Diploma Thesis

On-Line

Repair in Mé \

Handwriting Recognition

Wolfgang Hiirst

Interactive Systems Laboratories
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213, U.S.A.

Carnegic
\ Mell‘n

Supervisors:

Prof. Dr. Alex Waibel
and Dr. Jie Yang

March 1997

Hiermit erklire ich, daf ich diese Diplomarbeit selbstindig verfalit und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Pittsburgh, 14.3.1997 A

;.-'{L,/‘F("f [o

Wllfg"%lng Hiirst

Acknowledgements

I would like to thank all the people who helped me and gave me support during
this work. A special thanks goes to my two advisors Jie Yang and Alex Waibel but
also to Bernhard Suhm, Stefan Manke, and Ralph Gross.

Also I would like to thank Jie Yang, Bernhard Suhm, Ralph Gross, and Matthias
Denecke who had the time and patience to donate some data for me that I needed
to evaluate my work.

Another thank you goes to the people who had numerous discussions with me
(there are too many to remark everyone here) and who helped me a lot with good
ideas and inspiring comments,

(43]

Abstract

Multimodal user interfaces offer great advantages in the area of human computer
interaction. Typical examples are speech- and handwriting recognition, gaze track-
ing, gesture recognizers, ete. There are two important issues in the design process
of such interfaces: recognition accuracy and user acceptance. Only if both of these
two aspects are realized in a reasonable and satisfying way the interface will be use-
ful for humans in different applications. One way to increase user satisfaction and
acceptance is to integrate some repair and correction handling features in a com-
mon multimodal user interface. This report covers the topic of repair in automatic
on-line handwriting recognition. On-line means that the recognition algorithms are
not only applied on a handwritten bitmap but also on dynamic writing intorma-
tion. Based on the thesis that errors and repair appear and will always appear in
automatic handwriting recognition some heuristics are proposed here to handle the
arising problems. The proclaimed thesis will be proven by some empirical studies
that also serve as a basis for a clagsification of errors and repair types that nsually
appear in human handwriting. Since errors always happen you have to deal with
them somehow to fulfill the request of a user for a high usability and satisfaction.
Algorithms and henristics for both, repair in a handwritten input signal and in a
printed text, i.e., corrections of a recognition result, will be introduced. Evaluations
of the proposed heuristics will be done and some ideas for a better interface design
in automatic handwriting recognition will be discussed.

Contents

I Error Repair in Handwriting Recognition

- Classifications and Empirical Studies

1 Introduction

2 FErrors in On-Line Handwriting Recognition
2.1 Typical Errors in Handwriting Recognition
2.2 The Delayed Stroke Problem

3 Repair in On-Line Handwriting Recognition
4 Conclusion

II Repair Handling

- Heuristics and Algorithms

5 Introduction

6 Repair of Handwritten Input
6.1 Repair Detection and Classification
6.1:1 Introductory Remarks : v« ¢ vv i i s st i 66w 6w s
6.1.2 Detection of Typical Repair Features
6.2 Handling of Each Single Repair Type
B2 Deletian i S5 5 v §6 s8I Ve i VW ERL 9
6:2.2 OVerwritinE . & i § 4 q b h s i e s ek dER T ad v
6.2.3 Completion
6.3 Handling of All Repair Types

6.3.1 Coordination of the Heuristics for Different Repair Types . .

6.3.2 Evaluations
6.3.3 Interactive Approach i v v
634 Dvalualions « : : 4x 5 sws 2w s 80 83 §ws B s F BEE E

7 Repair of Printed Letters
7.1 Algorithms and Heuristics
T2 BEvaluations .w s s o0 0 on s §ma 608% 5 o s S8 6085 8 68 §

8 Conclusion

A Used Databases

13
15

17
17
22

27

33

al

CONTENTS

Preface

Drei Viertel meiner ganzen literarischen Tdtigheit
ist tiberhaupt das Korrigieren und Feilen gewesen.
Theodor Fontane, dt. Dichler

Three quarters of my literary work
has actually been correcting and polishing.
Theodor Fontane, german writer

Multimodal user interfaces, like automatic handwriting recognizers, speech and
gesture recognizers, etc., offer great advantages in the area of human-computer
interaction ((WVDM95, VHY ™95, WD94]). In contrast to the “usual” interaction
devices, keyboard and mouse, for example, they can allow more flexibility for the
users and be more “natural” to use by supporting typical human communication
modalities (e.g., speech or handwriting). Interfaces easier to understand and easier
to use can higher user satisfaction and increase the acceptance of the interface.
Combined use of different modalities also provides the chance to improve recognition
performances by gaining from different and opposite information sources, like, for
example, acoustic speech recognition and lipreading (see [VW93]). Several kinds
of interaction modalities, e.g., a pen or a speech based interface, limit the amount
and size of needed hardware and therefore allow the construction of smaller, mobile
computers, usable under conditions and situations where todays use of computers
is uncomfortable or impossible.

In the design process of such new multimodal input devices there are two impor-
tant aspects: first the recognition accuracy and second the user acceptance. Since
communication between two partners only makes sense, if they can understand each
other and put a meaning into the different communication skills, it is obvious that a
high recognition accuracy should be the first and most important goal in the design
of a new interface for human-computer interaction. Without the ability to recognize
each others sayings, movings, writings, etc., communication does not work. There-
fore most of the effort in research in this area so far has concentrated in achieving
better recognition performances. But the better the recognition rates get the more
important the other aspect becomes: user acceptance and satisfaction. Of course,
an interface with low recognition accuracy would not achieve a high aceeptance by
a user, but even with high recognition rates, user satisfaction is not guaranteed.
Other aspects are also very important, like an easy to learn and understand, or an
easy to handle interface, or the ability to recover from input errors.

In [FHM95] an empirical study can be found that deals with the dependency
of user satisfaction and recognition performance of pen interfaces. Another study,
that was done in [Sch94], verifies the human recognition accuracy of cursive hand-
writing recognition. Since the recognition rate is below 100%, the author draws the

9

10 CONTENTS

conclusion that the asymptote for automatic cursive seript recognition accuracy is
below the 100% goal.

But even if a “prefect” recognition could be possible, there still will be errors
performed by the user, like misspellings or mistakes resulting from a wrong handling
of the interface. Therefore even with a recognition accuracy of 100% you still would
face the problem of misinterpretations.

For this reason a way must be found to deal with misunderstandings, misin-
terpretations, and recognition errors, to increase the user acceptance of a multi-
modal interface. Research in speech recognition has demonstrated, that even with
an unreliable baseline spoken language interpretation technology, it is possible to
significantly shorten the time to interact with a system via spoken language by de-
veloping strategies which effectively deal with the problem of interpretation errors
(see [SMWO6]). This is a good example, how additional techniques can help to over-
come the problem of wrong recognition or misinterpretation and how to improve
user acceptance and satisfaction even without 100% recognition accuracy. There-
fore we should not, wait for a “prefect” recognition system before we start to design
new useful devices for human-computer interaction, but begin to concentrate on
developing usable and useful interfaces, that can handle corrections and repair and
are able to recover from errors.

The thesis, that a usable human-computer interface should offer some repair and
error handling features, is attributed by the fact, that also the “usual” communi-
cation interfaces (keyboard and mouse) offer the possibility to do some corrections.
So even if you can achieve 100% recognition accuracy, what keyboards and mouses
usually do, the user demands some tools or ways to correct and repair his input!.

Different input styles, like speech, handwriting, or movements of body parts
(hand waving, head shaking, etc.), all have their typical applications. There are
situations for every one of them where you can think of it as the most suitable
input possibility under some special circumstances. Therefore no “best” input style
for every application exists. This is one reason why today a lot of effort is put into
a great variety of different multimodal human-computer interaction approaches.
This report deals with automatic handwriting recognition and addresses the prob-
lem of repair and corrections in an on-line pen-based user interface. Automatic
handwriting recognition can be defined as a computer program’s analysis of digi-
tized handwriting for the purpose of converting it into computer-readable ASCII
text ([Bli97]). It is divided into Optical Character Recognition (OCR) and on-line
handwriting recognition (see [WMO92], section II). OCR is performed after the
writing is complete. Only an image of the handwriting, i.e., a bit pattern, is used
as input signal for the recognition algorithms. On-line recognition, by contrast,
recognizes each character as it is being written. Dynamic writing information is
nsed in the recognition process. Therelore additional hardware, like a touchscreen
or a graphic tablet, is needed in this case. The problem of repair in automatic
handwriting recognition deals with corrections that were made by the user of a pen
based interface himself in his input or in the result indicated after the recognition.
These corrections might happen as a result of a recognition error, but also can occur
implicit in the writing process, e.g., because the user wants to improve the shape
of some parts of his handwriting or to correct a misspelling, independent from the
recognition result. Some empirical studies about this will be shown in this report.

The handling of repair in antomatic handwriting recognition is very important
for different reasons. First of all, like in every interface for human-computer inter-
action, errors will always happen: on one hand errors in the recognition process,

LIf you do not agree with this statement, try selling keyboards without a backspace key. 1 bet,
vou won’t get rich!

CONTENTS 11

on the other hand errors by the users. So you need something to deal with this
situations, like some tools to perform different kinds of repair. But even if repair is
not supported or the user is not asked to do any, it always happens in the pen input
of human users. I will prove this later by some empirical studies. Therefore repair
handling algorithms also can help to improve recognition performances. They can
make an interface easier and more natural to use and offer some flexibility to the
user, too. This can lead to a higher user acceptance, which is an important issue in
the design of pen based input devices.

This report is divided in two parts. Part I addresses the problem of errors
and repair in human handwriting. It takes care of the questions what kinds of
errors usually happen when a human person uses a pen based input device and
how users usually try to correct these errors. These studies are taken under special
consideration of errors and repair in on-line based handwriting recognition. Part 1]
contains the discussion and evaluation of some algorithms and heuristics that allow
a user to perform repair in a handwriting recognizer. Heuristics for corrections in
the handwritten input signal and in the recognition result, i.e., in printed ASCII
text, will be introduced. Each part closes with a final discussion of the respective
topics.

12

CONTENTS

Part 1

Error Repair in Handwriting
Recognition
- Classifications and
Empirical Studies

13

Chapter 1

Introduction

Handwriting recognition provides an important channel for human-computer inter-
action. Handwriting is one typical form of human-to-human communication, nsed
by many people every day. Therefore it is an obvious approach to use it in human-
computer interaction, too. It offers great advantages in a wide area of applications,
like, for example, form filling, notebook and calendar management, etc. The need
for a keyboard and the need to learn how to type would be eliminated. This would
open fast computer access to a lot of people who can write, but not type. Also
smaller, mobile computers could be built with a pen based user interface.

For this reason a lot of effort has been spend over the past years in design-
ing reliable recognition algorithms for human handwriting input (see [MSY92] and
[WMO92]). These algorithms can be classified and should be distinguished accord-
ing to different tasks and different assumptions about the input devices, the input
signal, the recognition algorithm, etc.

First different domains for handwriting are possible: letters in the handwritten
text (e.g., [MFW96], [MFW95b]), gestures in text editing (e.g., [MCvMK93]), sym-
bols like notes in music or mathematical expressions (e.g., [Win96)), ete. Also dif-
ferent languages could be recognized, like English or Chinese letters (e.g., [CKJ90]).
The handwriting can be boxed, what means that every letter is in a special area of
the input, spaced, which means that the letters are well separated, or the different
characters can overlap, like it usually happens in cursive handwriting,

The most important classification related to the input signal is to distinguish
between Optical Character Recognition (OCR) ([MSY92]) and On-Line ([WMQ92])
Handwriting Recognition. In OCR only the bitmap of the pen input can be used
to perform the recognition algorithm, that is, the handwritten input signal is only
defined through a set values corresponding to the x- and y-coordinates. In On-Line
Recognition on the other hand additional information about the time of downwriting
of the different points of coordinates is available and can be used in the recognition
process.

Another classification is, if the recognition algorithm works writer dependent,
writer independent or writer adaptive (for example, see [SHTA93]), which means,
that some parameters of the recognition procedure are set and adapted during or
after the firat few words are written by a new writer.

Different units can be modeled by a system, like strokes, characters or words.
Segmentation can be done implicit in the recognition process or in a separate step
prior to it. A variety of techniques, for example, neural net based approaches (e.g..
[MEW96] and [MFW95b]), statistical methods, like Hidden Markov Models, (e.g.,
[BBNN, KA93, AKLP93| or [NBST95]), pattern matching, and so on, can be done
to perform the recognition.

15

different tasks
and techniques

the NPent™
recognizer

16 CHAPTER 1. INTRODUCTION

Also it can be distinguished between character and word based recognition.
Character based recognition fries to recognize every single letter that was written
independently form the preceding and following letters. If the recognition is word
based, the whole written word is recognized as a single unit. Therefore the result
has to be from a fixed set, the dictionary. In character based recognition no fixed
size exists for the recognizable vocabulary. Every word resulting from a random
character order can be recognized. Also some mixtures exist, e.g., character based
recognition in a first step and after that a second parse that tries to correct wrong
recognized letters by using a fixed dictionary of different words.

An overview about different techniques and the state of the art in automatic
handwriting recognition can be found in [ea95], Chapter 2.

This work is limited to on-line handwriting recognition of single words with let-
ters from the English alphabet. It uses the NPen™ recognizer, an on-line based
handwriting recognition engine to recognize single words from a fixed dictionary,
written writer independent in any writing style (printed, cursive, or a mixture of
both). The NPen™*system was developed by Stefan Manke, at the University of
Karlsruhe, Germany. An illustration of the modules of the whole system can be
found in Figure 1.1.

contents part I

R

Figure 1.1: The NPen™ thandwriting recognition system.

It is divided in two submodules. The first one performs a preprocessing on the
input data. In the normalization step undesired variabilities from the original input
signal are removed. After that a feature extraction is done along the normalized pen
trajectory to get the features most usable for the second module: the recognition
process. The output units of a Time-Delay Neural Network (TDNN, see [WHHS90])
model three states (begin, middle, and end) for each letter of the alphabet. Then
a Viterbi search ([Rab90], pages 274 and 283) on each word of the recognition
vocabulary is done and a score for each word from that dictionary is calculated.
The word with the highest score is seen as the recognized result. Segmentation is
done implicitly in the search, no explicit segmentation step is required. The single
modules will be described in more detail in later chapters, if necessary. Otherwise it
is referred to [BM93, BMW93, MB9%4, MFW94, MEW95a, MFW95b] or [MFW96.

In the following chapters a discussion and several data studies will be done.
Chapter 2 addresses the question what kinds of errors usually happen in human
handwriting. A classification in different error types and a data study according
to this classification will be done. Also the special problems that occur, if on-line
based algorithms are used for the recognition process, will be discussed. Chapter
3 takes care of the question what kinds of repair actions are performed by human
users to correct errors in their own handwritten input. A database will be examined
according to what kind of repairs happen, what features are typical for the different
corrections, etc. A classification of some classes for different repair types will be
proposed, that is used in the second part for the development and discussions of
repair handling heuristics.

Chapter 2

Errors in On-Line
Handwriting Recognition

In nearly every case repair is the result of an error. An error in an on-line hand-
writing recognition system can be produced by both, the recognition algorithm and
the user. Therefore a correction by the human can be caused by a wrong recog-
nized word, but also, for example, by an error performed by the user himself, e.g.,
a misspelling. So if one is interested in handling different kinds of repair and in
designing different repair tools and algorithms, it could help to have a look at what
types of errors usually occur in automatic handwriting recognition, because these
errors often result in a repair.

In nearly every case repair is the result of an error. An error in an on-line
handwriting recognition system can be produced by both, the recognition algorithm
and the user. Therefore a correction by the human can be caused, for example, by a
wrong recognized word, but also by an error made by himself, e.g., the misspelling of
a word. So if one is interested in handling different kinds of repair and in designing
different repair tools and algorithms, it could help to have a look at what types
of errors usually occur in automatic handwriting recognition, hecause these errors
often result in a repair.

2.1 Typical Errors in Handwriting Recognition

There are some typical kinds of errors that usually or often appear in a pen based
interface for human-computer interaction. A list with common errors in auto-
matic handwriting recognition of textual input can be found in [Sch94]. These
errars are

e device-generated errors; e.g., random noise, unresponsiveness of switches, etc.
e hadly spelled words; e.g., one letter is missing

e input legible by humans but not by the algorithm; e.g., fused characters if the
algorithm was designed to recognize only well separated letfers

e badly formed shapes; e.g., the letter “n” is written in a way that it looks like

78} }

a"u

s unknown words; e.g., if the recognizable vocabulary is limited to some words
from a specific dictionary and the user writes one that is not included in this
vocabulary

17

error
classification

18 CHAPTER 2. ERRORS IN ON-LINE HANDWRITING RECOGNITION

Figure 2.1: Examples for typical errors in human handwriting of textual input.

2.1. TYPICAL ERRORS IN HANDWRITING RECOGNITION 19

e discrete noise events; e.g., dots or lines caused by dropping the pen on the
writing surface

e canceled material;, e.g., a writer starts writing a word, than stops and starts
scribbling over it in an unpredictable way

Some examples for this different error classes can be found in Figure 2.1. Note
that this is not an exhaustive list and that other types of errors might exist.

According to this classification an analysis of a database concerning the kinds
of errars happening in human handwriting was done. This database consists of 3466
words and 3410 text segments of which each contains about eight words. The data
has been collected on a graphic tablet connected to a computer. There was no
feedback from any recognizer. The user was just asked to write down some words
that were shown on the screen. He was not requested to do any kind of repair
or corrections. After the data collection the words and the text segments were
labeled “GOQOD”, if they were usable as training data for an on-line handwriting
recognizer., Otherwise they were labeled with “CROSSOUT”, “SPELLING” or
STUNK”. “CROSSOUT” labeled data contains deletions or overwritings from the
user, data labeled with “SPELLING” contains wrong spelled words or words with
letters with bad shapes. The data that were labeled “JUNK” has been corrupted
otherwige. It turned out that about 13 % of the words and about 23 % of the text
segments were not usable for training and therefore labeled “JUNK”, “SPELLING”
or “CROSSOUT". See Figure 2.2 for the distribution of the labels in the database.

This “bad” labeled data was analyzed according to the list of errors in automatic
handwriting recognition introduced above. Since point three (input legible by hu-
mans, but not by the algorithm) and five (unknown words) from the list of error
types depend not only on the data but also on the realization of the recognition
algorithim, they have been ignored in this study. The result can be found in Figure
2.3.

Note, that the values are only approximately, because the classification above
is not straight and sometimes it is not possible to decide to which error class a
handwritten word belongs. For example, an additional stroke can result from a
badly formed shape of a letter by the user or from dropping the pen on the writing
surface. In this case a correct classification would only be possible, if one participates
and immediately evaluates the data collection process. A correct classification based
on some previously collected data is impossible in such a situation. For this reason
the analysis of the errors occurring in this database of human handwriting should
not be seen too straight. But it gives a strong impression, that errors occur very
often in human handwriting.

Also this classification in error types is not unambiguous. For the grouping of
different error styles and types several possibilities can be thought of. Another
study about occurring errors in human handwriting can be found in [Kas95],
where some handwritten data was collected and analyzed, if it is usable for the
training of an on-line based handwriting recognizer. The data consisted of letters
and digits. Samples that were not usable to train the parameters of a recognizer
have been analyzed and classified. The result can be found in Table 2.1.

You can see that about 5% of the digits and about 25% of the letters contain
wrong, bad, or additional data, that makes them not usable for the training of
a recognizer. Different kinds of errors happened, i.e., pen skips, case errors, and
misspellings. They are a good motivation to offer the possibility to a writer to do
some repair in a pen based user interface.

database
analysis

20 CHAPTER 2. ERRORS IN ON-LINE HANDWRITING RECOGNITION

Single words:

BG0D
L RA L
O SPELLING
OCROsUT

B7%

Text sequences of about eight words:

3%

Figure 2.2: Quality of the data in the whole database.

2.1. TYPICAL ERRORS IN HANDWRITING RECOGNITION 21

Errors in single words:

GAVICE QOTTATH BTN

Figure 2.3: Errors in the words and text sequences from the database labeled "bad".

“delayed stroke
problem”

22 CHAPTER 2. ERRORS IN ON-LINE HANDWRITING RECOGNITION

Transcription All Letters | Digits
property symbols only only

| Count 12402 | 8427 3975
Differs from prompt 3.7% 4.7% 1.4%
Contains ligatures 9.8% 13.9% | 1.1%
Contains trash 2.2% 2.7% | 1.1%
Contains pen skip 1.8% 21% 1.2%
Contains case error 1.2%

Table 2.1: Data analysis from [Kas95].

2.2 The Delayed Stroke Problem

One error, reported in the list of common errors in automatic handwriting recog-
nition from the last chapter, was, that the input is readable by a human but
not by the algorithm. This problem becomes very important in a lot of on-line
handwriting recognition systems, including the NPen™"system.

Like already told earlier, in on-line handwriting recognition not only the x- and y-
coordinates of the handwriting exist, like in Optical Character Recognition (OCR),
but also temporal information about the time of downwriting of these coordinates.
This additional information can be used in the recognition process and usually leads
to better results than with “pure” OCR. As an illustration see the handwriting
shown in the top left of Figure 2.4. The drift of the letters and the fact that some
of them are fused might cause problems for a recognition algorithm that scans this
bitmap from left to right and tries to make a decision which word was written based
on the letters of this word. But if you look at the top right side, where the same
coordinates are shown in a 3-dimensional diagram with the additional information
of time on the right axis, you will see, that with this information a segmentation
of the coordinates in corresponding letters is well possible’. Some problems that
occur in OCR can be avoided, if you take profit of this additional information in a
right kind and manner.

But on the other hand this information can cause problems. There are cases,
where also additional noise is added to the input data. An example is shown at
the bottom of the same Figure. If you look at the “pure” bitmap, nothing special
will be recognized. But if you look at the x.y,t-diagram, that shows also the time
information, yvou see that the user has written the word and at the end made
two “t-strokes”, one “i-dot”, and one stroke that completes the shape of the letter
“x”. These so called “delayed strokes” can cause some problems in many on-line
recognizers, because the relation between x-coordinates and time t of downwriting is
no longer linear. But many on-line recognizers assume such a relation. The broken
match between time t and the sequence of x-coordinates can be seen even clearer,
it you look only at this two values, i.c., set the y-value to zero. Such a x,t-diagram
is shown in the lower part of Figure 2.4.

The problems that occur with this delayed strokes shall be illustrated here at the
example of the recognition process of the NPen** system. Here the output
units of a Time-Delay Neural Network are aligned to the models of each word in
a dictionary by the Viterbi algorithm. The output units model each letter of the
recognition alphabet through a sequence of three states for each letter. Every word

INote that the time t here refers to the number of an (x,y) pair in the time ordered sequence
of coordinates. It is not proportional to the time intervals between two coordinates writings.

2.2, THE DELAYED STROKE PROBLEM 23

x- and y-coordinate and information about
Bitmap of the word "loophaole” the time t of downwriting

y-coordinates

x-coordinates
- the two letters "p" and "h"
== the letters "p" and "h" are fused can be well separated along the
-=no segmentation in single letters time axis
along the x- and y-axis is possible

x- and y-coordinate and information about
the time t of downwriting

Bitmap of the word "exportation” y-courdinates

/ﬂ J time 1
R
YU /WM

x-coordinates = delayed strokes for the letters "x
"t", and "i" can cause problems;

the relation between time of downwriting
and the x-coordinate is not true anymore

-= nothing extraordinary appears in the bitmap

The signal from the diagram above
with y set to "0"

] y-coordinates (set to '07)

x-coordinates .
-= the problem of delayed strokes becomes

clearer if one looks at the relations between
the x-coordinate and the time t

Figure 2.4: Examples for problems with Optical Character (top) and On-Line handwrit-
ing recognition (bottom).

24 CHAPTER 2. ERRORS IN ON-LINE HANDWRITING RECOGNITION

that can be recognized is then modeled through a sequence of these letter models.
Based on the word models the Viterbi search is done on the output of the Neural
Network to make the final decision to obtain the recognition result. The whole
recognition process of the system is illustrated in Figure 2.5.

The mapping from the TDNN output to the word models assumes, that all the
strokes belonging to one letter are written in about the same time region. But this
in not always true in human handwriting, like seen in the example above. The most
typical examples are delayed t-strokes and i- or j-dots. As a consequence of this you
can have a bitmap from the input coordinates that looks like a “perfect” written
word but the recognizer is not able to match the time sequence correctly to the
word model, because the sequence is sorted according to the time of downwriting
and not according to the space along the axis of x-coordinates.

Another problem in an on-line based recognizer could be the order of coordi-
nates within one stroke. For the recognition process it should be no problem, if a
writer draws a stroke, e.g., from the bottom left to the top right or from the top
right to the bottom left, if it has about the same shape in the final bitmap. In
the NPen™ " recognizer it turned out that the Neural Network is able to generalize
different stroke orders so they do not cause big trouble here.

But the so called “delayed stroke problem” proposes big problems, especially
in the case of repair and corrections, like it will be further discussed in the next
chapters. Different approaches have been tried to solve this problem. One possible
remedy, that is also used in the NPen™ Tsystem, is the introduction of a so called
“hat-feature”. With a heuristic the system tries to detect all t-strokes and dots and
removes them from the sequence of coordinates. At every remaining coordinate
that lies in the same area as the removed strokes and dots the hat-feature is set to
“1" otherwise it its set to “0”. This is the reason, why the dot over the “i” in the
example of the normalized handwriting at the bottom left of Figure 2.5 is invisible,
because the delayed t-strokes and i- or j-dots are removed in the normalization step
of the preprocessing. Therefore the letter “t”, for example, in an input signal for
the recognizer would look more like the letter “1”7, because the t-stroke is missing.
But because of the hat-feature a correct classification is still possible. 1 trained
the NPen™* recognizer with a dictionary that included 51866 words first with the
use of the heuristics to remove delayed t-strokes and i-dots and the adding of the
hat-feature to the input feature sequence, and second without any handling of the
delayed strokes. The recognition accuracy on the test set increased by about 2%
with the use of this special handling for delayed strokes. Critical with this approach
is that not only t-strokes and i- or j-dots can occur as delayed strokes. Completions
of some parts of a character or insertion of a forgotten letter between two previously
written ones are typical phenomena often regarded in human handwriting. The
recognizer usually generalizes over very small delayed strokes, like they occur in the
case of completions of some parts of a letter. But if the delayed stroke is longer,
like in the case of repair, e.g., when a missing letter is inserted, it is obvious that
problems arise and the recognition can fail.

Another way, different to the hat-feature, to overcome this problem is to resort
the strokes in a preprocessing step before the recognition is done. This approach is
performed, for example, in [Kas95]. Here every stroke is reordered in the sequence
of handwritten strokes acecording to the horizontal position of his center. The mo-
tivation for this heuristic was derived from the three strokes used to form a “tt”
sequence with a common cross stroke. But it is also kind of critical, since it can
happen that one stroke covers more than one letter and therefore the parts of the
handwriting belonging to one single letter still can be separated by some coordinates
belonging to some different letters. It seems like an insertion of a delayed stroke
in the middle of another one is sometimes needed to fulfill the requirements of the

2.2. THE DELAYED STROKE PROBLEM 25

20—~HA—~Z2000@ A

P
= B
E
P i
R
c
E
st
S
I
N
G

Figure 2.5: The recognition process of the NPen™"on-line handwriting recognition
system.

26 CHAPTER 2. ERRORS IN ON-LINE HANDWRITING RECOGNITION

recognition algorithm. I will propose such a heuristic in context with the problem
of repair handling in part II of this report.

Chapter 3

Repair in On-Line
Handwriting Recognition

In the last chapter some typical errors that usually occur in automatic handwriting
recognition of pen based textual input have been classified and analyzed with a
database. In this section we will try to find out which kinds of repair can happen
as a result of such errors and how a classification can be done.

Like in the case of errors, there are also different possibilities to sort repair
types in some general groups with similar features and characteristics. To get an
idea what kinds of repairs can happen in human handwriting and how they can
be classified as a basis for the development of some repair handling algorithms a
data study with the database already introduced in chapter 2 was done here.
For this purpose it was analyzed, if there is any kind of repair in it. The data
labeled “JUNK”, “SPELLING” or “CROSSOUT”, i.e., the “bad” data, not usable
for the training of a recognizer, has been investigated. From the 3466 single words
about 13% and from the 3410 eight words long text sequences about 23% had this
labels, like already reported in chapter 2 (compare Figure 2.2). These data has
been visually checked with the purpose to get an idea what kinds of repair usually
happen in human handwriting,.

By analyzing the different correction styles in the database I tried to find possible
characteristics usable for a classification of different repair types. One possibility
could be to group repairs according to different shapes or gestures, done by the
user to correct something. Another approach is to classify repair in relation to the
error list discussed in chapter 2. The different groups for repair could be based on
what kind of error they try to correct. But since here we are mainly interested
in the design and implementation of repair handling algorithms and heuristics, 1
propose the following classification of repair types, that is oriented on the kind
of reaction a repair handling tool should perform on the repaired input signal:

s deletion:
the user scribbles over something he has written before with the intention to
delete his previous writing; see the top of Figure 3.1 as an example;

s completion and insertion:
the user goes back in x-direction and adds some strokes to some previously
written things; see the middle of Figure 3.1 as an example;

& overwriting:
the user writes something over some parts of the word he has written before;
see the bottom of Figure 3.1 as an example;

27

repair
classification

database
analysis

28 CHAPTER 3. REPAIR IN ON-LINE HANDWRITING RECOGNITION

. overwritten strokes | repair strokes
Deletion deletion deletion
Overwriting deletion insertion
Completion and Insertion - insertion

Table 3.1: Repair handling actions for the different repair types.

i@ﬂ'w@w i
"prosperous”
"beginner”

"benzene"

"resistive”

Figure 3.1: Examples for the different repair classes.

In practice also a combination of these three repair types might happen. This
classification is not a complete and detailed. Especially the borders between the
overwriting and the completion case are very fuzzy. But from the viewpoint of repair
handling these classifications make sense. Every repair class that I propose demands
for another kind of reaction by the repair handling algorithm. Table 3.1 shows how
different reaction can be assigned to this repair types. A deletion requires, that
the strokes that are intended to be scratched out, i.e., the repaired strokes, and the
strokes that perform the deletion, i.e., the repair strokes, have to be removed from
the input signal before sending them to the recognizer. The overwriting case calls
for a deletion of the strokes that should be overwritten, and also for an insertion
of the strokes that overwrite them. Just an insertion, without the need for deleting
anything, has to be done in the completion case.

An analysis of the database has been performed according to this classifica-
tion. The results how often which repair class appears in the data can be found in
Figure 3.2. Once again is it important to keep in mind, that the user was not asked

29

70
lw(vll'rk‘a»‘yv i O
e
R
"'ff“‘f‘kh

Ly e i e

Figure 3.2: Occurrences of the different repair types in the database.

repatr and
delayed stroke
problem

30 CHAPTER 3. REPAIR IN ON-LINE HANDWRITING RECOGNITION

to do any kind of repair during the process of data collection and that he did not
have any feedback from the recognizer. Therefore the number of corrections found
in the database is not very high, but in fact, there is repair. And in relation with
the way the data has been collected and the fact, that the user was not introduced
to do any repair, this confirms the proclaim that human users demand some repair
and error handling mechanisms in automatic handwriting recognition.

A closer look to the samples found for the different repair classes shows some
interesting aspects of the different types of corrections. First of all, completions did
not happen very often. Even in the case of written word sequences their number was
very low. Deletions on the other hand happened more often, especially in the case
of text sequences. The typical gestures that were mainly used to delete something
can be classified in two groups according to some typical features and properties:

s relatively long strokes compared to the normal handwriting, like shown in the
top of Figure 3.3, for example, and

e many strokes (sometimes very short ones) in about the same area, placed in
an unpredictable order, like shown in the bottom of Figure 3.3, for example.

Figure 3.3: Examples for the two deletion types.

These gestures are usually used to delete (a) the whole word, or (b) one single
letter. Other deletions, like deleting two letters or only a small part of one letter,
did not happen very often in the database. Overwriting was also done mainly on
letter level, but no “usual” correction scheme was found for this case of repair.

It is important to realize that there is a strong connection between the dif-
ferent repair types and the delayed stroke problem discussed in chapter 2.2.
Repair often oceurs as delayed strokes and requires technically the same handling
ag, e.g., delayed t-strokes and i- or j-dots. In fact, a delayed t-stroke. for example,
can be seen as the completion of an incomplete letter “t” by adding a (delayed)
t-stroke. For this reason a unified framework will be proposed here to handle de-
layed strokes and repair sequences in the same manner: all the delayed sequences

31

are regarded as a special kind of repair and handled in the same global framework.
The cases of delayed t-strokes or i-dots are therefore only a special case of repair,
i.e., a completion of a letter that has a bad or incomplete shape. An illustrative
example for this can be found in Figure 3.4. On the left side the bitmap of two
words written by two different users are shown. The right side shows the x- and
y-coordinates in a diagram together with the time t. This value indicates the po-
sition in the sequence of pairs of (x,y) coordinates ordered according to the time
of downwriting. The pen-up sequences in the bitmaps, indicated through a dotted
line, show, that in the lower case the user has made a delayed t-stroke after writing
the whole rest of the word “counterflow”. In the upper bitmap the user has not
only set a delayed i-dot, he also made a repair, i.e., a completion of the letter “x”,
because a part of it was missing to fit into the scheme of the “usual” shape of such
a letter. But if you compare the two examples, the repair and the delayed t-stroke
case, you will see, that they fit into the same template of repair or writing actions
by a user. On one hand, an incomplete letter “x” has been repaired by adding an
additional stroke to it to improve his shape. On the other hand, the letter “t” in
the lower bitmap would look like the letter “1”, if the t-stroke would not have been
added. Therefore the writing of this delayed t-stroke can also be interpreted as a
special kind of repair, i.e., the completion of a letter that has a bad shape and is
hard to recognize by each, human and automatic recognition algorithm. Note, that
in this example a repair only occurs, if the recognition is based on the time signal. If
it would be performed only with the bitmap as an input, no repair handling should
be necessary.

yezoordinnie

tme t

J{ i datayed 1=hol

{wrepalr (eompleton)
xeconridinite of the leer "x"

7

[yecundinil

r"‘/\"r’

.VAU

1

i deluyed t-girmke

weomliiale

Figure 3.4: Example for the connection between the delayed-stroke problem and repair.
The bitmap of the two written words is shown at the left. The right side indicates the
% y.t-diagram, with t corresponding to the order of downwriting.

To get an idea about the connection between repairs and the errors pro-
posed by [Sch94] (see chapter 2) an interesting question is, which kind of repair
usually follows after which error type. Table 3.2 tries an assignment of the different
kinds of errors to the proposed repair classes. For each error the repair types are
listed that happened the most in the database. Some errors caused “typical” repair

errors and
repair

32 CHAPTER 3. REFPAIR IN ON-LINE HANDWRITING RECOGNITION

Canceled material Deletion
Discrete noise events Deletion
Input not legible by algorithm || Deletion, Completion, or Overwriting
badly spelled words Deletion, Insertion, or Overwriting
unknown words u .
device-generated errors Deletion, Completion, or Overwriting

Table 3.2: Error types and mainly resulting repair types.

actions by a user. For example, what else should you do with an additional letter,
that you inserted wrongly into a word, than deleting it? On the other hand there
are errors that do not have a forecast for what kind of repair will probably happen.
For example, a letter that has a bad shape can be repaired in all three ways: you can
delete it and write it again, you can try to overwrite it, or you can try to “improve”
his shape by adding some additional strokes without overwriting any of the existing
OIes,

In this context it is also important to realize, that there are errors that are seen
as such by a user, but also errors that a writer does not realize. For example, a
misspelled word represents an error, but the user maybe does not know, that he
wrote the word wrong. Therefore no repair reaction, or at least not the one that
would lead to a correct recognition result, can be expected by the user. This is one
reason, why there are errors from which you can expect an interface to recover, but
there are also some that make a recovery from a wrong recognition very hard, if not
impossible. For example, you can recover from the error that a letter is missing by
providing insertion in your recognition tools.

One should also keep in mind that additional errors can occur in case of a
repair. For example, an overwriting that is misclassified by the repair handling
algorithms as a deletion can make the recognition result even worse, because it
deletes too much of the input signal. Therefore it is important to take care in the
design of such algorithms, that they do not only resolve existing errors but also
prevent the arise of new ones. Part IT will deal with the problem of the design and
implementation of such repair handling mechanisms.

Chapter 4

Conclusion

In the previous chapters the conculsion was drawn, that one must offer some er-
ror and repair handling features in an interface used for human-computer
interaction to fulfill the users request and satisfy his desire for a high usability of
this interface. This conclusion was based on the two theses that

s first: it is unrealistic and probably impossible, that automatic handwriting
recognizers will ever achieve 100% recognition accuracy (see [Sch94])

and

e second: humans make and will always make errors and mistakes.

The probably best argument for the second thesis is, that even a keyboard,
the “usual” input device, offers the possibility to do some repair (e.g., through a
backspace key) although usually a recognition accuracy of 100% is achieved. An
empirical data study of some human handwriting data collected from different
writers also verified this thesis. The analysis of the database indicated, that errors
and especially repairs happen, even if the users have not been asked to do corree-
tions. The handwritten input sequences have been analyzed according to what kind
of errors occurred in the data not usable for the training of a standard on-line hand-
writing recognizer. These words has been checked for any kind of repair performed
by the different writers. The most surprising result was, that, even if they have not
been asked to do any kind of corrections and they did not have any feedback from
the recognizer, some repair gestures and corrections can be found in the database.
From the whole data set, containing 3466 single words and 3410 text sequences,
13% of the single words and 23% of the sequences of about eight words did contain
errors and were not usable for the training. From these “bad” data, 12.6% of the
words and 17.8% of the text sequences contained corrections and repair gestures.

It is important to keep in mind, that all the data used for any statistical analysis
in this chapter has been collected without the request for repair and without the
support of some repair handling features. These statistics therefore can only be a
first orientation and can help in the design of repair handling algorithms. But every
kind of repair tool offered to a user will affect his behavior in using the interface
and therefore change the statistics about occeurring errors and repairs. On the other
hand, their appearance is a strong argument for the thesis that human users demand
for a possibility to repair and to correct in their handwritten input.

The data study gave some ideas and statistics what kinds or errors and repair
usually happen in human handwriting of textual input. Typical errors were found in

33

34 CHAPTER 4. CONCLUSION

the database that correspond to a list given by L. Schomaker in [Sch94] for common
errors in automatic handwriting recognition of textual input. These error classes
are:

e canceled material,

e discrete noise events,

e input legible by humans but not by the algorithm,
e badly spelled words,

« unknown words,

e device-generated errors.

For the oceurring corrections in the user inputs that were found in the database the
following classification of different repair types was proposed:

e Deletion,

e Completion and Insertion,
e Overwriting,

e Mixtures of all cases.

These classes are based on the different kinds of reactions a repair handling algo-
rithm should perform to deal with these corrections. In the case of a deletion the
parts of the words which are crossed out and the ones that performed the repair
should be removed from the original input signal before a recognition starts. If an
overwrite happened, the overwritten strokes have to be removed from the handwrit-
ing signal, too. But the strokes that overwrite them should be inserted at the right
position into the remaining signal. In the completion case only an insertion of the
repair strokes has to be done. No part of the word must be deleted.

The questions how these different repair handling actions can be realized, what
kind of correction tools can be offered to a user, how they can be implemented, etc.
are the topic of the next part of this report.

Part 11

Repair Handling
- Heuristics and Algorithms

Chapter 5

Introduction

In the first part of this report empirical studies have been done to prove, that repair
and corrections by people in human handwriting always happen. Therefore you have
to deal with this task somehow, if you want to design a pen based human-computer
interface that has a high acceptance by the users. Interfaces that allow no repair
handling, no corrections from the user side, and no recovery from errors will be
useless as new input devices for human-computer interaction.

To deal with the problem of errors occurring in human handwriting different
approaches exist. In [Sch94] L. Schomaker proposes some solutions to handle or
to avoid the errors he showed in the list introduced in chapter 2.1. This remedies
are the following:

e constrain the writer:
to obtain cleaner pen data, the writer’s attitude may be constrained in some
acceptable way, like single guidelines, pen-driven word segmentation methods,
gesture-driven or time-out driven word segmentation, etc.

e give the writer more control:
new visual widgets and methods for handling the input of material for which
no acceptable recognition performance can be reached, e.g., make a toolbar
of symbols like .,;:

e provide more powerful mechanisms for error handling:
for example, offer a large undo stack to the user

e clarify to the user what is going on:
allow input validation by the user, e.g., graphically echo symbols of gestures
or entered characters before executing them

e give up the paper metaphor:
the paper-mimicking approach without on-line guidance leads to unrealistic
user expectations and consequently low real-life recognition rates

These suggestions to deal with the problem of errors in antomatic handwriting
recognition are all very restrictive to the user. Therefore they are critical regarding
the goal of high user acceptance and satisfaction. For example, it is a usual technique
to have user-driven segmentation methods when using a kevboard, i.e., pushing the
space bar or the enter key, but it could be hard for a human to write a continuous
text with entering a gesture after every single written word, because he is not used
to do so. The problem is, that a pen is a tool that people use nearly every day

37

ErToT
handling
vS.
avoiding

38 CHAPTER 5. INTRODUCTION

under special circumstances. If they change, it can be very hard for a human to use
this tool now in a very different way.

Buttons, additional toolbars, etc., might be too complicated to handle, if they
cover the whole spectrum of repair. To offer buttons for every thinkable repair a
lot of (maybe too much) buttons, some with very different, some with very similar
functionalities are needed. On the other hand, if there are only a few buttons,
there might be some functionality missing and if they are to general, they might be
to unflexible to use. For example, imagine just one “clear” button that clears the
whole screen in a pen based interface. That should turn out to be to inflexible, if
vou just want to delete/clear one letter.

On the other hand an interface that offers too much freedom to the user, e.g., in
allowing him very unrestricted repair possibilities, would probably result in a bad
recognition performance. The more corrections are allowed in the input, like cross-
ing outs, overwritings, etc., the more likely is a misinterpretation and a recognition
error. That will lower the acceptance for the interface by the user.

It seems like the “right way” for the interface design lies somehow in between
in giving the user enough freedom in using the interface and in restricting him to
improve the recognition performance.

It can be seen from the solutions proposed by L. Schomaker for error handling
in automatic handwriting recognition, that approaches to deal with errors and cor-
rections do not only include different repair detection and handling methods, but
also some approaches in the area of interface design. A special kind of interface
can not only support repair and correction handling features, but also influence the
user in a way that errors do not happen or can easy be controlled and corrected.

As an example I like to introduce the so called run-on recognition , that has
been implemented in the NPen™Tsystem (see [Gro97]). This modification of the
“regular” recognition process fulfills in some sense the last two solutions proposed
by L. Schomaker, i.e., to clarify to the user what is going on and to give up the
paper metaphor. Usually the processing and the recognition of a word that is
written into a pen based interface starts after the user has finished the writing of
the whole word. In run-on recognition the preprocessing and recognition process
starts automatically after the user has written a set large enough to perform a first
preprocessing or recognition step. To process the features and to do the calculation
of the hypotheses for the first letters in the word it is not necessary, that the user has
already finished writing. The main maotivation for the use of this run-on recognition
is to lower the time a user has to wait till the recognition result will be indicated. But
since the first parts of the word that already have been processed by the recognizer
are shown in a different color and the result calculated so far is already indicated,
the user gets a kind of a feeling, that the recognition is done based on the time
sequence of the input. On a piece of paper he just sees the bitmap and does not get
any feeling for the time sequence resulting, when he writes something down. But
with the coloring of already processed parts of the word and the early indication of
the first letters of the result the paper methaphor is given up. The probability that
a user goes back and writes into an area that has already been processed will be
lowered. This can reduce the risk of misclassifications as a cause of delayed strokes.
Note that on the other hand there are cases where the probability for a repair to
occur can be higher: if the early indicated result of the sequence processed so far is
wrong, a repair in this part of the input should be more likely.

Summarized there are in general two ways to deal with errors in human hand-
writing recognition. I will refer to this two important concepts in the following
as

39

s the concept of error handling, that is trying to recover from occurring
errors and mistakes, e.g., by offering some repair tools and correction possi-
bilities to the user,

and

e the concept of error avoidance, that is trying to reduce or avoid the ocenr-
rence of errors and therefore improve the recognition accuracy and limit mis-
classifications by designing the interface, the recognizer, the repair handling
tool, ete., in a corresponding way that supports the goal of error avoidance.

To design robust human-computer interfaces in automatic handwriting recogni-
tion one can and should take advantage of both concepts. They should be used to
reduce errors and allow recovery from oceurring ones in a way that is easy to learn
and understand for a user and with which he feels comfortable and satisfied.

In the case of error handling you have to differentiate between errors and cor-
rections in the handwritten human input and errors that occur also or only in the
recognition result. Repair handling tools can be offered to correct your own hand-
writing, but there usually also is a need to allow repair of the indicated recognition
result, i.e., to do corrections in printed ASCII-text. Both of them have their needs
and are useful under the corresponding circumstances. I will refer to each of the
advantages in the following chapters. In chapter 6 the task of repair in a hand-
written input signal is investigated. Chapter 7 deals with the problem of repair in
text strings, i.e., corrections of the recognition result that is indicated to the user.
Different approaches will be discussed and several heuristics have been implemented
and evaluated.

contents part IT

40 CHAPTER 5. INTRODUCTION

Chapter 6

Repair of Handwritten Input

Before offering repair handling and correction tools in human handwriting you
should face the question, why it is necessary or useful to offer such possibilities
at all. Of course, it is important to have repair handling algorithms, like already
discussed in part I. But why correction of the input signal? Since the main purpose
of handwriting here is the automatic recognition, why not allowing repair only in
the recognized result that is indicated by the recognizer?

First of all users might feel more comfortable, if they can correct their own
handwriting, instead of a printed result indicated by the interface. Especially in
cases and applications, where the recognition result appears on a different position
on the screen, this might be uncomfortable for the user, because he has to move his
pen from the area in which he usually writes to another one to perform his correc-
tions. And in fact, there are cases, where it is not even possible to do corrections
at the position of the indicated result, e.g., when a graphic tablet is used as input
device and the result is shown on a computer screen!. Also there are situations
possible in which it seems more “natural” to correct the input signal. Imagine you
have written the word “tested” and after a correct recognition you realize that you
wanted to write “test” instead. Of course, you can just cross out the letters “ed”
in the recognition result, but some users might feel more comfortable, if they can
correct the part that is wrong. And in this case that is your handwriting and not
the recognition result.

The thesis, that some users prefer to correct their own handwriting instead of a
printed text with the recognition result, is also supported by the data study in part
I that showed, that repair of the handwritten input signal happens, even though
the users are not asked to do any. If they correct their own handwriting without
being forced to, it is more than likely, that they will also do and prefer to do it, if
repair and corrections are allowed. The fact that this kind of repair occurs (and can
oceur without being noticed by the user) is another strong argument, why a repair
handling tool that operates on the input signal should be part of a comfortable,
useful, and user satisfying interface.

It should be noted that the problem of detecting and handling repair and correc-
tions of the input signal in on-line handwriting recognition is a very hard one. The
main difficulties result from the fact that humans write and especially correct based
on the bitmap they see. An on-line recognizer on the other hand usually bases his
recognition decision on the time ordered sequence of coordinates. The user has a
different view of the input data than the recognizer has. Therefore the advantage

I"Phis situation can be compared to the one, where you type on a keyboard and instead of using
the backspace key to delete a letter, you always have to point at the position on the screen where
this letter is indicated. It is obvious that this is not what can be seen as a user friendly interface,

41

42 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

of additional available information that is used in the recognition process (compare
chapter 2.2) turns out to be a disadvantage in the case of corrections and repair.

Another problem is that repair is a very varied area. There are some typical,
usually used kinds of repair but no fixed rules or predefined shapes for repair gestures
exist. Technically nearly every input is “allowed”. Humans are able to generalize
and use common knowledge, so no need for fixed rules in the repair case is necessary.
But, on the other hand, there are some typical gestures or at least some typical
features usually used by writers to repair. One example was reported in the data
analysis in part I for the case of deletions. The challenge in the design of repair
handling toals is to profit from these “common” properties to propose an interface
to the user that fulfills his demand for good repair and error handling features.

In the design of repair handling algorithms and heuristics some typical steps
have to be taken and different problems have to be solved. One possible approach
is the following:

e first: detect a repair and separate the corresponding coordinates from the
“normal” handwriting

e second: classify which type of repair class the coordinates belong to

e last: handle the specific type of detected repair

This stepwise approach is similar to some techniques used in the task of repair
in speech recognition (see [BKZ94] and [BDS92], for example). But it should be
noted, that the problem of repair of a spoken signal is different to the one discussed
here, since repair in speech recognition is usually done on word level. Also the de-
tection and handling of corrections does not have to be done in separate steps, like
proposed here. It can also be integrated in a general manner into the preprocessing
and recognition algorithms so that no singular detection, classification, and han-
dling modules are necessary. The decision of where to apply your repair handling
heuristics, in separate modules or integrated into the recognition process, depends
strongly on the techniques and algorithms used for preprocessing and recognition.

Here 1 decided not to change the recognition engine but to apply some repair
detection and handling heuristics in an additional preprocessing step. On one hand
I did not want to change the structure of the NPen™ " recognizer, since the perfor-
mance of that system on “clean”, not repaired data is very high. The integration
of repair handling features directly into the NPen™"system can not be done with
some small changes of the system. Bigger modifications on the principles according
to which the system is working would be required. But these changes would risk
a higher decrease in the recognition performance of the system on “clean” data,
which is not acceptable.

Another reason to integrate the repair heuristies into some additional modules
ig that humans usually do not have any problems in the detection of a repair, like,
for example, a deletion, even though it is a kind of correction they have never
seen before. That is because repair usually is extremely different from “normal”
handwriting. It does not fit into the “usual” scheme of textual handwriting. But
not only repair types that can be recognized by humans are well separated from the
“normal” handwriting. Also the ones that only should be classified as a repair in
the context of a specific recognition, like delayed strokes in an on-line recognizer,
often have typical features that let them appear different from the textual input
without any corrections. Therefore an additional detection and classification step
prior to the repair handling seems to be a very promising approach.

6.1. REPAIR DETECTION AND CLASSIFICATION 43

6.1 Repair Detection and Classification

6.1.1 Introductory Remarks

To perform repair handling on the input signal of human handwriting a level has
to be fixed on which the repair and correction handling should be done.
For example, many single word recognizers just offer one “clear” button as repair
possibility, which is technically the highest level one can choose for repair handling.
But this “all-or-nothing” approach is very unflexible. For example, if you just
misspelled one letter, you have to rewrite the whole word, instead of correcting
only this single character.

It should make more sense to allow corrections on a level that is oriented on a
semantic interpretation of the handwriting, for example,

e word(s),
o letter(s),
e parts of a letter.

But there are some problems with this approach, too. First repair is not always
done on letter level, even though the users intention is just to correct only one
single letter. In the database, described in chapter 2, examples can be found, where
a user, who wanted to correct a letter by overwriting it, not only overwrote this
single letter but also the begin of the following one. The second problem is, that it
is very hard, if not impossible, to find a usable segmentation into letters within the
handwriting. In fact, correct segmentation of a handwritten word into its lefters is
a problem as hard as the recognition problem itself (keep in mind that we are trying
to find a segmentation on a wrong or badly written word or on one that contains
corrections).

To avoid these problems other approaches should be thought of. One possibility
is to define different layers of units from the handwriting signal not according to the
semantic meaning but based on information gained from the time and the area in
which the coordinates were written. This leads to one possible hierarchy of levels
of a handwritten word:

e everything, i.e., the whole word,;

e strokes, i.e., all the coordinates that were written between a pen-down and
a pen-up;

+ up-down strokes, i.e., all the coordinates that were written between two
neighboring local extrema of a stroke;

¢ parts of up-down strokes, for example, an up-down stroke can be divided
into the parts that lie between the base-, center-, descender-, and ascenderline
that are calculated in the preprocessing step (see [MFW935b] or [MFW94] for
more information about the preprocessing in the NPen™ " system);

s the single coordinates, which is the lowest possible level;

An example for this different layers can be found in Figure 6.1.

In this report the detection of repair is done on the level of strokes. Everything
that is written within one stroke is regarded either as “normal” handwriting or as
a repair. There are some cases where this level is too rough for a classification, but
if a misclassification happens, the repair handling algorithms will take care of it.

levels of
one word

44 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

Figure 6.1: Example for different segmentations of a handwritten word.

The strokes level is to strong in the case of handling the detected repair. For
example, a whole word can be written in one stroke. But now to remove a single
letter from the word a unit smaller than all the coordinates between two pen lifts is
required. Otherwise the whole word would be deleted instead of the single letter. It
turns out that the level of up-down strokes is a reasonable choice to handle repair
and corrections. There are, of course, cases in which this approach might fail, but
they are rare. Therefore they are accepted here in favor of a high speed which turns
out to play an important role in the repair handling heuristics proposed in this thesis
(see the following chapters). Also, like in the case of a misclassification of strokes
as repair, I will take care of such critical cases in the repair handling algorithms.
Note that also a reasonable segmentation of a handwritten word into its letters can
be done not in any but in a lot of cases on the up-down stroke level. And usually
one up-down stroke does belong to one word, or at least to two words in the case,
when it contains the segmentation border between these two letters. Therefore they
propose a good basis to apply repair handling algorithms and heuristics.

6.1. REPAIR DETECTION AND CLASSIFICATION 45

To detect and classify typical repair gestures and actions you need to have a
look at “normal” human handwriting, on how repair and corrections differ from
this writing, and how they can be separated from it. These “typical” differences
can be used in a detection and separation process of corrections and “normal”
handwriting.

One well known model for human handwriting is the oscillatory motion
model of handwriting introduced by Hollerbach (see [Hol81] or [ST94]). In this
model cursive handwriting is described by two independent orthogonally operating
oscillatory motions, one in the horizontal direction, and one in the vertical direc-
tion. An independent, relatively slow, constant linear rightward drift along the line
of writing is added to the horizontal oscillatory component, providing the model
with a constant rightward progression. A schematic representation of this idea can
be found in Figure 6.2.

 (b)

e

Figure 6.2: Schematic representation of Hollerbach's movement components (from
[LMT96]). (a) horizontal oscillatory component, (b) vertical oscillatory component, (c)
constant rightward progression.

The system can be described by the following differential equations:

M, = K o(z1 — 2) — Ko o(z — 22) (6.1)
Myjj = Ky = y) = Koy = v2), (6.2)

where K 4, Ks4, K14, K2, are the constants and 1, @2, 11, y2 are the equi-
librum positions of the spring muscle system modeling the human muscular motor
system, responsible for the production of human handwriting. Solving this equa-
tions set with the initial condition that the system has a constant velocity (drift)
in x-direction, yields the following parametric form:

z(t) = Acos(we(t — to) + ¢z) + C(t — to) (6.3)
y(t) = B cos(wy(t = to) + dy). (6.4)

The angular velocities w, and w, are determined by the ratios between the
spring constants and masses. A, B, C, ¢, ¢,, and ty are the integration param-
eters determined by the initial conditions. This set describes the two independent
oscillatory motions, superimposed on the linear constant drift C' along the line of
writing, which generate cycloids. Different cycloidial trajectories can be achieved
by changing the spring constants and zero settings at the appropriate time. The re-
lationship between the horizontal amplitude modulation A, (1), the horizontal drift
(', and the phase lag, ¢(t) = ¢.(f) — ¢, (t), controls the letter corner shape.

Hollerbach's
model of
handwriting

typreal repair
features

46 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

The horizontal drift velocity €' can be estimated by the following equation:

A |
= Z Va(n), (6.5)
where N is the number of digitized points.

Typical repair gestures and actions found in the data analysis in chapter
3 usually violate this model of the human cursive handwriting process, which was
introduced for “clean” data without any corrections. The features most typical for
the occurrence of repair are

e going back in time or staying long into the same area of writing, i.e., violating
the constant drift along the line of writing in Hollerbach’s motion model, and

e the writing into an area where the writer has already written something before.

Note that these are only the typical features for every kind of repair and therefore
very general. Additional ones exist for the different repair classes, like shown in
the first part of this report for the case of deletions. Since especially the first
feature differs from Hollerbach’s model, which was introduced only for “normal”
handwriting without corrections, the idea behind this model might be useful in
the process of detecting repairs and corrections, that will be discussed in the next
section,

6.1.2 Detection of Typical Repair Features

To classify a repair and to separate it from the “normal” handwriting one has to
face the question, what is typical for a correction and what features are useful
to find such categories. In the last chapter it was already reported that the two
most typical and obvious characteristics of a repair are that the writer goes back in
x-direction and writes something in an area in which he already has written before.

A first approach to detect such a “going-back” in space could be to define a fixed
threshold = that is moved with the pen while writing on the surface. If a new
pen-down happens left of the actual position of the threshold Z, a repair starts. An
illustrative example can be found in Figure 6.3. The problem with this approach is,
that with different writing styles different values for the thresholds = are required.
If the letters written by a user are very high but narrow the threshold = should be
small, if the letters are very wide regarding the x-direction it should be much bigger.
Note that not only different writers but also a single writer sometimes changes his
writing style even within one word. For example, a well known phenomenon is, that
the shapes of single letters are often getting wider but lower towards the end of a
word (see [LMT96]).

To avoid these problems I did some experiments with Hollerbach’s oscillatory
motion model of handwriting introduced in the last chapter. The idea is to take
a change in the velocity of the pen movements that is responsible for the drift to
the right in the writing direction (see equation 6.5) as an indication for a repair. A
strong decrease in this velocity should be an indication for a going back with the
pen in x-direction and therefore be a good indication for the occurrence of some
corrections. To do a check, if a possible correction occurred, the relative change in
velocity should be regarded. One problem with this approach is, that the velocity
changes depend on different letters, e.g., if a user writes two letters “ee” the velocity

6.1. REPAIR DETECTION AND CLASSIFICATION 47

Figure 6.3: Example for the fixed threshold method for repair detection.

will be smaller than when he writes the letter sequence “Il”, even if they take about
the same space in x-direction. This is, because the calculation of this velocity in
the model is intended to be calculated on the whole word, not step by step with
every new up-down stroke, like it is done here. To avoid this problems I changed
the calculation of the velocity in a way that I did not base it on the number of
pixels written but on the number of up-down strokes. Some examples of written
words and the corresponding velocities calculated in this way can be found in Figure
6.4. With this change the velocity criterion became more stable, but the problem
of changing writing styles still remained. It also took very long, till the velocity
became stable enough to be used for a reliable classification of repair strokes. This
is not acceptable, especially in single word recognition.

Kownlsindbie .

(£ avlscube

“Wevrtsretrr

(A ol tielas

Figure 6.4: Example for the use of Hollerbach’'s model for repair detection.

Therefore another approach was tried that is a kind of combination of the use of dynamie
a fixed threshold = and Hollerbach’s oscillation model. Like in the first approach, a threshold
threshold € is used, but this time it is calculated and adapted dynamically to the approach

48 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

respective writing style. Such a dynamic threshold © should cover about the
last one and a half letters of the word the user is just writing.

The idea is to set the threshold © proportional to the width (= extension in
x-direction) of the last few up-down strokes written by the user. The value of this
threshold should be

e adapted to the actual writing style, so not to much up-down strokes should
be taken for its calculation, and

e independent of to small strokes that can appear but are not “typical”, so
enough up-down strokes should be taken for its calculation to get a statistical
reliable value.

Empirical studies indicated, that it is a good compromise between these two requests
to take the maximum width of the last five up-down strokes plus a fixed value as
an adapted dynamic threshold 2.

Another modification that made this criterion more stable was not to take the
maximum x-value written so far as index for the threshold check but the begin of
the last completely written up-down stroke.

One problem with this approach is that repair in the last letter usually is not
recognized. Completion and insertion can not happen in this case but, of course,
deletion and overwriting are two types of repair that also occur at the end of a word.
To solve this problem an additional heuristic was added to the dynamic threshold
criterion. I will refer to this in the later chapters, where I describe the algorithms
and heuristics for the corresponding repair types.

Another problem is the fact of misclassification. Sometimes a new stroke is
classified as a repair, even if it belongs to the “normal” handwriting. But you
should keep in mind, that this detection heuristics are only a first check and that
misclassifications can be handled by “clever” repair heuristics and algorithms. For
example, a stroke classified wrongly as a repair can be reinserted in the “normal”
handwriting sequence just like a delayed t-stroke would be inserted.

An additional approach I tried was to use the score and the output of the Time-
Delay Neural Network to detect irregularities, like deletions or other corrections.
The idea was, that an unusual input that was not presented in the training database,
like, for example, the crossout of a letter in a word, should result in a low score
of the recognizer and therefore be a good indicator for a repair. But it turned
out, that the score calculated by the NPen™'recognizer is not a good basis for
such a decision. It is the nature of neural networks that data not presented to the
net in the training phase and completely different from the training data cause a
nonpredictable output when shown to the network in a test phase. Therefore the
score calculated in the recognition process was not usable for repair detection. A
high score does not say anything about the correctness of the corresponding result
in this case.

Of course, a very low score is a good indication, that something went wrong in
the recognition process. But a big decrease usually happens only when there are
many repair strokes, e.g., a whole letter is crossed out using a lot of strokes. On
the other hand, if, for example, only one single short stroke is used to do a deletion,
the decrease in the score usually is not that significant, like it should to be useful
for a good repair indication. Like already mentioned in the discussions about the
delayed stroke problem in section 2.2, the recognizer generalizes over short delayed
strokes, i.e., they are ignored. Small strokes do not influence the score calculation
significantly. Also the features calculated hefore the recognition algorithms are
applied might not look very different in this case, too. To understand this we have

6.1. REPAIR DETECTION AND CLASSIFICATION 49

to take a closer look at the preprocessing step of the NPen™t 1ecogmt|nn engine.
Figure 6.5 illustrates the first part of the preprocessing, the normalization step. Here
the goal is to remove undesired variability in the pen input. For this normalization
it does not matter, if the handwritten input signal contains repair or not*. For
a description of the different preprocessing steps in the input normalization see
[MFW95b] or [MFW94]. The feature extraction, which calculates the values that
are used in the recognition process, is illustrated in Figure 6.6. If only a short
stroke is used as a repair, most of the features do not differ very much from the
ones calculated on the “regular” handwriting. The absolute y value, that is, the
distances from the base- and the centerlines, are about the same. This is also true
with the hat feature, already introduced in section 2.2 and the pen feature, that
indicates, if a pen is lift from the writing surface or not. The local features only give
information about writing direction and curvatures. Since this is an information
coming form a very narrow area of the handwriting it does not differ much for
repair strokes. The context bitmap which is a downsampled version of a bitmap
that moves with the pen is global in time, since it contains all the values of the
coordinates written in a special area, no matter when they were written. But it
is local in space. If there are only a few repair stokes (e.g., no “wild” crossouts),
the context bitmaps of these strokes do not look very different, because it is only
a downsampled version. Therefore the calculated features of some repair strokes
that are presented to the recognition algorithms do not differ that much from the
ones of the “regular” handwriting. As a consequence of this the score calculated in
the recognition process can still be high, even if a repair appears, that looks very
different from the rest of the handwriting in the bitmap of the whaole word.

Note that there is no information about the absolute x value used in the recog-
nition process. The only way for the recognizer to find something out about the x
position is by realizing that there is a relatively long pen up sequence before some-
thing new, e.g., a repair, is written. I will use this feature as an indication for a
repair in the heuristics that will be proposed in the following chapters, too.

I also thought about the calculation and use of the so called entropy from the
Neural Network output (see [Pom92]) to detect a repair. This entropy is caleulated
by

hyp, hyp; ;e
) (6.6)
Z i hyp.r &S, hup;

with hyp; is the activation of the i-th output neuron of the Neural Network.
The value E for the entropy is minimal, if exactly one output neuron has the value
“1” and all the others are “07. It is maximal. if all the neurons have the same
activations. Therefore the bigger the entropy value E is, the more unreliable is
the output of the corresponding network. But this measure is also not usable as
a dependable repair indication. The reason why is, that only a high entropy is a
sure sign for an unreliable output, but a small entropy does not necessary mean,
that the output decision is correct. Data extremely different from the one presented
to the network in the training process can cause an output of the network that is
wrong but nevertheless has a very small entropy for the same reasons as discussed
above in the calculation of the score. Therefore the entropy is not a good measure
to detect repair and corrections, too.

?Note that this is not completely true: if the repair strokes differ in their size form the “regular”
handwriting, the calculation of the baselines will change,

50 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

Figure 6.5: The normalization steps in the NPen™ preprocessing module.

6.2. HANDLING OF EACH SINGLE REPAIR TYPE 51

Figure 6.6: The feature extraction steps in the NPen™ " preprocessing module.

6.2 Handling of Each Single Repair Type

In chapter 3 a classification for different kinds of corrections was introduced. These
repair types are deletion, completion/insertion, and overwriting. It was
mainly based on the kind of reaction the respective sort of correction should cause
in some repair handling algorithms. While insertion and completion require just
to find the best points where to insert, in overwriting also the strokes or the parts
of a stroke that was overwritten by the correction gestures and strokes need to be
deleted. In the deletion case the repair strokes have to be removed, too, instead of
being inserted into the “normal” handwriting.

In the following chapters different kinds of repair and correction handling algo-
rithms and heuristics will be discussed. The first section takes care about the case of
deletion. Overwriting and completion/insertion handling heuristics are introduced
in the sections 6.2.2 and 6.2.3.

6.2.1 Deletion

Typical approaches to offer the possibility to delete some parts from a written
sequence by the user are additional buttons or some special gestures.

For example one solution could be to offer a kind of a “rubber”-button that
changes the functionality of the pen from writing to deleting and vice versa. One
problem with these approaches that use additional buttons is, that they are usually
not very flexible and intuitive to use.

Gestures would be a more “natural” approach, because the user can stay with
his pen within the area where he is usually writing instead of having to move his
pen across the screen to a fixed place where the deletion and other buttons are
placed. But I agree with L. Schomaker who wrote in [Sch94]:

“.. gestures are nice, but they require highly motivated users who must store and
recall them in/from human memory ...7.

deletion
heuristics

52 CHAFTER 6. REPAIR OF HANDWRITTEN INPUT

The approach I followed in this thesis was to arrange a general schema for the
detection of deletions. The goal was to offer some common deletion mechanisms
to the user instead of limiting him to a set of special shaped gestures or symbols.
Since there are no common known “official” rules or characters for a deletion and a
lot of different kinds of gestures can be used to indicate it, a more general schema
should be applied in a deletion detection and handling heuristic.

The first idea to detect deletion gestures in a handwritten input was to use
the score of the recognizer output. But like already discussed in chapter 6.1.2, the
output of a neural net based recognizer is not a reliable measure, if the input data
is very different form the data used for training.

Therefore another idea was to train the TDNN with data that contains repair
and some additional output units to be activated when a repair, i.e., a deletion,
occurs. But this approach is also kind of critical. What kinds of gestures for
deletion are typically used? Which should therefore be trained by the network? Is
it possible at all to train an on-line recognizer like the NPen™system on repair
gestures?

Since the decision made by the NPen™ " system in the recognition process is based
on the time sequence (compare chapter 2.2), this approach might be very critical.
The system assumes an input signal that is similar to one modeled by Hollerbach’s
ogcillatory motion model of handwriting. Even if small deviations are compensated
by the system, it nevertheless supposes some special orders of downwriting within
a word and sometimes even within a letter. But there are no fixed rules or typical
stroke orders in which a repair gesture is usually made. Several different kinds
can be thought of. It seems quite impossible to find a training database that covers
enough different repair and deletion gestures with different stroke orders, even if you
limit it to some typical, often used gestures. The ways people write this gestures
down differ to much, that one can hope to find a database that would be needed
for such a training.

For a human reader it is sufficient, if the deletion gestures differ enough from
the “normal” handwriting to do a correct classification in the reading process. This
is the reason, why I did not try to handle typical deletion gestures, but based a
classification on typical features, characteristics, and differences. It was
already noticed, that going back in x-direction and writing in an area in which was
already written before is a good indication for any kind of repair. By analyzing the
database I found two typical repair gestures with some special characteristics that
are mainly used for a deletion (see chapter 3). Note that these are not gestures
that have a special kind of shape. Especially in the second case the strokes can be
ordered in a very wild kind and manner. But they are gestures that can be grouped
because of some typical features they have in common. The two classes are

e relatively long strokes compared to the normal handwriting, and

e many (sometimes very short) strokes in about the same area, placed in an
unpredictable order.

Easy heuristics can be applied to classify these two types of deletion
gestures. First a detection is done with the dynamic threshold approach introduced
in chapter 6.1.2. If a repair is detected, it is checked, if it is a deletion. For this, the
length and height of a repair stroke is taken, i.e., the extensions in x- and y-direction.
These two values are compared with the maximum extensions in x- and y-direction
of the up-down strokes from the “normal” handwriting. If the repair strokes are ¢
times bigger than the maximum extension in x-direction respectively in y-direction,

6.2. HANDLING OF EACH SINGLE REPAIR TYPE 53

with ¢ being an empirically fixed threshold, than a deletion is classified. The deleted
up-down strokes, i.e., the ones that have been overwritten from the repair stroke,
and the repair stroke itself will be removed from the input sequence of coordinates.
The x-values of the coordinates left from the repair have to be repositioned by
adding the width of the deletion area. An exemplary illustration of this approach
can be found in Figure 6.7.

Another heuristic is used for the detection of the second class. The typical
feature here is, that the number of repair strokes is much higher than the one
of (up-down) strokes from the normal handwriting, if you compare the deletion
strokes and the deleted strokes in the same area. Therefore the total length of all
the up-down strokes lying in the space behind the dynamic threshold Q introduced
in chapter 6.1.2 is calculated. It is compared to the total length of all the up-down
strokes from the “normal” handwriting that were overwritten by the repair strokes,
If the length of the deletion strokes exceeds the length of the overwritten up-down
strokes, a deletion is detected. The corresponding coordinates are removed from
the input sequence and a repositioning of the remaining ones is done. An example
for this heuristic process is illustrated in Figure 6.8.

For deletions at the end, i.e., deletions of the last letter, the dynamic threshold
approach does not work. Therefore an additional criterion was used to cover this
case: if the number of up-down strokes lying on the right side of the dynamic
threshold §2 was higher than in the “usual” handwriting, a repair was detected, too.
Note that this criterion fits with the case that the constant drift velocity to the
right from Hollerbach’s motion model (compare equation 6.5) is decreasing.

The second heuristic is kind of critical. To compare the two lengths and to make
a decision a threshold ¢ is needed that can cause problems, especially if not only
deletion, but also overwriting is allowed as a repair action. If this threshold ¢ is set
too low, the risk is very high, that an overwriting is wrongly classified as a deletion.
This would cause the repair handling algorithm not only to delete the overwritten
strokes but also the repair strokes that instead should be inserted into the sequence.
On the other hand, if the threshold ¢ is set to high, the user probably will not make
enough strokes to be classified as a deletion. There is no “perfect” setting for the
threshold . Examples can be found for every possible value, where it turns out to
be too small or too high. Section 6.3 will describe this problem in more detail and
propose a possible solution. Also an analysis and evaluation of the heuristics will
be done there,

To get a feeling of how the threshold ¢ should be set to achieve the best results I
did some experiments with data from the database introduced in part I. I took the
deletion cases form the word samples and the deletions that were easy to separate
from the text sequences (since the recognizer only works with single words). So I got
73 samples that contained this repair type. A list with all the written words can be
found in Appendix A, Table A.1. I applied the proposed heuristics to this samples
and checked them visually, if the performed corrections were handled properly with
different threshold settings. The results for the threshold settings for ¢ from 1.2
to 2.0 can be found in Figure 6.9. The values at the x axis indicate how many
of the deletions were classified and handled properly with the corresponding value
for ¢ shown at the y axis. Like expected, the lower the threshold ¢ is set, the
better the repair heuristics work. Lowering ¢ under 1.2 was done with the wrong
classified samples and improved correct repair detection and handling at about
another 12%. But then also 12% of the data was classified wrong, i.c., a deletion
was detected in the part of the word, where no such correction has been done (for

54 CHAFPTER 6. REPAIR OF HANDWRITTEN INPUT

T

o i i shg, = = LT e s = iy

TEToEERIRNg

i
1
i
i
1
i
il
i
'
i
'
i
i
+

s mmmm

Figure 6.7: Example for the first heuristic to detect deletions.

6.2. HANDLING OF EACH SINGLE REPAIR TYPE 55

Figure 6.8: Example for the second heuristic to detect deletions.

example, a relatively long t-stroke can be interpreted as a deletion). Therefore a
higher reduction of the threshold ¢ should not be done. It should be noted also,
that the repair gestures that were handled with the heuristics here were the ones
that occurred most in the database, but in fact there are a few others that are not
covered by them. Therefore 100% repair handling in this case can not be done with
the used data.

These kinds of heuristics for detecting and handling these special deletion types
have some advantages over other approaches. First they cover the deletion ges-
tures that appeared the most in our database. They are not restricted to a special
shape and offer therefore more freedom to a writer. He is not limited fo use some
special symbols that he might be unfamiliar with or unused to. Also you should
keep in mind, that in on-line handwriting recognition the user usually is sitting in
front of the screen or the input device and can see his handwriting and the sys-
tem reactions immediately. You can profit now from this kind of interactivity by
indicating a deletion to a user, after it is detected. If the deleted strokes disappear
after scribbling over them, this is kind of similar to the situation where you have
written something on a paper with a pencil and delete some parts of it with a rub-
ber. Therefore the approach seems very natural to use. This kind of interactive
repair indication will be discussed in more detail in a later chapter, because it also
can help to overcome the problem of finding a correct setting of the threshold ¢
for the second heuristic mentioned above. If you use the detection of some typical

56 CHAPTER 6. REFPAIR OF HANDWRITTEN INPUT

:
|'_
?
o
:
:

A40% 50% S2% 5% 56% 50%
Correct classification and handling
of the delations

Figure 6.9: Deletion handling with different settings for the threshold .

deletion gestures for the classification, there always will be the risk of misclassifi-
cation. What should be done in such a case? Writing the same gesture again does
not seem to be a very promising approach. But if a deletion is not classified in the
heuristic above, because the threshold ¢ is set to high, the user can just continue
(or do again) his “crossing out’s”, and the deletion will be detected.

6.2.2 Overwriting

Another class often found in the database from section 2.1 is overwriting. The
main occurences of an overwrite are on letter level. It sometimes happened that
a user was also overwriting small parts of the preceding or following one so the
handwriting that corrects the error fits better into the original signal. In most of
the cases the users tried to correct a letter by overwriting it, if it was (a) wrong or
(b) had a bad shape that made it look like a different one or not like a known letter
at all. Sometimes also more or less than one letter was overwritten. But this two
cases appeared very rare, the repair on letter level was by far the one that occeurred

the most.

What has to be done in the case of overwriting? What kinds of reactions should
a repair tool perform to handle an input signal of human handwriting that contains
this type of correction? After the detection and correct classification of an overwrite

the following steps have to be done:

e first: delete the strokes (or the parts of a stroke) that are supposed to be
overwritten, and

6.2. HANDLING OF EACH SINGLE REPAIR TYPE a7

e second: insert the strokes that performed the overwrite into the input sequence
of coordinates.

In other words: delete the repaired strokes and insert the repair strokes. In the
following I will represent different heuristics to handle an overwrite and analyze
them with some samples that occurred in the database from section 2.1

Like discussed in section 6.1.1, repair handling will be done here on the level of
up-down strokes. Only whole up-down strokes that are overwritten will be removed
from the input signal. So what is a good indication for the situation, that an
up-down stroke is overwritten? How can the coordinates that are supposed to
“disappear” from the handwritten sequence be found? Since they are overwritten
by some repair strokes, a good idea is to compare the bounding boxes of the up-
down strokes from the “normal” handwriting with the ones of the repair strokes.
A bounding box is the smallest square that covers the whole up-down stroke and
has horizontal and vertical sides (see the example on the left side of Figure 6.10).
If two up-down strokes overlap, i.e., if one overwrites the other, their hounding
boxes will have a high overlap, too. An example can be found in the middle of
Figure 6.10. Note that this is not true the other way: two bounding boxes can
overlap completely, but the coordinates of the corresponding strokes do not touch
each other. One such case is illustrated in the right part of Figure 6.10.

One important question that arises with this approach is, what should be con-
sidered as a “high” overlap? If an up-down stroke is overwritten only partly by
another one, their bounding boxes will also not overlap completely. So when should
an up-down stroke, whose bounding box is covered only in parts by the ones of some
repair coordinates, be removed? Different ways between the two extremes to delete
as much or as few as possible can be thought of. Therefore I took 53 examples of
overwrites that I found in the database from part I and tested different heuristics
with them. A complete list with the data is shown in Appendix A, Table A.2.

Every heuristic that I will propose here deletes an overwritten stroke, when a
“reasonable” overwrite occurs. The only difference is the interpretation of “reason-
able”. Several methods for checking overwrites and overlaps of bounding boxes are
possible. The first heuristics have different meanings for what an overlap is. You
can talk of an overlap from one bounding box by another one, if it is completely
covered. Two examples are shown in the left of Figure 6.11. In the following I will
refer to this view of overlapping as “total overlap”. This criterion for an overlap
might be a very straight rule for repair handling, because, even if the overlap is not
complete, there still might be a very large area of both bounding boxes overlapping,
Of course, you can handle this problem by “thresholding” the bounding box, like
I will discuss it below. But I will also introduce another criterion here that I refer
to as the “middle criterion” in the following. Here a bounding box is seen to be
overwritten, if the middle of this box lies in the area that is overlapped by the other
bounding box. An illustrative example of this rule can be found in Figure 6.11 on
the right side.

Like already mentioned, another modification is the introduction of a thresh-
old 7 to the bounding box borders . If only the “pure” bounding boxes are
compared, some up-down strokes that should be seen as overwritten might not be
covered by the bounding boxes of the repair strokes. Therefore it is a good idea
to augment the bounding box borders through adding a fixed threshold 4. Two
approaches were tried here: first a symmetric threshold, i.e., the same threshold
value is used for all four bounding box sides, second an asymmetric threshold.
In this case the left border of the bounding box was set to zero. This was done,

overwriting
hewristics

a8 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

One up-down stroke twa overlapping two none overlapping

and his corresponding up-down strokes and up-down strokes and

bounding box their corresponding their corresponding
bounding boxes bounding boxes

== high overlap (indicated == complete overlap
through a gray square) (indicated through a
of the two boxes gray square) of the

two boxes

Figure 6.10: Examples for different up-down strokes and their corresponding bounding
boxes.

becanse many humans write with a drift to the right, which results in the risk of a
wrong overwriting handling, if the value for the threshold on the left side is set to
high. Examples for a symmetric and an asymmetric threshold and different overlap
handling can be found in Figure 6.12.

Like already discussed earlier, there are cases, where two up-down strokes that
do not touch each other can have overlapping bounding boxes. For this reason
I did another modification that I will call “half bounding boxes”. Here the
bounding boxes of each up-down stroke are divided in the middle of the stroke.
The resulting two boxes are thresholded and used now as basis for an overwriting
check. An example can be found in the top of Figure 6.13. Overlap only takes place,
if both “half boxes” of the overwritten up-down stroke lie in the thresholded “half
bounding boxes” of the up-down stroke that is supposed to be an overwrite. Here
both criteria, the “total overlap-criterion” and the “middle-criterion” from above
can be used. This is illustrated in the middle and the bottom of Figure 6.13.

The approach with the “half bounding boxes” is very extreme in a sense that
only up-down strokes that are written very close to the overwriting strokes are
removed. The other extreme would be to remove all the up-down strokes that lie in
a wide area around the overwriting strokes. This case is illustrated in Figure 6.14.
In this example the letter “h” is overwritten by the letter “I”. If an overwriting
check with the bounding boxes will be applied with the methods described above,
one up-down stroke that should obviously be removed will stay in the repaired

6.2. HANDLING OF EACH SINGLE REPAIR TYPE 59

i(‘lwlu o 3 . s g
Overlap only if the hounding boxes overlap completely: Overlap, if the middle of one box lies in the overlaped area:

o vl p Bnnding boxek: Twar ot complutaly averlapping bunding boses|
T avwrlapping hounding ke ot complotaty apping botnding boxdd: ‘Pan vt bkl s Twi mote overlappiiige bouiding b

ik

i

’ il
*®
The mitklic of the hmding box to chock {3) “Tha b af the beatmding bus (o vk 1 3)
Elckor o

ctlapped nrea { [T e it L it covurbapgpedd s [0

Figure 6.11: Examples for two different definitions of what is seen as an overlap: a
“total overlap” (shown left) and an overlap according to the "middle criterion” (shown
right).

sequence. Therefore another way to handle overwriting is to delete every up-
down stroke that lies in about the same area according to the x-coordinates like
the repair strokes, if the bounding box of at least one up-down stroke of the original
sequence is covered by the bounding boxes of the repair strokes.

By combining some of the heuristics introduced above I got six different meth-
ods to handle an overwriting.

e Version 1:
compare symmetric thresholded “half bounding boxes” with the “middle-
criterion”

e Version 2:
compare symmetric thresholded “half bounding boxes™ with the “total overlap-
criterion”

¢ Version 3:
compare symmetric thresholded bounding boxes with the “total overlap-criterion”

¢ Version 4:
compare asymmetric thresholded bounding boxes with the “middle-criterion”

e Version b:
compare symmetric thresholded bounding boxes with the “middle-criterion”

¢ Version 6:
delete all the up-down strokes in the overwriting area, if at least one up-down
stroke is overwritten according to the criterion in Version 4

Note, that other combinations of the different methods can be made, but these
are the ones that seemed to make the most sense to me. This list is in general ordered
in a way that increasing numbers indicate a higher probability for the deletion of an
overwritten stroke. This means that Version 6 should delete the most, while Version
1 should delete the fewest coordinates from the original written word compared to
all the other heuristics.

To evaluate the different versions I took the samples with overwrites that 1
mentioned earlier from the database and applied different tests on them.

60 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

i

SR
A0 i \’%w i

the normal bounding box a thresholded bounding box an asymmetric thresholded bounding hox

&&@&W Overlap with different thresholded bounding boxes:

no overlap with normal overlap with the thresholded no overlap with the asymmetric
bounding boxes bounding box thresholded hounding box

Figure 6.12: Examples for a symmetric and an asymmetric threshold added to a bound-
ing box.

First I checked the overwriting handling of the different versions visually. The
results can be found in Figure 6.15. On the y axis the version that was taken to
handle the overwrite is indicated. v1, v2, ..., v6 refer to Version 1, Version 2, ...,
Version 6, respectively. The values at the x axis indicate correct repair handling.
Since I classified an overwriting as handled correct, only if it was 100% what you
as a human would expect, the numbers of correct results are not every high. But
it should be noted, that this does not have to result in a low recognition accuracy,
too. If one up-down stroke is deleted to much or one that should be deleted is not,
the recognition result can still be correct. I will show some word accuracy results
later, after I have introduced some other heuristics needed to handle the repair type
overwriting. It turns out, that the methods designed to delete the most parts of the
overwritten word do the best repair handling. The tests with the “half bounding
boxes™ failed most of the time.

After the deletion of the overwritten up-down strokes from the input signal
with the heuristics described above, the repair strokes, i.e., the strokes that do the
overwrite, have to be inserted into the remaining sequence of coordinates from the
input signal. This should not be a big problem, if Version 6 from above is used for
the overwriting check. If every up-down stroke in the overwritten area is deleted,
the repair strokes only have to be inserted between the remaining parts to the left
and the right. But insertion is of course a big problem, if some up-down strokes
of the original signal stay in the overwriting area, even after the deletion of the
overwritten ones. For example, how should the remaining up-down stroke from the
letter “h” in Figure 6.14 be inserted into the repaired input signal?

insertion Therefore I will also introduce and test some heuristics to handle an insertion of
heuristics

6.2. HANDLING OF EACH SINGLE REFAIR TYPE

one up-down stroke

the corresponding the "half" bounding
bounding box and boxes and the threshol-
the thresholded box ded box (dashed line)
(dashed linc)

Overlap with the "total overlap" criterion and "half" bounding boxes:

Example for an overlap:

The thresholded boxes contain the
“half* bounding boxes of the other
stroke completely

Example for no overlap:

The thresholded boxes do not contain
the “half* bounding boxes of the other
stroke completely

Overlap with the "middle" criterion and "half" bounding boxes:

Example for an overlap:

[l
]
i
i
i
i
i
i
1
'
1
'
'

Baoth middle poimts of one stroke ()
lie in the area of the "half” bounding
boxes that are overlapped by the
thresholded boxes of the other strake

Example for no overlap:

Only one of the middle points §)
lies in the area of the "half™ hounding
boxes that arc overlapped by the
thresholded boxes of the other stroke

Figure 6.13: Examples for thresholded "half bounding boxes" and their use for overlap

checking.

62 CHAFPTER 6. REPAIR OF HANDWRITTEN INPUT

Examples for an overwrite:

g 5

the letier "h" that will the leter "1 that overwrites the overwrite of "1"
be overwrillen the letier "h" through “h"

The corresponding bounding boxes:

the bounding boxes the bounding boxes the overlapping bounding boxes
of the letter "h" of the letter "I" the grey one is noi overlapped by
any of the "1"-bounding boxes

Results with different overwriting handling versions:

11 only overlapping 11 all up-down strokes
hounding boxes are are removed that are in
removed, one siroke the same region accor-
from the letter "h" ding o the x-coordinates
will still be there ol the overwrite, all
after the handling parts of the letter "h"

af the overwrile. L~ are removed

Figure 6.14: Example for the approach where all up-down strokes in the overwritten
area are deleted.

a stroke or some up-down strokes into a sequence of coordinates from the original
input signal. Examples for all the heuristics I will use can be found in Figure 6.16.

The first one is illustrated at the top of this Figure under “Version 1 & 2”. The
correct insertion position is calculated as follow: for every pair of successing up-
down strokes a measure is calculated. This value should be lower than another one,
if an insertion of the stroke at this position seems more reasonable. In this version
the distance in direction of the x-coordinates between the end of the previous up-
down stroke and the begin of the stroke to insert is calculated. The same is done
with the distance between the end of the insertion stroke and the next up-down
stroke from the original input signal. An insertion is done between the two up-
down strokes for which the sum of this two distances is a minimum over all possible
insertion borders in the input signal.

The second heuristic, shown in Figure 6.16 under “Version 3 & 4”, does the same
like the first one. The only difference is, that not only the distances in direction

6.2. HANDLING OF EACH SINGLE REPAIR TYPE 63

z
£
:
;
1
:
3
2

10% 18% 20% 5%

correct classified overwriting

it
7 s
i e

Figure 6.15: Evaluation of the different versions used to handle an overwrite.

of the x-, but also of the y-coordinates are calculated. The sum of all these four
distances has to be minimized to find the best insertion position.

An example for the next case is shown in Figure 6.16 under “Version 5 & 6”. Here
the bounding boxes of the repair stroke and every up-down stroke are compared.
Insertion is done after the up-down stroke with whichs bounding box the highest
overlap exists. For this purpose the size of the area that overlaps is calculated. If
no stroke overlaps at all, the first heuristic, described above, is used.

The next method, shown in Figure 6.16 under “Version 7 & 8", is similar to
the first one. But here the distances between the middle x-values of every up-
down stroke and the stroke to insert are calculated. The insertion position is the
one between the two up-down strokes with a minimum value for the sum of these
distances.

The last heuristic is illustrated in Figure 6.16, too, under “Version 9 & 10”. Here
the distance between the end of a previous up-down stroke and the begin of the
stroke to insert and also the one between the end of this stroke and the following
up-down stroke in the input sequence is calculated. The minimum of these two
values is taken and compared to the respective distance values of the other possible
insertion positions. Insertion is done at the position with the lowest value,

Another modification can be done with all the heuristics from above. You can
insert a complete repair stroke af once or you can insert every up-down stroke of
it step by step with one of the heuristics from above. This is similar to allow
“breaking” of a repair stroke or not. An example for this is illustrated in Figure
6.17. Here it seems more reasonable to allow up-down strokes from the normal

64 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

up-down stroksa fram the inpet sigial

AV

ey sirake thal stionld be Insened

Different insertion versions
for the following situation;

Version | & 2: insert hetween the nearest x coordinates

Insert the repair airokcs

Butwin tha twis up-down !

sirokos for which Ca(b) s _/?(

hiirkinal, with I
o
o} —
)

() = Keadistaniee b the previous
up-thwn lrike s

Version 3 & 4: insert between the nearest x/y coordinates

Tvsird the repitir strokes

helwean ihia b up-town
fior which {a}+{h+

GG ke minfmal, wiih

fiad. () like i Veraion |

()= y-distance o the previous
wp-down simke

fl} m yualistiufics b the fest
paduw stivke

Version 3 & 6: insert after highest bounding box overlap

1t:yw3n11pini|; heunding boxex
axli

o e Tt i 1wo
up-ddown sirukea with the
maximun svarlap

Utherwisg
-z Inmen hetwean i onis
with the minimum disaneds

).
(hin in :Mlt:mﬁ ke 1o tie
writerion in Yeraion 1)

Version 7 & §: insert between closest "middle x" values

Tnwert the sepis sirokes
etween lhe two up-down
strake lor which (d11+003) ix \\
mbniml, with 1

'
'
) i
(1) = eilistaice between the oo :
midille ul the previvus I 1
{02) = x-ntance between the iy 2y
midille of the next
wp-dien siroke and the sne
tar et between lhent

Version 9 & 10: insert between closest up-down stroke borders

Trwert e repuis sirokis wny

hetween the two up-down v

atmirkas for which min{ (d1),2)}

I miinimal, wiih ..
2y

{il1) = dlisangs Batwean the
ol uf the previons and
(d2) = distunce between the
Tughn af the nazt

Apadown siroke and the ono
s imsert between theti

Figure 6.16: Examples for the different heuristics used to perform an insertion.

6.2. HANDLING OF EACH SINGLE REPAIR TYPE 65

handwriting to be inserted within a repair stroke. But there are also cases, where
it would be better not to allow such a “breaking” of one stroke.

e

strokes from the input signal

|]
/X\/\l”}m

stroke from the repair signal

S

Insertion hundling in the Versions 1, 3, 5,7, and %; Insertion handling in Versions 2, 4, 6, 8, and 10
k1 T s
\ ‘/' - / '\ /,« ‘,’\ / / / ,\
! \'h /-\I“.f‘ / \ 4 Ey \._,--‘/ \\,, _.-F: 'H--\N
e indicates pemp scyenees
insertion can be done at every up-town stroke border repair sirokes remain connecied,
of the repalr srokes o inwertion of strokes from the original input sigal is

allowel witlin one repair siroke

Figure 6.17: Example with allowed and not allowed "breaking” of repair strokes.

Therefore in total there are ten heuristics that I evaluated with the data already
used to test the different cases of overwriting handling. The results can be found
in Figure 6.18. On the y axis the different insertion versions can be found. v1, v3,
v5, v7, and v9 refers to the versions described in Figure 6.16 with the same index.
Here every up-down stroke of the whole stroke to insert is handled separately. The
versions v2, v4, ..., v10 correspond to the preceding versions with the only difference,
that here the whole repair stroke is inserted at once. The x axis values indicate how
often an insertion is handled correctly. The cases where the whole stroke is inserted
at once usually received better results than their corresponding counterparts. The
best, results were achieved with the versions number 2, 4, and 8.

After applying the complete repair handling to this data, i.e., after deleting
the overwritten strokes and inserting the overwriting ones, I checked them with
the NPen™*recognizer. The word accuracy, that is the relative number of correct
recognized words, was calculated on the test set with the use of every bounding box
check and every insertion heuristic discussed above,

The results can be found in Figure 6.19. In the upper diagram the word ac-
curacy is indicated for every combination of an overwrite handling heuristic with
an insertion heuristic. In the lower left of this Figure, a “landscape” is drawn by
connecting the values of neighboring versions, Note, that in principle it makes no
sense to connect the word accuracy values of two different heuristics, since there is
no heuristic “between” two existing ones and therefore no interpolation should be
done. But if you look at this diagram from the top, you get a “map”, that is shown

66 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

<

heuristics used for completion handling

o5 10% 0% JoN 40N L% 6o g
correct insertion handling with tha differsnt heuristics

i

Figure 6.18: Evaluation of the different heuristics used to handle an insertion.

A e &W’u:m il
Lo

on the lower right of this figure. Since there are only discrete values in the original
diagram that correspond to the different heuristics, only the grid points indicate
“real” values. All the others in between are and cannot be based on a recognition.
But I included these two diagrams here, since you can see the heuristics that achieve
the best recognition results much clearer and easier this way. It turns out, that the
approaches that had the best repair handling are also the ones that received the
best recognition results.

It should be noted, that the goal of these tests was to evaluate the different
heuristics according to which parameters are the best and which ones are most
suitable to use. The purpose was not to achieve the best possible recognition results.
Nevertheless, the best result with the use of the overwriting handling heuristics
received here is 31.4%, which is an improvement over the “regular” recognition
without any repair handling, that achieved a word aceuracy of 25%.

6.2.3 Completion

The last repair type of the classification I proposed in part I is completion. It
appeared, that this case happened very seldom in the database. Nevertheless it did
appear. Usually it occurred in a sense of “closing” a letter, e.g., an “a” that looked
like a “u” was “closed” by adding an additional stroke at the top.

Once you have handled the overwriting case, it should be possible to deal with
the repair type completion in a similar way. The reason for this is, that both cases
are identical after you removed the overwritten up-down strokes, if an overwrite
was done. In completion usnally no strokes or parts of them should be necessary to
delete, only an insertion has to be done.

6.2. HANDLING OF EACH SINGLE REPAIR TYPE

67

Word accuracies with the different heuristics:

word accuracy
in %

with the
corresponding
heuriatics

]
13

different
insertion
handling

heuriatics

"Landscape" to illustrate
the best heuristics:

word adsuracy
in W

with the
eorresponding
heuristics

different different
ingertion " overwriting
handling handling
heuristice heuristics

ward accuracy
in %

without any
rupalr handling

differant
overwriting
handling
heuriatica

*Map" to illustrate

the best heuristics:

g+ (E1e.a3

ma0.an

| S B L

[SLAT

10

Bo-d

Figure 6.19: Word accuracy for the overwriting examples with different overwriting and

insertion handling heuristics.

68 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

Therefore I tested the insertion heuristics introduce in the last section on 28
samples I found in the database. The list with the words tested here can be found
in Appendix A, Table A.3. The results of the visual check, if repair handling was
done in a reasonable way, can be found in Figure 6.20. On the y axis the used
insertion versions are indicated through v1, v2, ..., v10 like in Figure 6.18. The x
axis value indicates the number of samples handled correctly. The best results are
achieved with version v2 and v4. These two cases were also under the best ones in
the case of overwriting. But even with them the number of correct handled input
sequences is not very high. One reason for this is, that in some cases a “perfect”
insertion can not be done, because the additional stroke does not fit exactly in the
previously written word.

vio

<
i

vB

v

vi

bt

w4

va [

v

¥1

used insertion heuristic for repair handling

D.00% C.00% 10.00W ‘500 20.00% Z500W DOODK I500W 400DW 4G 00N ED.00%

correct repair handling

D

it

A i N R

Figure 6.20: Repair handling with different insertion heuristics.

On the other hand, since completions are usually only very short strokes, maybe
it is not even necessary to insert them in a “perfect” way. Even with a “nearly”
correct insertion the correct recognition result might be achieved. 1 tested the
sequences with all combinations of overwriting and completion heuristics introduced
in the last section. I also did the overwriting check before insertion handling, even
if it should not be necessary in the case of completion. But if you do this additional
step, there is no need for a separation between this two cases in the implementation
of a system that contains both of them. I will discuss the aspects of intergrating the
propased repair handling algorithms of all repair types together in one tool in the
next section. Regarding the word accuracy results for the completion type, those
are shown in Figure 6.21, it turns out, that the versions that did the best repair
handling in the overwriting case also achieved the best results with the completion
examples. The diagrams at the bottom of this Figure have to be interpreted like
the corresponding ones described for Figure 6.19.

6.2. HANDLING OF EACH SINGLE REFAIR TYPE 69

Word accuracies with the different heuristics:

ward accuracy
in W

with tha
corresponding
heuristics

f—wird ACouracy
in 4

without any
vepali handling

different
oyearwriting
handling
hauristica

diffarentc
insertion
handling
heuriacica

‘Landscape" to illustrate “Map"
the best heuristiecs:

to illustrate
the best heuristics:

wiord accuracy
in &

with the
corresponding
heuristizs

ilww:

| mssg0

T e
| LR L]
mo

different

insertion o sl different
handling i ovarwricing
hauriatica handling

heuristics

Figure 6.21: Word accuracy for the completion examples with different overwriting and
insertion handling heuristics.

70 CHAPTER 6. REFAIR OF HANDWRITTEN INPUT

6.3 Handling of All Repair Types

In the last section every repair class was checked separately. Heuristics have been
introduced that handle each correction type for its own. The topic of this chapter
is how these different repair handling heuristics can be combined in a single tool
and applied all together to any kind of input.

6.3.1 Coordination of the Heuristics for Different Repair Types

The combination and synchronization between the proposed heuristics in the last
section for handling the different repair types is very obvious and easy. A schema
of the whole process of applying all the methods for every single repair
type in one tool is shown in Figure 6.22. The diagram starts at the top left corner
of the figure. First a deletion check is done. The repair data is found through the
dynamic threshold method, introduced in chapter 6.1.2, or by the heuristic that
detects a repair at the end of a word. If a deletion is classified, i.e., if the length
of the up-down strokes that are classified as repair is much bigger than the length
of the up-down strokes that are overwritten by them or their size is much larger,
the repair is handled by deleting both, the repair and the repaired strokes. After
that the x-values of the coordinates left from the position of the “scratch out”
will be repositioned. Nothing else has to be done. If no deletion is classified, an
overwriting is checked. This means that the bounding boxes of the repair strokes are
compared with the bounding boxes of the up-down strokes in about the same area.
If an overwrite according to one of the proposed heuristics exists, the overwritten
up-down strokes are removed. After this removing of parts of some strokes the
overwriting case reduces to a completion case, i.e., all that has to be done now is to
insert the repair strokes in the right way into the remaining input signal. That is the
same situation that happens in a completion case, i.e., when no overwritten strokes
are detected. After applying one of the heuristics introduced in the last section the
repair process is finished. The repair signal can be send fo the recognizer now.

An example for the case of a deletion is shown in Figure 6.23. After
the classification of the repair strokes and the up-down strokes from the “normal”
handwriting in this area, a deletion check is done. Since the length of the repair
strokes is much higher than the length of the up-down strokes that are overwritten,
the result of this check is positive. Therefore no further tests have to be done.
The repair strokes and the deleted parts of the handwriting are removed from the
original input signal. After a repositioning of the x-coordinates of the strokes that
are on the left side of the deletion area a recognition can be done.

The case of an overwriting is illustrated in Figure 6.24. In this example
the letter “a” of the word “man” is overwritten by the letter “e” to change the
word from “man” into “men”. Since the length of both up-down stroke pairs. the
overwritten and the repair strokes, have about the same length and size, no deletion
is detected. Therefore an overwriting check is done. Because the bounding boxes of
the letter “e” overlap the ones of the letter “a” completely, this character is deleted,
i.e. the referring up-down strokes are removed from the input signal. After that
the repair strokes, i.e., the strokes that represent the letter “e”, are inserted with
one of the insertion heuristics into the gap in the remaining input signal. Now a
“regular” recognition can be done on the repaired sequence of coordinates.

An example for the last repair type, completion, can be found in Figure
6.25. Here only the left part of the letter “v” in the word “lover” was written and
the user corrected it by adding two additional strokes to complete this letter. Both

6.3. HANDLING OF ALL REPAIR TYPES

gl

by
i

i

Figure 6.22: lllustration how the different repair handling mechanisms work together.

72 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

Figure 6.23: Example for the deletion case.

6.3. HANDLING OF ALL REPAIR TYPES 73

Figure 6.24: Example for the overwriting case.

evaluation

74 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

parts of the repair have about the same size, therefore the deletion check is negative,
Also no bounding boxes of the repair strokes have an overlap that is high enough
to delete one of the overwritten up-down strokes. Therefore a completion has to be
done. After inserting the repair strokes into the original signal the repair handling
is finished.

6.3.2 FEvaluations

To evaluate the proposed heuristics I collected some data from different writers,
where they have been asked to do several kinds of repair. The setup for the data
collection was the following: the user was asked to write a word, e.g.: “please
write the word cheir.” Then he was forced to repair this word in a special way,
e.g.: “please correct: hair instead of chair.” Note that no special repair type was
requested from the user. He was free to correct the word in any way he wanted.
No feedback was given to him from any recognizer or repair handling tool. The
word pairs to correct were chosen in the following way: 50%, i.e., 200 word pairs,
contained one or more additional letters (like “aboriginal” and “original”). To get
statistically independent data the same number of samples with additional letters
at the begin, in the middle, and at the end of a word were taken. The expected
repair type for these words would be a deletion. The other 50% of words contained
some wrong letters or some letter reversals (like “abel” and “able”). The words
were chosen randomly from the dictionary and the wrong letters were set according
to two criteria. First, letters that look a kind of similar in a “clean” handwriting
were replaced through each other (like “n” and “m”). Second, similar words have
been created (like “mister” and “master”). The complete list with the data that
was collected can be found in Appendix A, Table A.4 and A.5.

Since the data analysis in part I was only done on data were the user was not
asked to do any repair, a similar study with the collected data can be interesting.
The data of four writers was analyzed and classified in repair types according to the
proposed classification in the first part. The results can be found in Figure 6.26.
Note that this study does not give statistical independent estimates of occurring
repair types, since the repair done was under great influence of the data requested
from the user. But such a study can be very interesting nevertheless. Two additional
repair types appeared that were not or only in a none remarkable number found in
the other database: deletion and insertion together and the use of some gestures.
Even if their number was small this might be an indication that users would like
and demand for such repair gestures and types.

To get an estimate for the performance of the recognizer with “clean” data, that
is, data that does not contain any errors or repairs, the data that was first written
by the user was tested with the according label. For example, if the instruction to
a writer in the first step was “write chair”, and in the second step “correct: hair
instead of chair”, then the (correctly written) word “chair” was taken and tested
with the label “chair”. Therefore 200 samples could be tested for each of the four
writers. The received word accuracy was 88%. Since the words were very similar to
the repaired ones, this value is a good benchmark for the evaluation of the repair
tools. It should be noted that this recognition is very hard since all the words in
the test set have counterparts in the dictionary that are very similar (i.e., the ones
that were asked for from the user in the second data collection step).

Also the repaired data, i.e., the data that was collected in the correction step of
the data collection, was tested with the recognizer. Since the NPent*system does

6.3. HANDLING OF ALL REFAIR TYPES 75

Figure 6.25: Example for the completion case.

discussion

76 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

i ﬁgﬁﬂ!ﬁ‘{%’%%ﬂ e ‘ k’\‘ﬁ_ﬁ? el

10.00% 20.00% 10.00% A0.00% £0.00%

numbar of occursnces in the collescted database

Figure 6.26: Classification of repair types in the collected data.

not offer any repair handling features, it was expected that the results are very bad.
And in fact, only 7.9% word accuracy was received.

Then I tested the repaired data after applying my repair handling tools. The
threshold ¢ used to compare the length of “normal” up-down strokes and repair
strokes in the deletion case was set to 1.8. Every combination of the six overwriting
check heuristics and the ten insertion heuristics was evaluated. The results can be
found in Figure 6.27. The three diagrams should be interpreted similar to the ones
already used in the previous section. The best resulting word accuracy was between
20% and 40% depending on the used heuristics.

Even though there is a big improvement compared to the recognition results
received without any repair handling, the received word accuracy of nearly 40% in
the best case scems kind of disappointing. Therefore I did visual checks on the data
to find out, if repair classification and handling was done correctly and in which
cases it failed. The results are shown in Figure 6.28,

The analysis showed that only 26% of the repair data was classified in the right
way. One reason for this is, that the users sometimes did repair actions that were
not covered by the repair tools. Therefore the classification of this correction is
most likely to fail. Another problem lies in the heuristics, especially in the thresh-
old ¢ used for a deletion check. If this threshold is set to high, the probability that
an overwrite is classified instead of a deletion is much higher. 74% of the wrong
classified data were overwrites instead of a deletion, which would be correct. Over-
writes were only misclassified as deletions in 26% of the cases. I tried to optimize
the threshold ¢ responsible for these misclassifications by hand and improved the
rate of correct repair handling nearly 100%, from 26% to 49%. This is a strong
evidence, that this is the most critical value in the proposed heuristics. In repair

6.3. HANDLING OF ALL REPAIR TYPES

|

-1

Word accuracies with the different heuristics:

word acocuracy
in %

with the
corresponding
heuristica

word Accruacy
in %

without any
repair handing

?}lfggzigi ¥F different
ins overwriting
handling handling
heuristics . heuristics

"Landscape" to illustrate "Map" to illustrate

the best heuristics:

the best heuristics:

Figure 6.27: Recognition results with repaired data and the use of the repair tools
before the standard recognition.

78 CHAPTER 6. REFAIR OF HANDWRITTEN INPUT

Repair clnn:ificntionnndhmdling=

corract i ‘wrong !

S

 wrong re el inmst. of o
. classification

Repair with ‘hando
CorEach l i
9%

Figure 6.28: Analysis of the repair handling tools.

handling the most errors occurred in the case of overwriting, The main reason for
this is, that the users did their repair very often in a “fuzzy” kind and manner.
That is, they did usually not overwrite or delete the parts exactly that they wanted
to be deleted. They placed their repair a little bit to much to the left, a little bit to
much to the right, made the deletion strokes not long enough, ete. This is of course
a problem with the repair heuristics used here, but it would be a problem in any
kind of repair handling algorithms. For example, if a user deletes the second part
of a word, but does not cross out the last letter. How should a repair tool know, if
he wants this letter to be deleted or not?

Summarized there are the following problems with this approach. The main
difficulties are:

s wrong classification because of a false setting of the threshold ¢:
if the threshold ¢ for detecting a deletion is set to high, an overwriting might
be classified instead and vice versa;

s wrong handling because of a “fuzzy” repair by the user:
some repairs done by the users were very rough and vague; these corrections
might be still readable by humans, but pose problems for any kind of repair
handling algorithms (not only for the ones tested here);

e not all cages are/can be covered by the heuristics:
pairs of examples exist, where contradictory handling actions are required;
this is also a problem that appears in any kind of repair algorithm, not only
the ones used here; the most reasonable way to deal with it seems to try
to cover as much as possible and use some generalizations in the recognition
process when a misclassified or wrong handled repair happened; note that
this is done in the approach taken here: even if a few coordinates are deleted
that should not be, the recognition result can still be correct, because the

6.3. HANDLING OF ALL REPAIR TYPES 79

TDNN has the ability to generalize and therefore handle also some input that
is partly “fuzzy”;

Some other, minor reasons are also responsible for the low recognition accuracy:

s repair types were used that were not covered by the algorithms:
some deletion gestures were used, that were not covered by the heuristics;
also “double strokes” happened; the users wrote one part of a word more
than once in this case, to indicate, that it is a repair and to separate it from
the wrong handwriting, that was intended to be corrected; this might be good
to recognize for humans, but is very hard to handle by an automatic algorithm;

e wrong data:
even after a repair happened in a particular part of the word, some still
contained an error at another position; others contained strokes that were
just not readable, not even by a human; therefore a correct recognition with
this words is unrealistic, even if a perfect repair handling was done;

e highly confusable dictionary:
the dictionary and the test set of data used here are highly confusable, since
both, the word written in the first phase and the one written or corrected in
the second step are in the dictionary; it is more likely, for example, to make
an error, if the dictionary and the test set contain a lot of word pairs like
“cam” and “can”, as if it contains only words that are more different from
each other.

So on one hand the heuristics proposed for repair handling in the previous chap-
ters sound very reasonable and intuitive in most of the cases. But on the other side
they failed, if applied on a “real” data set containing repairs and corrections. For
this reason I will propose an extension to this approach in the next chapter, that
should solve at least some of the problems listed above.

6.3.3 Interactive Approach

Like seen from the analysis at the end of the last section, there are some critical
thresholds in the heuristics and some typical user actions that cause problems with
the proposed repair handling algorithms. Here I would like to recall the two im-
portant concepts to deal with errors in human handwriting I introduced in chapter
5: error handling and error avoidance. The algorithms and heuristics described
so far all deal with the first concept: to discover an error and to allow recovery
from it by offering the possibility to the user to do some repair. It turned out that
there are big problems with the proposed and probably with all, or at least many,
other approaches, too. Users sometimes do not “behave” like it is expected from
the input interface and the repair handling tools, for example, by making a repair
that is not covered by the algorithms or that is “fuzzy” in a way that there is no
“correct” repair but one that can be interpreted in different ways. Therefore the
user maybe corrects a previous error but also creates a new one: an error resulting
from a wrong, uncovered, or fuzzy repair. So why not use some methods referring
to the concept of error avoidance to reduce this risk of additional appearing errors?

The approach I will present here deals with the fact, that in on-line handwriting
recognition the writer usually sits in front of his input device, e.g., a touchscreen,
and has the possibility to get feedback from the recognizer or the repair handling
tools. The idea now is to do the repair handling immediately and to indicate it

80 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

to the user as soon as possible. This is illustrated in Figure 6.29 and 6.30. Figure
6.29 shows the repair and recognition process like it was used so far. After the
handwritten input from a user, the corrections are handled by the repair tools. The
repaired input signal goes to the recognizer, which indicates the result to the writer.
The user does not get any feedback from the repair handling tools. He does not
know, if his repair actions were handled correctly or not. The only information
he gets is the final result. In the interactive approach, illustrated in Figure 6.30,
not only feedback from the recognizer but also from the repair tools exists. The
corrected input signal, that is used to apply the recognition algorithms, is also
indicated to the writer.

- Repair Tool
| Yes

Recognizer

User
~ Interface

Figure 6.29: lllustration of the repair process without user interaction.

This kind of interactive repair approach has several advantages that might
help to reduce the problems described in the last section.

First of all, there is the problem that it is very hard if not impossible to set
the threshold ¢ responsible for the result of the deletion check correctly. If it is to
low, you risk that an overwrite is misclassified as a deletion. If it is set too high, a
deletion might not be discovered but handled as an overwrite. The idea is now to
set this threshold ¢ high enough, so that most of the overwriting cases are handled
correctly. The problems with deletions misclassified as an overwrite can now be
handled through interactivity. If a deletion is shown immediately to the user after
its detection, he knows, that the repair tool has interpreted his corrections in the
right way. But he also realizes, if the algorithms did not handle his input proper
and now can react to this situation. Especially the approach I introduced in the
previous chapter, where the length of the strokes are compared, turns out to be
very helpful in this situation. Imagine that a user has scribbled over some parts of
a word with the intention to delete them. Since the threshold ¢ to detect a deletion
is set very high now, his corrections might be interpreted as an overwrite first. The
user recognizes this, because only the overwritten strokes disappear from the screen,
but not his repair gestures. What would he do now? I think, that the most intuitive
way to react to such a situation is to try to cross out the repair gestures, too. And
if he does this, the length of the repair strokes will raise and therefore a deletion

6.3. HANDLING OF ALL REFPAIR TYPES 81

n Yas "

yes

Figure 6.30: lllustration of the repair process with user interaction.

soon will be detected and indicated. The hope now is, that the user realizes, that
the more strokes he makes the faster his deletions are detected and handled. In
that way he might adapt to the interface and always make the right gestures for
deletion, that can be recovered by the repair heuristics. It should be noted, that
this seems also like a very comfortable way of deleting. Since no restrictions are
made to use a special kind of shape for his gesture, the user can just stay with his
pen in the area to delete and continue making his pen movements till the part to
delete disappears (roughly speaking: if you are just scribbling in an unpredictable
way over an area, it should not matter, if you make 5 or 10 pen movements more
or less, until the deletion is indicated).

Now imagine the following situation. A user makes a deletion in a word, but does
not cross out every part he really wants to be deleted. With no user interaction the
repair handling tools or the recognition algorithms have to deal with this problem.
But if the deletion is indicated immediately to the user, he sees, that there are still
some parts not deleted that should be and can cross them out, too. Therefore an
error in case of a “fuzey” repair is avoided. Note that with the criterion used here
to detect a deletion, this action can also be done very simple. Since the user has
already made a lot of repair strokes, the remaining ones needed to delete the rest he
wants to remove should not be to much. If you use a gesture instead, for example,
a cross, you have to do this whole gesture again, maybe on a very small part of the
word, what seems to be very uncomfortable.

evaluation

82 CHAFPTER 6. REFPAIR OF HANDWRITTEN INPUT

Also the risk that a user deletes to much, i.e., scribbles over some parts of the
word that he does not want to be deleted, can be reduced. Sure, if he deletes
something, it never will come back. But if he sees that his repair gestures are too
inaccurate, he might try to do his repair more proper the next time.

Another problem that often appears in repair of human handwriting is what
I will refer to as the “highlighting”-problem. Some users do their overwrites in a
very special kind that differs from the normal handwriting. The two most typical
examples are “double strokes” and wrong scaled letters. With double strokes I mean
that a user does an overwrite more than one time, for example, when overwriting
an “a” through an “o” not only doing one circle, but a bunch of three or four. The
reason for this is obvious: if you write on paper and you do an overwrite, the letter
you have overwritten will not disappear. Therefore you have to highlight the letter
that should stand there instead of the other one to indicate somehow, which is the
correct one. Another way to do this on paper is to put higher pressure on your pen,
which will be noticed in the downwritten sequence later. But this is usually not
possible on touchscreens and graphic tablets. Another way of “highlighting” is to
use a shape for a letter that is a little to big for the normal handwriting, but can
still be recognized by humans, because they have the context information from the
letters left and right of it. If the overwriting letter is a little higher than the one
that is overwritten, a reader will also have no problems with identifying this as the
one that is supposed to be correct and not the other one. All these “highlighting
tricks” are done usually to make it easier for humans to read repaired handwritten
sipnals. But for automatic handwriting recognizers they are in general harder to
detect and recover.

With the use of interactivity this problem could be solved, because no need to
“highlight” this overwrite is necessary, when the deletion of the overwritten up-
down strokes is indicated immediately to the user. The parts of the word that
should be distinguished from the overwriting strokes, i.e., from the correct ones,
will be deleted automatically. Therefore no confusion can happen.

So there are some strong arguments that let you hope to overcome at least some
of the problems described above by taking profit of the use of interactive repair
handling. Therefore | implemented such an immediate repair indication into my
repair handling tools. In the next chapter I will evaluate them and discuss the
results.

6.3.4 FEwvaluations

To evaluate the repair tools with interactivity, additional data had to be collected.
The setup for this data collection was the following: the “clean” data from the
data collection deseribed in section 6.3.2 was presented again to the same writers
that have written them the first time. Now they were asked to do the same correc-
tions again (like: “correct: hair instead of chair”). But this time, feedback from
the repair tool was given. Deletions and overwritings were shown immediately to
the user. Therefore the writer was able to see, what was going on. The hope was
not only to reduce the error and improve the recognition result, but also to give the
user an idea for how the repair works, what can be handled and what not.

Since I was mainly interested in how the interactive repair indication influences
the user behavior, I did not include run-on recognition in the data collection inter-
face. Note that the early indication of a part of the result can also influence the
user behavior and the way he does repair. But here the most important question
was how a user reacts to an interactive repair tool and how this influences repair
handling.

6.3. HANDLING OF ALL REPAIR TYPES 83

Figure 6.31: Evaluation of the repair handling with interactive repair indication

For the on-line repair calculation and indication I used the Version v6 for the
overwriting checks (see page 59) and Version v2 for the insertion checks (see page
65), since they received the highest results with the databases tested in the previous
chapters. To avoid repair classification problems due to a wrong setting of the
threshold ¢ to classify a deletion the responsible value was set extremely high,
ie., to 2.8 (instead of 1.8 used in the evaluations with the data collected without
interactivity).

The results of this evaluation can be found in Figure 6.31 and 6.32. The first one
analyzes the repair handling, the second one shows the received word recognition
with “interactive repair”, compared to the none interactive case from section 6.3.2.

The analysis of the repair handling (Figure 6.31) shows that nearly 90% of the
data was classified correct, and that in about 75 to 80% of the cases the repair
handling was ok. Note, that a repair that is not handled completely correct, still
can be recognized well. For example, if only one up-down stroke is deleted to much,
the recognizer might still be able to calculate the correct result. There was no
significant difference in repair classification and handling between the repair types
deletion and overwriting. Both received about the same results.

Figure 6.32 shows the word accuracy received when the recognition was applied

g
N S

discussion

i

84 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

to the repaired input signal. The results with the interactively collected data is
shown on the right side. Compared to the results with the data collected with-
out interactivity (see the middle of the same Figure) an increase of nearly 30%
was achieved. Therefore interactivity can help to achieve a better recognition per-
formance. The received 65% word accuracy with the interactive repair handling
cover about 75% of the recognition performance that can be achieved with the
NPen** recognizer on comparable clean data (see the left side of Figure 6.32; the
word accuracy here was calculated on the clean data without any repair, written
by the same users in the first data collection step).

s
| l§ °i\2z.m,. o zr.lééi‘ﬁ.
SR

1 A b it - =
s S Ce

AR B s

b

word accuracy in %

clean roapairad rapairaed interactive interactive
data daca data rep. data reop. data
without with without with
rapair rapair repair Topair
handling handling handling handling

i

o

‘Eﬂ e E i
i

i e
Figure 6.32: Word accuracy with the interactively collected data (right) compared to

the none interactive results (middle) and the recognition performance on comparable
“clean” data (left).

Since about 75% of the recognition accuracy with comparable “clean” data has
been received with this interactive approach, the word accuracy results are very
satisfving. But like already mentioned at the beginning of this report, recognition
accuracy should not be the only criterion in the design of a usable, satisfying in-
terface for human-computer interaction. Also user acceptance plays an important
role. Therefore I asked the people who wrote the data used in this evaluation, how
they liked the offered repair possibilities and what they think about them (note

6.3. HANDLING OF ALL REPAIR TYPES 85

that with only four writers no statistical relyable statement can be made, so these
user opinions can only show a first trend). All asked persons agreed, that the over-
writing works very robust and is pleasant to use. They also all had the opinion,
that the deletion is kind of critical, because it sometimes can take to long, until it
is discovered by the repair tools and indicated to the user. This is a consequence
of the setting of the threshold ¢ for the classification test in the deletion case to
an extremely high value. It is interesting to note, that the users had the impres-
sion, that the deletion case is not that robust like the overwriting case, even if the
classification and repair handling results in both cases have been about the same
(compare Figure 6.31). Therefore the high recognition performance on one hand
was achieved by lowering user acceptance on the other hand in the case of deletion,
which is very critical, especially since one of the motivations to take care of the
repair task was to increase recognition accuracy.

Another interesting thing I detected while analyzing the data was, that it seems
that the users kind of adapted to the interface. That is, they made corrections in
a way users usually don’t do, but that are ok and can be handled very well with
this interface and repair handling tools. For example, instead of overwriting two
wrong letters with the correct ones, also the letter before this two was overwritten,
although there was no need for it, since this letter was written correctly. The reason
why the user did this was, that these three letters appeared very narrow to each
other and it was easier in this case to overwrite all of them instead of trying to
“hit” the right position to overwrite only the two wrong letters. This probably
would have resulted in a repair handling error in this case. So it seems like the
users got a feeling for the repair handling algorithms, realized what works and what
does not, and adapted to it, without feeling unpleasant about it.

Summarized the interactive repair handling approach can be seen as a success.
It proved to be useful to increase the recognition accuracy in the tests that were
made here and helped to reduce the errors that happened without interactivity
in case of wrong or fuzzy repair by the user. In this context it should be noted,
that this approach corresponds to some of the remedies that were proposed hy L.
Schomaker in [Sch94] to solve the problems and errors that usually appear in human
handwriting input (see page 37). The main demands that are covered through the
interactive repair tool are “clarify to the user what is going on” and “give up the
paper metaphor”.

Through direct indication of the repair handling, user behavior can be influenced
in a way that first increases the performance of the repair handling and the recog-
nition and second can be comfortable and easy to use, if implemented in the right
way. Here the main problems appeared in the proposed heuristics, Even though the
deletion handling was implemented in an extremely general way, that also seems to
be very intuitive to use, users felt uncomfortable with it. The reason for this was,
that acceptable repair handling and recognition accuracy could only be reached
with a high threshold ¢ for the test, if a deletion occurred or not. This problem
destroyed the main advantage the proposed method has, that is, being very general
and intuitive to use (roughly speaking: it is intuitive to make a lot of strokes to cross
something out, but it looses its intuitivity, if you have to make too many strokes).
Therefore it might seem as a good approach just to cover overwriting and comple-
tion with the heuristics proposed here and handle the deletion case by introducing
an additional gesture that is more restrictive to the user and therefore easier and
more robust to detect. But it should be noted, that the repair handling step, i.e.,
the question which parts of a word have to be deleted after a deletion is classified,
is not, easy to solve with this approach, too. In fact, it is probably even harder then
with the heuristic used here, if you expect the user to make a gesture that has a
special shape. Also this gesture should be easy to remember and infuitive to use.

86 CHAPTER 6. REPAIR OF HANDWRITTEN INPUT

Otherwise a decrease in user acceptance will be the consequence in this case, too.
But if you take care of these criteria, this method seems to be promising for future
approaches.

Chapter 7

Repair of Printed Letters

In the last chapters different heuristics and algorithms to deal with the problem of
repair in a handwritten input signal have been proposed, discussed, and evaluated.
Now I like to face the problem of repair in printed text, i.e., corrections of the
recognition result, that is indicated to a writer.

There are good reasons, why this possibility of repair should be offered to a
user in a comfortable interface. First of all it seems more natural to correct an
error where it occurs. And when a user writes a correct input that looks legible
to him, but for some reasons can not be handled and recognized correctly by the
recognition algorithms, then to him the error occurs in the result indicated at the
screen and not in his input (even if his handwriting might be the real reason for the
wrong recognition). There are also some error situations, that just can not be solved
through correction of the input signal. For example, imagine you are writing the
word “hell” and the recognition result indicates you “hello”. How should you correct
or improve your handwriting to correct this error? The best and most intuitive way
here seems to just cross out the wrong additional letter from the indicated result.

The problem of repair in the printed recognition result is much easier than the
problem of repair in handwritten input. It appears to be less complicate, because
the case of repair handling, usually does not have to deal with problems, like,
for example, “Which part of the word should be remove after a deletion?”, etc.,
because the borders of the single letters are well known. But it should be noted
that “easier” does not mean, that this is an easy problem. There are still a lot of
issues and difficulties remaining, that have to be solved. Therefore I will introduce
some repair handling heuristics for corrections in printed text in the next section.

7.1 Algorithms and Heuristics

One big advantage of repair in printed text, compared to corrections done in hand-
written input, is, that it is usually done on letter or word level. Things, like cor-
recting only one half of a letter or changing its shape by adding some small strokes,
usually do not happen. Of course, there are some cases, that can be thought of,
where things like this can occur. For example, the letter “1” can be changed to
the letter “h” just by adding one small stroke. But these cases are very rare. The
reason for this is first, because there are not much letters that can be “changed”
in such a way and second, because usually the font size is relative small, so it is
easier just to write the whole new letter than to correct the wrong one. Also you
should keep in mind, that the purpose of the heuristics, that will be proposed here,
is to correct a wrong recognition result, not to create a perfect editing system for
printed text. Therefore it should be ok to restrict the repair handling algorithms

87

different
approaches

88 CHAFPTER 7. REPAIR OF PRINTED LETTERS

to be done on letter level only.

This and the problem, that it is very hard to distinguish between what is an
overwrite and what is a deletion, is the reason, why I implemented a version that
only handles deletion and rewriting of some letters. This might seem very
restrictive, but it can be useful nevertheless. The reason for this is, that the font
to indicate the recognition result is usually not very large. Therefore overwriting
of a letter that stands between some others is kind of uncomfortable for the users
(maybe not on paper, but definitely with the hardware usually used today for pen
based computer input). It seems easier just to cross out this letter and rewrite it
at another position, where more space is available and you are not forced to adapt
your handwriting to a specific font size.

If deletion and a following insertion is the only repair allowed, two steps that
have to be done in the repair handling process of handwritten input disappear. First
no repair detection has to be done. Since the handwriting to correct is done in
an area, where usually only printed text is written, every handwriting in this part
of the input interface can be interpreted as a repair. Also the classification step
reduces to the problem of distinguishing between deletion and insertion. But since
no overwriting is allowed, this check is very easy: everything written over printed
text can be seen as a deletion, everything left, right, over, or under it as an insertion.

If you look at a text string of printed letters, there are several possible posi-
tions for a deletion and an insertion:

e beginning
s middle (middle)*
e end

The star (*) means that no, one, or more than one deletion or insertion can occur at
this position. Here other problems arise. Since no overwriting is allowed, insertions
have to be done at another part of the area where handwritten input is allowed.
Where should such a handwriting be inserted? Further restrictions to the user can
help to overcome this problem.

The most general way is to make no restrictions at all. But then you do
not only face the problem of inserting a repair at the right position. Also the
recognition process becomes very hard. If you write whole words, the search for
the correct result in the recognizer has to be done only on the allowed dictionary,
which usually has a limited size'. But if now some parts of this word are corrected
by rewriting them, theoretically every substring that is contained in the original
dictionary can be written. As a consequence a search on every such substring has to
be done, what makes the recognition problem much harder and usually decreases the
performance. There are some techniques and simplifications, that can be thought
of, to overcome this problem. For example, the writing of a single letter should
result in a relatively short sequence of coordinates, so the search should not have to
be done on extremely large substrings. But these techniques all have their problems
and disadvantages, too (e.g., how should “relatively short” in the previous example
be defined?). Therefore I tried another approach here: by making more restrictions

1[4 is also possible to allow any word as input, if the recognition is done on letter level, but
obviously this problem is much harder and therefore usually leads to much lower recognition
performances. Also the NPen'trecognizer used in this thesis operates with a fixed dictionary
size.

7.1. ALGORITHMS AND HEURISTICS 89

to the user I will reduce the size of possible solutions for the handwritten input.
Then the recognition has only to be done based on a new dictionary with a much
smaller size, which should obviously increase the recognition performance.

B : wrong recognized characters

[:| : correct recognized characters

: wrong recognized characlers

; correct recognized characters

Figure 7.2: Example for the first restriction: a whole substring must be deleted at once.

The idea here is to take profit of the parts of the word that are not deleted. If you
make a first restriction, that a user is only allowed to delete wrong substrings
as a whole, you know the left and right border of the string to be inserted at
this position, since the whole correct substring is inserted. An illustration of this
can be found in Figure 7.1 and 7.2. Here a text string containing twelve letters is
represented through one square for each letter. The grey squares indicate wrong
letters, the white ones stand for correct characters. Figure 7.1 shows the case,
where no restriction is made at all. Since the user can delete and insert when and
whatever he wants, you have no information about the correctness of the substring
after a first deletion. The ouly thing you know is, that the recognized word was
wrong, otherwise a correction does not make any sense. Theoretically a search
on every substring of the original dictionary should be done, if the user writes an
insertion now. But with the restriction, that a whole substring has to be deleted at
once, you can get some information from the part of the word that is not deleted.
Figure 7.2 illustrates this example. If all the wrong letters are deleted, the ones
left. and right of the deleted substring must be correct. Therefore a search on a
handwritten input signal, that is supposed to be inserted here, has only to be done
on the substrings from the original dictionary that appear between these two letters.

a0 CHAPTER 7. REPAIR OF PRINTED LETTERS

Depending on what characters these are an enormous reduction of the search space
can be achieved, promising higher recognition performances.

It should be noted, that another restriction is made here: it is assumed, that the
user first deletes the wrong substring and then writes the correct part of the word to
be inserted. This restriction also solves the problem, where to insert a handwritten
sequence into the text.

Bl : wrong recognized characters

l:| : correct recognized characters

Figure 7.3: Example for the second restriction: all wrong substrings must be deleted
in a first step before making all insertions in a second step.

A modification of this could be to ask the user first to delete every wrong
letter of the text string and then make all the insertions. An example for this
situation is shown in Figure 7.3. Here not only the left and right border from the
deleted substring are known to be correct, but the whole remaining, not deleted
letters. Therefore the dictionary size for the search on inserted handwritten input
can be reduced to the substrings that are obtained, if the not deleted letters are
matched to the words from the original dictionary. The big problem here is, how
to know at which position a handwritten input should be inserted. It can be solved
by allowing insertions only at a position where a deletion has been done, instead of
writing over or under the word. This should be an acceptable restriction, since the
insertion and deletion is divided in two phases anyway. But the problem with this
solution is the size of the font usually used. In most of the cases handwriting is much
bigger than printed text. If you expect a user to write and insert between printed
letters, you must use an unusual big font, otherwise he might feel uncomfortable
with it, hecause he has to write much smaller than he is used to.

The version I implemented in my interface is the most restrictive: deletion
in a sequence of printed letters is allowed only once. This means, if you
want to correct a wrong recognition result by deletion and insertion, you have to
delete a substring that contains every wrong letter, since no second deletion is
allowed. Therefore it can happen, that also some correct letters have to be deleted
and rewritten. The dictionary size reduces to the number of different substrings
occurring in the original dictionary in the words that match the undeleted one (if
deletion at the beginning or the end) or two (if deletion it the middle) substrings.
An illustration of this approach can be found in Figure 7.4.

The restrictions made here sound very strong and in fact, I believe that they
would be to hard for a text editing system. But keep in mind that here we have
the situation, that the users are correcting a wrong recognition result. Therefore
situations where wrong letters and substrings appear on different positions in the

7.1. ALGORITHMS AND HEURISTICS 91

: wrong recognized characters

: correct recognized characters

Figure 7.4: Example for the third restriction: only one connected string can be deleted.

word are very rare. Usually a wrongly recognized string contains just one substring.
As a consequence of this I think the proposed restrictions are not that much of a
problem and should not make the interface to uncomfortable for a user.

On the other hand this approach has the advantage that it solves the problem
of where to insert a handwritten signal (see below) and also removes the restriction,
that a deletion and an insertion have to be done in a specific order.

The implementation of a system restricted in such a way appeared to be
relative simple. Like already mentioned, no repair detection step is required. If the
interface is designed in a way that the recognition result appears in an area that is
separated from the place, where the recognition input is made, every handwriting in
that area can be seen as a repair. Also the classification which repair type happened
is easy: everything over a printed letter is seen as a deletion, everything written in
a “reasonable” distance of the printed word is interpreted as an insertion.

Deletion handling is done by comparing the bounding boxes of the printed letters
with the bounding boxes of the strokes that are written over them. An example
for this can be found in Figure 7.5. The bounding box of each letter is compared
to the thresholded bounding box of the handwriting strokes. If an overlap oceurs,
the according character is deleted. This is a very easy algorithm, but it works very
robust. Failures can be handled through direct indication of the deleted parts of
the word. If one or more letters at one border are wrongly deleted, they can just
be reinserted by writing them again. If letters are not deleted that should be, the
user can just add a few strokes to delete them.

Insertion can be done at any position in the area that is supposed for this input
and that does not contain any printed text. If a deletion happened before, the
insertion is done at that position. If not and the handwriting is done left or right of
the printed word, it is seen as a word beginning or end, respectively. If a deletion i
done after such an insertion, the recognition is reset and a new one is done, whose
result will be entered at the position of that deletion.

After a deletion is finished and an insertion begins the recognizer is reinitialized
with a new dictionary, that contains only words, i.e., substrings of the words from
the original dictionary, that can be possible replacements for the deleted string.

These algorithms seem all very easy and user restrictive. But implemented in
the right way and integrated in a “fitting” application, they work pretty robust and
still do not decrease comfort and usability for the user to much.

evaluation

92 CHAFPTER 7. REPAIR OF PRINTED LETTERS

printed letters
and handwritten
repair

T & ing

i Testing é/ [paeseee]
}

latters

] [handwrit in;
ith n - i
e Mesbing // botnatng

_bbxeg box
bounding] sy e
i — 1 1 thresholded

oﬁkiie D i D D L D bounding

letters I : e

-Eﬂelete letters
with overlapping
bounding baxes

Figure 7.5: Example for the deletion of some parts of a text string.

7.2 Evaluations

In the following I will show some examples, how the dictionary size is decreasing as
a consequence of setting different restrictions to a user, like they were discussed in
the previous section. I did not test my system with handwritten input data, since
in the version I implemented the dictionary size for the inserted handwriting signal
depends extremely on the example you choose. Therefore it is hard to find test
examples that provide objective and statistical useful measures.

Instead I showed on an example, how the dictionary size reduces, if you
assume several conditions concerning the user behavior in the case of a deletion.

For this purpose I took a dictionary with an original size of 51866 words. Half
of them start with an upper case letter, the others are the same, but begin with
a lower case letter. If you make no restrictions at all, the recognition result for
the inserted handwritten signal is one substring from all the words in the original

7.2. EVALUATIONS 93

Dictionary sizes if the left and the right
borders are known:

number of different
substrings between
the two letters

maximum
= 9827
(latters
a and &)

average
= 1145

right

laft letter
lettar

Example:

ach

testing —= te}e:ing—a:- teaching

left right
border border
= e = i

=> new dictinary size = 60289
(= number of different
substings between the
two letters ‘e’ and ‘i’
in the original dict.)

instead of 51866

Figure 7.6: Example for the reduction of the dictionary size, if the left and the right
border of the deleted substring are known (and the left one is a lower case letter).

94 CHAFTER 7. REPAIR OF PRINTED LETTERS

Dictionary sizes if the left and the right
borders are known:

number of different
substrings between
the two letters

maximum
=1400
{letters

g and &)

average
= 174

Example:

@&dﬂ

Testing —= T&s{ing —= Teaching

left right
border border
= T = i
=> new dictinary size = 480

(= number of different
substings between the

two letters ‘T’ and 'i’
in the original dict.)

instead of 51866

Figure 7.7: Example for the reduction of the dictionary size, if the left and the right
border of the deleted substring are known (and the left one is an upper case letter).

7.2. EVALUATIONS 95

Dictionary sizes if the right border
is known:

number of different
substrings left
from this letter

=29581
(letter a)

= average
= 10700

Example:

Teadh

Testing —= Tesfing —= Teaching

right
bo;der
= 1

=> new dictinary size = 22596
= number of different
substings left from the
letter ‘i’ in the ori-
ginal dict.)

instead of 51866

Figure 7.8: Example for the reduction of the dictionary size, if the the right border
of the deleted substring is known and the word beginning is deleted.

96

CHAPTER 7. REPAIR OF PRINTED LETTERS

Dictionary sizes 1f the left border
is known:

number of different
substrings after
thiz letter

maximum
= 25210
{letber a)
average
= 9990

Example:

oth
test —= te

% ——=> teach
|

left
horder

= a

== new dictinary size = 23028
(= number of different
substings right from the
letter ‘e’ in the ori-
ginal dict.)

instead of 51866

Figure 7.9: Example for the reduction of the dictionary size, if the the left border
(lower case letter) of the deleted substring is known and the word end is deleted.

7.2. EVALUATIONS 97

Dictionary sizes if the left border
is known:

number of different

substrings after
this letter

maximum
= 2819
(letter 8)

average
= 980

Example:
Test — Test —= Eitle
left
border
=T

=> new dictinary size = 1365
(= number of different
substings right from the
letter ‘T’ in the ori-
ginal dict.)

instead of 51866

Figure 7.10: Example for the reduction of the dictionary size, if the left border (upper
case letter) of the deleted substring is known and the word end is deleted.

98 CHAFTER 7. REFPAIR OF PRINTED LETTERS

Dictionary sizes if the first two
letters are known:

number of different
substrings after
this two letters

maximum
= 1017

(letbers
c and o)

averadge
= 39

Example:

och

test —= te ——= teach

|

first second
letter letter
=t =@

=> new dictinary size = 217
(= number of different
substings after the
two letters ‘'t’ and ‘e’
in the original dict.)

instead of 51866

Figure 7.11: Example for the reduction of the dictionary size, if the first two letters of
the whole word are known and the word starts with a lower case letter.

7.2,

EVALUATIONS 99

Dictionary sizes if the last two
letters are known:

number of different
substrings before
this two letters

maximum
= 2296
(letters
o and n)

average

=75

- second last letter

Example:

du

tezf —a= Eést —= dust

N

2nd laskast
letter letter

=38 = t

=> new dictinary size = 611
(= number of different
substings before the
two letters ‘s’ and ‘t’
in the original dict.)

instead of 51866

Figure 7.12: Example for the reduction of the dictionary size, if the last two letters of

the whole word are known.

100 CHAPTER 7. REPAIR OF PRINTED LETTERS

dictionary. In this example there are 288 610 different substrings. This means you
are trying to recognize a handwritten input on a dictionary that is about 5.5 times
larger than your original one. Without any further modifications this problem seems
to be very hard and a decrease in recognition performance definitely will happen.
In this context it should be noted, that the recognizer I am using was designed
to recognize whole words, not single letters. The recognition accuracy on single
characters is usually lower than the average performance of the system. This might
be a consequence of the baseline calculation in the preprocessing step, that usually
requires a certain length of the word to offer “reasonable” results (compare Figure
6.5). This makes this problem even harder. But if you restrict the user to do,
e.g., only one deletion, like I did, then the dictionary size will reduce very much.
Especially if the deleted substring is very short, usually more correct letters are left.
But the more parts of the word are known, the more the search space reduces in
general. Therefore even with a low recognition performance there is a good chance
to get a correct result.

Even with the weakest restriction proposed in the previous section, i.e., dele-
tion (insertion) only of whole wrong (correct) substrings, an enormous
reduction of the search space can be received. Three cases can happen here at one
step: deletion at 1. the begin, 2. in the middle, and 3. at the end of a word.
In the first and the last case the right or left letter respectively from the deleted
substring can be assumed to be correct. Therefore the inserted signal must be one
of the substrings from the original dictionary that can be found before or after the
occurrence of such a letter. In the second case, deletion in the middle, both, the
left and the right, borders are known. The search for the correct inserted word can
be done on a dictionary that contains all different substrings that appear between
this two letters in the original dictionary. To show how this reduces the search
space I calculated the size of this new dictionaries for every letter combination of
the alphabet. The results, if both borders are lower case letters, can be found in
Figure 7.6 and in Figure 7.7, if the left border is an upper case letter. It can be
seen that even in the worst case (that is “a” as left and “e” as right border) the
dictionary size reduces more than five times, i.e., from 51866 to 9827 words. If only
the right border is known, ie., the beginning of a word is deleted, the reductions
are not that big, but still there is a remarkable increase in the size of the search
space (see Figure 7.8). Figures 7.9 and 7.10 show the reductions, if the left border
is known (Fig. 7.9 for lower, Fig. 7.10 for upper case letters).

For the next two restrictions I proposed. Le., delete all wrong letters
at once and deletion of only one substring is allowed the examples to show
reductions of the dictionary size can not be found and evaluated so easy, since
the shown reduction depends extremely on the used samples. Of course, the more
correct letters you know, the smaller the dictionary size usually gets. The examples
I will show here are the cases where everything except the first or the last two
letters of a word are deleted. Figure 7.11 and 7.12 show the respective results of
this analysis. If the first two letters are known, the maximum dictionary size reduces
to 1017 for the two letters “co”. If everything but the last two letters is deleted,
the inserted sequence must be one of maximum 2296 (if the letters are “on”). Note
that at the start lower and upper case letters are allowed for each word. Therefore
the maximum reduced dictionary size for deletion at the word beginning is about
twice as much as for deletion at the word end. It can be seen, that even if only two
correct letters are known, the size of the search space is decreasing extremely.

This is a good example, how some restrictions in the interface, that are still
acceptable for the user and do not miner the comfort of using the interface to

7.2. EVALUATIONS 101

much, can help increase the probability of a higher recognition accuracy. Even with
very simple and easy algorithms recognition performances can be improved.

102 CHAFTER 7. REPAIR OF PRINTED LETTERS

Chapter 8

Conclusion

In the first part of this report empirical studies and the discussion of different issues
concerning errors and repairs that usually happen in human handwriting of textual
input were presented. The topic of this part was the problem of repair handling
and the question, how pen based user interfaces can be designed to fulfill the two
important aspects of a good recognition rate on one hand and a high usability on
the other. Two approaches, that both have their needs and advantages, have been
discussed here: repair of an input signal written by a human user and corrections
of the recognized result, i.e., repair in a handwritten sequence of coordinates and
in printed ASCII-text. Two concepts have been introduced to deal with errors
and corrections in human handwriting: first, the concept of error handling, and
second, the concept of error avoidance. The goal of error handling is to recover
from occurring errors and mistakes by offering several tools and algorithms for that
purpose. The concept of error avoidance contains all the techniques and methods
used to avoid or reduce the occurrence of errors, for example, by the “clever” design
of an interface and/or recognition algorithm.

For the case of repair in a handwritten input signal different heuristics
have been proposed, discussed, and evaluated for the three repair classes, deletion,
overwriting, and completion, introduced in part I. Deletions have been restricted
to two typical deletion actions, i.e., relative long strokes and a lot of strokes in
a narrow area. These gestures are not only the most common ones found in the
database that was analyzed in part I, but also very general and intuitive to use.
Classification has been done based on comparing the length and size of the repair
strokes with the overwritten parts of the word. Overwrites are handled through
comparing their bounding boxes with the ones of the overwritten strokes. Different
heuristics have been tested to check the overlap of these bounding boxes and to
decide, which strokes have to be removed from the original input signal. It turned
out, that the one that removes the most strokes from the input signal received the
best repair handling and recognition results. Several heuristics have been discussed
and tested to insert the overwriting strokes into the remaining handwriting and to
handle the repair type “completion”.

The proposed heuristics are all very simple. This makes it easy to implement
them in a way that handles repair very fast, which turned out to be an important
issue. To evaluate the different methods some data was collected, where the user
was asked to do some corrections. With this data an analysis of the repair handling
heuristics was done. The achieved results showed some problems, which occurred
with the proposed algorithms and with the repair handling task in general. For
example, users tend to do their corrections in a “fuzzy” way, that is, their repair
gestures do not fit exactly into the original input signal.

103

104 CHAPTER 8 CONCLUSION

To solve this problems an interactive approach was evaluated, i.e., a repair tool
was implemented, which uses the same heuristics but indicates the repair handling
immediately to the writer. With the use of this interactivity several problems
can be solved. A data set that contained repair types that are handled by the
proposed heuristics was tested with a recognizer that achieves a word accuracy of
about 88% with comparable “clean” data. In 65% of all cases the right word was
recognized. Nearly 80% of the performed repair gestures were handled correctly.
The methods for the repair type deletion achieved about the same results as the
ones used for handling an overwrite. But they seemed to be to uncomfortable for
the users, because it sometimes takes too long for the interface to detect and classify
them. Since user acceptance is an important issue in the design of human-computer
interfaces, this turns out to be a big problem. For that reason this should be the
point where to start some future work in this task of repair in handwritten input
signals.

It should be noted that the “pure” error handling approach, that is, the use of
the proposed heuristics without interactivity, did not achieve satisfying results. But
with the use of the immediate indication of the repair handling results, a significant
improvement in the recognition accuracy was reached. This is a good example,
how techniques that refer to the concept of error avoidance can help to overcome
problems that are very hard to solve or impossible to solve at all with methods from
the concept of error handling.

The other possibility where to offer some repair handling tools in automatic
handwriting recognition is to allow corrections of the recognized result, i.e., repair
of printed text. This has been done in the last chapter of this report. Some
heuristics have been implemented to cover the repair cases of deletion and insertion
to correct a wrong recognized word. Due to the nature of this task the assumption
was made, that a restriction to these two kinds of corrections does not lower user
acceptance and satisfaction in the special application that was the topic of this
report. It turns out that repair in printed text is easier than the task of repair in a
handwritten input signal, because some problems from the later one do not happen
here. Repair detection and classification reduces to some very simple tests due to
the restriction to two repair types (deletion and insertion) and the nature of the
problem. The borders of a correction are much easier to specify in printed text than
in cursive handwriting. Also the repaired entities (i.e., the printed text) has not
to be divided from the repair signal (i.e., the handwriting), like it has to be done
in the case of repair in a handwritten input. It was shown that some new arising
problems, like an enormously increasing search space and the correct specification
of a position for an insertion, can be solved by setting several restrictions to the
user, i.e., allowing only some specific repair actions. With these conditions the
problem of a lower recognition rate due to this additional problems can be solved
very easyly. To avoid a low user acceptance, it was taken care, that these restrictions
are chosen in a way that makes them not to uncomfortable for the users. With
these modifications the search space for the correction of the wrong recognized
output can be restricted, what usually influences recognition accuracy positively.
The evaluation of the average recognition rate in this setup is very critical, since
it depends extremely on the samples used for testing. It is very hard to specify a
data set that guarantees statistically independent, relyable results. Therefore such
tests have not been done here. Alternatively the thesis that the different restrictions
made to the user result in a reduction of the size of the search space has been proven
by numerous representative examples. The decrease of the search space size was
that high that a carresponding increase in the recognition accuracy can be assumed
to be true.

105

Summarized it can be said, that the repair task appeared to be a very hard
one. The data analysis indicated, that there are problems that can not be solved by
applying some simple heuristics to the handwritten input signal. In fact, there were
examples in the different databases analyzed here, that make it doubtful, that this
task can ever be solved completely, if applied in a separate step prior to the final
recognition (at least with the common techniques and algorithms for handwriting
recognition used today).

But it was also shown here, that repair handling in on-line handwriting recog-
nition can be done. The key is not only to handle errors, but to try to avoid them.
I introduced these two concepts, error handling and error avoidance, in the discus-
sion about different error and repair handling issues in the introduction of this part
of the report. In both cases, repair of handwritten input and of printed text, the
“pure” error handling heuristics did not work very well. But with the additional
use of some techniques to avoid errors satisfying results have been received. This
is done in several ways, like, for example, using interactivity or allowing only some
special repair actions that can be recognized easier than the general cases.

The more restrictions are made to a user, the more “rules of behavior” are
proposed to him, the better the repair handling results and recognition rates can
get. The problem is, that restrictive rules and guidelines usually lower the user
acceptance. Therefore it was taken care in this work, that the restrictions and
handicaps made here are still comfortable and intuitive to use for the writer. It
should be noted in this context, that also in handwriting recognition of “clean”
data, not containing any repair, several restrictions are usually made. For example,
basing the recognition on a dictionary with a fixed size, i.e., the restriction, that
the user is only allowed to write a word from this data set. Therefore it can be
seen as a common approach to increase the recognition performance by assuming
a special user behavior. The big challenge is to find a reasonable way between
the two extremes “no restrictions and assumptions to the user behavior at all”,
usually resulting in high user acceptance, but low recognition accuracy, and “a
lot of restrictions”, usually resulting in low user acceptance, but high recognition
accuracy.

106 CHAFTER 8. CONCLUSION

Appendix A

Used Databases

The samples that were taken from the database introduced in section 2.1 to evaluate
the different parameter settings and heuristics for repair handling are listed in Table
A1 till Table A.3. This data contains repair performed by the users without being
asked to do some corrections, Table A.l shows the samples used to evaluate the
parameters for the case of detecting and handling a deletion. Note that the original
signal was a handwritten word. Therefore an error does not necessary result from
a misspelling. For example, the “Y” in the word “Ypon” (entry number 12 in the
table) should not be seen as a wrong written letter, but as the character “U” having
a “bad” or uncommon shape that looks more like a “Y” than a “U”. Therefore the
bold printed letters in the table represent the characters that a human reader would
most likely recognize. It was not necessaryly the intention of the corresponding
users to write these letters. Table A.2 indicates the data samples that contain an
overwriting. Examples used to evaluate the parameter settings and the different
heuristics in the completion case can be found in Table A.3.

A list with the data that was collected with the invitation to the writers to
do some repair (see section 6.3.2) can be found in the Tables A.4 and A.5. The
instructions given to the user were the following:

» Dirst instruction:
“ Please write the word ‘wrong word’ "

e Second instruction:
“ Please correct: ‘correct word’ instead of ‘wrong word’ "

where ‘wrong word’ is one of the words shown in the left columns of Table A4 or
A5 and ‘eorrect word’ is the corresponding one from the right column. No order of
how to correct was given to the user.

In the interactive data collection (see section 6.3.4) the word collected in the first
collection step from above was presented to the user. Then the second instruction
was shown him again to do some corrections using the immediate indication of the
performed repair actions.

Note that in the data collection process these lists have been randomly mixed
to avoid an influence of the repair behavior of the different writers.

107

108

target
1 8
2. imagin
3. Services
1 you in
5 sprang
6. rum
T Nikoloff
8. come
9. long
10, Fitz
11, voice
12. Upon
13. loock

14, among

15. puzzling
16, destroying
17. prosperous
18. newspaper

19. that

20. like

21l. won

22, Palomares
23, on

24, upon

25, the

26. whispered
27. ostracism
28, narrow

29, away

30, Princess

3l. name among
32, called

33. must

34, Cologne

35, just

36. feel

37. beginner
38. screwdriver
39, knew

40. happened
41. Three

42. ten

43. million

44. workers

45, like
46. emergency
47, she

48. wistfully
49, boundaries,
50. nuclear

writing

Es

imagine

Faces Services
on you you in
ap sprang

5 rum

M Nikoloff

I come

longer

Fritz

vocice

Ypon Upon
looke

AIMoung
puzzeling

dayliq destroyving
propsperous
newspapers

thlat

11 like

wone

Po Palomares

of on

on upon

w the

wis whispered
osta ostraciam
ma narrow

an away

B Princess
narme among
coul called

u must

Colongne

js jest just

ae foel

beginer beginner
screwdrw screwdriver
ke knew

a happened
three Three

the ten

mile million
working workers
lif like

energ emergency
shee

wh wistfully
boundr boundaries
ne nuclear

AFPENDIX A. USED DATABASES

target

Ziegler
Ursuline
high

Yes
guardhouse
that

epela

is

cell

you

went

the
Melchisedec
upon
chamois
when
what

Dr

farad
veterans
were
speak
something

writing

S Ziegler
Ursucline
heigh

Yess

ga guardhouse
thate

epell epela
will is

cle cell

E you

when went
to the

Mele Melchisedec
o upon
chamoise

the when
that what

S Dr

g farad
events veterans
are were
slpeak

to something

Table A.1: Words that contain deletions. The bold printed letters in the right

columns indicate the parts of the words that were crossed out.

109

word overwrite
1. which hich
2. inaptitude d
3. Yugoslav 5]
4. resistive 8
5. put P
6. handsom ds
7. license [
4. primose 0
9. condescensgion sc
10. Salerno le
11. diminutive (firat) i
12, its its
13. behind bin
14. than h
15. elegance a
16. believe (first) e
17. spewed e
18. responsibility b
19. repairmen e
20. ears a
21, eaving e
22, carp P
23, cage by
24. beadle ead
25. with th
26. workhorse h
27. documentation e
28. last t
29. did d
30. her h
31, did (firat) d
32. and n
33, pupil i
34, scattergun ©
35, March a
36. considered ed
37. pgovernance n
38. dium urm
39. Balkan k
40. Guiana (half) G
41. optometry t
42, prairie ie
43. par r
44. escapee a
45. bicep ¢
46. adsorb d
47. circus r
48. tortoiseshell (first) e
49, they e
50. feign IS
51. miscreant i
52, mayor ¥

Table A.2: Words that contain an overwrite. Left: the whole word; right: the part
of the word that was overwritten.

110 APPENDIX A. USED DATABASES

word corrected letter
1. that a
2. experiment x
3 expunge ®
4. expose X
5. existence X
6. always 8
. patriarchy h
8. we w
9. exclusive x
10. approximately aand x
11. expansive x
12, devotion d
13. that a
14. loving v
15. lovers v
16. change E
17. the t
18, return r
19. despair]
20, expansive X
21, same m
22. Redstone d
23. bagpipe P
24, narrowly 0
25, from 0
26. existential X
27. bengene @
28, exportation x

Table A.3: Words that contain a completion. Left: the whole word; right: the
part/letter of the word that contained the completion.

111

wrong word correct word wrong word correct word
abes bee diffusion fusion

aback back innperuse peruse
caching aching proposge pose

chair hair rimroad road

emanuel manuel forsign sign

emission mission unamoment moment
factor actor sigforma sigma

leach each simsenon simon

beach each warranty warty

plane lane zirconcon zircon

gabhble gable abramson abram
halecomb halcomb dietary diet
igonomminy igonominy missionary mission

icke ike writeup writ
Approaching Aproaching villager villa

lighnum lignum turnoff turn
maghdalene magdalene therefor there

obstain obtain stealthy steal

tabhoo taboo pologon polo

wacken waken norway nor

Abscizsae Abscissa shightsee sight

COCoons cocoon highnoon noon
ZIMMEermann zZimmerman withnell nell

stones stone fromnorm norm

wolff wolf highjag jag

absent sent jackboot jack
aboriginal original averring aver

accent cent, blanchard blanc

across rogs consentoray consent
became came eardrum ear

binuclear nuclear dynamoties dynamo
debase base frechand free

medonald donald fullback full

obsession session groundwork ground
upside side houseboat house
backenup backup inforciternent incite
cessinna Cessna kunidoma kudo
durepont dupont onkuhning kuhn

liraza liza collabs lab

plentium plenum laetther latter

beech bee millter milt

australia austral nurcleons nucleon
automatie automat postorderad order

bonnet bonn ranamand raman
complained complain siegfridel aigel
epigramme epigram surly — (whole word deleted)
hereto here truth — (whole word deleted)
mackey mack turbulent {whole word deleted)
pessimistic pessimist rainwater - (whole word deleted)
really real Coup - (whole word deleted)

Table A.4: List with the collected data containing repair. Left: the “wrong” word
written in the first data collection step; right: the “correct” word, i.e., the target of
the corrections in the second data collection step. The wrong parts of a word are
printed in bold style.

112

wrong word

correct word

wrong word

APPENDIX A. USED DATABASES

correct word

zanbia zambia jale yale
yosenite yosemite wisard wizard
synnetry symmetry sublle subtle
squauder squander pompa pampa
spougy spongy pakietan pakistan
rowhey rowley roost roast
preeude prelude audille audible
hazehut hazelnut esoape escape
fulhess fullness snycler anyder
emersan emersorn tokm token
embraider embroider uninorm uniform
eachan eachan uperade upgrade
dream dream velicle vehicle
authentic authentic axeral axial
blackyuard blackguard haia baja
bluthe blythe bale bake
bououza bonanza cartin carlin
callegraph calligraph dilnore dilmaore
capetal capital diplonat diplomat
capitol capital dena elena
checher checker BITer error
delinguent delinquent slop stop
requlate regulate freguent frequent
drauidian dravidian green grain
extrauagant extravagant grest grist
fechless feckless hetch hutch
fhnt flint innume immune
joeene joanne bat hat
krehs krebs rat cat

laey lacy prenorm perform
manlate mandate degibily debility
nickd nickel keeser kaiser
ovilorm oviform policemen policeman
pany pang postmister postmaster
perleaps perhaps servize service
represe reprise shallow shadow
shay shoji simanese siamese
lruger kruger wilderniss wilderness
eadle ladle zombes zombie
nost most revue reuse
magma magna roclkand rockland
nase nose walh wahl
eption option aned send
qarqguet parguet abel able
peck perk tabel table
plartic plastic smlet smelt
caster raster feild field
reserue reserve sumner sunmer
ureck wreck rigth right
tasi taxi recieved received

Table A.5: List with the collected data containing repair (Cont.). Left: the “wrong”
word written in the first data collection step; right: the “correct” word, i.e., the
target of the corrections in the second data collection step. The wrong parts of a
word are printed in bold style.

List of Figures

1.1

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
G.11
6.12
6.13
6.14
G.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30

The NPen*Thandwriting recognition system

Examples for typical errors in human handwriting
Quality of the words and text segments in the whole database
Errors in the database L0 L
Examples for problems with OCR and on-line recognition
The recognition process of the NPen™Tsystem

Examples for the different repair classes.
Repair types in the database
Examples for the two deletion types
Example for the connection between delayed strokes and repair

Example for different segmentations of a handwritten word
Hollerbach’s movement components,
Example for the fixed threshold method for repair detection
Example for the use of Hollerbach’s model for repair detection

NPen™ ™t preprocessing: normalization step
NPen™ ' preprocessing: feature extractionstep
Example for the first heuristic to detect deletions
Example for the second heuristic to detect deletions
Deletion handling with different thresholds ¢
Examples for up-down strokes and bounding boxes
Different interpretations of an overlap
Symmetric and asymmetric thresholded bounding boxes
“Half bounding bowes” & & cms cos « Gas 895 884 8 8406 &Y
Example for the “delete all” approach
Evaluation of the different overwriting checks
Different heuristics for insertiono
Additional heuristics for insertiono 0000
Evaluation of the different insertion heuristics
Word accuracy for overwriting with different heuristics
Repair handling with different insertion heuristics
Word accuracy for completions with different heuristics
Overview over the repair handling mechanisms
Example for the deletion case
Example for the overwriting case
Example for the completion case
Classification of repair types in the collected data
Recognition results with repaired data and repair tools
Analysis of the repair handling tools
Repair without user interaction00 L.
Repair with user interaction0

20
21
23

25

28
29
30
31

44
45
47

5l

G7
68
69

114

LIST OF FIGURES
6.31 Repair handling with interactive repair indication 83
6.32 Word accuracy with interactively collected data 84
7.1 Example for the most generalease 89
7.2 Example for the first restriction 89
7.3 Example for the second restriction L0 90
7.4 Example for the third restriction 91
7.5 Example for deletion in text strings o0 L 92
7.6 Dictionary reduction with known left and right border 93
7.7 Dictionary reduction with known left and right border 94
7.8 Dictionary reduction with known right border 95
7.9 Dictionary reduction with known left border 96
7.10 Dictionary reduction with known left border 97
7.11 Dictionary reduction, if the first two letters are known 98

7.12 Dictionary reduction, if the last two letters are known 99

List of Tables

2.1

3.1
3.2

A

A2
A3
A.
A.

1

4

5

Dats atalvsis o cos vws vos ¢ 95 5 698 s 5 $95 gma o & wa 22
Repair handling actions for the different repair types 28
Error types and resulting repair types 32

Samples used to evaluate the parameters of the deletion heuristics. . 108
Samples used to evaluate the parameters of the overwriting heuristics. 109
Samples used to evaluate the parameters of the completion heuristies. 110
List with the collected data containing repair 111
List with the collected data containing repair (Cont.) 112

115

116 LIST OF TABLES

Bibliography

[AKLP93]

[BBNN]

[BDS92]

[BKZ94]

[B1i97]

[BMY3]

[BMW93]

[CKJ90]

[ea95]

[FHM95]

[Gro97]

Oscar E. Agazzi, Shyh-Shiaw Kuo, Esther Levin, and Roberto Pier-
accini. Connected and degraded text recognition using planar hidden
markov models. Proceedings of the IEEE, 1993,

E. 1. Bellegarda, J. R. Bellegarda, D. Nahamoo, and K. 5. Nathan. A
fast statistical mixture algorithm for on-line handwriting recognition.
Proceedings of the IEEE,

John Bear, John Dowding, and Elizabeth Shriberg. Detection and
correction of repairs in human-computer dialog. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics,
1992.

Jerome R. Bellegarda, Dimitri Kanevsky, and Wlodek Zadrozny. Er-
ror correction and add-word strategy in automatic speech recognition.
Research Report, IBM Research Devision, T.J. Watson Research Cen-
ter, 1994,

Conrad H. Blickenstorfer. A new look at handwriting recognition. Pen
computing magazine, (4):76-81, 1997.

Uli Bodenhausen and Stefan Manke. Automatically structured neural
networks for handwritten character and word recognition. In Proceed-
ings of the International Conference on Newral Networks, Sen Fran-
cisco, 1993.

Uli Bodenhausen, Stefan Manke, and Alex Waibel. Connectionist ar-
chitectural learning for high performance character and speech recog-
nition. In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, Minneapolis, 1993,

Chang-Keng and Bor-Shenn Jeng. On-line recognition of handwritten
chinese characters and alphabets. Proceedings of the IEEE, 1990.

R. A. Cole (et al), editor. Survey of the State of the Art in
Human Language Technology. published in the WWW under
http://www.cse.ogi.edu/CSLU/HLTsurvey /HLTsurvey.html, 1995.

Clive Frankish, Richard Hull, and Pam Morgan. Recognition accu-
racy and user acceptance of pen interfaces. In Conference on Human
Factors in Computing Systemns, CHI 95 Proceedings, 1995.

Ralph Grofi. Incremental preprocessing and recognition in an on-line

handwriting recognition system. Studienarbeit, Universitit Karlsruhe,
Institut fiir Logik, Komplexitit und Deduktionssysteme, 1997,

117

118

[Hol81]
(KA93]

Kas95
[I

[LMT96]

[MB94]

[MCYMKO95]

[MFW94]

[MFW95a]

[MFW5b]

[MFW96]

[MSY92]

[NBS95]

[Pom92]

BIBLIOGRAPHY

J.M. Hollerbach. An oscillation theory of handwriting. Biological
Cybernetics, 30:337-372, 1981.

5. Kuo and Q. E. Agazzi. Visual keyword recognition using hidden
marcov models. Proceedings of the IEEE, 1993.

Robert Howard Kassel. A Comparison of Approaches to On-Line
Handwritten Character Recognition. Phd thesis, Massachusetts In-
stitute of Technology, 1995.

Arjan B. M. Lelivelt, Ruud G. J. Meulenbroek, and Arnold J. W. M.
Thomassen. Mapping abstract main axes in handwriting to hand
and finger joints. In Handwriting and Drawing Research: Basic and
Applied Issues, I0S Press. M.L. Simner, C. G. Leedhan, and A. J. W,
M. Thomassen, 1996.

Stefan Manke and Uli Bodenhausen. A connectionist recognizer for
on-line cursive handwriting recognition. In Proceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal Processing, Ade-
laide, 1994.

Thomas P. Moran, Patric Chiu, William van Melle, and Gordon
Kurtenbach. Implicit structures for pen-based systems within a
freeform interaction paradigm. CHI Proceedings, 1995.

Stefan Manke, Michael Finke, and Alex Waibel. Combining bitmaps
with dynamic writing information for on-line handwriting recognition.
In Proceedings of the International Conference on Pattern Recogni-
tion, Jerusalem, 1994.

Stefan Manke, Michael Finke, and Alex Waibel. NPen™: A writer
independent, large vocabulary on-line cursive handwriting recognition
system. In Proceedings of the International Conference on Document
Analysis and Recognition, IEEE Computer Society, August 1995.

Stefan Manke, Michael Finke, and Alex Waibel. The use of dynamic
writing information in a connectionistic on-line cursive handwriting
recognition system. In Advances in Newral Information Processing 7,
MIT Press, Cambridge (MA), 1995.

Stefan Manke, Michael Finke, and Alex Waibel. A fast search tech-
nique for large vocabulary on-line handwriting recognition. In Pro-
ceedings of the International Workshop on Frontiers in Handwriting
Recognition, Colchester, England, 1996,

S. Mori, C. Y. Suen, and K. Yamamoto. Historical review of OCR
research and development. Proceedings of the IEEE, 80(7), 1992,

Krishna S. Nathan, Homayoon S. M. Beigi, Jayashree Subrahmonia,
Gregory J. Clary, and Hiroshi Maruyama. Real-time on-line uncon-
strained handwriting recognition using statistical methods. Proceed-
ings of the IEEE, 1995,

D.A. Pomerleau. Neural Network Perception for Mobile Robol Guid-
ance. Phd thesis, Carnegie Mellon University, Pittsburgh, February
1992.

BIBLIOGRAFPHY 119

[Rab90]

[Sch94]

[SHTA93]

[SMWa6]

[ST94]

[VHY*95)

[VW93]

[WD94]

[WHHS90]

[Win96]

[WMO92]

[WVDM95]

Lawrence R. Rabiner. A tutorial on hidden markov models and se-
lected applications in speech recognition. Readings in Speech Recog-
nition, Alex Waibel and Kai-Fu Lee (ed.), pages 267-296, 1990.

L. R. B. Schomaker. User-interface aspects in recognizing connected-
cursive handwriting. In The Institution of Electrical Engineers, Pro-
ceedings of the IEE Colloquium on Handwriting and Pen-based input,
March 1994.

L.R.B. Schomaker, Eric H. Helsper, H.L. Teulings, and G.H. Abbink.
Adaptive recognition of online, cursive handwriting. 6th International
Conference on Handwriting and Drawing (ICOHD’93), Paris, France,
July 1993.

Bernhard Suhm, Brad Myers, and Alex Waibel. Interactive error re-
covery for speech user interfaces. Proc. ICSLP, Philadelphia USA,
1996.

Y. Singer and N. Tishby. Dynamical encoding of cursive handwriting.
Biological Cybernetics, 71, 1994.

M.T. Vo, R. Houghton, J. Yang, U. Bub, U. Meier, A. Waibel, and
P. Duchnowski. Multimodal learning interfaces. ARPA Spoken Lan-
guage Technology Werkshop, 1995.

M. T. Vo and A. Waibel. Multimodal human-computer interaction.
Proceedings of ISSD, 1993.

A. Waibel and P. Duchnowski. Connectionist models in multimodal
human-computer interaction. Proceedings of the Government Micro-
circuit Applications Conference (GOMAC), 1994.

Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, and Kiyohiro
Shikano. Phoneme recognition using time-delay neural networks.
Readings in Speech Recognition, Alex Waibel and Kai-Fu Lee (ed.),
pages 393-404, 1990.

Hans-Jiirgen Winkler, HMM-based handwritten symbol recognition
using on-line and off-line features. Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing, 1996.

T. Wakahara, H. Murase, and K. Odaka. On-line handwriting recog-
nition. Proceedings of the IEEE, 80(T), 1992.

A. Waibel, M.T. Vo, P. Duchnowski, and S. Manke. Multimodal in-
terfaces. Artificial Intelligence Review Jounal, special issue, 1995.

Diplomarbeit

(deutsche Kurzfassung)

Repair in On-Line
Handwriting Recognition

von

Wolfgang Hiirst

angefertigt an der

Carnegie Mellon University
Pittsburgh PA 15213
U.5.A.

\ Carnggie
\ Mel%n

Betreuer:

Prof. Dr. Alex Waibel
und Dr. Jie Yang

Mirz 1997

Repair in On-Line Handwriting Recognition
Wolfgang Hiirst

f'“'g ‘ Interactive Systems Laboratories

arnegie

Mell % Carnegie Mellon University, Pittsburgh PA, U.S.A
et Universitiit Karlsruhe (TH), Karlsruhe, Germany

Im folgenden sind die wesentlichen Inhalte, ldeen, Algorithmen und Ergebnisse meiner Diplomarbeit
“Repair in On-Line Handwriting Recognition” zusammengefafit, die an der Carnegie Mellon University
in Pittsburgh, PA, in den U.5.A. angefertigt wurde. Fiir weitere Ausfiihrungen sei auf die englische

Ausarbeitung verwiesen. Dort ist auch eine ausflihrliche Liste der verwendeten Literatur zu finden.

Abstract

Im Bereich der Mensch-Maschine Kommunikation bieten multimodale Benutzer-
schnittstellen groffe Vorteile. Typische Beispiele und Bereiche sind Sprach- und Hand-
schrifterkenner, Gesichtsverfolpung, Gestikerkennung, ete. Bei der Entwicklung solcher
Systeme gibt es zwei wichtige Aspekte: Erkennungsleistung und Benutzerzufriedenheit /-
akzeptanz. Nur wenn beide Bereiche in einer verniinftigen und brauchbaren Art und
Weise realisiert sind, wird ein solches Interface sinnvoll und fiir die téigliche Anwendung
nutzbar sein. Wihrend bei den Erkennungsraten bereits beachtliche Erfolge erzielt wer-
den konnten, wurde der zweite Bereich in der Vergangenheit eher vernachliissigt. Ein
Ansatz zur Verbesserung des Benutzerkomforts ist es, verschiedene Methoden zur Be-
handlung von Verbesserungen und Korrekturen (Repair) in ein System zur multimo-
dalen Mensch-Maschine Kommunikation zu integrieren. Vorliegende Arbeit beschiftigt
sich mit dem Thema von Korrekturen bei der automatischen on-line Handschrifter-
kennung einzelner Worte. On-line bedeutet, dafl die Erkennungsalgorithmen nicht nur
auf der Basis der Bitmap einer Handschrift, sondern auch unter Zuhilfenahme dynami-
scher Schreibinformation ablaufen. Ausgehend von der These, dafi Korrekturen in von
Menschen geschriebenen Texten und Fehler in den von der Maschine gelieferten Er-
gebnissen vorkommen (und immer vorkommen werden), werden hier einige Heuristiken
und Algorithmen vorgestellt, um die sich dadurch ergebenden Probleme zu beheben.
Vorangehende These wird durch diverse empirische Studien belegt. Diese Untersuchun-
gen dienen auch als Basis fiir eine Klassifikation typischer Fehler und Korrekturen in
der automatischen Handschrifterkennung. Algorithmen und Heuristiken fiir zwei Arten
von Korrekturen, erstens Verbesserungen in einem handgeschriebenen Signal, zweitens
in gedrucktem Text, also die Korrektur eines Erkennungsergebnisses, werden vorge-
stellt. Diese Heuristiken werden an diversen Beispieldaten evaluiert, und einige Ideen
fiir einen besseren Interfaceentwurf in der automatischen Handschrifterkennung werden
diskutiert.

1 Einfithrung

Multimodale Benutzerschnittstellen, wie beispielsweise Handschrift-, Sprach-
oder Gestikerkenner, bieten grofie Vorteile im Bereich der Mensch-Maschine
Kommunikation. Beim Entwurf solcher Systeme spielen zwei Dinge eine we-
sentliche Rolle: Erkennungsleistung (recognition accuracy, [6]) und Benutzerzu-
friedenheit (user acceptance). Da die sinnvolle Nutzung eines Interfaces ohne
hinreichende Erkennungsleistung nicht praktikable ist, wurde das Hauptaugen-
merk bei der Entwicklung von Sprach-, Handschrift-, Gestikerkennern, usw.,
in der Vergangenheit hauptsichlich auf den ersten Punkt, das Erzielen einer
méglichst hohen Erkennungsrate gelegt. Mittlerweile wurden hier Ergebnisse er-
zielt, die einen Nutzen in der praktischen Anwendung zulassen. Dadurch erhilt
der zweite Bereich, die Benutzerzufriedenheit und Akzeptanz durch den Anwen-
der, eine hiohere Bedeutung. Selbst mit hundertprozentigen Erkennungsraten
wird ein Modul zur Mensch-Maschine Kommunikation nicht benutzt werden,
wenn es dem Anwender keine Flexibilitit und keinen Komfort bietet, sowie
keine einfache Bedienung erlaubt.

Vorliegende Arbeit beschéiftigt sich mit dem Thema von Korrekturen (Re-
pair) in der On-Line Handschrifterkennung. Bei der automatischen Handschrif-
terkennung wird versucht, cin von einem Menschen handgeschriebenes Einga-
besignal in einen maschinenlesbaren Code (ASCII-Text) umzuwandeln. Man
unterscheidet hier zwischen Optical Character Recognition (OCR) und On-
Line Erkennung ([1, 2]). Bei der OCR liegt das Eingabesignal nur in Form einer
Bitmap vor, d.h. ein geschriebener Text wird nur durch eine Menge diverser x,y-
Koordinatenpaare repréisentiert. Bei der On-Line Erkennung dagegen existiert
ebenfalls Information iiber den Zeitpunkt, wann ein bestimmter Koordinaten-
punkt geschrieben wurde. Dieses zusiitzliche Wissen kann im Erkennungsprozef
sinnvoll genutzt werden und fiihrt somit in der Regel zu besseren Ergebnissen.

Wie bereits erwiihnt, werden im Bereich der Erkennungsleistung bereits be-
achtliche Resultate erzielt. Die Méglichkeit, Korrekturen zu erkennen und zu
behandeln wurde allerdings in den vergangenen Jahren eher spiirlich behandelt.
Eine Motivation, warum dies jedoch ein extrem wichtiges Thema ist, und eine
Untersuchung, welche Formen von Fehlern und Korrekturen in handgeschrie-
benen Worten iiblicherweise vorkommen, wird im nichsten Kapitel gegeben. In
den folgenden Abschnitten werden verschiedene Heuristiken und Algorithmen
besprochen, die versuchen, dieses Problem zu lésen.

2 Fehler und Korrekturen bei der maschinellen Hand-
schrifterkennung

Fehler bei der automatischen Handschrifterkennung kénnen in zwei Bereichen
vorkommen: zum einen auf der Benutzerseite und zum anderen auf Seiten der
Maschine, bzw. des Erkennungsalgorithmus. Die Tatsache, daf} selbst Menschen
nicht in der Lage sind, eine hundertprozentig richtige Erkennung auf zufillig
ausgewihlten handgeschriebenen Daten durchzufiihren (dies wurde in [5] durch
empirische Studien bewiesen), 14t darauf schliefien, dal es unwahrscheinlich

ist, dafl je eine “perfekte” maschinelle Erkennung erzielt werden kann. Im Rah-
men dieser Arbeit wurde eine empirische Studie mit einer Datenbank diverser
handgeschriebener Texte durchgefiihrt, die bewies, dafi Fehler und Korrekturen
in von Menschen geschriebenen Worten vorkommen. Die Tatsache, dafi Verbes-
serungen in den Elementen dieser Datenbasis auftraten, obwohl die jeweiligen
Schreiber nicht dazu aufgefordert wurden, Korrekturen durchzufiithren, und es
keinen Feedback eines etwaigen Erkennungsalgorithmus gab, lifit die Folgerung
zu, dafl man bei der Entwicklung und dem Einsatz von Modulen zur automa-
tischen Handschrifterkennung immer mit solchen Eingabedaten rechnen muf.
Ein weiteres Argument fiir die Notwendigkeit diverser Korrekturmechanismen
ist die Tatsache, dafi selbst eine Tastatur, die iiblicherweise zur Dateneinga-
be benutzt wird, verschiedene Moglichkeiten anbietet, Verbesserungen durch-
zufiihren (z.B. durch den Einsatz einer “backspace”-Taste), obwohl in der Regel
eine hundertprozentige Erkennungsrate vorliegt.

Die erwihnte Datenbasis wurde dahingehend untersucht, welche Fehler ty-
pischerweise in einer Handschrift und deren Erkennung vorkommen. Durch Li-
teraturrecherche konnte folgende Klassifikation von gingigen Fehlern bei der
automatischen Handschrifterkennung gefunden werden (vgl. [5]):

e ‘“device-generated errors”; z.B. technische Stérungen im Eingabegerit.

e “badly spelled words”; z.B. ein Wort, das einen Buchstaben zuviel oder
suwenig enthilf.

e “input legible by humans but not by the algorithm”; z.B. sich iiberschnei-
dende Buchstaben, wenn ein Erkennungsalgorithmus verwendet wird, der
darauf konzipiert wurde, nur sauber voneinander getrennte Buchstaben
zu erkennen.

e “badly formed shapes”; z.B. der Buchstabe “n”, geschrieben wie ein “u”.

s “unknown words”; z.B. Zahlen, wenn das Erkennungsvokabular auf Buch-
staben eingeschrankt ist.

e “discrete noise events”; z.B. Linien und Punkte, die dadurch entstanden
sind, daB der Stift iiber der Schreiboberfliche fallen gelassen wurde.

e “canceled material”; z.B. Ausstreichungen bestimmter Wortteile oder gan-
zer Worte.

Die so gefundenen fehlerhaften Daten wurden daraufhin untersucht, ob in
irgendeiner Weise Korrekturen und Verbesserungen von Seiten des Benutzers
auftraten. Diese “Repair-Daten” dienten als Basis fiir eine Klassifikation ver-
schiedener Korrekturarten, die in handgeschriebenen Texten iiblicherweise vor-
kommen. Die einzelnen “Repair-Klassen” sind:

e “Deletions” (Ausléschungen): der Benutzer macht undefinierbare Striche
in einem Bereich, in den er zuvor geschrieben hat, mit der Absicht, die
entsprechenden Wortteile zu loschen.

e “Completions” und “Insertions” (Vervollstindigungen und Einfiigungen):
der Schreiber fiigt einen oder mehrere Striche zu den bereits geschriebenen
Wortteilen hinzu.

e “Overwriting” (chrschmiben): bestimmte Teile eines Wortes werden iber-
schrieben, mit dem Ziel, den darunterliegenden Text durch die Korrektur
zu ersetzen.

Es sei darauf hingewiesen, dafi weitere Klassifikationen mdoglich und die
Grenzen zwischen den verschiedenen Klassen héufig nicht eindeutig sind. Ins-
besondere die Unterscheidung zwischen “Completion” und “Overwriting” ist
oft nicht ohne weiteres moglich. Die Einteilung in diese drei Klassen orientiert
sich hauptsiichlich daran, welche Reaktionsart ein Tool, das diese Korrektu-
ren vor einer eigentlichen Erkennung behandeln soll, durchfiihren miifite. Im
Falle eines Loschens oder Ausstreichens (“Deletion™) sollten sowohl die iiber-
schriebenen Wortteile geltscht werden, als auch die Teile der Eingabe, die die
Korrektur bilden. Beim Uberschreiben hingegen werden nur die iiberschriebe-
nen Striche geldscht, die “Uberschreiber” jedoch miissen in die verbleibende
Sequenz eingefiigt werden. Der Korrekturtyp Vervollstindigen und Eingfiigen
(“Completion/Insertion”) erfordert lediglich, daff die Korrekturzeichen in die
Originalsequenz von handgeschriebenen Daten eingefiigt werden. Ein Loschen
ist in diesem Fall nicht erforderlich.

Das bemerkenswerteste Ergebnis der oben angesprochenen Datenanalyse
war die Feststellung, dafi, wenn auch nur in geringem Rahmen, Korrekturen
und Verbesserungen in den handgeschriebenen Texten vorkamen, obwohl die
Schreiber lediglich darum gebeten wurden, einen vorgegebenen Text abzuschrei-
ben. Sie wurden dazu aufgefordert, dies fehlerfrei und ohne Korrekturlesen zu
tun. Dies ist ein starkes Arpument dafiir, dafl ein menschlicher Benutzer nicht
nur Fehler macht, sondern auch nach einer Méglichkeit verlangt, diese Fehler
korrigieren zu konnen.

Im folgenden werden diverse Heuristiken besprochen und vorgestellt, die sich
diesem Problem annehmen. Dabei wird unterschieden zwischen Korrekturen in
handgeschriebenen Eingaben und gedrucktem ASCII-Text. Ersteres entspricht
einem Verbessern von Fehlern in der eigenen Handschrift. Verschiedene Heuri-
stiken fiir die eingefiihrten Korrekturklassen werden vorgestellt und besprochen.
Das Verbessern von gedrucktem Text entspricht einer Korrektur des vom Com-
puter angezeigten Erkennungsergebnisses durch eine handgeschriebene Benut-
zereingabe. Beide Korrekturarten haben in unterschiedlichen Situationen und
unter verschiedenen Voraussetzungen ihre Vorteile und ihre Existenzberechti-
gung.

3 Korrekturen in handgeschriebenem Text

Allgemein gibt es fiir multimodale Benutzerschnittstellen zwei verschiedene Vor-
gehensweisen, das Problem auftretender Fehler und daraus resultierender Kor-
rekturen in den Griff zu bekommen. Diese wurden in dieser Arbeit in zwei
Konzepten manifestiert:

1. das Konzept der Fehlerbehandlung (“the concept of error handling”), d.h.,
der Versuch, auftretende Fehler zu erkennen und zu beheben, sei es durch
Integration in den reguliren Erkennungsprozef oder beispielsweise durch
das Anbieten diverser Moglichkeiten zur Korrektur.

2. das Konzept der Fehlervermeidung (“the concept of error avoidance”),
d.h., durch einen “geschickten” Entwurf des Interfaces wird das Auftreten
von Fehlern verringert oder ganz unterdriickt.

Beim Entwurf eines brauchbaren und zuverlissigen Interfaces mufl man sich
verschiedener Methoden aus beiden Bereichen bedienen, um ein fiir den Be-
nutzer verwendbares und “angenehmes” Tool zur Verfiigung stellen zu kénnen.
In Kapitel 2 wurde, basierend auf einer Datenbankanalyse, eine Definition ver-
schiedener Klassen von Korrekturen in handgeschriebenen Texten eingefiihrt.
Im folgenden sollen nun diverse Heuristiken vorgestellt werden, die sich dieser
Problematik annehmen.

3.1 Klassifikation

Verschiedene Griinde (vgl. die Ausfiihrungen in Kapitel 6 der englischsprachi-
gen Ausarbeitung), legen es nahe, die Behandlung von Korrekturen in einem ge-
trennten Vorverarbeitungsschritt durchzufiithren. Hierzu ist zunichst eine Tren-
nung des urspriinglichen Eingabesignals von den Teilen, die die Verbesserung
bilden, durchzufiihren. Diese Klassifikation in “regulire” Handschrift und Kor-
rektursignal wird hier mittels zweler Heuristiken durchgefiihrt.

Ein typisches Merkmal fiir das Auftreten eines “Repairs” in einem handge-
schriebenen Eingangssignal ist, dafl der Schreiber mit seinem Stift zuriickgeht in
einen Bereich, in den er bereits zuvor geschrieben hat, und zusatzliche Striche zu
seiner Handschrift hinzufiigt. Das heifit, zeitlich relative weit auseinanderliegen-
de Teile des Eingabesignals haben einen relativ geringen Abstand voneinander
beziiglich der x-Koordinatenrichtung. Dies wird in einer ersten Heuristik zur
Klassifikation von Korrekturen genutzt. Mit der aktuellen Stiftposition wird
ein Schwellwert entgegen der Schreibrichtung mitgefiithrt. Beginnt ein Benutzer
nun links von diesem Schwellwert zu schreiben, werden alle folgenden Koor-
dinatenpunkte als Korrektur interpretiert, bis der Stift wieder abgesetzt wird.
Um unabhingig von verschiedenen Schreibstilen zu sein, wird der Schwellwert
adaptiv an die aktuelle Schriftgrofe angepafit. Dieser dynamische Schwellwert
berechnet sich aus der maximalen Breite der letzten fiinf “up-down strokes”
zuziiglich eines von Hand eingestellten Offsets. Ein “up-down stoke” sei hier de-
finiert als alle Koordinatenpunkte des handgeschriebenen Textes zwischen zwei
aufeinanderfolgenden lokalen Extrema. Eine solche dynamische Einstellung des
Schwellwertes ist notig, da nicht nur der Schreibstil unterschiedlicher Benut-
zer, sondern selbst der einzelner Personen sich dndern kann und zwar nicht nur
itber mehrere Worte hinweg, sondern sogar innerhalb eines einzigen Wortes. Ein
wohlbekanntes Phiinomen ist beispielsweise die Tatsache, dafi die Schriftgrofie
einzelner Buchstaben bei vielen Schreibern zum Wortende hin kleiner, dafiir
aber breiter wird.

Alternative Ansitze wurden ebenfalls untersucht und ausgewertet, konnten
jedoch keine vergleichbaren Erfolge erzielen, weshalb sie hier nicht aufgefiihrt
werden. Der interessierte Leser sei auf die englischsprachige Ausarbeitung ver-
wiesen. Ferner sei hier nocheinmal darauf hingewiesen, dafl wir hier an Kor-
rekturen fiir einen on-line basierten Erkennungsprozef} interessiert sind. Da die
Erkennung in diesem Fall auf dem zeitlichen Eingabesignal basiert, kann jedes
Zuriickgehen in x-Koordinatenrichtung als “Repair” interpretiert werden. Dies
ist im Falle einer OCR (Optical Character Recognition) nicht der Fall.

Mit oben eingefithrter Methode lassen sich Verbesserungen im letzten Buch-
staben eines Wortes nicht erkennen. Es sei hier bemerkt, dafi in diesem Fall
von den im vorherigen Abschnitt eingefithrten Korrekturklassen nur “Loschen”
und “Uberschreiben” vorkommen kénnen. Diese werden klassifiziert, indem die
Anzahl der “up-down strokes” rechts von dem oben definierten dynamischen
Schwellwert betrachtet wird. Liegt diese iiber einer von Hand vorgegebenen An-
zahl, die sich am Durchschnittswert in “normaler” Handschrift ohne Korrektur
orientiert, ist dies ein deutliches Indiz fiir das Vorkommen einer Verbesserung.
Im folgenden Kapitel werden Heuristiken fiir die Klassifikation und Behandlung
der einzelnen Korrekturtypen besprochen.

3.2 Behandlung unterschiedlicher Korrekturarten
3.2.1 Lobschen und Ausstreichen

Zur Behandlung der ersten Korrekturklasse, Loschen und Ausstreichen, wur-
den die entsprechenden Beispiele aus oben erwihnter Datenbasis dahingehend
untersucht, welche Merkmale fiir diesen Typ von Verbesserung typisch und
daher fiir eine Klassifikation geeignet sind. Zwei charakteristische Sorten von
Ausldschungen konnten gefunden werden:

e im Vergleich zur “normalen” Handschrift relativ lange Striche
und
e viele Striche auf einem relativ kleinen Bereich.

Zur Klassifikation der ersten Klasse wurden jeweils die Hohe und Breite
(die Ausdehnung in x- und y-Koordinatenrichtung) der “up-down strokes” be-
rechnet. Liegt einer dieser Werte erheblich iiber dem Durchschnitt, werden die
entsprechenden Koordinaten als “Ausstreicher” und alles von ihnen Uberschrie-
bene als geloscht interpretiert.

Eine weitere Heuristik deckt den zweiten Fall, viele Korrekturstriche im glei-
chen Bereich, ab. Hierbei wird die Gesamtlange der zuvor klassifizierten Korrek-
turzeichen mit der Linge, bzw. Anzahl, der von ihnen iiberschriebenen Koordi-
naten verglichen. Ist die Anzahl der Korrekturkoordinaten wesentlich hoher als
die der entsprechenden “normalen” Handschrift, wird ein Léschen angenommen.
Wie im obigen Fall werden nun sowohl die Korrektur- als auch die ausgestri-
chenen Koordinaten vom urspriinglichen Eingangssignal entfernt. Nach einer

Skalierung der x-Koordinatenwerte der Handschrift rechts von der Lischstel-
le, kann das korrigierte Signal an den Erkenner weitergeleitet werden. Diese
beiden Ausstreicharten haben gegeniiber den Gestiken, die herkdmmlicherweise
zur Erkennung von Ausloschungen verwendet werden, den Vorteil, daf} keine
Vorgabe beziiglich einer bestimmten Form gemacht wird. Dem Benutzer wird
diesbeziiglich eine relativ grofie Freiheit eingeriumt. Lediglich an bestimmte
Merkmale und Eigenschaften der verwendeten Korrekturzeichen werden gewis-
se Anforderungen gestellt. Form, Grofle und Aussehen sind fiir die Erkennung
irrelevant.

3.2.2 TUberschreiben

Fiir den Korrekturtyp Uberschreiben wurden verschiedenen Heuristiken imple-
mentiert, verglichen und ausgewertet. Simtliche Ansiitze basieren auf einem
Vergleich der Bounding Boxes der Korrektur- mit denen der urspriinglichen
Handschriftdaten. Die Bounding Box einer Menge von Koordinaten ist defi-
niert als das kleinstmdégliche Rechteck mit Seiten parallel zur Horizontalen und
Vertikalen, das alle Koordinatenpunkte der Menge beinhaltet. Die Bounding
Boxes aller “up-down strokes”. die von den Korrekturgestiken iiberschrieben
worden sind, werden mit denen der Verbesserungen verglichen. Existiert eine
“hinreichend grofle” Uberlappung der beiden Bereiche, wird der iiberschriebene
“up-down stroke” (= alle Koordinaten zwischen zwei aunfeinanderfolgenden lo-
kalen Extrema) aus dem Handschriftsignal entfernt. Es hat sich herausgestellt,
daff ein Léschen oder “Herausnehmen” einzelner Wortteile auf der Basis von
“up-down strokes” eine sinnvolle Realisierung darstellt, die bessere Ergebnisse
liefert, als ein verallgemeinerter Ansatz, der es erlaubt, beliebige Wortteile und
Koordinatenmengen zu loschen. Die behandelten Heuristiken funktionieren alle
nach diesem Prinzip. Einziger Unterschied ist eine unterschiedliche Interpreta-
tion der Eigenschaft “hinreichend grofie” Uberlappung. Insgesamt wurden sechs
verschiedene Ansitze untersucht. Diese Methoden liegen zwischen den beiden
Extremen “entferne moglichst wenig” und “entferne méglichst viel” vom ur-
spriinglichen Signal. Im ersten, sehr restriktiven, Fall bedeutet dies: “lésche
einen “up-down stroke” nur dann, wenn er vollstindig von einer Bounding Box
iiberdeckt wird”. Im zweiten Fall dagegen wird ein “up-down stroke” bereits
geltscht, wenn seine Bounding Box sich nur ein bischen mit der eines Kor-
rekturzeichens iiberlappt. Ferner wurden unterschiedliche Ansitze mit diversen
Schwellwerten, etc., implementiert und getestet. Bei der Auswertung stellte sich
heraus, dafi die Methode die besten Ergebnisse liefert, die den zweiten Extrem-
fall darstellt, d.h.. die am wahrscheinlichsten einen iiberschriebenen “up-down
stroke” aus dem urspriinglichen Signal entfernt. Dieses Resultat gilt sowohl fiir
die erzielten Erkennungsraten als auch fiir die reine Behandlung der Korrektur
in einem optischen Check. Damit ist die Frage gemeint, ob das durch die Kor-
rektur entstandene neue Eingabesignal vom Menschen richtig erkannt werden
kann (salopp gesagt: werden genau die Teile des Wortes geldscht, die geldscht
werden sollen oder nicht?)

Nachdem auf diese Weise diverse Teile der urspriinglichen Handschrift ent-
fernt wurden, muffi nun die Korrektur in das verbleibende Signal eingefiigt

10

werden. Dies geschieht mit einer der Heuristiken, die im nichsten Abschnitt
erlautert werden.

3.2.3 Vervollstindigen und Einfiigen

In Falle einer Vervollstindigung muf} kein Teil des urspriinglichen handgeschrie-
benen Signals geléscht werden. Lediglich ein Einfiigen der Korrektur ist erfor-
derlich. Dies entspricht der gleichen Situation wie im Falle eines Uberschrei-
bens, nachdem die {iberschriebenen Teile des Wortes entfernt wurden. Des-
halb werden hier auch die gleichen Heuristiken verwendet. Insgesamt wurden
zehn unterschiedliche Methoden implementiert, die aufgrund diverser Kriteri-
en Einfiigungen an unterschiedlichen Stellen vornehmen. Diese wurden anhand
einer Datenbasis ausgewertet. Es stellte sich heraus, dafi die Ansitze, die sich
an den jeweiligen x-Koordinatenwerten orientierten, die besten Ergebnisse er-
zielten. Eine Korrektur wurde hierbei so zwischen zwei “up-down strokes” ein-
gefiigt, dafl die Summe aus der Strecke zwischen dem vorangehendem “up-down
stroke” und dem Anfang der Korrektur und der Strecke zwischen Ende der Kor-
rektur und dem folgenden “up-down stroke” minimal ist. Mit Strecke ist hier
der Abstand beziiglich der x-Koordinatenwerte gemeint.

Es sei hier darauf hingewiesen, dafl im letzten Fall der vorgeschlagenen Kor-
rekturklassifikation, Vervollstindigungen und Einfiigungen, hier nur Verbesse-
rungen innerhalb des bereits geschriebenen Wortes behandelt werden (d.h., das
Einfiigen durch Schreiben, z.B. eines Buchstabens, iiber oder unter ein Wort
wird mit den vorgestellten Heuristiken nicht abgedeckt).

3.3 Zusammenspiel der einzelnen Heuristiken

Nachdem im vorangegangenen Abschnitt verschiedene Heuristiken fiir die ein-
zelnen Korrekturklassen getrennt voneinander eingefithrt und ausgewertet wur-
den, soll nun beschrieben werden, wie die einzelnen Verfahren zusammen in ein
einziges Korrektur-Tool integriert werden kénnen.

Zunichst wird mit den in Abschnitt 3.1 eingefiihrten Methoden festgestellt,
ob eine Verbesserung stattgefunden hat, und im positiven Fall das Korrektursig-
nal von der urspriinglichen Handschrift getrennt. Daraufhin werden nacheinan-
der die Fille “Loschen”, “Uberschreiben” und “Vervollstindigen/Einfiigen” mit
den jeweiligen Heuristiken behandelt. Zunichst wird iiberpriift, ob ein Loschen
vorliegt. Dies geschieht geméfl der oben beschriebenen Verfahren durch diver-
se Lingen- und Gréflenvergleiche. Wird ein Ausstreichen festgestellt, werden
sowohl die ausgestrichenen Teile als auch die “Ausstreicher” vom Eingangs-
signal entfernt und die x-Koordinatenwerte rechts der Léschstelle um deren
Breite nach links verschoben. Die Behandlung der Korrektur ist damit abge-
schlossen. Findet kein Loschen statt (d.h., ist das Ergebnis simtlicher Liangen-
und GrofBenvergleiche negativ) wird getestet, ob ein Uberschreiben vorliegt. Da-
bei werden die iiberschriebenen Teile des Wortes durch Bounding Box-Vergleich
gemél einer der implementierten Heuristiken aus dem urspriingliche Signal ent-
fernt. Die Korrektur wird nun in die verbleibende Handschrift eingefiigt. Dies

11

geschieht, wie bereits erwihnt, mit den gleichen Methoden, die angewendet
werden, sollte kein Uberschreiben auftreten.

Durch die Ausfithrung der einzelnen Tests nacheinander und ein Abbre-
chen der Korrekturbehandlung im Erfolgsfalle ist keine explizite Klassifikation
und Trennung der einzelnen Korrekturklassen erforderlich. Ein Uberschreiben
kann nur vorkommen, wenn kein Loschen vorliegt. Wurden auch keine Wortteile
iiberschrieben, muf die entsprechende Verbesserung ein Vervollstindigen, bzw.
Einfiigen sein.

Um die implementierten Heuristiken auswerten zu kinnen, wurden eini-
ge Daten gesammelt, die Korrekturen enthalten. Dabei wurden die einzelnen
Schreiber, im Gegensatz zu der Datenbasis, die fiir die empirischen Studien
iiber Fehler und Verbesserungen verwendet wurden, dazu aufgefordert, Kor-
rekturen durchzufithren. Dies geschah, indem der jeweilige Benutzer zuerst ein
Wort “falsch” schreiben und es anschliessend verbessern sollte. Hierzu wurden
ihm Anweisungen der folgenden Art gegeben: 1. Bitte schreiben Sie das Wort
“chair”, 2. Bitte korrigieren Sie: “hair” anstelle von “chair”. Die zweite Auf-
forderung wurde dem Schreiber erst angezeigt, nachdem das Wort der ersten
vollstiindig geschrieben war. Es sei hier darauf hingewiesen, dafi solch eine Da-
tensammlung extrem schwierig ist, da jegliche Aufforderung an einen Benutzer,
eine Verbesserung durchzufithren, sein Korrekturverhalten beeinflussen kann
und somit miglicherweise zu einem verfilschten, statistisch nicht reprisenta-
tiven Frgebnis fithren kann. Aus diesem Grund wurde hier besonderer Wert
darauf gelegt, die Daten so auszuwihlen, dafl eine gute Bewertung der vorge-
stellten Heuristiken moglich ist (z.B. durch eine zufillig Auswahl der Worte,
Einstreuen von Buchstaben, die geléscht werden sollen, in gleichemn Mafle am
Anfang, in der Mitte und am Ende der Worte, etc.). Auf diese Weise ergab
sich eine Liste fehlerhafter Worte, beispielsweise durch zusitzliche oder feh-
lerhafte Buchstaben, Vertauschungen zweier Buchstaben, ete. Die Einstreuung
von Fehlern orientierte sich auch an den typischen Beispielen, die in der ersten
Datenbasis gefunden wurden (vgl. Kaptitel 2).

Die derartig gesammelten Daten wurden mit simtlichen erwihnten Heuri-
stiken getestet. Das Erkennungsergebnis der mit den entsprechenden Methoden
korrigierten und anschliessend getesteten Daten lag im besten Fall knapp unter
40% richtig erkannter Worte. Dies stellt zwar eine Steigerung gegeniiber der Er-
kennungsrate dar, die ohne jegliche Behandlung der Korrekturen erzielt wurde
(knapp 8%), ist alles in allem jedoch eher enttiuschend. Deshalb wurden opti-
sche Auswertungen durchgefiihrt, die Aufschlufl dariiber bringen sollten, ob und
wie der jeweilige Korrekturtyp von den entsprechenden Heuristiken behandelt
wurde. Es stellte sich heraus, daff nur 26% richtig klassifiziert und verbessert
wurden. In vielen Fillen wurde eine Korrektur bereits falsch klassifiziert, d.h.
ein Loschen als Uberschreiben interpretiert und umgekehrt. Dies lag daran, da8
der Schwellwert, der entscheidet, ob eine Korrektur “wesentlich” mehr Koordi-
naten enthilt als der iiberschriebene Teil des Wortes, nicht optimal eingestellt
war. Dieser Wert ist jedoch im wesentlichen dafiir verantwortlich, ob eine Ver-
besserung als Loschen oder Uberschreiben klassifiziert wird. Eine Handoptimie-
rung dieses Schwellwertes fiir die falsch erkannten Beispiele erhdhte die Anzahl

12

korrekt behandelter Korrekturen von 26% auf 49%.
Insgesamt konnten im wesentlichen drei Probleme festgestellt werden, die

fiir das schlechte Ergebnis verantwortlich sind:

e Die Einstellung des bereits erwidhnten Schwellwertes, der fiir eine korrek-
te Klassifikation von Loschen oder Uberschreiben bendtigt wird. Bei der
Analyse der Daten stellte sich heraus, dafl es sehr schwer, wenn nicht
unmoglich ist, diesen Parameter auf einen optimalen Wert zu setzen. Bei-
spiele konnten gefunden werden, die einen relativ hohen Wert erforderten,
andere, fiir die ein relativ geringer nétig gewesen wiire. Es ist unwahr-
scheinlich, dafl eine “perfekte” Einstellung dieses Parameters gefunden
werden kann.

e Viele Korrekturen wurden von den Schreibern in einer sehr ungenauen
Art und Weise gemacht. Beispielsweise wurden Rinder eines Bereiches,
der komplett geléscht werden sollte, nicht ausgestrichen. Auf der anderen
Seite wurden Teile von Buchstaben, die nicht ausgeléscht werden sollten,
durchgestrichen. Einem menschlichen Leser bereiten solche “ungenauen”
Korrekturen keine allzu groflen Probleme, da er in der Lage ist zu ver-
allgemeinern und Kontextwissen besitzt, das er in der Klassifikation von
geschriebenen Texten einsetzen kann. Fiir einen maschinenausgefiithrten
Algorithmus ist es jedoch recht schwierig zu entscheiden, ob beispielswei-
se ein nur zur Hilfte ausgestrichener Buchstabe geltscht werden oder in
der Koordinatensequensz verbleiben soll. In diese Kategorie fillt auch ein
Phanomen, das ich “Highlighting-Problem” nennen machte: dadurch, daf
ein Schreiber eingefiigte Striche mehrfach macht, versucht er, sie beson-
ders hervorzuheben, um einem eventuellen Leser anzuzeigen, dafl dieser
Teil der Handschrift der korrekte ist und nicht der iiberschriebene. Ebenso
wurde in diversen Fillen fiir eine Korrektur eine unterschiedliche Skalie-
rung als fiir die “normale” Handschrift verwendet. Dies macht es einem
Menschen wesentlich einfacher, das richtige Wort zu erkennen, erschwert
den automatischen Erkennungsprozel jedoch ungemein.

e HEin weiteres Problem ist die Tatsache, daff die eingefiihrten Heuristiken
wenn auch einen grofien Teil, so doch nicht jegliche Art von Korrektu-
ren abdecken. Diverse Verbesserungen, z.B. das Ausstreichen mit weni-
gen Strichen, kénnen damit alleine nicht behandelt werden. Aulerdem
existieren Fille, die widerspriichliche Parametereinstellungen bei einigen
Methoden erfordern wiirden. Ein Beispiel wurde bereits unter Punkt 1
mit dem Schwellwert fiir eine Klassifikation eines Loschens gegeben.

Insbesondere die Tatsache, dafl Beispiele in der Datenbasis gefunden wur-
den, die es zweifelhaft erscheinen lassen, dall eine optimale Parametereinstel-
lung, die ein hinreichend grofies Spektrum maglicher Korrekturen abdeckt, ge-
funden werden kann, legt die Vermutung nahe, dafi eine zufriedenstellende Be-
handlung von Verbesserungen mit den vorgestellten Heuristiken nicht durch-
gefiihrt werden kann. Aus diesem Grund wurde eine Erweiterung dieses Ansat-
zes implementiert, die verspricht, die obigen Probleme zu umgehen. Sie wird im
nichsten Abschnitt beschrieben und ausgewertet.

13

3.4 Interaktiver Ansatz

Die in den vorausgegangenen Abschnitten angewandten Techniken und Metho-
den, um Korrekturen und Verbesserungen zu behandeln, lassen sich ausnahms-
los in das am Anfang dieses Kapitels erwihnte Konzept der Fehlerbehandlung
(“the concept of error handling”) einordnen. Da die erzielten Resultate nicht
zufriedenstellend waren und einige Probleme aufgetaucht sind, die es héchst
zweifelhaft erscheinen lassen, daB eine akzeptable Erkennungsrate mit den vor-
gestellten Heuristiken erzielt werden kann, soll im folgenden eine Erweiterung
vorgestellt werden, die nach dem Prinzip der Fehlervermeidung (“the concept
of error avoidance™) arbeitet. Das heifit, dafl durch einen “geschickten” Entwurf
des Interfaces versucht wird zu erreichen, dafl Probleme, wie sie mit obigen Heu-
ristiken entstehen koénnen, in diesem Mafle gar nicht auftreten oder zumindest
eingeschriinkt werden.

Der hier durchgefithrte Ansatz profitiert davon, dafl der Benutzer bei der
on-line Handschrifterkennung in der Regel direkt vor den Ein-/Ausgabemedien
sitzt und somit die Moglichkeit besteht, ihm unmittelbaren Feedback der Repair-
und Erkennungsalgorithmen zukommen zu lassen. Daher werden dem Schreiber
hier im Falle einer Korrektur alle ausgefiithrten Verbesserungen direkt angezeigt.
Teile, die als Ausstreichen klassifiziert wurden, werden sofort in der fiir den Be-
nutzer sichtbaren Handschrift geltscht. Ein iiberschriebener Buchstabe wird aus
dem urspriinglichen Signal unmittelbar entfernt. Im Falle einer Vervollstindi-
gung, bzw. eines Einfiigens erhilt der Schreiber keinen Feedback, da keine fiir
ihn sichtbaren Aktionen durchgefithrt werden miissen. Das Ein- und Umsortie-
ren diverser Wortteile in der zeitlichen Eingabesequenz verdindert lediglich das
Eingangssignal fiir den Erkennungsalogrithmus, nicht die Bitmap-Darstellung,
die dem Benutzer vorliegt.

Dieser interaktive Ansatz verspricht die Lésung diverser Probleme, die bei
der vorangehenden Auswertung aufgetreten sind:

e Das Problem, den Schwellwert fiir die Klassifikation eines Ausstreichens
einzustellen, kann umgangen werden, indem dieser relativ hoch angesetzt
wird. Damit wird ein Léschen allerdings erst dann als solches erkannt,
wenn relativ viele Ausstreichungen gemacht wurden. Doch durch die so-
fortige Anzeige, weifl ein Benutzer, ob seine Korrektur erkannt wurde
oder nicht und kann entsprechend reagieren, d.h., durch das Hinzufiigen
weiterer Striche dafiir sorgen, dafi die von ihm gewiinschten Wortteile
“verschwinden”. Die Gestiken, die hier als Lischen interpretiert werden,
sind so ausgelegt, dafi dieses “Mehr an Ausstreichungen”, das nun vom
Schreiber gefordert wird, in einer fiir ihn nicht stérenden und vertretbaren
Art und Weise erfolgen kann (salopp gesagt: da keine bestimmte Form fiir
die Léschgestik vorgegeben wurde, sollte es keine allzu grofien Probleme
bereiten, ob ein paar Striche mehr oder weniger gemacht werden miissen,
bis ein Ausstreichen schlieflich als solches erkannt wird).

e Bine falsche Behandlung einer Korrektur infolge einer ungenauen Benut-
zereingabe wird dem Schreiber sofort angezeigt. Dadurch erkennt er even-

14

tuelles Fehlverhalten der Korrekturmethoden und kann entsprechend rea-
gieren. Damit verbindet sich die Hoffnung, dafl eine “zweifelhafte” und
ungenauen Verbesserung, die von den verwendeten Heuristiken nicht ein-
deutig behandelt werden kann, gar nicht erst vorkommt, da der Benutzer
sich mit der Zeit an die gegebenen Korrekturméglichkeiten anpassen und
demzufolge keine ungenauen Verbesserungen machen sollte.

e Das “Highlighting-Problem”, das in Abschnitt 3.3 erliutert wurde, soll-
te nicht mehr auftreten. Da eine durchgefiihrte Verbesserung sofort aus-
gefithrt und dem Benutzer angezeigt wird (beispielsweise wird im Falle
eines Uberschreibens der iiberschriebene Teil eines Wortes sofort geldscht)
wird die Notwendigkeit, Korrekturen besonders hervorzuheben, iiberfliissig.
Ziel dieser Hervorhebungen war es ja, den Korrekturtext von den darun-
terliegenden Teilen des Wortes abzusetzen. Dies ist durch deren augen-
blickliches “Verschwinden” nicht mehr erforderlich.

Zur Auswertung dieses Ansatzes wurde noch einmal die gleiche Datensamm-
lung mit den selben Schreibern wie in oben erwiihntem Ansatz durchgefiihrt.
Dazu wurde jedem Anwender das Wort, das er im ersten Schritt geschrieben
hatte (d.h., das falsch geschriebenen Wort) mit der gleichen Aufforderung zur
Korrektur nocheinmal prasentiert. Allerdings wurde den Benutzern nun das Er-
gebnis der Behandlung ihrer jeweiligen Verbesserungen sofort angezeigt, so daf
sie gegebenenfalls unmittelbar darauf reagieren konnten.

Die auf diese Weise gesammelten und mit den jeweiligen Heuristiken korri-
gierten Daten wurden an den Erkenner geschickt. Die erzielte Erkennungsrate
(“word accuracy” = relative Anzahl richtig erkannter Worte) lag bei 65%. Dies
1afit zwar noch einigen Spielraum fiir Verbesserungen offen, ist jedoch fiir einen
ersten Ansatz ein zufriedenstellendes Ergebnis, insbesondere, wenn man beach-
tet, dall der verwendete Erkenner auf vergleichbaren “sauberen” Daten (also
richtig geschriebenen Worten ohne Korrekturen) eine Erkennungsleistung von
88% besitzt. Auch eine optische Analyse, ob die jeweiligen Korrekturhandlungen
korrekt durchgefiihrt wurden, lieferte ein zufriedenstellendes Ergebnis: knapp
80% aller Verbesserungen wurden richtig analysiert und dem Benutzer korrekt
angezeigt.

Allerdings ergibt sich auch mit diesem Ansatz ein Problem. Wie bereits
anfangs in der Motivation fiir diese Arbeit erwihnt, ist fiir die Nutzbarkeit
und Qualititsbeurteilung eines Interfaces zur Mensch-Maschine Kommunika-
tion nicht nur eine in hohem MaSe richtige Interpretation der Eingabe ent-
scheidend, sondern auch Eigenschaften wie Benutzerkomfort und -akzeptanz.
Hier liegt bei vorgestelltem Ansatz das Problem. Alle Schreiber wurden hierzu
befragt und kamen einhellig zu dem Urteil, daB die Behandlung von “Uber-
schreibern” komfortabel und robust realisiert war, die eines Ausstreichens je-
doch nicht. Dies resultiert daraus, daf der Schwellwert, der zum Langenver-
gleich im Falle eines Léschens benétigt wird, relativ hoch (genaugenommen zu
hoch) angesetzt wurde. Demzufolge muiten die einzelnen Anwender hiufig zu
oft iiber eine Stelle, die sie 16schen wollten, schreiben, bevor sie verschwand.
Dies wurde meist als stérend und unkomfortabel empfunden. Interessant in

diesem Zusammenhang ist die Feststellung, dafi die reinen Erkennungsraten im
Falle von Loschen vergleichbar mit denen bei einem Uberschreiben waren. Eine
Verschlechterung trat hier nicht ein, obwohl nach Aussage der einzelnen Schrei-
ber Uberschreiben wesentlich robuster behandelt wurde als Ausstreichen. Dies
ist ein deutliches Indiz dafiir, dafi die alleinige Tatsache einer hohen Erken-
nungsrate nicht ausreicht, um die Qualitit eines Benutzerinterfaces beurteilen
zu kdnnen.

Hier liegt demzufolge ein moglicher Ansatzpunkt fiir zukiinftige Forschun-
gen. Beispielsweise wiirde es sich anbieten, nur diverse Gestiken fiir das Loschen
zuzulassen. Einschrinkungen beziiglich der Form verschiedener Ausstreichun-
gen versprechen eine hihere Erkennungsrate. Allerdings ist darauf zu achten,
dal} diese Zeichen von den Benutzern in einer einfachen und leicht zu merkenden
Art und Weise machbar sind. Ansonsten stiinde man vor dem gleichen Problem,
daf} zwar eine hohe Erkennungsrate erzielt wird, die Nutzbarkeit und Akzeptanz
von Seiten des Benutzers aber darunter leidet.

4 Korrekturen in gedrucktem Text

Neben Korrekturen im handgeschriebenen Eingangssignal bietet es sich auch
an, Verbesserungen in der Ausgabe des Erkenners zuzulassen, d.h., die Méglich-
keit anzubieten, gedruckten ASCII-Text via Handschrift zu korrigieren. Es gibt
sogar Situationen, in denen ein Fehler des Erkenners nicht durch Verbessern
der Handschrift behoben werden kann. Wie sollte beispielsweise das handge-
schriebene Wort “hell” korrigiert werden, wenn das Erkennungsergebnis “hello”
lantete?

Im folgenden wurde eine Version implementiert, die Léschen und Einfiigen
auf Buchstabenebene erlaubt. Da in der Regel ein wesentlicher Griflenunter-
schied zwischen handgeschriebenem Text und gedruckten ASCII-Zeichen be-
steht, gibt es hiufig keinen allzu grofien Bedarf, die Korrekturtypen “Uber-
schreiben” und “Vervollstindigen” bei dieser Aufgabenstellung anzubieten. Es
wird hier davon ausgegangen, daB es fiir einen Benutzer nicht wesentlich unkom-
fortabler ist, den Repair-Typ “Uberschreiben” durch zwei Korrekturen (Léschen
und Einfiigen) zu ersetzen, als seinen Schreibstil, bzw. die Grifle seiner Hand-
schrift, einem vorgegebenen Font anzupassen. Dies mag zwar in Ausnahmeféllen
nicht zutreffen, sollte jedoch keine allzu grofie Einschrinkung sein.

Auf der anderen Seite erleichtert solch eine Restriktion den Entwurf geeig-
neter Korrekturalgorithmen ungemein. Beispielsweise entfillt der Klassifikati-
onsschritt, der zwischen den einzelnen Verbesserungen unterscheidet, fast vollig.
Da kein Uberschreiben erlaubt ist, kéimnen simtliche Gestiken iiber einem ge-
druckten Text als Loschen interpretiert werden. Jegliche Handschrift in einem
Bereich der ausgezeichneten Eingabefléiche, in dem keine ASCII-Zeichen stehen,
wird dem Repair-Typ Einfiigen zugeordnet.

Es sei hier darauf hingewiesen, dafl auch der Klassifikationsschritt, der zwi-
schen korrigiertem Signal und Korrekturgestik unterscheidet und ohne den man
bei Verbesserungen innerhalb einer handschriftlichen Eingabe nicht auskommt,

16

nicht erforderlich ist. Diese Trennung entspricht hier der Aufteilung in ASCII-
Text auf der einen und den Koordinaten der Handschrift auf der anderen Seite.

Mittles Vergleich der Bounding Boxes der als Loschen klassifizierten Teile
der Handschrift und denen der gedruckten Buchstaben 1ifit sich die Behand-
lung von “Ausstreichen” recht einfach realisieren. Uberlappt die Bounding Box
eines Korrekturzeichens die eines Buchstabens, wird das entsprechende ASCII-
Zeichen aus der Buchstabensequenz entfernt. Etwaige Ungenauigkeiten an den
Riindern kénnen durch direkte Anzeige der Korrektur, d.h., durch das soforti-
ge Loschen der entsprechenden Buchstaben, und die interaktive Reaktion des
Benutzers, ausgeglichen werden.

Allerdings stellen sich hier auch zwei neue Probleme, die im letzten Kapitel,
bei Korrekturen innerhalb eines handgeschriebenen Signals, nicht aufgetreten
sind. Dies sind im einzelnen

e das Finden der richtigen Position fiir ein Einfiigen
und

e cin explosionsartiges Anwachsen der Grifie des Suchraumes in der Erken-
nung,.

Letzteres Problem lifit sich wie folgt erkliren. Bei der “normalen” Erken-
nung ist die Suche auf ein vorgegebenes Vokabular eingeschriinkt. Das heift, die
verwendeten Algorithmen sind nur in der Lage einen bestimmten Wortschatz
fester Grifle zu erkennen. Eine Eingabe von Seiten eines Benutzers, die nicht
von dieser Menge abgedeckt wird, wiirde unweigerlich zu einem Fehler fiihren.
Erlaubt man nun Korrekturen des Erkennungsresultats, genauer gesagt: das
Einfiigen von Wortteilen in ein falsch erkanntes Ergebnis, so kommt als neue
handschriftliche Eingabe eines Anwenders potentiell jeder moglichen Teilstring
in Frage, der im Originalvokabular existiert. In einem Beispiel wurde gezeigt,
daf sich damit die Zahl der méglichen Losungen bei einer Vokabulargrifie von
51866 auf 288610 (Teil-)Worte erhoht. Dies stellt eine mehr als Verfiinffachung
der Grifie des Suchraumes dar, was eine korrekte Erkennung wesentlich er-
schwert.

Hier wurde nun versucht, diese beiden Probleme zu umgehen, indem ver-
schiedene Einschrinkungen beziiglich der zugelassenen Korrekturen gemacht
wurden. Bestehen keinerlei Anforderungen an den Benutzer beziiglich der er-
laubten Ausstreichungen und Einfiigen, kann jede vom Benutzer eingegebene
Handschrift prinzipiell an jeder beliebige Stelle des als ASCIT-Text dargestellten
Ergebnisses eingefiigt werden und einen beliebigen String aus der Menge aller im
zugrundeliegenden Erkennungsvokabular vorkommenden Substrings darstellen.

Mit einer ersten Einschriinkung lassen sich die beiden entstehenden Proble-
me beheben, bzw. vermindern. Wird vom Anwender verlangt, da8 er eine Aus-
streichung (und darauffolgende Einfiigung) nur auf der Basis von kompletten
falschen Substrings des Erkennungsergebnisses durchfithrt, kann aus den ver-
bleibenden, nicht geléschten ASCII-Zeichen Information gezogen werden, die im
Erkennungsprozef} sinnvoll genutzt werden kann, Wird ein zusammenhangender

17

falscher Substring des Erkennungsergebnisses in einem Schritt geléscht, kénnen
die Buchstaben, die links und rechts der Loschstelle verbleiben als korrekt an-
genommen werden. Dadurch 14t sich nun die Menge mdglicher Lisungen auf
alle Substrings des urspriinglichen Vokabulars einschrinken, die zwischen die-
sen beiden Zeichen vorkommen, bzw. auf die entsprechenden Wortantinge oder
-enden, wenn ein Lischen am Beginn oder Ende einer ASCII-Zeichen-Sequenz
stattfand. Analysen mit dem oben erwiihnten, 51866 Worte umfassenden, Voka-
bular haben gezeigt, dal} sich auf diese Weise eine enorme Reduktion der Grofie
des zugrundeliegenden Suchraumes erzielen 1afit. Dies wirkt sich in der Regel
positiv auf das Erkennungsergebnis aus. Durch die Restriktion beziiglich der
Korrekturreihenfolge (1. Loschen, 2. Einfiigen) 148t sich das Problem, die rich-
tige Einfiigestelle zu finden, ebenfalls umgehen. Eingefiigt wird grundsiitzlich
nur an einer Stelle, an der unmittelbar zuvor ein Ausstreichen stattgefunden hat
(bzw. am Wortanfang oder Ende im Falle, dal kein vorheriges Loschen statt-
fand, jenachdem, ob die Einfiigung links oder rechts des ASCII-Textes gemacht
wurde).

Eine weitere Moglichkeit, das Problem einer Explosion der Grofle des Such-
raumes einzuschrinken, besteht darin, den gesamten Korrekturprozefi cines
Wortes in zwei Phasen aufzuteilen: (1.) Lische alle falschen Buchstaben aus
der dargestellten ASCII-Zeichen-Sequenz, (2.) Fithre gegebenenfalls Einfiigun-
gen durch. Nach dem Ende der 1. Phase, der “Ausstreich-Phase”, ist bekannt,
dafl alle verbleibenden Zeichen des dargestellten Ergebnisses korrekt sind. Im
vorangegangenen Fall konnten nur die jeweils linken und rechten Einzelbuch-
staben an den Rindern einer Loschstelle als richtig angenommen werden, da es
erlaubt war, nach einem Ausstreichen an einer bestimmten Position innerhalb
des Wortes, eine weitere Korrektur in einem anderen Wortteil durchzufiihren.
Mit dieser erweiterten Einschriankung lifit sich nun der Suchraum auf alle mogli-
chen Substrings des Originalvokabulars einschrinken, deren entsprechenden Ge-
genstiicke den nicht geléschten Zeichen des ASCII-Textes entsprechen. Daraus
ergibt sich eine weitere betrichtliche Reduktion der Grifle des Suchranmes, wie
anhand diverser Beispiel mit bereits erwidhntem, 51866 Worte grofien, Vokabu-
lar bewiesen wurde. Allerdings stellt sich hier wieder das Problem, dafl mehrere
Méglichkeiten fiir ein potentielles Einfiigen bestehen. Dies liefle sich beispiels-
weise dadurch losen, dal diverse Gestiken zur Markierung der Einfiigestellen
eingefithrt werden. Weitere Ansitze wiren die Verwendung eines sog. Cursors
(= Schreibmarke), der die genaue Einfiigestelle spezifiziert, oder die Abhand-
lung aller Einfiigungen in einer vorgegebenen Reihenfolge.

Bei der im Rahmen dieser Arbeit implementierten Version wurde eine weite-
re Binschriinkung an das Korrekturverhalten des Benutzers gemacht. Dabei ist
nur noch ein einziges Ausstreichen im kompletten Wort erlaubt. Das heifit, in
einem Loschvorgang fiir ein Wort darf genau ein zusammenhdngender Substring
ausgestrichen werden, der alle falsche Buchstaben enthalten muf. Das Wissen,
daB die verbleibenden Zeichen alle korrekt erkannt wurden und die Tatsache,
daff nur an der (in diesem Fall eindeutigen) Loschstelle eingefiigt werden darf,
Verringern cine Explosion der Suchraumgréfie und losen das Problem, die rich-
tige Einfiigestelle zu bestimmen. Allerdings miissen hier unter Umstiinden auch
Wortteile geloscht werden, die korrekt sind. Dies stellt eine Verschlechterung

18

des Benutzerkomforts dar, die beispielsweise bei Texteditiersystemen zu Pro-
blemen fithren konnte und daher unter Umstinden nicht hingenommen werden
kann. Da es sich in vorliegender Anwendung jedoch um die Korrektur von Tex-
ten, bzw. Worten, die als Ergebnis einer automatischen Handschrifterkennung
geliefert werden, handelt, fillt dieses Problem nicht so sehr ins Gewicht. Der
Grund dafiir ist, daB in einem falschen Erkennungsresultat die nicht korrekten
Buchstaben in den seltensten Fillen tiber das ganze Wort verteilt sind. In der
Regel treten Fehler nur als zusammenhingende Substrings auf. Dadurch tritt
der oben erwihnte Konfliktfall, dafi ein Ausstreichen richtiger Wortteile erfor-
derlich ist, um eine Korrektur ordnungsgemifi durchfiihren zu kénnen, in der
Praxis (zumindest mit dem in dieser Arbeit verwendeten Handschrifterkenner)
recht selten auf.

Da eine Auswertung auf der Basis einer korrekten Erkennungsrate extrem
von den verwendeten Wort- und Korrekturvorgaben abhiingt und beeinflufit
werden kann, ist eine statistisch unabhingige Evaluation extrem kritisch und
schwierig durchzufithren. Aus diesem Grund wurden in vorliegender Arbeit
keine derartigen Analysen durchgefiihrt, sondern lediglich die These, da8 sich
durch die diversen Einschrinkungen eine enorme Verringerung der Grofie des
Suchraumes ergibt, anhand diverser Beispiele nachgewiesen. Die Beispiele wur-
den so ausgewihlt, dafl statistisch reprisentative Ergebnisse erzielt werden
konnten. Die auf diese Weise erhaltenen Reduktionen waren so beachtlich, daf
eine Verbesserung der jeweiligen Erkennungsraten als sicher angenommen wer-
den kann.

5 Fazit

In vorliegender Arbeit wurden diverse Verfahren und Methoden fiir die Korrek-
tur bei der automatischen on-line Handschrifterkennung eingefiihrt, ausgewertet
und diskutiert. Ausgangspunkt war die These, daf} jegliche Art von Interface zur
Mensch-Maschine Kommunikation die Méglichkeit zur “Reparatur” und Ver-
besserung von Fehlern bieten muf}, um von einem potentiellen Nutzer angenoms-
men zu werden. Diese These stiitzt sich darauf, dafi es erstens unwahrscheinlich
ist, daBl eine immer hundertprozentig korrekte Erkennung einer Benutzerein-
gabe je erreicht werden kann, und zweitens, dafl selbst in einem solchen Falle
Fehler immer vorkommen und auch immer vorkommen werden, beispielsweise
durch fehlerhafte Benutzereingaben, technische Ausfille, etc. Punkt zwei wur-
de hier anhand einer Datenbankanalyse belegt. Diese empirische Studie diente
auch als Basis fiir eine Klassifikation typischer Fehler und Korrekturen. Sie gab
Aufschluff auf die Fragen, welche Arten in handgeschriebener Texteingabe iibli-
cherweise vorkommen und wie man diese hinsichtlich einer méglichen Realisie-
rung diverser “Repair”-Algorithmen klassifizieren kann. Zu diesem Zweck wur-
den die Korrekturklassen “Léschen”, “Vervollstindigen/Einfiigen” und “Uber-
schreiben” eingefiihrt.

Fir die beiden Fille “Korrektur innerhalb cines handgeschricbenen Tex-
tes” und “Verbesserungen des in ASCII-Text gedruckten Ergebnisses” wurden
diverse Heuristiken vorgestellt und ausgewertet. Es stellte sich bei beiden Alter-

19

nativen als recht schwierig heraus, Algorithmen und Heuristiken zu entwerfen,
die das Korrekturproblem in einer akzeptablen Art und Weise l6sen. Probleme,
wie ungenaue Benutzereingaben oder eine Explosion der Grofle des Suchraumes,
waren die Folge. Durch diverse Erweiterungen, Einschrinkungen und Modifi-
kationen beziiglich der Eingabe und des Design des Schnittstellen-Interfaces
konnte jedoch gezeigt werden, dal} eine akzeptable Behandlung von Korrektu-
ren und Verbesserungen moglich ist. Diese beiden Vorgehensweisen, die sich
gegenseitig ergiinzen und nur zusammen ein sinnvolles Ergebnis liefern, wurden
in zwei Konzepten zusammengefafit: das Konzept der Fehlerbehebung (“the
concept of error handling”) und das Konzept der Fehlervermeidung (“the con-
cept of error avoidance”). Letzteres beinhaltet beispiclsweise die unmittelbare
Darstellung einer ausgefithrten Verbesserung im Falle von Korrekturen in ei-
nem handgeschriebenen Text, wodurch sich diverse Probleme vermeiden lassen.
Aufgrund verschiedener Einschrinkungen, die an den Benutzer bei der Kor-
rektur von gedrucktem ASCII-Text gemacht wurden, konnten ebenfalls diverse
Probleme, wie zum Beispiel die explosionsartige Vergrofierung des Suchraumes,
behoben oder zumindest einschriankt werden.

Zwei fiir das Design jeglicher Art von Interface zur Mensch-Maschine Kom-
munikation wichtige Kriterien sind eine hohe Erkennungsrate und Benutzerak-
zeptanz. Obige Implementierungen und Untersuchungen im Falle der automati-
schen Handschrifterkennung haben versucht, eine Losung zwischen den folgen-
den zwel Extremen zu finden: (1) keinerlei Einschrankungen werden beziiglich
des Korrekturverhaltens an den Benutzer gestellt und (2) jegliche Art von Ver-
besserung im Text ist durch Einschriankungen und vorgegebene Verhaltenswei-
sen reglementiert. Punkt (1) resultiert iiblicherweise in einer hohen Benutzerak-
zeptanz, da dem Anwender beziiglich seiner Eingabe villige Freiheit gewihr-
leistet wird, aber auch in einer niedrigen Erkennungsrate, da eine vollstindig
richtige Erkennung einer beliebigen Eingabe (noch 7) nicht méglich ist. Das
zweite Extrem hingegen wird durch seine diversen Reglementierungen eine hohe
Erkennungsrate aufweisen, die Benutzerfreundlichkeit und damit die Akzeptanz
eines moglichen Anwenders wird aber zu wiinschen iibrig lassen. Die grofie Her-
ausforderung beim Entwurf multimodaler Mensch-Maschine Schnittstellen ist
es demnach, zwischen den beiden Extremen einen Mittelweg zu finden, der hohe
Erkennungraten garantiert, dem Nutzer jedoch gleichzeitig ein brauchbares und
fiir ihn akzeptables Interface zur Verfiigung stellt.

20

Danksagung

Zum Schlufl méchte ich mich hiermit noch bei allen bedanken, die mir bei
dieser Arbeit mit Rat und Tat zur Seite gestanden haben. Besonders erwihnen
mochte ich Prof. Alex Waibel, der mir die Méglichkeit gegeben hat, diese Arbeit
in seinem Arbeitskreis in den U.S.A. durchzufiihren, sowie meinen Betreuer Jie

Yang.

Ein weiterer Dank geht an Ralph Grofi, Bernhard Suhm, Matthias Den-

ecke und Jie Yang, die die Zeit und Geduld aufgebracht haben, mir Daten zu
spenden, die ich fiir die Evaluation der Heuristiken benétigte.

Literatur

[1]

2]

[3]

[4]

S. Mori, C.Y. Suen, K. Yamamoto: Historical review of OCR research and
development. Proceedings of the IEEE, 1992

T. Wakahara, H. Murase, K. Odaka: On-line handwriting recognition. Pro-
ceedings of the IEEE, 1992

S. Manke, U. Bodenhausen: A connectionist recognizer for on-line cursive
handwriting recognition. Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, 1994

S. Manke, M. Finke, A. Waibel: NPen™": A writer independent, large
vocabulary on-line cursive handwriting recognition system. Proceedings of
the International Conference on Document Analysis and Recognition, 1995

L.R.B. Schomaker: User-interface aspects in recognizing connected-cursive
handwriting. Proceedings of the IEE Colloquium on Handwriting and Pen-
based input, 1994

C. Frankish, R. Hull, P. Morgan: Recognition accuracy and user acceptance
of pen interfaces. Proceedings of the Conference on Human Factors in
Computing Systems, 1995

21

