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Zusammenfassung:

Die vorliegende Arbeit beschaftigt sich mit einem wahrscheinlichkeits-
theoretischen Ansatz, der es ermdglicht mit Hilfe von statistischen Inferenz-
techniken Modellparameter automatisch von einem gegebenen Corpus (d.i.
eine Sammlung von Satzen) zu extrahieren. Der fir das Training benotigte
Corpus ist relativ klein (ca. 6.000 Sitze).

Im Kontext des C-STAR Projektes wurde ein System-Prototyp erstellt
(SALT). C-STAR bezeichnet ein Konsortium zur wissenschaftlichen Kooper-
ation auf dem Gebiet der Sprachiibersetzung in der Reisebuchungsdomane.
Die Implementierung des Prototyps erfolgte unter Verwendung diverser Mo-
dule der Janus Bibliothek, sowie weiterer Standardmodule zur Sprachverar-
beitung. Das System besteht aus zwei Hauptkomponenten: ein Modul zur
flachen statistischen Analyse, welches die Eingabesdtze in Segmente zerteilt,
und ein grammatikbasierter Parser, der dann die Segmente analysiert.

Um die Lernfahigkeit und Robustheit des Ansatzes zu demonstrieren
wurde das SALT-System mit per Hand transkribierten und vom Parser an-
notierten Satzen trainiert. Zur Evaluation wurden vom Spracherkenner er-
kannte Satze wie auch transkribierte Satze verwendet. Das System erzielt
gute Resultate im Vergleich mit dem grammatikbasierten Parser, wenn man
den prototypenhaften Zustand des Systems beriicksichtigt.

Obwohl die derzeitige Leistung des SALT Systems nicht an den Parser
ankniipfen kann, erzielt eine Kombination beider Systeme eine Verbesserung
der Ubersetzungsleistung, die beide Einzelsysteme iibertrifft.

Das SALT-System kann mit geringem Aufwand in eine andere Domane
oder Sprache iibertragen werden, was den hier vorgestellten Ansatz sehr
wirtschaftlich erscheinen laft.

Weitere Vorteile des vorgestellten Ansatzes sind die, dem statistischen
Modell zugrunde liegende Robustheit, die Allgemeinheit und Wirtschaftlich-
keit der Implementierung, da hauptsachlich doménen- und sprachunabhang-
ige Module verwendet werden, sowie die Erweiterbarkeit des statistischen
Modells, in dem sich relativ einfach weitere Informationsquellen, wie z.B.
Prosodie, oder Lippenlesen integrieren lassen.
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Abstract:

This work proposes an approach for shallow parsing of input utterances
using a probabilistic framework, which allows derivation of model parame-
ters automatically from a corpus, using statistical inference techniques. The
required corpus for training the statistical models is relatively small (approx-
imately 6,000 utterances).

A prototypical system (SALT) was developed and tested in the context of
the C-STAR II machine translation effort, a research consortium cooperating
on speech translation for travel planning dialogues. It was implemented us-
ing modules from the Janus RTK, as well as other standard natural language
processing components. It consists of two main components: a shallow sta-
tistical analysis for detecting segments in input utterances, and a grammar-
based parser for parsing the detected segments.

To demonstrate learn-ability and robustness SALT is trained with tran-
scribed and automatically (by a grammar-based parser) annotated sentences,
and evaluated on both, transcribed and recognized, sentences. It performs
relatively well compared to a grammar-based parser, which has seen a con-
siderable effort in development and grammar-writing.

Although SALT's current performance does not reach the level of the
grammar-based parser, experiments integrating both systems into a multi-
engine translation system state an improved performance, superior over both
single systems.

The described approach is highly economical in porting. Given a sufficient
amount of annotated training data SALT can be ported to a different domain
or language with little effort, since almost no hand modelling is needed.

Further advantages of the proposed approach lie in its robustness, which
is inherent in the statistical models; its general and economic implementa-
tion, which is due to the use of mostly language and domain independent
standard components; and its extensibility, since the statistical models fa-
cilitate a simple integration of additional information, such as e.g. prosody,
lip-reading, etc.



Acknowledgements:

This work would not have been possible without the help of a lot of folks.
I can’t possibly name everyone here, and undoubtedly I've overlooked at least
one major contributor; but there are at least some folks that I'd like to thank
publicly and profusely for their help and support:

First, I want to thank my parents for supporting me all the time during
my studies; especially during the times I spent at UMASS and CMU.

Second, I would like to thank my advisors Prof. A. Waibel and Klaus
Ries for their help and support. Especially, to Klaus I owe many insights
into a field of research 1 was illiterate in before.

Third and last, I thank Chad Langley for proof-reading this work, and
for helping me out in many other occasions as an exemplary office-mate.



Contents

1 Introduction

1.1 MachineTranslation « : o c wvamss vamiss 65 Gas s
12" Trapslation QALY < - « v v wvno m o om om s 5w @ e o e @w s
1.3 Speech Tramslation . . ... .. .. ... ............
1:4 Work'Objective ., ., + v - v s 0 s s sa §aEan s 4% 5w &
2 Shallow Statistical Parsing
2.1 System Environment: . . v o ce s v su we v o n wom ow we e
2.1.1 The C-STAR II Translation Effort . . . . ... ... ..
2.1.2 The C-STAR II Interchange Format . . . . . ... ...
2.1.3 The Janus-III Translation System . . . . .. ... ...
2.2 System Model . . cuccmenvs v v mns wewm e
22 RISEINAEIGH « 5w o o 5 moo x o 3 00w s w0 e ek e
222 Design . .. .o oottt e
993 Specificalion. .o v s ass en 5@ ra 5 e v
2.3 System Architecture . : v .svis s scmeswemaes s
231 Pre-Processing « . .« s o vw vnwwa 0w s
2.3.2 Segmentation and Labelling . . .. ... ........
2.3.3 Concept Prediction . . . .. .. ... ..........
2.34 Argument Parsing . ...................
235 Post-Processifif : « « v s w s o s wsn vmmew oso
2.4 System Implementation. . . . . .. ... ............
3 Experiments and Results
3.1 Word-Based Speech Act Prediction . . .. ...........
3.2 Concept Prediction . . . . . ... ... ...
33 Eandto-End Evaluabion . - : o o v svn v e wws wwmw s
3.4 Multi-Engine Integration . . . . .. .. ... ... ...



4 Discussion
5 Conclusion

A Details of the Salt Architecture
A.1 Word-Level Filtering . . . ... .. ... ............
A2 Partof Speech Tagging . . . . ... ... ............
A.3 Segmentation and Labelling . ... ...............
A.4 Concept Prediction . . ... .......... T

ii



List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1

The Pyramid Diagram . . . . . .. .. .. ........... 3
The Janus-III Machine Translation System . . . . . .. .. .. 22
The Multi-Engine Machine Translation System . . . . . .. .. 25
The Segmentation of an Example Utterance . . .. ... ... 27
The Labelling of an Example Utterance . . . . . .. ... ... 29
The Multi-Level Hidden Markov Model . . . . . . ... .. .. 31
The Statistical Analyzer for Language Translation . . . . . . . 32
The Word Distribution and Coverage . . . ... ... ..... 35
The Nested Argument Substructure . . . . .. ... ... ... 38
The Post-Processing IF-Filter . . . .. .. ... ........ 41
The Implementation Architecture . . . . . .. ... ...... 42

Speech Act Prediction with Varying Vocabulary Size . . . . . 45

iii



List of Tables

1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Al
A2
A3
A4
A5

Comparison of Efforts . . . . . .. ... ... .........
Comparison of Characteristic Features . . ... ........

Speech Act Prediction Accuracy . . . . . . .. ... ......
Pre-Processing for Speech Act Prediction . . . . . ... .. ..
Salient Features for Concept Prediction . . . . . ... .. Yl
Comparing Models for Concept Prediction . . .. ... ... ;
C-STAR End-to-End Evaluation . . . . .. ... ........
Oracle Experiment Combining Salt, Soup and Pangloss . . . .
Integrating Salt, Soup and Pangloss . . . . ... .. ......
Integrating Salt and Soup . . . . ... .. ... ... ... .

The List of Mapped Strings . . . . ... ............
The List of Part of Speech Tags . . . . .. ... .. ......
The List of Speech Act Labels . . . .. .. ... .. ......
The List of Argument Labels . . . .. .. ... ........
The List of Concept Combinations . . . . ... .. .. ....



Chapter 1

Introduction

The most common way that people communicate is by speaking or writ-
ing in one of the ‘natural’ languages, like English, German, French, Italian,
Japanese, or Korean. The underlying assumption here is that the partici-
pants speak and understand the same common language. Otherwise a trans-
lator or interpreter would be needed, helping to cross language barriers — if
one does not want to fall back on more fundamental ways of communication,
e.g. such as drawings, gestures or facial expressions. In the background of
world-spanning industries, international politics, as well as global tourism,
the need for translation from one language into another becomes even more
relevant.

Nevertheless, most translation in the world is not of texts which have
high literary and cultural status. The great majority of translators are em-
ployed to satisfy the huge and growing demand for translations of scientific
and technical documents, commercial and business transactions, adminis-
trative and legal documents, newspaper reports, etc. Some of this work is
challenging and difficult; but much of it is tedious and repetitive, while at
the same time requiring accuracy and consistency, and therefore demanding
a ‘mechanization’ of translation. The assistance of a computer has clear and
immediate attractions, ranging from intelligently automated dictionaries to
fully automatic machine translation systems.



1.1 Machine Translation

The term Machine Translation (MT) is the now traditional and standard
name for computerized systems responsible for the production of translations
from one natural language into another, with or without human assistance.
It has roots several hundred years back in the history of mankind: already
Descartes noticed that the same words or concepts existed in the languages
he knew and he introduced the motion of a mechanical dictionary, contain-
ing equivalents in several languages. However, serious and quite detailed
technical proposals for MT were first put forward in 1933, when the French
G. Artsruni and the Russian P. P. Smirnov-Trojanskij independently took
out patents for the translation machines they had invented.

Methodology

In retrospect, it is worth having a closer look at Trojanskij’s work, since it
incorporated some of the design features and principles of MT that are still
valid today. He recognized three stages in the translation process, which in
modern terminology, could be described as analysis. transfer, and generation.

In analysis, the source language would be transformed into a canonical
form A, which does not readily contain the information G that the target
language generator needs; in transfer the source language canonical form
A would then be mapped to the corresponding target language canonical
form G, which means that the mapping A — G must be defined for each
pair of languages; lastly, in generation, the target language output would be
reconstructed.

Apart from the Transfer Principle, Trojanskij also fathered the notion
of an ‘intermediary language’ or interlingua. He maintained that indepen-
dently of their individual lexical and grammatical forms, all languages had a
common logical content which allowed translation from one language to any
other language via a universal logical intermediary language. The so-called
Interlingua Principle is mostly applicable in small domains with a limited
set of concepts, whereas the Transfer Principle is rather applied to large do-
mains. In a domain with n languages the Interlingua Principle requires only
n parsers and n generators, whereas the Transfer Principle needs (n — 1)
transfer components additionally.

The first approach that was actually implemented in several computer
projects is generally referred to as the Direct Translation Principle. Here,



the MT system is designed in all details specifically for one particular pair
of languages in one direction. The source language is analyzed no more than
necessary for generating output in the other language specific to the task at
hand. The rules for analysis, transfer and generation are not always clearly
separated.

The difference between the three approaches is illustrated by the well-
known pyramid diagram shown in 1.1 (see also [Som98], ‘machine transla-
tion’).

interlingua

transfer
_——

direct translation

source text target text

Figure 1.1: The Pyramid Diagram: The deeper the analysis the less trans-
fer is needed; the ideal case being the interlingua approach where there is no
transfer at all.

History

The first generation direct MT systems were essentially dictionary-based
‘direct-replacement’ systems. The typical translation process would involve
some internal analysis of individual words (morphology), dictionary look-up



to find the target language equivalent, and then some word-order manipula-
tions on the basis of local environment.

A turning point in the early history of MT was the infamous report of the
Automatic Language Processing Advisory Committee [ALP66], which con-
cluded that MT was slower, less accurate, and that there was no immediate
or predictable prospect of useful MT. Although the report had a devastating
effect on research-funding in MT, it is often said that those groups which sur-
vived, responded to it by revising the basic techniques they had been using
and developing the ‘indirect method’.

The fundamental idea underlying the second generation indirect MT sys-
tems is that the source text is transformed into the target text via an inter-
mediate representation; whether the target text is generated directly from
the representation of the source text or whether there is an intervening stage
of transfer between two language-specific representations distinguishes the
interlingua approach from the transfer approach.

The interlingua approach represents a theoretically purer answer to the
drawbacks of the first generation approach, since the inter-lingual represen-
tation should ideally constitute an abstract representation of the meaning of
the source text, capturing all and only the linguistic information necessary to
generate an appropriate target text, with no undue influence from the origi-
nal text. This turns out to be quite difficult to achieve in practice, however.
Even the very deepest of representations that linguists have come up with
are still representations of text, not of meaning, and it seems inevitable that
a translation system must be based on a mechanism which transforms the
linguistic structures of one language into those of the other.

However, one major problem remained, namely the question of how much
‘understanding’ of a text was needed to translate it. The argument is that
MT must go beyond purely linguistic information, since if the machine could
actually ‘understand the meaning’ of a sentence, it could presumably para-
phrase it, answer questions about it, or translate it into another language.
Some researchers have responded to this by building knowledge-based systems
which include the ability to reason about the text they are trying to trans-
late; e.g. the English-Japanese KBMT system developed at Carnegie Mellon
University [GN91]. Although the KBMT system has been fairly successful,
there are always the twin drawbacks of the human effort needed to encode all
the knowledge in the first place, and then the question of scaling the system
up.

In recent vears, two new techniques having in common an ‘empirical’
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rather than ‘rationalist’ approach have begun to attract researchers. The
empirical approach involves the use of corpora (i.e. large holdings of texts in
machine-readable form) and statistics rather than linguistic rules.

In ezample-based systems translation is produced by comparing the input
with a corpus of typical translated examples, extracting the closest matches
and using them as a model for the target text. This approach is said to be
more like the way humans go about translating, and is also claimed to result
in more stylish, less literal translations, since it is not essentially based on
structural analysis of the input.

The other main non-linguistic technique that has been proposed is the
statistics-based approach of the IBM group [BCD*90]. It involves extracting
from huge parallel corpora lexical and syntactic translation equivalents on a
statistical probability basis.

A major advantage of both approaches is that, to the extent that they
do not. involve any linguistic theory, they do not require linguists to compile
grammars or lexicons: all this is done automatically. This results in highly
portable systems, since the programs developed for one language pair are
entirely suitable for any other language pair, just as long as sufficient training
data is available.

Nevertheless, the nowadays more successful commercial systems are al-
most all modelled on the ‘rejected’ first-generation architecture, though of-
ten with some linguistic sophistication and much computational cleverness.
Thus, they still translate essentially by means of a small amount of not very
exact analysis and basically word-for-word dictionary lookup.

It remains to be seen whether solid theory will eventually lead to better
quality in MT than clever engineering.

o



1.2 Translation Quality

The practical usefulness of an MT system is determined ultimately by the
quality of its output. But what counts as a ‘good translation’, whether
produced by human or machine, is an extremely difficult concept to define
precisely.

The assessment of translation quality presupposes a theory of transla-
tion. Thus different views of translation itself lead to different concepts of
translation quality, and different ways of assessing it. According to [Hou98]
the different approaches can be divided into a number of distinct categories:
anecdotal and subjective, response-oriented approaches, and text-based ap-
proaches.

Anecdotal and subjective treatises on translation quality tend to see
the quality of a translation as dependent on the translator and his personal
knowledge, intuitions and artistic competence. A central problem in such
treatments is the operationalization of concepts such as ‘faithfulness to the
original’, or ‘the natural flow of the translated text’. Such intuitive treat-
ments of translation quality are atheoretical in nature, and the possibility of
establishing general principles for translation quality is generally rejected.

Response-oriented approaches to evaluating translations are communica-
tively oriented and focus on determining the ‘dynamic equivalence’ [Nid64]
between source and translation; i.e. the manner in which receptors of the
translated text respond to it must be equivalent to the manner in which
the receptors of the source text respond to the source text. Even though
there is a variety of different criteria for assessing translation quality within
this approach — e.g. general efficiency of the communicative process, com-
prehension of intent, correctness with which the message of the original is
understood through the translation, or equivalence of response — all of these
prove to be as vague and non-verifiable as those used by proponents of the
intuitive-anecdotal approach.

Text-based approaches are based on linguistics, comparative literature or
functional models. In linguistically-based approaches, pairs of source and
target texts are compared with a view to discovering syntactic, semantic,
stylistic and pragmatic regularities of transfer. Approaches which draw on



comparative literature assess the quality of a translation according to the
literary system of the target culture. The functional theory of translation
(e.g. see [RV91]) claims that it is the purpose of a translation which is
all important, i.e. the communicative situation for which the translation is
intended.

In the context of MT not all of these approaches are applicable. For
most applications MT is not able to produce translation of ’high quality’
yet — at least not fully automatic MT systems’. Therefore most research
in MT aims at 'good-enough’ translations, which basically try to achieve a
content-oriented equivalence of the translation to the original.

This work concentrates on translation of spoken language in the travel-
planning and scheduling domain; i.e. a client tries to make flight and hotel
reservations, plan trips, or make credit-card payments with a travel agent,
who speaks a different language. Here we can relax the requirement for
content-oriented equivalence, since the main goal of our approach is to estab-
lish a meaningful communication between a travel agent and his/her client.
The transfer of pragmatic meaning, however, can be very significant: The
degree of agreement or denial can be intricately encoded in the utterance, or
only given by intonation; but it is nevertheless crucial for accomplishing the
task of booking a flight, making a hotel reservation or planning other travel
arrangements.

1.3 Speech Translation

Since speech is our most natural form of communication, using spoken natu-
ral language to access such systems has become an important research goal.
There are several specific advantages to speech as input medium. With
speech as the means of access, even casual users need relatively little train-
ing before interacting with a complex system. Interactions in such a case can
be quick, since speech is our fastest mode of communication, and the system
user’s hands are free to point, manipulate the display, and so forth. This
capability is especially important in environments that place many simulta-
neous demands on the user.

However, for machine translation speech input constitutes a by far more

11t should be noted, however, that even human translations are usually subject to
revision, though it should also be said, that revising MT output is quite different from
revising human output.
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complicated and difficult problem than written language. Spoken language,
especially spontaneous speech, is hardly ever well-formed in the sense of rigid
syntactic structure. It contains disfluencies, hesitations (‘um’, ‘hmm’, etc.),
repetitions (“... so I, I, I guess, what ... ), and false starts (“ ... how about
we meet on Tue ... um ... on Wednesday ... ”). Furthermore, phrases with
low information content occur, e.g. “let me see”, “well”, “i dunno™.

Yet the utterances can still be cluttered by recognition errors and environ-
mental noises that occur during speech recording, such as coughs, laughter,
telephone rings, etc. Without proper treatment, these noises may be recog-
nized as one of the words in the vocabulary, potentially causing great damage
in the translation process.

Therefore, a successful speech translation system cannot rely on perfect
recognition or perfect syntax. Rather it must search for a semantically plau-
sible interpretation of the speaker’s intent while ignoring unimportant words
or fragments.

A spoken dialog does not consist of sentences in the classical sense, nor
are punctuation markers provided to limit them. Instead, each utterance is
fragmentary and each speaker’s turn often contains two or more sentences
or concepts, e.g. “ ... no, Tuesday doesn’t work for me ... how about ...
Wednesday morning”. Even if punctuation markers were given, attempts to
translate such fragmentary utterances often result in awkward output.

To provide useful spoken language communication across language bar-
riers, we must therefore ‘interpret’ an utterance, or extract its main intent,
rather than attempt a sentence by sentence translation.

The syntactic structure of spoken language is highly complex, and char-
acterized by frequent sentential adjuncts. How to analyze those correctly
is still an unsolved problem, but also unnecessary for most translation —
usually it is sufficient to translate chunk by chunk.



1.4 Work Objective

Traditionally, parsing has been done with various symbolic approaches. They
have the advantage of highly specific analyses and therefore very precise
translations. The drawback of all symbolic approaches is the need for hand
modelled grammars, which have to be adapted to specific languages and
domains.

Especially for spoken language the major disadvantage and difficulty for
the symbolic approaches lies in building the parser: it takes as input spon-
taneous speech, including ungrammaticalities, stops, and restarts, corrupted
with speech recognition errors. The parser should output a consistent analy-
sis in a formalism usable for processing by other components. This is usually
done by modelling speech idiosyncrasies explicitly in the grammars or by
‘soft’ rules, that allow the parser to handle exceptions during the parse pro-
cess (e.g. skipping or filling in words).

Within the last decade, statistical techniques have been proposed for
learning the parsing task in order to avoid the tedious manual modelling of
grammars. In this work we will focus on the parsing task in the context of
a language translation system for spoken language applying the interlingua
principle.

Salt Soup
development | porting || development | porting
development | few, short- no few, med.- no
programmers | medium time long time
application no one, no no
programmers short time
grammar one, one, some some
writers short time | short time | long time | long time
corpus many, many, no no
annotators short time | short time

Table 1.1: Comparison of Efforts: Displayed are expected efforts involved
in development and porting of a statistically learnable parser (Salt) and a
conventional grammar-based system (Soup).

We propose an alternative parsing method, which performs shallow pars-
ing of input utterances using a probabilistic framework, that allows derivation



of model parameters automatically from a corpus, using statistical inference
techniques. The expected advantages of the proposed approach lie in its
economy considering time and man-power — and thus the total costs — for
creating an analysis component for a speech translation system. Only for
system development highly skilled programmers are required. Once the sys-
tem is implemented, it can be ported to other domains or languages by (less
skilled) application programmers. In both cases, development and porting,
annotators can provide the training data by tagging domain specific corpora.
Tagging is much less time consuming than writing grammars, and annotators
can be trained in a matter of days.

Table 1.1 shows a comparison of the expected development and port-
ing effort involved for the proposed statistical analysis system (SALT) and
a grammar-based or symbolic system (SOUP). Only for development and
implementation of the symbolic system skilled programmers are required.
Porting is done by writing new grammars for the given parser. Grammar
development is a tedious task involving skilled grammar writers for several
months or even years. It is also a highly complex process, such that em-
ploying more writers in the development process cannot reduce the overall
development time below a certain mark.

Salt Soup
accuracy medium high
economy medium to high medium

extensibility high low
input-features variable words only
generality high only parser
parse-depth shallow high
parse-speed medium medium
portability high medium
robustness high medium to high
variability by learning through grammar-writing

Table 1.2: Comparison of Characteristic Features: Displayed are char-
acterstic features of a statistically learnable parser (Salt) and a conventional
grammar-based system (Soup).

Besides a good portability and economy the statistical approach is also
characterized by its robustness and flexibility inherent in the statistical mod-
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els. They allow a simple integration of other knowledge sources into the parse
process, e.g. such as prosody, lip reading, etc. Discourse models can be im-
plemented easily within the statistical framework. and even the input can
consist of other representations than word strings, e.g. speech lattices or n-
best lists. Table 1.2 summarizes the characteristic features of both systems.
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Chapter 2

Shallow Statistical Parsing

This chapter explains the environment in which SALT (Statistical Analyzer
for Language Translation) is developed, tested and evaluated, the architec-
ture of the overall-system, and finally the details on the machine-learning
models used within our system.

2.1 System Environment

The experimental environment for SALT lies within the framework of the C-
STAR II (Consortium for Speech Translation Advanced Research) machine
translation effort for translating travel planning dialogues [Wai96, LGLW98,
Wos, WBGT98|.

2.1.1 The C-STAR II Translation Effort

The Consortium for Speech Translation Advanced Research, or C-STAR, was
formed as a voluntary group of institutions committed to cooperate in the
research on speech-to-speech translation. C-STAR II, a continuation of the
former C-STAR group, consists of 6 partners and additional affiliate orga-
nizations from 10 countries. The partners in C-STAR II are: ATR, Japan;
ISL, University of Karlsruhe, Germany; ISL, Carnegie Mellon University,
USA; ETRI, Korea; IRST, Italy;and CLIPS-GETA, France. All partners
commit to build a full end-to-end system each, handling their own language
as input and producing at least one output language. The affiliates perform
relevant basic research, participate in workshops and can optionally build

12



individual components in cooperation with one or more of the C-STAR II
partners. Since the six main partners are responsible for one input language
each, the C-STAR-II setup allows for a minimum of six languages: German,
French, English, Japanese, Korean and Italian.

Within this framework, a translation system was developed for the broad
domain of travel planning, which contains a rich structure of sub-domains,
such as hotel reservation, transportation, sightseeing, and scheduling.

2.1.2 The C-STAR II Interchange Format

This section describes an interlingua for machine translation of spoken travel
planning dialogues. The interlingua used by C-STAR is known as interchange
format (IF). The C-STAR languages are English, French, German,Italian,
Japanese, and Korean. C-STAR adopted an interlingua in order to facilitate
translation between as many language pairs as possible with minimal effort.
Sites that wish to use IF supply an analyzer that produces IF from sentences
in the home language and a generator that takes IF as input and produces
sentences in the home language. Using the analyzer from one language and
the generator from another results in translation from the first to the second

language.

Advantages

There are four main advantages for an interlingua approach in this domain:

First, it helps to reduce the dependence of the output sentence on the
structural form of the input language. What matters is the meaning or intent
of the input utterance, however it was expressed by the speaker: Sentences
like “I don’t have time on Tuesday’, “Tuesday is bad", or “I’'m on vacation,
Tuesday”, can all be mapped onto the same intended meaning “I am unavail-
able on Tuesday”, and an appropriate sentence in the output language can
be generated. Even culturally dependent expressions can be translated in a
culturally appropriate fashion. E.g. the closing phrase “Thank you for using
World Wide Travel’, which does not sound appropriate when translated di-
rectly into German, could be translated into “Vielen Dank fir Thren Anruf.”
literally: “Thanks for your call.”.

The second advantage of the interlingua approach, which we have already
mentioned above, is the comparative ease by which additional languages can
be added. In the current system, only the language specific grammars for the

13



analyzer and generator modules have to be developed in order to integrate a
new language into the system.

The ease of generating output in any one of the supported languages,
given the analysis of the original input as interlingua representation consti-
tutes the third advantage: it allows generation of a paraphrase in the source
language by which the user can verify if an input utterance was properly
analyzed. This feed-back feature strongly helps to improve the usability of
the system.

The fourth and last advantage of the interlingua approach within the C-
STAR project lies in the ability to exchange already analyzed utterances (i.e.
the ‘meaning’ of the utterances within the given domain) between the sites
of the C-STAR partners. Since many of the partners chose to implement
translation systems based on an interlingua approach using the same canon-
ical interlingua representation, i.e. the C-STAR interchange format (IF),
analysis and generation can be split across the partner sites. Thus if one site
provides an IF representation for a given utterance, all other sites support-
ing the C-STAR IF can generate a translation into their target languages
without further analysis of the original utterance.

Design

The most important factor in the design of an interlingua is that it must
abstract away from peculiarities of any particular language in order to allow
for translations that are non-literal, but capture the speaker’s intention or
speech act, such as giving or requesting information, or introducing oneself,
etc. Taking the notion of speech acts one step further, one can identify
domain actions such as requesting information about the availability of a
hotel, or giving information about the price of a hotel room. Apart from the
speaker’s intention domain actions also capture the relevant topics or concepts
of an utterance, such as availability, reservation, hotel or room. More specific
information, e.g. prices or times, is represented by the arguments of a domain
action.

However, the C-STAR project represents a special challenge to an interlin-
gua approach, since it requires an interlingua to be used at multiple research
sites. It was therefore necessary to design a simple interlingua that could be
used reliably by many MT developers. Simplicity is possible largely because
the dialogues in the C-STAR project deal with travel planning, which is a
task-oriented domain with clearly identifiable domain actions. These domain
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actions form the basis of the C-STAR interlingua.

Thus, the IF does not represent literal meaning of an utterance and is
far-removed from the source language syntax. It represents only the domain
actions that the utterance is intended to perform.

Therefore the three main design principles for the interchange format are:

e The interchange format is based on domain actions.

e It is compositional, i.e. domain actions are built from an inventory of
sub-categories (speech acts, concepts, and arguments).

e Its representation should be suitable for all C-STAR languages.

Implementation

Domain Actions (DA) consist of three representational levels: the speech
act, the concepts, and the arguments. In addition, each DA is preceded by
a speaker tag, i.e. the side information which indicates who is speaking
(‘a:’ for the agent, ‘c:’ for the client). The speech act and side information
are obligatory, whereas the concepts and the arguments are optional. Plus
signs, ‘+’, separate speech acts from concepts and concepts from each other.
The general scheme of a DA can be roughly characterized as shown in (2.1).
However, there are constraints on the order of the concepts so that not all
combinations are possible.

(2.1) speaker: speech act +concept™ (argument®)

In example (2.2) the speech act is give-information, the concepts are
availability and room, and the arguments are time and room-type. The
possible arguments of a DA are determined by inheritance through a hi-
erarchy of speech acts and concepts. In this case time is an argument of
availability and room-type is an argument of room. Example (2.3) shows
a DA which consists of a speech act with no concepts attached to it. the
argument time is inherited from the speech act closing. Finally, exam-
ple (2.4) demonstrates a case of a DA which contains neither concepts nor
arguments.

(2.2) On the twelfth we have a single and a double available.
a:give-information+availability+room
(room-type=(single & double),time=(md12))
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(2.3) And we’ll see you on February twelfth.
a:closing (time=(february, mdi2))

(24) Thank you very much
c:thank

The DAs in the given examples do not capture all of the information
present in their corresponding utterances. For instance they do not repre-
sent comparatives, relative clauses, extensive noun modification, modality,
politeness, formality, certainty, tense, etc. Some of this information will need
to be added in the future. For example, embedded clauses or noun mod-
ifications can contain relevant information for the current communicative
situation. Other features like tense are often (but not always) predictable
from the DA. And others like modality (e.g., the ‘could’ in “Could you tell
me ... ") are generally part of the formulaic, conventional ways of expressing
the DAs in specific languages, but their form is not relevant for translation.
As mentioned in section 1.2 the representation of some of these features is
not really needed for translating utterances in a given task-oriented context,
since they only indirectly contribute to the identification of the DAs.

Example (2.5) shows the English paraphrase and the German translation
for sentence (2.2).

(2.5) Input: On the twelfth we have a single and a double available.
Paraphrase: A single and a double room will be available the twelfth.
German: Es gibt Einzelzimmer und Doppelzimmer am zwolften.

The following paragraphs describe the four components of DAs, speaker
tags, speech acts, concepts, and arguments in more detail:

Speaker Tag: The speaker tag is either ‘a:’ for agent or ‘c:’ for client to
indicate who is speaking. The speaker tag is sometimes the only difference
between the IFs of two different sentences. For example, “Do you take credit
cards?” (uttered by the client) and “Will you be paying with a credit card”
(uttered by the agent) are both requests for information about credit cards
as a form of payment.

Speech Act (SA): There are currently 40 speech acts defined in the IF.
Some speech acts are very general. For example, give-information is used
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in many DAs where the speaker’s intent is to inform the listener of something,

such as give-information+temporal+departure+flight, give-informa-

tion+expiration-date,etc. Others are more specific, such as delay-action,
which is used specifically for utterances like “I'll get back to you on that”.

Normally each DA has one speech act. However, there are three special

speech acts that combine with other speech acts. These are verify, re-

quest-verification, and negate. For example the sentence “So youre not

leaving on Friday, right?” has the speech act request-verification-ne-

gate-give-information.

Concepts: There are currently 68 concepts defined in the IF. Each DA can
have zero or more concepts following the speech act, although not all possible
strings of concepts are allowed. Concepts fall into several classes that roughly
constrain how they combine with each other. Some classes of concepts are ac-
tions (change, reservation, confirmation, cancellation, etc.), attributes (avail-
ability, size, temporal, price, location, features, etc.), and entities (room, ho-
tel, flight, numeral, expiration date, etc.). The usual order of concepts in
a DA is action+attribute+entity as in request-action+reservation-
+temporal+room for “I’d like to make a reservation for a room on the fifth”.
In this case, the speech act is request-action and the concepts are reser-
vation, temporal, and room. g

The concept components of a DA capture the focus of a sentence. For
example, the sentence “ The week of the twelfth we have both singles and dou-
bles available” mentions a date, a room type, and the notion of availability.
However, since the focus of the sentence is availability, the dialogue act is
a:give-information+availability+roomand the time and room type are
expressed as arguments of this dialogue act.

Arguments: Arguments add specific information to the DA, such as times,
prices, and specific features of entities. An argument consists of an argument
name and a value separated by an equal sign, for example room-type=double.
In addition to atomic values, there are various types of complex values as
shown in examples (2.6)-(2.14). Multiple values and coordination can com-
bine with price, time, interval, frequency, and duration for arguments like
“on July 5 and July 6 at 4:007.

(2.6) multiple values:
room-type=(double,non-smoking)

17



(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

The possible arguments of a DA are determined by the speech acts and
concepts it contains. For example, give-information+temporal+flight
can take the arguments associated with the concepts temporal (time, dura-
tion, frequency) and flight (flight-type, carrier-name, flight-number, desti-
nation, origin). There are currently 86 argument names defined in the IF.

a non-smoking double

coordination:
room-type=(single & double)
a single and a double

quantity:
room-type=(double, quantity=2)
two doubles -

price:
price=(currency=dollar, quantity=50, per-unit=night)
fifty dollars per night

time:
time=(md5, tuesday, july, 1998, 16:00, afternoon)
Tuesday July 5, 1998 at 4:00 in the afternoon

time interval:
time=(start-time=(md5, july), end-time=mdi0)
from July 5 to 10

duration:
duration=(time-unit=day, quantity=9)
for nine days

frequency:

frequency=(time-unit=hour, quantity=2)
every two hours
frequency=(per-unit=hour, quantity=2)
two times per hour

lists of characters:
spelling=[g, a, t, e, s]
gates

18



2.1.3 The Janus-III Translation System

The Janus project at the Interactive Systems Laboratories' constitutes an
ongoing effort to develop a machine translation system specifically suited
for spoken dialogue [WJM*91, WIM*92, OAM*92, WAWB*94, GSB*95,
Wai96, LGLW98, WBG*98]. It was one of the early systems designed for
speech translation, developed at Carnegie Mellon University and University
of Karlsruhe in the late '80s and early ’90s. Since then it has been extended
at both sites to more advanced tasks.

While the first version, Janus-I, processed only syntactically well-formed
(read) speech over a small (ca. 500 words) vocabulary, the most recent
version of Janus, the Janus-III Translation System, now copes with spon-
taneous conversational human-human dialogs in limited domains with much
larger (several thousand words) vocabularies. At present it accepts English,
German or Spanish input and produces translations into English, German,
Japanese, Korean, and Spanish.

System Design

Janus-I1I was designed to accommodate multi-party, multi-lingual conversa-
tions between travellers and travel agents. It’s design is based on the follow-
ing four main principles: an interlingua-based approach, semantic grammars,
modular grammars, and an efficient integration of multiple grammars.

The system exemplifies an interlingua-based approach (see section 1.1)
and consists basically of three modules: speech recognition, analysis, and
generation. The analyzer and generator are language-independent, i.e. they
consist of a general processor that can be loaded with language specific knowl-
edge sources. This allows for easy expansion of the system to new languages.
Since each language is usually integrated as both a source and a target lan-
guage, input analyzed into an interlingua representation can then be trans-
lated back into the source language (in our case, English), which results in
a paraphrase of the input. The paraphrase can be used as a mechanism for
verifying analysis and representation correctness, as well as for end-to-end
evaluation purposes. The interlingua representation can also be exported
to the generation systems of other C-STAR II partners for translation into
languages not supported at the Interactive Systems Labs.

!The Interactive Systems Laboratories are jointly located at Carnegie Mellon University
in Pittsburgh and at University of Karlsruhe in Germany.
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Semantic grammars are used for both analysis and generation. Analy-
sis using semantic grammars has been shown effective in providing accurate
translations for limited domains; and it is also known to be more robust
against ungrammaticalities in spontaneous speech and recognition errors in
speech-to-speech translation systems [LLZ*97, MGS*95]. Rather than fo-
cussing on the syntactic structure of the input, semantic grammars directly
describe how surface expressions reflect the underlying semantic concepts
that are being conveyed by the speaker — their non-terminal nodes rep-
resent semantic concepts and not syntactic categories. Because they focus
on identifying a set of predefined concepts, they are relatively well suited
for handling the types of meaningful but ungrammatical disfluencies that are
typical of spontaneously spoken language, and are also less sensitive to speech
recognition errors. Semantic grammars can also be developed relatively fast
in a limited domain, where the set of relevant concepts is relatively small; but
expanding them to cover new domains is usually quite hard and complicated.
Each new semantic concept requires new rules to be added to the existing
grammars, since syntactic generalities usually cannot be utilized. For large
domains, this results in very cumbersome grammars that are intricate to
expand and develop, and which become highly ambiguous in nature.

In Janus-III, the development of modular grammarsand common libraries
copes with the problems of expanding semantic grammars to new domains.
Modularization and the use of shared common libraries are a well-established
concept in software development. Many of the advantages of modularity
and shared libraries equally apply to the design of semantic grammars in
large domains, particularly if the domain can be dissected into multiple sub-
domains. In the current Janus system, grammars are separated into the sub-
domains for hotel reservations, transportation, sightseeing, and scheduling;
each sub-grammar covers the specific set of semantic concepts related to its
sub-domain. An additional grammar provides cross-domain concepts, such as
common openings and closings. The sub-grammars also draw from a shared
library of rules in order to maintain consistency in the analysis of time and
date expressions, name phrases, auxiliary verbs, etc. The shared library and
the cross-domain sub-grammar substantially reduce the effort in expanding
the system to new domains.

The integration of multiple grammars is done in a common analysis mod-
ule. It consists of the robust SOUP parser [Gav98, GW98] which is able to
analyze the input using multiple grammars concurrently. Segmentation of
long utterances is performed as part of the parsing process. Thus, the parser
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analyzes complete utterances using all sub-domain grammars, and produces
a lattice of parse trees that contains all possible ways of segmenting the ut-
terance according to the different domain grammars. The analyzed segments
are tagged with a domain-tag that reflects the sub-grammar that was used
in creating the analysis. The lattice of all possible parsable segments is then
used in a statistical domain re-scoring procedure, in order to resolve ambi-
guities that arise from the combination of multiple domain grammars. The
search for the optimal sequence of parsed segments is performed within the
SOUP parser at the end of the analysis stage. The parser then outputs a
ranked list of possible sequences of parse trees for the entire utterance.

System Architecture

Figure 2.1 shows a component diagram of the complete Janus speech trans-
lation system for the travel domain. The main system modules are speech
recognition, analysis, and generation.

The interface between the speech recognition module and the translation
system is via an N-best list of text string hypotheses in the source language.
Translation is then performed by analyzing the text string in the source
language into an interlingua representation, and then generating a string in
the target language. Analysis is done by SOUP, a robust parser designed
for spoken language analysis. Since SOUP works with semantic grammars,
the parser analysis contains all necessary semantic information. Therefore
only a simple format conversion, not contributing any significant information
beyond that derived by the parser, has to be done in order to yield an interlin-
gua representation. This is done by the Parser-to-IF mapper, which converts
the output-representation of the parser into a canonical interchange format
(IF), which we have described earlier in section 2.1.2. The IF interlingua
representation is then passed on to generation and speech synthesis.

2.2 System Model

Statistical methods in machine translation rely mainly on information that
can be extracted automatically from corpora of collected natural language. A
small community has experimented with either purely statistical approaches
[BCD*90, Sch93, Rie94], or connectionist based approaches [Ber91, MD91,
Jai91, BPW94, WW94, Bug96, BW96a, BW96c, BW96b]. Their main ad-
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Figure 2.1: The Janus-III Machine Translation System: Component

diagram of the Janus speech translation system for the travel domain repro-
duced from [LGLW98].

vantages are learn-ability and robustness. It is also believed, that — for a
limited domain — translation systems based on statistical methods can be
implemented in a fraction of the time that the development and implemen-
tation of a system based on a symbolic or linguistic approach would need.
However, many of the above cited approaches have suffered from a number
of disadvantages: For example, some approaches contain no or only limited
linguistic information to be used in translation or understanding. For others,
no clear and quantitative statement about the overall performance is made,
or it has not been evaluated with real world data. But the most pertinent
problem of most approaches is that they require millions of training sentences.
In the following section we will motivate our approach to shallow statis-
tical parsing for language translation within the framework of the Janus-III
system. Furthermore, we will discuss the important design issues, and give
a formal specification of the computational model underlying our approach.
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2.2.1 Motivation

A weakness of many grammar-based analysis systems is that they are not
very robust to concept phrasings that deviate from those expected in the
grammars. or to the occurrence of unexpected ‘noise’ within concepts, which
can easily occur in a system based on speech input (see section 1.3).

Another significant drawback of all symbolic approaches is the large
amount of work involved in the design and implementation of hand mod-
eled grammars, which also have to be adapted to each language and domain
specifically. Further, for achieving a certain level of robustness, which is
needed in an environment dealing with speech translation, extra hand mod-
elling effort is required.

To address these problems is one of the main concerns of this work. It
describes an alternative parsing method that combines both statistical and
grammar information. Statistical information will be used in order to seg-
ment and label utterances at the DA level. l.e. each utterance gets split
into segments corresponding to its DAs, and the segments are labelled with
the most likely speech act. Each segment is then taken further apart into
‘argument chunks’ which roughly correspond to those strings of words in the
utterance, that fill in the argument values. In a second step the concepts of
each DA are determined, with respect to the already recognized speech act
and arguments. A modified version of the grammars for parsing just argu-
ment fragments is then used in a last step in order to extract the appropriate
values of the detected argument fragments from the utterance.

Statistical identification of DAs and a number of related problems that
make use of a ‘chunk and label’ paradigm have been studied by various
authors in the recent past [NM94, WKNN97, REKK96, RK97, TKI*97,
JBC*97, FLL*98, SSB*98, Rie99]. Preliminary experiments on statistical
DA extraction in the Janus project have shown encouraging results [FKWT98].

2.2.2 Design

The integration of a new analysis module within the framework of the Janus-
I1I machine translation system requires replacement of the SOUP parser plus,
optionally, one or more of the consecutive components in the translation
process. This means essentially building a system that works with recognized
utterances as input and produces output that can be fed back into the system
at one of the succeeding stages, such as the Parser-to-IF mapper, the IF-to-
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Generation mapper, or the Phoenix Generator.

For our approach we chose the simplest and most feasible way of inte-
gration by producing output that is similar to SOUP output, and thus can
be fed directly into the Parser-to-IF mapper. There are several reasons and
advantages of this design decision:

First, we have two well-defined and already implemented interfaces to
the Janus system, namely the N-best list of text string hypotheses from the
recognizer as input interface, and the concept parse trees required by the
Parser-to-IF mapper as output specification. Therefore, no other modules
are affected or need to be changed in order to integrate our system.

Since we use supervised machine learning approaches, such as hidden
understanding models, language models and neural networks, the second
advantage lies in the strictly specified input-output relationship that these
already existing interfaces impose on the design of our system: Using the
SOUP parser we can generate training data for the supervised training of
our system basically for ‘free’. The original utterances fed into SOUP for
generating a database of training examples have been collected within the
C-STAR project. They were created either for testing newly added grammar-
rules, or they stem from user studies evaluating the C-STAR II user interface.

Another advantage of the chosen integration lies in the simplicity of com-
bining the output of our analysis module with the output of the SOUP parser
in order to improve the over-all system performance. Since both modules
(SALT and SOUP) provide the same output representation a comparison and
evaluation of their output is straightforward.

However, it should be mentioned here that the actual combination of
both modules is done at the IF-level, i.e. after the Parser-to-IF mapper has
transformed the parse tree representation into valid IF format. We chose an
integration at this stage, since the statistical models used to segment and
label utterances, tend to over-generate — i.e. they predict more arguments
and DAs than are actually present in the given utterance. Producing too
many segments or segments that are too small, especially at the argument
level, can result in invalid IF. Therefore, we implemented a post-processing
module, that filters the output at IF level and eliminates all invalid and
inconsistent parts of the IF representation of an utterance (see section 2.3.5
for examples).

Figure 2.2 shows a component diagram of the resulting multi-engine trans-
lation system. Multi-engine translation was proposed by Frederking et al.
[FNF*94] and has since been implemented in the Diplomat [FRH97] and
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Phoenix Generator

Decision Module |
Figure 2.2: The Multi-Engine Machine Translation System: Integra-

tion of Soup, Salt and Pangloss within the framework of the Janus-III speech
translation system.

Verbmobil [Wor98] systems. A multi-engine system applies multiple transla-
tion programs simultaneously and makes a translation by composing the best
parts from the various outputs. Typically, 2 multi-engine system might in-
clude knowledge-based, statistical, and direct dictionary based approaches.
In our case the components are SALT, the statistical analysis module de-
scribed in this work, SOUP, the grammar-based analysis module of Janus-III,
and Pangloss, a direct-translation system based on a collection of examples,
glossary and dictionary lookup [FNF+94].

The decision modules shown in the diagram can be basically thought of as
engine dependent language models, that try to predict which engine will most
likely come up with the best translation given the original utterance. In cases
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where the best predicted translation contains obvious errors or inconsistencies
a fall-back mechanism has to be applied, and the next best translation from
one of the other engines has to be chosen.

2.2.3 Specification

Our goal is to perform shallow parsing of input utterances using a probabilis-
tic framework, which enables us to derive model parameters automatically
from a corpus, using statistical inference techniques.

Given the sequence of words W = w;,ws,...,wx of an utterance , we
attempt to extract the sequence of domain actions D = d,,ds,....dx that
has the highest posterior probability P(D|W) given the input word sequence:

D™ = argmax P(D|W) (2.15)
D

Further, each domain action dj consists of a speech act combination s,
an optional combination of concepts ¢, and a sequence of argument segments

Ap:

di = (8k, Cky Gmy_;+18my_s42+++8m;) for k=1,...,K (2.16)

J

=Ax

Each argument segment a,, consists of a label and a sequence of words
Wa,.:

m*

W, = Wap_ 41Wn,,_ 42+ Wn, for m=1,....M (2.17)

Consequently, each speech act s; consists of its label and the sequence of
words W, that covers all words of its accompanying arguments:

W, = (Wa,)ames, for k=1,... K (2.18)

Thus, an utterance gets segmented at two levels: first, according to (2.17),
the words w,, wo, ..., wy are grouped into segments W,, . W,,...., W,,, with

respect to the argument segments «;,as,...,ay. Then, in accordance with
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(2.16), the argument segments are grouped into sequences A;, Ay, ..., Ay =
A and combined with speech act labels s;,s3,...,5x = S and concept labels

€1,€2,....cx = C to domain actions d,,d,,..

.,drg = D. This two-level

segmentation is illustrated by an example utterance given in figure 2.3.

ay

S et

"

dy

Hello, This is Bob, 1 _would Ii}_if to book a flight to Frankfurt,
a2 az e ayg as ag az
& %

Figure 2.3: The Segmentation of an Example Utterance: Two-level
segmentation of an ezample utterance into argument segments a,,...,a7 and

domain actions d,. ..

ds.

(S
e |



Given this decomposition of D, we can re-write P(D|W) as:
P(D|W)

~ P(S,C,A|W) (2.19)

= P(C|S,A,W)- P(S|A,W)- P(A|W)

X

P(C|S, A, W) - P(S|A) - P(A|W) (2.20)

P(S)- P(AIS) P(4)-P(W|A)

= P(CIS, AW)- == T

= F@5P(CIS,A,W)- P(A|S)- P(W|A)

K K M
;{‘% P(ck|sk, Ak, W;,,);!:[ P(Ag|si) H P(W,, |am) (2.21)

k=1

&

m=1

If we replace P(D|W) in equation (2.15) by (2.21) we get equation (2.22),
which describes the computational model for estimating D", the proposed
approximation to D*:

K K M
D* = argmax P(S)H P(Cklsk,Ak,Wsk)HP(Aklsk) H P(W,,,|am)
D=(C,5,4) k=1 k=1 m=1

(2.22)

In the derivation of equation (2.22) we make the following approxima-
tions:

First approximation (2.19): We assume that P(S, C, A|W) models P(D|W)
reasonably well without integrating a model for argument substructures within
our statistical framework. This assumption is supported by experimental ev-
idence stating good results for segmentation and labelling at argument level
without a sub-argument model.
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Second approximation (2.20): Here we assume that the speech acts S
only depend on the arguments A and not on the words W. As we know from
the specification of the interchange format in section 2.1.2, this assumption
is not true in general, since the specification allows for domain actions with-
out any specified arguments. Also the semantic grammars used within the
SouP parser detect speech acts based on words, and not arguments. But
we can circumvent this dependency by introducing ‘pseudo-arguments’ that
capture all speech act relevant word information at argument level. Figure
2.4 shows an example, where not all words of a given utterance are covered
by arguments of the interchange format. Here we have to introduce pseudo-
arguments for a;, a;, and as in order to capture the remaining words of the
utterance under an argument segment. We will describe this approach in
more detail in section 2.3.2. However, it should be mentioned here that ex-
periments show that this approach allows reliable prediction of speech acts
based on recognized arguments and pseudo-arguments only.

Eello This is Bob would like to book a flight to Frankfurt,
~ N | i et
person superjmo as superflight superdestination

\'"’." ... ) ~type
greeting ~ = »

introduce-self i = 4
request-action+reservation+features+flight

Figure 2.4: The Labelling of an Example Utterance: Since the in-
terchange format does not provide argument labels for all words within an
utterance, we have to introduce ‘pseudo-arguments’ for ay, az, and as here.
Note, that only the third domain action in this ezample contains a concept

label.

Third approximation (2.21): In equation (2.21) we make several inde-
pendence assumptions at once:

First, in approximating P(C|S, A,W) by 15, Plck|sk, Ak, Wy,) we as-
sume that the ¢; are independent from each other, and that each ¢ only
depends on speech acts, arguments or words within its domain action seg-
ment. Since our model — as of now — works only at the utterance level, this
assumption appears to be reasonable. If we want to extend our model to the
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dialogue level, we have to revoke this independence assumption. since people
in a dialogue tend to re-use concepts, arguments or words, or pick them up
from their conversational partners. _

Second, by replacing P(A|S) with Hfr‘:l P(Ag|sk) we assume that the
sequence of arguments A* of each speech act s; is independent from other
arguments, and that A* is independent from all speech acts other than s;.
This assumption mirrors design issues of the interchange format — namely
that DAs are fully self-contained, i.e. each DA and its sub-elements are fully
independent from other DAs.

Third, by substituting P(W|A) with Hgﬂ P(W,,, |am) we assume that
the words in an argument fragment do not depend on other arguments or
words. Again, this assumption appears to be reasonable at an utterance
level, but if we look at a whole dialogue we might have to re-consider this
assumption, too.

Markov Modelling

To make the model tractable, we would like to model the probabilities given
in equation (2.22) with n-gram models. We can do this reasonably well for
P(S), if we assume that the prior distribution of S is Markovian. This means,
that each s, depends only on a fixed number n of preceding speech acts —
n is the order of the Markov process describing S:

P(sg|s1y- 3 88=1) = P(Sk|8k=nr- 21 8k=1) (2.23)

The n-gram based discourse grammars we use for modelling the speech
act sequence have this property. As experiments in section 3.1 show, n =11is
a very good choice, i.e., conditioning on speech acts more than one removed
from the current one does not improve the quality of the model significantly.

Further, each P(Ag|si) for k = 1,...,K can be modelled in a similar
way by a speech act dependent n-gram model P, (Ax), if we assume that the
distribution of Ay is Markovian given the underlying speech act s; is known.

Similarly, each P(W,_|a,) for m = 1,..., M can be approximated by
an argument dependent n-gram model P, (W.,,), if the distribution of the
words in W,_, is assumed to be Markovian, given the underlying argument
@ is known.

The importance of the Markov assumption for the discourse grammars

is that we can now view the whole system of discourse grammars and local
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likelihoods as a multi-level hidden Markov model> (HMM). Figure 2.5 shows
a structural diagram of the resulting multi-level hidden Markov model used
for speech act and argument detection. It should be noted, that each level
constitutes a fully connected or ‘ergodic’ hidden Markov model, since the
given discourse models allow state-transitions, where every state of the model
can be reached (in a single step) from every other state of the model. Further
details of this model will be discussed in section 2.3.2.

P(WIA) Heilo.

P(AIS)

e O—@

grmeting intreduce-sell

Figure 2.5: The Multi-Level Hidden Markov Model: HMMs for dis-
course modelling at speech act and argument level are combined in a two-level
structure. The output distributions P(W|A) and P(A|S) are distributions
over word and argument sequences, respectively.

Connectionist Modelling

Nevertheless, for estimating the term P(ck|sk, Ak, Ws, ) of equation (2.22) we
cannot use n-gram models, since they are generative in nature and cannot
deal with multiple dependencies. As described in section 2.3.3, we use an
artificial neural network in order to recognize concept combinations in this

approach.

2.3 System Architecture

Figure 2.6 shows a component diagram of the SALT system for shallow sta-
tistical analysis and grammar-based argument parsing for speech translation

2For references on hidden Markov Models see [RJ86, Rab89, SSB*98, Rie29, SRC*99]
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within the framework of the Janus-III system. The complete process of pars-
ing is divided into four stages, namely pre-processing, statistical analysis,
argument parsing, and IF-post-processing.

Part-of-Speech _...
Tagger
L
smmm— =" Detection
I HMMs 727
S %
Detection
¥ B
TP Concept Shallow
W = | Prediction *= (_ Parse Trees
50
=4 [
vy | Parsing T Pamse Trees
(W}-'
Interchange Format

Figure 2.6: The Statistical Analyzer for Language Translation
(SALT): Component diagram of the proposed shallow statistical parsing ap-
proach. The part-of-speech tagger, the Soup parser, and the IF-mapper are
integrated external components.

The interface between SALT and the Janus speech recognition module is
via text string hypotheses of utterances in the source language. The parse
process then proceeds as follows: '

First, a pre-processing is carried out by applying a word-level filter and
a part-of-speech tagger to the recognized utterance (section 2.3.1).

Then, a statistical analysis is performed, which constitutes the core of
the parse process. It involves multi-level hidden Markov models (HMMs)
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that segment and label word sequences at argument and speech act level
(section 2.3.2), followed by a connectionist concept prediction (section 2.3.3).
The output representation of the statistical analysis consists of shallow parse
trees — shallow in the sense that the nested substructure of the argument
segments is missing.

The argument substructures get filled in at the next stage, the grammar-
based argument parsing (2.3.4), resulting in a representation of concept parse
trees. This requires running the SOUP parser on each detected argument
segment with the appropriate argument-grammar®.

Finally, in the post-processing stage, the concept parse trees are mapped
to interchange format by the IF-mapper, which is then checked by an IF-filter
in order to eliminate format errors or inconsistencies (2.3.5).

2.3.1 Pre-Processing

The pre-processing stage of SALT consists of two components: a word-level
filter and a part-of-speech tagger.

Word-Level Filter

The word level filter carries out a string replacement on the recognized input
word string — i.e. certain words or combinations of words in the input string
are replaced by specified substitutes, e.g. ‘let+s’ gets replaced by ‘let us’.
The string replacement serves several purposes:

First, it helps the system to deal with recognizer output that contains
abbreviations or short forms of words such as ‘+bout’ for ‘about’, ‘+kay’ for
‘okay’, or ‘+til’ for ‘until’.

Further, it expands colloquial abbreviations of word combinations to their
full forms, e.g. ‘i+m’ gets expanded to ‘i am’, 'won+t’ to ‘will not’, or
‘can+t’ to ‘can not’. Note, that the recognizer uses a plus sign “+” instead
of an apostrophe “’” and does not distinguish between upper-case or lower-
case letters.

It should be mentioned here that the expansion of these abbreviations
and short forms to their full form guarantees, that the succeeding stages of
the system will always get the same ‘surface form” — here: their full form —

3In fact, as explained in the referred section, we use the whole set of the C-STAR do-
main grammars rather than several smaller argument grammars for parsing the argument

segments.
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as input. For example, no matter if a speaker would say ‘can’t’, ‘cannot’ or
‘can _pause_ not’ we will always get ‘can not’ after filtering.

This a very prominent point for the succeeding statistical analysis, since
it helps to reduce complexity in the input representation. Especially n-gram
models usually suffer severely from inconsistent or, due to that, sparse train-
ing data. The so-called ‘sparse data problem’ will be addressed in the next
section.

The idea of consistent surface forms is taken one step further by mapping
similar phrases to more consistent representations. For example, the mapping
of ‘once’ to ‘one time’, ‘twice’ to ‘two times’, and ‘thrice’ to ‘three times’ falls
in this category; as well as the mapping of ‘twelve o+clock noon’, ‘twelve
noon’, and ‘noon’ to ‘twelve pm’.

Some colloquial phrases get changed to their more proper forms, e.g. ‘a
couple a’ is mapped to ‘a couple of’, while others are completely taken out,
e.g. ‘by the way’, ‘by any chance’, ‘actually’, ‘basically’, or ‘in fact’. This can
be done here, since in the given the task of travel-planning and scheduling
those phrases carry no meaning for the actual conversation.

The complete list of string mappings and replacements, as it is processed
in the word-level filter, is given in table A.1. The overall effect of the filter
is, as already mentioned, a reduction of complexity in the input to the suc-
ceeding stages of our system. This is achieved by mapping strings of words
which represent the same meaning, or sometimes only the same structure,
given task at hand, onto consistent surface forms.

The most important reason for applying this specific word-level filter in
the pre-processing stage of our system is the need to stay consistent with
the given training data. All the training data for SALT is generated with
help of the SOUP parser, which carries out the same string mappings and
replacements before parsing as is implemented in our word-level filter.

Part-of-Speech Tagger

According to Zipf's law [Zip29] the relative frequency of the i’th most fre-
quent word in a given corpus is proportional to 1/:. Figure 2.7(a) shows, that
the relative word frequencies in our training corpus follow approximately a
Zipf-like distribution — i.e. they are proportional to a/i” with a ~ 0.2 and
B=2/3.

Most words occur highly frequent due to peculiarities of the underlying
language; e.g. ‘a’, ‘is’, ‘the’, ‘that, or ‘to’ are frequently used words in written
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Figure 2.7: The Word Distribution and Coverage: (a) The distribution
of words in the training corpus follows Zipf’s law. (b) Half of the words in
the vocabulary cover more than 90 % of the corpus.

and spoken English. But for a given corpus, especially for a collection of task-
oriented dialogues as in our case, many words occurring with high frequency
are salient for the dialogue or task at hand. These ‘key’ or ‘trigger’ words
are the most important features for identifying arguments or speech acts by
a statistical analysis, and should therefore be incorporated into the language
model vocabulary.

A vocabulary that consists of the n most frequent words of a given corpus
covers a large percentage of utterances of the corpus with a comparatively
small number of words. Figure 2.7(b) illustrates this for the ‘case of our
training corpus, where a coverage of over 90 % is achieved with a vocabu-
lary containing less than half of all different words in the corpus. A small
vocabulary size also reduces the sparse data problem of the n-gram models.

For SALT we use a vocabulary size of 400 words (out of a total of 950
words); this corresponds to a coverage of 94 % of the 6594 utterances of the
training corpus. Preliminary experiments on word-based speech act predic-
tion show, that a coverage of roughly between 80 % and 90 % yields best
results (see section 3.1).

All remaining words are clustered into linguistically defined word cate-
gories, often referred to as parts of speech (POS). This is done by a rule-based
part of speech tagger®. A list of the part of speech tags used is given in table

“We use a modified version of Eric Brill’s tagger [Bri92, Bri93, Bri94] and acknowledge
Klaus Zechner for adopting it to spoken language.
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A.2 in Appendix A.2.

Combining part of speech clustering with n-grams helps to cope with the
problem of sparse data in language modelling. It also helps to increase the
generalization capabilities of language models in general. Since out of vo-
cabulary words are not all mapped to the same word category, this approach
promises an information gain even for unknown words [NEK94, FLL*98,
VRIS, Rie99].

We should emphasize here, that the part of speech tagger is applied to
all words in an utterance; this means, not only the out of vocabulary and
unknown words are provided with a part of speech tag. Thus, the vocabulary
consists in fact of the 400 most frequent word/tag pairs, and not words only.
All remaining word /tag pairs are represented in the vocabulary by their part
of speech tag only.

Accordance to their common usage, some words can appear in several
different categories; the word ‘one’ for example, can be tagged as a noun (NN),
as a cardinal number (CD) or as an adjective (JJ). While multiple occurrences
of a word in several different word/tag pairs increases the size of the corpus
vocabulary, it can help in language modelling: different usages of a word are
often related with a different meaning.

2.3.2 Segmentation and Labelling

Segmentation and labelling of utterances at speech act and argument level is
accomplished by a multi-level classifier approach using statistical discourse
grammars and likelihoods. The discourse grammars and likelihoods are mod-
elled by n-gram back-off models, using an absolute discounting smoothing
technique [NEK94, KN95, RSG97, CG98|.

Running the Classifier

The basic idea is to use a multi-level hidden Markov model as shown in figure
2.5 in section 2.2.3 for speech act and argument detection.

Input to the multi-level classifier is the recognized utterance represented
by a word string that has been pre-processed as described above. From
this a lattice® of segments is produced by an A search procedure that can

5As commonly referred to in the speech recognition community, a lattice is the term
used for a directed acyclic graph with a start node that can reach all nodes in the lattice,
and an end node that can be reached from all nodes.
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hypothesize segment boundaries and inserts every segment hypothesis into
the segment lattice. The lookahead function of the search has been optimized
to reflect the future effects of these segment boundaries.

The argument lattice is generated by replacing each segment by the set of
all possible argument labels and assigning a likelihood for each segment given
the argument. The segmentation and labelling at argument level is done in
accordance with the argument part of the multi-level HMM. This requires
the A search procedure to switch between argument specific n-gram models
according to a hidden state while at the same time enforcing a discourse
model on the hidden states.

The argument lattice is then segmented again and annotated with speech
act labels. A Viterbi search can find the best combined argument and speech
act sequence. )

Training the Classifier

For training the multi-level classifier the speech act and argument labels are
extracted from the parse-tree representation generated by the SOUP parser.
A list of the speech act and argument labels used within SALT is given in the
appendix A.3 in tables A.3 and A.4, respectively.

The extraction of speech act labels and segments from SOUP’s output is
straightforward: the speech acts are represented by the roots of the parse-
trees. However, for extracting the argument labels and segments, we have to
remark the following:

First, argument segments generally have a nested substructure — i.e.
they constitute a sub-tree in the parse-tree representation of an utterance.
Figure 2.8 shows an example for the nested representation of an argument of
type ‘super_time’. Since we model a shallow parsing approach, we restrict our
system to learn only the arguments that appear on top level in the parse-tree
representation — i.e. the siblings of the root of each parse tree.

Second, the example in Figure 2.8 also shows, that not all words of an
utterance are covered by arguments. As mentioned earlier, we have to intro-
duce pseudo-arguments that capture the remaining words in order to make
our two-level classifier approach work. Since the resulting sequence of ar-
guments and pseudo-arguments is used to predict the underlying speech act
label and segment, we chose to label the pseudo-arguments with the name of
the speech act, as given by the SOUP parser.

For the purpose of grammatical inference several different arguments may
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1 would Ii}ie to leave on June fifth

give-information month md

time-point
————
super_time
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~
give-information+preference+temporal+departure

Figure 2.8: The Nested Argument Substructure: Arguments in the
parse-tree representation of an utterance can have a deeply nested substruc-
ture. The pseudo-argument give information is introduced to capture
words not covered by super_time argument.

exist that capture the same meaning or represent the same idea while still
constituting different tokens in the SOUP grammar. For example, the top-
level arguments [gi:=availability=], [ri:=availability=], [=avail-
ability=], and [be:=availability=] all bear the meaning ‘availability’.
Therefore, in such cases we map all argument names representing the same
conceptual meaning into only one class. This helps to reduce the complexity
of the model while improving consistency in our language models.

Another point to mention on training our HMM classifier with Soup
output is the handling of words, that are unknown to the SOUP parser or
were skipped while parsing an utterance. Since we want to to have these
words in our training data, we have to insert them appropriately into one of
the argument or pseudo-argument segments. This is done one of the following
ways:

If SoUP has detected no argument before skipping words — this includes
the case where no argument is present in the current speech act — the words
are inserted into a pseudo-argument with the name of the current speech act.
Otherwise, the words are appended to the preceding argument segment.

2.3.3 Concept Prediction

The concept prediction is accomplished by an artificial neural network. The
neural network we are using is a two-layer network without a hidden layer of
neurons. The output layer is using a soft-max function [Jor95]. Training of
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the neural net is done by use of the RPROP algorithm [RB94]. The imple-
mentation of the used variant of RPROP follows the one featured in SNNS
[Zel93] and is part of the neural network library in the Janus recognition
toolkit [ZFRW97, Rie99].

The task of the concept prediction is to estimate for each detected speech
act segment the most probable combination of concepts based on the given
speech act and its accompanying arguments. The speech act, predicted con-
cepts and arguments shall then be mapped by the IF-mapper to a valid
domain action, as specified by the C-STAR interchange format.

As expected, the information about the speech act and its accompanying
arguments are the most salient features. However, experiments show, that a
unigram of the words present in the given speech act segment can improve
prediction performance significantly (see section 3.2). The word-unigram
contains basically the same 400 most frequent words of the training corpus,
which are used as the vocabulary of the language models for the HMM; except
that for concept prediction no part of speech tags are used. This reveals, that
in some cases a concept-combination is triggered merely by the presence of
certain words in the given speech act segment.

Therefore, the input of the neural network consists of the speech act, its
accompanying arguments and the word-unigram. Output of the neural net-
work is one of the 141 different concept combinations that have been learned
from the training corpus or an ‘empty’ concept (accounting for domain ac-
tions that do not contain any concept). The list of concept combinations is
given in table A.5 in appendix A 4.

Experiments on concept prediction with C4.5 [Qui93], a decision tree
algorithm, and TiMBL [DZvv99], a memory based learner, showed results
comparable to the proposed connectionist approach. For sake of simplicity
of the resulting overall system we chose the connectionist approach, since
the underlying neural network implementation is already part of the Janus
recognition toolkit.

2.3.4 Argument Parsing

The grammar-based argument parsing stage produces the argument sub-
structure that is needed to extend the shallow parse tree representation gen-
erated by the statistical analysis to a representation with full parse trees.
This is done by running the SOUP parser on each detected argument seg-
ment and specifving a non-terminal start-symbol of the semantic grammar
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that corresponds to the detected argument label®.

The basic idea was originally to use special argument grammars that
would only be capable of parsing the pre-segmented and labelled argument
fragments as detected by the statistical analysis stage. Since a full semantic
grammar is already available for our domain, we can achieve the same effect
by stalling all grammar-rules that cannot be derived from the specified start-
symbol. The advantage of argument grammars is that they are relatively
trivial to design and write, compared to a full semantic grammar for parsing
whole utterances in the given domain.

Since the argument labels used in the statistical analysis are not identical
with the grammar’s argument names, a mapping of argument labels to gram-
mar argument names has to be carried out. This mapping follows basically
the replacement scheme specified in table A.4 in appendix A.3.

As described in section 2.3.2 we cluster several grammar-arguments with
the same conceptual meaning under one argument label. When parsing an
argument segment the set of all grammar-arguments corresponding to the
detected argument label has to be specified as start-points. The SOUP parser
then produces several parse trees starting from any of the specified grammar
tokens and returns the best parse according to internal heuristics. The SOUP
output is then inserted into the shallow parse tree representation in place of
the argument segments.

We have also implemented a fall-back mechanism, in case SOUP cannot
parse an argument segment. Here, the argument label gets replaced by the
most probable grammar argument name. This enables the IF-Mapper still
to find an argument and map the given parse tree into a valid interchange
format domain action.

2.3.5 Post-Processing

A post-processing step is needed, since the multi-level hidden Markov model
used for segmenting and labelling utterances tends to over-generate — i.e.
it predicts more arguments and domain actions than are actually present in
the given utterance. Producing too many segments or segments that are too
small, especially at the argument level, can result in invalid IF. We chose
to implement a post-processing module at IF level, i.e. after the generated

6We acknowledge Marsal Gavalda for creating the Soup parser and thank him for
implementing the parse under feature which does the trick of specifying a start token.
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parse trees have been mapped by the IF-mapper, since at this level it is much
easier to resolve parser errors or correct invalid or inconsistent parts of the
IF representation.

The post-processing is done by an IF-level filter that basically eliminates
empty’, as well as repetitive arguments. Complete domain actions can also
be removed from the final IF-representation, if it contains already a more
detailed one with the same concept-combination.

With this approach we attack several problems at once: Empty arguments
can have many causes with in the given system. They can be due to a
wrong argument-level segmentation or labelling, such that salient words for
the argument parser or the IF-mapper are missing and thus no argument-
value can be extracted; or the SOUP parser could not parse the underlying
argument segment, and the [F-mapper was unable to extract the value from
the flat argument structure.

Repetitive arguments can stem from over-generative argument-level seg-
mentation, but in this case usually one of the repetitive arguments is empty
and gets removed anyway. The most common reason for repetitive arguments
and domain actions are speaker idiosyncratic, such as false starts or phrase
repetitions as shown in the two examples in figure 2.9.

. ; 5
Is there a train ... a train I can take then ?

train-type train-type

~ o

v
request-information+availability+transportation
(transportation-type=train)

Okay ... So ... Isee
acknowledge acknowledge
ackn;;ladge

Figure 2.9: The Post-Processing IF-Filter: Two ezamples showing elim-
ination of a repetitive argument (above) and a repetitive domain action (be-

low).

It is interesting to note, that word or phrase repetitions are much safer

"We regard an argument as empty, when it has no associated argument-value in its
IF-representation frame.
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to detect and remove at IF-level than at word level. At word level it is not
obvious how to differentiate wrong repetitions, that should be eliminated,
from ‘legal’ ones, such as spelling or listing names or numbers.

2.4 System Implementation

The main part of the SALT system (ca. 1k lines of code) is written in Python,
a highly efficient object oriented programming language for rapid prototyp-
ing. A Python library (ca. 10k lines of code independent from SALT) contains
several modules that represent interfaces to the language modelling and neu-
ral network components of the Janus recognition toolkit. The Janus toolkit
(ca. 100k lines of C-code accessible via a Tcl/Tk interface) also implements
the A" search and the speech recognizer (not used). The Python modules
are hooked on top of Janus’ Tcl/Tk interface, as Figure 2.10 demonstrates.

/ .
Salt \ o
Sy
%

Lib
Python Library Gen-M
TelTk-Interface
Generator
Janus ‘;&k
POS-Tagger

Figure 2.10: The Implementation Architecture: Salt accesses the Janus
toolkit, as well as all external components via Python modules.

All external components are embedded into Python modules and classes,
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either as socket connections (SOUP, IF-Mapper, Gen-Mapper, Generator) or
via UNIX OS commands (part-of-speech tagger).

The training- and run-modules are short Perl scripts (ca. 300 lines of
code), that call Python modules and routines. It is intended to port the
training- and run-modules to Python, too, in an attempt to make the sys-
tem implementation more homogeneous and to increase its portability and
usability, e.g. as a socket version.
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Chapter 3

Experiments and Results

This chapter describes the experiments we have conducted in order to show
the feasibility of our approach, as well as helping us to resolve modelling and
design issues during the creation of the SALT system.

We will first describe preliminary experiments on word-based speech act
prediction, and compare our results to a similar study [FKWT98]. Then,
results for experiments on concept prediction and multi-engine integration are
reported. Finally, we will present results of an end-to-end system evaluation
in the context of the C-STAR speech translation effort.

3.1 Word-Based Speech Act Prediction

Motivated by the experiments described in [FKWT98] we tried to reproduce
the reported results. _

The task is to estimate speech acts on an annotated English database
on travel arrangements with 64 dialogues for training and 50 dialogues for
testing. Experiments were conducted by use of the Janus recognition toolkit
in Tcl/Tk; with pre-processing in Perl.

The approach reported in [FKWT98] uses 1-gram language models with
domain dependent text-normalization, use of side information, and extensive
heuristic tuning. The text-normalization maps several different words onto
class expressions, such as ‘numbers’, ‘hotel-name’, etc. The reported result
on word-based speech act prediction was 58.6 % correct.

In a first experiment we used the same domain dependent text-normaliza-
tion as in [FKWT98]. Side information was also integrated, but no heuristic
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tuning was needed to achieve similar or even better results. Instead a n-
gram discourse model on the speech act sequence was applied. Results for
different orders of the speech act discourse model, as well as the word-level n-
gram model are summarized in table 3.1. The best result of 59.7 % correctly
predicted speech acts was obtained by use of a 3-gram model at word-level
combined with a bigram discourse model on the speech acts (see table 3.2).

S Act P Py n% ——
58
57
56
55
'S s i
1] 200 400 &00 BOD 1000 1200
Wort/Tag Pairs Ordered by Frequency

Figure 3.1: Speech Act Prediction with Varying Vocabulary Size: Us-
ing a part of speech tagger we can map all but the n most frequent word/tag
pairs into part of speech classes, thus varying the vocabulary size. The un-
derlying discourse and language models are bigrams.

In another experiment we used a part of speech tagger instead of the
text-normalization to annotate the database. We mapped all but the n most
frequent word/tag pairs on their part of speech tag. Figure 3.1 shows the
prediction performance for different values of n. It can be seen, that using
roughly between 200 and 300 word/tag pairs (out of 1042) in the vocabulary
yields the best results — this corresponds to a vocabulary coverage of 80 %
to 90 % of the training corpus.

In the experiment with varying vocabulary size the underlying discourse
and language models were both bigrams. Table 3.1 displays results for differ-
ent orders of the speech act discourse model, as well as the word-level n-gram
model. The best result of 59.9 % correctly predicted speech acts was obtained
by use of a 3-gram model at word-level combined with a bigram discourse
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model on the speech acts plus tuning one parameter of the n-gram models
(see table 3.2) — without tuning the best result of 58.7 % correct recognized
speech acts was achieved with a bigram as discourse and language model.

word-level | speech act with text- with pos-
model model normalization | tagging
l-gram l-gram 55.3 % 50.5 %
2-gram l-gram 57.0% 56.6 %
3-gram lI-gram 56.3 % 55.2 %
2-gram 1-gram 57.0% 56.6 %
2-gram 2-gram 59.4 % 58.7%
2-gram 3-gram 58.9% 57.4%

Table 3.1: Speech Act Prediction Accuracy: Displayed is the percentage
of correctly predicted speech acts using text-normalization and part-of-speech
tagging. The results for part-of-speech tagging were achieved with a vocabu-
lary of 230 word/tag pairs. ‘

Overall the above experiments show the feasibility of word-based speech
act prediction by use of n-gram language and discourse models. Further we
see, that bigram models are sufficient to achieve comparable — and some-
times even better — results as higher order n-gram models.

pre- word-level | speech act
processing model model correct
n.a. 3-gram 2-gram 57.6 %
text-normalization 3-gram 2-gram 59.7%
part-of-speech tagging 3-gram 2-gram 59.9%
as reported in [FKWT98]:
text-normalization l-gram n.a. 58.6 %

Table 3.2: Pre-Processing for Speech Act Prediction: Displayed are
best results on speech act prediction using different approaches for pre-
processing. The results for part-of-speech tagging were achieved with heuristic
tuning of one parameter, using a vocabulary of 230 word/tag pairs.

Comparing the results in table 3.2 one can see, that no domain dependent
text-normalization is needed to achieve comparable prediction results. Thus,
we can reproduce, and even improve the results reported in [FKWT98] by a
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more general approach using a domain-independent part of speech classifier.
Our proposed approach is not only more general and robust in case of changes
to the classifier-system, but it also requires no additional human modelling
effort, once a part of speech tagger is available.

3.2 Concept Prediction

The task is to estimate the most probable combination of concepts for each
detected speech act segment. We compare results from three different ap-
proaches: C4.5 [Qui93], a decision tree algorithm, TIMBL [DZvv99], a mem-
ory based learner, and the two-layer neural network described in section
2.3.3.

The experiments in this section serve two purposes: first, we want to find
the features of the input representation that are salient for predicting the
concepts; possible candidates are side information (sd), speech act label (sa),
accompanying argument labels (arg), and a unigram of the words present in
the given speech act segment (wrd). The word-unigram contains basically
the same 400 most frequent words of the training corpus, that are used as
the vocabulary of the language models in the HMM; except that for concept
prediction no part of speech tags are used.

The results in table 3.3 state, that speech acts, arguments and the word-
unigram are all salient features that improve the resulting prediction perfor-
mance considerably; whereas the use of side information gives no advantage.

| Input Features C4.5 TiMBL

wrd (+sd)

sa, wrd (+sd)
arg, wrd (+sd)
arg, sa, wrd (+sd)

66.2% (65.1 %)
70.8% (71.4%)
74.9% (74.1%)
83.1% (83.1%)

68.1 % (67.3%)
71.1% (71.1%)
74.4% (74.1%)
82.6 % (82.6 %)

Table 3.3: Salient Features for Concept Prediction: Displayed is the
percentage of correctly predicted concepts, given the input features: arg -
argument labels, sa - speech act label, sd - side information, and wrd - word-
unigram. Values in brackets include side information as input feature.

The second purpose of the experiments is to compare the performance of
the different machine learning approaches, and find the best performing and
most suitable one for integrating into the SALT system. Table 3.4 shows,
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that the neural network outperforms both other approaches on the given
test-set with the same input features, namely speech act, arguments and
word-unigram. Since the components for implementing the neural network
are part of the Janus recognition toolkit, which we already use for the lan-
guage models, we chose to integrate the neural network approach of concept
prediction into the framework of SALT.

Input Features

NN

C4.5

TiMBL |

arg, sa, wrd

87.2%

83.1%

82.6% |

Table 3.4: Comparing Models for Concept Prediction: The neural
network model outperforms C4.5 and TiMBL. The input features are speech
act, arguments, and word-unigram.
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3.3 End-to-End Evaluation

Within the C-STAR translation effort end-to-end system evaluations are per-
formed on a regular basis. This involves a set of 200 to 300 unseen utterances
in English that are transcribed and recognized by the Janus speech recog-
nition system. Both sets (transcribed and recognized) are run through all
system components, such that we get from translations into German and
Japanese, and a paraphrase in English. The output utterances are then
graded with respect to the original utterance according to three categories:
perfect, ok, and bad.

A translation qualifies as perfect, if it looks ‘natural’ and ‘smooth’, and all
information from the original utterance is transferred. In an ‘ok’ translation
all information critical to the dialogue survives, but less relevant information
can be missing. If critical information for the underlying dialogue is missing,
the translation is considered to be bad.

For now, SALT has only been graded for English paraphrases. Table 3.5
gives the results of the last evaluation in comparison with the SOUP parser.

[ Label Recognition Transcription |
SALT: perfect 31.7% 36.9%
ok 18.8% 20.4%
bad 49.5% 42.7%
acceptable 50.5 % 57.3%
Soup: perfect 39.4% 47.6 %
ok 22.2% 26.1 %
bad 38.4 % 26.3 %
acceptable 61.6 % 73.7%

Table 3.5: C-STAR End-to-End Evaluation: Results for paraphrasing
from English to English based on the average of two graders. The category
‘acceptable’ combines perfect and ok grades.
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3.4 Multi-Engine Integration

As described in section 2.2.2 we aim for the integration of SALT, SOUP and
Pangloss into a multi-engine machine translation system within the frame-
work of the Janus-III speech translation system. The underlying idea is to
get an improved overall translation quality superior to the single systems.
Therefore, an ‘oracle’ experiment is conducted to estimate an upper
bound of what can be achieved theoretically by a multi-engine integration.
This is done by manually picking for each sentence of a given test set the
best translation from all systems that shall be combined. The results for an
oracle experiment on paraphrasing! recognized English sentences combining
SALT and SOUP are displayed in table 3.6. It also shows oracle results for
translating recognized sentences from English to German combining SALT,
Soup and Pangloss. The given results let hope for a large improvement by
integrating the three systems into a multi-engine translation system.

Salt | Soup | Pangloss | oracle result

English to English paraphrase:

47.3% (30.3%) | 59.7% (38.3%) | n.a. | 65.3 % (42.0 %)
English to German translation:

50.4% (23.3%) | 59.3% (30.7%) | 64.6 % (28.3%) | 77.6 % (44.6 %)

Table 3.6: Oracle Experiment Combining Salt, Soup and Pangloss:
The displayed values are percentages of ‘ok’ grades based on recognized input
utterances; the perfect grades are given in parentheses. The English to English
oracle result combines Salt and Soup only.

Motivated by these encouraging results a row of experiments was con-
ducted to find a classifier for choosing the best German translation from one
of the three systems. Basically three different approaches were tried:

The first approach makes use of SOUP’s parse statistics, which are deliv-
ered together with each parse output. Among these, the coverage appears
to be a salient feature for determining the quality of the parse output. The
coverage denotes the number of parsed words, divided by the total number

Paraphrasing means here ‘translating’ back into the same language, i.e. the output
consists of English sentences that should reflect the meaning, and thus give a paraphrase,
of the given input sentences.



of words in the utterance. A low coverage indicates that many words were
skipped during the parse process and, therefore, the parse output may not
represent all relevant information present in the given utterance. Using a
threshold on the coverage can serve as a simple and effective classifier. For
combining SOUP with Pangloss we achieve an absolute improvement of 2.1 %
if we choose SOUP’s output whenever it covers at least 95 % of all words in
a sentence. Combining SOUP and SALT yields only a small improvement of
0.7 %; the threshold used here is 70 %. This approach is only applicable for
combining SOUP with one additional system. It cannot be used for combining
all three systems.

In the second approach statistical language models are applied as classi-
fiers to judge which system ought to be used for translating a given utterance.
The models base their decision on the sequence of parts of speech in the in-
put utterance. Bigram back-off models are used to implement the classifiers.
They are trained and evaluated on a set of 300 sentences that was annotated
in the previous oracle experiment; the annotations identify for each input
sentence the system that yields the best translation. Since the training set is
comparatively small and no separate test set is available, training and testing
is conducted in round-robin fashion. L.e., the set of 300 sentences is divided
into ten sets of 30 sentences each; nine sets are used for training, while one
set is held out to evaluate the classification performance. Thus, by rotating
the training and test sets we can train and evaluate ten different classifiers.
The overall number of correct classifications is the sum of the sentences clas-
sified correctly by each classifier on its respective test set. This approach
yields only a small improvement in translation quality, e.g. in the case of
combining SOUP and Pangloss only an improvement of 0.4 % is gained.

The third approach tries to combine the previous approaches in one clas-
sifier using an artificial neural network. We apply here the same type of
neural network as implemented in the concept prediction module (see sec-
tion 2.3.3). It allows each output unit to receive an additional input that
can be determined by another knowledge source. This can be interpreted as
a prior on the output distribution. It enables us to build a hybrid classifier
using the coverage feature from the first approach as input while integrating
the score of the statistical language models as additional knowledge source.
As table 3.7 shows, the hybrid approach cannot improve the results obtained
with the first approach. But, it allows integration of all three system into a
multi-engine translation system that achieves an improvement in translation
quality of 1.7 % over its best single components.
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Translating oracle coverage lang. models
English to German & neural net

Soup & Salt 76.3% (38.3%) | 60.0% (31.4%) | 59.3 % (32.6 %)
Soup & Pangloss | 75.0% (39.0%) | 66.7% (31.3%) | 65.3% (30.3%)

Soup & Salt ~ .

Table 3.7: Integrating Salt, Soup and Pangloss for translating from
English to German. The displayed values are percentages of ‘ok’ grades based
on recognized input utterances; the perfect grades are given in parentheses.

However, it should be noted that the grammars used for generating Ger-
man output from analyses with SALT or SOUP are in an early stage of devel-
opment. They still lack a substantial amount of domain-coverage compared
to the grammars used for generating English output. This is also stated by
an experiment that combines SALT and SOUP for paraphrasing English sen-
tences. Using the language model classifier from the second approach above
(i.e. without the neural network) we almost achieve the results of the ora-
cle experiment, which translates in an absolute improvement of 4.3 %. The
results are given in table 3.8.

Salt Soup oracle Salt & Soup
47.3% (30.3%) | 59.7% (38.3%) | 65.3% (42.0%) | 64.3% (40.0%)

Table 3.8: Integrating Salt and Soup for paraphrasing English sentences
with language models as classifiers. The displayed values are percentages of
‘ok’ grades based on recognized input utterances; the perfect grades are given
in parentheses.
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Chapter 4

Discussion

The main concern of this work is to design and implement an alternative
parsing method, which performs shallow parsing of input utterances using
a probabilistic framework, that allows derivation of model parameters auto-
matically from a corpus, using statistical inference techniques.

The most prominent result of this work consists of the fact that the pro-
posed approach of shallow statistical parsing is not only feasible in the context
of a machine translation system for spoken language, but it is also practicable
in the framework of a multi-engine machine translation system, which shows
improved performance over the single integrated modules. Even a prelimi-
nary ‘first shot’ system implementing the proposed approach produces good
results and performs relatively well compared to other well established sys-
tems, which have seen several man-years in development and improvement.

The rest of this chapter discusses the main contributions of our work for
the area of natural language processing together with an outlook on possible
ways to extend and improve the SALT system at its current state.

Hybrid Modelling

In fact the SALT system constitutes a hybrid approach of statistical and
symbolic parsing. It combines shallow statistical parsing with a grammar-
based parser for parsing the statistically detected sub-segments.

The statistical component makes the whole parse process more stable and
robust, because it deals well with unanticipated input while the grammar-
based component is very efficient and reliable in parsing small sub-segments
of input in order to extract highly specific information, such as argument
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values in our case.

Another advantage of this hybrid approach lies in the simplicity of the
involved models: The statistical model can be restricted to one or more
levels of the overall parsing process, which simplifies its implementation and
training.

The grammar-based parsing module can basically be a very simple ‘chunk-
parser’ that gets pre-segmented and labelled fragments of text-strings as
input. The grammars involved in parsing the chunks are trivial, since they
have to deal only with a very limited domain (specified by the fragment-
label) and a very limited syntactic structure (fragments are only small parts
of a sentence). They can be written in a fraction of time that a full grammar
would need for being developed.

The hybrid model allows integration of additional information into the
parse process. Cues such as speaker information, prosody, lip-reading, or
other multi-modally recognized features can easily be utilized within the
statistical framework. It can also be extended to use statistical discourse
grammars for domain actions or concepts.

Practicability under Rigid Specifications

The integration of the SALT system within the framework of the Janus III
machine translation system puts many restrictions on its design, specification
and architecture: '

The overall input/output function of the system is specified by the re-
quirements of the embedding system. The actual features (speech acts, con-
cepts and arguments) that shall be detected by the statistical analysis are
pre-specified, and thus may not reflect an optimal choice for the machine
learning task at hand.

Another point to mention is the quality of the training data generated
with help of the SOUP parser. Since no correction mechanism in creating the
training database is applied, its quality reflects the limited correctness of the
SouP parser — this means that roughly 30 to 40 percent of the used training
examples are in fact erroneous parses.

Using the SOUP parser for generating training examples also requires
implementation of the same word-level filter for the pre-processing stage as
SoUP uses before parsing. This word-level filter was specifically designed
for SOUP and its domain grammars, and thus may not be optimal in the
pre-processing stage of a statistical parser.
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In spite of the described disadvantages and drawbacks imposed by the
integration into the Janus system and the need for generating training data
automatically, the SALT system shows a good performance.

This states that our approach is practical even under the rigid specifica-
tions of an existing and highly developed machine translation system. And,
the fact that the reported system was implemented in less than one man-year
sheds a new light on the efficiency of statistical parsing approaches in general
— particularly, if one thinks of the many ways our model could be extended
or improved:

The SoUP parser could be used in reverse mode to generate training
data from its grammars in cases, where grammar rules have already been
implemented, but the coverage in the training database is low. The training
database could also be manually searched for incorrect examples, and those
could be deleted or — with considerably more effort — corrected.

One could also try to further cluster the learned arguments in order to
reduce their number and conceptual overlap; or one could use different pseudo
arguments or try clustering those. In learning the arguments and pseudo-
arguments, the mapping of words into arguments could be changed.

Another idea would be to predict speech acts not only based on argu-
ments, but based on words, too. Or one could implement an incremental
prediction for speech acts and concepts — i.e. the whole combination of
speech acts or concepts of a domain action is not predicted in one step, but
each single speech act or concept step by step. The three last approaches
could also improve the robustness of the speech act and concept prediction.

Robustness

Robustness is a critical feature for dealing with spontaneous speech, since
it contains interrupts, restarts, ungrammaticalities or phrases with low in-
formation content (e.g. “well”, “let me see”, “i dunno”, etc.), and can be
corrupted with speech recognition errors. In the proposed approach the ro-
bustness is based on and inherent in its statistical framework. At each stage
of the parse process a default or fall-back mechanism is implemented already
within the statistical models.

If, e.g.. an argument is not detected correctly, the speech act and concepts
prediction can still be correct — even if no arguments are recognized at all.
The same argument holds for speech acts and concepts. So, no matter how
scrambled the input to the system might look like, it will still find the most
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likely interpretation for it.

The principle of robustness even extends to the argument parsing and
post-processing stage. In case, that the SOUP parser cannot parse one or
more of the given argument segments, the IF-mapper will still get the labels
of the detected arguments, speech acts and concepts. In most cases this is
sufficient to produce a reasonable and — with the help of the IF-filter in the
post-processing stage — correct [F-representation of the given utterance.

This differs by large from all known symbolic approaches, which have to
model speech idiosyncrasies explicitly in their grammars or by ‘soft’ rules,
that allow handling of exceptions during the parse process (e.g. skipping or
filling in words).

However, at this point the translation system often does not profit from
SALT’s robustness. The IF-mapper, as well as the Gen-mapper and the
generator were designed for the SOUP parser, which would either deliver a
fully detailed parse-tree representation, or an empty one. Therefore, these
modules cannot handle the defaulted or partial analysis SALT would generate
in cases of scrambled input sentences.

Generality

Although SALT's specification is very rigid and specific, its design and im-
plementation bear a large degree of generality:

The core components, statistical analysis and concept prediction, consist
of language and domain independent modules that can easily be trained for
other applications. For example, the input to the multi-level classifier can
also be a lattice of words, e.g. produced by a speech recognizer. In fact, the
multi-level hidden Markov model is also being used very successfully within
the Clarity project for word-based prediction of discourse structures’; a task
which traditional approaches have shown incapable of handling adequately
[FLL*98, LRTGL99].

The part-of-speech tagger used in the pre-processing stage is a widely used
domain-independent standard module, that is also available for languages
other than English. The word-level filter is only necessary to work well with
the training data supplied by SOUP; provided training data from another
source, the filter can either be left out completely or one can try to implement
a language and/or domain dependent filter helping to improve performance

'We acknowledge Klaus Ries for implementing the multi-level hidden Markov model,
and thank him for making it accessible for our system.
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{e.g. in the case of our domain a number pre-processing on word-level could
help to differentiate between dates, account numbers, flight numbers, etc.).
Thus, the only domain and language dependent part of the SALT system is the
argument parsing stage. But as mentioned earlier, the argument grammars
required here are relatively trivial to develop and implement.

On one hand, this large degree of generality makes it possible to port the
system to a completely different task or even another language with only a
small amount of work. In fact, given a sufficient amount of training data,
only the argument grammar has to be exchanged in order to move the whole
SALT system to another language.

On the other hand, the generality of the modules used within SALT leaves
a great variety of possible improvements. For example, the part-of-speech
tagger could be augmented by special domain or task dependent categories;
or the word-level filter could be adapted to suit the language models better.

Economy

The most important advantage of the proposed approach lies in its econ-
omy considering time and man-power — and thus the total costs — for
creating an analysis component for a speech translation system. As already
mentioned before, the whole system was built in far less than one man-year
(provided that the used modules were already available). And, porting it to
a new language requires only a fraction of the previously invested effort of
the development. In fact, the main work in building a new statistical parser
involves only two tasks: writing a new argument grammar and creating an
example-database for training of the statistical models.

The first task, writing new argument grammars, can be accomplished by
a skilled grammar writer probably in matter of weeks. The second task, the
generation of the training corpus, can be accomplished by several relatively
unskilled annotators in parallel. Thus the proposed approach helps reduce
total time and costs compared to traditional grammar-based approaches,
where usually several highly skilled grammar-writers are occupied for months
or even vears to generate a suitable grammar.



Chapter 5

Conclusion

Traditionally, automatic natural language parsing and translation have been
performed with various symbolic approaches. Many of these have the ad-
vantage of a highly specific output formalism, allowing fine-grained parse
analyses and, therefore, very precise translations. Within the last decade,
statistical techniques have been proposed for learning the parsing task-in
order to avoid the tedious manual modelling of grammars. Especially for
parsing spontaneous speech a huge modelling effort is needed to cope with
malformed, ungrammatical or (by recognizer errors) corrupted input. And, -
for each new language to be integrated in the translation system the same ex-
tensive modelling effort has to be invested, since no transfer of the grammar-
inherent knowledge is possible.

The main goal of this work was to design and implement a shallow sta-
tistical analysis component for language translation that allows derivation
of model parameters automatically from a corpus, using statistical inference
techniques. The hybrid approach of combining the shallow statistical analy-
sis with a grammar-based parser is highly portable and economical even in
the domain of spoken language analysis: The required corpus for training the
statistical models is relatively small (approximately 6,000 utterances), and
only a minimum of hand modelling is required. The grammars used by the
parser analyze parts of sentences only, thus they are relatively trivial and
need not much effort in development.

The prototype system SALT was developed and tested in the context of
the C-STAR II machine translation effort, a research consortium cooperating
on speech translation for travel planning dialogues. It was implemented us-
ing modules from the Janus RTK, as well as other standard natural language
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processing components. It consists of two main components: a shallow sta-
tistical analysis for detecting segments in input utterances, and a grammar-
based parser for parsing the detected segments. The output of the system
consists of an interlingua representation used and specified by the C-STAR
consortium.

SALT is trained with transcribed and automatically (by a grammar-based
parser) annotated sentences, and evaluated on both, transcribed and recog-
nized, sentences. It performs relatively well — with respect to its prototypical
state — compared to a grammar-based parser, which has seen a considerable
effort in development and grammar-writing. A key result is obtained by us-
ing recognized data for evaluating the C-STAR system on English to German
translation. With SALT the translation performance results in 50.4 % cor-
rectly translated sentences; the grammar-based parser achieves 59.3 % correct
translations.

Although SALT’s current performance does not reach the level of the
grammar-based parser, experiments integrating both systems into a multi-
engine translation system state an improved performance, superior over both
single systems. An experiment on paraphrasing English sentences shows an
absolute improvement of 4.3 %.

This work gives clear evidence for the successful application of statisti-
cal methods in the analysis of spontaneous speech. The proposed approach
has clear advantages over traditional symbolic approaches even under rigid
specifications.

The main advantages of the proposed approach lie in its robustness (in-
herent in the statistical models), its general and economic implementation
(due to the use of mostly language and domain independent standard com-
ponents), and its extensibility (the statistical models facilitate a simple inte-
gration of additional information, such as prosody, lip-reading, etc.).
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Appendix A

Details of the Salt Architecture

A.1 Word-Level Filtering

Table A.1 lists the search strings together with their accompanying replace-
ment strings used by the word-level filter in the pre-processing stage of the
SALT system (see section 2.3.1).

Since the filter works on recognized word strings, the given strings contain
special tokens used by the recognizer: token ‘<s>’ denotes the start of an
utterance, token ‘</s>’ signals the end of an utterance, and the plus sign ‘+’
is used instead of an apostrophe “7.

Table A.1: The List of Mapped Strings:

Search String Replace String
‘ any thing else ’ — ‘ anything else ’
‘ by any chance ’ - €

‘ by the way ’ — =

‘ will any of ’ — “will ?

‘ would any of ’ — “ would ’

‘do any of ’ - ‘do’

‘ does any of ’ — “ does ’

‘ have any of ’ — ‘ have ’

‘ has any of ’ - ‘ has ’

¢ are any of ’ — ‘are’

continued on next page
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Search String

Table A.1: continued

Replace String

-

is any of ’
there any of ’
will any ’
would any ’
do any ’

does any ’

‘ has any ’

is any ’

how much ’
<s>isee’

<s> okay i see ’
<s> well i see’
tam’

ami’

4 am 2]

-am-’

* 3

-

-

-

-

-

a couple a ’

twelve o+clock noon ’
twelve o clock noon ’
twelve noon ’

noon ’

how+s it going ’

‘ how+s’

much better ’

13 ok ?

‘ that should give us’
diner+s ’

‘ler+s’

¢ tlay

‘lets ’

let+s’

‘i4+m’

-

-

-

-

-

-

dddddd I ddEd I LI L4 LI 4L L ELL LA

Y

Y

15
there °

“will ’
* would °
‘ do 2

‘ does

3

;has?

‘s

N

* how_much’
‘ <s> isee’
* <s> okay isee’

-

-

-

-

-

-

<s> well i_see’
i-am- "’

-am- 1’
?

-a-m

Py
4

a couple of ’
twelve pm ’
twelve pm ’
twelve pm ’
twelve pm °
how is it going ’
how does ’
better ’

‘ that way we have ’

diners ’
lers ’

* okay '

let+4s ’

‘let us '
‘iam’

continued on next page



Table A.1: continued

Search String Replace String
ST Cwill ?

Y 4re’ ‘are’
f4d’ “would ’
‘s’ fis T

¢ fve’ ‘ have ’
C4till ’ “tll

“ 4til’ “until ’
“til “until ’

‘ 4+bout ’ * about ’

‘ won+t’ ¢ will not ’
‘ can+t’ ‘ can not ’
¢ cannot ’ * can not ’
‘n4t’ ‘ not ’

¢ doctor is ’

‘* doctor+s '

if not possible ’
if possible ’

if not ’

“also’

‘ please do’

<s> please </s>’
¢ <s> then there ’
‘ <s> then </s>’

.

_please_do ’

¢ <s> _please_</s>’
¢ <s> there’

¢ <s> _then_</s>’

‘ <s> then’ ‘s>’

‘ bye then ’ ‘ bye’

‘ ok then’ ‘ok’

‘ okay then ’ ‘ okay

¢ then.'’ ‘ then ’

‘ please ’ o

¢ _please_’ * please ’

“<s> _well_</s>’
_well_ enough ’
_well_ indeed ’
_well_in deed ’

f<s> well </s>°
well enough ’
well indeed ’
well in deed ’

-

,_
-

-

bddddddd dddddddddddd dddidddbed i

continued on next page
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Search String

Table A.1: continued

Replace String

‘<s> well °
fowell_’

‘as well </s>°
‘ actually ’

* basically °

‘ already ’
‘once '

' twice '

‘ thrice ’

“in fact ’

‘ where else ’

LA A RN S A A A R

‘f<s>’
*well ’
fgfs>]

[

&« ?

‘ one time’
‘ two times’
‘ three times '

[ S |

* where ’
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A.2 Part of Speech Tagging

Table A.2 lists the part of speech tags used in the pre-processing stage of the
SALT system (see section 2.3.1). Tagging is done by a modified version of
Eric Brill’s rule-based part of speech tagger [Bri92. Bri93, Bri94], which was
adopted to spoken language by Klaus Zechner.

Table A.2: The List of Part of Speech Tags:

Tag Part of Speech

AFF affirmative particle

ANA anaphoric element

AUX auxiliary

cc conjunction

cce conjunction, constituent
CD cardinal number

cv conversational words

DT determiner

EX explicative

JJ adjective

JIR adjective, comparative
JJs adjective, superlative
NEG negation particle

NN noun

NNP proper noun

NNPS proper noun, plural
NNS noun, plural

PREP preposition

PRP personal pronoun

PRP$ personal pronoun, possessive
PRPA personal pronoun, accusative case
RB adverb

RBR adverb, comparative
RBS adverb, superlative

RP verb particle

TO ‘to’ + infinitive

continued on next page
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Table A.2: continued

Tag Part of Speech

UH colloquials

VB verb. infinitive

VBD verb, past

VBG verb, gerund

VBN verb, past participle
VBP verb, present

VBZ verb, inflection (3rd sgl. present)
WDT relative pronoun

WP wh-particle, attributive
WRB wh-particle, isolated
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A.3 Segmentation and Labelling

Table A.3 lists the speech act labels used in the statistical analysis stage of
the SALT system.

Table A.3: The List of Speech Act Labels:

Speech Acts

accept

acknowledge
acknowledge-action
affirm

affirm-action
agent:request-information
apologize
client:request-action
closing

delay-action
end-action
give-information
greeting
greeting-nice-meet
greeting-request
greeting-response-bad
greeting-response-good
introduce-self

negate
negate-give-information
negate-request-action
negate-testing-ready
not-understand

offer

offer-information
offer-reservation
please-wait

reject

continued on next page
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Table A.3: continued

Speech Acts

request-action
request-affirmation
request-delay-action
request-information
request-introduce-self
request-neg-affirmation
request-repeat
request-suggestion
request-verification
request-verification-delay-action
request-verification-end-action
request-verification-give-information
request-verification-request-action
suggest

testing

testing-present

testing-problem

thank

uncertainty

verify

verify-give-information
verify-request-action
verify-request-information
welcome

Table A.4 lists the argument labels used in the statistical analysis stage
of the SALT system together with the argument names as they appear in
the parse tree representation of SOUP’s output. We clustered arguments
denoting the same conceptual meaning into one argument label, respectively.



Table A.4: continued

Argument Label Corresponding Soup-Arguments
[q:frequency=]

hotel-name_question [hotel-name_question]

hotel-name_unknown [hotel-name_unknown=]

hotel-type [q:hotel-type=]

how-many [how-many=]

how-many _question [how-many_question]

include_unknown [include_unknown=]

letters [letters=]

location [g:location=]

[time:location=]
[where-q:location=]

method [g:method=]
numeral [q:numeral=]
occupancy [occupancy=]
origin [between:origin=]
[intro-prep:origin=|
[origin=]
[prep:origin=]
origin_question [origin_question]
origin.unknown [origin_unknown=]
per-unit [per-unit=]
person-name [person-name=]
[unk-no-title:person-name=]
person-name._question [person-name_question)
price [price-req-q:price=]|
[q:price=]
price-difference [=price-difference=]
price-range [price-range=]|
price-type [price-type=]
purpose [purpose=]
rate [rate=]
room-location [room-location=]
room-number [room-number=|

continued on next page
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Argument Label

Table A.4: continued

Corresponding Soup-Arguments

room-type
room-view
row-number

season

seat-type
sight-type_question
super_bed-type
super._carrier-name
super_contain
super.destination

super_flight-number
super_flight-type
super_for-whom

super_hotel-facility
super_hotel-name
super_hotel-service
super_hotel-type
super_include
super_location

super_method
super_numeral
super_price
super_room-type
super_sight-name
super.sight-type
super_time

super_transportation-type

super_via
super_weather

[q:room-type=]
[room-view=]
[row-number=]
[season=]

[seat-type=]
[sight-type_question]
[super_bed-type=]
[super_carrier-name=|
[super_contain=]
[and:super_destination=]
[super_destination=]
[super_flight-number=]
[super flight-type=]
[for:super_for-whom=|
[super_for-whom=]
[super_hotel-facility=]
[super_hotel-name=]
[super_hotel-service=]
[super_hotel-type=]
[super_include=]
[prep:super_location=]
[super_location=]
[super_method=]
[super_numeral=|
[super_price=]
[super_room-type=]
[super_sight-name=]
[super_sight-type=]
[super_time=]
[super_transportation-type=]
[super_via=]
[good:super._weather=]
[noun:super_weather=|

continued on next page
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Argument Label

Table A.4: continued

Corresponding Soup-Arguments

super_-who

super_x-predicate
super_x-subject
telephone-number
temperature

time

time-relativity
time_question
to-whom

tour-type
train-name
train-type
train-type_question
trip-type
unavailability

weather_question
web-page-image

web-page-information

web-page-object
what

with-how-many
with-whom
x-car-type

[super_weather=|
[party:super_who=]
[super_who=]
[super_x-predicate=]|
[super_x-subject=]
[telephone-number=|
[temperature=]
[exp:time=]
[q:time=]

[time=]
[time-relativity=]
[what:time_question]
[greet:to-whom=]
[tour-type=]
[train-name=]
[train-type=]
[train-type_question]
[trip-type=]
[=unavailability=]
[gi:=unavailability=]
[weather_question]
[web-page-image=]
[web-page-information=]
[web-page-object=]
[num:what=]
[what=]
[write-num:what=]
[write:what=]
[with-how-many=]
[with-whom=]
[x-car-type=]
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A.4 Concept Prediction

Table A.5 lists all concept combinations that have been learned by the neural
network in the statistical analysis stage of SALT from the training corpus.

Table A.5: The List of Concept Combinations:

emply

~+availability

+availability+hotel
+availability+room
+availability+web-page

+budget

+cancellation+penalty
+cancellation+price+transportation
+cancellation+temporal
+change+features+flight
+change+penalty
+change+reservation
+change+temporal
+click+features+web-page
+confirmation
+confirmation+features+flight
+confirmation+features+hotel
+confirmation+features+room
+confirmation+features+transportation
+confirmation+numeral
+confirmation+payment
+confirmation+temporal+room
+display+confirmation+numeral
+display+confirmation+numeral+checkin
+display+features+web-page
+expiration-date

+features

+features+activity
+features+admission

continued on nezt page
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Table A.5: continued

+features+arrival
+features+arrival+flight
+features+arrival+train
+features+arrival+transportation
+features+attraction
+features+departure
+features+departure+flight
+features+departure+train
+features+departure+transportation
+features+event
+features+flight
‘+features+hotel
+features+party
+features+room
+features+stay
+features+tour
+features+train
+features+transportation
+features+trip
+features+web-page
+features+x-car-rental
+help

+help-again

+help-later

+location

+location+hotel
+location+room
+location+stay

+name
+neg-preference+features+x-car-rental
+numeral
+order+features+admission
+payment

+possibility

continued on next page



Table A.5: continued

+preference
+preference+features

+ preference+features+admission
+preference+features+attraction
+preference+features+event
+preference+features+flight
+preference+features+hotel
+preference+features+room
+preference+features+stay
+preference+features+tour
+preference+features+train
+preference+features+transportation
+preference+features+trip
+preference+features+x-car-rental
+preference+location
+preference+location+hotel
+preference+location+room
+preference+-price
+preference+price+hotel
+preference+temporal
+preference+temporal+arrival
+preference+temporal+departure
+preference+temporal+hotel
+preference+temporal+room
+preference+temporal+stay
+preference+temporal+trip
+price

+price+hotel

+price+refund

+price+room

+price+trip

+price-fluctuation
+price-fluctuation+room
+purchase+features+admission

continued on next page



Table A.3: continued

+reservation
+reservation+features
+reservation+features+attraction
+reservation+features+flight
+reservation+features+hotel
+reservation+features+room
+reservation+features+train
+reservation+features+transportation
+reservation+features+trip
+reservation+features+x-car-rental
+reservation+location+hotel
+reservation+location+room
+reservation+name
+reservation+numeral
+reservation+ price+room
+reservation+temporal
+reservation+temporal+departure
+reservation+temporal+hotel
+reservation+temporal+room
+reservation+temporal+trip
+search

+search-+features
+search+features+flight
+search+features+room
+spelling

+telephone-number

+temporal

+temporal+arrival
+temporal+checkin
+temporal+checkout
+temporal+departure
+temporal+event
+temporal+hotel
+temporal+minimum-stay

continued on next page



Table A.5: continued

+temporal+room
+temporal+stay
+temporal+trip
+time
+time-difference
+view
+view+features+web-page
+weather

+write
+x-predicate
+x-take-with
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