Building Chunk Level Representations
For Spontaneous Speech in Unrestricted Domains:

The CHUNKY System and Its Application To
Reranking NBest Lists of a Speech Recognizer

M.S. Project Report

Klaus Zechner
Computational Linguistics Program
Department of Philosophy
Carnegie Mellon University
zechner@andrew.cmu. edu

Committee:
Alex Waibel (LTI/SCS)
Alon Lavie (LTI/SCS)
Nancy Green (Robotics/SCS)

May 5th, 1997

To
Christine,
Betsy,
and
Matthew

Acknowledgements

I am grateful for the help and suggestions from my three project advisors, for
critical remarks from my classmates, and to Klaus Ries, Marsal Gavalda, Torsten
Zeppenfeld, Michael Finke, Petra Geutner, and Roni Rosenfeld for their support
with data, tools, hints, and general help on my way. Specifically I want to thank
those of my fellow classmates who were giving some of their valuable time in
acting as “subjects” for my experiment.

I also want to thank in particular my parents, my family, and friends at
home in Austria, and my friends here in Pittsburgh for their ongoing emotional
and moral support during my years as a Masters student here at CMU.

This work was funded in part by grants of the Austrian Ministry for Science
and Research (BMWTF), the Verbmobil project of the Federal Republic of Ger-
many, ATR — Interpreting Telecommunications Research Laboratories of Japan,
and the US Department of Defense.

ii

Contents

Introduction

1.1 Problem Statement oL,
1.2 Significance to Computational Linguistics
1.3 Motivation for Nbest List Reranking
1.4 Difficulties in Nbest List Reranking

Review of Previous Related Work

2.1 Introduction.
2.2 Differences between written and spoken language
2.3 Unification grammars
2.4 Link Grammar e e
2.5 Caseframeparsing
2.6 Statistical approaches Lo
2.7 TFinite state grammars oL
2.8 Conclusion e

System Description

3.1 The General Picture,
3.1.1 Global System Architecture
3.1.2 Definitionso
313 Input
3.1.4 Output
3.1.5 Resourceso

3.2 System Components
3.2.1 Organization of this section
3.2.2 PreparationoftheData
3.2.3 Part of Speech Tagger
3.24 PreprocessingPipe 0oL
3.2.5 POS based Phoenix Grammar
3.26 The POS Chunk Parser
3.2.7 NBest List Rescoring System
3.2.8 Miscellaneous Modules

3.3 Running the System 0oL
3.3.1 Hardware and Environment

iii

3.3.2 Preparations oo 46

3.3.3 Main Executing Script oo 47
334 Runtime 47
3.3.5 Configuration File and System Paramters 47
4 Evaluation 50
4.1 Definition of Notions and Metrics 50
4.2 Propertiesof theData 51
4.2.1 Data Used for General System Development 51
4.2.2 Data Subsets Used for Specific Evaluations 52

4.2.3 Data Used for LM Construction, Grammar Development
and POS Tagger Training 53
43 POSTagger i i i 53
44 Chunk Parser e 54
4.5 Global Evaluation: Nbest Rescorer 55
4.6 Human Study 60
4.6.1 Data. e e e 60
4.6.2 Task e e 61
4.6.3 Evaluation 0. 61
5 Future Work 64
5.1 Further improvement of the POS tagger 64
5.2 Alternative Language Models 64
5.3 Using scores from other parsers 64
5.4 Identifying Good Reranking Candidates 65
5.5 Improving the Neural Nets 65
5.6 Adding Argument Structure Representations 65
6 Summary and Conclusions 66
Bibliography 67
A Sample Files 71
A.1 Excerpt from an Nbest-list 71
A.2 Hypothesis List File 72
A.3 General Utterance Log Information File 72
A.4 Individual Hypothesis Log Information File 72
A.5 Simplex Clause Segmentation Index File 73
A6 Phoenixforms File oo 73
A7 PhoenixnetsFile 74
A.8 Phoenix MAP_STRINGS File 75
A9 POS Grammar Rule Files 75
A.10 Parser Output Sample 78
A.11 POS Filter Output File 79
A.12 Chunk Filter Output File 80
A.13 Chunk Sequence File oL 80

iv

A.14 Score Matrix File
A.15 First Best Extraction Information File

B Sample Runs Through the System
B.1 A Sample Run Through the Preprocessing Pipe
B.2 A Sample Run Through the Whole System . .

List of Figures

1.1 Example Graph for Erratic WER behavior of a hypothesis 4
3.1 Global System Architecture 14
3.2 Preprocessing Pipeo Lo 22
3.3 POS Chunk Parsing System 28
3.4 Nbest List Rescorer, 33
4.1 Potential decrease in WER over size of Nbest list 51
4.2 NN performance on the test set (nbest_cutoff=20, 50, 300) 57
4.3 Cumul. avg. WER before/after reranking (1 utt.) 58
4.4 Cumul. avg. WER before/after reranking (test set) 58
4.5 Difference in cumul. avg. WER before/after reranking 59
B.1 An example walk through the preprocessing pipe. 84

vi

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Explanation of System Parameters 49
General Properties of the Devtest Set 51
Distribution of Word Gain over the Devtest Set 52
Characteristics of Train and Test Set (WER in %) 52
Most frequent errors of the retrained POS tagger 54
Performance of the chunk parser on three different test sets . . . 55
WER gain comparison of train and test set 56
WER gain in NN experiments 57
Human Performance (WER gainin %) 62
Inter-Subject Agreement (in %) 63

vii

Abstract

Parsing spontaneous speech has so far mainly been limited to narrow domain
applications (e.g., scheduling of meetings, travel planning). In this work, a
chunk based parsing approach is used for building a fast, robust, and shallow
parsing system for spontaneous, conversational speech in unrestricted domains.
The chunk parses produced by this parsing system can be usefully applied to
the task of reranking Nbest lists from a speech recognizer, using a combination
of chunk-based ngram model scores and chunk coverage scores.

The input for the system is Nbest lists generated from speech recognizer lat-
tices. The hypotheses from the Nbest lists are tagged for part of speech, “cleaned
up” by a preprocessing pipe, parsed by the Phoenix part of speech based chunk
parser, and finally rescored using a backpropagation neural net trained on the
chunk based scores. Finally, the reranked Nbest lists are generated.

The results are promising, in that the best performance on a randomly se-
lected test set is a decrease in word error rate of 0.3 percent, mesaured on the
new first hypotheses in the reranked Nbest lists. Although this gain is quite
small, one has to take into account that more linguistic information could be
used for further enhancements (e.g., a combination of subcategorization frames
and selectional restrictions of verbal heads).

Chapter 1

Introduction

1.1 Problem Statement

In the area of parsing spontaneous speech, most work so far has primarily fo-
cused on dealing with texts within a narrow, well-defined domain. The main
reasons behind this restriction have been to avoid having to maintain very large
and complex grammars on the one hand, and large semantic knowledge sources
on the other hand.

In my project I use a chunk parsing technique to develop a system which is
able (i) to generate shallow syntactic structures from speech recognizer output,
and (ii) to employ these representations for the task of reranking Nbest lists.

1.2 Significance to Computational Linguistics

There have been developments recently which encourage the investigation of
the possibility of parsing speech in unrestricted domains. It was demonstrated
that parsing natural language' can be handled by very simple, even finite-state
approaches if one adheres to the principle of “chunking” the input into small
and hence easily manageable constituents (see e.g. (Abney, 1996b; Light, 1996),
a more extensive discussion follows in Chapter 2).

The goal of this project was to apply and sensibly adapt these ideas to
spontaneous speech dialogues, where the input can be either speech recognizer
hypotheses (e.g., Nbest lists, generated from the word lattice), or transcribed
speech data. The development was done using the publicly available Switch-
board corpus (Godfrey et al., 1992) and development/test data from recent
Switchboard evaluations (Switchboard and Callhome databases).

The main challenge of this project was to show that even with a shallow
analysis of the input (chunk parser) it is feasible to produce useful syntactic
(constituent or chunk based) representations which can be used for generating

Imostly of the written, but also of the spoken type

scores to improve the word-accuracy of the speech recognizer by reranking its
Nbest-list.

Additionally, the system runs quickly and is robust to human disfluencies
and ungrammaticalities as well as shortcomings of various system components,
such as imperfection in speech recognition, part of speech tagging and utterance
segmentation.

While the focus of this project has been the application to Nbest-list rerank-
ing, representations generated by the chunk parser are potentially useful for
many other areas in NLP, such as (i) information extraction from spontaneous
speech, (ii) condensation or summarization of conversational speech, (iii) topic
tracing for human-to-human dialogues, news broadcastings, and other spoken
language sources, (iv) improved language-modeling through the availability of
higher level dependencies, and (v) shallow machine translation for unrestricted
domains.?

1.3 Motivation for Nbest List Reranking

There are several reasons, why reranking of the Nbest lists would be a good
thing to do:

1. Reducing the WER of the Speech Recognizer: When one looks at
some Nbest list, one has the intuitive feeling that some of the top (or high)
ranked hypotheses “just don’t make sense”, in both syntactic and semantic
terms, whereas further down in the list, more “meaningful” hypotheses
would appear. (An example of that is illustrated in detail in Appendix B.2,
where we demonstrate a sample run through the system using an excerpt
from an Nbest list.) This intuitive observation gives thus rise for the
hope that “the right kind” of higher level linguistic representation (be it
symbolically or statistically derived, or be it a combination of both) can
help to let these “more meaningful” hypotheses from further down in the
list “move up” to some significant extent, s.t. on average, on a test set,
the first hypotheses would have a lower WER, than before the reranking
process.

2. Lattice Parsing: For lattice parsing, basically the same argument ap-
plies: if we could make, e.g., the set of the top 20 hypotheses more “mean-
ingful”, this would result in a higher parsing accuracy, or, if our goal is
more to extract semantic frames and/or information from the input rather
than getting the “best match to the original reference”, a higher semantic
(or: frame) accuracy might be achievable.

3. Database Queries: In the case of restricted machine-computer-interaction
tasks, like database queries, the reranking of more meaningful candidate

2These potentials will be particularly relevant once the next stage, the verb-argument
subcategorization mapper is being implemented. But this was beyond the scope of this current
project.

hypotheses makes even more sense than in the two applications just men-
tioned: The only purpose here is to understand relevant portions of the
user’s request, and not to exactly know the wording of his query. So we
can even further depart from a notion like WER here, since it makes more
sense to get something meaningful out from the query parser — even if it
is quite off track — rather than no parse at all. Interactive error correction
methods (Suhm et al.; 1996) can then be applied to recover from these
mis-understanding problems.

1.4 Difficulties in Nbest List Reranking

While we saw several reasons why reranking would be a sensible idea to go
about, we also have to face a number of quite serious difficulties in doing this
task.

1. A lower WER does not always correspond to better syntactic or seman-
tic “well-formedness”: While for some utterances the intuition about ill-
formed high ranked hypotheses certainly is true, for other utterances this
simple view does not hold. We see many cases in the data, where humans
either don’t agree in the relative “wellformedness” of the first and the true
best hypothesis of an utterance, where they could make no judgement at
all, or where their judgement would be in favor of the first best hypothesis
with the higher WER.?

2. “Erratic” WER behaviour of individual utterances in the Nbest list: If one
looks at the hypothesis WER as a function of its position in the Nbest
list, one sees a picture that pretty much looks like random noise, see, e.g.,
Figure 1.1. This means that in effect there are no “regions” in the Nbest
list which exhibit higher or lower WER but that the WER fluctuates
in a strong way and that there are many “distractors” (i.e. hypotheses
with a higher WER) close by “winning” hypotheses (with a lower WER).
Picking the winning hypothesis and not run into a distractor is, therefore,
a non-trivial task.

3. With the size of N in the Nbest list increasing, the “expected WER gain”
(i-e. the average expected change in WER,, if one picks any hypothesis from
the list at random to swap it with first ranked one) drops; in our Devtest
set, the expected WER gain is approx. -5%. This means in effect that any
method we are using for reranking has first to bridge this gap between
the expected WER gain and the zero baseline, before it can produce any
improvements at all.

3Details about a human study explicitely devoted to this question will be given in sec-
tion 4.6.

WER vs. size of Nbest-list

1 T T T T T
Plot of Utterance sw4093-a-006 ——
08 | B
[0}
® 0.6 [E
S
5]
2
0.2 | B
0 1 1 1 1 1
0 50 100 150 200 250 300

size of Nbest list

Figure 1.1: Example Graph for Erratic WER behavior of a hypothesis

Chapter 2

Review of Previous Related
Work

2.1 Introduction

For a long time, computational linguists have focused on developing global cov-
erage parsers and grammars. The idea is to be able to search through the whole
potential search space of parse trees for any given input string and to resolve
the ambiguities later by means of semantic, discourse, statistical, and possibly
other knowledge sources.

However, for many practical applications where the input is not limited
to a prespecified set of words and constructions, it became clear that there
are many drawbacks which one faces with this theory-guided approach, such
as incompleteness of lexicon, grammar, semantics; the issue of parsing time
(usually O(n?) for n words in the input string); the vastness of possible parses
for even quite small sentences (parse ambiguity problem); failure on noisy or
error-affected input (Abney, 1994; Grishman, 1995).

As a remedy to still be able to build reliable, robust, and fast parsers, several
approaches of partial and/or shallow parsing have been proposed and developed
which will be discussed below.

2.2 Differences between written and spoken lan-
guage

Traditionally, most work in computational linguistics was mainly concerned with
parsing written text. In part, this was due to the linguistic tradition, in part
just to the unavailability of spoken language data. After the “Chomskian Revo-
lution” around 1960, when the field of linguistics moved from a behaviorist to a
mentalist perspective, competence grammars became the focus of interest and
research. Particularly, it was intentionally abstracted away from all human fac-

tors such as attention span, memory capacity, production errors etc. (Chomsky,
1965). The basic question of linguistics became: why are some sentences and
structures in a language grammatical while others are not? - and: What general
(or: “universal”) principles are there in the human language faculty that can
provide an explanation for these facts? Discussed were (and still are) sentences
like

Which dog did the man with the telescope see a picture of? OR:
The dog the mouse the cat chased hated ran away.

which may have yielded a great deal of theoretical insight, despite the fact
that they are not always very representative examples of “naturally occurring”
clauses.

But even when dealing with written language, it turned out that — whatever
the linguistic theory of one’s choice might be — writing grammars which account
for all possible constructions in a language is a virtually impossible task: there
are just too many of them to capture them all. And even if one gets to a close
to perfect coverage, the issue of ambiguity beats back: sentences containing just
a few words can lead to huge numbers of possible parse trees and this poses the
problem of how to decide which one to pick.

As for spoken language, it has been recognized that a number of phenomena
(purposely ignored by mentalist mainstream linguists) are prevalent and do
pose a serious problem for almost all stages of language processing. To name
a few (see e.g. (Lavie, 1996)): we find false starts, repairs, self-interruptions,
repetitions, hesitations, stutters, filled pauses etc. A prototypical example of a
segment of spoken language from the Switchboard corpus (Godfrey et al., 1992)
is given here (also, to contrast it to the linguistic examples from above):!

Well, you know, uh, talking about the lawyers, you know what might
very well do, uh, cause a, uh, a drop in the number of lawyers and
things like that, is to set the fees for cases. It’s kind of like do it, do
it in the similar vein similar, like, uh, V C R or television repair. If
you take your T V in, a lot of these T V repair places will say, well,
I’ll repair your T V for a hundred dollars, and if he gets in there
and starts rooting around and finds something in there that’s really
tremendously wrong with it, then he eats it.

2.3 Unification grammars

A very prominent approach in parsing both written and spoken language is
the use of unification grammars and parsing algorithms which support these.
The main underlying assumption is that every “unit”, be it a word, (sub-)
constituent, or phrase, bears a number of hierarchically organized features (or:

INote that the punctuations are not found in the spoken source; they were inserted by
the transcribers. Potentially, some of them may be found by silence or prosody detectors but
certainly not all of them.

attributes) with associated values. Some values may be instantiated, others may
not (yet) be so. In the process of compositionally combining the constituents
— which is guided and licensed by the rules of the grammar — at each step
the feature structures of the subcomponents are “unified” with each other. If
unification fails due to inconsistent feature values, either the rule is not applied
(strict system), conflicting values get marked as such or as “don’t care” (relaxed
system) or are resolved to the most plausible one (heuristic system).

An example of a unification driven parsing approach which successfully has
been implemented both for written and spoken language is GLR/GLR* (Tomita,
1990; Lavie, 1996). In GLR*, the issue of ambiguity resolution is solved by
incorporating probabilities to the actions in the LR parse table and using various
heuristics from the parser and the discourse context (Lavie, 1996; Qu et al.,
1996).

Within the German Verbmobil project (Wahlster, 1993), HPSG grammars
(Pollard and Sag, 1994) which are also unification based are widely used by
various research groups (Kasper et al., 1996; Kasper and Krieger, 1996; Kay et
al., 1994).

In general, while these unification based grammars usually provide a fairly
detailed analysis of the input string, they suffer from two problems: first, to
deal with noisy and distorted input (particularly crucial in spoken language)
and secondly, to be able to parse a string in real time (for many parsers, their
time complexity is O(n®); further, the constants hidden in the O-notation are
generally also not negligible.)

2.4 Link Grammar

Sleator and Temperley (1991) have developed a grammar formalism called Link
Grammar which is based on the words in the lexicon and their linking require-
ments; links are labeled connectors which can attach to matching links to the
right or left of the word. A sentence of the language defined by the grammar is
a sequence of “correctly linked” words. The following three conditions have to
be satisfied (Sleator and Temperley, 1991, 1):

1. Planarity: The links do not cross.

2. Connectivity: The links suffice to connect all the words of the sequence
together.?

3. Satisfaction: The links satisfy the linking requirements of each word in
the sequence.

Although the analyses obtained by this approach look similar to formalisms
such as Dependency Grammar or Combinatory Categorial Grammar, a ma-

2This is relaxed in the version for the spoken language corpus Switchboard (Grinberg et
al., 1995) with the possibility of skipping words in the input string, a similar idea to that in
(Lavie, 1996).

jor difference is that Link Grammar does not have the notion of constituent-
categories, i.e., it is entirely word-based.

A parsing algorithm with O(n®) runtime, enhanced by heuristics and massive
pruning methods, has been developed for Link Grammars, and recently it was
shown that it is quite feasible not only for written but also for spoken language
parsing (Grinberg et al., 1995).

However, even though the parser shows reasonable coverage even for (noisy)
spoken language, it suffers from three problems: (i) it assigns quite a lot of
parse trees (“linkages”) for a single short sentence®; (ii) unlike for unification
based grammars, there is no obvious way how to get from the syntactic to the
semantic structure of a sentence; and (iii) the large amount of link alternatives
(in extreme cases more than 1000 for a single lexical entry) makes the lexicon
rather difficult to understand and to maintain.

All in all, it appears that while Link Grammar might be a useful tool as a
“grammar checker” (e.g. to assign scores of grammaticality to a list of speech
recognizer hypotheses), it is unlikely that this approach can be usefully inte-
grated in any higher-level module, such as semantic interpretation or informa-
tion extraction.

An interesting study about using the Link Grammar approach for lattice (or
Nbest list) rescoring was undertaken by (Jones, 1996). Jones used the cost vector
from the Link Grammar to re-rank the top 1000 hypotheses from a speech rec-
ognizer lattice.? Over 86 utterances (some of which were split to sub-utterances
for processing reasons), a small increase in word accuracy for the top-ranked
hypotheses was achieved (0.3%), however this trend was somewhat inconsistent
over different types of evaluations (e.g., different test corpora, varying size of
Nbest lists).

2.5 Case frame parsing

It has long been noted that for applications in restricted domains, specifically
for querying databases, the possible input strings are fairly regular and re-
stricted. Secondly (and more importantly) it turns out that if one is not so
much interested in a complete parse, but rather in the extraction of the relevant
information for the given domain, a parsing approach which is based on case
frames, i.e., semantic slots which can have certain kinds of fillers, is appropriate
and efficient. A good example is the Phoenix system designed by Ward (Ward,
1991; Ward, 1994). The Phoenix system was developed for the ATIS® evalu-
ations to facilitate the extraction of domain-relevant concepts in spontaneous
speech where humans query a flight database (Ward, 1991; Ward, 1994). The
main idea behind Phoenix is to use a semantic phrase grammar where semantic

3(Grinberg et al., 1995) report 114 linkages on average for the Switchboard sentences which
had each a maximum of 25 words.

4The utterances were from the ESST data collection at CMU (English Spontaneous
Scheduling Task).

5 Air Travel Information System

information is represented as a set of frames, which in turn consist of a sequence
of slots. For each slot (which represents a “concept” in the domain), a sepa-
rate grammar is defined which is compiled into a recursive transition network
(RTN). The chart parser’s task is to find the frame with a slot-sequence with
the largest possible coverage over the input string. Heuristics such as “prefer
flat trees over deep ones” and efficient search algorithms (beam search) are used
additionally for ambiguity resolution and speed up. An example of the parser’s
output is given here (adapted from (Ward, 1994)):

input phrase:
show flights from Boston to Denver after five pm
parsed phrase:
[1ist] (show) [field] (flights)
[from_loc] (from Boston)
[to_loc] (to Denver)
[depart_time] (after [start_time] ([time] (five pm)))

Basically, Phoenix tries to map strings of the input phrase which are rele-
vant to the domain to concepts which in turn can easily be used by a coupled
interpretation module to get the intended “meaning” of the phrase.

Phoenix has meanwhile also successfully been integrated into the speech-to-
speech translation engine JANUS (Waibel et al., 1996). The parser has proven
to be more robust to the speech recognizer’s output than the GLR* parser.
Since the representation of concepts so far used in the system is less rich than it
is for GLR*, the generation component which is based on the Phoenix parser’s
concepts, produces somewhat terser results than the GenKit generator (Tomita
and Nyberg, 1988) based on the GLR* feature structures (Lavie, 1996).

The speed and robustness of Phoenix are the main reasons why I have de-
cided to use this system also as a basis for my chunk parsing system; even
with a very small, regular and unambiguous part-of-speech (POS) grammar,
the coverage over Switchboard dialogue transcripts is very good. The ability to
skip unparsable segments of the input makes it robust to ungrammaticalities of
spontaneous speech, to speech recognizer errors®, and to incomplete grammar
coverage.

2.6 Statistical approaches

For more than a decade, some amount of research has been done in the ar-
eas of statistical inference of grammars and of statistical extensions to existing
grammars. For the latter, we already mentioned GLR* as an example (Lavie,
1996) where statistical annotations in the grammar /parser facilitate the choice
between ambiguous constructions (or in this case: “actions” in the parse table).

As for statistical inference, most approaches reported in the literature for
automatically inducing probablistic context free grammars (PCFGs) have not

6This was shown in (Lavie, 1996) for the JANUS scheduling domain.

been as successful or promising as had been hoped for in the beginning (Lari and
Young, 1990; Charniak, 1993). One lesson from this research is certainly that
grammars tend to be somewhat “better” and “plausible” if they were induced
from bracketed rather than unannotated corpora. A reason for this difference is
that grammars induced from unannotated text tend to group frequently cooc-
curring tags together which are, on an intuitive level, not members of the same
constituent — and therefore lead to unplausible and less useful generalizations.”

An early example of a probabilistic chart parser is the PEARL system
(Magerman and Marcus, 1991). Recently, Brill (1995) reported experiments
about rule-based induction of grammars which seems to be a more promising
approach. (Vilain and Palmer, 1996) built on Brill’s work, further refining and
significantly speeding up the original algorithm, yielding to a parsing speed of
more than 10000 words per second.

2.7 Finite state grammars

In contrast to the widely held belief that natural language is not regular (some
say: not even context-free), there have been several attempts recently to develop
parsing systems which operate under the assumption that regular expressions
and finite state grammars can handle a significant and for most purposes suffi-
cient amount of natural language input, specifically at the level of constituents.
It is fair to mention that the time and efficiency constraints of some of the pop-
ular information extraction conferences (e.g., MUC?, see (Grishman and Sund-
heim, 1996)) had a significant impact for recent developments and research in
this direction (see also (Zechner, 1997)).

Pereira and Wright (1991; 1996) present an algorithm for computing finite-
state approximations to context-free grammars which is exact for the subset
of context-free grammars which generate regular languages, including right-
linear and left-linear context-free grammars. While Pereira and Wright (1996)
mention having used their method for language model construction for a limited
domain speech recognition task, they unfortunately do not provide any results
or details about that in their papers.

Koskenniemi (1990) uses a finite state syntax in his parsing and disambigua-
tion system (for the languages Finnish, Swedish, and English). Each sentence
is represented as a finite-state machine that accepts all possible readings of the
sentence. Parameters for the interpretations are (i) word-form interpretation,
(ii) clause boundary information, and (iii) syntactic tags (for each word). The
grammar uses constraint rules for selecting the correct interpretations. These
include (i) feasibility of clause bracketing, (ii) disambiguation rules for clause-
types, (iii) clause boundary constraints, and (iv) constraints about the number
of finite verbs. While this approach is obviously aimed at written (and hence
fully grammatical) language, it is certainly interesting and promising for being

7A standard example is the very frequent sequence “of the” (“PREP DET” in POS nota-
tion) which is not as plausible as e.g. “the man” (“DET NOUN”).
8Message Understanding Conference

10

applied to spoken language, as well. Unfortunately, no evaluation is made in
Koskenniemi’s paper, so nothing can be said about the overall performance of
the system.

In the realm of the MUC-6 conference, MITRE (Vilain and Day, 1996) de-
veloped a rule-based finite-state phrase parsing system which gave very good
results at the MUC-6 named entity blind test set (overall F-score® 91.2).19 The
system is based on Brill’s (1994) approach of learning rule sequences. However,
these results were obtained by handcrafted rules; a set of automatically created
rules gave a somewhat worse performance (overall F-score 85.2). While these
results are impressive in themselves, it has to be noted that this parser does not
attempt a full input coverage but just concentrates on spotting certain types of
phrases that are known in advance.

At SRI, the natural language research group (headed by Jerry Hobbs) has
been developing the FASTUS system for about five years, which is also aimed at
extracting information from natural-language text (Hobbs et al., 1992; Hobbs
et al., 1996). FASTUS (in its current form (Hobbs et al., 1996)) consists of
a five stage cascaded non-deterministic finite-state transducer. The stages are
organized as a pipeline as follows: (i) recognition of fixed expressions (e.g.,
names), (ii) basic noun groups, verb groups, (iii) complex noun groups and verb
groups, (iv) building of domain specific event-structures, (v) merging of event
structures and database entry. FASTUS was probably the first large system
built for a NL task which heavily relies on finite state technology. Its success
and its inspiration for other approaches can hardly be overestimated. The main
advantages of FASTUS are (i) its conceptual simplicity, (ii) its effectiveness, (iii)
its fast run time behavior, and (iv) its fast development/adaption time when
moving to a new domain.

Finally, I shall discuss Steven Abney’s chunk parsing approach. Unlike the
last two systems which are aimed at information extraction, his parser — called
CASS — is of a general purpose type (Abney, 1990).

Abney’s main idea is to implement a parser as a system of finite-state cas-
cades (Abney, 1996b).!! A finite-state cascade consists of a sequence of levels,
the most important being the levels of chunks and simplex clauses. Chunks are
contiguous, non-recursive cores of phrases like NPs, APs, etc., whereas simplex
clauses are clauses where embedded clauses have been turned into siblings (i.e.
iteration instead of recursion).

In the “Chunk Stylebook” (Abney, 1996a), Abney defines seven chunk cat-
egories: noun chunk (NX), verb chunk (VX), infinitive chunk (INF), present
participle (or gerund) chunk (VGX), past participle chunk (VNX), adjective
chunk (AX), and adverb chunk (RX).

Parsing itself is performed as a series of finite transductions, where each

9 — (B>+1)PR
32P+R 3
to either precision or recall.
10The following phrase types had to be identified (SGML-tagged): organization, person,
location, money, percent.
1n that sense, it is a similar approach to the one of (Hobbs et al., 1992; Hobbs et al.,
1996).

where P=precision, R=recall, f=a parameter which gives more weight

11

transduction at each level is defined as a set of patterns. A pattern consists
of a category symbol and a regular expression, hence it can be compiled into a
finite-state automaton and therefore the parsing process is very efficient. Since
there is no global optimization strategy involved, this cascaded parsing system
is also very robust: the philosophy is “to do the easy things first” and to delay
harder decisions (such as PP-attachments) as far as possible. Basically, Abney
sees the parser proceed by “growing islands of certainty into larger and larger
phrases” (Abney, 1996b, 2).

Abney (1996b) gives also some performance results for his parser: he re-
ports a per-word chunk accuracy of about 92%!? and precision/recall of about
88%/87%.1* CASS (version 2) parses on the order of 1000-5000 words per sec-
ond on a SunSparc workstation, depending on the number of levels involved.!*

A version of the CASS parser was used for parsing and creating semantic
annotations for Verbmobil data (Light, 1996). No evaluations of performance
are given in this paper but it is (to my knowledge) the first attempt to integrate a
finite-state parser with a spoken language system. Anecdotal evidence indicates
that the parsing system is fast and robust but does not always provide the
necessary information to create proper semantic representations. We take this
as a strong hint that a semantic mapper has to be very error tolerant in order
not to fail when faced with incomplete or inconsistent input.

2.8 Conclusion

There have been a large number of different approaches for parsing natural
language. While some of them are derived from formal theories of language, such
as theoretical linguistics, others are more guided by arguments such as speed and
efficiency. Particularly for the task of information extraction, finite state parsers
have been successfully implemented and employed. Since the chunk parsing
technique has proven to be a general coverage, robust and fast architecture,
it appears reasonable to use this technique for processing speech recognizer
hypotheses.

12 An independet human labeller got about 93% accuracy.

1391%/88% for the independent human judge.

14Experiments with our Phoenix POS based parser show comparable results: the average
parse speed is above 2000 tags/words per second.

12

Chapter 3

System Description

3.1 The General Picture

3.1.1 Global System Architecture

Figure 3.1 shows the global system architecture. The Nbest lists are generated
from lattices that are produced by the JANUS speech recognizer (Waibel et al.,
1996). First, the duplicates wrt. silence and noise words are removed, next the
word stream is tagged with (Brill, 1994)’s POS tagger. Then, the token stream
is “cleaned up” in the preprocessing pipe, which then serves as the input of the
Phoenix POS based chunk parser. Finally, the chunk representations generated
by the parser are used to compute scores which are the basis of the rescoring
component that eventually generates a new reranked Nbest list.

3.1.2 Definitions
3.1.2.1 Simplex Clause

A simplex clause serves as the basic unit for most of the main system compo-
nents. I give its definition as follows!:

A simplex clause is any finite clause that contains an inflected ver-
bal form and a subject (or at least one of the two, if not possible
otherwise). However common phrases such as good bye, hello, thank
you, etc. are also considered simplex clauses.

This definition implies that all subordinate and relative clauses are split into
separate units. This results in fairly small strings which are easier to handle for
the system.

1 follow the definition of a small clause in (Gavalda et al., 1997) which is different from
the aforementioned definition of a simplez clause in (Abney, 1996b).

13

input utterances

speech recognizer

word lattices

Nbest lists

G

POS tagger

Y

preprocessing pipe

Y

chunk parser

chunk sequence

%

Nbest rescorer

new lst-best list

Figure 3.1: Global System Architecture

14

3.1.2.2 Chunks

Chunks are contiguous non-recursive constituents within a simplex clause. Stan-
dard examples are: verb-groups, noun phrases, prepositional phrases etc.

The following example shows a break-up of a simplex clause into four such
chunks, one per line:

[conjunction] (when)
[nounphrase] (i)

[verbgroup] (was interviewing)
[prepphrase] (for a job)

3.1.3 Input

As a basis for this project, I mainly use the Switchboard (SWB) corpus database
which consists of more than 2000 dialogues of spontaneous speech (approx. 3
million words in total) (see (Godfrey et al., 1992)).

As input for my system, I use SWB transcripts and speech recognizer hy-
potheses, extracted from Nbest lists (see the Appendix for an example). The
latter come from a previous Switchboard evaluation (March 1996: Switchboard
and Callhome databases).

3.1.4 Output

The output of the system is a first-best list which is derived from the re-ranked
Nbest lists (for every utterance).

3.1.5 Resources

The Nbest lists are generated from word lattices produced by the JANUS speech
recognizer (Waibel et al., 1996; Zhan et al., 1996).

The part of speech (POS) tagger was retrained for this task using the code
and tools by Brill (Brill, 1994).

The reranking neural network is an adaptation of a standard neural net
backpropagation package (Shufelt, 1994).

The chunk parser proper is the Phoenix parser (Ward, 1991) which so far has
proven to be reliable and fast in the setting of ATIS, JANUS, ENTHUSIAST,
and various related projects but is here — to my knowledege for the first time
— used as a POS based parser.

3.2 System Components

3.2.1 Organization of this section

In this section, the modules that are used by my system are described in detail.
First a functional description, the module name and the programming language

15

in which it is written, are given. Next, the module’s input and output behavior
is characterized. Finally, in the case of modules where more than simple text
processing is done, its algorithm is described. The description may optionally
end with some additional notes that point out important considerations and/or
observations.

3.2.2 Preparation of the Data
3.2.2.1 Function

These modules take the Nbest-list, score it according to reference data files and
split the data into a train set (for training/development) and an independent
test set (for progress tracking). Particularly important are the annotations of
word error rate (WER) for each hypothesis of each utterance in the Nbest-list.

Some modules are used only for the purpose of generating the train/test
sets, whereas other modules (in bold face) also are used in evaluation mode,
where the WER cannot be computed ahead of time.

3.2.2.2 Splitting the Nbest list

Programming Language Perl
Program Name split.nbest.pl

Function Splits the Nbest list into N directories (”first-best” until ”Nth-
best”) and writes dummy-hypotheses for all utterances having fewer than N
hypotheses: in every directory we have a set of one hypothesis for each of the
utterances.?

Inputs Nbest-list.
Format:

utt-name start-frame global-recognizer-score hypothesis-rank
turn-label speaker start-frame duration hypothesized-word (or start/end/noise)

Example:

en_4792_A-0000 7.73 2581.57 1

en_4792 A 7.73 0.04 (2565.96 199.39
en_4792 A T.77 0.12 YOU 723.79 T714.20
en_4792 A 7.89 0.24 KNOW 1601.82 1561.00
en_4792 A 8.13 0.01) 0.00 0.00

Outputs In each of the n directories: a file hypo.n, in the same format, con-
taining the n-th best hypotheses of all utterances.

2The N directories have to erist ahead of time. We need this splitting because of the
scoring-module which assumes to have a list of one hypothesis per utterance, for all utterances.

16

3.2.2.3 Scoring All Hypotheses

Programming Languages Tcl, Perl

Program Names score-all.pl
...invokes...
scoreSwb2.tcl
...and...
getscore.pl

Function Scores all N hypo.n-files (insertions, deletions, substitutions, correct
words — with respect to reference files).

Inputs hypo.n-files (in directories 1...n)

Outputs
e hyp.ctm.pra.* files: detailed error-analysis
e hyp.ctm.sys: error-overview table

e scores.n files: format: utt-name, WER, correct words (C), substituted
words (S), deleted words (D), inserted words (I)

Algorithm Main scoring script is scoreSwb2.tcl (by Torsten Zeppenfeld).
getscore.pl just extracts the results from the .pra-files (simple string matching)
and calculates the WER: WER=(S+D+1I)/(C+S+D); if (C+S+D)=0: WER=0.
3.2.2.4 NBest Reformatting and Duplicate Filter

Programming Language Perl

Program Names
e wer-annotate.pl
e create-small-nbest.pl

e remove-dupl.pl

Function These scripts generate a new Nbest format whose main advantage
is compactness and so speeds up further processing. The original Nbest list is
annotated with numbers for C/S/I/D (to be able to easliy compute the WER
later on), duplicate hypotheses (which differ only in noise-words (ignored by our
parsing/rescoring system)) are removed; in this process, important information
about the various hypotheses and utterances is gathered and stored in files for
the use by further system components.

17

Inputs

scores.n files

original Nbest list

Outputs

annotated Nbest list (in #-lines, C/S/D/I-infos are added)
Nbest list in new format (name: LABEL.data)
Nbest list in new format without duplicates

utterance file (see A.2; name: utts. LABEL; one hypo per line, only the
words themselves)

utterance based info file (see A.3; name: no-dup.LABEL.log)
hypothesis based info file (see A.4; name: no-dup.LABEL.info)

Algorithms

wer-annotate.pl: read in scores.i file and store C/S/D/I; read in Nbest-file
and attach C/S/D/I-info in #-lines

create-small-nbest.pl: just copy #-lines, for all other lines: just write
the hypotesized words (no noises/start/end-symbols): s.t. we get one
hypothesis per line now (instead of one word per line)

remove-dupl.pl: read the Nbest list (in new format) and generate a new
list which does not contain any duplicates (i.e., hypotheses that only differ
in noise- and/or silence-words: these two word-types are irrelavant for our
system); also store important information for other system components on
some info-files (no-dup.*) and generate the utterance-file (utts.LABEL)
which will be the input for further processing (i.e., the POS tagger com-
ponent).

Notes

The variable "LABEL” refers to the name of the working directory, i.e.,
where the Nbest list resides and the system was started. Many (but not
all) files carry this LABEL in their name.

The removal of duplicates has a very significant effect on the size of the
Nbest list: whereas the average length of an Nbest list (N = 300) in
the Devtest set is 232.83, the average length after removing the duplicates
shrinks by about 64 percent to 82.7 hypotheses per utterance.

3For short utterances, there are less than 300 distinct hypotheses in the lattice.

18

3.2.2.5 Generate train/test Data Sets

Programming Language Perl

Program Name
¢ split-data.pl
o gen-ref-cts.pl

e eval-score.pl

Function These modules split the data randomly in train and test sets, gen-
erate a count-file for the length of the reference-files (for normalization), and
evaluate the WERs from the .data-files (generated by split-data.pl).

Inputs
e Nbest list in short format.

e one scores.i-file

Outputs
e * data - files
o utts.ref.length

e wer.*.out- files

3.2.3 Part of Speech Tagger
3.2.3.1 The POS tagger itself

Function The POS tagger assigns parts of speech (such as "noun”, ”adjec-
tive”, etc.) to the words of the input string (i.e.: speech recognizer hypothesis).
Basically, we use a version of (Brill, 1994)’s tagger (V1.14) which was adapted
to and trained for the Switchboard corpus.

Programming Language C
Program Name tagger

Inputs A text file consisting of one utterance per line. All words have to be
in lower case. No punctuation marks in the text.

Example:

you know if you only only percent of the for the for literature
was a good idea but tend to like your car now

19

Outputs The same text file annotated with POS (these POS are in upper
case and follow a slash after the word).

Example:

you/PRP know/VBP if/PREP you/PRP only/RB only/JJ percent/NN of/PREP
the/DT for/PREP the/DT for/PREP literature/NN was/VBD a/DT good/JJ
idea/NN but/CC tend/VBP to/T0 like/PREP your/PRP$ car/NN now/RB

Note Since the tagger ”swallows” linefeeds on a random basis (roughly one
per 1000 lines), a script was written to repair the output (repair-brill.pl).

Tagset

Note The tagset used is mainly based on slightly modified tagsets of the Penn
Treebank and the Brown Corpus, as it appeared on a manually tagged subset
of the SWB corpus. Some minor modifications were made for our system and
are documented below.

*
1]

not used by our system
= new introduction
changed semantics from original tag set

g =
I

! ANA anaphoric element, e.g. i can understand that/ANA
(before usually marked as determiner); has often a noun-like
behavior
PRPA pers.pronoun in accusative case (no bound. before that)
NEG negation particle (for semantics/info-extr.)
AFF affirmative particle (... ditto...)
CCC constituent conjunction (CC is ONLY a clause conjunction!)
(no segm.boundaries before that)
! AUX-N negated AUX (isn’t) (cheap, get for free)
! CV conversational words (e.g. hi, bye-bye...; *could* also
be tagged as RB, but get it quite cheap if restricted to few words)
! EOS pseudo-tag, only used by later components, not by POS-tagger itself

* 77 (not tagged??)
(end of sentence)
AUX (might, can...)
& CC (conjunction), now ONLY clause type
CD (card. number)
DT (determ.)
DT-AUX (that’s)
EX (there, here)
EX-AUX (there’s, here’s...)
* FW (foreign word =>should be mapped to closest Engl. repres.)

20

* GW (unclear, e.g T/GW V/NN) -> letter-words (i/b/m...): NNP in general
JJ (adj.)
JJR (adj.comp.)
JJS (adj. sup.)
NN (noun)
NNP (proper noun)
* NNP.S. (probably typo)
NNPS (plural proper noun)
NNS (plural noun)
* PDT ("all", plural det.)
PREP (preposition, can also take a gerund-(clause) as argument)
PRP (pers.pronoun)
PRP$ (poss. pers. pronoun)
RB (adv. (modif.). e.g. always, just, kindof...)
RBR (-"-, comp.)
RBS (-"-, sup.)
RP (verb-particle, e.g. set...up, walked...out/RP)
& TO ("to"+inf.), now all kinds of prep+gerund, as well
UH (uh-huh etc.)
VB (vb inf.)
VBD (vb. past)
VBG (vb. gerund)
VBN (vb. past partic.)
VBP (vb. present)
VBZ (infl. verb 3rd sgl. present)
& WDT (rel. pronoun, but not consist. (that,which...)), now CONSISTENT rel.pr.
& WP (wh-particle, errors here, sometimes

class. rel.pron. also "what", "who"...; =>
now exclusively adjectival wh-particles (e.g. what company is ...)
WRB (where/how/when: oblique argument-wh-part., standalone, if not
a WDT)

* XX (mumbled word)

Note: Useful modules for the (re-)training procedure of the POS tagger are
described in section 3.2.8.3.

3.2.4 Preprocessing Pipe
3.2.4.1 Function

The preprocessing pipe (see Figure 3.2) is a sequence of PERL-scripts, taking the
tagged hypotheses from the POS tagger as its input and producing a ”cleaned
up” version (for use by the chunk parser) as its output. Appendix B.1 illustrates
a sample run through this preprocessing pipe.

21

(from POS tagger)

¢

repetition filter (pass 1)

short form expander

|

multi-word composer

|

simplex clause segmenter

|

babble phrase filter

|

repetition filter (pass 2)

(to chunk parser)

Figure 3.2: Preprocessing Pipe

22

3.2.4.2 Repetition Filter

Function This filter eliminates repetitions of phrases up to length three; all
repetitions found are reduced to the single occurrence.

It is used both right after the POS tagger and before the chunk parsing
system component ("first pass” /”second pass”). The reason for two passes is
that we want to keep the babble words/phrases for simplex clause segmentation,
but once the babble filter has removed these, we also want to remove repetitions
which had not been there before. (See the example below).

Program repfilter2.pl
Programming Language Perl

Inputs A text file with word/TAG-pairs.

Example:

okay/UH i/PRP uh/UH i/PRP want/VBP to/TO i/PRP want/VBP to/TO talk/VB
about/PREP these/DT these/DT issues/NNS

Outputs

First Pass:

The same file with the removed repetitions (we still have babbles here):

Example:

okay/UH i/PRP uh/UH i/PRP want/VBP to/TO talk/VB about/PREP these/DT
issues/NNS

Second Pass:

Meanwhile, we don’t have babbles any more:

i/PRP i/PRP want/VBP to/T0 talk/VB about/PREP these/DT issues/NNS

Now, we get...:

i/PRP want/VBP to/TO talk/VB about/PREP these/DT issues/NNS

Note It is not clear yet whether the POS-information should be ignored or not.
Currently, it is not ignored which seems not to be a good idea in all cases. (Ex.:
”...only/JJ only/RB...” does not get filtered now.) A good argmunent though
for not ignoring the POS information would be cases like ”he said that that
house should be sold now” where the two “that”-tokens would get a different
POS tag.

3.2.4.3 Short Form Expander

Programming Language Perl

Program Name expand-contr.pl

23

Function Expands short forms (contractions) to facilitate the task of the
chunk parser. (Examples: e.g. 7it’s, we're”...).

Inputs Text file with word/TAG pairs.
Outputs Text file with word/TAG pairs, the short forms being expanded.

Algorithm Simple string matching. However, with the ”s”-form one has to
ensure that it does not follow a noun (from the POS information) since this
means we quite probably have a Saxon genetive form here.

3.2.4.4 Multi-Word Composer

Programming Language Perl
Program Name multi-word.pl

Function Composes multi-words out of two or more single words to facilitate
the task of the chunk parser. (Examples: because_of, a_lot_of, ...)

Inputs Text file with word/TAG pairs.
Outputs Text file with word/TAG pairs, with some multi-words.
Algorithm Simple string matching.

3.2.4.5 Simplex Clause Segmenter
3.2.4.6 Function

The simplex clause segmenter either runs as a neural net (NN) or as a rule-based
Perl script. In the current final version of the system, the option for the NN
cannot be used (the NN option needs more work and refinement; but the script
performs about equally well, anyway.)

The NN takes a text file of word/TAG-pairs (one utterance per line) and gen-
erates (i.e. simply inserts) segmentation markers ("eos/EQS”) in those places
where it assumes that a simplex clause boundary might occur.

The training is based on a manually segmented file which contains ”***”
strings as ”end of segment”-markers (Gavalda et al., 1997).

The rule based script employs simple heuristics (e.g. ”boundary before a
conjunction or a non-accusative personal pronouns”) to achieve the same task.

3.2.4.7 NN in Segmenting Mode

Programming Language C

24

Program Name do_segm

Function Inserts hypothesized simplex clause boundaries (”eos/EOS”) into a
text-file consisting of word/TAG-pairs, one line per utterance.

Inputs Text file with word/TAG pairs.
Outputs Text file with word/TAG pairs plus inserted segment boundaries.

Status Currently, the input has to go conform with the format for the training
program (Gavalda et al., 1997). This should be changed to the here mentioned
standard word/TAG-pair text-file format in future work. The main advantage
would be a significant reduction in file size, probably without a loss in speed.

3.2.4.8 NN in Training Mode

Programming Language C
Program Name NNsegment

Function Trains the NN on manually labelled data for the task of simplex
clause boundary prediction, based on information about POS and trigger word
in a small context window (for more information see (Gavalda et al., 1997)).

3.2.4.9 Segmentation Script

Programming Language Perl
Program Name ins-seos.ml.pl

Function Inserts hypothesized simplex clause boundaries (”eos/EOS”) into a
text-file consisting of word/TAG-pairs, one line per utterance.

Inputs Text file with word/TAG pairs.
Outputs Text file with word/TAG pairs plus inserted segment boundaries.

Algorithm Uses simple heuristics about where possible simplex clause bound-
aries can occur (e.g. before conjunctions, before personal pronouns which are
non-accusative, etc.)

3.2.4.10 Postprocessor

Programming Language Perl

25

Program Name ins-seos2.pl

Function Makes simplex clauses from utterances, using the boundary infor-
mation: After each "eos/EOQS” marker, a newline is inserted s.t. one utterance
can now consist of multiple lines (one line per simplex clause).

Additionally, an index-file is created to keep track of the starting position of
the hypotheses which are now consisting of multiple lines (one line per simplex
clause).

Inputs Text file with word/TAG pairs (and eos/EOS markers).

Outputs
e Same text file with one simplex clause per line.

e Indexfile (see section A.5) (name: index.segm; lists the starting line for
each hypothesis, containing possibly more than one simplex clause, start-
ing with line 0)

3.2.4.11 Babble Phrase Filter

Function Removes all babble words and phrases from the utterances.
Program Name remove-babb.pl

Programming Language Perl

Inputs A text file with word/TAG pairs, one line per utterance.
Outputs The same text file, but without babble words or phrases.

Algorithm Scan text file for all words with tag=UH and remove them from
the text; also, remove some phrases wjoch are at least partially tagged with UH
(e.g., “you/UH know/VBP?”). If an utterance gets empty through this process,
insert a dummy ”eos/EOS” element to allow further components to still work
with that utterance.

Note It isnot clear how “far” this removal should go. Certainly, strings like "I
guess” or "you know” can be considered babbles, but what about longer phrases
like ”and stuff like that”?

26

3.2.5 POS based Phoenix Grammar
3.2.5.1 Function

The grammar is based on the POS tags used throughout our system. It is
written using the Phoenix formalism which is based on frames and slots and
requires one grammar-file (extension .gra) for each slot (Ward, 1991).

3.2.5.2 Required Files

e forms (see A.6): this specifies all slots which can occur in a top level frame
(we have only one frame in our grammar (called ”chunks”))

e nets (see A.7): this specifies all slot names in the grammar (corresponding
to a .gra-file)

e MAP_STRINGS (see A.8): this file is used by Phoenix as a preprocessing
filter; in our system, we make no use of it, however

e Rule files (see A.9): these are the ”proper” grammar rule files, one for
each slot (and some include files for nonterminals used in more than one
grammar file); nonterminals are either in square brackets (slot names) or
start with upper case; terminals start with lower case. * or + markers
in front of tokens indicate that this token may occur more than one time
(*+: 0 or more times, +: 1 or more times, *: 0 or 1 times).

3.2.6 The POS Chunk Parser

Function This system component uses a POS based Phoenix grammar to
parse the input string into chunks (in general: constituents like NPs, PPs, etc.)
(see Figure 3.3). The parsing itself is done by the Phoenix parser (Ward, 1991).
The input to this component is a preprocessed file containing word/TAG-
pairs, one line corresponding to one simplex clause.
The output is the parsed and formatted result file from the ”Information
Combiner” (see there).

3.2.6.1 Word/TAG Splitter

Programming Language Perl

Function Splits word/TAG-pairs into two files of just words and tags, respec-
tively.

Program Name splittag.pl

Inputs Text file with word/TAG pairs, one simplex clause per line.

27

preprocessed
word/tag pairs

¢

splitter

tag stream

POS grammar ——

POS based Phoenix
chunk parser

word s

tag filter chunk filter

tream

information combiner

chunk sequence

Figure 3.3: POS Chunk Parsing System

28

Outputs Two files: words.out (just containing the words), and tags.out (just
containing the tags), same number of tokens per line.

Algorithm Trivial. (We need this script because the Phoenix POS grammar
can take POS input exclusively.)

3.2.6.2 Phoenix Chunk Parser

Programming Language shell scrpit, C

Program Names
e inter

e process_trans_ml
Note inter is a script which invokes the Phoenix parser (process_trans ml).

Function Parses the input text (a POS sequence) according to the POS
Phoenix grammar.

Input POS sequence, one line per simplex clause.

Output Parsed POS sequence, interspersed with various information from the
Phoenix parser (for a sample output see section A.10).

Algorithm Phoenix Parser: See (Ward, 1991; Ward, 1994)

Chunk labels

Chunk Labels:

(a) nominal

[_np] noun-phrase

[_pp] prep.phrase

[_whnp] wh-noun-phrase (what experience do you have...)

(b) verbal

[_vb] verb-complex (e.g. has been working)

[_vbneg] verb-complex with negation (e.g. hasn’t been working)
[_toinf] to-infinitive (to+verb/prep+gerund)

[_vpart] verb-particle (e.g. they moved out)

[_aux] auxiliary verb (isolated)

[_auxneg] aux. verb, with negation (e.g. aren’t you laerning...)

29

(c) adj/adv
[_Ladjp] adjective phrase
[_adv] adverbials

(d) connecting
[_conj] conjunction
[_Lrpro] relative pronoun

(e) pragmatic
[_expl] expletives (there are...)
[_comm] comment (that’s...)

[_neg] isolated negation (mo...)

[Laff] isolated affirmative (e.g. yes, yeah)

(f) other

[_wh] wh-word (e.g. who is talking?)

[Lmisc] rest-category (e.g. greetings: ‘‘hello’’)
[_eos] end of simplex clause marker

Additionally to these “top level” chunk labels, there are three head-labels,
for nominal, verbal, and prepositional heads. These are not exploited in the
current version of the system but will be crucial in the next stage, when sub-
categorization information and selectional restrictions are applied.

3.2.6.3 Parsed Tag Extractor

Programming Language Perl
Program Name ph-filterl.pl

Function Filters all lines from the Phoenix output file which start with a >:
these indicate that some (possibly partial) parses were found and also indicate
which tokens remained unparsed.

Additionally, a file containing the line-numbers of non-parsed simplex clauses
is created. (Essential for the next extracting/combining components.)

Inputs Phoenix output file.

Outputs

e phl.out (see section A.11): contains the POS lines which were (partially)
parsed

e not.parsed.list: contains the line-numbers of not parsed simplex clauses

30

3.2.6.4 Parsed Chunk Extractor

Programming Language Perl
Program Name ph-filter2.pl

Function Extracts a sequence of all parsed chunks from the Phoenix output
file.

Inputs
e Phoenix output file.

e file not.parsed.list (from Parsed Tag Extractor)

Outputs File ph2.out (see section A.12): contains all parsed chunks, one
chunk per line. A ”delim”-line specifies the beginning of a new simplex clause.

Remark For this program to work, the file not.parsed.list must have been
generated by the previous component (ph-filterl.pl) already. Therefore, these
two filters cannot be run in parallel.

3.2.6.5 Information Combiner

Programming Language Perl
Program Name combine.pl

Function Combines information from the previous extraction steps and as-
sembles everything into a standard output format, on a simplex clause basis.

Inputs
e phl.out (from the Parsed Tag Extractor)
e ph2.out (from the Parsed Chunk Extractor)

e not.parsed.list (generated from the Parsed Tag Extractor)

segmented text-file before the Babble Filter

words.out (words without tags, produced by splittag.pl)

31

Outputs

e Assembled chunk parse information in the following format:

(<== ... comment)

#569 <== number of simplex clause
{if/CC you/PRP only/RB the/DT only/JJ person/NN eos/EQ0S }
<== original simplex clause, with babble words/phrases

[_conj 1 (if/CC) <== a parsed chunk

[np] ([_pn_head] (you/PRP)) <== another parsed chunk
only/%JJ <== a non-parsed word

[.op 1 (the/DT only/JJ [_n_head] (person/NN))

[_eos] (eos/EQ0S)

e chunks-line.out (see section A.13): This is a file containing all parsed
chunks, one line per simplex clause, excluding ”eos” chunks. It is needed
for determining the chunk LM scores.

Algorithm

¢ read in not.parsed.list to get line-numbers of not parsed simplex clauses

read in the tags-lines from phl.out
e read in words.out (corresponding to the tags read in previous step)

e read in segmented.utts.out (segmented hypos, including babbles)

while ph2.out is not EOF do

— get line

split it into tokens
— if (first token==delim) = we have a new simplex-clause

* clean up unparsed tags in prev. clause
* deal with a possibly unparsed sx-clause
* initialize arrays for tags and words

— else... (a parsed chunk)...

* foreach token: combine the tags and words
e deal with remaining unparsed tags in current sx-clause

e deal with possibly remaining unparsed sx-clauses

32

chunk sequence

Sp! eech recognizer score

(acoustlc model/language model)

chunk LM score chunk coverage score SR score
generator generator normalization
score matrlx
NN reranking reranking by UNIX sort

reordered candidate hypotheses

cutoff filter

1st-best generator

new 1st-best list

(devtest mode only)

A

reranking evaluation

WER gain

Figure 3.4: Nbest List Rescorer

33

3.2.7 NBest List Rescoring System
3.2.7.1 Function

The rescorer (see Figure 3.4) consits of two main components: (i) the rescorer
”proper” whose function it is to determine a new rank-order of the hypotheses,
based on some scores calculated initally, and (ii) the reranking filter which
decides based on some criterion/scores, which of the utterances to rerank and
which not.

Both main components can be run using a neural net (NN) or a simple script.
For the rescorer, the simple script just sorts the score-files for each utterance to
some given (UNIX) sort command; for the filter, the simple script uses a cutoff
value for the (average) hypothesis length: only utterances which exceed this
length are eventually reranked. (In the current final version, there is only the
option of using the simple cutoff filter; a NN filter could be plugged in, however,
if properly trained resp. trainable.)

In ”devtest” mode, the end of this component is a reranking evaluation where
the average WER gain is computed; in "eval” mode (where WER gains cannot
be computed anyway), the output is the new (reranked) first-best list, derived
from the initial Nbest list which was given to the system in the beginning.

The various scores used here come from the speech recognizer and the chunk
parsed output.

3.2.7.2 Chunk LM Score Calculation

Programming Language C
Program Name wnric_new

Function Calculates chunk LM scores, for training/rescoring mode of the NN
rescorer. Written by Klaus Ries.

Inputs
e dictionary file
e n-gram file

e chunks-line.out: chunk-sequences, one hypo per line, for chunk-LM-calculation

Outputs

e lm-scores.out: one score per line (i.e. per simplex-clause)

Algorithm The LM scoring is performed by Klaus Ries’ program wnric_new.

34

3.2.7.3 Chunk Score Calculation

Programming Language Perl
Program Name determ-score.pl

Function Calculates scores from the chunk parser’s output (one set of scores
per hypothesis), for training/rescoring mode of the NN rescorer.

Parameters
e working-directory ("LABEL”)
e mainmode (devtest or eval)
e chunk-score-mode (segm_based /word_based)
e penalty-mode (word_skip_pen/segm skip_pen)
e penalty factor (weighting factor for chunk LM penalty)

Inputs
e utts. LABEL.parser.out: chunk parsing system output file

e Im-scores.out: chunk LM scores (one per simplex clause)
e no-dup.LABEL.log: nr of hypotheses per utterance, utterance names

e no-dup.LABEL.info: various other scores (e.g. WER, normalized speech
recognizer score)

e index.segm: starting line of each hypothesis (in LABEL.out we have
simplex clauses as units, so we have to combine their scores to yield
hypotheses-scores: all rescoring/reranking is based on hypotheses)

Outputs

o ./NNscores/scoreNN.utt-name: the generated score-files, one per utter-
ance (contains all different hypotheses)

e LABEL.SC.out: chunk parsing system output files with annotations of
scores, for devtest purposes

Normalized Speech Recognizer Score Since the global speech recognizer
(SR) scores are frequently only minimally different within an Nbest list, we
decided to use the hypothesis rank instead to reflect the speech recognizer’s
“opinion” about the relative “correctness” of the hypotheses that way. The
formula for this rank-reflecting score is as follows:

size_nbest — rankpypo; + 1

norm_SR_scorepypo; = (3.1)

size_nbest

35

Chunk Coverage Score The chunk coverage score should reflect how well
the input was covered by the chunk parser. It is calculated as follows:?

num_chunks

chunk_coverage_score = (3.2)

elements

where elements corresponds to
e number of words in the utterance if chunk_score=word_based

e sum of parsed chunks and non-parsed sections® if chunk_score=segm_based
and pen_mode=segm based

¢ sum of parsed chunks and non-parsed words if chunk_score=segm based
and pen_mode=word based

To avoid a division by zero, elements =4.5 1 in case of empty simplex clauses.

Skipped Words/Sections Scores These scores are “complements” of the
chunk coverage scores and are calculated as follows:

num _skipped_words
elements

skipped_words_score = (3.3)

num _skipped_sections
elements

skipped_sections_score = (3.4)

where elements is defined exactly in the same way as for the chunk coverage
score.

Chunk Language Models
In our system, two basic types of chunk language models were used:

1. (standard) backoff ngram models (trigrams and fivegrams)

2. models that penalize longer chunk sequences

Chunk Ngram Models The backoff ngram models were created as follows:

1. feeding the SWB corpus (3 million words) through our system, up to
the chunk parser output, generating one chunk sequence for each simplex
clause (there are over 500000 simplex clauses in the corpus)

2. postprocessing these chunk sequences generated by the module combine .pl
s.t. they conform with the requirements of the next module

3. creating the ngram model using the ngrammodel tool (Ries et al., 1997)

4See section 3.3.5 for an explanation of the various parameters that are relevant here.
5A non-parsed section is a contiguous segment of non-parsed words.

36

We generated a trigram and a fivegram model, both get hitrates of the top
ngram of over 99%; the perplexity is 5.0.% In the subsequent evaluations, these
models made only a marginal difference in performance.

Since skipped words (or sections) were not included in this LM, we accounted
for these by subtracting a weighted penalty; the system was tested on different
weights and whether it would subtract this penalty for each skipped word or for
each skipped section.”

The LM score for one hypothesis has to be a normalized combination of the
scores of the simplex clause and is calculated as follows:

LM score — Z?Zl sx_score; — pen_weight x skipped_items

length (3:5)
where sz_score is the ngram LM score for a simplex clause®, length is either the
number of sections or the number of words in the hypothesis (system parameter
chunk_score), pen_weight was varied between 0.0 and 2.0, and skipped_items
could, as mentioned above, be either the number of skipped words or the number
of skipped sections.?

Length Penalty Chunk Language Model Since we made the observation
that a (comparatively) high number of chunks within a simplex clause usually
means that the input is likely to be ill-formed (i.e., the chunks are shorter than
on average), we are using a second chunk LM here, which exactly accounts for
this fact.

It is derived as follows:

1 Osnum_chunks

LMI th_ i = .
ength_score ey (3.6)

which means that the longer the simplex clause, the higher the score will be.
The total score for a hypothesis is calculated exactly in the same way as in
equation 3.5, substituting LMlength_score for sz_score.

3.2.7.4 Data Preparation for NN Rescorer

Programming Language Perl
Program Name prep-rescore.pl

Function Reads score-files produced so far to generate the appropriate input
format for the NN rescorer. Basically, all columns after a preindicated number
are reproduced to STDOUT. (Should be directed to: ALL.scores.NN)

6We have only 19 different chunk types (the eos chunk is ignored throughout scoring).

7A section is either a chunk or a contiguous segment of non-parsed words in the output of
the chunk parser.

8This is computed by Ries’ utility wnric_new.

9Since we are using the negative LM score, a low score indicates a high probability for a
given chunk sequence.

37

Inputs
e no-dup.LABEL.log (for utterance names)
e ./NNscores/scoreNN.*-files

Outputs

e ALL.scores.NN (see section A.14) (from STDOUT): one file, containing
the scores used by the NN rescrorer; first column has to contain WER, (in
case of eval-mode: dummy-0.0-values)

3.2.7.5 NN Rescorer in Train Mode

Programming Language C
Program Name NNrescore

Function NN for estimation of true WER for each hypothesis (input: various
scores, target: true WER).

Inputs ALL.scores.NN: Vector-File: first column=true WER, all other columns:
various scores.

Outputs Trained NN. (Weights-File)

Algorithm Standard Backpropagation (backpropagation part implemented
by Jeff Shufelt; code from Tom Mitchell’s Machine Learning class, fall term
1996, (Shufelt, 1994)).

3.2.7.6 NN Rescorer in Rescore Mode

Programming Language C
Program Name do_rescore
Function Estimates WER from various scores.

Inputs
e Trained NN

e ALL.scores.NN: same vector file as for NNrescore. But obviously, the first
column is ignored (true WER); in evaluation mode, we fill that with a
dummy-value (e.g. 0.0).

38

Outputs File with two values per line: first-column-value (true WER in
devtest-mode), estimated WER.

Algorithm Simple feedforward of the input, using the weights from the pre-
viously trained NN.
3.2.7.7 NN Rescorer Postprocessing

Programming Language Perl

Program Names

e divide-resc-res.pl

e comb-resc-info.pl
Function Dividing the sorted results of the rescorer NN into the directory
./resc-res, producing one file per utterance (divide-resc-res.pl); putting some
more info to these files, derived from previously created info-files (comb-resc-
res.pl).
Inputs (Note: LABEL=current working directory)

e no-dup.LABEL.log: nr of hypotheses per utterance

e NN result file (true and estimated WER)

Outputs
e ./resc-res/utt-name.sorted: rescorer-result-files (three values per line)

e ./resc-res/utt-name.NNrerank.sorted: comprehensive infos about each hy-
pothesis of each utterance (the estimated WER, and the hypo-nr appear
at the end of the lines)

3.2.7.8 Simple Rescorer

Programming Language Perl
Program Name simple-reramk.pl

Function Reranks the score*-files in ./NNscores by simply sorting these using
a UNIX sort string command (e.g. ”-k 5n -k 6rn -k 4rn”).

Inputs
¢ no-dup.LABEL.log: utterance-names

e scoreNN.*-files in NNscores

39

Outputs

e ./resc-res/utt-name.simple-rerank.sorted

Note Before sorting, intermediate files are created which have dummy-WERs
and line-numbers appended to each line, for compatibility with the output from
the NN rescorer. (./NNscores/scoreNN.plus2.*-files)

3.2.7.9 Data Preparation for Rerank Filter

Programming Language Perl
Program Name prep-dec-resc.pl

Function Extracts vectors from the summary-file generated by eval-rerank.pl
to produce a suitable input file for NN training/testing.

Parameters
o ranking method (NNrerank/simple-rerank)
o working directory

e “train” (optional: if specified, all.summary is read and the WER gain/loss
information is extracted to column 1, for NN training; else: a dummy value
(0.0) is put to this column)

Inputs
e ./resc-res/*.sorted

e all.summary (from eval-rerank.pl, if flag ”train” is specified)
Outputs ALL.scores.filter (column 1: WER gain/loss (or 0.0))

Notes

e The WER gain/loss info has to be in column 2 of all.summary. Cur-
rently, the extracted columns and their weight-factors are fixed; we could
implement these later as parameters.

e In the current version of the system, the rerank method has to be specified
as simple-rerank since the NN rerank filter has not been fully developed.

3.2.7.10 Reranking Filter in Train Mode

Programming Language C

40

Program Name NNdecision
Function Tries to determine when to rerank and when not to: If the target is
negative (delta < 0: the reranking put a worse hypo to the top), we don’t want

this utterance to be reranked and if positive, we do.

Inputs Vector file; first vector: delta (old-WER - new_ WER), the other vec-
tors: several scores and features.

Outputs A trained NN (weights).

Algorithm Standard backpropagation NN (the backpropagation routines were
developed by Jeff Shufelt, code from Tom Mitchell’s Machine Learning class, fall
1996 (Shufelt, 1994)).

3.2.7.11 Reranking Filter in Filter Mode

Programming Language C
Program Name do_dec

Function Decides whether to rerank an utterance or not, based on the previ-
ously trained NN.

Inputs Trained NN; vector file is same as for training, but obviously, the first
column is ignored; in evaluation-mode we have to fill in a dummy-value (e.g.
0.0).

Outputs For each utterance: Either 0 (don’t rerank) or 1 (rerank), one integer
per line.

Algorithm Simple NN feedforward of the input.

3.2.7.12 Simple Filter

Note in the current final version of the system, this is the only option for
filtering.

Programming Language Perl
Program Name simple-filter.pl

Function Decides whether to rerank an utterance or not, based on the average
length of the hypotheses of the current utterance.

41

Inputs ALL.scores.filter (contains average hypothesis length in column 2)

Outputs For each utterance: Either 0 (don’t rerank) or 1 (rerank), one integer
per line.

3.2.7.13 Reranking Evaluation

Programming Language Perl
Program Name eval-rerank.pl

Function Reranks the hypotheses for each utterance according to the esti-
mated WER from the NN rescorer. Writes evaluation files which tell about the
difference in WER between old and new Nbest list.
Inputs

o filter.out (from NN filter/simple filter)

e no-dup.LABELL.log

o ./resc-res/*.sorted-files

Outputs

e ./resc-res/utt-name.eval: for each hypothesis: comparison between this
position in old vs. new Nbest list (delta-WER, average-WER old/new)

e all.summary: summary information for all utterances (e.g., first ranked
hypothesis number, average WER gain)

Note The position of the info in the *.sorted-files is crucial for this program.

3.2.7.14 First Best List Generator

Programming Language Perl

Program Name make-new-1stbest.pl

Function Generates first-best list based on the rerank-filter info in filter.out
and on the info in extract.info (is generated at run-time). Uses the original

Nbest list for extracting (s.t. we get the same format in the end).

Parameters
e working-directory

e reranking method (NNrerank/simple-rerank)

42

Inputs
o filter.out (0 or 1: no rerank/rerank)
e no-dup.LABEL.out: utterance names
o ./resc-res/*.sorted

e original Nbest list (from STDIN)

Outputs

e First-Best List (to STDOUT; one hypo per utterance, same file format as
Nbest list)

e extract.info (see section A.15) (utt-name, nr of best hypo found in rescorer)

Note This program assumes that the original hypo-nr is in the first column
of the *.sorted-files in ./resc-res.

3.2.8 Miscellaneous Modules

3.2.8.1 Function

Various useful modules/programs/scripts which are not directly parts of the
system itself.

3.2.8.2 Computing the WER curve

Programming Language Perl
Program Name comb-score.pl

Function Computes the theoretically best WER achievable up to a size k of
the original Nbest list, i.e., assuming we knew which hypothesis we have to pick
(i.e., the one with the lowest WER so far).

Inputs scores.n files

Outputs WER files, for gnuplot (two values per line: index k, best WER so
far)

3.2.8.3 Modules for Training and Testing of the POS tagger

Function (Brill, 1994)’s tagger (V1.14) comes along with various utility scripts
for training and adaptation, but there is no “global” training script available.
With the guidance of the different README files, I constructed some useful
scripts that greatly facilitate these essential tasks of (re-)training, adaptation,
and testing of the tagger.

43

Program Names

doprep.pl
pot-tag.pl
dotrain.pl
merge-lex.pl

eval-tagger.pl

Programming Language Perl

Inputs

doprep.pl: The input is initially an untagged corpus. The file-lines, where
to start and where to end tagging are also given.

pot-tag.pl: A tagged (sub-)corpus.
dotrain.pl: Two tagged (sub-)corpora

merge-lex.pl: a small lexicon with tag frequencies from the current training
corpus and a large lexicon (the “original” one)

eval-tagger.pl: A correctly tagged reference (sub-)corpus and an automat-
ically tagged equivalent (sub-)corpus

Outputs

doprep.pl: A pre-tagged version of an untagged corpus, useable for manual
tagging

pot-tag.pl: A tagged (sub-)corpus with annotations for potential tagger-
errors

dotrain.pl: updated files for “contextual rules” (and possibly also for “lex-
ical rules” and for the tagger-lexicon)

merge-lex.pl: a new lexicon, where the order of tags may have changed

eval-tagger.pl: log-files with error-statistics and global accuracy evaluation
(log, .stat, .unswords: three output-files with decreasing amount of error-
information)

44

Algorithms

o doprep.pl: Tagging of the untagged subcorpus with the current version of
the tagger; invoking pot-tag.pl for attachment of tag-alternatives.

e pot-tag.pl: For all tag/word-combinations which are frequently mistagged,
tag-alternatives are added for ease of manual editing.

e dotrain.pl: (re-)trains the tagger, using the first half of the data for im-
proving on the “lexical rules” (optional) and the lexicon (also optional),
and the second half for an improvement on the contextual rules; finally,
eval-tagger.pl is invoked for evaluation of current accuracy

e merge-lex.pl: re-orders the tags in the big lexicon if they are in a different
order in the small lexicon (order is representing frequency)

e eval-tagger.pl: comparison of a manually tagged model-file with a machine-
tagged file, producing various sorts of statistics (see above)
Note 1: To perform the training, the following steps are usually done:
1. work on the lexicon, prepare as much as possible ahead of time
2. get the untagged source corpus
3. repeat the following steps, until the whole corpus is tagged

(a) call doprep.pl with 2 indices corresponding to the lines of the current
subcorpus you are working with
(b) manually correct the tagging using the output of that module

(c) split the total corpus that has been tagged so far in two halves and
call dotrain.pl using these two files as arguments

Note 2: Since speech recognizers work with a fixed dictionary, it does not
make much sense in training the lexical rules since they are meant for predicting
the correct tags for unseen words. Likewise, the modification of the lexicon
should not be necessary during the retraining procedure, unless one encounters
words where the tag frequencies do not correspond to the ordering in the original
lexicon. In these case, the “lexicon-merge-option” can be used in dotrain.pl, but
special care is advisable when doing that.

3.2.8.4 Correlation Modules

Programming Language Perl

Program Names
e correl.pl

¢ multi-correl.pl

45

Function Calculates Pearson r correlation coefficient between vectors of num-
bers. The first vector is the ”reference” (column specified as parameter), all the
others *following™* this one, will be correlated with that. (multi-correl.pl can
process a *list* of files, invokes correl.pl)

Inputs Vector file. N rows, M columns (real numbers)
Outputs Pearson r for every correlation pair.

3.2.8.5 Default Config File Creation

Programming Language Perl
Program Name mk-def-config.pl

Function Creates default configuration file for run-all.pl, by reading all its
default values.

Inputs run-all.pl (from STDIN)

Outputs default.config (to STDOUT)

3.3 Running the System

3.3.1 Hardware and Environment

While the system in principle is architecture independent!?, some of them cur-
rently are only compiled for the Alpha architecture. Therefore, to run the whole
system, it has to be run on an Alpha machine.

The various components reside under the Interact Labs /net-environment,

which forms the background environment for our system.

3.3.2 Preparations

It is advisable to create an empty directory where one puts only the whole Nbest
list in. Alternatively, if one wants to run the system on multiple machines,
one can split the Nbest-list into k pieces (each one has to start with a new
utterance!), dirstibute them into k separate directories and then run k processes
on N machines simultaneously.

10All parts are either coded in C or in PERL

46

3.3.3 Main Executing Script

The main executing script is run-all.pl. It has to be called with the following
command line parameters:

e name of current directory (required)!!
e name of the Nbest list file (required)

e name of the configuration file used (optional; if none is specified, the
system runs with the default settings in the script run-all.pl, see below)

More parameters can be specified, in the following format:

-parameter name ’parameter_value’

e.g., —cutoff ’12’

where parameter name has to correspond exactly to the name in the configuration-
file (resp. in the script run-all.pl) and the parameter should appear inside of
single quotes (this is necessary if it consists of more than one string, e.g.:
-rerank sortstr ’-k 5n -k 6rn -k 4rn’)

While the script is running, it produces log information both to the screen
and appends this information also to a log-file (run-all.log).

The final output files are:

e in devtest mode: all.summary (information about each utterance, specif-
ically about the new top ranked hypothesis, and the average WER gain)

¢ in eval mode: the new first-best list, created based on the reranking
results in the format of the original Nbest-list (filename: Nbestlist.out,
where Nbestlist was the inputfile for the system)

3.3.4 Runtime

Approximate system runtime (from the POS-tagger to the end of the execut-
ing script) for 103 utterances (ca. 8500 hypos) on an empty Alpha (200 MHz,
192MB RAM) is less than 10 minutes, i.e. the throughput is more than 10
utterances/minute.

3.3.5 Configuration File and System Paramters

The following is the default configuration file which can be created automatically
using the command:
mk-def-config.pl < run-all.pl > default.config

Note: some newlines were inserted here for readability, they are marked with

\\-

Table 3.1 explains the parameters and their possible range of values.

111t has to be the dircetory name, not the full path name!

47

Automatlcally created default.config-file
num_nbest : 300
main_mode : devtest
demo_mode : mno
cleanup : no
cutoff : 8
start_label : BEGINNING
exit_label : END_OF_SYSTEM
tagger_dir : /net/tink/usr4/zechner/brill-new/New-Tagger-SWB
tagger_cmd : /tagger LEXICON.NEW.SWB %s BIGRAMS LEXRULEOUTFILE \\
CONTEXT-RULEFILE
segm_method : script
rerank_method : nn
rerank_sortstr : -k 5n -k 6rn -k 4rn
filter_method : simple
NN_segm_cmd : /do_segm -n h2t0.7w8.17Jan.net -c 69 \\
-T -2 segmented.utts.witheos -0 0.7 -w 8 -h 2
NN_rerank_cmd : /do_rescore \\
-n /net/t1nk/usr4/zechner/bln/rescorer/mar26 dev.c0.hl.el0.net \\
-c 6 -T -2 ALL.scores.NN.out -h 1
NN_filter_cmd : /do_dec -n h2t0.5mXX0000.17JAan.net \\
-c 6 -T -2 filter.out -0 0.5 -h 2
dir_segm : /net/tink/usr3/zechner/nn-segmentAL
dir_rerank : /net/tink/usré4/zechner/bin/rescorer
dir_filter : /net/tink/usr3/zechner/dec-resc
POS_grammar_dir : /net/tink/usr3/zechner/nlp-3/grammars/std-Mar21
Phoenix_dir : /net/tink/usr3/zechner/chunker
Phoenix_cmd : process_trans_ml -debug 1 -CHECK_AMBIG 1 \\
-PROFILE 1 -PRINT_BEAM 1 -ignore_oov O -add_new_rules 0 \\
~START_END O -STRIP_NT O -PRINT_INTP 1 -grammar %s
perl_dir : /net/tink/usr3/zechner/nlp-3/perl-scripts
chunk_score : word_based
pen_factor : 1.0
pen_mode : word_skip_pen
1m_score_dir : /net/tink/usr4/zechner/new-LM
1lm_score_prog : wnric_new
readlines : -S
lm_arpabo : /net/tink/usr4/zechner/new-LM/p027-std.3.arpabo.3
Im_dict : /net/tink/usr4/zechner/new-LM/p027-std.3.vocab
wer_column : 3
nbest_cutoff : 50

48

Parameter Name

Description

Range of Values

num_nbest
main_mode
demo_mode

cleanup
cutoff

start_label
exit_label
tagger_dir
tagger_cmd
segm_method
rerank_method
rerank_sortstr
filter_method
NN_segm_cmd
NN_rerank_cmd

NN _filter_cmd
dir_segm
dir_rerank
dir_filter
POS_grammar._dir
Phoenix_dir
Phoenix_cmd
perl_dir
chunk_score
pen_factor
pen_mode
lm_score_dir
Im_score_prog
readlines

Im_arpabo

Im_dict
wer_column

nbest_cutoff

(max.) size of Nbest list
“development” /” evaluation”
“yes”: screen-output; writes
demo.log; proceeds in step-mode
“yes”: deletes most
intermediate files

only utts. with avg. length

< cutoff are reranked

where the script starts

script stops before here
tagger/other POS resources
command to invoke tagger
type of segmentation method
type of reranking method
UNIX sort string for reranking
type of filter method

invoking the NN segmenter
invoking the NN reranker

invoking the NN filter

location of NN segmenter
location of NN reranker
location of NN filter

location of POS grammar
loaction of Phoenix executable
invoking Phoenix

location of system Perl scripts
for chunk score calc.

for chunk LM scores

type of skipping penalty

loc. of wnric_new

chunk scoring program
parameter for wnric_new

for processing of multi-word lines
trigram table file

(gnuzipped)

chunk LM dictionary

column of score-file

which contains the WER

only hypotheses that are before
this cutoff in the original Nbest
list are moved to the front

integer
devtest/eval
yes/no

yes/no
integer

script-label?®
script-label?®

full pathname

see default-file

script/nn®

simple/nn

a valid UNIX sort string
simple/nn®

see default-file®

-n net_name -c nr_inputs -T
-2 output_file -h nr_hiddens
see default-file®

see default-file®

see default-file

see default-file®

see default-file

see default-file

see default-file

see default-file
word_based/segm_based

real
word_skip_pen/segm_skip_pen
see default-file

wnric_new

-S

full path name
(without suffix .gz
full path name

3

integer

“Valid script-labels are: BEGINNING NBEST_PREP TAGGER REP_FILTER_-1 SEGMENTING BABBLE
REP_FILTER_2 CHK_PARSER LM_SCORES RERANK FILTER MAKE_FIRST_BEST END_OF_SYSTEM

¥The option nn is currently not available.
¢Since option nn is unavailable, this parameter has currently no effect.

Table 3.1: Explanation of System Parameters

49

Chapter 4

Evaluation

4.1

Definition of Notions and Metrics

Before I am giving the details of the system evaluation, I will define some im-
portant notions and metrics that I will be using below.

Word Error Rate (WER): 2ubsttdebtin 1 the denominator corre-

sponds to the length of the reference hypothesis.?

True WER: The WER that is calculated from the first best hypotheses
from the original Nbest list (“what we get, if we don’t do any rescoring”)

Optimal WER: The WER that would be achievable, if we were pick-
ing the hypothesis with the lowest WER from each Nbest list (“cheating
experiment”)

WER gain: previous WER - new_WER: the difference in WER before and
after reranking (comparing the first best hypotheses); this value is positive,
if the WER decreases due to the reranking process

Word Gain: WER_gain * reference_length; this is a particularly useful
metric when comparing two utterances of different length: it says “how
many more words” one could get right within a (reranked) Nbest list of a
single utterance.

Expected WER Gain: WER gain in case of a randomized selection of
a hypothesis from the Nbest list (“baseline case”)

1subst = word substitutions, ins = word insertions, del = word deletions.
21f the reference hypothesis has zero length, the WER is defined to be equal to 0.0.

50

Data Source | Utterances | maximal WER gain
Switchboard 154 9.7%
Callhome 220 16.9%
Total 374 13.1%

Table 4.1: General Properties of the Devtest Set

WER vs. size of Nbest-list
T T T T T

SWB only (DevTest) —

50 | Call Home only (DevTest) -
\ SWB and Call Home (DevTest) -----

45 g

40F i

word error rate (%)

0 50 100 150 200 250 300
size of Nbest list

Figure 4.1: Potential decrease in WER over size of Nbest list

4.2 Properties of the Data

4.2.1 Data Used for General System Development

For general system development, i.e., training of the neural network, testing of
various system parameters, and stepwise refinement and improvement of the
system components, a subset of the March 1996 Switchboard Evaluation Data
was used, comprising 374 utterances in total, partly from Switchboard, partly
from Callhome data.

The properties of this data are given in Table 4.1; Figure 4.1 shows the
potential decrease in WER if one knew which hypothesis to rank first over the
length of the Nbest list for the SWB and Callhome data subsets and the overall
Devtest set.

Table 4.2 shows the distribution of the word gain, together with other pa-
rameters, such as average WER on the first-best hypothesis, average length of
the hypotheses, etc.

For the purpose of training and testing the neural net rescorer, the data

51

word | total weighted | avg. index of | avg. WER of | avg. length | total nr. of
gain word gain best hypo first hypo of hypos | hypos (in %)
0 0.222 3.070 0.197 3.725 142 (37.97)
1 94.460 33.739 0.366 10.641 92 (24.60)
2 114.954 70.386 0.446 14.474 57 (15.24)
3 139.405 126.130 0.512 18.217 46 (12.30)
4 84.778 118.095 0.563 20.286 21 (5.61)
5 70.000 150.571 0.610 19.429 14 (3.74)
7 14.000 157.500 0.649 18.500 2 (0.53)
Table 4.2: Distribution of Word Gain over the Devtest Set
SWB and CH SWB only CH only
data set || Utts. | true opt. Utts. | true opt. Utts. | true opt.
WER | WER WER | WER WER | WER
train 271 | 45.05 | 30.75 100 | 38.34 | 28.22 171 | 50.83 | 32.93
test 103 | 40.50 | 29.83 54 | 36.36 | 27.42 49 | 47.89 | 34.11
Total 374 | 43.51 | 30.41 154 | 37.52 | 27.84 || 220 | 50.08 | 33.17

Table 4.3: Characteristics of Train and Test Set (WER in %)

was randomly split into a training and a test set. Table 4.3 gives the major
characteristics of these.

4.2.2 Data Subsets Used for Specific Evaluations

From the test data, 21 hypotheses (ca. 20%) were extracted which had a mini-
mum word gain of three words. The rationale behind this set, called eval21i, is
to see how well the system performs in a case where it is working only on those
Nbest lists which contain a fairly high potential of word gain.?

For a discriminative evaluation of the effects of (i) optimal tagging, and (ii)
optimal segmenting (in addition to optimal taging), a subset of this eval21 set
was created, containing 19 of these 21 utterances, but only the (originally) first
hypothesis, the true best and the true worst hypothesis were included. Addi-
tionally, the reference (i.e., transcript) of each utterance was added to this data
set, s.t. in total we have four “hypotheses” in each of these 19 utterances. These
datasets are called only4, only4-opttag, and only4-optsegm respectively.

31f we had fairly reliable confidence annotations (Chase, 1997), we could in fact approximate
this biased selection. The reason is that there is a correlation between the average WER on
the first best hypothesis and the potential word gain of an utterance (see Table 4.2).

52

4.2.3 Data Used for LM Construction, Grammar Devel-
opment and POS Tagger Training

For training of the ngram model, for a basis of the development of the POS based
grammar, and for the (re-)training of the POS tagger, we used the (standard)
Switchboard corpus (Godfrey et al., 1992); no data from our Devtest set was
used for these tasks. There were two reasons for that: (i) the robustness of our
system should increase; (ii) for POS tagging and particularly for creating an
ngram model, more data is needed than there is available in the Devtest set
itself.*

4.3 POS Tagger

We are using (Brill, 1994)’s part of speech (POS) tagger as an important prepro-
cessing component of our system. As later evaluations prove, the performance
of this component is very crucial to the whole system’s performance. In particu-
lar, the segmentation module and the POS based Phoenix chunk parser heavily
rely on the correct output of the tagger; hence, if words are tagged incorrectly,
these modules’ performance drops as a direct consequence, and finally, also the
global performance of the system.

Brill’s tagger is publicly available (via ftp) and comes as a version which is
trained on the Wall Street Journal and Brown corpora. However, in our case,
where we are dealing with spontaneous speech, we had to face two problems:
First, the tagset is not optimal, e.g., there are no tags for marking hesitations or
disfluent input. Secondly, written language differs from conversational spoken
language quite considerably, so the tagger would have to be retrained for that
task.® In total, a corpus of approx. 18000 words, drawn from the Switchboard
corpus, was manually tagged. The tagset we were using for that, was slightly
modified from the aforementioned tagged (but erroneos) Switchboard subset,
which in turn was derived from the Penn Treebank and Brown Corpus tagsets
(see section 3.2.3 for more details about the tagset).

After several incremental steps of labeling and retraining, the following tag
accuracies were achieved (average by crossvalidation over five disjoint data sets):

e for the Switchboard corpus: 91.2%
o for the DevTest data:® 88.3%

Since approx. 14 tags are exchangeable with others because of our tolerant
grammar, the error drops if we subtract these tag-errors from the total number.
The tagging accuriacies with respect to the POS grammar are as follows:

e for the Switchboard corpus: 92.8%

4The total size of the Devtest set is approx. 3900 words, whereas the Switchboard corpus
contains approx. 3 million words.

5 A sizeable handannotated portion of the Switchboard corpus was availabe to us, but since
it contained many serious labeling errors, it only was used for creating the initial dictionary.

SHere, a small subset of approx. 2000 words was manually tagged, too.

53

correct assigned occ. of evaluation

tag tag error and comments
CC WRB 20 no problem (similar syntactic function)
PREP TO 18 could be eliminated if we dispense with TO-tag
RB UH 16 removes too much (i.e. overgenerates babbles)
UH AFF 13 ok (e.g., “yeah” is babble or affirmative)
PREP RP 11 potential problem in parsing
PRPA PRP 11 detto
NN DT 10 detto
PREP UH 10 removes too much (see RB/UH)
VB VBP 9 ok, grammar tolerates that
WDT DT 9 problem for segm. module (will miss boundary)
ANA WDT 8 detto (but here: wrong boundary inserted)
NN JJ 8 probably ok most of time (if JJ is within NP)
UH VB 8 ok (non detected babble)
WDT ANA 8 see ANA/WDT
CC CCC 7 problem for segmenter: will miss boundary
NNP NNS 6 ok (grammar is tolerant wrt. that)
VBP UH 6 too much removed (see RB/UH)
VBP VB 6 ok (grammar tolerates that)
CCC CC 5 segmentation problem (opp. to CC/CCC)
PRP UH 5 see RB/UH
VB NN 5 potential serious problem (missed verb)

Table 4.4: Most frequent errors of the retrained POS tagger

o for the DevTest data: 90.6%

This performance increase of about 1.5-2.0% seemed to make it promising
to just reduce the tag set s.t. these “ambiguities” would not have to be present
in neither the tag set nor the grammar. However, the results of using a reduced
version of the tag set (26 instead of 40 tags) showed a small decrease in perfor-
mance, compared to the latter results (approx. 0.25% lower accuracy). It seems
that having more tag information helps the tagger more than a reduced set
could potentially simplify the rules. Thus, we decided to stick to the original,
larger tag set for the final system design.

Table 4.4 shows the most frequent errors on a subset of the tagged data (ca.
20%, i.e., 3500 words). (For the explanation of the tag names, see section 3.2.3.)

4.4 Chunk Parser

The evaluation of the chunk parser’s accuracy was done on subsets of the only4,
only4-opttag, and only4-optsegm data sets. For each of these sets, the first

54

test set | words total | missing | wrong | superfl. | error rate (%)
only4 372 33 13 1 12.6%
opttag 377 7 0 0 1.9%

optsegm 372 10 0 1 3.0%

Table 4.5: Performance of the chunk parser on three different test sets

20 hypotheses (i.e. 5 utterances each, comprising the reference and three hy-
potheses, see above), were evaluated as follows: For each word appearing in
the chunk parser’s output (including the skipped words), it was determined,
whether it belonged to the correct chunk, or whether it had to be classified into
one of these three error categories:

e “missing”: either not parsed or wrongfully incorporated in another chunk
e “wrong”: belongs to the wrong type of chunk

e “superfluous”: parsed as a chunk that should not be there (because it
should be a part of another chunk)

The results of this evaluation are given in Table 4.5. We see that an optimally
parsed input is indeed crucial for the accuracy of the parser: it increases from
about 87.4% to up to 98.1%. The higher number of errors in the only4-optsegm
set is intuitively unplausible but probably not significant. (Abney, 1996b) re-
ports a comparable per word accuracy of his CASS2 chunk parser (92.1%).

4.5 Global Evaluation: Nbest Rescorer

First, we ran a series of 288 experiments on the only4-* data sets, varying
LMs, penalty-factors, sort keys, hypothesis-length-cutoffs, and length normal-
ization parameters. The rescorer was set to work in “UNIX sort mode” (see
section 3.2.7). The expected WER gain for these data sets is +0.8% (in the
case of cutoff=0).

We got the following results:

e best performance: +7.7% WER gain in only4-opttag
e only4-optsegm is not better
e for only4, the best configuration yields +5.1% WER gain

e thus, correct tagging gives an improvement of more than 2.5% in WER
gain

e using a low cutoff (cutoff=4) is ok

55

data set eval2l only4 expected
parameters | parameters | WER gain

train -2.2 -3.5 -5.6

test -2.7 -4.3 -4.9

Table 4.6: WER gain comparison of two parameter settings for the train and
test set (in %)

the reference hypotheses are sometimes not higher ranked than the true
best hypotheses”

sorting by chunk LM is better than by the chunk coverage score

lm-penalty-factor 1.0 seems a good choice
e 3gram seems (slightly) better than 5gram

The next set of experiments was done in the same setting, but now with the
(biased) eval21 data set. The expected WER is +0.5%.
The results can be summarized as follows:

e best configuration yields +0.7% WER gain which is only very marginally
better than the expected WER gain

e the trigram is (again) better than the fivegram
o a high cutoff is better
e chunk coverage score works better than the chunk LM score

We see that some of the trends from the only4-* data sets are reversed here; but
since this eval21l is a more realistic data set, we expected to get better results
on the large test and train data sets when using these winning parameters rather
than those from the only4-* data sets. As Table 4.6 shows, these assumptions
were justified: the eval21 settings outperform the only4-* settings by about
1.5% on both train and test set.® As a consequence, we kept these parameter
settings for the next stage of experiments, where the rescorer was using a neural
net as rescoring method.

The next stage of the evaluation involved the use of the neural net (NN)
option in the rescorer (instead “UNIX sort”). In total, 80 different NNs were
created, using the data in the train set:® we used 5 different numbers of learning

"E.g., in the winning configuration of only4-opttag, we have 12 winning, 3 losing, and 4
neutral utterances, but only in 5 cases, the reference hypothesis was actually ranked first.

8 A possible explanation for the fact that we have a higher win over the expected WER in
the train set as opposed to the test set may be that the train set contains a higher WER gain
potential (14.4% as opposed to 10.7% for the test set).

9The range of the NN parameters were determined partly by very early experiments in our
system development phase.

56

data set best expected
performance | WER gain
eval2l +2.0 +0.5
test +0.3 -4.9

Table 4.7: WER gain: best results in NN experiments for two test sets (in %)

NN performance on test-set (SWB/CH, 103 utts)

02 T T T T T
NN performance (mar26.dev.c0.h1.e10) —
max. WER gain ----
expected WER gain -----
0.15 | B
® o1k rmmemmIT]
3 0.1 | [
8
5]
° /
20.05 -/ g
0k
-0.05 1 1 1 1 1
0 50 100 150 200 250 300

size of Nbest list

Figure 4.2: NN performance on the test set (nbest_cutoff=20, 50, 300)

57

Average accumulated WER before and after NN reranking (en_6179_A-0011)

before NN reranking —
after NN reranking ----

0.8 |- .

word error rate

02 .

0 | | | | | | | |

0 20 40 60 80 100 120 140 160
size of Nbest list

Figure 4.3: Cumulative average WER before and after reranking for an example
utterance

Cumul. Avg. WER before and after reranking (103 utts,NN=mar26.pl.c8.h2.e20)
T T T T

Cumul. Avg. WER before reranking —
50 - Cumul. Avg. WER after reranking -----]

word error rate (in %)

0 50 200

100 150
size of Nbest list (dupl. removed)

Figure 4.4: Cumulative average WER, before and after reranking of the test set

58

Difference in Cumul. Avg. WER before/after reranking (103 utts,NN=mar26.pl.c8.h2.e20)

T T T T
Difference in Cumul. Avg. WER before/after reranking ——
04 B
0.2 B
S
=
2
g 0 A A /M\/Vv\f\/\
& W W
[}
°
S
2
-0.2 -
0.4 H 4
1 1 1 1
0 50 100 150 200

size of Nbest list (dupl. removed)

Figure 4.5: Difference in cumulative average WER for the test set (before and
after reranking)

epochs (5, 10, 20, 30, 50), 2 different numbers of hidden units (1, 2), the two
different types of chunk LM scores, and 4 different cutoff factors (0, 4, 8, 12).
We now tested the data from the test set with these nets; for each test, both
the NN with the same cutoff and with no cutoff was used. The idea behind
this is that while on the one hand a larger training set may be helpful, on
the other hand a training set that is more similar in its data to the test set
may be better, even if it would be smaller. Also, we used three different so-
called nbest-cutoffs for each experiment. Unlike the (standard) cutoffs, which
just eliminate short utterances from the reranking procedure, these nbest-cutoff
disallow hypotheses with a number higher than this nbest-cutoff to move to
the first position. This amounts to working with a reduced size of the Nbest
list. We chose the parameter nbest_cutoff=20, 50, and 300. (The last value
corresponds to using the full Nbest-list). The idea behind this parameter is to
limit the potential losses in WER gain by “distractors” from far behind in the
Nbest list.

Since we had 80 NNs, 2 modes, and 3 nbest-cutoff factors, the total number
of experiments was 480 for the test and eval21 sets. Table 4.7 gives the best
results of these experiments, while Figure 4.2 shows the performance of this net
at three distinct nbest_cutoff data points (20, 50, and 300), compared to the
maximum and the expected WER gain.!?

10The best NN for the test set was mar26.dev.c0.h1.e10, i.e., using the whole training data,
(c0), having one hidden unit (hl), and training for 10 epochs (e10). A cutoff of 8 was used;
the nbest_cutoff was 50.

59

From this we see that using NNs is not only better than just using a UNIX
sort approach but that we even manage to get a small, but positive result in
WER on a non-biased test set. While this effect is quite small, one has to keep
in mind that the (constituent-like) chunk representations were the only source of
information for our reranking system. It can be expected, that including more
sources of knowledge, like the plausibility of correct verb-argument structures
(the correct match of subcategorization frames) and the likelihood of selectional
relations between the verbal heads and their head noun arguments would further
improve these results. Another factor hich might have a significant influence is
the WER improvement achieved meanwhile by the speech recognizer itself: on
SWB data, the WER dropped from about 37.5% in the data we were using to
about 26% recently.!! Even if the overall properties of the data don’t change
too much with this improvement, it is very likely that the potential WER gain
drops proportionally to this speech recognizer improvement, and that, as a
consequence, hypotheses with high WER gain are becoming more sparse and
harder to identify as such.

Departing from our main evaluation criterion, the WER gain on the first
best hypothesis, we calculated the cumulative WER before and after reranking,
over the size of the Nbest list for various hypotheses. Figure 4.3 shows the plots
of these two graphs for an example utterance. We see very clearly, that in this
example not only the new first hypothesis has a WER gain compared to the old
one, but that in general hypotheses with lower WER moved towards the top of
the Nbest list.

Looking at the whole test set, this trend is obviously much weaker than
in this specific example, but it is still there, as Figure 4.4 shows. Finally,
Figure 4.5 plots just the difference of the graphs of Figure 4.4. While we see a
small negative effect of reranking very close to the first element in the Nbest list,
there is a markably positive effect in the upper half of the list, compensated by
a “deficit” towards the end, where the hypotheses with higher WER moved to.
These general trends are also very encouraging and show that the NN reranking
component behaves in the right and desired way.

4.6 Human Study

In order to assess the ability of humans to distinguish speech recognizer hy-
potheses in terms of ”structural well-formedness” (syntax) and ”meaningful-
ness” (semantics), a small study was undertaken.

4.6.1 Data

From the train set, from all utterances which could in theory be improved, the
first best and the true best hypothesis are extracted and then scrambled, both
in utterance order and in first/true-best order. (True best: lowest WER).

' Michael Finke, personal communication

60

The data is sent through our preprocessor modules; the POS tags are re-
moved and slashes are inserted instead of eos/EOS marks.

To minimize errors of the babble-filter, the following babbles were not ex-
tracted: like, then, i guess, kind of.

Finally, all short utterances (at least one hypothesis fewer than 5 tokens)
were removed since they are also not too interesting for rescoring either.

The final set consists of 128 hypothesis-pairs.

4.6.2 Task

Human subjects should read each hypothesis-pair and then decide, which of the
two hypotheses is ”better” from (a) a structural and (b) a meaning point of
view. If a decision can’t be made, they should fill in a question mark.

4.6.3 Evaluation
4.6.3.1 Judgement Classification

There are 9 possibilities for the comparison of each hypothesis-judgement (syn-
tactic/semantic) between two subjects:

AA AB,A?,?7A,?7B,?77, BA,BB,B?

These are grouped in the following way:

1. strong agreement: A A, B B (i.e. same judgement from both subjects)
2. weak agreement: A 7,7 A, 7 B, B 7 (one subject did no judgement)
3. strong disagreement: A B, B A (i.e. different judgements)

4. undecided: ? ? (hypothesis was not judged by both subjects)

With respect to the potential ”gain” , when these judgements were to be used
for the purpose of reranking, the following scenarios were distinguished (intra-
subject evaluation; the first letter corresponds to the syntactic, the second letter
to the semantic judgement of one subject for one hypothesis; in brackets: the
hypothesis with the lower WER).

1. uniform win: A A (A), BB (B)
2. gyntactic win: A ? (A), B ? (B) (no semantic judgement)
semantic win: 7 A (A), ? B (B) (no syntactic judgement)
syntax wins over semantics: A B (A), B A (B)
semantics wins over syntax: A B (B), B A (A)

wrong choice: A A (B),BB (A),A?(B),? A(B),B?(A),? B(A)

N o ke w

no choice: ? ?

61

Subject Syntax pref. | Sem. pref.
0 10.0 10.3

1 10.0 10.2

2 9.1 9.7

3 10.2 10.8
Total Avg. 9.8 10.2

Table 4.8: Human Performance (WER gain in %)

4.6.3.2 Improvement in WER if judgement was used for reranking

This was calculated in two ways:
1. uniform_win + syntactic_win + semantic_win + syn_over_sem + no_choice/2
2. uniform_win + syntactic_win + semantic_win + sem_over_syn + no_choice/2

The first scenario assumes superiority of syntactic judgements in case of a
conflict, the second assumes the converse. The "no_choice/2” was added simply
to emulate a random process of picking either hypothesis in case of the lack of
any judgements.

While the maximum WER gain for these 128 hypothesis-pairs is 15.2%, the
expected WER gain (i.e., the WER gain of a random process) is 7.6%.

Table 4.8 shows the WER gain when these two scores would be used and
the human judgements were to be used for reranking.

Whereas the difference between both methods to a random choice is highly
significant (syntax: a = 0.01,¢t = 9.036,df = 3; semantics: a = 0.01,¢t =
11.753,df = 3)'2 | the difference between these two methods is not (a =
0.05,t = —1.273,df = 6)'3. The latter is most likely due to the fact that
there were only few hypotheses that were judged differently in terms of syn-
tactic or semantic well-formedness by one subject: on average, only 6% of the
hypothesis-pairs received a different judgement by one subject (sem_over_syn
Or syn_over._sem).

Note:
result than these subjects: 12.8% (syntax: a =
semantics: a = 0.01,¢ = —11.310,df = 3)'5.

A NN trained on the test-set'* was able to get a significantly better
0.01,¢ = —12.082,df = 3;

4.6.3.3 Inter-subject agreement on the judgements

Table 4.9 gives the percentage of agreement between subjects in the four classes
of agreement (syntactic/semantic) listed above. We see that humans strongly

12These results were obtained using the one-sided t-test.
13Two-sided t-test.

14We took the best net from our system evaluation for that purpose.
150ne-sided t-test.

62

Subj. A vs. Subj. B | strong agr. | weak agr. | strong disagr. | don’t know

(2/9) | (4/9) (2/9) (1/9)
0vs. 1 SYN 39.06 46.09 9.38 5.47
0 vs. 1 SEM 50.78 28.13 11.72 9.38
0vs. 2 SYN 33.59 44.53 17.19 4.69
0 vs. 2 SEM 54.69 29.69 12.50 3.12
0 vs. 3 SYN 35.94 33.59 10.16 20.31
0 vs. 3 SEM 37.50 25.00 15.63 21.88
1vs. 2SYN 56.25 12.50 30.47 0.78
1 vs. 2 SEM 61.72 17.19 20.31 0.78
1vs. 3 SYN 50.78 25.00 19.53 4.69
1 vs. 3 SEM 42.97 32.81 14.84 9.38
2 vs. 3 SYN 50.78 25.00 21.09 3.12
2 vs. 3 SEM 43.75 34.38 18.75 3.12
TOTAL SYN 44.40 31.12 17.97 6.51
TOTAL SEM 48.57 27.86 15.63 7.94

Table 4.9: Inter-Subject Agreement (in %)

agree on average in almost 50% of the cases'®, whereas they disagree only in
about 15% of the cases.!” Also, one can observe that semantic agreement is
slightly higher than syntactic agreement.

16random expectation: 22%

17again, random expectation: 22%

63

Chapter 5

Future Work

5.1 Further improvement of the POS tagger

Since the POS tagger proved itself to be of central importance for the perfor-
mance of our system, it might well be worthwhile in investing some amount of
effort to improve its accuracy. One (very time-consuming) way to do that would
be to make experiments on different tag sets, another possibility involves exper-
iments with “cleaning-up”-preprocessors (similar to the pipe we are using), s.t.
already the input of the POS tagger is of a more “regular” form.

Finally, it might be just necessary to extend the amount of carefully hand-
labelled data to provide the training procedures with more examples to learn
from.

5.2 Alternative Language Models

So far, all our LMs were based on simplex clauses; it could be the case that
when we move to the hypothesis level, we would get a better (because longer
ranging) model and therefore better scores.

Another idea for improvement is to integrate skipped words (or sections)
into the LM (similar to the modeling of noise in speech) and that way to get rid
of the skipping penalties we were using so far and which blurred the statistical
nature of the model. (Maybe, we could totally dispense then with the chunk
coverage scores, since these would be modeled already by such a chunk LM
comprehensively.)

5.3 Using scores from other parsers
It is not a priori clear, why one might not prefer a combination of scores from

various parsers to the score of just the single chunk parser. A feasable and
obtainable option would be, e.g., to adapt the Link Grammar parser (Grinberg

64

et al., 1995) to our task and use the linkage scores of the best parse for every
hypothesis (or simplex clause) as an additional (syntactic) “wellformedness-
indicator”.

5.4 Identifying Good Reranking Candidates

So far, the only and exclusive heuristics we are using for determining when to
rerank and when not to, is to use the length-cutoff parameter to exclude (too)
short utterances from being considered in the final reranking procedure.

As Lin Chase has shown in her thesis (Chase, 1997), there are a number of
potentially useful “features” from various sources within the recognizer which
can predict, at least to a certain extent, the “confidence” that the recognizer has
about a particular hypothesis. We saw in table 4.2 that hypotheses which have
a higher WER on average also exhibit a higher word gain potential. So it is not
unreasonable to believe that a combination of some of these scores can actually
help in finding out a better set of reranking candidates than just working with a
cutoff filter. Particularly, if we recall that in our eval21 set we were able to get
a WER gain of about +2%, we think that these lines of investigations deserve
some more thoughts and experiments.

5.5 Improving the Neural Nets

The neural nets are currently trained to predict the absolute WER of a hypthe-
sis. While this may be very useful for an application we talked about in the
previuos section, we think that for the rescoring task itself other kinds of target
values might make more sense, e.g., using the relative WER difference wrt. the
true best WER in the Nbest list.

5.6 Adding Argument Structure Representations

We already mentioned earlier that in linguistic terms the chunk representation
our system currently exploits is a very weak one: it only gives an idea about
which constituents there are in a clause and how their ordering is. A richer
model has to include also the dependencies between these chunks.

The first step would be to produce statistics about verb-argument structures
from a large corpus and use these probabilities in a “mapper” module that tries
to find an optimal match between the chunks found in a clause and the possible
subcategorization frames for the main verbal head.

Finally, one could compute statistics about selectional restrictions from these
verbal heads wrt. their arguments. To avoid the sparse data problem, a sensible
clustering of the nouns has to be done, e.g., along the work in unsupervised
word sense disambiguation (Schiitze, 1992).

65

Chapter 6

Summary and Conclusions

With the work in this project I have shown that it is feasible to produce chunk
based representations for spontaneous speech in unrestricted domains on a high
level of accuracy. First, a rule based POS tagger attaches tags to every word in
the input. Its performance proves crucial for subsequent modules of the system.
Next, a preprocessing pipe performs the task of “cleaning up” the input from
a lot of spontaneous speech phenomena that otherwise would put a substantial
burden on the task of later components, such as parsers and semantic mappers.
Then, the input is segmented into smaller units (“simplex clauses”) which are
parsed by the POS based Phoenix chunk parser.

The chunk representations generated by this parser are then used to generate
scores for an Nbest list reranking component.

The results are promising, in that the best performance on a randomly se-
lected test set is a decrease in word error rate of 0.3 percent, mesaured on the
new first hypotheses in the reranked Nbest lists. Although this gain is quite
small, one has to take into account that more linguistic information could be
used for further enhancements (e.g., a combination of subcategorization frames
and selectional restrictions of verbal heads).

66

Bibliography

Steven Abney. 1990. Rapid incremental parsing with repair. In Proceedings of
the 6th New OED Conference: FElectronic Text Research, pages 1-9.

Steven Abney. 1994. Partial parsing. Tutorial at ANLP-94 (slide series).

Steven Abney. 1996a. Chunk stylebook. MS (“work in progress”, see
http:/ /sfs.nphil.uni-tuebingen.de/~abney/Papers.html#96i).

Steven Abney. 1996b. Partial parsing via finite-state cascades. MS (“work in
progress”, see http://sfs.nphil.uni-tuebingen.de/~abney/).

Eric Brill. 1994. Some advances in transformation-based part of speech tagging.
In Proceeedings of AAAI-9.

Eric Brill. 1995. Unsupervised learning of disambiguation rules for part of
speech tagging. In Proceedings of the 3rd Workshop on Very Large Corpora.

Eugene Charniak. 1993. Statistical Language Learning. MIT Press, Cambridge,
MA.

Lin Chase. 1997. Error-responsive feedback mechanisms for speech recognizers.
Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

Noam Chomsky. 1965. Aspects of the Theory of Syntaz. MIT Press, Cambridge,
MA.

Marsal Gavalda, Klaus Zechner, and Gregory Aist. 1997. High performance
segmentation of spontaneous speech using part of speech and trigger word
information. In Proceedings of the 5th ANLP Conference, Washington DC,
pages 12-15.

J. J. Godfrey, E. C. Holliman, and J. McDaniel. 1992. SWITCHBOARD: tele-
phone speech corpus for research and development. In Proceedings of the
ICASSP-92, volume 1, pages 517-520.

Dennis Grinberg, John Lafferty, and Daniel Sleator. 1995. A robust parsing
algorithm for link grammars. Technical report, School of Computer Science,
CMU, CMU-CS-95-125, August.

67

Ralph Grishman and Beth Sundheim. 1996. Message understanding conference
6 — a brief history. In Proceedings of COLING-96, pages 466-471.

Ralph Grishman. 1995. The NYU system for MUC-6 or: Where’s the syntax?
In Sizth Message Understanding Conference (MUC-6), pages 167-175.

Jerry R. Hobbs, Douglas E. Appelt, John S. Bear, David J. Israel, and W. Mabry
Tyson. 1992. FASTUS: A system for extracting information from natural
language text. Technical report, SRI International, Menly Park, CA, Novem-
ber.

Jerry R. Hobbs, Douglas Appelt, John Bear, David Israel, Megumi Kameyama,
Mark Stickel, and Mabry Tyson. 1996. FASTUS: A cascaded finite-state
transducer for extracting information from natural language text. WWW
document, SRI International.

Rosie Jones. 1996. Re-ranking speech hypotheses using syntactic information
from the Link Grammar parser. Project Report, Computational Linguistics
Program, CMU.

Walter Kasper and Hans-Ulrich Krieger. 1996. Modularizing codescriptive
grammars for efficient parsing. In Proceedings of COLING-96, pages 628—
633.

Walter Kasper, Hans-Ulrich Krieger, and Jorg Spilker. 1996. From word hy-
potheses to logical form: An efficient interleaved approach. Technical report,
Verbmobil Report.

Martin Kay, Jean Mark Gawron, and Peter Norvig. 1994. Verbmobil. A Trans-
lation System for Face-to-Face Dialog. Chicago University Press, Chicago.

Kimmo Koskenniemi. 1990. Finite state parsing and disambiguation. In Pro-
ceeedings of COLING-90, pages 229-232.

K. Lari and S. J. Young. 1990. The estimation of stochastic context-free gram-
mars using the inside-outside algorithm. Computer Speech and Language,
4:35-56.

Alon Lavie. 1996. GLR*: A Robust Grammar-Focused Parser for Sponta-
neously Spoken Language. Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA.

Marc Light. 1996. CHUMP: Partial parsing and underspecified representations.
In Proceedings of the 12th European Conference on Artificial Intelligence
(ECAI-96), Budapest, Hungary.

David M. Magerman and Mitchell M. Marcus. 1991. PEARL: A probabilistic
chart parser. WWW document.

Fernando C.N. Pereira and Rebecca Wright. 1996. Finite-state approximation
of phrase-structure grammars. WWW Computational Linguistics Archives.

68

Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.
Uiniversity of Chicago Press, Chicago & London.

Yan Qu, Carolyn P. Rosé, and Barbara Di Eugenio. 1996. Using discourse
predictions for ambiguity resolution. In Proceedings of COLING-96, pages
358-363.

Klaus Ries, Bernhard Suhm, and Petra Geutner. 1997. Language mod-
eling in janus. file://localhost/afs/cs/project/cmt-38/ries/lmdok/janus-
lm.doku/janus-lm.doku.html.

Hinrich Schiitze. 1992. Dimensions of meaning. In Proceedings of Supercom-
puting 92.

Jeff Shufelt. 1994. Backpropagation neural net software package. Carnegie
Mellon University.

Daniel D. K. Sleator and Davy Temperley. 1991. Parsing English with a Link
Grammar. Technical report, Carnegie Mellon University, Pittsburgh, PA,
October.

Bernhard Suhm, Brad Myers, and Alex Waibel. 1996. Interactive recovery
from speech recogniztion errors in speech user interfaces. In Proceedings of
the ICSLP-96, pages 865—868.

Masaru Tomita and Eric H. Nyberg. 1988. Generation kit and transformation
kit (version 3.2). CMU-CMT-88-MEMO.

Masaru Tomita. 1990. The generalized LR parser/compiler - version 8.4. In
Proceedings of COLING-90, pages 59-63.

Marc Vilain and David Day. 1996. Finite-state phrase parsing by rule sequences.
In Proceedings of COLING-96, pages 274-279.

Marc Vilain and David Palmer. 1996. Transformation-based bracketing: Fast
algorithms and experimental results. In Workshop on Robust Parsing, 8th
European Summer School in Logic, Language and Information, Prague,
Czech Republic, pages 93-102.

Wolfgang Wahlster. 1993. Verbmobil — translation of face-to-face dialogs. In
Proceedings of MT Summit IV, Kobe, Japan.

Alex Waibel, Michael Finke, Donna Gates, Marsal Gavalda, Thomas Kemp,
Alon Lavie, Lori Levin, Martin Maier, Laura Mayfield, Arthur McNair, Ivica
Rogina, Kaori Shima, Tilo Sloboda, Monika Woszczyna, Torsten Zeppenfeld,
and Puming Zhan. 1996. JANUS-II - advances in speech recognition. In
Proceedings of the ICASSP-96.

Wayne Ward. 1991. Understanding spontaneous speech: The PHOENIX sys-
tem. In Proceedings of ICASSP-91, pages 365—367.

69

Wayne Ward. 1994. Extracting information in spontaneous speech. In Proceed-
ings of the ICSLP 94, Yokohama, Japan, pages 83—86.

Klaus Zechner. 1997. A literature survey on information extraction and
text summarization. MS, available at http://www.contrib.andrew.cmu.edu/
zechner /klaus.html.

Puming Zhan, Klaus Ries, Marsal Gavalda, Donna Gates, Alon Lavie, and Alex
Waibel. 1996. JANUS-II: Towards spontaneous spanish speech recognition.
In Proceedings of the ICSLP-96, pages 2285—2288.

70

Appendix A

Sample Files

A.1 Excerpt from an Nbest-list

Explanation:

Rows with a # are comments. They contain information about the database,
dialogue number, speaker, turn number, start frame (time), global speech rec-
ognizer score, and hypothesis rank (in that order).

The other rows represent word hypotheses; their content is as follows:

Column Nr Description

1 utterance number
2 speaker ID

3 start frame

4 duration

5 word hypothesis

en_4792_A-0000 7.73 2581.57 1
en_4792 A 7.73 0.04 (
en_4792 A T.77 0.12 YOU
en_4792 A 7.89 0.24 KNOW
en_4792 A 8.13 0.01)

en_4792_A-0000 7.73 2602.21 2
en_4792 A 7.73 0.04 (
en_4792 A T.77 0.15 YOU
en_4792 A 7.92 0.21 ALL
en_4792 A 8.13 0.01)

en_4792_A-0000 7.73 2604.96 3
en_4792 A 7.73 0.04 (
en_4792 A T.77 0.12 YOU
en_4792 A 7.89 0.24 DON’T
en_4792 A 8.13 0.01)

71

A.2 Hypothesis List File

you weren’t born just to soak ups on
you weren’t born just is so cups on
you weren’t boring just it’s so cups on
you weren’t born justice so groups on
you weren’t born justice so crops on
you weren’t born just just so groups on
you weren’t board justice so cups on
you weren’t born just just so crops on

A.3 General Utterance Log Information File
Contents of this file:

Column Nr Description

1 utterance label

2 total number of hypotheses in the Nbest list

3 total number of non-duplicates in the Nbest list
4 average reference length

en_4792_A-0001 300 190 32.5366666666667
en_4792_A-0005 300 81 12.8966666666667
en_4792_A-0007 16 7 1.8125
en_4792_B-0001 300 133 7.79333333333333
en_4792_B-0002 300 159 17.4233333333333
en_4801_A-0006 300 136 34.73
en_4829_A-0006 300 178 7.15333333333333
en_4829_B-0001 300 60 8.37
en_4829_B-0002 300 105 9.07333333333333
en_4829_B-0009 300 128 12.2033333333333

A.4 Individual Hypothesis Log Information File
Contents of this file:

Column Nr Description
1 utterance label
hypothesis number in the reduced Nbest list (no duplicates)
hypothesis number in the original Nbest list
normalized speech recognizer score
length of reference
word error rate

S Utk LN

72

en_4792_A-0000 1111 2

en_4792_A-0000 2 2 0.996666666666667 1 2
en_4792_A-0000 3 3 0.993333333333333 1 2
en_4792_A-0000 4 4 0.99 1 2
en_4792_A-0000 5 11 0.966666666666667 1 2
en_4792_A-0000 6 21 0.933333333333333 1 2
en_4792_A-0000 7 24 0.923333333333333 1 3
en_4792_A-0000 8 26 0.916666666666667 1 3
en_4792_A-0000 9 27 0.913333333333333 1 3

A.5 Simplex Clause Segmentation Index File
Contents of this file:

Column Nr Description
1 start-line of the next hypothesis
in the list of simplex clauses

14
21
28
36
43
50
57
64

A.6 Phoenix forms File

Explanation: Each chunk can appear as a top level slot in a chunk sequence
(called chunks); there are 20 different chunks, including the eos chunk which
marks the boundary between two simplex clauses.

FUNCTION: chunks

NETS:

[_np] # standard NP, also numerals (e.g [the four/CC] of us)
[_pp] # standard PP: prep+NP (but only acc. PRPA as arg,)
[_vb] # verb-group: all verbal stuff + interspersed adv’s
[_vbneg] # negated verb-group

[_adv] # adverbial phrase

73

[_conj]l # all conjunctions (CC, CCC, also as-far-as etc.)
[_wh] # an oblique wh-phrase (e.g. what do you prefer?)
[_Ladjp] # adj.-phrase

[_toinf] # inf’s and gerunds, introduced by prep./"to"
[_vpart] # split verbal particle

[_aux] # auxiliary phrase

[_auxneg] # negated auxiliary phrase

[_rpro] # relative pronoun

[_whnp] # wh-np: e.g. [which movie] do you like?

[_expl] # expletive: there are...

[_comm] # comment: that’s ...

[_neg] # negation-element (no, I...)

[_aff] # affirm. element (yes, ...)

[Lmisc] # currently just CV tag (bye/CV)

[_eos] # end of sx-clause marker

)

A.7 Phoenix nets File

Explanation: Each chunk is a net, additionally, the head-words are also nets.

-np
-PP
_vb
_Vbneg
_aux
_auxneg
_misc
_adv
_conj
_comm
_expl
_wh
_adjp
_toinf
_neg
_aff
_vpart
_Ipro
_eos
_whnp
_p_head

74

_n_head
_vb_head

A.8 Phoenix MAP_STRINGS File

Explantion: For our application, this file was not employed. However, it would
allow, e.g., to use a tagger with a different tag set and to map it onto the tag
set we used in our grammar. (Each line contains a pair of strings that specify
the old and the new name.)

¢ ‘dummy-o0ld’’, ¢‘dummy-new’’

A.9 POS Grammar Rule Files

Explanation: This is a concatenation of grammar and non-terminal files. Each
net is represented in a single file, starting with the net’s name in square brackets
and followed by the right hand side rule expansions, enclosed in round brackets.
Symbols in lower case denote terminals (here: part of speech tags), symbols in
upper case denote non-terminals that are further expanded either in the same
file or in an include-file (non-terminal file), shared by various grammar files.

[_adjp] # e.g. i am interested, i am [(very) busy]...
(JJ_MOD)

#include JJ.nt

[_adv] # adverbial phrase
(+RB)
(*prep prep +RB) # around here, at first, at most, out of nowhere...

RB

(rb)

(rbr)

(rbs)

[_aff]

(aff)

[_aux] # aux. phrase: in questiomns, e.g. [do] you see...
(aux)

[_auxneg]
(aux-n)

[_comm] # comments: "that’s..."

75

(dt-aux)

[_conj]
(ccc) # comstit.-conj (NEW tag, by hand)
(*cc cc) # sentence-conj; e.g. even if...

(cc jj cc) # as soon as... now handled in multi-words.pl
(cs rb cc) # as well as... ...ditto...

[_eos]

(eos)

[_expl] # expletives ("there’s"...)
(ex-aux)

(ex)

[_misc]
(cv) # conventional form (bye/CV)

[_n_head]
(NN)

#include NN.nt

[_neg]
(neg)

[_np]
(xdt *dt +x[_adjp] +[_n_head])
*+JJ_MOD instead of *JJ_MOD (all the

four brave kids....)
(xdt *prp$ +*[_adjp]l +[_n_head]) # "all my four brave kids"
(prp) # you/I
(prpa) # you/me

(xdt *dt cd) # 21.2. all the four (of us)
also: "[channel] [eleven]"=> _np _np
(*dt ana) # (all) this/that...

#include JJ.nt
#include NN.nt

[_p_head]
(+prep) # multiple: out of..., despite of ...

[_pp]
([_p_head] [_npl)
([_p_head] prpa) # accusative pronoun

76

[_rpro] # relative clause intro
(wdt)

[_toinf]
(to *rb [_vb_head]) # e.g. want [to come]
(prep *rb [_vb_head]) # gerund: [for (always) doing]....

[_vb]
(*VBAUX *VBAUX *rb *+VB [_vb_head])
e.g. "would have strictly opposed the decision"...

!!! changes here should be mirrored in _vbneg.gra !!!

#include VB.nt
[_vb_head]
(vbz)

(vbp)

(vbd)

(vbg)

(vbn)

(vb)

[_vbneg]
(aux-n *VBAUX *rb *+VB [_vb_head])
(+VBAUX neg *VBAUX *rb *+VB [_vb_head])

#include VB.nt
[_vpart] # stand-alone verb-particle, e.g. took... off
(rp)

[_wh] # oblique wh-phrase (e.g. when do you come? how well does he perform?)
(wrb *jj)
(wrb *rb)

[_whnp] # noun phrase with wh-mod: which train did you take?
(wp *+[_adjp] +[_n_head])

#include JJ.nt

JJ_MOD # modified adjective
(*rb JJ_ONLY)
(*rb vbg) # e.g. a flying saucer
prob. exclude in a strict version
JJ_ONLY
(33

7

(3js)
(jir)
(cd)
NN
(nn)
(nns)
(nnp)
(nnps)

VB
(vbz)
(vbp)
(vbd)
(vbg)
(vbn)
(vb)

VBAUX

(vbz)

(vbp)

(vbd)

(vbg) # ideally: no gerund
(vbn) # ideally: no past perf.
(vb) # ideally: no inf.

(aux)

A.10 Parser Output Sample

Explanation: This is the standard Phoenix parser output, given the parameter
settings we are using in our system (see section 3.3.5). The relevant lines for
our system are:

e lines starting with ;;; — they give the current line number of the input
file, i.e., the number of the simplex clause

e lines starting with > — they give a summary over the parse results: all
tokens that could not be parsed, are prefixed with a %

e adjacent lines starting with a square bracket after the line with a ; —
these give the actual parses of the chunks

sizeof Edge= 176

sizeof Edge Buffer= 8800000
sizeof Intp= 6504

sizeof IntpBuffer= 1626000

78

There are 1 forms
sk o sk ok o ok ok ke ook ok o ok sk ok ook sk ok o e ok sk o o ok sk ke ke ok ok ke ok ok

|

EOS

#1

parse time 0 milliseconds

edges used= 1 max= 50000

interpretations produced= 1 max intps used= 1 max= 250

string 1 parse 1

> eos

Interpretation score 1

Frame chunks score= 1 num_slots= 1
[_eos] (EOS)

H
Frame chunks score= 1 num_slots= 1
[_eos] (EOS)

3352

PRP DT

#2

parse time 0 milliseconds

edges used= 2 max= 50000

interpretations produced= 1 max intps used= 1 max= 250
string 2 parse 1

> prp %DT

Interpretation score 1

Frame chunks score= 1 num_slots= 1

[_np] ([_pn_head] (PRP))

Frame chunks score= 1 num_slots= 1
[_np] ([_pn_head] (PRP))

A.11 POS Filter Output File

Explanation: This is an extraction from the Phoenix parser output file. Just
the lines starting with a > are extracted.

79

eos
prp %DT
Prp aux-n
prp rp
prp rb
prp

V V. V V V V

A.12 Chunk Filter Output File

Explanation: This is an extraction from the Phoenix parser output file. Just
the adjacent lines starting with a square bracket after a line with a single ; are
extracted. Each delim marks the beginning of the next simplex clause.

delim

[_eos] (EOS)
delim

[_np] ([_pn_head]l] (PRP))
delim

[_np 1] ([_pn_head] (PRP))
[_auxneg] (AUX-N)

delim
[opl] ([_pnhead] (PRP))
[_vpart 1] (RP)

delim
[_np 1] ([_pn_head] (PRP))
[_adv] (RB)

delim
[_np] ([_pn_head] (PRP))

A.13 Chunk Sequence File

Explanation: Each line contains the sequence of chunks found by the chunk
parser for a simplex clause.

np

np auxneg
np vpart
np adv

80

np

A.14 Score Matrix File
Contents of this file:

Column Nr Description
1 WER for training, dummy (e.g., 0.0) in eval-mode
normalized speech recognizer score
chunk language model score
chunk coverage score
skipped words score
skipped sections score

STtk LN

5.59443 1 0 0
.996666666666667 9.04159 0.5 0.5 0.5
.993333333333333 5.24435 1 0 0

.99 5.244351 0 0
.966666666666667 5.24435
.943333333333333 8.04159

O OO O OO
O OO O O =

[

00
00

A.15 First Best Extraction Information File
Contents of this file:

Column Nr Description
1 utterance label
2 hypothesis number to be extracted
for the new first-best list

en_4792_A-0001 212
en_4801_A-0006 180
en_4829_A-0006 246
en_4829_B-0009 66
en_b872_A-0006 49
en_6047_B-0012 46
en_6071_B-0003 174
en_6071_B-0009 276
en_6825_A-0004 55
sw3505-A-0002 108
sw3505-A-0005 113

81

sw3689-B-0001
sw3689-B-0002
sw3689-B-0006
sw3822-B-0008
sw3824-B-0001
sw4093-A-0006
sw4141-B-0002
sw4322-A-0008
sw4373-A-0001
sw4373-A-0003

165
20

47

125
140
174
222
126
242

82

Appendix B

Sample Runs Through the
System

B.1 A Sample Run Through the Preprocessing
Pipe

Explanation: Using a short example utterance the sample run shown in Fig-
ure prep-walk-thru demonstrates how the disfluent input is transformed into a
“cleaned-up” version for the POS based chunk parser.

B.2 A Sample Run Through the Whole System

To give a better idea what happens at the various stages of our system, I give
commented excerpts from a log file from a system run that uses eight hypotheses
from an interesting utterance, taken from the train set (en_6179_A-0011).!

Set of hypotheses (before the tagger):
ok ok ok ok ok ok

you weren’t born justice so cups on
you weren’t born just to sew cups on
you weren’t born justice vocal song
you weren’t born just to soak up sun
you weren’t foreign just to sew cups on
you weren’t born justice so courts on
you weren’t born just to sew carp song
you weren’t boring just to soak up son

I Their hypothesis-numbers in the original Nbest-list are: 1, 3, 189, 190, 214, 269, 273, and
296.

83

(from POS tagger)

repetition filter (pass 1) ‘

‘ short form expander ‘

‘ multi-word composer ‘

well/UH we/PRP we/PRP uh/UH we’ve/PRP not/NEG really/RB spent/VBD
a/DT lot/NN of/PREP money/NN for/PREP um/UH for/PREP child/NN care/NN yet/RB

—_— =

well/UH lwe/PRP/\ uh/UH we’ve/PRP not/NEG really/RB spent/VBD

a/DT lot/NN of/PREP money/NN for/PREP um/UH for/PREP child/NN care/NN yet/RB

a/DT lot/NN of/PREP money/NN for/PREP um/UH for/PREP child/NN care/NN yet/RB

well/UH we/PRP uh/UH we/PRP have/VBP not/NEG really/RB spent/VBD

@ _lot_of/JJ, money/NN for/PREP um/UH for/PREP child/NN care/NN yet/RB

‘ simplex clause segmenter

‘ ~— =

‘ babble phrase filter ‘

‘ repetition filter (pass 2) ‘

(to chunk parser)

a_lot_of/JJ money/NN for/PREP um/UH for/PREP child/NN care/NN yet/RB

eos/EOS we/PRP eos/EOS we/PRP have/VBP not/NEG really/RB spent/VBD
a_lot_of/JJ money/NN for/PRER\for/PREP child/NN care/NN yet/RB

eos/EOS we/PRP eos/EQS we/PRP have/VBP not/NEG really/RB spent/VBD
a_lot_of/JJ money/NN| for/PREg\ child/NN care/NN yet/RB

Figure B.1: An example walk through the preprocessing pipe.

84

- - ————
well/UH |eos/EOS! we/PRP uh/UH eos/EOS, we/PRP have/VBP not/NEG really/RB spent/VBD

Tagged hypotheses:
ok ok sk ok ok o o

you/PRP weren’t/AUX-N born/VBN justice/NN so/CC cups/NNS on/PREP
you/PRP weren’t/AUX-N born/VBN just/RB to/T0 sew/VB cups/NNS on/PREP
you/PRP weren’t/AUX-N born/VBN justice/NN vocal/JJ song/NN

you/PRP weren’t/AUX-N born/VBN just/RB to/T0 soak/VB up/RP sun/NN
you/PRP weren’t/AUX-N foreign/JJ just/RB to/T0 sew/VB cups/NNS on/PREP
you/PRP weren’t/AUX-N born/VBN justice/NN so/CC courts/NNS on/PREP
you/PRP weren’t/AUX-N born/VBN just/RB to/T0 sew/VB carp/NN song/NN
you/PRP weren’t/AUX-N boring/JJ just/RB to/T0 soak/VB up/RP son/NN

(... some preprocessing steps, in this case, not much happens ...)

Hypotheses after the simplex clause segmenter:
koo ok ok k

you/PRP weren’t/AUX-N born/VBN justice/NN eos/EQ0S

so/CC cups/NNS on/PREP

you/PRP weren’t/AUX-N born/VBN just/RB to/T0 sew/VB cups/NNS on/PREP
you/PRP weren’t/AUX-N born/VBN justice/NN vocal/JJ song/NN

you/PRP weren’t/AUX-N born/VBN just/RB to/T0 soak/VB up/RP sun/NN
you/PRP weren’t/AUX-N foreign/JJ just/RB to/T0 sew/VB cups/NNS on/PREP
you/PRP weren’t/AUX-N born/VBN justice/NN eos/EQ0S

so/CC courts/NNS on/PREP

you/PRP weren’t/AUX-N born/VBN just/RB to/T0 sew/VB carp/NN song/NN
you/PRP weren’t/AUX-N boring/JJ just/RB to/T0 soak/VB up/RP son/NN

(... some other preprocessing steps ...)

Cleaned and combined output of the chunk parser:
ok koo ok o k

#0
{you/PRP weren’t/AUX-N born/VBN justice/NN eos/EO0S }

[_op 1 (you/PRP)

[_vbneg] (weren’t/AUX-N [_vb_head] (born/VBN))
[nop]l ([_n_head] (justice/NN))

[_eos 1 (eos/E0S)

#1
{so/CC cups/NNS on/PREP }

85

[_conj 1 (so/CC)
[nop]l ([_n_head] (cups/NNS))
on/%PREP

#2
{you/PRP weren’t/AUX-N born/VBN just/RB to/T0 sew/VB cups/NNS on/PREP }

[_op 1 (you/PRP)

[_vbneg 1 (weren’t/AUX-N [_vb_head] (born/VBN))
[_adv 1 (just/RB)

[_toinf 1 (to/T0 [_vb_head] (sew/VB))

[nop]l ([_n_head] (cups/NNS))

on/%PREP

#3
{you/PRP weren’t/AUX-N born/VBN justice/NN vocal/JJ song/NN }

[_op 1 (you/PRP)
[_vbneg 1 (weren’t/AUX-N [_vb_head] (born/VBN))
[np] ([_n_head] (justice/NN) [_adjp] (vocal/JJ) [_n_head] (song/NN))

(... score calculation and rescoring ...)

New ranks from NN-rescoring:

8/7/4/3/6/5/1/2
WER_first_old - WER_first_new = 0.625-0.25 = 0.375 (=WER gain)

Score-Table:

Hypo-Rank True WER Chunk-Cov. Non-parsed Skipped Chunk-LM Norm.SR

New/01d Score Words Sect. Score Score
1/8 **x 0.25 0.875 0 0 0.984 0.93
2/7 0.375 0.625 0 0 0.865 0.94
3/4 0.0 0.75 0 0 0.954 0.97
4/3 0.625 0.5 0 0 0.618 0.98
5/6 0.625 0.625 0.125 0.125 0.715 0.95
6/5 0.5 0.75 0.125 0.125 1.056 0.96
7/1 ** 0.625 0.625 0.125 0.125 0.715 1.0

8/2 0.375 0.625 0.125 0.125 1.032 0.99

86

