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Abstract

With the ever-increasing frequency of daily content creation, the need for content
curators or summarizers is only at its beginning. Manually performing these tasks
drive massive costs, thus the increasing demand for efficient automatic summa-
rization systems.

Sequence-to-sequence learning has attracted intense interest over the past years.
The success of end-to-end training of encoder-decoder neural networks in tasks
like machine translation has sprouted active research using similar architectures
in other transduction tasks such as paraphrase generation or abstractive summa-
rization.

In this thesis, the recent advances in neural network-based abstractive sum-
marization are reviewed, and various attention neural network-based headline
generation models are proposed. One of the most significant limitations of exist-
ing solutions is limiting the input to the first one or two sentences of the article.
This thesis investigates new methods trying to add to the output the important
information beyond what is included in the first sentence. Methods to repre-
sent sentences and words are used in combination with single attention or dual-
attention mechanisms to design new abstractive summarizers. The new models
are compared experimentally to the state-of-the-art of abstractive headline gener-
ation based on various standard automatic and human evaluation measures and
different tasks.
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Zusammenfassung

Mit der immer zunehmenden Frequenz der täglichen Content-Erstellung steht der
Bedarf an Zusammenfassung erst am Anfang. Die manuelle Ausführung dieser
Aufgaben führt zu hohen Kosten und somit zu einem steigendem Bedarf an ef-
fizienten automatischen Zusammenfassungssystemen.

Das Sequence-to-Sequence-Lernen hat im Laufe der letzten Jahre starkes In-
teresse geweckt. Der Erfolg des End-to-End-Trainings von Encoder-Decoder Neu-
ronalen Netzwerken in Aufgaben wie maschineller Übersetzung hat aktive Forschung
mit ähnlichen Architekturen in anderen Aufgaben der Verarbeitung natürlicher
Sprache, wie zum Beispiel Paraphrasengenerierung oder abstrakte Zusammen-
fassung, hervorgebracht.

In dieser Arbeit werden die neuen Fortschritte in der abstrakten, neuronalen
netzwerkbasierten Zusammenfassung besprochen und verschiedene attention-based
Neuronale Netzwerken Übershriftsgenerierungsmodelle vorgeschlagen. Eine der
größten Einschränkungen existierender Lösungen besteht darin, die Eingabe auf
die ersten ein oder zwei Sätze des Artikels zu beschränken. Diese Masterarbeit
untersucht neue Methoden, die versuchen, der Ausgabe wichtige Informationen
hinzuzufügen, die über den ersten Satz hinausgehen. Methoden zur Repräsenta-
tion von Sätzen und Wörtern werden in Kombination mit einem einfacher atten-
tion oder mit dual-attention mechanism verwendet, um neue abstrakte Zusam-
menfassungen zu entwerfen. Die neuen Modelle werden experimentell mit dem
Stand der Technik für abstrakte Übershriftsgenerierungsmodelle vergleichen, basierend
auf verschiedenen automatischen und menschlichen Standardmaßen und Auf-
gaben.
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Chapter 1

Introduction

More than 90% of the existing data in the world by 2016 was created in the 12
months preceding it 1. For example, one place where data is being continuously
created is social media networks. Each second, thousands of new pieces of content
appear and get shared across the various networks 2. This overload of informa-
tion made a shift in users behavior and the way they get information and process
it. Less than two decades ago, sources of long content like newspapers were the
go-to solution to get written news. In 2016, 62% of US adults get news from social
media3, where content is shorter and goes straight to the point. Regardless of the
field and the context, with this information overload and every source competing
to win few seconds of the users’ attention span, modern users look more and more
for concise information, and they want it faster than ever. Therefore there is an
increasing need for automatic systems capable of getting the most existing rele-
vant textual information and outputting it in the shortest, concise and informative
possible way.

1.1 Motivation
Text summarization systems are the best candidates to serve this need. However,
in contrast to other successful transduction tasks like machine translation where
commercial solution are widely adopted since many years, automatic text summa-
rization systems are still a bit far from producing business-reliable outputs despite
the fact that it is not a new research area Luhn (1958). Seeing the success of deep
learning approaches in the task of neural machine translation, motivated a new
wave of research works related to text summarization hoping to reproduce a sim-
ilar progress in this field. Existing neural abstractive summarization methods are
limited to taking the first sentence on an article as input and output a generated
headline of the article. The choice of the first sentence is based on the observation
that it tends to be the most informative sentence in the article and the closest one
to the original headline. This approach suffers from practical limitations imposed
by the current neural networks architecture such as the input size, training and

1according to a study made by IBM Marketing Cloud (retrieved on Dec 23, 2017)
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345USEN

2http://www.internetlivestats.com/one-second/ (retrieved on Dec 23, 2017)
3according to a survey by Pew Research Center. (retrieved on Dec 23, 2017)

http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345USEN
http://www.internetlivestats.com/one-second/
http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/
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evaluation time or memory limits. By ignoring all the details in an article except
the first sentence, it leaves a lot of valuable information behind that may lead to a
more informative headline.

1.2 Thesis Goals
This thesis aims to study the possibility of developing a new neural network ar-
chitecture able to produce headlines through a fully abstractive summarization
approach taking in consideration information present anywhere in the article and
not only the first sentence. We use the encoder-decoder with attention architec-
ture provided by the Nematus Toolkit Sennrich et al. (2017), which was very suc-
cessful in the task of neural machine translation and adapt it to the application
of abstractive headline generation. We use this end-to-end learning architecture
taking the article’s first sentence as input as a baseline and enhance it by adding
vectors representing all the sentences in the article to the models’ input. For mem-
ory limits and extended training and evaluation time concerns, we avoid feeding
every word in the article directly to the end-to-end architecture. We use pretrained
Paragraph Vector Le and Mikolov (2014) to represent every sentence in the article
as a vector. The encoder-decoder system in addition to the words of the article’s
first sentence is fed with the Paragraph Vectors of the article sentences. Different
architectures combining these both different representations were tested and eval-
uated. Among them the new model with a dual-attention mechanism containing
two separate attention modules one for each type of input.

1.3 Thesis Outline
In the next chapter, we present an overview of the field of automatic summariza-
tion and give the outcome of the background research that was carried in the var-
ious topics required to achieve the thesis goal such as words and sentences repre-
sentation approaches or the fundamentals of sequence-to-sequence learning us-
ing attention mechanisms. After that, we go through a review of the related works
to the specific task of abstractive headline generation. Before diving in chapter 4
into the details of the different enhancements that were added to the baseline sys-
tem as well as the presentation of a new dual-attention architecture. In chapter
5, we present the datasets and implementation choices made during our experi-
ments. Through chapter 6, both a quantitative and qualitative analysis are carried
out including information about the evaluation metrics used to compare the differ-
ent performances in addition to a comprehensive analysis of the achieved results
and their comparison to the state-of-the-art and the various approaches related to
the task of abstractive headline generation. Finally, the 7th chapter concludes the
thesis and explores future developments of the existent systems.
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Chapter 2

Background Research

After the success of deep leaning approaches in a variety of fields such as com-
puter vision or speech recognition, the new architectures started spreading to
other areas like machine translation and natural language processing. More than
that, recent success with neural machine translation inspired new approaches for
the task of automatic text summarization. In this chapter, we present an overview
of the various text summarization tasks and traditional information extraction
methods. Then we go through sentences and word representation methods that
will be used in later chapters, before exploring the sequence to sequence learning
using neural networks and how it was successful in the neural machine translation
task and becoming state of the art in this field.

2.1 Automatic Summarization
Previous research work on automatic text summarization led to various types of
summarization and with the continuous technological progress, new tasks keep
emerging to meet the user needs.

2.1.1 Summarization types

2.1.1.1 Extractive and Abstractive summarization

When trying to categorize the different existing summarization methodes, two
fundamental categories stand out which are: extractive and abstractive summariza-
tion.

Extractive summarization consists of generating a summary containing only
words or sentences extracted from the original text. This task could be achieved
through various ways. The first work on extractive summarization dates back to
the 1950s. Luhn (1958) presented a way to generate abstracts of technical and mag-
azine articles automatically. The main idea is to select the key sentences, which
are the most informative ones in the article and produce an ”auto-abstract” by
citing the author.

Since then, extractive summarization took a lot of attention in the published
papers related to automatic text summarization and many methods of informa-
tion extraction were developed. We explore the most used of them in the next
subsection.
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In the same way as extractive summarization, abstractive summarization tries
to generate a summary that contains the main ideas of the input. However, it
mainly uses words or phrase that may not appear in the input instead of just cit-
ing it. Unfortunately, the complexity of the task and the relative success of the
developed extractive summarization techniques made research in the field of ab-
stractive summarization way less active during an extended period.

2.1.1.2 Single- and multi-document summarization

Luhn (1958) was intended to be used to generate summaries of single-documents.
Later, the emergence of new use cases such as the world wide web made the need
to summarize multiple related documents at the same time more present. Single
document summarization produces a summary of only one document as input.
Its goal is to offer the user a quicker way to get the main points dealt with in the
given document. However, multi-document summarization deals with generat-
ing a summary of multiple documents given as input. It removes redundancy and
detects the most important information to provide the user a brief digest of the
content of the documents.

2.1.1.3 Generic, query-focused and update summarization

Generic sumarization generates a summary without having any assumptions about
the genre of the input document, the field that it deals with or the audience that
the document targets. The goal is to be able to get the important information from
the text and provide the reader a quick overview of the document’s content. For
a more user-specific summarization, query-focused summarization summarizes
only information that is relevant to a user query. The summarizer considers the
user input while choosing what information needs to be conveyed in the output
at the step of generating the final summary. This type of summarization in more
present in the context of search engines and it is deployed to enhance the user
experience. One use case is to provide the user with a summary of information
related to his query present in different web pages after finding them using the
search engine. In some other use cases, it is required to summarize the new infor-
mation since a previous point in time. This can be done through Update summa-
rization which generates a summary of unseen information.

2.1.1.4 Informative and indicative summarization

A summary is called informative when it contains the main information included in
the input document(s) and provides the user with the main ideas in the original
input. In contrast, indicative summarization does not contain any content related
information and provides the user only with a description of the input.

2.1.1.5 Keyword and headline summarization

Most of the previously mentioned summarization types aim at generating a short
paragraph summary. Depending on the use case needs, it is sometimes required
to have other forms than paragraph summary. This is the case for summarization
types like keyword summarization and headline summarization. Keyword sum-
marization aims at extracting the main words or phrases from the input. It can be
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used in a context of a search engine or for other specific use cases. Headline sum-
marization is the task of generating a one-sentence summary of the input. And this
is the task that we mainly deal with in the coming chapters.

2.1.2 Information extraction methods
As stated earlier, extractive summarization was more explored in the literature
than abstractive summarization for many reasons such as being relatively more
accessible and more successful. This led to the development of different methods
to extract information from the input, which is one of the main components of
an extractive summarizer. We will present here two unsupervised information
extraction methods that will be used in later chapters.

2.1.2.1 Word probability

The likelihood of observing a given word is called the word probability. Given a
word w and a training corpus T containingN words, w’s word probability p(w) is
computed through dividing the number of w occurrences c(w) by N:

p(w) =
c(w)

N
(2.1)

Using this definition, Nenkova et al. (2006) presents a multinomial model to
compute the likelihood of a summary given the words probability distribution:

L[sum; p(wi)] =
M !

n1!...nr!

r∏
i=1

p(wi)
ni (2.2)

where M is the number of words in the summary, r is the number of unique
words in the summary, and for each i, ni is the number of times the word wi ap-
pears in the summary

∑r
i=1 ni = M and p(wi) is the probability of wi appearing

in the summary estimated from the input documents.
Using this model, it was observed after analyzing an input consisting of 30

news articles and four human-generated summaries for each article that the like-
lihood of the human summaries is higher than of machine-generated summaries
obtained using one of the best performing summarizers in 2006. This shows that
humans tend to pick the frequent topic words in their summaries. Which confirms
that frequency-based metrics are a right track for optimizing automatic summa-
rizers.

One of the problems with the word probability model is that many words may
have a high likelihood in the corpus by being present in a significant number of
documents due to the Zipfian words distribution Baayen (2001), but these words
may not convey the information that is specific to the input. They are called stop
words and are generally prepositions, auxiliary verbs, determinants or common
domain words. Since the summarization task looks for finding the topics that are
specific to the input, a solution to the problem is to use TF*IDF weighting.

2.1.2.2 TF*IDF weighting

Term Frequency * Inverse Document Frequency is very used in the field of infor-
mation retrieval to identify the most significant words in an input text. Instead of
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merely relating to the term frequency, a weighting using the number of the doc-
uments in which a term occurs is performed to measure the significance of the
word in the input while reducing the influence of the Zipfian distribution of the
words.

Given a corpus T of N documents and a term w, the TF ∗ IDF score of w is
computed by multiplying c(w), the number of w occurrences in T , by w’s inverse
document frequency, which is the logarithm ofD divided by d(w), the number of
the documents in T in which w occurs:

TF*IDFw = c(w)× log
D

d(w)
(2.3)

Thanks to the multiplication by the inverse document frequency, the TF*IDF
score of words that appear frequently but in many different documents remains
low, which may be used to identify stop words more efficiently and gives space
for more important topic-specific terms in the input to stand out and be better
considered in the summary generation.

2.2 Words And Sentences Representations
Many ways to represent words and sentences have been explored because of the
need of major machine learning algorithms for a fixed-length feature vectors as in-
put. Two of the most used methods are bag-of-words and bag-of-n-grams. How-
ever, these two algorithms present some limits. When bag-of-words ignores the
input words order, bag-of-n-grams ignores the semantics, which are both extremely
important for a task like automatic text summarization. In this section, we focus
more on the Paragraph Vector algorithm proposed by Le and Mikolov (2014) which,
according to its creators, achieved the new-state-of-the-art on tasks like text clas-
sification and sentiment analysis at its release. We used this sentences embedding
algorithm to feed a sequence-to-sequence neural network that will be detailed in
the next section.

2.2.1 Bag-of-Words model
Since their earliest reference in Harris (1954), bag-of-words models became one
of the most common fixed-length vector representations of text. The main idea
is to construct a vocabulary of all the known words in the corpus and represent
each document by a vector of the size of the vocabulary where for each term in the
vocabulary a score is associated, which may be for example a boolean representing
the presence of the word in the documents or the number of occurrences of the
word in the document.

As an example, let us take the following three documents as input and compute
their bag-of-words vector representation.

The input:

Document 1: The start of the meeting is expected at nine.

Document 2: The meeting main topic is the new perspectives given for the

employees.

Document 3: Ten employees are expected to attend it.
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To construct the vocabulary, every input document is tokenized and each new
unseen token is added to the vocabulary.

Constructing the vocabulary

["the", "start", "of", "meeting", "is", "expected", "at", "nine", "main",

"topic", "new", "perspectives", "given", "for", "employees", "ten", "are",

"to", "attend", "it"]

Finally, we compute the vector representation of each document by creating
a vector of the same size as the vocabulary and setting its i-th coordinate to the
number of occurrences of the i-th vocabulary token in the document. For instance,
the first word in the vocabulary ”the” occurs two times in the first document, so
the first component of its vector representation is 2:

Computing document vectors based on terms number of occurrences

Document 1: [2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Document 2: [2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

Document 3: [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]

Even though this model is efficient for many tasks, it has many drawbacks.
Huge vocabulary leads to huge vectors since the size of the vector is the same as
the size of the vocabulary. This also leads to the problem of the sparsity of the
representation. Most of the values inside the vector are zeroes. Stop words have
a high number of occurrences without being topic-specific terms. This problem
could be addressed using the TF*IDF weighting discussed in the previous section.
Two other significant drawbacks are losing the words order. Which means that the
same vector may represent two sentences conveying different meanings, and miss-
ing all semantic information. This was pointed out by Le and Mikolov (2014). Us-
ing bag-of-words model, words like ”Paris”, ”strong” and ”powerful” are equally
distant despite the fact that semantically ”powerful” is closer to ”strong” than
”Paris”. And this was one of the motivations behind developing the Paragraph
Vector model.

2.2.2 Paragraph Vector
Paragraph Vector is an unsupervised method that learns vector representation of
text input of variable length. The input can be sentences, paragraphs or whole
documents.

The training method aims to predict the next word in a paragraph given the
concatenation of the current paragraph vector and several word vectors. The first
step is learning the word vectors to use them later for inferring paragraph vectors.

2.2.2.1 Word Vectors Learning

The following algorithm for learning distributed word representation is presented
in Le and Mikolov (2014) and was inspired by works related to models that are
known as neural language models (Bengio et al. (2003); Collobert and Weston
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(2008); Mnih and Hinton (2009); Turian et al. (2010); Mikolov et al. (2013a) and
Mikolov et al. (2013b))

All the words in the vocabulary are represented by a matrixW . Each column in
W is the unique vector representing the word with the same index in the vocabu-
lary. Given a training sequence of words w1, w2, w3, ..., wT , the training maximizes
the average log probability given by the formula:

1

T

T−k∑
t=k

log p(wt|wt−k, ..., wt+k)

the objective achieved using the softmax layer:

p(wt|wt−k, ..., wt+k) =
eywt∑
i e

yi

Each of the yi is an un-normalized log-probability of output word i. It is given by
the formula:

y = b+ Uh(wt−k, ..., wt+k;W ) (2.4)

where U, b are the softmax parameters and h is constructed by a concatenation
or average of word vectors from W . An overview of the framework is given by
figure 2.1

Figure 2.1: A framework for learning word vectors. Le and Mikolov (2014)
Predicting ”on” based on the context given by the three words (”the”, ”cat”, and

”sat”).

Stochastic gradient descent with backpropagation Rumelhart et al. (1988) is
used to train the neural network. Given the significant vocabulary sizes often
used in practice, hierarchical softmax Morin and Bengio (2005) is more used to
speed up the training compared to softmax. Le and Mikolov (2014) uses binary
Huffman tree for the hierarchical softmax to quickly access more commonly used
words.

2.2.2.2 Distributed Memory Model of Paragraph Vectors (PV-DM)

The same approach used to learn word vectors is expanded to learn Paragraph
Vectors. Instead of just using word vectors as a context to predict the next word,
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Figure 2.2: A framework for learning paragraph vectors. Le and Mikolov (2014)
Comparing to figure 2.1, a column in D representing the current paragraph is

included in the prediction context. The paragraph vector completes the missing
information of the context by giving a representation of the paragraph topic.

a new vector representing the paragraph is added to the context to contribute in
the prediction task like presented in figure 2.2.

A matrix D where each column maps to a paragraph vector is used in the
framework in addition to the matrix W that stores the word vectors like in the
word vectors model. The word vectors and the paragraph vectors are combined
by either being concatenated or averaged to perform the task of predicting the next
word. The main change is that h from equation 2.4 is now constructed from both
W and D. W , D and both softmax weights U and b are trained using stochastic
gradient descent with backpropagation.

The Paragraph Vector can be seen as a memory storing the paragraph’s topic
and is dealt with as an extra word in the input. Combined with word vectors that
are already capturing the semantics at the training phase, it enhances the context
representation and provides the prediction step with more relevant useful infor-
mation. This idea inspired the name of this model Distributed Memory Model of
Paragraph Vectors (PV-DM).

Contexts are fixed-length vectors that are constructed after choosing the words
in a paragraph using sliding windows. The paragraph vector is shared only across
the context of sliding windows inside the same paragraph but not across other
paragraphs. However, W is the same for all the contexts. Which means that a
vector representing a given word is the same all across the model.

Inferring a vector of an unseen paragraph is done using stochastic gradient de-
scent like the training. The inferring process starts by adding a new column with
random values representing the new paragraph toD. Using sliding windows, the
model learns to predict the next word in the input. The column inD representing
the input is updated with backpropagation while keepingW , U and b fixed. After
a number of iterations, the vector representing the input pragraph is outputted.

Representing each paragraph and each word with vectors with respective di-
mensions of q and pwhile training on data containingN paragraphs andM words
creates already N × p + M × q parameters, which is a large number if N is large
which may invoke questions related to the training efficiency. However, the fact
that updates are sparse leads to efficient updates steps and so a quicker training
process.

Paragraph Vectors present many advantages and relevant use cases. They can
be used as paragraph features, either alone or in addition to bag-of-words mod-
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els. Being a fixed length vector, they can be fed to various machine learning tech-
niques. They are trained using an unsupervised method which means that there
is no need for expensive labeled data. They can learn semantics thanks to inher-
iting this feature from the word vectors model where a word like ”solid” is closer
to ”hard” than ”computer”. Paragraph Vectors are also sensitive to words order,
which is a rare advantage that can be found only within n-gram models with a
large n, but these models are disadvantaged by having high dimensional repre-
sentations and poor generalization. This set of advantages, make of Paragraph
Vectors a proper sentences embedding technique to apply to the task of automatic
text summarization.

2.2.2.3 Distributed Bag of Words version of Paragraph Vector (PV-DBOW)

This variant model of Paragraph Vectors was also presented in Le and Mikolov
(2014), but it is similar to the Skip-gram model that appeared originally in Mikolov
et al. (2013b). The objective is to take only a paragraph vector as input and pre-
dict words randomly sampled from the paragraph. At each training iteration, a
text window is sampled, a word from the sampled text is randomly chosen and
stochastic gradient descent is executed. The model is presented in figure 2.3. Us-
ing this model, data storage needs are lower compared to PV-DM because we only
store softmax weights for paragraphs and not for both paragraphs and words.

Figure 2.3: Distributed Bag of Words version of Paragraph Vector (PV-DBOW) Le
and Mikolov (2014)

The Paragraph Vector predicts the words in a text window.

2.3 Sequence To Sequence Learning With Attention
Neural Networks

The desire to bring neural networks success to the natural language processing
field gave birth to a new set of approaches. The task of machine translation con-
sists of translating an input sentence into a specific language. In other words, it
takes a sequence of words as input and produces the right words sequence in the
target language. Performing this task using neural networks created a new set of
models capable of learning tasks involving sequences, including headline gener-
ation. Neural Machine Translation systems are end-to-end systems and most of
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them belong to the family of encoder-decoder (Sutskever et al. (2014); Cho et al.
(2014a)). In this section, we explore successful sequence-to-sequence models in
the task of neural machine translation. We start by presenting these models main
components and how they work. Then we dive into the details of how these mod-
els were enhanced using the attention mechanism to establish the new state of the
art in machine translation, before exploring an implementation of them.

2.3.1 The Encoder-Decoder Framework
Two variants of the Encoder-Decoder architecture that emerged almost simulta-
neously and achieved highly promising results with neural machine translation
are Sutskever et al. (2014) and Bahdanau et al. (2014). The first presented an end-
to-end approach to learning sequences and the second took it a step further with
different design choices and new components such as the attention mechanism
that we discuss in details in the next subsection.

Sutskever et al. (2014) primary motivation was the problem deep neural net-
works were facing with sequential problems despite their success in various learn-
ing tasks. A deep neural network works well when a problem can be represented
with a fixed length vector like with visual object recognition. However, this is def-
initely not the case for sequential problems like machine translation or automatic
text summarization where the input length is highly variable.

The idea is to use a first component called encoder that has a Long Short-Term
Memory (LSTM) architecture Hochreiter and Schmidhuber (1997) that reads the
input one timestep at a time and produces a large fixed dimensional vector repre-
sentation. Then, this vector is fed to the decoder which is another LSTM Recurrent
Neural Network Language Model (RNN-LM) that is conditioned on the input se-
quence as portrayed in figure 2.4.

Figure 2.4: Sequence to sequence learning architecture Sutskever et al. (2014)
An input sentence ”ABC” is read and an output sentence ”WXYZ” is produced.
”<EOS >” is the end of sentence token. The model keeps outputing words till

producing the ”<EOS >” token.

Recurrent Neural Network (RNN) are by design the adaptation of classic feed-
forward neural network to sequence learning. Given an input sequence (x1, x2, ..., xT ),
a classic RNN generates an output sequence (y1, y2, ..., yT ) using:

ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Wyht + by)
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where ht is the hidden layer vector, W , U and b are the model weights and
biases and σ are both activation functions.

One of the standard RNN drawbacks is losing long-term dependencies in the
input sequence, something that is intolerable for a task like machine translation.
LSTM architecture is good at learning data with long-range temporal dependen-
cies and therefore it is used. Another difficulty is that the output sequence length
can be different from the input length and things become more complicated when
trying to establish non-monotonic relationships between input and output. Given
an input sequence of lengthT ,XT = (x1, x2, ..., xT ), the goal is to compute p(YT ′ |XT )
where YT ′ = (y1, y2, ..., yT ′) and T ′ may differ from T . The LSTM encoder reads
XT step by step. When it reachs xT =< EOS >, which is the end-of-sentence sym-
bol, the hidden state of the last LSTM step c is fed to LSTM decoder. c is a fixed
length vector and is used as an intial state to start outputting p(YT ′|XT ) using the
following equation:

p(YT ′ |XT ) =
T ′∏
t=1

p(yt|c, y1, y2, ..., yt−1) (2.5)

The LSTM decoder keeps iterating till producing the end-of-sentence token.
This approach makes it possible to define a distribution over sequences of all pos-
sible lengths. Among the improvements found by Sutskever et al. (2014) are us-
ing a deep LSTM architecture with 4 layers and feeding the input sequence in
a reverse order (i.e xT , xT−1, ..., x1 instead of x1, x2, ..., xT ) which produced better
results. However, this system was outperformed by a new architecture using an
attention mechanism and jointly aligning and translating, that we cover in the
following subsection.

2.3.2 Jointly Learning To Align And Translate With The Atten-
tion Mechanism

An encoder-decoder system is jointly trained to maximize the probability of the
output sequence given a sentence. The problem with Cho et al. (2014a) and the
previously discussed Sutskever et al. (2014) is that the sentence is always repre-
sented with a fixed-length vector before the decoding phase regardless of the in-
put sentence length. This reduces the output translation quality with long sen-
tences. Bahdanau et al. (2014) proposed a new model that finds where the most
relevant information is concentrated in an input sentence using an attention mech-
anism. It generates a new word based on the context vector associated with the
current time step and adaptatively computed based on the previously predicted
words. This approach solved the long sentences problem.

2.3.2.1 Annotations Learning

Annotations are vectors that represent each input element in its context. We would
like these vectors to be able to convey the meaning of the given element as well as
its relation with elements in its surrounding. This is very important for abstrac-
tive summarization because words are not summarized one by one, but instead,
one output word can summarize a group of words or an entire sentence. Learn-
ing these annotations could be achieved using a classic RNN, but the problem
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with this architecture is that the learned annotations will not convey any context
from not-seen-yet words in the sequence, regardless of feeding the sequence to the
RNN in the original order or in a reverse order. We need to get the context in both
directions, forward and backward, and at the same time. The solution proposed
by Bahdanau et al. (2014) is using the Bidirectional RNN architecture proposed
originally by Schuster and Paliwal (1997).

The idea is to feed ”two different classic RNN” with the input sequence, one
is forward and the other is backward. The forward RNN reads the input in the
original order x1 to xTx . However, the backward RNN reads the same sequence
but in a reverse order xTx to x1. At each step i, the forward RNN generates a
forward hidden state ~hi representing xi in the context of the words preceding it.
The backward RNN generates a backward hidden state ~hi representing xi in the
context of the words following it. Both part annotations ~hi and ~hi are concatenated
to form the final annotation hi = [~hi; ~hi]

ᵀ as presented in figure 2.5.
The annotations in each RNN can be learned using units that can learn long-

term dependencies. Two of the most used units are long short-term memory
(LSTM) Hochreiter and Schmidhuber (1997) and gated recurrent unit (GRU) Cho
et al. (2014b). Bahdanau et al. (2014) model uses the GRU architecture.

Figure 2.5: Bidirectional Recurrent Neural Network Encoder
A BiRNN of Gated Recurrent Units, taking word embedding of
X = (x1, x2, ..., xTx) as input and computing their annotations.



14

Figure 2.6: Gated Recurrent Unit
The Gated Recurrent Unit used in the

encoder BiRNN

The gated recurrent unit GRU is an
essential component of this architec-
ture. The LSTM architecture has mo-
tivated the GRU development. How-
ever, it is less complicated than an
LSTM which has four gating units
compared to two in a GRU.

Since appearing in Cho et al. (2014b),
GRU made its way to successful appli-
cations especially with neural machine
translation. In a GRU there is a hidden
state hi and two gates, a reset gate ri and
an update gate ui. The goal is to com-
pute at each step i the new hidden state
hi given the input at the i-th step xi and
the previous hidden state hi−1. Figure
2.6 presents an illustration of a GRU.

The new hidden state is computed
using this formula:

hi = (1− ui)� hi−1 + ui � h̃i

with

h̃i = tanh(Wxi + U [ri � hi−1]]),
ri = σ(Wrxi + Urhi−1),

ui = σ(Wuxi + Uuhi−1)

where W,U,Wr, Ur,Wu, Uu are learned parameters, σ is the logistic sigmoid
function and bias terms were omitted for a better readability.

With this definition, the reset gate determines how much the new input affects
hi. When ri is close to zero, hi−1 is almost ignored and xi takes its way to have
the biggest influence on hi through the temporary h̃i. This mechanism gives the
GRU the flexibility to switch to new representation when the new information
contained in xi is irrelevant to the previous states. The update gate is more about
how much information to keep from the previous hidden state hi−1. The goal of
using GRU in the decoder or the encoder is to capture temporal dependencies.
Giving each unit in the RNN its separate update and reset gate enables it to learn
how to capture either long-term or short-term dependencies. The more long-term
units will tend to have more active update gates, on the other side, units more
sensitive to short-term dependencies their reset gates will be more active.

2.3.2.2 Attention-based Decoder

The decoder is trained to find p(YT ′ |XT ) using an edited version of the equation
2.5:

p(YT ′) =
T ′∏
t=1

p(yt|y1, y2, ..., yt−1, XT ) (2.6)

The conditional probabilities are defined as:
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p(yt|y1, y2, ..., yt−1, XT ) = g(yt−1, si, ci) (2.7)
where g is a nonlinear function, and at step i, ci is the context vector and si is the
hidden state of an RNN.

si is computed using the following equation:

si = f(si−1, yi−1, ci) (2.8)

In contrast to Sutskever et al. (2014) where there is only one context vector for
the whole input sequence, in Bahdanau et al. (2014) model, each yi has a distinct
context vector ci computed based on the sequence of annotations (h1, h2, ..., hT )
provided by the encoder. Instead of generating the whole output sentence based
on only one fixed-length vector in which the encoder must encode all the infor-
mation present in the sentence, the decoder decides for every word in the target
sentence which part of the source sentence deserves more attention, thanks to the
following attention mechanism.

The weights αij implement an attention mechanism in the decoder by repre-
senting the importance of the annotation hj in computing the next state si and
generating yi based on the previous state si and are computed by:

αij =
exp eij∑T
k=1 exp eik

,

where eij = a(si−1, hj) which is an alignment model with a a feedforward network
trained with all the system components. The alignment model reflects the correla-
tion between the inputs around position j and the output at position i by directly
computing a soft alignment. This allows the backpropagation of the cost function
gradient through the alignment model.

2.3.3 Nematus: A successful implementation of neural machine
translation using attention mechanism

Sennrich et al. (2017) presented an open-source toolkit 1 that was used for top-
performing submissions at 2016 Conference on Machine Translation (WMT16)
and The International Workshop on Spoken Language Translation (IWSLT) for
the task of shared translation and has been used to train systems for production
environments. It implements an encoder-decoder architecture with an attention
mechanism similar to the previously discussed Bahdanau et al. (2014) with many
changes and enhancements. This implementation is the framework that we used
for the baseline system that we used for the task of headline generation, and that
will be discussed in details in a later chapter.

2.3.3.1 Dealing with Out Of Vocabulary Words

Working on natural language processing tasks using neural networks requires us-
ing fixed vocabulary sizes. This generally poses the problem of Out Of Vocabulary
(OOV) words. This is the case with machine translation or abstractive summa-
rization where, in contrast to extractive summarization, the vocabulary is open

1https://github.com/EdinburghNLP/nematus

https://github.com/EdinburghNLP/nematus
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and not limited only to the words present in the input text. Sennrich et al. (2015)
proposed a solution to this problem, which consists in using Byte-pair encoding
(BPE) to segment words. It was inspired by the compression algorithm proposed
by Gage (1994). The original BPE is adapted to word segmentation, and vocabu-
lary construction in order to avoid OOV.

The vocabulary construction starts by initializing the vocabulary with all the
characters present in the training corpus and adding a special end-of-word token
(”</w>” for example) to each word to be able to restore the original words after
generating the tokens. The rest of the vocabulary is constructed using only merge
operations of the existing symbols inside it. The number of merge operations is
given as a parameter. At each iteration, the most frequent symbols pair is replaced
by a new symbol added to the vocabulary. The algorithm terminates when it
reaches a given number of merges. An example of the vocabulary construction
algorithm execution on a demo input is given in figure 2.7.

As we can notice from the given an example, BPE starts at a character level, and
the more merge operations are performed, the more whole words start to appear
among the vocabulary symbols and the more the sequence of symbols forming
the encoded sentence becomes shorter. These dynamics give BPE the ability to
set a trade-off between the vocabulary size and the length of the sequences, two
parameters that profoundly affect neural network models performances on tasks
related to sequence-to-sequence learning Cho et al. (2014a).

Input Text:
vietnam</w> takes</w> measures</w> to</w> boost</w> rice</w>
exports</w>

Vocabulary Encoded Sentence
Initialization [’a’, ’c’, ’b’, ’e’, ’i’, ’</w>’, ’k’, ’m’,

’o’, ’n’, ’p’, ’s’, ’r’, ’u’, ’t’, ’v’, ’x’]
v i e t n a m </w> t a k e s </w>
m e a s u r e s </w> t o </w> b o
o s t </w> r i c e </w> e x p o r t s
</w>

After 1
merge
operation

[’a’, ’c’, ’b’, ’e’, ’p’, ’</w>’, ’k’,
’m’, ’o’, ’n’, ’i’, ’s’, ’r’, ’u’, ’t’, ’v’, ’x’,
’s</w>’]

v i e t n a m </w> t a k e s</w>
m e a s u r e s</w> t o </w> b o
o s t </w>r i c e </w> e x p o r t
s</w>

After 10
merge
operations

[’</w>’, ’vi’, ’as’, ’es</w>’,
’s</w>’, ’nam’, ’to’, ’ri’,
’t</w>’, ’ort’, ’a’, ’c’, ’b’, ’e’,
’k’, ’m’, ’o’, ’p’, ’s’, ’r’, ’u’, ’t’, ’x’]

vi e t n am </w> t a k es</w> m
e as u r es</w> to </w> b o o s
t</w> ri c e</w> e x p ort s</w>

After 34
merge
operations

[’takes</w>’, ’mea-
sures</w>’, ’exports</w>’,
’boost</w>’, ’rice</w>’,
’vietnam</w>’, ’to</w>’]

vietnam</w> takes</w> mea-
sures</w> to</w> boost</w>
rice</w> exports</w>

Figure 2.7: An example of the vocabulary construction using Byte-Pair Encoding
(BPE) on a demo input
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2.3.3.2 Decoder Initialization

According to Bahdanau et al. (2014) appendix on the model architecture, they ini-
tialize the decoder hidden state s0 with the last backward encoder state: s0 =
tanh(Ws

~h1), where Ws are trained parameters. Nematus, uses an average anno-
taion instead defined by: s0 = tanh(Ws

∑T
i=1 hi

T
)

2.3.3.3 Conditional Gated Recurrent Unit with Attention

Nematus replaced the standard RNN decoder and attention mechanism with a
new conditional Gated Recurrent Unit (GRU) with attention. The new architec-
ture has 3 components and takes as input its previous state si−1, the previous pre-
dicted word yi−1 and the annotations H = (h1, h2, ..., hT ) to compute its new hid-
den state si that is later used to predict yi:

si = cGRUatt(si−1, yi−1, H)

The first component is a classic GRU architecture Cho et al. (2014b) that computes
an intermediate hidden state s′i using the following equations:

s′i = GRU1(yi−1, si−1) = (1− z′i)� s̃i
′ + z′i � si−1

where

s̃i
′ = tanh(W ′Eyi−1

+ r′i � U ′si−1),
r′i = σ(W ′

rEyi−1
+ U ′rsi−1),

z′i = σ(W ′
zEyi−1

+ U ′zsi−1)

...

...

...

...

...

Figure 2.8: The Attention Model
Computes context vector based on the

relevant elements in the input sequence

E is the target words embed-
ding matrix, W ′, U ′,W ′

r, U
′
r,W

′
z, U

′
z are

weights and σ is the sigmoid activation
function.

The second component is almost
the same attention mechanism as Bah-
danau et al. (2014). It takes H and s′i
and computes the new context vector
ci.

The goal of the attention mech-
anism is to generate a context vec-
tor ci conveying information from a
given annotations sequence H =
(h1, h2, ..., hT ). It takes also the inter-
midiate hidden state s′t as input. The
figure 2.8 provides an illustration of
the model. The first step is to compute
the energies eij from each annotation hi
using the alignment model:

eij = vTa tanh(Uas
′
i +Wahj)
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where va, Ua,Wa are learned weights.
Then, the energies are used to compute
the probabilities αij defined by:

αij =
exp eij∑T
k=1 exp eik

These probabilities determine the importance of the influence that each ele-
ment from the input has on the context ci computed through this weighted sum:

ci =
T∑

j=1

αijhj

The third and last component of the conditional GRU with attention, is a sec-
ond classic GRU that takes s′i and the context vector ci to finally produce the new
hidden state si

si = GRU2(s
′
i, ci) = (1− zi)� s̃i + zi � s′i

where

s̃i = tanh(Wci + ri � Us′i),
ri = σ(Wrci + Urs

′
i),

zi = σ(Wzci + Uzs
′
i)

W,U,Wr, Ur,Wz, Uz are weights and σ is the sigmoid activation function.
As we can notice, the recurrence in this architecture is not produced at the

level of each GRU but is assured for the whole cGRUatt thanks to the intermediate
hidden state s′i that assures the link between the 3 different components.

2.3.3.4 Computing Conditional Probability

Figure 2.9: The deepout layer
Computing p(yi|si, yi−1, ci) given the

hidden state si, the context vector ci and
the previously generated word yi−1

Where a maxout layer Goodfellow
et al. (2013) is used by Bahdanau
et al. (2014) to compute the conditional
probability p(yi|si, yi−1, ci) before ap-
plying a softmax layer, Sennrich et al.
(2017) uses a feedforward hidden layer

Once the new hidden state si and
the context vector ci are computed,
they are fed to the deep out layer in ad-
dition to a vector representing the pre-
viously generated word yi−1 as illus-
trated in the figure 2.9.

p(yi|si, yi−1, ci) = softmax(tiWo)

where

ti = tanh(siWt1 + Eyi−1Wt2 + ciWt3)

where Wt1,Wt2,Wt3,Wo are weights.
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2.3.3.5 Generating The Output Sequence

The output sequence generation process starts by applying the BPE encoding to
the input sentence to form the input sequence X . It is then fed to the encoder
to generate the annotation sequence H . P (y1|H) is computed by the decoder for
all possible y1 in the vocabulary. From this step, beam search is used to choose
the words forming the full summary. Only the best k possible y1 are kept, and
the rest are pruned. Each of the y1 candidates is fed separately to the decoder at
step i = 2, again only the best k summaries based on their probabilities are kept,
and the rest are pruned. Beam search continues by exploring at each time step
the k best predictions till producing the end-of-sentence token ”eos”. Finally, the
candidate sequence with the highest probability is returned.
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Chapter 3

Related Work

In this chapter, we go through various architectures that were proposed to solve
the problem of abstractive summarization using neural networks. The approaches
range from using different encoding and decoding techniques, augmenting the
input with a variety of features or feeding the model with extra information. These
methods results will be compared to our models’ results in chapter 6.

3.1 Neural Attention Model for Sentence Summariza-
tion

Rush et al. (2015) could be considered as the first attempt to generate abstractive
sentences summaries using neural network language model (NNLM) with an at-
tention mechanism. In contrast to Bahdanau et al. (2014) attention mechanism
that is used in the decoder component and takes the encoder annotations as in-
put, the attention model proposed by Rush et al. (2015) uses only feedforward
networks, takes as input the source sentence with a window of the previously
generated output words, and most importantly, it is located in the encoder part of
the model.

The proposed architecture aims to generate a headline for a given article by
taking only the article’s first sentence as input.

The language model estimates the conditional probability of the next word yi+1

given the input sentence x, the context window of sizeC, the previously generated
window defined by yc = y[i−C+1,...,i] and the learned parameters θ:

As portrayed in the figure 3.1, this is the used lanquage model:

p(yi+1|x, yc; θ) ∝ exp(V h+Wenc(x, yc))

h = tan(UEyc)

where E is a word embedding matrix and θ = (E,U, V,W ) learned parameters.
The function enc is a black-box encoder. The paper presents the details of 3 differ-
ent variants of the encoder each using completely different architectures: Bag-of-
Words encoder, convolution encoder and attention-based encoder. The best per-
forming encoder and the one on which the paper focuses the most is the attention-
based encoder, presented in figure 3.1 (b).

Even though the attention-based encoder is mainly inspired by Bahdanau et al.
(2014) work, it has many differences. It uses a window of generated words as con-
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text rather than a sequence of annotations and the last generated words. More-
over, it uses a weighted dot-product as alignment model instead of multi-layer
perception:

encatt = pT x̄,

p ∝ exp(x̃P ỹ′c),

x̃ = FX,

ỹ′c = Gyc,

∀i x̄i =

i+Q∑
q=i−Q

x̃i
Q

where F is a word embedding matrix, G is a context embedding matrix and P
a weight matrix between the context and the word embedding. All 3 matrices are
learned parameters.

Figure 3.1: Neural language model used by Rush et al. (2015)
(a) An overview of the language model with a black-box encoder (b) The

attention-based encoder architecture

3.2 Abstractive Sentence Summarization with Atten-
tive Recurrent Neural Networks

Recurrent Attentive Summarizer (RAS) is a model that was proposed by Chopra
et al. (2016). It uses an attentive convolutional encoder and a recurrent decoder.
This model performed better than the state-of-the-art at its publication Rush et al.
(2015) and this without any extractive features optimization and with only end-to-
end training on large datasets. The proposed architecture, same as its predecessor,
aims to generate a headline for a given article by taking only the article’s first
sentence as input.

For a given input sequence X = (x1, ..., xT ), the encoder computes a context
vector ct for each timestep that will be fed later to the decoder. Each word xi is
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represented by ai = ei + li where ei is a learned embedding of the word xi and
li is a leaned embedding associated with the position i of the word. Let d be the
dimension of ai and letB1, ..., Bd be dmatrices of dimension q×d used to convolve
over the ai. The convolution is done by computing a new vector zi representing xi
using this equation:

zi = [zi1, ..., zid]

∀k, zik =

q
2∑

h=− q
2

ai+h · bkq
2
+h

where each bkj is the j-th column of the matrix Bk.
Each zi represents at the same time the word xi and information related to

its position in the input sequence thanks to the convolution window of size q.
In Chopra et al. (2016) experiments, q was fixed to 5, and to compute the aggre-
gate embedding vector zi for words on the sequence words, padding with dummy
words was applied.

Once the zi are computed, an attention mechanism similar to Bahdanau et al.
(2014) is used to compute the context vector ct:

ct =
M∑
j=1

αj,t−1ej

where

αj,t−1 =
exp(zj · st−1)∑M
i=1 exp(zi · st−1)

st−1 is the hidden state of the recurrent decoder, defined by the equation 2.8.
Chopra et al. (2016) experimented with two different types of decoders. The first is
an Elman RNN like described in Elman (1990), and the second, an LSTM Hochre-
iter and Schmidhuber (1997).

3.3 Abstractive Text Summarization using Sequence-
to-sequence RNNs and Beyond

The two previously discussed models on neural abstractive summarization fo-
cused mainly on generating a headline based on the article’s first sentence. Many
works followed them trying either to extract linguistic features from the first sen-
tence and feed it to the model or take more sentences from the article. For instance,
Nallapati et al. (2016) proposed various models for the task of headline generation
as well as the task of multi-sentence summary generation. In this subsection, we
focus on the proposed models that showed promising results in the task of head-
line generation.

Nallapati et al. (2016) used a sequence-to-sequence with attention model like
described in the previously discussed Bahdanau et al. (2014) as baseline. Then,
they started enhancing mainly the encoder component using the following tech-
niques.
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3.3.1 The Feature-rich Encoder
The idea is to capture keywords in the input using features that the word embed-
ding may not suffice to represent them and feed them to the encoder in-addition to
the traditional word embedding. The extracted features are part-of-speech tags,
named entities and the previously discussed TF and IDF weights. For the vo-
cabulary of the different discrete tag-types, new embedding matrices are used.
However, for the continues values such as TF and IDF are discretized into a fixed
number of bins and one-hot representation is used to code them. All these fea-
ture tags are added to pretrained Mikolov et al. (2013a) word vectors and fed to
the encoder, as presented in figure 3.2

Figure 3.2: Feature-rich Encoder Nallapati et al. (2016)
Word embedding concatenated with linguistic features (POS, NER tags and
discretized TF and IDF weights) and then fed to the sequence-to-sequence

attentional encoder-decoder.

3.3.2 Solving Out Of Vocabulary Words Problem Using Generator-
Pointer Switch

One of the significant problems in summarization is the out of vocabulary words
(OOV). What should the decoder output when a word is not in his target vocabu-
lary? This happens with rare words. And for a task like summarization, these rare
words are sometimes the kind of information that the summary should contain
because they can be names or highly specific words, without them, the summary
loses a lot on the informativeness level. One of the standard practices is to replace
these (OOV) with a special token that marks them like ”UNK”. However, see-
ing a ”UNK” in a summary is not a desirable result. For our model, we used the
previously presented BPE encoding that was proposed by Sennrich et al. (2015).
Nallapati et al. (2016) proposed another solution which is to include a pointing
mechanism in the decoder that learns when a word from the known vocabulary
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should be generated or when it should be directly copied from a position in the
input instead of outputting the ”UNK” placeholder.

At every time step, the new switch decides whether to generate a word when
it is turned on or to point to the source when it is turned off. Figure 3.3 gives an
overview of the used architecture. A sigmoid activation controls the switch state
using the following formula:

P (si = 1) = σ(vs · (W s
h +W s

eEoi−1
+W s

c ci + bs))

where P (si = 1) is the probability of the switch being ”on” at the i-th de-
coder timestep, Eoi−1

is the embedding vector of the emission from the previ-
ous time step, ci is the context vector outputted by the attention mechanism, and
W s

h ,W
s
e ,W

s
c , b

s, vs are learned parameters. The pointer’s value pi for the i-th word
in the summary is determined using P a

i , the words attention distribution over the
input:

pi = argmaxj(P
a
i (j))forj ∈ 1, ..., T , P a

i (j) = exp(va · (W a
hhi−1 +W a

e Eoi−1
+W a

c h
d
j + ba))

where P a
i (j) denotes the probability of the decoder’s i-th time-step pointing to the

position j in the input and hdj the encoders hidden state at position j.

Figure 3.3: Switching generator/pointer model Nallapati et al. (2016)
When the switching gate shows ”G”, the decoder operates as originally

described to generate a word from its target vocabulary. When it shows ”P”, a
word at an automatically determined position in the input is directly copied to

the output.

The model learns when to turn the switch on and off and in which position to
point thanks to the training data that explicitly contains this information. When
a word out of the decoders vocabulary occurs many times in the input document,
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the pointer points to its first occurrence. The training optimizes the following
log-likelihood:

log(P (Y |X)) =
∑

i(U(i) +D(i))

where ∀i, U(i) = gi log(P (yi|y1, ..., yi−1, X)P (si)),

∀i, D(i) = (1− gi) log(P (p(i)|y1, ..., yi−1, X)(1− P (si))),

and ∀i, gi =

{
0 if xi is out of the decoder’s vocabulary
1 otherwise

When testing, the switch state is determined using the estimated probability
P (si).

3.4 Faithful to the Original: Fact Aware Neural Ab-
stractive Summarization

When many previous works mainly focus on generating informative abstractive
summaries, Cao et al. (2017) focused however on the faithfulness of the sum-
maries. They reported that nearly 30% of summaries outputted by state-of-the-art
sequence-to-sequence systems convey false facts. To solve this problem, they got
the idea of extracting the facts that are present in the article’s first sentence and
feed them to the model in addition to the words of the same sentence. To do so,
they use the Open Information Extraction (OpenIE) Banko et al. (2007) to get the
facts. Since OpenIE is not able to always extract facts like in imperative sentences,
a dependency parser is also used to enhance the extracted facts. All the extracted
facts are then concatenated using a special separator,”|||” for instance, and are fed
to a BiGRU encoder as described in Cho et al. (2014b).

To deal at the same time with the input sentence and the input facts, Cao et al.
(2017) proposed a dual-attention network shown in the figure 3.4. Two separate
encoders are used. The first deals with the input words sequence and the sec-
ond one with the facts sequence. Each encoder’s annotations are to a separate at-
tention mechanism to generate context vectors. The two context vectors are then
combined into one vector either by concatenation or by a weighted sum where
multi-layer perceptrons learn the weights. Finally, the conditional probability of
the next word in estimated using a softmax layer, the same way as in Bahdanau
et al. (2014).
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Figure 3.4: Dual-attention model for facts aware neural summarization Cao et al.
(2017)

Two separate encoder-attention-mechanisms are used to deal with each
sequence. The first receives words of a sentence and the second gets extracted

facts. Attention contexts are then combined to generate the next word.
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Chapter 4

Abstractive Headline Generation
Based On Multiple Sentences

One of the most significant problems of the existing abstractive headline gener-
ation approaches is that they take only the article’s first sentence as input, and
so miss any critical information that may appear later in the article. Also, from a
use scenario point-of-view of such a system, a headline is at best as informative
as the article’s first sentence. Despite being a good starting point, it still needs a
lot of improvements in the hope of being able to use the system in more challeng-
ing environments and use cases. Among the goals of this thesis is generating the
headlines while taking in consideration additional information that may appear
anywhere in the article. To try to achieve this goal, we tested various possible ap-
proaches, and we go through them in this chapter.

Given that trying to feed every word in the article to the baseline system leads
to extremely long input sequences which require more computing capacity and
extended training time, we explored other methods that still train in a reasonable
time with the available computation power. The approaches we tested involved
encoding every sentence in the article using the Paragraph Vector model and using
it as an additional input to enhance the baseline sequence-to-sequence with atten-
tion architecture. This approach provides us with two potential input sequences:
the words of the article’s first sentence and the sentences’ vectors. The challenge
was adapting the baseline architecture to receive more than one sequence as input.

We start the chapter by presenting a simple architecture we used and which
is based on concatenating the input sequences and feeding them to the baseline
architecture. The second part of the chapter is dedicated to presenting a new ar-
chitecture we implemented based on using a dual-attention mechanism.

4.1 Concatenated Sequence of Articles Sentences Vec-
tors And Word Vectors

Using the Paragraph Vectors presented in section 2.2.2 we pretrain a model on gen-
erating sentence vectors. The same model contains word vectors that are shared
between all the inferred sentence vectors. Given an article composed of Ts sen-



28

tences, we infer the Ts corresponding sentence vectors (s1, ..., sTx). At the same
time, we get the word vectors for every word in the articles first sentence forming
the sequence (w1, ..., wTw). These two sequences are concatenated as presented in
the figure 4.1 and are fed to the sequence-to-sequence model presented in section
2.3.3 with only one difference: we remove the word embedding layer from the
input sequence since we are already feeding the model embedding vectors. How-
ever, we keep the word embedding layer for the output, and we do not force it
to use the same pretrained word embedding as the input to give the summarizer
more flexibility at learning the desired task.

Figure 4.1: Concatenating word vectors and sentence vectors
Vector embeddings of every word in the first sentence in the article are

concatenated with the sentence vectors before feeding them to the
sequence-to-sequence with attention model.

We expect from this way of combining the words and sentences embedding
that the neural network will be able to learn the difference between the dimen-
sions occupied by the words vectors space and the dimensions reserved for the
sentence vectors. This should give the existing attention mechanism the ability to
better weight at each time step the sentences and the words in the input relevant
to generate the next word in the summary. We hope that this simultaneous ac-
cess to both the words sequence and sentence sequence will improve the baseline
system performance.

In another experiment, instead of using the word vectors that are generated
thanks to training a model on inferring sentence vectors, we extract pretrained
word embeddings from the same baseline model presented in section 2.3.3 after
training it on the task of headline generation. We use the model’s learned word
embedding layers at the input and use it as our new pretrained vectors for words
representation. The word vectors of the article’s first sentence and the sentence
vectors of each sentence in the article are fed to the sequence-to-sequence model
with attention after being combined as presented in the figure 4.1. This approach
enables us to experiment with a second way of representing the words and so
more chances to improve the results or to compare them with existing ones and
better understand the dynamics of the system.
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4.2 Sequences To Sequence Learning Using Conditional
Dual-Attention

In this section, we dive into the main contribution of this thesis. It is a new model
adapted to learn the transformation between two sequences as input and one tar-
get sequence. The architecture is heavily inspired from Bahdanau et al. (2014)
and Sennrich et al. (2017) and reuses some ideas from Cao et al. (2017). The sec-
tion starts by presenting the task and taking an overview of the different model
components and how they interact with each other. After that, each component’s
architecture is deeply described.

4.2.1 The Task

This model was developed for the task of abstractive automatic text summariza-
tion and more precisely abstractive headline generation. However, it can be reused
or extended for any task involving sequence generation based on an input consist-
ing of more than one sequence. Let us start by formally presenting the task and
fixing the notations for this entire section.

Given an input article, the goal of the headline generation task is to produce
a condensed one sentence summary. Let the input article consist of Ty sentences,
where the article’s first sentence is a sequence of Tx words from a vocabulary of
size V .

Let X = (x1, x2, ..., xTx) ∈ [1 . . V ]Tx denote the article’s first sentence words
sequence, and Y = (y1, y2, ..., yTy) ∈ [Rdy ]Ty a sequence of vectors of dimension
dy each representing one of the article’s sentences and inferred using the Mikolov
et al. (2013b) approach presented in subsection 2.2.2.

The model aims to find a target summary sequence Z = (z1, z2, ..., zTz) ∈
[1 . . V ]Tz . The sequence should maximize the conditional probability of Z given
X and Y : arg maxZp(Z|X, Y ). A parametric model is trained to maximize the
conditional probability of article-headline pairs using a corpus containing train-
ing pairs.

4.2.2 The Model Overview

An overview of the proposed model is presented in figure 4.2. It takes X and Y
as input and is consisted of 3 main components: two remarkably similar encoders
for X and Y , the only difference is an extra learned word embedding layer for
the words inX , and the conditional dual-attention decoder that takes the learned
annotations of the input sequences and its previous hidden state to estimate the
conditional probability p(zt|X, Y, Zt−1) where Zt−1 = (z1, z2, ..., zt−1).
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Figure 4.2: Sequences to sequence learning with conditional dual-Attention model
An illustration of the different model components estimating the t-th output

word conditional probability p(zt|X, Y, Zt−1) where Zt−1 = (z1, z2, ..., zt−1)

4.2.3 Inputs

The input consists of two sequences, the words of the article’s first sentenceX and
the article sentences Y .
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4.2.3.1 The article’s first sentence

X is the sequence of the words of the articles first sentence. Each word is mapped
to an integer representing its position in a fixed vocabulary of size V .

After encoding each word in the article’s first sentence to its corresponding
symbols in a learned BPE vocabulary like presented in the section 2.3.3.1, we get
X by mapping each symbol to its encoding integer id in the vocabulary. Each
word embedding vector is jointly leaned by the model when training for the task
of headline summarization.

4.2.3.2 The articles sentences

A distributed memory model of Paragraph Vectors as presented in the subsection
2.2.2 is pretrained using sentences from the training corpus. The model is trained
on separate sentences and not on paragraphs or whole articles to keep consistency
between the training and the inferring phase. This pretrained ”sentence vector”
model is then used to infer a float value vector of dimension dy for every sentence
in the input article. The sequence of the inferred vectors is Y .

4.2.4 The Encoder
The new model as illustrated in the figure 4.2, contains two separate encoders
that are very similar. Each encoder’s task is to transform the input sequence into
a sequence of annotations of the same size that are fed later to the attention mech-
anism in the decoder. These encoders have the same architecture presented in
figure 2.5 with one difference. The only difference is in the encoder responsible
for learning annotations for the sentence vectors sequence Y , where the embed-
ding layer is removed because the model is directly fed with embedding vectors.
Y is already a sequence of vectors and no further embedding is needed before
feeding it to the gated recurrent units in the encoder.

4.2.5 The Decoder
The decoder is in charge of estimating the conditional probability p(zt|X, Y, Zt−1)
at each time step t. It is also a RNN, but with many small components with
an architecture partially similar to the architecture proposed by Sennrich et al.
(2017) and presented in the subsection 2.3.3. Here we present the main differ-
ences between the existing architectures. It takes as input the annotations Hx =
(hx1 , h

x
2 , ..., h

x
Tx

) and Hy = (hy1, h
y
2, ..., h

y
Ty

) of respectively the sequences X and Y
that are the output of the previously presented encoders, its own previous hid-
den state st−1 and the previous predicted target word zt−1.

4.2.5.1 The Initial Hidden State

The choice of the decoder’s initial hidden state s0 is very important for the whole
model performance. A wrong choice at this step affects the predictions of the
first word and possibly all the following words in the summary, thus the over-
all model performance. Bahdanau et al. (2014) choose to compute it using only
the first backward encoder state ~h1 by defining s0 = tanh(Winit ~h1) where Winit is
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a learned matrix. However, Sennrich et al. (2017) took in consideration all the
annotations outputted by the decoder to compute si using an average annotation

s0 = tanh

(
Winit

∑Tx
i=1 hi

Tx

)
where Winit is a learned matrix.

For our model, the problem is a bit more complicated because we do not have
annotations of only one sequence, but of two different sequences. This situation
is similar to the one that will be discussed shortly when presenting the dual-
attention mechanism. For now, let us say that we have a function named COMBINE
that takes as input two vectors of the same size containing float values, one related
toX and the other related to Y and outputs one single float vector. The COMBINE
function changes according to the implementation of the model. To compute s0 for
our dual-attention decoder, we start by calculating the means of the annotations
outputted by the encoders for both input sequences:

hxmean =

∑Tx

i=1 h
x
i

Tx
,

hymean =

∑Ty

i=1 h
y
i

Ty

Then, we compute hmean using COMBINE:

hmean = COMBINE(hxmean, h
y
mean)

Next, we compute s0:

s0 = tanh(Winithmean)

where Winit is a learned matrix.

4.2.5.2 The Conditional Dual-attention Mechanism

At this step, we have the annotations of both input sequencesHx = (hx1 , h
x
2 , ..., h

x
Tx

)
andHy = (hy1, h

y
2, ..., h

y
Ty

). In previous works (Sennrich et al. (2017); Bahdanau et al.
(2014)), the annotations of one sequence are computed, and the attention mech-
anism is applied to only one sequence of annotations. In this case, we have two
sequences, and we would like to have a model able to learn to extract from the
two sequences the right information to generate the next word in the summary.
We take the same architecture with the conditional GRU as in the subsection 2.3.3
and add an attention mechanism for the second annotations sequence as well as a
fifth component to combine two generated context vectors. The individual com-
ponents are not recurrent, but the whole system is recurrent via the hidden state
st.

After generating the two context vector cxt and cyt at time step t for both input
sequences X and Y , a context vector ct is computed as a combination of both
context vectors using COMBINE:

ct = COMBINE(cxt , c
y
t )

We have already seen the function COMBINE a first time in the previous para-
graph 4.2.5.1, but we did not detail what it is and how it can be implemented. The
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Figure 4.3: Conditional Dual-Attention Decoder
Conditional dual-attention decoder with 2 GRUs and 2 attention mechanisms
and a deepout layer. It takes the annotations Hx and Hy, the previous hidden

state st−1 and the previously generated word zt−1 to estimate the next
conditional probability p(zt|X, Y, Zt−1)

COMBINE takes as input two vectors of the same size containing float values, one
related to X and the other related to Y and outputs one single float vector.

In our different experimental implementation of the model, we tried many
possible variances of the COMBINE function:

Mean : Rd,Rd → Rd

cxt , c
y
t 7→ 1

2
(cxt + cyt )

Concatenate : Rdx ,Rdy → Rdx+dy

cxt , c
y
t 7→ [cxt ; cyt ]

MLP : Rd,Rd → Rd

cxt , c
y
t 7→ pt � cxt + (1− pt)cyt

with pt = tanh(Wp � [cxt ; cyt ] + bp),
where Wp and bp are learned parameters.

(4.1)



34

Chapter 5

Experiments Environment &
Implementations

5.1 Datasets

We train and evaluate all our proposed models for headline generation using two
different data sets: Gigaword and DUC-2004

5.1.1 Gigaword
The annotated version of the Gigaword corpus (Graff et al. (2003);Napoles et al.
(2012)) is the main data set we use for our experiment. We use it in a similar way
as described in Rush et al. (2015) with editing some preprocessing steps in the
script that they made available 1.

The Gigaword corpus contains nearly 10 million articles from seven news sources.
Most of the annotations in the original data set are ignored such as parse trees,
dependency tress, named entities and in-document coreference chains. Only tok-
enization and sentences segmentation are used to form the article-headline pairs.
We start by deleting all the unused tags and by keeping only the article headline
and the full article with a separation between each sentence in contrast with the
original script that only creates pairs of the headline and the article’s first sentence.
Also, each digit is replaced with a ’#’. At step two, the data set is compiled into
a train set, development set and test set. For the splitting we use the same sets as
Rush et al. (2015). For step three, each data entry is filtered if one of the following
conditions it true:

• The headline is blank or the articles first sentence does not contain a period.

• The headline contains words from a blacklist set of spurious words

• The headline is shorter or longer than a specific length parameters

• There are no common words between the headline and the article’s first sen-
tence

1https://github.com/facebookarchive/NAMAS (retrieved on Feb 05, 2018)

https://github.com/facebookarchive/NAMAS


35

After filtering the data set, we get 4,167,425 headline-article pairs for the train-
ing and two subsets for development and test with respective sizes of 214,348 and
201,133 pairs. From the development and test, we randomly take 10,000 pairs from
each subset to use it with our models.

At this point, Rush et al. (2015) performs a series of operations including lower-
casing, replacing words seen less than 5 times with ’UNK’. We skip this step be-
cause, for our various models, either we use BPE Sennrich et al. (2015) for out-
of-vocabulary words or we the rare words are eliminated while training the Para-
graph Vectors.

5.1.2 DUC 2004
One of the most used evaluation datasets for summarization and headline gen-
eration is the shared task of the Document Understanding Conference DUC-2004
Over et al. (2007). As Rush et al. (2015) and Nallapati et al. (2016), we train our
models using the Gigaword dataset and use DUC-2004 only for evaluation. It con-
tains 500 articles issued by The New York Times and Associated Press paired with
four reference summaries written by humans and capped at 75 characters length.
Even though the references are summaries of the article and not headlines, they
are still used in the literature to evaluate models for the task of headline genera-
tion.

5.2 Implementation Details

We ran many experiments using various model architectures based on different
hypothesis. In this section, we present the details of the experiments setups and
implementations.

5.2.1 Sequence-to-sequence baseline system
As baseline system, we take the exact architecture already presented in section
2.3.3 which is proposed by Sennrich et al. (2017) and published by the authors 2.
We train the model with the articles first sentence as source sequence and the arti-
cle’s headline as target sequence on pairs from the Gigaword dataset. The model
is trained end-to-end. We use word embeddings of size 500, a BPE vocabulary
size of 10000, ADADELTA Zeiler (2012) as an optimizer with a learn rate of 0.0001
and batch size of 80. We trained the model for 10 epochs. This model results are
referred to as baseline in the results chapter.

5.2.2 Models With Sentence Vectors

5.2.2.1 Training Paragraph Vectors

To train sentence vectors using the Pragraph Vectors model from Mikolov et al.
(2013b) and presented in section 2.2.2, we use the implementation included in the

2https://github.com/EdinburghNLP/nematus (retrieved on Feb 05, 2018)

https://github.com/EdinburghNLP/nematus
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Gensim Python library 3. The implementation requires storing vector representa-
tions of all the documents used to train it. To economize space and RAM usage,
we do not train the model on all the 46,153,425 sentences that we have in our pre-
processed Gigaword data set. Instead, a random sentence from each article of the
4,167,425 present in our preprocessed set is chosen, lowercased, tokenized and fed
to the Paragraph Vector model. Every token seen less than 10 times is ignored.
This retains a vocabulary of 101,320 unique tokens, 19% of the original 516,719
unique tokens present in the training input. It resulted in dropping only 867,533
tokens from the 122,327,376 total tokens in the input, which is 0.7%. The model
is then trained for 60 epochs to generate sentence vectors of size 500. The trained
model is used to feed various sequence-to-sequence models in our experiments.

5.2.2.2 Concatenated Sequence Implementation

We trained two models using the architecture presented in section 4.1. The first,
we denote it sent2vec+word2vec in our results chapter, it is fed using word em-
bedding issued from the already trained Paragraph Vector. And the second, we
call it sent2vec+wemb. It uses the word embeddings from the trained sequence-
to-sequence baseline system. All of the training specific parameters are the same
as the baseline system.

5.2.2.3 Conditional Dual-Attention Implementation

To evaluate the proposed Conditional Dual-Attention proposed architecture, we
trained 3 models each with one of the variants of the COMBINE function pre-
sented in the section 4.2.5.2 with the sequence of the sentences’ vectors and the se-
quence of the first sentence words as input sequences. Our models’ variant names
are as follow: dual att mean using Mean, dual att concat using Concatenate and
dual att mlp using MLP as defined in the equation 4.1.

3https://github.com/RaRe-Technologies/gensim (retrieved on Feb 05, 2018)

https://github.com/RaRe-Technologies/gensim
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Chapter 6

Evaluation & Results

In this chapter, we evaluate our new models through quantitative and qualitative
analysis. Our models’ performance is compared to the state-of-the-art of abstrac-
tive headline generation using an automatic evaluation metric on both the DUC
2004 task and an evaluation set from the Gigaword dataset. We also present the
outcomes of a survey we carried out to evaluate the readability and relevance of
the produced summaries by human participants.

6.1 Quantitative Analysis

6.1.1 Automatic Evaluation Metric
Summaries quality evaluation and comparison is not an easy problem to approach
even by humans. For any input article, there is no best summary, and it is also
common to find two summaries with a lot of differences but succeeding at con-
veying the main information present in the original text and at fulfilling all the
expectations of a summary. This difficulty is valid too when it is the case of tools
of automatic evaluation. In this thesis, we use the ROUGE metric to automati-
cally evaluate the performance of the studied models and compare them to other
reported performances in the literature. We choose this metric because it is still
the standard metric used to evaluate summaries qualities since its introduction by
Lin (2004).

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation, and it
computes for a generated summary a score based on how well the summary over-
laps with a set of golden truth summary references that are typically human gen-
erated. Lin (2004) introduced four variants of ROUGE measures. Three of them
were adopted as the official evaluation metrics in the DUC 2004 summarization
tasks. Since then, these metrics become the reference to evaluate automatic sum-
marization systems and still used till the time of writing these lines, even though
advances related to this task and recent work meet limits of this metric Paulus
et al. (2017).

In our reporting, we use the ROUGE-1, ROUGE-2 and ROUGE-L measures.
The first two are computed based on respectively unigrams and bigrams overlaps
and are special cases of the more general ROUGE-N measure defined for n-grams.
ROUGE-L is based on the longest common substring LCS and has the advantage
of computing in-sequence matching instead of limiting the computations to the
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consecutive matches within n-grams. For each measure there is a recall R score
and a precision P score that are then more balanced using the F1 score defined by:

F1 = 2× P ×R
P +R

We suppose given a set of reference summaries RS and a system generated
summary G. We compute the ROUGE-N measure using the following more gen-
eral formula:

ROUGE-Nrecall =

∑
S∈RS

∑
gramn∈S Countmatch(gramn)∑

S∈RS

∑
gramn∈S Count(gramn)

ROUGE-Nprecision =

∑
S∈RS

∑
gramn∈S Countmatch(gramn)∑

gramn∈GCount(gramn)

where Countmatch(gramn) computes the number of the n-grams present in both
the generated summary and the reference, and Count(gramn) is the number of
n-grams in the reference.

For a reference summary S from RS, ROUGE-L score is computed as follows:

ROUGE-Lrecall =
LCS(S,G)

length(S)

ROUGE-Lprecision =
LCS(S,G)

length(G)

6.1.2 Results Comparison
6.1.2.1 DUC 2004 Task

The table 6.1 summarizes the results reported in the papers presented in Chapter
3.

• ABS and ABS+ Rush et al. (2015)

• Features s2s Nallapati et al. (2016)

• RAS-Elman Chopra et al. (2016)

Recall-only ROUGE measures are reported because the DUC2004 task ignores
the system outputs after 75 characters and shorter summaries are not awarded
any bonus. Thus, many of the systems force the output to be exactly 75 charac-
ters. Under these conditions, reporting the precision and F1 measures does not
give more information about the system performance. For our models’ implemen-
tations detailed in section 5.2, we report the results in the table 6.2. We do not use
the strategy of forcing a fixed length and give the model more freedom about the
output generation.

None of our studied models performs better than the related models on the
recall scores. This is maybe related to the fact that we did not optimize any of our
models for this metric in contrast for example to the tuned model proposed by
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Model ROUGE-1* ROUGE-2* ROUGE-L*
ABS 26.55 7.06 20.12
ABS+ 28.18 8.49 23.81
Features s2s 28.35 9.46 24.59
RAS-Elman 28.97 8.26 24.06

*Recall only

Table 6.1: Various recall-only ROUGE measures on the DUC 2004 task as reported
in the papers presented in Chapter 3

Model ROUGE-1 ROUGE-2 ROUGE-L
R P F1 R P F1 R P F1

baseline 21.41 35.75 26.26 6.99 12.54 8.76 19.48 32.65 23.92
sent2vec+word2vec 23.59 29.88 25.95 7.76 9.98 8.57 21.23 26.96 23.37
sent2vec+wemb 24.87 31.51 27.18 8.40 10.98 9.25 22.32 28.33 24.40
dual att mean 21.55 32.70 25.52 7.07 11.17 8.47 19.52 29.67 23.13
dual att concat 21.26 31.11 24.83 6.92 10.62 8.20 19.04 28.00 22.27
dual att mlp 21.13 30.52 24.52 6.65 9.89 7.77 19.12 27.64 22.19

Table 6.2: Our models’ results on the DUC 2004 task

Rush et al. (2015). Also, a recall based measure gives more advantage to extrac-
tive summaries so it is theoretically possible to have abstractive summaries with
relatively better quality but that score worse on the ROUGE measures. Thus, in
addition to the automatic evaluation method, we carried out a survey to have more
feedback about the actual summaries quality.

Among our models, the baseline model is the best performing on the precision
measure. This could be explained by the fact that this model generates summaries
with the second shortest average length of 55.31 characters per summaries, which
is 22% shorter than the human-generated references with an average summary
length of 71 characters (see table 6.3). The best performing model on both the
recall and the F1 measure is the sent2vec+wemb as presented in the table 6.2.
The same model produces the second longest summaries with an average length
of 59.29 characters.

Longer summaries are generally related to an increase in the recall score and
a decrease in the precision score. The sent2vec+wemb produces summaries 7.2%
longer than baseline and scores 16.16% better on recall, 11.86% lower on precision
and 3.5% better on F1. However, longer summaries do not automatically lead to
better recall and worse precision scores. For instance, the model dual att mean,
despite being the model with the longest average summary, it is only the third-best
scoring on recall and takes the second position on precision.

6.1.2.2 Gigaword Test Set

Tables 6.4 and 6.5 report respectively the results of the models presented in the
related work chapter and of our models. The new entry compared to the results
of the DUC2004 task previously discussed is FTSumg Cao et al. (2017). All the
models were trained on the same Gigaword splits that were shared by Rush et al.
(2015). However, to evaluate them, only a random subset is taken from the test set
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Source Average summaries length
Human-generated references 71.00
baseline 55.31
sent2vec+word2vec 58.82
sent2vec+wemb 59.29
dual att mean 61.02
dual att concat 52.81
dual att mlp 57.25

Table 6.3: Average summaries lengths for the DUC2004 task

split. We don’t have the exact pairs on which the other models were evaluated, so
we randomly sampled 10000 pairs from the test split and evaluated our models
on them.

In contrast to the DUC2004 results, all our models perform better than the
related models. However, we find the same results pattern with the baseline sys-
tem leading the precision scores and the sent2vec+wemb leading both the recall
and F1 scores. Our models’ good performance on the Gigaword test with 17.31%
improvement over the best model from the related works on the ROUGE-1 F1
measure and its relatively poor performance on the DUC2004 tasks are signs that
maybe our models are overfitting on the Gigaword dataset and failing to general-
ize to the DUC2004 task.

As noticed with the DUC2004 task, all our dual-attention architectures are un-
derperforming our other models relatively to the ROUGE metrics. This confirms
the need for a more qualitative analysis of our models to better judge them.

Model ROUGE-1* ROUGE-2* ROUGE-L*
ABS 29.55 11.32 26.42
ABS+ 29.76 11.88 26.96
Features s2s 32.67 15.59 30.64
RAS-Elman 33.78 15.97 31.15
FTSumg 37.27 17.65 34.24

*F1 Score

Table 6.4: Various F1 ROUGE measures on a random subset from the Gigaword
test set as reported in the papers presented in Chapter 3

Model ROUGE-1 ROUGE-2 ROUGE-L
R P F1 R P F1 R P F1

baseline 38.99 47.29 41.77 19.41 23.72 20.80 36.76 44.58 39.38
sent2vec+word2vec 43.35 43.62 42.55 21.60 21.81 21.22 40.51 40.82 39.80
sent2vec+wemb 45.12 44.39 43.72 22.93 22.51 22.16 42.07 41.43 40.80
dual att mean 39.70 45.31 41.37 19.60 22.49 20.43 37.31 42.60 38.89
dual att concat 40.11 45.01 41.49 19.73 22.15 20.38 37.68 42.31 38.99
dual att mlp 40.05 45.07 41.46 19.73 22.12 20.37 37.66 42.40 39.00

Table 6.5: Our models’ results on a random subset from the Gigaword test set
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6.1.3 Sentence Vectors Influence On The Generated Summaries
Among the natural questions that could be asked given the automatic evaluation
results presented in the previous subsections is: do the used Sentence Vectors have
any positive influence on the generated output? Given the fact that none of the
dual-attention models performed better than the baseline system, is the model
learning to simply ignore any given Sentence Vectors, so it converges to the already
better-performing baseline system? To answer the previous question, we made a
series of experiments on the dual att concat trained model with always the orig-
inal article’s first sentence as input and varying the used sentence vectors. The
following table reports the obtained results:

Experiment Original
ROUGE-1 F1

New
ROUGE-1 F1 ∆

Random vectors 25.19 12.25 -51.37%
The first sentence vector
duplicated many times 25.19 20.98 -16.71%

Using all null vectors 25.19 21.28 -15.52%

Table 6.6: Sentence vectors influence on the dual att concat trained model perfor-
mance

Feeding the dual att concat trained model with the articles first sentence and
sentence vectors filled with random values decreases the ROUGE-1 F1 measure
by 51.37%. This considerable decrease of the system performance proves that the
dual attention architecture is not learning to ignore the sentence vectors. In the
second experiment, only the first sentence vector is duplicated as many as the
number of the articles sentences and is fed to the system in addition to the first
sentence separate words. After this experiment, the ROUGE-1 F1 measure de-
creased by 16.71%. We can deduce from that, that feeding the system with vectors
adequately representing every sentence in the article leads to better results. The
last experiment consists of feeding the system with the words of the articles first
sentences and null vectors. The ROUGE-1 F1 measure decreased only by 15.52%.
This result balances the idea that we may have after the results of the first experi-
ment that the sentence vectors are as important as the first sentence word for our
dual att concat architecture. Here we see that when the sentence vectors are null,
and so do not give any misleading information compared to the random vectors,
the system performance is less affected and the article’s first sentence remains the
biggest contributor to the whole system performance.

6.1.4 Percentage Of Copied Words
One of this thesis goals is to build abstractive summarization neural networks that
can get information that may be present anywhere in the article and not limit it to
the article’s first sentence content. One way to evaluate this aspect is by counting
the percentage of the words in the generated summary that where copied from
the article sentences except the first one. Even though this evaluation approach
makes more sense on an extractive summarization task rather than an abstractive
one like we have here, its results are still able to tell us how far are the new models
from reaching the thesis goal.
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Based on the results reported in the table 6.7, we see that the models based on
the dual-attention architecture not only tend to have a more abstractive behavior
by having fewer words copied directly from the input, but also, tend to rely more
on information coming from other article’s sentences in addition to the first one,
on both the Gigaword and the DUC2004 evaluation sets. The summaries gen-
erated by dual att concat scores the best on the DUC2004 set with 11.75% of its
summaries coming from the article’s sentences but not the first sentence, and the
dual att mlp leads the Gigaword evaluation set with a score of 9.75%. These are
respectively 54.61% and 49.31% improvements compared to the baseline system,
which despite not having access to the whole articles, manages through its ab-
stractive character to reproduce 7.60% and 6.53% of unseen words in the article’s
first sentence on respectively the DUC2004 and the Gigaword evaluation sets.

Model

DUC 2004 Gigaword

% ext.
1st sent.

% ext.
article

∆
% art. - %
1st sent.

% ext.
1st sent.

% ext.
article

∆
% art. - %
1st sent.

baseline 69.56 77.16 7.60 80.48 87.01 6.53
sent2vec+word2vec 70.01 81.25 11.24 75.89 84.00 8.10
sent2vec+wemb 75.98 84.35 8.37 81.76 88.05 6.29
dual att mean 69.28 80.00 10.72 74.56 83.51 8.95
dual att concat 67.62 79.36 11.75 74.67 83.43 8.75
dual att mlp 69.49 80.21 10.72 73.71 83.46 9.75

Table 6.7: Average percentage of copied words from the article’s first sentence and
the whole article

6.1.5 Improving Recall Score
When observing the results of our models on the DUC2004 task reported in 6.2, we
notice that for all our models, the precision scores are clearly higher than the recall
measures. For instance, the ROUGE-1 precision measure of the dual att concat is
46.33% higher than the recall measure. To try to improve the relatively low recall
scores, we carried three experiments on the model dual att concat by altering the
way the summaries are generated after the model predicts the probabilities of all
the words in the vocabulary.

Recall measures are based on dividing the number of intersection between the
system output and the reference by the length of the reference as described earlier
in this chapter. We noticed from the results given in Rush et al. (2015) that taking
a prefix of length 75 characters of the articles’ first sentence already scores a bet-
ter recall than our model dual att concat. As a first experiment, we decided to
increase the probability of every word present in the input article’s first sentence
by 10% just before running every iteration of the beam search. The results are re-
ported in the table 6.8. As we succeeded in improving the recall score after this
experiment by 0.74%, surprisingly, the precision slightly improved too. This led
to a slight improvement of the F1 score by 0.45%.

Motivated by the results of the first experiments, we tried increasing the words
present in the first sentence probabilities by 100% expecting to see an even better
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Experiment R-1 Recall (20.90) R-1 Precision (30.10) R-1 F1 (24.28)
New ∆ New ∆ New ∆

Increase first sentence
words probs. by 10% 21.06 +0.74% 30.17 +0.24% 24.39 +0.45%

Increase first sentence
words probs. by 100% 21.02 +0.56% 29.68 -1.39% 24.18 -0.39%

Force minimum
75-character headlines 24.62 +15.10% 26.30 -14.42% 25.04 +3.07%

Table 6.8: Improving the dual att concat trained model recall score
Original values are reported between (). ∆ is the relative improvement

compared to the original score

improvement on the recall score. As presented in the table 6.8, for this time both
the precision and the F1 measures decreased by respectively 1.39% and 0.39% and
even the recall improvement was lower than the first experiment. We concluded
from these two experiments that this way of manipulating the words probabilities
is harmful to the model performance because we are directly altering values that
after all the model was trained to output them differently.

Given the results in table 6.3 about the average length of the outputted sum-
mary and a possible correlation between better recall scores in 6.2 and the aver-
age summary length, we carried the following third experiment. We forced the
dual att concat model to output summaries with a minimum length of 75 charac-
ters. As reported in the table 6.8, the ROUGE-1 recall clearly improved by 15.10%.
However, the summary readability suffered a lot as we can see in the table 6.9.
By forcing the system not to end the sentence before the 75 characters mark, the
model was obliged to keep outputting unnecessary words till reaching the tar-
get. This puts in question, one more time, the limitations of the recall measure
in evaluating summaries. As expected, forcing the system to output more words
reduced the precision score by 14.41%. However, the F1 measure still improved
by 3.07%. This proves that the best scoring model on recall or the F1 measure is
not always the most readable and relevant summarizer.

6.2 Qualitative Analysis

6.2.1 Survey Setup
To perform a more qualitative analysis of our models’ output and surpass some
of the limits imposed by the automatic evaluation metrics, we asked humans to
evaluate the relevancy and readability of the generated summaries. The survey’s
primary goal is to collect human feedback to compare the output of 3 different
models including the baseline. 25 random samples were extracted from the 500
evaluation articles in the DUC 2004 dataset and 25 more from the 10000 Gigaword
evaluation subset. For each sample, the participant is presented with the original
article and 4 different potential headlines in a random order. The presented head-
lines are:

• The reference headline
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Article’s first 5 sentences Cambodian leader Hun Sen on Friday rejected op-
position parties’ demands for talks outside the
country, accusing them of trying to ”international-
ize” the political crisis. Government and opposition
parties have asked King Norodom Sihanouk to host
a summit meeting after a series of post-election ne-
gotiations between the two opposition groups and
Hun Sen’s party to form a new government failed.
Opposition leaders Prince Norodom Ranariddh and
Sam Rainsy, citing Hun Sen’s threats to arrest oppo-
sition figures after two alleged attempts on his life,
said they could not negotiate freely in Cambodia
and called for talks at Sihanouk’s residence in Bei-
jing. Hun Sen, however, rejected that. ”I would like
to make it clear that all meetings related to Cambo-
dian affairs must be conducted in the Kingdom of
Cambodia” Hun Sen told reporters after a Cabinet
meeting on Friday.

Reference Cambodian government rejects opposition’s call for
talks abroad

dual att concat
output forced to
at least 75 chars

Cambodia’s Hun Sen rejects opposition demands
for ’internationalizing’ crisis

dual att concat
original output Cambodia’s Hun Sen rejects opposition demands

for talks

Table 6.9: An example of a headaline generated by the model dual att concat for
an article from the DUC2004 task
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• The headline generated by the basline model

• The headline generated by the sent2vec+wemb model

• The headline generated by the dual att concat model

Each of the 10 participants is asked to give each potential headline a relevancy
and readability score ranging from 1 to 10 with 1 being the worst and 10 being
the best evaluation. Using the collected data with this survey protocol, we can
give each model an average relevancy and readability score and better analyze
our models’ performance compared to the human reference.

6.2.2 Survey Results
The results on the samples extracted from the DUC 2004 evaluation set are re-
ported in the table 6.10.

Unsurprisingly, the human reference scores are really close to 10 out of 10 for
both readability and relevance. This could be used as an indicator that validates
the quality of the participations in the survey since the participants did not know
that there is a headline generated by humans among the candidate headlines.

Concerning our 3 models, basline, sent2vec+wemb and dual att concat, the
human evaluation results go in the same direction as the automatic evaluation
results using the different ROUGE measures. The baseline model is performing
clearly better than our other models from a readability point of view on the DUC
2004 task. However, the sent2vec+wemb is the best on relevance with only a slight
advantage in front of the baseline. We can say that even though our models suc-
ceeded in the thesis goal to include information from the article that is beyond the
first sentences content, they could not beat the baseline system on the DUC 2004
task.

Model Readability Relevance
Human reference 9.84 9.64
baseline 8.8 7.56
sent2vec+wemb 7.76 7.68
dual att concat 7.64 6.48

Table 6.10: Human evaluation on summaries from the DUC2004 task

The human evaluation on the Gigaword test set brought into light more infor-
mation thanks the results summarized in the table 6.11. The first thing to notice
is the relatively low relevance score for the human reference of 8.52. This score
could be justified by the fact that, in contrast with the high scoring human ref-
erences from the DUC 2004 task where humans were asked to summarize the
articles, what we use as a reference in the Gigaword test are the real headlines
that were chosen by the journalists. Sometimes, these headlines do not serve to
best summarize the article but try for example to catch the reader’s attention or
trigger his curiosity to read the article.

For the first time in our different evaluation series, the baseline system is com-
pletely behind our other models. dual att concat achieves the best readability
and sent2vec+wemb the best relevance score. The same scores are also clearly
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Model Readability Relevance
Human reference 9.08 8.52
baseline 8.64 8.12
sent2vec+wemb 8.8 8.36
dual att concat 8.84 7.8

Table 6.11: Human evaluation on summaries from the Gigaword test set

better than the models’ performances on the DUC 2004 task. For instance, the
dual att concat readability score is 15.71% better. These results confirm our mod-
els’ good performances on the Gigaword dataset previously reported by the dif-
ferent ROUGE measures.
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Chapter 7

Conclusion & Future Work

The ever-increasing volume of content shared every day keeps pushing content
creators to create concise and short content more than ever before so their mes-
sage can make it to their audiences. Automatic text summarization is among the
best candidates to serve this need. Manually curating content and generating
summaries is costly and automatizing this task efficiently would be more than
welcome for a variety of use cases. These are some of the motivations behind the
active research in this field. The blocking point is that existing systems are still
a bit far from hitting the markets with reliable commercial solutions. Something
that other transduction tasks like machine translation achieved many years ago.
The big success of the neural machine translation approaches during the last years
motivated a new trend of research works trying to bring this success to the world
of automatic text summarization. And this thesis is one of them.

Abstractive summarization approaches using neural networks started by fo-
cusing on ”simpler” tasks like headline generation instead of long summaries gen-
eration due to the complexity of the task and various current limitations such as
massive memory requirements, extended training time or even architectures in-
efficiency with long output sequences. To simplify the task even more and make
some progress in a field that did not know as much relative success as the field
of the extractive summarization, most of the proposed models in the recent years
limit their input the articles’ first sentence. Thus, ignoring any other information
in the article outside the first sentence. Experimenting and trying to study how to
lift this limitation was one of the primary goals of this work.

In this thesis, we started by carrying out background research about the re-
quirements of achieving our goal. We went through the background of the auto-
matic summarization for a better overview of the task. Always in chapter 2, basic
approaches for words representation of transduction tasks through the success-
ful methods of neural machine translation were presented. After having a better
understanding of the current state-of-the-art and the current challenges in chap-
ter 3, chapter 4 was the showcase of the various models that were designed for
this thesis. We tried to adapt successful ideas and merge them to develop better
neural summarizers, like combining Paragraph Vectors with a new dual-attention
architecture.

In chapter 5, we provided an overview of how we implemented the tested ideas
in this thesis, before diving into an in-depth qualitative and quantitative analysis
of these models efficiency on our target task of abstractive headline generation.
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Despite having results lower than the state-of-the-art and our new models
barely outperformed our baseline, our systems successfully achieved the goal for
which they were designed. The new models can generate headlines including
pieces of information beyond the articles’ first sentence. In front of the limita-
tions of the standard methods used the evaluate summarizers which are the dif-
ferent ROUGE measures, we carried out a manual human evaluation of some of
our models. Among the outcomes of this study, on the Gigaword test set, our
new models’ headlines achieve a highly comparable readability to the headlines
initially proposed by the journalists and score an extremely close relevance score.
More than that, in some cases, participants rated an automatically generated head-
line better than the original one for its relevance.

Given the discussed results, there still a lot of improvements and future work
that could be a continuity of this thesis work. Here we used only one algorithm
of sentence vector representation which is based on the Paragraph Vector. We
think that it would be interesting to test the same architectures with other existing
sentence representation approaches. We believe that better results are achievable
if we find a way to improve the quality of the used sentences representations.

A second possible research direction is to try to adapt the current conditional
dual-attention architecture to support more than two input sequences and thus
feed the article sentences separately to the model. For instance, limit the number
of the input sequences to the article’s five sentences because of the large memory
and computation requirements of a such model.

Finally, we think that the currently proposed models deserve more experi-
ments to better assess their efficiency. Here we trained all our model on the Giga-
word dataset. The human evaluation showed that the reference headlines in the
dataset are not always the best possible short summaries of their corresponding
articles. With more summarization oriented datasets being released, training the
same architectures with various sentence representation algorithms on multiple
datasets with a human evaluation may lead to better models.
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Dowmunt, M., Läubli, S., Barone, A. V. M., Mokry, J., et al. (2017). Nematus:
a toolkit for neural machine translation. arXiv preprint arXiv:1703.04357. 2, 15,
18, 29, 31, 32, 35

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare
words with subword units. arXiv preprint arXiv:1508.07909. 16, 23, 35

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks. In Advances in neural information processing systems, pages
3104–3112. ix, 11, 12, 15

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: a simple and
general method for semi-supervised learning. In Proceedings of the 48th annual
meeting of the association for computational linguistics, pages 384–394. Association
for Computational Linguistics. 8

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701. 35


	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goals
	1.3 Thesis Outline

	2 Background Research
	2.1 Automatic Summarization
	2.1.1 Summarization types
	2.1.2 Information extraction methods

	2.2 Words And Sentences Representations
	2.2.1 Bag-of-Words model
	2.2.2 Paragraph Vector

	2.3 Sequence To Sequence Learning With Attention Neural Networks
	2.3.1 The Encoder-Decoder Framework
	2.3.2 Jointly Learning To Align And Translate With The Attention Mechanism
	2.3.3 Nematus: A successful implementation of neural machine translation using attention mechanism


	3 Related Work
	3.1 Neural Attention Model for Sentence Summarization
	3.2 Abstractive Sentence Summarization with Attentive Recurrent Neural Networks
	3.3 Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond
	3.3.1 The Feature-rich Encoder
	3.3.2 Solving Out Of Vocabulary Words Problem Using Generator-Pointer Switch

	3.4 Faithful to the Original: Fact Aware Neural Abstractive Summarization

	4 Abstractive Headline Generation Based On Multiple Sentences
	4.1 Concatenated Sequence of Articles Sentences Vectors And Word Vectors
	4.2 Sequences To Sequence Learning Using Conditional Dual-Attention
	4.2.1 The Task
	4.2.2 The Model Overview
	4.2.3 Inputs
	4.2.4 The Encoder
	4.2.5 The Decoder


	5 Experiments Environment & Implementations
	5.1 Datasets
	5.1.1 Gigaword
	5.1.2 DUC 2004

	5.2 Implementation Details
	5.2.1 Sequence-to-sequence baseline system
	5.2.2 Models With Sentence Vectors


	6 Evaluation & Results
	6.1 Quantitative Analysis
	6.1.1 Automatic Evaluation Metric
	6.1.2 Results Comparison
	6.1.3 Sentence Vectors Influence On The Generated Summaries
	6.1.4 Percentage Of Copied Words
	6.1.5 Improving Recall Score

	6.2 Qualitative Analysis
	6.2.1 Survey Setup
	6.2.2 Survey Results


	7 Conclusion & Future Work
	Bibliography

