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Abstract

In a world getting smaller, switching between different languages is a increas-
ingly important skill for students, politicians, commercial agents, internet users
or tourists, to just mention a few. While traveling to another country has be-
come an experience affordable by major parts of society, one doesn’t have to
travel far in order to meet a foreigner who uses a script most people probably
wouldn’t be able to decipher, less than ever read, be it in the Thai restaurant
round the corner or in the Pakistani grocery store down the street. Although
knowledge of a foreign language is not a privilege of intellectuals and/or profes-
sional interpreters any more, speaking more than one foreign language (if any)
still seems to be infeasible for broad parts of society. Furthermore, many — if
not most — people of this world do not have access to public education and
are therefore handicapped in their ability to face the tasks and benefit from the
opportunities of a globalizing planet.

Machine Translation (MT'), the field of computer science dealing with the con-
struction of artificial systems and devices for the translation of human language,
is a challenging task for computer scientists. The non-formal nature of natu-
ral language makes it difficult to extract the information needed to carry the
meaning of an expression from one language into another. Various approaches
to tackle the problem have been tried in recent decades. Early systems tried
to encode the knowledge of an expert linguist (therefore called knowledge-based
or ezpert systems), into an artificial system. However, such systems turned out
to be expensive and inflexible: Few components of a system constructed for
one language pair could be re-used for another language pair, or even just the
opposite direction.

The rise of machine performance has made an alternative approach possible: In
Statistical Machine Translation (SMT), we try to learn the rules that are nec-
essary to translate from one language into another by scanning a large parallel
text corpus of the language pair in question. Such parallel corpora already exist
(e. g. parliament minutes of transnational organizations, multilingual newspa-
pers, ete.) and it is much easier to acquire such a corpus than to teach a
computer the knowledge of a human lingual expert.

In this thesis, we focus on the part of an SMT system that is responsible for
the task of actually finding the correct translation, which is called decoder.
Most contemporary decoders use translation lattices in order to represent the
search space of possible translations of a sentence. Although lattices are data
structures possessing many interesting features worth examining, assessment of
translation lattices usually happens indirectly: We can meter the quality of a
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translation hypothesis returned by the path search by comparing it with one or
more reference translations, using well-known similarity metrics [PRWZ02, NIS|.
The resulting score, in turn, can serve as a figure of translation lattice quality.
This way, the impact of changing the parameters of a decoder’s lattice generation
module is observed at the backend of the decoder, which means that translation
lattices can be considered to be some kind of “*hidden variable” of the decoder.

In order to reveal the entire information contained in a translation lattice, we
will apply various techniques that decouple the generated lattice from the path
search. Firstly, we will substitute the model-based path search by a search that
does not depend on the statistical models and tuning parameters used by the
decoder’s path search. Secondly, we will use statistics computed on translation
lattices compared to statistics computed on the reference translations in order
to derive a figure of similarity that can be used as a translation lattice evaluation
metric.

In the first chapter, we will provide an overview of the scientific field of machine
translation. In the second chapter, we will introduce an oracle decoder (which
searches a path through a lattice with respect to a reference) that has been
implemented in the course of this thesis; the method of assessing lattices using
oracle experiments has been applied before by other groups [ZN03]. In the third
chapter, we will discuss different aspects of translation lattice quality in order to
outline design criteria for a hypothetical translation lattice evaluation metric. As
a result, we will introduce a model-free lattice evaluation metric called Standard
Word Count Distance (SWCD), which is, to our knowledge, a completely new
approach for the task of dismangling the decoder into its components. As an
application, we implemented and tested an oracle pruning method, which is the
basis for the training of a lattice pruning module which will eventually be part
of our decoder.
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Chapter 1

Introduction

Throughout this section, we will assume a Spanish-English text translation
task, using the set of symbols listed in table 1.1. We reduce the translation
task to the translation of a single sentence.! “Sentence” may or may not match
the linguistic term here, for instance, we might want to translate only partial
sentences or utterances, particularly in Spoken Language Translation (SLT)
tasks, where grammatical structures like “sentences” are hard to determine, A
more general (and technical) term in this context would be “segment”. Any
sentence (or segment) is a somehow “valid” sequence of words, which are the
smallest entities (“atoms”) subject to translation®.

1.1 Machine Translation: System Classification

Considering the natural process of a translation (that is, through a human
translator), we can observe two essential phases during such a translation:

e Interpretation (Analysis) and
e (Generation

Firstly, the human translator (or “interpreter”) tries to completely understand
the source sentence. Formally, we will model this by a family C of language-
independent concepts. The translator now maps each sentence onto an abstract

UThis is truly a simplification aof the translation task: When processing a document, we
can usually benefit from the information given in previous (and sometimes also succeeding)
sentences for the translation of a single sentence. In some cases, this context information might
even be necessary for the correct interpretation of a sentence (for instance for prepositions,
which cannot be resolved without knowing the referred words in the preceeding sentence(s)),
and correct interpretation might be required in order to unambiguously determine genus and
numerus in the target language.

*Note that the segmentation problem, the problem of splitting a document into linguistic
units, might pose a non-trivial task, especially for parallel corpora ([GC91, ZVD2, ZZVW03])
or SLT (if not already done by the Automatic Speech Recognition (ASR) engine).

30ther approaches are possible, although rather exotic. Usually it is more convenient to flex
the notion *word"” and split off interesting particles of a word If necessary, e.g. “unambiguous”
= "un + ambiguous”

Concepts as a formal way
to describe the pragmafics
of an expression



Transfer as additional in-
termediate step between
interpretation and genera-
tion

2 CHAPTER 1. INTRODUCTION

& The source language (Spanish), a set of sentences

Vs The vocabulary of the source language, a finite set of words
£ The target language (English)

Ve The target vocabulary

L A language in general

G The family of concepts (idea, intention, etc.)

s Elements of the source language (a Spanish sentence)

e An English target sentence respectively

é The best translation for a given source sentence

Q A random space

X, Y, Z,... Random variables

Pr A probability measure

Pr¥ The probability measure implicated by the random variable X
Pr{al|b) The probability of a given b

Pr(a, b) The joint probability of a and b

Table 1.1: Nomenclature of used variable and function names

concept, which can be — assuming a deterministic process in the first place —
described by an interpretation function.

F:§5—C (1.1)

After having understood the meaning of the source sentence, the translator
consequently will try to express the inherent concept in the target language,
(s)he will generate a translation:

¥:C—E (1.2)

Apain, we assume a deterministic process.

A commoaon error in human translations is not to entirely abstract from the source
language. This usually leads to bumpy “word-to-word™translations, where the
vocabulary has been shifted to the target language, the grammatical structure
of the source language, however, is still evident. In this case, an additional step
called transfer is necessary in order to shift the language specific parts of the
concept (caused by the incomplete abstraction from the source language) to the
target language.

The whole process can be depicted quite ostensively by a translation triangle
(fig. 1.1). In MT literature, the interpretation step is usually referred to by the
maore technical term analysis. The triangle visualizes the three main classes of
MT systems: direct translation, transfer-based translation and interlingua-based
translation. Note that instead of the merely theoretical family of concepts, an
explicit Interlingua, a formal artificial concept description language is placed on
top of the triangle. An explicit description language is prerequisite to express-
ing and eventually processing intermediate results (intermediate translations).
However, by using an explicit language, one loses much of the universality of
concepts: It is impossible to design a language that can express any abstract
concept?, and although we can restrict the expressibility of an intermediate lan-

4Note that a language over a finite alphabet is always countable, an universal family of
concepts is not.,
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Interlingua

Transfer

Direct translation
Source language = Target language

Figure 1.1: The translation triangle [Och02]: Interpretation (or Analysis) —
Transfer — Generation

l/—f L3 \ L3

L4 L2 L4 \ I / L2
LGH sl kR L6 L&
& L7

Figure 1.2: The number of possible translation directions drops from O(n?) to
O(n) for a task including n languages.

guage to the expressibility of any language being part of the translation task®,
formal interlingue are always task- and domain-specific. There is no such thing Formal languages are
as a formal universal language that can describe the whole world. never universal

Apart from the theoretical motivation, there is also a very straightforward reason An interlingua reduces the
why to use an interlingua (formal or non-formal): In order to translate between number of translation di-
n languages, one only needs O(n) translation directions instead of O(n?). For rections significantly

any language, one only has to design the interpretation and generation functions

in order to being able to translate from and into any language participating in

the Interlingua framework.

1.2 Statistical Machine Translation

The basic approach of stefistical machine translation is to select the most prob-
able English sentence € to be the translation of a given source sentence s:

SWe could, for instance, choose (simplified and/or enriched) English to be a non-formal
Interlingua [RW04], assuming that anything we can express in another natural language can
be expressed in English as well.



Machine translation as
MAP-classification

Translation probabilities
can become very small

Meaning of probability:
relative frequency in a
stochastic process

A human interpreter as
stochastic process
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& = arg max Pr(e|s) (1.3)

This Fundamental Theorem of Statistical Machine Translation postulates that
we should “Choose an English sentence e as translation of s if, and only if,
e maximizes the a-posteriori-probability of e given f”. This general approach
is widely known as Maximum-a-posteriori classification (MAP). Pr(e|s) is the
statistical translation model , the arg max operator denotes a search problem.
In the context of statistics, we also consider source and target sentences to be
statistical events.

Consider the following two sentences:

Where is the shoe shop?
;Dénde estd la zapateria?

€1

k)

21 seems to be a prefect translation of s, so we would expect a translation
probability close to one: Pr(e;|s) = 1. However, probabilities have to sum up
to one by definition, hence there wouldn't be any probability mass left for other
possible translations, for instance

€9 = “Where is the shoe shop, please”

One could, of course, argue that ep is not a valid translation of s, as s does
not contain a correspondence to the English word “please” (“por favor”). This
argumentation, however, does not hold anymore for the perfect translation

e3y = Where is the shoe store.

which should at least have a similar translation probability as e,

Evidently, the notion “probability” cannot just be interpreted as a general figure
of merit for translation quality in this context, assigning values close to 1 to
“good” translations and values close to 0 to the “bad” ones. We can rather
assume (considering the numerous valid possibilities to translate a sentence)
that translation probabilities for valid translations can become arbitrarily small.
We can live with that, as long the “bad” translation get even worse scores:

1 = Pr(ey|s) & Pr(“Your shoe is open.”|s)

In order to use probabilistic methods in machine translation, we have to have a
closer look on the notion “translation probability” first. From the mathematical
point of view, probabilities are just a bunch of nonnegative numbers summing
up to 1. For applications in the “real world”, we need to interpret the notion
“probability” in a certain way. A popular way to do this is: “The probability p of
an event e is the asymptotic relative number of times the event occurs, given a
sufficient number of observations (samples)”. This interpretation is sound with
the famous Strong Law of Large Numbers , which states that the sample mean
converges against the population mean with probability one. Hence, with re-
spect to the translation probability Pr(e|s) we have to ask the question: “Which
(relative) amount of interpreters would translate s as e?” or alternatively: “How
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many times (relatively) would one and the same interpreter translate s as e?7®

This way, it makes now sense to assign non-negative probabilities to sentences
like ez: Given a significant number of translators / translations, we can reason-
ably assume that one of them adds “please” on his own.”

We will provide a theoretical framework for statistical methods in machine trans-
lation. First of all, we assume that the author of the document containing s
had a concept ¢ € C in mind when he “emitted” the utterance s. Here, C is the
set? of all concepts one can think of. As we shall see, it is not necessary to pro-
vide an unambiguous and complete method to represent these concepts (like an
interlingua). It is sufficient to assume that such well-defined concepts exist. So
as we try to translate our source sentence s, we first try to extract the concept
¢ from s, the common meaning shared by s and (as we require) e. However,
natural languages contain a high amount of ambiguity, the best thing we can do
is to guess the possible concepts, providing a probability distribution over the
concept space C. Note that we don't assume translation to be a deterministic
process any more,

Formally, instead of a well-defined interpretation function # : £ — C, assigning
a unique concept to any utterance from a language L, we now have a set of
random variables X 1= {X, : © — C|s € &}, one for each utterance s. Each
X. maps a probability space 0 onto the family of concepts, Having a probability
measure Pr: {2 — [0, 1] defined over 2 we can therefore construct a probability
distribution over the family of concepts Pr*(¢). .7 assigns each s to its random
variable

T L= A&, s— X (1.4)

and analogously
F:C—=Y, c—Y, (1.5)

We can therefore define
Pr(c|s) := Pr 7¥)(c)

having

Pr(e|s) = Pr(c|s) - Pr(e|e, s)

We assume that e is generated directly out of ¢, independently of s (note that
the concept ¢ contains all the information we need to carry over the meaning of
s into the target language), hence Pr(ele, s) = Pr(elc) := Pr #(¢)(e).

Pr(c|s) and Pr(e|c) are rather of theoretical nature. They establish a link be-
tween the classical transfer model and the fundamental theorem of machine
translation. In real world applications, Pr(e|s) is virtually always considered
directly.

SThese are two reasonable, but in detail different interpretations of the notion “ranslation
probability”, the firat one assuming an inherent model for any Spanish-English translation,
the second one modeling each interpreter individually.

TAnother, more technical reason not to assign zero probability to sentence eg is given in
section 1.3.5.

#For the sake of convenience we consider C to be a set here, so we can define distributions
over it.

Both interpretation as well
as generation of a sentence
is an indeterministic pro-
cess

Maost statistical MT sys-
tems don't use an interlin-
gua to express intermedi-
ate results and perform a
direct translation instead
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1.3 Breaking down the models

Given the statistical framework in the previous section, we face three problems

Decoding We have to perform a search for the target sentence maximizing
the a-posteriori-probability, as denoted by the arg max operator in equa-
tion 1.3. The decoder usually calculates Pr(e|s) explicitely, so we also
have to solve the problem of

Evaluation We need to calculate Pr(els), that is, we want to explicitly map a
source and target sentence onto a real number indicating the translation
probability.

Training Parameter estimation for the probabilistic models must be possible
within a reasonable amount of time.

We start with the second and third problem, as the implementation of the
translation model is prerequisite for the decoding process. An overview of a
modern SMT decoder is given in section 1.4.

1.3.1 The noisy channel

Pr(els) is virtually never calculated directly. Actually, a significant part of the
art of statistical machine translation is to rewrite formula 1.3. A classical way
to do this is motivated by Shannon’s model of the noisy channel [Shad8]:

Il

argmax, Pr(e|s) - Pr(s)
argmax, Pr(e, s) = argmax, Pr(e) - Pr(s|e)

arg max, Pr(e|s) (1.6)

The first equation follows from the fact that Pr(s) is a constant with respect to
the arg max operator. The second and third equations follow directly from the

definition of conditional probabilities.?

An ostensive interpretation of formula 1.6 is as follows: A stochastic source
emitted a sentence e in the target language (denoted by Pr(e)), which then enters
a stochastic channel. The noise in the channel now causes the target sentence to
be shifted indeterministically into a sentence s in the source language (denoted
by Pr(s|e)), which leaves the channel and is observable by the decoder. It is
now the job of the decoder to get rid of the noise and reconstruct the (most
probable) original sentence é.

Note that in figure 1.3, “Have a nice day” might be more probable than “Hello”
a priori, however, “Have a nice day” is rather unlikely to result in “Hola” at the
end of the noisy channel. On the other hand, “Hi there” might most likely result
in “Hola”, but “Hello” is more likely a priori.

9 Another way to prove this is using Bayes' theorem
Pr(s|e) - Pr(e
r(els) = 1) Pree)
2. Prlsle) - Pr(e)
Note that the denominator simplifies to Pr(s), being expressed through Pr(sle) and Pr(e),

which is the reason why some textbooks use the term “Bayes’ theorem” for a lightweight
version of formula 1.7 having only Pr(s) in the denominator. This is, however, inconsistent

with mathematical literature.

(1.7)
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noisy channel

e Hello N /
e [1ave 2 nice day \—_ MW\,WW/WLV - Hola
m National gross product
a i

mmmm Hi there

Figure 1.3: Model of the noisy channel: We cannot observe the target phrase
e that entered the noisy channel, However, we can observe the source phrase s
coming out of the channel, and together with the language model probabilities
of any target phrase that could have possibly been emitted, weighted by the
conditional probability modeling the noise, we can derive the joint probability
of any pair e and s.

Some scientists switch the notions “source” and “target” in this context, as the
target language of the task is the source language of the channel and vice versa.
However, this (ab)use of technical terms is rather confusing and of absolutely
no scientific value,

What did we win by this step? The noisy channel approach introduces a new
model Pr(e), the lenguage model, which needs implementation and training.
Even warse, it does not get rid of the translation model completely, it intro-
duces a reverse lranslation model instead! So why bother with this step at all?
The answer is that we can (and usually do) benefit from synergy effects when
splitting the translation model into two: The target-to-source translation model
measures whether the target sentence actually contains translations for the var-
ious concepts expressed in the source sentence (and only for them) while the
target language model — among other things — can focus on modeling whether
the target sentence is a valid sentence at all (that is, whether the target sentence
is grammatical with respect to the target language). A source-to-target trans-
lation model would have to model both aspects of translation quality at once.
Furthermore, we can use translation models and language models in different
levels of the decoding process, as we shall see later.

1.3.2 Translation model

Theoretically, we could implement a translation model by a huge table, storing
the translation probability of any source / target sentence pair directly. This is
infeasible, of course, both from the aspect of memory space as well as from the
aspect of training complexity.

Brown et al. [BPPM93] proposed five models (called IBM-1 through IBM-5)
of increasing complexity, introducing the basic notion of alignments: Align-
ments provide a formal specification of word-to-word correspondences for a given
sentence pair. This approach eventually leads us to word-to-word translation
probabilities, which can actually be stored in a huge table using sparse array
techniques.'?

It is important to realize that not all alignments are equally probable (although
stated this way in the simplest model IBM-1). Above all, alignments tend to be

'0%uch a table is widely known as lezicon, although the term “dictionary” would probably
have been a better choice here,

word alignments

Break down
word level

TM to the
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Figure 1.4: A sample of an alignment between source and target words of a
sentence pair. A black box in the grid means that the source word is aligned
to the target word. There is one nonmonotonicity caused by the fact that
the substantive “example” follows its attributes in English, while the attributes
follow the substantive in Spanish.

monotone, that is, alignment diagrams like fig. 1.4 tend to have boxes on the
main diagonal.

The alignment shown in fig. 1.4 is also the most probable one, called Viterhi
alignment. In fact, in the example shown, the Viterbi alignment is the only
alignment that really makes sense, so we can assume an alignment probability
close to one: Pr(als,e) = 1.

[BPPM93| not only introduced ways to break down a sentence-to-sentence trans-
lation model to the word level, they also provided methods to efficiently frain
the model parameters. In general, they use a two step algorithm widely know
as Erpectation-Mazimization (EM) using alignments as a hidden variable,
Vogel et al. [VNT96| introduced a modified version of the IBM-2 model called
HMM, where alignment positions are conditioned on the alignment position of
the previous word. The HMM model performs quite well if we want to allow
some large jumps while assuming that alignments stay locally monotone.

An overview about further improved word alignment models has been provided
by Och and Ney [ON00], including alignments to the empty word or alignments
that depend on the part-of-speech tag'! of the source resp. target word.

Zhao and Vogel [ZV03] published an interesting alternative statistical approach
called bilingual bracketing, which is based on hierarchical reordering trees.

1.3.3 Language model

Language models model the probability that a certain sentence or segment is
being emitted by an indeterministic language source. What does that mean?
In the first place, it seems to be reasonable to assume

Pr(“Time flies like an arrow”) 2 Pr("Time in flies have”)

A grammatical tag indicating the word class, e. g. “noun” “verbal phrase”, information

about numerus and/or genus etc.
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for an English language model. However, language models do not just provide
a figure of merit of grammaticy (just as translation models are not just figures
of merit of translation quality, see p. 4).

One could argue that *“Time in flies have” cannot be emitted by a stochastic
English source at all (and should therefore have a probability of zero). On
the other hand, note that an English native speaker could emit these words
at any time, which contradicts the assumption of “Time in flies have” being
an “impossible” event. The question is, whether a native speaker that emifs
“impossible” respectively incorrect sentences can still be considered a stochastic
source of English language in that moment. Consequently, no one can forbid an
English native speaker to emit a French sentence or even just noise!?.

Apart from the ideclogical motivation, there are some straightforward techni-
cal reasons not to assign zero probability to any sequence of words; a general
technique to achieve this is smoothing (see section 1.3.5).

Language models are heavily used in modern Automatic Speech Recognition
(ASR) systems, and are therefore well-known to the scientific community. There
exists a broad variety of methods to model the probability of a sentence. The by
far most popular approach is based on n-grams, that is, we model the probability
of a sequence of words by the product of the probabilities of the words given
the n — 1 preceeding words. For bigrams, we have:

Pr(ei...ex) = n,?:l Pr(e;le;...es-1)
~ T1Pr(e;le;-1) (1.8)

These n-gram probabilities are quite easy to estimate:

Pr(ejlej_1) = Ll L

T #(ej-1)

where #(e) denotes the word count of e, the total number of times the event e
occurred (in this case, the total number of times the bigram e;_1¢; respectively
the word e;. occurred in the training corpus).

(1.9)

1.3.4 Other models

Translation and language are not the only stochastic processes one can model.
Both translation and language model technically require a sentence length model
when breaking the model down to the word level.

Furthermore, it is important to note that the noisy channel approach (see
(1.3.1)) is one, but not the only way to break down equation (1.3). An al-
ternative approach that allows to incorporate various models more easily is the
Mazimum Entropy Approach [BPPO6):

0 [ M A,
Pr{els) = EXP]:Zmzl (e ?)] 1165

SRR

12Models for naise are actually part of any up-to-date speech recognition system.

The maximum

entropy

approach generalizes the

noisy channel
from eq. (1.6)

approach
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The hm,m = 1,.... M are a set of feature functions, which are weighted by
a corresponding set of model parameters A, m = 1,..., M that need to be
trained [CF04]. The maximum entropy approach leads to the following decision
rule:

M
&= argmax Pr(e|s) = arg max { z Ambim (e, 5)} (1.11)

m=1

1.3.5 Smoothing

Typical problems in connection with statistical models are

Unseen events Recall the n-gram language model from page 9. For a language
consisting of 100,000 different words (a rather moderate size), there are
1,000, 000, 000, 000, 000 possible trigrams — a vast number that cannot
be covered by any existing corpus. Even if only a small fraction of these
trigrams are actually “valid”, it is impossible to observe them all during
training,'® which means there are non-impossible events that have no sta-
tistical evidence in the training data. The situation gets even worse for
larger history lenpgths.

Similar arguments hold for translation models, among others. Events
errorously assigned zero probability can lead to the loss of valid solutions
of eq. (1.3).

Overfitting As a direct consequence of the data sparseness problem, due to
the latent lack of statistical evidence, statistical models tend to focus too
much on the training data, often basing parameter estimation on events
that have only been seen once (“singleton”) or twice. This disability to
generalize beyond training data is known as overfitting.

Complex search space Even if we have perfect models, the search space for
eq. (1.3) is full of local minima and zero-probability-plateaus. Such a
search space is hard to search, even with sophisticated search algorithms
(see fig. 1.5).

A general approach to cope with all three problems at once is called smnoothing.
The usual way to do this is to interpolate a high-order model with a more general
one.

1.4 Decoding

The decoder is the part of the SMT system that deals with the search problem
as indicated by the arg max operator in eq. (1.3).

Most contemporary decoders rely on translation lottices:

134T hare is no data than more data!” — the fact that there is virtually never enough data
to cover all possible events for training is referred to as “data sparseness”.
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- L -

Figure 1.5; Due to stnoothing of the (1-dimensional) search space (Right), the
global maximum is much easier to find.

Definition 1.1 (Translation lattices)

A translation lattice L is an acyelic graph (N, £,np, F) with a finite set of nodes
N, a finite set of annotated edges £ C N'? x Vi x Q (where Vi = U, V7 is the
set af all finite (target) phrases over a finite lattice target vocabulary Vi and
2 is the scove space), an initial node ng and a set F € N of final nodes.

Translation lattices are sometimes also referred to as stochastic finite-state trans-
ducers [ABCT99, CV04] or word graphs [UON02, ZNO5|.

Usually, we can identify each node ny, ¢ = 0...k with a position between two
words in the source sentence s = s1...5¢, F = {ng} and i < j for any edge
E = (ni,nj,t,w) € £. In this case, traversing F' denotes the act of translating
the source phrase s;.; --- 5; into the target phrase t.

Earlier approaches include a stack decoder by Wang and Waibel [WW97].

Fig. 1.6 depicts a schematic view on a lattice-based decoder. Decoding is carried
out in two steps:

L. The first step is a lattice generation step. The source sentence is being
transformed into a lattice, where each edge translates some segment of
the source sentence (“source phrase”) into a target phrase, Some statistical
models, above all the translation model are applied by assigning some kind
of costs to the edges.

2. In a second step, the decoder searches for an optimal path through the
lattice with respect to the model scores (path search step). Costs associ-
ated to the edges are accumulated and language model scores are applied
(amaong others).

The use of lattices has become popular in domains of Automatic Speech Recog-
nition. However, translation lattices (which are nothing more than modified
ordinary automata) can only accept or generate Chomsky-3 [Goo97b] (that is,
linear) languages [Goo97a]. However, as opposed to speech recognition tasks,
the alignment between source and target sentence is generally not monotone in
language translation tasks, which makes pure linear decoding methods inade-
quate.

Translation lattices only
support monotone align-
ments by nature
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scoring
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""""" - Path search
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tuning parameters
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@— e

language model

Figure 1.6: A typical decoder, based on a noisy channel model and translation
lattices. “Other models” could be statistical sentence length models, phrase

segmentation models etc.
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Figure 1.7: German compound verbs caused a major nonmonotonicity in this
example: The English verb “arrive” is translated by the German verb “ankom-
men”, which is splitted into its stem “kommen” and the particle “an”. The
particle *an” could be arbitrarily far away from its stem, which makes global re-
ordering techniques necessary — a major difficulty also for human interpreters.

The notion reordering denotes the task of coping with nonmonotonicities be-
tween source and target sentences. Reordering comes in two flavors:

Local reordering Caused by a short-range nonmonotonicity, local reordering
usually only involves the rearrangement of two or three words in a very
local context. In Spanish, for example, attributes usually follow its noun
while they are prepended in English (see fig. 1.4). Local reordering can
be handled surprisingly well by phrase-based translation methods.

Global reordering In some language pairs, words have to be rearranged over
a larger context: (partial) translations of a word at the beginning of the
source sentence can be found at the very end of the target sentence and vice
versa. Such long-range nonmonotonicities are hard to resolve, however,
they typically only occur for certain languages respectively language pairs
(including English-German, see fig. 1.7).

A common way to handle reordering in a lattice-based decoder is to make the
decoder reorder the edges of a path during or after the path search step in or-
der to improve the model score (by increasing the language model score and/or
by gaining on a reordering model score). This effectively means a phrase-wise
reordering of the words of the source sentence'!. As there are n! possible ar-
rangements for a path consisting of n edges, pruning becomes necessary to avoid
a combinatorial explosion of the search space.

Alternatively, it is possible to encode the reordering state directly in the word
graph [KVM™05, ZON02].

Y4 An alternate approach would be tao reorder the target words of a monotane decoding result
in a post-processing step,
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1.5 Evaluation

In order to evaluate the quality of a translation system, one could just ask
a human native speaker of the target language to do so, Given the system
output on a given set of test sentences and a corresponding set of high-quality
references'®, the human judge could, for instance, assign a number between 1
and 10 to each test translation or even multiple scores for various aspects of
translation quality. Such a way of evaluation is, however, highly subjective,
slow, and expensive as it requires human interaction.

Papineni et al. [PRWZ02] proposed a metric called BLEU, which compares a
set of test translations against a set of reference translations. BLEU sup-
ports multiple references in order to cope with the ambiguity of the translation
process. As opposed to the Word Error Rate (WER), a popular figure of sim-
ilarity used in Automatic Speech Recognition, BLEU allows a limited amount
of nonlinearity between translation hypothesis and reference sentence.

BLEU counts the number of hypothesis n-grams that occur both in the can-
didate translation as well as in one of the references, where each reference n-
gram can only be covered once. BLEU then calculates the geometric mean

ho= Y/TI"_, hn of the various hit rates'® (that is, the number of matching
n-grams divided by the total number of n-grams in the hypothesis) for varying
n-gram size n. To make sure that the hypothesis string contains enough events
(words), the mean hit rate is multiplied with a non-linear brevity penalty, which
is 1 if the candidate translations are longer than the corresponding best-match
references and exponentially decaying in the ratio between effective reference

corpus length and test corpus length otherwise.
BLEU has been proven to be highly correlated with human judgment.

An alternative, extended approach has been provided by the NIST consor-
tium [NIS].

Melamed et al. [I[DM03] used a modification of precision and recall (see 3213
that also supports multiple references to show that standard measures can out-
perform the BLEU metric in the matter of reliability.

1.6 System overview

The Statistical Translation Toolkit (STTK) [V7] is being developed by Inter-
ACT research!”. The STTK provides a basic development framework, a decoder
and training procedures for various models.

The SRI toolkit [TL] was used to train and implement language models.

YInstead of references, one could directly consult a human interpreter with knowledge of
both source and target language here. However, monolingual staff is usually cheaper and
eagier to acquire.

6Note that the mean hit rate becomes 0 if one of the by becomes 0.

InterACT research is a jaint research lab at Carnegie Mellon University, Pittsburgh, USA
and the University of Karlsruhe (TH), Germany. See http://interact.ira.uka.de.
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Corpus: EPPS UN
Languages: English [ Spanish English | Spanish
Segments: 1,162,309 618,002
Words: 30,507,604 | 31,948,500 || 18,267,894 21,047,570
Words per segment: 26.2 27.5 29.6 34.1
Vocahulary size: 86,790 123,148 79,964 100,748
Singletons: 32,429 42,636 33,858 30,229
Corpus: ACL
Languages: English | French
Segments: 688,031
Words: 13,807,006 | 15,590,687
Words per segment: 20.1 22.7
Vocabulary size: 61,619 80,495
Singletons: 22,971 28,990

Table 1.2; Training corpora

Training corpora (table 1.2) are based on the minutes of the European Parlia-
ment Plenary Sessions (EPPS) which were provided in the course of the TC-
STAR [TCS| project; the United Nations Parallel Texts corpus based on docu-
ments of the Office of Conference Services at the UN in New York, provided by
the Linguistic Data Consortium (LDC) [LDC]. We used English and Spanish
parallel data from both corpora, furthermore, we used additional English-French
parallel data also based on the EPPS corpus which was provided by Phillip
Kohn [Kéh).

For decoding, we used PESA online phrase extraction and IBM1 forward and
backward lexica (word-to-word translation probabilities). All language models
were trained on the corresponding EPPS trainsets. Decoding parameters had
been manually tuned on a separate development set of 1,000 sentences respec-
tively.

For the English-Spanish data tracks, the Final Text Edition (FTE) development
sets from the first TC-STAR evaluation run for Spoken Language Translation
served as test sets in both directions. As some metrics proposed in this thesis
do not support multiple references (yet), and the TC-STAR development set
provides two references, only one reference (the first of the two) was used. A
English-French test set was separated from the training data. See table 1.3 for
details.

Troughout this thesis, we used BLEU (see sec. 1.5) with a single reference and
a maximal n-gram size of NV = 4 to evaluate candidate translations.
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Testset: testar-enes testar-esen
Languages: English — Spanish Spanish — English
Segments: 1,008 1,008
Words: 22,812 20,076 23,624 21,828
Vocabulary size: 2,760 3,301 3440 2599

Singletons: 1,368 1,931 1,930 1,258
Voc. coverage:
(EPPS) 2,680 (97%) | 3,211 (977%) | 3,352 (97%) | 2523 (97%)
(UN) 2,578 (93%) | 3,065 (92%) || 3,198 (92%) | 2,446 (94%)
Testset: acl-enfr/acl-fren
Languages: English — French
Segments: 2.000
Waords: 57,951 66,200
Vocabulary size: 6,054 7,252
Singletons: 3,043 3,817
Voc. coverage (ACL): | 5,921 (97%) | 7,114 (98%)

Table 1.3:

Test sets



Chapter 2

Oracle Decoding

In Machine Translation, oracle ezperiments denote the act of using a reference
translation in order to perform a model-free search for the optimal hypothesis.
As a substitute for an ordinary decoder, we may also speak of oracle decoding.
The need for a reference translation restricts applications of oracle experiments
to evaluation and optimization issues. Oracle experiments have been success-
fully applied to domains of Automatic Speech Recognition, where ASR recogni-
tion lattices are being forcefully aligned to reference transcriptions. Given this
context, we may also speak of forced alignments.

In the course of this thesis, two forced aligners (resp. oracle decoders) finding an
optimal path through a translation lattice with respect to a reference translation
have been implemented as part of the STTK. They differ in the particular
objective function they use as optimization criterion for the path search.

The first one will be referred to as Levenshtein decoder (see sec. 2.1.1) and
finds a path through a lattice minimizing the Minimal Edit Distance (MED)
(sometimes also called Levenshtein distance, after its inventor) between trans-
lation hypothesis and reference translation. Minimal edit distance denotes the
minimal number of (word) insertions, substitutions and deletions one needs to
transform one sentence into the other!. While the minimal number of insertions,
deletions and substitutions is well-defined, the concrete sequence of manipula-
tions necessary for the transformation is ambiguous in general. The Minimal
Edit Distance is closely related to the Word Error Rate (WER) (see eq. 18), a
metric popular (not only) in Automatic Speech Recognition.

The second forced aligner (see sec. 2.1.2) optimizes for the Position-independent
Minimal Edit Distance (PMED) between hypothesis translation and reference.

There are various applications for the performance (i. e. BLEU score) of the
hypothesis returned by a forced aligner. Note that the evaluation function used
to assess the oracle hypothesis® does not necessarily have to be the objective
function the forced aligner optimizes for., In particular, hypotheses returned
by the Levenshtein decoder are generally not optimal with respect to BLEU,

!Note that Minimal Edit Distance is symmetric, that is, MED(z, y) = MED(y, =).
2That is, the hypothesis optimal with respect to the ebjective function.

17

Vladimir I. Levenshtein,
+ May 20, 1935, Moscow,
USSR [Lev02]. L. intro-
duced the metric which
was named after him in
1965 IAtaDB].
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however, we can assume that they are a good approximation for that objective
(also see 2.4.2).

If we speak of oracle score, we thereby mean — if not differently indicated —
the BLEU score (which was used as string-to-string(s) evaluation metric for hy-
pothesis franslations throughout this thesis, see p. 14) of the oracle translation.

A well-known oracle metric where the objective function matches the evaluation
function is the Graph Word Error Rate (GWER) [ZN03], that is, the minimal
Word Error Rate (eq. 2.2) of all translations represented by the lattice;

GWER(L,r) := min WER(t,, .
(L) bk (tp, 1) (2.1)

where P is the set of all paths® in the translation lattice L, t, =ty -t is the
translation represented by the path p and r = ry -+ ry, is the reference transla-
tion corresponding to L. The Word Error Rate (WER) between hypothesis and
reference translation as used in eq. 2.1 is defined to he

_ MED(t,r)

WER(t, r) := ] (2.2)

where |t| = |t;-.-tx| = k is the length of the hypothesis translation. The
Position-Independent Word Error Rate (PER)" is defined analogously, using
the Position-independent Minimal Edit Distance instead of MED in eq. 2.2.

If we evaluate the hypothesis returned by the Levenshtein decoder using its
objective function (using the same reference translation r that was used for the
path search), the resulting score is called Graph Error Rate (GER) [UON02],
which is the smallest Minimal Edit Distance of all paths through a translation
lattice:

GER(L,r) := Pél{;}t&) MED(t,, ) (2.3)
Although looking very similar, Graph Error Rate and Graph Word Error Rate
are not the same. Above all, hypotheses optimal with respect to MED are gen-
erally not optimal with respect to WER and vice versa. Note that, in addition
to depending on its Minimal Edit Distance, the Word Error Rate is antipro-
portional to the length of the candidate translation, which means that GWER
has to optimize for both a small Minimal Edit Distance and a long hypothesis
translation simultaneously, while GER only regards the Minimal Edit Distance,
independently from the length of the hypothesis translation.

We will give an example to demonstrate the difference: Imagine the smallest
Minimal Edit Distance of all paths through a lattice (that is, the Graph Er-
ror Rate) is 3, and there are three hypotheses (paths) producing a candidate
translation having a Minimal Edit Distance of 3 with respect to the reference
translation r: one using three insertions (the candidate translation being three
words shorter than r), one using three deletions (the candidate translation be-
ing three words longer than r) and one using three substitutions (the candidate
translation being as long as r). All three hypotheses result in the same Graph

#1F we want to take reordering (see p. 11) into account, 8 must be the set of all permutations

of all paths through L.
“The correct abbreviation would probably be “PWER", but in literature, one will usually

find the abbreviation used here.
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I will have eggs for hrenkfﬂst.‘ [ think
L

1 think 'T will have eggs for breakfast

Figure 2.1: These highly similar sentences lead to a comparatively high Leven-
shtein distance of 4 (not counting the comma) due to the phrase “T think” that
has been moved to the front (two insertions and two deletions are necessary).

Error Rate, however, GWER would pick the one using three deletions, as this
would maximize the denominator in eq. 2.2 (or any other hypothesis that pro-
duces an even longer candidate translation, even if it produces more errors,” as
long as the quotient in eq. 2.2 becomes minimal). However, we can force the
Minimal Edit Distance to at least approximately simulate the behavior of the
Word Error Rate (at least with respect to hypothesis selection) by setting the
cost for a deletion slightly lower and the cost for an insertion slightly higher
than the cost for a substitution (which is normally 1). This way, we enforce
the Minimal Edit Distance, and therefore also the Graph Error Rate (resp. the
Levenshtein decoder), to prefer longer translations, if there is a choice.® Using
this trick, we can use the Levenshtein decoder in order to compute an approxi-
mation of the Graph Word Error Rate.

An oracle decoder objecting directly for an optimal BLEU score has been imple-
mented recently by Zens et al. [ZN05]. The corresponding oracle score is then
called GBLEU, which is an upper bound for the BLEU score any path search
could achieve on the particular lattice. Zens et al. also implemented an oracle
decoder calculating GPER, the smallest Position-independent Word Error Rate
of all candidate translations possibly emitted by the translation lattice.

2.1 Implementation

As opposed to BLEU, Minimal Edit Distance cannot handle larger nonmono-
tonicities very well (fig. 2.1). For this reason, in addition to the Levenshtein de-
coder, a second forced aligner has been implemented, objecting to the Position-
independent Minimal Edit Distance (PMED) The PMED is robust against non-
monotonicities as word order is irrelevant to this metric. However, PMED nat-
urally does not account for Huency” and the direct correlation between PMED

5Wall, not exactly in this scenario. Note that for a given number of errors n, the Word Error
Rate is bounded by Fl% and 1, because — as indicated before — the best that could happen
is that all n errors are deletion errors, maximizing the length of the candidate translation
(which ia [r| + n in this case). However, Tl"ﬁ"; is a strictly monotonically increasing function
with Flr:-_n 1, so that any hypothesis producing a candidate translation that causes more

than three errors would have a larger Word Error Rate than the Fl% of the hypothesis
mentioned in the example.
8In the course of this thesis, however, we configured the Levenshtein decoder to set the
cost of an substitution to 0.99, while both the cost of insertions and deletions was set to 1, in
order to favor hypotheses that produce a candidate translation that has a length close to the
len§th of the corresponding reference translation.
Here: measure of how grammatical and well-formed a sentence is

MED  penalizes non-
monotone alignments, esp.
long-range reorderings
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Figure 2.2: The Dynamic Programming matrix used to calculate the Minimal
Edit Distance between “I went to Madrid” and “I never went to Paris”. Note that
the Levenshtein metric is symmetric, but we will usually assign the reference
sentence to the columns.

and BLEU is rather loose (optimal hypotheses with respect to PMED tend to
be a bag of words of the reference sentence in arbitrary order).

2.1.1 The Levenshtein decoder

Efficient calculation of the Levenshtein distance between two word sequences
is a classical application of Dynamic Programming (DP): A table or matrix
storing partial results or costs is systematically filled by the DP algorithm until
the total result can be calculated (fig. 2.2).

Each row 1 = 0...[ corresponds to a position between two hypothesis words®
(where [ is the length of the hypothesis in words), each column j = 0...m to
a position between two reference words. Each entry (7,7) in the table denotes
the Minimal Edit Distance between the first ¢ hypothesis words and the first j
reference words. The total edit distance is therefore the entry in the upper right
COTNET.

The values of the first row / first column (indicating an empty hypothesis re-
spectively an empty reference sentence) are always 0,1,2, 3, ... Furthermore, we
can calculate any entry in cell (i, 7) if we know the three values of the cells to
the left, below, and diagonally to the lower left (fig. 2.3). We then distinguish
three cases, choosing the scenario minimizing the cost for cell (i, 7):

e Move into cell (i,7) from the cell to the left, This denotes the act of
skipping a reference word, therefore committing an insertion error (we
will have to insert the skipped reference word later). The value of cell
(¢,7) is then the value of cell (¢, — 1) plus one for the extra error.

e Move into cell (4, j) from the cell below. This denotes the act of skipping
(deleting) a hypothesis word, which indicates a deletion error. Similarly

BPosition 0 ig in front of the first word, position { corresponds to the sentence end, behind
the last word of the sentence.
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Figure 2.3: Step in the Dynamic Programming algorithm calculating the Leven-
shtein distance between two sentences. In this example we can freely choose
between a substitution of “foo” by “bar” or a deletion of “foo”, both leading to
a partial edit distance of 3. An insertion of “bar” would lead to a higher cost of
4, this option is therefore discarded.

to the first case, the value of cell (i,7) is the value of cell (i — 1,7) plus
one.

e The third case must be distinguished into two sub-cases: Moving from cell
(1—1,7—1) into cell (¢, ) denotes the act of replacing reference word j by
hypothesis word 4. If both words mismatch, this indicates a substitution
error and the value of cell (4, 7) is the value of cell (: — 1,7 — 1) plus one”
for the extra error. Otherwise, if both words are equal, no error occurs
and the value of cell (i — 1,7 — 1) can be carried over into cell (¢, 7) without
any extra cost.

For each cell, backpointers store information which previous cell (to the left, to
the bottom left or below) led to the actual value of the cell. We can therefore
backtrack through the trellis from the final cell in the last column / row in or-
der to get a path through the trellis (Levenshiein path) indicating the concrete
edit operations necessary to transform the hypothesis sentence into the refer-
ence sentence. As opposed to the Levenshtein distance itself, the Levenshtein
path is ambiguous: generally, there are various possible ways to transform the
hypothesis sentence into the reference sentence using the same minimal number
of edit operations.

During decoding, the complete hypothesis sentence is not known. However,
the STTK decoder expands partial hypotheses monotonously with respect to
the target sentence, hence for any partial hypothesis, the first ¢ words of the
final translation hypothesis are already known. Consequently, this implies that
the first ¢ + 1 rows of the DP matrix for the calculation of the edit distance
are already known (fig. 2.4). We can therefore assign a partial DP matrix to
any partial hypothesis; as the values of the remaining cells of any'? resulting
DP matrix depend on and only on the values of the last (known) row (due to

9As mentioned before (p. 19), the cost of a substitutlon was set 0.99 for all experiments,
in order to favor oracle translations that have a length close to the length of the reference
translation.

10Nate that the eventual (complete) DP matrix is not unique. The various ways to complete
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Figure 2.4; Two different expansions of the partial translation hypothesis
“Where is a shoe ..." against the same reference “Where is the shoe shop™.

Note that the first five rows of both DP matrices are identical.

the nature of the DP algorithm), it is sufficient to store only that row for any
(partial) hypothesis of the Levenshtein forced aligner.

The design of the Levenshtein forced aligner was based on a 5TTK decoder class.
Fig. 2.5 depicts an UML ([BRJ99]) diagram of the corresponding hypothesis
class.

The state of a (partial) hypothesis object is defined by the last line of the cor-
responding (partial) DP matrix (as discussed before), backpointer information
and a lattice state. Above all, the lattice state indicates which source words
have already been translated. More generally, two hypotheses are in the same
lattice state if and only if their search spaces (that is, the paths through the
lattice that can still be expanded) are identical. For a monotone decoder, the
lattice states are isomorphic to the lattice nodes, but for decoders that imple-
ment a reordering strategy (see 1.4), lattice states can be more complicated. A
hypothesis is complete (or final) iff all the source words have been translated.

Partial (i. e. incomplete) hypotheses are expanded over lattice edges, leading
to a new hypothesis. Hypothesis expansion corresponds to the translation of a
single phrase of the source sentence. The decision over which edges a partial
hypothesis is to be expanded depends on the decoder’s reordering and pruning
strategies.

Hypothesis recombination

In order to reduce the complexity of the search, the expansion step is followed
by a second step, the recombination step. The purpose of the recombination
step is to prune away hypotheses for which it is already evident that they will
eventually be outperformed by another hypothesis. In order to be comparable,

the partial hypothesis generally lead to different (complete) DP matrices. Even the matrix
size (that is, the number of rows) depends on the further expansion of the partial hypothesis
(note that the number of columns is determined by the (fixed) hypothesis sentence).



2.1. IMPLEMENTATION 23

expandedOver
= Edge
backpointers
MedHypothesis
+1ls: LatticeState

—+DP_matrix_row [kK]: int

+expand(e:Edge): MedHypothesis const
+recombine(hyp:MedHypothesis)

Figure 2.5: A simplified UML diagram of the (partial) hypothesis class of the
Levenshtein forced aligner for a reference of £ — 1 words. The length of the
reference sentence is indicated by the size k of the DP_matrix_row vector. The
initial hypothesis is the only hypothesis that has not been expandedOver a
lattice edge.

two hypotheses must match the same lattice state (so they will see the same
events in the future) as well as any other state impacting the final score (e. g.
a language model state — this is not relevant for a model-free forced aligner,
though).

Fig. 2.6 gives an example of the scenario: A hypothesis is being expanded over
an edge which apparently emits four target words (as indicated by the difference
of the first entry of the DP matrix row DP_matrix_row: The first component of
the DP_matrix_row vector always indicates the number of deletions necessary to
align the current hypothesis to an empty reference sentence — and therefore the
total number of target words emitted by the hypothesis so far), The expansion
of the matrix row over the four new target words leads to a new DP_matrix_row
vector and the expansion of the edge itself to a new lattice state'!.

For that given lattice state, let bestHyp be the currently “best” hypothesis
(whatever this means for now) having that lattice state. How can we now
recombine these two hypotheses? For an ordinary decoder (as opposed to forced
aligners), we would just prune away the hypothesis h~ with the lower partial
score s~ and keep the better hypothesis bt having a higher score s*. We can do
this, as any sequence of expanded edges (e;) leading to a total score t~ =5~ +7r
for h~ leads to an even higher score tt = st +r =t~ + st = s~. (The fact
=0
that (e;) is also a valid sequence of edges to be expanded for h* follows from
the assumed comparability (i. . same lattice state); r being the same for both
h* and h~ follows from the fact that the decoder (at least the STTK decoder)
accumulates scores linearly.) However, we don’t have a single “partial score” for
a partial hypothesis of the Levenshtein forced aligner. Instead, we have a whole
vector of partial edit distances. Technically there are two ways to manage this:

1 For the sake of simplicity, the lattice state is indicated by an integer in our example, which
is only sufficient for monotone decoding.
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Figure 2.6: The two steps of hypothesis expansion: edge expansion and hypo-
thesis recombination. In this case, the partial hypothesis being expanded is the
initial hypothesis of no (source) words being translated, no edges being expanded
so far,

s Recombine partial hypotheses with matching lattice states if and only if all
edit distances in DP_matrix_row match as well. In this case, we can freely
choose between the two candidates, as they only differ by their backpointer
information: They will eventually perform equally with respect to edit
distance, due to the identical DP matrix rows.

However, the prerequisite of the DP_matrix_row vectors having to be iden-
tical limits the extent by which recombination can oceur. In practice, the
remaining search space is still too big to be searched entirely, pruning
methods become necessary.

o Instead of considering the entire vector of DP_matrix_row as a state, com-
pare the entries of the DP matrix row individually, as a set of partial
scores. Out of all hypotheses sharing the same lattice state, construct a
new “best” hypothesis which, as jth entry in its DP_matrix_row, has the
lowest available jth entry of all considered DP_matrix_row vectors:

bestHyp.DP_matrix_row[j] := min {hyp.DP_matrix_row[j] : hyp.ls = so}
(2.4)
This best hypothesis can be constructed iteratively.

In order for this to work, we have to introduce individual backtracking
information (back to the hypothesis that had originally been expanded
as well as the lattice edge over which the hypothesis had been expanded)
for each entry of the DP_matrix_row vector. The (expanded, not yet re-
combined) hypothesis that contributed the lowest partial edit distance for
the jth entry of bestHyp.DP_matrix_row also provides the corresponding
hypothesis and edge backpointers.

The second approach is preferable, as it reduces the complexity of the search
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Figure 2.7: After the recombination (fig. 2.6), one of the backpointers actually
points on the hypothesis that had been expanded in the first place.

space sufficiently to make a complete search without pruning possible!?. An
example of the recombination result of the scenario given in fig. 2.6 is shown in
fig. 2.7.

However, the proof that this fine-grain recombination strategy is by all means
“valid” is highly non-trivial. We have to verify that two properties of the search
are not violated:

Completeness The search finds the optimal solution, that is, no final hypoth-
esis b in the search space ‘H indicated by the partial hypothesis h, and
lattice L has a Minimal Edit Distance better than the optimal Minimal
Edit Distance d returned by the search algorithm.

d< {MED(h,r) : h€ H(hp,L)} (2.5)
We have to make sure the search does not “lose” optimal solutions.

Soundness The total Minimal Edit Distance of the optimal final hypothesis
h, as indicated by the last entry of the bestHyp.DF_matrix_row vector,
matches the true Minimal Edit Distance between the translation hypoth-
esis (as constructed over the backpointers of the final hypothesis) and the
(fixed) reference sentence.

It is important to note that using recombination this way, the vector
DP_matrix_row does not contain a row of an actual DP matrix any more;
it rather recombines the most promising cells of many DP matrices. It is
not given that the resulting modified DP algorithm is still correct: As the
resulting edit distance d is calculated by means of a mix of many DP ma-
trices (one for each translation hypothesis), the corresponding translation
hypothesis might be a “mix” of many translation hypotheses as well and
hence not lie within the hypothesis space.

12Except for the dimensions of the search space introduced by the reordering strategy, which
are not affected by the recombination strategy.
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Figure 2.8: The lattice L, shown here is trivial to traverse while still emitting
the same hypothesis translations as the original lattice L, assuming that the
partial hypothesis h, (emitting the partial translation ep) holds.

Differently speaking, soundness means the optimum in inequality 2.5 is
actually being reached, namely by expanding the given partial hypothesis
over the edges as indicated by the backpointer information of the optimal
final hypothesis found by the search algorithm.

3h € H(hy, L) : MED(h) =d (2.6)

In order to prove both properties, we will firstly construct a translation lattice
which is trivial to expand but provides the same (remaining) search space, for a
given partial hypothesis, that is, emitting the same set of potential hypothesis
translations.

For a given partial hypothesis hp, let e, = ef... e?p be the corresponding partial
translation. A full expansion of the remaining search space H(hp, L) leads to a
finite set of translation hypotheses e; ... ey all sharing the same prefix e,. Let
£1...En the corresponding set of suffixes:

0 0 i i § oo
Qi:el--‘etpc"?p+1"'ei. Vi=1l...N (2:7)
Gy £

Then, the lattice L, depicted in fig. 2.8 emits only and all elements of {e; : i =
1...N?} (evidently, each path through the lattice emits ep - & = e; for some ¢,
and for each i there is a path through L, emitting e; = ep - &),

The main difference between L, and the original lattice under the assumption
of the partial hypothesis h, is that L, emits the suffixes & which complete
the translation hypothesis “at once”, while we need several sub-expansion and
recombination steps in L. However, if we can proof soundness and completeness
for the single-edge expansion lattice Ly, the proof easily carries over to the
original lattice L under assumption of hp:

ProoF Induction by the number of remaining edge (sub-)expansions
inL W

We can therefore reduce the proof of completeness and soundness to the expan-
sion of a single edge.
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PROOF (completeness)  Let mypgs be the last known row of the
DP matrix as indicated by the partial, recombined hypothesis hy
(eq. 2.4). Let &€ = €l,+1.--€ be any of the suffices associated to
the edges in the lattice L, (fig. 2.8). We can now complete the
recombined DP matrix M = (vf) and calculate the total cost d for
the translation hypothesis e = €] ... €] e, 41... e/ against the fixed

reference sentence.

Instead of a recombined hypothesis having a recombined DP matrix
row, consider now the corresponding unrecombined hypotheses. Let
h be such a partial hypothesis leading to a smaller Levenshtein dis-
tance d < d if expanded over £. Let M = (my;) be the corresponding
DP matrix and let 7 be the column in which the Levenshtein path ¢
through M leaves row number [,. Due to eq. 2.4, all entries of row
number I, of M are bigger than or equal to the entries in the corre-
sponding row my..; of M. Hence, 7hy,; < my,; and therefore, if we
followed ¢ through M, this would lead to a edit distance d* < d.13
However, the Levenshtein path through M is optimal in the sense
that d < d* and therefore d < d, which contradicts our initial as-
sumption about h.

As this holds for any suffix edge in L,, eq. 2.5 holds for any path
through L under the assumption of h, (also see proof by induction
over path length on p, 26), including the one found by the search
algorithm. W

ProoF (soundness) Let M be the DP matrix as stated above
with corresponding Levenshtein path ¢ that leaves row [, in column
j. Let b be the (unrecombined) partial hypothesis that contributed
'rh,!F_:,- in eq. 2.4. We have to show that h (without recombination)
would have led to the same value d.

Let M = (m;;) be the corresponding DP matrix if we had not per-
formed the recombination step. Assume this would lead (by perform-
ing the DP algorithm) to a Levenshtein distance d. As my 5 =1y ;
by assumption, if we followed b through M, this would lead to the
same Levenshtein distance d. Hence, d < d.

Now assume there would be another path #* through M leading
to a Levenshtein distance d* < d. If ¢* leaves row number [, in
column 7%, #* would lead to an even smaller edit distance in M as
Thy,je = My, e by eq. 2.4. So ¢* would outperform the Levenshtein

path in M, which is impossible. ®

2.1.2 The PMED forced aligner

If we choose Position-independent Minimal Edit Distance as objective function,
the resulting forced aligner differs in various ways from the Levenshtein forced

!4 Note that both matrices have the same hypothesis resp. reference words associated to
their rows resp. columns, hence any (partial) path leads to the same additional costs (which
are additively accumulated to the cost of the cell where the path starts) in both matrices.
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aligner.

First of all, the Position-independent Minimal Edit Distance is much more sim-
ple to calculate: Due to the position-independence, all we need to know is the
count of each word in the (target) vocabulary for both translation hypothesis
and referernce:

Definition 2.1 (Word counts)

Lett = (t1,...,t1) be a translation hypothesis of length l and letr = (ry,...,7m)
be a corresponding reference sentence of length m. Furthermore, let V be a
vocabulary (set of words) containing all words oceurring in in t respectively v,

then = )
Lo
i 0
Niyp ! { T Z:=1 Suwet, (2.8)

is the hypothesis word count of word w (number of times w occurs in the trans-
lation hypothesis), and

vV o — NP
Nan » D‘m 5 (29)
w Eiﬂl Oy
is the reference word count of word w (number of times w occurs in the reference
sentence).

An error oceurs if word counts for hypothesis and reference mismatch. If there
are ¢ more occurrences of word w in the reference sentence than in the translation
hypothesis (Nrar(w) — Nuyp(w) = ¢ = 0), this indicates ¢ insertion errors.

€ins i= 3 Nret(w) = Nigyp(w) (2.10)

welY
Hppas (w5 Myyplw)

On the other hand, if the reference word count of a word w is smaller than the
corresponding hypothesis word count by ¢ occurrences (Nget(w) — Nuyp(w) =
—¢ < 0), this indicates ¢ deletion errors.

eser = 3 Nuyp(w) = Nrot(w) (2.11)

weEY
Migap (w) = Npgyp (W)

As any pair of insertion and deletion error can be considered as a single sub-
stitution error (due to the position independence), the Position-independent
Minimal Edit Distance can be calculated as

PMED(t,r):= €ins + del ~  min( eins, €det ) (2.12)
Bl —_—
counts substitutions twice substitutions

By distinguishing cases, this simplifies to

PMED(t,r) = max(€ins, del) (2.13)

The structure of a partial (potentially incomplete) hypothesis is depicted in
fig. 2.9. While developing the translation hypothesis, the decoder must keep
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Figure 2.9: UML diagram of the translation hypothesis class of the PMED
forced aligner.

track of the target words that haven't been covered yet (uneovered_ref_words).
This way, when a partial translation hypothesis is expanded over a target word,
the decoder can determine whether the word can be matched with a yet uncov-
ered reference word of same type. Otherwise, a deletion error occurs, which are
counted by e_del directly.

For a final hypothesis, the number of insertion errors ey, (eq. 2.10) is the total
number of uncovered reference words (sum over uncovered_ref _words), egq
can be read directly from e_del.

Note that unlike the hypothesis class of the Levenshtein forced aligner (fig. 2.5),
PmedHypothesis has a single, unique backpointer for both the last hypothesis
and the edge over which the last hypothesis had been expanded (except for the
initial hypothesis, which has no backpointers). This makes the recombination
step somewhat simpler, on the other hand, however, a massive, multidimen-
sional recombination of the search space is not possible. Effectively, pruning
becomes necessary during search, which introduces a trade-off between runtime
and optimality of the solution.

2.2 Decoder Analysis: Taking the Decoder Apart

The main purpose of the forced aligner is to uncouple the lattice generation
step from the lattice search step within the decoder (see sec. 1.4). The main
questions a forced aligner can provide answers to are

e Search evaluation: How good does the search algorithm perform?

Oracle experiments can help us measure the loss of performance due to a
suboptimal search, roughly denoted by the difference between the oracle
score and the score of the path found by the ordinary decoder. Sub-
optimality of the search is mainly caused by model errors, that is, the
hypothesis which is optimal with respect to the models is not truly opti-
mal (with respect to the reference), Particularly, we have a model error
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if the reference translation is considered less probable than the (wrong)
decoded hypothesis,

The other possible error would be the search algorithm failing to maximize
the model probability (search error), as indicated by a reference outper-
forming the decoded hypothesis (with respect to the models). The latter is
usually caused by the reference not lying in the search space (e. g. mono-
tone decoding although reordering is needed) or by the correct answer
being pruned away (due to too restrictive beam sizes etc.).

If the forced aligner’s objective function matches the evaluation function,
the oracle score is an upper bound for the decoder’s performance:

e(pe(L)) = elpm(L)) YM (2.14)

where L is an translation lattice, e is an evaluation function positively
correlated™ with translation quality, p. is the oracle decoder optimizing
for e and paq is an ordinary decoder using a statistical model M for the
search,

e Lattice evaluation: How “good” is our translation lattice?

Using a forced aligner, we approximate an optimal model-free search.
Hence, we can use the oracle score to compare the performace of vari-
ous lattice generation techniques directly.

s Optimization: How can we improve the translation quality of our system?

Using the oracle score as a figure of merit for translation lattices, we can
now search for methods to automatically improve the “lattice quality™.
This should eventually result in better translation results,

Oracle scores like GWER The last two points need some extra attention: One has to keep in mind that

are too optimistic,

oracle decoders tend to systematically overestimate the decoder’s end-to-end
performance. Naturally, they can give us an “upper bound” of what an optimal
gearch could achieve'd, but they usually fail to model the decoder’s behavior
well (also see sec. 3.2.4).

As far as the optimization problem is concerned, oracle scores can easily be
“tricked out”, in the sense that we can improve the oracle score of a lattice
without improving (or even worsening) the decoder’s end-to-end performance.
A trivial way to do this is to arbitrarily add edges. Evidently, this can only
improve the quality of the oracle hypothesis (at least with respect to the ob-
jective function, eventually also with respect to the evaluation function if both
are highly correlated), as the old optimal paths are still contained in the lattice.
However, adding an edge increases the complexity of the search space, generally
warsening the performance of the search and therefore potentially leading to a
lower end-to-end performance of the decoder. Figure 2.10 depicts the dilemma.
An extreme example would be to generate any possible target word (or any pos-
sible target phrase up to a reasonable phrase size) for each source word (resp.
phrase) during lattice generation. This would result in an extremely dense lat-
tice most likely to contain the full reference sentence (hence providing a perfect

Ythe higher, the better
18 At least with respect to the objective [unction. The PMED forced aligner, for example,
fails to achieve high BLEU performance (see sec. 2.4.2).
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Figure 2.10: With increasing lattice density, the oracle score (using the Leven-
shtein decoder) monotonically increases, while the overall decoder performance
slightly declines after a local optimum has been passed. A parameter limiting
the number of extracted phrases during lattice generation, common to both
forced aligner as well as decoder, was used to vary lattice density. Monotone
decoding was used in either case,

translation) but also providing an extremely complex search space to the search
algorithm. Differently speaking, if we do not take the lattice complerity into
account, improving the oracle score does not necessarily imply an improvement
of the end-to-end score.

A common figure of lattice complexity is the lattice density, that is, the (arith-
metic) mean number of outgoing edges per node:'®

_ €l

dens( (N, E,ng, F) ) := TN

L

(2.15)

Considering decoder performance with respect to lattice density leads us to
Performance-Density Graphs (see sec. 2.3).

The task we face for the optimization problem is to increase the oracle score
without increasing the lattice complexity too much. One way to do this is to
create a dense lattice in the first place and then to apply pruning techniques
in order to reduce the lattice complexity without losing too much oracle score
performance.

An alternative approach of lattice evaluation and optimization that takes lattice
complexity directly into account is introduced in chapter 3.

Y8 An alternative approach to define lattice density would be N/B(LY where N = |N| is the
number of nodes in the lattice.

To be meaningful, oracle
scores must at least be
considered together with
the corresponding lattice
complexity
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Figure 2.11: (Left) English-Spanish end-to-end performance of two decoders
on an excerpt of the Buropean Parliament Plenary Sessions (EPPS) corpus.
One system was trained on the data the testsef was extracted from and clearly
outperforms an alternate system that used a corpus based on UN plenary ses-
sion transcriptions for phrase extraction. (Right) Corresponding Levenshtein
decoder performance. Compared to the decoder, the general shape of the curves
is different (decaying vs. monotonically increasing). However, the main prop-
erty of the EPPS system curve superseding the UN system curve all the way
through could be preserved.

2.3 Performance-Density Graphs

A common way to compare systems independently from lattice complexity is
to consider translation quality with respect to varying lattice density. If the
curve of one system tends to lie below/above the curve of another system for a
score positively correlated with translation quality, there is indication that the
first system generally performs worse/better than the second one, Figure 2.11
gives an example for the scenario: As expected, the system trained on the data
the test set was extracted from outperforms a system trained on in-domain data
from a different source. The same observation can already be done on the lattice
level, using the performance of the Levenshtein forced aligner.

Although performance graphs over lattice density meet our requirements in
many ways, they still lack various features. First of all, they provide a rather
pictorial figure which cannot easily be processed by machines e. g. for automatic
optimization issues, Preferably, we would like a single real number (as this would
automatically imply a total ordering on the score space). Possible ways to do
this include:

e Normalize to a default lattice density.

In order to meet the default lattice density, we can either tune a cor-
responding parameter that varies the lattice density until the resulting
lattice(s) have the expected density or interpolate the results from other
densities.

This works well if we know that the behavior for a specific lattice density
is representative for the whole lattice-density graph, i. e. curves do not
intersect each other but lie either completely below or above each other.
Relying on a specific density, however, attracts side-effects and negatively
impacts robustness of the figure.
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o Match the curve against a parametric class of curves

This approach is a well-known modeling technique, where we assume the
curve / function in question to be of some cerfain class, e. g. (Gaussians.
The curve is then reduced to one or few parameters (e. g. mean and vari-
ance for Gaussians) which serve as a basis for a figure of merit for the
curve,

Such paremetric learning methods are known to generalize quite well,
are hence robust against statistical noise and a comparison between the
original curve and the best matching class member usually also provides
a way to introduce confidence measures.

A tricky question, however, is the choice of the function class: While the
curves produced by the forced aligner in figure 2.11 seem to belong to
a more general function class of log-like functions, such an assumption
would obviously lead to unsatisfying results for the corresponding curves
produced by the ordinary decoder.

o Integration

By considering the area below the curve, we avoid side effects as potentially
introduced by a dedicated lattice density, but also avoid model assump-
tions as in the “parametric learning” approach. An open questions here
would be the optimal choice of integration boundaries.

All three approaches are based on performane-density graphs and thus share the
property of needing a series of scores for varying lattice densities. However, any
parameter in the decoder’s lattice generation module used for varying lattice
density can cause side-effects when being modified. Furthermare, a series of
scores require multiple evaluation and decoding runs, indicating excessive space
and runtime requirements. A “more direct” approach (see sec. 3.3) could help
to overcome these drawbacks.

2.4 Experiments

2.4.1 Optimality with respect to the objective function

We did some experiments in order to validate whether both forced aligners
fulfill their specification and return a path which is optimal with respect to the
particular objective function, Therefore we compared our baseline system with
the output of the Levenshtein decoder using Minimal Edit Distance (fig. 2.12)
and with the output of the PMED forced aligner using Position-independent
Minimal Edit Distance (fig. 2.13). Both forced aligners clearly outperform their
decoder pendants, which is what was wanted.

2.4.2 Optimality with respect to the evaluation metric
In the end, both forced aligners are supposed to return a path through the

translation lattice which is optimal with respect to the evaluation function. If
objective function and evaluation metric differ, this is not necessarily the case.
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Figure 2.12: The hypotheses returned by the Levenshtein forced aligner are
optimal with respect to Minimal Edit Distance. The Minimal Edit Distance of
the hypothesis returned by the Levenshtein decoder denotes the Graph Error

Rate (see p. 18) of the lattice.
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Figure 2.14: The Levenshtein forced aligner approximates an optimal search
with respect to the evaluation function.

Compared to our ordinary decoder, the Levenshtein forced aligner clearly out-
performs our baseline system (see fig. 2.14). We can assume the Levenshtein
decoder at least approximates an optimal search with respect to the BLEU
metric.

The hypotheses returned by the PMED forced aligner, however, fail to achieve
high BLEU scores, or even outperform our baseline system (see fig. 2.15). Even
worse, the oracle decoder’s (BLEU) performance starts to decline after a local
maximum,'” which is rather untypical for oracle decoders, This is due to the fact
that Position-independent Minimal Edit Distance and BLEU are less correlated
than Levenshtein distance and BLEU are: Naturally, optimizing for PMED
leads to a high unigram precision, as PMED forces the hypothesis to contain
the same words as the reference does. However, n-gram precision can become
arbitrarily small for n > 1, as PMED does not take word context into account
at all. MED, on the other hand, prefers monotone alignments (see p. 19) which
automatically leads to longer n-gram matches.

Table 2.1 shows an example of how n-grams contributed to the total BLEU score
with respect to their length. As we can clearly see, the PMED forced aligner
achieves a much higher unigram precision than the ordinary decoder (even higher
than the Levenshtein decoder). However, the performance quickly drops for
larger n-grams, which indicates that hypotheses returned by the PMED forced
aligner tend to be “bags of words” that happen to contain the same words as
the reference does, but lack a lot of monotonicity with respect to the reference.

Y71n this point, the PMED forced aligner's oracle score shares a property with the decoder’s
end-to-end performance, which could also be considered something positive. Also see remarks
in section 3.3.7.
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Figure 2.15: Evidently, optimizing for Position-independent Minimal Edit Dis-
tance does not imply optimality for BLEU. Also note that the PMED forced
aligner’s performance declines with increasing lattice density, which is untypical
for oracle decoders.

BLEU score by n-gram

n-gram size
system 1 2 3 4
decoder (baseline) | 0.6659 | 0.4175 | 0.2861 | 0.1993
oracle (MED) 0.8818 | 0.7675 | 0.6791 | 0.6034
oracle (PMED) 0.9662 | 0.3185 0.1358 | 0.0660

Table 2.1: This table shows how unigrams, bigrams, etc. contributed to the total
BLEU score of the particular system. The baseline system with the highest
lattice density was compared with the corresponding oracle systems.
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Figure 2.16: As expected, the decoder performs best if trained on a homogenous
trainset.

The Levenshtein (MED) decoder, on the other hand, even scores significantly
for longer n-grams.

2.4.3 Comparing systems using oracle scores

We have already seen that oracle scores can indeed help to distinguish “good” and
“bad” systems (see fig. 2.11). We will refocus on this issue more systematically
by modifying decoder parameters that alter the lattice structure and observe
the behavior on both decoder and oracle performance,

For the English-Spanish task, we had two trainsets available (see tbl. 1.2), one
based on the European Parliament Plenary Session (EPPS) and one based on the
UN plenary sessions (UN). The English-Spanish test sets (one for each direction)
are (disjoint) excerpts from the EPPS corpus so we can expect much better
results from a system trained on the EPPS data than from a system trained on
UN data.

We altered the baseline system in two ways: Firstly, we used the UN trainset
for phrase extraction while the translation model (an IBM1 lexicon modeling
word-to-word translation probabilities) was still trained on the EPPS data. A
second alternate system also used the UN corpus in order to train the lexicon.

Recall that both forced aligners implement a model-free search. However, the
translation model is already used during lattice generation (source-target phrase
pairs are selected using their IBM1 forward and backward probabilities), so
changing the translation model does change the lattice structure and therefore
also the oracle decoder’s performance.

Figure 2.16 shows the performance of the English-Spanish baseline system for
both directions. If we extract phrases from a heterogenous in-domain corpus
(the UN corpus), we lose some performance, if we also train the word translation
model on the UN corpus, we lose some more (which was what was expected).

Figure 2.17 shows the corresponding BLEU scores if we use the Levenshtein
decoder instead of a statistical path search. Note that the generated lattices
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Figure 2.17: Ranking of the systems as indicated by fig. 2.16 can already be
observed on the lattice level using the Levenshtein decoder’s oracle score.
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Figure 2.18: Although optimality with respect to PMED does not imply op-
timality with respect to BLEU, the three systems from figure 2.16 can yet be
ranked the same way using the PMED forced aligner’s oracle score.

are the same for both evaluation tracks. Using the Levenshtein decoder’s oracle
score leads to the same ranking of the systems as the one implied by the baseline
system.

As we can see in figure .18, the ranking implied by the PMED forced aligner is
also coherent with the observations from the baseline system. Although oracle
hypotheses returned by the PMED forced aligner fail to achieve high BLEU
scores, changes in the lattice structure that have a positive/negative impact on
the decoder performance generally also have a positive/negative impact on the
PMED forced aligner’s oracle score (which is, as always, considered with respect

to the lattice density).

Note that the difference between the baseline system and the alternate systems
in figure 2.16 is just the change in the phrase extraction corpus and/or \\.fDr(,l
translation model. Search parameters (esp. interpolation factors for the ve_wmus
models) had not been recalibrated. Now it is possible, of course, to recalibrate
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Figure 2.19: (Left) By lessening the influence of the language model, we can
improve the UN-phrases system enough to outperform the UN-TM system.
(Right) If we apply the changes of the search parameters on the UN-TM sys-
tem as well, the UN-TM system outperforms the UN-phrases system again, in
accordance to what was indicated by both oracle decoders.

the system where the phrases are extraced from the (heterogenous) UN corpus,
which would result in the (tuned) UN phrases system outperforming the (un-
tuned) UN translation model system (see fig. 2.19 (Left) for an example on the
Spanish-English test set). The path search parameters, however, do not change
the lattice structure, so the oracle scores of both forced aligners (which imple-
ment a model-free search) still would suggest that we lose more performance on
using a heterogenous phrase extraction corpus than on training the word trans-
lation model on a heterogenous corpus. Such a comparison is, of course, illegal.
If you compare decoder scores against oracle scores with varying lattices, you
have to keep the path search parameters constant. Figure 2.19 (Right) shows
that if the UN-phrases and UN-TM systems are compared using the same path
search parameters, the UN-TM system still outperforms the tuned UN-phrases
system, in accordance with the information provided by the oracle decoders.

2.5 Conclusions

We found that oracle decoders can help to assess MT systems independently
from the path search.

Two oracle decoders for two different objective functions (Levenshtein distance
and Position-independent Minimal Edit Distance (PMED)) were implemented.

The Levenshtein decoder performs a full search of the search space (except for
the dimensions introduced by the reordering strategy), that is, the Levenshtein
decoder implements a perfect, model-free search with respect to Minimal Edit
Distance. Hypotheses returned by the Levenshtein decoder are approximately
optimal with respect to the BLEU score, which causes the Levenshtein decoder
to systematically overstimate the decoder’s end-to-end (BLEU) performance.
This effect becomes more evident with increasing lattice density. Differently
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speaking, the Levenshtein decoder’s oracle score generally features dense lattices
to sparse ones (although dense lattices are harder to decode).

In general, oracle scores always have to be considered with respect to the cor-
responding lattice density.

The PMED forced aligner cannot perform a complete search of the search space,
therefore introducing possible side effects due to the nonoptimality of the solu-
tion. Furthermore, hypotheses returned by the PMED forced aligner fail to be
optimal with respect to BLEU, although having a high unigram precision. Ac-
tually, translations returned by the PMED decoder tend not to be useful at all,
they are rather a bag-of-words containing the words of the reference sentence in
arbitrary order. On the other hand, as opposed to the Levenshtein decoder, the
PMED forced aligner does not systematically overestimate the decoder perfor-
mance (at least with respect to the BLEU score), and it is still possible to use
the oracle score in order to observe improvements and aggravations of the lattice
structure. Furthermore, by objecting to the Position-independent Minimal Edit
Distance, the decoder avoids some problems due to nonmonotone alignments.



Chapter 3

Advanced Lattice Evaluation

Many contemporary SMT decoders rely on translation lattices (see sec. 1.4).
Lattice evaluation refers to making a reasonable statement about the “quality”
of a lattice. A widely known approach to assess translation lattice quality has
already been introduced in section 2.2. However, oracle scores like the Graph
Error Rate (see p. 18) lack certain desirable features (see sec. 3.2.4), which
makes them less useful for further applications, e. g. lattice optimization.

In the following sections, we will firstly outline some general ideas about frans-
lation lattice evaluation. After having a critical view on the Graph Error Rate
resp. oracle scores in general, we introduce a novel, more direct metric for eval-
uating translation lattices called Standard Word Count Distence (SWCD).

3.1 Translation Lattice Quality

To get an idea about the notion guality in this context, we consider some simple
examples:

¢ A lattice containing only perfect paths (or even just one perfect path).  Quality by  topology:
The lattice contains only

Obviously, this would be a perfect lattice by all means. From the path
“rood” paths

search’s point of view, this lattice is trivial to process and would always
result in a perfect translation. On the other hand, the whole complexity of
the translation problem is now left to the lattice generation: It is extremely
difficult to construct such a lattice.

e A lattice containing all possible paths (i. e. translations).

In the first place, searching a “full” lattice seems to be a pointless task.

There are only few good paths that have to be found out of a huge amount

of paths that contribute nothing but statistical noise. However, if the Quality by geometry: The
models discriminate the set of good translation paths well against the “good” paths (and only
vast majority of bad paths, an efficient search algorithm can still produce them) are short resp. have
desirable results. Hence, most of the work is left to the statistical models high scores

and the search algorithm here.

41
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The size of the search space makes pruning techniques necessary that can
(and at least occasionally will) prevent the search algorithm from finding
the optimal path (with respect to the models). This usually leads to a
trade-off between runtime and overall decoder performance.

On the other hand, if the statistical models do not help to distinguish the
good peas from the bad ones, the lattice contains no or even misleading
information about the true translation of the source sentence. In this case
any search algorithm must fail to reliably find a good translation of the
source sentence, and any lattice evaluation method should identify such a
lattice as a “bad” lattice,

The complexity of the path search problem can be the basis for a figure of lattice
quality, however, it is important to remark that “search problem complexity”
must refer to the hardness of finding an optimal path with respect to a reference
here as opposed to optimality with respect to model scores: In the example of
the full lattice above, a model assigning probability 0 or 1 to arbitrary (!) edges
leads to a trivial search problem! (just prune away the zero edges and take
any path through the remaining lattice) but only the “good” model, assigning
probability 1 to the “good” edges alone, produces lattices that result in a good
overall decoder performance (which is what we really want)?.

Another way to approach the topic is motivated by information theory: How
much information does the lattice contain about the correct (i. e. reference)
translation of the source sentence? How much misleading information does the
lattice contain? Does the lattice encode the information in a very efficient or
rather redundant way? How hard is it to reveal the information contained in
the lattice? All these questions ask about properties of translation lattices that
reflect different aspects of the notion “guality”. The lattice must contain all the
information one needs in order to produce a correct translation, however, if some
of the information is misleading, this might result in incorrect translations. Some
redundancy might protect us from errors (caused by an imperfect path search
and /or statistical noise), on the other hand, too much redundancy usually means
waste of resources. Finally, the hardness of revealing the information contained
in the lattice denotes the complexity of the path search problem stated before.

More precisely, structural properties of lattices indicating a high quality are

Precision The lattice should only produce events which are “good” translations
of some source event (source words resp. phrases). Differently speaking,
the target words emitted by a lattice should also oceur in a valid trans-
lation (reference) of the source sentence, From the information theoretic
point of view, this property corresponds to lattices not containing mislead-
ing information (see above). It is supposed to make sure that translations
are correct.

Recall The lattice should produce enough events to cover a correct transla-
tion of the source sentence, including possible alternatives. High recall
states that the lattice contains all the information one needs to produce

"We did not take language models into consideration here. Alternatively, we could just
pick one path and assign zero probability to all edges not lying on that path.
2Alza see “model error” an p. 29
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the translation. This property indicates whether or not translations are

complete.

Compactness The lattice should not produce unnecessary events resp. the lat-
tice should contain the necessary information to produce the franslation,

but not more. This property is known as “Occam’s® Razor™

which states

that “non sunt multiplicanda entia praeter necessitatem”®, This principle

seeks a balance between precision and recall.

Uniformity The lattice should cover possible reference translations uniformly.
There is no use of making sure that a period is being translated into a
period while an important low-frequency content word cannot be trans-
lated at all. This criterion is motivated by the fact that lattices usually
cover reference events multiple times. Tt states that the lattice should not
prefer one or the other word class (e. g. high frequency words against low

frequency words).

If we also take the probabilities resp. costs associated to the lattice edges and
nodes into account, we have to reinterpret these criteria in a probabilistic resp.
cost-oriented context (e. g. how probable it is to produce only events that only
occur in the reference, how ezpensive it is to cover all reference words, etc.).

3.2 Lattice Evaluation Metrics

Throughout this section, let £ be the set of possible translation lattices (def. 1.1).

Furthermore, we will also consider lattices without weights:

Definition 3.1 (Lattices w/o edge weights)

For two lattices L = (N,E,n0,Q), L' = (N, & nh, ') having the same lattice

target vocabulary V, define L ~ L' iff

e there ezists an isomorphism ® : N — N with ®(no) = nj), and
e there erists an isomorphism WV : & — & with

U((nq, nj, €,w)) = (B(ns), B(ny), e, o)

(Two lattices are equivalent iff they have the same topology and corresponding

edges emil the same target phrase, possibly at a different score.)

It is easy to see that ~ is an equivalence relation. We identify the system of all
equivalence closses £ = L7~ with the set of all "raw” lattices (without scores

resp. weights essociated to the edges).

4The correct apelling of this little town in Surrey, England, is “Ockham”.

4Although named after William of Ockham (~1288-1348), W. never stated the principle
(which is much older than him) himself and used it rather implicitely in his scriptures. [Wikb]

Suplurality should not be posited without necessity” or — in everyday language —

simplest solution is the best” [Wika|

“the

William  of  Ockham,
* ca. 1288 Ockham,
England, 1 9 April 1348
Munich, Bavaria (now
Germany). English
Franciscan friar and philo-
sopher. Summoned to
Avignon in 1324 by Pope
John XXII on accusation
of heresy, he fled from
Avignon in 1328 to seck
the protection of Emperor
Louis IV in Bavaria.
[Wika]
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3.2.1 Standard measures

Before we start exploring the scientific field of lattice evaluation, we will focus
on various measures and concepts that reflect the criteria stated in section 3.1.

Precision and recall

Precision and recall as stated on page 42 are instances of a more general well-
known concept:

Definition 3.2 (Precision and recall)
For a given set of test events and a corresponding set of reference events, we
define

_lrng

prec(t|r) = m (3.1)

to be the precision of t (against reference v) and

|r ¢
||

recall(t|r) =

to be the recall of t (against r).

In the case of Natural Language Processing (NLP), the set of test events ¢ is
usually the set of words or sub-n-grams contained in the test sentence (which is
the translation hypothesis in case of MT). r is defined correspondingly.

There are various ways of how to define |r M{|. For NLP, the most common
approach is to calculate the maximal duplicate-free unigram match between test
and reference sentence, that is, the sum of minimal occurrences in ¢ respectively
r over all words occurring in both ¢ and r:

tnrl= > min(#(w), #-(w)) (3.3)

WEV MWy

Precision denotes the relative amount of test events that actually “hit the target”.
Recall, on the other hand, denotes the relative amount of reference events that
have been covered by the test events. Both figures vary between 0 and 1 and
describe antagonistic aspects of the similarity between ¢ and r. It is usually
eagy to maximize one if you neglect the other: If we produce a lot of test events,
for example, we can expect to have covered most of the reference events (which
means a high recall), however, most of the test events will probably not occur
in the reference (which implies a low precision). On the other hand, if we
only produce events of which we are sure that they occur in the reference, the
precision will most likely be close to 1, but we cannot expect a high recall in
this case. The task is to maximize both measures simultaneously.

With respect to translation lattice evaluation, we will investigate how well trans-
lation lattice evaluation metrics model aspects of precision and recall.
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Compactness

Compactness (see p. 43) in the context of translation lattices refers to the infor-
mation content with respect to the lattice size; information content can already
be expressed in terms of precision and recall, which leaves us to the task of
metering the size of a lattice. Various measures provide a way to denote the
lattice size, among them the number of nodes, the number of edges or the mean
fan-out (see lattice density, p. 31) as a figure of lattice comnplexity.

The following criterion makes sure that for a metric m, the particular score of a
lattice gives us a clue about the complexity or size the lattice could maximally
have:

Definition 3.3 (Bounding lattice complexity)

Let m: L — R be a lattice evaluation metric positively correlated with lattice
quality, and let ¢ : L — T be a figure of lattice complezity (or size). m bounds
lattice complexity (by ¢) iff for any u € R

sup{c(L)|L&€L, m(L)>u} (3.4)

erists. If m is a cost function (negatively correlated with lattice quality), we
have to use m(L) < u instead of m(L) = u in eq. 5.4.

Uniformity

The uniformity criterion (see p. 43) is peculiar to translation lattices: We have
to allow some redundancy in the lattices, that is, we must allow different lattice
events to match one and the same reference event more than once (usually,
a reference event can be matched by a test event only once when computing
|» (1 ¢]). If we allow multiple matches, however, we postulate that all reference
events should be treated equally. There exist standard measures for uniformity,
like the entropy of a distribution:

m
Ent(p) = Zm -log py (3.3)
i=1

where p = (p1,...,pm) is the distribution of coverage probabilities® of the
reference. Ent(p) becomes maximal if, and only if, p is the uniform distribution
vi=1/m ¥Yi=1l...m,

3.2.2 Search algorithm independence
We expect a good lattice evaluation metric to measure the impact of the lattice

on the overall decoder performance. This should be done independently from
the actual search algorithm:

8py denotes the probability that reference event i1 will be covered by a lattice event. A
simple (model-free) way to estimate p; is the number of lattice aventa that cover the reference
event divided by the total number of lattice avents.
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Definition 3.4 A lattice evaluation metric m : £ — R predicts decoder per-
formance iff for any lattices L. L' € L

m(L) = m(L') = e(p(L)) = e(p(L")) (3.6)

for a given best-path search algorithm p(-) and translation evaluation method e
(e. 3. BLEU). We will call such o metric search algorithm independent (s.a.i.)
iff (3.6) holds for any fived search algorithm p.

Although definition 3.4 does not state anything about the optimality of p(L)
with respect to the models, we might want to restrict § to *useful” search algo-
rithms that at least approximately optimize a path through L with respect to
the model scores. If the search algorithm is determined by a (multidimensional)
parameter vector # € ©, we write fp and call a metric s.a.i. iff (3.6) holds for
any 8 € ©,

One should note that a lattice metric may depend on the translation evaluation
metric e in equation 3.6, although independence is highly preferable. Anyway,
the latter should follow from the fact that all translation evaluation metrics
should be highly correlated.

An important design criterion for lattice evaluation metrics is whether to con-
sider the model scores associated to the edges or not; in the latter case, we
shall call such a translation lattice evaluation model-independent, as the metric
ipnores the statistical model(s) used by the path search.

If a metric m is model-independent, it is easy to see that m : LR, L~ m(L)
for L € L is well-defined.

If we naively apply the s.a.i. criterion as stated in def. 3.4, model-independent
evaluation metrics can never be s.a.i.: For any pair of lattices L, L' for which
eq. 3.6 holds, we can easily construct (by inverting scores) lattices I' ~ L, T ~
L' having the same topology (therefore still m(I") = m(L) = m(L') = m(I'"))
but e(p(I") < e(p(l’)). We accomplished this by constructing artificial, de-
generated models that gave paths in ' a high score that had low scores in L
and vice versa. Even worse, by choosing the statistical models carefully, we can
make the search algorithm pick almost any path through the lattice.

In real life, of course, we only consider statistical models that are somehow
similar by means of assigning high scores to “good” edges (respectively paths)
and low scores to *bad” ones. Anyway, we can restate the criteria given in
def. 3.4 for model-independent metrics by making the model scores part of the
search algorithm (that is, the search algorithm takes the raw lattice, scores it,
and tries to find the optimal path with respect to the scores). If we assume
that the search algorithm at least fulfills the task of finding a path through the
lattice maximizing the model score, we have

Definition 3.5 (s.a.i. for model-independent metrics)

A maodel-independent lattice evaluation melric m . £ SR predicts decoder
performance iff for any “raw” lattices L, L' € L

m(L) = m(L') = e(fa (L)) = e(Baa(L')) (3.7)
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where paq(-) returns the best path through a lattice with respect to the statistical
model M and e is a translation evaluation method (e. g. BLEU). We will call
such a metric search algorithm independent (s.a.1.) #ff (3.7) holds for any fized
statistical model M.

Again, we might want to restrict M to “useful” models. If M is parametric with
parameter #, we write My and call m s.a.i. iff eq. 3.7 holds for any # € ©.

The quality of the statistical models significantly impacts the overall decoder
performance and should therefore influence a lattice quality metric, following
the statements above. Therefare, it is questionable whether it makes sense to
consider model-independent metrics at all. By actually performing a search
and evaluation step, we get a (model-dependent) lattice evaluation metric that
trivially predicts decoder performance:

mp (L) = e(pra(L)) (3.8)

So why bother with model-independent metrics at all? The appealing property
of model-independent lattice evaluation metrics is that only they decouple the
decoder’s lattice generation step from scoring step and the search for an optimal
path (with respect to the model scores). This makes it possible to optimize
lattice generation (i. e. pruning methods) and path search (i. e. model weights)
independently.

3.2.3 DModel consistency

The s.a.i. criterion states that the lattice metric should increase (respectively
decrease) with increasing (decreasing) overall decoder performance if varying
over different lattices. If we sort the lattices by density (respectively generate
lattices with varying density) and plot both end-to-end decoder performance
as well as lattice metric in a performace-density graph (see 2.3), the graphical
interpretation of the s.a.d. criterion is that both decoder performance curve
as well as lattice metric curve should share the same shape (i. e. they should
increase and decrease together). Above all, they should have local optima at
the same place.”

As this should hold for any model M, a model-independent s.a.i. lattice eval-
uation metric requires some amount of consistency from the family of allowed
models: If the performance-density graph (or any other plot of performance
with respect fo a lattice property) of the lattice evaluation metric in question
should look similar to the decoder PDG for any (useful) model, all the PDGs
caused by the various models have to look similar themselves. More precisely,

Definition 3.6 (Consistency)

A family of statistical models T is consistent (with respect to the overall decoder
performance) iff for any “raw” lattices L, L' € £ and M, M' € M

e(Pm(L)) > e(Bm(L)) = e(par (L)) > e(par (L)) (3.9)

"This criterion is not restricted to performance-density graphs. Similarity of shape should
hold for plots over any lattice property.

We can trivially evaluate a
translation lattice model-
dependently by perform-
ing a full decoding run.
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Consistency of M1 is a necessary and sufficient criterion for the existence of a
model-independent s.a.l. translation lattice evaluation metric:

Proor  Consistence is necessary: Let m be a model-independent
s.a.i. lattice evaluation metric. Furthermore, assume 9 to be not
consistent. Hence, there exist L, L' € £, M, M’ € M with

e(pam(L)) > e(Bm(L))) A (3.10)
e(par (L)) < e(far (L)) (3.11)

Without loss of generality, assume m(L) > m(L') (otherwise ex-
change M and M’), then eq. 3.11 contradicts the s.a.i. criterion
from eq. 3.7.

Consistence is sufficient: For any fized model Mg € M, 9 consis-
tent, e(pag,(-)) as in eq. 3.8 is a model-independent (!) s.a.l. lattice
evaluation metric. The s.a.i. property follows directly from the con-
sistency criterion. The metric is model-independent as the fixed
model My is independent from the actual model the decoder uses
for the path search. B

Roughly speaking, model consistence states that some part of the overall de-
coder performance depends on the “raw” lattice topology, independently from
the choice of the statistical model (that is, improvements in lattice topology do
hardly impact improvements in model quality and vice versa). In that case, the
s.a.i. criterion for model-independent metrics states that the metric focuses on
that model-independent “core” of the decoder performance.

Furthermore, the proof of sufficiency indicates that in case of consistency, any
model Mg can act as a representant for the whole consistent family of models
M, leading to a family of cenonical lattice evaluation metrics:

€:={ppm,: M e M} (3.12)

That means, if the models are consistent, we can just pick any (suboptimal)
model independently from what the optimal model would be and optimize the
lattice generation technique (respectively pruning parameters) with respect to
overall decoder performance (using the fixed model). On the other hand, if
the models are not consistant, there exists no model-independent s.a.i. lattice
evaluation metric at all!

Experiment results as shown in fig. 3.1 look promising: variations of the sta-
tistical model change the major properties of the performance-density graph of
the corresponding translation system only slightly.

We will close this section by showing that if a family I of models is consis-
tent, then a model-independent lattice evaluation metric m is already s.a.l. if m
predicts decoder performance (eq. 3.7) for any M € 0

ProoF Let Mg be a model for which eq. 3.7 holds. Then, for any
“raw” lattices L, L' € £ and any M’ € D

m(L) >m(L') = e(pmy(L)) = e(mo (L) (3.7)
e(@a(L)) > e(pae(L) (3.9)

I
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Figure 3.1: As expected, varying the model (while keeping the lattice topol-
ogy unchanged) changes the decoder’s performance-density graph, however, the
similarity between the various curves for the four test sets is evident. Models
were varied by either setting interpolation factors for the various submodels
(language model, word translation model etc.) to different values or by using
different submodels itself (e. g. an IBM1 lexicon trained on UN data for the

EPP

S testset).
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Therefore, eq. 3.7 holds for any M € 91 which is the s.a.i. criterion
from def. 3.5. W

3.2.4 Graph Error Rate and Graph Word Error Rate

The Graph Word Error Rate (GWER) (see p. 18) is a lattice oracle score well-
known in NLP. As we have seen (p. 19), the Levenshtein decoder can be used to
approximate the Graph Word Error Rate. Furthermore, the hypothesis returned
by the Levenshtein decoder can be used to (exactly) compute a slightly different
oracle score called Graph Error Rate (see p. 2).

Unfortunately, the behavior of the Levenshtein decoder differs in major points
from the decoder with respect to performance (see sec. 2.2), which means the
Levenshtein decoder resp. GER cannot predict decoder performance (and there-
fore never be s.ai.). Another technical flaw of oracle scores in general is that
only edges on the optimal path contribute to the score, however, a lattice with
many good paths should have a much higher score than a lattice with one good
path and a lot of noise otherwise. Differently speaking, adding noise to a lattice
worsens its quality and should therefore impact any lattice evaluation score neg-
atively®. On the other hand, adding “good” translations (that is, translations
close to the reference translation(s)) improves the lattice quality (apart from the
increased lattice complexity resp. density which is usually something negative)
and should therefore positively impact the lattice score in general.

It would be wrong to say that the edges not lying on the optimal path did
not influence the oracle score at all: They influence the optimal path (and
therefore the lattice score) by potentially lying on the optimal path. However,
this effect comes only into play for larger statistical contexts: If we modify
the lattice generator to produce slightly less edges (which lowers the lattice
density and therefore improves the lattice quality®), some lattices might lose
edges on their optimal path leading to a slight drop in the overall oracle score
(and therefore, on the other hand, worsening the lattice quality). For a single
lattice, however, these effects are much harder to observe. By exploiting the
information contained in a lattice more efficiently, we should be able to reduce
the amount of needed testing data.

3.2.5 The canonical metric

For a consistent family of models, any canonical metric (eq. 3.12) is s.a.i. by
definition.

Even if the models are not consistent, we can still get useful results by toggling
between a lattice optimization step (adjusting the pruning parameters assuming
fixed model interpolation factors) and a search optimization step (optimizing the
model interpolation factors assuming a fixed lattice topology (i. e. fixed pruning
parameters etc,), using well-know methods like minimum error rate training).
Considering the lattices as “hidden variables”, this approach is known as the

8Note that in the model-dependent case, we can, without loss of quality, allow some noisy
edges if they are clearly marked as noise by the madel
9Recall that oracle scores have to be considered together with a measure for lattice com-

plexity (see p. 30).
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EM algorithm, which is a standard approach if part of the training parameters
cannot be observed directly.

On the other hand, a full decoder run is comparatively slow. This is especially
severe if we apply the EM algorithm, which requires several iterations in order
to converge. Furthermore, canonical scores share some flaws with oracle scores:
Just as any oracle score is directly influenced by the edges on the optimal path
only, a canonical score is (directly) impacted by the edges on the decoded path
only. Hence, in order to make a statement about lattice quality, the canonical
score uses the information contained in a lattice inefficiently, just as oracle scores
do.

3.2.6 Novel approaches

The various disadvantages of oracle and canonical lattice evaluation metrics
motivated the search for a completely novel way of how to make a reasonable
statement about “lattice quality”. First of all, note that many of the problems
with oracle and the canonical scores stem from the fact that both approaches
just pick one path out of the lattice (either by a full decoding run or an oracle
experiment) and use an existing string-to-string similarity metric (like BLEU,
MED or WER). Instead, we wish to directly take advantage from the full infor-
mation provided by the whole lattice.

A first, naive approach motivated by the string-to-string(s) BLEU metric was
called Edge Precision. Here, we considered each sub-n-gram (up to a maximal
size i) of the target phrase associated with each edge of the lattice. Each of
these n-grams either occurred in the reference sentence (match/hit) or they
didn’t (miss). The final score was a weighted sum of the various hit rates with
respect to the n-gram length, as collected over a given test set.

This new approach had several advantages, compared to the single-path evalu-
ation approaches offered by an (oracle) decoder:

+ All the edges of a lattice contribute to the overall score directly. Differently
speaking, adding a noisy edge producing only target words that do not
occur in the reference spoils the hit rate statistics and therefore lowers
the overall score; adding perfect edges that produce phrases that occur in
the reference sentence cause a series of hits for all contained n-grams and
therefore improve the overall score; in the general case, some of the sub-n-
grams of a lattice edge’s target phrase will occur in the reference sentence,
and some (especially the larger ones) won't, assessing the positive and
negative aspects of a target phrase (with respect to the reference sentence)
simultaneously.

4+ The calculation of the metric is linear in time with respect to the number
of edges in the lattice and therefore very fast. However, note that the
runtime is approximately exponential with respect to the largest n-gram
size n.

4+ By the way the metric was designed, we can make a statement about how
a single edge impacts the total score: The more sub-n-grams of the target

single path evaluation
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Figure 3.2: Performance (with respect to the “Edge Precision” metric) Density
Graph for the various test sets. Maximal n-gram length was 7 = 4, using
uniform weights of A; = 0.25,7 = 1,...,4 for the weighted hit rate mean.

phrase associated to an edge match the reference sentence, the better the
edge.

In practice however, the metric performed less well than expected. Fig. 3.2
shows a plot of the behavior of the Edge Precision metric with respect to varying
lattice density for our four testsets (tbl. 1.3). Note that all the plots are more or
less straight, monotonically decreasing lines, However, a straight line confains
hardly any information (except for the slope). Compared to the performance-
density graph of the end-to-end decoder performance, the characteristical drop
in performance for small (sparse) lattices is missing. Neither the metric itself,
nor any simple linear transformation is s.a.i.

We can try to modify the metric's tuning parameters in order to improve the
metric's expressiveness. We already know that date sparseness is a common
phenomenon in model training (see p. 1.3.5), especially for large n-grams, The
effect of unseen events is even more severe in an evaluation scenario, as we try
to find n-grams in a single!® sentence instead of a big (but never big enough)
training corpus. We can therefore try to prefer shorter n-grams, for which more
statistical evidence iz available.

However, as fig. 3.3 shows, modifying the weight factors does not change much
in principle. Actually, the fact that any configuration of A results in a constant
(with respect to lattice density) shift is quite surprising in the first place.

This effect becomes clear if one dissects the Edge Precision metric into its com-
ponents by setting A; = &;=;, (7 =1,...,7). As figure 3.4 shows, the n-gram
hit rates themselves hardly differ by more than a constant shift, so any inter-
polation of the four functions cannot result in more than a constant shift. One
could argue that we might get a more satisfying metric if we combine the hit

01y many evaluation scenarios (including BLEU), multiple referances are used for this
reason.
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rates in a non-linear way. However, there are mainly two reasons why this is
not an option:

Firstly, there surely is a non-linear way to combine the various hit rates (or even
use further information like the number of nodes etc.) and get a metric that
nicely predicts the end-to-end decoder performance, at least on the develop-
ment set. However, we might run the risk of “tuning” our metric to the desired
behavior (overfitting). In this case, the metric’s behavior would be rather un-
predictable on an independent test set, respectively in “real use”™. Instead of just
“picking” a function that meets our requirements, all design decisions must be
justified by rational argumentation.

Secondly, the Edge Precision metric has some structural flaws that cannof be
solved by simple means. Most obviously, the Edge Precision metric makes sure
that the events (n-grams) produced by the lattice also occur in the reference.
However, the Edge Precision does not guarantee that the reference events are
produced by the lattice at all. Edge Precision is a pure precision metric, it
does not take the lattice-reference pair's recall (see p. 44) into account!'!. For
instance, a lattice producing only a period would most likely lead to a perfect
unigram precision (if we assume that most reference sentences are ended by a
period), although the lattice hardly contains any information about the correct
translation at all.

All these issues led to a radical redesign of our lattice evaluation metric. Keeping
the aspects of translation lattice quality as outlined in section 3.1 (p. 42) in mind,
we setup the following design criteria (also see sec. 3.2.1):

The metric should
e be model-independent,
e at least roughly predict decoder performance
e penalize noisy edges (precision),

e penalize lattices that do not cover the reference(s) well, that is, completely
(recall) and uniformly.

To account for compactness seemed to be a secondary objective to us, as non-
compact lattices rather influence the decoder’s need for resources than the de-
coder’s end-to-end performance, Compared to the decoder’s end-to-end perfor-
mance, we consider memory usage and runtime to be a minor problem at the
moment, although there might be scenarios where these issues gain importance
(like translation software on handheld devices ete.).

3.3 Standard Word Count Distance (SWCD)

In this section, we will introduce a model-independent lattice evaluation metric
called Standard Word Count Distance (SWCD) and examine the metric with

Y RLEU, for instance, solves this problem by allowing a reference n-gram to be matched
only once. Furthermore, a brevity penalty makes sure that hypotheses are long enough (sea
gec. 1.5). Therefore, hypotheses of sufficient length that do not cover the reference sentence
well gither include events not seen by the reference or include reference events more than once,
both leading to a n-gram mismatch,
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respect to various of the previously stated criteria. SWCD is a cost function
negatively correlated with lattice quality (the lower, the better), therefore we
will consider the negated score in order to predict decoder performance.

Definition 3.7 (Lattice target word counts)

Let L = ({ng,...,ne}, & no, {ng}) be a translation lattice with lattice target
vocabulary Vi, and for any edge E; € €, lett; == (t],...,t,) be the target phrase
associated to the edge. Furthermore, let V 2 Vi be a vocabulary containing all
occurring (target) words of L. We extend definition 2.1 (hypothesis word counts,
reference word counts) by lattice target word counts

Vv — NI
Niear I 3:18
et { W = Yopee2im §w=tf S

(total number of times w occurs on the target side of an edge).

The hasic idea of the SWCD score is to meter the similarity between the refer-
ence and the lattice count distribution. One way to do this is to calculate the
squared error between reference and lattice word count distribution:

0% = 3 (Nret() — Npa(w))? (3.14)

wev

where V contains both lattice and reference vocabulary.

However, one has to take care of the fact that the lattice word counts will
generally be much higher than the reference counts. We can model this by
using a scaled word count distribution ANger instead of Nger and by optimizing
A with respect to a minimal squared error:

3= arg min %(Awﬂef(w) — Npae(w))? (3.15)

#

-
2
T

As o3 — oo for |A| — oo, we are looking for a local minimum:

Br.ri B
7l
& 32 (ANpet(w) - NLgt(w)) - Neot(w) = 0

weV

which can be simplified to a unique optimal solution for A:

Zwev Nrac (w) : NH.cf('“*')
ZWEV Nzﬂnf(w)

The reference must not be empty for eq. 3.16 to be well-defined.

A= (3.16)

z\ indicates how many times a reference word is covered on average. We will call
A the lattice redundancy.

Redundancy is usually a good thing, as it enables the path search to achieve
its goal on multiple ways. However, &% becomes small if, and only if the lattice

SWCD needs
not to be empty

references
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covers all reference words (and only them) similarly well. In fact, it is easy to
proof that &2 becomes 0 if, and only if, the ratio between reference word counts
and lattice word counts is constantly the same for all w € V that occur in L
and/or the reference. In this case, this constant is A:

PROOF
dt=0f = 0
f==J Z ANRFF LL’) N’.atcw ){ = 0
we Vv }D
&  (ANpet(w) = Npa(w))? = 0 YweV
&  ANper(w) —Npw(w) = 0 YweV (3.17)
Nias(w) :
& vy - % YweV (318
Nret (@) We¥ fuis

Note that, if Ngee(w) were 0in eq. 3.18, Npa (w) would be 0 as well
(following from eq. 3.17). However, we consider only words in V that
oceur in the lattice and/or the reference at least once. B

Generally, we want to allow more redundant lattices to commit more errors.
Furthermore, we must account for the fact that longer lattices (having more
nodes as a result of more source words) naturally produce more errors than small
(short) lattices. Thus, we finally can define the SWCD score to be the average
standard error (that is, the square root of the squared error #2) normalized by
redundancy and the number of source nodes:

Definition 3.8 (SWCD score) Let (L;,r:)i, be a set of S translation lat-
tices together with a refemme sentence. Furthermaore, for each lattice-reference
sentence pair (L, r;), let éfr (’J’QA be the minimal squared error together with

its corresponding redundancy A as defined in eq. 8.15 respectively eq. 3.16. Let
|L;| denate the number of nodes in translation lattice i. Then we define

SWCD((Li,ri)ily) = —==-

S Ll & A
1 2
. 1 3.19)
ST &%, :
where B i 2
| |:=§-§|L¢-| (3.20)

is the mean number of nodes per lattice.

Note that we did not normalize each standard error by the number of nodes in
the corresponding lattice individually in order to avoid putting too much weight
on short lattices. Lattice-reference pairs resulting in a very low redundancy can
also cause trouble, see section 3.3.2 for details.
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Where is the shoe shop ?

Figure 3.5: A trivial lattice for a single reference sentence.

Where is the shoe shop ?

== =

Where is the shoe store ?
Figure 3.6: A trivial lattice for two reference sentences.

3.3.1 Multiple references

The previously introduced approach can easily be extended for multiple refer-
ences, First note that a single reference sentence can be represented by a trivial
lattice as shown in figure 3.5. We can then use lattice word counts (eq. 3.13)
instead of reference word counts (eq. 2.9) and compare two lattices instead of a
lattice and a sentence.

Having two references means that we have two alternate ways to translate a
sentence. Figure 3.6 shows an example lattice that encodes this fact. However,
this naive approach leads to a very redundant lattice. Instead, we would expect
a “perfect” translation lattice to encode the information common to all references
in a more compact way (fig. 3.7).

This intuitively motivates a redefinition of reference counts as follows:

Definition 3.9 (Word counts for multiple references)

Let {r; : i = 1...n} be a set of reference sentences r; = (ri1,...,Tim.) and let
V be a vocabulary containing all occurring reference words. Then the reference
word count for muliiple references is defined to be

v
NHE[ H { 1“, = NU L (3.21)

W MaXisg Qi Ou=ry

Note the max operator in equation 3.21. This way we prefer compact lattices
that do not produce the easy part of the translation over and over again. We also
penalize lattices that correlate well with only one reference but fail to produce
alternatives.

shop .
Where 1s the shoe :: :
store

Figure 3.7: An optimal lattice for two reference sentences.
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An alternate approach would be to sum up reference word counts, which can be
emulated by concatenating the reference sentences to one long sentence,

3.3.2 Bounding the redundancy

Equation 3.19 fails if the redundancy A becomes 0 for at least one lattice-
reference pair. This is the case if, and only if, the lattice does not produce
any reference words on its target side (lattice and reference vocabulary are dis-
joint):

PRrOOF
5= 0 O
2wey NLa(w) - Nrer(w) ref. nonempty
5 = 0 =
> Ner(w)
wel
s
=0
> Npar(w) Npe(w) = 0 &
wEVL ;_"VU
Npa(w) = 0 vV Npg(w) = 0 VweV
||

This phenomenon mainly occurs for small lattices (having small lattice vocab-
ularies, caused by low density (sparse lattice) and/or few nodes (short source
sentences)) and /or short references (having a small reference vocabulary).

But even if lattice and reference vocabulary are not disjoint, A can become
arbitrarily small, causing the quotient in eq. 3.19 to become arbitrarily large,
hence a single lattice-sentence pair can falsify the whole test set result.

In order to solve this problem, we can specify a fixed lower bound A for A
X :=min(), ) (3.22)

and use A instead of A.

Figure 3.8 shows a plot of the SWCD performance of the English-Spanish test
set over increasingly dense lattices. A varies between 0 and 1. Note that the
bound for A only affects small, sparse lattices. In the whole test set, there are
only two segments that produce a redundancy smaller than 1 (and are therefore
effected by A). Although those two segments modify the total test set score only
slightly, the curve becomes a little bit smoother with A 7 1.

In the Spanish-English direction, we hardly observed any artefacts caused by low
redundancies. So specifying a lower bound for redundancy 0 < A < 1 virtually
did not change anything, but it did not hurt either (see fig. 3.9).

For the English-French test set, we observed a very special behavior in both
directions, as can be seen in fig. 3.10 and fig. 3.11. It turned out that the test
set contained a misaligned sentence pair: The English sentence “( applause )"
(3 words) was aligned to French sentence containing 103 words.
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English-Spanish testset

= 0.24 —— I I \ T | I | I

: ‘ A=0.05 —o—

s 0.235 - A =01 cote-m =
a i A =08 contbreer |
. 0.23 o,

g 0225 | Bom i g
= A=10 -
= A

z 0.22 |- _
= S

- 0.215 |- _
g

z 0.21 |- =
“ 0,205 |

1 20 30 40 &0 60 70 80 90 100 110 120

Mean Lattice Density

Figure 3.8: Different values for A on the English-Spanish test set. The first
three curves (A = 0.05...0.2) lie on each other.

Spanish-English testset

0.225 : 1 | | ]
[<F}
& ; N 005 e
g "®r Am) coases v
a  pa215 ety s |
E Xl g
5 0.21 A=08 —ea——0 _|
g A = l.D - e = =
T 0205 B
=
. 02 :
=
20195 - )
- 0.19 | | | | - -

10 20 30 40 50 60 70 &0 90
Mean Lattice Density
Figure 3.9: In the Spanish-English direction, introducing a lower bound for

redundancy hardly changed anything, However, the system curve was smooth
and neat in the first place anyway.
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English-French testset

0.295 I | L | \ T
0.29 |-
0.285
0.28 -
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0.27
0.265 ~
0.26 -
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0.25 |-
0.245

Standard Word Count Distance

140

Mean Lattice Density

Figure 3.10: Varying A over the English-French test set for the English-French
direction. The test set contained a misaligned sentence pair.

For the English-French direction, the misaligned sentence falsified the test set
result as follows: From the third data point in fig. 3.10 (at a mean lattice re-
dundancy of ~ 40) onwards, the misaligned (small) English lattice and (long)
French reference sentence was the only lattice-sentence pair that still produced
a redundancy smaller than 1; all other lattices had managed to cover enough
reference words to produce reasonable values for A by then. Due to the length
of the reference sentence (the redundancy is divided by the squared sum over
the reference word counts, see eq. 3.16) and the few target words produced by
the lattice, hardly matching any of the reference words'®, the redundancy of
the particular lattice-reference pair remained very small throughout all exper-
iments. At the fifth data point, the redundancy A of the said lattice-reference
pair managed to supersede 0.1, which caused the curve for A = 0.05 and A = 0.1
to collapse. After that, varying A mainly varied the squared error &2 of the mis-
aligned lattice-sentence pair by A+ 3 Nanf(w}, which caused a shift in the order

of (\,’E N%_ﬂfi-w}) / (VA3 |L;|) on the whole test set score (see eq. 3.19),

independently from the particular lattice density.

In the French-English direction, the situation was different: The squared error
sum was mainly contributed to from the side of the lattice, that is

&2 = Z Niat(w)

which grows with increasing lattice density but is mainly independent from A.
Also note that the lattice (and therefore also &?) was quite large even for low

12The French sentence neither contained parentheses nor the French word for “applause”,
however, with growing lattice density the lattice acquired edges producing periods and com-
mas and other high-frequency words (due to wrong phrase alignments, e. g. [ “applause” /
“applaudissement " |}, which — of course — occurred in the (long) French reference sentence.
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French-English testset
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Figure 3.11: Varying A over the English-French test set for the French-English
direction. The effect of the misaligned sentence pair can be elearly observed on
the whole test set.

densities, due to the high number source words (represented as nodes in the
lattice). Furthermore, due to the much shorter reference sentence (having a
squared word count sum of 3), the lattice-sentence pair had a significant chance
of resulting in a reasonable value for A (i. e. greater than one) as soon as the
lattice would manage to cover some of the reference words by any chance (espe-
cially the high-frequency words “(" and *)”). Until then, however, adding edges
would just monotonically increase the squared lattice count sum and therefore
the squared error, Dividing by a very small A (dividing by 0.05 is equal to mul-
tiplying by 20) intensified this effect so much that it could easily be observed
on the whole test set score,

From what we have seen in our experiments, we propose a minimal redundancy
of A = 1.0, This strategy not only helps to reduce the inadequately high impact
of lattice-reference pairs having a very low redundancy, it is also intuitively
sound: We make sure that every unmatched reference word contributes to the
squared error sum with at least one error.

In the case of the misaligned sentence in the English-French test set, we could
not avoid a constant shift depending on A in the French-English direction (or, in
general, when a large source sentence is misaligned to a short reference sentence).
However, for a large enough A, the SWCD Performance-Density Graph falls back
into its usual general shape (increasing on both ends) which is what we expect
most. In the English-French direction, a minimal redundancy of 1.0 prevented
the misaligned sentence pair from falsifying the whole test set score completely.
Simply speaking, choosing a minimal redundancy helps to stabilize the SWCD
score against the malicious impact of misaligned sentences in the test set.
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Figure 3.12: Comparing end-to-end decoder performance (BLEU) against a
linear transformation of the Standard Word Count Distance. The coefficients
of the linear transformation were computed for each test set individually using
the best linear fit minimizing the squared error. As SWCD is a cost function
(in contrast to BLEU), the stretching factor must be negative.

3.3.3 Predicting decoder performance

In order to check if our new metric predicts end-to-end decoder performance
(def. 3.4, p. 46), we compare the Performance-Density Graph of the baseline
system (using BLEU as performance metric) against the plot of the SWCD score
computed on the same set of lattices. As SWCD does generally not operate on
the same scale as the BLEU score, we compare the BLEU curve against a linear
transformation ®(z) = m - 2 + ¢ of the corresponding SWCD plot for each of
the four test sets (see fig. 3.12). Note that linear transformations are generally
bijective (except for the mappings on a constant), so no information is added or
lost. The coefficients of the linear transformation were computed individually
for each testset using the best linear fit minimizing the squared error. Note that
BLEU is a figure of merit, while SWCD is a cost function, so the scaling factor
m is always negative.

Fig. 3.12 shows that SWCD generally does a good job of correlating with the
end-to-end performance of the decoder. There is, however, still room for im-
provement: Above all, SWCD tends to slightly overrate dense lattices (compared
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to the decoder), which causes SWCD to reach its optimum at a later point with
respect to increasing lattice density.

However, compared to oracle scores like Graph Error Rate (see p. 18) SWCD is
definitely to be preferred (see fig. 2.10).

3.3.4 Precision

We expect our metric to penalize noisy edges (see p. 54). With respect to a
reference, “noisy” means that an edge emits words respectively a phrase that
has nothing to do with the reference sentence.

Note that due to eq. 3.16, only words that co-occur in both lattice and reference
can increase the lattice redundancy. So adding noisy edges does not or hardly
increase lattice redundancy (note that adding an edge can never decrease lattice
redundancy), while the squared error does change: Assuming that in the best
case, every added noisy word is a different one, the squared error sum grows by
1 for each added noisy word. Further assuming a constant mean number e of
target words per edge, V&2 grows at least to the order of /¢~ n in the number
of added (noisy) edges. With A being approximately constant, we conclude that
SWCD’s growth is unbounded when adding noise to the lattice, which is what
was wanted,

3.3.5 Recall and uniformity

Precision forces the lattice to produce events (that is, in our case, unigrams)
that also occur in the reference. However, if we allow lattices to cover reference
events multiple times, we have to make sure the lattice does not cover the same
reference event over and over again (e. g. a lattice producing only periods or
other high-frequency words).

Generally, lattice words coocurring in the reference cause the redundancy to
increase (the nominator increases in eq. 3.16) which leads to a decrease of the
quotient v/&2/A. Furthermore, we have already seen that o2 becomes 0 if, and
only if, the reference words are covered uniformly (see p. 56).

On the other hand, if we keep covering a reference word w* although the refer-
ence contains at least one different word w', we have

Vet > \/(NLM(’W') ~ ANRet(w'))? & A - Nt (w')
if A grows big enough.!? Differently speaking, V&2 grows linearly with A for
every poorly covered reference word, which causes SWCD to prefer lattices that
cover the reference completely and uniformly.

3.3.6 Lattice complexity

With regard to the lattice’s compactness (see sec. 3.2.1), one should note that
SWCD does not bound lattice complexity (neither by density nor by the number

13 Note that w* hardly contributes to the squared error due to the choice of -\)
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of edges; see def. 3.3, p. 45): For a given reference, any lattice containing an
arbitrary number of n edges that go from start node to end node and just
emit the reference sentence results in a redundancy A = n and a squared error
&% =0, therefore having a perfect Standard Word Count Distance of 0. Hence,

the supremum in eq. 3.4 does not exist for any u > 0.

3.3.7 Unigrams and position independence

Evidently, the lattice evaluation metric defined in eq. 3.19 only takes unigrams
into account. However, putting words into context by considering their neigh-
bors is necessary in order to assess the fluency of the hypothesis translation.
Furthermore, multigrams can help to properly align the hypothesis sentence
with the reference translation and therefore detect translation errors that pro-
duce a word that happens to occur somewhere else in the reference (but in
another context).

Differently speaking, the SWCD metric bears the potential flaw that the in-
formation about the word position within the lattice is lost; we might want
to match a target word at the beginning of the lattice (e. g. assigned to an
edge coming out of the root node) to a reference word at the beginning of the
reference sentence, but not to a word at the reference sentence’s very end.

Most string-to-string similarity metrics use multigram precision (e. g. BLEU,
p. 14) and/or word position (e. g. Levenshtein distance, p. 17) in order to com-
pare two sentences (a counterexample would be the Position-independent Word
Error Rate (PER), see p. 18).

We have to keep in mind, however, that the evaluation task of translation lattices
is different by nature. First of all, we do not know yet at what potential position
a target word will occur in the translation hypothesis. Actually, how far a word
can travel heavily depends on the decoder’s reordering strategy (p. 11). Thus, if
we let the lattice metric depend on the target word’s position in the translation
lattice, we implicitely restrict the decoder to a certain reordering strategy which
may or may not be desirable.

A similar argument holds for multigrams. Which words occur next to each
other in the translation hypothesis depends both on the chosen path and the
rearrangement of the phrases applied by the reordering strategy. The only
multigram information intrinsically contained by a translation lattice is given
by multiword phrases associated to a single edge, given that the decoder leaves
their structure intact!. However, as we have seen with our “Edge Precision”
approach (p. 51), a n-gram based approach does not necessarily lead to a use-
ful metric. Furthermore, fig. 3.4 indicates that most occurence information is
already provided by unigram frequency.

Also recall that the PMED forced aligner provides useful results (see p. 38) even
though the PMED score is position-independent and only considers unigrams
as well (see sec. 2.5).

M4Wa could, for example, assume a post-processing step where the decoder rearranges words
in order to implement a global reordering strategy. This is, however, rather exotic and we
could evaluate against a modified pre-postprocessed reference in this case as well.
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Figure 3.13: Corresponding SWCD performance of the systems assessed in sec-
tion 3.3.8 (also see fig. 2.16).

3.3.8 Comparing systems using SWCD

We repeated the experiments we did for the two forced aligners (see sec. 3.3.8),
now using SWCD scores. We can see various properties of the end-to-end de-
coder score reflected in the SWCD performance-density graph:

+ Using a heterogenous parallel corpus for phrase extraction impacts the

system by far more negatively than using a heterogenous training corpus
for the translation model.

+ For small lattices, performance improves quickly with growing lattice den-

sity. After having reached a local minimum resp. maximum, the perfor-
mance fattens.

+ The Spanish-English system generally performs better than the English-

Spanish system (with respect to BLEU).

There are, however, also some discrepancies worth mentioning:

- SWCD reaches its optimum slightly later the end-to-end decoder per-
formance. Furthermore, the optimum seems to be less developed (al-
though, in many cases, the maximum of the end-to-end decoder perfor-
mance hadn't been very well-developed either).

- The difference between the baseline system and the UN-TM system is
much smaller than in the decoder PDG. In fact, on the Spanish-English
test set, the difference is virtually nonexistent, for the English-Spanish test
sat, the UN-TM even slightly outperforms the baseline system. One way
to explain this, is that in the baseline system, the modified translation
model is used both for phrase selection and for the path search.!’® On
the other hand, the lattices themselves, and therefore also SWCD, are

18 At the time of writing, the STTK decoder did not provide a way to specify different lexica
for phrase selection and edge scoring when using online phrase extraction.
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only influenced by the modified TM during the phrase selection phase.
Hence, we could conclude that — due to a modified TM — it is during
the path search that we lose most performance. However, this observation
iz inconsistent with the results we had with both oracle decoders (see
sec. 3.3.8), where we clearly observed a drop in performance on the lattice
level after switching to the modified TM.

3.4 SWCD Oracle Pruning

In this section, we will derive a oracle lattice pruning algorithm based on the
lattice evaluation metric introduced in section 3.3. The main objective of such
an oracle pruning method is to use the oracle decisions (of whether to prune a
lattice edge or not) as training data for non-oracle pruning methods which will
be applied during runtime.

In & first step, we will rank the edges of a lattice by the magnitude of improve-
ment their removal would bring on the lattice-reference pair’s score. In a second
step, we will select all edges for pruning for which the improvement on the total
lattice-edge pair's score lies over a certain threshold,

Either the hard decisions of the pruning criterion can be used for training (as
positive and negative examples, as used in perceptron learning, backpropagation
ete.) or, alternatively, we can use the hypothetical score improvement of the lat-
tice edges directly (e. g. backpropagation again (predict the score improvements
directly), minimum error rate training etc.).

3.4.1 How a single edge changes the metric

In this section, we will analyze how the removal of a single edge impacts the two

main statistics used by the SWCD score, the redundancy A and the minimal

squared error &2,

For any lattice L = ({no,...,n&}, &, mo, {ni}) with corresponding reference R,
let V be a vocabulary covering all reference and lattice target words and let Np
resp. Ng be the corresponding lattice and reference count function. Further-
more, let
YV = {weV: Npg(w) =0} (3.23)
Vg = {weV: Ng(w)=0} (3.24)
be the lattice target vocabulary respectively reference vocabulary (now only
containing words that really occur in the lattice resp. reference),
For any edge E = (n,n;,t,w) in L, we can define an edge word count function

[V - Ng ’
NL.;.{M S s (3.25)

where t =ty -+ -4, t; € V is the target phrase associated to the edge. As before,
Npg induces an edge vocabulary

Vg i={weV: Ng(w) >0} (3.26)
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Note that |Vg

<= ‘VL!

We assume that the unpruned lattice L has a redundancy A and a minimal
squared error of 42, If we prune any edge F from the lattice, we get a new lattice

Lg having A and 6% as new redundancy respectively new minimal squared
error,

Instead of actually removing E from L, we can modify the lattice’s counts
directly as only the lattice’s target word counts are used for calculation of the
SWCD score. Note that

Nu(w)= > Na(w) YweV (3.27)
Eegé&
and therefore
Nip(w)=Np(w) - Ng(w) YweV (3.28)

for any edge F in L. Using the definition of redundancy (eq. 3.16) we get
Lowey Neg(w) - Np(w)

Lweva Na(w)
(328)  2yey(Ne(w) — Ne(w)) - Na(w)

Moo=

E'wEVR N%ﬂ('—”)
=0 if wgVg
S wey No(w) - Np(w) 5 > wey Ne(w) - Na(w)
2ievi N (w) 5 Lweva Ne(w)
=5
= X+A} (3.29)

where

Af = _ Lweve NE(’WZ - Ng(w) (3.30)

ZwEv“ NR{w)
Both A and 2 eV N%(w) are already known from the evaluation of L, and
the sum over Vg is very short (has only few summands) as [VE| is usually very
small. Note that AA is always negative (removing an edge can only reduce the
redundancy of a lattice). Furthermore, redundancies are always positive, hence

0 = X
o 0 < X+AX

Therefore, we have . )
—A<AAL0 (3.31)
when removing an edge from a lattice.

For 6%, we have

(v

&% > (V- Na(w) - NLE(W))
we)
2

> ((3+A%)  Na(w) - (Na(w) - Na(w)))

we W

AN 13 always negative
when removing an edge.
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2
¥ (:1 -Np(w) = Np(w) + A% - Np(w) + NE(W)) (3.32)

weW e

A B
= 3 A’+2.AB+B*
welW
. 2
=3 (A-Nﬂ(w)—N[,(w)) +> (24+B): B,
weV L weV 0 if wgVeUVr
e
= §t+AG* (3.33)
where
agt= > (2A+B)-B (3.34)
weVelVy
with A and B as indicated in 3.32. Note that
VEUVR=VE\VH€BVENVR@VR\VE (3.35)

is a disjoint partitioning of Vg U Vg and B simplifies to Al Ng(w) for w & Vg,
80

Y (@4B+B) = Y (24-A3-Ng@w)+ AR Nh(w))
weVp\Ve wEVr\Ve
= A} Z 24 Np(w) + AN? Z N%(w) -
weEVr weVp
a D
S AA-Na(w)- (24+ 4% Nﬁ(w)) (3.36)
weVrNVe

Note that the first two sums (C, D) in equation 3.36 do not depend on the
current edge and can be precomputed. Furthermore, 2A8 + B? simplifies to
(Ng(w) = 2Nz (w)) - Ng(w) for w € Vg, hence

Y. (24B+B%) = Y (Ne(w) - 2Ng(w)) - Ng(w) (3.37)
weEVe\Vr wEVe\Vr

Putting things together, we get

A8? = A,“\(G+A:\.D) i

S |24B+B* - | 24- A% Ne(w) +A8 - Nh(w) %
weVpMWe B-N
—Ng(w)
> (Np(w) - 2Ny (w)) Ng(w)
weVe\Vr

= ai(c+ad-D) +
> (24B-24B+24 Ne(w) + B - A Nh(w)) +

weVrMVe
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Y. (Ng(w)—2Ng(w)) - Ng(w)

weEVe\Vr
= ai(c+ad-D) +
Z (2 (:\NR(W) - NL(fw)) -Np(w) + AA-Ng - Ng(w) + Ni-(w)) +

weVpMVe

> (Ng(w) - 2Ny (w)) - Ng(w)

weVe\Vgr

= Al(c+ad-p) +
> [weva (2 (¥Na(w) - No(w) + Np(w)) Na(u)

weV e
+ (1 = dwevg) (Ne(w) — 2N (w)) - NE)] (3.38)
e 1 if X
ifwe
Owex '={ 0 otherwise (5:39)
and
C = Y 2(A:Ng—=Ng) Np(w) (3.40)
weVp
D = 3 Niw) (3.41)
weVg

Hence, calculation of A#? only requires to sum over the edge’s target words,
everything else is a lattice-wide constant that can be precomputed, which is
very fast.

3.4.2 The pruning criterion

We will prune an edge if, and only if, this will improve the lattice's total score

with respect to the SWCD metric. Note that the lattice length |L;| and therefore

also the lattice length sum ) |L;| remains constant during the whole (edge)

pruning process, so we can omit the normalization by 37 |L;| in eq. 3.19 when

analyzing the change of the metric on a single lattice. The SWCD metric is

a cost metric (the smaller the better), which leads to the following pruming pruning criterion
criterion:

= -
BT B . (3.42)
At A
& ¥\
=7 = - =
& X
A&2 AX e
1+ ? -1+ T = 0 (3.43)

In the following, we will discuss some special scenarios:
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e A = 0 can only be observed if lattice and reference vocabularies are disjoint
(see p. 58). In this case, all lattice edges should be considered trash (at
least with respect to the reference),

Just as for the SWCD score itself, the pruning criterion (eq. 3.42) is not
defined for A = 0. As AA becomes 0 in this case (see eq. 3.31) we can not
even tell whether the pruning criterion will hold in the limit as the second
fraction in eq. 3.43 reduces to g resp. we compare infinity against infinity
in eq. 3.42.

As we expect the pruning criterion to hold, we can define AX /5\ = —og,
so that eq. 3.43 simplilies to —oo < 0,'7 which always holds.

16

Alternatively, we can substitute A by A (see eq. 3.22) in equation 3.43, as
we did for the SWCD score itself (see sec. 3.3.2). In this case, eq. 3.43
simplifies to

A& <0 (3.44)

Having both AX and A being 0, eq. 3.34 (resp. eq. 3.38) simplifies to
A? = 5 (Np(w)—2Ny(w))- Ne(w)

weVpUVp

- ZL(NE(W)—QNL(-W))J-NE(W) (3.45)
weVe =0 o

= 0

The inequalities in (3.45) follow from the fact that Ng(w) < Np(w) Yw €
Vy for any edge E in the lattice and Ng(w) > 0 for any w € Vg by
definition of Vg. Hence, the pruning criterion always holds, as expected.

The second alternative has the benefit of distinguishing edges even if we
cannot derive any statistical evidence from the reference: Shorter edges
generally achieve a higher score than larger ones (which makes sense; an
edge might emit a single word that does not occur in the reference by
coincidence, an edge that emits 20 words that do not occur in the reference
is just trash) and edges emitting words that are highly frequent in the
lattice anyway (Np(w) 3 Ng(w)) are also considered more disposable
than edges emitting rare words (Ng(w) = Ng(w)).

e 52 = 0 is only possible for a perfect lattice, where we would not want
to prune any edge. In this case Ad® would be positive as an inequality
similar to eq. 3.31 holds for Ag%:

-&2 £ A% < (3.46)

(we can only substract up to & from 62, as the squared error sum is

always positive). This motivates us to define Ag?/6% = +o0,'® which
would cause the pruning criterion to fail for any edge.

YW The negative sign is motivated by the fact that the nominator is always negative while
the denominator is always positive. Anyway, the sign will be lost due ta the (-)? aperator in
eq. 3.43.

1TNote that A = 0 and &2 = 0 are mutually exclusive if the reference is not empty.

81f an edge emits just all the words occurring in the reference(a), Ad? can actually become
0, which makes continuous completion of the fraction necessary. In that case AL would be
—1. Theoretically, having Aé? = 0, AX might even be a negative integer smaller than =1,
namely if an edge emits the reference words multiple times.
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s If removing an edge that does not affect redundancy {AS\ = (), the pruning
criterion reduces to A&* < 0, that is, the edge removal would have to
reduce the number of lattice-reference count mismatches,

e If the squared error sum does not change after edge removal (A& = 0),
the pruning criterion simplifies to AX > 0, which is purely hypothetical as
the removal of an edge can only lower the redundancy (also see eq. 3.31).

e More generally, if the change of the squared error sum is positive (A&? = 0)
and the redundancy would decrease (AX < 0) if the edge was removed, the
pruning criterion cannot hold (the removal of the edge would worsen the
lattice’s quality by all means). On the other hand, if both squared error
sum would decrease and redundancy would increase, the pruning criterion
automatically holds. However, the latter is impossible as AA < 0, so we
can focus on edges for which Ad? (and AX) would be negative.

3.4.3 Decoder performance using SWCD pruning

Figure 3.14 shows experimental results on all four test sets. SWCD pruning on
average discards between 44% and 58% of the edges of a lattice which leads to

significantly smaller lattices.

We can focus on edges
for which A&? is nega-
tive, as the pruning crite-
rion would automatically
fail otherwise.
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Figure 3.15: The oracle score of the Levenshtein decoder is approximately an
upper bound for an “optimal” pruning algorithm. In this plot, we used the
original (unpruned) lattice density to plot the SWCD pruning curve in order to
make the three curves more comparable.

After SWOD pruning, the decoder outperforms the baseline system (comparing
both optima) by about 10% to 14% (with respect to BLEU performance). This
seems to be an impressive number, however, we have to keep in mind that this is
an improvement using an oracle pruning method. A runtime pruning algorithm
trained on the data resp. information provided by the SWCD pruning method
could never fully exploit this improvement. Furthermore, we can use the BLEU
performance of the Levenshtein decoder as an upper bound for an “optimal”
pruning algorithm (or an optimal path search respectively). Simply speaking,
the decoder will reach that upper bound if the pruning method manages fo
prune away all “bad” paths (except for those that are not errorously found by
the path search anyway). This is, of course, infeasible, an (oracle) pruning
method that barely leaves more than the oracle path behind will probably be
hopelessly overfitted.

Therefore, we do not expect the decoder to reach the upper bound given by
the Levenshtein decoder using SWCD pruning, but comparing the plots of both
systems on all four test sets (fig. 3.15), we see that there still is much space for
improvement.

In general, there are two possible reasons why the oracle pruning method could
not fully exploit the potential improvement indicated by the oracle performance:
The first possibility is that the pruning method did not prune enough edges
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Figure 3.16: Errorously discarded edges due to SWCD pruning cause a constant
drop on the Levenshtein decoder’s oracle score. Asin fig. 3.15, the original lattice
density was used to plot the SWCD pruning curve.

in order to force the path search to find more "optimal” (with respect to the
reference) paths. On the other hand, the pruning method could have discarded
the wrong edges. Any pruning technique will once in a while make a wrong
decision by errorously discarding an edge of high quality. However, such an
“error of first kind”!? should be in a due proportion to the improvements driven
by the “right” decisions of low-quality edges being pruned away. We can meter
the error of first kind by evaluating the pruned lattices using the Levenshtein
decoder: Errors of first kind cause edges on the particular optimal paths to
be lost, which leads to a drop in oracle performance. On average (depending
on the test set), we lose between 1,3 and 1,8 BLEU points (out of 100) of
oracle performance due to SWCD pruning. The drop is pretty constant, as we
can see in figure 3.16. As the drop in oracle performance is reasonably small
compared to the improvements on the end-to-end decoder performance using
SWCD pruning, we conclude that we could prune much more progressively
(which, however, increases the risk of overfitting).

Y1n decision theory and statistics, an error of first kind denotes a true (null) hypothesis
being rejected. Furthermare, an error of second kind occurs if one accepts a false hypothesis,
In our case, the (null) hypothesis is that the edge should stay in the lattice.

error of first kind
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Figure 3.17: The relative amount of pruned edges with respect to the threshold
¥ shows properties of a logistic growth function. Logistic growth is a model of an
exponential growth which is limited by a finite resource. Applications include
the description of growth of a bacteria population or sales figures of a product
in a mature market.

3.4.4 Introducing a threshold

Instead of pruning an edge as soon as we can observe a minimal decrease of
the lattice’s SWCD cost, we can compare the left-hand expression in eq. 3.43
against a threshold ¥ not necessarily being 0:

AN
) 1
1+ﬁf§——(1+"'\+) <9 (3.47)
a A

. ’l
—

T

We will write 7(E, L, R) to denote that the test statistic T depends on the edge
E, the lattice L and the reference(s) R, or simply 7(E) if we assume Land R
to be fixed.

The more negative ¥ becomes, the more conservative the pruning will be. If 7 is
set to be slightly positive, edges are even pruned if it does not “hurt too much”.
For ¥ = 0, eq. 3.47 simplifies to eq. 3.43.

Figure 3.17 shows the relative amount of discarded edges with respect to v.
During the growth phase between ¥ = £0.001, the relative number of pruned
edges grows approximately linearly, which enables us to easily control how strong
our pruning criterion should be. The fact that the curve approximates 0 for
1 — —oo more quickly than 1 for ¥ — co indicates that the lattices a priori
contains more “good” edges than “bad” ones.

The original pruning criterion does not change if eq. 3.43 is multiplied with or
divided by a strictly positive constant ¢. For pruning with a threshold, this
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Figure 3.18: Lattice span A+ with respect to the number of lattice nodes (Left)
resp. lattice density (Right). The maximal number of source phrases for online
phrase extraction (which is the decoder parameter that was used to vary the
lattice density) was set to 8, leading to a mean lattice density of 46.7, which
roughly hits the optimum in the decoder’s performance-density graph for the
English-Spanish test set (see, for example, fig. 3.14, upper left).

means we can adapt the pruning criterion to the lattice by multiplying resp.
dividing the threshold by a lattice-dependent constant. As said before, this
does not change the original pruning criterion if 4 = 0,

In order to investigate whether the threshold ¢ should be adapted to the lattice,
we consider the span of a lattice, the difference between the smallest and the

biggest value of 7 for all edges in a lattice L = ({no,...,n}, £, 10, {ni}):
A 4 Y — 7l
Ar(L) = gln, (L) — T(E") (3.48)

Our approach is to choose ¥ with respect to Ar. Having
9~ At (3.49)

we can expect to prune a constant relative amount of edges per lattice,

We correlated A7 with some simple lattice-dependent constants for a fixed base-
line system on the English-Spanish test set. Each dot in fig. 3.19 denotes the
span of a lattice with respect to the number of edges. Analogously, we correlated
A with the number of lattice nodes respectively the lattice density in fig. 3.18.

All three plots approximate a hyperbolic curve, although the correlation is most
evident with respect to the number of edges. Therefore, we assume that over
the test set

Ar(L) % (3.50)
= A7(L) €] = const (3.51)

This motivates us to consider

T/(E) = || - 7(E) (3.52)
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Figure 3.19: Lattice span with respect to the number of edges in the lattice,
The dot cloud clearly approximates a hyperbolic curve.

instead of 7(E), because normalizing T this way also normalizes A7:

A7 (Ly ‘¥ Jmax, 7 (E) = '(E')

(352) ol ; . . it
=" Joex (|€] - 7(E)) - (€] - 7(E"))
= |€] max 7(E) - T(E')

B49 g, A7
(2.51)
= const

which is what was wanted.
Using 7' instead of 7 is equivalent to using 9/|€| instead of ¥ for pruning:
T(E)Y=|&-7(E) < ¥ =

(E) < o (3.53)
where "

. (3.54)

€]

is the normalized threshold. Hence, we have 9’ ~ Ar, that is, ' fulfills eq. 3.49,
which is what was wanted.
With ¥ being divided by a constant |£] = 1, it is clear that we need much greater

values for ¥ now. Figure 3.20 shows that for the relative amount of discarded
edges, the phase of approximately linear growth now lies within ¢ = -2...2.
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Figure 3.20: Using threshold normalization, the relative amount of pruned edges
grows approximately linearly with respect to ¢ between ¥ = —2 and ¥ = 2.
This observation holds for the English-Spanish test set (Left) as well as for
the Spanish-English test set (Right, using a fixed baseline system with a mean
lattice density of 31.5).

3.4.5 Decoder performance using SWCD threshold prun-
ing

Figure 3.21 shows how the decoder’s end-to-end performance increases the more
edges we prune. This is only natural as the pruning algorithm discards more
and more “bad” paths. However, we have to keep in mind that using an oracle
pruning method, we will eventually tend to overfit the (pruned) lattice to the
reference. Differently speaking, if we use the oracle pruning decisions to provide
training data to a runtime pruning technique, the trained algorithm will lose
performance at some point if we (oracle) prune too much. As the optimal choice
of ¥ depends on the used runtime pruning algorithmn resp. training method ete.,
we cannot tell yet what would be reasonable values for 4.

Asymptotic behavior of ¢

In fig. 3.21, we only considered values for 9 that lie within the “phase of linear
growth” with respect to the relative amount of pruned edges (see fig. 3.20). We
will investigate the system’s behavior for 4 — +oo:

With decreasing v, less and less edges will be pruned, so for very small thresholds
(# = —2), the lattices are hardly modified. Hence, the system approaches
the baseline system for @ — —oo. In fig. 3.22, for example, the curve of the
baseline system and the curve of the system using SWCD pruning cannot be
distinguished for ¥ = -8,

On the other hand, compared to the corresponding baseline system without
SWCD pruning, the decoder’s end-to-end performance significantly drops if we
choose an extremely high pruning threshold (e. g. ¢ = 8, see fig. 3.22, left).
Actually, it can be proven that the end-to-end performance drops on any test
set if we just choose ¥ to be big enough:

PROOF  Asall lattices Li = ({nf,...,n{ }, &, nb, {n},}) of the test
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Figure 3.22: (Left) A high pruning threshold of ¥ = 8 causes a significant drop
of end-to-end decoder performance, compared to the corresponding baseline
system. A very low threshold of ¥ = —8 causes the system to perform virtually

identically with the corresponding baseline system.

(Right) If we take the

reduced lattice density due to pruning into account, it becomes clear that the
system using a high threshold might eventually outperform all other systems if
we just construct a large enough unpruned lattice in the first place. It might
also approximate the performance of the system having ¢ = 2. Experiments in
this direction could not be performed yet due to system limitations.
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Figure 3.23: This plot shows the 75% quantile (which is robust against statistical
mavericks) of the normalized test statistic 7 (see eq. 3.55) on the English-
Spanish resp. Spanish-English test set, having the total number of lattice edges
on the abscissa.

set (Ly, Ri)f‘;l contain a finite number of edges,

Egg;

exists (where 7' is the normalized test statistic, see eq. 3.52). Hence,
if we set ¥ > 7/, we can brutally discard all edges® which leads to
a total information loss, that is, a minimal end-to-end performance
of the decoder. B

On the other hand, however, we can also observe a general tendency that the
local maximum in the decoder’s performance-density graph is shifted to the
right (with respect to the unpruned lattice density) with increasing @. Dif-
ferently speaking, the stronger we prune, the more we can benefit form larger
(unpruned) lattices. The effect becomes clearer if we plot the decoder’s perfor-
mance with respect to the density of the pruned lattice (fig. 3.22, right). The
curve of the system using a big threshold has not reached its maximum vet, the
corresponding system could still outperform all other systems if we manage to
construct a big enough lattice in the first place that contains enough edges that
pass the pruning criterion.

So far, it is unclear whether 7/ is limited or not. Figure 3.23 suggest that 7/
grows linearly with the number of lattice edges in the test set. In this case,
7 would be unlimited and it would be possible to find arbitrarily many edges
(resp. source-target phrase pairs) that pass the pruning criterion for virtually
any choice of ¥, However, it might also be the case that limiting effects will
come into play for much larger lattices, which would mean that we could discard
any edge as soon as we choose ¥ to be larger than that limit.

Anyway, as outlined before, we have to keep in mind that strong oracle pruning
encourages side-effects due to overfitting, so we will focus on values for ¥ between
—2 and 2,

0For all experiments, some edges were marked “unprunable” to make sure that there always
exists a path through the lattice.
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Figure 3.24: Decoder performance using SWCD pruning with unnormal-
ized threshold on English-Spanish test set. Without threshold normalization
(eq. 3.52), using a threshold only worsens the result (compared to ¥ = 0).

Using an unadapted threshold

We also investigated what happens if we use thresholds directly (eq. 3.47), with-
out normalization (eq. 3.52). Naturally, lattices still get smaller with increasing
threshold, But figure 3.24 clearly shows that without threshold adaption, any
value for ¥ # 0 decreases the decoder performance (compared to @ = 0), no
matter whether we take the gains in smaller lattice density into account or not.
For ¥ = +0.001, the end-to-end performance of the decoder using SWCD prun-
ing is even lower than the performance of the corresponding baseline system in
some cases (not taking the smaller lattice density into account).

3.4.6 SWCD pruning compared to optimal pruning

Unfortunately, even using adaptive thresholds, SWCD pruning still does not
seem to be able to fully exploit the potential gain a perfect pruning method
could achieve, as indicated by the Levenshtein decoder’s oracle score (fig. 3.25).
To us, no empirical results are know for this issue. It is well possible that the gain
we observed using SWCD pruning is already pretty good for an oracle pruning
method — except for the trivial possibility to prune away all edges that do not
lie on the oracle path, which is, of course, infeasible. Furthermore, we have to
keep in mind that lattices are much more compact after pruning, which allows
for a more efficient path search. So far, we only applied SWCD pruning without
changing path search parameters. However, also recall that lattice pruning also
effects the lattice’s oracle score (see fig. 3.16), which is an indicator of how
much “good” information has been lost due to pruning. If a pruning method
manages to significantly reduce the size of a lattice without losing too much
oracle performance, but we cannot observe a significant improvement of the
decoder’s end-to-end performance anyway, we can assume that the path search
did just not manage to exploit the benefit of a smaller lattice and search space.
Conversely, if the pruning method causes a significant loss of oracle performance,
even a perfect path search cannot make up for the lost information.

Figure 3.26 shows how SWCD pruning impacts the Levenshtein decoder’s oracle
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Figure 3.25: Baseline performance, oracle performance and decoder performance
using SWCD pruning with or without threshold — all with respect to the lat-
tice density before pruning (for direct comparability). Compared to the oracle
performance, SWCD pruning only seems to bring minor improvements on the
end-to-end decoder performance.
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Figure 3.26: Levenshtein decoder oracle score using SWCD pruning with an
adaptive threshold, with respect to the density of the unpruned lattice. The
stronger we prune (that is, the bigger ¢ becomes), the greater is the loss on the
oracle score, which indicates that we lose more and more “good” paths.

performance. We lose more oracle performance the more we prune, which was
what was expected. In fig. 3.27, we can clearly see how the approaching upper
bound forces the decoder using SWCD pruning (¥ = 2) to even drop below the
baseline system’s performance.

However, this phenomenon effectively only affects the decoder for small lattice
densities, For larger lattices, where the oracle score on the pruned lattice is
still big enough, we can observe significant improvements. Differently speaking,
as we have noticed before, the decoder reaches its local optimum for larger
(unpruned lattices) with increasing 9.

On the other hand, if we consider oracle and decoder performance with respect
to the density of the pruned lattice (fig. 3.28), the particular local maximae of
the decoder systems drift to the left (also see fig. 3.21) and oracle and decoder
score grow apart (or at least hardly lose distance) with increasing ¥, considering
a fixed (pruned) lattice density. This means that we reach (higher) optimal per-
formance on smaller, more compact lattices and have at least the same potential
for path search optimizations after pruning.

Comparing the decoder's performance with the corresponding oracle score also
helps to explain the performance drop for very large thresholds (see fig. 3.22).
The decoder performance is so low because the (limiting) Levenshtein decoder
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Figure 3.29: Oracle vs. decoder performance for large ¥: The decoder’s perfor-
mance matching the oracle score indicates a perfect search. The plot on the
bottom right shows an enlarged cutout of the plot to its left.

oracle score is already very low (fig. 3.29, top), due to the fact that the pruned
lattice hardly contains “good” paths any more. Actually, the pruned lattices
contain hardly paths at all (indicated by pruned lattice densities between 1
and 2.5, see fig. 3.29, bottom right), which also explains why the decoder’s
performance matches the oracle score, indicating a perfect search.

3.5 Conclusions

In section 3.1, we investigated various aspects of translation lattice quality. In
addition to precision and recall, the quality of a translation lattice also depends
on its uwniformity and its compactness.

We defined translation lattice quality in terms of end-to-end translation qual-
ity: One lattice is “better” than the other if, and only if, it leads to “better”
translations.

We found that the topology of a translation lattice already contains some in-
formation about its quality. Furthermore, we found that oracle scores (see
chapter 2) including the Graph Error Rate use the information contained in
a translation lattice inefficiently. Therefore, we investigated novel approaches
that exploit the full information contained in a translation lattice.
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In section 3.3, we introduced a novel, model-free, unigram-based translation
lattice evaluation metric called Standard Word Count Distance (SWCD) and
investigated how it satisfles the various design criteria for translation lattice
evaluation metrics stated on p. 54. We were able to show that Standard Word
Count Distance is linearly correlated with the decoder’s end-to-end performance.

From SWCD, we derived an oracle pruning method based on how single edges
contribute to the total cost of a lattice with respect to SWCD. We found an
efficient, way to calculate the test statistic used for the pruning criterion.

On our test sets, we managed to reduce the size of the particular translation
lattices significantly, accompanied by moderate improvements in end-to-end de-
coder performance without modification of the path search parameters. We
used oracle scores to meter performance losses due to errors of first kind. We
observed that the harder we prune, the more we can take advantage of larger
lattices. However, we realized that the more we prune, the more we tend to
overfit the pruned lattice to the corresponding reference.

Standard Word Count
Distance

SWCD oracle pruning

errors of first kind

overfitting
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Chapter 4
Conclusions

In the course of this thesis, we investigated various ways of translation lattice
evaluation.

In chapter 2, we put our focus on oracle decoding which is an instance of the oracle decoding
more general concept of single-path evaluation.

Two aracle decoders for two different objective functions (Levenshtein distance
and Position-independent Minimal Edit Distance (PMED)) have been imple-
mented. Although both forced aligners can be used for translation lattice eval-
uation tasks, they lack certain desirable features. Above all, as they rely on a
single path extracted from the translation lattice, they use the information pro-
vided by the lattice unefficiently. They do not allow for a qualitative statement
on non-path edges, that is, they do not help to discriminate between “good” and
“bad” edges of a translation lattice. Last but not least, the correlation between
oracle decoders and the end-to-end decoder performance highly depends on the
lattice density.

In section 3.3, we introduced an approach completely different from oracle Standard Word Count
scores. The Standard Word Count Distance (SWCD) score evaluates lattices di- Distance

rectly, without decoding. This way, various negative side-effects of single-path

scores can be avoided, yet maintaining a high correlation with the decoder’s

end-to-end performance.

From SWCD, we derived an oracle pruning algorithm for translation lattices. oracle pruning
We found that the Levenshtein decoder’s oracle score can be used to meter the

loss of information due to wrongfully pruned lattice edges. We managed to

significantly reduce the size of our test set lattices accompanied by moderate

improvements in end-to-end decoder performance.

4.1 Future Objectives

4.1.1 Model dependence

Throughout this thesis, we focused on maedel-free lattice evaluation. For future
research, we suggest to also consider metrics that take the statistical models model-dependent  trans-
lation lattice evaluation
87 metrics
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(language model, word-to-word translation model etc.) into account. The main
benefit of model-dependent translation lattice evaluation metrics is that they
are more likely to be search-algorithm independent: We can significantly relax
the s. a. i. criterion (def. 3.4) if we consider the statistical model(s) fixed for
the set of path search algorithms for which eq. 3.6 should hold. Differently
speaking, if we do not consider the scoring of lattices and paths to be part of
the path search anymore, we can reduce the task of the path search to finding
a path that is optimal with respect to the scores (so far we expected the path
search to find a path that is optimal with respect to the reference), which is a
much easier task; there is less “uncertainty” about the path search algorithm
in eq. 3.6. If we assume that the path search at least approximately fulfills its
specification, we can reduce the s. a. i. criterion to the criterion of predicting
decoder performance for an optimal (with respect to the models) path search.
Furthermore, we do not have to expect out statistical maodels to be consistent
(def. 3.6) any more.

On the other hand, however, we have to make sure that the translation lattice
evaluation metric verifies that the “good” pathes (with respect to the refer-
ence(s)) also have high scores resp. low costs (with respect to the statistical
models). Basically, this makes the construction of model-dependent translation
lattice evaluation metrics harder, but — as outlined before — model dependence
also gives us some more flexibility.

4.1.2 Translation lattice optimization

Translation lattice evaluation metrics enable us to optimize parameters influ-
encing the lattice generation process directly. This way one can decouple the
optimization of the decoder’s lattice generation step from the optimization of
the search algorithm (model weights, beam sizes, etc.).

We suggest that research effort should be put into how translation lattice eval-
uation metrics can help to optimize the translation lattice generation process.
In particular, we recommend to use the results of this thesis in order to de-
velop a runtime arbiter being part of CMU’s Statistical Translation Toolkit as a
mediator between the phrase extraction and the translation lattice generation
module!. The arbiter should decide whether to overtake an edge resp. aligned
phrase into the translation lattice or not. As opposed to oracle pruning, the
arbiter must make its decisions based on previously trained parameters. The
task of designing such an arbiter can be dissected into three parts:

e Constructing a deeigion criterion,
e selecting a learning method and

s providing training dato.

The decision criterion also includes a selection of features of an edge resp. aligned
phrase that should be taken into account. Standard approaches include the
perceptron or — more generally — neural networks, but the decision criterion

1 Aternatively, we could generate a big laltice in the first place and then apply a post-
pruning step. Such details are, however, rather technical.
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can be any boolean expression based on the selected features. However, we have
to keep in mind that a too specific design criterion might not be able to model
the true decision boundaries, while design criteria which are too general tend to
overfit and are harder to train.

The learning method heavily depends on the choice of the decision criterion.
There exist well-known training algorithms, especially for the standard ap-
proaches mentioned above (e. g. perceptron learning for perceptra or various
variants of backpropagation for neural networks; see [Mit97] for details). Some
decision criteria, however, require learning methods to be hand-tailored.

The learning method, in turn, implies what kind of training data is required.
Some learning methods require a set of positive and negative ezamples. Others
require a ranking of the provided examples or, more generally, a quality funclion
which assigns a number to each example and which is to be learned directly.

The results of this thesis come into play for the last point. Using SWCD oracle
pruning, we can provide positive and negative examples for edges that should or
should not be discarded using the test statistic 7 and the (normalized) threshold
introduced in section 3.4.4. We can use two thresholds ¥% and ¥~ (where
¥~ < 9 and {E € £|7(E) < 9~} and {E € £|7(E) > 9%} are the sets of
negative resp. positive examples) to make sure that we keep the two training
sets apart. The test statistic also provides a ranking of the edges, or we could
try learn the test statistic directly, as a figure of merit.

We suggest that implementation and evaluation of such an arbiter should be
subject to future research.

learning method

training data
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bound lattice complexity, {3
bracketing, bilingual, 8
brevity penalty, 14

canonical metric, see translation lat-
tice, evaluation metric, canon-
ical

compactness, 43, 45, 54, 84

concept, 1

cost function, 45

count, see word count

data sparseness, 52
decoder, ix, 10, 41
oracle ~, see oracle decoder
decoding, 6, 10
deletion error, 20
design criteria
for lattice evaluation metrics, 54
direct translation, 2
dynamic programming (DP), 20

Edge Precision, 51
EM algorithm, 8, 51
EPPS, 13
BITOT
of first kind, 73, 73
of second kind, 72, 73

error of first kind, 83
evaluation
of translation systems, 14
evaluation function, 17
event, 4, 54
Expectation-Maximization, see EM al-
gorithm

fan-out, 45

fluency, 19, 64

forced aligner, see oracle decoder, 17
foreed alignment, 17

full lattice, 41

GBLEU, 19
generation, 1
generation function
deterministic, 2
indeterministic, 5
GPER, 19
Graph Error Rate, 18, 41, 50, 84
Graph Word Error Rate, 18
GWER, see Graph Word Error Rate

hypothesis
complete, 22
expansion, 22
final, 22
recombination, 22

insertion error, 20

interACT, vii

interlingua-based translation, 2

interpretation, 1

interpretation function
deterministic, 2
indeterministic, 5

knowledge-based translation, ix

language model, 7, 8, 10, 15
lattice
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complexity, 31, 45
density, 81, 40, 45, 47
evaluation metric, see translation
lattice, evaluation metric
full ~, 41
perfect ~, 41
quality, see translation lattice, qual-
ity
size, 45
lattice generation, 11
lattice redundancy, 55
lattice state of a hypothesis, 22
Levenshtein
decoder, 17
distance, see Minimal Edit Distance
path, 21
Vladimir L., 17
logistic growth, 74

machine translation, ix
statistical ~, !

MAP-classifier, 4

maximum entropy, 9

MED, see Minimal Edit Distance

Minimal Edit Distance, 17, 39, 87
Position-independent ~, 17

minimum error rate training, 50

model consistency, 47

mode] error, 29

model independence, 54

multiple references, 52

NIST, 14
noisy channel, 6, 7

objective function, 17
Occam, see Ockham
Ockham
Occam's Razor, 43
William of, 43
oracle
decoder, x, 17, 66
decoding, 17, 87
experiment, 17
hypothesis, 17
pruning, 64, 85
pruning criterion, 69
score, 18, 84
overfitting, 54, 73, 77, 85

parametric learning, 33

97

part-of-speech tag, 8
path search, 11
pruning, 42
PER, see Word Error Rate
perfect lattice, 41
perfect path, 41
Performance-Density Graph, 31
performance-density graph, 32, 47
PMED, see Position-independent Min-
imal Edit Distance
Position-independent Minimal Edit Dis-
tance, 19, 39, 87
Position-independent Word Error Rate,
18
precision, 14, 42, 44, 44, 54, 63, 84
predict decoder performance, 46, 54
for model-independent metrics, 46
pruning, 42, 47, 48, 50
oracle ~, 66
oracle ~ criterion, 69
pruning criterion, 85
PWER, see Position-independent Word
Error Rate

quality
of a translation lattice, see trans-
lation lattice, quality

recall, 14, 42, 44, /4. 54, 63, B4
reordering, 13

global, 13

local, 13

s.a.i., see search algorithm independence

search algorithin independence, 45, 46
for model-independent metrics, 47

search error, 30

sentence length model, 9

single path evaluation, 51

single-path evaluation, 87

smoothing, 9, 10

span of a lattice, 75

SRI toolkit, 14

Standard Word Count Distance, 41, 54,

56, 85

standard word count distance, x, 87

statistical machine translation, ix
fundamental theorem of ~, 4

strong law of large numbers, 4

STTK, 14, 17
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substitution error, 21
SWCD, see Standard Word Count Dis-
tance

TC-5TAR, 15
test events, 44
test statistic, 74, 83
normalized, 75
threshold, 74
normalized, 76
topology, 41
training corpora, 15
transducer, see stochastic finite-state
m~, 11
transfer, 2
transfer-based translation, 2
translation lattice, ix, 11, 41
evaluation, 41
evaluation metric, 43
canonical, 48, 50
model-independent, 46
oracle pruning, 87
quality, x, 41, 84
raw, see translation lattice w/o edge
weights
without edge weights, 43
translation model, 4, 7
reverse, 7
translation triangle, 2

uniformity, 43, 445, 54, 63, 84
unprunable edges, 79

Viterbi alignment, 8

WER, see Word Error Rate
word counts, 9, 28
for lattice target words, 35
for multiple references, 57
Word Error Rate, 17, 18
Graph ~, see Graph Word Error
Rate
word graph, 11



