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Chapter 1

Introduction

A multimodal human-computer interface is helpful to enhancing human-
computer communication by the processing and combination of multiple
communication modalities known to be helpful in human communicative
situations. Many human-computer interaction applications require the in-
formation where a person is looking, and what he/she is paying attention
to. This information provides communication cues to a multimodal inter-
face. Such information can be obtained from tracking the orientation of a
human head, or gaze. While current approaches to gaze tracking tend to be
highly intrusive — the subject must either be perfectly still, or wear a special
device, in this report we present a non-intrusive model-based gaze tracking
system.

A person’s gaze direction is determined by two factors: the orientation of
the head, and the orientation of the eyes. While the orientation of the head
determines the overall direction of the gaze, the orientation of the eyes is
determining the exact gaze direction and is limited by the head orientation.
In this study, we focus on estimating the orientation of the head. The hereby
obtained gaze estimates are precise enough for a lot of applications and the
method allows gaze estimation, even when an observed person is rather far
away from the camera and no high resolution images of the eye regions are
available anymore. This would apply, for example, to situations where a
person is allowed to freely move in a room. The eye gaze in addition could
be further estimated on the top of the orientation of the head, to gain a
more precise gaze estimation whenever high resolutionr images of the eye
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regions are available. Many researches have been directed to obtaining the
gaze of a person. The approaches can be classified as hardware or software
based. Hardware-intensive and/or intrusive methods require the user to
wear special headgear, or they use expensive hardware like radar range-finder
[27]. Recently, there have been proposed non-intrusive gaze trackers using
mainly software. Baluja and Pomerleau proposed a method to estimate the
eye gaze on a computer monitor [23]. In their approach, the user however
has to stay in an almost fixed position and is not allowed to turn his head.
Also special lighting is needed. Cipolla & Gee developed a system to track
the rotation and position of the head by finding correspondences between
facial feature points and corresponding points in a model of the head, using
a weak perspective projection [17]. The system however has to be initialized
manually because it cannot locate the face and the facial feature points
automatically.

We present a software based system in this report. The system estimates
the 3-D pose of a user’s head by tracking as few as six facial feature points.
Our system is able to find and track facial feature points automatically, as
soon as a person appears in the field of view of the camera, and turns his
face towards the camera. The system is also able to recover from tracking
failures. To find facial feature points such as eyes, lip corners or nostrils in
the image, we use a top-down approach. First, the system locates a face
in the image. This is done by using a statistical color-model as described
in [24]. Then, the facial features are searched inside the facial region. A
full perspective model is employed to map these feature points onto the 3D
pose. Several techniques have been developed to track the feature points
and recover from failure.

Our system has achieved a frame rate of 15+ frames per second using an
HP 9000 workstation with a framegrabber and a canon VC-C1 camera. On
evaluation image sequences, we achieved average rotation errors as low as
5 degrees for rotation around the x- and y-axis and as low as 1 degree for
rotation around the z-axis. Average errors for feature location were as low
as 2 - 3 pixel in x- and in y-direction.

To show the usefulness of the gaze tracker, we developed a multimodal
interface to view panorama images. Therefore we used the gaze tracker
to control scrolling through the 360 degree panorama images in Apple’s
Quick Time Movie Player, and voice-commands to control the zoom. The
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interface client receives parameters describing the rotation of the head from
the gaze tracker and parameters describing spoken commands from a speech
recognizer. It then sends the appropriate mouse- or key-events to the image
viewer. Both the interface and the image viewer are running on a PC, and
communication is done via sockets. With such an interface, a user can fully
control the panorama image viewer without using his/her hands. He can
scroll through the panorama images by looking to the left and right or up
and down, and he can control the zoom by speaking the commands “zoom
in” or “zoom out”.

Further work will include combining the system with eye-gaze tracking
to obtain more accurate gaze estimations whenever the user is close to the
camera and high resolution images are available, and introducing active
camera control. Other potential applications of the system include virtual
reality environments and tele-conferencing.

The remainder of this report is organized as follows. Section two gives a
short overview of the problem of pose estimation from 2D to 3D correspon-
dences and explains the algorithm that we used to compute the pose. In
section three, the search of the face in the camera image and the search for
the facial features such as eyes, lip corners and nostrils is described. Section
four explains the tracking of these features. In section five, we describe two
methods to find outliers in the set of found features, and how to predict
their true positions. In the following section we adress the problem of de-
tecting and recovering from tracking failure to build a more robust system.
Section seven shows results using different tracking techniques, that we ob-
tained with our system on prerecorded test sequences. In section eight we
give a short overview of the multimodal interface and how we use the gaze
tracker to control a panorama image viewer. Finally, in section nine follows
a conclusion and we adress further research directions.
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Chapter 2

Model Based Object Pose
Estimation

2.1 Background

Pose estimation is to compute the 3D position and rotation of an object,
based on a certain coordinate system.

In this study, we are interested in estimating a person’s gaze by computing
the position and rotation of his head. This can be formulated as a pose
estimation problem, where we try to estimate the position and rotation of
the person’s head in the coordinate system that is attached to the camera.
Given a model of the head, i. e., we know the 3D-positions of the facial
model points, such as eyes, lip corners and nostrils in the object coordinate
system, and given the corresponding 2D-positions of these points in the
camera image, this pose estimation problem can be solved.

The problem of computing the object pose from 3D- (object points) to
2D-correspondences (image points) has been investigated extensively in the
photogrammetry and computer vision literature. The approaches can be
divided in two categories: closed-form solutions and numerical solutions.
Closed-from solutions work only when the number of correspondences is
limited [5, 7). Whenever the number of correspondences exceeds four, itera-
tive solutions are needed [15, 9, 6]. A straightforward method is to compute
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the elements of the perspective projection matrix [12, 13, 4], — which maps
the feature points of the object onto their image projections in homogeneous
coordinates — as solutions of a linear system. To find such a mapping, six
correspondences have to be found. Alternative methods were proposed by
Tsai [14], Lowe [9] and Yuan [15]. Tsai's method is especially useful when
the intrinsic camera parameters, such as focal length, lens distortion and
image center, are unknown. However, these techniques rely on the Newton-
Raphson method, which presents two significant drawbacks: first, an initial
pose has to be provided to start the iteration process; second, the pseudo-
inverse matrix of a Jacobian matrix has to be computed in each iteration
step, which is a computationally expensive operation. Phong et al. [11]
described a method, that works relatively good for a large number of corre-
spondences. But, for three to ten correspondences, this method converges
very slow and does not guarantee convergence.

Dementhon & Davis [1, 2 recently proposed a method that works for an
arbitrary number of point correspondences greater than three. The points
may be either in general position (non-coplanar) or coplanar. The method is
very fast and robust with respect to image measurements and to camera cal-
ibration errors. It combines linear methods, necessary for weak perspective
camera models, with non-linear methods, that are needed to compute the
pose under a full perspective model. It approximates the full perspective so-
lution, using linear computations. Since this method has these advantages,
we we will use it for our pose estimation problme. Some basic concepts are
described in the rest of this section.

2.2 Camera Models [7]

2.2.1 Perspective Camera Model

In the setup as depicted in Figure 2.1, we denote by a 3-D point P;(X;, Y;, Z;)
in a frame that is attached to the object - the object frame. The origin this
frame is the object point Fy. An object point F; projects onto the image
in p; with camera coordinates z; and y;. The camera coordinates can be
presented as:
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where P; is the vector from P, to F;, and where the rigid body transforma-
tion from the object frame to the camera frame is given by:
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The relationship between the camera coordinates and the image coordi-
nates may be obtained by introducing the intrinsic camera parameters:

Uj = Oty Tj + U, (2.3)
Vi = Qi + Ve, (2.4)

where o, and a,, are the vertical and horizontal scale factors and u, and v,
are the image coordinates of the image center.

Dividing both the numerator and denominator of egs. 2.1 and 2.2 by .,
we can infroduce the following notations:

e I = i/t. is the first row or the rotation matrix scaled by the z-
component of the translation vector;

J = j/t. is the second row of the rotation matrix scaled by the z-
component of the translation vector;

xg = tz/t, and yy = t,/t. are the camera coordinates of py which is
the projection of F - the origin of the object frame, and

€ = k- Pa/t.ﬂ_’
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Figure 2.1: This figure shows the general setup. One of the object’s points
is selected as the origin of the object frame. Therefore, the pose parameters
are the coordinates of this object point (Fy) in the camera frame and the
orientation of the object frame with respect to the camera frame.

The perspective equations can then be rewritten as:

I-P;

#y= AT (2.5)
14¢g
J-P;+ 1y :
= T A 2-()
Y 14e (2.6)
or:

zi(l+¢)—zo=1-P;, (2.7)
vi(l+e)—yo=J-Pi. (2.8)
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Whenever the object is at some distance from the camera, the ¢; are
small compared to 1, and an approximation of the perspective solution can
be introduced: weak perspective.

2.2.2 Weak Perspective

The scaled orthographic projection (SOP), or weak perspective, is an ap-
proximation of full perspective.

With this approximation, we assume that for a given object in front of
the camera, there is relatively little change in depth, i. e., the depths of
the different object points F; are not very different from each other, and are
therefore all similar to the depth of the origin P of the object coordinate
systern.

With SOP (weak perspective), the image of an object point P will be a
point pi in the image plane with the following coordinates:

gy = fXi/Zy, wi = fYi/Zo,

whereas with full perspective projection, we obtain a point p; with coordi-
nates:

z = Xi/Z;, yi = [Yi/Z;.

The relation s = f/Z; is the scaling factor of the SOP. The point of reference
Fp has got the same image point py under weak and under full perspective
projection.

Weak perspective assumes that the object points lie in a plane parallel
to the image plane passing through the origin of the object plane. This is
equivalent to a zero-order approximation:

1
1+¢

With this approximation, egs. 2.5 and 2.6 become:

~1Vi,iel...n

ﬂ":u —Ip = I- Py, (29)
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v -w=J-Py (2.10)

where z’ and 4} are the camera coordinates of the weak perspective pro-
jection of the point F;. By identification with egs. 2.7 and 2.8 we obtain the
relationship between the weak perspective and the perspective projections
of B

zi’ = zi(1 + &), (2.11)
yi = yi(l + &) (2.12)

For an analysis of the quality of the SOP and further details, see [7].

2.3 From Weak Perspective to Perspective — the
POSIT Algorithm [7]

In order to solve the pose problem, Dementhon & Davis [1] noticed that eqgs.
2.9 and 2.10 are similar to eqs. 2.7 and 2.8 for which the ¢; are set to zero.
We therefore can conclude:

o Whenever the ¢; are fixed, the pose equation 2.7 and 2.8 become linear
in I and J. If at least four object points are provided, a solution can
be found.

e It is possible to solve egs. 2.7 and 2.8 iteratively by successive linear

approximations.

In this case, the pose algorithm starts with a weak perspective camera
model and computes an approximate pose. This approximated pose is im-
proved iteratively as follows:

1. Vi,t€{l...n}yn =3, =0;

2. Solve the over constrained linear system of equations 2.7 and 2.8 which
provides an estimation of vectors I and J;

18



3. Compute the position and orientation of the object frame with respect
to the camera frame:

1 ( 1 1 )
t: = = (1 + e

2\ [
tr = xpt.
ty = ot
{ - I

(1Tl
il = J

1711
k = ixj

4. For all ¢ compute:
k-P;
€ =
ts
If the ¢; don’t change anymore, stop the procedure, otherwise go to

step 2.
A geometric interpretation of this algorithm can be found in [1, 2].

2.4 Solving the Linear Equations [7]

The over constrained equation system of eqs. 2.7 and 2.8 can be written in
matrix from as follows:

P I = x (2.13)
———— —_
nx3 3xl nxl
nx3 3x1 nxl

where P is a n % 3 matrix formed by the 3-D coordinates of n vectors
P;...P,. Since the point Fy is the origin of the objhect frame, this matrix
can be written as:
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To solve these linear equations, two cases have to be distinguished: non
coplanar an coplanar sets of object points.

2.4.1 Non Coplanar Object Points

If the object points are not coplanar, the rank of P is 3 and therefore the
solutions for I and J are simply giben by:

I = Bx
Jd = By

whereas B = (PTP)~! PT is the pseudoinverse matrix of matrix P Notice,
that the pseudo-inverse matrix B can be computed off-line and hence the
estimation of I and J is particularly efficient.

2.4.2 Coplanar Object Points

If the object points are coplanar, P has rank 2 and additional constraints
have to be used for the solution of the equation system. See for example [3]
or [7] for a discussion.

In that case, two possible solutions for I and J are obtained. These
solutions correspond to the well known reversal ambiguity associated with
an affine camera model.

In each iteration, therefore two poses are obtained, which have the same
translation vector.

20



2.5 Computing the Pose of the Head

As already mentioned above, we formulated the gaze estimation problem as
a pose estimation problem and try to compute the pose of the user’s head by
finding correspondences between facial model points and their image points.
Using Dementhon’s and Davis’ POSIT-algorithm, it is now necessary to
find at least four 3D- to 2D-correspondences to compute the pose, and the
model-points should preferably be non-coplanar to each other. In this study
we therefore try to search and track the following six features in the image:
the eyes, the lip corners and the nostrils. They form a non-coplanar set of
feature points.

In the following sections we will now discuss how to search and track
these features in the image.
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Chapter 3

Searching the Features

In order to track facial features, these features have to be located in the
image first. This initial search is more complicated than tracking the fea-
tures, because no information is available about previous feature locations
that could help to restrict the search-regions.

To search the facial features such as eyes, lip corners and nostrils, we use
a top-down approach. First we search the facial area in the image, using
a statistical color model. Once the face is found, the search of the facial
features can be restricted to certain areas inside the face.

3.1 Searching the Face Using a Color Model [24]

Our approach to find and track a face in the camera-image, is to use color-
information.

If we analyze the face region in an image (see Figure 3.1 and Figure 3.2),
we can discover the skin color distribution clusters in a small area of the
chromatic color space (Figure 3.3):

We have further found that distributions of skin colors of different people
are clustered in chromatic color space. Although skin colors of different
people appear to vary over a wide range, they differ much less in color than
in brightness. In other words, skin colors of different people are very close
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Figure 3.1: Sample face

Figure 3.2: Face region

but they differ mainly in intensities. The following Figure shows a skin color
distribution of forty people with different skin colors in the chromatic color
space. The distribution was obtained by analyzing faces of different races,
including Asian, African American, and Caucasian.

By closely investigating the face color cluster, we have discovered that
the distribution has a regular shape. A close view of skin color distributions
is shown in the following. Figure 3.4 (a) and (b) are color distributions of a
face under different lighting conditions and 3.4 (¢) is the color distribution
of two person’s faces.

It is obvious that the human face colors of different people under differ-
ent lighting conditions in the chromatic color space have similar Gaussian
distributions. Therefore, a face color distribution can be represented by a
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Figure 3.4: Different face color distributions

Gaussian model.

Since the model only has six parameters, it is easy to estimate and adapt
them to different people and environments.

The input image is searched for pixels with face colors. Pixels with colors
near the means of the color distribution are considered as possible facial
areas. The largest connected region of face colored pixels in the camera
image is considered as the region of the face.

Initially, a general color distribution with a relatively big variance is
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used, to be able to find faces with different face colors, and under different
lighting conditions. This initial color distribution can be obtained once
by collecting images of different people with varying face colors and under
different lighting conditions .

Figure 3.5 shows a sample input image (Note that we use a color image
originally!) and the application of the face color classifier to it.

input image (color!) tace-colored regions

Figure 3.5: Application of the color model to a sample input image. The
face is marked in the input image

Once a face is found in the image, the color distribution is constantly
adapted to the actual face colors to increase robustness of the search even
under changing lighting conditions (for example, caused by the person mov-
ing to different positions in a room).

A thorough description of the use of the statistical color model to find
and track the face can be found in [24]

After the face has been found, the facial features can be searched in a
restricted area within the face.

3.2 Searching the Pupils, Using iterative Thresh-
olding and Geometric Restrictions

Within the face, the pupils are two dark regions that satisfy certain geo-
metric constraints, such as position inside the face, symmetry according to



the facial symmetrie axis and minimum and maximum width between each
other. We assume, that the user is initially looking straigth into the camera,
and that we therefore have a frontal or near-frontal view of the face. Then
the search area for the pupils can be restricted to lie within the upper half,
and within some margins away from the borders of the facial area. We can
now search the pupils by looking for two dark regions within the search area,
that satisfy the mentioned geometric constraints.

Figure 3.6: Search area for eyes

In order to robustly locate the pupils, we have developed an iterative
thresholding method.

3.2.1 [Iterative Thresholding of the Image

For a given situation, these dark regions can be located using a fixed thresh-
olding within the search area. However, the threshold value may change for
different people and lighting conditions. For different values of the threshold
and different lighting conditions, the found regions will vary a lot as well in
size as in number. For example, by thresholding a very bright image of a
face with the same threshold as a very dark or shady image, we might obtain
no blobs at all in the bright image and a lot of blobs in the dark image.

To use the thresholding method under changing lighting conditions,
we developed an iterative threshold algorithm. The algorithm iteratively
thresholds the image, starting with a very low threshold, until we find a
pair of regions that satisfies our geometric contstraints.

Algorithm 1:
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1. Set threshold k = kg
2. threshold the search area with threshold k

3. apply some initial constraints to find candidates among blobs (see
3.2.2)

4. check and rank the candidate regions according to geometric con-
straints (see 3.2.2)

if none of the pairs satisfies the constraints: increase threshold k (k =
k + ¢) and go to step 2)

on

else: choose highest ranked pair of candidate regions as eye regions.
Stop.

The positions of the pupils are found, looking for the darkest pixels in
the obtained two eye regions.

The initial threshold ky is chosen in such a way, that no blob at all
will appear in the search region. Thresholding the image with an increased
value will eventually lead to more and bigger blobs, which constitute possible
candidates for the eye regions, and finally a sufficient pair can be found. In
fact, in most of the cases, the first two candiates that appear are already the
actual pupils, because they are the darkest objects in the search region and
other facial features such as nostrils or hair will lead to blobs that usaually
are not accepted as candidates, because the are either too big, or lie along
the borders of the search region.

Figures 3.7 and 3.8 show processes of the iteratively thresholding of the
facial areas. Note, that in the real system however, only the search area for
the eyes is thresholded, as shown in Figure 3.8. It can be observed from
Figure 3.8, that the first accpetable blobs are already the pupils. The white
regions in the upper left corner belong to hair and are rejected as candidates,
because they are lying along the border of the search-area.

Because the thresholding value is not fixed, this method is able to ap-
ply to various lighting conditions and to find the pupils in very differently
illuminated faces robustly.
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k=30 k=40 k=80

Figure 3.7: Use of iterative thresholding to find the eyes. Note: In the real
system, only the search area for the eyes has to be thresholded!

i

k=30 k=32 E = 34 - eyes
found

Figure 3.8: Iterative thresholding of search window for the eyes

3.2.2 Geometric Constraints

Using knowledge about anthropometric measures such as approximate dis-
tance between eyes, and location of the eyes, and the assumption that we
initially have a near-frontal view of the face, we have implemented the fol-
lowing constraints to choose and rank pairs of blobs.

s Position: Only blobs that lie completely inside the search window
are accepted. Blobs that are connected with the border of the search
window usually belong to hair and are therefore rejected.

¢ Minimum Size: Only Blobs that are bigger than 2 pixels were con-
sidered. This is done mainly to eliminate blobs that are produced by
noise in the input image.

e Maximum Size of blobs: The maximum size of the blobs was set to
exclude big blobs that sometimes appear at the borders of the search
area due to hair, or in case of non-frontal views of the face due to dark
background in the image
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e Maximum vertical extension of blobs: Blobs that are very ex-
tended vertically are excluded, knowing that the eye-regions are rather
horizontally extended.

Within each blob, that satisfies the initial restrictions the darkest pixel is
found and used as position of the eye candidate. These candidates are now
checked pairwise. The pairs have to satisfy the following constraints:

e horizontal distance: A maximum and minimum horizontal distance
18 set

e vertical distance: A maximum vertical distance is set, assuming,
that the head isn’t bended to the sides very much initially.

e Symmetry: Candidates have to lie approximately symmetrically to
the facial symmetric axis. The following symmetry-measure D(i, 7)
was used:

D(i,j) = |cand;[z] — (w — cand;[z])|, where cand;[z] and cand;[z] de-
scribe the horizontal position of the candidates, and w is the width of
the search region. D will be zero, if the candidates have the same dis-
tance from the border of the search window and therefore lie perfectly
symmetrically. As their distances to the boarder differ from each other,
D(z,7) increases linearly. A maximum “symmetrie-distance” Do is
set. If D(z,7) exceeds Dy, the candidate pair (4, j) is rejected.

If more than one pair satisfies the above constraints, the one with the
least symmetry distance D(z, 7) is chosen.

Note that all the parameters to implement the constraints, mentioned
above are chosen relative to the actual size of the face. The method is
therefore independent of the size of the face in the image and it eliminates
the need to normalize the size of the face.

3.3 Searching the Lip Corners

The basic idea to find the lip corners is to stepwise more and more refine
the location of the lips, by first looking for the vertical position for the line
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between the lips, then finding rough horizontal boundaries of that line in a
smaller search region, and finally searching the exact position of the corners.

3.3.1 Predicting Locations of the Lip Corners

First, the approximate positions of the lip corners are predicted, using the
positions of the eyes, the face model and the assumption, that we have a
near-frontal view. A generously big area around those points is extracted
and used for further search. In Figures 3.9 the initial search windows for
eyes and lips are marked for two faces. The rectangles mark the predicted
positions of the lip corners and the crosses mark the found eyes and lip
corners respectively.

Figure 3.9: Initial search areas for the lips, and found lip corners. The small
rectangles mark the predicted positions of the lip corners.

3.3.2 Use of Integral Projections to Locate the Lips

To find the vertical position of the line between the lips, we are looking
for a dark and horizontally extended region. This can be found by using
a horizontal integral projection P}, of the greyscale image in the search re-
gion. The horizontal integral projection P, is obtained by summing up the
greyscale values of the pixels in each row of the search area:

w
Pu(z) = I(z,y) ,0<z < H,
y=1
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search area horizontal
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Figure 3.10: Search of the vertical position of the line between the lips

where I(z,y) is the intensity function of our search window, and W and H
are the width and height of the search area, respectively.

Because the line is the darkest horizontally extended structure in the
search area, the vertical position of the lip line can now be located where
Py, has its global minimum. Figure 3.10 shows the search window for the
lip-line and a rotated plot of the corrseponding Projection P,,. The vertical
position, where P, has its global minimum is marked in the image.

To obtain the horizontal boundaries of the lips, a smaller search area
around the estimated vertical position of the line between the lips is ex-
tracted, and a horizontal edge operator is applied.

The approximate horizontal boundaries of the lips can now be found,
regarding the vertical integral Projection F, of this horizontal edge image.
F, is obtained by columnwise summing up the intensities of the pixels of the
edge image.

H
Fy(y) = Z Ey(z,y) 0y =W,
r=1

where Ej(z,y) is the intensity function of the horizontal edge image, and W
and H are the width and height of the search area, respectively. To obtain
the horizontal edge image, we used a horizontal Sobel operator. Figure 3.10
shows the search area around the line between the lips, their horizontal
edge image and the corresponding vertical Projection of the horizontal edge
image. The left and right borders of the lip-line is marked in the input
image.
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horizontal edge image

vertical projection

Figure 3.11: Finding horizontal borders of the lips, using a vertical projec-
tion of the horizontal edge image of the lips

The approximate left and right boundaries of the lips can be located,
where P, exceeds a certain threshold ¢ or respectively falls below that thresh-
old. We choose t to be the average of the projection F,. The vertical posi-
tions of the left and right lip corners can simply be found by searching for the
darkest pixel along the columns at the left and right estimated boundaries
of the lips in the that search region.

The use of integral projections to extract facial features is for example
described in [16] or in Kanade’s work on face recognition [21]

3.3.3 Looking for Maximum Contrast along the Line be-
tween the Lips

To obtain the final position of the left and right lip corner, we then search
along the darkest path (the line between the lips) to the sides for a certain
distance d and compute the contrast at each position along the lip-line. Be-
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cause there is a sudden change from dark to bright intensities along the line
between the lips, where the corners are located, the final lip corner positions
can considered to be where the contrast along the lip-line has a maximum.
Again, this method is independent from lighting conditions, because no fixed
thresholds are used. As long as the consecutive search regions are chosen
big enough, this method is only dependent on the parameter d, which has
to be chosen, so that the search along the lip-line will go further than the
actual lip corners, and not too far to search out of the facial region, which is
in fact not a problem with near-frontal or frontal views of the face. As well
the parameter d as the other parameters to specify search areas are chosen
according to the actual size of the found face.

3.4 Searching the Nostrils

Similar to searching the eyes, the nostrils can be found by searching for
two dark regions, that satisfy certain geometric constraints. Here the search
region is restricted to an area below the eyes and above the lips. Again,
iterative thresholding is used to find a pair of legal dark regions, that are
considered as the nostrils.

Figure 3.12 shows the search area for the nostrils for two different faces
with the found positions of the nostrils marked.

Figure 3.12: Search region for nostrils and found nostrils
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Chapter 4

Tracking the Features

For Tracking, the features can be searched in small search windows around
the last feature-position. These search windows additionally are predicted
using linear extrapolation over the two previous positions of those features.
The widths of the local search windows are all adjusted to the size of the
facial-regions.

In Figure 4.1 the search windows for all features are shown. The two
white lines along the line between the lips indicate the search path along
this line (see 4.3)

Figure 4.1: Search windows in tracking-mode
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4.1 Tracking the Face

In order order to beeing able to adjust parameters for the search windows
of facial features to changing sizes of the face and to adjust parameters for
the color-model (see [24]), it is necessary to track the face in the image.
Therefore, the face is searched in a search window around the last position
of the face (see Figure 4.1). Because position and size of the face in the
image will normally not change rapidly, it is not necessary to track the face
in each frame. We tracked the face every 5 to 10 frames.

4.2 Tracking Eyes

For tracking the eyes, simple darkest pixel finding in the predicted search
windows around the last positions is used.

4.3 Tracking Lip Corners

While for the search of the lip corners, we could apply methods as integral
projections and edge detection, this is not anymore feasible for tracking,
because these operations take too much time.

These expensive operations in the search mode of the system were neces-
sary, to locate the line between the lips, to start the search along this line.
During tracking however, this line, or at least points on this line can be
found much easier. Because previous positions of the corners are known, we
simply have to look for the darkest pixel in an aera next to the old positions,
to find two points on the line between the lips. Once these points are found,
the lip corners can again be found by searching along the darkest path to
the sides, and looking for the maximum contrast along this path. This local
search can be done very fast, and it is an effective method to locate the
corners of the lips.

Tracking the lip corners consists of the following steps:

1. Predict the new positions of the lip corners through linear extrapola-



tion over the previous locations

2. Search the darkest pixel in a search region right of the predicted po-
sition of the left corner and left of the predicted position of the right
corner. The found points will lie on the lip-line, near the corners

(o]

Search the darkest path along the lip-line for a certain distance d to
the left and right respectively, and choose positions with maximum
contrast as lip corners

The search for the darkest pixel in the regions near the predicted lip corners
ensures, that even with a bad prediction, a point on the lip-line is found,
and the true positions of the lip corners can be found in the next step. Fig.
4.2 shows the two search windows for the points on the line between the lips.
The two white lines mark the search paths along the darkest paths, starting
from where the darkest pixel in the search windows have been found. The
found corners are marked with small boxes.

Figure 4.2: Search along the darkest path, starting from the darkest points in
the two search windows (see text). Corners are found, where the maximum
contrast along the search path is found.

4.4 Tracking Nostrils

Our approach to track the nostrils is basically the same as to search the
nostrils, namely to search for two dark regions, that satisfy some geometric
constraints. This is also done by iteratively thresholding the search region
and looking for 'legal’ blobs. But whereas we have to search a relatively
big area in the initial search, during tracking, the search window can be
positioned around the previous positions of the nostrils, and can be chosen
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much smaller. Furthermore, the initial threshold can be initialized with a
value that is a little lower than the intensity of the nostrils in the previous
frame. This lintits the number of iterations that are necessary to find the
nostrils, and the nostrils usually can be found within very few iterations.

However, not always both nostrils are visible in the image. For example,
when the head is rotated strongly to the right, the right nostril will disap-
pear, and only the left one will remain visible. To deal with this problem,
the search for two nostrils is only done for a certain number of iterations,
and if no nostrils were found, we then continue searching just for one nostril
by looking for the darkest pixel in the search window. To decide which of the
two nostrils we have found, we use a sample consensus method, which will
be described in section 5.1. If only one nostril was found, only the position
of this nostril (together with eyes and lip corners) is used to compute the
pose. The position of the other nostril can easily predicted in the following
frame, making it easier to find both nostrils again.

Figure 4.3 shows some example images, where only one nostril could be
found. The found nostril position there are marked by a small cross and the
predicted locations of the other nostril are marked by a small box.

Figure 4.3: Predicted positions of second nostril
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Chapter 5

Rejection and Prediction of
Outliers

Pose estimation is typically an over-constrained problem, i. e., there are
usually more correspondences available, than those are necessary to solve the
equation systems for computing the pose. Furthermore, automatic finding
and tracking of features in an image is error prone, and time after time,
there will be outliers in the set of found features.

To avoid degradation of the pose estimation due to outliers in the found
feature set, it might therefore be a better idea not to use all the found
correspondences, but to choose a best subset of correspondences to compute
the pose. Finding and rejecting outliers in the set of correspondences will not
only lead to better pose estimations, but also enables the system to recover
from tracking failures of single features, by predicting the true positions of
outliers, and using the predicted positions to initialize tracking in the next
frame.

A good way to choose a best subset, can be done by using a modified
version of the RANSAC paradigm (RAndom SAmple Consensus), which was
introduced by Fischer & Bolles [5].
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5.1 Sample Consensus

The basic idea of the RANSAC paradigm is to find a set of points that
are consistent with a single pose, and to reject the remaining outliers. The
original RANSAC approach meant to choose random subsets of the data to
compute the pose, until a sufficiently good subset was found. However, this
is only necessary, if the amount of data is really big, and not all possible
subsets can be computed. With only a few feature points, like in our case,
it is perfectly feasible to use all possible subsets to compute the pose and
find a best subset.

In our case, we have six model points. To compute the pose using the
algorithm proposed by DeMenthons & Davis (2], we need at least four corre-
spondences, and the objecet points should preferably be non-coplanar (see
section 2). Because the lip corners and eyes lie in one plane, we therefore
should have at least one nostril in our feature subset to have a non coplanar
set of object points. We furthermore assume, that we have not lost more
than one feature in one frame. The considered subsets accordingly were
chosen as follows:

1. In case, we only found one nostril, only the two subsets are considered,
where the left or the right nostril is missing, respectively. This forces
the system to choose, which of the two nostrils was found.

2. In case both nostrils were found, the six subsets, where one feature is
missing in each of them, are considered, plus the complete set of six
correspondences.

Note, that the pseudoinverse matrices, that are necessary to compute the
pose, have to be computed in advance for each of the model subsets.

The following steps are now done for all the considered subsets:

1. choose one subset to compute the pose

2. use the estimated pose to back-project the used model points onto the
image plane

3. measure the average distance (MSE) of back-projected points and
found feature points in the image
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Finally, the subset with the least error (distance) is chosen to be the best sub-
set. This subset produced a pose, where the back-projected points matched
the actual found points the best. The use of only two subsets in case that
we have only found one nostril, forces the system to decide, which of the
two nostrils was found.

Our approach is slightly different from the method proposed in [18], where
(in step 2) the whole model is projected back onto the image plane, and the
number of back-projected points, that lie within a certain circle around the
feature-points in the image, is used to find the best subset. This requires
however the determination of a parameter r to define the circle around the
points in the image, on which the choice of the best subset depends, and
which has to be determined empirically.

5.2 Temporal Continuity Tracking

As proposed by Gee & Cipolla [18] the sample consensus approach can be
modified, so that the candidate-sets are chosen according to the smoothness
of the implied motion, instead of the best match of back-projected model
points.

Then step 3) has to be modified as follows:

e measure the smoothness of motion, that is implied by the pose, that
was computed with the current subset

Now, the subset, that implied the smoothest motion is chosen as the best
subset. Assuming that we have high sampling rates and therefore only little
motion from frame to frame, and assuming zero-mean Gaussian distributions
for the linear and angular velocities, we can select the pose which maximizes

» v el
25? 2as J -

where v is the linear velocity implied by the new pose, w is the angular
velocity, and o; and o, are the standard deviations of ||v|| and ||w|| respec-
tively.

40



As can be seen on our results on evaluation image sequences (see. 7),
this method always led to better results than using the sample consensus
method in our system.

5.3 Prediction of the True Position of Outliers

Once a consistent subset of features is found, the true position of an outlier
can be easily predicted in the next frame. The outlier’s model point simply
has to be projected onto the image plane using the computed pose.

This prediction makes it possible for the system to recover from tracking
errors, without going back to initial search, and leads to a much more robust
tracking of the feature points. We have also found that the prediction is very
helpful to find disappeared nostrils again.
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Chapter 6

Recovery from Trackihg
Failure

Tracking facial features in a camera image is no easy task, and once in while
tracking failure will occur. Furthermore, if we want to give the user the
possibility to move freely in front of the camera, and maybee even turn
his head away from the camera or dissappear at all for a while, failure will
necessarily occur at some point.

In order to build a robust gaze tracking system, it is therefore necessary
to beeing able to detect tracking failure and to recover therefrom automat-
ically. If this cannot be accomplished, the gaze tracking' system would fail
completely after the very first failure, and its applicability would be very
limited.

6.1 Detection of Failure

Tracking failure occurs when one or more features couldn’t be found or are
mistakenly found at the wrong position. Detection of the first case is trivial,
but detection of the second case is not always easy.

In our system we use mainly two methods for detecting failure: First,
after each feature islocated, it is checked if its position lies within the found

42



face region. If not, obviously some error occurred, and the features are
searched again.

Second, after all features are found, the model points are projected back
onto the image plane (see 5.1) using the found pose, and the average distance
between the back-projected model points and the actual found points is
computed. If this average distance is above a certain threshold, than the
actual found features and pose are rejected and failure is considered.

6.2 Searching the Features with Search Windows
According to the Previous Pose

Once the system detected tracking failure, it switches to the search mode,
and searches the features again using all the methods that we already de-
scribed for the initial search in section 3, where we assumed a frontal or
near-frontal view of the face, and initialized the search windows for the eyes
accordingly. This search will however fail if the person is looking strongly to
the left or right. First because the eyes may be outside the search window,
and second, because the restrictions on symmetry do no longer apply. If
failure occurs during tracking, we cannot assume a frontal view of the face
anymore, because failure could have ocurred at any possible rotation of the
head. This problem can be solved by initializing the search windows and
the geometrical restrictions according to the previously found pose. For ex-
ample, if failure occured, while the person was looking to the right, we then
can shift the search window for the eyes more to the right in the facial area,
and more to the left, if the person was looking to the left.

Figure 6.1 shows the search windows for the cases, where the person was
looking to the left, near frontal or to the right in the image. Only the search
windows for the eyes are shifted according to the pose. The subsequent
search windows for lips and nostrils are adjusted according to the found
position of the eyes or lips respectively.

However, if the features cannot be found after a couple of iterations, it
is not longer reasonable to assume, that the head is still in a similar pose
as the last pose obtained. We therefore only try for a certain small number
of frames to find the features with the search windows initialized according
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Figure 6.1: Different initialization of search windows according to the pre-
vious pose of the head

to the last pose. If, after this number of frames, the features haven’t been
found again, we then switch in each frame to another initialization of the
search windows to find the features again. With this method we usually can
recover from tracking failures quite fast.
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Chapter 7

Experimental Results

To measure the performance of the feature tracking as well as the pose
estimation of the system, we recorded several image sequences of one person
to hard disk. In each frame of the sequences, we marked the facial features by
hand. To obtain reference poses for each frame, we computed the pose with
the pose estimation algorithm, given the hand-labelled positions of the facial
features. Then, the gaze tracker was run on the pre-recorded sequences, the
facial features were automatically tracked, and the pose computed. These
automatically tracked positions and pose parameters were then compared to
the results, that were obtained by using the hand-labelled image sequences.
While running the gaze tracker on the image sequences, the system lost the
features during several frames, but recovered automatically from tracking
failure. The average error of each parameter was computed just on those
frames, where the gaze tracker didn’t consider the features as lost (tracking
failure). However, sometimes the gaze tracker mistakenly considered the
features as correctly found, whereas in reality, it lost one or more of the
features. The results for these “erroneous” frames added considerably to
the average errors for location of the features and rotation results. See also
the discussion for the results of “sequence 2” below.

7.1 Different Tracking / Pose Estimation Methods

Three different modes of the gaze tracking system were evaluated:
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sequence 1 | sequence 2 | sequence 3 [ sequence 4 |
# frames 400 300 50 200

size of image 120 x 140 | 140 x 200 | 320 x 240 | 320 x 240
size of face (ca.) | 80 x 105 100 x 120 | 120 x 150 | 140 x 180

Basic method In this mode, in each frame, all six feature points were
used to compute the pose, and no prediction of outliers was done.
This method is referenced as no-pred in the following tables.

Sample Consensus : A best subset was chosen to compute the pose, ac-
cording to the best match of back-projected points (see section 5.1),
and the positions of outliers were predicted. These predicted positions
of outliers were used for evaluation, as actual found positions, like the
other non-predicted positions. This method is referenced as SC-pred
in the following tables.

Temporal Continuity Tracking : A best subset was chosen, according
to the smoothest implied motion (see 5.2). Here, also the positions
of outliers were predicted and used as found positions for evaluation.
This method will be referenced as TC-pred in the following tables.

7.2 Test Sequences

We recorded four image sequences with different lengths and different image
sizes to hard disk to evaluate the gaze tracking system. Due to slightly
different positions of the zoom of the camera and different distances from
the face to the camera, the average size of the face in the camera image was
different for the sequences.

Figure 7.1 shows some sample images from sequence 2.
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Figure 7.1: Sample images from evaluation sequence 2

eyes lip corners nostrils all features |
method | X err. | Y err. | X err. | Y err | Xerr. | Y err. | avg. eucl. dist.
TC-pred | 3.2 2.5 3.2 2.1 2.0 2.5 4.1
SC-pred 3.9 3.0 3.5 2.9 3.5 3.2 5.2
no-pred 2.6 20 2.8 1.9 3.8 2.7 4.4

7.3 Feature Tracking Results

Table 7.1: Average location error in pixel for sequence 1

Tables 7.1 to 7.4 show the obtained results for locating the features. For
each method and each feature, the average distance in x- and in y-direction
in pixel is shown, as well as the average euclidian distance (in pixel) for all
six feature points.

As can be seen by comparing the average Euclidean distance for all six
features, for the three different tracking-methods, the continuity-tracking

eyes lip corners nostrils all features
method | Xerr. | Yerr. | Xerr. | Yerr | Xerr. | Y err. | avg. eucl. dist.
TC-pred | 5.3 2.6 3.3 2.0 1.9 2.3 4.7
SC-pred | 4.0 2.4 3.4 2.0 2.8 2.6 4.6
no-pred 3.6 24 3.1 1.8 3.4 2.4 4.5

Table 7.2: Average location error in pixel for sequence 2
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eyes lip corners nostrils all features
method | X err. | Y err. | X err. | Y err | X err. | Y err. | avg. eucl. dist.
TC-pred | 4.6 2.1 3.8 2.0 1.8 2.3 4.5
SC-pred | 8.0 5.1 94 6.8 10.3 5.6 11.5
no-pred 4.4 1.8 3.7 1.5 5.8 3:1 5.9

Table 7.3: Average location error in pixel for sequence 3

eyes lip corners nostrils all features
method | Xerr. | Yerr. | Xerr. | Yerr | Xerr. | Yerr. | avg. eucl dist.
TC-pred | 4.6 2.8 5.0 2.6 3.2 2.6 5.5
SC-pred | 6.2 2.5 4.2 1,7 6.5 2.9 6.6
no-pred 4.2 3.5 4.6 2.1 6.9 2.1 6.4

Table 7.4: Average location error in pixel for sequence 4

method always obtained the best results, and produced the least error. This
is also reflected in the accuracy of the pose estimation, as shown below.

7.4 Pose Estimation Results

Tables 7.5 to 7.8 show the average rotation errors around the x-, y- and
z-axis, that were obtained with the different methods. Here, the rotation
around the x-axis, R,, corresponds to looking up or down, rotation around
the y-axis, R,, corresponds to looking to the left or right, and rotation
around the z-axis, R, corresponds to bending the head to the the left or
right side.

In correspondence to the results for the accuracy of feature localization
as shown above, the continuity-tracking method lead to the best results for
all sequences.

Our best results were obtained with sequence 3, where no tracking failure
occurred at all. Here we obtained average rotation errors as low as 5.2, 5.0
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| method | R, error | R, error [ R, error ]
TC-pred 5.5 7.6 2.2
SC-pred 74 11.8 2.3
no-pred 5.6 10.7 2.1

Table 7.5:

Average error of rotation in degrees for sequence 1.

| method | R, error | Ry error | R, error
TC-pred 4.9 8.6 27
SC-pred 6.3 9.7 2:5
no-pred 5.1 10.4 2.4

Table 7.6:

Average error of rotation in degrees for sequence 2.

method | R, error | R, error | R, error ]

TC-pred 5.2 5.0 1.4
SC-pred 8.3 10.9 5.5
no-pred 7.6 8.9 1.5

Table 7.7:

Average error of rotation in degrees for sequence 3.

method | Ryerror | R, error | R, error |
TC-pred 3.7 8.7 2.1
SC-pred 6.4 20.1 2.3
no-pred 5.9 15.1 2:1

Table 7.8: Average error of rotation in degrees for sequence 4.
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method | T, error (mm) \ T, error (mm) [ T. error (mm)
TC-pred T 4 63
SC-pred ] 5] 100
no-pred 5 4 59

Table 7.9: Sequence 1: Average error of translation in mm.

and 1.4 degrees for R, R, and R, respectively.

Table 7.9 show the mean errors for the components of the translation
vector T = (T, Ty, T:) in mm for one sequence.. The mean error of compo-
nents Ty and T, varied between only 2 and 12 mm for all different sequences
and under all different methods. The error for the depth T, varied between
30 and 100 mm. The mean distance between the face and the camera was
about 60 cm and varied roughly between 50 and 70 em.

7.5 Discussion of Test Sequence “sequence 2”

Table 7.10 shows plots of the rotation parameters K., R, and R, for sequence
“sequence 2". The solid lines indicate the reference rotation parameters,
obtained with hand-labelled features, and the dashed line shows the results
obtained with our gaze tracker. Table 7.2 shows the corresponding errors in
R;, R, and R,.

It can be seen, that for about the first one hundred and ten frames, the
pose estimation is very close to the reference parameters. Then tracking
failure occurs. Because no gross error occurred from the beginning of the
failure — one eye was just found slightly off the real position — the system did
not detect tracking failure immediatly. At around frame 150 serious tracking
failure occured, which can easily be seen in the diverging plots for Ry and R,
and the system detected tracking failure. The tracker than starts searching
for the features again, and fully recovers at frame 178. Then the features
where accurately tracked again and the pose estimates are very close to the
reference parameters, until frame 240. Here another failure occurs, but the
system is able to recover after only three frames. This clearly shows the
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ability of the system to recover from tracking failure.
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Table 7.10: These figures show the estimated rotation angles computed with
the hand-labelled features (solid line) and with automatically tracked fea-
tures (dashed line) for image sequence “sequence 27,
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Chapter 8

A Multimodal Interface to
control a Panorama Image
Viewer

In order to show the applicability of our gaze tracking system, we devel-
oped a multimodal interface to view panorama images. The image viewer
application usually allows the user to scroll through 360 degree panorama
images by using the mouse and to zoom in and out using the keyboard.
We used the gaze tracker to control scrolling through the panorama images,
and voice-commands to control the zoom. The interface receives parameters
describing the rotation of the head from the gaze tracker and parameters for
the spoken commands from a speech-recognizer. It then sends the appropri-
ate mouse- or key-events to the image viewer. Both the interface and the
image viewer are running on a PC, and communication is done via sockets.

With such an interface, a user can fully control the panorama image
viewer without using his/her hands. He can scroll through the panorama
images by looking to the left and right or up and down, and he can control
the zoom by speaking the commands “zoom in” or “zoom out”.



Chapter 9

Conclusions and Further
Directions

We have developed a non-intrusive model-based gaze tracking system, which
estimates the gaze by computing the pose of the user’'s head. The system
achieves average rotation errors as low as 5 degrees for rotation around the
x- and y-axis and as low as 1 degree for rotation around the z-axis and a
frame rate of 15+ frames per second.

With our system, the user is allowed to move freely in the view of the
camera and no special lighting or marks are needed. The system computes
the pose by finding correspondences between points in a model of a head
and points in the camera image. The system automatically finds and tracks
the facial feature points in the image and is able to recover from tracking
failure. The usefulness of the gaze tracking system has been shown by using
it to control scrolling in a panorama image viewer.

To obtain a more precise gaze estimation it should be useful to estimate
the eye-gaze direction on top of the head pose, whenever high-resolution
images of the eye region are available, i.e, when the user is close to the
camera. To extract the eye regions for further examination, the positions of
the pupils obtained by our feature tracker can be used.

In order to beeing able to adjust the image resolution of the facial region,
active camera zoom control will be helpful. This will however introduce



some camera calibration difficulties that have to be dealt with.

Active control of the panning and tilting mechanism of the camera should
be useful in order to beeing able to track a person’s head for example when
the person is walking around, or when the camera has zoomed in on the
facial region and therefore the field of view of the camera is rather small.

One disadvantage of the current system is, that using just one general
model of the head could lead to inaccurate pose results. One solution might
be to adapt or calibrate the head model for new users. This could be done
by taking a frontal and a lateral image of the user’s head, extracting the
facial feature points, and initializing the 3D model accordingly.
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