
UNIVERSITÄT KARLSRUHE (TH)
FAKULTÄT FÜR INFORMATIK

INSTITUT FÜR ANTHROPOMATIK
Prof. Dr. A. Waibel

THESIS

Language Model Adaptation using
Interlinked Semantic Data

SUBMITTED BY

Kevin Kilgour

MAI 2009

ADVISORS

Dipl.-Inform. Florian Kraft
Prof. Dr.rer.nat Alex Waibel

interACT
Institut für Anthropomatik
Universität Karlsruhe (TH)
Title: Language Model Adaptation using Interlinked Semantic Data
Author: Kevin Kilgour

Kevin Kilgour
D-Bonhöffer-Str 31
76461 Muggensturm
email: kevin.kilgour@gmail.com

Statement of authorship

I hereby declare that this thesis is my own original work which I created without illegitimate help
from others, that I have not used any sources or resources other than the ones indicated and that
due acknowledgement is given where reference is made to the work of others.

Karlsruhe, 31. Mai 2009 .
(Kevin Kilgour)

Acknowledgments

I would like to thank everyone who has supported and helped me during my

work on this diploma thesis. In particular I would like to thank Florian Kraft

for being a great advisor, allowing me a lot of freedom and giving me helpful

writing guidelines. Had it not been for Florian throwing me in at the deep end

with the Janus language model source code last year I might not have discov-

ered how interesting language modeling is. Thanks also to Prof. Alex Waibel

for letting me write this diploma thesis at his institute and Christian Fügen

whose language model’s source code I used as a template for my language

model.

I also have to thank my father for proofreading this thesis multiple times and

my mother who has in the past months often provided me with free food.

Thanks go also to my sisters, friends and fellow students for their support

and encouragement. And last but not least I would like to thank Kira for her

patience and support when I couldn’t spend a lot of time with her.

5

Abstract

This thesis presents an adaptive multi domain language model built from large

sources of human created, interlinked and structured data. The sources’ in-

terlinked structure is used to create multiple n-gram language models which

are dynamically interpolated to produce a context dependant language model.

The language model is evaluated on its performance with a speech recognition

system used to decode European parliament recordings and compared to both

a general purpose language model trained on the same data and a manually

adapted and built domain language model.

6

Contents

1 Introduction 13

1.1 Importance and Effects of Language Model Adaptation in NLP 14

1.1.1 Objectives . 15

1.2 History of Automatic Speech Recognition . 15

1.3 Modern Automatic Speech Recognition Systems 19

2 Theoretical Background 21

2.1 Basics of Language Modeling . 21

2.1.1 Statistical Language Models (N-grams) 22

2.1.2 Providing Generalization Capability to N-grams 23

2.1.3 CFG Language Models . 26

2.1.4 Language Model Evaluation . 27

2.2 General Techniques and Related work in Statistical Language Model Adaptation 28

2.2.1 Cache Based Language Models . 28

2.2.2 Class-Based Language Models . 29

2.3 Techniques and Metrics for text Classification 29

2.3.1 TFIDF-Metric . 30

2.3.2 Cosine Similarity Metric . 31

2.4 Adaptive Language Models using Text Classification 32

3 Data Sources and Preparation 33

3.1 Feature Generation using World Knowledge . 34

3.2 Data Sources . 34

3.2.1 Open Directory Project . 34

3.2.2 Wikipedia . 35

3.3 Text Cleaning . 36

3.3.1 Building the Language Model . 36

4 Language Model implementation and incorporation into a decoder 39

8

4.1 Overview of the previously existing main components 39

4.1.1 The Janus Recognition Toolkit . 39

4.2 Structure of the Adaptive Language Model Framework 41

4.3 Selector . 41

4.3.1 Overview . 41

4.3.2 Query Response . 43

4.4 SelectLM . 43

4.4.1 SelectLM Description . 44

4.4.2 SelectLM Data Structure . 45

5 Experiments 47

5.1 Test and Evaluation Data . 47

5.2 Establishing a Baseline . 47

5.3 Testing the Effects of Different sets of Concept LMs 48

5.3.1 Evaluation Time . 50

5.4 Adapting to Different Histories . 51

5.5 Evaluating Interpolation Parameters . 52

5.6 Examining the Concept Interpolation Weights 52

5.7 Evaluation Subset Results . 53

6 Conclusions and Observations 55

7 Future Work 56

7.1 Optimize and Speed-up . 56

7.2 Decay Parameters for Improved Dynamic Interpolation 56

7.3 Try Different Metrics and Classifiers in the Selector 56

7.4 Dynamic Vocabulary . 57

7.5 Reduce Memory Requirements . 57

7.6 Incorporate more Data . 57

7.7 Incorporate more Meta Information . 57

7.8 Use this Language Model in Machine Translation 58

9

List of Figures

1.1 Formants and vowels . 16

1.2 The Voder at the 1939 World Fair . 17

1.3 Davis’ reference patterns . 17

1.4 Hidden Markov Model example . 19

1.5 Components of a Speech Recognition System 20

3.1 Modified Speech Recognition System . 33

3.2 ODP XML file . 35

3.3 Dirty html file . 37

3.4 clean text file . 37

3.5 Building the Adaptive Language Model . 38

4.1 Ibis Hierarchy . 40

4.2 Word Lattice . 40

4.3 usage . 42

4.4 New Ibis Hierarchy . 44

4.5 SelectLM Linguistic Context Data Structure . 45

10

List of Tables

4.1 Selector Output . 43

5.1 Baseline measurements . 48

5.2 Different numbers of Concept LMs (PPL & WER) 49

5.3 Different sets of Concept LMs (PPL & WER) 50

5.4 Evaluations using Base2 . 50

5.5 PPL on various histories including BaseLM . 51

5.6 PPL on various histories with BaseLM . 52

5.7 Evaluations Interpolation Parameters . 53

11

1 Introduction

There are three main driving forces behind the development of natural language processing (NLP)

technologies. The first is the desire to improve the interaction of man1 and machine by giving

machines the ability to understand or at least extract some meaning from their operators’ native

language. This is in stark contrast to earlier machine development. Since the industrial revolution

people have been having to adapt to machines by learning special skills to operate them.

It is not just interaction of man and machine that can benefit from improved computer understand-

ing of natural languages. Such computer systems can also aide the interaction between people.

Having a machine translate for two people who do not speak a common language is an obvious

example but systems that can work with natural languages could do even more; like transcribing

and summarizing business meetings.

The third factor is the ever increasing amount of natural language data, text, audio and video2 that

is stored in computer systems around the world. Systems designed to sort, categorize, or extract

information from these data repositories also need to be able to deal with natural languages.

The language model, a mathematical model with similar characteristics and properties to the real

language, is the most important part of a natural language processing systems. This thesis presents

a novel way of building a language model and adapting it at run-time. The first sections of this

chapter will explain why it necessary to adapt a language model and what the objectives of this

thesis are. In order to evaluate the adaptive language model it was incorporated into a speech

recognition system. The last parts of this chapter briefly explain the history and concepts of speech

recognition.

Chapter 2 explains in more detail the concept of language modeling, in particular the details of

statistical language modeling as well as reviewing other attempts at building adaptive language

1In the context of this thesis, man is used as a short from of word human and does not mean an adult male Homo

Sapien.
2Sign language is also a natural language.

13

1 Introduction

models. The final part introduces some basic text classification techniques and shows how they

are used in language modeling.

Chapter 3 gives an overview of possible interlinked sources, describes how the data needed to build

an adaptive language model can be extracted from these sources and what the resulting language

model looks like.

A language model on its own is not very useful so chapter 4 elaborates on how the Janus (speech)

Recognition Toolkit (JRTk) interfaces with language models and how this new adaptive language

model is incorporated into it. This chapter also goes into detail on what “history” the language

model can adapt to.

The evaluation is performed on a set of recordings from the European parliament where the per-

plexity and word error rate are measured using different histories and language model configura-

tions. These are compared to the values measured on a baseline language model and presented in

chapter 5.

Chapter 6 discusses the results of these experiments and finally chapter 7 presents possible future

improvements to this language model.

1.1 Importance and Effects of Language Model Adaptation in

NLP

Most state of the art language models used in speech recognition and machine translation are

statistical language models trained from a large amount of language data. The better the data

represents the type of language the model will encounter, the better the language model will be.

This means that having more data does not necessarily lead to a better language model. The data

has to be relevant to the domain of the language model.

It can be easily seen that language models built for a particular domain will perform better on

that domain than a general purpose language model. The previously mentioned language model

used to transcribe business meetings will pretty much never have to deal with the sequence of

words “high altitude cerebral edema” whereas a general purpose language model that could also

be used in hospitals and by rock climbers would have to deal with this and many other similar

word sequences like it.

14

1.2 History of Automatic Speech Recognition

An adaptive language model should recognize the domain in which it is being used and adjust

itself accordingly. This thesis describes how to build just such a language model by utilizing large

data sources with semantic meta information. Latent domains or concepts are extracted and only

data from the relevant concepts are used when decoding on a particular domain.

1.1.1 Objectives

To achieve this goal the following objectives are set.

• Identifying and acquiring possible interlinked data sources with the necessary meta infor-

mation.

• Extracting the latent domains or concepts from the data sources and associating them with

the appropriate text data.

• Constructing a system that selects the relevant concepts based on a short history.

• Training and constructing the adaptive language model from the data.

• Implementing a language model decoding module in the JRTk.

• Evaluating the language model.

1.2 History of Automatic Speech Recognition

The great physicist and mathematician Sir Isaac Newton once said:

“If I have seen a little further it is by standing on the shoulders of giants.”

And what was true 300 years ago for Newton is even more true today. Novel and groundbreaking

tools and ideas of one generation lay the groundwork for the tools and ideas of the next, which is

why this history of automatic speech recognition (ASR) does not start with the first ASR system

but with Harvey Fletcher, one of the giants on whose shoulders the field stands. Before anyone

could build a machine to recognize speech one first had to understand the physical properties of

speech. Fletcher’s research in this area showed that the important features of speech are contained

within its time-varying frequency spectrum [FotFI22].

Our vocal tract can by considered as an acoustic tube with resonance frequencies called formants.

The shape of this acoustic tube can be altered by moving the tongue vertically (e.g. [i:] in beat

vs [e] in bet), horizontally (e.g. [i:] in beat vs [u:] in boot) and by changing the shape of the lips

15

1 Introduction

Figure 1.1: The first (F1) and second (F2) formants and how they correspond to vowels. Source: [PB52]

(e.g. [æ] in bat vs [o] in boat) which leads to different formants for each voiced sound. In practice

only the first two formants F1 and F2 are needed to identify a vowel (see Figure 1.1).

On the basis of Fletcher’s research Homor Dudley at Bell Labs built his speech synthesizer

VODER (Voice Operating Demonstrator [Dud39]), which allowed the operator to play a sentence

by adjusting the output level of 10 bandpass filters through which a base signal was passed. Pre-

vious attempts to build such machines had been purely mechanical in nature using either acoustic

resonance tubes, like Russian scientist Christian Kratzenstein (1773) and Wolfgang von Kem-

pelen from Vienna (1791), or resonators made of leather like Charles Wheatstone (mid-1800’s)

[JR]). These machines could only produce “speech-like” sounds and not understandable sentences.

When Dudley’s VODER was demonstrated at the 1939 Word Fair in New York City (Figure 1.2)

it was considered revolutionary.

The first attempt to build a machine that could recognize some isolated spoken words of a single

speaker was also undertaken at Bell Labs. The machine built by Davis, Biddulph, and Balashek

in 1952 could recognize the isolated digits “oh” and “one” through “nine”. It assumed that each

input utterance was exactly one of these digits and didn’t contain any other sounds It measured the

formant frequencies and the change in formant frequencies in the utterance and compared this to

previously generated reference patterns (Figur 1.3) for each digit [DBB52].

16

1.2 History of Automatic Speech Recognition

Figure 1.2: Bell Labs engineer Homer Dudley’s speech synthesis machine Voder is demonstrated at the

1939 World Fair in New York City.

Figure 1.3: Davis’ reference patterns. Source: [DBB52].

17

1 Introduction

Similar systems were built by Forgie and Forgie at MIT Lincoln Lab [FF59] and by Suzuki and

Nakata at the Radio Research Lab in Tokyo [SN61]. They concentrated on vowel detection and

more or less ignored the more difficult to detect consonants. This example from Tanja Schulz

[Sch08] shows just how useful consonants are for ASR:

E I OU O E I O I I U O U E A

T XT W TH T V W LS S N T D FF C LT T ND RST ND

Fry and Denes at University College in England [FD58] and Sakai and Doshita at Kyoto University

[SD64] both built phoneme recognizers that could detect consonants. A phoneme is the smallest

unit of speech which differentiates the meaning of a word pair. The only difference between bush

and push is the change of the phoneme /b/ to /p/. Phonemes can sound quite different in a different

context or when spoken by a different speaker. An example of a phoneme is called a phone.

Another problem ASR systems have to deal with is the non-uniform time scale of utterances;

the speed with which an utterance is spoken can be faster or slower than its reference pattern

and the change in this speed is not necessarily constant. Sometimes one part of an utterance is

spoken faster than the reference while other parts are spoken slower. To solve this, so called,

alignment problem Russian scientist Vintsyuk proposed using a variant of the minimal editing

distance metric, which can be efficiently computed using dynamic programming, to compare the

utterance with the hypotheses [Vin68, Vin71].

In 1971 APRA3 (Advanced Research Projects Agency) launched its Speech Understanding Re-

search program (SUR) with the ambitious five year goal of building ASR systems with 1000-word

vocabulary, less than 10% WER4 and near real time capabilities. The best system built by SUR

participents was Carnegie Mellon University’s Harpy which had a vocabulary of 1011 words and

only 5% WER but its runtime was about 100 times real-time [Low76]. Speech input into the

Harpy system was first segmented and then the segments were matched to phone templetes using

the Itakura distance [Mar89]. The number of hypotheses was constrained by a predefined knowl-

edge system and a graph search algorithm similar to the modern beam search algorithm was used

to find the best hypothesis.

Independently from one another in the late 1970s both AT&T Bell Laboratories and IBM intro-

duced statistical methods to speech recognition. Bell Laboratories’ goal was to provide telecom-

munication services to the public and because these services had to work with millions of different

3later renamed to Defense Advanced Research Projects Agency (DARPA)
4Word Error Rate, see chapter 2.1.4

18

1.3 Modern Automatic Speech Recognition Systems

Figure 1.4: Hidden Markov Model example. X: states, y: observations, a:transition probabilities, b: output

probabilities. Source: http://en.wikipedia.org/wiki/Image:HiddenMarkovModel.png

people they had to be speaker-independent. Instead of phone templates they used statistical mod-

els and later hidden Markov models (HMM) which have since become standard for representing

speech units [LRS83]. Hidden Markov models are used to model statistical systems with a set of

hidden states (X1, X2, ...), possible observations (y1, y2, ..) and parameters. For each state Xi the

probability of observing yj is bij and the probability of transitioning toXj is aij (Figure 1.4). The

Baum-Welch algorithm can be used to compute the parameters of an HMM if a large enough set

of observation sequences are available. Meanwhile, over at IBM, Fred Jelinek’s team were busy

trying to build a voice-activated typewriter (VAT) to be used in office correspondence [JBM75].

Their VAT was the first ASR system to use a statistical language model, which given multiple

hypotheses that fit an input utterance, chooses the hypotheses that is most likely to occur in the

language.

1.3 Modern Automatic Speech Recognition Systems

Over the years the hidden Markov models developed at Bell Laboratories have been improved

upon and are now a vital part of speech recognition systems. The, so called, acoustic model uses

19

1 Introduction

Figure 1.5: Components of a Speech Recognition System.

a probability distribution of features to describe the smallest units of speech, the phones or sub-

phones. The pronunciation dictionary associated with an acoustic model maps words to sequences

of phones. This allows the acoustic model to, for a given word w, calculate the likelihood of a

sequence of feature vector F and can be written as a conditional probability P (F |w) [You96].

The goal of automatic speech recognition is the exact opposite. After being extracted the sequence

of feature vectors F is known and what is wanted is the contional probability P (W |f) of the word

sequence W = w1w2...wm. Bayes’ law gives us.

P (W |F) =
P (F |W)P (W)

P (F)

To be more accurate, the goal of ASR is not to calculate the probability P (W |F) but to find the

word sequence Wt with the highest probability.

maxWP (W |F) = maxW
P (F |W)P (W)

P (F)
= maxWP (F |W)P (W)

The remaining component P (W) is the probability that a sequence of words will be spoken and

is supplied by the language model.

20

2 Theoretical Background

In this chapter the basic theoretical background knowledge needed to build the proposed adaptive

language model is presented. Section 1 covers the basics of language modeling and explains how

language models are built and evaluated. The first attempts at building adaptive language models

are covered in section 2. Section 3 introduces text classification which is used to build the language

models discussed in section 4.

2.1 Basics of Language Modeling

Our goal in language modeling is to create a mathematical model of a given natural language.

Natural languages are languages that humans use for general purpose human to human commu-

nication These can be spoken, written or even signed. They are made up from a set of symbols

(words) which are arranged according to the language’s grammar rules to form sentences.

The set of symbols is arbitrarily defined and sometimes ambiguous. The English word bank can,

depending upon the context, refer to among other things “a financial institution”, “an edge of a

river” or “the incline of an aircraft. The same word in German can also mean ”bench”. Although

new words and terms slip into a language all the time, for practical purposes language models are

often defined over a finite vocabulary V .

A language model for a particular language calculates how probable a sentence or sequence of

words is in that language. In a lot of applications, like speech recognition and data compression,

language models are used predictively to calculate the probability of a possible next word in a

context. For example, if in the English language the context is “I want to live in a nice” then the

probability of the next word being house is a lot higher than the probability of the next word being

mouse.

Language models often contain special symbols indicating the beginning (< s >) and end (<

/s >) of a sentence. As a word sequence “< s > I want to live in a nice” may have a relatively

21

2 Theoretical Background

high probability but its probability as a sentence “< s > I want to live in a nice < /s >” will be

very low.

The probability of a sentence or word sequence can be calculated from the conditional probability

of the individual words given their context.

P (w1w2...wm) =
n∏
i=1

P (wi|wi−1, ..., w1)

The sequence of words s = w1...wm is called a sentence when wm is the end of sentence symbol

< /s >. Both sentences and word sequences have an implied start of sentence symbol < s > at

the unwrittenw0 position. Over the set of complete sentences P (s) can be considered a probability

distribution. ∑
s is a sentence

P (s) = 1

A language model is often said to score a sentence or word. Since the word sequence or sentence

probabilities are almost always only used to find the most probable word sequences or sentences

this comparison can be done faster by comparing the sum of the logarithm of the probabilities (log

probabilities).

logP (w1w2...wm) =
n∑
i=1

logP (wi|wi−1, ..., w1)

P (s1) < P (s2)⇒ logP (s1) > logP (s2)

The log probability returned by such a language model is called a score.

There are two main ways of building language models; the first is data driven, using a large corpus

of text to build a statistical model. The other method is to use all the rules and constraints of the

language’s grammar.

2.1.1 Statistical Language Models (N-grams)

N-gram language models make the assumption that the probability of a word is only dependent

on the n − 1 previous words. In the context w1 w2 ... wi−1 the probability of the word wi

occurring is then only dependant on wi−1, wi−2, ..., wi−(n−1). This is written as the conditional

probability p(wi|wi−1, wi−2, ..., wi−(n−1)). An n-gram is called a unigram when n = 1, a bigram

(or sometimes digram) for n = 2, a trigram for n = 3, four-grams and everything higher don’t

have special names. The term n-gram can refer to both a language model and a counted sequence

of words contained within the language model.

22

2.1 Basics of Language Modeling

The concept originates from Claude Shannon’s work on information theory and data compression.

When transferring text through a communications channel the symbol probability is not constant

but dependant on the previous symbols. In English, for example, qu is more probable than qj. In

an n-gram language model the symbols are words. So the trigrams in the sentence “< s > I want

to live in a nice house < /s >” are “< s > I want”, “I want to”, “want to live” , ... , “nice house

< /s >”.

Building an n-gram language model doesn’t require any knowledge of the language’s grammar.

All that is needed is a large amount of language data from which the n-gram probabilities are

estimated. The n-gram is then said to have been trained on that data. This is done by counting all

the n-gram and (n-1)-gram word sequences and using a maximum likelihood estimator.

P (wi|wi−1, ..., wi−(n−1)) =
#wi−(n−1)...wi−1wi

#wi−(n−1)...wi−1

#wx..w1 is the number of times the specified sequence of words occurs in the training data.

Straightforward n-gram language models like this rely only on n-gram counts found in the training

data which can lead to sparsity problems because a lot of possible and likely n-grams will not be

contained in the training data.

The non-usage of grammar knowledge is also one of the major criticisms of n-gram language

models. This is countered with the observation that with enough data short distance grammatical

structures are automatically modeled and, especially in spontaneous speech, grammatical rules are

not always adhered to.

Another criticism is that n-grams can’t model long distance dependences. The sentence “The boat

which I just had repainted in blue sunk” would have a very low probability in an trigram language

model because of the vanishingly low trigram probability of “in blue sunk”. N-grams also do not

take advantage of the domain context: In a pet store your much more likely to ask to buy a mouse

than a house, whereas when talking to a realtor the probabilities will be reversed.

Despite these concerns and problems most state of the art ASR systems and MT system use n-

gram based language models. To overcome the data sparsity, these state of the art n-gram language

models utilize, among other things, smoothing and discounting methods.

2.1.2 Providing Generalization Capability to N-grams

The training data used to build an n-gram language model will not contain all the possible or even

probable n-grams, like the improbable but still perfectly OK previously mentioned trigram “in

23

2 Theoretical Background

blue sunk”1. Conversely, lots of meaningless and unneeded n-grams will appear once or twice in

the training data. Smoothing attempts to solve these problems by smearing probability mass from

seen n-grams to unseen n-grams allowing them to generalize better.

Smoothing, Discounting and Back-Off Techniques

“Whenever data sparsity is an issue, smoothing can help performance, and data spar-

sity is almost always an issue in statistical modeling. In the extreme case where

there is so much training data that all parameters can be accurately trained without

smoothing, one can almost always expand the model, such as by moving to a higher

n-gram model, to achieve improved performance. With more parameters data sparsity

becomes an issue again, but with proper smoothing the models are usually more ac-

curate than the original models. Thus, no matter how much data one has, smoothing

can almost always help performace, and for a relatively small effort.”

Chen & Goodman (1998)

A simple smoothing technique is Laplace smoothing, which involves increasing the count of every

possible n-gram by one and was first used in Language Models by Lidstone and Jeffays [Lid20].

P (wi|wi−1, ..., wi−(n−1)) =
#wi−(n−1)...wi−1wi + 1
#wi−(n−1)...wi−1 + V

This has the desired effect of allowing sentences with unseen n-grams to be have non zero prob-

abilities but its effects on well estimated, high count n-grams are drastic. If the nonsmooothed

bigram probability of wqwu was 0.95 in a 100000 word corpus with a 10000 word vocabulary and

500 occurrences of the word wq then the bigram probability after applying Laplace Smoothing

would be

P (wu|wq) =
#wqwu + 1
#wq + V

=
475 + 1

500 + 10000
= 0.0453...

This shift of probability mass from well estimated n-grams to unseen n-grams results in a poorer

language model performance [GC94]. Good-Turing smoothing solves this problem through dis-

counting. The frequencies of seen events are decreased and the unused probability mass is dis-

tributed evenly over the unseen n-grams. This technique of counting r∗ whenever the real count

of an n-gram was r > r∗ is called discounting.

1Google actually finds 7 pages containing the 3-gram “in blue sunk”, but none for “in violet sunk”. As of Mai 2009.

24

2.1 Basics of Language Modeling

But is it desirable to distribute this free probability mass evenly over all unseen n-grams? Accord-

ing to Jelinek and Mercer a better way would be to utilize the probabilities of lower order n-grams.

To do this Jelinek-Mercer Smoothing interpolates between all the n − i-gram (i = 0...n − 1)

language models that can be built from the training data.

PJ−M
(
wi|wi−1, wi−2, ..., wi−(n−1)

)
= µnPn

(
wi|wi−1, wi−2, ..., wi−(n−1)

)
+µn−1Pn−1

(
wi|wi−1, wi−2, ..., wi−(n−2)

)
+...+ µ1P1 (wi)

n∑
j=1

µj = 1

The weights µi can be estimated using the expectation-maximization (EM) algorithm on either

held-out training data or through cross-validation [BJM90].

Witten-Bell smoothing improves on Jelinek-Mercer smoothing by replacing the static µi mixing

weights with dynamic context dependent weights which can interpreted as a confidence value of

the higher-order n-gram. These new µj(wi−(j−1), ..., wi) are set depending upon how often the

n-gram wi−(j−1), ..., wi was seen in the training data. When its occurrence was high then the

original maximum likehood estimate will be good and more weight can be given to the higher

order n-gram, otherwise the lower order n-grams will receive more weight [WB89].

In contrast to the interpolation smoothing methods, back-off smoothing techniques like Katz
Smoothing only use lower order (n-1)-grams to estimate the probability of n-grams with zero

counts, n-grams with nonzero counts are still discounted to free probability mass for the unseen n-

grams [Kat87]. Let r = #wi−(n−1)...wi−1wi be the count of a word sequence then its discounted

Katz Count ckatz is:

ckatz(wi−(n−1)...wi−1wi) =


r r ≥ k
drr k > r > 0

α (wi−1, ..)Pkatz (wi−1|...) otherwise

where dr and the back-off probabilities α (wi−1, ..) are chosen such that no probability mass is

added or lost. ∑
sis a sentence

Pkatz(s) = 1

The new recursively defined katz-smoothed probability function is derived from the Katz Counts.

Pkatz
(
wi|wi−1, ..., wi−(n−1)

)
=

ckatz(wi−(n−1)...wi−1wi)∑
wi
ckatz(wi−(n−1)...wi−1)

25

2 Theoretical Background

What Katz smoothing fails to take into consideration is that words like “Francisco” might have

a very high unigram probability. There are only a very limited amount of words that they occur

after. “Francisco” is almost always seen after “San” [KN95]. Modified Kneser-Ney Smoothing
takes this phenomenon into consideration when calculating the back-off probabilities.

An indepth evaluation and empirical study of smoothing techiques for statistical language models

carried out be Chen and Goodman concluded that modified Kneser-Ney smoothing performed best

[CG96].

Automatically Finding more Relevant Training Data

Building a statistical language model for a particular domain can be very difficult if there is only a

small amount of training data available. Sarikaya, Gravano and Gao designed a system that com-

bines the small in-domain language model (D-LM) with a language model built on text acquired

from the World Wide Web (Web-LM) [SG05]. Only text that was similar to training data was

included in the Web-LM. Using this method they were able to reduce the WER from a baseline of

24.3% to 19.1%.

A similar system was built by Sethy, Georgiou and Narayanan who started with a large general

purpose topic independent language model (G-LM) and a small topic dependant language model

(T-LM) which they used to generate search queries [SGN05]. The retreaded text data was weighted

through relative entropy and either incorporated into the T-LM or G-LM, or used to build a rejec-

tion language model. Their system achieved a WER of 24% on a test set of 800 medical domain

utterances, a relative reduction of 14% compared to the baseline 28% WER.

While both systems were able to improve their small baseline language models by intelligently

adding new data, neither of them compared their small in-domain language model plus intelligent

web data to a large in-domain language model. These systems also have the disadvantages of

having to know the domain in advance and requiring a seed amount of data.

2.1.3 CFG Language Models

The alternative to statistical language modeling is knowledge based language modeling where a

language’s grammar rules are used to build the model. Since context sensitive grammars are very

computationally hard to model, knowledge based language models often approximated them with

context free grammars (CFG).

26

2.1 Basics of Language Modeling

CFG language models are successfully used in command interpreters and dialog systems where

only simple sentences are encountered. They are not useful when working with continuous

speech.

2.1.4 Language Model Evaluation

Because language models are used in a lot different tasks, they can be evaluated in many dif-

ferent ways. A language model used in a machine translation system could be evaluated with

the Bilingual Evaluation Understudy (BLEU) metric[cite Papineni, K., Roukos, S., Ward, T., and

Zhu, W. J]. In the field of information retrieval a language model might be evaluated using the

F-measure.

In ASR the standard evaluation metric is the word error rate (WER2), which is the percentage

of word errors in the hypothosis sentence compared to the reference sentence [cite Hunt, M.J.,

1990: Figures of Merit for Assessing Connected Word Recognisers]. The number of errors is the

minimal edit distance between the hypothosis and the reference. This is the minimal amount of

substitutions s, insertions i and deletions d needed to transform the hypothosis into the reference

sentence with length l.

WER =
s+ i+ d

l
× 100% (2.1)

Most of these task based evaluation metrics have the disadvantage of not only measuring how good

your language model is but also how also how good the other components are. Some of them are

also very computationally intensive and time consuming.

A general-purpose task independent language model evaluation metric is perplexity which is de-

fined as 2Hρ (T), where Hρ(T) is the cross-entropy of the language model on a set of test sentences

T, containing |T |w words.

Hρ(T) =
∑

t∈T log2P (t)
|T |w

(2.2)

ppl = 2Hρ(T) (2.3)

If the set of test sentences T is representative of the language or domain the language model is

designed to model then the perplexity metric can be used to compare different language models.

2Although WER is given in percent, because it is in percent of the reference sentence length l, a very bad hypothosis

with more than l words, could have a WER of over 100%

27

2 Theoretical Background

Lower perplexity values indicate that a language model is more predictive. It has also been shown

that lower perplexity values correlate with lower word error rates [KP02].

2.2 General Techniques and Related work in Statistical

Language Model Adaptation

2.2.1 Cache Based Language Models

The first adaptive language model was a cache-based language model designed by Kuhn, De Mori,

McGill [KDMUoCS90]. A cache-based language model simply increases the probability of a

word whenever it is observed, assuming that words that appear once are more likely to appear

again. To cope with a change of speaker or topic the probability increase from observing a word

is not permanent. A cache-based language model is composed of two weighted probabilities, the

cache part and the n-gram part.

Plm (wi|wi−1, wi−2, ..., w1) =γPcache (wi|wi−1, wi−2, ..., wi−K) +

(1− γ)Pngram (wi|wi−1, ..., wi−n+1)

The most basic cache function simply keeps a list of the last K words and counts how often the

current word occurs in that list.

Pcache (wi|wi−1, wi−2, ..., w1) =
1
K

K∑
j=1

I (wi = wj)

I is an indicator function, with I = 1 when wi = wj otherwise I = 0. This function has a

sharp edge, in that the last K words are all considered equally important and word wk+1 is not

considered at all.

To more accurately model the observation that, the more recent an occurrence, the higher the prob-

ability of a re-occurrence, Clarkson and Robinson added a decaying factor to the cache function

[CR97].

Pcache (wi|wi−1, wi−2, ..., w1) =β
K∑
j=1

I (wi = wj) eα(i−j)

28

2.3 Techniques and Metrics for text Classification

α is the rate of decay and β a normalization constant such that Pcache (wi|wi−1, ...) summed over

all the words wi in the dictionary D equals 1. This also removes the cache size as a variable since

words far back in the history have an almost negligible impact on the probability. Tests showed

that the regular cache function performed best with a cache size of 500, reducing the perplexity

to 144.73 from a baseline of 165.52. With an optimum decay rate of 0.005 the exponentially

decaying cache had an even lower perplexity of 141.75.

The cache-based language models have the advantage of not requiring any more data than normal

language models to train but then can only improve the probabilities of detecting previously seen

words. A cache based language model that observes the word Obama will correctly increase the

probability of detecting Obama again but it will not change the probability of detecting Barack3.

To take advantage of these, other adaptive language models incorporate text classification tech-

niques.

2.2.2 Class-Based Language Models

Class based n-gram language models, first introduced by Brown et al [BMDPL92], attempt to

improve the generalization capabilities of language models by mapping words to word classes.

The word “seven” for example would be mapped to the class “numbers” and the word ‘‘poodle”

might be mapped to class “animals”. Word probabilities are then dependant on the previous n−1

classes and its occurrence frequency within the word class. The word “seven” will undoubtably

occur more often within the class “numbers” than the word “57”.

Pclass
(
wi|ci−1, ci−2, ..., ci−(n−1)

)
= P (wi|ci)Pclass

(
ci|ci−1, ci−2, ..., ci−(n−1)

)
Class based languages models don’t need as much training data as standard n-gram language

models and can encode semantic information in the classes which improves speech understanding.

In large vocabulary ASR systems cache-based n-grams have failed to reduce the word error rate.

2.3 Techniques and Metrics for text Classification

The basic text classification task consists of assigning a category ci from a set of predefined cate-

gories C to each document di in a set of n documents D. The features of di which are used in the

3Actually, because the probability density remains the same, by increasing the probability of Obama the probability

of all words including Barack is reduced by a tiny amount

29

2 Theoretical Background

classification depends on the classifier used.

τ : D → ci ci ∈ C

This definition classifies each document into exactly one category and is analogous to the real

world task of putting the physical document into a particular file (aka non overlapping categories

or single-label case) [SM86].

For documents that do not fit into any of the predefined categories, an off-topic category cx can be

added. To allow documents to be classified into multiple categories (aka overlapping categories or

multilabel case) the definition can be modified to:

τ : D × C → {0, 1}

If τ (dj , ci) = 1 then the document dj is in the category cj .

2.3.1 TFIDF-Metric

Depending upon the application, the documents will have lots of properties that can be useful in

deciding how to categorise them. Traditional documents will have an author (or authors), a title, a

publication date and so on. Some documents will also contain subheadings, references and links.

By far the most important document property is its body text.

Most text classifiers extract the features used for classification exclusively out of a document’s

body of text. A standard method of of generating a feature vector
−→
fj from a document dj is to

first extract a set of n terms from the sum of the text of all the documents and then weight them

according to their occurrence in dj . For each dj we have a

−→
fj = (f1,j , f2,j , ..., fn,j)

where fk,j donates the weight of term k in document j.

The easiest and most common way to extract terms from a body of text is to view each word as a

term. This method is often called the bag-of-words view of a document.

Once a set of terms |T | = n has been decided upon then a TFIDF function can be used to generate

a document feature vector
−→
fj . In its basic variant the function calculates each component of

−→
fj

from its term frequency TFk,j in j and the inverse document frequency of TFk of k. The term

frequency component measures how often a word occurs in a document.

TFk,j = #(tk, dj)

30

2.3 Techniques and Metrics for text Classification

The inverse document frequency measures how discriminative a word is. Words in few docu-

ments have a high inverse document frequency and words in lot of documents have a low inverse

document frequency [SB87].

IDFk,j = log

(
|D|

#(D, tk)

)
The logarithm of the quotient is used to blunt the effect of extremely rare words, which might only

appear in one or two documents. Putting these together gives us.

fk,j = TFIDF(tk, dj) = #(tk, dj) · log
(

|D|
#(D, tk)

)
(2.4)

with #(tk, dj) being the number of times tk appears in dj and #(D, tk) the number of documents

containing tk. As is, the TFIDF function does not take into account the length of a document.

A term appearing once in a short document is more relevant than if it were to appear in a longer

one.

One way to solve this is to normalize the vector generated by the TFIDF function.

fk,j =
TFIDF(tk, dj)√
|T |∑
h=1

TFIDF(th, dj)2
(2.5)

2.3.2 Cosine Similarity Metric

TFIDF vectors are built to be able to compare documents with each other. This requires a similarity

metric. The cosine similarity metric is an easy and fast metric to compute. It is defined by the

angel τ between the two vectors f1 and f2 that are to be compared.

cossim(f1, f2) = cos(τ)
f1 · f2

|f1||f2|
(2.6)

Since the TFIDF vectors are often already normalized (|f1| = 1 and |f2| = 1) the denominator

part of this definition can be ignored. Also most TFIDF vectors are sparse, leading to very few

nonzero terms in the numerator of the definition. This allows the cossine similarity metric to be

calculated very fast.

31

2 Theoretical Background

2.4 Adaptive Language Models using Text Classification

As has been previously pointed out, ASR systems usually perform best in a small domain where

the total number of possible words is limited. A specialized ASR system designed for either med-

ical transcriptions or tourist information will perform better than an equivalent but more general

one that has to work in both domains.

One method for improving language models that follows from this observation is to have specialist

LMs for each domain or topic. This is exactly what Lane, Kawahara and Matsui did. They built

an adaptive language model consisting of a Generalized Language Model (G-LM) and multiple

Topic-dependent Language Models (TD-LM), which when tested on the ATR phrasebook corpus

reduces the WER from a baseline of 8.54% to 7.64% and the perplexity from 22.77 to 16.85

[LKM03].

The baseline was a trigram LM trained on the entire training set and later used as the G-LM part

of the adaptive LM. The TD-LMs are each trained on the part of the corpus associated with their

particular topic. During decoding the G-LM performs an initial pass, this is then used by a topic

classifier to determine which TD-LM to use for the second pass. The authors also propose an

extension to this system where an intermediate layer of language models is inserted between the

G-LM (layer 1) and the TD-LM (layer 3). The layer 2 LMs cover several related topics and are

easier to classify.

Compared to cache based language models this adaptive language model has the advantage that

the probabilities of the, for the decoder so far, unseen word sequences can be adjusted depending

on the dectected context. Unfortunately the number of topics is very low and each topic has to be

manually initialized.

Unlike Lane et al’s adaptive language model, the Topic-Based Language Model built by Gildea

and Hofmann did not require labelled topics. Instead they used the Expectation-Maximization

(EM) algorithm to determine both the probability P (t|d) that a particular document d belonged to

a latent topic t and the probability P (w|t) that a word w is contained in the latent topic t [GH99].

Their model assumed that

P (w|h) =
∑
t

P (w|t)P (t|h) (2.7)

and interpolated it with an n-gram model to take advantage of short range structures. Unfortunately

an improvement in perplexity of 17% did not translate into an improvement in WER when tested

on the CSR Hub-4 corpus and broadcast news.

32

3 Data Sources and Preparation

Figure 3.1: Modified Speech Recognition System using a text classification to adapt the language model.

The Speech Recognition System schematic shown in figure 1.5 can be modified (figure 3.1) to

work with an adaptive language model by analyzing the text output and using it to adapt the

language model. One way of doing this is to identify the domain in which the language model

is working and interpolate the original base language model Pbase with a language model built

specifically for the detected domain Pd. Let h = w1w2...w(i− 1) be the current word history.

Padapt(wi|h) = µPbase(wi|h) + (1− µ)Pd(wi|h) (3.1)

In practice the text classifier might not be able to accurately identify the domain of the text spoken

so far or it might by possible to classify it into two more domains. So let the classifier instead

return the n most similar domains, also referred to as concepts, c1...cn and interpolate them based

on their similarity weights λ1...λn.

Pd(wi|h) =
n∑
j=1

λjPcj (wi|h) (3.2)

33

3 Data Sources and Preparation

where
n∑
j=1

λj = 1

The big open question here is: Where do these concept language models come from and how

are they built? This chapter explains how freely available structured data sources can be used to

generate a large set of domain or topic specific language models. Section 1 describes how Evgeniy

Gabrilovich had to solve a similar problem when incorporating world knowledge into a textual

information retrieval system. Section 2 elaborates on two of the data sources Gabrilovich used

and what can be extracted from them to build the concept language models. The preprocessing

and cleaning of the extracted data is explained in section 3. The final section describes how the

concept language models were built and which concepts are used in the final model.

3.1 Feature Generation using World Knowledge

Evgeniy Gabrilovich wanted to design a textual information retrieval system that would recognize

that news headlines like ‘‘Demand for Viagra on the Rise” and “Pfizer Profits Soar” were related;

or realize that a keynote speech by Steve Balmer might have something to do with Microsoft. In

his PhD thesis “Feature generation for textual information retrieval using world knowledge” he

suggested augmenting the traditional features used in text classification with features generated

from external data sources like wikipedia or the open directory project [Gab07].

Numerous concepts were extracted from these data sources. A peace of text to be classified in the

information retrieval system was first preclassified and associated with a several concepts which

become the additional feature in further classification. This mapping of text into a vector space of

concepts is called explicit semantic analysis.

3.2 Data Sources

3.2.1 Open Directory Project

The Open Directory Project ODP is a collection of over 4.500.0001 links which have been sorted

into over 500.000 relevant categories by human editors. It has a hierarchical structure like the

1as of march 09

34

3.2 Data Sources

Figure 3.2: Exert of the ODP XML file.

Yahoo directory. Volunteer editors extend and maintain the directory. The raw data of the ODP

can be downloaded from http://www.dmoz.org as a large XML file.

The ODP XML file contains two main top level tags; Topic and ExternalPage (see figure 3.2).

The Topic tag’s main attribute is its ID (e.g. Top/Computers/Programming/Languages/Haskell)

and each ExternalPage tag contains a link to a website and is associated with a topic. Topics and

ExternalPages are arranged in a tree structure with the topic ”Top” as the root node and the external

pages as the leaves. The terms topic and node will be used interchangeably. A topic’s direct text

is the text contained in all the websites linked the ExternalPage tags’ directly under it. The text

associated with a topic is its direct text combined with the direct text of all its sub topics.

The text data is retrieved with the help of a two part program. The server thread part of the

program reads the ODF XML file and extracts the links while the numerous client threads take

parcels of these links from the server thread and download the websites contents. Nodes with

more than an arbitrarily set amount of associated text are used as concepts.

3.2.2 Wikipedia

The free online collaborative encyclopedia Wikipedia contains over 2.500.0002 articles in the En-

glish language. Unlike the ODP, Wikipedia is flat containing no strict hierarchy between the arti-

cles. Instead its link structure is exploited. Wikipedia provides regularly updated database dumps

that anybody can download. They can be downloaded from http://download.wikimedia.org/ as

2also as of march 09

35

3 Data Sources and Preparation

very large XML files. Again a minimum size limit is chosen and all larger articles are used as

concepts. Their associated text is a combination of their article text plus the texts of linked-to

articles.

3.3 Text Cleaning

The text extracted from the ODP links are not raw text files but instead html files which contain a

lot of unwanted information. Before anything else can be done the html tags have to be stripped.

The same thing is done to the wikicode found in the text taken from Wikipedia3. After removing

these non-text elements the text is split into sentences [Clo01] and finally all punctuation marks

are removed. Figure 3.3 show an excert of an html file linked to by the ODP and figure 3.4 shows

the same file after it has been cleaned.

3.3.1 Building the Language Model

Two things have to be built for each concept; a language model and an attribute vector. With the

help of the SRI Language Modeling Toolkit ([Sto02]) and the methods discussed in chapter 2.1 a

smoothed n-gram language model is built for each concept.

The attribute vectors are used to compare the concept language models to the word sequences that

the language model has to adapt to. The attributes (words) are extracted from the sum of all the

text associated with concepts. The high frequency stop-words4 are removed as well as words with

a very low frequency. The concept attribute vectors can then be built using the TFIDF function

2.4.

3Wikipedia’s recursively defined templates make this very hard.
4stop-words are semantically meaningless words like: the, and, ...

36

3.3 Text Cleaning

Figure 3.3: A dirty html file before cleaning and sentence splitting.

Figure 3.4: The text file shown in figure 3.3 after cleaning.

37

3 Data Sources and Preparation

Figure 3.5: This figure shows how the adaptive language model is built. The concepts with their associated

text are extracted from the data source(s). The SRI Language Modeling Toolkit is used to build

concept n-grams from that text. A concept TFIDF attribute vector for use in the Selector is

also built from the associated text.

38

4 Language Model implementation and

incorporation into a decoder

4.1 Overview of the previously existing main components

4.1.1 The Janus Recognition Toolkit

The Janus Recognition Toolkit (JRTk or just Janus) is a general purpose speech recognition toolkit

developed at the Interactive Systems Labs in Karlsruhe, Germany and Pittsburgh, USA. Although

implemented in C, it includes an object oriented Tcl/Tk interface. Complex tasks are performed

with Janus by writing a Tcl/Tk script and running it in Janus. Everything necessary for ASR, from

codebooks over language models to the decoder itself is handled as objects in the Tcl/Tk script.

Ibis Decoder

The heart of the JRTk is the Ibis decoder, [cite soltau hagen] a single pass decoder that uses

linguistic context polymorphism. This allows it to utilize all available language model information

as early as possible. The dictionary object provides the decoder with mappings from phone

sequences to words. These mappings are not unique because some words can be pronounced in

multiple different ways and the same phone sequence can correspond to different words at different

times depending upon the context (e.g. there and their). The SVocab object defines a subset

of the words in the dictionary as the search vocabulary. Only words in the search vocabulary

can be recognized by the decoder and appear in the output hypothesis. The words in the search

vocabulary are mapped to corresponding words in the Language Model. Since the search tree

(STree) requires the inverse of this mapping to be surjective, the SVMap object maps all words in

the search vocabulary that do not have corresponding words in the language model to the unknown

LM word. The scores of the acoustic model and the language model are combined in the search

tree and it is from here that the language model is normally accessed. Instead of just outputting

39

4 Language Model implementation and incorporation into a decoder

Figure 4.1: Ibis decoder object hierarchy and structure. The red area was changed to make use of the new

SelectLM (see figure 4.5)

the best hypotheses, the Ibis decoder can also return a word lattice (GLat, see Figure 4.2) that can

later be rescored without redoing the entire decoding.

Figure 4.2: An example word lattice.

Language Model Interface

To easily be able to change language models, all language model objects in Janus, often referred

to as linguistic knowledge sources (LingKS) implement a common interface. Its main functions

are: [cite Janus Manuel and efficient handling]

LingKS.createLCT(): returns a linguistic context, containing only the start of sentence word.

LingKS.scoreArray(LCT): scores all the words in the language model at the given linguistic

context and returns them in an array.

40

4.2 Structure of the Adaptive Language Model Framework

LingKS.extendLCT(LCT,LVX): creates and returns a new linguistic context by extending the

given existing linguistic context by word.

LingKS.score(LCT,LVX): scores a word in a linguistic context.

The linguistic context (LCT) is what the language model knows of its place in a sentence. For an

n-gram the linguistic context would be the previous n-1 words and for a CFG it would be its current

state. In these functions the term LVX refers to a word in the language model vocabulary.

4.2 Structure of the Adaptive Language Model Framework

The Adaptive Language Model Framework was built in two stages and consists primarily of two

separate Objects, the Selector, a stand alone program and the SelectLM Janus object as well as

a collection of scripts and programs used to extract and prepare the data. The Selector loads a

list of attribute vectors corresponding to concepts with previously built sub language models and

responds to queries consisting of word sequences with the n most appropriate language models

and their mixing weights. The SelectLM Janus object implements the standard language model

interface, connects all the sub language models as well as a base language model together and

interpolates their scores based on the weights returned by the Selector. The base language model

(BaseLM) is a general purpose language model trained on a large data set.

4.3 Selector

The Selector was originally only implemented as a stand alone program to help detect bugs but

due to its large memory requirements it was often necessary to run it on a separate machine from

the one running the modified Janus. Since doing this slows down decoding considerably, future

versions of the Adaptive Language Model Framework will probably incorporate the Selector into

Janus as an object.

4.3.1 Overview

The initialization of the Selector requires a port to listen on and two files, an attribute vector list

file and the dictionary file used to build the attribute vectors. The vector in line j of the vector list

file corresponds to concept j and the sub language model j in the SelectLM object. The dictionary

41

4 Language Model implementation and incorporation into a decoder

Figure 4.3: Adaptive Language Model in use

42

4.4 SelectLM

ID Weight Concept

409 0.184406 Regional/Europe/United Kingdom/Scotland/Recreation and Sports/Golf

123 0.194006 Regional/Europe/United Kingdom/Scotland/Aberdeenshire/Society and Culture/History

360 0.196899 Regional/Europe/United Kingdom/Scotland/Moray/Glenlivet/Travel and Tourism

473 0.210764 Regional/Europe/United Kingdom/Scotland/Travel and Tourism

417 0.213925 Regional/Europe/United Kingdom/Scotland

Table 4.1: The top 5 concepts returned by the Selector to the query: “this summer the world will be coming

to scotland i hope a million people to come to scotland and behave themselves”.

file is used to build an attribute vector out of a word sequence. After the dictionary and attribute

vectors have been loaded a specified port is opened and the selector waits for connections from

Janus.

4.3.2 Query Response

An incoming query to the Selector is a sequence of words which is converted to an attribute vector

k. Using the cosine similarity metric the n concepts with loaded attribute vectors most similar to

k are found.

topn = {st1 , ..., stn} = maxnvi∈V {
k · vi
|k||vi|

} (4.1)

V refers to the set of all loaded attribute vectors, t1, ..., tn the n concepts with the highest similar-

ities st1 , ..., stn . Since the term |k| is constant, it is not required to compare the similarities and

can be omitted.

topn = {ŝt1 , ..., ŝtn} = maxnvi∈V {
k · vi
|vi|
} (4.2)

The weights are calculated by normalizing the similarities ŝt1 , ..., ŝtn of the top n concepts so that

wt1 + ... + wtn = 1. The Selects responds to the query by sending back the top n concepts and

their weights.

4.4 SelectLM

SelectLM is a new Janus object implementing the language model interface. It reuses and is based

open the InterpolLM written by Christian Fügen, which interpolates a set of language models. As

43

4 Language Model implementation and incorporation into a decoder

Figure 4.4: New Ibis

can be seen in figure 4.5 the SelectLM also uses the language model interface to communicate

with the baseLM and the set of concept associated language models, referred to as sub language

models. It also acts as vocabulary mapper from its internal vocabulary to the vocabulary of its sub

language models.

4.4.1 SelectLM Description

The SelectLM object is initialized by separately loading all the sub language models and connect-

ing them to the SelectLM object, which builds up the vocabulary mapping table. The vocabulary

of the SelectLM is the union of all its sub language model vocabularies. Words in the SelectLM

vocabulary that are not contained in a particular sub language model are mapped to that language

model’s unknown word. This mapping table is necessary because of the way the n-gram language

model stores the scores. They are stored in memory as a large array which uses the wordnumber

as its index. If all the wordnumbers were the same in all sub language models then they would all

take up the same amount of space in memory as the largest one. The location, hostname and port

of the Selector and how often it is queried also have to be configured. Before running the decoder

the starting context, to which the language model should adapt, is set. This provides 5 adaptation

strategies.

44

4.4 SelectLM

Adapt to history The m previously decoded hypotheses are loaded into the language models

starting context and the Selector is queried once per hypothesis.

Adapt to base hypothesis The baseLM is used to generate a hypothesis which is loaded into

the starting context for a second decoding pass using.

Adapt to base hypothesis + history The m previously decoded hypotheses and the hypoth-

esis generated by the baseLM on the first pass are used as the starting context.

On the fly The starting context is left empty and the Selector the queried every time the a lin-

guistic context is extended.

On the fly + history Here again the m previously decoded hypotheses are used as the starting

context and the Selector is queried every time a linguistic context is extended.

4.4.2 SelectLM Data Structure

Figure 4.5: The data structure of the SelectLM linguistic context.

A large part of the SelectLM Data Structure is its internal vocabulary mapper. Instead of dealing

with strings and words directly the decoder uses numbers correspond to words. Language models

take advantage of this by storing the word scores in such a manner that this number can act as an

index. Unfortunately, language models with different vocabularies will have a different number to

word mapping. This is why the SelectLM object needs to have both a globally defined number to

45

4 Language Model implementation and incorporation into a decoder

word mapping and a large look-up table to find a word’s number in a particular concept language

model.

The other big part is the linguistic context set. While decoding a hypothesis the Ibis decoder

scores lots of different hypotheses and can come to them through different paths (see figure4.2).

Each extention of a part-hypothesis by a further word creates a new linguistic contex containing

all the information need to return a context dependant word score should the decoder require it.

For the SelectLM that means the concept language models used in this context and their mixing

weights.

46

5 Experiments

Speech recognition tests to measure possible WER improvements were performed on a subset

of the 2006 TC-STAR development data which is composed of European Parliament plenary

speeches. This chapter explains how the adaptive language model was used in the ASR sys-

tem designed for the 2006 TC-STAR ASR evaluation. The first two sections introduce the 2006

TC-STAR development data and the baselines used. The next section explores how the differ-

ent ways of building an adaptive language model affect its performance. In section 4 the various

adaptation methods are analyzed and compared. The following section discusses the interpolation

weights used at different stages and the final section shows how the best system performed on the

evaluation subset.

5.1 Test and Evaluation Data

The 2006 TC-STAR development data consists of 901 utterances spoken by multiple people. It is

derived from recordings of European Parliament plenary speeches. Before any components were

tested the data was split into two subsets: a small development set containing 144 utterances and

a large evaluation subset containing the remaining utterances. All parameter tests were performed

on the small development set and only the language model with the best set of parameters was run

on the evaluation set.

5.2 Establishing a Baseline

Two different baselines are needed to measure the effect of the adaptive language model in dif-

ferent situations. Base1 is a general purpose 3-gram language model not tuned to any specific

domain. Base2 is original hand tuned 4-gram language model designed to work best on the testset

domain. Base1 was built from the sum of all the text associated with a concept and the SRILM tool

using modified Kneser-Ney smoothing. Base2 was built by hand from language models derived

47

5 Experiments

from multiple sources including a large web crawl, the gigaword corpus and parliamentary debate

transcripts. These language models were interpolated with weights derived through PPL measure-

ments (see chapter 2.1.2). All other ASR components were the same as the system built for the

2006 TC-STAR evaluation. Although the development set contained 144 utterances they spanned

Base1 Base2

WER 21.5% 18.2%

PPL on Reference Text 277.1 100

PPL on best Baseline Hypothess 385.4 147.2

Table 5.1: Baseline measurements

299 sentences in the reference text. Perplexity measurements were carried on both the reference

data “PPL (R)” as well as on the hypotheses from the best system in 2006 TC-STAR evaluation

“PPL (B)”. That fact that the reference sentences and utterances are not aligned meant that the

history experiment could not easily use the references for PPL measurements and that calculating

the WER required an alignment preproccessing stage.

5.3 Testing the Effects of Different sets of Concept LMs

In this first experiment the effects of different numbers and types of concepts used in the lan-

guage model were tested. When building language models, only concepts with more than 500

lines of associated text were used. To get the most out of the concept language models, differ-

ent smoothing techniques were used for different amounts of concept text. Modified Kneser-Ney

smoothing was used on concepts with more than 10000 lines of associated text and Witten-Bell

smoothing was used on concepts with between 500 and 10000 lines. Language models use up a

lot a memory and even loading only 1000 of the 89823 ODP concept language models requires

over 20GByte of RAM when decoding a 45s sentence. Since nowhere near all 89823 language

models can be loaded at once only concepts that are subconcepts of “Top/Society/Government/”

or “Top/Regional/Europe/” are used. These 9971 concept LMs are sorted by their size and the

largest and most general 20 are removed. To test the presumtion that more concepts should lead

to better results, four adaptive language models are built from the remaining concepts. The in-

terpolation weights for the base language model and the adaptive part are both set to 0.5 and the

baseline hypothesis is used for adaption.

48

5.3 Testing the Effects of Different sets of Concept LMs

Adapt10 : The 10 largest remaining concepts.

Adapt100 : The 100 largest remaining concepts.

Adapt500 : The 500 largest remaining concepts.

Adapt1000 : The 1000 largest remaining concepts.

LM PPL (R) WER

Base1 277.137641284 21.5%

Base1+Adapt10 274.718 22.6%

Base1+Adapt100 237.35 21.3%

Base1+Adapt500 203.054 21.5%

Base1+Adapt1000 183.676 20.5%

Table 5.2: PPL and WER tested on language models with different numbers of concept LMs

These were tested on the development subset using Base1 as the baseline language model. Ta-

ble 5.2 clearly shows that the presumtion was correct, adding more concepts improved the perfor-

mance of the language model. Adaptive language models using 100 or more concepts performed

better than or equal to the base line language model, with the Adapt1000 language model reducing

the WER of the baseline language model by 1% absolute.

To demonstrate that this improvement doesn’t just stem from using more data a further language

model was built from the text of all the concepts that are subconcepts of “Top/Society/Government/”

or “Top/Regional/Europe/”. This language model built from these selected concepts is then inter-

polated with the base language models to give:

Base1Mix : 50% Base1, 50% LM built form selected ODP concepts

Base2Mix : 50% Base2, 50% LM built form selected ODP concepts

The results of these language models as well as the results of Adapt1000X can be seen in Ta-

ble 5.3. Adapt1000X is similar to Adapt1000 with the sole difference being that only the direct

text and not the associated text is used to build the concept language models. Neither Base1Mix

nor Base1+Adapt1000X perform as well as the Base1+Adapt1000 language model. Table 5.4

shows that when using Base2 as the base language model the adaptive language model still out-

performs the interpolated language model Base2Mix But this time using the adaptive language

model, with a WER of 18.6%, does not improve on base language model with a word error rate of

only 18.2%.

49

5 Experiments

LM PPL (R) WER

Base1 277.137641284 21.5%

Base1+Adapt1000 183.676 20.5%

Base1+Adapt1000X 258.74 45.6%

Base1Mix - 24.1%

Table 5.3: PPL and WER tested on language models with different sets of Concept LMs using Base1 as

the baseline language model.

LM PPL (R) WER

Base2 100.004 18.2%

Base2+Adapt1000: 85.421 18.6%

Base2Mix - 20.5%

Table 5.4: PPL and WER tested on language models with different sets of Concept LMs using Base2 as

the baseline language model.

5.3.1 Evaluation Time

The experiments were run on a cluster of 12 high powered computers with 2 AMD Opteron 2352

quad-core Barcelona 2.1GHz processors and 32 to 64 GBytes of RAM each. A high amount of

parallelization was achieved by having different utterances decoded on different machines. Using

only one quad-core Opteron processor on only a single node the baseline measurement of Base1

on the development subset was completeted in about 6 hours. The same task required about 19

hour when using Base1+Adapt1000 as the language model. Adaptive language models with fewer

concepts were slightly faster: 13 hours for Base1+Adapt10 with 10 concepts and 16,5 hours for

Base1+Adapt500 with 500 concepts. The adaptive language models wasted a lot of time initial-

izing unneeded components and re-initializing large parts of the language model after decoding

each utterance. This re-initializing process was necessary to keep the memory usage down but it

could and in future should be done a lot more efficiently.

50

5.4 Adapting to Different Histories

5.4 Adapting to Different Histories

The next parameter to test is the history to which the language model is adapted. As was discussed

at the end of the last experiment, the time to measure the word error rate of single parameter

configuration is very high. Therefore the WER was only measured on some configurations. The

Adapt1000 language model from experiment one is used and adapted to different histories. In the

first set of measurements it is adapted to the baseline hypothesis and the baseline hypotheses of

the past 0 to 8 utterances. The second set of measurements only adapts the language model to the

baseline hypotheses of the past 1 to 8 utterances.

Base1 + Adapt1000 Base2 + Adapt1000

History length WER PPL (B) WER PPL (B)

0 + B 20,5% 253.73 18.6% 118.54

1 + B 20,5% 256.73 18,4% 120.09

2 + B - 259.22 - 120.70

3 + B - 262.46 - 121.94

4 + B - 263.31 - 122.08

5 + B - 263.70 18,4% 122.36

6 + B - 262.50 - 122.40

7 + B - 261.81 - 122.24

8 + B - 262.38 - 122.16

Base1, no adaptation 21.5% 285.5

Base2, no adaptation 18.2% 147.3

Table 5.5: Perplexity measured on the baseline language hypotheses and word error rate, adapting to dif-

ferent history lengths and the baseline hypothesis

At first glance it appears that according to table 5.5 using more history to adapt to actually makes

the language model worse but that was to be expected in this particular case. The PPL is measured

on the baseline hypotheses and this table shows that adapting the language model to only the

baseline hypotheses reduces the perplexity the most. Adding more history to adapt to only adds

more less relevant data. Table 5.5 indicates that when the baseline hypothesis is not available

for adaption, increasing the amount of history the language model adapts to can result in PPL

reductions.

51

5 Experiments

Base1 + Adapt1000 Base2 + Adapt1000

History length WER PPL (B) WER PPL (B)

1 21.0% 277.91 19.5% 124.65

2 - 272.99 - 123.96

3 - 272.112 - 124.06

4 - 271.49 - 123.99

5 - 270.21 - 123.96

6 - 270.40 - 124.17

7 - 269.07 - 123.91

8 - 268.87 - 123.76

Base1, no adaptation 21.5% 285.5

Base2, no adaptation 18.2% 147.3

Table 5.6: Perplexity measured on the baseline language hypotheses and word error rate while adapting to

different history lengths

5.5 Evaluating Interpolation Parameters

All the previous experiments have so far interpolated the base language model and the adaptive

part with equal weights. To find out whether or not this parameter is correctly set or could be

tweaked, the word error rate of the language model Base2+Adapt1000 adapting to the base LM

hypothesis, is calculated using different interpolation weights. It can clearly be seen in table5.7

that the original interpolation weights of 0.5 and 0.5 were incorrectly chosen. Weighting the

baseline language model with 0.8 and the adaptive part with 0.2 decreased the WER to 17.9%.

This is also below the 18.2% WER of the baseline.

5.6 Examining the Concept Interpolation Weights

The interpolation between the base language model and the adaptive part is not the only interpo-

lation that has to be examined. The concept language models returned by the Selector are inter-

polated to form the “adaptive part”. The interpolation weights used are calculated by normalizing

the similarties of the cosine similarity metric. For pratical purposes only the 10 highest similarties

52

5.7 Evaluation Subset Results

Base2 Weight Adapt1000 Weight WER

0.5 0.5 18.6%

0.6 0.4 19.7%

0.7 0.3 18.0%

0.8 0.2 17.9%

0.9 0.1 17.9%

Base2 baseline

1.0 0 18.2%

Table 5.7: WER measured using different interpolation parameters

are used and all others are set to 0. Unfortunately this parameter could not be easily adjusted1.

To evaluate how good these weights are the Base2 language model is examined more closley. As

mentioned at the beginning of this chapter, Base2 was built by interpolating 8 existing language

models based on weights derived from PPL measurements producing an optimal language model

for the domain. A new adaptive language model Base2split is designed using each of these lan-

guage models as concepts and the text used to build them is used to make attribute vectors for

the concepts. The interpolation weights are calculated dynamically each time this language model

adapts to something. For this language model its interpolation weight with the baseline language

model Base2 was raised to 0.9. A WER of 18.2% for Base2split adapting to the baseline hypotho-

sis was measured on the development subset and equaled the 18.2% WER of Base2 with standard

mixing weights. This result shows that the cosine similarity interpolation weights are on par with

the original ppl optimization ones.

5.7 Evaluation Subset Results

Using the results of this chapter a final test was set up on the evaluation subset. The baseline was

Base2 which achieved a WER of 10.5 on the evaluation subset. The following parameters were

chosen for the adaptive language model:

Composition : The Adapt1000 from experiment one was used.

History : The history incompased the baseline hypothosis and the previouse 3 hypothoses.

1This might not be necessary since the similarity seems to drop off very fast.

53

5 Experiments

Interpolation Weights : The Base2 interpolation weight was set at 0.8 leaving 0.2 for the

adaptive part.

Using five nodes from the cluster described in section 1 this evaluation took just under 28 hours to

run. The end result was a disappointing WER of 10.8%.

54

6 Conclusions and Observations

The last chapter demonstrated that under some conditions the adaptive language model can out-

perform a baseline language model. When the general purpose language model Base1 is used

then the adaptive language model is able improve the WER from 21.5% to 20.5%. This tested the

applicability of the language model to unseen domains. Neither Base1 LM nor the adapt1000 LM

used any domain knowledge. From this we can conclude that the adaptive language presented in

this thesis might be useful when dealing with a new domain.

Although it should also be noted here that running a decoder with the adaptive language model

increases the decoding time by about threefold. A Testset that can be decoded in 6 hours with the

base language model take about 19 hours to decode with the adaptive language model.

The fact that with increasing history lengths the perplexity actually got worse in table ?? may seem

surprising at first but on closer examination this is exactly what should be expected. With a history

length 0 the language model was adapting only to the baseLM hypothosis which was exactly on

what the PPL was being measured. Increasing the history length meant that the language model

was adapting to something less accurate. The, up until a point, expected slight decrease in PPL as

the history length gets longer can be seen in table ??.

Unfortunately, this thesis has not been able to show that the adaptive language model can improve

the WER of a hand built and optimized domain specific language model. Although some parame-

ter configurations on the development subset did in fact reduce the WER compared to the original

Base2 language model, these reduction were not mirrored in the results on the evaluation subset.

Perhaps implementing some of the possible features described in chapter 7 will accomplish this.

The dynamic calculation of the language model interpolation weights in the Selector has been

shown to be on par with optimizing them using ppl measurements this might lead to a new method

of interpolating language models on the fly.

55

7 Future Work

This thesis has only scratched the surface of what could be done with adaptive language models

built from interlinked data sources. As has already been alluded to in chapter 4, a future version

of this language model should integrate the selector directly into the decoder. That is not the only

possible improvement to the adaptive language model.

7.1 Optimize and Speed-up

As has already been mentioned, the adaptive language model slows down the decoder a lot. The

time to decode the testset went from 6 for the baseline measurement to 19 hours when using the

Adapt1000 language model. A future version might be able reduce even further the amount of

“baggage” and “crud” produced by the currently unused n-grams.

7.2 Decay Parameters for Improved Dynamic Interpolation

The history window used is very basic. When adapting to a history the last m hypotheses are

all considered equally important, while the hypothesis just before them is not considered at all.

Similar to the method used in cache language models a decaying factor could be added to weight

the hypotheses in the history.

7.3 Try Different Metrics and Classifiers in the Selector

The selector only used the cossim metric when comparing attribute vectors built from input word

sequences to the concept attribute vectors. Instead more sophisticated classifiers like support vec-

tor machines or decision trees could be tested.

56

7.4 Dynamic Vocabulary

7.4 Dynamic Vocabulary

Right now all concept language models use the same vocabulary as the base language model. A

potential improvement to this language model would involve using a larger total vocabulary. To

begin with, only the base language model’s vocabulary would be loaded and used in the search

vocabulary. Each concept language model would also contain a set of extra words which would

be dynamically added to the search vocabulary.

7.5 Reduce Memory Requirements

The current SelectLM internal vocabulary mapper requires an enormous amount of space. Even

loading only 1.000 language models and with a search vocabulary of only 50.000 words the vo-

cabulary mapper bloats up to an array with 50.000.000 cells each using up 2 bytes of memory. To

load a vocabulary larger than 65.535 words the cell size has to be increased to 4 bytes. So 10.000

concept language models with a total vocabulary 100.000 words require 4.000.000.000 bytes of

memory.

There are two possible ways of dealing with this problem: the first is modifying the way n-gram

word numbers are assigned so that a vocabulary mapper is no longer required. This has the down-

side of meaning that every n-gram has to have a score for every word. The other solution is to

compress the mapping table.

7.6 Incorporate more Data

The websites linked to by the ODP contain links to other most likely related websites. More html

data could be gathered by spidering down a level or two. Not only website data but also text from

pdfs and other files could be used. Most Wikipedia articles contain links to external websites and

documents that could easily be mined for more data.

7.7 Incorporate more Meta Information

Wikipedia articles are often assigned to several categories. This category meta information might

be used to build further concepts with their associated text being the text contained in all articles

57

7 Future Work

tagged with that category.

7.8 Use this Language Model in Machine Translation

Machine translation systems face similar problems to speech recognition systems, so although

this language model was built with ASR in mind it might also be useful in MT. If concepts existed

pairwise in both languages then the language model could adapt to the input text.

58

Bibliography

[BJM90] L.R. Bahl, F. Jelinek, and R.L. Mercer. A maximum likelihood approach to

continuous speech recognition. 1990.

[BMDPL92] P.F. Brown, R.L. Mercer, V.J. Della Pietra, and J.C. Lai. Class-based n-gram

models of natural language. Computational linguistics, 18(4):467–479, 1992.

[CG96] S.F. Chen and J. Goodman. An empirical study of smoothing techniques for

language modeling. In Proceedings of the 34th annual meeting on Association

for Computational Linguistics, pages 310–318. Association for Computational

Linguistics Morristown, NJ, USA, 1996.

[Clo01] P. Clough. A Perl program for sentence splitting using rules, 2001.

[CR97] PR Clarkson and AJ Robinson. Language model adaptation using mixtures and

an exponentiallydecaying cache. In Acoustics, Speech, and Signal Processing,

1997. ICASSP-97., 1997 IEEE International Conference on, volume 2, 1997.

[DBB52] K. Davis, R. Biddulph, and S. Balashek. Automatic Recognition of Spoken

Digits, JASA. Bd, 24:637–642, 1952.

[Dud39] H. Dudley. The vocoder. Bell Laboratories Record, 17:122–126, 1939.

[FD58] DB Fry and P. Denes. The solution of some fundamental problems in mechanical

speech recognition. Language and Speech, 1(1), 1958.

[FF59] J.W. Forgie and C.D. Forgie. Results Obtained from a Vowel Recognition Com-

puter Program. The Journal of the Acoustical Society of America, 31:844, 1959.

[FotFI22] H. Fletcher and Journal of the Franklin Institute. The Nature of Speech and Its

Interpretation. JB Lippincott, 1922.

[Gab07] E. Gabrilovich. Feature generation for textual information retrieval using world

knowledge. In SIGIR FORUM, volume 41, page 123, 2007.

[GC94] W.A. Gale and K.W. Church. A program for aligning sentences in bilingual

corpora. Computational linguistics, 19(1):75–102, 1994.

59

Bibliography

[GH99] D. Gildea and T. Hofmann. Topic-Based Language Models Using EM. In Sixth

European Conference on Speech Communication and Technology. ISCA, 1999.

[HCL07] A. Heidel, H. Chang, and L. Lee. Language Model Adaptation Using Latent

Dirichlet Allocation and an Efficient Topic Inference Algorithm. In Proc. of

Interspeech, 2007.

[JBM75] F. Jelinek, L. Bahl, and R. Mercer. Design of a linguistic statistical decoder for

the recognition of continuous speech. Information Theory, IEEE Transactions

on, 21(3):250–256, 1975.

[JR] BH Juang and L.R. Rabiner. Automatic Speech Recognition–A Brief History

of the Technology Development. Encyclopedia of Language and Linguistics,

Elsevier (to be published).

[Kat87] S. Katz. Estimation of probabilities from sparse data for the language model

component of a speech recognizer. IEEE Transactions on Acoustics, Speech and

Signal Processing, 35(3):400–401, 1987.

[KDMUoCS90] R. Kuhn, R. De Mori, McGill University, and School of Computer Science. A

cache-based natural language model for speech recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 12(6):570–583, 1990.

[KN95] R. Kneser and H. Ney. Improved backing-off for m-gram language modeling. In

Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International

Conference on, volume 1, 1995.

[KP02] D. Klakow and J. Peters. Testing the correlation of word error rate and perplexity.

Speech Communication, 38(1-2):19–28, 2002.

[Lid20] G.J. Lidstone. Note on the general case of the Bayes-Laplace formula for in-

ductive or a posteriori probabilities. Transactions of the Faculty of Actuaries,

8:182–192, 1920.

[LKM03] IR Lane, T. Kawahara, and T. Matsui. Language model switching based on topic

detection for dialog speech recognition. In Acoustics, Speech, and Signal Pro-

cessing, 2003. Proceedings.(ICASSP’03). 2003 IEEE International Conference

on, volume 1, 2003.

[Low76] B.T. Lowerre. The harpy speech recognition system. 1976.

[LRS83] SE LEVINSON, LR RABINER, and MM SONDHI. An Introduction to the

60

Bibliography

Application of the Theory of Probabilistic Functions of a Markov Process to

Automatic Speech Recognition. The Bell System Technical Journal, 62(4), 1983.

[Mar89] FA Marvasti. An iterative method to compensate for the interpolation distortion.

IEEE Transactions on Acoustics, Speech and Signal Processing, 37(10):1617–

1621, 1989.

[PB52] G.E. Peterson and H.L. Barney. Control Methods Used in a Study of the Vowels.

The Journal of the Acoustical Society of America, 24:175, 1952.

[SB87] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.

1987.

[Sch08] Tanja Schulz. Multilinguale mensch-maschine kommunikation lecture notes,

2008.

[SD64] T. Sakai and S. Doshita. The Automatic Speech Recognition System for Conver-

sational Sound. 1964.

[SG05] R.G. Sarikaya and A.Y. Gao. Rapid Language Model Development Using Ex-

ternal Resources for New Spoken Dialog Domains. In Acoustics, Speech, and

Signal Processing, 2005. Proceedings.(ICASSP’05). IEEE International Confer-

ence on, volume 1, 2005.

[SGN05] A. Sethy, P.G. Georgiou, and S. Narayanan. Building Topic Specific Language

Models from Webdata Using Competitive Models. In Ninth European Confer-

ence on Speech Communication and Technology. ISCA, 2005.

[SM86] G. Salton and M.J. McGill. Introduction to modern information retrieval.

McGraw-Hill, Inc. New York, NY, USA, 1986.

[SN61] J. Suzuki and K. Nakata. Recognition of Japanese vowels–preliminary to the

recognition of speech. J. Radio Res. Lab, 37(8):193–212, 1961.

[Sto02] A. Stolcke. SRILM-an extensible language modeling toolkit. In Seventh Inter-

national Conference on Spoken Language Processing. ISCA, 2002.

[TS05] Y.C. Tam and T. Schultz. Dynamic Language Model Adaptation Using Varia-

tional Bayes Inference. In Ninth European Conference on Speech Communica-

tion and Technology. ISCA, 2005.

[TS07] Y.C. Tam and T. Schultz. CORRELATED LATENT SEMANTIC MODEL

FOR UNSUPERVISED LM ADAPTATION. In Acoustics, Speech and Signal

61

Bibliography

Processing, 2007. ICASSP 2007. IEEE International Conference on, volume 4,

2007.

[Vin68] TK Vintsyuk. Speech recognition by dynamic programming methods. Russian

Kibernetika, 1(4):81–88, 1968.

[Vin71] TK Vintsyuk. Element—by—element recognition of continuous speech com-

posed of the words of given vocabulary. Russian Kibernetika, 2:133–143, 1971.

[WB89] I.H. Witten and T.C. Bell. The zero frequency problem: Estimating the proba-

bilities of novel events in adaptive text compression. 1989.

[You96] S. Young. A review of large-vocabulary continuous-speech recognition. IEEE

Signal Processing Magazine, 13(5):45–57, 1996.

62

	Title
	1 Introduction
	1.1 Importance and Effects of Language Model Adaptation in NLP
	1.1.1 Objectives

	1.2 History of Automatic Speech Recognition
	1.3 Modern Automatic Speech Recognition Systems

	2 Theoretical Background
	2.1 Basics of Language Modeling
	2.1.1 Statistical Language Models (N-grams)
	2.1.2 Providing Generalization Capability to N-grams
	2.1.3 CFG Language Models
	2.1.4 Language Model Evaluation

	2.2 General Techniques and Related work in Statistical Language Model Adaptation
	2.2.1 Cache Based Language Models
	2.2.2 Class-Based Language Models

	2.3 Techniques and Metrics for text Classification
	2.3.1 TFIDF-Metric
	2.3.2 Cosine Similarity Metric

	2.4 Adaptive Language Models using Text Classification

	3 Data Sources and Preparation
	3.1 Feature Generation using World Knowledge
	3.2 Data Sources
	3.2.1 Open Directory Project
	3.2.2 Wikipedia

	3.3 Text Cleaning
	3.3.1 Building the Language Model

	4 Language Model implementation and incorporation into a decoder
	4.1 Overview of the previously existing main components
	4.1.1 The Janus Recognition Toolkit

	4.2 Structure of the Adaptive Language Model Framework
	4.3 Selector
	4.3.1 Overview
	4.3.2 Query Response

	4.4 SelectLM
	4.4.1 SelectLM Description
	4.4.2 SelectLM Data Structure

	5 Experiments
	5.1 Test and Evaluation Data
	5.2 Establishing a Baseline
	5.3 Testing the Effects of Different sets of Concept LMs
	5.3.1 Evaluation Time

	5.4 Adapting to Different Histories
	5.5 Evaluating Interpolation Parameters
	5.6 Examining the Concept Interpolation Weights
	5.7 Evaluation Subset Results

	6 Conclusions and Observations
	7 Future Work
	7.1 Optimize and Speed-up
	7.2 Decay Parameters for Improved Dynamic Interpolation
	7.3 Try Different Metrics and Classifiers in the Selector
	7.4 Dynamic Vocabulary
	7.5 Reduce Memory Requirements
	7.6 Incorporate more Data
	7.7 Incorporate more Meta Information
	7.8 Use this Language Model in Machine Translation

