
Using Scene-Aware Voice Dialogs in
Human-Drone Interaction

Master’s Thesis of

Tino Fuhrmann

At the Department of Informatics

Institute for Anthropomatics and Robotics

Interactive Systems Lab

Karlsruhe Institute of Technology

Karlsruhe, Germany

School of Computer Science

Robotics Institute

Air Lab

Carnegie Mellon University

Pittsburgh, United States

Reviewer: Prof. Dr. A. Waibel

Second Reviewer: Prof. Dr. S. Scherer

Duration: June 2019 – January 2020

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

PLACE, DATE

. .

(Tino Fuhrmann)

Abstract

Progress in robotics research enables drones to be deployed in more and more use cases.

However, the user interfaces in particular for high-level mission control (e.g. search and

report persons in speci�c area) remain complex and unintuitive for the average user. To

solve these issues, we propose an interactive dialog system based on the Transformer that

is scene-aware and enables intuitive high-level mission control. In particular, an approach

with which this system can generate goal-oriented questions that simplify interactive

mission clari�cation based on scene-understanding is proposed. We demonstrate these

capabilities by deploying this system on an autonomous aerial vehicle for a person follow-

ing task. Experiments using a user simulator con�rm that our system is scene-aware. An

online user study and end-to-end systems further show that users are able to intuitively

interact with the system with a high degree of success without formal training. This lays

the groundwork for signi�cantly reduced barriers to the deployment of drones in new

applications by users without extensive formal training.

i

Zusammenfassung

Fortschritte in der Robotikforschung erlauben den Einsatz von Drohnen in immer mehr Be-

reichen. Die Mensch-Maschine-Schnittstelle für abstrakte Missionen (z. B. Absuchen eines

Areals und Meldung von gefundenen Personen) ist jedoch weiterhin für den durchschnitt-

lichen Nutzer unintuitiv und komplex. Um diese Schnittstellen zu verbessern, präsentieren

wir in dieser Arbeit ein interaktives System basierend auf dem Transformer-Modell, dass

Szenen-Verständnis lernt und die intuitive Steuerung von Missionen ermöglicht. Weiterhin

wird ein Ansatz zur Generierung von zielgerichteten Fragen vorgestellt, der das Erreichen

eines gemeinsamen Verständnisses von Missionszielen zwischen Nutzer und Drohne ver-

einfacht. Um diese Fähigkeiten zu demonstrieren, wird dieses System auf einer Drohne für

das Folgen von Personen eingesetzt. Experimente mit einem Nutzersimulator zeigen, dass

dieses System tatsächlich Szeneninformationen zur Lösung der Aufgabe verwendet. Eine

Online-Nutzerstudie, sowie ein Ende-zu-Ende Systemtest zeigen weiterhin, dass Nutzer

intuitiv mit dem System interagieren und es erfolgreich einsetzen können. Dies legt den

Grundstein für signi�kant reduzierte Barrieren für den Einsatz von Drohnen in neuen

Anwendungsfällen durch Nutzer ohne extensives, formales Training.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. RelatedWorks 3
2.1. Interaction Strategies . 3

2.2. Dialog Systems . 5

2.2.1. Mono-Modal Dialog Systems . 5

2.2.2. Integrating Scene Information into Dialog Systems 8

3. Scene-Aware Dialog Systems 11
3.1. System Overview . 11

3.2. The Transformer Model . 14

3.2.1. Attention . 15

3.2.2. Functional Principles of the Encoder and Decoder 16

3.3. Integration of Scene-Awareness into the Transformer 16

3.3.1. Modi�cations to Encoder . 17

3.3.2. Modi�cations to Decoder . 18

3.3.3. Target Selection . 19

3.4. Training . 20

3.5. Limitations . 21

4. Drone System 23
4.1. Hardware . 23

4.2. System Overview . 24

4.2.1. Flight Control . 25

4.3. Mission Control . 27

4.3.1. Person Detection & Tracking . 28

4.3.2. Human-Robot Communication 31

4.3.3. Dialog System . 31

4.3.4. Global Planner . 32

5. Experimental Evaluation 35
5.1. Data Sets . 35

5.2. Data Collection & Augmentation . 35

5.3. Synthetic Dialog Generation . 36

v

Contents

5.4. Experiments . 37

5.4.1. Experiment 1: User Simulator . 37

5.4.2. Experiment 2: Online User Study 41

5.4.3. Experiment 3: System Evaluation 43

6. Conclusion & Future Work 47

Bibliography 49

A. Appendix 55
A.1. Dialog System . 55

A.1.1. System Outputs and Responses 55

A.1.2. Image Feature Extractor . 56

A.2. Drone System . 57

A.2.1. Hardware . 57

vi

List of Figures

2.1. Dialog System Components . 5

3.1. System Overview . 12

3.2. The Transformer Model . 15

3.3. Modi�ed Encoder . 17

3.4. Modi�ed Decoder Layer . 18

3.5. Feature Combination Types . 19

3.6. Target Selection Network . 19

4.1. Drone Platform . 24

4.2. System Overview . 25

4.3. Grid Map and Trajectory Library . 26

4.4. Deproject-Transform-Project Work�ow for Alignment of Depth
Image with Color Image . 30

4.5. Global Planner State Machine . 32

5.1. Three Data Sets . 35

5.2. Action Confusion Matrix for Model Trained with „Summation“
Feature Combination Type . 40

5.3. Interface of the User Study . 41

5.4. Histogram of Dialog Length . 42

5.5. Testing Area with two test persons . 43

A.1. CNN Used for Feature Extraction from Person Images 56

vii

List of Tables

2.1. Example: Intent Classi�cation and Slot Filling 6

3.1. System Inputs and Outputs . 12

3.2. Example: Action Types Used in the Dialog System 14

5.1. Overview of Images in Each Data Set 36

5.2. Comparison of Feature Combination Types 38

5.3. Results: Generalization of Model to Other Data Sets 40

5.4. User Study: Average Dialog Length and Target Accuracy at the End
of Dialog . 42

5.5. Survey . 43

5.6. End-to-End System Test Results . 44

A.1. List of Actions . 55

A.2. List of Questions . 56

ix

1. Introduction

In the past few years, the capabilities of autonomous unmanned aerial vehicles (UAVs),

and in particular drones, have grown enormously due to advances in the various areas

of robotics research. Additionally, commercially available, light-weight computers have

considerably increased the computational power available on these platforms. Combined,

this enables these UAVs to be deployed in new use cases that bene�t from improved

autonomous behavior like search and rescue (SAR), industrial inspections, and surveying.

While these applications greatly bene�t from the use of autonomous aerial, their complex

user interfaces make the deployment of these robots in the real world, without signi�cant

amounts of training and experience, di�cult. Additionally, these interfaces often require

the full attention of the operator hindering them from performing other tasks. With more

natural and interactive user interfaces, such as the natural spoken dialogue systems used

in this thesis, coupled with a highly autonomous robot, these issues could be alleviated,

and the e�ciency and user-friendliness of using drones signi�cantly increased, so that

even persons without any formal training can operate these vehicles.

For example, this would allow SAR personnel to treat drones similar to a human operator

with whom activities are coordinated, and information is shared. Thus, the required per-

sonnel could be reduced or focus on other tasks while the drone autonomously completes

its mission. Similar arguments hold for other use cases like indoor drone assistants, which

aim to complete tasks like �nding a person or checking room availability upon a request by

a user, or delivery drones which could interactively negotiate package drop-o� locations

with users.

All of these use cases have in common that user requests have to be understood in

the context of the surroundings of the drone. Traditionally, this context was integrated

into dialog systems by storing high-level concepts, that were detected in the scene, in a

system-queryable knowledge base. In addition to being prone to misdetections, the design

of appropriate detectors for these concepts also requires signi�cant engineering e�ort.

The few recent works [25, 31, 65] that research the integration of visual features into

state-of-the-art dialog systems solve this issue by directly integrating visual information

into their system model. However, these models focus on question-answer dialogs and

are not designed to interactively work with the user to clarify user requests and complete

tasks.

In this thesis, we address this limitation and present a dialog system that integrates

scene-understanding based on visual information into the Transformer [57]. We propose

to use multi-head attention to capture multi-modal features in the input. Furthermore, a

mechanism that selects appropriate questions to clarify user requests is presented. This

clari�cation is not limited to merely requesting the user to change their request but includes

asking appropriate, goal-oriented questions based on the current scene. Furthermore, our

1

1. Introduction

system can be easily ported to new domains because it learns relevant high-level visual

features directly from dialogs with corresponding images.

To demonstrate these capabilities, we further present an autonomous drone system that

is able to autonomously follow a person that was selected by spoken dialog. We call this

task, that was inspired by a potential mission of an indoor drone assistant, the person

following task. In particular, we will discuss the optimizations that allow us to run all

components of the system, with the exception of speech recognition, fully on-board the

drone.

This thesis is divided into �ve chapters. In chapter 2, the use of speech as the input

modality of our system is motivated. Additionally, an overview of state-of-the-art ap-

proaches to dialog systems, including the integration of visual features, is given. The

third chapter discusses how visual information and target selection are integrated into

a state-of-the-art dialog system. Following this, the system design of the autonomous

quadrotor for the person following task is described in chapter 4. Afterward, in chapter 5,

the dialog system and the drone system are evaluated. Finally, the conclusion and future

work are presented in chapter 6.

2

2. RelatedWorks

In this chapter, we review various areas of research closely related to human-robot inter-

action and scene-aware dialog systems. In particular, we �rst present several human-robot

interaction strategies and discuss their applicability to the person following use case

introduced in chapter 1. After that, a short introduction to dialog systems and an overview

of state-of-the-art techniques is given. To conclude this chapter, current research on the

integration of additional modalities, e.g., an image of the scene as in our use case, into

dialog systems is examined.

2.1. Interaction Strategies

Human-robot interaction has an immense impact on the usability and the user’s perception

of the �tness of a robot to complete a particular task. While many di�erent interaction

strategies are described in the literature, there is no one size �ts all approach suitable

for every task and environment. This is in part due to the varying requirements of each

strategy and task, such as the needed level of instruction details or availability of sensors.

In our scenario, the interface should be intuitive and hands-free to keep the operator’s

workload caused by controlling the robot at a minimum. Furthermore, to allow seamless

switching between users, only commonly available sensors, such as cameras or micro-

phones, should be required to interact with the robot. With these limitations in mind, we

give an overview of various interaction strategies, their advantages and disadvantages, as

well as their applicability to our problem in the following sections.

The literature distinguishes two kinds of user interfaces [17]:

• Graphical User Interfaces (GUI) use graphics, images, buttons, and/or a window

manager to accept control inputs and convey information to the user

• Natural User Interfaces (NUI) use a more direct approach and allow instructing

the robot directly through speech, gestures or other means

GUIs, such as WIMP (Windows, Icons, Menus, Pointer) interfaces, are commonly used

on various input devices such as personal computers and mobile phones [17]. This is

contrary to the requirement of hands-free use and makes GUIs not suitable for our scenario.

Furthermore, GUIs are often used for complex systems, and much e�ort is being expended

on making these interfaces more intuitive to use through modern technologies like touch

screens [6] or augmented and virtual reality [20]. Nonetheless, GUIs are well suited for

systems or tasks that require high precision, the con�guration of many parameters, or an

overview of the internal and external state.

3

2. Related Works

In contrast to GUIs, NUIs remove the intermediate graphical layer to provide a more

direct interaction modeled after human-human communication forms such as spoken

language, body language, and markers [17]. However, not all NUIs are equally suitable for

our use case.

Markers, a method that uses physical signs to issue commands, in particular, are not

appropriate for our case. While marker-based systems can achieve high accuracy and

responsiveness [17], the use of physical signs (e.g., a sign with a printed, machine-readable

code [17, 14]) to issue robot commands, makes them inherently not hands-free. Further-

more, with increasing complexity of commands, the use of markers becomes unintuitive,

which signi�cantly hampers the speed of communication compared to more natural

modalities like gestures [14].

Gestures, while better suited than markers because of their expressiveness and intuitive-

ness, have their own set of challenges. Speci�cally, gesture recognition without additional

sensing capabilities such as wearable sensors [40, 3, 6] or depth cameras [17] remains

challenging. Nonetheless, gesture recognition has been successfully applied to various

tasks [40, 59, 28, 39], including SAR [6].

All communications forms presented above, have one property in common: They are

only used in human-human interaction to support or, if necessary, substitute spoken

language. Speech satis�es almost all requirements, in particular, intuitive and hands-free

use, and is thus the best suited of the communication forms presented. This especially

applies to its intuitiveness, which enables nearly everyone, including persons with little

technical understanding, to interact with robots. This intuitiveness is also supported by

advances in dialog system technology that enable the translation of dynamic interactions

to actionable robot commands [42, 50, 49, 30, 32, 18]. Furthermore, the ubiquity of

microphones in today’s world makes speech recognition possible in a wide variety of

contexts.

Nonetheless, there are also some limitations to the application of speech. Noise or very

loud environments can make speech recognition di�cult or even impossible. Additionally,

while speech can be precise, it is di�cult to achieve precision comparable to other means

like pointers in WIMP interfaces. However, this precision is not required for the high-level

mission descriptions that the use cases proposed in the introduction require. Furthermore,

for these use cases, the operator will generally be far enough away from the drone such

that its noise will not signi�cantly interfere with speech recognition.

The �exi-modal approach [38] combines multiple interaction forms to enable the use

of the best-suited or best-suited combination of modalities in every scenario. This is a

very intriguing and well-suited interaction mode for our use case because it enhances the

intuitiveness and ease of use. However, this integration comes with unique challenges.

Contradictions, ambiguities, and references between the input sources must be resolved,

possibly with the involvement of the user and an understanding of the scene, increasing

system complexity signi�cantly [51].

Furthermore, as only little work has been done on integrating scene-awareness into

the communication forms presented in this section, building a scene-aware �exi-modal

system may present many additional research challenges in various areas. Thus, as a �rst

step, this work focuses on integrating scene-awareness into a speech-based dialog system.

4

2.2. Dialog Systems

Natural Language
Understanding

Dialogue State
Tracking

Policy ComponentNatural Language
Generation

User
Command

Robot
Reaction

Figure 2.1.: Dialog System Components
Dialog systems generally consist of four components responsible for understanding the user query, the context of the dialog and

determining the correct course of action. Depending on the techniques used to implement the system, two or more of these

components may be merged together, thereby reducing the need for the coordination of their interactions. (Source: [7], Fig. 1)

2.2. Dialog Systems

Research on dialog systems has made tremendous progress over the past years. Advances

in machine learning, such as the encoder-decoder model [53] or the Transformer [57], have

led to signi�cantly improved performance on various dialog tasks. However, even though

this is a very active area of research, only few works on integrating multiple modalities

into these systems have been published.

To better understand the trade-o�s involved in choosing certain models over others,

we �rst give an overview of the state of the art of traditional mono-modal dialog systems.

Thereafter, we present works on integrating additional modalities and analyze approaches

from other research areas like for example, visual question answering (V-QA), with respect

to their applicability to our use case.

2.2.1. Mono-Modal Dialog Systems

Traditionally, dialog systems can be grouped into two categories: Task-oriented and

non-task oriented systems [7]. Non-task oriented dialog systems try to have a natural

conversation on open domains with the user and thus require external knowledge to

have meaningful dialogs [45]. In contrast, task-oriented dialog systems try to aid the user

in solving a particular task, e.g., making travel arrangements in the case of the Airline

Travel Information System (ATIS) [22] or selecting a person to approach and follow in our

scenario. Hence, we concentrate on task-oriented systems in this section.

Task-oriented dialog systems traditionally use a pipeline approach with four stages, as

shown in Fig. 2.1 [7].

First, the natural language understanding (NLU) component creates an internal rep-

resentation of the user’s request. This representation consists of two components: The

intent of the user, describing the user’s goal, and the parameters, called slots, of the intent

with their associated values. For example, in Table 2.1 the intent of the user’s command

„Fly to the person wearing the green shirt“ is FlyToPerson. In the context of FlyToPerson, only

one slot value was not marked as ignored (IGNR) - the COLOR parameter with value green.

A good model for these two tasks must be robust to signi�cant variations in sentence

structure and word choice for the same intent, and very similar expressions for di�erent

classes [12].

5

2. Related Works

Command Fly to the person wearing the green shirt

Slots IGNR IGNR IGNR IGNR IGNR IGNR COLOR IGNR

Intent FlyToPerson

Table 2.1.: Example: Intent Classi�cation and Slot Filling

After this representation is obtained from the NLU component, it is passed to the dialog

state tracking (DST) subsystem, which is responsible for estimating the current dialog

state. This includes estimating the current intents and slot values with respect to the entire

dialog history. The policy component then uses this state to select an appropriate action.

This can range from simple responses like asking the user about speci�c parameter values

to issuing API calls. Finally, this action is converted to a human-understandable format by

the natural language generation (NLG) component.

Naturally, there are multiple approaches to implementing this pipeline: On one end of

the extreme, each system unit can correspond to one component of Fig. 2.1, all tightly

integrated and dependent on each other’s inputs and outputs. On the other end of the

spectrum, the entire pipeline can consist of one end-to-end trainable component. This

greatly simpli�es system design and improves the transferability to new tasks and domains

[68, 5]. Furthermore, the design could be anywhere in-between these two extremes

featuring various levels of component integration. Today, most state-of-the-art systems

integrate some or all of these components into one model trained either in a supervised

fashion or with reinforcement learning (RL).

For our model, we employ supervised learning due to the greater �exibility a�orded

by models trained in this manner compared to RL approaches. This is in part because RL

dialog system approaches are based on a discrete action-state representation which requires

either separate classes for actions and parameters or one class with all action-parameter

combinations (e.g., QuestionColor COLOR_green). However, both of these representations

are not well suited for our scenario. The �rst does not appropriately model the relationships

in between parameters and between actions and parameters, while the latter would lead

to a very large action-state space and, thus, exacerbate the slow convergence to a good

policy reported by [68, 64, 63, 13]. While the convergence issue was solved by pre-training

using supervised learning [68, 64, 63, 13], our approach would not additionally bene�t

much from optimizing for additional metrics like dialog length because most dialogs in

our scenario are shorter than three steps.

These two facts highlight some of the signi�cant challenges of applying RL to dialog

systems. Consequently, to be able to focus on integrating scene-awareness, we chose a

supervised approach. Future work may, however, explore how the model presented in this

work can be trained with RL to allow for additional optimizations from which other tasks

might bene�t, and to enable online learning from weak dialog success signals [64].

In the following section, we provide an overview of state-of-the-art techniques for

supervised, end-to-end dialog systems and relate them to our approach. Thereafter, natural

language generation is brie�y discussed.

Supervised Models
A key di�erence between end-to-end models and their modularly implemented counter-

6

2.2. Dialog Systems

parts is that end-to-end models must encode the dialog state, including past steps, within

the model.

One mechanism capable of this are memory networks (MemN2N) [62, 52]. MemN2N

provides an internal memory with a learnable access mechanism that the network can use

to store and read data (e.g., encoded dialog steps [5, 61]) before making a prediction. While

this model was successfully applied to dialog systems [5, 61, 36] and showed promising

results compared to non-neural models, it is not able to represent the dynamically generated

action-parameter sequences required for our scenario without additional modi�cations

for sequence prediction [43].

This issue is avoided by the attention-based [4] encoder-decoder RNN [54] approach

to dialog systems [15, 9] on which our model is based. [15, 9] interpret dialogs as a

sequence-to-sequence task and directly predict the dialog state or policy response from the

concatenated dialog history. Thus, this model can generate the dynamic action-parameter

sequences needed for our scenario. Additionally, this model, unlike MemN2N, does

not encode each step in one �xed-length vector and is consequently able to retain all

information contained in the dialog history at the expense of longer input sequences.

Our solution deviates from [15, 9] in two ways. One, we replace the encoder-decoder

RNN with the Transformer
1

[57] to take advantage of its superior parallelizability and thus

training speed. Moreover, because in our scenario multiple responses can be correct for a

given scene and dialog context, we do not directly predict the next response. Instead, we

predict an intermediary action-parameter form that is mapped to a set of valid questions.

From this set, the next question is chosen at random. This is comparable to how [9]

generates di�erent human-understandable texts for the same action.

Other systems use sequence-to-sequence models in a more modular fashion. In [60], an

end-to-end model, consisting of a separate network for each dialog system component,

is designed. While this leads to a more �exible approach and allows the integration of

additional components, it requires signi�cantly more engineering e�ort than our method.

Our method instead separates the modules of our model by feature type (e.g., image, text)

and thus must only ensure correct output dimensions to integrate the subnetworks.

Natural Language Generation
Up until now, we have not discussed how the action is converted to a human-understandable

form and communicated to the user. In this section, we brie�y summarize the two methods

that all the approaches presented above use.

[5, 8] use the �rst method and employ a generative model to create a human-understandable

response directly. By contrast, all other methods use a template-like representation [16,

35, 60, 63, 64] from which the �nal text is built. This template-like representation is

either manually de�ned [63, 64] or generated online with a neural model [16, 35, 60].

Generating responses with neural models has the advantage that suitable outputs can

be directly learned from training data, thus saving engineering e�ort on designing valid

output sentences. However, these models may generate grammatically incorrect responses

and their variability in sentence structure and word choice is heavily dependant on the

1
This was �rst brought up by Stefan Constantin when he introduced me to his research while we prepared

a conference paper

7

2. Related Works

training data. As only little training data is available for our use case, our model uses

manually de�ned templates. This guarantees a certain degree of variability, grammatical

correctness and naturalness of system responses.

2.2.2. Integrating Scene Information into Dialog Systems

Finally, to make the dialog system scene-aware, relevant scene features have to be extracted

and integrated into the dialog system model. This requires extracting and combining

features from both the dialog and the image so that an informed decision about the intent

and slot values can be made. Research on this topic has only been gaining traction in

the last year due to the publication of the Dialog State Technology Challenge 7 (DSTC7)

[65] that provided a question-answer dialog data set for audio-visual scene-aware dialog

(AVSD). In the following paragraphs, we �rst discuss works on fusing features from

multiple modalities. Afterward, we review recent approaches to integrating additional

modalities into dialog systems, including approaches developed for DSTC7.

Feature Fusion Methods
Feature fusion is an essential part of multi-modal tasks, in particular for visual question-

answering (V-QA) [1] and audio-visual scene-aware dialog [65]. Most state-of-the-art

techniques use several encoders to extract features from each modality, e.g., convolutional

neural networks (CNNs) for image features or recurrent neural networks (RNNs) for text

before they are combined. Feature combination is then performed using one of four general

techniques [67]: Simple vector operations, attention, pooling, or neural networks.

In this work, we evaluate the �rst two methods and the neural-network-based approach

for the combination of image, user command, and previous decoder output features. In

the following section, we brie�y introduce each technique and provide a brief discussion

on how they relate to our model.

Attention is a popular method that allows the model to focus on speci�c parts of one

modality by calculating a weighted sum whose weights are in�uenced by this and a

second modality. For example, [37] obtain two sets of attention weights by marginalizing

a combined matrix over each modality. The transformer also uses attention extensively,

among others, to attend encoder text features based on prior decoder outputs. Our model

uses the same mechanism to select the most relevant image features. However, in contrast

to other methods [37, 19] we do not split the image into multiple regions and instead

follow [34] that uses the features of detected objects as image features.

Note, that attention does not directly combine both modalities but only allows extracting

important parts of one based on the other. Thus, many models use other means like multi-

modal attention [26] or vector operations to combine attended features.

For example, multi-modal attention calculates a weighted sum of features of di�erent

modalities based on weights derived from another modality. We follow this approach and

use it as one of the three feature fusion modes of our model.

A more basic approach are simple vector operations like concatenation [37] or element-

wise sum [57]. This forms the second fusion mode that is supported by our model and

extends the fusion module of the Transformer by adding attended image features as an

additional input.

8

2.2. Dialog Systems

The third technique is bilinear pooling [56, 19], a method that allows all elements of

two modalities to interact multiplicatively. While we do not use this in our model, due

to its high computational cost and sensitivity to hyper-parameters [67], we use another

mechanism in which all elements can interact non-linearly as the third and last fusion

method.

This method follows the simple idea of embedding all modalities in the same feature

space and passing them directly to a neural network, e.g., an LSTM in the case of [44]. In

our model, this is implemented by concatenating all modalities and then using a multi-layer

perceptron with non-linear activation to reduce the concatenated vector to the desired

embedding dimensionality.

While the three fusion methods supported by our model provide a way to combine

di�erent features, they do not yet provide an obvious way of integration into a Transformer.

Furthermore, other methods that combine multiple modalities for audio-visual dialog

systems exist. These techniques are reviewed in the next section.

Scene-Aware Dialog Systems
Only a few approaches to integrating multi-modal features into dialog systems have been

proposed in the literature. In this section, we �rst present two simple approaches for this

purpose, before reviewing some of the models created for the audio-visual scene-aware

dialog (ASVD) track of DSTC7.

A straightforward approach to integrating scene-awareness into a dialog system is

the use of an online generated knowledge base with features like detected objects, their

locations, and relations (e.g., person wearing green shirt) stored in a knowledge base (KB)

[60, 16]. This, however, requires ground truth labels for objects and relations to train

detectors for these features. Thus, this approach is not well suited for our goal of reducing

the amount of labeling required.

The integration of a CNN feature extractor as an additional input to a standard neural

model, e.g., encoder-decoder RNN [10, 66], avoids this problem. However, it may be di�cult

for such a model to learn the relevant relations between objects if only little training data

is available. Furthermore, in our use case, replacing the CNN with a pre-trained model

does not necessarily work due to the greater focus on colors than commonly used tasks

like object detection or image classi�cation.

Various works with signi�cantly more sophisticated models have been submitted for the

DSTC7 challenge. In the following, we present some of these submissions and highlight

how they relate to our work.

One of these works, [25], applied the multi-modal attention model introduced in the

previous section, to the AVSD track. Similarly, we apply this approach as one of our

feature combination modes. However, in contrast to [25], our multi-modal attention is

not guided by the last dialog step but guided by all modalities. Furthermore, we treat the

dialog history as one continuous sequence instead of using a stacked LSTM to �rst encode

each step and then combine the dialog history.

In [31], a model for audio-visual dialog, very similar to ours, and that also modi�es

the Transformer, is presented. Comparable to our approach, additional encoders for all

newly added features (images, videos, audio, captions in the case of [31]) are integrated.

However, we represent image features using the object-based approach of [34] instead

9

2. Related Works

of CNN features. Furthermore, [31] use the last dialog step to attend to audio and visual

input. In contrast, we use the entire dialog history for this purpose. Finally, modi�cations

of similar nature are made to the decoder of the Transformer. Both approaches apply the

same attention mechanism, used to combine decoder with encoder features in the original

Transformer model, to the additional modalities. The only signi�cant di�erence is that

[31] uses these attentions in series instead of in parallel like in our model. The parallel

structure separates the decoder layer, essentially in two parts. The �rst part attends to the

input features based on the decoder features of the previous layer, while the second part

focuses on fusing these features. In contrast, the serial structure promotes the use of the

attended features as memory. Even though we did not individually examine the impact of

this particular architectural di�erence, we hypothesize that it would not have a signi�cant

impact due to similar information being available to both models in subsequent layers.

To summarize, we present a novel approach to integrating scene-awareness into an

end-to-end learnable dialog system based on the Transformer model. In addition, we

propose an approach that can be used to ask goal-oriented questions that are selected

using scene descriptions generated by our model. Finally, we also show how this model

can be used to determine the target object of a dialog.

10

3. Scene-Aware Dialog Systems

In this chapter, we present the design of a scene-aware dialog system based on the Trans-

former [57] and explain which modi�cations enable the use of additional modalities in

this model.

To get a better grasp on the requirements the system has to ful�ll, we �rst review the

goals set forth in chapter 1. We reformulate them as follows:

1. The system must be able to determine which person to approach

2. The system must be able to ask clarifying questions if the user command is ambiguous

or the system is unsure about its task

3. The system should not require hand-crafted features for person characteristics (like

t-shirt color) as input. It should learn appropriate features on its own.

Requirements 1 & 2 imply that a complete dialog system encompassing all four compo-

nents (NLU, DST, Policy, and NLG) described in chapter 2 must be designed. Requirement 3
forces an implicit encoding of input features directly retrieved from sensors with minimal

preprocessing.

In the following sections, we �rst describe how these criteria are incorporated into the

system design from a high-level perspective before presenting the core machine learning

model that processes all user inputs and predicts the user’s intent. Lastly, the limitations of

this model is discussed in-depth. Throughout this section, the person following scenario

introduced in chapter 1 is used. However, the general design choices presented herein

are equally applicable to other use cases aiming to include scene-awareness in a dialog

system.

3.1. SystemOverview

An overview of the system is shown in Fig. 3.1. The system uses an image and the textual

transcription of a user’s command as input and emits a target object, an action representing

the user’s intent, and a response to the user’s command. The action and the response are

encoded in an action-parameter form as shown in Table 3.1 and translated to text before

they are communicated to the user.

The interaction of the user with the system generally begins when a command is sent to

the system. This instruction is then processed by the dialog context component as described

in [9]: It is concatenated with the n most recent user commands, system-generated actions

and responses. Between each of these context steps, a special marker symbol, in our case

11

3. Scene-Aware Dialog Systems

Image

User
Command

Object
Detection

Dialogue
Context

Text
Generator

Dialog Component2

Target1

Action

1only if action indicates
 that target is identifiable Text

Policy
Component

Action &

Encoder
Decoder

Target
Selection

2Trained end-to-end

Response/Question

Figure 3.1.: System Overview
The dialog system uses an image of the scene and the most recent dialog steps to predict both an action and an intended target. If

the targte was not identi�able given the current context, the action is used to ask a question about the scene. Lastly, both the

internal question and action representations are translated to text and communicated to the user.

Type Encoding Example Meaning

User Command Text

Fly to the person in the

green shirt

Action Intent-Parameter

RejectUnknownColor

COLOR_green |

COLOR_blue DIREC-

TION_MIDDLE

No person in a green

shirt exists, only one

in the center in blue

clothes

Target Object Identi�er 2

The third object emit-

ted by the object detec-

tion is the target if the

action indicates a tar-

get was identi�ed

Response Intent-Parameter

QuestionColor

COLOR_blue

The system asks the

user if they want to �y

to the person in blue

clothes

Text Text

I don’t see anyone in

green. Did you mean

the person in blue

clothes?

Table 3.1.: System Inputs and Outputs

12

3.1. System Overview

„#“, is inserted. Extending the example from Table 3.1, the input for the next step may look

as follows:

„Fly to the person in the green shirt # RejectColor COLOR_green | COLOR_blue DIREC-
TION_MIDDLE # QuestionColor COLOR_blue # yes“

This design allows the downstream dialog component to use previous dialog steps to make

an accurate prediction of the current dialog state.

Finally, byte pair-encoding (BPE) [48] is applied to allow the model to better handle

rare and unknown words. To achieve this, BPE, which was originally proposed for natural

machine translation (NMT), splits words into frequently appearing subword units, e.g.,

„sweetish“ into „sweet“ and „ish“. This allows the model to learn separate meanings for

these units and consequently generalize beyond the commonly used word-level encoding.

In parallel to the processing of the textual command, the object detector extracts object

image crops and their locations from the input image. This extraction step will later facili-

tate understanding object relations. Additionally, this signi�cantly reduces the required

amount of training images because the feature extractor of the dialog component can

directly operate on the objects instead of the entire image.

Both, the cropped object images and the textual command, are then used by the dialog

system to predict an appropriate action and select one of the input persons as the target.

The generated action uses an intent-parameters encoding as shown in Table 3.2. This

encoding was inspired by [9, 18] and is well suited for the dialog task because it o�ers

high information density with little noise. Consequently, the process of learning relevant

relations between user commands and actions is greatly simpli�ed and a direct mapping

to API calls can be implemented.

The policy component distinguishes three intent types to which the system responds

di�erently. These types are:

• Ignore: The user command was not directed at the system. Accordingly, the system

ignores commands of this type.

• Goal: The user speci�ed a clear goal and all required information to determine the

target was included in the command. As a response, the system generates a textual

con�rmation of its mission understanding, determines the targeted object and starts

the mission.

• Reject: The user tried to specify a goal but their command was either ambiguous,

missing information or incorrect. Thus, the policy component randomly selects

a response from a set of prede�ned question types about the scene. The scene

description included with every reject action (separated by the „|“ symbol from

the other action parameters) is used to dynamically determine parameters for all

question types and to �lter questions invalid in the current scene. This level of

indirection was necessary because our training data lacks the subtle information

used by humans to choose the next question in a goal-oriented manner. Thus, the

next question could not be learned directly.

13

3. Scene-Aware Dialog Systems

Type Command Action
Ignore He’s helping Christoph Ignore

Goal Fly to the person in the green shirt FlyToColor COLOR_green

Reject Follow the person on the left

RejectDirection DIRECTION_LEFT |

COLOR_blue DIRECTION_RIGHT

Table 3.2.: Example: Action Types Used in the Dialog System

Finally, both the system action and the question are converted into human-readable

text by the text generator. From hereon, the user can issue the next instruction and the

above process repeats itself.

So far, we have not discussed how the dialog component works. This component is

trained end-to-end and integrates language understanding, state tracking and partially

policy learning. Similarly to [9, 25], we model the dialog task as a sequence-to-sequence

mapping task. The following formalization of this task was adapted to our problem from

[25].

Given the input dialog context X , represented as a sequence of words, and the scene

context S , encoded as a set of image crops and location features, we use a sequence-to-

sequence model based on the Transformer [57] to predict the posterior P(Y |X , S) for the

output action-parameter sequence Y . The most likely hypothesis Ŷ is then calculated as:

Ŷ = argmax

Y∈V ∗
P(Y |X , S) (3.1)

= argmax

Y∈V ∗

|Y |∏
m=1

P(ym |y1, · · · ,ym−1,X , S) (3.2)

Here, V ∗ represents a set of sequences of words corresponding to system actions and

their parameters. Note that during inference, beam search is used to limit the number of

sequences which have to be evaluated.

Furthermore, the system in Fig. 3.1 also predicts the most likely target for a command

conditioned on the input X , S . As we will describe in more detail in the next section, the

target selection model predicts the probability of each person being the target separately,

i.e. P(pi |X , S, P) for all persons pi ∈ P .

3.2. The Transformer Model

The prediction of both of these probabilities is done by a modi�ed Transformer [57] model
1
.

As our changes reuse a lot of the design choices made in the Transformer architecture, we

�rst review the general structure of the Transformer before presenting our modi�cations.

The Transformer architecture shown in Fig. 3.2 is an encoder-decoder model, i.e. it �rst

encodes the entire input sequence before decoding the output sequence word by word. In

1
Our implementation is based on https://github.com/quanpn90/NMTGMinor by Ngoc Quan Pham

(Interactive Systems Lab, KIT)

14

https://github.com/quanpn90/NMTGMinor

3.2. The Transformer Model

Figure 3.2.: The Transformer Model
The Transformer �rst encodes all elements of the input sequence before fusing this encoding with prior decoder outputs to predict

the next word to emit. Note this models use of self-attention which is used to replace recurrent connections of the standard

encoder-decoder model. Source: [57], Fig. 1

contrast to other encoder-decoder models, the Transformer replaces recurrent connections

commonly seen in other encoder-decoder models [53, 4] with self-attention.

Due to the importance of attention to this model, this mechanism is discussed �rst in

the next section. Subsequently, the architecture of the encoder and decoder is presented.

3.2.1. Attention

Attention is a learnable mechanism �rst introduced by [4] that allows a neural model

to focus on speci�c parts of a sequence. Formally, the attention mechanism for a query

sequenceQ = {q1, · · · ,qm}, a key sequence K = {k1, · · · ,kn} and valuesV = {v1, · · · ,vn}
with output O = {o1, · · · ,om} can be described as follows:

αi = softmax(attention(W Qqi ,W
Kk1), . . . , attention(W Qqi ,W

Kkn)) ∈ R
n

(3.3)

oi =
n∑
j=1

αi,j ·W
Vvj (3.4)

Here,W Q ,W K ,W V
are trainable weight matrices, attention is a function mapping pro-

jected queries and keys to a scalar and softmax is the softmax function over all kj ∈ K . For

example, [57] uses the dot-product scaled by the dimension of the keys dk :

attention(q,k) = 1/
√
dk · q

T
k) (3.5)

15

3. Scene-Aware Dialog Systems

The attention weight αi,j ∈ [0, 1] controls how much attention is paid to vj in output oi .
The Transformer uses two extensions of this mechanism. Self-attention, i.e. Q = K = V ,

allows learning dependencies between elements of one sequence, comparable to the e�ect

of recurrent connections in RNN encoder models. Additionally, self-attention facilitates

learning long-range dependencies [57], which is particularly valuable due to the long

length of the dialog context encoding of our model. Furthermore, self-attention o�ers

greater parallelizability than recurrent models and thus signi�cantly lower training times

[57].

Secondly, multi-head attention allows the model to focus on di�erent features or multiple

parts of the same input sequence by calculating multiple attentions, as described above, in

parallel.

3.2.2. Functional Principles of the Encoder and Decoder

To better understand how this mechanism is used in the Transformer, we now review the

functional principles of the encoder, followed by those of the decoder.

The encoder �rst embeds the input sequence word by word in a learned vector space

before adding a positional encoding to each embedding. This is necessary because the

self-attention layers would otherwise not have access to position information. Following

the embedding step, the encoder layers extract increasingly complex features from the

input sequence using self-attention followed by a position-wise feedforward layer.

Similarly to the encoder, the decoder embeds decoder outputs from previous decoding

steps. The decoder di�ers from the encoder only in one key way. In each layer, the

decoder combines the encoder features with decoder features using attention. The decoder

steps are used as the query and the encoder features as key and value of this attention

mechanism. This allows the model to focus on the encoder features that are most important

to predicting the next token of the decoder sequence.

Finally, a simple classi�cation layer with each class representing one word of the output

vocabulary is used to predict the next token. After the next token is predicted, the decoder

is called again until a special end-of-sentence symbol is emitted.

Note that this model uses a constant inner dimension to facilitate the residual connec-

tions around the inner layers of both the encoder and decoder. In contrast to [57], we

chose dmodel = 32 (in the following dw) as the model size and 64 as the inner size of the

position-wise feedforward network. Additionally, we used only N = 2 layers in both the

encoder and decoder. For further details of this architecture, the reader may refer to [57].

3.3. Integration of Scene-Awareness into the Transformer

In the following sections we discuss the integration of scene-awareness into this model.

First, we present how the encoder uses a convolutional neural network (CNN) and attention

to encode scene features. Subsequently, we describe how these features are integrated

into the decoder and the target selection subnetwork. Finally, the training and inference

procedures for the whole network are presented.

16

3.3. Integration of Scene-Awareness into the Transformer

CNN

Transformer
Encoder

Concatenate

Text-Image
Attention

Concatenate
Image

Self-Attention

Visual
Features

Visual&Text
Features

Visual-Text
Features

Text
Features

Image
Crops

User
Command

Bounding Box
Features

n×dimg

m words

n×di

m×dw n×dw

n×dv

n×(dv+dw)n×4
n×dw

n×dv

n×dw

m×dw

Figure 3.3.: Modi�ed Encoder
The modi�ed encoder combines visual and textual features obtained from a CNN and the standard Transformer encoder into four

feature types: Pure visual features, multi-modal visual & text features, text feature attention guided by visual features and pure text

features

3.3.1. Modifications to Encoder

The modi�cations to the encoder aim to extract features from the added image modality

and relate them to the existing text features. The modi�ed encoder shown in Fig. 3.3

achieves this by calculating several combined features, and replaces its counterpart in the

Transformer.

To achieve the �rst goal, extracting features from the input images, a feature extractor

is applied to each image crop separately. Naturally, a CNN was chosen for this task. While

pretrained CNNs were considered, empirical tests showed that these networks did not

perform well on our data set. We suspect that a di�erence in relevancy of di�erent feature

types makes the transfer of knowledge to our task di�cult. In particular, color features are

signi�cantly more relevant in our scenario than they are in commonly used image tasks

like object classi�cation or detection that require more intricate edge detection features.

Instead, we train a CNN from scratch. Due to the limited amount of image training

data available to us and to avoid over�tting, a relatively shallow network based on a

three layer ResNet [21] architecture
2

was designed. The full details of this layer are

provided in section A.1.2 of the appendix. To facilitate multi-modal feature combination,

the �nal features after the last pooling layer are projected to a dimage = 64 dimensional

vector. Afterwards, visual features are concatenated with bounding box features to obtain

what we call image features. In our model, bounding boxes are encoded as a 4-tuple

(xcenter,ycenter,width, height) ∈ [0, 1]4. Each dimension of the bounding box features is

scaled independently to the interval [0, 1] so that the encoding is independent of the image

resolution. Before these features are concatenated with the visual features, the bounding

box vector is repeated dimage/4 times to balance the relative weight of both feature types,

especially at the beginning of training.

After encoding both the image features and the textual features using the visual de-

coder and the standard Transformer encoder respectively, multiple combined features are

calculated. To allow the model to relate visual information to the textual command, an

attention, that we call text-image attention in Fig. 3.3, between the text and each image is

calculated. As this attention sums over textual features, the model can use this component

to select text features important to each of the image crops.

2
We use torchvision’s ResNet implementation

17

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

3. Scene-Aware Dialog Systems

Attention
Prior Decoder

Outputs

Attention
Feature

Combination
Feedforward

Visual
Features

Attention
Text

Features

o × dw

o×dw

n×dv

m×dw

o×dw

o×dw

o×dw o×dw

Figure 3.4.: Modi�ed Decoder Layer
The modi�ed decoder layer incorporates visual and textual information into its prediction of the next word of the output sequence

using multiple attentions. Even though no multi-modal features are added to this part of the model, subsequent decoder layers allow

the model to relate both the textual and visual features. Unless speci�cally mentioned, you can assume that we retained all details

(e.g., post-processing) of the original Transformer [57] as implemented in https://github.com/quanpn90/NMTGMinor.

The third component, image self-attention, uses both the image-attended textual features

and visual features to calculate relation features between objects. An example for a

command where these features are particularly important is „Fly to the person in the green
shirt next to the person wearing a blue suit“. Note, that this self-attention layer is equivalent

to the fully-connected relation-aware graph attention proposed by [34] with the only

di�erence being the use of a di�erent attention function.

All four of these features are then used in the decoder and target selection subnetworks

to predict the output action-parameter sequence and the target of the command.

3.3.2. Modifications to Decoder

The modi�cations of the decoder are mainly concerned with integrating the additional

encoder features and combining them with prior decoder steps. For this purpose, we

modify the decoder layer as presented in Fig. 3.4.

As shown in this �gure, only two of the four features produced by the encoder have been

integrated. This decision was motivated by empirical tests that showed no improvement

and in some cases even degraded performance when additional features like the Visual-Text
features from Fig. 3.3 were added. Note that the model is nonetheless able to calculate

relations between both visual and textual modalities in subsequent layers. Thus, adding

these features to the decoder explicitly is not necessary.

Compared to the standard Transformer decoder, two major architectural changes have

been made. One, an additional attention over the image features guided by the prior

decoder outputs was added similar to the combination of textual features from the encoder.

Secondly, a feature combination layer has been introduced.

The three di�erent approaches to implementing this layer shown in Fig. 3.5, have

been considered. The �rst approach 3.5a follows the convention used in the standard

Transformer model and calculates a sum of the three features. Generalizing this approach,

3.5b calculates a weighted sum of features similar to attention. However, instead of

calculating similarities as in [25], a feedforward network with all features as inputs is used

to predict one attention weight per feature. This allows the model to focus on one or more

of the modalities. Lastly, in 3.5c, the three features are simply concatenated and projected

18

https://github.com/quanpn90/NMTGMinor

3.3. Integration of Scene-Awareness into the Transformer

Σ

Prior Decoder
Outputs

Image
Features

Text
Features

(a) Combination: Sum

Prior Decoder
Outputs

Image
Features

Text
Features

Feedforward
Network

Σ

Prior Decoder
Outputs

Image
Features

Text
Features

(b) Combination: Multi-Modal

Attention

Prior Decoder
Outputs

Image
Features

Text
Features

Feedforward
Network

(c) Combination: Projection

Figure 3.5.: Feature Combination Types
Three di�erent feature combination types are proposed . (a) follows the approach of [57] uses summation to combine multiple

features. (b) generalizes this approach and uses multi-modal attention [26]. (c) allows the model to calculate an arbitrary projection

from the features to the Transformer’s model size.

Visual
Features

Visual&Text
Features

Visual-Text
Features

n×dv

n×dw

n×dw

n×1
n×4

Figure 3.6.: Target Selection Network
The target selection network is a position-wise feedforward neural network [57] which uses a sigmoidal output unit to predict the

likelihood of each object being the target. The �nal selected target is then chosen by �nding the maximum of all objects. Note that

target selection is only performed if the dialog component emitted a goal action.

to a dmodel-dimensional vector space. An evaluation of these three methods with respect

to overall system performance is provided in chapter 5.

3.3.3. Target Selection

Finally, the model needs a way of identifying the intended target of a command. This task

can be understood in two di�erent ways with implications for the design of the output

layer of this component. On one hand, one can understand this task as a selection task

which tries to choose the target object out of a set of input objects. On the other hand,

this can also be viewed as predicting the likelihood of one speci�c object being the target.

Additionally, we have to take into account that this component may receive a varying

number of objects.

19

3. Scene-Aware Dialog Systems

This in-fact makes the latter of the two interpretations better suited because the model

should decide if a person is the target of the current dialog step. For example, if there is

only one person, the solution to the �rst task de�nition would incorrectly be that that

person is the target. In the second interpretation, the policy learning component is able to

reject targets with low con�dence and ask the user for clari�cation. Thus, the robustness

of the model against false positives is improved.

To enable the model to deal with varying numbers of objects and improve robustness,

we extend the idea of position-wise feedforward networks [57] as shown in Fig. 3.6. In this

architecture, each object is passed through the same network independently. Thus, if the

task of the network requires knowledge about relations between these objects, features

encoding these relations have to be added. In our case, the visual & text features produced

by the encoder play this role. Additionally, the target selection model can use visual

features and text features of the current object for its prediction.

The two layer feedforward network used for this prediction consists of 4 neurons in

the hidden layer, a ReLu non-linearity in between layers and a sigmoidal output unit.

Thus, the network predicts the likelihood of the input object being the intended target in

the current dialog step, matching the de�nition in the introduction of this section. For

comparison, a Softmax activation over all objects as the output layer would be equivalent

to the �rst interpretation of the target selection task. We also tested models with larger

hidden layer sizes but did not observe any increase in prediction performance.

The �nal selected target is then chosen as the maximum over the output of the network

for all objects. Note, that this selection is only used if a goal action, that has a target, was

predicted by the decoder.

3.4. Training

To train the model presented in the previous paragraphs, two loss functions, one for the

decoder and one for the target selection head, have to be combined. In this section, we

review a simple approach to balancing these two loss functions for e�cient joint training.

As in [57], we use the standard cross entropy criterion as a loss function for the decoder

in each decoding step:

Edialog(x) = −
n∑
i=1

∑
c∈V

yc,i · log (pc,i) (3.6)

Here, n is the number of words in the output sentence x , V is the output vocabulary,

yc,i the binary ground truth indicator for the ith word of x being the word c , and pi,c the

predicted likelihood of c . From hereon, Edialog(x) will be called dialog loss.

Similarly, we minimize the binary cross entropy loss for the target selection network:

Etarget(x , P) =


−

∑
i∈P
[yi · loд(pi) + (1 − yi) · loд(1 − pi)] if x has a target

0 otherwise

(3.7)

20

3.5. Limitations

Here, P is the set of objects, yi is the ground truth target indicator and pi the likelihood

predicted by the target selection network for person i . If no target is de�ned for a speci�c

dialog context x , the target error is set to 0.

To combine both of these losses, we have to pay close attention to their scale and their

relative importance to our task. Edialog(x) is generally far larger than Etarget(x , P) because

the dialog loss consists of one cross entropy criterion per output word. Thus, to guarantee

that the model considers both losses equally, we balance the sum of the losses for one

batch of dialogs X and corresponding objects T as follows:

Etotal(X ,T) = (m + n) · (
α

m

|X |∑
i=1

Edialog(Xi) +
β

n

|X |∑
i

Etarget(Xi ,Ti)) (3.8)

where

m =

|X |∑
i=1

|Xi | (3.9)

n =

|T |∑
i=1

|Ti | (3.10)

Herem and n are the number of words and targets in all dialogs respectively. α and β
can be used to further tune the importance of each of the two losses. Note that we did

not observe any signi�cant performance impact for various values of α and β and thus

decided to use α = 1 and β = 2 to place a slightly higher focus on target selection.

Furthermore, to reduce overcon�dence and improve generalization, we applied label

smoothing [55] with a value of ϵls = 0.1 to both losses during training. We used Adam

[29] with β1 = 0.9, β2 = 0.98 and ϵ = 10
−9

as the optimizer and updated the learning rate

over the course of the training according to Equation (3) of [57] with warmup steps set to

200 and the initial learning rate equal to 0.05 or 0.01.

3.5. Limitations

The design presented in this chapter imposes certain limitations on the kinds of dialogs

that can be learned and the transferability to new domains. This section discusses these

limitations in more detail than some of the brief remarks given throughout this chapter

provided.

A �rst limitation compared to other models [68, 11] is that the question selection process

is not integrated end-to-end. Hence, it is not possible to optimize for the length of dialogs

or other criteria such as the quality of selected questions. Accordingly, we expect the

selected questions to be less goal-oriented than those of approaches that optimize this

process. Furthermore, this also leads to comparably longer dialogs on average. This

limitation, however, can be eliminated by replacing the question selection subsystem with

a learnable component trained with reinforcement learning or supervised targets.

Furthermore, the model requires a way of handling commands that do not require the

presence of objects. Without objects in the scene, no image features can be calculated

21

3. Scene-Aware Dialog Systems

and it becomes very di�cult for the model to make accurate predictions. We tackled this

problem by introducing a special, completely black image crop that is used whenever no

objects are present in the scene. While we expect this to not have a signi�cant impact on

performance, it would be desirable to avoid this workaround because it requires the model

to be trained with modi�ed training data.

The deployment of this model in new use cases and domains also presents unique

challenges. data set availability, in particular in the area of visual dialog systems, is

problematic, especially if labeled data is needed. It is thus necessary to �nd solutions

to generating the large amounts of data required to train supervised systems like the

one presented in this thesis. In this work, this limitation was overcome by expending a

signi�cant amount of engineering e�ort on generating dialogs for many potential scenarios

and ensuring their correctness. This is of paramount importance because any error in

the generation process immediately results in numerous incorrect dialogs. Note, that

while data set engineering works great for well-de�ned tasks, it may not result in a

good representation of the real world. Thus, real-world performance may be lower than

indicated by experiments on such a data set.

Similarly, even if data set engineering is used, the transferability of this system to new

domains is di�cult. For every new domain, the action and parameter space has to be

manually rede�ned, which, depending on the complexity of the dialog system, may require

many hours of careful action design. This, however, presents only a minor caveat, as

task-oriented dialog systems must eventually map their output to API calls.

22

4. Drone System

To demonstrate the capabilities of the dialog system presented in the previous chapter, a

custom quadrotor with appropriate sensors and control software for the person following

scenario introduced in chapter 1 was designed. This system is also used for the �eld test

in chapter 5 to measure overall system performance.

In this chapter, the system design and control software are presented with a focus

on the high-level components speci�cally developed for this thesis. To make this thesis

self-contained, we brie�y introduce the low-level controllers. Note that most of these

controllers were developed at Carnegie Mellon University’s (CMU) AirLab by various

authors, and only minor modi�cations have been made. Furthermore, most of the hardware

design was also developed at CMU.

4.1. Hardware

In this �rst section, we review the hardware components
1

and sensing capabilities of the

quadcopter. To give a better impression of the system and the location of all sensors, it is

shown from multiple angles in Fig. 4.1.

The drone hardware is based on Lumenier’s Student Drone Kit
2
. In addition to including

almost all physical components required to build a fully functional quadrotor, the frame

has built-in propeller guards, making it signi�cantly better suited for indoor use than

other comparable frames without this feature. The frame also features a wide variety of

di�erent mounting holes that facilitate the installation of additional components.

For low level control, a Pixracer running the Open Source PX4 Autopilot
3

�rmware is

used. This component is responsible for tracking the desired Yawrate, Pitch angle, Roll
angle and Thrust which it receives from the onboard autonomy controller.

The autonomy controller runs on a Nvidia Jetson TX2 with 6 CPU cores and an integrated

Nvidia GPU. Additionally, the autonomy controller has access to two onboard sensors: a

tracking camera, responsible for localizing the robot relative to its starting position, and a

depth camera used for obstacle avoidance and person detection.

For optimal operation, the tracking camera must achieve high tracking precision and

robustness to temporary occlusions. The Intel Realsense T265 was chosen for this purpose

because it ful�lls these requirements and in addition performs all processing for visual

simultaneous localization and mapping (V-SLAM) on-board the camera. Thus, valuable

resources on the TX2 are freed up for other tasks. Note that the camera was mounted on

a vibration dampened platform facing downward at a 45° angle to signi�cantly reduce

1
A full list can be found in section A.2.1 of the appendix

2
https://www.getfpv.com/student-competition-5-bundle.html

3
https://px4.io/

23

https://www.getfpv.com/student-competition-5-bundle.html
https://px4.io/

4. Drone System

Figure 4.1.: Drone Platform
The quadrotor used for the person following task provides various sensors including a tracking camera, depth camera and IMU.

Additionally, an on-board computer provides su�cient processing power for sensor data processing and �ight control.

drift over time. Furthermore, a separate USB Y-cable powered by the on-board battery was

connected to the T265 because the TX2 carrier board is not able to supply su�cient power

for both cameras.

For similar reasons, the Intel Realsense D435 was selected as the depth camera. It

provides accurate, although in parts noisy, depth images suitable for obstacle avoidance.

Furthermore, it records RGB and Infrared images that can be used to detect and track

persons in the �eld of view of the drone. The Intel RealSense driver additionally takes care

of most low level processing such as extracting a pointcloud from the depth image, and

aligning the recti�ed depth image to the color image.

Combined, these sensors and the Pixracer �ight controller form the foundation on top

of which all other components build.

4.2. SystemOverview

These components can be grouped into two categories, Flight Control and Mission Control,

as shown in Fig. 4.2.

Components in the �rst category are responsible for all low-level control loops, including

velocity control, position control, and trajectory tracking, and were in large parts developed

at CMU’s Airlab. For the most part, these components use standard approaches for robot

control. Thus only a brief description of their interdependencies and implications for the

system design and performance are provided in the �rst subsection.

The second category contains components concerned with high-level functions such as

human-robot interaction, target detection and following. Most of these components were

speci�cally developed for the person following task. Consequently, in the second part of

this chapter, we highlight design decisions relating to these components in detail and also

24

4.2. System Overview

Pixracer
Velocity

Controller
Position

Controller
Trajectory
Controller

Speech
Recognizer

Dialog
System

Global
Planner

Person
Detection

Person
Tracking

Mapping

Local
Planner

Depth
Camera

Tracking
Camera

Speech
Synthesizer

Take-Off/Landing
Planner

HardwareFlight ControlMission Control

located on ground station

located on TX2

Component

Component

TextText

Speech Speech

Persons

Infrared/Color/Depth Images

Odometry

Lookahead point

Odometry
Watchdog Auto-Land

124

3

5

6

78

9 10

11

12

Figure 4.2.: System Overview
The system uses a series of successive control loops which extend the capabilities of the system step by step to enable the drone to

autonomously complete person following missions. Note, that some components are executed on the accompanying ground station

to reduce transmission overhead.

provide insights into integrating the dialog system presented in the previous chapter into

a real robot.

4.2.1. Flight Control

The �ight control system uses a series of closed-loop controllers to enable the drone to

follow trajectories. In the following section, we present these control loops going from

low-level control towards more sophisticated controllers.

On the lowest level, two closed-loop controllers, one for velocity 1 and one for position

2 are used. They receive the odometry estimate from the tracking camera as feedback

and aim to achieve a desired velocity and position, respectively. In the case of the position

controller, the desired position (x ,y, z, yaw) is converted to appropriate velocity commands.

Similarly, these commands are then used by the velocity controller to send desired yaw

rate, thrust, roll and pitch angles to the Pixracer.

Both of these components are implemented as PID controllers. PID controllers are a

standard technique that determines a control signal based on the deviation of the actual

state from the desired state. To calculate the control signal, three terms with respect to

the signed state error E are combined:

• Proportional Control: cp = κp · E

• Integral Control: ci = κi ·
∫
t
Edt

• Derivative Control: cd = κd ·
dE
dt

• Constant o�set: co (manually tuned)

Here, t is the time and κp,κi ,κd are manually tuned constants. The control signal c
is then calculated as c = cp + ci + cd + co . For our drone, it was su�cient to use only

25

4. Drone System

(a) Map (b) Trajectory Library

Figure 4.3.: Grid Map and Trajectory Library
The local planner uses the grid map (a) and the trajectory library (b) to plan a trajectory which follows the global plan. Note that the

trajectory library currently uses 498 trajectories in the x-y plane only but can be easily extendeded to 3D trajectories.

proportional control for all tracked values except for velocity in z-direction. The z-velocity

controller used an additional integral term to compensate for declining e�ective thrust at

the same thrust setting as a result of battery discharge, and a constant o�set set to a value

slightly below hover thrust.

On the same hierarchy level, a watchdog 3 observes odometry messages from the

tracking camera. If it receives no odometry for a certain amount of time, it instructs

the PX4 to land the drone immediately. This was necessary to ensure the safety of the

drone and persons in its vicinity due to infrequent crashes of the tracking camera with no

discernible pattern.

The next control loop, the trajectory controller 4 , uses the position controller to follow

a trajectory with respect to position and velocity. The trajectory controller uses two points

called tracking and lookahead point to follow the desired trajectory. The tracking point

represents the location the drone should have at the current time t according to the input

trajectory. Similarly, the lookahead point is a point in the future at time t + ∆ on the

input trajectory. From this point, all higher-level components can replan the trajectory as

needed, i.e., the trajectory between tracking and lookahead point is �xed and currently

being executed. In our system ∆ is set to 0.1 seconds.

The local trajectories are planned by one of two local planners. First, the take-o� and

landing planner 5 plans a very simple trajectory from the current tracking point to a

certain height with a �xed rate of ascent or descent. No further checks for obstacles are

performed as both take-o� and landing are triggered manually. This is necessary because

the drone cannot detect obstacles directly above or below due to a lack of upwards and

downwards pointing sensors.

In contrast, the second planner, which is called local planner 6 , integrates obstacle

avoidance into the trajectory selection process. It uses a grid map that is generated from

the point cloud of the depth camera, to �nd obstacle-free paths in a set of prede�ned

trajectories. A visualization of this map and the trajectory library are shown in Fig. 4.3.

26

4.3. Mission Control

Note that in addition to the probabilistic �ltering used to generate the grid map in [58]’s

approach, we also use a simple O(n) approach to marking grid cells as occupied based on

the number of observations in each cell.

To be able to check the large number of potential trajectories in this library in real-time,

an e�cient, two-phase algorithm for collision checking based on bitwise operations was

devised by [58] at CMU’s Airlab. In the o�ine phase, a bit is set in each cell a trajectory

passes through. This bit signals that a cell must be unoccupied for this trajectory to be

obstacle-free. In the online phase, two checks are performed. First, the bitset is used to

�nd all collision-free trajectories using bitwise operations. Afterward, a cost function is

used to determine which of the valid trajectories should be chosen. Finally, a velocity

pro�le for the selected trajectory is determined such that the velocity at the end of the

trajectory is 0 and a maximum velocity is not exceeded at any time.

Here, we deviate from [58]’s cost function implementation. In [58], trajectories are

selected based on the closeness of the last trajectory point to the next goal location.

However, this selection process is biased towards �ying at an angle to the direct path to

the goal. This behavior is caused by the end of the straight trajectory being closer to the

goal than all curved trajectories that follow the global plan more closely. Thus, the �own

path is often longer than necessary.

To alleviate this issue, we combine two measures in the cost function. First, to favor

trajectories with a long planning horizon over shorter ones, we calculate the closest

distance of the trajectory to the goal location. Intuitively, this assumes that the drone can

stop at any point on the trajectory. While this assumption does not hold for fast-�ying

UAVs, it is valid for slow-moving drones like ours. Second, to punish deviations from the

global plan, we measure the average distance of the trajectory from the global plan. Finally,

the cost function is calculated as the sum of these measures weighted by a manually tuned

constant that balances the relative importance of progress towards the goal and closeness

to the global plan.

Combined, these components allow the drone to autonomously follow a global plan

de�ned by waypoints while avoiding collisions with obstacles.

4.3. Mission Control

Based on this foundation, the capabilities of the UAV are extended by implementing

additional components for the execution of missions. A major challenge during the

implementation of these components was the limited computational power provided by

the TX2 that forced us to invest signi�cant engineering e�ort into optimizing the CPU

usage of mission control components. In the following sections, we give an overview

of these modules and their optimization. Additionally, we describe how the drone and

the user interact. We �rst present supporting functionality, including person detection &

tracking, and the communication interface. Lastly, the two core components, the dialog

system and global planner, which are responsible for mission-level drone control, are

discussed.

27

4. Drone System

4.3.1. Person Detection & Tracking

Person following requires the quadrotor to be able to detect, track, localize and reidentify

persons. In this section, we present an approach which combines these steps into two

intertwined components.

For detection and tracking two di�erent approaches exist: Detection-by-Tracking and

Tracking-by-Detection [2]. In Tracking-by-Detection, the object is detected in the image

in every frame. By contrast, Detection-by-Tracking uses a model of the tracked object

(e.g., visual features and a motion model) to follow the object in consecutive frames. Both

approaches have di�erent trade-o�s. While Detection-by-Tracking is generally speaking

faster than running a full detection every frame, it deals poorly with occlusions and often

su�ers from drift over time. Detection-by-Tracking avoids these problems. However,

false-negative detections can lead to constantly appearing and disappearing detections.

Thus, both techniques are combined in this work to create a tracker that is able to bene�t

from the advantages of both methods while avoiding their shortcomings.

Detection
For person detection 7 , a pretrained MobileNet [27] for pedestrian recognition

4
is used to

predict 2D bounding boxes around persons in the color image. Even though this network

is optimized for embedded platforms, each forward pass takes about 800ms on the TX2’s

graphics card. This presents a signi�cant challenge to tracking persons in real-time.

Tracking
Thus, a person tracking component 8 with a kernelized correlation �lter

5
(KCF) [23] in

combination with a simple motion model is used. The KCF tracker updates an object’s

position every time a new infrared frame arrives until new evidence in the form of a

detection is received. Here, we use the infrared image because it is aligned to the depth

image by design - this will later simplify calculating the 3D location of tracked persons.

In addition, using the infrared image instead of the color image did not seem to have

any adverse e�ect on tracking performance. Furthermore, if the person leaves the frame,

a simple motion model using only the 3D position and velocity of the tracked object is

used to update the object’s location for a couple of seconds. Note that the acceleration of

tracked objects was not used due to the low frame rate of depth images (≈ 6 Hz) and high

noise in the 3D locations, which makes accurate estimation of acceleration practically

impossible.

Realistically, the motion model gives only a very rough estimate of the person’s where-

abouts. Nonetheless, it improves the person following performance of the drone because

the drone is able to continue following the target even if it leaves the frame temporarily.

This happens relatively frequently, if a person walks around a corner or if the drone is not

able to rotate as fast as needed to keep the tracked object in the frame. This is comparable

to how humans can extrapolate person locations for a short period of time.

Localization
For the motion model described previously, and to be able to localize the target, the 3D

4
https://github.com/cftang0827/pedestrian_recognition

5
We use openCV’s KCF implementation

28

https://github.com/cftang0827/pedestrian_recognition

4.3. Mission Control

position of each person has to be determined. Although the color and infrared image on

their own do not help solving this, the depth image of the D435 depth camera can be used

to reconstruct the 3D position.

Given the 2D bounding box in the depth image, we �rst sample multiple points in a

grid centered inside the object’s bounding box. Outliers are then removed from these

samples by removing the lower and upper 10% percentile. Finally, the average depth d is

used to reconstruct 3D points from the top left (xt ,yt) and bottom right (xb ,yb) of the 2D

bounding box by calculating the inverse (Eq. 4.2) of the camera projection equations (Eq.

4.1):

project((X ,Y ,d), (fx , fy, cx , cy)) =

(
u
v

)
=

(
fx 0 cx
0 fy cy

) ©­«
X/d
Y/d
1

ª®¬ (4.1)

deproject((u,v),d, (fx , fy, cx , cy)) =
©­«
X
Y
d

ª®¬ = d ·
©­­«
1

fx
0 0

0
1

fy
0

0 0 1

ª®®¬
©­«
1 0 −cx
0 1 −cy
0 0 1

ª®¬ ©­«
u
v
1

ª®¬ (4.2)

Here (cx , cy) is the principal point and (fx , fy) are the focal lengths of the recti�ed depth

camera. Also note that the depth reported by the D435 is the distance from the camera

plane, i.e., equivalent to the z coordinate in the 3D camera frame. Thus, the 3D location

corresponding to a pixel (x ,y) can be directly calculated by inverting the camera projection

as shown in Eq. 4.2. The location data is then further processed to estimate the velocity of

all tracked objects and is passed to the global planner.

The above calculations are correct as long as the image in which the 2D bounding box is

detected and the depth image share the same frame of reference. For the D435, this is only

true for the depth and infrared image. For all other images, a mapping of pixels into the

depth image frame is required. The standard way of obtaining this mapping provided by

the depth camera driver maps all pixels from the depth image to the color image as shown

in Fig. 4.4. However, we only require the depth for a small subset of pixels. Thus, a lot

of processing power (~15% across all 6 CPUs of the TX2) would be wasted by calculating

this mapping. Instead, we opt to follow a similar approach with a simpli�cation that

signi�cantly reduces CPU utilization in exchange for slightly lower accuracy.

We achieve this by reversing the deproject-transform-project work�ow of the camera

driver as shown in Fig. 4.4. This direct mapping is only possible because we assume that

the extrinsic transform Td2c is the identity matrix. Without this assumption, this process

could not be reversed because dc would have to be known. Note that this assumption does

not introduce signi�cant inaccuracies because the extrinsic matrix for the D435 from color

to depth is essentially a translation in x-direction by only 1.5cm.

Given a pixel pc = (uc ,vc) in the color image, one can then calculate the corresponding

pixel pd in the depth image as follows:

pd = project(Tc2d · deproject(pc ,dc , Ic), Id) (4.3)

⇔ pd = project(deproject(pc ,dc , Ic), Id) (4.4)

29

4. Drone System

Depth Camera

Color Camera

(ud,vd)

(Xd, Yd, dd)

(Xc, Yc, dc)

Extrinsics
Td2c Transform ((Xd,Yd,dd), T)

Deproject((ud, vd), dd, Id)

(uc,vc)

Project((Xc, Yc, dc), Ic)

Depth
Image

Color
Image

Intrinsics
Ic

Intrinsics
Id

Our process

Depth camera

Figure 4.4.: Deproject-Transform-Project Work�ow for Alignment of Depth
Image with Color Image

Substituting the camera equations 4.1 and 4.2 into Eq. 4.4, with intrinsics marked with

superscript c and d for color and depth camera respectively, admits:

pd =

(
f dx · (

u−ccx
f cx
) + cdx

f dy · (
v−ccy
f cy
) + cdy

)
(4.5)

This allows us to map the 2D bounding boxes detected in the color image to the depth

image without the knowledge of the world z-coordinate. Consequently, we can calculate

the location of the person in the world space with equation 4.2.

Person Reidenti�cation
Lastly, the task of person reidenti�cation remains. This is an important part of person

following because occlusions or other persons crossing between the drone and the tracked

target may cause tracking to be lost. For this purpose, a MobileNet-based CNN, which

acts as an embedding extractor for persons, is used. This embedding vector belongs to a

vector space in which euclidean distance can be used to measure the similarity between

persons. The model learns this relation through a special loss function called Triplet

Loss [47, 24] that minimizes the distance between an anchor and examples of the same

class while simultaneously maximizing the distance between the anchor and negative

examples. Thus, person similarity can be determined using the learned embedding and

used as a measure for reidenti�cation. In addition, we use the motion model and 3D

location data to �nd missing predictions and reidentify persons not picked up by this �rst

method. This additional check simply provides a sanity check for the identities provided

by the network and helps correct some rare issues where the network has di�culties

di�erentiating between physically distant persons.

30

4.3. Mission Control

4.3.2. Human-Robot Communication

The human-robot communication interfaces consist of an automatic speech recognizer

(ASR) 9 and a speech synthesizer 10 . Both of these components run on the accompa-

nying laptop, but could also be deployed on any other device due to the relatively low

computational resources consumed by the speech recognition system.

The user uses their smartphone through a simple app or the laptop’s microphone

to send verbal commands to the system. The speech signal is then processed by the

Janus Speech Recognition Toolkit [33, 41]. We adapted this model to improve the speech

recognition accuracy on our task by merging the existing language model (LM) with one

trained on the training data described in chapter 5. In essence, this improves recognition

performance on our task by giving Janus access to prior information about the likelihood

of encountering certain word sequences. No further modi�cations were necessary to

achieve good recognition rates. Note that perfect recognition is not necessary for our

approach because the dialog system can to some degree deal with misrecognitions.

The second component of the communication interface is the speech synthesizer which

translates text emitted by the mission control system to speech. This way, the user is

informed about all major system decisions and requests for assistance. As our system

emits grammatically correct English sentences, no special modi�cations for the person

following scenario are needed. Hence, an external, publicly available component is used.

Together with the user, the speech recognizer and synthesizer form a control loop

which we dub „human-in-the-loop“. This setup allows the user to keep up to date with all

actions the drone is performing while being able to intervene whenever the drone requests

assistance or the human operator determines that a system decision needs to be corrected.

4.3.3. Dialog System

The dialog system 11 is the core component used to understand the user’s requests in

the context of the scene and past dialog. As input, it receives the last user utterance from

the ASR and the set of persons visible to the drone.

Based on this input, it then uses the dialog system described in the previous chapter

to determine the next system response. This response consists of a textual response and

possibly a mission description. The textual response, which can include a question, is then

relayed in verbal form to the user via the speech synthesizer.

If the user command contains a request for the execution of a mission (i.e., a goal action

was emitted by the dialog system), the action including its parameters is forwarded to the

global planner for mission planning and execution.

This design allows the dialog system to rely on the user to clarify commands until it is

certain that it understood the mission’s objective correctly. It can also be easily extended to

allow for predictive execution of missions. In this case, the dialog component would relay

information about the mission target to the global planner while it is still in the process of

con�rming the �nal user intent. This is particularly useful if partial transcriptions of the

user’s utterance can be sent to the system. Unfortunately, the android app available for

Janus does not support this use case and thus, this extension is left for future work.

31

4. Drone System

Normal
Mode

Follow
Person

Regain
Tracking

Lost
Person

Person Follow
Command

Tracking
lost

Tracking
not regained

Pe
rso

n

fo
und Person

found
Person

not
found

Flight
Command

Person Follow
Command

Figure 4.5.: Global Planner State Machine
The global planner uses a simple state machine to execute user commands. In particular, the person following command possess a

failure cycle in the state graph. Throughout this cycle, di�erent strategies are employed to reidentify targets after tracking is lost.

Note that this state machine is reset every time a Flight Command or Person Follow Command is received as indicated by the start

state markers.

4.3.4. Global Planner

The global planner is responsible for the planning and execution of received missions. It

also contains strategies for recovery from failures.

Mission planning uses a straightforward approach. If a �ight command (e.g., „Fly a bit

forward“) is received, the global planner simply creates a global plan with one waypoint

containing the target of the command. A similarly simple global plan is used for person

following. The global planner receives the target person’s location and then calculates

a straight line path from the lookahead point to the target. To make sure that the drone

stops at an appropriate distance, the vector between drone position and the target location

is shortened by 0.5 meters. Under the assumption that a line of sight exists between the

drone and the target, this simple procedure is su�cient to approach the targeted person.

As the drone must be able to detect a person in the �eld of view of its camera for it to be

chosen as the target, this assumption holds. In a more complex scenario, a global planner

that uses the grid map and for example, the A∗ algorithm with an iterative replanning

strategy would have to be designed.

During the execution of a person following mission, it is possible that target position

updates fail. For example, the detection and tracking could su�er from a false negative, or

the drone loses sight of the target. In this case the state machine shown in Fig 4.5 tries to

recover tracking using a human-inspired approach.

To understand this approach, assume that a human observer lost track of an observed

target. In this case, the observer would �rst look towards the last known position, exploiting

the fact that the set of possible locations grows circular from the last known position over

time. If this is not successful, the observer would start to expand the search area and look

further to the left or right of the last location and potentially also check the area behind

them.

32

4.3. Mission Control

The state machine implements a very similar behavior for the recovery of the target

location. First, after no location updates have been received for several seconds, the drone

cancels the global plan, informs the user and reorients towards the last known target

location, mimicking the human observer’s reaction. This helps regain tracking when the

drone had to turn away from the target to avoid an obstacle or when detection failed for

several frames, e.g., due to motion blur. If tracking is regained, the drone updates its global

plan and continues normally.

However, if tracking is not reestablished after a set amount of time (�ve seconds in our

system), the state machine enters the lost person mode. In this mode, the drone expands

the search area. It �rst rotates 90° in the direction of the last velocity vector of the target.

Afterward, it rotates 180° to the other side to check the opposite side. If the target is still

not found, a last recovery attempt is made and the drone checks if the person is behind

it. This is particularly important indoors, where the followed target can turn around and

pass by the drone. Finally, if all of these steps were unsuccessful, the user is informed

about the loss of target tracking and asked to issue their next order. This again uses the

human-in-the-loop concept introduced at the beginning of this section.

The drawback of this approach is that it heavily relies on a line of sight towards the

target. As long as one is close to the target and in a straight, spacious hallway, like we

assume in our experiments, this should not present a signi�cant challenge. However,

if the building has a lot of turns and corners, a better approach may be to extract a

local �oor plan from the mapping component. This plan could then be used to build an

improved model of human motion in a building to allow the drone to understand how it

should continue. Regardless, this approach would require signi�cant research e�orts into

improved environment understanding as well as autonomous decision making.

33

5. Experimental Evaluation

In this chapter, we present the experimental evaluation of the dialog and drone system. First,

we describe how we acquired image and dialog pairs for the training of the dialog system.

Afterward, we present three experiments. The �rst experiment uses a user simulator

to evaluate how the system performs on synthetic test data. The second experiment

reports on an online user study in which users interacted with the dialog system with

little instruction. Lastly, a full end-to-end system test of the combined dialog and drone

system is presented.

5.1. Data Sets

In order to train the dialog system introduced in chapter 3, a training data set, i.e., images

and corresponding dialogs, need to be selected. However, only a few of the publicly

available image data sets are suitable for this purpose, and none of them contain dialogs

for our scenario. Thus, the three data sets shown in Fig. 5.1 were manually created using

a two-step approach consisting of the collection and annotation of image data, followed

by synthetic dialog generation. These two steps are described brie�y in the following two

sections.

5.2. Data Collection & Augmentation

Two methods were employed to collect image data. One, videos from a publicly available

data set [46] originally intended for human interaction recognition, were used to form the

(a) SDHA (b) KIT (c) CMU

Figure 5.1.: Three Data Sets
Three di�erent data sets were to train the dialog system. SDHA contains manually selected images from [46], while KIT and CMU

were collected speci�cally for this work using Intel RealSense D435 cameras mounted on the drone. All three data sets were

annotated manually with 2D person bounding boxes and the dominant color of each person’s top (e.g., t-shirt, sweater, . . .).

35

5. Experimental Evaluation

Data Set Training Validation Test
SDHA 110 27 34

KIT 163 41 51

CMU 154 38 48

Table 5.1.: Overview of Images in Each Data Set

SDHA data set (Fig. 5.1a). In contrast to the elevated perspective of this data set, the other

two data sets, KIT (Fig. 5.1b) and CMU (Fig. 5.1c) were recorded from the perspective of

an o�ce drone assistant.

After this �rst collection step, frames were extracted from all videos at about 0.1 Hz and

further �ltered manually to remove too similar looking shots. In the next step, all selected

images were annotated with person bounding boxes and the main color of each person’s

top (e.g., t-shirt, sweater, . . .).

Combined, this process yielded a total of 666 images separated into the train, test and

validation data sets using a 60%:15%:25% split as shown in Table 5.1.

Lastly, to increase the amount of training data, images were augmented using a random

combination of the techniques described in the following
1
. First, all images were �ipped

and saved as additional data points. Afterward, the images were either scaled by up to 10%

or rotated by up to 5 degrees. In essence, this models the typical changes of the perspective

of the drone, e.g., a person coming closer and the roll angle of the drone. Furthermore, to

mimic the noise from vibrations and movement of the drone, Gaussian noise, Gaussian blur,

and motion blur were added. Lastly, the variability of colors was increased by applying

one of three more extreme adjustments: Either the color of each pixel, the brightness, or

the contrast of the image were modi�ed in reasonable bounds.

In total, for each input image, eighteen augmented images were generated using a

random combination of the augmentations described above. From hereon, appropriate

dialogs are generated for each image.

5.3. Synthetic Dialog Generation

With no real dialogs being available for our data sets, a di�erent approach has to be taken

to obtain the needed training data. In our case, the solution to this problem is synthetic

dialog generation according to a well-structured process to guarantee that as many as

possible scenarios are covered.

We identi�ed �ve di�erent scenarios, that can reasonably be learned from our data set:

• Ignore: Command not directed at system

• Simple: Color/Direction of a person

• Combined: Color and Direction of one person

• Relative: Color/Direction of the targeted person relative to another person

1
We used imgaug (https://github.com/aleju/imgaug)

36

https://github.com/aleju/imgaug

5.4. Experiments

• Flight: Commands directing the drone to �y in a certain direction

Note that while some users proposed other features (e.g., person holding a phone) during

some of our experiments, these detailed features cannot be learned from our data set due

to their rare occurrence. Thus, only color and direction features are used.

For each scenario, both success and failure cases (e.g., command with color that is not

present in the current scene) were generated. Each failure case was further extended by a

question and a success case containing a reference to that question (e.g., I don’t see anyone
in blue. Are you talking about the person in black clothes? # yes). To make the di�erent

cases distinguishable, each is represented as an action, e.g., FlyToColor for a simple color

command or RejectRelativeDirectionWrongColor for a relative command in a scene in

that no one with the speci�ed color stood next to a person in the speci�ed direction. A

full list of actions, and in extension scenarios, is given in section A.1.1 of the appendix.

In all cases, templates were used to generate user utterances and system responses for

all of these cases. Furthermore, a combination of synonym lists and varying sentence

structures was employed to improve the realism of the generated dialogs. However, not all

possible dialogs can be modeled due to the large variety of speech. Consequently, we rely

on the dialog system to generalize from the training examples to unseen user utterances.

Additionally, to better model continuous dialog and allow the system to understand

target changes, dialogs containing multiple scenarios consecutively were added to the

data set.

While the essential idea sounds rather simple in theory, the actual implementation

requires signi�cant engineering e�orts to ensure that only logically consistent dialogs are

generated. Additionally, variable numbers of persons in each scene further complicate

this process. These di�culties presented a serious challenge during the design of our data

set even though only a limited number of features (color and direction), and number of

persons (up to 4) were considered. For larger systems with more complicated scenarios,

this approach would not be suitable, and other avenues such as gathering dialogs from

real users (e.g., Amazon Mechanical Turk) would have to be explored.

5.4. Experiments

To evaluate the performance of the drone and dialog system, three experiments were

conducted. The �rst two used a user simulator and an online user study, respectively, to

evaluate the dialog system in isolation. Lastly, the performance of the dialog and drone

system was tested end-to-end. In the following sections, the results of each experiment

are analyzed in detail.

5.4.1. Experiment 1: User Simulator

The metrics collected during training assume that dialog steps can be evaluated in isolation,

i.e., prior outputs do not in�uence the current dialog step. However, this is not comparable

to the actual use of the system in which the current step depends on previous system

outputs. Consequently, we examine system performance with a user simulator that

emulates the step-by-step interaction a user would have with the dialog system.

37

5. Experimental Evaluation

Combination Type Correct Action Incorrect Action
Invalid Action Parameters

Text (Baseline) 83.43% 0.00% 14.04% 2.53%

Multimodal Att. (ReLu) 90.45% 0.04% 8.33% 1.17%

Multimodal Att. (Sigmoid) 91.02% 0.01% 7.77% 1.20%

Projected (ReLu) 57.13% 4.23% 25.78% 12.86%

Projected (Sigmoid) 50.25% 0.07% 30.62% 19.06%

Summation 91.63% 0.01% 7.23% 1.13%
Summation (w/o scene desc.) 90.89% 0.01% 7.89% 1.21%

(a) Accuracy of Predicted Actions across Feature Combination Types

Combination Type ∅ Steps Success Failure
Action Target Both

Multimodal Att. (ReLu) 1.3 95.19% 0.01% 4.67% 0.12%
Multimodal Att. (Sigmoid) 1.3 94.15% 0.06% 5.56% 0.23%

Projected (ReLu) 1.1 79.58% 0.17% 19.74% 0.51%

Projected (Sigmoid) 1.0 73.79% 0.00% 25.99% 0.22%

Summation 1.3 96.04% 0.01% 3.81% 0.15%

Summation (w/o scene desc.) 1.3 95.75% 0.01% 4.04% 0.20%

(b) Accuracy of Predicted Target Across Di�erent Feature Combination Types

Combination Type Person Count Color (Correct) Direction (Correct)
Text (Baseline) 47.12% 19.66% 59.89%

Multimodal Att. (ReLu) 99.61% 92.66% 73.69%
Projected (ReLu) 64.13% 39.33% 45.79%

Summation 99.67% 90.67% 71.17%

Summation (w/o scene desc.) 99.68% 91.63% 70.48%

(c) Scene Description: Share of Correctly Predicted Parameters

Table 5.2.: Comparison of Feature Combination Types
Tables 5.2a to 5.2c show an overview of the three feature combination types multi-modal attention, summation and projection with

di�erent activation functions trained on all three data sets combined. Additionally, a baseline based on training only on the dialog

text and desired system responses is provided. The post�x w/o scene description indicates that the scene description was pruned from

the system response before concatenation with the dialog history.

The simulator �rst picks a target in an image and then generates user utterances based

on one of the scenarios (including failure cases) outlined in the preceding section. The

dialog continues until a maximum number of steps is reached or a goal action is emitted,

i.e., the system indicates that it can identify the target unambiguously. Finally, various

metrics from the correctness of generated actions and parameters to the identi�cation of

the correct target are collected.

Note that this experiment only evaluates how the system performs under lab conditions

as real users may react di�erently to the system’s responses, or use di�erent sentence struc-

tures and word choices not modeled by our templates. However, this experiment provides

valuable insights into how di�erences in system architecture a�ect model performance.

In the following, we �rst brie�y discuss the impact of di�erent feature combination

types on our system, including a comparison to a baseline text-only system. Following

this, a comparison between models trained on one data set and evaluated on the others is

presented.

Scene-Awareness and Feature Combination Types
The impact of di�erent feature combination types on the accuracy of target identi�cation,

38

5.4. Experiments

predicted actions and scene descriptions is shown in Tables 5.2a, 5.2b and 5.2c, respectively.

Table 5.2a additionally shows results for a model that was trained using only user utterances

and desired system responses without image input.

In all tables of 5.2, projected feature combination performs signi�cantly worse than

other models and even the text baseline. We suspect that the large number of parameters

in the projection feedforward layer made it di�cult for the training algorithm to �nd

suitable parameters with the available training data in the allotted 20 epochs.

For similar reasons, we hypothesize that the Summation model outperforms multi-modal

attention slightly. The smaller di�erence between these models and projection can be

explained by the fact that multi-modal attention is a generalization of summation.

Furthermore, we observe that the Summation model improves the accuracy of predicted

actions (Table 5.2a) by about 50% compared to the baseline. Combined with the high target

prediction accuracy of 96% of this model (Table 5.2b), this suggests that the model is able

to leverage scene information to determine the correct action, i.e. it is indeed scene-aware.

This is further corroborated by the signi�cant increase of correctly predicted colors to 90%

compared to 20% for the baseline shown in Table 5.2c.

One downside, as seen in the same table, is the low accuracy of 71% of direction

prediction. In particular, a closer inspection of the incorrectly identi�ed directions shows

that most errors are caused by the confusion of left with right and middle. We suspect

that the training data set inconsistently used directions (e.g., as action parameters) and

thus, the model was not able to infer a generalized meaning of these words. This may be

addressed by representing the di�erent meanings of direction (e.g., absolute vs relative) by

di�erent output words.

Furthermore, examining the action confusion matrix for the Summation model, we

observe that actions using relative reference (e.g., �y to the person in green next to the
person in blue) seems to be particularly di�cult to learn for the model. While the predic-

tion accuracy for many of these actions (e.g., RejectRelativeDirectionWrongColor (19) or

RejectRelativeSameDirectionDirection (20)) is high, the model has problems distinguish-

ing other actions that have similar parameters. For example, the model often confuses

RejectWrong1ColorColor/RejectWrong2ColorColor with FlyToRelativeColorColor. We hy-

pothesize that it is signi�cantly more di�cult to learn these relative references because of

their infrequent occurrence in the data set and the need to correlate multiple images with

the input text while also relating them to each other. As learning these relations is mostly

the task of the image self-attention component introduced in 3.3.1, an improved design of

this part could help improve the prediction of these rarely occurring actions.

Nonetheless, these results show that only summation or its generalization multi-modal

attention are well suited as a feature combination type. Furthermore, this evaluation

indicates that our model is able to take advantage of the provided scene information, in

addition to understanding relative descriptions between objects in the same scene.

Generalization to other data sets
In this second experiment, we examined the generalization of our model by training on

one data set and evaluating on the remaining data sets. The results of these evaluations

are presented in Table 5.3a and 5.3b.

39

5. Experimental Evaluation

Figure 5.2.: Action Confusion Matrix for Model Trained with „Summation“
Feature Combination Type

The matrix contains row-wise the ground-truth action and column-wise the predicted action. Note that for reasons of clarity and

comprehensibility, the percentage is only shown for entries with more than 3% and that the color coding has been retained for all

entries. As expected based on Table 5.2a, the model predicts most actions correctly. However, actions with relative references (i.e. all

actions containing any combination of direction and color in their name) are most often confused, e. g. RejectWrong1ColorColor
(23)/RejectWrong2ColorColor (24) and FlyToRelativeColorColor (8). These actions are complicated to learn for the model because it

needs to not only relate text to one image crop but also relate multiple crops to each other. We hypothesize that a modi�cation of the

image self attention mechanism could lead to improved recognition of this type.

Training Set
Test Set All CMU KIT SDHA

All 90.68% 92.37% 92.16% 86.76%

CMU 80.49% 91.38% 80.00% 68.06%

KIT 82.05% 78.66% 92.96% 71.06%

SDHA 81.62% 79.19% 78.50% 90.34%

(a) Accuracy of Predicted Action Including Parameters Across Di�erent Training and Test Sets

Training Set
Test Set All CMU KIT SDHA

All 95.23% 97.41% 98.50% 88.11%

CMU 85.44% 95.44% 91.92% 65.25%

KIT 86.20% 89.27% 96.08% 69.84%

SDHA 87.48% 81.73% 91.31% 88.73%

(b) Accuracy of Predicted Target Across Di�erent Training and Test Sets

Table 5.3.: Results: Generalization of Model to Other Data Sets
Tables 5.3b and 5.3a show an overview of the target and action accuracy when when training on one of the three data sets and

evaluating on the others. All models used multi-modal attention with ReLu activation and were trained for the same number of

epochs.

40

5.4. Experiments

Figure 5.3.: Interface of the User Study
Users were instructed to try to order a „virtual“ drone to the person marked with a red rectangle. They could then enter commands

in a chat-like interface to command the drone to the right target, including possibly correcting themselves after issuing a wrong

command.

In Table 5.3b, we can observe that for the most part, training on all data sets combined

leads to the best performance. This model even slightly surpasses the recognition rate of

models only trained and evaluated on KIT (96.08% vs. 98.50%) and CMU (95.40% vs. 97.41%).

We suspect that two factors mainly contribute to this improvement. One, the combined

data set contains more dialogs, potentially leading to a more optimized classi�cation head.

Nonetheless, note that the model saw each image and dialog combination the same number

of times (once per epoch) in all data sets. This directly leads to the second factor. As both

data sets share a certain subset of colors, the model may learn a better association between

a color word in the input command and di�erent shades of that color in the input image.

A similar observation can be made for the action and parameter prediction shown in

Table 5.3a. The model trained on the combined data set achieves results very close to the

performance of training and evaluating on the same data set. An exception is the SDHA

data set, which contains far more very similar colors (e.g., gray, dark blue and black). Thus,

a model trained only on this data set may be more sensitive to distinguishing these colors

and as a result achieve a higher accuracy on the metric reported in Table 5.3a.

From this discussion, it becomes evident that a factor that signi�cantly limits the

generalization of our models is that our data set is rather small and does not contain a

large variety of colors. However, as observed in Table 5.3b, this variety may help improve

the model’s understanding of user commands. Consequently, this should be addressed in

future research.

5.4.2. Experiment 2: Online User Study

To further evaluate the system under more realistic conditions, we conducted an online

user study. During this study, users were instructed to imagine they are controlling a

drone and are trying to send it with a verbal command to the person marked with a red

41

5. Experimental Evaluation

rectangle. This was visualized using a chat-like interfaces as shown in Fig 5.3. To control

the „virtual“ drone, users entered text commands in the text input �eld at the bottom before

receiving a response from the drone. They were instructed to continue chatting with the

drone until the right target was identi�ed or they gave up. Every seven dialogs, a short

three-question survey was conducted to judge the user experience. Furthermore, note that

we incentivized users to complete more dialogs by providing a gift card give-away with

increased chance of winning proportional to the number of completed dialogs.

Figure 5.4.: Histogram of Dialog
Length

∅ Steps Success Failure
Target Action

2.2 86.8% 3.1% 10.1%

Table 5.4.: User Study: Average Dialog Length
and Target Accuracy at the End of
Dialog

In total, during the week-long study, 19 users with mostly technical background con-

tributed 424 dialogs. A histogram of the average length of these dialogs is shown in Fig.

5.4. Additionally, Table 5.4 provides an overview of the success and failure rates and the

average length of dialogs.

A �rst observation concerns the average length of dialogs. In contrast to the user

simulator, which only needed 1.3 steps on average, users required 2.2. This is further

con�rmed by the histogram shown in 5.4 which shows that about 45% of dialogs required

two steps. Closer inspection of the dialogs reveals that the system often responded by

questioning the �rst command although it was unambiguous. In the second step, the

system then correctly recognized the target.

We suspect that this is in part caused by users choice of words and sentence structure

which deviated from the training data quite signi�cantly in some cases. This issue could

be addressed by collecting more data from real users as opposed to using hand-designed

templates in addition to optimizing for dialog length.

Additionally, one can observe in Table 5.4 that most failures were not caused by the

system identifying the wrong target, but by misrecognitions of actions, e.g. the system

asking a question instead of identifying a target or confusing a goal action with one that

instructs the drone to �y to a speci�c position. Noticeably, this happens mostly when the

dialog becomes longer than the dialogs used in training, and users continue to refer to the

start of the conversation. Nonetheless, the system achieves a high success rate of 86.8%.

Furthermore, users were asked to complete the survey shown in Table 5.5. In summary,

users reported average naturalness of dialogs and di�culty of selecting the right target.

These results imply that further work on improving the dialog (e.g., not questioning the

�rst command if it is unambiguous) needs to be done. In addition, users did report that

they would �nd voice control for drones only moderately useful. An additional survey has

42

5.4. Experiments

Question Average Response
On a scale of 1-10, how natural did the dialogs feel to you? 4.9

On a scale of 1-10, how di�cult was it to send the quadcopter to

the correct target?

5.5

On a scale of 1-10, how useful would you �nd controlling a quad-

copter with a mature dialog system (if available, e.g., for quad-

copter �lming, bridge inspections, ...) instead of manual �ight con-

trol?

6.0

Table 5.5.: Survey

Figure 5.5.: Testing Area with two test persons
The location all experiments were conducted in. Users were instructed to wait until the operator selected a person and then move

back independently. To increase the safety of this experiment, test subjects were asked to walk backwards, and if the drone comes to

close, move out of its way. However, the latter issue only happened once during the experiments.

to be conducted to evaluate if this perception changes when users actually have to use a

drone or this control mode is applied to other, more practical uses case like SAR.

5.4.3. Experiment 3: System Evaluation

Lastly, we evaluated the performance of the entire system end-to-end. Table 5.6 shows

the results of 10 experiments that were conducted with 3 di�erent persons in the location

shonw in Fig. 5.5. All users received a brief introduction explaining which features

(color, direction, �ight commands) the system understands and were not provided any

additional guidance on which sentences to use. However, note that some of our subjects

may have heard about the training data prior to the experiment. To ensure the safety of

all participants, the drone was limited to �ying at 0.5m/s or slower.

As Table 5.6 shows, the dialog system worked as intended for the majority of cases.

However, speech recognition did not work very reliably. Independet tests without the

drone �ying con�rmed that these failures were mostly caused by the noise of the drone.

When operators moved further away from the drone, speech recognition performance

improved signi�cantly. This system could be improved by using a directional microphone

instead of the omnidirectional microphone built into the tablet used for the experiments.

43

5. Experimental Evaluation

Experiment No. Speaker Speech Dialog

Global
Planner /
Obstacle
Avoid-
ance

Hardware

1 1

Didn’t

recognize

speech

on �rst

try due to

noise and

accent

X X X

2 1

Didn’t

recognize

speech

on �rst

try due to

noise and

accent

Dialog

selected

wrong

person

X X

3 1

Didn’t

recognize

speech

on �rst

try due to

noise and

accent

X X X

4 2 X X

Drone got

stuck due

to late

recogni-

tion of

obstacle

X

5 2 X X X X

6 2 X X X X

7 3

Recognized

wrong

word due

to noise

X X X

8 3 X X X X

9 3 X X X X

10 3 X X

Drone got

stuck and

too close to

person

X

Summary 6/10 9/10 8/10 10/10

Table 5.6.: End-to-End System Test Results
44

5.4. Experiments

Alternatively, additional noise �ltering could also lead to signi�cantly improved perfor-

mance.

Ignoring this issue, the system was able to determine and follow the targeted person in

7 of 10 cases. In particular, Experiment 8 nicely demonstrated

how the user learned to use the system and was able to correct the drone after a mis-

detection of a person walking around in the background sent the drone into the wrong

direction. Additionally, note that the �ltering added by us to the mapping component

did only partially solve the appearance of spurious points in the pointcloud. From data

gathered during the experiments, we hypothesize that the depth camera miscalculated the

depth for very bright spots (e.g., lights) and incorrectly believed that an obstacle was right

above it. This caused the drone to either get stuck or turn seemingly randomly as can be

observed in the video accompanying this thesis.

To summarize, users were able to interactively control and correct the drone and quickly

learned to use the system. While speech recognition could be improved, the drone was

able to successfully track and follow the targeted person.

45

6. Conclusion & Future Work

In this thesis, we addressed the problem of integrating scene-awareness into an interactive

dialog system. We also investigated how this system can be used on a UAV for the person

following task.

To enable dialog systems to take advantage of scene context, we presented a novel

approach to integrating visual information into a transformer-based dialog system and

evaluated di�erent feature combination methods based on multi-modal attention and

projection. Additionally, we implemented a question selection procedure which allows the

dialog system to ask goal-oriented questions grounded in the system’s scene understanding

to clarify a user’s task description. This system was then deployed and evaluated on an

autonomous UAV.

The experimental evaluation showed promising results and suggested that this model

indeed learns an understanding of the scene. Furthermore, our experiments on several data

sets con�rmed that the model’s design based on object image crops can generalize to unseen

scenes with similar camera perspectives. Furthermore, a user study and experiments with

a UAV indicated that humans can use this system with little to no formal training with a

high success rate of 86.8% and 70%, respectively.

These results combined suggest that the presented system’s transferability to new uses

cases and ease of use make it applicable to many practical use cases beyond the person

following task. In particular, this applies to tasks, whose high-level mission descriptions

can be accurately expressed with speech, like interactive package drop-o� negotiation or

drones as fully-integrated team members in SAR. Consequently, the barrier to deploying

drones in these applications can be signi�cantly lowered with the presented system and

make the use of drones more e�cient.

However, speech alone may not be the best modality for all use cases due to the limited

precision of verbal instructions and external factors like noise making speech recognition

di�cult. This could be addressed in future research on �exi-modal human-robot interaction,

which aims to combine multiple communication modes. This area of research also presents

new challenges for con�ict resolution and disambiguation across modalities.

Furthermore, making the dialog system, including the question selection component,

end-to-end trainable, could be investigated further. This integration would have the

advantage of allowing the optimization of additional criteria such as dialog length and

more natural, more goal-oriented dialogs by tighter integration of system components.

During work on this thesis, it also became evident that only few data sets suitable

for visual dialog exist today. Additionally, most existing data sets only contain limited

dialog, such as the question-answer format used for DSTC7 [65]. While these data sets

provide ways of evaluating audiovisual dialog systems, they do not model true interactivity,

including the system asking questions as opposed to the human operator. This perspective,

however, is crucial for natural human-robot interactions. Thus, to make works on similar

47

6. Conclusion & Future Work

dialog systems comparable and support research on multi-modal dialogs, the creation of a

suitable data set with multiple modalities and truly interactive dialog should be explored.

Following a similar train of thought, another more general research direction related to

making the machine learning process more human-like arises from this work. Humans, in

contrast to ML models, are capable of acquiring new skills with comparably few examples.

This is in part based on imagination allowing humans to create new, �ctional scenarios

based on prior experiences. Transferring this ability to machine learning models presents

a very intriguing research area with great potential for improved system performance and

a huge overall impact on the �eld of machine learning.

48

Bibliography

[1] Stanislaw Antol et al. “Vqa: Visual question answering”. In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 2425–2433.

[2] Michael Arens. Einführung in die Bildfolgenauswertung - Objektverfolgung I. May

2018. url: https://ies.anthropomatik.kit.edu/lehre_bildfolgenauswertung.

php (visited on 01/26/2020).

[3] Anand Asokan, Allan Joseph Pothen, and Raj Krishnan Vijayaraj. “ARMatron—A

wearable gesture recognition glove: For control of robotic devices in disaster man-

agement and human rehabilitation”. In: 2016 International Conference on Robotics
and Automation for Humanitarian Applications (RAHA). IEEE. 2016, pp. 1–5.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine transla-

tion by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473
(2014).

[5] Antoine Bordes, Y-Lan Boureau, and Jason Weston. “Learning end-to-end goal-

oriented dialog”. In: arXiv preprint arXiv:1605.07683 (2016).

[6] Jonathan Cacace et al. “A control architecture for multiple drones operated via

multimodal interaction in search & rescue mission”. In: 2016 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE. 2016, pp. 233–239.

[7] Hongshen Chen et al. “A survey on dialogue systems: Recent advances and new

frontiers”. In: Acm Sigkdd Explorations Newsletter 19.2 (2017), pp. 25–35.

[8] Stefan Constantin, Jan Niehues, and Alex Waibel. “An end-to-end goal-oriented

dialog system with a generative natural language response generation”. In: 9th Inter-
national Workshop on Spoken Dialogue System Technology. Springer. 2019, pp. 209–

219.

[9] Stefan Constantin, Jan Niehues, and Alex Waibel. “Multi-task learning to improve

natural language understanding”. In: CoRR abs/1812.06876 (2018). arXiv: 1812.06876.

url: http://arxiv.org/abs/1812.06876.

[10] Abhishek Das et al. “Visual dialog”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2017, pp. 326–335.

[11] Robin Deits et al. “Clarifying commands with information-theoretic human-robot

dialog”. In: Journal of Human-Robot Interaction 2.2 (2013), pp. 58–79.

[12] Li Deng et al. “Use of kernel deep convex networks and end-to-end learning for spo-

ken language understanding”. In: 2012 IEEE Spoken Language Technology Workshop
(SLT). IEEE. 2012, pp. 210–215.

49

https://ies.anthropomatik.kit.edu/lehre_bildfolgenauswertung.php
https://ies.anthropomatik.kit.edu/lehre_bildfolgenauswertung.php
http://arxiv.org/abs/1812.06876
http://arxiv.org/abs/1812.06876

Bibliography

[13] Bhuwan Dhingra et al. “Towards end-to-end reinforcement learning of dialogue

agents for information access”. In: arXiv preprint arXiv:1609.00777 (2016).

[14] Gregory Dudek, Junaed Sattar, and Anqi Xu. “A visual language for robot control

and programming: A human-interface study”. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation. IEEE. 2007, pp. 2507–2513.

[15] Mihail Eric and Christopher D Manning. “A copy-augmented sequence-to-sequence

architecture gives good performance on task-oriented dialogue”. In: arXiv preprint
arXiv:1701.04024 (2017).

[16] Mihail Eric and Christopher D Manning. “Key-value retrieval networks for task-

oriented dialogue”. In: arXiv preprint arXiv:1705.05414 (2017).

[17] Ramon A Suarez Fernandez et al. “Natural user interfaces for human-drone multi-

modal interaction”. In: 2016 International Conference on Unmanned Aircraft Systems
(ICUAS). IEEE. 2016, pp. 1013–1022.

[18] Tino Fuhrman et al. “An Interactive Indoor Drone Assistant”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE. 2019.

[19] Akira Fukui et al. “Multimodal compact bilinear pooling for visual question answer-

ing and visual grounding”. In: arXiv preprint arXiv:1606.01847 (2016).

[20] Scott A Green et al. “Collaborating with a mobile robot: An augmented reality

multimodal Interface”. In: IFAC Proceedings Volumes 41.2 (2008), pp. 15595–15600.

[21] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.

03385 [cs.CV].

[22] Charles T Hemphill, John J Godfrey, and George R Doddington. “The ATIS spoken

language systems pilot corpus”. In: Speech and Natural Language: Proceedings of a
Workshop Held at Hidden Valley, Pennsylvania, June 24-27, 1990. 1990.

[23] João F Henriques et al. “High-speed tracking with kernelized correlation �lters”. In:

IEEE transactions on pattern analysis and machine intelligence 37.3 (2014), pp. 583–

596.

[24] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In Defense of the Triplet Loss
for Person Re-Identi�cation. 2017. arXiv: 1703.07737 [cs.CV].

[25] Chiori Hori et al. “End-to-end audio visual scene-aware dialog using multimodal

attention-based video features”. In: ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 2352–2356.

[26] Chiori Hori et al. “Attention-based multimodal fusion for video description”. In:

Proceedings of the IEEE international conference on computer vision. 2017, pp. 4193–

4202.

[27] Andrew G. Howard et al. MobileNets: E�cient Convolutional Neural Networks for
Mobile Vision Applications. 2017. arXiv: 1704.04861 [cs.CV].

[28] Pei Jia et al. “Head gesture recognition for hands-free control of an intelligent

wheelchair”. In: Industrial Robot: An International Journal 34.1 (2007), pp. 60–68.

50

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1703.07737
http://arxiv.org/abs/1704.04861

[29] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[30] Gakuto Kurata et al. “Leveraging sentence-level information with encoder lstm for

semantic slot �lling”. In: arXiv preprint arXiv:1601.01530 (2016).

[31] Hung Le et al. “Multimodal transformer networks for end-to-end video-grounded

dialogue systems”. In: arXiv preprint arXiv:1907.01166 (2019).

[32] Oliver Lemon et al. “The WITAS multi-modal dialogue system I”. In: Seventh Euro-
pean Conference on Speech Communication and Technology. 2001.

[33] Lori Levin et al. “The Janus-III translation system: speech-to-speech translation in

multiple domains”. In: Machine translation 15.1-2 (2000), pp. 3–25.

[34] Linjie Li et al. “Relation-aware Graph Attention Network for Visual Question An-

swering”. In: arXiv preprint arXiv:1903.12314 (2019).

[35] Xiujun Li et al. “End-to-end task-completion neural dialogue systems”. In: arXiv
preprint arXiv:1703.01008 (2017).

[36] Fei Liu and Julien Perez. “Gated end-to-end memory networks”. In: Proceedings of
the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers. 2017, pp. 1–10.

[37] Jiasen Lu et al. “Hierarchical question-image co-attention for visual question an-

swering”. In: Advances In Neural Information Processing Systems. 2016, pp. 289–

297.

[38] Brad Myers et al. “Flexi-modal and multi-machine user interfaces”. In: Proceedings.
Fourth IEEE International Conference on Multimodal Interfaces. IEEE. 2002, pp. 343–

348.

[39] Jawad Nagi et al. “Human control of UAVs using face pose estimates and hand ges-

tures”. In: 2014 9th ACM/IEEE International Conference on Human-Robot Interaction
(HRI). IEEE. 2014, pp. 1–2.

[40] Pedro Neto et al. “Gesture-based human-robot interaction for human assistance in

manufacturing”. In: The International Journal of Advanced Manufacturing Technology
101.1-4 (2019), pp. 119–135.

[41] Thai-Son Nguyen et al. “Improving sequence-to-sequence speech recognition train-

ing with on-the-�y data augmentation”. In: arXiv preprint arXiv:1910.13296 (2019).

[42] Ryuichi Nisimura et al. “ASKA: receptionist robot with speech dialogue system”.

In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 2. IEEE.

2002, pp. 1314–1319.

[43] Cesc Chunseong Park, Byeongchang Kim, and Gunhee Kim. Attend to You: Per-
sonalized Image Captioning with Context Sequence Memory Networks. 2017. arXiv:

1704.06485 [cs.CV].

[44] Mengye Ren, Ryan Kiros, and Richard Zemel. “Exploring models and data for image

question answering”. In: Advances in neural information processing systems. 2015,

pp. 2953–2961.

51

http://arxiv.org/abs/1704.06485

Bibliography

[45] Alan Ritter, Colin Cherry, and William B Dolan. “Data-driven response generation

in social media”. In: Proceedings of the conference on empirical methods in natural
language processing. Association for Computational Linguistics. 2011, pp. 583–593.

[46] M. S. Ryoo and J. K. Aggarwal. UT-Interaction Dataset, ICPR contest on Semantic De-
scription of HumanActivities (SDHA). http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html.

2010.

[47] Florian Schro�, Dmitry Kalenichenko, and James Philbin. “FaceNet: A uni�ed em-

bedding for face recognition and clustering”. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2015). doi: 10.1109/cvpr.2015.7298682.

url: http://dx.doi.org/10.1109/CVPR.2015.7298682.

[48] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural machine translation of

rare words with subword units”. In: arXiv preprint arXiv:1508.07909 (2015).

[49] Tao Shen et al. “Disan: Directional self-attention network for rnn/cnn-free language

understanding”. In: Thirty-Second AAAI Conference on Arti�cial Intelligence. 2018.

[50] Dimitris Spiliotopoulos, Ion Androutsopoulos, and Constantine D Spyropoulos.

“Human-robot interaction based on spoken natural language dialogue”. In: Pro-
ceedings of the European workshop on service and humanoid robots. 2001, pp. 25–

27.

[51] Rainer Stiefelhagen et al. “Enabling multimodal human–robot interaction for the

karlsruhe humanoid robot”. In: IEEE Transactions on Robotics 23.5 (2007), pp. 840–

851.

[52] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. “End-to-end memory net-

works”. In: Advances in neural information processing systems. 2015, pp. 2440–2448.

[53] I Sutskever, O Vinyals, and QV Le. “Sequence to sequence learning with neural

networks”. In: Advances in NIPS (2014).

[54] I Sutskever, O Vinyals, and QV Le. “Sequence to sequence learning with neural

networks”. In: Advances in NIPS (2014).

[55] Christian Szegedy et al. “Rethinking the inception architecture for computer vision”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition.

2016, pp. 2818–2826.

[56] Joshua B Tenenbaum and William T Freeman. “Separating style and content with

bilinear models”. In: Neural computation 12.6 (2000), pp. 1247–1283.

[57] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems. 2017, pp. 5998–6008.

[58] Vaibhav Viswanathan. “Fast motion-planning for high-speed drone �ight”. unpub-

lished. 2019.

[59] Stefan Waldherr, Roseli Romero, and Sebastian Thrun. “A gesture based interface

for human-robot interaction”. In: Autonomous Robots 9.2 (2000), pp. 151–173.

[60] Tsung-Hsien Wen et al. “A network-based end-to-end trainable task-oriented dia-

logue system”. In: arXiv preprint arXiv:1604.04562 (2016).

52

https://doi.org/10.1109/cvpr.2015.7298682
http://dx.doi.org/10.1109/CVPR.2015.7298682

[61] Jason E Weston. “Dialog-based language learning”. In: Advances in Neural Informa-
tion Processing Systems. 2016, pp. 829–837.

[62] Jason Weston, Sumit Chopra, and Antoine Bordes. “Memory networks”. In: arXiv
preprint arXiv:1410.3916 (2014).

[63] Jason D Williams, Kavosh Asadi, and Geo�rey Zweig. “Hybrid code networks:

practical and e�cient end-to-end dialog control with supervised and reinforcement

learning”. In: arXiv preprint arXiv:1702.03274 (2017).

[64] Jason D Williams and Geo�rey Zweig. “End-to-end lstm-based dialog control opti-

mized with supervised and reinforcement learning”. In: arXiv preprint arXiv:1606.01269
(2016).

[65] Koichiro Yoshino et al. “Dialog System Technology Challenge 7”. In: arXiv preprint
arXiv:1901.03461 (2019).

[66] Licheng Yu et al. “Multi-target embodied question answering”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 6309–6318.

[67] Dongxiang Zhang, Rui Cao, and Sai Wu. “Information fusion in visual question

answering: A Survey”. In: Information Fusion 52 (2019), pp. 268–280.

[68] Tiancheng Zhao and Maxine Eskenazi. “Towards end-to-end learning for dialog state

tracking and management using deep reinforcement learning”. In: arXiv preprint
arXiv:1606.02560 (2016).

53

A. Appendix

A.1. Dialog System

A.1.1. System Outputs and Responses

Action Parameters Example
FlyLinear distance, �ight_direction FlyLinear MUCH forward

FlyRotate distance, turn_direction FlyRotate NORMAL TURN_left

FlyStop FlyStop

FlyToColor color FlyToColor COLOR_black

FlyToColorDirection color, image_direction

FlyToColorDirection COLOR_black DI-

RECTION_LEFT

FlyToDirection image_direction FlyToDirection DIRECTION_MIDDLE

FlyToNth nth_person, image_direction FlyToNth 1 DIRECTION_LEFT

FlyToRelativeColorColor

color, image_direction, color, im-

age_direction

FlyToRelativeColorColor

COLOR_WHITE DIRECTION_LEFT

/ COLOR_BLACK DIRECTION_RIGHT

FlyToRelativeColorDirection

color, image_direction, color, im-

age_direction

FlyToRelativeColorDirection

COLOR_WHITE DIRECTION_LEFT

/ COLOR_BLACK DIRECTION_RIGHT

FlyToRelativeDirectionColor

color, image_direction, color, im-

age_direction

FlyToRelativeDirectionColor

COLOR_WHITE DIRECTION_LEFT

/ COLOR_BLACK DIRECTION_RIGHT

FlyToRelativeDirectionDirection image_direction, image_direction

FlyToRelativeDirectionDirection DIREC-

TION_RIGHT DIRECTION_RIGHT

FlyTurn turn_direction FlyTurn AROUND

RejectAmbiguousColor color_word RejectAmbiguousColor brown

RejectAmbiguousDirection image_direction

RejectAmbiguousDirection DIREC-

TION_MIDDLE

RejectIncorrectColorPosition color_word, image_direction

RejectIncorrectColorPosition green DI-

RECTION_RIGHT

RejectIncorrectPosition image_direction

RejectIncorrectPosition DIREC-

TION_LEFT

RejectRelativeColorWrongDirection color_word, image_direction

RejectRelativeColorWrongDirection

white DIRECTION_LEFT

RejectRelativeDirectionWrongColor image_direction, color_word

RejectRelativeDirectionWrongColor

DIRECTION_LEFT blue

RejectRelativeSameDirectionDirection image_direction, image_direction

RejectRelativeSameDirectionDirection

DIRECTION_RIGHT DIREC-

TION_RIGHT

RejectRelativeWrongColorDirection color_word, image_direction

RejectRelativeWrongColorDirection yel-

low DIRECTION_LEFT

RejectUnknownColor color_word RejectUnknownColor beige

RejectWrong1ColorColor color_word, color

RejectWrong1ColorColor red

COLOR_BLACK

RejectWrong2ColorColor color, color_word

RejectWrong2ColorColor

COLOR_WHITE red

UnkColor UnkColor

UnkDirection UnkDirection

Table A.1.: List of Actions

55

A. Appendix

Question Parameters Example
QuestionColor color QuestionColor COLOR_black

QuestionColorDirection color, image_direction

QuestionColorDirection COLOR_white

DIRECTION_LEFT

QuestionDirection image_direction

QuestionDirection DIREC-

TION_MIDDLE

QuestionDirectionColor image_direction, color

QuestionDirectionColor DIREC-

TION_RIGHT COLOR_black

QuestionMultipleColor color, color

QuestionMultipleColor COLOR_white

COLOR_black

QuestionMultipleDirection image_direction, image_direction

QuestionMultipleDirection DIREC-

TION_LEFT DIRECTION_RIGHT

QuestionNoClue QuestionNoClue

QuestionNoIdea color_word, image_direction

QuestionNoIdea green DIREC-

TION_RIGHT

QuestionRelativeColorWrongColor color, color

QuestionRelativeColorWrongColor

COLOR_WHITE COLOR_black

QuestionRelativeColorWrongDirection color_word, image_direction

QuestionRelativeColorWrongDirection

white DIRECTION_RIGHT

QuestionRelativeDirectionColor image_direction, color

QuestionRelativeDirectionColor DIREC-

TION_LEFT COLOR_black

QuestionRelativeDirectionDirection image_direction, image_direction

QuestionRelativeDirectionDirection

DIRECTION_RIGHT DIRECTION_LEFT

QuestionRelativeWrongColorDirection color, image_direction

QuestionRelativeWrongColorDirection

COLOR_black DIRECTION_LEFT

Table A.2.: List of Questions

A.1.2. Image Feature Extractor

Conv1

Batch Norm

ReLu

Conv2

Batch Norm

ReLu

+

Scale to [0, 1]

Conv1

Batch Norm

ReLu

MaxPool

Average Pool

Feedforward

Basic Block
(128 filters)

Basic Block
(128 filters)

Image

di

dimg

Basic Block CNN

Figure A.1.: CNN Used for Feature Extraction from Person Images
The CNN is based on ResNet [21] and uses two basic blocks with 128 �lters each. Initially, Conv1 initially applies a 7x7 kernel with

128 �lters to the RGB input image. Further details can be found in torchvision’s ResNet implementation:

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

56

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

A.2. Drone System

A.2. Drone System

A.2.1. Hardware

• Drone (1.18kg w/ battery)

– Futaba T8J Remote

– Telemetry Radio

– Student Competition 5" Bundle from GetFPV

∗ 1x Black Polyamide Stando� Set (6mm)

∗ 4x Black Hex Stando�s 45mm (4 pcs)

∗ 1x M3x5 Button Head Steel Screw Set (50pcs)

∗ 1x Lumenier Medium Lipo Strap (3pcs)

∗ 4x Lumenier LX2205-12 2400KV Motor

∗ 1x Holybro PX4 2.4.6 "Pixhawk" & M8N GPS & PM & 100mW Radio

Telemetry V3 (915Mhz) OR Pixracer

∗ Dampeners for Pixracer

∗ 1x Lumenier BLHeli_32 32bit 35A 4-in-1 ESC 2-4s w/ BEC 3A/12v, 1A/5v,

DSHOT 1200

∗ 1x FrSky R-XSR 2.4GHz 16CH ACCST Micro Receiver w/ S-Bus & CPPM

∗ 1x Lumenier 5x5x3 - Butter Cutter Propeller (Set of 4 - Clear)

∗ 1x Holybro PX4FLOW Kit v1.31

• ConnectTech Elroy Carrier Board

– Elroy Power Cable

– Elroy HDMI Cable

• Nvidia TX2

– Custom aluminium mounting plate for TX2

– USB A - Mini A (TX2 => USB Hub)

– USB A - Micro B (TX2 => Pixracer)

– Anker USB hub / Pi Zero USB Hub

– 2 Ports USB 3.0 Female to USB3.0 Motherboard Female 20 Pin Header

– 90 Degree Angled USB 20-Pin Internal Header Mini Connector - Down Angle

• D435

– USB A - USB C (D435)

• T265

57

A. Appendix

– USB A - USB Micro B

– USB 3.0 Y cable (mit extra power cable)

– USB 2-6S LiPo Charger

– 45°angled mounting plate for T265

– Dampeners

• Battery Cables

• XT60 Connectors

58

	Abstract
	Zusammenfassung
	Introduction
	Related Works
	Interaction Strategies
	Dialog Systems
	Mono-Modal Dialog Systems
	Integrating Scene Information into Dialog Systems

	Scene-Aware Dialog Systems
	System Overview
	The Transformer Model
	Attention
	Functional Principles of the Encoder and Decoder

	Integration of Scene-Awareness into the Transformer
	Modifications to Encoder
	Modifications to Decoder
	Target Selection

	Training
	Limitations

	Drone System
	Hardware
	System Overview
	Flight Control

	Mission Control
	Person Detection & Tracking
	Human-Robot Communication
	Dialog System
	Global Planner

	Experimental Evaluation
	Data Sets
	Data Collection & Augmentation
	Synthetic Dialog Generation
	Experiments
	Experiment 1: User Simulator
	Experiment 2: Online User Study
	Experiment 3: System Evaluation

	Conclusion & Future Work
	Bibliography
	Appendix
	Dialog System
	System Outputs and Responses
	Image Feature Extractor

	Drone System
	Hardware

