd like a twin room please">

<ROOMS text=" twin reom" />
</request information-room>

<request_information-room text:="i want a suite with a shower">

<ROOMS text="suite"/>
<ROOM-PROPERTY text="shower">

</request lnformation-roo~>

<thank text="thank you sir">

</thank>

The slots are in order of apparition in the original sentence and there is no limit in

the number of slots a sentence can have. Totally. 5,667 sentences have been annotated

from the hotel domain of the English version of the BTEC corpus \\oith the help of

Semantic Tools.
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3.1.3 Semantic Tools

The manual annotation of sentences is onc of the most time-consuming and

exhausting tasks of the text pre-processing step. Therefore, the program SemanticTools

has been \•...ritten to make it easier and faster. Semantic Tools has been programmed in

Java using the Eclipse Platform 3.0.1. The graphical user interface (GUI) of

Semantic Tools permits a simple way for creating the semantic schema and to annotate

the training sentences accordingly. It consists of two panels:

- Semantic Schema: this panel allo\\"s the user to create new semantic schemas or

modify old ones. The schema is represented in a graphical tree form, but it can be

automatically saved in a file in XML format.
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'0 •••---,D •••••~.d ••• _
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•0 ,•••,,".o-....__ ~_ _.0--..__ '".o--.._..- _..~
.0'--"'_"-''''.0.__._ ..-.._
o~_0""""...,.. ••.•..•0._....- ..__.0_....- .._
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- Sentence Annotator: in this panel the sentences of the corpus can be assigned to any of

the tasks defined in the semantic schema with the help of a graphical checkbox

component. The sentences are split into words and each word can be separately selected

with a click ofmousc and assigned to a slot of the chosen task. The annotation is saved

in a file in XML format.
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The importance of this tool relies in the user friendly framework that allows a

convenient annotation of the corpus. The use of the mouse makes the typing

unnecessary and thus the process very fast.

3.2 Building and training the model

Once the semantics of the domain is defined. the model has to be built and trained.

The program GrammarDeveloper was written for this purpose.

3.2.1 Grammar Developer

The input of the application consists of the semantic schema (in XML fannat), the

erG Library (in JSGF format) and the annotated sentences (also in XML fonnat). The

schema and the rules are used to create the model structure and the sentences arc the

data for estimating the model probabilities. The output of GrammarDeveloper is a
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trained language model consisting of a JSGF file and many associated n-gram files (in
ARPA3 format).

Semantic Schema -_~ ••I
XML file

CFG Library
soup me

Annotated Sentences _

XML file

GranunarDeveloper - Language Model

JSGF file WIth associated
ARPA ngram files

Figure 3.1: Black box diagram of GrammarDeveloper

3.2.2 Creating the model structure

The semantic schema, which is solely a list of tasks with concepts within each of

them, has to be transformed into a structure or a net that physically describes the

different sentences covered. This structure requires an initial point. an end point and a

wide variety of paths. The language model created herein will be used by a sentence-

based speech recognition decoder. Thus, each recognized sentence will follow a route

through the model from the initial node to the end one.

Since the semantic schema is language independent and, therefore. does not define

syntactic rules. we do not have any clues on how the structure of the model has to be

only ,••..ith the available semantic information. There are only rules for the slots, i.e. for

the concepts. This means that with the CFG Library only the formation rules for the

slots of each task are defined, and the rest of the sentence remains undetined.

J ARPA stands ror Advanced Research Project Agency
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We will build is a net with nodes and transition arcs between them. Each node can

be seen as a "state" of the recognition process that covers some part of the sentence

being recognized. The different word sequences each node can generate (or recognize;

from now on, we will speak about the model in a dual way: recognizing or generating a

sentence) will be either "Ieamed" using the training algorithm described in the two next

sections (3.2.3 and 3.2.4) or will be ruled by the CFG Library. The transitions between

nodes will also be assigned to a probability estimated by the training as well.

The resulting structure is a mixture of a Hidden Markov Model (lIMM) and a

Context Free Grammar. The nodes corresponding to a concept of the semantic schema

are modeled by a rule in the CFG Library (e.g. ROOMS) and all other nodes are left for

the training to define \'v'hatword sequences they can cover. This is the justification for

the name of this thesis. Another possible name could have been "A probabilistic

context free semantic grammar for language modeling".

Semantic Schema

"-
V

CFG library

- cross-aomaln rules
- aomain-specific rules

Hl'MlCFG Structure

•••

Figure 3.2: Creation of the HMM/CFG structure

The HMM/CFG structure will have as many branches as tasks in the schema. And

each task will have as many sub-branches as slots (or concepts) defined for it in the

schema. Since we do not want to introduce any previously established syntactic rules

for the sentences in each task (besides the CFG nodes, also calledjixed nudes) we will

place non-fixed nodes (all other nodes that are not fixed) before and after each fixed

node. Additionally. there will be an initial and an end non-fixed node for each task.
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We will illustrate this with an example. Figure 3.3 shows the pan of the HMM/CFG

structure that corresponds to the task "request_intonnation-room", which has two slots:

ROOMS and ROOM.PROPERTY. There is a fixed node for each slot (those with non-

rounded angles. NT3 and NT6) plus 0\'0 additional Pre- and Post.nodes. There are two

more nodes, "Pre-requesUnformarion-room" and "Post-request_infonnation.room" at

the beginning and at the end ofthe task.

reci uest_information~rnum

"17 I'iTJ N"T'
•••••kUlU .- -~>,

• {0> ,...~...,.,.•---- ,..-.•.... .-..-
N"T' Nn

• ••••.•••~.1•••. _.- ~~-
~ '''' N17•

Figure 3.3: HMM/CFG structure for the request_infonnation.room task

As shown in the picture, not all transitions are allowed. Once we are at the Pre.task

node (NTI), we can choose to go up to the ROOMS-branch, down to the RooM-

PROP.branch or directly to the PosHask node (NT8). In this last case, the path through

this task is completed with the last transition to the end node. In other cases, a Pre-slot

has to be gone through before going into the slot (looking at the corresponding rule in

the CFG Library). After that comes the Post-slot node. At this point three possibilities

emerge: repeat the same slot.branch, jump to the other slot-branch or go to the Post-

task node and finish the sentence.

Every given sentence from the training corpus has a single possible path through the

model, depending on the apparition of words that match with any of the concepts.
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Although the training will detennine exactly the words that the Pre- and Post-nodes

will cover thev have been added with an intention. Pre- and Post-task nodes could. .
respectively cover typical initial words in a sentence. such as "hello". "good morning".

etc. and common ending words, for example "please". "si(', etc. Pre- and Post-slot

nodes could cover the surrounding words of the concepts (e.g. "with a" seems to be

suitable for NT5).

3.2.3 Alignment: Depth First Searcb

As soon as the HMM/CFG structure is built. it has to be trained (Figure 3.3) with

the semantically annotated sentences.

HMMraG Structure

Annotated Senlences ~

Figure 3.4: Training of the model with annotated sentences

To this end, two steps are necessary: an alignment of the sentences with the model

and an estimation ofthe model probabilities.

The alignment is simply the process of taking all annotated sentences, one by one,

and finding the path through the HMM/CFG that fits with the annotation of this

sentence. There is only one possible path for each sentence. since the order of

apparition of slots detennines the way to go. Consider the following two examples for

the task "request_information-room":
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----- -----------------------------------------

would like a with a

NT, NT,

i'd like to have a In the

NT.

whcrc NTk is the notation for "non-terminal"', which is the same as "nooc" in our case.

Once the alignment with the slots is found (NT) [ROOMS] with "room" and NT6

[ROOM-PROP] with "shower") the rest of the alignment is straightforward: the NT-

sequence NT] NT2 gets aligned with "i would like a" and the NT-sequence NT4 NT5

gcts aligned with "with a" for the first sentence. The alignment for the second sentence

becomes obvious.

To perform the alignment process, \\'e have programmed a depth first search: an

algorithm for finding paths through a net. However, this process leaves an

indeterminacy problem, because the words not aligned with a slot get aligned with

pairs of NTs, as seen in the two examples above. To obtain a many-to.one alignment

(this is cxactly what we need, because \••..e ought to know the coverage of each nooe

independently of other nodes), we make a segmentation of each word sequence aligned

with a pair of NTs and then decide which segment corresponds to which nooe. Of

course, there are many segmentations for each word sequence. For example, for the

word sequence "i would like a":

i would like a

~/
NT) NT:

i would like a

\~/
1'1) NT:

i would like a i would like a

\ /\ / \ //
NT) NT: NT} NT:
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A priori, we cannot decide bct'.\-'een any of these five possible segmentations,

because there is no explicit data for discriminating them and selecting the "good" one.

If we look at the second sentence "j'd like to have a shower in the room", \\,:e see

that the initial words "i \',:ould like" (with the contraction expanded) are the same for

both sentences. Thus, we would probably say that the "logical" segmentation is the

fourth one, aligning "i would like" with NT I and letting the remaining words "a" and

"to have a" align with NT2 and NTs respectively.

However, this hypothesis is only based on the two example sentences given before

and depends solely on intuition. The alignment is mad~ with more than 5,000 annotated

sentences, and there is no straightforward way to identify the best segmentation.

The adopted solution to this indeterminacy problem consists in generating all

possible segmentations of each word sequence (as done before) and align each of them

to the corresponding nodes. The algorithm used in the training step \•...ill then take care

of thc problem. The result of the alignment process for the task "requestJnformation-

room" is displayed as shown in Figure 3.5.

rVQUV'$t.Jnformatioo-room •••••••••••• ~-..... .......,,~
••

NTB

EJ

--

-----...< .•• """l-...... .j•.....••••....•1._ •.•••••••"...,/111:"
NT6 NT7

•
ko ••••••••

•••• ••.~.

/"iTI

•

Figure 3.5: Alignment results for request_information-room
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During the alignment, the word sequences resulting from the segmentations are

accumulated in each slot and saved for the training step. The special character "£"

(Epsilon) represents the nullstring. being simply a sign to express that no word has been

aligned with this node in a segmentation (the first and the last segmentations of the

example for"i would like a" make NT1 and NT2 get aligned with £ respectively).

3.2.4 Probability estimation: Expectation l\laximization AI~orithm

After the alignment completed, the model has a defined structure with the rules for

eaeh slot "ode available in the CFG Library and a list of word sequences for each non-

fixed node. This list of word sequences represents the coverage of each node, but docs

not have a probability distribution for them. Until now, all members of the list are

equally probable in the node where they are. All transition arcs of the model are equally

probable as well. A graphical representation of the whole model with the probabilities

to be computed is shown in Figure 3.5. In this drawing all nodes are round for

simplicity.

I•

\
••.~rml~"l
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s

Figure 3.6: Generic HMM/CFG structure with transition and emission probabilities
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From the picture. four different types of probabilities can be distinguished:

- (ask probabilities: P( Task I ) ... P( TaskN )

- transition probabilities: a( NTs 1 NTl )

nodes

- eFG probabilities: b( 't INTk)

- emission probabilities: b( u I NTk)

between connected

"1 slot nodes

"1 non-fixed nodes

where t stands for any rule in NTk and a is any of the word sequences assigned to

NTk as a result of the segmentations of the alignment.

The estimation of these probabilities uses the results of the alignment as the

infonnation to calculate the statistical parameters. The available data after the

alignment is:

• paths of each sentence through the model

• lists of word sequences in each non-fixed node

• C( NTs NTh w ): the cOIml of how many times each word sequence w has

been aligned to the pair of nodes NT$ NT!

With the infonnation of the paths of sentences obtained from the alignment. we

estimate task probabilities. transitions probabilities and eFG probabilities with a

Maximum Likelihood estimation (ML). The fonnulas are:
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Given the annotated corpus of sentences S=:{$I' $1'"..' $L}

P(Task) = C(Ta.,k,-> s)
, L

(divide the count of sentences asigned to Task;
by the total number of sentences in the corpus)

,,(NTINT)= C(NT, NT"w), , L:C(NT, NT" w)
••

(divide the count of word sequences aligned
with NT, and NT; by the total count of word
sequences aligned with NT, and any other NT)

h(rINT,)= C(NT.->r)
L:C(NT, -> r,).,

(divide the count of the rule r in NTk

by the total count of rules in this node)

If the counts of the optimal segmentations of the word sequences with respect to the

pairs of nodes were available. the emission probabilities would be straightforn:ard to

estimate with a simple ML equation:

h(o.INT,)=
L:C¥, (NT, ->0.,).,

However, the optimal segmentations are not available. We consider them as

existing, but not directly known from the data. These optimal segmentation counts are
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exactly the hidden variables that the Hidden Markov Model has to cncode to estimate

the emission probabilities of each non-fixed nodc.

Thus. the Expectation Maximization algorithm (EM-algorithm) [DLR77} has been

implemented to estimatc the counts derived from these optimal segmentations. These

estimated counts will be called expected counts. The resulting estimation fonnula is:

where A.:(P.q) is the probability that the NT-sequence NT, NT, covers the word sequence w p ••• Wq-1

A more detailed description of the components of the fonnula for the expected

counts can be found in the Appt:ndix and the mathematical deduction for it is described

in [WA03.].

Using the expected counts instead of the optimal counts (which we do not have). the

ML estimate of the emission probabilities is:

b(aliVT.)= CEM(NT,. ~a)

I CEM(Nr. ~a;)

"

Since the algorithm to compute the expected counts is iterative, \•...e prefer to talk

about training instead of estimation. Figure 3.7 shows the whole iterative process:

70

(3.5)

(3.6)



,rob.!
I E-rtep

! e:qlCotUlu J
~_~~~S __

t"xpCOtUlU 1
I SRIL)IJ

Il-KrRmS 1
Pefl'luity(J.) - P"IllI",rityQ.'j )

> thrPlAOld

< threshold

HMM/CFG language Model

(JSGFrue + N-iJ'llfn fdn)

Figure 3.7: Flov•.' diagram of the training of the model

The first task in the algorithm is to initialize the emission probabilities b(w" NTk)

with a uniform distribution. After that. the algorithm enters into a loop with basically

three steps:

E-step: the expected counts are estimated from the data and from the

emission probabilities of the last iteration.

l\l-step: the new emission probabilities are computed by normalizing the

expected counts resulting from the E-stcp.

SRIL)1: after a processing of the expected counts. the SRI language

modeling toolkit [Sto02] is used to create the n-gram files considering the

expected counts as nomal counts.
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After each iteration, the perplexity difference between the actual model and the

model from the previous iteration is computed. If this difference is grater than a

prescribed threshold. another iteration is conducted. Otherwise. the estimation

improvement is considered sufficiently small and the training is finished. The training

can also stop if a maximum number of iterations reaches a limit specified in the

configuration file.

The figure belm\! represents the finished model, with its transition probabilities, its

n-gram files associated to each non-fixed model and the CFG rules associated to the

slot nodes:

NTHu.

NT.

NT3.-

[fG lun.,-f'Il:c.
I•• ..., {ot-,

••••_l,--
Nn

Pr•• looMS

NT2

.•.-~1-..-:
o..U"e
1.2$ •

NT!

.•.-.•
\1-.._.'-" .
-'J'I -.ld -$,4=•.\2 _

-1.11_
~ .•...

request _infonnatio~room

/~,...u,\
u.
\

Figure 3.8: Trained HMM/CFG

Although not shown in the picture, each CFG rule has also its estimated probability

after the training. as already explained, via an ML estimation.
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3.2.5 Tuning the model parameters

GrammarDeveloper has been programmed to easily build new models with other

training corpora. other semantics and grammars. and other algorithm parameters. A

configuration file serves for this purpose, making the definition and creation of models

straightforward. Given a training set and a test set with their corresponding semantic

schema and eFG library, the training parameters and the SRILM parameters can be

adjusted before creating the model.

Training parameters to be tuned are: threshold for the perplexity difference between

iterations, to determine when the algorithm stops; maximum number of iterations

allowed, as an alternative method of finishing the training; and the parameter indicating

if the eFG rules probabilities are to be trained from the data or if they should be set

with uniform distribution.

As any n-gram estimation tool. SRILM has multiple parameters that can be tuned.

Among them: the order of the n-grams (value of On'); the smoothing method used; and

the inclusion of the '<UNK>' token for unknown words. Additionally, our system

permits choosing between local node. local task and universal vocabulary for use in the

n-gram estimation.

3.3 Porting the model into other languages

The model has been designed to be easily ported into other languages and domains.

Since the semantic schema is language independent, once it is defined for a domain, it

can be used for other languages by only changing the eFG Library, annotating the

sentences in the new language and training the model again.

In this thesis, only a model for English in the hotel-reservation domain has been

implemented. Future work will test the system in Spanish and Chinese as well.
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4 Test and Evaluation

Although the model built has been tested in a speech recognition system, it could

have been readily tested in a topic detection engine. in a speech translation system, in a

question answering system. or in any other language processing system that can make

use of a semantic-based language model. An integration process ",!QuId be needed to

make the model readable by the system and compatible with its internal framework.

In this Chapter. the test of our HMM/CFG language model perfonned with the

Janus Recognition Toolkit (JRTk) [FGH+97] is described. Its actual decoder [SMF-OIJ.

called the Ibis decoder, allows using context free grammars as well as statistical n-gram

language models as linguistic knowledge sources [FSS.03] and its last version (August

2006) permits the use of both at the same time in a hybrid linguistic knowledge source

called UnifiedLlvl.

This Chapter also describes the making of the test-set and the evaluation and

analysis of the results in terms of Perplexity (PPL), Word Error Rate (WER) and Task

Error Rate (TER).

4.1 The Janus Recognition Toolkit

The JRTk has been developed by the Interactive Systems Labs at the UniversiUit

Karlsruhe (TH) in Germany and at the Carnegie Mellon University in the USA. It is

part of the JANUS speech-to-speech translation system [LWL+97].
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It provides a flexible Tclffk4 based environment enabling researchers to build state-

of-the-art speech recognizers and to develop, implement. and evaluate new methods.

This environment implements an object oriented approach that. unlike other toolkits. is

a programmable shell with transparent. yet eflicient objects, rather then a set of libraries

and precompiled modules.

4.1.1 The Ibis decoder

The version of Janus used in this thesis is V5.0 patch-level 14 which features the

Ibis decoder. This is a one-pass decoder based on a re-entrant single pronunciation

prefix tree and uses of the concept of linguistic context polymorphism. It is. therefore.

able to incorporate full linguistic knowledge at an early stage. It makes possible to

decode in one pass, using the same engine in combination with a statistical n-gram

language model as well as cor:text free grammars. It is also possible to use the decoder

to rescore lattices very efficiently. This results in a faster process compared to the

decoder in previous versions of the JRTk which needed three passes to incorporate full

linguistic knowledge. The object hierarchy for the Ibis decoder looks as foIlO\.,:s:

Figure 4.1: The Ibis Object Hierarchy

4 Tclffk is a free script language for general purposes available at httr:lI\\'w\'''.\c1.tkl
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The language model interface in the Ibis decoder is built with a linguistic

knowledge source object called LingKS. This object constitutes a common interface for

all types of language models. c.g. n-gram LMs. CFG grammars. phrase LMs.

interpolation of several LingKSs, etc.

The CFG framework of Ibis supports the following fannats: SOUP. JSGF, PFSG

(Probabilistic Finite State Graph fonnat. which is used by SRILM) and FSM (AT&T

Finite State Machine text file fonnat). This framework can be used both for decoding
and parsing.

4.1.2 The UnificdL~11illguistic knowledge source

Since the format of our HMM/CFG model was not supported by the Ibis decoder. a

new object has been programmed by Christian FUgen: the UllifiedLM. The LMSet

object was used for using UnifiedLM as a special linguistic knowledge source of Ibis.

The LMSet is implemented as a set of linguistic knowledge sources of the type CFG

and n-gram representing a separate linguistic knowledge source. whereby the LingKSs

can be linkcd together with the help of tags used in the CFGs or n-gram LMs. This

enables references in one language model to other sub language models.

For the UnifiedLM the "head" LM is a CFG consisting of the specification of the

different speech acts and several n-gram "sub" LMs specifying the different pre- and

post-slots and pre- and post-tasks.

Additionally. a special modality of the search algorithm has been programmed in

order to search paths through the complex structure of the model and compute their

probabilities (or their score. defined as the negative logarithm of the probability). The

search algorithm used for this purpose is a breadth first search.
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4.2 Test set

A sct of 150 sentences has been manually selected from the BTEC corpus, trying to

cover all 26 tasks defined in the semantic schema and at the same time be sufficiently

varied. The selection was made long before the EM-algorithm was programmed with

no consideration of any other criteria. For those tasks with more training sentences,

more test sentences were also selected. The following table sho\\'s the distribution of

the test sentences among the tasks compared to the number of training sentences:

Task name
# test # training

sentences sentences
affirm 7 98
aooloaize 3 47
exclamation 0 29
ive information-arrival 4 30

I give information-direction 5 33
I qive information-existencc-~b'ect 1 174
I qive inforroation-ob;ect- ro ert 7 344
Iqive information-personal-data 6 197
IClive information-price 5 44
IClive information-time 4 69
Iaive information-wish 9 547
j areetina 10 106
how to 4 86
neaate 1 51
request information accomodation 3 98
re uest information-direction 6 364
request information-exis~ence-ob'ect 8 401
request information-feasibility-action 5 422
request information-obiect-property 2 22
reauest information-pe~sonal data 11 270
request information-price 9 304
reQuest information-room 12 458
reQuest information-time 11 360
reauest information wish 1 89
'u est-action 13 949
thank 3 75
TOTAL 150 I 5667

The 150 sentences have been recorded for four different speakers: one female and

three males. Thus. the test set consists of a total of 600 sentences corresponding to

about one hour of recorded speech. The recording tool used \•...as the version 0.9 of the

Data Collection Tool by Tanja Schultz and expanded by others. The recordings were
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made with a headset microphone from Plantronics and the external sound card TELEX

H-551 DigitaL The recording format is: 16KHz sample rate, Lin 16 sample encoding,

one mono channel and Little Endian in the byte order format.

The acomtic model that we have used for our experiments was trained on nearly

95hrs of close talking meeting data mixed with 180hrs of Broadcast News data. It is a

slimmed down version of a system. which was used in the NISTs RT-04S5 evaluation

[MJF+04]. It is a fully continuous system consisting of 6000 codebooks with 185k

Gaussians over a 42-dimensional feature space based on MFCC (mel-frequency

cepstra1coefficients) after linear discriminant analysis and global semi-tied covariance

transforms with utterance based cepstral mean subtraction. Incremental constrained

MLLR (maximum likelihood linear regression) is used in decoding to compensate for

different channels effects.

Using a Pentium 2.80GHz with IGB RAM memory. the training of the

IIMM/CFG language model with all features included, has an approximate duration

of two hours for 45 iterations. However, the stabilization of the probabilities already

takes place around the 30th iteration. The decoding of the test-set has a duration of

about tweh"'e hours using the prototype implementation of the UnifiedLM. This

decoding module \'v'illbe optimized in the future to reach a reasonable working speed.

4.3 Evaluation

The test results of the test are evaluated in terms of perplexity (PPL), word error

rate (WER) and task error rate (TER) and compared to a stand-alone n-gram language

model.

SRich Transcription 2004 Spring Meeting Recognition Evaluation conducted by NIST in lhe USA
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4.3.1 Definition of the cnluation measures

The perplexity of a probabilistic model (rule-based models cannot be evaluated with

PPL) can be interpreted as the "predictability" of this model towards a test set of

sentences. It is usually a good indicator for the quality of the model, though it is not

always correlated with other parameters such as \\lER or with language understanding

rates. In Chapter 2, equation 2.5, can be found the mathematical definition of the

perplexity.

The word error rate is based on the minimal edit distance between hypothesis and

reference sentence, this means it is based on the minimal number of substitutions s,

insertions j and deletions d necessary to transfonn the hypothesis into the reference.

Being n the number of reference words, the WER, in percent, is computed as follows:

WER=s+i+d *100%

"

The task error rate is defined as the percentage of sentences that were not aligned

with the same task as the reference annotation:

TER = # task recognition errors * 100%
# tasks

4.3.2 Baseline model description

The baseline is a 3-gram model trained with the same corpus used to train the

HMM/CFG, i.e. with a part of the BTEC consisting 0[5,667 sentences from the hotel-

reservation subdomain which has a vocabulary of 1,593 words. The smoothing

technique is Winen.Bell, the same used for the n-grams of the non-fixed nodes of our

system. The tool SRILM was used to compute probabilities and perplexity. A language
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model weight Iz = 32 and a word transition penalty Ip

decoding the baseline and all other models.

4.3.3 Perplexity and Word Error Rate

10 was always used for

The training of the HMM/CFG produced 45 language models, one for each iteration.

The parameters of the model are re-adjusted in each iteration and thus, an evaluation of

intermediate models shows the evolution of the model's quality. The mathematical

convergence analysis of the EM-algorithm in [DLR 77J shows that it always converges

to a local maximum. If we plot the evolution of the perplexity along the iterations and

compute the WER for some of them we obtain the following graph:

PPL and WER of the HMMlCFG Model along the iterations

1- pee I
-- ••••'ER

3 , 1 ~ 11 13 :~ 17 ,; 21 ~ 2' :7 ~ 3' )! 35 31 n ••, <13 <Ie

Itefation

The curve of the PPL is a clearly descending asymptote with a limit about PPL =

1.1.8. The curve of the WER is also descending with a limit slightly above 14.1 0/••.

However, a small increase can bee seen between the 30lh and 45th iterations. In general.

both PPL and WER show a considerable correlation.

Taking some single values from the iterations and comparing them to the baseline

3.gram LM, we obtain the following table:
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Iteration PPL WER

r.; 1 23.97 17.75 %~
U 3 19.36 16.15 %- 5 17.53 15.34 %:; 10 15.20 14.44 %:;

20 14.96 14.18 %:I:
30 14.83 14.15 %
45 14.82 14.24 %

3-gram L:\l 11.06 14.16 %

Although the PPL of the HMM/CFG reaches a value more than three points above

the baseline, the WER values after the 20th iteration are nearly the same for both models.

Another model has been trained, setting the CFG rule probabilities with uniform

distribution, instead of training them from the data. The results from the 45th iteration

clearly show a poorer performance, indicating that the training of the eFG probabilities

makes the model adapt better to the corpus:

PPL ---, WER =oJ
___ 2_2_.1_3_~__ ~1_-_-_-_-_1~5~.7~8~O-Y._o~~:J

Therefore, we take the model with trained eFG probabilities as our best system,

since its performance is practically the same as the baseline LM if evaluated in

recognition accuracy. In the next section. we examine the performance in terms of

understanding accuracy.

4.3.4 Task Error Rate

Since the structure of our HHM/CFG is semantic-based, the path of a hypothesis

sentence through the model determines to what task the utterance has been aligned to.

Thus, the output of the system is not only a sentence, but also a semantic interpretation

of the sentence. Using equation 4.2 to calculate the task error rate, we obtain the

following table:
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Iteration I TER

1 16.61 %
3 15.03 %
5 13.11 %

10 13.46 %

20 12.94%
30 13.28 %
45 13.66%

The evolution of the TER is descending, though there are some oscillations in the

last iterations. Therefore, the correlation between WER and TER is not very high.

The baseline is a 3-gram model, and thus has no semantic output. The only way to

compare it with the HMM/CFG in understanding accuracy is creating a two-step

system with the speech recognizer and a semantic interpreter after it:

T_t saltll!l'lt'eS

{sentl, sent2,. .•••wnllSlJ}

I
s--.tk: Intft'P"!1:er

: ~--'-""""""'---'-- ; .., ,, ,
~-- WER ~- .•. TER, ,

on --- L-----I_""'-'_(_~_"'_.._, ..•.•__ "~_~f__}~-M'~~

Figure 4.2: Baseline two-step system - decoding + parsing

As seen in Figure 5.1, the test sentences are parsed with the SOUP parser (using the

travel grammars referred to in chapter 3.1), as well as the hypothesis sentences. The

differences in the parsing results are counted as errors enabling the calculation of a

TER. The top level rules of the SOUP grammar are equivalent (though not the same) to

the tasks of our semantic schema definition and thus are used to compute the TER.

However, there are several ways to determine the TER, because the parsing often
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assigns more than onc top level rule to a single sentencc. Thcrefore. two dilTcrcnt TERs

have been calculated:

- TER (1) = 22.33% (considering all top Icvcl rules assigncd to a sentcnce as

"a whole" and thus counting a task error each time any of the top level rules

of a sentence has not been correctly recognized)

- TER (2) = 15.27% (considering all lap Icvel rules of all sentences

separatel)' and counting a task error each time onc of them has not becn

correctly rccognized)

The fol1ov•.-ing picturc shows the TER values for both the HMM/CFG and the

baseline model in a single graph:

Task Elrm Rates

25

22

19

16

13

10

........................................

~------------------- --
~_ ..- - - - --

I
13' 7 ~"t31'17n21~~~~31~~37~.1.3~

ttl!'fatlOll

••• fER3~(1)

- -fER 3-gram (2)

-fER HMMJCFG

As it can be seen. both ways of computing the TER result in a poorer undcrstanding

accuracy than that of our HMM/CFG system. Considering the best ofhoth values. TER

(2), our one.step speech understanding systcm has reduced the TER by about 10% ovcr

the baseline two.step system already aftcr the 5111 iteration. If we take the model in its

best iteration (the 20111 iteration) the relative TER reduction over the baseline is of

15.30/•.
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This can be considered as a successful result, especially if we understand that the

evaluation is somehow biased in favor of the baseline system because the test data

annotation for the baseline was not manual, but parsed with the same grammar as the

hypothesis sentences. Thus, when ambiguous parses exist, only the one selected by the

SOUP parser is considered correct.
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5 Conclusions and Perspectives

The last chapter has shown to what extent the system developed in this thesis

outperforms the baseline 3-gram model in understanding accuracy. In this chapter we

point out some interpretations of this result and suggest possible improvements to the

system and further work in a similar research direction.

5.1 Interpretation of the results

The interpretation of the evaluation parameters of both models is simple: even if the

HMM/CFG has been designed to optimize the task accuracy. it yields similar results as

the 3-gram baseline in word accuracy. This finding supports to the thesis that:

"optimizing a language model for understanding accuracy docs not necessarily reduce

the recognition accuracy".

It can be added that a semantic-based unified language model additionally outputs

the semantic interpretation of the utterance at the same time as the decoding. In other

words. a unified language model provides a unified output without impoverishing word

accuracy. A conclusion to this is that a one-step system (integrating recognition and

understanding in the decoding process) provides better results than a two-step system

(separating recognition and understanding in concatenated processes).

Compared to other semantic-based or rule-based systems. the system developed in

this thesis has clear advantages:
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- it doesn't need very large corpora to be robustly trained

- the semantics are very simple to define

- there is an available tool to annotate the corpus against the semantic schema

in a user friendly interface (see chapter 3.1.3 Semantic Tools)

- the output is in the standard Java Speech Grammar Fonnat, though with

special tags referring to the non-fixed nodes, having an associated n-gram

file each

- spontaneous speech effects can be easily modeled with the HMM/CFG

structure because of its data-driven nature

- parsing is done ,••.'hil~ decoding

In summary. this thesis has shown hm••.a hybrid system that combines statistical

and linguistic approaches to language modeling can produce enhanced results and even

improve the understanding perfonnance of a speech recognition engine based on purely

statistical methods.

5.2 What could be improved?

Although the results of the HMM/CFG have already shown success, several issues

remain as possible improvements.

Some of the 26 tasks defined for the hotel domain in this thesis intersect

(semantically) with each other. For example, the task "rcquesUnfonnation-object-

property" can be interpreted as the task "requesUnfonnation-room", being the instance

of the OBJECT slot precisely a word from the ROOM slot. This produces annotation

ambiguities and, consequently, interpretation errors. An attempt to define the tasks as

totally disjunctive semantic classes could show better accuracy.
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There are other ambiguities in the definition of the slots of the semantic schema.

For example, the rule defined in the CFG Library for ROOM does include "room",

"suite", etc. and the rule for ROOM-PROP includes expressions such as "shower",

';double", "twin", "good view", etc. A more compact definition could include words

that can form a compound noun into ROOM, e.g. "double room" or '"twin room". This

is. again. a matter of guess and check. though linguistic knowledge could direct these

decisions.

The semantic output of our system is limited and rather simple. Only top-level

concepts (tasks) and some more specific concepts (slots) are given as the semantic

interpretation of each utterance. A more detailed semantic schema with elaborate CFG

rules could be defined to obtain a more complete understanding system.

Another improvement to our system could be to use some smoothing technique to

estimate the probabilities of the model; not only the transition and CFG rule

probabilities, but also those computed in the E-Step of the training algorithm. In this

last case, though, it is not clear if the convergence of the EM-algorithm could be

preserved.

Some changes in the structure of the HMM/CFG can also be examined. For

example. the pre- to post-node transition could be optionally deactivated forcing each

sentence to have at least one of the concepts defined in its corresponding task.

The optimization of the search algorithm and of the model structure should also be

investigated. making the system suitable for real-time applications. The actual decoding

speed is still too slow: around 13x real-time.

Additionally, an automatic annotation of the training corpus could be tried, to

render the system even more independent of human assistance.
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5.3 Further work

Six years ago, Rosenfeld wrote:

"[ ... ] it could be argued that attempts to integrate linguistic knowledge into

our models have so far failed because we don't know how to appropriately

encode such knowledge, namely, how to optimally combine it with data. Put yet

another way. we haven't figured out how to simultaneously get the most out of

both our knowledge and our data. Between knowledge without data and data

without knowledge, apparently the laner (witness the n-gram) is more

successful. But there is no inherent reason why we can't have both." [RosOOb)

Even though the language model implemented in this thesis is intended for a

specific domain -while Rosenfeld's affirmations address principally large vocabulary

language modeling- it is an initial contribution towards a unified view and

implementation of language modeling. There is still a long way to go in this direction.

If researchers adopt this understanding-driven orientation of language modeling in

further work, it may be necessary to define a unified parameter for evaluating both

word accuracy and semantic interpretation simultaneously. Especially when the training

of the model is designed to estimate the joint probability P( W, Syn, Sem), ajoint error

rate seems to be the fairest and most coherent evaluation measure.

Many experiments and new approaches can be attempted in the future: probabilistic

LR grammars. link grammars, support vector machines for language modeling.

dynamic Bayesian networks, named entity modeling, prior knowledge coding, etc. All

these are fields and/or techniques that still can be investigated to improve the actual

language modeling performances. In particular, dynamic structures that can self.

organize themselves on the fly and acquire new domain knowledge are promising

trends.
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One can never forget that language modeling deals with language (sic). With this I

mean that the study of language has to go to its place within the field of language

modeling for being able to encode the linguistic knowledge and profit from it. However,

there are many detractors of this view.

I would like this diploma thesis to provide a little encouragement to those who are

skeptical about the role of prior linguistic knowledge in the future of speech and

language technologies.
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Appendix
How the Expectation Maximization algorithm works

The EM-algorithm is a general method of finding the maximum likelihood estimate

of the parameters of an underlying distribution from a given data sct when the data is

incomplete or has missing values. Its application for Hidden Markov Models is kno\lo'n

as the Baum.Weleh algorithm.

In this thesis the algorithm has been implemented to estimate the probabilities of the

word sequences covered by each node of the model. The mathematical derivation of the

formula can be found in [WA03a]. In this appendix we will only illustrate how the

formula is applied with a simple example and briefly explain how the formula can be

intuitively understood.

We consider a very small training set consisting of 5 annotated sentences:

<request_info-room id""Sl" text""i want a rool'lwith a clean bath">
<ROOMS text""roo~"/>
<ROOM-PROPERTY text="clean bath" />

</request_info-room>

<request_info-room ict""S2" text,."i would like a twin room with bath
please">

<ROOM-PROPERTY text="twin"l>
<Roo~S text••"rool'l"/>
<ROOM-PROPERTY text="bath"/>

</request_info-room>
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please">
<ROOM-PROPERTY text_"double"/>
<ROOMS text."roolll"/>
<ROOM-PROPERTY tellt."show•••r"/>

</request_info-room>

<request_info-room id."S4" text."i wou.\d like a roolll with bath please ,.>

<ROOMS text"'''roolll''/>
<ROOM-PROPERTY text •••.bath"/>

</request_info-room>

<request_info-room id="S5" text-Wean i have a suit •••with bath please">
<ROOMS text."suit •••"/>
<ROOM-PROPERTY text-"t'>ath"/>

</request info-room>

AilS sentences are annotated with the task "rcquesl_infonnation-room", \'/'hich has

the following structure:

reelue.,'_ informalion-room

,,'

--

As described in Section 3.2.3, the annotated sentences are first aligned \••..ith the

model. finding a path for each of them. Besides of the words that get aligned \\"ith the

slots, the remaining word sequences, aligned with pairs ofNTs, are:
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51:
NTI NT2 ~ 'Ii want at!

NT4 NT5 ~ "with a"
NT? NT8 ~ "" (=epsilon)

52:
NTI NT5 ~ "i would like a"
NT7 NT2 ~ .". (~psjron)
NT4 NT5 ~ "with"
NT7 NT8 ~ "please"

53:
NT) NT5 ~ "i '•...ould like a"
NT7 NT2 ~ "" (=epsilon)
NT4 NT5 ~ "with a"
NT7 NT8 ~ "nlease"

54:
NT) NT2 -7 "j would like a"
NT4 NT5 ~ "with"
NT? NT8 ~ "please"

55:
NT! NT2 ~ "can i have a"
NT4 NT5 ~ "with"
NT7 NT8 ~ "please"

This leads to the following counts (different from the expected counts!):

C(NTI NT2~ "iwanta")-I
C( NT4 NTS ~ "with a") = 2
C( NT7 NT8 ~ "" ) = I
C( NT! NTS ~ "j would like a") = 2
C( NT7 NT2 ~ "" ) = 2
C( NT4 NT5 ~ "with") = 3
C( NT7 NT8 ~ "please" ) = 4
C( NTI NT2 ~ "i would like a") = I
ci NTI NT2 ~ "can i have a" \ = I

Now, all possible segmentations of each word sequence is done and the resulting

sub."word sequences" are added to the list of its corresponding node. Note that the

segmentation ofa word sequence, e.g. "j want a", does not produce the same sub."word

sequences" for both nodes. in this case NTI and NT2. For this example, NTI would get

{epsilon. i, i want, i want a} and NT1 ''''Quidget (i want a, want a. a, epsilon}.

As it can be seen, the nullstring (=epsilon) is added in all nodes to let each node the

possibility of emitting nothing at aiL The following boxes show the result of these

segmentations:
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NT2 NT3 [ROOMS] NT4
epsilon No word sequences

epsilon
iwant a with
want a

for EM-training. with a
since the

a probabilities of the
iwould like a
would like a CFG niles are

like a
estjmate!d with ML.

can i have a
i have a
have a

NTI NT8
epsilon epsilon
1 sir

iwant please sir
iwant a please
iwould
i would like
i would like a
can
can I

can i have
can ihave a

NT5 NT6 [ROOM- NT?
epsilon PROP] Epsilon
a please
with a No »"ord sequences Sir

like a for EM-training.
would like a since the
iwould like a probabilities of the

CFG ndesare
estimated with ML

From now on, the sub-"word sequences" from the lists in each node will be denoted

by an alpha. And so, P( NTk ~ (l) is the probability that the node NTk covers the v,:ords

in n. All these probabilities are initialized with an unifonn distribution before the EM

algorithm begins, i.e. P( NT" ~ a) = 11 N , where N is the number of a's in NT".

As described in Section 3.2.4, the EM-algorithm consists of rn'o steps: the

computation of the expected counts and the posterior ML estimation of the probabilities

P( NT" ~ (l ), also called emission probabilities. These probabilities have been
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expressed with the different notation b( (l INTk ) in the third chapter of this thesis, but

refer to exactly the same concept.

The computation of the expected count of a specific (l whithin a specific node, is

made through an iterative process expressed by the following fonnula:

where ;':(p,q) is the probability that the NT-sequence covers the word sequence

\\'p ••. Wq_l.

These 105 are calculated via dynamic programming (DP) with the expressions:

.?;(p,q) = L .?;'(p,r)),\(r,q)
p5. r 5.q

{
P(NT, --+ wp'"""' W -I).?'(pq)= q

" P(NT, --+ epsilon)
ifp<q
ifp q

(7.2)

In our example, the expected counts C( NT].., '''' ), C( NT1.., "i" ), C( NT1.., "j

want"). C( NT].., "i want a"), ... C( NT1.., "can i have a"). C( NT2.., ""), C( NT2..,

"a" ), C( NT2.., "want a" ), etc. would be computed. If we apply the fonnula, say for

node NT] and a = "i". we obtain the following expression:

P(NT -->"i")CE'.t(N1;-t"i")=C(NT1NT2-t"iwanta") / ,1.;(2.4) +
).,(1.4)

P(NT --> "i"")
C(NT1 NTs -t"i would likea") • Sl ;':(2,5) + (7.3)

A, (1.5)

P(NT -->"j"")
C(NT1NT2-t"iv.'ouldlikea") 21 ;'22(2.5)

)., (1,5)
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The expected count can be interpreted as a weighted sum of the counts C( NTI NT2

-7 "i \\tant an). C( NTI NTs -7 "i would like a") and C( NTI NT2 -7 "i would like a").

These arc precisely the counts of the pairs of NTs and word sequences where NT I and

"i" (in the beginning ofthe sequence) appear.

In generally, each addend of this sum is multiplied by the following weight:

P(NT, ->a) I )"~-I(I,i)A~+I(j+l,Il+1)
ij:a=Wj ...Wi ::; 1

A~(l,1l+1)

This weight being a probability by itself, and therefore smaller or equal to one, is

composed of three terms:

- P( NTk-7 a ): the probability that NTk covers the word sequence a. In the

tirst iteration this probability is 1 / N. where N IS the number of a's in NTk

(in our example this term would be 1/11 for NTk and "i" in the first iteration).

In subsequent iterations this probability will be different. since it will be re-

estimated with the expected counts of the previous iteration. All addends of

the sum are multiplied by this term.

L A~-I(l,i)A~+I(j+l,n+l): the probability that the remaining
ip.t=w;",Wj

NTs. i.e. all NTs of the NT-sequence but NTk (in our example NTd cover

the remaining words of the word sequence, i.e. all words, but those in u (in

our example a = "i"). All addends of the sum are multiplied by this term.

With the model structure defincd in this thesis. there only exist 1':T-

sequences of Icngth 2; thus this tcrm simplifies to only one lambda. In our

example. the lambdas 12
2(2.4). ).;(2,5) and 1;(2,5) are used.

respectivcly.
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A ~ (I, n + I): the probability that the NT-sequence taken into consideration

for this addend covers the complete word sequence (that is why the indexes

go from I to n+ I). In our example, "complete word sequence" includes "i

want", "i would like a" and "i would like a". All addends of the sum are

divided by this term.

As it can be seen, the three terms of this weight form a fraction. The numerator of

this fraction is the probability that the segmentation of the actual word sequence is as

follows:

WI w, ... I alpha I . .. wn

~~
i\"T[ NT, NT, ... I NTk I ... NTm

Figure A.I: Segmentation considering NTk -7 alpha

This picture is a general representation for NT-sequences of any length. In this

thesis only appear NT -sequences of two NTs.

The denominator of the fraction is the sum of all probabilities of all possible

segmentations (with the segmentation of the picture included). With this interpretation,

the ratio (7.4) can be considered as the probability of the segmentation represented

in figure A.I o"'er all possible segmental ions.

As a conclusion, it can be said tbat each weight discriminates between the addends

and favors those who belong to a word sequence, whose corresponding segmentation is

more probable.

99



_._-----------------------------------

References

[Can87]

[CG96]

[Cho57]

[Dah94]

[DLR77]

[FGlt97]

Francisco Canals Vidal, "Sabre la esencia del conocimicnto",

Promociones y Publicaciones Universitarias, S. A .• Barcelona. Spain.

1987.

Stanley F. Chen and Joshua Goodman, "An Empirical Study of

Smoothing Techniques for Language Modeling" in Proceedings of the

34111 Annual Meeting of the ACL. pp. 310-318, Santa Cruz, California.

USA. June 1996.

Noam Chomsky, "Syntactic Structures", The Hague: Mouton & Co.,

1957.

D. Dahl et aI, "Expanding the scope of the ATIS Task: the ATIS-)

Corpus" in Human Language Technology Workshop, 1994.

A. P. Dempster, N. M. Laird. and D. B. Rubin, "Maximum likelihood

from incomplete data via the EM algorithm" in Journal of the Royal

Statistical Society, Series B, Vol. 39, No1, pp. 1-38, 1977.

M. Finke, P. Geutner, II. Hild, T. Kemp, K. Ries and M. Westphal, "The

Karlsruhe-Verbmobil Speech Recognition Engine" in Proceedings of the

ICASSP, MUnchen, Gennany, 1997.

101



[FIe04]

[FMS04]

[Flig04]

[GavOOa]

[GavOOb]

[HHPOI)

[HuaOI]

Falk Fleischer, "Einbettung von Grammatikrcgeln in n-gram-

Sprachmodellc", Studienarbeit. Universitlit Karlsruhe, Germany, 2004,

Christian FOgen, Florian Metze and Hagen Soltau. "JRTk and JANUS -

The Ibis-Gang (IBIS V5.0 POI3)". internal documentation of the Janus

Recognition Toolkit. Karlsruhe. Gennan)', 2004,

Christian fi.lgen, Sebastian StUcker. Hagen Soltau. Florian Metze. and

Tanja Schultz, "Efficient Handling of Multilingual Language Models" in

Proceedings of the ASRU, 51. Thomas, US Virgin Islands. 2003.

Christian FUgen. "Language Modeling experiences collected over the

past evaluations (5 \VB, MT)", talk given at the Interactive Systems Labs,

Pittsburgh. USA, August 2004.

Marsal Gavalda. "SOUP: A Parser for real.world Spontaneous Speech"

in Proceedings of the International Workshop on Parsing Technologies.

Trento, Italy. 2000.

Marsal Gavalda. "Growing semantic grammars", Ph.D. Thesis,

Language Technologies Institute. Carnegie Mellon University,

Pittsburgh. PA. USA. 2000.

Timothy J. Hazen. I. Lee Hetherington. and Alex Park, "FST.based

recognition techniques for multi-lingual and multi-domain spontaneous

speech" in Proceedings of Eurospecch, Aalborg, Denmark. 200 I.

Xuedong Huang et al. "MiPad: A Multimodel Interaction prototype" in

Proceedings of the ICASSP. Salt Lake City. Utah. USA. 2001.

102



- --------------------------------------------

[Jel89J Fred Jelinek, "Self-organized Language Modeling for Speech

Recognition" in Readings in Speech Recognition. Morgan Kaufmann,

edited by K. F. Lee and A. Waibel, 1989.

[JeI95) Fred Jelinek, closing remarks in the Language Modeling Summer

Workshop at Johns Hopkins University, Baltimore. Maryland. USA,

1995.

[Jon06] Rebecca Jonson, "Generating statistical language models from

interpretation grammars in dialogue systems" in Proceedings of the

EACL, Trento, Italy, April 2006.

[LGW03] L. Levin, D. Gates, D. Wallace, K. Peterson, E. Piaola and N. Mana.

"The NESPOLE! Interchange Fonnat" in the final version of the

NESPOLE! [F report, http://www.is.cs.cmu.edulnespole/. February

2003.

[Lee04] Lillian Lee, "'I'm sorry Dave, I'm afraid I can't do that': Linguistics,

Statistics, and natural language processing circa 200 I" in Computer

Science: Reflections on the Field, Reflections from the Field. pp. Ill.

118.2004.

(LWL+97) Alan Lavie, Alex Waibel, Lori Levin, Michael Finke. Donna Gates.

Marsal Gavalda. Torsten Zeppenfeld and Piming Zhan, "JANUS III:

Speech-to-Speech translation in multiple languages" in Proceedings of

the ICASSP, Munich. Germany. 1997.

(MBIS04] Scott Miller, Robert Bobrow. Robert Ingria, and Richard Sch\l,'artz,

"Hidden Understanding Models of natural language" in Proceedings of

the 31 SI Annual Meeting of the Association for Computational

Linguistics, New Mexico State University, USA, 1994.

103

http://www.is.cs.cmu.edulnespole/.


[MJF+04]

[Mor<J8]

[Min75]

(PerOO]

[Rab89]

[RJ93]

[RosOOa]

[RosOOb)

Florian Metze, Qin Jill, Christian Fligen, Vue Pan. Kamel Laskowski,

and Tanja Schultz. "Issues in Meeting Transcription - The ISL Meeting

Transcription System" in Proceedings of the ICSLP, Jeju Island, Korea.

October 2004.

Antonio Moreno Sandoval. "Lingi.iistica computacional", Editorial

Sintesis, Madrid. Spain, 1998.

Marvin Minsky. "A framework for representing knowledge" in Artificial

Intelligence Memo No. 306, Massachusetts Institute of Technology, A.!.

Laboratory, June 1975.

Fernando Pereira. "Formal grammar and information theory: together

again?" in Philosophical Transactions of the Royal Society, April 2000.

Lawrence R. Rabiner. "A Tutorial on Ilidden Markov Models and

Selected Applications in Speech Recognition" in Proceedings of the

IEEE. Volume 77. No.2. February 1989.

Lawrence R. Rabiner and Biing-Hwang Juang, ';Fundamentals of speech

recognition", Prentice Hall, Englewood ClifTs. NJ. USA. 1993

Ronald Rosenfeld. "Two Decades of Statistical Language Modeling:

Where do we go from hereTo in Proceedings of the IEEE. Volume 88,

Issue 8. August 2000.

Ronald Rosenfeld, "Incorporating linguistic structure into statistical

language models" in Philosophical Transactions of the Royal Society of

London A 358. 2000.

104



[RR95] W. Reichl and G. Ruske, "Discriminative training for continuous speech

recognition" in Proceedings of Eurospeech, Volume I, pp. 537-740.

1995.

[SBVW06] Tanja Schultz, Alan W. Black, Stephan Vogel. and Monika Woszczyna.

"Flexible Speech Translation Systems" in IEEE Transactions on Audio,

Speech and Language Processing, Vol 14(2), March 2006.

(Sha48) Claude E. Shannon, "A mathematical theory of communication" in The

Bell System Technical Journal, Volume 27, pp. 379-423, 623-656, July,

October, 1948.

(SMF+Ol) Hagen Soltau, Florian Metze, Christian FUgen, and Alex Waibel, "A

One-pass Decoder based on Polymorphic Linguistic Comext

Assignment" in Proceedings of the ASRU, Madonna di Campiglio

Trento, Italy, December 2001.

[Sto02] Andreas Stolcke, "SRILM - An extensible language modeling toolkit" in

Proceedings of the ICStP, Denver, Colorado, USA, 2002.

[S004] Andreas Stolcke and Stephen M. Omohundro, "Best. first model merging

for Hidden Markov Model induction" in TR-94-003. International

Computer Science Institute. Berkeley. California, USA, April 1994.

[TSK02] Toshiyuki Takezawa, Fumiaki Sugaya. and Genichiro Kikui, "Using

bilingual conversational expressions in Speech Translation" In

Linguistics and Phonetics, Urayasu. Japan, 2002.

[VOIV-97) V. Valtchev, J. J. Odell, P. C. Woodland, and S. J. Young, "Mmie

training of large vocabulary recognition systems" In Speech

Communication, pp. 303.314. September 1997.

105



r--------------------------------------------- ...._-

[WAOI]

[WA02]

[WAOla]

[WAOlb]

[WADle]

[WMOI]

Ye-Yi Wang and Alex Acero, "Grammar Learning for Spoken Language

Understanding" in IEEE Workshop on Automatic Speech Recognition

and Understanding, Madonna di Campiglio, Italy, 2001.

Ye-Yi Wang and Alex Acero. "Evaluation of Spoken Language

Grammar Learning in ATIS Domain" in Proceedings of ICASSP,

Orlando, Florida, USA, 2002.

Ye-Yi Wang and Alex Acero. "Concept Acquisition in Example-Based

Grammar Authoring" in Proceedings of ICASSP, Hong Kong. China,

2001.

Ye-Yi Wang and Alex Acero, "Combination of CFG and N-gram

Modding in Semantic Grammar Learning" in Proceedings of the

Eurospeech 2003, Geneva. Switzerland. 2003.

Ye-Yi Wang. Alex Acero and Ciprian Chelba. "Is Word Error Rale a

Good Indicator for Spoken Language Understanding Accuracy" In

Proceedings of the ASRU, St. Thomas, US Virgin Islands, 2003.

Chin-Chung Wong and Helen Meng, "Improvements on a semi-

automatic grammar induction framework" in Proceedings of the ASRU.

Madonna di Campiglio. Italy, 2001.

[WTSW01] Zhirong Wang, Umut Topkara, Tanja Schultz, and Alex Waibel,

"Towards Universal Speech Recognition" in Proceeedings of the ICMI.

Pittsburgh, PA, USA, 2002.

106


