
www.kit.eduKIT – The Research University in the Helmholtz Association

Analysis and Advancement of
Differentiable Neural Computers

for Question Answering

Master’s thesis
submitted by

Jörg Franke

at the Interactive Systems Lab
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT)

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Prof. Dr. Tamim Asfour
Advisor: Dr. Jan Niehues

Process Period: 14. October 2017 – 13. April 2018

I hereby declare that this document has been composed by myself and describes my
own work, unless otherwise acknowledged in the text.

Karlsruhe, 13. April 2018

Abstract

The differentiable neural computer (DNC), a memory-augmented neural network
introduced by Graves et al. in 2016 [1], was designed as a general problem solver
which could be used in a wide variety of tasks. It separates computation and mem-
orization using a controller as well as a readable and writable memory matrix. This
allows long-term storage ability and an enclosed representation and manipulation
of complex data structures. Furthermore, a more precise model design is possible
due to the separation of computation and memory components. The model is fully
differentiable; therefore, it can be trained with data samples by backpropagation.

This work considers the DNC in solving question answering (QA) tasks. Herein,
a model receives a context in natural language and is asked to answer a question.
This is a current issue in research and merges the intersection of natural language
processing, information retrieval and machine comprehension. A DNC seems to be
predestined for QA tasks since they require the ability to store information over a
longer time frame and exploits the memorization to create an answer. However, the
DNC is currently only applied to small synthetic QA tasks.

The goal of this work is to successfully apply a DNC based model to common
large-scale QA datasets. Hence, an extensive analysis of the DNC examines the
functionality and the computational consumptions. The analysis identifies several
possible improvements which keep the general character of this model intact but
make it more robust and scalable. The results lead to an advanced DNC with respect
to QA. This advanced DNC is easier to apply through a robust training focused on
memory usage, a slim memory unit which reduces computational resources and a
bidirectional architecture.

This allows an efficient training of the model on large-scale QA tasks in a word-by-
word fashion without the need of additional sentence representations or an attention
mechanism. According to the best of my knowledge, the advancements not only
achieve new state-of-the-art performance on the bAbI task with zero failed tasks but
also minimize the performance variance between different initializations. The goal
of this work—an easier applicability of the DNC to new QA tasks—is reached with
competitive results on the children book test and the CNN reading comprehension
task.

Zusammenfassung

Der differenzierbare neuronale Computer (DNC) ist ein speicher-erweitertes neu-
ronales Netzwerkmodell, welches von Graves et al. 2016 eingeführt wurde [1]. Das
Modell ist als allgemeiner Problemlöser konzipiert, welcher für eine Vielzahl von Auf-
gaben eingesetzt werden kann. Es trennt die Berechnung und die Speicherung inner-
halb des Netzwerkmodells mit Hilfe eines Controllers und einer les- und schreibbaren
Speichermatrix. Dies ermöglicht eine langfristige Speicherung von Informationen in
einer kompakten Repräsentation und die Möglichkeit Gespeichertes zu verändern.
Darüber hinaus erlaubt die Trennung einen präziseren Modellentwurf. Durch die
vollständige Differenzierbarkeit ist es überwacht trainierbar mit Beispieldaten und
durch die Rückführung von Fehlern.

Diese Arbeit untersucht das DNC Modell in der Anwendung zur Beantwortung
von Fragen. Dabei erhält das Modell einen Kontext in natürlicher Sprache und
soll eine dazugehörige Frage beantworten. Diese Art von Anwendung ist aktueller
Gegenstand der Forschung und befindet sich in der Schnittmenge von natürlicher
Sprachverarbeitung, Informationsrückgewinnung und maschinellem Sprachverständ-
nis. Eine DNC scheint für diese Art von Aufgabe prädestiniert zu sein, da diese die
Fähigkeit erfordert Informationen über einen langen Zeitraum zu speichern und das
Gespeicherte zu nutzen, um die Antwort zu bilden. Allerdings wird das DNC derzeit
nur bei kleinen, synthetischen Question-Answering (QA) Datensätzen eingesetzt.

Das Ziel dieser Arbeit ist die erfolgreiche Anwendung eines DNC-basierten Modells
auf gängigen, großen QA Datensätzen. Zu Beginn untersucht eine umfangreiche
Analyse das DNC, dessen Funktionalität und die benötigten Rechenressourcen. Die
Analyse identifiziert mehrere mögliche Verbesserungen, die den allgemeinen Charak-
ter dieses Modells beibehalten, es aber robuster und skalierbarer machen. Die
Ergebnisse führen zu einem verbesserten DNC für die Anwendung auf QA Daten-
sätzen. Dieses verbesserte DNC ist einfacher anzuwenden, da ein robustes Training
eine frühe Speichernutzung erzwingt, eine sparsame Speichereinheit den Bedarf an
Rechenressourcen reduziert und eine bidirektionale Architektur den Kontext besser
aufbereitet.

Diese Erweiterungen ermöglicht ein effizientes Training des DNC an großen QA
Datensätzen ohne das zusätzliche Satzkompressionen oder ein Aufmerksamkeitsmech-
anismus erforderlich sind. Nach meinem besten Wissen erreichen die Weiterentwick-
lungen nicht nur ein neues State-of-the-Art-Ergebnis auf dem bAbI-Datensatz, son-
dern minimieren auch die Ergebnisvarianz zwischen verschiedenen Initialisierungen.
Die praktikable und erfolgreiche Anwendbarkeit des DNC auf großen QA Daten-
sätzen wird anhand des

”
Children Book Test” und der CNN-Leseverständnisaufgabe

gezeigt.

Contents

1 Introduction 1
1.1 Learnable computers . 1
1.2 Goals . 2
1.3 Structure of work . 4

2 Basics 5
2.1 Artificial Neural Networks . 5
2.2 Recurrent Neural Networks . 8
2.3 Long Short-Term Memory . 10
2.4 Bidirectional RNN . 14
2.5 Differentiable Neural Computer . 14

2.5.1 System overview . 15
2.5.2 The memory unit . 16

2.5.2.1 Memory unit overview 16
2.5.2.2 Generating control signals 18
2.5.2.3 Write mechanism . 19
2.5.2.4 Memory update . 22
2.5.2.5 Read mechanism . 22

2.5.3 Summary . 26

3 Data 27
3.1 Copy Task . 27
3.2 bAbI 20 Task . 28
3.3 Children Book Test . 30
3.4 CNN Reading Comprehension Task 32

4 Related work 35
4.1 Related models for QA . 35
4.2 Related enhancements . 37

5 Analysis of the DNC 39
5.1 DNC Training . 39
5.2 DNC Functionality . 42
5.3 DNC Memory consumption . 49
5.4 DNC Computation time . 52
5.5 Analysis conclusion . 53

6 Advancements in the DNC 55
6.1 Robust DNC training . 55

ii Contents

6.1.1 DNC Normalization . 55
6.1.2 Bypass Dropout . 57

6.2 Advanced Architecture . 58
6.2.1 Bidirectional DNC . 58
6.2.2 Atop RNN . 59

6.3 Content-Based Memory Unit . 60

7 Experiments 63
7.1 Empirical methods evaluation . 63

7.1.1 Training and architecture advancements 63
7.1.1.1 bAbI Task 1 evaluation 63
7.1.1.2 Copy Task evaluation 66

7.1.2 Content-Based Memory Unit 67
7.2 bAbI 20 Task . 68

7.2.1 Task 16 augmentation . 68
7.2.2 Training details . 69
7.2.3 Results . 70

7.3 Children Book Test . 72
7.3.1 Training details . 72
7.3.2 Results . 73

7.4 CNN Reading Comprehension Task 73
7.4.1 Training details . 73
7.4.2 Results . 74

7.5 Results overview . 75

8 Conclusion 77
8.1 Summary . 77
8.2 Discussion . 78
8.3 Further work . 79

List of Figures 93

List of Tables 95

List of Abbreviations

ADNC Advanced Differential Neural Computer
ANN Artificial Neural Network
BiADNC Bidirectional Advanced Differential Neural Computer
BiDNC Bidirectional Differentiable Neural Computer
BiLSTM Bidirectional Long Short-Term Memory
BiRNN Bidirectional Recurrent Neural Network
BD Bypass Dropout
BN Batch Normalization
BP Backpropagation
BPTT Backpropagation Through Time
CBA Content-based addressing
CBMU Content-Based Memory Unit
CBT Children Book Test
CNN Cable News Network
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DNC Differential Neural Computer
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HMM Hidden Markov Model
LM Linkage Matrix
LN Layer Normalization
LSTM Long Short-Term Memory
MANN Memory-Augmented Neural Network
MemNN Memory Neural Network
MLP Multilayer Perceptron
MU Memory Unit
NLP Natural Language Processing
NTM Neural Turing Machine
QA Question Answering
RAM Random-Access Memory
RC Reading Comprehension
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
TDNN Time-Delay Neural Networks
VRAM Video Random-Access Memory
WER Word Error Rate

List of Notations

General Notations

X Input vector size
Y Output vector size
S Sequence length
B Batch size
x Input vector
y Predicted output vector
z Target output vector
θ Parameters
W/U Weights matrix
b Bias scalar
b Bias vector
h Hidden states
σ() Sigmuid activation function
tanh() Hyperbolic tangent activation function
L() Loss function
l Loss
xt Input vector at time t
yt Predicted output vector at time t
zt Target output vector at time t
ht Hidden states at time t

LSTM Notations

C Hidden units
L Layers
ft Forget gate at time t
it Input gate at time t
ot Output gate at time t
c̃t Cell input at time t
ct Cell state at time t
ht Node output at time t

vi Contents

DNC Notations

C Controller size
L Controller layer
N Memory matrix length / slots
W Memory matrix width
R Read heads
P Memory unit output size (RW)
ht Controller output vector at time t
µt Memory unit output vector at time t
ξt Control vector at time t
Mt Memory matrix at time t
Lt Linkage matrix at time t
Et Erase matrix at time t
At Add matrix at time t
vt Write vector at time t
et Erase vector at time t
kwt Write key at time t

kr,it Read key at time t of read head i
βwt Write strength at time t

βr,it Read key at time t of read head i
πit Read mode at time t of read head i
gwt Write gate at time t
gat Allocation gate at time t

gf,it Free gate at time t of read head i
ψt Retention vector at time t
ut Usage vector at time t
at Allocation weighting vector at time t
φt Free list vector at time t
pt Precedence weighting vector at time t
cwt Content-based write weighting vector at time t

cr,it Content-based read weighting vector at time t of read head i
ww
t Write weighting vector at time t

f it Forward weighting vector at time t of read head i
bit Backward weighting vector at time t of read head i

wr,i
t Read weighting vector at time t of read head i

rit Read vector at time t of read head i
C() Cosine similarity function
CBA() Content-based addressing function
∆N Unit simplex

Advanced DNC Notations

LN() Layer normalization function
rt Bernoulli distributed random vector at time t

hfwt Forward controller output vector at time t

hbwt Backward controller output vector at time t

1. Introduction

”May I ask you a question?” is a very common phrase in human communication,
but when it comes to interaction with a computer it does not work out. So it is not
surprising that one of the main goals of artificial intelligence is to construct a machine
or rather a program which allows a conversation in natural language. One may
communicate to the machine or ask a question and the machine answers. This idea
goes back to e.g. 1950 when Alan Turing proposed in ”Computing Machinery and
Intelligence” to ask machines questions to test if they exhibit intelligent behaviour,
also known as the Turing test [2].

Until today, the answering of questions or question answering (QA) is an open re-
search topic but with a long history [3, 4]. It is a subfield of natural language
processing (NLP) and information retrieval. QA also includes machine text com-
prehension since that not only the question but also the context and the answer are
in natural language. It is one of the key technologies for dialogue modelling and
nearly every NLP task is representable as a QA problem e.g. ”What is the Chinese
translation?” [5].

The field of QA is dividable into open- and close-domain which refers to whether the
questions could be about anything or about a special context. This work focuses on
close-domain QA tasks which have either a synthetic or a natural origin. In both
cases, a machine receives a context and is asked to answer a question about it.

A possible approach to such a task is to design an algorithm which answers questions
given the context like the ELIZA or SHRDLU system in the 60s or 70s [6, 7]. Since it
is too extensive to cover every possible context or question variation it is presumably
a good idea to learn such an algorithm from sample data.

1.1 Learnable computers

A common approach for machine learning models is an artificial neural network
model trained with backpropagation of errors [8]. In case of interdependent se-
quences like text, the model of choice are recurrent neural networks (RNN) [9, 10]
or more sophisticated long short-term memories (LSTM) [11]. In theory, RNNs are

2 1. Introduction

Turing complete but not in practice [12]. They also have several other issues [13].
For example, the perfect model size for a certain task is unknown. The internal
capacity is influenced by the length of dependencies, the computational complexity
and the structure of data. Another issue is that ”computation” and ”memory” is
mixed in one neural network setup and it is hard to represent data structures over
many time steps.

A promising approach that tackles some issues of classic recurrent models is the
differentiable neural computer (DNC). A model introduced by Alex Graves et al.
in late 2016 as a general neural network model with an external memory ”to solve
complex, structured tasks” [1]. Unlike a vanilla neural network, it is able to separate
computation and memorization similar to a conventional computer with CPU and
random-access memory (RAM). This makes it easier to represent and manipulate
complex data structures. Moreover, the DNC can be seen as a generic memory-
augmentation framework with a controller and a memory unit which are indepen-
dently modifiable. This allows an accurate model design and is easy to analyze. Due
to its fully differentiable design, it can be learned from data samples in a supervised
fashion like a recurrent neural network with backpropagation though time [14].

The separation of computation and memory has several benefits. The memory can
represent complex data structures over long time periods, while the computing part
of the network does not depend on the length of data dependencies. This reduces
catastrophic forgetting [15] which means the uncontrollable reuse of already trained
network areas. Furthermore, the independence of computation and memorization
allows a more refined model design. The computing part, also called controller,
learns to use the memory and is therefore able to emulate algorithms. This ability is
shown in the original publication on three applications [1]. In graph experiments, the
authors show that the DNC is able to assimilate a graph like the London underground
network and answers queries like the shortest connection between two stations. The
block puzzle experiment is inspired by the SHRDLU demonstration of a rule-based
agent that executes instructions. The DNC is trained with reinforcement learning
to plan changes of board states with respect to some goals. The third application is
the bAbI task, a synthetic question answering data set with short stories for textual
reasoning. The DNC has outperformed related work at publication time.

The DNC approach also works on some other applications like one-shot learning or
meta-learning [16, 17]. The models are able to use the memory to quickly assimilate
new data, store them over a long time period and retrieve them. Consequently, the
model needs only a few examples which are represented in the memory to make
accurate class predictions by internal memory reconciliation. Another application is
the interaction with discrete interfaces with reinforcement learning [18]. These are
examples where such a learnable computer can be used. But when applying this
model to new, more realistic tasks like large-scale QA, often no satisfying result is
achieved. The issues of large-scale QA are the huge vocabulary, the length of the
contexts and the required model complexity to find a correct answer.

1.2 Goals

In a QA task, each word of a sentence or context updates the human internal rep-
resentation of the related environment. To solve a QA task with machine learning,

1.2. Goals 3

the model requires such an internal updatable representation as well. A memory-
augmented neural network like the DNC is able to build an internal representation.
However, a memorization of vector representations based on whole sentences could
lose information in contrast to a word level representation, due to the compression.
To prevent this, a word-by-word operating model is crucial. Another essential issue
to deal with is limited storage. For example, a dialogue agent which stores every
word can not work anymore when the memory is full. Therefore, an overwrite or
forget mechanism is another important aspect.

The DNC model possesses these characteristics and seems predestined for QA. How-
ever, it is currently only applied to the small synthetic QA bAbI tasks. This leads to
the following goals of this work. First, the DNC becomes analyzed to understand the
issues when porting it to new QA tasks. Thus, are four main challenges identified:

1. The high memory consumption makes it hard to train large model efficient.
2. The large variance in performance within different initializations makes its

training inconsistent.
3. Slow and unstable convergence requires long training times.
4. A unidirectional architecture makes it hard to manage a input sequence with

distribute query statements.

The second goal is to address these challenges. Thus, this work introduces ad-
vancements in several scopes while keeping the general character of the model. The
underlying motivation is to keep the character of the DNC as an algorithm learner
and not to adapt it to a specific dataset. The primary target is not to beat a bench-
mark but rather to show the usability of memory-augmentations and examine if
there is a long-term perspective for them in NLP. We introduce a novel advanced
DNC (ADNC) with the following contributions:

1. A sparse, memory efficient content-based memory unit for question answering
tasks.

2. An enhanced training with a strong focus on early memory usage and robust-
ness.

3. A bidirectional DNC architecture which allows a richer encoding of information
from sequences.

The third goal is to evaluate these advancements and to validate the general im-
provements of the DNC in contrast to existing bAbI task experiments. Thereby the
ADNC shows performance improvements by 80% compared to the DNC. These are
new state-of-the-art mean results in a joint training. We also decrease the variance
up to 90% between different random initializations. Additionally, with training-
data augmentations on one specific task, our model solves all tasks and provides the
best-recorded results according to the best of my knowledge. The evaluation should
also test the portability. This is realized by applying the model on two common
large-scale QA tasks: the Children Book Test and the CNN reading comprehension
dataset. Therein, the ADNC achieves competitive results without any task-specific
adaption.

4 1. Introduction

1.3 Structure of work

The next chapter explains the basics of neural networks as well as details about
recurrent neural networks, long short-term memories, and the differentiable neural
computer. This is the foundation for all subsequent chapters. The third chapter
describes the datasets which are used in this work. Chapter 4 gives an overview of
the related works with respect to related models for QA and existing enhancements
to the DNC. Afterwards, the two main contributions of this work are presented,
the analysis and advancements of DNCs. Chapter 5 analyses the functionality of
the DNC and gives an intuition of the memory consumption and computation time.
Chapter 6 introduces the advancements to the DNC. Chapter 7 provides experiments
which investigate the impact of these advancements and benchmarks the ADNC on
large-scale QA datasets. Finally, in Chapter 8 the work is concluded, the results are
discussed and some possible future work is described.

2. Basics

This chapter introduces vanilla and more complex artificial neural network models.
These are the necessary principles to comprehend later chapters like related work,
analysis or methods. At first, the basics about artificial neural networks and their
history are presented. The second chapter introduces recurrent models and their
drawbacks. Afterwards, two more sophisticated models are introduced, the long
short-term memory and the differentiable neural computer.

2.1 Artificial Neural Networks

An artificial neural network (ANN) is a computing model which is used as a general
learnable function approximation. More precisely an ANN has a specific structure
with internal parameters θ:

y = ANN(x,θ) . (2.1)

The parameters are learned by repeated adjustments with use of a data sample
collection: 1. Feeding an arbitrary data sample x from the dataset to the ANN. 2.
Compute the loss between the estimated output y from the ANN and the target
output z. 3. Adjusting the parameters θ hence the loss is low. 4. Repeating this with
a huge amount of samples until the ANN generalizes, which means it approximates
a target function z = f(x). This is called supervised learning and is a sub-domain
of machine learning [8]. For example, a data sample could be an image of an object
and the associated target could be the class of this object, then the ANN learns
object detection [19]. The following describes the ANN internals as well as a brief
history.

Artificial neural networks are inspired by the biological neural network like the hu-
man brain. More precise they are oriented structurally on the basic functionality
of synapses and neurons. Those could simplify described as follows: Synapses are
the connections between neurons and transmit electrical signals. The neurons get
charged by signal potentials from other neurons via the synapses. When the mem-
brane potential within a neuron reaches a threshold then the neuron emits an action
potential and sends it into synapses to further neuron cells [20].

6 2. Basics

To recreate this simplified biological system input data x gets multiplied element-
wise by scalar weights w and summed up. These represent the charge weighted input
potentials. When this potential reaches a threshold, the recreated neuron emits an
output signal and otherwise not

y =

1 if
|x|∑
i=1

xiwi > b

0 otherwise

. (2.2)

A neural network has multiple of these neuron nodes or also called perceptrons.
These allow approximating more complex functions. To calculate them the weights
can be rewritten as a weight matrix W . Furthermore, the threshold can be refor-
mulated with use of the Hessian plain formulation

y = σ(xW + b) , (2.3)

while σ() represents the sign-function. By replacing the sign-function with a differ-
entiable steadily function, also called the activation function, the whole ANN gets
differentiable. This is a key requirement for ANNs. The parameters of the ANN are
the weights and biases θ = {W, b}. The functionality is illustrated in Figure 2.1.

Figure 2.1: Basic perceptron functionality. The green oval in the figure symbolizes
the artificial neuron node, the small circles are the parameters, the larger circles the
outputs and inputs and the yellow rectangle the activation function.

The emergence of these idea starts in the early 1940s when Warren McCulloch and
Walter Pitts introduced a model of a neurologically inspired network with threshold
switches as neuron nodes [21]. They also showed that this kind of networks is
able to calculate near any logic function and built thereby the foundation block of
artificial neural networks. These neural nodes were later improved to a nonlinearly
activated sum of weighted inputs by Frank Rosenblatt [22], see Equation 2.2. Later
in 1960 Bernard Widrow and Marcian E. Hoff described the delta rule, which allows
adaptive, gradient descent based network updates [23].

But it took until the mid-1970s when Paul Werbos introduced an algorithm called
”dynamic feedback” which we know today as backpropagation and showed first ap-
plications on ANNs [24]. In the later 1980s David E. Rumelhart et. al. refined the
backpropagation learning method as a generalization of the delta rule and increased
the awareness [25]. This was the breakthrough for artificial neural networks. Af-
terwards a wide range of different applications got addressed for example phoneme

2.1. Artificial Neural Networks 7

recognition with time-delay neural networks (TDNN) [26], handwriting digits recog-
nition with a enhancement of TDNN to 2D [27] or the control of nonlinear systems
[28]. An extensive history of neural networks can be found in Schmidhuber’s review
[11].

The vanilla ANN has multiple neuron nodes per layer and multiple layers per net-
work. The output h of the first inner or hidden layer is the input of the second layer
and so on:

h1 = σ(xW1 + b1) (2.4)

h2 = σ(h1W2 + b2) (2.5)

y = σ(h2W3 + b3) . (2.6)

The output of the last layer is then used as prediction y. This model is called
multilayer perceptron (MLP). If the number of layers increases it is named deep
neural networks and the learning of this models is called deep learning [29].

A common technique to find ANN weight parameters θ is stochastic gradient descent
(SGD) with use of backpropagation, described in detail in [8]. The weights are
initialized randomly and a training routine adjusts them: First, a randomly picked
sample is presented to the network and determines a prediction y. A loss l is
computed by a loss function L and the target output z

l = L(y, z) . (2.7)

Because of the fully differentiable design of an ANN, the gradients of the parameters
can be calculated with respect to the input. Now a parameter update adjusts the
network to improve its prediction with respect to the loss l. Therefore the gradients
are multiplied by a learning rate lr and added to the parameters. Instead of this
simple optimization, a more sophisticated algorithm can be used like RMSprop [30].
A more detailed description of RMSprop and an overview of available optimization
algorithms can be found in [31].

Another common variant is to process multiple examples in one batch. This reduced
the training time due to fewer iterations are necessary to process the whole training
dataset. Furthermore, it increases the generalization since the loss signal relies on
multiple samples and is therefore more stable. This kind of training is called mini-
batch SGD and can be used with any optimization algorithm.

The routine of feed-forwarding propagation, loss determination, backpropagation
and weight update happens iteratively until the network converges to a mostly local
optimum. In a possible over-adaption or overfitting to the training data, the net-
work memorizes the whole data set rather than generalizing to the target function.
To recognize this, a training and validation data split is essential. The validation
set is not used for training and monitors only the progress on unseen samples. Fur-
thermore, several regularizations and normalization techniques, e.g. dropout, weight
decay or layer normalization, are available to reduce overfitting and achieve a better
generalization [32].

8 2. Basics

2.2 Recurrent Neural Networks

Dealing with sequences is a difficulty for ANNs. Either the sequence is processed
step-wise. This would imply that each step is independent of the previous. Or the
sequence would be input at once to the network, then the input needs a fixed length.
Both are unfavourable due to real-world sequences are mostly interdependent and
arbitrarily long for example like time series, speech or language. Thereby the current
step in a sequence depends on the previous one, illustrated in Figure 2.2

Figure 2.2: An illustration the an interdependent sequence. Each step depends on
all previous ones.

In modelling dependencies between steps, recurrent neural networks (RNN) are a
common generalization of ANN. The core idea is that they link the output from
the previous step in addition to the input of the current step, see Figure 2.3. This
allows to keep or link information from previous states to the current. Furthermore,
the sequence can have an arbitrary length since the RNN is applied incrementally.
They are widely used e.g. in speech recognition [33], phoneme boundary detection
[34], machine translation [35], generating image description [36] or segmentation of
DNA [37].

Figure 2.3: A recurrent neural network and the unfolding in time of the computation
involved in its forward computation. Graphic from [38].

There are two common simple variants of RNNs. The first was introduced by Jordan
in 1986 [39] and links the output back to the input of the next step. The second
was introduced by Elman in 1990 [40] and creates the recurrence within the hidden
state:

Elman Network: Jordan Network:

ht = σh(Whxt + Uhht−1) + bh ht = σh(Whxt + Uy + bhyt−1)

yt = σy(Wyht) + by yt = σy(Wyht) + by

(2.8)

2.2. Recurrent Neural Networks 9

The additional weight matrix U weights the recurrent signals. In case of the Elman
network the recurrent signal is the previous output of the hidden layer and in case
of the Jordan network, it is the previous output of the whole network.

In a multilayer setup, the Elman network is more common. It has mostly a tanh or
sigmoid activation function. Each layer node gets the output from the layer below
and from the same layer one time step before. Figure 2.4 shows an unfolded Elman
RNN layer over three time steps. The output of each hidden node goes to both, the
layer output ht and to the nodes in the next step. Most important, the weights for
the computation within the nodes are the same in each time step.

Figure 2.4: A RNN node with a tanh activation function. Black lines show the signal
flow. ht and xt are the output and input signal in each time step t. Graphic from
[38].

The training of RNNs is similar to common ANNs but regarding the recurrent
connections, the gradient depends on all previous time steps. For example, the
output of step t + 1 depends on all previous inputs and hidden states as shown in
Figure 2.5.

Figure 2.5: The long term dependencies in RNNs. Graphic from [38].

A common technique to compute the gradients is to unfold the model in time and
calculate the gradients with respect to all previous inputs. This type of training is
called backpropagation through time (BPTT) [41]. But this also leads to the issue
that long-term dependencies get underrated since the differential calculation of the
recurrent connections is done by the chain rule. In practice, this is a multiplication
of the gradient of the activation function which is typically in the range (0, 1). Since

10 2. Basics

the product of multiple small values vanishes, the influence of inputs in the past
vanishes as well. This issue is called vanishing gradient problem and reported detail
in [42] and later in [43]. This makes simple RNNs in practice weak learners and only
usable for short-term relationships. However, when ignoring this issues, RNNs are
theoretical Turing complete and able to solve any problem that can be solved by a
conventional computer [12, 44].

A common solution, especially in speech or handwriting recognition, are artificial
neural networks (ANN) combined with Hidden Markov Models (HMM) [45]. But
HMMs themselves have several drawbacks. They need a lot of task-specific knowl-
edge and explicit dependency assumptions. Furthermore, their training is generative
[46]. So it is worthwhile to model the recognition solely with neural networks. They
do not require prior knowledge and they train discriminatively, means they calculate
directly the class probabilities [47]. RNNs also tend to be robust to temporal and
spatial noise [46]. The long short-term memory (LSTM) in next section is a specially
extended network node architecture which is able to solve the problem of vanishing
gradients.

2.3 Long Short-Term Memory

In 1997 Hochreiter and Schmidhuber introduced long short-term memories (LSTM)
for a more richer modelling of interdependencies and to overcome the problem of van-
ishing gradient [48]. They replace the ordinary activation function through a more
sophisticated architecture. While in simple RNNs the hidden state gets computed
every step, the LSTM stores information without activation over time. Therefore a
hidden cell state is introduced. Every time step the cell state can forget information
and add new information without passing an activation function.

Figure 2.6: The inner function of a LSTM node. Circles with x and + are signal
multiplication and aggregation. σ and tanh are activation functions. Black lines
show the signal flow. ht and xt are the output and input signal in each time step t.
Graphic from [38].

Figure 2.6 shows a LSTM node. The concatenation of the last layer output ht − 1
and the current input data xt is the nodes incoming signal. In addition to this, it
receives the internal cell state ct−1 from the previous LSTM node. In Figure 2.6
the upper horizontal line illustrated the internal cell state. It gets multiplied and

2.3. Long Short-Term Memory 11

new signals are added but it has no activation function. This tackles the vanishing
gradient problem and leads to a more stable long-term modelling. Furthermore, an
LSTM node has three gates (forget gate, input gate and output gate) and activation
functions for both the input and the output signal. The input of every nonlinear
function is weighted by independent weights. The following section describes the
functionality in detail step by step.

The forget gate ft controls how much the internal cell state keeps from the previous
step, see σ activation function in Figure 2.7. The input to the gate is a weighted
concatenation of the input data xt and the previous node output ht−1. A scalar bias
value is added for thresholding the activation:

ft = σ(Wf [ht−1,xt] + bf) . (2.9)

Figure 2.7: The forget gate of a LSTM. Graphic from [38].

The sigmoid function outputs a value between 0 and 1 which gets multiplied by the
last cell state ct− 1. The sigmoid activation works like a valve if the output is 1 the
cell keeps everything from the last step if the outputs are 0 it forgets everything.
The second σ activation function is the input gate

it = σ(Wi[ht−1,xt] + bi) (2.10)

and controls how much information from the incoming signal affects the internal cell
state, see Figure 2.8. The incoming signal, which is another weighted concatenation
of input data xt and the previous node output ht−1, passes an tanh activation
function:

c̃t = tanh(Wc[ht−1,xt] + bc) . (2.11)

12 2. Basics

Figure 2.8: The input gate and input activation function. Graphic from [38].

Afterwards the internal cell state gets updated, see Figure 2.9. The previous cell sate
ct−1 is multiplied with the forget gate ft and added with a product of the activated
incoming signal c̃t and the input gate it:

ct = ftct−1 + itc̃t . (2.12)

Figure 2.9: The internal cell state of a LSTM. Graphic from [38].

The updated internal cell state is directly forwarded to the next step ct. It is also used
to compute the output of the new node ht, see Figure 2.10. Therefore an output gate
ot gets computed with use of the third σ activation function and another weighted
concatenation of input data xt and the previous node output ht−1:

ot = σ(Wo[ht−1,xt] + bo) . (2.13)

This output gate controls the strength of this activated output before it leaves the
node ht. Thereby the new cell state ct is passed through the second tanh activation
function and gets multiplied with the output gate ot:

Output signal: ht = ottanh(ct) . (2.14)

2.3. Long Short-Term Memory 13

Figure 2.10: The output gate and the activation of the output stream of a LSTM.
Graphic from [38].

This so generated output signal leaves the node in two directions. One leads to
the next layer above and a second to all nodes in the same layer but in the next
time step. A common implementation has multiple LSTM nodes in one layer. The
output signal from the previous step gets shared between the nodes but the internal
cell state not, see Figure 2.11.

Figure 2.11: A multi-node LSTM over two time steps. The output signals of each
node are shared between the time steps but the cell states not.

A mathematical based description of the LSTM and its derivation can be found in
the Graves book [47]. There are plenty of different LSTM variants [49]. Another
commonly used variant is the Gated Recurrent Unit (GRU) [50]. A GRU simplifies
a regular LSTM by combining forget and input gates to a single update gate. Fur-
thermore, it combines the internal cell state with the cell output, sees Figure 2.12.
This modification needs fewer weights, hence faster training and outperforms LSTM
in some specific tasks [51] but not in general [52].

14 2. Basics

Figure 2.12: A Gated Recurrent Unit. Graphic from [38].

2.4 Bidirectional RNN

Another common enhancement is the bidirectional RNN (BiRNN). Thereby two
RNNs are used in one layer but in different directions, one forward and one backward.
This type of architecture allows the model to have complete, sequential information
about the past and future time steps. This network architecture was introduced by
Schuster et. al in 1997 [53] and is illustrated in Figure 2.13. Graves et. al introduced
in 2005 an extension to bidirectional LSTMs (BiLSTM) and shows their advantage
on phoneme classification [54]. These models are also unfoldable like RNNs and
trainable with backpropagation through time.

Figure 2.13: Bidirectional RNN architecture. The input signal gets doubled and
forwarded to the forward and backward RNNs and concatenated afterwards to the
output.

2.5 Differentiable Neural Computer

Even huge LSTM models struggle to process data over long timescales or to infer
about seen data. A possible solution is an explicitly defined memory. An approach
for such a memory-augmented neural network (MANN) is the differentiable neural
computer (DNC). Besides many other models, see related work Chapter 4, it imple-
ments a read-, erase- and writeable memory as a matrix. A DNC is able to store,
manipulate or infer complex data structures like a conventional computer but can

2.5. Differentiable Neural Computer 15

be trained like an RNN with stochastic gradient descent. It is fully differentiable
and controls the memory only by weighted input signals.

The DNC was introduced in 2016 by Alex Graves [1] and is a successor of the Neural
Turing Machine (NTM) from 2014 [55]. Both models have a similar architecture and
discern in access mechanism to the memory. Already the NTM is able to repeat,
reverse or sort a sequence but the DNC extend these possibilities. In the nature
paper [1] it is described how it performs a graph search or how it treats the bAbI
toy NLP task [56].The following section describes the functionality of the DNC and
its mechanisms in detail based on [1].

2.5.1 System overview

The DNC model consists of two main parts, a controller and a memory unit (MU),
see Figure 2.14. The controller is either a fully-connected neural network or an RNN
respectively an LSTM. In the original paper as well as in this work it is an LSTM.
The controller output serves the MU as input but also gets added to the model
output via a bypass connection. The output signal of the whole DNC is a sum of
the weighted controller output and the MU output. There are recurrent connections
within the controller and within the memory. A third recurrent connection is from
the MU output to the controller input.

Figure 2.14: The Differential Neural Computer (DNC) with the signal transitions.
The dotted lines illustrate recurrent connections.

The DNC receives at each time step a data vector xt ∈ RX and emits an output
vector yt ∈ RY which is a prediction of the target vector zt ∈ RY . More specific,
the controller input to a time step t is a concatenation of the input signal xt, the
MU output from the last time step µt−1 ∈ RP and the controller output from the
last time step ht−1 ∈ RC . C is the controller output size and P the MU output size.
If the controller network has multiple layers Cl then either the last layer can be used
as controller output C = Cl or a concatenation of all LSTM layers C = [C1 . . . Cl].
The controller can be considered as a closed function with a set of trainable weights
parameters θc:

ht = Controller([xt, ht−1,µt−1], θc) . (2.15)

16 2. Basics

The purpose of the controller is to manage the memory unit and additionally to
help building the output signal via a weighted bypass connection. The MU gets as
input the controller output ht and contains a set of trainable weights parameters θµ
as well:

µt = MemoryUnit(ht, θµ) . (2.16)

The output signal of the whole DNC yt ∈ RY is a sum of the weighted controller
output and the MU output. Y is the size of the target vector zt ∈ RY . The MU
output µt is weighted with matrix Wµ ∈ RY×P and the bypass connection from the
controllers output ht is weighted with W ∈ RY×C :

yt = Whht +Wµµt . (2.17)

The hyper-parameters of the controller network are the number of layers l and the
nodes per layer Cl. The hyper-parameters of the MU are the width W of the internal
memory matrix per slot and the number of slots N . There can be multiple read heads
R which are extract information from the memory matrix. This leads to the MU
output size P = R×W .

2.5.2 The memory unit

After an overview of the memory unit, the functionality of it is described in detail.

2.5.2.1 Memory unit overview

The memory unit (MU) contains a memory matrixM ∈ RN×W . It stores information
in form of real-valued vectors v ∈ RW over multiple slots N . The input from the
controller gets multiplied by the input weights and divided into different control
gates, vectors and keys which are controlling four mechanisms. The four mechanisms
are used for writing and reading the memory matrix: The write mechanism, the
memory matrix update, a temporal memory linkage and a read mechanism.

The write mechanism aims to find the location of the memory unit which should
be updated with new content. The location can be found either by the least used
memory location or by content-based addressing. Contend-based addressing means
that given a key kt ∈ RW the memory location wt ∈ RN with the closes cosine
distance to the key is used. This helps to add information to existing memories.

With use of the location form the write mechanism and a write and erase vector
become the memory matrix updated by adding and erasing information. The tempo-
ral memory linkage contains a linkage matrix Lt ∈ RN×N which stores information
about the order of memory location updates. It is used to restore sequences in
forward or backward directions and finds temporal relationships in the memory.

The read mechanism creates the read weightings which determines the location from
which should be read. If the DNC has multiple read heads R, this mechanism exists
multiple times. The read weightings can be determined with use of the temporal
linkage matrix to find forward and backward weightings but also though a content-
based addressing. Similar to the write mechanism it finds the location which is

2.5. Differentiable Neural Computer 17

(a)

(b)

Figure 2.15: The memory unit (MU) of a DNC and a legend of the symbols. Slim
arrow lines are scalar transitions, medium lines are vector transitions and wide
lines are matrix transitions. The gray blocks are summarized functions. Horizontal
outgoing lines are recurrent connections within the MU.

closest to a given read key. A read mode determines which of these weightings
should be used.

At least the memory is read by a multiplication of the memory matrix and the read
weightings. The memory unit output is a concatenation of all read heads readings
µt ∈ RW×R.

Figure 2.15 (a) shows an MU with one write head and one read head. The colored
ovals are control signals, the yellow squares are weighted activation functions, the
brown circles are matrix multiplications, the orange circles are either softmax oper-
ations or cosine weightings, the pink circles are element-wise vector operations, the
gray boxes are summarized functions, the slim lines are scales tensors, the medium
lines are vector and the wide lines are matrix tensors, see Figure 2.15 (b). The
following sections describe these processes in detail.

18 2. Basics

2.5.2.2 Generating control signals

The control signals is created by the slice of an control vector ξ. The control vector
has a size of (W ×R) + 3W + 5R + 3C and is the weighted controller output ht:

ξt = htWξ + bξ . (2.18)

The parameters are the memory unit weight matrix Wξ ∈ RC×((W×R)+3W+5R+3)

and a bias bξ ∈ R(W×R)+3W+5R+3. The resulting control vector ξ is sliced into ten
different control signal types:

ξ = [kwt ; β̂wt ; vt; êt; g
a
t ; g

w
t ; f̂ 1

t , . . . , f̂
R
t ; kr,1t , . . . ,kr,Rt ; β̂r,1t , . . . , β̂r,Rt ; π̂r,1t , . . . , π̂

r,R
t] .

(2.19)

The control signal is used by the write and read mechanisms to make use of the
memory. Table 2.1 gives a overview in detail. Some of them get activated by a
sigmoid or softmax activation function, see Figure 2.16.

Name Symbol

write key kwt ∈ RW

write strength βwt = oneplus(β̂wt) ∈ [1,∞)
write vector vt ∈ RW

erase vector et = σ(êt) ∈ [0, 1]W

allocation gate gat = σ(ĝat) ∈ [0, 1]
write gate σ(ĝwt) ∈ [0, 1]

free gates σ(ĝf,it) ∈ [0, 1]; 1 ≤ i ≤ R}
read keys {kr,it ∈ RW ; 1 ≤ i ≤ R}
read strengths {βr,it = oneplus(β̂r,it) ∈ [1,∞); 1 ≤ i ≤ R}
read modes {πit = softmax(π̂it) ∈ S3; 1 ≤ i ≤ R}

Table 2.1: The control signals of the memory unit.

The logistic sigmoid function σ is constrained to [0, 1] and ’oneplus’ function

oneplus(x) = 1 + log(1 + ex) (2.20)

is constrained to [1,∞). The read modes are computed by a softmax function and
constrained to a unit simplex:

SN = {α ∈ RN : αi ∈ [0, 1],
N∑
i=1

αi = 1} (2.21)

2.5. Differentiable Neural Computer 19

Figure 2.16: The control signals used in the memory unit of a DNC.

2.5.2.3 Write mechanism

The most central aspect of the MU is the memory matrix Mt ∈ RN×W , illustrated
as the wide line in the middle of Figure 2.15. In each time step, the whole memory
will first be manipulated by a write head and then read by a read head. Because of
the necessary differentiability of the model are only operations to the whole memory
matrix possible. To define the impact, to each memory location which should be
manipulated or read, are weightings for writing wwt ∈ ∆N and reading wr,Rt ∈ ∆N

necessary. The weightings are vectors with the length of the memory N and con-
straint by

∆N = {α ∈ RN : αi ∈ [0, 1],
N∑
i=1

αi ≤ 1} , (2.22)

a variant of the unit simplex. The next step is to compute the write weightings wwt ,
shown in Figure 2.17. It’s a part of the write head and necessary to determine which
memory locations in which intensity should be erased and written to in this time
step. Thereby are two ways to compute them: by a content-based addressing and
by dynamic memory allocation. Both methods used jointly and influence the write
weightings.

Content-based addressing

The idea behind the content-based addressing (CBA) is to find the memory location
which is close to a given key k ∈ RW . This enables to add information to an existing
location or to erase a specific part. Because of the fully differentiable design this
can not be an unique location but a distribution over all memory locations N .

20 2. Basics

As distance metric between the key k and each memory location in the memory
matrix M a cosine similarity

C(k,M [i, :]) =
k ·M [i, :]

|k||M [i, :]|
(2.23)

is used. To compute the content-based weighting which are the distribution of the
similarity between the key k and the memory matrix locations a softmax

CBA(M,k, β)[i] =
exp(C(k,M [i, :])β)∑
j exp(C(k,M [j, :])β)

. (2.24)

normalizes the cosine similarity. A strength β sharpens the location distribution. In
the write head, the content-based weighting cwt ∈ SN is constructed with the use of
the write key kwt and write strength βwt :

cwt = CBA(Mt−1,k
w
t , β

w
t) . (2.25)

In the Figure 2.17 this mechanism is illustrated with the red write key and the two
orange circles which represents the cosine similarity (C) and the softmax function.
The write strength is for a better reading not shown in the illustration.

Dynamic memory allocation

The dynamic memory allocation mechanism aims to find the at least used memory
location. A memory location is used, when some content is written to or if it is read
in the past. At first, with use of the free gates gf,it and the previous read weightings
wr,i
t−1 the most recent read location is found. The free gate determines how strong the

need for allocating a memory location is. The memory retention vector ψt ∈ [0, 1]N

represents how much each location will not be freed by the free gates of each read
head:

ψt =
R∏
i=1

(1− gf,it w
r,i
t−1) . (2.26)

Afterwards an usage vector ut ∈ [0, 1]N with u0 = 0 is determined. Memory location
which has been retained by the memory retention vector ψt or either were already
in use or has been written to have a higher value up to 1:

ut = (ut−1 +ww
t−1 − ut−1 ◦ww

t−1) ◦ψt
. (2.27)

Every use of a location increases the usage vector value. Only using the free gates
can decrease it to 0. Let ◦ be an element-wise multiplication.

A free list φt ∈ ZN is computed with the use of the usage vector ut by sorting the
indices of the memory locations in ascending order of usage. Thereby, the least used

2.5. Differentiable Neural Computer 21

location is φt[1]. Now an allocation weighting at ∈ ∆N can be computed to provide
an unused location for writing new content:

at[ψt[j]] = (1− ut[ψt[j]])

j−1∏
i=1

ut[ψt[i]] . (2.28)

If the usage vector is very high then the allocation weightings are close to 0 and the
free gates need to release some locations. The sort operation is not continuous but
this is ignored when calculating the gradient for training the DNC.

Write weightings

The write weighting ww
t is a weighted sum of the content-based weighting cwt and

allocation weighting at. The allocation gate gat determines the influence of the two
mechanisms. The write gate gwt determines the intensity of the write weightings

ww
t = gwt (gat at + (1− gat)cwt) . (2.29)

If the write gate is 0, nothing is written and the memory is saved from unnecessary
manipulation. This is similar to an attention mechanism. The whole computation
of the allocation weighting and the update of the usage vector is condensed in Block
1 in Figure 2.17. The gating mechanisms are illustrated with the two oval gate
symbols and the element-wise operations.

Figure 2.17: The figure shows the mechanism to compute the write weightings. It
describes the location in the memory matrix where to add or erase information.
The write weightings are computed based on the content-based addressing (write
key and the previous memory matrix) and the dynamic memory allocation (the
previous usage, read and write weighings and the free gate)

22 2. Basics

2.5.2.4 Memory update

With use of the write weightings a memory update is possible, as illustrated in
Figure 2.18. The memory update contains an erase and an add operation. To erase
content an erase matrix Et is computed by building a matrix product with use of
the erase vector et and the write weightings ww

t :

Et = 1−ww
t e
>
t

. (2.30)

For adding information a add matrix At is computed with use of the write vector vt
and the write weightings ww

t :

At = ww
t v
>
t

. (2.31)

The last operation of the write head is an update of the previous memory matrix
Mt−1 with use of the erase matrix and the write matrix:

Mt = Mt−1 ◦ Et + At . (2.32)

Figure 2.18: The memory matrix update mechanism, every time step the whole
matrix gets updated.

2.5.2.5 Read mechanism

A read head is used to read stored information from the memory matrix. A memory
unit can have multiple read heads to read on different locations at the same time.

Each read head has two capabilities to find the read weightings which determine the
location in the memory matrix to read from. A content-based weighting with use of a
key similar to the content-based addressing in the write head and a temporal memory

2.5. Differentiable Neural Computer 23

linkage mechanism. The temporal memory linkage uses a precedence weighting and
linkage matrix to find the order, in which sequential information was written to the
memory. This allows reproducing coherent sequences.

The operations can be segmented into four parts: A precedence weighting update,
a linkage matrix update, a read weighting update and the actual memory reading.

Precedence weighting update

The precedence weighting pt ∈ ∆N represents to which location was written in
the past. Figure 2.19 illustrated the computation of it in the memory unit. It is
computed with use of the precedence weighting form the previous time step pt−1
and the current write weighings ww

t :

pt =
(
1−

∑
i

ww
t [i])pt−1 +ww

t
. (2.33)

Figure 2.19: The illustration of the precedence weightings update.

Linkage matrix update

With use of the previous precedence weighting pt−1 and the current write weightings
ww
t the temporal linkage matrix Lt ∈ [0, 1]N×N gets updated with L0[i, j] = 0∀i, j:

Lt[i, j] = (1−ww
t [i]−ww

t [j])Lt−1[i, j] +ww
t [i]pt−1[j] . (2.34)

The aim of the temporal linkage matrix is to store the transitions from the last writ-
ten location to this written location in the memory. More specific, Lt[i, j] describes
the degree of writing location i after location j was written to, with the constraints
Lt[i, :] ∈ ∆N∀i and Lt[:, j] ∈ ∆N∀j. Self links are excluded Lt[i, i] = 0∀i. The
process is illustrated in Figure 2.20. The original paper describes a sparse temporal

24 2. Basics

link matrix version as well but it is currently not implementable with use of common
deep learning frameworks and therefore not closer described here.

Figure 2.20: The linkage matrix mechanism, which is used to store the order of
writings in the memory.

Read weightings update

With an updated temporal link matrix Lt two kinds of memory access are possible.
A forward weighting f it and a backward weighting bit at time t of read head i. They
use the temporal link matrix to find the memory location which was written before
or after the last read operation. This allows to readout in a recorded sequence in
both directions when start reading from the middle. The forward weighting is a
matrix-vector product with the previous read weightings wr,i

t−1 and normal linkage
matrix

f it = Ltw
r,i
t−1 (2.35)

and the backward weighting with the transposed linkage matrix

bit = L>t w
r,i
t−1 . (2.36)

The upper index i describes the read head. Each read head has its own weightings
but they shares the linkage matrix and precedence weighting. Following the content-
based addressing in the write head, the read head uses the same operation. The read
content-based weighing cr,it ∈ ∆N computes the closest memory location to a given
read key kr,it :

cr,it = C(Mt,k
r,i
t , β

r,i
t) . (2.37)

2.5. Differentiable Neural Computer 25

The read strength βr,it determines the sharpness of the softmax function. To find
the new read weightings each read head has a read mode πit ∈ S3 which determines
the influence of the forward, backward or content-based weighting in the final read
weighting wr,i

t ∈ ∆N :

wr,i
t = πit[1]bit + πit[2]cr,it + πit[3]f it . (2.38)

The whole process of finding the new read weighings for one read head is illustrated
in Figure 2.21.

Figure 2.21: The read head, the mechanism to compute the read weightings, the
location in the memory from where to read information.

Memory reading

The final reading of the memory matrix with a specific read head is a matrix product
of the read weightings wr,i

t and the current memory matrix Mt, see Figure 2.22. The
result is a read vector rit ∈ RW for each read head:

rit = M>
t w

r,i
t

. (2.39)

The whole MU output µt ∈ RP is a concatenation of all read vectors

µt = [r1t . . . r
R
t] (2.40)

and the MU output size is the memory width times the read head P = R×W .

26 2. Basics

Figure 2.22: The illustration of the memory reading of one read head.

2.5.3 Summary

The MU output serves the output of the whole system and as an input to the
controller in the next time step. Figure 2.23 shows the DNC system in an unfolded
manner. The recurrent connection of the LSTM is the hidden cell state ht. The
recurrent connection from the MU is much richer. It contains the usage vector, the
write weightings, the memory matrix, the precedence weightings, the linkage matrix
and the read weightings.

Figure 2.23: An overview of the DNC parts and its signals in unfolded view. The
dotted lines illustrate recurrent connections.

3. Data

This work uses four data sets. A synthetic copy task and the synthetic bAbI QA task
are already applied to the NTM or DNC papers [1, 55] and are used in the analysis
Chapter 5. In the experiments Chapter 7 novel models are evaluated on the bAbI
task as well as at two large-scale QA task. The two datasets are the ”Children Book
Test” and the CNN reading comprehension (RC) task. They are commonly used,
freely available and often benchmarked QA tasks. The following sections describe
the data sets in detail.

3.1 Copy Task

With the use of an external memory is algorithmic operations like copy, recall or
sort is possible. In the copy task, the model is asked to store and retrieve a data
sequence. The task aims to test if the model is able to learn a simple algorithm and
is able to use the memory correctly. It is presented in the Neural Turing Machine
paper [55].

In this work, the copy task is used for analysis the DNC and for evaluation of the
different DNC advancements. The task in this work is larger then the original task
and the validation set used longer sequences than the training set. This allows
testing the generalization ability of the model. Thereby the task addresses both
reading mechanisms. The linkage matrix to repeat the sequence in the correct order
and content-based addressing to find the first number of the sequence.

Training Set Validation Set

Sample amount 6000 600
Min. sequence length 20 50
Max. sequence length 50 100
Feature width 100 100

Table 3.1: Parametrization of the copy task in this work.

In this setup, the model receives a sequence of random numbers in a specific range
called feature width, needs to store it and is asked to repeat the whole sequence

28 3. Data

after a delimiter symbol which requests the repetition, see Figure 3.1. The actual
sample has a fixed length which has 2× the feature width and +1 for the delimiter
symbol. Because of the fixed length, no end of sequence symbol is necessary.

Figure 3.1: An example of the copy task with a feature width of 20 and a sequence
length of 50. The red dot is the delimiter symbol which requests the repetition.

The numbers are presented as one-hot vectors with the size of feature width plus one
for the delimiter symbol. When a number is expected the input vector is zero. The
target numbers are represented as one-hot vectors with the size of feature width.
The length of the sequences can be arbitrary. An additional mask is used to mask
the output of the model in the phase when no output is requested. Thus only when
a number is asked in the target sequence a learning signal is computed. The copy
task used in this work is parametrized as in Table 3.1.

3.2 bAbI 20 Task

The bAbI 20 task is a set of 20 synthetic question answering tasks for testing text
understanding and logical reasoning. Each sample contains context, questions and
corresponding answers, all in natural language. Humans are able to achieve 100%
correct answers and no external information is required to answer the questions.
Each task of the bAbI set has another question type and needs a different solution
strategy.

The bAbI 20 task is introduced in Weston et. al. [56] and the source code to
generated the data set is open source under BSD license 1. Additionally, a set of
pre-generated samples is freely to download 2. The pre-generated sets contain all
training, validation and test sets. There are samples in English and in Hindu as well
as different large collections available. There are training sets available with 1000
answers per task and with 10.000 answers per task. The validation set and the test

1https://github.com/facebook/bAbI-tasks (08.01.2018)
2https://research.fb.com/downloads/babi/ (08.01.2018)

3.2. bAbI 20 Task 29

set are ten times smaller than the training set. This work uses the pre-generated
English version with 10.000 answers per task (en-10k).

Each task contains short stories with one or more questions. Each story is treated as
an independent sample. For example task 1 requires one fact to answer the question,
the location of the person, see Sample 3.1. Another example, task 7 asks for simple
counting exercise, see Sample 3.2. At least in task 17, the model needs to reason
about positions, see Sample 3.3. A full description of all tasks can be found in the
original paper [56].

bAbI 20 Task - en-10k

Task Name Samples
Avg.
Quest.

Vocab.
Size

Min.
Length

Mean
Length

Max.
Length

1 Single Supporting Fact 2000 5 22 85 87 93
2 Two Supporting Facts 2000 5 36 89 164 452
3 Three Supporting Facts 2000 5 37 130 486 1920
4 Two Arg. Relations 10000 1 17 24 24 24
5 Three Arg. Relations 2000 5 42 94 208 820
6 Yes/No Questions 2000 5 38 93 98 191
7 Counting 2000 5 46 97 121 361
8 Lists/Sets 2000 5.343 38 87 112 346
9 Simple Negation 2000 5 26 95 100 109
10 Indefinite Knowledge 2000 5 27 95 106 124
11 Basic Coreference 2000 5 29 90 94 100
12 Conjunction 2000 5 23 105 107 112
13 Compound Coref. 2000 5 29 100 104 111
14 Time Reasoning 2000 5 28 116 132 156
15 Basic Deduction 2500 3.241 20 72 72 72
16 Basic Induction 10000 1 20 47 47 47
17 Positional Reasoning 1250 7.034 21 92 109 128
18 Size Reasoning 1978 4.092 21 80 100 249
19 Path Finding 10000 1 26 53 53 53
20 Agent’s Motivations 933 10.718 38 45 139 161
all 62661 159 24 91 1920

Table 3.2: Statistics of the bAbI 20 task in the English 10k version.

Each story or sample is pre-processed by removing numbers, lower all words and
split the sequences into word tokens. The whole set contains 156 unique words and
three symbols, ’?’, ’ !’, and ’-’. The ’-’ symbol in the input sequence symbolizes that
an answer is requested and is used in the target sequence as fill symbol between
the correct answers. The statistics in Table 3.2 show that the provided dataset
contains some inconsistencies. Some tasks have fewer samples or a different number
of questions than expected. Sometimes a question is asked twice direct afterwards,
this is detected and deleted.

For training, each sample is encoded as an input and output sequence. Each word
is encoded with a one-hot vector with the size of the vocabulary, in the full bAbI
task, its 159. An additional sequence mask is used to generate only training signals
when an answer is requested, so the outputs of all other time steps are ignored
during training. Furthermore, no additional information is provided e.g. what is
the current task. The output itself, a vector of the vocabulary size, is activated

30 3. Data

with a softmax function. For training, the cross-entropy loss between the prediction
vector and the target one-hot vector is minimized. In case of mini-batch training,
the different long sequences get padded and masked out with use of a mask. For a
more efficient GPU usage, the maximum sequence length during training is limited
to 800. This allows larger mini-batches. The loss metric for the bAbI task is the
word error rate (WER), the fraction of incorrectly answered words to all requested
words.

Task 1: Single Supporting Fact - Sample 3.1

John travelled to the hallway. Mary journeyed to the bath-

room. Where is John? hallway Daniel went back to the bathroom.

John moved to the bedroom. Where is Mary? bathroom John went

to the hallway. Sandra journeyed to the kitchen. Where is

Sandra? kitchen Sandra traveled to the hallway. John went

to the garden. Where is Sandra? hallway Sandra went back to

the bathroom. Sandra moved to the kitchen. Where is Sandra?

kitchen

Task 7: Counting - Sample 3.2

Sandra went to the bedroom. Mary went to the office. Mary

took the apple there. Mary put down the apple. How many ob-

jects is Mary carrying? none Mary went back to the bedroom.

Mary travelled to the bathroom. How many objects is Mary car-

rying? none John went to the hallway. John got the football

there. How many objects is John carrying? one Mary moved to

the hallway. John went to the office. How many objects is

John carrying? one Mary went back to the garden. John grabbed

the apple there. How many objects is John carrying? two

Task 17: Positional Reasoning - Sample 3.3

The triangle is above the pink rectangle. The blue square

is to the left of the triangle. Is the pink rectangle to the

right of the blue square? yes Is the blue square below the

pink rectangle? no Is the blue square to the right of the pink

rectangle? no Is the blue square below the pink rectangle?

no Is the blue square below the pink rectangle? no Is the

pink rectangle to the left of the blue square? no Is the blue

square to the left of the pink rectangle? yes Is the pink

rectangle to the right of the blue square? yes

3.3 Children Book Test

The children book test (CBT) is designed to measure directly how well a model
can exploit wider linguistic context. In contrast to the bAbI task, it is built on a
collection of children book stories from freely available books through the Project
Gutenberg. It has a natural vocabulary size and sample length which are closer

3.3. Children Book Test 31

to real-world tasks. The CBT was introduced by Hill et. al in [57]. The data
set is under BSD license and freely to download 3. Each sample in the CBT is
constructed by taking 20 consecutive sentences from a book text which build the
context and the 21st sentence as a query statement. In the query statement, one
word is blanked with a placeholder and the task is to find this word. The dataset
is split on book level into training, validation and test set. Additionally, four sub-
datasets exists regarding the word category of the blanked word. The four categories
are named entities (NE), common nouns (CN), verbs (V) and preposition (P). The
word category was found by the Stanford Core NLP tool. While the aim of this
work is reading comprehension to exploit the general structure of knowledge rather
than correct language and due ot limited computational resources for experiments
only the sub-dataset with common nouns is used. An example of the CN dataset is
in Sample 3.4.

As a target, each sample contains the correct answer word and a set of ten possible
words. The possible words are including the correct word and nine words from
the same word category. All possible words have to be present in the previous 20
sentence. The samples are not disjunct. Sometimes the same context and query
statement is used with a different blanked word or sometimes the cut between the
samples overlaps a few sentences.

In the pre-process each context and query statement gets converted in lower case,
numbers get normalized (234rd -> 234) and special symbols get uninformed. Fur-
ther, the word tokenizer from the NLTK toolkit is used to tokenize the samples.
Table 3.3 shows the statistic of the CN CBT dataset.

Children Book Test - Common Nouns Dataset

Training Set Validation Set Test Set

Books 98 5 5
Samples 120,760 2,000 2,500
Min. sample length 77 500 1,400
Mean sample length 191 476 845
Max. sample length 169 491 1,069

Vocabulary size 53,139
Possible word vocabulary size 10,696

Table 3.3: Statistics of the CN CBT

For the training, context and the query statement are concatenated and an input
and a target sequence are generated. The input sequence represents the context and
query statement word by word as the index of a one-hot vector with the size of the
vocabulary. The target vector has non-tokens except on the position of the blanked
word, there the true answer is encoded as the index of a one-hot vector with the
size of all possible words in the dataset. An additional sequence mask is used to
generate only training signals when the answer word is requested, so the outputs of
all other time steps are ignored during training.

3https://research.fb.com/downloads/babi/ (08.01.2018)

32 3. Data

Children Book Test - Sample 3.4

Context:‘What is it?’ answered he. ‘The ogre is coming after us. I saw him.’
‘But where is he? I don’t see him.’ ‘Over there. He only looks about as tall as
a needle. ’Then they both began to run as fast as they could, while the ogre
and his dog kept drawing always nearer. A few more steps, and he would have
been by their side, when Dschemila threw the darning needle behind her. In
a moment it became an iron mountain between them and their enemy. ‘We
will break it down, my dog and I, ’cried the ogre in a rage, and they dashed
at the mountain till they had forced a path through, and came ever nearer
and nearer. ‘Cousin !’ said Dschemila suddenly . ‘What is it ? ’ ‘ The
ogre is coming after us with his dog . ’ ‘ You go on in front then, ’answered
he; and they both ran on as fast as they could, while the ogre and the dog
drew always nearer and nearer. ‘They are close upon us! ’cried the maiden
, glancing behind, ‘you must throw the pin. ’So Dschemil took the pin from
his cloak and threw it behind him , and a dense thicket of thorns sprang up
round them, which the ogre and his dog could not pass through. ’I will get
through it somehow, if I burrow underground, ’cried he, and very soon he and
the XXXXX were on the other side.
Answer: dog
Possible Words: cousin, cloak, dog, maiden, mountain, needle, path, pin,
side, steps

Furthermore, a possible-words mask is created which masks out all words in the
output vector which are no possible words. Each time step, the model outputs a
vector with the size of all possible answer words. It is multiplied element-wise by
the possible words mask. A softmax function activates the output vector. During
training, the cross-entropy loss between the predicted and masked vector and the
target one-hot vector is minimized. In case of mini-batch training, the different long
sequences get padded and masked out with use of the mask. The loss metric for the
CBT is the accuracy, the fraction of all samples with correct words to the number
of samples in total.

3.4 CNN Reading Comprehension Task

Similar to the CBT, the CNN reading comprehension (RC) task has a natural source.
It is based on crawling the online news articles from the CNN website4 collected
from April 2007 to April 2015. This large-scale training dataset was introduced by
Hermann et. al [58] and is freely downloadable as raw collection5 under Apache2
license or pre-processed 6. The dataset contains news articles as context and short
article summaries as query statement. Each article is the source for four queries
on average and each query is the replacement of a word by a placeholder in the
summary. The articles and summaries anonymized all name entities with tokens
and each missing word is such a name entity, see Sample 3.5. The articles contain
rarely name entities like celebrities and the task aims to exploit general relationships
between anonymized entities rather than common knowledge.

4http://cnn.com/ (08.01.2018)
5https://github.com/deepmind/rc-data (08.01.2018)
6https://cs.nyu.edu/ kcho/DMQA/ (08.01.2018)

3.4. CNN Reading Comprehension Task 33

CNN RC Dataset

Training Set Validation Set Test Set

Month 95 1 1
Articles 90,266 1,220 1,093
Samples 380,298 3,924 3,198
Min. sample length 16 107 96
Mean sample length 775 777 731
Max. sample length 2,018 2,007 2,009

Vocabulary size 118,497 (50,429)
Tokens 408

Table 3.4: Statistics of the CNN RC Task.

The pre-processed dataset, which is used in this work, has all words in lower case
and reduces some inconsistencies. For the training, the query (summary with the
placeholder) and context are concatenated (the query first) and an input sequence is
generated. The input sequence represents the summary with the placeholder and the
article word by word as the index of a one-hot vector with the size of the vocabulary.
In contrast to the CBT dataset, the target is only the correct word represented as
the index of an one-hot vector with the size of all possible name entity tokens. An
additional candidate mask is created which masks out all name entity tokens which
are not present in the sample.

CNN RC Task - Sample 3.5

Query: @entity2 took a photo next to tourists looking at the ”@place-
holder” home.
Context: (@entity0) what happens when @entity2 shows up outside the
”@entity5” home that made him a star? nothing, apparently. for reasons
unknown to us, @entity2 was recently lurking outside the popular @entity10
attraction when a group of tourists showed up. it appears they were too busy
gawking at the house to realize ”@entity16” was standing next to them. it
appears that @entity2 was amused and posted an @entity19 of him standing
next to them. the caption? ”boy, these youngsters have 0.0 idea what they’re
missing. @entity26 turnaround. ”hopefully, he found some consolation in the
46,000 likes and thousands of comments from swooning fans. otherwise, @en-
tity2 is keeping busy with guest roles on ”@entity36” and ”@entity37” amid
rumors of a possible ”@entity5” reunion.
Answer: @entity5

During training, the last model output in the sequence predicts the word. It has the
size of all possible name entity tokens and is activated by a softmax. The candidate
mask is multiplied element-wise to this output. So the output for all entity tokens
which are not present in the current sample is ignored. During training, the cross-
entropy loss between the prediction output vector and the target one-hot vector is
minimized. In case of mini-batch training, the different long sequences get padded
from begin of the sequence that the last sequence step stays the same. The loss

34 3. Data

metric for the CNN is the accuracy, the fraction of all samples with correct words
to the number of samples in total.

4. Related work

This chapter contains two sections. The first one is concerned with related mod-
els to the DNC in the context of solving NLP problems. It illuminates alternative
approaches, memory-augmented neural networks as well as non-memory approaches
and shows some advanced applications. The second part addresses existing enhance-
ments for NTMs and DNCs.

4.1 Related models for QA

At the same time as the NTM paper has been published a work by Weston et al.
was released which introduced an alternative family of memory-augmented neural
networks, the memory neural networks (MemNNs) [59]. It is a concept of an external
memory component for QA and exists of input feature map, generalization, output
feature map and response components. The approach based on a sentence repre-
sentation and requires supporting facts during training like the supporting words in
the bAbI task to find the answer. It is successfully applied to the bAbI task [56] as
well as to the large simple QA task KB-Freebase [60]. In contrast, the DNC does
not require supporting facts, is trainable end-to-end and is more interactive with the
memory due to the read and write heads.

The follow-up work of Sukhbaatar et al. [61] extends the memory network with
a soft attention mechanism, needs less supervision and is trainable end-to-end. In
contrast to DNC, it stores information explicitly in memory without the opportunity
to erase or modify them during an episode. The memory network has no addressing
mechanism and the memory is written sequentially. This makes the model simpler
and more focused on the task itself. It is mainly used as a knowledge database
with a very limited interaction between computation and storage. There are several
successors of memory networks in a QA context: The hierarchical memory networks
tackle the issue of extremely large memories with a hierarchical approach [62]. The
key-value memory network splits the memory matrix in two, one for key embeddings,
one for value embeddings [63]. The long-term memory network uses an LSTM to
generate arbitrary long answer sentence [64]. The gated memory network introduces
a regulation mechanism inspired by the connection short-cutting principle [65]. The

36 4. Related work

dynamic memory networks extend the model with an episodic memory module to
provide information about the question on each state for a better attention [5].
The dynamic memory network (DMN) and its successor the DMN+ have a similar
concept but with an episodic memory module [5, 66]. It is a sequential model and
the DMN + requires no labelled supporting facts during training.

The same approach also finds applications besides QA like in dialogue modelling
[67], machine translation to deal with out-of-vocabulary words [68] or visual question
answering [69]. Especially in video QA, where a model is asked to answer questions
related to a video, memory-augmentation is particularly successful and achieve here
state-of-the-art results [70]. The memory-augmentation uses a LSTM controlled
fixed-size memory matrix [71] or builds a dynamic memory matrix embedding on
the fly [72, 73].

The relation memory network (RMN) embeds sentences into a memory object and
applies attention with use of the question. An update step renews the memory and
a second attention is applied to find the answer [74]. In contrast to the DNC, the
RMN is fitted to QA tasks and uses sentence representation as memory slots similar
to the MemNN.

Another related model is the recurrent entity network (EntNet) which ”can be viewed
as a set of separate recurrent models whose hidden stated store the memory slots”
[75]. The memory slots exist of a key vector and a content vector and have an own
gated RNN as a controller. In contrast, our model has one memory matrix with no
distinction between key and content.

Some other memory-augmented approaches are worth to mention besides the mem-
ory networks. Grefenstette et al. introduce a logically unbounded memory with
push and pop operations [76]. The ”neural semantic encoder” from Munkhdalai and
Yu has three separate controller modules for reading, update or write operations
[77]. It has a sophisticated addressing mechanism to avoid information collision in
the memory and is applied to machine translation as well as QA [78]. Henaff et
al. introduced the ”recurrent entity network” which has simple parallel mechanisms
to update several memory locations simultaneously similar the hidden state in an
LSTM network but with a content-based addressing [75, 79]. The RelNet from
Bansal et al. models entities as abstract memory slots and is able to reason about
them [80].

The following models are more focused on large-scale QA tasks. Hermann et al. [58]
uses a Deep LSTM Reader which performs a forward pass over the context and the
question to find the answer. They also introduce the attentive and impatient readers
which build a document representation by direct attention respectively incrementally
attention. In contrast to the DNC, it needs a separation between document and
query.

[81] introduces the Stanford Attentive Reader which enhances the attentive reader
and introduces a bilinear term to compute the attention between the document and
the query. The Attention-Sum (AS) Reader from [82] uses also separate encoding
for the document and the query. Its successor, the Attention-over-Attention Reader,
applies a two-way attention mechanism to find the answer [83]. Some models use a
multi-run reasoning over a hidden representation of the document. [57] applied the
MemNN with use of a fixed-length windows representations of text surrounding each

4.2. Related enhancements 37

candidate answer. Then an attention mechanism is used multiple times to find the
answer. The Iterative Attention Reader and the ReasoNet use iterative reasoning as
well [84, 85]. The Gated-Attention Reader from [86] also uses multiple hops over the
document to build an attention over the candidates to select the answer token. [87]
introduces the EpiReader which uses two neural networks, one extracts candidates
using the AS Reader and the other re-ranks them conditioned on the query and the
document. These readers are all conceptual adapted to the QA tasks they solve.
Our solution is manifold usable due to a more flexible and universal design. This
allows an easier handling of new tasks.

Besides the memory-augmented neural networks, attention-based models are a promis-
ing approach. Either through a question representation based attention [88] or with
use of a 2D attention embedding for example with a similarity matrix [89], an atten-
tion embedding matrix [90] or a matching matrix [91]. Another common proceeding
is to transfer the context and/or question with the use of neural networks in a utile
representation and use a neural network to predict an answer or answer span. This
can be done with bidirectional LSTMs [92] or a Match-LSTM and answer pointer
[93]. The dynamic co-attention network fuses representations of the document and
the question and predicts spans with the use of a pointer [66]. Some works using
a combination of attention and matching layer [94]. This also can be done with a
combination of word-level and character-level representations [95] or with use of a
convolution neural network [96]. The DNC does not require an attention mechanism
or this reformulation of the problem.

4.2 Related enhancements

The dynamic neural Turing machine from Gulcehre et al. 2016 splits the memory of
the NTM into a content and address vector for better location-based addressing [97].
They also implement a soft differentiable and a hard non-differentiable read/write
mechanism. Similar to a work from Khadka et al. a GRU is used as controller [98].
Khadka et al. also uses gates to determine if the content is written, updated or
read. Another approach follows Gulcehre et al. 2017 with a more simpler discrete
addressing for write/read operations to learn so-called wormhole connections, which
store the previously hidden states of an RNN in the memory that later provide a
flashback in the history of the RNN [99].

Zhang et al. introduce three extending variants of an NTM, an additional hidden
memory for smoothing, an additional hierarchically memory and a multi-layer imple-
mentation [100]. They showed alleviating of over-fitting and increased accuracy. A
binary tree with leaves corresponding to memory cells is built by Andrychowicz and
Kurach a hierarchic attentive memory based on the NTM model [101]. This leads
to faster memory access and enables learning of algorithms like merging, sorting or
binary searching.

A greatly technical enhancement provide Rae and Hunt et al. with the introduc-
tion of sparse read and write operations [102]. They address the problem that the
memory consumption depends on the memory matrix size since all memory slots
get manipulated at once. To solve this issue a threshold determines a sparse subset
of interest memory slots which get modifications. This reduces computation time
and memory consumption but unfortunately, it is currently not implementable with

38 4. Related work

common frameworks like TensorFlow or PyTorch due to the lack of differentiable
sparse tensors [103, 104].

5. Analysis of the DNC

The analysis examines the functionality and computations resources of a classic
DNC to get a better understanding of this model. The analysis is split into four
sections and a main contribution of this work. The first section investigates the DNC
training and the second its functionality. The third section examines the memory
consumption and the last section the computation time. This chapter ends with
drawing a conclusion from the DNC analysis.

5.1 DNC Training

The training behaviour is investigated with two data sets, the copy task and the
bAbI task 1 en-10k dataset, see Sections 3.1 and 3.2. Both tasks are small enough
to train them within a day on one GPU. The performance on the copy task is an
indicator for the DNC as an algorithmic solver and the bAbI task 1 represents the
performance on QA tasks. With both datasets, five training runs are recorded.
These have the same hyper-parameters but different seeds. The hyper-parameters
are listed in Table 5.1, both tasks have the same values except for the batch size.
The models are trained with use of the RMSprop optimization algorithm [30].

Part Paramter Symbol Value

Controller
LSTM layers L 1
LSTM units C 64

Memory Unit

Memory length N 128
Memory width W 32
Read heads R 2

Training
Learning rate lr 1e-4
Momentum m 0.9
Batch size B 16(copy task)/32(bAbI task)

Table 5.1: The hyper-paramter of DNC training analysis.

40 5. Analysis of the DNC

To get comparable results the following two tasks are evaluated with a DNC and a
vanilla LSTM. The LSTM on the copy task does not achieve a better performance
than a wrong number rate of 0.97 and it also overfits slightly. This means that the
LSTM fails on the copy task completely. The bAbI task 1 is reported in the original
paper with a mean word error rate of 0.28 by using an LSTM with one hidden layer
and 512 hidden units[1].

Figure 5.1: The training progress of a DNC with the copy task on five runs. The
red line is the worst run and green line the best run. The grey lines are the other
runs, full lines are smoothed, dashed are raw.

Figure 5.1 shows the training progresses of the copy task. The plot shows five runs
while the green line is the best run with respect to the rate of wrong numbers and
the red line the worst. The full lines are smoothed and the dashed lines are the
true training progress. The first plot shows the training loss of the five runs. The
second plot shows the validation loss. The third shows the wrong number rate.
The validation loss and the wrong number rate were calculated after every tenth
training updates. The bottom plot shows the influence of the memory read output
to the system output signal. It is computed by the consideration of the change in
system output by setting the memory read output to zero. It is normalized with
use of setting the bypass output to zero. A memory influence of zero means only

5.1. DNC Training 41

the controller via the bypass influences the system output and a memory influence
of one means only the memory read output affect the output signal.

Only one of the five runs converges after a long time of nearly no progress in any
loss. This could indicate that the model needs time to learn how to use the memory.
The run in which training loss converges to zero has the best validation performance
and a larger memory influence in the output signal. This also indicates a more
intensive or efficient usage of the memory unit. Only if the model learns to use the
memory unit it is able to generalize to the validation task. The spike in the worst
run, in the plot the red line, shows how unstable the training of the DNC is. The
model massively overfits in the first 3000 iterations and then suddenly a few training
updates let collapse the overfitting and the training loss explodes.

Figure 5.2: The training progress of a DNC with the bAbI task 1. 5 runs, red line
is the worst and green line the best run.

The performance on the bAbI task 1 has the same relation in terms of training
progress, see Figure 5.2. The plot is recorded and plotted in the same manner as in
the copy task analysis. The model with the best convergence uses the memory most.
But the memory influence is below 20% compared to above 80% in the copy task
training. The convergence is more smooth perhaps since the task is more easy to
handle. The passable performance of the LSTM could imply that the correct memory

42 5. Analysis of the DNC

usage is not mandatory for an incremental performance increase. In contrast to the
copy task, which requires a working memory mechanism for good performance. But
again, with the stronger use of the memory, the task is solved completely. Overfitting
is recognizable in both models but when the training loss converges completely to
zero and the memory is used then the validation loss converges as well.

Both experiments show that the model performance strongly depends on the mem-
ory usage. If the DNC learns to use the memory mechanisms, the tasks are fully
solvable with it. Additionally, the model is unstable during training and the per-
formance depends on the initialization. Sometimes it convergences and the DNC
learns to use the memory mechanisms and sometimes not. The DNC does not tend
to overfit since the training loss, the validation loss and the performance rate (wrong
numbers or word error) are strongly correlated when the memory mechanism is in
use. This indicates out that the memory usage is strongly correlated with the model
performance and only if the DNC learns to use the memory unit, the performance
rises.

5.2 DNC Functionality

Similar to the previous section the copy task and the bAbI task 1 is used to analyze
the functionality. Two fully trained and converged models, the best runs from the
previous section with the same parameters, are used to investigate the functionality
of a DNC. The analysis consists of four plots which show gate usage, weightings and
influences of the read heads. The first two plots show the general DNC functionality
in the copy task and bAbI 1 task. The third plot provides insights in the write
mechanism exemplary with the bAbI task 1 and the fourth plot shows details of the
memory handling and read head exemplary with the copy task.

Name Description
Questions The questions plot shows the model input, the grey pads sym-

bolize that an answer is expected. The model first receives the
numbers which should be repeated after the delimiter symbol.

Predictions The prediction plot shows the model output, green pads corre-
sponds to correct numbers and red to false numbers.

Free Gates This plot shows the free gates of the two read heads.
Alloc Gate This plot shows the allocation gate for determining where to write

new content. Yellow corresponds to the usage of the ”at least used
memory slots” and blue pads to the content-based addressing.

Write Gate This plot shows the write gate, only the input sequence is written.
Read Modes 1 This plot shows the read mechanism of the first read head.
Read Modes 2 This plot shows the read mechanism of the second read head.
Head
Influences

This plot shows the influence of the read heads on the output
of the memory unit. It is similarly computed as the memory
influence in Section 5.1.

Output
Influences

The bottom plot shows the influence of the memory unit and
controller to the output signal.

Table 5.2: The description of DNC functionality subplots in Figure 5.3.

5.2. DNC Functionality 43

Each plot is described in detail in the following. The first plot in Figure 5.3 gives
an overview of the DNC functionality in the copy task. The nine subplots show one
short sample of the copy task and are described in Table 5.2.

Figure 5.3: The functionality of the DNC gates and influences in the copy task. The
activity of the gates and read modes are the actual values between 0 and 1. Then
influences are calculated and normalized.

The free gates seem not to be used, probably since the memory is larger than the
task is long and there is no need to free memory slots. Because the numbers in
the copy task are independent only the dynamic memory allocation mechanism is
used to compute the write weighting. During the number input sequence, the write

44 5. Analysis of the DNC

gate is close to one because content needs to be written into the memory. But it
is close to zero during the response since manipulating the memory may harm the
memorization.

Figure 5.4: The functionality of the DNC gates and the influences on base of the
bAbI task 1. The activity of the gates and read modes are the actual values between
0 and 1. Then influences are calculated and normalized.

Both read heads use the content-based weighting to find the first number in the
memory and afterwards only backward weightings since the input sequence needs to
be repeated. The larger influence of the second head suggests that the second read
head performs better. During the number input, the read mode is forward direction

5.2. DNC Functionality 45

probably since it helps to allocate unwritten memory locations. The dynamic mem-
ory allocation mechanism uses these previous read weightings, see Section 2.5.2.3. In
the response sequence, only the memory influences the output signal, which shows
the successful usage of the memory unit.

The same type of plot shows in Figure 5.4 the DNC functions with a shortened
sample from the bAbI task 1. The output of the model is masked out when no
answer is requested. So the model’s output is ignored in these phases. This could
be the reason why it outputs arbitrary words when no answer is requested. In this
scenario, the model uses more the content-based addressing and permanently frees
space because some sample-sequences are longer than the memory. The write gates
show that permanently content is written to the memory matrix except when an
answer is requested. Probably the model reacts to the last word of the question or
the question mark rather than the question token ’-’. This could explain why the
memory influence is high on the steps before the answer is requested. The model
likely finds the answer with use of the content-based reading. This explains the read
modes in the second read head right before the answer is requested. In that case,
the influence of the second read head is stronger. Then it holds the correct answer
until it is requested. Conversely, the forward and backward weighting mechanisms
are not used in this QA scenario. This makes sense since a sequence repeat is not
necessary to find the correct word in the memory.

Name Description
Questions The questions plot shows the model input, the grey pads sym-

bolize that an answer is expected. The model first receives the
numbers which should be repeated after the delimiter symbol
(100).

Predictions The prediction plot shows the model output, green pads corre-
spond to correct numbers and red to false numbers.

Free Gates This plot shows the free gates of the two read heads.
Allocation
Weightings

This plot shows the allocation weighting which determines slot
positions which are not or sparsely in use so far.

Usage
Weightings

The usage vector in this plot memorizes which slot is in use.

Content
Weightings

This plot shows the content weighting based on the write key
from the controller.

Allocation
Gate

This plot shows the allocation gate which determines whether the
allocation or content-based weightings are used for the new write
weightings.

Write
Weightings

This plot shows the updated write weighting.

Write Gate This plot shows the write gate which determines the intensity of
writing.

Table 5.3: The description of DNC write functionallity shown in subplots in Figure
5.5.

The following two plots consider the write, memory update and read mechanism of
the DNC in detail to get a deeper understanding of the functionality. Figure 5.5
shows the process to find the write weightings. The gates are similar to the previous

46 5. Analysis of the DNC

plots and the weightings show the intensity of the locations. They have the length
of the memory matrix and the red bars show the location weighing from 1 in red to
0 in white in a logarithmic scale.

Figure 5.5: The function of the write mechanisms in the memory unit during the
bAbI 1 task. The activity of the gates are the actual values between 0 and 1. The
weightings have the length of the memory matrix and the red bars show the location
intensity.

The nine subplots show all gates and weightings of the write mechanism of one short
sample of the bAbI task 1 and are described in Table 5.3.

5.2. DNC Functionality 47

The allocation weighing provides in each time step a different unwritten memory
location due to the empty memory and the sort based design. The actual location
depends on the random initialization. The usage vector stores the used memory
location and is filled over time. In the first steps, no content-based addressing
is possible since the memory is quite empty. But couple steps before an answer is
requested the content weightings are more exact and provide the locations which help
to find the answer. The allocation gate determines the influence of the allocation
and content weighting to build the actual write weighting.

Another detailed analysis provides Figure 5.6. It shows the memory handling step
by step in a memory unit during the copy task and is described in Table 5.4.

Name Description
Task The task plot shows the model input in the grey pads and the

model output in the colored pads. Green pads imply correct
number and red false numbers.

Old Memory This plot illustrates the memory over the time steps. The memory
slot content is depicted with respect to the color bar on the right.

Write
Weightings

This plot shows the write weightings from the write mechanism.

Write Vector The write vector in this plot came directly from the input signals.
It is the weighted controller output.

Add Matrix This plot shows the add matrix created with the write vector and
the write weightings.

Erase Vector The erase vector in this plot came also directly from the input
signals.

Erase Matrix This plot shows the erase matrix, which is created with the use
of the erase vector and the write weightings.

New Memory This plot shows the updated memory matrix with use of the add
and erase matrices.

Read
Weightings 1

This plot shows the read weightings of the first read head.

Read Vector 1 This plot shows the read vector of the first read head.
Read
Weightings 2

This plot shows the read weightings of the second read head.

Read Vector 2 This plot shows the read vector of the second read head.

Table 5.4: The description of DNC memory update functionallity shown in subplots
in Figure 5.6.

This plot shows how the memory gets full filled with new content provided by the
add matrix. The erase mechanism provides weak weightings, probably since erasing
is in this task not important. Afterwards, the memory gets written through the
two read heads. Read head 2 has more clear weightings and produces better read
vectors. This also explains why read head 2 is more used in Figure 5.3.

The analyze plots point out the importance of the content based addressing in the
read head for the bAbI 1 task. Especial in QA the forward and backward weighting
makes less sense since it is not impotent to repeat a sequence rather than to find
a specific information in the memory matrix. The write mechanism plot and the

48 5. Analysis of the DNC

Figure 5.6: The memory handling in a DNC during the copy task. The colored bars
are the content in a location. Either in a vector or in a matrix.

5.3. DNC Memory consumption 49

memory update plot show that the DNC mechanisms work as expected and provide
a deeper imagination of the functionality.

5.3 DNC Memory consumption

This section considers the memory consumption of a DNC relating to the main
causer and compares to a standard LSTM. The memory consumption of an RNN,
in general, depends on the four parts: library overhead, parameters, operations
footprint and recurrent connections. The library overhead is empirically determined
and is approximately 150 MB with use of the TensorFlow 1.3 library [103]. It does
not depend on batch size or sequence length. The following calculation makes use
of the notation from Chapter 2. Table 5.5 provides an overview. For a more simpler
calculation, no multilayer LSTM/Controller networks are considered.

Model type Parameter Symbol

Input size X
Output size Y
Sequence length S
Batch size B

LSTM
Layers L
Hidden units H

DNC

Controller size C
Memory length N
Memory width W
Read heads R

Table 5.5: The notation of DNC and LSTM parameters.

Based on the software implementation of the DNC the parameters of an LSTM and
a DNC can be calculated as follows:

LSTM Parameters:

HiddenNodesParameters ≡ (X +H + 1) · 4 ·H
OutputParameters ≡ (H + 1) · Y

(5.1)

DNC Parameters:

ControllerParameters = (X + C +R ·W + 1) · 4 · C
MemoryParameters = (C + 1) · (3 + 5R + 3W +R ·W)

OutputParameters = (R ·W + C + 1) · Y

(5.2)

Each operation produces a memory footprint to calculate the gradients for the back-
propagation step. The footprint of an operation has the size of the operations
outcome tensor. The overall footprint strongly depends on the implementation of the

50 5. Analysis of the DNC

model. The source code of this work is available online1. The operations footprint
for one step in an LSTM and a DNC can be calculated as follows:

LSTM Operations Footprint:

LSTMOperations = 16 · 8H
OutputOperations = Y

(5.3)

DNC Operations Footprint:

ControllerOperations = 16C

MemoryUnitWritting = 3 +R + 2W + 10N +W ·N
LinkageMatrixOperations = 4N + 3N ·N
MemoryUnitReading = 5R +R ·W + 6RN

OutputOperations = Y

(5.4)

The recurrent connections generate an additional footprint for the back-propagation
step. In the LSTM setting, it is the hidden states and the output size of the nodes. In
the DNC setting it is the read weighings, the linkage matrix, precedence weightings,
memory matrix, write weightings and the usage vector. The following calculations
are for the recurrent connections footprint for one-time step.

LSTM Recurrent Connections Footprint:

HiddenStates = H

RecurrentOutput = H

(5.5)

DNC Recurrent Connections Footprint:

ControllerRecurrentConnections = 2C

MemoryWrittingRecurrentConnections = 2N +NW

LinkageMatrixRecurrentConnections = N +NN

MemoryReadingRecurrentConnections = RN

(5.6)

The memory requirement of the parameters stay the same for each step and each
batch size. But the operations footprint, the data footprint and the recurrent con-
nections footprint depends on the sequence length and batch size. It is a product of
the footprint per step, the sequence length and the batch size. The resulting overall
footprint is a sum of all four parts, the overheads, the footprints, the parameters
and the actual training data. Additionally, the optimizer can have a footprint due
to cache values and the sample input data and the corresponding target data. In
case of a back-propagation setup the memory consumption of the operations and re-
current connections footprint is doubled, one forward and one backward [105]. The

1https://github.com/joergfranke/ADNC (10.04.2018)

5.3. DNC Memory consumption 51

following calculation is for the memory consumption of the whole model during a
back-propagation training setting:

Library Overhead

+ Parameters

+ Optimizer Overhead

+ S B (Input Data + TargetData)

+ 2 S B (Operations Footprint)

+ 2 S B (RecurrentConnections Footprint)

= Total Footprint

(5.7)

To make a statement about the memory impact of the single components in a DNC
model and to identify the main causer a parametrization is necessary. The following
example with the hyper-parameters of the DNC model from the original paper in
the bAbI experiment [1], see Table 5.6. In this example, the RMSprop optimizer is
used which leads to an optimizer footprint in size of the parameter amount.

Part Parameter Symbol Size

Input size X 159
Output size Y 159
Sequence length S 100
Batch size B 1

Controller
LSTM layers L 1
LSTM units H 512

Memory Unit

Controller size C 256
Memory length N 256
Memory width W 64
Read heads R 4

Table 5.6: The parametrization of the DNC in original paper for bAbi task [1].

All values are stored in 32bit floating-point format. This leads to the following
memory consumptions:

Values
per step

Factor
Total
Values

Total
Size

Library Overhead 150 MB
Parameters 1,457,823 5.83 MB
Optimizer 1,457,823 5.83 MB
Operations Footprint 8351 200 1,670,200 6.68 MB
RecurrentConnections Footprint 512 200 102,400 0.41 MB
Input Data 159 100 15,900 0.06 MB
Target Data 159 100 15,900 0.06 MB

LSTM Training 168.87MB

52 5. Analysis of the DNC

Values
per step

Factor
Total
Values

Total
Size

Library Overhead 150 MB
Parameters 890,742 3.56 MB
Optimizer 890,742 3.56 MB
Operations Footprint 227,386 200 45,477,200 181.91 MB
RecurrentConnections Footprint 84,224 200 16,844,800 67.38 MB
Input Data 159 100 15,900 0.06 MB
Target Data 159 100 15,900 0.06 MB

DNC Training 406.54 MB

In this example, compared to an LSTM the DNC has more than the double memory
footprint in training. The main memory consumption is due to the operations and
recurrent connections footprint. This grows with sequence length and batch size
double. The main consumer of memory is the dynamic temporal linkage mechanism
with about 210 MB. This is over half of the total memory need. If, for example,
the sequence length grow up to 1000 steps then memory of 2.6 GB would necessary.
Thereby the linkage matrix consumes 2.1 GB or about 80% of the total memory
amount.

This example shows that the dynamic temporal linkage is the main consumer of
memory. This is due to the huge linkage matrix with size N × N . In large-scale
QA tasks, this can be a massive problem since the sequence length is often longer
than 1000 words per sample. This slows the training not only due to computational
effort but also due to the smaller batch size due to limited GPU memory.

5.4 DNC Computation time

To get an intuition of the computation time of a DNC and a comparing to an
LSTM model the hyper-parameters from the original paper [1] are used, see Table
5.6. All experiments accomplished on a workstation containing an Intel Core i7 and
one single Nvidia GeForce GTX 1080 GPU with use of CUDA 8.0, cuDNN 6.0 and
TensorFlow 1.3. As data set the copy task with a sequence length of 20 is used. The
resulting time measurement in Table 5.7is the mean of 3 runs measured with the
TensorFlow internal program TFprofiler [103].

LSTM DNC
Inference per Step 1 ms 4 ms
Inference per Sequence 24 ms 79 ms
Back-propagation per Sequence 87 ms 267 ms

Table 5.7: Time mean comparison between a DNC and LSTM with the reference
parametrization from the original paper [1].

The duration difference between the two models for inference and back-propagation
is nearly the same. So the DNC takes 3 times longer for training and 3.3 times
more time for inference. If the sequence length gets increased to 1000 steps then the

5.5. Analysis conclusion 53

back-propagation time grows up to 8.2 s per sequence. This results in training times
per epoch on a dataset with 100k samples and a batch size of 16 in 14.2 h.

This shows that the additional mechanisms of the DNC results in longer training
times compare to vanilla LSTMs. This can be a serious constraint for the usability of
the model especially if the batch size is small due to the huge memory requirements.
A model with training times of weeks is harder to develop and a hyper-parameter
tuning is expensive. This can limit the application of the DNC.

5.5 Analysis conclusion

This analysis shows that the better results in the two considered tasks, the copy task
and the bAbI task both reported in [1, 55], have their price. The computation time,
as well as the memory consumption, are significantly larger comparing to a standard
LSTM model. The performance distinctions are examined in more detail in Chapter
7. Furthermore, this analysis contains a couple of important insights. First, Section
5.1 shows that learning to use the memory unit is crucial to the convergence success.
The miscarrying runs in Figure 5.1 and 5.2 seems to affiliate to an unused memory
unit or an excessive use of the controller LSTM via the bypass. It also takes a very
long time, until the model learns to use the memory unit.

A second insight is a large amount of memory consumption and long computing
times. With the same hyper-parameters as in Section 5.3 but a sequence length up
to 1000 steps, which is normal length for large QA tasks, would result in a required
memory amount of 2.61 GB for one sample. In a mini-batch training setting a batch
size of 5 would result in over 131 GB which does not fit in a common GPU VRAM.
Also, a training time of 8.2 s per sample in a large QA dataset scenario with 100.000
samples would take 228 h per epoch or in case of mini-batch training with 4 samples
per batch 57 h.

Another important finding is the exclusive use of the content-based read weighting
mechanism in the bAbI QA task seen in section 5.2. Potentially the content-based
addressing is sufficient for most QA tasks. It would only be important to the question
asks for a sequence or a span of words in the memory. In any other case, the answer
depends more on a content-based query. This is important since the mechanism for
the forward and backward weightings are the most memory expensive part in the
DNC model, seen in Section 5.3. The next Chapter 6 provides several approaches
which address issues of high computing resources as well as an earlier memory usage.

6. Advancements in the DNC

The previous Chapter 5 shows several drawbacks of the DNC model in terms of
training performance or usability for large QA tasks. This chapter tackles some of
this issues and presents advancements to the DNC setup. The first section improves
the training and makes it faster and more robust. The second section introduces
some more sophisticated architectures which are novel in the DNC setting and en-
hance the performance as well. The third section introduces a memory unit without
a linkage matrix mechanism for large-scale content focused tasks with a greatly
reduced memory footprint.

6.1 Robust DNC training

The goal of improving the training is to get a more robust convergence behaviour
and a faster usage of the memory unit. An enhanced training should lower the large
variance in training performance within different initializations and the slow and
unstable convergence behaviour. This makes the training repeatable and reduces
the training time. There are two common methods to enhance training: normal-
ization and regularization. This section applies normalization for a more consistent
convergence and bypass dropout as regularization for a precision force to memory
usage. Both are novel in conjunction with DNCs.

6.1.1 DNC Normalization

The DNC shows in present experiments on the bAbI task a high variance in perfor-
mance between different runs. We approach this issue with normalization techniques
to enforce a robust and a smoother convergence behaviour. In recent years two nor-
malization techniques for neural networks are popular: batch normalization [106]
and layer normalization [107]. Both have the same goals, reducing over-fitting, in-
crease convergence velocity and better generalization.

Batch normalization (BN) normalizes the input of an activation function to zero
mean and unit variance over the mini batch. So the mean and variance are calculated
for each input feature element-wise across the samples in the mini-batch. The BN
is only applied in training and before each activation function. In an RNN setting

56 6. Advancements in the DNC

the recurrent inputs from the previous time step must be treated separately from
the input of the current time step to keep the recurrent functionality [108].

However, the paper where LN is introduced and a recent work show that LN outper-
forms BN [107, 109]. Furthermore, the efficiency of BN depends on the batch size.
Several papers show good results but only with batch sizes larger than 24 samples
[108, 110]. Because of the huge memory consumption of the DNC, see analysis in
Section 5.3, the batch size is often below 24 samples. Therefore and due to the
better results in the literature, this work applies LN to the DNC model.

In the DNC setup, it can be applied to the controller as well as in the memory unit.
Let µ

(l)
t be the mean of a vector xt

µ
(l)
t =

1

H

H∑
h=1

x
(l)
h,t (6.1)

and σ
2(l)
t the variance of it

σ
2(l)
t =

1

H

H∑
h=1

(x
(l)
h,t − µ

(l)
t)2 . (6.2)

The normalization is calculated over the inputs of activation function xt ∈ RB×H in
each iteration and for each layer l. This is done for each sample independent in the
mini-batch. Each layer use trainable variables, called bias b(l) and gain g(l). They
scale the normalization which is applied to the weighted layer signals x before the
activation:

LN(x
(l)
t) = g(l) ◦ x

(l)
t − µ

(l)
t√

σ
2(l)
t + ε

+ b(l) . (6.3)

Let ◦ be an element-wise multiplication. The bias variable normally added to the
weighted input can be omitted. It is applied in training and test times. In an RNN
setting the recurrent and current input signals can be computed jointly.

To stabilize the state dynamics in the DNC LN is applied to the input signals of the
memory unit. This is called ”DNC normalization”. It can be applied to the gates,
the vectors and the keys separately but this does not show performance increase
compared to a joint normalization of all signals. So it is applied after the weighting
of the controller output and before the vector is split into the different signals. This
leads to changes in Equation 2.18 which describe the use of the controller output as
memory unit input.

ξt = LN(htWξ) (6.4)

The drawback is more computation time and more memory need due to the mo-
mentum calculation and the additional gain and bias variables.

6.1. Robust DNC training 57

6.1.2 Bypass Dropout

By observing the convergence behaviour of the DNC a strong correlation between the
model performance and the usage of the memory unit is apparent. Only if the mem-
ory unit mainly impacts the system output, the model achieves good performance,
see analysis in Section 5.1. This insight demands the explicit force of memory unit
usage during the training to reach a faster convergence and a better performance.

To force the memory units influence on the output, the impact of the controller to
the output via the bypass connection can be diminished. This can be reached by
different approaches. One solution cloud be impairing the controller network. For
example by reducing the controller’s network size or a strong regularization, but this
would also affect the control functionality of the memory unit.

A better and novel approach is to diminish the direct influence of the controller
network to the output. Therefore the connectivity between the controller network
and the output gets reduced by adding dropout to the bypass connection called
bypass dropout (BD), see Figure 6.1.

Figure 6.1: The DNC system with bypass dropout between the LSTM Controller
and the system’s output.

Dropout is a regularization technique introduced 2014 by Srivastava et al. to prevent
neural networks from overfitting [111]. In this usage, dropout allows an adjustable
reduction of the bypass connectivity during training and helps to enforce a faster
usage of the memory unit. With dropout the input xt of a layer l becomes multiplied
with an iteratively drawn, Bernoulli distributed, random variable rt:

r
(l)
t ∼ Bernoulli(p)

x̃
(l)
t = x

(l)
t ◦ r

(l)
t

y
(l)
t = σ(x̃

(l)
t W

(l) + b(l))

(6.5)

This causes that a random subset of the parameters of an ANN is frozen in each
iteration. This increases the robustness of the parameter weights and reduces the
possibility of full adaption to the dataset. Dropout is only applied during training
and not during the testing or inference.

58 6. Advancements in the DNC

In this work, dropout allows an exact regularization of the signal flow from the
controller to the output without declining the controller functionality itself. Only
the controller influence to the output signal is constrained. It’s only applied during
training to force an earlier memory usage. BD is easy to apply in the Equation 6.6
of the DNC setup

yt = Wh(ht ◦ rt) +Wµµt . (6.6)

with the element-wise multiplication of a Bernoulli vector rt to the controllers output
ht. It does nearly use no more computation power or memory usage. The strength of
the regularization can be adjusted with the probability destitution p of the multiplied
Bernoulli variable rt ∼ Bernoulli(p).

6.2 Advanced Architecture

Architecture advancements is another way to improve the DNC performance. This
section introduces two novel enhancements, the bidirectional DNC and an atop
neural network layer instead of a single output layer.

6.2.1 Bidirectional DNC

The unidirectional architecture of the DNC makes it hard to handle variable input
where for example the requested answer word can appear in the middle of a text.
It also prevents a rich information extraction in forward and backward direction
in any sequential task. In order to provide a complete availability of the input
sequence to the model, this work introduces a bidirectional DNC setup. There is no
more distinction between context and question necessary. In the bidirectional DNC
(BiDNC) an addition RNN in backward linkage provides a sequential comprehension
in both directions and provides a view into the future like described in section 2.4.

Figure 6.2: The bidirectional controller architecture in the BiDNC setup.

In the unidirectional DNC setup, the output of the memory unit feeds the input
of the controller in the next time step. Because of this recurrent connection, an
encapsulated bidirectional controller is not possible. The backward controller can

6.2. Advanced Architecture 59

not receive an input feed from the previous memory unit output because this would
depend on the future output of the backward controller. Such a model wouldn’t be
unfoldable in time. The solution introduced in this work at first applies a backward
directed recurrent controller network without input from the memory unit. This
backward controller provides an additional input signal to the memory unit and
output layer, see Figure 6.2. Therefore, the BiDNC has two controllers in the setup,
a forward controller

hfwt = ForwardController([xt,h
fw
t−1,µt−1], θcfw) (6.7)

and a backward controller

hbwt = BackwardController([xt,h
bw
t+1], θcbw) (6.8)

with independent weights θ and recurrent connections ht+1. The memory unit re-
ceives as input a concatenation of the two controller outputs

µt = MemoryUnit([hfwt ,hbwt], θmu) . (6.9)

The output of the BiDNC system is a sum of the weighted memory output, the
weighted backward controller output and the weighted forward controller output:

yt = Wµµt +Wfwhh
fw
t +Wbwhh

bw
t

. (6.10)

This architecture firstly allows an independent unfolding of the backward controller
and secondly an unfolding of the forward controller and memory unit.

6.2.2 Atop RNN

The fundamental idea of an atop RNN instead of a vanilla output layer is an increase
of computation complexity to generate the output signal. Some models in related
work have such an output structure and shown a benefit of more complexity in the
output layer [66, 89]. In the DNC setting, it would enable a time-related rendition
of the memory output to solve complex interdependent sequential tasks.

Figure 6.3: A DNC setup with an atop RNN.

60 6. Advancements in the DNC

The architecture change is simple. The add aggregation of the controller output
and memory unit output is replaced by an additional RNN, in this work a LSTM
network, see Figure 6.3. The inputs to this atop RNN are a concatenation of the
controller output and the memory unit output. The outputs of the atop RNN are
the new residuals and replaces the Equation 6.6:

yt = AtopRNN([ht,µt], θtop) . (6.11)

The output RNN extends the unidirectional setup with an additional computation
complexity. This could help to enrich the interpretation of the memory read results.

6.3 Content-Based Memory Unit

For an efficient usage of the model and the scalability to large-scale tasks is less mem-
ory consumption mandatory. A lower memory requirement allows dealing with larger
sequences, bigger batch sizes and faster iterations for a feasible hyper-parameter tun-
ing.

But the memory consumption of the DNC is very high due to many hidden states
in form of vectors, weightings and matrices. They need to be kept in memory for
the backpropagation for every single step. The analysis in Section 5.3 shows the
temporal linkage mechanism is particularly expensive since the linkage matrix has
the size N ×N .

However, the analysis of the DNC functionality in Section 5.2 shows that the DNC
mainly uses the content-based addressing to find the read weightings in the bAbI
task. This makes sense since restoring of sequences is barely necessary for finding
the correct answer in a QA task. Therefore is no need for forward and backward
memory queries and the linage matrix (LM) is no more in use.

Figure 6.4: The schematic of an content-based memory unit.

To allow a more efficient usage in QA a novel, slim and only content-based memory
unit (CBMU) is introduce. The CBMU has the same features as the DNC’s MU
but without the temporal memory linkage mechanism, see Figure 6.4. Consequently,
following components are removed: the precedence weightings, the linkage matrix

6.3. Content-Based Memory Unit 61

including its updating mechanism, the forward and backward weightings and its
computation and the read mode for finding the read weightings. The read weightings
are only based on the content-based addressing. The write mechanism, memory
update and the actual memory reading stay the same. The content-based weightings

cr,it = C(Mt,k
r,i
t , β

r,i
t) (6.12)

are the only read weightings and no more read modes are required to compute the
memory unit’s output:

µt = [c1t . . . c
R
t] . (6.13)

This leads to a drop of the linkage matrix operations, the read operations and the
recurrent connections of these:

Dropped Parts:

LMOperations = 4N + 3NN

ReadOperations = 5R + 5RN

RecurrentConnections = N +NN

(6.14)

The reduction of memory consumption in training depends on the sequence length
S and the batch size B:

2 S B LMOperations

+ 2 S B ReadOperations

+ 2 S B RecurrentConnections

= Memory Savings

(6.15)

The factor of 2 results from the forward propagation and backpropagation of the
signal in the network during training. In the standard bAbI setting with parameters
equal to Section 5.3, the reduction is from 406.5 MB to 191.5 MB which is a reduction
of 52.9%.

Besides the memory consumption reduction, the computation effort drops as well.
This speeds up the training but the most impotent advantage is that such a slim
model allows sizable mini-batches. The drop in memory consumption depends on
the hyper-parameter and the sequence length but in this work, it is between 30%
and 70%. The computation time is reduced by 10% to 50%. Accordingly, the
training time can be reduced from weeks to days. Additionally, the inference time
gets reduced what is important for practical applications.

With the loose of the dynamic temporal linkage mechanisms, the model gets closer
to related models like MemNN or DMN since they also have no linkage mechanism.
But the DNC is still more flexible due to opportunity to manipulate the memory at
each step. It keeps its dynamic addressing mechanisms for writing and reading and
is still a very flexible model but the CBMU allows to train larger QA tasks.

7. Experiments

This chapter experientially evaluates the hypothesis from the methods Chapter 6.
At first, each training improvement and architecture advancements get evaluated
in detail with smaller tasks due to limited computing resources. Afterwards, the
advancements in the DNC are evaluated with the full bAbI 20 task. Because of the
memory consumption reduction and decreased computation time due to the content-
based memory unit a DNC training with a large-scale dataset is possible. Therefore
it gets evaluated on the children book test and the CNN reading comprehension task.
A least the results get analyzed and summarized. All used datasets are introduced
in Chapter 3 and all experiments are implemented in TensorFlow [103].

7.1 Empirical methods evaluation

Two smaller datasets are used to evaluate the methods introduced in Chapter 6.
They are chosen to reach training times from one or two days instead of weeks
concerning the limited computation resources. The first subsection evaluates the
training improvements and architecture advancements described in Sections 6.1 and
6.2. The second subsection examines the content-based memory unit comparing to
a vanilla DNC memory unit.

7.1.1 Training and architecture advancements

To compare the enhancements the evaluation focus is more on training convergence
rather than best/mean result. Therefore the DNC’s validation loss of the different
advancements is compared. For a consistent comparison, each advancement uses
the same basic model and is recorded on five runs. The initialization seeds variates
between the runs but the different seeds are the same in all advancements experi-
ments.

7.1.1.1 bAbI Task 1 evaluation

The first smaller task is the bAbI task 1 whereby the hyper-parameters of the model
are found by a small grid search and are as follows: The controller is an LSTM
with one hidden layer and a size of 64. The memory unit has a length of 128 and

64 7. Experiments

a width of 32 with one write and two read heads. The model’s input and output
is a one-hot word vector with size 32 due to the vocabulary size 32. For training,
mini-batch SDG with a batch size of 32 is used. As optimizer RMSprop is used
with a constant learning rate of 0.0001 and a momentum of 0.9. The loss is the
cross-entropy between a softmax output and a one-hot target vector of the correct
word.

Figure 7.1: Comparison of the cross entropy loss of the validation set between the
different DNC advancements on the bAbI task 1.

Figure 7.1 shows the comparison of the different advancements. Each plot shows
the continuously recorded validation loss of five runs. The green line is the best run
and the red line the worst. The dashed lines are the true loss and the full lines are
the smoothed loss.

7.1. Empirical methods evaluation 65

The first plot shows the vanilla DNC and the second plot the DNC with DNC
normalization (layer norm). The third plot shows a model with bypass dropout (20%
dropout rate) and the fourth plot the bidirectional architecture. At the bidirectional
setup, each controller LSTM has a size of 32 units. Hence the parameter amount
gets reduced from 53725 (uni/64) to 37341 (bi/32-32). The bottom plot is a model
with an atop LSTM layer with 32 hidden units.

The benefits of LN and bypass dropout (BD) are discernible. The LN speeds up the
convergence and makes the training more stable. Four of five runs solve the task
while without LN it is only one. Because of this smoothing of the training progress,
LN is used in all other experiments. The BD improves the convergence behaviour
again. The anticipated faster convergence due to the dropout is clearly recognizable.
All runs solve the task in less than 2000 training iterations.

The bidirectional setup has only about two-thirds of the parameter amount com-
pared to a uni-directional model but increases the convergence behaviour once again.
All runs solve the task in less than 1000 training iterations. It is faster, more con-
sistent and solves all runs. A possible reason for this is the access to the question
due to the backward path. Thereby, the model is able to attend to the important
parts of the context. This complete availability of the input sequence to the model
leads to a robust and fast training with fewer parameters.

Figure 7.2: The convergence behavior of a DNC with LN and BD on the bAbI task
1 with respect to the memory influence.

66 7. Experiments

The atop LSMT layer has a slight benefit since it reduces the loss of the run which is
not solving the task. This could imply an increased model complexity but compare
to the BD or bidirectional setup it is less successful and uses more parameters. In
the following evaluation only LN, BD and the bidirectional setup are considered but
not the atop LSTM due to the little improvement.

Figure 7.2 shows the best DNC with LN and BD on bAbI task 1 in the same plot-
style as above. This plot shows the comparison between training loss, validation loss,
word error rate and memory influence. Indifference to Figure 5.2, from the DNC
analysis in Section 5.1 which shows the vanilla DNC, a faster memory influence is
noticeable. It shows a strong correlation between train loss, validation loss, the word
error rate and the memory influence. With every increase of the memory influence,
the loss decreases. This underlines the impact of memory usage on the performance
of a model in such a QA setting and shows that the advancements perform properly.

7.1.1.2 Copy Task evaluation

Figure 7.3: Comparison of the cross entropy loss of the validation set between the
different DNC advancements on the copy task.

7.1. Empirical methods evaluation 67

The second task to evaluate the enhancements is the copy task. It is used to eval-
uate the impact of LN, BD and atop RNN layer. In this setting, a bidirectional
architecture does not make sense since the task is to store and repeat a sequence.
The hyper-parameters and optimizer stay the same as in the bAbI task 1 but with
a batch size of 16. The input and output to the model is a one-hot vector with size
100. The loss function is a cross entropy computed with a softmax output layer and
a target one-hot vector.

The first plot in Figure 7.3 shows the convergence of the five runs with a vanilla
DNC. Again the same plot-style is used as above. The second with LN, the third
with LN and BD and the last with an atop RNN layer (LSTM, 32 units).

As in the bAbI task 1 experiment, a clear improvement in convergence is visible.
The LN leads to a significantly more stable and faster convergence during training.
The additional BD leads to a more smoother descend in the loss. Again the atop
RNN layer shows benefits but compared to the other advancements it is too much
effort for a worse result.

7.1.2 Content-Based Memory Unit

The evaluation of the content-based memory unit (CBMU) uses the bAbI task 1
as well. Again, the focus is on convergence rather than performance. The hyper-
parameters are the same as in the previous section and the output is a softmax with
the cross-entropy loss. The parameter amount of the model in the unidirectional
setting is only decreased from 53725 with the vanilla memory unit (MU) to 53323
with the CBMU but the memory footprint of the bAbI task 1 training drops from
662 MB to 293 MB (mean sequence length 93, batch size 16).

Figure 7.4 compares the DNC with vanilla MU and the CBMU with different ad-
vancements. The first plot shows the DNC with the vanilla MU and LN. The second
plot shows the DNC with CBMU and LN. The third and fourth plot shows it addi-
tional with bypass dropout and a bidirectional controller.

Between the DNC with vanilla MU and CBMU no clear degeneration is recognizable
through the reduction of the linkage matrix mechanism. This could imply that the
temporal linkage mechanism has no important impact on the performance in a QA
task. The other plots show similar improvements through the advancements as in
the previous Figure 7.1 with the vanilla DNC. This indicated that the DNC performs
with the CBMU similar compared to the vanilla MU.

Furthermore, the inference and training time decrease significantly. Table 7.1 shows
the computation time comparison between the DNC with vanilla MU and CBMU
with the same reference parametrization and task as in Section 5.4.

Model DNC CB-DNC
Inference per Step 3.5 ms 2.7 ms
Inference per Sequence 79.1 ms 69.2 ms
Back-propagation per Sequence 267.1 ms 238.1 ms

Table 7.1: Time comparison between a DNC with MU and CBMU with the reference
parametrization.

68 7. Experiments

Figure 7.4: Comparison of the cross entropy loss of the validation set between the
DNC with CBMU and different advancements on the bAbI task 1.

This experiment shows that the usage of the CBMU leads to a significant reduction
in memory consumption. It also decreases the computation time but has no evident
performance loss. The DNC with LN and an advancement have nearly the same
performance improvements due to the advancements independent from the used
memory unit. This could indicate that the temporal linkage mechanism has no
significant benefit in a QA setting.

7.2 bAbI 20 Task

The DNC is evaluated in the original paper on the bAbI 20 task [1]. To measure
the impact of the advancements in this work three advanced models are evaluated
on the full bAbI 20 task. The task is described in detail in Section 3.2.

The models are the DNC with layer normalization, bypass dropout and the CBMU
(ADNC), the bidirectional ADNC (BiADNC) and a BiDNC with data augmentation
(BiADNC +aug16). All tasks are trained jointly on all 20 bAbI tasks and there is
no information provided about the actual task. In the following, the augmentation
of task 16 is described and afterwards the training details and the results.

7.2.1 Task 16 augmentation

Many related models struggle with task 16 in the bAbI set and only achieve word
error rates about 50% [1, 61, 66]. The task is to find a colour regarding a name and

7.2. bAbI 20 Task 69

other name-animal-colour constellations. In the dataset are four different colours,
four animals and five names but not equally distributed in each sample. In many
samples one or more colours or animals are multiple times present, see Sample 7.1:

Task 16: Basic Induction - Sample 7.1

Greg is a lion. Julius is a swan. Julius is yellow. Greg

is yellow. Brian is a swan. Bernhard is a frog. Brian is

white. Lily is a frog. Bernhard is yellow. What color is

Lily? yellow

In the training set are 10k samples but in merely 4181 cases appears the correct
word only once in the context. In all other cases, the correct word appears two,
three or even four times in the context. When the correct word appears two times,
the other two possible colours are equal in the 1370 samples and different in 1427. If
the model learns only to count the colour words and answer the colour who appears
multiple time, it would be in 3449 cases correct and in 1370 with a 50/50 probability.
In 4181 cases it is able to guess and has a 1/4 probability to be correct. This leads
to an overall probability for a correct answer by guessing and counting words of
about 52%. This is a strong local optimum and makes it hard for the model to find
a better solution strategy.

We provide an augmentation of task 16 that each sample contains different colours
and different animals. Only the training data is modified and after convergence, it
gets refined. In the refinement, each second batch is from the task 16 without any
augmentation to learn to original distribution of data.

7.2.2 Training details

For a direct comparison, the hyper-parameters are orientated on the original paper.
The unidirectional controllers have a one LSTM layer and 256 hidden units, in the
bidirectional setup, the forward and backward LSTMs have 172 hidden units each.
Thus both models have nearly the same amount of parameters, about 891k weights.
The memory unit of all three models has 192 slots, a width of 64 and 4 read heads.

Each word of the bAbI task is encoded as a one-hot vector with the size of the
vocabulary (159). An additional sequence mask is used to only generate training
signals when an answer is requested, so the outputs of all other time steps are
ignored. The output is a vector of the vocabulary size and normalized with a softmax
function. For training, the cross-entropy loss between the prediction vector and the
target one-hot vector is minimized. The loss metric for the bAbI task is the word
error rate (WER), the fraction of incorrectly answered words to all requested words.

Each training uses mini-batches with a batch size of 32. The different long sequences
get padded. The maximum sequence length during training is limited to 800 words.
The optimizer was found by a grid search, the underlined options are used: opti-
mization algorithm [SGD, Adam, RMSprop] with a learning rate of [1e-05, 3e-05,
1e-04], momentum of 0.9 and bypass dropout rate [10%, 20%, 30%], [30, 112].

Each model runs five experiments with different initializations. Each model runs
50 epochs and the epoch with the best WER on the validation set is used for the
evaluation. No early stopping, no learning rate decay and no gradient noise are used.

70 7. Experiments

DNC ADNC BiADNC

Parameters 894,244 891,136 891,232
Avg. Time per Epoch 2.6h 1.3h 1.6h
Avg. Memory Consumption 15.5GB 4.3GB 4.3GB

Table 7.2: The resources of the different models evaluated on the bAbI 20 task with
a batch size of 32.

The models are trained on a Nvidia K80 GPU. The parameter amount, average
training time per epoch and average memory consumption can be found in Table
7.2. This shows that the memory consumption savings of the CBMU are over 70%
in comparison with a vanilla MU. It also saves half of the computing time. The
bidirectional setup needs about 25% more computing time per epoch than the uni-
directional model. A model converges after 30-40 epochs and a training time of 1-3
days.

7.2.3 Results

Table 7.3 shows the mean word error rate and variance on the test set from all
models of this work in comparison to the original paper (DNC) [1], the EntNet and
the SDNC, the best model with reported mean results as far as I know [102]. The
bottom row shows how many tasks failed, which means they have a WER above 5%.

Task DNC EntNet SDNC ADNC BiADNC
BiADNC
+aug 16

1: 1 supporting fact 9.0 ± 12.6 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.0
2: 2 supporting facts 39.2 ± 20.5 15.3 ± 15.7 7.1 ± 14.6 0.8 ± 0.5 0.8 ± 0.2 0.5 ± 0.2
3: 3 supporting facts 39.6 ± 16.4 29.3 ± 26.3 9.4 ± 16.7 6.5 ± 4.6 2.4 ± 0.6 1.6 ± 0.8
4: 2 argument relations 0.4 ± 0.7 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
5: 3 argument relations 1.5 ± 1.0 0.4 ± 0.3 0.9 ± 0.3 1.0 ± 0.4 0.7 ± 0.1 0.8 ± 0.4
6: yes/no questions 6.9 ± 7.5 0.6 ± 0.8 0.1 ± 0.2 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0
7: counting 9.8 ± 7.0 1.8 ± 1.1 1.6 ± 0.9 1.0 ± 0.7 1.0 ± 0.5 1.0 ± 0.7
8: lists/sets 5.5 ± 5.9 1.5 ± 1.2 0.5 ± 0.4 0.2 ± 0.2 0.5 ± 0.3 0.6 ± 0.3
9: simple negation 7.7 ± 8.3 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0
10: indefinite knowledge 9.6 ± 11.4 0.1 ± 0.2 0.3 ± 0.2 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.1
11: basic coreference 3.3 ± 5.7 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
12: conjunction 5 ± 6.3 0.0 ± 0.0 0.2 ± 0.3 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0
13: compound coreference 3.1 ± 3.6 0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
14: time reasoning 11 ± 7.5 7.3 ± 4.5 5.6 ± 2.9 0.2 ± 0.1 0.8 ± 0.7 0.3 ± 0.1
15: basic deduction 27.2 ± 20.1 3.6 ± 8.1 3.6 ± 10.3 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
16: basic induction 53.6 ± 1.9 53.3 ± 1.2 53.0 ± 1.3 52.1 ± 0.9 52.6 ± 1.6 0.0 ± 0.0
17: positional reasoning 32.4 ± 8 8.8 ± 3.8 12.4 ± 5.9 18.5 ± 8.8 4.8 ± 4.8 1.5 ± 1.8
18: size reasoning 4.2 ± 1.8 1.3 ± 0.9 1.6 ± 1.1 1.1 ± 0.5 0.4 ± 0.4 0.9 ± 0.5
19: path finding 64.6 ± 37.4 70.4 ± 6.1 30.8 ± 24.2 43.3 ± 36.7 0.0 ± 0.0 0.1 ± 0.1
20: agent’s motivation 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

Mean Error: 16.7 ± 7.6 9.7 ± 2.6 6.4 ± 2.5 6.3 ± 2.7 3.2 ± 0.5 0.4 ± 0.3
Failed Tasks (>5%): 11.2 ± 5.4 5.0 ± 1.2 4.1 ± 1.6 3.2 ± 0.8 1.4 ± 0.5 0.0 ± 0.0

Table 7.3: The mean word error rate of the 20 bAbI tasks of the different models.
All models are trained jointly on all 20 bAbI tasks at once without information
about the actual task. Best results in bold.

The ADNC outperforms the DNC from the original paper as well as all other joint
trained models. This shows the impact of the normalization and the bypass dropout

7.2. bAbI 20 Task 71

which improves the model performance even without the temporal memory linkage
mechanism. This could imply that this mechanism is not really important for QA
tasks. It also leads to a significant drop in variance which could mean that our
models are more robust.

The additional model complexity through the bidirectional design shows clear im-
provements without more parameters. It outperforms the DNC in terms of mean
error as well as variance. The lower variance indicated a very robust model for dif-
ferent random initializations. But through the bidirectional controller, the model
has access to information about the question during reading the context similar to
the RMN or DMN+. Particularly the performance on task 3, 17 and 19 reaches a
new quality in the mean results without any failed tasks.

The BiADNC with augmentation of task 16 leads to the best-reported overall results
as far as I know. Trough the modifications the task is learned correctly and is
completely solvable. Even when ignoring the task 16 in the results, the performance
of this model is better. This could indicate that the correct task has a positive effect
on the learning of the other tasks. The BiADNC has also a quiet lower variance due
to a more stable and consistent convergence behaviour as reported in Section 7.1.2.

Task DNC EntNet
EntNet
†

DMN+
† SDNC RMN ADNC BiADNC

BiADNC
+aug 16

1: 1 supporting fact 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1
2: 2 supporting facts 0.4 2.8 0.1 0.3 0.6 0.5 0.8 0.5 0.6
3: 3 supporting facts 1.8 10.6 4.1 1.1 0.7 14.7 2.5 2.5 1.6
4: 2 argument relations 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5: 3 argument relations 0.8 0.4 0.3 0.5 0.3 0.4 1.6 0.7 0.4
6: yes/no questions 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
7: counting 0.6 0.8 0.0 2.4 0.2 0.5 1.5 0.3 0.6
8: lists/sets 0.3 0.1 0.5 0.0 0.2 0.3 0.1 0.4 0.6
9: simple negation 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
10: indefinite knowledge 0.2 0.0 0.6 0.0 0.2 0.0 0.0 0.0 0.0
11: basic coreference 0.0 0.0 0.3 0.0 0.0 0.5 0.0 0.0 0.0
12: conjunction 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
13: compound coreference 0.0 0.0 1.3 0.0 0.1 0.0 0.0 0.0 0.0
14: time reasoning 0.4 3.6 0.0 0.2 0.1 0.0 0.1 0.1 0.5
15: basic deduction 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0
16: basic induction 55.1 52.1 0.2 45.3 54.1 0.9 52.0 49.9 0.0
17: positional reasoning 12.0 11.7 0.5 4.2 0.3 0.3 11.1 0.8 0.2
18: size reasoning 0.8 2.1 0.3 2.1 0.1 2.3 1.6 1.0 0.9
19: path finding 3.9 63.0 2.3 0.0 1.2 2.9 0.8 0.0 0.3
20: agent’s motivation 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0

Mean Error: 3.8 7.4 0.5 2.8 2.9 1.2 3.6 2.8 0.3
Failed Tasks (>5%): 2 4 0 1 1 1 2 1 0

Table 7.4: The word error rate of the best runs on the bAbI 20 task. Best results
per row in bold. Models tagged with † are trained on each task individually, the
others are trained on all tasks jointly.

Table 7.4 shows the WER of the best runs with additional comparison to the RMN,
the best-reported model in the literature as far as I know. The table also contains
an individual comparison to the EntNet and DMN+ which are trained on each task
individually and therefore reach the best overall reported result. The bottom row
shows how many tasks failed, which means they have a word error rate above 5%.
The results of the best models per task are bold in the tables. Here the ADNC
outperform the DNC as well. Particularly the performance on task 3, 17 and 19

72 7. Experiments

reaches a new quality. The BiADNC does not outperform the RMN due to the
task 16 issue. But with the augmentation of task 16, the BiADNC reaches a new
state-of-the-art result and outperforms even the individually trained models.

7.3 Children Book Test

To assess the DNC performance on a large-scale QA task it is evaluated on the
Children Book Task (CBT). The task is described in detail in Section 3.3 and the
training details and results are in the following sections. One model is evaluated,
a bidirectional DNC with DNC normalization, bypass dropout and a CBMU (Bi-
ADNC).

7.3.1 Training details

All hyper-parameters are chosen based on the experience with the bAbI 20 task and
not by grid search or similar due to limited computational resources.

The input sequence contains the context and the query which is the 21st sentence.
It is fed word for word into the model and each word is represented as an one-hot
vector. The missing word is represented as a question token. The CBMU model
has a preceding word vector with an embedding size of 100. The word vector is
initialized with a 6B GloVe word representation. The GloVe vector itself is pre-
trained on a vocabulary of 400,000 words from Wikipedia 2014 and the Gigaword 5
Corpus [113]. Pre-trained GloVe word vectors are freely available1. There are 16,627
out-of-the-vocabulary words which are initialized with a uniform distributed vector
within the interval [−1, 1). During training, the word representation is a trainable
parameter and gets optimized.

The model itself has two LSTM controllers, each with one hidden layer, a size of
172 and layer normalization. The BiADNC has a memory matrix with a length of
192, a width of 128 and four read heads are used. Additionally, bypass dropout is
applied with a dropout rate of 10%, similar to the bAbI experiments.

The model’s output is a one-hot word vector with a size of 10696. This represents all
possible answer words. The knowledge of the ten candidate words is used to mask all
impossible words in the output vector. The masked output vector is activated with
a softmax activation function. Therefore, only the relevant words get updated and
all others are ignored. A second mask ignores all outputs which are not requested
answers. This results in a sparse but computing efficient gradient update. During
training, the cross-entropy loss between the predicted answer vector and the target
one-hot vector is minimized. The model is trained with mini-batch SGD with a
batch size of 48. The model is optimized with RMSprop, a fixed learning rate of 3e-
05 and a momentum of 0.9. During training, sequences longer than 800 are skipped
but not during validation and testing. The experiments use early stopping regarding
the cross-entropy validation loss.

The model is trained on a Nvidia Tesla P100. It has a training time of about 6h
per epoch and requires 15.5GB of memory on the GPU. It converges after 15 epochs
and an overall training time of 4 days. A model with the same hyper-parameters
but a classic DNC memory unit would require over 60% more memory.

1https://nlp.stanford.edu/projects/glove/ (28.02.2018)

7.4. CNN Reading Comprehension Task 73

7.3.2 Results

The results of the CBT experiment are reported in Table 7.5. It shows the accuracy
of the BiADNC in comparison to humans, an LSTM and the MemNN reported
in [57] and the best model to my knowledge in literature so far, the GA reader
[86]. The ADNC outperforms the LSTM but not the MemNN nor the GA Reader.
The reported LSTM has 512 hidden units. Thus, the memory augmentation causes
a performance gain. The difference to the MemNN could either be a conceptual
drawback or caused by the lack of hyper-parameter tuning.

Children Book Test - Accuracy on Test Set

CBT Test Set Humans LSTM MemNN GA Reader BiADNC

Common Nouns 81.6 56.0 63.0 70.7 57.3
Named Entities 81.6 41.8 66.6 74.9 59.0

Table 7.5: The resulting accuracy on the children book test with the model of this
work in comparison with models in literature.

The results demonstrate that the model is able to outperform the LSTM without
any task-specific adoptions and is trainable in a feasible time due to the CBMU .

7.4 CNN Reading Comprehension Task

A second assessment of the DNC’s performance on large-scale QA task is based
on the CNN reading comprehension test. The task is described in detail in Sec-
tion 3.4 and the training details and results are presented in the following sections.
Two models are evaluated, an advanced DNC (ADNC) and a bidirectional ADNC
(BiADNC).

7.4.1 Training details

The query and the article are concatenated (the query first) as an input sequence.
The model is fed the sequence word by word and each word is represented as a word
vector with size 100 and GloVe initialization [113]. The word vector is optimized
during training. The target is the correct word represented as the index of a one-hot
vector with the size of all name entity tokens. A candidate mask is created which
masks out all name entity tokens that are not present in the sample. The last model
output predicts the word and is normalized with a softmax function. The cross-
entropy loss between the prediction output vector and the target one-hot vector is
minimized.

We use mini-batches with a batch size of 32; the different long sequences get padded
from begin of the sequence. Two models are evaluated on this task, the ADNC and
a BiADNC. All hyper-parameters are chosen based on related work. The controller
is a LSTM with one hidden layer and a hidden unit size of 512 in the unidirectional
model. In the bidirectional model, both controllers have a size of 384 each. Both
models use DNC normalization and have a memory matrix with 256 slots, a width
of 128 and four read heads. Additionally, bypass dropout is applied with a dropout

74 7. Experiments

rate of 10%. The maximum sequence length during training is limited to 1400 words.
The model is optimized with RMSprop with use of a fixed learning rate of 3e-05 and
a momentum of 0.9. The loss metric for the CNN is the accuracy; the fraction of all
samples with correct words compared to the number of samples in total.

The model is trained on a Nvidia Tesla P100. It has a training time of about 18h
per epoch and requires 12.4GB of memory on the GPU.It converges after 12 epochs
and an overall training time of 9 days.

7.4.2 Results

The results on the CNN RC task are shown in Table 7.6. The table contains the
accurary of the ADNC and BiADNC models in comparison to the Deep LSTM
Reader [58], the Attentive Reader [58], the MemNN [57], the AS reader [82], the
Stanford AR [81], the Iterative Attention Reader [84], the EpiReader [87], the AoA
Reader [83], the ReasoNet [85] and the best model in literature, the GA Reader [86].

Both models are used without any adaption to the task, hyper-parameter tuning nor
any other optimization competitive results. The bidirectional model outperforms
the unidirectional ADNC, but only on the test set. In contrast to the CBT task,
the ADNC outperforms the LSTM and the MemNN. Again, the difference between
better models could be due to a weak model structure or the lack of hyper-parameter
tuning.

CNN RC Dataset - Accuracy

Model valid test

Deep LSTM Reader 55.0 57.0
Attentive Reader 61.6 63.0
MemNets 63.4 66.8
ADNC 67.5 69.0
AS Reader 68.6 69.5
BiADNC 67.1 69.8
Stanford AR 72.2 72.4
Iterative Attention Reader 72.6 73.3
EpiReader 73.4 74.0
AoA Reader 73.1 74.4
ReasoNet 72.9 74.7
GA Reader 77.9 77.9

Table 7.6: The validation and test accuracy (%) of the ADNC/BiADNC and other
models from literature on CNN RC task.

This experiment supports the results of the CBT experiment. The ADNC is able
to provide competitive results on a large-scale QA task without any task-specific
adoptions, optimization or hyper-parameter tuning. This makes the ADNC an in-
teresting candidate for a wide range of further applications. Its easy adaptability to
other tasks and the memorization mechanisms seem flexible enough for a variety of
use cases.

7.5. Results overview 75

7.5 Results overview

The previous experiments show that the advancements to the DNC introduced in
Chapter 6 improve its performance. Table 7.7 provides an overview of the three
evaluated datasets and the performance of models reported in literature compared
to the model in this work, the BiADNC.

Results Summary

Task bAbI 20 Task* CBT CN CNN RC Dataset

Human 0.00 81.63 -
LSTM 27.31 56.03 57.05

DNC 16.71 - -
Best in Literature 6.42 70.74 77.94

This work / BiADNC 0.4 57.3 69.8

Metric WER ↓ Accuracy ↑ Accuracy ↑

Table 7.7: Summary of the results on different datasets. *The models are jointly
trained on all bAbI 20 tasks and the used metric is the mean word error rate (WER).
Results marked with 0 are taken from [56], 1 are taken from [1], 2 are taken from
[102], 3 are taken from [57], 4 are taken from [86], and 5 are taken from [58].

In the bAbI 20 task, the BiADNC clearly outperforms all reported works so far and
provides new state-of-the-art results. This is mainly driven by the DNC normaliza-
tion and the bidirectional architecture. The augmentation of task 16 overcomes the
local minima of this task and allows the model to solve all tasks successfully.

The results of the two experiments on the large-scale datasets (CBT and CNN
RC task) are quite different. On the one side, the performance on the CNN RC
task is competitive without any hyper-parameter tuning. On the other side, there
is only a slight improvement on the CBT dataset compared to the LSTM. This
could have multiple reasons. It may be that the model is weak but this stands in
a strong contrast to the CNN RC results. More likely is a poor experiment setup.
While many related works use sentence representation, word windows or similar
techniques to deal with the huge vocabulary or the long context length, the ADNC
uses only a word vector representation and a word-wise input feed. Furthermore,
this experiment lacks on hyper-parameter tuning too. All parameters in the large-
scale QA tasks are inspired by related works and chosen buy best guess due to the
lack of computational resources.

In further work, a more sophisticated CBT experiment could be designed or different
word representations techniques could be evaluated. The next chapter concludes this
work and provides additional ideas for further works.

8. Conclusion

In the conclusion, the achievements of this work are summarized and the gained
insights are discussed. The last section points out possible further works.

8.1 Summary

The aim of this work is to analyze and advance the DNC, a memory-augmented
neural network, to apply it to large-scale QA tasks. After an overview of the basics,
the used data and the related work, this work analyzes the DNC in Chapter 5,
advance it in Chapter 6 and evaluates the advancements in Chapter 7.

The analysis of the training in Section 5.1 shows that the model performance strongly
depends on the weights initialization. Additionally, the training success depends
on how fast the model learns to use the internal memory matrix. The functional
analysis in Section 5.2 shows that in a synthetic bAbI QA task the temporal linkage
mechanism has only a minimal influence on the predicted answer. However, the
analysis of the computing resources in Section 5.3 shows that the temporal linkage
mechanism is the main driver of the memory consumption. This could be the key
issue why vanilla DNCs are not applied to large-scale QA tasks. These tasks contain
much longer sequences and have a huge vocabulary compared to synthetic datasets.
The DNC would need a larger memory matrix. This and the longer sequences
massively increase the memory consumption and the training on a common GPU
would take weeks or even months.

The methods in Chapter 6 describe several advancements to speed up training,
increase robustness of the model and, therefore, gain performance. For a more stable
training, DNC normalization is introduced based on layer normalization. For an
earlier memory usage, bypass dropout is introduced. It is a regularization mechanism
to decrease the controller influence on the output signal to force faster memory usage.
Both advancements are empirically evaluated in Section 7.1, which shows that they
improve the convergence behaviour, lead to a consistent training process and force
an earlier memory usage.

To increase the DNC performance in general two novel model setups are introduced,
a bidirectional controller and an additional RNN at the model’s output. While

78 8. Conclusion

the additional output RNN does not provide a significant benefit, the bidirectional
controller does. It leads to the best performance during evaluation.

Additionally, Section 6.3 introduces a novel memory unit. It tackles the issue of
high memory consumption and long training times in large-scale QA tasks. The new
memory unit removes the temporal linkage mechanism based on the circumstance
that the mechanism is not in use in a QA application. The exclusive usage of the
content-based memory addressing provides still a good performance although it only
requires a fraction of memory and needs less computing time as shown in Section
7.1.

In the benchmarking in Chapter 7, on the synthetic bAbI QA task, a model with the
bidirectional controller, DNC normalization, bypass dropout and the novel content-
based memory unit, named bidirectional advanced DNC (BiADNC), outperforms
the best-reported model in the literature to the best of my knowledge. With an
additional task-specific training augmentation the bAbI 20 task is solved completely.
Therefore, this work is the first to solve all tasks in a joint training.

The portability to large-scales QA tasks is evaluated on two datasets, the ”Children
Book Test” (CBT) and the CNN reading comprehension (RC) task. Without hyper-
parameter tuning and further task-specific adoptions, the model outperforms an
LSTM-baseline. In case of the CNN RC task, the ADNC reaches competitive results
compared to recent specialized works. These experiments show that the ADNC is
able to solve large-scale QA tasks without task-specific adaption.

8.2 Discussion

In contrast to an RNN or LSTM, the memory-augmentation of a DNC allows the
explicit storage of complex data structures over a long time-scale. Furthermore, it
allows to manipulate the stored information and to read from it. This is achieved
by a division of computation and storage with the use of a controller and a memory
matrix. This has several benefits.

The separation allows to store information directly and not in an implicit way like
in an ANN or RNN. This prohibits catastrophic forgetting and allows the explicit
storage of word embeddings in the memory in case of NLP applications. If the model
stores information from multiple sentences in memory, it can reason about a whole
paragraph easily since it is represented in its memory. Hence it allows a better
handling of long-term dependencies. Furthermore, the separation allows a more
detailed design of the model’s hyper-parameters. The controller and the memory
unit can be independently improved and adapted.

The DNC setup moves away from the idea of an artificial neural network as a
counterpart of a natural neural network. It is less biologically plausible and explores
new avenues with more engineering. The original DNC paper has a rough biological
motivation but this work comes from a more technical perspective.

The advancements in this work increase the usability of the DNC. The new ADNC is
training more stable, more robust to apply to complex tasks and less computationally
costly. Therefore, it is easier to apply and can benefit a wider range of applications.
This allows to apply memory-augmentation without major effort.

8.3. Further work 79

With the use of the more lightweight content-based memory unit, the ADNC can be
adjusted to large-scale QA tasks in order to reach convenient training times. This
makes the model applicable to a wider variety of large applications by reducing the
amount of required computing resources. Another solution could be a sparse DNC
implementation as described in [102], which also saves memory resources and speeds
up the training progress.

The good performance of the bidirectional model on the bAbI task presumably arises
from the fact that the model has information about the question right from the
beginning of the sample sequence. This allows a better attention to content which
should be stored. Additionally, the question can be in any position and refer to the
past and future content due to the bidirectional setup. A unidirectional model is
more general in real-time applications since it can be applied in a continuous manner
without the information of the whole input sequence. This is important in a dialogue
setup or when such a model should be used on the fly. But even in a uniform setup
the ADNC outperforms related models and is a promising architecture for further
work.

In contrast to recent related models described in Chapter 4, the ADNC does not
require task-specific adaption, satisfies the requirement to a general model and pro-
cesses a text word-by-word. This is shown with the successful application of the
ADNC to large-scale QA tasks.

In the ADNC setup, the memory unit can be interpreted as an interdependent
layer similar to an additional network layer. This makes it easy to add it to an
existing model and needs no complete alignment of the model to get a memory
extension. This ability of easy adaption makes the ADNC interesting for further
NLP applications like machine translation.

8.3 Further work

There are several possibilities to improve the performance of the introduced mod-
els. First of all, each task needs its own hyper-parameter tuning. Either with a
grid search or with use of a more sophisticated method. Promising approaches are
Bayesian optimization [114] or the learning to learn method [115].

The amount of computing resources could be reduced via a lightweight controller
with use of gated recurrent units (GRU) or with use of a sparse memory unit as
introduced in [102].

A way to improve the training might be curriculum learning [116]. This may acceler-
ate learning and force faster memory usage. Another feature of the ADNC’s memory
unit is that the trainable parameters do not depend on memory size. This allows
the memory to grow with the task during training or usage. Possible application
scenarios are lifelong learning or continuous learning [117].

Due to the modular usage of the memory unit an architecture with multiple memories
or a hierarchical structure could be possible. This would allow the storage of large
data in an organized manner. But not only large memories have advantages. A
small memory matrix could cheaply increase the memorization performance in many
models for example in machine translation in order to store context information.
Furthermore, a pre-trained memory unit could be used to adapted to new tasks.

80 8. Conclusion

In general, the ADNC could be applied to more NLP tasks, for example with the use
of the ParlAI platform for evaluating systems on multiple datasets [118]. Of special
interest is the field of dialogue modelling where memory is important to remember
earlier statements or provide knowledge-bases on pre-learned memory units. This
requires an extension of the fixed sequence learning model from the QA tasks to a
sequence to sequence model. Another interesting application field is meta-learning
where a content-based memory unit could also reduce training effort and make DNCs
more usable.

All of these ideas show that the ADNC could play an important role in the future.
This work makes the DNC more practical, more robust and therefore easier to apply.
This allows completely novel applications in which a large amount of information
needs to be stored over a long time period or an explicit data representation is
essential.

Bibliography

[1] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al.,
“Hybrid computing using a neural network with dynamic external memory,”
Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[2] A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236,
pp. 433–460, 1950.

[3] R. F. Simmons, “Natural language question-answering systems: 1969,” Com-
munications of the ACM, vol. 13, no. 1, pp. 15–30, 1970.

[4] A. Mishra and S. K. Jain, “A survey on question answering systems with
classification,” Journal of King Saud University-Computer and Information
Sciences, vol. 28, no. 3, pp. 345–361, 2016.

[5] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic memory
networks for natural language processing,” in International Conference on Ma-
chine Learning, pp. 1378–1387, 2016.

[6] J. Weizenbaum, “Eliza—a computer program for the study of natural language
communication between man and machine,” Communications of the ACM,
vol. 9, no. 1, pp. 36–45, 1966.

[7] T. Winograd, “Procedures as a representation for data in a computer program
for understanding natural language,” tech. rep., Massachusetts Inst. of Tech.
Cambridge Project MAC, 1971.

[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley
& Sons, 2012.

[9] D. P. Mandic, J. A. Chambers, et al., Recurrent neural networks for prediction:
learning algorithms, architectures and stability. Wiley Online Library, 2001.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[11] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
networks, vol. 61, pp. 85–117, 2015.

[12] H. T. Siegelmann and E. D. Sontag, “On the computational power of neural
nets,” Journal of computer and system sciences, vol. 50, no. 1, pp. 132–150,
1995.

http://www.deeplearningbook.org

84 Bibliography

[13] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural
networks for sequence learning,” arXiv preprint arXiv:1506.00019, 2015.

[14] P. J. Werbos, “Generalization of backpropagation with application to a recur-
rent gas market model,” Neural networks, vol. 1, no. 4, pp. 339–356, 1988.

[15] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in
cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[16] B. Lüders, M. Schläger, A. Korach, and S. Risi, “Continual and one-shot learn-
ing through neural networks with dynamic external memory,” in European
Conference on the Applications of Evolutionary Computation, pp. 886–901,
Springer, 2017.

[17] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-
learning with memory-augmented neural networks,” in International confer-
ence on machine learning, pp. 1842–1850, 2016.

[18] W. Zaremba and I. Sutskever, “Reinforcement learning neural turing ma-
chines,” arXiv preprint arXiv:1505.00521, vol. 419, 2015.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, pp. 1097–1105, 2012.

[20] D. Kriesel, A Brief Introduction to Neural Networks. 2007.

[21] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[22] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of
brain mechanisms,” tech. rep., Cornell Aeronautical Lab INC Buffalo NY,
1961.

[23] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” tech. rep., Stanford
Univ CA Stanford Electroninics Labs, 1960.

[24] P. Werbos and P. J. (Paul John, “Beyond regression : new tools for prediction
and analysis in the behavioral sciences /,” 01 1974.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal rep-
resentations by error propagation,” tech. rep., California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[26] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme
recognition using time-delay neural networks,” IEEE transactions on acoustics,
speech, and signal processing, vol. 37, no. 3, pp. 328–339, 1989.

[27] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

Bibliography 85

[28] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Transactions on neural networks, vol. 1,
no. 1, pp. 4–27, 1990.

[29] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,” Nature,
vol. 521, pp. 436–444, 2015.

[30] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude,” COURSERA: Neural networks for
machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[31] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,
vol. abs/1609.04747, 2016.

[32] J. Heaton, “Ian goodfellow, yoshua bengio, and aaron courville: Deep learn-
ing,” Genetic Programming and Evolvable Machines, Oct 2017.

[33] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recur-
rent neural networks,” in Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 1764–1772, 2014.

[34] J. Franke, M. Mueller, F. Hamlaoui, S. Stueker, and A. Waibel, “Phoneme
boundary detection using deep bidirectional lstms,” in Speech Communication;
12. ITG Symposium, pp. 1–5, Oct 2016.

[35] S. Liu, N. Yang, M. Li, and M. Zhou, “A recursive recurrent neural network for
statistical machine translation,” in Proceedings of ACL, pp. 1491–1500, 2014.

[36] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating
image descriptions,” ArXiv Prepr. ArXiv14122306, 2014.

[37] W.-C. Cheng, J.-C. Huang, and C.-Y. Liou, “Segmentation of DNA using
simple recurrent neural network,” Knowledge-Based Systems, vol. 26, pp. 271–
280, Feb. 2012.

[38] C. Olah, “Understanding LSTM Networks.” http://colah.github.io/
posts/2015-08-Understanding-LSTMs/, Dec. 2015. Available at:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[39] M. I. Jordan, “Attractor dynamics and parallellism in a connectionist sequen-
tial machine,” 1986.

[40] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179–
211, Apr. 1990.

[41] P. J. Werbos, “Backpropagation through time: what it does and how to do it,”
Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[42] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” Diploma,
Technische Universität München, vol. 91, 1991.

[43] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5,
no. 2, pp. 157–166, 1994.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

86 Bibliography

[44] H. T. Siegelmann and E. D. Sontag, “Turing computability with neural nets,”
Applied Mathematics Letters, vol. 4, no. 6, pp. 77–80, 1991.

[45] Y. Bengio, “Markovian models for sequential data,” Neural Comput. Surv.,
vol. 2, pp. 129–162, 1999.

[46] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neu-
ral networks,” in Proceedings of the 23rd international conference on Machine
learning, pp. 369–376, ACM, 2006.

[47] A. Graves and others, Supervised sequence labelling with recurrent neural net-
works, vol. 385. Springer, 2012.

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
put., vol. 9, no. 8, pp. 1735–1780, 1997.

[49] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber,
“LSTM: A Search Space Odyssey,” ArXiv150304069 Cs, Mar. 2015.

[50] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” ArXiv Prepr.
ArXiv14061078, 2014.

[51] W. Zaremba, “An empirical exploration of recurrent network architectures,”
2015.

[52] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of re-
current network architectures,” in Proceedings of the 32nd International Con-
ference on Machine Learning (ICML-15), pp. 2342–2350, 2015.

[53] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[54] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidi-
rectional lstm and other neural network architectures,” Neural Networks,
vol. 18, no. 5, pp. 602–610, 2005.

[55] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv
preprint arXiv:1410.5401, 2014.

[56] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer, A. Joulin,
and T. Mikolov, “Towards ai-complete question answering: A set of prerequi-
site toy tasks,” ICLR, 2016.

[57] F. Hill, A. Bordes, S. Chopra, and J. Weston, “The goldilocks principle: Read-
ing children’s books with explicit memory representations,” ICLR, 2016.

[58] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Su-
leyman, and P. Blunsom, “Teaching machines to read and comprehend,” in
Advances in Neural Information Processing Systems, pp. 1693–1701, 2015.

[59] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” ICLR, 2015.

Bibliography 87

[60] A. Bordes, N. Usunier, S. Chopra, and J. Weston, “Large-scale simple question
answering with memory networks,” arXiv preprint arXiv:1506.02075, 2015.

[61] S. Sukhbaatar, J. Weston, R. Fergus, et al., “End-to-end memory networks,”
in Advances in neural information processing systems, pp. 2440–2448, 2015.

[62] S. Chandar, S. Ahn, H. Larochelle, P. Vincent, G. Tesauro, and Y. Bengio,
“Hierarchical memory networks,” arXiv preprint arXiv:1605.07427, 2016.

[63] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston,
“Key-value memory networks for directly reading documents,” arXiv preprint
arXiv:1606.03126, 2016.

[64] F. Ma, R. Chitta, S. Kataria, J. Zhou, P. Ramesh, T. Sun, and
J. Gao, “Long-term memory networks for question answering,” arXiv preprint
arXiv:1707.01961, 2017.

[65] J. Perez and F. Liu, “Gated end-to-end memory networks,” arXiv preprint
arXiv:1610.04211, 2016.

[66] C. Xiong, S. Merity, and R. Socher, “Dynamic memory networks for visual and
textual question answering,” in International Conference on Machine Learn-
ing, pp. 2397–2406, 2016.

[67] A. Bordes and J. Weston, “Learning end-to-end goal-oriented dialog,” arXiv
preprint arXiv:1605.07683, 2016.

[68] Y. Feng, S. Zhang, A. Zhang, D. Wang, and A. Abel, “Memory-augmented
neural machine translation,” arXiv preprint arXiv:1708.02005, 2017.

[69] C. Xiong, S. Merity, and R. Socher, “Dynamic memory networks for visual
and textual question answering,” arXiv, vol. 1603, 2016.

[70] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and S. Fidler,
“Movieqa: Understanding stories in movies through question-answering,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 4631–4640, 2016.

[71] C. Ma, C. Shen, A. Dick, and A. v. d. Hengel, “Visual question answering with
memory-augmented networks,” arXiv preprint arXiv:1707.04968, 2017.

[72] S. Na, S. Lee, J. Kim, and G. Kim, “A read-write memory network for movie
story understanding,” arXiv preprint arXiv:1709.09345, 2017.

[73] K.-M. Kim, M.-O. Heo, S.-H. Choi, and B.-T. Zhang, “Deepstory: video story
qa by deep embedded memory networks,” arXiv preprint arXiv:1707.00836,
2017.

[74] H. Yang, S. Cho, et al., “Finding remo (related memory object): A simple
neural architecture for text based reasoning,”arXiv preprint arXiv:1801.08459,
2018.

[75] M. Henaff, J. Weston, A. Szlam, A. Bordes, and Y. LeCun, “Tracking the
world state with recurrent entity networks,” ICLR, 2017.

88 Bibliography

[76] E. Grefenstette, K. M. Hermann, M. Suleyman, and P. Blunsom, “Learning
to transduce with unbounded memory,” in Advances in Neural Information
Processing Systems, pp. 1828–1836, 2015.

[77] T. Munkhdalai and H. Yu, “Neural semantic encoders,” in Proceedings of the
conference. Association for Computational Linguistics. Meeting, vol. 1, p. 397,
NIH Public Access, 2017.

[78] T. Munkhdalai and H. Yu, “Reasoning with memory augmented neural net-
works for language comprehension,” arXiv preprint arXiv:1610.06454, 2016.

[79] A. Madotto and G. Attardi, “Question dependent recurrent entity network for
question answering,” arXiv preprint arXiv:1707.07922, 2017.

[80] T. Bansal, A. Neelakantan, and A. McCallum, “Relnet: End-to-end modeling
of entities & relations,” arXiv preprint arXiv:1706.07179, 2017.

[81] D. Chen, J. Bolton, and C. D. Manning, “A thorough examination of the
cnn/daily mail reading comprehension task,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, pp. 2358–2367, 2016.

[82] R. Kadlec, M. Schmid, O. Bajgar, and J. Kleindienst, “Text understanding
with the attention sum reader network,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, pp. 908–918, 2016.

[83] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu,“Attention-over-attention
neural networks for reading comprehension,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, pp. 593–602, 2017.

[84] A. Sordoni, P. Bachman, and Y. Bengio, “Iterative alternating neural attention
for machine reading,” CoRR, vol. abs/1606.02245, 2016.

[85] Y. Shen, P.-S. Huang, J. Gao, and W. Chen, “Reasonet: Learning to stop
reading in machine comprehension,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1047–
1055, ACM, 2017.

[86] B. Dhingra, H. Liu, Z. Yang, W. Cohen, and R. Salakhutdinov, “Gated-
attention readers for text comprehension,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, pp. 1832–1846, 2017.

[87] A. Trischler, Z. Ye, X. Yuan, P. Bachman, A. Sordoni, and K. Suleman, “Nat-
ural language comprehension with the epireader,” in Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pp. 128–
137, 2016.

[88] Y. Yu, W. Zhang, K. Hasan, M. Yu, B. Xiang, and B. Zhou, “End-to-end an-
swer chunk extraction and ranking for reading comprehension,” arXiv preprint
arXiv:1610.09996, 2016.

Bibliography 89

[89] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention
flow for machine comprehension,” arXiv preprint arXiv:1611.01603, 2016.

[90] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu,“Attention-over-attention
neural networks for reading comprehension,” arXiv preprint arXiv:1607.04423,
2016.

[91] L. Yang, Q. Ai, J. Guo, and W. B. Croft, “anmm: Ranking short answer
texts with attention-based neural matching model,” in Proceedings of the 25th
ACM International on Conference on Information and Knowledge Manage-
ment, pp. 287–296, ACM, 2016.

[92] K. Lee, T. Kwiatkowski, A. Parikh, and D. Das, “Learning recurrent
span representations for extractive question answering,” arXiv preprint
arXiv:1611.01436, 2016.

[93] S. Wang and J. Jiang, “Machine comprehension using match-lstm and answer
pointer,” arXiv preprint arXiv:1608.07905, 2016.

[94] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated self-matching
networks for reading comprehension and question answering,” in Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1, pp. 189–198, 2017.

[95] Z. Yang, B. Dhingra, Y. Yuan, J. Hu, W. W. Cohen, and R. Salakhutdinov,
“Words or characters? fine-grained gating for reading comprehension,” arXiv
preprint arXiv:1611.01724, 2016.

[96] H. He, K. Gimpel, and J. J. Lin, “Multi-perspective sentence similarity mod-
eling with convolutional neural networks.,” in EMNLP, pp. 1576–1586, 2015.

[97] C. Gulcehre, S. Chandar, K. Cho, and Y. Bengio, “Dynamic neural
turing machine with soft and hard addressing schemes,” arXiv preprint
arXiv:1607.00036, 2016.

[98] S. Khadka, J. J. Chung, and K. Tumer, “Evolving memory-augmented neural
architecture for deep memory problems,” 2017.

[99] C. Gulcehre, S. Chandar, and Y. Bengio, “Memory augmented neural networks
with wormhole connections,” arXiv preprint arXiv:1701.08718, 2017.

[100] W. Zhang, Y. Yu, and B. Zhou, “Structured memory for neural turing ma-
chines,” arXiv preprint arXiv:1510.03931, 2015.

[101] M. Andrychowicz and K. Kurach, “Learning efficient algorithms with hierar-
chical attentive memory,” arXiv preprint arXiv:1602.03218, 2016.

[102] J. Rae, J. J. Hunt, I. Danihelka, T. Harley, A. W. Senior, G. Wayne, A. Graves,
and T. Lillicrap, “Scaling memory-augmented neural networks with sparse
reads and writes,” in Advances In Neural Information Processing Systems,
pp. 3621–3629, 2016.

90 Bibliography

[103] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous sys-
tems,” 2015. Software available from tensorflow.org.

[104] N. Ketkar, “Introduction to pytorch,” in Deep Learning with Python, pp. 195–
208, Springer, 2017.

[105] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves, “Memory-
efficient backpropagation through time,” in Advances in Neural Information
Processing Systems, pp. 4125–4133, 2016.

[106] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference on
Machine Learning, pp. 448–456, 2015.

[107] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR,
vol. abs/1607.06450, 2016.

[108] T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and A. Courville, “Recur-
rent batch normalization,” arXiv preprint arXiv:1603.09025, 2016.

[109] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing
neural networks,” in Advances in Neural Information Processing Systems,
pp. 972–981, 2017.

[110] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and Y. Bengio, “Batch normal-
ized recurrent neural networks,” in Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on, pp. 2657–2661, IEEE,
2016.

[111] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfitting.,”
Journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[112] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
International Conference on Learning Representations, 2015.

[113] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation,” in Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532–1543, 2014.

[114] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast bayesian
optimization of machine learning hyperparameters on large datasets,” arXiv
preprint arXiv:1605.07079, 2016.

[115] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap,
M. Botvinick, and N. Freitas, “Learning to learn without gradient descent by
gradient descent,” in International Conference on Machine Learning, pp. 748–
756, 2017.

Bibliography 91

[116] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu,
“Automated curriculum learning for neural networks,” arXiv preprint
arXiv:1704.03003, 2017.

[117] M. Pickett, R. Al-Rfou, L. Shao, and C. Tar, “A growing long-term episodic
& semantic memory,” arXiv preprint arXiv:1610.06402, 2016.

[118] A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bordes, D. Parikh,
and J. Weston, “Parlai: A dialog research software platform,” arXiv preprint
arXiv:1705.06476, 2017.

List of Figures

2.1 Basic perceptron functionality . 6

2.2 Interdependent sequence . 8

2.3 Unfolded recurrent neural network . 8

2.4 Simple recurrent neural network node 9

2.5 The long term dependencies . 9

2.6 LSTM node overview . 10

2.7 LSTM forget gate . 11

2.8 LSTM input gate and input activation 12

2.9 LSTM internal cell state . 12

2.10 LSTM output gate and output activation 13

2.11 LSTM in a mulit-node view . 13

2.12 Gated Recurrent Unit . 14

2.13 Bidirectional RNN . 14

2.14 DNC system overview . 15

2.15 DNC memory unit and symbols legend 17

2.16 DNC Memory unit control signals . 19

2.17 DNC write mechanism . 21

2.18 DNC memory update mechanism . 22

2.19 DNC precedence weightings update 23

2.20 DNC linkage matrix mechanism . 24

2.21 DNC read mechanism . 25

2.22 DNC memory reading . 26

2.23 DNC unfolded system overview . 26

3.1 Copy task example . 28

94 List of Figures

5.1 DNC training progress with copy task 40

5.2 DNC training progress with bAbI 1 task 41

5.3 DNC general functionallity in the copy task 43

5.4 DNC general functionallity in the bAbI 1 task 44

5.5 DNC write functionality in the bAbI 1 task 46

5.6 DNC memory handling in the copy task 48

6.1 DNC bypass dropout . 57

6.2 DNC bidirectional controller . 58

6.3 DNC with atop RNN . 59

6.4 Content-based memory unit . 60

7.1 DNC advancements comparison in the bAbI 1 task 64

7.2 DNC with LN and BD on the bAbI task 1 65

7.3 DNC advancements comparison in the copy task 66

7.4 Comparison of the MU and CBMU 68

List of Tables

2.1 DNC Memory unit control signals . 18

3.1 Parametrization of the copy task in this work. 27

3.2 Statistics of the bAbI 20 task in the English 10k version. 29

3.3 Statistics of the CN CBT . 31

3.4 Statistics of the CNN RC Task. 33

5.1 Hyper-paramter of DNC training analysis 39

5.2 Description of DNC functionality plot 5.3 42

5.3 Description of DNC functionallity plot 5.5 45

5.4 Description of DNC functionallity plot 5.6 47

5.5 Notations of the DNC and LSTM . 49

5.6 DNC parametrization of bAbI task 51

5.7 DNC and LSTM computing time . 52

7.1 Time comparison between MU and CBMU 67

7.2 Computing resources of the bAbI 20 experiments 70

7.3 bAbI 20 task mean results . 70

7.4 bAbI 20 task best results . 71

7.5 CBT results . 73

7.6 CNN RC results . 74

7.7 Summary of the results . 75

	Contents
	1 Introduction
	1.1 Learnable computers
	1.2 Goals
	1.3 Structure of work

	2 Basics
	2.1 Artificial Neural Networks
	2.2 Recurrent Neural Networks
	2.3 Long Short-Term Memory
	2.4 Bidirectional RNN
	2.5 Differentiable Neural Computer
	2.5.1 System overview
	2.5.2 The memory unit
	2.5.2.1 Memory unit overview
	2.5.2.2 Generating control signals
	2.5.2.3 Write mechanism
	2.5.2.4 Memory update
	2.5.2.5 Read mechanism

	2.5.3 Summary

	3 Data
	3.1 Copy Task
	3.2 bAbI 20 Task
	3.3 Children Book Test
	3.4 CNN Reading Comprehension Task

	4 Related work
	4.1 Related models for QA
	4.2 Related enhancements

	5 Analysis of the DNC
	5.1 DNC Training
	5.2 DNC Functionality
	5.3 DNC Memory consumption
	5.4 DNC Computation time
	5.5 Analysis conclusion

	6 Advancements in the DNC
	6.1 Robust DNC training
	6.1.1 DNC Normalization
	6.1.2 Bypass Dropout

	6.2 Advanced Architecture
	6.2.1 Bidirectional DNC
	6.2.2 Atop RNN

	6.3 Content-Based Memory Unit

	7 Experiments
	7.1 Empirical methods evaluation
	7.1.1 Training and architecture advancements
	7.1.1.1 bAbI Task 1 evaluation
	7.1.1.2 Copy Task evaluation

	7.1.2 Content-Based Memory Unit

	7.2 bAbI 20 Task
	7.2.1 Task 16 augmentation
	7.2.2 Training details
	7.2.3 Results

	7.3 Children Book Test
	7.3.1 Training details
	7.3.2 Results

	7.4 CNN Reading Comprehension Task
	7.4.1 Training details
	7.4.2 Results

	7.5 Results overview

	8 Conclusion
	8.1 Summary
	8.2 Discussion
	8.3 Further work

	List of Figures
	List of Tables

