Karlsruhe Institute of Technology

High-Accuracy Frequency, Phase and
Amplitude Estimation for Robust
Speech Recognition

Diplomarbeit
von

Ralf Huber

Institut fiir Anthropomatik
Fakultat fiir Informatik

Betreuer: Prof. Dr. rer. nat. A. Waibel
Prof. R. Stern, Ph.D.
Dipl-Inform. F. Kraft

Bearbeitungszeit: 16. Februar 2012 — 15. August 2012

.
KIT - Universitat des Landes Badan-Wartiemberg und nationales Forschungszentrum in der Hoimholtz-Gemeinschatt 'YW VW, klt-Edu

R} Xl

Ich erklire hiermit, dass ich die vorliegende Arbeit selbsténdig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 15. August 2012

Zusammenfassung

In der vorliegenden Arbeit geht es darum, prizise Mess- bzw. Schitzverfahren fiir
die Bestimmung von Amplituden, Phasen und Frequenzen in Sprachaufnahmen zu
untersuchen. Insbesondere soll untersucht werden, ob es mit den Verfahren moglich
ist, Raumhall aus Sprachaufnahmen zu entfernen.

In der vorangegangenen Studienarbeit [Huber11] wurde ein Verfahren vorgestellt,
dass mittels Phasenregelkreisen (Phase-Locked Loops) den Amplituden- und Phasen-
verlauf in Aufnahmen von Sinusténen mit konstanter Frequenz bestimmt. Die so
berechneten Werte konnten verwendet werden, um Hall von den Aufnahmen zu ent-
fernen.

Im Zuge dieser Arbeit wurde zuniichst versucht, das Verfahren auch fiir Sinusténe
mit variabler Frequenz anzuwenden. Da stimmhafte Sprachaufnahmen als {ber-
lagerung mehrerer harmonischer Frequenzen modelliert werden kénnen [McAulay86],
wiire die Entfernung des Halls einer einzelnen Frequenz ein erster Schritt zur Hallre-
duktion von echten Sprachaufnahmen,

Es zeichnete sich ab, dass das Vorhaben nicht den gewiinschten Erfolg verspricht
und daher wurde anschliefend versucht, mit anderen Technologien eine bessere
Frequenz-, Amplituden- oder Phasenschiitzung zu erzielen. Zur Frequenzschitzung
wurde ein Frequenzregelkreis (Frequency-Locked Loop, FLL) &hnlich dem in [Ku-
maresan12| vorgestellten in Matlab und Simulink umgesetzt. Als Ersatz fiir die PLL-
basierte Amplituden- und Phasenschiitzung wurde das APES-Verfahren (Amplitude
and Phase Estimation of a Sinusoid [Li96]) in Matlab implementiert und gegeniiber
dem Originalalgorithmus so modifiziert, dass eine kontinuierliche Schitzung von Si-
nustonen mit variabler Frequenz moglich ist.

In den abschlieflenden Experimenten sollten die harmonischen Frequenzen stimmhaf-
ter menschlicher Sprache mit den Frequenzregelkreisen bestimmt werden, um im An-
schluss die Amplituden- und Phasenverliufe dieser Frequenzen mit APES moglichst
exakt zu bestimmen. Mit diesen Informationen wurde dann die stimmhafte Sprache
wieder synthetisch erzeugt, um sie dann als Eingabe fiir die Spracherkennungssoft-
ware JANUS zu benutzen. In einem weiteren Versuch wurde die Frequenzinfor-
mation genutzt, um die stimmhaften Sprachanteile innerhalb eines aufgenommenen
Satzes mit einem Kammfilter so zu filtern, dass die vorkommenden harmonischen
Frequenzen verstirkt und die anderen Frequenzanteile abgeschwiicht werden. Die so
verianderten Aufnahmen wurden anschlieBend erneut als Eingabe fiir das JANUS-
Spracherkennersystem verwendet.

Leider ermoglichte keine der untersuchten Methoden die erwiinschte Senkung der
Wortfehlerrate bei automatischer Spracherkennung unter Umgebungsbedingungen
mit Hall.

Contents

1 Introduction

Il DIOEINARION . & c 55w £ 6 6828 60 2 8 ¢ 58 8860083203555 5
L2 Objeetive & & i v it i e e e e e
18 QMG o oo mpmpmmrm e sn®EEE SR E TS S L A58 EE S
2 Related Work
2.1 The Problem of Far-Distant Speech BECAEnIIoN = v v v & 6 e e 2
2.2 Joint Particle Filter Framework i n ..
2.3 Multi-Step Linear Prediction
24 Phase-Locked Loops
2.5 Frequency-Locked Loopso oo vttt
2.6 Blind Dereverberation using Harmonic Filtering
3 Methodology
3.1 Phase-Locked Loops _.
3.1.1 Phase Detector
312 LocalOscillator . . . o v o . v iv i v vt vt oo in..
3.1.3 PLL Transfer Function and 1st Order Active Lead-Lag Loop
Filter
3.14 Carlosena-Style Order Extension
3.2 Frequency-Locked Loops
831 Frogueney Deteotor « o v s cwesn oo ss g e 28 5.0 8
3.2.2 Triplet Filter Caleulation
3.2.3 Voltage-Controlled Oscillator and Loop Filter
33 Gammatone Filbers . . o 55552 0o v5555 v o ay i,
34 CombPFilters
3.0 APES Amplitude and Phase Estimator
3.5.1 Derivation of Universal Filter-Based Estimator
3.5.2 Filter-Design for APES
3.6 Impulse Response Late Reflections Estimation
4 Experiments
4.1 Description of Evaluation Data
4.1.1 Database of Recordings
4.1.2 Impulse Responses
413 Pitch
4.1.4 Speech Recognition System
4.2 Comparison of Amplitude and Phase Estimators
4.3 Impulse Response Estimation Experiments

1%,
11
12
13

viil Contents

4.4 Pitch Estimation using PLLs and FLLs 49
4.5 Dereverberation Experiments 50
0.1 Dageline v pavv sy ssis s i vsiiiieisysy 53
4.5.1.1 Reverberated Unvoiced Parts / Full Reverb 53

45.1.2 Non-Reverberated Unvoiced Parts 54

4.5.2 Suppression of Voiced Reverb using Comb-Filtering 55
4.5.2.1 Reverberated Unvoiced Parts 55

4.5.2.2 Non-Reverberated Unvoiced Parts 55

4.5.3 Suppression of Voiced Reverb using APES-based Resynthesis . 56
4.5.3.1 Reverberated Unvoiced Parts 56

4.5.3.2 Non-Reverberated Unvoiced Parts 57

5 Conclusion 59

Bibliography 61

1. Introduction

1.1 Motivation

In these days speech recognition systems are built into an increasing amount of
devices and they are used by more and more people every day. Some vears ago.
speech recognition technology could only be used in very controlled environments.
such as to select a menu option in phone systems of call-centers or as dictation
software for use with headsets. Today, the applications are much broader and less
specific, for example in Apple’s SIRI command system for the iPhone or in similar
systems for other mobile phones such as Android-based phones.

These systems allow the user to speak to the phone in order to initiate a call, create
an appointment in the calendar or to search for a term on the internet. Most of
these systems also come with a software that tries to guess what the user actunally
wants to do and as a result, it seems that the phone is actually understanding the
user instead of simply reacting to a predefined command. Cars and GPS devices
are another field where speech technology is more and more common, for instance
to tell the car or GPS device where one wants to go.

Finally, game consoles and TV sets increasingly also come with speech recognition
software, such as Microsoft’s KINECT, which includes a microphone array and pow-
erful beamforming technology for far-distant speech recognition. Indeed, it seems
that microphone arrays are one of the most used approaches to counter adverse
effects such as reverb and noise in far-distant speech recognition settings. As every-
body can confirm on his or her own, the human hearing system is very good even
when the environmental circumstances are bad and the sound that arrives at the
ear is distorted.

Besides far-distant speech recognition, there are other fields where the human ear
is superior to today’s technology, for example when it comes to speaker separation.
Speaker separation is also related to the more general problem that is the identi-
fication of speech in environments with structural ‘noise”. This includes not only
colored noise with the same spectral shape all of the time, but also noise whose
spectrum changes over time, such as background music.

2 1. Introduction

This work is supposed to be a contribution to the search for signal processing meth-
ods, which might one day enable the use of speech recognition software or improve its
performance in situations where current systems fail or have trouble to understand
their user.

1.2 Objective

It has been stated that there are several problems which arise in real-world automatic
speech recognition (ASR) settings. The focus of this work is mainly on reverberation
and therefore, the final evaluation was also done on reverberant data. The goal was
to find an algorithm which removes or reduces the effect of reverberation in speech
recordings.

Current ASR front-ends mostly utilize a Fourier transform to obtain the power
spectrum of the speech input. Further signal processing is used afterwards to improve
the signal-to-noise ratio before features are calculated, which are then used for the
actual recognition task. The use of the power spectrum implies that the phase
information is lost. Interestingly, research indicates that phase information could be
used to improve ASR performance, although some of the phase information seems
to be somehow included in standard MFCC features [Saratxagal()] [Saratxaga09]. It
seemed therefore an interesting question how the phase of the frequency components
of speech signals could be tracked and if it could be used to improve an ASR system
in reverberant conditions.

Phase-locked loops are a technology which allows to track the phase of a sinusoid.
They have already been used for speech recognition tasks, for example for pitch
tracking [Pelle03] or as a ASR system front-end [Estienne01]. In the predecessor
to this work [Huberll], phase-locked-loops have already been successfully used to
remove reverberation from single sinusoids played back in a room. The first goal
of this work was to examine if a similar technique could be used to dereverberate
more complex signals, such as sinusoids with time-varying frequency or harmonic
complexes.

The second main goal of this work was to find methods that allow to track speech
signal parameters, such as the fundamental frequency of voiced speech (pitch track-
ing) and the amplitude of individual frequency components in harmonic speech seg-
ments. Frequency-locked loops seemed to be a promising method for pitch tracking
[Kumaresan12|, which is why a similar system like the one presented in that paper
was used in this work, too. The final experiments of this work were an examination
of whether the so-obtained pitch information could be used for an improved tracking
of the amplitudes of individual frequency components of voiced speech.

1.3 Outline

The following chapter explains the problem of reverb in automatic speech recognition
before stating some methods which are currently used to improve reverberant speech
recognition.

Chapter 3 contains detailed information about all the technologies that have been
used for this work, such as phase-locked loops, frequency-locked loops, gammatone
and comb-filters, as well as the APES amplitude and phase estimation algorithm.

1.3. Qutline 3

Chapter 4 contains descriptions of the evaluation experiments which have been car-
ried out to test the methods from chapter 3.

The final pages of this document contain a summary and rating of the experimental
results and information about possible fields of further research.

1. Introduction

2. Related Work

2.1 The Problem of Far-Distant Speech Recogni-
tion

Far-distant speech recognition is a difficult problem because of several aspects. The
most simple mathematical explanation of reverb alone is sz(t) = sp(t) @ A(t), where
% denotes convolution, sp is the undistorted direct sound, h is the impulse response
that characterizes the filtering effect of the room and sy is the resulting reverberated
speech,

Unfortunately, this description does not include a variety of other effects, such as:

e Noise with a possibly time-varying spectral shape

e Changes of the impulse response due to movement of the speaker or the mi-
crophone in the room

e Changes of the impulse response due to changes in the room, such as opening
a window

Figure 2.1 depicts a spectrogram of the sentence “She had your dark suit in greasy
washwater all year.”. The upper image is the clean spectrogram and the lower
image the reverberated spectrogram with artificial reverb that corresponds to a
recording distance of 2 m in an office room. It can be seen that the frequency
components are much less obvious in the reverberant example than in the clean
speech example. Basically, the effect of reverberation is a somewhat “smeared”
spectrogram. This stems from the fact that a single reflected wavefront, which
arrives at the microphone, is simply a delayed and scaled copy of the direct sound.
These delayed copies of the sound interfere with the common HMM-based modeling
technique used in ASR systems. Modeling speech with HMMs is based on the
assumption that there is a transition to another HMM state when a certain part of
the speech is over. Since the amount of reflections is generally unknown in a real
environment, it is also unknown how often the HMM could possibly go back to an
earlier HMM state to model an echo of the current utterance.

6 2. Related Work

frequency [Hz]

Q 0.5 1 1.5 2 25 3 8.5
time [s]

(a) clean spectrogram

frequency [Hz)

0 05 1 15 2 25 3 35
time [s]

(b) reverberant spectrogram (2 m distance)

Figure 2.1: Spectrograms of the sentence "She had your dark suit in greasy wash-
water all year.”

=l

2.2, Joint Particle Filter Framework

Another problem is that the acoustic model of an ASR system defined by the code-
books and gaussian mixture models does not reflect the reverberant speech: A close-
talk ASR setup using a headset is somewhat generic in that there is very little noise
and reverb. Therefore, the training conditions can be made to be similar to the later
usage environment. The effects of reverb, however, differ vastly from room to room
and there cannot be a generic “reverb” training condition which can be used for all
possible reverberated environments. This leads to the assumption that it could be
beneficial to be able to precisely track the information that is contained in a speech
signal in order to better adapt to specific environments.

2.2 Joint Particle Filter Framework

Matthias Wolfel explains in his dissertation [Wolfel09] that additive distortions, like
noise, and convolutive distortions, like reverb, influence each other and they should
therefore be considered and modeled jointly instead of separately. It should be ex-
pected that a system which models noise and reverb in a single model and which also
deals with both problems at once yields better far-distant speech recognition results
than a system which uses separate noise-reduction and dereverberation algorithms.

A so-called joint particle filter framework is therefore presented in (Walfel09] in order
to deal with convolutive and additive distortions simultaneously. Furthermore, the
suggested system was designed to be able to handle non-stationary distortions.

Wélfel also states that approaches which try to deal with distorted speech by ma-
nipulating speech features in the feature domain only work well for non-stationary
noise, but not for non-stationary reverberation. Therefore, it seems promising to
find a means of dereverberation that works in the signal domain rather than the
feature domain.

2.3 Multi-Step Linear Prediction

Multi-Step-Linear Prediction (MSLP) is another technique presented in (Wilfel09).
It works by estimating and subtracting reverberation based on the signal that is
observed a certain amount of samples earlier. MSLP is introduced to remove late
reflections, because it has been found that late reflections, i.e. reflections that occur
after 50 ms, contribute the most to the degradation of ASR performance. Another
observation was that apparently only the reverberations in a frequency band from
250 Hz to 2500 Hz have a meaningful negative effect on the speech recognition ac-
curacy. Since MSLP primarily targets late reflections, it seems useful to develop a
method which deals primarily with early reflections and which can be used in addi-
tion to MSLP. Section 4.3 contains an evaluation of an impulse response estimation
method which is designed particularly for the estimation of early reflections.

2.4 Phase-Locked Loops

Phase-locked loops have been used in FM receivers for a long time [Best93] in order
to demodulate the FM signal from the antenna. They are very useful when it comes
to precisely measure the frequency and phase of the incoming radio signal. Because
of that, they have also been used in the field of automatic speech recognition, for
example for pitch tracking in [Pelle03] or as a whole ASR front-end in [Estienne01].

8 2. Related Work

A single PLL can only track a single frequency. Harmonic speech segments consist -
as the name implies - of many frequency components which are all integer multiples
of a fundamental frequency. A bandpass filterbank is therefore used in [Pelle03]
and [Estienne01] in order to split the whole speech spectrum into subbands that
contain only one frequency each. One PLL operates on each of these bands and the
result of each PLL is then aggregated in a way that further emphasizes the harmonic
structure of the speech.

2.5 Frequency-Locked Loops

When it comes to pitch tracking phase-locked loops actually perform more than
what is needed. Instead of simply determining the frequency of the target signal,
they attempt to generate a coherent signal, i.e. one that has the same phase. While
it was very good if a perfectly-locking PLL was available for speech purposes, it
might actually suffice to obtain a signal which has the same frequency as the target
signal without being coherent to it.

The task of frequency tracking can be performed by a so-called frequency-locked loop
(FLL). FLLs work much in the same way as PLLs and it is explained in section 3.2
that an FLL can be interpreted as a PLL with an additional filter.

FLLs, like PLLs, have already been used for speech processing. A so-called harmon-
ically coupled FLL is presented in [Wang94]. Instead of splitting the speech signal
into frequency bands like in [Pelle03], the coupled FLL is built to track multiple
harmonics directly. It uses the information that the only possible frequencies are
integer multiples of the fundamental frequency in order to reject frequencies which
don’t fit info this harmonic relationship.

[Kumaresanl1] and [Kumaresanl2| are more recent publications about FLLs and
speech processing. The authors return to the filterbank-based approach of splitting
the speech signal and processing each band individually. Their findings (and those
from this work) suggest that the choice and setup of the splitting filterbank is crucial
to the success of the method.

Besides the splitting approach and the harmonic coupling approach, a third mas-
sively parallel approach was examined in this work. It features a very large amount
of FLLs which operate on tightly spaced overlapping subbands. The subbands are
chosen such that each harmonic frequency is tracked by more than one FLL and
a clustering algorithm is applied afterwards to find frequencies which have been
“found” by multiple FLLs at the same time. Frequency tracking examples of this
method can be found in section 4.4.

2.6 Blind Dereverberation using Harmonic Fil-
tering

It has been explained at the beginning of this chapter that reverb can be mod-
eled as a convolution of the direct sound with a room impulse response (RIR).
The RIR is typically unknown in real settings and there are some approaches by
Nakatani and Mivoshi which try to estimate the effects of the RIR in order to re-
verse them [NakataniO3a] [Nakatani03b] [Kinoshita05a] [Kinoshita05b] [NakataniO7].

2.6. Blind Dereverberation using Harmonic Filtering 9

These methods are called “blind”, because they don’t use prior knowledge of the room
layout or the position of the speaker or microphone.

The processing typically works in three steps. At first the fundamental frequency of
the current speech segment is determined. The second step is to estimate the direct
sound based on the fundamental frequency estimate. This is done by increasing the
signal parts whose frequencies are an integer multiple of the fundamental frequency.
Nakatani and Miyoshi call this type of processing “adaptive harmonic filtering”. A
similar method is tested in this work using comb filters for the harmonic filtering
(c.f. section 4.5). The final step is to train an adaptive filter using the reverberant
recording as an input and the direct sound estimate as adaptation target. This
effectively calculates a dereverberation filter.

The drawback of this method is that it needs training data for the given reverberant
situation, i.e. room layout, speaker and microphone position, which is not always
available.

10

2. Related Work

3. Methodology

The following sections of this chapter contain mathematical descriptions of various
filters and control systems, which will later be used in chapter 4 in order to try to
remove reverberation from speech signals.

The first two technologies are phase-locked loops and frequency-locked loops, which
are conceptually very similar to each other. Both can be used to track the frequencies
in a voiced signal.

In section 3.3 follows a description of gammatone filters, which are parametric band-
pass filters modeled after the human auditory system. Section 3.4 will be about
feedforward and feedback comb filters, which can be used to enhance the harmonic
frequencies of voiced speech.

The chapter continues with a section about the so-called APES amplitude and phase
estimation technique, which will later be used to estimate the amplitude of the voiced
signal components in human speech.

3.1 Phase-Locked Loops

Phase-locked loops (PLLs) are control circuits which can “tune in” on a frequency
which is dominatly present in a signal. They consist of an oscillator, which produces
a pure sinusoid at a certain tuneable frequency. The second component is the so-
called phase detector or phase discriminator, which is used to compare the phase
of the oscillator’s output with the phase of the incoming signal. The output of the
phase detector is then used to adjust the frequency of the oscillator in order to
minimize the phase difference. A loop filter (usually a low-pass filter) is inserted
between the phase detector and the oscillator to reduce high-frequency noise at the
detector’s output.

The predecessor of this work [Huberl1] already contains a detailed description of
phase-locked loops, two different phase detector circuits and guidelines to design
the loop filter. This section focuses on the so-called Carlosena-extension method
introduced in [Carlosena07] that can be used to increase the PLL order, which - in
turn - allows the tracking of more complex input signals. It should be pointed out

12 3. Methodology

that there are many books which cover various aspects of phase-locked loops, such
as [Best93], [Stephens02] and [Gardner05|. Figure 3.1 shows a block diagram of a so-

Uy

™ phase b » loop
detector filter

o :
<1 | amplitude Us ocal le |

estimator [«

oscillator

Figure 3.1: Block diagram of an extended phase-locked loop.

called extended PLL, as it was introduced in [Karimi-Ghartemani01]. Standard PLLs
only consist of the phase detector, loop filter and local oscillator. The additional
amplitude estimator is the reason why this particular setup was named “extended”
PLL.

3.1.1 Phase Detector

For now it is enough to know that the local oscillator produces a sine wave with a
certain frequency, which is determined by the input of the oscillator. The input u,
to the PLL and the locally produced signal us can therefore be described by:

ui(t) = ay - sin(wit + ¢1) (3.1)
Uus(t) = ag - sin(wst + do) (3.2)

Obviously, a; and a; are the amplitudes, w; and ws are the frequencies and ¢; and
¢ are the initial phase offsets of u, and wu., respectively. The phase-locked loop
is said to be “in lock™ or simply “locked”, when ws is approximately equal to w.
Some further criteria about the stability of the locking also have to be fulfilled, but
wy == Wy is a necessary prerequisite for the locked state.

For the Hilbert-Transform phase detector [Best93], both u; and u, need to be pro-
cessed by a Hilbert-transformer. A Hilbert-transform operation, denoted by H,
shifts all frequency components of a signal equally by —3 radians:

wy(t) = ay - sin(wt +) (3.3)
up(t) := H{uy(t)} = a; - sin (w,t + ¢y — g) = —ay - cos(wit + @) (3.4)
uz(t) = ay - sin(wat + o) (3.5)
(1) == H{us(t)} = as - sin (wgt + by — —) = —ay+ cos(wat + ¢o) (3.6)

It is important to note that only Ty actually has to be calculated. The other Hilbert-
transformed signal, %z can be obtained from the local oscillator directly in addition
to uy by using both the sin and the cos function.

For simplicity, it is now assumed that w; = ws = w, i.e. the loop is perfectly locked.
Note that in this formulation, all parameters of the sine waves (a;,w;, ¢;) are con-
stants and independent of time. In reality, however, the frequency and amplitude

3.1. Phase-Locked Loops 13

of the signal are surely varying over time, so that in theory, this whole mathemat-
ical description is only valid for steady-state situations. Yet, practical experiments
have shown that PLL systems work nevertheless, which is because the sine waves’
parameters usually vary slowly compared to the reaction time of the loop. [Best93],
for example, also contains a derivation of the loop behavior in the unlocked state.
‘There is, however, no simple solution and further approximations and assumptions
have to be made in order to obtain mathematical descriptions of the behavior of an
unlocked loop.

After the Hilbert-transform of u,, the abovementioned four signals are combined to
form two intermediate signals, sig; and sigs.

sig1(t) = uy(t) - ue(t) + wi(t) - w(t) (3.7)
= ayay - (sin(wt + 1) - sin(wt + ¢2) + cos(wt + ¢) - cos(wt + da)) (3.8)
= ajay - cos (Wt + ¢ — (wt + b)) (3.9)
= ajas3 - cos(¢ — @) (3.10)
siga(t) = uy(£) - Wa(t) — (L) - ua(t) (3.11)
= —aaz - (sin(wt + ¢) cos(wt + ¢2) — cos(wt + ¢y) sin(wt + ¢2)) (3.12)
= —fQjds - sin (LL)?L + (f)]_ = (Wt -+ !}‘b})) (313)
= =djasz - SiIl(Q.I)l — (;Dz) (3]-—1)
—sig is then divided by sig;, which results in:
":?l:']g(t) —ilydly - Sin((,’b‘[- (Pdg) i 7
SRt o = tan —h (3.15
sig (t) a1asz - cos(gy — o) (01 2))

The phase error, ¢, 1= ¢; — ¢, is supposed to be the output of the phase detector and
it can easily be calculated using the inverse tangent function. Usual implementations
of the inverse tangent function, for example atan from Matlab, return values in the
range of [—m/2:7/2] radians. However, the four-quadrant inverse tangent function,
which is denoted with atan2 in Matlab, can be used to obtain results in the full
interval of [—7; 7] by supplying the numerator and denominator of equation 3.15 to
the atan2 function individually.

3.1.2 Local Oscillator

Similar to the loop filter, the local oscillator of a digitally implemented phase-locked
loop can be implemented in different ways, for instance as a numeric ally controlled
oscillator (NCO) or as a voltage-controlled oscillator (VCO), which was the orig-
inal design for analog phase-locked loops. Matlab/Simulink, for example, offers a
“discrete-time VOO block”, whose block diagram is depicted in figure 3.2. This is
basically a sampled implementation of a continuous-time analog VCO, which uses
an accumulator instead of an integrator.

The VQO output u; is supposed to be a sine wave whose instantaneous frequency (in
Hz) is f(t) = fo + kuin(t). s, represents the input of the oscillator, x is the VCO's
&,dm factor, T, is the sampling time, f, the so-called quiescent frequency (in Hz) and
z~! represents a one- sample delay. The quiescent frequency is the frequency which

14 3. Methodology

P> D .

+ 7 | sin
fo

Figure 3.2: Simplified diagram of the Simulink discrete-time VCO block

the VCO output has in case the input u;, is 0. In theory, the quiescent frequency
could be set to 0, because a well-designed PLL has the ability to lock onto any
frequency when given enough time. However, the locking process takes longer the
further the target frequency f; is away from the current VCO frequency f, [Best93].
Therefore, it is usually better to specify a quiescent frequency f, that is close to the
expected target frequency fi;. This is not only advantageous for the initial lockin
process, but also in the case of a re-lockin after the PLL has temporarily lost its
lock.

To prove that the diagram in figure 3.2 actually produces a sine wave with the
desired instantaneous frequency of f(t) = fo + kui(t) , it is best to start with the
definition of “instantaneous” frequency, which is the derivative of a sinusoid’s phase
with respect to time:

- 1 dé
f(t) = 5r df (3.16)
Note that “phase” in this context means the whole argument of the sin or cos func-
tion, named @, whereas “phase offset” refers to ¢, which only determines the initial
phase of a sinusoid for ¢t = 0. The phase detector of a PLL actually compares the
phases of its inputs, not the phase offsets. If, however, it is assumed that the PLL
is locked, i.e. w) = wa, then the calculation reduces to a comparison of ¢; and ds.

In a continuous-time VCO, us would be calculated as follows:

L
us(t) = sin (er fo + ku(t) dt + qﬁu) (3.17)
0 _-hv‘_ﬂl
. fa(t))
*:;?r(t)

It can be seen that the derivative of #(¢) in equation 3.17 with respect to time,
divided by 27 is indeed fy + &u;, (f). The integral in equation 3.17 must be replaced
by a sum to obtain a discrete system and the sum must furthermore be weighted
by the sampling time 7, to normalize the sum to a given timeframe. Therefore, a
discrete version of equation 3.17 is:

us[n| = sin (E:rr’!fH Z(f” + Kuin[m]) + cbn) (3.18)

m=I0
[t can easily be verified that figure 3.2 is a block diagram representation of this

equation, except for the additional ¢ summand. ¢, represents the initial phase
offset of the VCO’s output sinusoid. Similar to the VCO quiescent frequency, the

3.1. Phase-Locked Loops 15

initial phase offset could theoretically be set to any value, since the PLL will minimize
the phase difference between the PLL input and the VCO output anyway. If the
initial phase offset ¢; of the input was known, ¢y could be set to a nearhy value to
facilitate locking. Normally, however, ¢, is unknown, so ¢y is simply set to 0,

Next, the Z-domain transfer function of the VCO can be derived by starting with
the difference equation of the accumulator in figure 3.2:

acCloys[1] = acclgu[n — 1] + T, - accuy,[n — 1] (3.19)

Note that the sin function can be omitted here, because it is not important for
the transfer function of the PLL as a whole. A PLL is actually a control loop
which operates based on the phase of its input and the phase of the VCO output.
The sin function in figure 3.2 is necessary in the implementation simply because the
subsequent phase detector, which has been discussed in the previous section, expects
an actual sinusoid as input instead of just the phase value. Ultimately, this leads to
the following Z-domain transfer function:

. Po(2)(1 — 27") = 27KkT - 27 Wi (2)
& Frsols)om 2 _ e 87 (3.20)
Uin(z) 1l =2l ‘

3.1.3 PLL Transfer Function and 1st Order Active Lead-Lag
Loop Filter

Now that the VCO transfer function is known, it can be used to caleulate the transfer
function of the PLL as a whole. Figure 3.3 depicts the Z-domain block diagram of
a PLL.

> Fie ““—"'*FVCO‘I

®,
Figure 3.3: Z-domain block diagram of a PLL.

Again, it can be seen that the on ly values that are meaningful for a PLL are phase
values. The Z-domain transfer function can now be obtained easily:

P2(2) = Fvoo(2) - Frp(z) - ®.(z) (3.21)
= FVCQ(Z) : I}_,}-.(S) : (@1(:) — (132(3’)) (322)
= F\»"C‘(_‘)(Z) : F[,p(i’:) : ‘IH(Z) = FVCQ(Z) : FL-F(:‘") ¥ ‘I‘Q{E) (323)

16 3. Methodology

In the standard form F(z) = % this looks like:

Fpri(z) == az) _ _Froolz)- F[“_E(z)—— (3.26)

$P1(2) 1+ Fyoo(z) - Fre(z)
If one were to insert the actual VOO transfer function (equation 3.20) into equa-
tion 3.26, there would be a z~! term in hoth the numerator and the denominator.
In terms of digital filter design, it is therefore possible to argue that the order of a
phase-locked loop is at least one. The choice of loop filter and its transfer function
determine the total order of a PLL. Since the VCO has an order of one, it can be
seen from equation 3.26 that the order of a PLL is always equal to the order of the
loop filter plus one.

According to [Best93], the order of a PLL is among the most important of its char-
acteristics, because it determines which kind of phase variations of t1 can be suc-
cessfully tracked by the PLL without losing its lock. If the order of the loop filter
(and therefore the order of the loop) is increased by one, the loop can track in-
creasingly complex signals, for example a phase ramp (= frequency step) instead
of a phase step, or a phase parabola (= frequency ramp) instead of a frequency
step. Figures 3.4, 3.8 and 3.9 visualize this effect using PLLs of order 2, 3 and 4,
respectively. Each of these figures contains 6 subfigures. The 3 subfigures on the
left depict different input signals (phase step, frequency step, frequency ramp) and
the 3 subfigures on the right show the corresponding PLL response, i.e. the value of
the phase error ¢, for the given input.

The choice of loop filter is virtually unrestricted, as long as the resulting loop is
stable. One of the most basic loop filters is the 1st order active lead-lag filter. It
is originally an analog low-pass filter and according to [Stephens02], its S-domain
transfer function is described by:

1+ 7s

= 3.27
1+7s ()

Frp(s) = trp

The filter gain #.p corresponds to the DC-gain of the filter. It can be greater than
one, which is why the filter is active. 7, and 7, are the filter's time constants,
which determine the corner frequencies of the passband and stopband. The transfer
function of the active first-order lead-lag filter looks like the one depicted in figure 3.5.

The Z-domain transfer function of the first-order lead-lag filter can be obtained for
g . 5 s a 1
example by a bilinear Z-transform, using the substitution s =]—%r

T+ 21 + (T — 2m) 27 ,
Foolz) = oo 3.28
br(2) = kurp oy (Ts — 27m) 21 ey

It can be seen in figure 3.4 that the 2nd-order PLL is able to fully adapt to any
phase steps, whereas ¢, shows a permanent error in the case of a frequency step
or frequency ramp at the input. The error after a frequency step can be made
infinitely small by increasing the loop filter gain xpr. The error after a frequency
ramp, however, will always persist. It can only be reduced by higher-order loops
which are able to track frequency ramps.

3.1. Phase-Locked Loops 17

input phase step PLL output phase error

35 4
3
3
8 %° g
s 2 5 2 “
- 5
1.5 @
g g
£ =
a a
0
0.5
0 : -1 :
-1 0 1 e =1 0 1 2
time [s] < 10° time [s] x10°
input frequency step PLL output phase error
600 ; : 0.08
500
) 0.06
L T
@ 400 8
3 <]
2 300 S 0.04
5 g
2 200 8
£ < 0.02
100
0 . 0
L 0 2 4 6 -2 2 4 6
time (s] x 10 time [s] x10°
input frequency ramp PLL output phase error
700 ; v 0.07 —— ‘
600 0.06
T 500 = 0.05
@ g
g 400 I§ 0.04¢-
= 3
= 300 @ 0.03
@
3 o
§ 200 s 0.02
100 0.01
0 : 0 :
-0.01 0 0.01 0.02 0.03 -0.01 0 0.01 0.02 0.03
time [s] time [s]

Figure 3.4: Tracking behavior of a 2nd-order PLL using an active lead-lag loop filter.

18 3. Methodology

F| A

I
|
|
I
/T /T, o

Figure 3.5: Frequency response of a first-order active lead-lag filter.

[Best93] contains various formulas to determine the parameter values of a second-
order loop with the aforementioned loop filter. The loop parameters can, for ex-
ample, be specified via the desired “lock-in time”, which is the time the PLL needs
to lock onto a newly appearing sinusoid in its input. Other specification meth-
ods include a specification of the necessary loop bandwidth. The loop bandwidth
determines how much noise can be present at the PLL input without disturbing a
locked PLL. An exhaustive coverage and mathematica) derivation of all specification
methods would be too much to repeat here, which is why it was omitted.

3.1.4 Carlosena-Style Order Extension

It has been said before that higher-order loops have the ability to track more complex
input signals than lower-order loops, which is why it seems promising to increase the
loop order for better tracking accuracy. One of the drawbacks of this practice is that
while the tracking accuracy and stability can be improved with higher-order loops,
they also suffer from increasingly slow tracking speed. This means that higher-order
loops tend to be able to follow more complex input signals more precisely, but only
as long as the changes in the input signal happen slowly enough.

Another important disadvantage of high loop orders is that it becomes increasingly
difficult to specify the parameters for the loop filters. At the end of the previous
section it was mentioned that formulas exist to precisely (and optimally) specify pa-
rameters for a PLL with some desired properties. However, exact formulas exist only
for 2nd-order loops. In [Stephens02], the author even suggests to try out different
parameter sets for high-order loops to find the one which fits the given application
best.

In [Carlosena07] and [Carlosena08], the authors Carlosena and Manuel-Lazaro sug-
gest a new method with which the order of a PLL can be increased step-by-step.
Each step increases the order by one and the additional filter coefficients are selected
in such a way that their influence on the “lower-order behavior” of the loop is low,
while improving the “high-order behavior” of the loop at the same time.

A normal second-order loop, like it has been presented in the previous section, builds
the foundation for the Carlosena-style PLL order extension. For each extension step.
an additional passive low-pass filter is built into the signal path between the VCO

3.1. Phase-Locked Loops 19

and the loop filters which already exist. The extension filter has the following
transfer functions (S-domain and bilinear transformed Z-domain):

B il
= +Ts

T,+ T,z
L4227 + (T, — 2r)z~1

(3.29)

'F::!:Ef (.—,-)

Ft'.:z:t(z) =

(3.30)

The additional loop filter time constant 7 will be named 74 for the 2nd-to-3rd-order
extension filter and it will be named 7, for the extension from 3rd to 4th order.
Remember that 71 and 7, are already in use for the original 1st-order active lead-lag
loop filter.

Figure 3.6 shows the new layout for the 3rd and 4th-order PLLs using one and two
Carlosena extensions, respectively. In both cases, loop filter 1 is the original loop's
loop filter. Loop filter 2 is the first extension for a total loop order of 3 and loop
filter 3 is the second extension filter. Both loop filter 2 and 3 are of the same internal
structure (equation 3.30), but with different additional time constants.

ul

*™ phase be o loop
= detector filter 1
Uz :
local i
oscillator | =
loop
filter 2
(a) 3rd-order loop block diagram
Ul $
——i
phase € loop
detector » filter 1
uz
local loop
oscillator z filter 3
loop
filter 2

(b) 4th-order loop block diagram

Figure 3.6: Block diagrams of Carlosena-extended PLLs

20 3. Methodology

f-}l] loop filters can mathematically be combined to form a single high-order loop
filter. According to [Carlosena07], the S-domain transfer function or the 3rd and
dth-order PLLs in figure 3.6 turn out to be:

1 (14 ms)(1 4 73s)

E'r‘r. . = HKLF 3.-
ard(8) = KLr — o (3.31)
1 (1+ms8)(1+ms)(1 ;
Fyn(s) = kipr 2(Rl ¥ ol) (3.32)
TaT4S 14 15

The Z~dumlain transfer functions can be obtained by the usual bilinear Z-transform
i : iy L T

§ = T, 3T but the equations turn out to be quite lengthy, which is why they have
been omitted here. Additionally, Matlab provides the “c2d()” method, which can be
used with "tustin’ as third argument in order to calculate the bilinear Z-transform

automatically.

[F| A

o
14Ty 1/m 1/7; w
(a) Combined 2nd-order filter frequency response
[F| T
| i |
| | i
[|
I | [
| | [
[[[
| | [
| | [
| J | |
| [[[-
1/T, /7, 1/ 1/Ts e

(b) Combined 3rd-order filter frequency response

Figure 3.7: Frequency responses of Carlosena-extended loop filters

Figure 3.7 shows the frequeny responses of these Carlosena-extended 3rd and 4th-
order PLLs. It can be seen that compared to figure 3.5, the transfer function con-
tains additional bends at lower frequencies. Each bend in the transfer function is
associated with one of the filter time constants 7.

It has been said at the end of the previous section that equations can be found in
the PLL-literature which help to specify the timing constants r; and 7 of 2nd-order
PLLs (1st-order loop filters). The additional timing constants 74 and 74 for the
Carlosena-extension filters must be carefully chosen such that they don’t interfere
with the behavior of the loop that they are extending. In [Carlosena07], the authors
suggest to make any additional filter time constant 5 times higher than the previously

3.2, Frequency-Locked Loops 21

highest constant. This ensures that the bends in the filter frequency response are
spaced sufficiently apart from each other.

The 3rd and 4th-order PLLs designed with this guideline in mind have been sim-
ulated similar to the 2nd-order loop in figure 3.4 and the results are depicted in
figure 3.8 and 3.9. It can be seen that, as expected, the 3rd-order loop is able to
reduce the phase error ¢, to 0 after a frequency step at the input. The 4th-order
PLL can even track a frequency ramp. The drawback of the additional loop filters
can be seen for instance at the top right subfigures, which contain the PLL response
to a phase step. Here, the 3rd and 4th-order PLLs take substantially more time
before the phase error reaches 0, compared to the 2nd-order loop.

3.2 Frequency-Locked Loops

It is shown in [Carlosena07], that the 3rd-order PLL depicted in figure 3.6 can be
rearranged by not feeding the input of the VCO into the second loop filter, but
instead feeding the derivative of its output into the second loop filter. At this point
it is important to remember that the output of the VCO that actually matters in
a PLL is the phase fy of the VCO output signal. The sine function that is used
to calculate the actual VCO output us(t) = sin(f,(t)) is only needed because the
subsequent phase detector expects a sine wave at its input instead of a simple phase
value. Figure 3.10 depicts the resulting rearranged loop.

Taking the derivative of 0, at a certain moment in time is equivalent to calculat-
ing the instantaneous frequency fo of the VCO output at that very moment (c.f.
equation 3.16, page 14). Therefore, the input to the second loop filter is actually
the instantaneous frequency. Caleulating the derivative of 6 simply counteracts the
integration that takes place in the VCO.

As a result, it is obvious that the loop does not only act based on the in- and out-
put phase, but also based on the output frequency. In order to track the frequency
components of a speech signal, it is not so important to obtain a tracking result
in which each output sine wave is exactly synchronous (meaning: in phase) to the
corresponding input sine wave. Reflected wavefronts and other environmental influ-
ences are among the reasons why the phase offset (and therefore the total phase) of
a recorded sinusoid changes very rapidly over time [Huber11]. Furthermore, human
listening experiments have shown that the human ear is insensitive to the initial
phase offset of harmonic components in human speech [Carlyon97)|.

Therefore, it seems reasonable to dismiss a perfect in-phase signal tracking for a sig-
nal tracking which only focuses on the target signal’s frequency. These techniques
are known as frequency-locked loops (FLLs). In general, FLLs are similar to PLLs.
They both consist of a loop filter, a local oscillator and a diseriminator. The differ-
ence is that while a PLL phase detector calculates the phase difference between two
signals, an FLL frequency detector calculates the frequency difference.

FLLs are widely used, for example in GPS devices. which is why a lot of information
about FLLs can be found in GPS literature, such as [Kaplan06] or [Curranl2].
[Costas80] is another paper that deals with frequency-locked loops.

2 3. Methodology

A input phase step PLL output phase error
e == T 4 T : !
3
= 256 ’
b= Il =)
& g
g o
k=] @
2 18 2 9
@ 177}
g g
[=% Q
0.5 o
0 i | H " &
=5 0 . L7 10 15 -5 0 5 10 15
time [s] x 107 time [s] x10°
input frequency step PLL output phase error
600 - — 0.6 :
500 -— ; 0.5
3
= 400 g
@ 5 03
= 300 g
= o 0.2
S 200 %
g & 0.1
100 — * 0
0 : : -0.1 : - : =
-0.05 0 .0.05 0.1 0:1£ -0.05 0 0.05 01 1€
time [s] time [s]
input frequency ramp PLL output phase error
10000 g = 0.2 T :
— 8000 :
i = 0.15 : - 1
o ;
£ 6000 ey
° 2 :
5 & 01 ‘ /
$ 4000 o /
=5 @© f
g S
= 2000 o | r"”/ |
0 : - 0 :
-0.2 0 0.2 0.4 -0.2 0 0.2 0.4
time [s] time [s]

Figure 3.8: Tracking behavior of a 3rd-order PLL using an active lead-lag loop filter
and one Carlosena extension.

3.2. Frequency-Locked Loops 23

input phase step PLL output phase error
3.5 T 4]
3 : 3
"g' 2.5 ':g' 2
£ 2 D 3]
il =
® 1.5} D
73] 7]
@ 2 0
&= =
a =%
05 -1
0 : -2 - :
-5 0 5 10 =5 0 5 10
time [s] %10 time [s] x 107
input frequency step PLL output phase error
600 T ==y 0.4
500
E . 0.3
T 400 K
= = 8.2
- (=]
> 300 L
= 2 01}
S 20 i
g &
100 0
0 . e 0.1 ;]
-0.02 0 0.02 0.04 -0.02 0 0.02 0.04
time [s] time [s]
input frequency ramp PLL output phase error
4000 T : ‘ 0.04 v : :
= 0.03
ﬁ 3000 ﬁ
£ ? 0.02
g 2000 E
§ % 0.01
o E =
£ 1000 wh
0
0 : : : -0.01 ——i :
-0.1 0] 0.1 0.2 0.3 -0. 0 0.1 0.2 0.3
time [s] time [s]

Figure 3.9: Tracking behavior of a 4th-order PLL using an active lead-lag loop filter
and two Carlosena extensions.

24 3. Methodology

6,
—-—+.
phase loop
= detector] filter 1
8,
local -
oscillator [&
differen- w loop
—™ tiator = filter 2

Figure 3.10: Equivalent schematic to the 3rd-order Carlosena extended PLL depicted
in figure 3.6

3.2.1 Frequency Detector

In the same way as there are many different phase detector circuits available for
PLLs, there are also various frequency detector algorithms for FLLs. (Natali84] is an
carly paper dealing with FLLs and it describes the so-called differentiator detector,
the cross-product detector, the cross-dot-product detector and a comparison with
fourier transform. Further publications like [Curran12] and [Tiwarill] also include
the so-called four-quadrant arctangent discriminator, which appears to have superior
performance.

However, neither of these frequency detectors were designed with speech applications
in mind. In [Kumaresanll] and [Kumaresan12], the authors Kumaresan, Peddinti,
and Cariani present a frequency-locked loop setup which has already been designed
and tested for the task of pitch estimation. Therefore, this seemed like a reasonable
approach to examine.

EE— Ce,nter FLL output
triplet >
filter

Uy upper
> - envelope
triplet >
e filter detector +}
id gﬂwg: o] €nvelope | - A
» P detector
filter f
@
Y2 local | loop |
oscillator filter

Figure 3.11: Schematic of a triplet-filter frequency-locked loop.

Figure 3.11 shows the basic layout of the system. As expected, it has a loop filter
and a local oscillator. The frequency detector, however, is made up of a so-called
filter triplet, two envelope detectors and a difference block. In this context, a filter

3.2. Frequency-Locked Loops 25

triplet is a combination of three bandpass filters with slightly different passband
center frequencies, as depicted in figure 3.12. All three filters of the filter triplet are
based on the same basic frequency response, which is the center triplet filter. The
lower and upper filter are created by slighly shifting the center filter up and down
along the frequency axis.

Magnitude Response (dB)

sof T u T T T T T T i

Magnitude (dB)
&

100 &

‘,?1’ i

-120f ‘ ‘ ‘ : 1

-110F

J 1 A i i 1 i]

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency (kHz)

Figure 3.12: Example of a filter triplet centered at 1 kHz

The working principle of the Triplet Filter FLL is that the incoming signal contains
a certain frequency and noise, which can have a high energy at other frequencies. If
it is assumed that the FLL is locked onto a frequency f, then the center triplet filter
is placed such that the center of its passband is also at f. The output of the center
triplet filter is then considered the FLL output, since only the spectral components
around [can pass the filter.

The output of the lower and upper triplet filters is then processed in an envelope de-
tector, whose output roughly correlates with the energy in the corresponding signal.
Afterwards, the difference block is used to subtract the energy of the lower triplet
filter output from the upper triplet filter output. If the input signal’s instantaneous
frequency increases, the energy of the upper triplet filter output will be greater than
the energy of the lower triplet filter output. As a result, the difference of both energy
values is positive and the local oscillator would therefore increase its frequency.

At first, it seems that this kind of frequency detector is computationally very exten-
sive. After all, the input signal has to be processed in three filters and furthermore,
the coefficients of these filters have to be adjusted constantly in order to move the
passband center to the correct frequency. It turns out, however, that some non-time-
varying filters can be combined to create a frequency response like the one depicted
in figure 3.12.

26 3. Methodology

3.2.2 Triplet Filter Calculation

Calculation of the triplet filters starts with a simple filter which has a non-causal
impulse response h(f) and a frequency response H (w) [Kumaresan12):

h(t) = exp(—alt|) (3.33)

2 \

= — 3.34

= H(w) I (3.34)

For practical use, the non-causal impulse response has to be truncated and shifted
in time, such that it begins at { = 0. The resulting causal and finite filter impulse
response and frequency response is depicted in figure 3.13

1 . -
= 0.5¢
0 i I i
-0.01 -0.005 0 0.006 0.01 0.015 002
time [s]
(a) impulse response
-40 ;
60}]
— -807
48]
=
T -100+
=
o
S 420t]
-140+
-160 ' : :
-1 -0.5 0 0.5 1
frequency [Hz] x 10°

(b) frequency response

Figure 3.13: Base filter used for triplet filters.

Afterwards, two “intermediate” filters h;(t) and ha(t) can be calculated by multi-
plying h(t) with cos(At) and sin(At). A represents the frequency shift (in radian-
s/second), by which the lower and upper triplet filter are shifted compared to the
center filter. Multiplication by a sinusoid in the time-domain leads to a shift of the
frequency response in the frequency domain:

Hw—-A4)+ Hw+A)
2
= A
hy(t) = h(t) - sin(At) = Hy(w) = _,‘T‘H(L’-’ A) ‘;' H(w+ A)

hi(t) = h(t) - cos(At) = Hy(w) = (3.35)

(3.36)

3.2, Frequency-Locked Loops 27

H, and H, are then used together with the output of the local oscillator to generate
four intermediate signals, named ay, a2, b; and b;. There have to be two outputs
coming from the local oscillator in order to create these signals, a sine output and
a cosine output. The VCO depicted in figure 3.2 (page 14) only generates a sine
output. A cosine output can be calculated by feeding the VCO accumulator output
into an additional “cos” block. If the current VCO output frequency is w, radian-
s/second, the VCO sine output is sin(w,¢) and the cosine output is cos(w.t). The
subseript “¢” is used to indicate that this will also be the center frequency of the
center triplet filter.

Finally, the intermediate signals a; and a; can be obtained by multiplying the FLL
input u; with the VCO cosine output and subsequently filtering the result with
Hy and H,, respectively. b, and by are calculated similarly by using the VCO sine
output instead of the cosine output:

ar(t) = (ui(t) - cos(wet)) @ hy(t) (3.37)
as(t) = (u1(t) - cos(wet)) @ ha(t) (3.38)
bi(t) = (u1(2) - sin(wet)) @ hy(t) (3.39)
ba(t) = (us(2) - sin(wet)) ® halt) (3.40)

Here, ® denotes convolution. The corresponding frequency domain results are:

U;(UJ - wﬂ)Hl{W) + Lr«[(UJ + LAJ,_:)Hl(LIJ)

Al = - (3.41)
Aol) = Dl — W Haw) ; Ui (w + we) Ha(w) (3.42)
Bl = A = W (G > U (w + we) Hi (w) (3.43)
By{o) m — = W) Hy(w) . Ur(w + we) Hy(w) (3.44)

Afterwards, the next step is the production of two more intermediate signals ¢; and
o, as follows:

e1(t) = ay(t) cos(w.t) + by (t) sin(w,t) (3.45)
ea(t) = ag(t) sin(w.t) — ba(t) cos(w,t) (3.46)

The corresponding calculations in the frequency domain are a little lengthy, which
is why they are not printed here. The results. however, look like this:

CHy(w = we) + Hi(w + we)

Ci(w) = Ui(w) 5 (3.47)
=G (w)
Efial i T i 5 g P00) ; Haw +we) (3.48)
b =:("::(W) }

These two equations reveal that the combination of operations, which has been
described so far, results in two intermediate signals ¢; (1) and ¢,(t), which are nothing
but the FLL input spectrum U, filtered by G, and Gs. respectively. The final step

28 3. Methodology

which is necessary to obtain the triplet filter output is to add and subtract ¢} and
Cy, respectively. Adding €y and C, produces the lower triplet filter output and
subtracting C; from) gives the upper triplet filter output:

‘Hl(wI = Wr:) + Hl({-‘-’ "'WC) i {HE({"—" - ‘-‘Jc) S H?(W +"-"-"r.‘))

UPPER(w) = Uy (w) - (

2 2
=l =N .
- Uy(w) L= 8 : s 2 (3.49)
=:f'-|’:l(u))

LOW ER(w) = U,

). (Hl(u.: —we) + Hy(w+we) -iHE(w — W) — Ha(w +w¢-))

2 :
H(w—we+ A) + H(w +we — A
= By} L = et };’ = R) (3.50)
=:Hp ()

It can be seen that the frequency response of the upper triplet filter Hy is the
frequency response of the prototype filter H, shifted by w,. and A, i.e. shifted to the
current VCO frequency and then A radians/second further. Correspondingly, H, is
like H, but shifted to the center frequency w, and then A radians/second back.

All these calculations seem rather complicated at first glance. However, the de-
scribed procedure has the advantage of using fixed pre-calculated filters H; and
H,. Shifting the filter passband to the appropriate VCO frequency at runtime is
achieved by a series of time-domain multiplications, which result in the desired fre-
quency shifts in the Fourier domain. Figure 3.14 shows the whole triplet filter cirenit

s

| upper triplet filter output
: + I‘ -

FLL input u,

lower triplet filter output

2] 2

VCO cos output

VCO sin output
Figure 3.14: Schematic of lower and upper triplet filters.

described above (lower and upper triplet filter outputs). The triplet center filter has
been omitted so far. It is not used to steer the VCO frequency and therefore it
does not affect the frequency tracking capabilities of the FLL. Instead, the output
of the center filter represents the FLL output. The center filter is calculated using
a similar procedure like the one used to calculate ¢;(t), but the base filter H is used
instead of H;.

By comparing the energy of the lower and upper triplet filter outputs it can be
determined if the current VCO frequency is too low or too high. For instance, if
the energy of the upper filter output is higher than the energy of the lower filter

3.3. Gammatone Filters 29

output, the signal that should be tracked is likely to have a higher frequency than
the current VCO frequency. Since the filter outputs cannot be compared directly, it
18 necessary to calculate and compare their energy, which is achieved by comparing
their envelope. Therefore, an envelope detector is necessary as depicted in figure 4 in
[Kumaresan12]. For this work, the envelope detector consisted of a Hilbert transform
which is used to calculate the complex analytic signal of the upper and lower triplet
filter outputs, whose absolute values represent the signal envelopes. According to
[Kumaresan12], the logarithm should be taken of each envelope instead of using the
envelope directly. It can be seen from the experiments in chapter 4.4 that the base of
the logarithm influences the FLL tracking speed and accuracy and higher logarithm
bases (50 and higher) worked better than lower bases like 2, 10 or e.

3.2.3 Voltage-Controlled Oscillator and Loop Filter

The VCO for the FLL is essentially the same as the PLL VCO deseribed in sec-
tion 3.1, except for the additional cosine output, which is needed for the triplet
filter. [Kumaresan12] further recommends the use of a standard digital integrator
for the loop filter.

3.3 Gammatone Filters

A problem that all of the previously outlined PLL and FLL approaches have is the
fact that all of them are only designed to handle a single frequency component in
their respective inputs. If a FLL or PLL is used to track one of several frequency
components, the PLL or FLL might not be able to track even one of the frequency
components, because it constantly switches from one frequency to another.

One way to deal with this problem is to use a large amount of PLLs or FLLs, hoping
that at each moment in time, at least one loop will track any of the frequency
components. Unfortunately, experiments have shown that the loops tend to switch
between components very often. Furthermore, it is difficult to find out when a loop
was locked on a frequency and when it was unlocked and moving from one frequency
to another. It might also happen that an unlocked loop never becomes locked again
because there are too many frequency components at the same time.

In order to track multiple frequencies at once, there is a need for an additional
bandpass filter stage prior to the actual PLL /FLL. The filter stage is used to split the
whole signal into many frequency bands, which hopefully contain only one frequency
component each. [Kumaresan12] suggests the use of a gammatone filterbank for the
FLL setup described in the previous section.

Gammatone filters are modeled based on the frequency response of the cells in
a human ear and they have originally been described in 1972 by Johannsma. A
description of an efficient implementation for gammatone filterbanks can be found
in [Holdsworth8g|. A single gammatone filter can be described in the time domain
by its impulse response:

h(t) = at"! exp(—2mbt) cos(2m fot + ?) (3.51)

In this equation, n is the filter order, b controls the length of the impulse response,
Le. the bandwidth, and f, represents the center or peak frequency. ¢ is a phase

3. Methodology

Filter Response [dB]

0 2000 4000 6000 8000
Frequency [Hz]

Figure 3.15: Gammatone filter bank with 500 Hz spacing between filters.

term which can normally be set to 0 and a is an additional gain factor. Figure 3.15
depicts an exemplary set of gammatone filters, spaced 500 Hz apart.

It can be scen that the filters are not symmetric and they get broader, the higher
their center frequency is. Additionally, the order n determines how steep the slope
between pass- and stopband is. [Holdsworth88] shows a special technique, which
can be used to apply multiple filters with a low order in order to get the output of
a high-order gammatone filter. 4th-order filters have been used for the experiments
in this work, made from a cascade of four lst-order filters.

3.4 Comb Filters

Comb-Filters are a type of filter whose transfer-function has periodic peaks and
valleys that resemble the teeth of a comb. A simple computationally inexpensive
digital comb filter can be built by adding a scaled and delayed copy of a signal to
itself [Smith10]. A schematic of this FIR filter can be found in figure 3.16, where
z K represents a K-sample delay and a is a scaling factor.

[n] b [n]
x[n y[n
()

Figure 3.16: Feedforward FIR Comb Filter.
The difference equation for this filter is y[n] = z[n] + a - z[n — K| and a Z-transform
of both sides of the equation leads to:

Y(z) = X(2) +az % . X(2) (3.52)
= (1 4+ az~¥)X(2) (3.53)

3.4. Comb Filters 31

Therefore, the Z-domain transfer function is H(z) := -};%f% = 1+ az K. Since
the frequency axis can be found on the unit circle of the Z-domain [Smith07], the
frequency response can be calculated by substituting z = exp(i27 fT.), where T,
is the sampling time and f the unnormalized frequency in Hz, which results in a

magnitude response of:

[H(f)| = VR{1 + aexp(—i2r fT.K)}? + I{1 + aexp(—i2r fT.K)}? (3.54)
= /(1 + acos(—2nfT.K))? + (« sin(—27 fT,K))? (3.55)
= V14 2acos(27fT,K) + a? (3.56)

Since o is a constant, only the term 2a cos(27 f7,K) is responsible for the peaks
and notches in the filter’s frequency response. For o = 0, peaks can be found at
frequencies f,,n € Z, where

fn = arg mf_x(firl cos(27 fT.K)) (3.57)

= 2rfoT. K = 27n (3.58)

& | . Trﬁf‘ (3.59)

The latter equation states that the peak frequencies are f = 0, S iy <ney TS

means that there will always be a peak at 0 Hz and further peaks will be located
at integer multiples of the fundamental peak frequency f; = F—lﬁ. By solving equa-
tion 3.59 for K and setting n = 1, the filter can be approximately designed for a
certain fundamental peak frequency. For most frequencies, however, it will only be
an approximation, since K has to be an integer. It can be seen from equation 3.59
that the approximation will be better if the fundamental peak frequency is low
compared to the sampling rate.

The solid line in figure 3.17 is the frequency response of a feedforward comb filter
with @ = 1 and K = 16, which means f; = 1000 Hz at a sampling rate of 16 kHz.
The frequency response of this kind of feedforward comb filter has wide peaks and
deep notches. For lower (but still positive) a, the notches would be less deep.

The dashed line in figure 3.17 is the frequency response of another type of comb
filter, which utilizes feedback instead of a feedforward path and a value of oo = 0.7.
Figure 3.18 is a schematic of this type of feedback IIR comb filter. It can be seen that
the feedback comb filter has sharper peaks and wider valleys, which is the opposite
of the feedforward comb filter’s characteristics.

The difference equation for the feedback comb filter is y[n] = z[n] + a - yln — K,
which leads to the following transfer function:

32 3. Methodology

E !
=]
< 1
£ I
=
@
M
=
E ;
(=] |
= -]
= =30
m |
=
3 -40!
2 ;
E
< 50+ Feedforward comb filter
i = — — Feedback comb filter
0 1 2 3 4 5 6 7

Frequency (kHz)

Figure 3.17: Frequency response of comb filters for positive values of a.

x[n] . ylnl

Figure 3.18: Feedback IIR Comb Filter.

For a = 0, the location of the peaks of the transfer function can be calculated similar
to equation 3.63:

: 1 ’ 1 .
H(P] = \/{R { 1 — aexp(—i27 fT.K) } L { 1 — aexp(—i2rfT.K) } (3:65)

_ /(= acos(=2nfTK))* + (asin(~2r/TK))? (3.64)
- (1 = 2avcos(—2nfTK) + a?)? 3

B 1 —2acos(=2nfTK) + a? =
V- 20 cos(—27 fTK) + a?)? 3.6
N : (3.66)

V1 —2acos(=27fTK) + a2

Again. e is a constant and so for & = 0, the peaks of this frequency response can be
calculated as follows:

fn = arg mfin(l — 2acos(—2nfTK) + a?) (3.67)

&> fo = arg 111}33{(2& cos(—2nm fTK)) (3.68)

This is the same as equation 3.57, which means that the delay parameter K can be
calculated in the same way for the forward and backward comb filter and for a given

3.5. APES Amplitude and Phase Estimator 33

parameter K, the location of the peaks is the same for both comb filter types. Later
in section 4.5 comb filters will be used to enhance the harmonic structure of voiced
speech.

3.5 APES Amplitude and Phase Estimator

The abbreviation APES stands for “Amplitude and Phase Estimation of a Sinusoid”,
which - as the name suggests - is an amplitude estimation algorithm for complex
sinusoids. It was first published by Li and Stoica in 1996 [Li9)]. Later, it has
been found that the APES algorithm can also be interpreted as a matched filter
approach, as described in [Stoicad7]. [Glentis08] contains a description of an APES
implementation that uses certain mathematical properties in order to decrease the
computation time.

Furthermore, there is a comparison in [Stoica00], where APES is compared to other
spectral estimation methods, such as least-squares estimation or the CAPON es-
timator [Capon69]. In general, it has been found that APES is a superior means
of amplitude estimation compared to these other methods, especially compared to
a “standard” windowed Fourier transform. Since voiced speech can be represented
by a line spectrum with individual frequency components at fo Hz, 2f; Hz, ...,
a spectral estimation method used for voiced speech should be good at resolving
individual spectral peaks rather than estimating continuous spectra. According to
[Li96], FFT-based spectral estimates are better suited in the case of line spectra
with many very closely spaced lines, whereas APES seems to be more precise if the
spectrum contains fewer lines which are further apart.

Finally, [Li98| contains a comparison of an APES implementation that uses forward
filtering with another implementation that uses forward-backward filtering. Since
the results of forward-backward APES seem to be better than those of forward
APES and the extension of forward APES to forward-backward APES is not very
computationally intensive, forward-backward APES has been used for the experi-
ments in this work. The following is a mathematical description of the implemented
forward-backward APES.

3.5.1 Derivation of Universal Filter-Based Estimator

Under the assumption that the input signal x contains only a single spectral compo-
nent with a time-varying instantaneous frequency w(t) and a time-varying complex
amplitude «(t) = a(t) - exp(i - ¢(t)), x can be modeled in the following way:

z(t) = a(t) - exp (7?/(: w(t)dt) + e(t) ,t € [0,00) (3.69)

e(t) represents the noise term, which is expected to have a mean of zero. Sampling
r at a sampling rate of f.(= "ri,) Hz leads to the following discrete representation:

z[n] = a[n] - exp (iTs iw[m]) + e[n] MEZ (3.70)

il

APES is further based on the assumption that the Input is stationary and hoth
the amplitude a[n] and the instantaneous frequency w(n| are actually constant. To

34 3. Methodology

better match these requirements, the input z is split into non-overlapping blocks of
N samples each. Within each block [n] and w[n| are approximately constant and
they can be represented by ay and wpy, respectively, where K is the block index
(k € Z). Therefore, the sum in equation 3.70 can be split into two parts, one for
block K, which includes sample n, and another for the blocks prior to K

xln] = ag -exp (z’T_N (Z_ wlm] + Z_: w}{)) + ¢e[n] (3.71)

rm=() m=K-N
K.N-1
= ag - exp (iT_,j (Z wlm] + (n— K - N)w;c)) + e[n] (3.72)
m=0
K.-N—1
= Qg - exp (z’Tﬁ Z w[m]) -exp (iTy(n — K - N)wg) + e[n] (3.73)
=0

The first exponential determines the phase offset at the beginning of block K due
to the time-varying frequency in the prior blocks. For a continuous analysis of the
phase offset over several blocks it is important not to forget that contribution of a
time-varying frequency to the phase of the signal. For this work, however, only the
real-valued magnitude |a(t)| of the complex amplitude a(t) is of interest. Therefore,
the actual phase angle Za(t) can be neglected and it is sufficient to examine each
block of samples individually by assuming K = 0 for all samples.

To avoid confusion with the fully continuous case, a single block of N samples will be
denoted by y instead of z from now on. As it has already been stated, the amplitude
@ and frequency w are assumed to be constant during a single block, which leads to
the following formulation (cf. [Li96], equation 1):

yln] = a - exp(iwT,n) + e[n] M=1[0,1,:..,N—=1] (3.74)

This will be presented to the APES algorithm in the form of two column vectors
(* denotes complex conjugation):

V=l vl e oyv-n)” (3.75)
Y=Ww-1 viN-2 - p]" (3.76)

Y is called the forward vector and % the backward vector, since it contains the
samples in reverse order. In the next step, 7 is split once more into subvectors T@}}*
of length M with an overlap of M —1 (e.g. a shift of 1 sample per subvector), which
means that there are L = N — M 4+ 1 subvectors per input block.

vi= Wil oyl e yle M=) =L L= (377)
a - exp(iwT, - 1) ell]
_ r_n;-ﬂxp(-iw?ll-(l—kl)) N a[l?tl] (3.78)

a-exp(iwly - (I+ M —=1)) el + M —1]
exp(iwT; - 0) ell]

expliwdy -1 ell +1
= (¥ p(f :) 'UXP(‘«‘:WTJ) + [:] (3[79)
exp(iwT; - (M — 1)) el + M —1]
* i -~

=:a({w) =%

3.5. APES Amplitude and Phase Estimator 35

The backward vectors ¥; are defined similarly:

W=IN-1-1 y[N=i1-2 - yIN-1-M]" (3.80)
a* - exp(—iwT, - (N =1 —=1)) e*[N —1-1]
N a’ - t‘_‘.}wzp(-—'.'.'L._Jf:':T (N-=1-2)) N e*[N — [—2] (3.81)
o - exp(—iwT, - (N =1 = M)) e*[N — [— M|
= a" - a(w) - exp(—iwTy(N — 1)) -exp(iwT,l) + & (3.82)
=E:EI’.IJ)

APES further consists of a finite impulse-response (FIR) filter h(w), which has M
taps.

h(w) = [ho(w) M) ... ha—a(@)]” (3.83)

During the runtime of APES, h(w) will be calculated in a way such that it passes
a certain frequency w unchanged while it attenuates other frequencies as much as
possible, depending on their presence in the input signal. The design of h(w) will be
presented later in this chapter. For now it is enough to know that there is a filter
h{w) with the aforementioned properties. Passing 3 and I through A(w) results
in:

W (@)Y = a- hT(w) - a(w) - exp(iwTyl) + hT (w) e (3.84)
R (W) = a* - hT(w) - a(w) - b(w) - exp(iwTyl) + hTw (3.85)

These two equations can be simplified further by designing h(w) such that AT (w) -
a(w) = 1. Afterwards, all filter outputs can be combined into a single equation.

[W@w] exp(iwT, - 0) 1 [W& T
h“‘(w:)yb__i B exp(iwT :- (L-1)) hT(wz)ﬁ :
(W (w)) | ~ b*(w) - exp(—iwT, -0) | ¢ (AT (w) *E)I"‘ (3:86)
__(h'f‘(w)';fm)*l 15 (w) - exp(—iws - (L -)] _(hT(w)'ém)*JJ
—-\.FA _=TB ;T(.-'

Using a pseudoinverse of B, a can be isolated ((-) denoting the conjugate trans-
pose):

(B¥B)'BiA=a+ (BYB)"'BEC (3.87)

36 3. Methodology

This can be further simplified using the following transformations.

rg
B"B =" exp(—iwT.l) - exp(iwT}l) (3.88)
=0
L-1
- Z b(w) - exp(iwTyl) - b*(w) - exp(—iwTyl)
1=0
= L+ b(w)b*(w) - L (3.89)
= L + exp(—iwTo(N — 1)) - exp(iwT,(N — 1)) - L (3.90)
= 2L (3.91)
L-1 L—1
BiA=Y" exp(—iwT A (W) T + Y bw) - exp(iwTy) (AT (W) W) (3.92)
=0 1=0
L—1 L—1 *
= h' (w) (Z cxp(—imi‘][)ﬂ?) + hf (w)b(w) (Z c-.xp(—?]wT,‘l}E) (3.93)
1=0 1=0

B¢ can be calculated similarly to B A. However, after dividing it by BB = 2L
it will result in the mean of e[n], which is 0 based on the basic assumptions for the
APES algorithm. Finally, the simplified version of equation 3.87 is:

i L—1 i
o= % (hT(w) (Z cxp(—inJ)"ﬂ) + R (w)b(w) (Z exp(—inJ}?T;))
i=0 =0 o

It has been found in [Li96] that the first summand in the outer parenthesis is the same
as the second summand if h(w) is calculated in a certain way. For the derivation of
h(w) as it will be presented in the following section, the equation eventually reduces
to its final form:

I~

T =
a = ’Léi) N exp(—iwT) wt (3.95)
1=0

3.5.2 Filter-Design for APES

The method mentioned in the previous section is applicable for various filters h(w)
and indeed, there are several filter-based amplitude estimation approaches. It is
interesting to note that for A(w) = 1 (no filter), equation 3.95 reduces to the discrete
normalized Fourier transform. CAPON [Capon69) is another filter-based approach
and APES is an extension of CAPON with less statistical bias [Stoica97]. CAPON
and APES are both matched-filter approaches because the filter h(w) is calculated
to fit the input data optimally such that the signal-to-noise ratio of the filter output
is maximized. This means that the design frequency component wy is kept constant
(h?(wy) = 1), while other frequencies are attenuated. Overall, h(w) can be expressed
by the following equation [Li98]:

f," w)a 2
h(w) = arg r’?%\ {’7]_1‘"(%")(75% (3.96)
= S @8 (3.97)

a?(w)Qla(w)

3.5. APES Amplitude and Phase Estimator 37

() represents the noise covariance matrix, which is defined by @ = & ety =
E{E & T}, where € denotes the expected value, The transition from 3.96 to 3.97 is
based on the Cauchy-Schwartz inequality [Li98]. @ can be obtained in the following
way starting with the sample covariance matrix R:

R:=&{yn"} = (™) (3.98)
= &{(a - aw) - exp(iwTl) + &)(a - a(w) - exp(iwTil) + &)} (3.99)
=&{(a- a(w) - exp(iwTil)) (o - a(w) - exp(T)} + E{E "} (3.100)

+&{(a - a(w) - exp(iwT,)et™)} + E{el(a-aw)- exp(iwT.l)")}

=0 e
=&{a-a(w) o - a(w)"} + E{T T H) (3.101)
= |af* - a(w)a(w)” +Q (3.102)

The third and fourth summand in equation 3.100 are zero because @ represents
additive white Gaussian noise, which has an expected value of zero by definition
and which is also statistically independent of a - a(w) - exp(iwT,l). The forward-
backward sample covariance matrix R can be calculated as follows from the forward
and backward samples:

L= L-1
171 =g 1 H 5 i
st I 2 T i 3.103
R E(ngtm +R§§IJJ ()

- =

H R
Therefore, using equation 3.103 with equation 3.102 leads to:
1 | L-1 1 L-1

Q=-|35> wa"+= Tl = laf - a(w)a(w)? 3.104
=3 (R A AT) e g
= R — (aa(w))(aa(w))” (3.105)

For each vector of N input samples to APES, there are L subvectors of length M
that can be used for a least-squares estimation of aa(w). Based on equations 3.79
and 3.82 the estimates (denoted by ™) obtained using the forward input vectors and
the backward input vectors, respectively, are:

- ==

aa(w) = T E}-exp(—insaf) (3.106)
=0

QZ 1 L—1

aa(w) = - U - exp(—iwT,l) (3.107)
1=0

Since R in equation 3.105 was calculated using both the forward and backward
sample covariance matrix, the second part of that equation also has to be calculated

; — i
using both r.m.(r.u; and aa(w), which results in the following final equations for the
noise covariance matrix Q, which is used in combination with equation 3.97 to form
the APES estimator.

1

—— . H _;,-—-—--__ﬁ--—-_hh’
(ua{wjmz(w) + aa(w)oa(w))

38 3. Methodology

The aforementioned CAPON estimator can be obtained using equation 3.97 as well,
but choosing = R. Analysis of both estimators has shown that CAPON is a biased
estimator whereas APES is unbiased within up to a second-order approximation [Sto-
icad7]. It has also been found that (unsurprisingly) a combined forward-backward
filtering approach such as the one presented in this section vields better results than
a forward- or backward-only approach [Li98]. The same paper also contains further
mathematical simplifications, which allow to implement the APES algorithm with-
out actually calculating all the necessary matrices R, @, ete. Due to the inherent
relation between the forward and backward input vectors it is often sufficient to cal-
culate a forward vector and multiply it with a constant to obtain the corresponding
backward vector.

For practical considerations it is further important to choose an appropriate input
vector lengh N and subvector length M. [Li96] suggests a choice of M = & for optimal
amplitude estimates. N, on the other hand, depends on the characteristics of the
input signal. For signals with slowly changing parameters (frequency, amplitude),
a higher N can be chosen for better statistical performance. A lower N should be
chosen instead for highly dynamic signals with rapidly changing parameters.

To demonstrate the estimation performance of the APES estimator, a test signal
with 6 frequency components has been created. The topmost figure depicts the
time-varying instantaneous frequency of each component. The center figure shows
the actual time-varying amplitude of these frequency components and the bottom
figure depicts the APES output for the given frequencies.

3.6 Impulse Response Late Reflections Estima-
tion

It can be observed from the results in section 4.2 that APES is capable of estimating
the first few impulses of a room impulse response. This is done by calculating the
amplitude and phase of a sinusoid with constant frequency played back in a room.
Rapid changes in phase or amplitude are a sign for a wavefront which arrives at the
microphone. The magnitude of a single impulse of the impulse response can then be
calculated by comparing the amplitude and phase before the change to the values
after the change.

However, this method is only accurate for the first couple of impulses (early re-
flections), whereas the late reflections cannot be estimated properly. It is therefore
necessary to find a way to estimate the late reflection-part of the impulse response.
This section describes a way to do just that given the first few impulses and an es-
timate of the reverberation time Ty, The desired impulse response will be denoted
with A(t) ;= R — R.

According to Schroeder, the energy E(f) that is left in an impulse response after
a certain time ¢ is the integral over the square of the impulse response from ¢ to
infinity [Schroeder65]. This is the so-called Schroeder-integral:

E(t) = /fm h?(z)da (3.109)

The energy of the reverberations in a room decays approximately exponentially after
the direct sound has disappeared. An exponential decay of the energy results in a

3.6. Impulse Response Late Reflections Estimation

39

instantaneous frequency [Hz]

amplitude

APES amplitude estimation

Figure 3.19: Amplitude estimation using APES with N = 256 and M = 128

800

600

400 & 1

) S S

»—-—'—'_"_'_‘—‘-—._._H_‘___'___._ —]
0 i } A .
0 0.2 0.4 0.6 0.8 1
time [s]

(a) 6 frequency components

0.3}

0.25

0.2r

0 0.2 0.4 0.6 0.8 1

time [s]

(b) actual amplitude

0.35

0.3r

0.25
02
0.15

0.1

=

-

0 0.2 0.4 0.6 0.8 1

time [s]

(¢) APES amplitude estimation

40 3. Methodology

linear decline in the decibel domain. Thus, it is assumed that £(t) decreases by
60dB every Ty, i.e. the slope of the decay curve in the decibel domain js — 50

Than*
_ﬁ_ﬂ t+10-log(E£(0)) = 10 - log(E(t)) (3.110)
fi0
10776 - B(0) = E(t) (3.111)
1077 B(0) = B(0) — (E(0) — B(¢)) (3.112)
10770 = 1 — ———E(U;@)E(t) (3.113)
B(o) = 20— EQ) (3.114)

1— 10" Tes
E(0) = Jo~ W (@)dz — [h*(z)dz
1= 10”75

t ¥
Ch2(x)daz
E(0) = L_'(‘_)i_‘rt (3.116)
1—10" %

(3.115)

Assuming that an estimate /i(t) for the impulse response is known for ¢ € [0; 4],
this can be used to estimate E(0)—in conjunction with an estimate Ty, for the
reverberation time:

te 7o
— he(x)ds
E(0) = U—@L—f (3.117)
1—10 7o
Equation 3.116 can also be rewritten like this:
i t r
E(0) — E(0) - 107 Tt = / h*(z)dx (3.118)
0
=g(t)-g(0)

Here, g(t) denotes an antiderivative of h2(t). It is now possible to differentiate both
sides of the equation with respect to {. The derivative of g(t) with respect to t is
h*(t) by definition and furthermore, because ¢(0) does not depend on ¢, it disappears
from the equation:

% (E(D) — E{0) <10 ﬁt) = %(9(6) —9(0)) (3.119)
~00) . 10" Tt = (_6 _ 2 ;
£(0) - 10 In(10) (Tsn) h2(t) (3.120)

This equation can then be solved for h(t) by using m from equation 3.117 and
Teo:

h(t) = \/EH('ET) .10 Tt 10(10) - (— E) (3.121)

Tt
460

4. Experiments

4.1 Description of Evaluation Data

4.1.1 Database of Recordings

The “CSTR US KED Timit” database (http://festvox.org/dbs/dbs_kdt.html) from
the Festvox project of the Language Technology Institute of Carnegie Mellon Uni-
versity has been chosen for evaluation purposes. The database contains the same
452 phonetically balanced utterances as the TIMIT database [Garofolo93|, but the
utterances have been spoken by a different male speaker at the Centre for Speech
Technology Research at the University of Edinburgh. The database was originally
chosen because in addition to the usual data it also contains electroglottograph
(EGG) data that reveals the movement of the vocal cords. EGG data can be used
to calculate the speaker’s pitch by a method described in [Bagshaw93], which has
already been used for the evaluation of pitch-tracking algorithms, for example in
[Seltzer00]. All recordings are sampled at a sampling rate of 16 kHz and therefore,
all subsequent processing was also carried out at that sample rate.

4.1.2 Impulse Responses

Artificial reverb was generated for all .wav-files by convolving them with six different
impulse responses. Three of these impulse responses were taken from the Aachen Im-
pulse Response Database (AIR) [Jeub09] and the other three were artificial impulse
responses created by the Roomsim v3.4 impulse response generator software.

The AIR database of impulse responses contains binaural impulse responses which
have been measured in various rooms and with various distances from speaker to
microphone. It also contains impulse response measurements of microphones located
in dumnmy heads like the KEMAR. The following code was used to load the impulse
responses. load_air is supplied by the AIR software package and its output h contains
the impulse response specified by the supplied parameters.

1t airpar.fs
2 alrpar.rir_type

16000; : zanpling freguency [Hod
1; % 1 = bin: . = dual-ch

42 4. Experiments

airpar.room = 2. i

airpar.head = () B L
airpar.rir_neo = d; ’ < :
airpar.channel = 0;

(b, infe] = load_air(airpar);

The chosen impulse responses were recorded in an office room and the distance from
the speaker to the microphone was 1 m, 2 m and 3 m, respectively.

Roomsim is a software which calculates the impulse response of a room/speaker /mi-
crophone setup using the so-called image method, which is described in [Allen79]. It
works by repeatedly "mirroring” a shoebox room and especially the position of the
sound source in the room along its outer walls. After a certain selectable amount
of mirroring operations Roomsim can calculate the “direct” path from each image
of the sound source to the microphone. Along the way, it consideres the absoption
coefficients of the walls that the corresponding sound wave would hit during its way
from the real speaker to the microphone.

All roomsim impulse responses were generated with a sampling rate of 16 kHz,
which is a standard for speech recognition systems. The simulated environment was
a cuboid-shaped “shoebox”™ room with dimensions of 4.2 x 1.9 x 2.2 m (x, y and z
axis). The virtnal microphone was placed at the coordinate (1.5, 1.55, 1.1), i.e. at
half the room height. The artificial speaker was placed at coordinates (2.1, 1.55,
1.1), (2.7, 1.55, 1.1) and (3.3, 1.55, 1.1) for the 60 cm, 120 em and 180 em distance
recordings, respectively. Roomsim comes with a selection of wall materials, which
are used to determine the reverberation coefficients. The following materials have
been used:

X-axis wall 1: Glazed wall

X-axis wall 2: Draperies, medium velours
Y-axis wall 1: Ordinary window glass

Y-axis wall 2: Glazed wall

Z-axis wall 1 (floor): Heavy carpet on concrete
Z-axis wall 2 (ceiling): Glazed wall

Figure 4.1 depicts all the impulse responses that were used in this work. In the
figure, they are truncated to show the most meaningful time span up to 0.3 s.
Figure 4.2 shows the relative energy decay of each of these impulse responses as
determined by the Schroeder backwards integration method [Schroeder65). At first,
it seems remarkable that the artificially generated impulse responses have a much
slower energy decay compared to the AIR impulse responses. The reason for this
observation is that Roomsim does not simulate any content in the room such as
furniture, wall decoration, people, etc. All these things that are present in a real
environment would speed up the energy decay.

4.1.3 Pitch

In order to run APES on the artificially reverberated .wav-files it was necessary
to first obtain a pitch track for each file. Although the “CSTR US KED Timit”
database already contains EGG data that can be used to generate a pitch track, the
method was found to be too error-prone. The EGG records the movement of the

4.1. Description of Evaluation Data 43
1 0.6 -
0.4
B 05 B
=] =
E} g, 0.2
© ©
0
E E D'r . —
05 . -0.2 '
0.1 0.2 0.3 0.1 0.2 0.3
time [s] time [g]
(a) Roomsim 60 cm (b) Air 100 em
1 0.3
0.2
4 05 £
2 =
H g o
© ©
0
E E 0 s
-0.5 : -0.1) ;
0.1 0.2 0.3 0 0.1 0.2 0.3
time [s] time [s]
(c) Roomsim 120 em (d) Air 200 em
1 03—
23] (k) 0.2
5 0.5 -5
H g o
@ L]
0
E E -
-0.5 —— . L -0.1— "
0 01 0.2 0.3 0.1 0.2 0.3
time [s] time [s]

(¢) Roomsim 180 em

(f) Air 300 em

Figure 4.1: Impulse respones used for experiments.

A 4. Experiments

= k=3
g 0 g 0
3 g
B -20 & -20
] @
= =
o @©
o 40 o -40
k) ks
D .50 . . © .60 . . i
& 8 0.2 0.4 0.6 0. T 0.2 0.4 0.6
Time [s] Time [s]
(a) Roomsim 60 em (b) Air 100 cm
= -1 =
g 0 > 0
g g
= -20 g 20
2 2
@ @
o =40 © -40
5 g
-60 - L 60 1 .
€ ~g 0.2 0.4 0.6 0. £ g 0.2 0.4 0.6
Time [s] Time [5]
(¢) Roomsim 120 cm (d) Air 200 em
B, =, —
= 0 = 0
T T
2 g
5 -20 5 -20
g 5
-40 -40
2 2
© ©
2 -60 : : : 2 -60 : :
£ 0.2 0.4 0.6 0. % o 0.2 0.4 0.6
Time [s] Time [s]
(¢) Roomsim 180 cm (F) Air 300 em

Figure 4.2: Relative energy decay of all impulse respones used for experiments.

4.2, Comparison of Amplitude and Phase Estimators 45

vocal cords and the frequency of peaks and valleys in the EGG recording reflect the
pitch. After inspecting some of the EGG recordings it appears as if the vocal cords
always move a little bit, which means the method is not very robust without further
post-processing. Additionally, the EGG recording does not indicate which part of
the speech is voiced and which part is unvoiced.

Two different methods were used instead of an EGG-derived pitch contour. The first
was a baseline “oracle” pitch contour obtained by Mobile Technologies’ “Giga” speech
synthesis engine in combination with the “Matthew” voice. Its fully parametrized
HMM-based speech synthesis produces a reliable and robust pitch contour along with
the synthesized speech output. The second method was a more realistic real-world
approach using the Histopitch pitch tracker Seltzer00].

Since the speech synthesis engine produces only close-talk speech and the Histopitch
algorithm is not reliable enough in reverberated environments. both methods were
not suitable to get pitch tracks for the reverberated data. Instead, the close-talk
pitch track was used and shifted in time to account for the time it takes for the
sound to travel from the speaker to the microphone.

4.1.4 Speech Recognition System

A speech recognition system was needed for the evaluation of audio data and the
Janus Speech Recognition toolkit [Soltau01] (http://isl.ira.uka.de/english / 1406.php)
was used for this work. The ASR system utilized a vocabulary of 141000 words
(including variants) and a language model containing 34 million 4-grams, which
were obtained from general-purpose data and web-data. Acoustic modeling was
done using 4000 codebooks with 16000 distributions. The training data for the
speech recognition system was not processed with any of the methods described in
chapter 3, i.e. training and evaluation conditions were unmatched. This was done
in order to evaluate if the described methods offer better performance on their own,
so that they could be used as a kind of plug-in signal processing in the front-end of
a speech recognition system.

4.2 Comparison of Amplitude and Phase Estima-
tors

The predecessor to this work, [Huber11] contains an experiment where phase-locked
loops had been used to track the amplitude and phase of sinusoids, which have been
played back in a room. The recordings consisted of only one constant frequency
component, which meant that the reverb could be modeled as a superposition of
sinusoids.

The sum of two sine waves at the same frequency, but with different amplitudes and
phase offsets, results in another sine wave with that frequency, but a different am-
plitude and phase offset. This means that the amplitude and phase of the recorded
superposition of sine waves changes whenever a new reflected wavefront arrives at
the microphone, as depicted in figure 4.3.

A two-pass PLL system was used to estimate the amplitude and the phase of the
recorded sine wave. In the first pass, the frequency and amplitude of the recorded

46 4. Experiments
p
L R
ag / \‘. N\ N i\ f\
e A i e) -] .] 08 W L VORI O WO 8
* [AR (N [1] l\ .’f I‘l ﬂI . AT
N Y Y A O L J A A
\ It \ Vo " Vo | | f i] / !
oV Ay VAV K\ | ’ oy
P VAV A VRV /O O O O S
4 4 I 1] |
l‘l‘-“t" \‘_f/ | ‘-‘J k‘ ; l‘ ,."I
; direct sound: direct sound direct sound
0 ao, f, dg ty + 1st reflection: t2 +1st reflsction

aq, f iy + 2nd reflection:

32, f, mz

Figure 4.3: Superposition of sine waves

sine wave was estimated using a phase-locked loop. The frequency estimate was
then used in the second pass to compare the phase of the recording to a reference
sine wave with the same frequency, but constant phase.

After obtaining the amplitude and phase estimates, their derivative could be calcu-
lated to find out when the amplitude or phase-signal exhibits rapid changes. These
are the moments when a new reflection arrives at the microphone. Since a recording
contains only the combined amplitude and phase that results from the superposi-
tion of the direct wavefront and many reflected wavefronts, the amplitude and phase
offset of individual components (sine waves) can not be seen directly.

Instead, the difference in phase and amplitude between two subsequent arrivals of
a reflected wavefront must be evaluated. This information can then be used to
generate the reflected wavefront artificially and to subtract it from the recording,
thus removing one particular reflected wavefront from the recording.

This method needs very precise estimates of the amplitude and phase offset in order
to work properly. Since APES is a very precise means of amplitude and phase
estimation, a comparison was conducted between the former PLL-based estimates
and a set of new APES estimates. Figure 4.4 depicts the PLL-based amplitude
estimate along with an estimate obtained from APES for an 1 kHz sine wave that
had been convolved with the 120 em roomsim impulse response.

At first glance, it seems that the APES-based estimate is more precise and it is
true that the dereverberation performance (measured by the improvement of the
direct-to-reverberant ratio) was better using the APES estimates. The direct-to-
reverberant ratio (DRR) is the quotient of the power of the direct sound divided by
the reverberation power. The DRR could be improved by up to 12 dB by subtracting
the estimated reflected wavefronts from the recording.

However, it was found that the performance improvement observed through the
usage of APES-based estimates had more to do with the fact that APES was able
to better reveal the exact time for the amplitude and phase changes that occur due
to the arrival of a new wavefront. The estimates in the steady-state between two
subsequent arriving wavefronts did not differ very much and therefore, the DRR
improvement observed with the APES estimates was not much better than PLL-

based results.

4.3. Impulse Response Estimation Experiments 47

PLL amplitude tracking
1 kHz sinusoid, 120 cm roomsim reverb
T T T T T T T T T
0.2 |
01F
D =
_D-t =
-0.2r e
1 I 1 I 1 1 | I | i
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.04
time [s]
(a) PLL-based amplitude tracking
APES amplitude tracking
1 kHz sinusoid, 120 cm roomsim reverb
l_t T T T T T T T T T
0.2F i
0.1F
0 -
..0‘1 L
0.2+ -
- L I it

| | 1 1 I |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.04:
time [s]

(b) APES amplitude tracking

Figure 4.4: Comparison of EPLL-based amplitude estimation and APES

4.3 Impulse Response Estimation Experiments

It has been stated in the previous section that APES did quite well when it came
to estimating the moment in time when a particular wavefront arrived at the micro-
phone. It was therefore self-evident to carry out an experiment that would reveal if
the estimated wavefront arrival times had anything to do with the actual times.

Roomsim was used to generate impulse responses (60 cm, 120 ¢m and 180 cm)
for the experiment, which should then be estimated by the PLL-based method and
APES alike. Indeed, the first results were promising and it appeared that APES was
superior to the PLL-based approach. Figure 4.5 depicts the first 0.05 seconds of an
actual Roomsim-generated impulse response along with the PLL- and APES-based
estimates.

While neither of the methods works particularly well for later reflections, APES is
better at tracking the first couple of impulses. The PLL method also seems to detect
impulses at times where there are none, such as between the fourth and fifth actual
impulse. The poor performance of both methods for later impulses can be explained
by the fact that only the first couple of impulses are individual, distinctive impulses.
After a short amount of time there are so many reflected wavefronts arriving at the
microphone roughly at the same time that it is no longer possible to distinguish
individual impulses.

To try and find out if the so-obtained impulse responses could be used to deconvolve
actual speech signals, the individual late reflections of the depicted estimates have

48 _ 4. Experiments

0.06 T T T T T T = T T
o 0.04r
=
=]
= 002+
=
£
0
'0.02 i i i | i | i i i
0 0.005 001 0015 002 0025 0.03 0035 004 0.045 0.05
time [s]
(a) Actual impulse response
I ! I I I | I I
0.06 -
& 004 i
=
=
l|||“/|i|‘“d| '
0 il Ill L 1l
_0_02 L 1 L SR I} | 1 | |
0 0.005 0.01 0.015 002 0.025 003 0035 004 0.045 0.05
time [s]
(b) PLL-based impulse response estimate
006 T T T T T T T T
o 0.04r -
=}
2
: A
= O O 0 11 A T
_0‘02 1 1 | 1 1 1 | 1 1
0 0.005 0.01 0.015 002 0.025 003 0.035 0.04 0045 0.05

time [g]

(¢) APES-based impulse response estimate

Figure 4.5: Example of impulse-response estimation based on the amplitude estima-
tion of an 1 kHz sinusoid (c.f. figure 4.4).

4.4. Pitch Estimation using PLLs and FLLs 49

been replaced by an exponentially decaying curve, as explained in section 3.6. After-
wards, the resulting impulse response estimate was used with the standard Wiener
deconvolution technique which minimizes the effect of the inverse filter while the
signal has a low signal-to-noise ratio. However, the results of these deconvolution
experiments did not even seem to be suitable for human hearing experiments, yet
alone for automatic speech recognition, which is why the approach was not examined
further.

4.4 Pitch Estimation using PLLs and FLLs

A more promising approach seemed to be the tracking of harmonic frequency com-
ponents during voiced speech using PLLs or FLLs. However. it became obvious Very
quickly that FLL frequency tracking works better than PLL frequency tracking, due
to the fact that PLLs actually try to acquire phase lock, whereas FLLs don’t. The
phase of a frequency component is constantly changing due to all the reflected wave-
fronts which arrive at the microphone. This makes it very hard for a PLL to stay in
lock. FLLs, on the other hand, have less problems. Figure 4.6 is a so-called capture-

frequency [Hz]

0 02 04 06 08 1 12 14 16 1
time [s]

Figure 4.6: Logarithmically spaced Triplet-filter FLLs with wide gammatone pre-
filter bandwith, raw output

gram. It consists of a spectrogram (TIMIT utterance 5X9) in the background and
the FLL frequency output in the foreground (black lines). Each black line represents
a single FLL and it is obvious that in this case, the frequency locking works only
for frequencies below 1 kHz. Figure 4.6 was created using logarithmically spaced
FLLs, i.e. the gammatone prefilters had a narrower bandwidth the lower the band-
pass center frequency was. The gammatone bandwidth was generally rather high,
though. Additionally, more FLLs have been placed at lower frequencies than at
higher frequencies. It can be seen that most of the FLLs operating below 600 Hz

50 4. Experiments

chose one harmonic frequency. Some harmonics, for example the 4th, is at times not
tracked at all, for example from t = 0.3 s to 0.7 s. This is likely due to the increase
in frequency observed at that time. The first three harmonics can still be tracked
because the frequency change is smaller at lower harmonics.

Figure 4.7a shows the resulting capturegram when 500 very closely spaced FLLs
were used. The gammatone prefilters have been spaced linearly this time, i.e. the
distance from one gammatone center frequency to the adjacent gammatone center
frequency is constant. In addition to using more FLLs the figure was also created
by using a narrower gammatone bandwidth. The effect of this choice is clearly
visible, since now even the higher order harmonics are still tracked. Apparently, the
gammatone bandwidth in figure 4.6 was so large that it spanned multiple harmonic
frequencies and as a result, the FLLs could not “decide” which frequency to lock on.
The tracking of higher frequencies in figure 4.7a is still not perfect, but certainly an
improvement.,

An even larger improvement can be seen on figure 4.7b. It has been achieved by using
the so-called OPTICS clustering algorithm presented in [Ankerst99]. OPTICS is a
density-based agglomerative clustering algorithm, which joins multiple data points
together to a group not only based on their respective distance, but also based on
the density around the data points. OPTICS has been applied to all frequencies that
were found in each sample step. Since there are so many FLLs the chances are that
multiple of them track the same frequency. The FLLs don’t track the frequencies
perfectly, i.e. their output values are slightly different, even when they essentially
track the same frequency. When multiple FLLs put out a similar frequency value at
a given moment in time, this is recognized by the OPTICS algorithm as a cluster.
which it then merges to the mean of all frequencies in the cluster.

The cleanest tracking output has been obtained when a lower number of FLLs was
used (approximately 100). This can be seen in figure 4.8. The upper figure depicts
the raw tracking output, while the lower figure depicts the result of the OPTICS ¢lus-
tering. However, obtaining this particular figure needed a lot of parameter tuning
(gammatone spacing, gammatone bandwidth, amount of FLLs, loop filter parame-
ters, etc.). Unfortunately, the settings which worked well in this case turned out not
to work in other cases and vice versa. Therefore, the FLL-based frequency tracking
turned out not to be very robust. Additionally, all the figures in this section have
been created using clean speech, while the results for reverberant speech were worse.

4.5 Dereverberation Experiments

This section contains the results of the final evaluation using the previously described
speech recognition system. The recordings from the evaluation database described
in section 4.1.1 have been convolved with the impulse responses described in sec-
tion 4.1.2. Afterwards, the resulting .wav-files have been processed by the speech
recognizer in order to obtain baseline recognition performance results.

Afterwards, two kinds of processing have been performed in order to improve the
ASR performance by removing reverb from the recordings. The first one was a comb-
filtering approach, where the voiced sections of each utterance were filtered using
a feedback comb filter as deseribed in section 3.4. The comb filter was supposed

Dereverberation Experiments

4.5.

2 j=] f=l

=) (=] Q o [l =]
f=] w w <+ ol =
o bzl ~— ~ - =

[zH] Aouanbayy

time [s]

output

) raw

(a

[zH] Aouanbay

time [g]

1C8

T

sing OP

b) clustered output u

(

tone prefilter

amina

g

ith narrow

filter FLLs w

Iriplet

aced

arly sp

500 line

‘igure 4.7:

5

h.

bandwidt

4. Experiments

frequency [Hz]

2000

1800

1600

1400

1200

1000

frequency [Hz]

800

600

400

200

0.2 0.4 0.6 0.8 q 1.2 1.4 1.6 1.

time [s]
(a) raw output
i I i i o) L) el s txc-‘:ftm ‘
0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8
time [s]

(b) clustered output using OPTICS

Figure 4.8: Linearly spaced Triplet-filter FLLs with narrow gammatone prefilter

bandwidth.

4.5. Dereverberation Experiments 53

to attenuate the frequency components between the harmonics of the actual speech
and thus increasing the signal-to-noise ratio of the speech.

The second dereverberation method used APES in order to estimate the amplitude
of each harmonic frequency component during the voiced parts of each utterance.
Afterwards, the amplitude information was used to resynthesize the harmonic com-
ponents. This means that the pitch track was used to generate a sinusoid for each
harmonie, which was then subsequently multiplied by the amplitude estimate from
APES.

Both of these processing techniques were first used for each utterance as a whole, but
both the comb-filter and the APES approach only work on a given pitch, which has
to be known a priori. During unvoiced sections of the recordings there is no pitch
and therefore there are no distinet harmonics whose amplitudes could be tracked,
Therefore, two sets of data have been generated for each processing technique in
order to deal with the unvoiced speech segments. The first set of data was created
by crossfading the original reverberated unvoiced sections into the comb-filtered and
APES-processed output. As a result, the input for the ASR system was processed
during the voiced sections but unprocessed during the unvoiced sections. For the
second data set the unvoiced sections have not been replaced by the corresponding
reverberated parts, but by the appropriate unreverberant parts which were taken
from the original close-talk recording. This was done in order to study whether
reverberated voiced or unvoiced speech has the most severe effect on ASR perfor-
marnce.

At the end, all of the aforementioned steps were repeated using synthetically gener-
ated speech by the synthesis software mentioned in section 4.1.3. The advantage of
these artificially generated speech samples is that their pitch is known perfectly from
the synthesis software, which means that pitch estimation errors can be eliminated.
The synthesized speech samples will be denoted by the word “synthetic” in the tables
of the following sections, whereas the normal recordings will be named “real”.

4.5.1 Baseline

This section contains the aforementioned baseline speech recognition experiment
results, i.e. the word error rates obtained without any further signal processing.

4.5.1.1 Reverberated Unvoiced Parts / Full Reverb

Table 4.1 lists baseline word error rates for the full reverb case, i.e. the unvoiced
reverberated parts have not been replaced by their unvoiced close-talk equivalents.
The negative effects of reverb can be seen clearly as the word error rate increases
from 36.4 % to more than 80 % for the real recordings and from 20.7 % to more than
70 %, except for the 100 cm AIR impulse response, for the synthetic recordings. It
is interesting that the 100 em AIR recordings have a WER that is approximately
10 % better than the 200 cm recordings, whereas there is not so much difference
between the 200 em and 300 em recordings.

A reason might be that 100 cm are still within the critical distance for the evaluated
room, whereas both for 200 em and 300 ¢cm the sound pressure level of the reverb is
possibly higher than the level of the direct sound. The same effect does not oceur for

- ¥
94 4. Experiments

the artificial Roomsim responses, but this might be due to the unrealistic assump-
tions of Roomsim, which does not consider any objects or people in its simulated
rooms. Therefore, the reverberation time is longer than it would normally be for
a room of a similar size and the reverb pressure level is higher. too, resulting in a
reduced critical distance. If the critical distance actually is the reason for the drop of
WER from 200 em AIR to 100 cm AIR, a comparison of AIR and Roomsim WERs
leads to the suggestion that all Roomsim recordings might be outside of the critical
distance.

utterance || close Roomsim AIR
type talk || 60 em | 120 em | 180 e¢m || 100 cm f 200 em | 300 cm |
real 36.4 || 909 94.4 92.7 81.8 91.3 924

synthetic || 20.7 || 78.7 83.4 77.1 58.3 72.0 725 |

Table 4.1: Word error rates for fully reverberated real and synthetic utterances at
various recording distances using no further processing.

Another interesting detail is the improvement of the 180 cm Roomsim WER com-
pared to the 120 em Roomsim recordings. It is not clear why or how a greater
distance contributes the a better ASR performance in this experiment. It is possi-
ble, however, that the position of microphone and speaker in the 120 em setting are
particularly bad, for example because of standing waves in the simulated room. If
the relative position of speaker and microphone in the 180 cm setting are for some
reason particularly good, it is conceivable that the ASR performance might be better
despite the greater distance.

4.5.1.2 Non-Reverberated Unvoiced Parts

The word error rates in table 4.2 were obtained after replacing the reverberated un-
voiced parts with unreverberant unvoiced parts from the close-talk signal. This was
done to find out whether reverberated voiced and unvoiced speech parts contribute
equally to the degradation of ASR performance or if voiced or unvoiced speech plays
a greater role. Unsurprisingly, It can be seen that the word error rate using the un-
reverberant unvoiced parts is significantly lower than in the fully reverberated case
from the previous section. This is evidence that all parts of speech have a similar
influence on ASR performance

Interestingly, the 180 em Roomsim recordings now have a better WER than both
the 60 cm and 120 em recordings, although of course, they all contain the same
amount of voiced and unvoiced data. As a result, the replacement of reverberated
unvoiced segments with corresponding unreverberant segments should basically have
similar effects for all distances. The fact that the WER improvement in the voiced-
only reverberb case was actually higher for the greater distance could mean that the
degradation of unvoiced parts plays a greater role for the decreasing ASR perfor-
mance than the degradation of the voiced parts.

A further analysis could be done to examine if the difference in word error rate
from the fully reverberated case to the voiced-only-reverb case corresponds with the
fraction of unvoiced vs. voiced speech.

4.5. Dereverberation Experiments 55

The most important statement that can be read from the data is that even when the
unvoiced speech segments are not reverberated, there is still a large improvement
of approximately 30 % which could be obtained by dereverberating just the voiced
parts.

utterance || close Roomsim AIR

type talk || 60 cm | 120 cm | 180 em || 100 em | 200 em | 300 cm
real 36.4 67.0 69.3 65.8 59.0 65.9 6{"?.(}

synthetic || 20.7 55.1 57.0 53.2 41.6 50.2 BI.U

Table 4.2: Word error rates for partially reverberated real and synthetic utterances
at various recording distances.

4.5.2 Suppression of Voiced Reverb using Comb-Filtering

The first dereverberation experiment was carried out using the comb-filter approach
described in section 4.1.3. Pitch was obtained from the Histopitch pitch tracking
algorithm and a feedback comb-filter was then used to attenuate frequency compo-
nents between the harmonics of voiced speech.

4.5.2.1 Reverberated Unvoiced Parts

The results for the fully reverberant case, i.e. using reverberant unvoiced sections,
are listed in table 4.3. They show, however, that this kind of processing had a
negative effect on the WER for all examined recording distances.

A reason for this might be the problem of adaptive filter transients, which is de-
scribed in [Vilimiki98] and which results in audible clicks in the filter output.
Adaptive filter transients occur when the coefficients of an adaptive feedback fil-
ter, like the comb filter in this experiment, are changed while its filter states are not
updated accordingly at the same time. The problem does only occur for feedback
filters (IIR) and not for feedforward (FIR) filters. The filter states in a feedback
filter are constantly calculated based on the previous filter output, which is in turn
calculated using the filter coefficients. If the filter coefficients had been equal to the
new coefficients all of the time, then the values of the flter states would be different
from what they are based on the old filter coefficients.

[Viilimiki9s| effectively proposes to go a sufficient amount of samples back in time
after each coefficient change. This means that the values of the filter states are
updated fo the values that they would have had if the new coefficients had been in
use for all of the time,

4.5.2.2 Non-Reverberated Unvoiced Parts

Table 4.4 contains the results for the recordings with comb-filtered voiced segments
and unreverberant unvoiced segments. The results are similar to the case with
reverberant unvoiced segments, i.e. the WER is worse after the processing compared
to the baseline results.

4. Experiments

[utterance

close Roomsim AIR
type talk || 60 cm | 120 em [180 em || 100 em | 200 cm ’ 300 cm
| real (baseline) [364 [90.9 [944 | 92.7 81.8 | 913 | 924
real 44.8 || 94.8 95.8 96.0 86.6 94.0 94.7
synthetic (b.1.) [[20.7 || 78.7 | 83.4 Pl 58.3 72.0 72.5
| synthetic 266 | 864 | 896 | 86.3 651 | 815 | 813

Table 4.3: Word error rates for fully reverberated real and synthetic utterances at

various recording distances after comb-filtering of voiced parts.

utterance close Roomsim AIR
type talk || 60 cm | 120 cm ‘ 180 cm || 100 ¢m ‘ 200 cm | 300 ¢m
real (baseline) || 36.4 || 67.0 69.3 65.8 59.0 65.9 65.0
real 44.8 || 70.6 73.6 69.4 H8.8 66.3 68.3
synthetic (b.l.) || 20.7 || 55.1 57.0 53.2 41.6 50.2 51.2
synthetic |1'26.6 || 60.3 | 624 | 59.4 450 | 55.0 | 56.2

Table 4.4: Word error rates for partially reverberated real and synthetic utterances
at various recording distances after comb-filtering of voiced parts.

4.5.3 Suppression of Voiced Reverb using APES-based Resyn-

thesis

The final experiment was the WER calculation based on the APES-resynthesized

waveforms.

4.5.3.1

Reverberated Unvoiced Parts

Starting with the waveforms with reverberant unvoiced parts, it is again obvious
that the processing degrades the performance compared to the baseline system.
However, the results are consistently better than those of the comb-filter processing.
This might be due to the fact that the waveforms generated by the APES resynthesis
only contain a certain amount (50) discrete harmonic frequencies and absolutely no
noise, while the comb-filter output is more similar to a real speech recording, just

with less noise.

utterance close Roomsim AIR
type talk | 60 cm | 120 e¢m \ 180 em || 100 em [200 em | 300 cm
real (baseline) || 36.4 || 90.9 94.4 092.7 81.8 91.3 92.4
real 447 93.5 95.4 93.6 85.5 92.7 93.3
synthetic (bu.l.) 20.7 || 78.7 83.4 77.1 58.3 72.0 72.5
synthetic 45.7 || 86.3 90.2 26.6 73.1 82.6 843.6

Table 4.5: Word error rates for fully reverberated real and synthetic utterances at
various recording distances after APES-based resynthesis of voiced parts.

4.5. Dereverberation Experiments a7

4.5.3.2 Non-Reverberated Unvoiced Parts

Ultimately, the APES-based resynthesized waveforms have been crossfaded with the
unreverberant close-talk unvoiced segments for the final experiment. The result for
the 100 em AIR recordings could be improved by 0.2 percentage points by the APES-
processing. Given that all other recording distances showed worse results, it is likely
safe to assume that this particular improvement is not statistically significant.

If anything, the fact that the 180 cm result in the unreverberant unvoiced case is
once again better than the 120 e¢m result, whereas this has not been the case for
the reverberant unvoiced data, might indicate that reverberation of unvoiced parts
plays an increasingly larger role for larger distances. This result is similar to what
has been observed from the baseline results in section 4.5.1.2 and also from the
comb-filter data in section 4.5.2.2.

utterance close Roomsim AIR
type talk || 60 cm } 120 em | 180 em || 100 em | 200 cm ‘ 300 cm
[real (baseline) || 364 || 67.0 | 69.3 65.8 59.0 65.9 65.0
' real 4.7 || 727 | 753 70.9 62.9 694 | 710 |
| synthetic (b.l) | 20.7 || 55.1 [57.0 [532 || 41.6 | 50.2 | 51.2 |
 synthetic 45.7 || 733 | 76.4 71.8 65.6 70.7 70.9

Table 4.6: Word error rates for partially reverberated real and synthetic utterances
at various recording distances after APES-based resynthesis of voiced parts.

4. Experiments

5. Conclusion

The experiments conducted in this work have shown that the precise tracking of
amplitude, phase and frequency is a difficult task. Many seemingly successful ap-
proaches, like the PLL-based amplitude, phase or impulse response estimation, only
work in highly specific environments and under certain circumstances, for instance
with sinusoids with a constant frequency.

The word error rate results from the dereverberation experiments also seem dis-
appointing, but it still has to be examined whether the proposed comb-filter or
APES-resynthesis approaches are generally not useful as a means of reverberation
elimination or if they create a problem for a particular part of the subsequent ASR
systerm.

While this might actually be the case for the APES-processed data it is surprising
that the application of a comb-filter in order to enhance the harmonic components
has such a negative effect on the ASR performance. The reason for the bad results
could be the already mentioned adaptive recursive filter transients which the time-
varying comb filter produces. The resulting discontinuities in the audio stream are
clearly audible and they might be responsible for the bad ASR performance. This
problem could be examined in future work.

After all it might also be reasonable to question the usefulness and practicability
of the precise measurement approaches which have been evaluated in this work.
It is likely more beneficial to pursue somewhat more statistical approaches which
explicitly model the uncertainties involved in the measurement of amplitude, phase
or frequency.

60

5. Conclusion

Bibliography

[Allen79]

[Ankerst99]

Bagshaw93]

Best93]

[Capon69]

[Carlosena0T]

[Carlosena08]

[Carlyon97]

Jont B. Allen and David A. Berkley. “Tmage method for
efficiently simulating small-room acoustics™. In: The Jour-
nal of the Acoustical Society of America 65.4 (Apr. 1979),
pp. 943-950. po1: 10.1121/1.382599. URL: http://link.aip.
org/link/7JAS/65/943/1.

Mihael Ankerst et al. “OPTICS: Ordering Points To Iden-
tify the Clustering Structure”. In: Proceedings of the ACM
International Conference on Management of Data (SIG-
MOD). Philadelpia, Pennsylvania, June 1999, pp. 49-60.
por: 10.1145/304182.304187.

P. C. Bagshaw, 5. M. Hiller, and M. A. Jack. “Enhanced
Pitch Tracking and the Processing of FO Contours for
Computer Aided Intonation Teaching”. In: Proceedings of
the 3rd European Conference on Speech Communication
and Technology (EUROSPEECH). Berlin, 1993, pp. 1003
1006.

Roland Best. Phase-locked loops: theory, design and appli-
cations. 2nd ed. New York City, New York: McGraw-Hill,
1993. 1sBN: 0-07-911386-9.

J. Capon. “High-Resolution Frequency-Wavenumber Spec-
trum Analysis”. In: Proceedings of the IEEE 57.8 (Aug.
1969), pp. 1408-1418. por: 10.1109/PROC.1969.7278.

Alfonso Carlosena and Antonio Manuel-Lazaro. “Design of
High Order Phase-Lock Loops”. In: IEEE Transactions on
Circuits and Systems II: Express Briefs 54.1 (Jan. 2007),
pp. 9 -13. por: 10.1109/TCSII.2006.883205.

Alfonso Carlosena and Antonio Manuel-Lazaro. “General
Method for Phase-Locked Loop Filter Analysis and De-
sign”. In: IET Circuits, Devices and Systems 2.2 (Apr.
2008), pp. 249 ~256. DOL: 10.1049/iet-cds:20070065.
Robert P. Carlyon and A. Jaysurya Datta. *Masking pe-
riod patterns of Schroeder-phase complexes: Effects of level,
number of components, and phase of flanking components”.
In: The Journal of the Acoustical Society of America 101.6
(1997), pp. 3648-3657. pot: 10.1121/1.418325.

62 Bibliography

[Costas80] John P. Costas. Residual Signal Analysis - A Search and
Destroy Approach to Spectral Analysis. Tech. rep. Syra-
cuse, New York: General Electric Military Electronic Sys-
tems Operation, Oct. 1980. URL: http: //www.dtic.mil /
dtic/tr/fulltext /u2/a092968.pdf.

[Curran12] James T. Curran, Gérard Lachapelle, and Colin C. Mur-
phy. “Improving the Design of Frequency Lock Loops for
GNSS Receivers”. In: IEEE Transactions on Aerospace
and Electronic Systems 48.1 (Jan. 2012), pp. 850 —858.
por: 10.1109/TAES.2012.6129674.

[Estienne0]1] Claudio Estienne, Patricia Pelle, and Juan Pablo Piantanida.
“A Front-end for Speech Recognition Systems Using Phase-
Locked Loops”™. In: Proceedings of the Workshop in Infor-
mation Processing and Control (RPIC). Santa Fe, 2001,
pp. 88-91.

|Gardner05] Floyd M. Gardner. Phaselock techniques. 3rd ed. Hobo-
ken, New Jersey: Wiley-Interscience, 2005. 1SBN: 978-0-
471-43063-6.

[Garofolo93] John 5. Garofolo et al. TIMIT Acoustic-Phonetic Contin-
uous Speech Corpus. Tech. rep. Philadelphia: Linguistic
Data Consortium, 1993,

[Glentis08] George-Othon Glentis. “A Fast Algorithm for APES and
Capon Spectral Estimation”. In: IEEE Transactions on
Signal Processing 56.9 (Sept. 2008), pp. 4207 —4220. por:
10.1109/TSP.2008.925940.

|Holdsworth8s| John Holdsworth et al. Annex C of the SVOS final report:
Implementing a GammaTone Filter Bank. Tech. rep. Cam-
bridge: University of Cambridge and Cambridge Electronic
Design, June 1988.

[Huber11] Ralf Huber. “Combined Phase and Amplitude Analysis in
Harmonic Acoustic Signals for Robust Speech Recogni-
tion”. Karlsruhe: Karlsruhe Institute of Technology, Apr.
2011.

[Jeub09] Marco Jeub, Magnus Schéfer, and Peter Vary. “A binaural
room impulse response database for the evaluation of dere-
verberation algorithms”. In: 16th International Conference
on Digital Signal Processing (DSP). Santorini, July 2009,
pp. 1-5. por: 10.1109/ICDSP.2009.5201259.

[Kaplan(6] Elliott Kaplan and Christopher Hegarty. Understanding
GPS: Principles and Applications. 2nd ed. Norwood, Mas-
sachusetts: Artech House, 2006. 1SBN: 1-58053-894-0.

[Karimi-Ghartemani0l] Masoud Karimi-Ghartemani and M. Reza Iravani. “A new
phase-locked loop (PLL) system”. In: Proceedings of the
[EEE Midwest Symposium on Circuits and Systems (M WS-
CAS). Vol. 1. Dayton, Ohio, 2001, pp. 421-424. por: 10.
1109/ MWSCAS.2001.986202.

Bibliography

63

[Kinoshita05a]

[Kinoshita05b]

[Kumaresan11]

[Kumaresan12]

ILi96]

[Li98]

[McAulay86]

[Nakatani03al

Keisuke Kinoshita, Tomohiro Nakatani, and Masato Miyoshi.
“Efficient Blind Dereverberation Framework for Automatic
Speech Recognition™. In: Proceedings of the Conference of
the International Speech Communication Association (IN-
TERSPEECH). 2005, pp. 3145-3148.

Keisuke Kinoshita, Tomohiro Nakatani, and Masato Miyoshi.
“Fast Estimation of a Precise Dereverberation Filter based
on Speech Harmonicity”. In: Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP). Vol. 1. 2005, pp. 1073-1076. DoT:
10.1109/ICASSP.2005.1415303.

Ramdas Kumaresan, Vijay Kumar Peddinti, and Peter
Cariani. “Multiple Pitch Identification Using Cochlear-Like
Frequency Capture and Harmonic Grouping”. In: Proceed-
ings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Prague, 2011,
pp. 613-616. por: 10.1109/ICASSP.2011.5946478.

Ramdas Kumaresan, Vijay Kumar Peddinti, and Peter
Cariani. “Synchrony Capture Filterbank (SCFB): An Au-
ditory Periphery Inspired Method for Tracking Sinusoids™.
In: Proceedings of the IEEE International Conference on
Acoustics, Speech and Stgnal Processing (ICASSP). Ky-
oto, Mar. 2012, pp. 613-616. por: 10.1109/ICASSP.2011.
5946478.

Jian Li and Petre Stoica. “An Adaptive Filtering Approach
to Spectral Estimation and SAR Imaging”. In: [EEE Trans-
actions on Signal Processing 44.6 (June 1996), pp. 1469
1484. por: 10.1109/78.506612.

Hongbin Li, Jian Li, and Petre Stoica. “Performance Anal-
ysis of Forward-Backward Matched-Filterbank Spectral Es-
timators”™. In: IEEFE Transactions on Signal Processing 46.7
(July 1998), pp. 1954-1966. por: 10.1109/78.700967.

Robert McAulay and Thomas Quatieri. “Speech analy-
sis/Synthesis based on a sinusoidal representation”. In:
IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing 34.4 (1986), pp. 744-754. por: 10.1109 / TASSP.
1986.1164910.

Tomohiro Nakatani and Masato Miyoshi. “Blind derever-
beration of single channel speech signal based on harmonic
structure”. In: Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
Vol. 1. 2003, pp. 92-95. por: 10.1109 /ICASSP. 2003 .
1198724,

64

Bibliography

[NakataniO3b]

[Nakatani(7]

(Nataligd]

[Pelle03]

[Saratxaga09]

[Saratxagal0]

[Schroeder5]

[Seltzer00]

[Smith07]

[Smith10]

[Soltau01]

Tomohiro Nakatani, Masato Miyoshi, and Keisuke Kinoshita.
“Implementation and effects of single channel dereverber-
ation based on the harmonic structure of speech”. In: Pro-
ceedings of the International Workshop on Acoustic Echo
and Noise Control (IWAENC). Hong Kong, 2003, pp. 91
94.

Tomohiro Nakatani, Keisuke Kinoshita, and Masato Miyoshi.
“Harmonicity Based Blind Dereverberation for Single-Channel
Speech Signals”. In: IEEE Transactions on Audio. Speech
and Language Processing 15.1 (2007), pp. 80-95. pot: 10.
1109/TASL.2006.872620.

Francis D. Natali. “AFC Tracking Algorithms”. In: IEEE
Transactions on Communications 32.8 (Aug. 1984), pp. 935
-947. por: 10.1109/TCOM.1984.1096152.

Patricia Pelle and Matias Capeletto. “Pitch estimation us-

ing phase locked loops”. In: Proceedings of the European

Conference on Speech Communicatior. and Technology (EU-
ROSPEECH). Geneva, 2003, pp. 2873-2876.

Ibon Saratxaga et al. “Simple Representation of Signal

Phase for Harmonic Speech Models”. In: Electronic Letters

45.7 (Mar. 2009), pp. 381-383. por: 10.1049/el.2009.3328.

Ibon Saratxaga et al. “Using Harmonic Phase Informa-
tion to Improve ASR Rate”. In: Proceedings of the Con-
ference of the International Speech Communication Asso-
ciation (INTERSPEECH). Makuhari, Japan, Sept. 2010,
pp. 1185-1188. DOI: 10.1109/ICASSP.2011.5946478.

M. R. Schroeder. “New Method of Measuring Reverbera-
tion Time”, In: The Journal of the Acoustical Society of
America 37.6 (1965), pp. 1187-1188. por: 10.1121/1.
1939454, URL: http://link.aip.org/link/?JAS/37/1187/5.

Michael L. Seltzer. “Automatic Detection of Corrupt Spec-
trographic Features for Robust Speech Recognition”. MA
thesis. Pittsburgh: Carnegie Mellon University, May 2000.

Julius O. Smith. Introduction to Digital Filters with Au-
dio Applications. online book. 2007. URL: https://ccrma.
stanford.edu/"jos/fp/Frequency_Response_I.html (visited
on 08/11/2012).

Julius O. Smith. Physical Audio Signal Processing. online
book. 2010. URL: https://ccrma.stanford.edu/ “jos/pasp/
Comb_Filters.html (visited on 08/11/2012).

Hagen Soltau et al. “A one-pass decoder based on poly-
morphic linguistic context assignment”. In: Proceedings of
the IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU). Karlsruhe, Dec. 2001, pp. 214
217. por: 10.1109/ASRU.2001.1034625.

Bibliography

65

[Stephens02]

[Stoica00]

[Stoicad7]

[Tiwarill]

[Viiliméki9s]

[Wang94]

[Wolfel09]

Donald R. Stephens. Phase locked loops for wireless com-
munications: digital, analog and optical implementations.
2nd ed. Boston, Massachusetts: Kluwer Academic Publish-
ers, 2002. 1sBN: 0-7923-7602-1.

Petre Stoica, Hongbin Li, and Jian Li. “Amplitude Esti-
mation of Sinusoidal Signals: Survey, New Results, and an
Application”. In: JEEE Transactions on Signal Processing
48.2 (Feb. 2000), pp. 338-352. poI: 10.1109/78.823062.

Petre Stoica, Andreas Jakobsson, and Jian Li. “Matched-
Filter Bank Interpretation of Some Spectral Estimators”.
In: Signal Processing 66.1 (1997), pp. 45-59. DOI: 10.1016/
S0165-1684(97)00239-9.

Sidhant Kumar Tiwari, Swarna Ravindra Babu, and R.
Kumar. “Design of Baseband Processor for High Dynamic
GPS Signals Using Higher Order Loops”. In: International
Journal of Machine Learning and Computing 1.5 (Dec.
2011), pp. 516 —521.

Vesa Viilimiki and Timo 1. Laakso. “Suppression of Tran-
sients in Time-Varying Recursive Filters for Audio Sig-
nals”. In: Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
Vol. 6. Seattle, Washington, May 1998, pp. 3569-3572.
DOL: 10.1109/ICASSP.2011.5946478.

Avery L. Wang. “Instantaneous and Frequency-Warped
Signal Processing Techniques for Auditory Source Sepa-
ration”. PhD thesis. Stanford, California: Standford Uni-
versity, 1994,

Matthias Wolfel. “Robust Automatic Transcription of Lec-
tures”. PhD thesis. Karlsruhe: Karlsruhe Institute of Tech-
nology, 2009.

66 Bibliography

