Growing Semantic Grammars

by
Marsal Gavalda i Camps
B.S., Universitat Politécnica de Catalunya, 1994
M.S., Carnegie Mellon University, 1996

Submitted to the Graduate Faculty of
the Language Technologies Insititue in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Carnegie Mellon University

2000

Carnegie Mellon University

Ph.D. Program in Language and Information Technologies

This dissertation was presented

by

Marsal Gavalda i Camps

It was defended on

4 August 2000

and approved by

Dr. Alex Waibel, Chair

Dr. Jaime Carbonell

Dr. Jill Lehman

Dr. Stephanie Seneff (M.I.T.)

Dr. Wayne Ward (University of Colorado)

ii

Dedicated to
Maria Teresa Camps i Bernabé,
Doménec Gavalda i Aran,

A S
and BT

v
Foreword

I first arrived in Pittsburgh during the unusually cold winter of 1994, as a “visiting scholar”!
to Carnegie Mellon’s Center of Machine Translation from the Universitiat Fridericiana zu
Karlsruhe, in Karlsruhe, Germany, (where, incidentally, I was an exchange student from
the Universitat Politecnica de Catalunya, in Barcelona, Catalonia) and I stayed the first
night at the house of CMT staff member Noah Coccaro, with the verbal assurance that the
heating was running full steam. Well —guess what?— the heating in my room broke down

during that night.

From such an auspicious beginning, it was hard to imagine that I would eventually spend
over six years in Pittsburgh, first as a master’s student in the Computational Linguistics
program at CMU’s Philosopy Department, and later as a Ph.D. student in the Language
and Information Technologies program at the newly created Language Technologies Insti-

tute.

The usual ups and downs of graduate student life notwithstanding, I’'ve had a great time
at CMU and I fondly remember past and present classmates, coworkers and professors. I
particularly recall one autumn day in 1995, when my fellow student Laura Mayfield and
I went to see our common advisor, Prof. Prof. Dr. Alexander H. Waibel, with the big
news. We were sitting down together on the floor of the 4600 corridor in Wean Hall waiting
for him. Eventually, Alex opened the door, we stood up, and I said it: “Alex, we have
something to tell you: Laura and I are getting married.” And, indeed, that Christmas we
got married in Asia and I moved into her apartment. “But not to each other.” As it turns
out, we both got married to our respective spouses, Laura in Japan and I in China, and my

wife and I took over Laura’s lease.

Will a computer? ever be capable of “understanding” this little anecdote? (And how about
“finding it amusing”?) We do not know for sure, much of it depends on what passes as
“understanding,” but making machines behave as though they understood language is the

underlying theme of this dissertation.

Since early childhood T have been fascinated by language, this symbolic net that our minds

cast upon the world (including themselves!) and that somehow mediates most of our cogni-

!Official title in quotes because, at that time, I was still an undergrad.
2A computer that is not a Homo sapiens sapiens, to be precise.

tive processes. I remember repeating the pronunciation of foreign words (as sweet as candy),
drawing evolutionary language trees (is there a single root?), and eventually going through
consecutive periods of very intensive language learning (English, German, Japanese, Chi-
nese, all wondrous escapes from the oppressive presence of the Spanish language in my

native country of Catalonia).

And when my adventurous father brought home a Hewlett Packard HP-85 digital computer,
in the autumn of 1980, I immediately sensed that this was an extraordinary object: it was
programmable, its monochrome, 256 x 192-pixel screen, could draw anything imaginable and

then some!?

Thus, it is not surprising that as soon as I heard of natural language processing and com-

putational linguistics I felt a familiar attachment and an eagerness to pursue this field.

And not surprisingly either, this dissertation is dedicated to my parents: Maria Teresa
A f 4

Camps i Bernabé and Domenec Gavalda i Aran, and to my wife: %‘%{{%{T (Jiaxing

Weng), for, among the many reasons too numerous and intimate to detail, their unwavering

support and encouragement to complete it.

3And yet, at the same time, I realized that the number of possible distinct images was finite: 22°6'192
which is about 1.68 - 1079,

Abstract

One of the greatest difficulties in the successful deployment of natural language under-
standing (NLU) systems lies in the inherent richness of human language: it is impossible
to capture a priori all the different ways in which people may express a particular idea.
This dissertation demonstrates, through the explicit construction and real-life testing of
the GsG computer system, that this problem can be solved by enabling the NLU system
to automatically learn new semantic mappings, without requiring either large amounts of
hand-coded world or task-specific knowledge, or technical expertise in the users of the end
application.

When GsG does not understand what the user says, it makes educated guesses, poses con-
firmation and clarification questions, and remembers the meaning of the new words and
constructions by formulating and generalizing new rules and merging them with the exist-
ing grammar. GsG incorporates external knowledge sources (semantic grammar, part-of-
speech tagger, syntactic grammar, end-application constraints), constructs internal knowl-
edge sources (Ontology, Parsebank, Hypotactical and Paratactical Models) and combines
learning strategies (All-top parsing, Anchor Mother Prediction, Daughter Argument Selec-
tion, Vertical and Horizontal Generalization) into a coherent, mixed-initiative conversation
with the end-user, as an epiphenomenon of which, the original semantic grammar, written
in a standard formalism such as JSGF, is judiciously and seamlessly extended.

Thus, Gsa provides an extremely robust NLU interface, and, at the same time, significantly
reduces grammar development time, because the original grammar, while complete with
respect to the semantic representation of the domain at hand, need only cover a small
portion of the surface variability, for it will be automatically extended as the users interact
with the system.

GsaG has been tested in two different applications with excellent results: correct rules are
acquired and the resulting grammar increases its semantic accurarcy on independent test
sets between 20 and 32 absoulte percentage points, which amounts to an error reduction
factor between 1.35 and 16.51.

Moreover, users feel empowered by the ability to teach their language patterns to the system.

vi

Table of Contents

List of Figures o e e xi
List of Tables o . o e e XV
1 Imtroduction. 1
1.1 Reader’s Guide 2
1.2 A Note on the Implementation 3
1.3 Grammar Format0 o o 4
1.4 Abbreviations L L e 4

2 Dissertation Overview e 6
2.1 Motivation 6
2.1.1 Defining Semantic Mappings, 6

2.1.2 Defining Semantic Grammars 8

2.1.3 Problem Statement oL 9

2.2 Approaches to Extending Semantic Grammars 9
2.3 The Gsa Approach L 10
2.3.1 Example. 11

2.3.2 Summary of Results oo oo 12

3 Related Work e 15
3.1 Two-stage Parse Repair 15
3.2 Hidden Understanding Models, 16
3.3 Acquisition of New Words, 18
3.4 Adapting to the User’s Language 18
3.5 Linguistic Knowledge Acquisition from Parsing Failures 21
3.6 Automatic Acquisition of Spoken Language 24
3.6.1 Information-theoretic Networks 25

3.6.2 Structured Networkso oL 27

3.6.3 Symbols from Signals o oL 28

3.6.4 Grammatical Inferenceo 0oL 28

3.7 Concluding Remarkso 30

4 Philosophy and Modus Operandiof Gsc 31
4.1 A New Paradigm in Grammar Extension. 31
4.1.1 Assumptions 32

4.1.2 The Philosophy of Gsa L. 33

4.2 Overview of GSG L e 34
4.2.1 Gs@’s Metagrammaro 34

vii

4.2.2 GsG’s Fundamental Algorithms 34

4.2.3 Enabling a Natural Dialogue 38

5 The SouP Parser e 39
5.1 Parsing L 39
5.2 Grammars e e e e e e 41
5.2.1 A Note on the Grouping of RHS Constituents 42

5.3 Probabilistic Recursive Transition Networks 43
5.3.1 Generation from PRTNs, 44

5.4 Parsing Heuristics o oL 45
5.4.1 Maximization of Coverage 46
5.4.2 Minimization of Fragmentation 46

5.4.3 Minimization of Complexity 47
5.4.4 Minimization of Wildcard Usages 51
5.4.5 Maximization of Arc Probabilities 51
5.4.6 Combining Heuristics 52

5.5 Parsing Modes 54
5.5.1 Word-level Default Parsing Mode 54
5.5.2 Word-level Constrained Parsing Mode 54
5.5.3 Word-level Augmented Parsing Mode 55
5.5.4 Character-level Parsing Mode 56
5.5.5 Parsing of Right-hand Sides 56

5.6 Sketch of the Parsing Algorithm 61
5.7 SKipping oL e 64
5.8 Performance 66
5.8.1 Comparsion with LCFLEX 67

5.9 The Graphical Development Environment GSoup 68
6 The GsG Learning System 73
6.1 System Architecture 73
6.2 Knowlege Sources L 73
6.2.1 Grammar 74

6.2.2 Ontology e 74
6.23 Parsebanko 80
6.2.4 Prediction Models oo L 80
6.2.5 Part-of-Speech Tagging and Shallow Syntactic Parsing 87

6.3 Learning Strategies e 88
6.3.1 Establishing the Anchor Mother 91
6.3.2 Daughter Argument Selection 92
6.3.3 Licensing Constraints, 94
6.3.4 Rule Generalization 0000 95
6.3.5 Rule Management 97
6.3.6 Enabling a Natural Dialgoue 100
6.3.7 The Effect of Grammar Design on GSG’s Learning Abilities 103

6.4 GsGin Action e 104
6.4.1 Typology of User Interactions 104
6.4.2 Detailed Example o 0L 107

7 Experiments and Results 0 . 114

7.1 Introduction e 114

7.2 Experiments. e 115
721 E-Mail Task e e 115

7.2.2 Musicbox Task 121

7.3 Example Interactions oo 126
7.3.1 Successful 126

7.3.2 Neutral e 127

7.3.3 Unsuccessful o 131

7.4 Results. e e 131
741 E-Mail Tasko o 131

7.4.2 Musicbox e e e 138

74.3 Summaryo Lo e e e e 141

7.5 User Comments e 144

8 Conclusion L e 145
8.1 Discussion e e 145
8.2 Major Contributions L o 146
8.3 Future Directions L 147
8.3.1 Integration with a Speech Recognizer 147

8.3.2 End-application as Knowledge Source 147

8.3.3 Context-dependent Learning 148

8.3.4 Acquisition of New Concepts 148

8.3.5 Usage of Semantic Distance 149

8.3.6 Anaphora Resolution, 149

8.3.7 Rule Compaction after Merging 149

8.3.8 Library of Grammars 0o 149

8.4 Conclusion e e e 150
Appendix A Small Grammar to Illustrate SOUP’s Heuristics 152
AT G3 . 152
Appendix B Syntactic Grammar L. L0 154
B.1 Part Of Speech Tag Set 155
B.2 Top-level Categories of Syntactic Grammar 156
B.3 Syntactic Grammar Lo Lo e 156
Appendix C Semantic Grammarso 159
C.1 GsG’s Metagrammar o oo e e 159
C.2 E-Mail Task Grammar 0 e 163
C.3 Musicbox Grammars L e e e 181
C.3.1 Generic Grammarol e 181

C.3.2 Musicbox Grammar 182

C.3.3 Shopping Cart Grammar 185
Appendix D Utterances from User Sessions 186
D.1 E-Mail Task0 186
D11 User 1 e e e e 186

D12 User2 186

D13 User3 e e e e 187

1x

D14 User4d e 189

D.1.5 Userd o o o e e 189
D.1.6 User 6 e e e e e 190
D.1.7 User 7 . . . o o o e e e e e e 190
D.1.8 User 8 e e 191
D19 User9 o e 191
D.1.10 User 10 o o o e e e e e e e 192

D.2 Musicbox Task e 193
D.2.1 User 1 e e e e e e 193
D.2.2 User 2 e 193
D.2.3 User 3 e e e e 194
D24 User4d e 194
D.2.5 Userd o o e 195
Appendix E Learning Episodes.o . 197
E.1 E-Mail Task’s Detailed Results 197
E1.1 User 1l e e e 197
E.1.2 User 2 e e e 201
E.1.3 User3 o e 204
E.1.4 User 4 @ e e e e 208
E.15 Userd o o e 210
E.1.6 User 6 e e e e e e 214

E. 1.7 User 7 o o o e e e 218
E.1.8 User 8 o e 222
E.1.9 User 9 e e e 226
E.1.10 User 10 o o o e e e 234

E.2 Musicbox Task’s Detailed Results 237
E21 Userl e e 237
E.2.2 User 2 e e e e 240
E.2.3 User3 e 244
E.2.4 User4 @ e e e e e e 248
E25 Userd o e 250
References e 253

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

3.3

4.1

4.2

5.1

5.2

5.3

5.4

9.5

5.6

List of Figures

Example of a feature structure L.
Example of a semantic grammar oL
Example of a parse tree e
Example of a partial analysis 0L
Example interaction between GsG and auser
Example of a learning episode L o000
Example of grammar extended after learning episode

Result graph for the E-Mail Task.

Kiyono and Tsujii’s algorithm for parse recovery.
The reinforcement learning cycle.o L.

Example interaction to illustrate the behavior of embedded information-
theoretic networks. Lo L

Grammar coverage over time, as extended by human expert..

Summary of GSG’s Interactive Parsing Algorithm.

Example of different parses of the same sentence according to different gram-

Lattice representing a JSGF rule.o 000
Rules in the Phoenix formalism equivalent to a single rule in JSFG.

Examples of JSGF rules represented as PRTNs.
Example of a tree generated from the PRTN in Figure 5.4.

Interpretation to exemplify SOUP’s search heuristics.

xi

11

12

13

13

14

22

25

29

33

36

40

42

42

5.7 Interpretation to exemplify maximization of coverage. 46

5.8 Interpretation to exemplify minimization of fragmentation. 47
5.9 Interpretation to exemplify minimization of number of nodes. 48
5.10 First interpretation to exemplify maximization of branching score. 49
5.11 Second interpretation to exemplify maximization of branching score. 50
5.12 Grammar fragment to illustrate the dispreferral of wildcard usages. 51
5.13 First interpretation to exemplify minimization of wildcard usages. 51
5.14 Second interpretation to exemplify minimization of wildcard usages. 52
5.15 First interpretation to exemplify maximization of arc probabilities. 52
5.16 Second interpretation to exemplify maximization of arc probabilities. 53
5.17 Interpretation to exemplify skipping and multiple-tree interpretations. . . . 55
5.18 First interpretation to exemplify all-top parsing mode. 56
5.19 Second interpretation to exemplify all-top parsing mode. 57
5.20 Grammar fragment to illustrate character-level rules. 58
5.21 Interpretation to exemplify character-level parsing. 59
5.22 Example of the generation set foran RHS. 60
5.23 Example of the expansion set of an RHS. 60
5.24 Example of a detection of ambiguity introduction. 60
5.25 Grammar to illustrate ambiguity packing.o 61
5.26 Example of a parse lattice that illustrates ambiguity packing. 61
5.27 Exhaustive listing of parse trees encoded in parse lattice. 62
5.28 Example of second-order search in SOUP’s parsing algorithm. 64
5.29 Coverage and parse time performance with skipping. 65
5.30 Parse time as a function of utterance length. 67
5.31 Screenshot of GSOUP: Visualization of the ontology. 70
5.32 Screenshot of GSoUP: Visualization of top-level NTs. 70
5.33 Screenshot of GSOUP: Generation froman NT. 71

xii

0.34

5.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

7.1

7.2

7.3

Screenshot of GSOUP: Detection of rule conflicts. 71

Screenshot of GSoUP: Rule annotation. 72
GsG’s system diagram. Lo 74
Grammar fragment to illustrate computation of dominating Is-a mother. . . 76
Example of an ontology. o 78
Example of a parse. L 79
Example of highlighted ontological nodes. 79

Example parse tree to illustrate events for hypotactical and paratactical models. 82

Example of a syntactic analysis. L. 88
Gsa’s Interactive Parsing Algorithm (Part I). 89
Gsa’s Interactive Parsing Algorithm (Part IT). 90
Interpretation used as example in the Vertical Generalization algorithm. . . 96
Interpretation used as example in the Horizontal Generalization algorithm. 96
Example of PRTNs. 98
Example of naive rule merging. oL oL 99
Example of GsG’s Rule Merging algorithm. 99

First grammar fragment to illustrate effect on GSG’s generalization abilities. 104

Second grammar fragment to illustrate effect on GSG’s generalization abilities.105

Dialogue between user and system in detailed example. 108
Grammar fragment for detailed example.. L. 109
Rule acquired in detailed example. 0oL 111
Direct mapping learned in detailed example. 112
Resulting feature structures in detailed example. 113
First example parse tree for the E-Mail Task 117
Second example parse tree for the E-Mail Task 118
Instructions given to the users for the E-Mail Task. 119

xiii

7.4

7.5

7.6

7.7

7.8

7.9

E.1

E.2

E.3

E.4

E.5

E-Mail Task screenshot. L oo 120
Example parse for the Musicbox Task. 123
Instructions given to the users for the Musicbox Task. 124
Musicbox Task screenshot. o oo 0oL 125
Result graph for the E-Mail Tagk 141
Result graph for the Musicbox Task 142
Syntactic parse of open lucy’s emadil. 203
Syntactic parse of display inbox.o 222
Mapping learned for kill spam after LE e9.3. 230
Parse tree for newest first.o 231
Mapping learned for newest first after LE €9.6. 231

xiv

1.1

4.1

5.1

5.2

9.3

5.4

9.5

0.6

6.1

6.2

6.3

6.4

6.5

6.6

7.1

7.2

7.3

7.4

7.5

List of Tables

Code statistics L 3
Main concepts of GSG’s Metagrammar. 35
The Chomsky hierarchy of grammars. 41
Arc types used to encode JSGF grammars as PRTNs. 43
Table of weights for combining heuristic scores into a single value. 53
SOUP’s performance. L Lo 66
Grammars and test sets used in comparison experiment. 68
Performance comparison of LCFLEX and Soup.. 68
Example of scores from the Prediction Models. 81

First table of experiment to determine optimal weight in interpolation of

hypotactical and paratactical models. 85
Second table of above experiment. 85
Third table of above experiment., 86
Fourth table of above experiment. 86
Summary of GSG’s prediction, learning and generalization strategies. 91
Main concepts in the E-Mail Task., 115
Main concepts in the Musicbox Task. 122
Summary of results for the E-Mail Task. 133
Scores for the evaluation of learning episodes. 134
Degree of domain exploration in the E-Mail Task. 135

XV

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

Semantic accuracy on the E-Mail Task’s user session corpus. 136
Semantic accuracy on the E-Mail Task’s independent corpus. 136
Type of rule acquired in the E-Mail Task. 136
Distribution, in the E-MailTask, of the grade of acquired rules given their type.137

Distribution, in the E-Mail Task, of the type of acquired rules given their

grade. . . oL 137
Summary of results for the Musicbox Task. 138
Degree of domain exploration in the Musicbox Task. 139
Semantic accuracy on the Musicbox Task’s user session corpus. 139
Semantic accuracy on the Musicbox Task’s independent test corpus. 140
Type of rule acquired in the Musicbox Task. 140
Distribution, in the Musicbox Task, of the grade of acquired rules given their

tYPe. . . o e e e 140
Distribution, in the Musicbox Task, of the type of acquired rules given their

grade. L e e 140
Summary of results. Lo 143

xvi

Chapter 1

Introduction

The dream of communicating with computers via natural language (the best medium for
the exchange of ideas that we know of) is beginning to be fulfilled: Speech recognition
and natural language understanding by computers are no longer science fiction. In fact,
the field of language technologies is experiencing a blossoming of research prototypes (e.g,
the C-STAR speech translation project [Waibel, 1996]), marketable consumer products
(e.g., dictation systems) and deployed industrial “solutions” (e.g., call centers) which, albeit
severely limited, begin to be truly useful.

It is within this context that this dissertation becomes relevant: As natural language un-
derstanding systems transition from research labs into people’s everyday life, and as they
evolve from the system-directed interactions of interactive voice response systems based on
isolated-word recognizers and fixed-menu navigation, to the mixed-initiative dialogues car-
ried out in spoken dialogue systems based on large-vocabulary continuous speech recognizers
and flexible dialogue managers (see, for example, [Allen et al., 1996; Denecke, 1997; Walker
et al., 1998; Rudnicky et al., 1999; Zue et al., 2000]), the overall ezperiential quality of the
human-computer interaction becomes increasingly important. That is, beyond the obvious
factors of speech recognition accuracy and speech synthesis naturalness, the most critical
challenge is that of providing a conversational interaction that feels natural to human users
(cf. [Glass, 1999]). And this challenge, I believe, can only be met by building systems that
possess some degree of linguistic, reasoning, and learning abilities.

The thesis of this dissertation is that a first step in this direction can be achieved by enabling
natural language understanding (NLU) systems to learn the meaning of new words and
constructions, and it is validated through the description of Gsa, an NLU system that is
able to dynamically extend its linguistic knowledge through simple, natural language only
interactions with non-expert users. On a purely on-need basis, i.e., when the system does

not understand what the user says, GSG makes educated guesses, poses confirmation and

Chapter 1: Introduction 2

clarification questions, and learns new semantic mappings from the answers given by the
users, as well as from other linguistic information that they may volunteer.

Granted, there is no magic wand that can solve the complex issue of natural language
understanding: Mapping a string of words into some form of semantic representation is
as difficult as painting the thoughts the reader is having at this moment. However, this
thesis represents a step in the direction of facilitating human-computer interaction through
natural language by demonstrating that computers can be programmed to learn natural
language in a way akin to how humans do it, i.e., by asking clarification questions, making
generalizations, and detecting conflicts with previous knowledge.! As we shall see, GSG
incorporates external knowledge sources (semantic grammar, part-of-speech tagger, syntac-
tic grammar, end-application constraints), constructs internal knowledge sources (Ontol-
ogy, Parsebank, Hypotactical and Paratactical Models) and combines learning strategies
(All-top parsing, Anchor Mother Prediction, Daughter Argument Selection, Vertical and
Horizontal Generalization) into a coherent, mixed-initiative conversation with the end-user,
as an epiphenomenon of which, the original semantic grammar is judiciously and seamlessly

extended.

1.1 Reader’s Guide

This document is organized into eight chapters and five appendices. The body of the text
provides an explanation of the problem, a detailed description of the proposed solution in
the form of the GsG? system, and an account and analysis of the experiments conducted
to validate it; the appendices provide all the relevant data, including grammars, user utter-
ances, and learning episodes.

In more detail, the following Chapter 2: Dissertation Overview, states the general
problem of extragrammaticality and presents a condensed version of the solution proposed
in this dissertation; Chapter 3: Related Work surveys the rich substrate of research
upon which GSG has grown; Chapter 4: Philosophy and Modus Operandi of Gsa
restates the motivation for and the overall architecture of GsG; Chapter 5: The Soup
Parser describes SOUP, the parsing engine that lies at the heart of GsG; Chapter 6: The
GsaG Learning System explains in detail the algorithms for interactive parse construction
and rule management that form the core of the thesis; Chapter 7: Experiments and

Results describes the different experiments conducted and presents their results; finally,

! Although no claim is made that GSG’s algorithms resemble the ones humans employ.
2 Abbreviation of GROWING SEMANTIC GRAMMARS.

Chapter 1: Introduction 3

C++ JAvA Total
Lines Classes | Lines Classes Lines Classes
Soup || 33,532 36 | 5,798 20 || 39,330 56
GsaG || 24,488 15 | 25,550 75 50,038 90
Total || 58,020 51 | 31,348 95 || 89,368 146

Table 1.1: Number of lines of code and classes for the implementation of SOUP and GsaG.
(Does not include automatically generated C++ code to interface with JAvA).

Chapter 8: Conclusion, summarizes the main contributions of this dissertation and
sketches future directions for research.

Note that Chapters 3 (Related Work) and 5 (The Soup Parser) may be skipped without
loss of continuity.

As for the appendices, Appendix A: Small Grammar to Illustrate SOur’s Heuristics
lists a grammar for illustrative purposes; Appendix B: Syntactic Grammar presents the
syntactic knowledge of English given to the system, namely, the part-of-speech tag set, an
explanation of the top-level categories of the English syntactic grammar, and the syntactic
grammar itself; Appendix C: Semantic Grammars records the semantic knowledge
given to the system, namely, the Metagrammar, for all applications, followed by the kernel
grammars for the E-Mail Task and the Musicbox Task; Appendix D: Utterances from
User Sessions lists the utterances that occurred in the experiments, both for the E-Mail
Task and the Musicbox Task; finally, Appendix E: Learning Episodes presents in full

detail all the learning episodes (and cancelations) that took place during the user sessions.

1.2 A Note on the Implementation

The entire computer system described in this dissertation has been implemented by the
author from the ground up using the C++ and JAVA programming languages. Since the
coding of an initial version of the SOUP parser, began in the summer of 1996 until now (for
years later), SOUP itself has been rewritten twice and the final code, including the learning
components of GSG, has grown to encompass about 90,000 lines of code and 146 classes®

(see Table 1.1).

3In the software-development, object-oriented sense of a class being a data structure and its functionality.

Chapter 1: Introduction 4

1.3

Grammar Format

For comsistency’s sake, all grammars and grammar-related examples in this dissertation

are written according to the Java Speech Grammar Format (JSGF), which is part of the

Java Speech Application Development Interface [JSAPI, 1998]. For a complete reference,

see [JSGF, 1998], but, as a way of summary, JSGF grammars are context-free grammars

where:

1.4

A grammar is a set of rules.

A rule is composed of a left-hand side or nonterminal and a right-hand side or rule

body, following the pattern LHS = RHS;, e.g. <greeting> = hello;.

Nonterminals that are starting symbols of the grammar (i.e., top-level NTs) are

marked by the keyword public in front of their definition.

Nonterminals are enclosed in angle brackets, e.g. <greeting>.

Right-hand sides (RHSs) can mix terminals and nonterminals, e.g. how about <time>.
Rule alternatives are separated by ‘|’, e.g. <greeting> = hello | how are you;.

Optionality is expressed by enclosing the optional subRHS in square brackets, e.g.

how are you [today] matches how are you and how are you today.

Repeatability is expressed by a ‘4’ immediately after the repeatable subRHS, e.g.
bye+ matches bye, bye bye, bye bye bye, etc.

Optionality and repeatability (i.e., Kleene star) can be compactly expressed by a ‘*’
immediately after the optional and repeatable subRHS, e.g. good bye* matches good,
good bye, good bye bye, etc.

Brackets can be used to delimit scope, e.g. how are you [today | this (morning
| afteroon | evening) | tonight] matches how are you, how are you today, how
are you this morning, how are you this afternoon, how are you this evening, and how

are you tonight.

Abbreviations

Most of the abbreviations used in this dissertation are expanded below.

Chapter 1: Introduction

NLU: natural language understanding

CFG: context-free grammar

NT: grammar nonterminal

LHS: left-hand side (same as a nonterminal in a context-free grammar)
RHS: right-hand side, rule body

subRHS: part of a right-hand side
T: grammar terminal, word

Chapter 2

Dissertation Overview

This chapter presents the problem that motivates this dissertation, possible approaches to
tackle it, and a high-level description of both the approach taken and its implementation
through the GsG system. A concrete example and a summary of results are provided, and
pointers to the more detailed explanation that constitutes the rest of the document are

included throughout.

2.1 Motivation

A fundamental step in natural language understanding' is the transformation of a sequence
of words (for example, the result of the decoding of an utterance by a speech recognizer)
into a meaning representation that can be used to reason about the intention of the speaker
and may lead to the execution of an action. An example would be an NLU system that
manages your electronic mail. In that case, one would want to transform, say, read again
the last message from alice into a logical representation, such as the one in Figure 2.1, which

can be processed and executed by an e-mail client.?

2.1.1 Defining Semantic Mappings

The most straightforward way of defining such a transformation is via a semantic grammar,
so called because its nonterminals represent semantic concepts (such as <senderName>). A

possible semantic grammar for the above example is shown in Figure 2.2.

!'Natural language understanding can be described as the programming of computers so that they behave
as though they understood natural language (see, for example, [Allen, 1995; Jurafsky and Martin, 2000] for
textbook introductions to the field). Note that this definition sidesteps the philosophical issue of whether
a (non-human) computer can ever “really understand” natural language, and it does so by adopting Alan
Turing’s realization that, for all practical purposes, behavior is what really counts (as in the ultimate artificial
intelligence test known as the Turing Test [Turing, 1950; Dennett, 1984], which will be passed when one can
no longer distinguish whether one’s interlocutor is a human or a machine).

20f course, the e-mail address of alice will still have to be looked up in an address book.

Chapter 2: Dissertation Overview 7

readMessage

index last
senderName alice

Figure 2.1: Feature structure representing the meaning of read again the last message from
alice. A feature structure can be described as a set of attribute-value pairs (e.g., attribute
index, value last), where values can themselves be feature structures (e.g., the complex
value of attribute readMessage).

public <readMessage>
<_read>
<index>
<_message>
<_sender>
<senderName>

<_read> [again] [the] [<index>] <_message> <_sender>;
read | speak;

first | last;

message | messages;

(from | sent by) <senderName>;

alice | bob;

Figure 2.2: Example of a semantic grammar to parse read again the last message from
alice. As explained in §1.3, the grammar formalism follows JSGF, where top-level rules
(i.e., starting symbols of the grammar) are denoted by the keyword public, grammar
nonterminals are surrounded by ‘<’ and ‘>,” alternatives separated by ‘l|,” and optional
constituents are enclosed by ‘[’ and ‘].” Additionally, the convention of making the names
of auxiliary nonterminals begin with ‘_’ is used, as in <_message>.

Semantic grammars are of course not the only way to obtain the meaning of a sentence. For
example, a common approach is to use a syntactic grammar to identify thematic roles, such
as agent, theme, instrument, benefactee, experiencer, etc. (see for example [Napoli, 1993]),
and then use this information to build a semantic representation of the sentence. However,
this process still requires domain-dependent semantics if one is to arrive at meaning repre-
sentations (such as the one in Figure 2.1) that are suitable for further processing and that
lead to the actual execution of commands in the back-end application.

Therefore, it can be argued that the level of difficulty of describing any semantic mapping
is comparable to that of defining a semantic grammar. And, throughout this dissertation,
semantic grammars are the semantic mapping of choice.

Going back to the example above, we see that the parsing® of read again the last message
from alice using the semantic grammmar in Figure 2.2 yields the parse tree depicted in
Figure 2.3. Furthermore, this parse tree can be easily transformed* into the desired feature

structure in Figure 2.1.

3Structural analysis of a sentence according to a grammar.

“Deterministic, context-free conversion of a parse tree into a feature structure by mapping the parse tree
nodes that correspond to principal nonterminals (i.e., those nonterminals whose names do not begin with an
underscore ‘') into feature structure attributes, whose values are, recursively, feature structures extracted

from the parse subtrees, or primitive values when the parse tree leaves are reached.

Chapter 2: Dissertation Overview 8

<readMessage>
|
I I [[| I
<_read> again the <index> <_message> <_sender>
read last message from <senderName>
alice

Figure 2.3: Parse tree of read again the last message from alice according to the grammar
in Figure 2.2.

2.1.2 Defining Semantic Grammars

The specification of a semantic grammar comprises two main components: one is the defini-
tion of the ontology, that is, a hierarchy of the concepts that are relevant to the domain at
hand, or, in other words, the principal NTs and their dominance relations, which constitute
the skeleton of the semantic grammar; the other is the construction of the rules that tie
together nonterminals with terminals and other nonterminals.

The first component, the definition of the ontology, is a design decision about what concepts
are deemed important in a particular domain. For example, according to the example
grammar in Figure 2.2, the word again in the sentence read again the last message from
alice does not contribute to the meaning representation (and indeed read the last message
from alice would obtain the exact same feature structure as in Figure 2.1). That is a design
choice, a decision about the granularity, resolution, or amount of detail that the application
developer considers sufficient for the application in question. It is a process that is basically
driven by the desired behavior of the system as a whole: in the case of an e-mail client,
the distinction between, say, the last message and the first message is important since a
different behavior (answer from the end-application) is expected® and hence the neccessity
for the concept of <index>. On the other hand, it may be perfectly fine that the answer to,
or execution of, read again the last message from alice be exactly the same as that of read
the last message from alice and thus the need for an “<again>” concept is obviated.

The second component, the writing of the grammar rules, establishes how the concepts are
to be expressed. For example, the rule for <_sender> in Figure 2.2 expects a <senderName>

to be introduced by either from or sent by, as in from alice or sent by alice.

"Unless, of course, there is no message, or a just a single message, in which case the first message is the
same as the last one.

Chapter 2: Dissertation Overview 9

But here we encounter the crux of the problem: What if one were to say read the message
that alice sent rather than read the message sent by alice? Unfortunately, even though the
two sentences mean the same thing, since the grammar does not allow the former there
would be no parse tree, and thus no feature structure, and the end-application would not
be able to perform any action.

But, in these situations, could the NLU system not show a bit of intelligence, rather than

request a rephrase from the user?

2.1.3 Problem Statement
This is precisely the question that this dissertation addresses:

Is it possible to automatically extend a semantic grammar?
If so, how much domain knowledge and user expertise is necessary?

The answer to these questions, in the form of the GsaG system, constitutes the core of this

dissertation.

2.2 Approaches to Extending Semantic Grammars

Even within the semantic grammar paradigm, there are several approaches one could take
to extend a semantic mapping in the face of extragrammatical® sentences.

Chapter 3 provides a survey of some of the main approaches to the general problem of
extragrammaticality, but, as a brief remark, some of the principal paradigms are discussed
below.

In one end of the spectrum one would find the traditional way of grammar extension,
namely, to collect the sentences that cannot be parsed by the current grammar and ask an
expert human grammar writer to carefully update the grammar to cover the new examples.
This approach obviously suffers form two major drawbacks: it requires highly-skilled human
labor and it takes a long time for new words and constructions to make it into the grammar.
Another approach would be to apply machine learning techniques (such as Bayes classifiers,
vector-space models, etc. (see [Mitchell, 1997])) in order to build a classifier that, given an
utterance, predicts its most likely top-level concept, akin to the lexical-based classification

task of text categorization as described in, for example, [Nigam et al., 2000]. However, this

5Note the distinction between ungrammatical and extragrammatical. Ungrammatical is reserved for sen-
tences that are not grammatical in standard English (such as, say, *The boy eat fish), whereas extragram-
matical qualifies a sentence that lies beyond the language defined by a particular, formal grammar (such as
the semantic grammars discussed in this dissertation) but which may not necessarily be ungrammatical.

Chapter 2: Dissertation Overview 10

approach would yield a flat classification and not a structure with embedded arguments
such as a parse tree.

An approach that is able to retain the structure is minimal-distance parsing, where the
system, upon encountering an extragrammatical sentence, finds the parsable sentence that
is closest to the extragrammatical one, according to the Damerau-Levenshtein metric at
the word level (see [Hall and Dowling, 1980]), that is, with the smallest number possible
of word deletions, insertions and substitutions. But the main drawback of this approach is
the exponential complexity of the algorithm, both in terms of the time and space required
to find the closest grammatical sentence.

Yet another way would be to automatically infer, or induce, a grammar from a collection
of sentences (see, for example, [Parekh and Honavar, 2000]). The problem with such an
approach, beyond the known theoretical results that severely limit what can be learned,
is that the resulting, inferred grammar will be rather incomprehensible and give rise to
parse trees that are not suitable for generating the kinds of feature structures desired to
communicate with the end-application.

On the other hand, a different paradigm could be attempted in which the training set is
constituted by parse trees (as in a treebank) rather than sentences. Still, the problem in
that case is that such an approach could be used to, for example, derive the initial, kernel
grammar, but not as a means to expand an existing grammar to cover extragrammatical
sentences for which, by definition, there are no trees.

Even more approaches are discussed in the following chapter, but the conclusion is that
none of them provides the interactivity, combination of strategies, and rule management

sophistication achieved by GSG.

2.3 The GsG Approach

The GsG system presented in this dissertation follows a simple idea: since what really
matters for natural language understanding is the final representation of a sentence (e.g.,
in the form of a parse tree), given an extragrammatical sentence, efforts should be centered
on constructing, with all available means, the correct semantic representation, leaving the
extension of the grammar as a side-effect of this central objective. Moreover, since we are
dealing with human-computer interfaces, one should not forget that the “available means”
include the human interlocutors (the users of the end-application) who, in fact, are very
much interested in the correct understanding of their sentences. In other words, the system,

besides bringing to bear all the domain and linguistic knowledge it has been furnished with,

Chapter 2: Dissertation Overview 11

<_read> <_message> <senderName>

read the message that alice sent

Figure 2.4: Analysis of read the message that alice sent according to the grammar in Fig-
ure 2.2. Note that the sentence is extragrammatical but, still, a fragmentary analysis can
be constructed.

should be able to engage the human users in a meaningful conversation and thus benefit
from their knowledge.

This is what GsaG does: it interactively constructs the correct semantic representation for
an ungrammatical sentence via its own prediction models and learning strategies as well
as via clarification dialogues mantained with the end-application user. Then, after it has
arrived at the correct meaning representation, new grammar rules are extracted from the
learning episode and potentially added to the grammar. To that effect, GsG employs a
variety of external and derived knowledge soruces and learning strategies, as is explained

in detail in both Chapters 4 and 6.

2.3.1 Example

To give an idea of the interactions and learning that occur in GSG, we can continue with the
example that illustrated the core of the problem: What happens if we say read the message
that alice sent to a GSG system that has been seeded only with the grammar in Figure 2.27
The sentence is extragrammatical and yet, via analyisis and clarification questions, GsaG
is able to infer the meaning and correctly expand the grammar. Again, the details will
become clear in subsequent chapters (especially Chapters 4, 5 and 6), but what follows is a
brief explanation of the mechanisms employed.

Gsa, by running the SOUP parser in all-top mode (see Chapter 5, and §5.5.3.1 in particular),
is able to extract the partial analysis depicted in Figure 2.4. That enables the conversational
interaction shown in Figure 2.5.

The first question is formulated to establish the top-level concept of the unparsable sen-
tence. Since the example grammar only has one, in this case the question is trivial but, in
general, the prediction models (see §6.2.4) are invoked to rank top-level concepts by likeli-
hood. The second question comes from the fact that <_sender> is a required daughter of

<readMessage> and yet is not present in the partial analysis, so it is postulated that the

Chapter 2: Dissertation Overview 12

Interaction 2.4

> read the message that alice sent

I don’t understand right away what you mean but let me guess...

Is "read the message that alice sent" a way to express read message, e.g.
"read message from alice"?

1. Yes
2. No
> yes
Is "that" a way to express sender, e.g. '"from alice"?
1. Yes
2. No

> "that alice sent" is a way to express sender
Thanks for teaching me the meaning of "read the message that alice sent"!
I understand "read the message that alice sent"

Figure 2.5: Interaction between the GSa system seeded only with the grammar in Figure 2.2
and a user. Text preceded by ‘>’ is entered by the user.

unparsed fragment that is a way to express it. The user replies that it is in fact that alice
sent what expresses <_sender>. This illustrates the mixed-initiative nature of the conver-
sation: even when the expected answer is just yes or no, the system is able to accommodate
a more complex response from the user.

And what is the end-result of this learning episode? The seamless extension of the grammar
in Figure 2.2. As shown in Figure 2.6, the newly acquired subRHS that <senderName> sent
is added under <_sender>, and the resulting, extended grammar is listed in Figure 2.7.
This means that, after the relatively simple dialogue in Figure 2.5, the previoulsy extra-
grammatical construction that alice sent (and that bob sent, etc.) is understood. This is a

radically different behavior from that of asking the user for a rephrase!

2.3.2 Summary of Results

In order to test the validity of the approach in a real setting, experiments were conducted
in two different applications: an e-mail client program, where one can check for new e-mail
messages, respond to them, sort them, etc. (henceforth, the E-Mail Task) and a virtual
music store, where one can listen to songs and buy them (henceforth, the Musicbox Task).
In both cases the users, drawn from the population at Carnegie Mellon University minus
the Language Technologies Institute, freely interacted with the system, with only a minimal
initial instruction.

Chapter 7 delves into the details of the experiments and their results, but as a way of

summary, Figure 2.8 is presented here. It shows not only that GsaG is indeed able to engage

Chapter 2: Dissertation Overview

LE 1

Trigger utterance: read the message that alice sent

Total number of choices: 2

SubRHS learned under <_sender>:

that <sender> sent

Original rule:

<_sender> = (from | sent by) <senderName>;

Resulting rule:

<_sender> = (from | sent by) <senderName> | that <senderName> sent;

Score: 2

13

Figure 2.6: Summary of the learning episode resulting from the interaction in Figure 2.5.
Note that the RHS for <_sender> has been extended with that <senderName> sent.

Scores are assessed a posteriori for evaluation purposes. A score of 2 is “excellent.”

public <readMessage>
<_read>
<index>
<_message>
<_sender>
<senderName>

<_read> [again] [the] [<index>] <_message> <_sender>;
read | speak;

first | last;

message | messages;

alice | bob;

(from | sent by) <senderName> | that <senderName> sent;

Figure 2.7: Resulting grammar after the learning episode in Figures 2.5 and 2.6. Note that

now <_sender> can also be expressed through the pattern that X sent.

in clarification dialogues and interactively construct semantic representations that cover the

users’ utterances, but also that the extended grammar generalizes well over unseen data.

Chapter 2: Dissertation Overview 14

100%
80%
60% [OOA
4096 iy
20%
0% - ' -

o o - =
$28¢ B2s .24 3.
=4 S = §== §==
g8 6688 wag wvasg
Qw0 (L) X U9 2 99

X =] = =

= =

(= (=

Figure 2.8: Semantic accuracy results for the E-Mail Task. The first column depicts the
percentage of correct, incorrect, and out-of-application (OOA) utterances for the kernel
grammar (KG) on the corpus comprised of the utterances taken from the user sessions
(Session Corpus). The second column shows the performance of the union grammar (UG)
on the same Session Corpus. The union grammar is created by adding, to the kernel gram-
mar, all the rules acquired during the user sessions. The third and fourth columns repeat
the experiment, this time over an independent corpus of sentences. These results are very
satisfactory, as the union grammar gains over 30 absolute percentage points in semantic ac-
curacy, both in the session corpus and in the independent corpus. (See Chapter 7, especially
§7.4 for details.)

Chapter 3
Related Work

Extensive research in robust parsing and adaptive NLU systems is described in the literature.
This chapter examines a few of the major approaches to the problem of extragrammaticality

and contrasts them with GSsaG.

3.1 Two-stage Parse Repair

[Rosé, 1997] describes an interactive approach to resolve the problem of extragrammaticality,
i.e., how to handle input sentences not fully covered by the existing grammar. In the ROSE
system, when an utterance is not fully parsed but at least two subparses have been found,

it is attempted to construct an overall analysis via the Combination and Interaction stages:

1. Combination. After obtaining partial parses from the parser, the ROSE system
applies the Repair Hypothesis Formation genetic algorithm to hypothesize different
ways of combining the subparses into a global interpretation of the input sentence.

The instantiation of the genetic algorithm is as follows.

e Terminals: Feature structures (FSs) representing the partial parses.

e Function: Single operator that, given a mother FS, a daughter FS and a slot,
attempts to insert the given slot into the mother FS with the daughter FS as
the value of the slot. Even if the insertion is not successful, the operation is
guaranteeed to return a single FS (which means that the smallest FS may have
to be discarded). This ensures that the operator can be used compositionally,

for at each step the number of remaining partial FSs is reduced.

e Fitness function: Two different fitness functions are presented, one obtained
through a hill-climbing search, the other through a genetic search. Both were
computed from a corpus of 48 pairs consisting of a sentence and its correct

analysis, and both are functions of the number of concepts, the number of repair

15

Chapter 3: Related Work 16

actions involved, the statistical goodness of the repair actions, and the percentage

of the sentence that is covered by the repair.

2. Interaction. After the combination stage returns a set of hypotheses for the ex-
tragrammatical utterance, the ROSE system generates a set of queries to the user in
order to find the hypothesis that best captures the meaning intended by the user. To
minimize the number of interactions, a set of distinguishing features from the com-
peting hypotheses is extracted, and then a question is generated from the feature
that is askable (i.e., it is possible to ask a natural question from it), is evaluatable
(i.e., it refers to a single repair or to a codccurring set of repairs), is in focus (i.e., it
incorporates information shared by all the hypotheses), and is most informative (i.e.,
it is likely to result in the greatest reduction of the search space). ROSE also employs
a discourse processor that includes domain-dependent modules (such as the temporal

expert program and the calendar program).

The motivation of both the ROSE and GSG systems is the same, namely, to be robust
in the face of ungrammaticality, and they also share the philosophy of engaging the user
in a repair dialogue (although ROSE does not support mixed-initiative). However, the
fundamental difference is that no updates occur in the ROSE system. That is, even after
a successful repair, no learning takes place, which means that upon encountering the same
extragrammatical sentence again, the same repair steps would have to be taken. This
contrasts with the GSG approach of learning rules as a way to remember a learning episode.
Also, the repair mechanism in ROSE requires the existence of at least two subparses in the

input utterance, whereas GsG has no such limitation.

3.2 Hidden Understanding Models

Hidden understanding models for natural language (as described, for instance, in [Pieraccini
and Levin, 1993; Miller et al., 1994; Miller et al., 1995; Minker, 1997]) attempt to carry
the success of Hidden Markov Models in speech recognition (see [Rabiner, 1989] for an
introduction) over to the field of NLU. In this framework, NLU is seen as a decoding
problem: given a string of words, or rather, an acoustic signal, one wants to find the most
likely sequence of concepts that gave rise to that signal. In a mathematical formulation

using the Bayes rule of conditional probabilites, speech decoding is expressed as

P(AW) - P(W)
P(A)

P(W|A) =

Chapter 3: Related Work 17

where W represents a sequence of words and A the acoustic signal. The problem of speech
recognition thus becomes that of finding the W that maximizes P(A|W) - P(W).

If semantics are added into the model, the formula can be written as

P(AW,C) - P(W|C) - P(C)

P(A)
where C represents a sequence of concepts. If, furthermore, it is assumed that P(A|W,C) =
P(A|W) the problem of speech understanding becomes that of finding the W and C' that
maximize P(A|W) - P(W|C) - P(C). Intuitively, this can be seen as a (coarse) characteri-
zation of acoustics (P(A|W)), syntaz (P(W|C)) and semantics (P(C)).
Although the particular realizations of hidden understanding models differ (see Chapter 5

P(W,C]4) =

of [Minker, 1997] for a survey), they all have the following steps in common.

e Development. The precise nature of the encoding of semantic representations into
the formalism of an HMM needs to be established, in particular how to represent em-

bedded structures, what the states {s1, ..., sy } and the observation symbols {01, ..., 0ps }

represent, and topology of the HMM, i.e., which of the state transitions A = (ai;) Nxn, @ij =

P(s;j(t)|si(t — 1)) are allowed (a;; > 0).

e Training. Once the topology is in place, the model parameters A =< A, B,II > have
to be estimated, i.e., the state transition probability distribution A = (a;j)nxn, aij =
P(s;(t)|si(t—1)), the observation symbol probability distribution B = (bjx) Nxar, bix =
P(og(t)|si(t)), and the initial state probability distribution II = (m;)n, m; = P(si(t =
1)). For discrete Markov models the usual method to estimate the model parameters

is to simply use the counts obtained from a set of training examples.

e Decoding. In the recognition or decoding mode, given the model A =< A, B,1I >
and an observation sequence O =< o(1),...,0(T") > one wants to obtain the sequence
of states S =< s(1),...,s(T) > that is optimal according to some criterion, usually
that of a maximum likelihood. The Viterbi algorithm is commonly used to efficiently

compute the optimal state sequence.

Statistical frameworks like this one are promising because they allow the optimal model
parameters to be automatically learned from data (rather than having to be set by hand).
However, defining the semantics and topology of the HMM is not automatic, and, in fact, it is
difficult to model the nestedness of natural language. GsG does employ a similar stochastic
approach in the form of the Prediction Models (see §6.2.4), but only as a component of the

system.

Chapter 3: Related Work 18

3.3 Acquisition of New Words

The idea of a self-extending NLU system has a (relatively) long history. For instance,
[Carbonell, 1979] already reports on incremental learning of new words in the PoLriTIiCS
system. An even earlier attempt to learn the meaning of new words is made by the FouLup
program [Granger, 1977] in which script expectations drive the meaning acquisition. For
example FOULUP induces the meaning of Rabbit in A Rabbit veered off the road and struck
a tree to be a “self-propelled vehicle” because the unknown word Rabbit matched the role
of vehicle in an automobile accident script.

In the POLITICS system, new words are learned by projecting contextual expectations (syn-
tactic, semantic, and pragmatic) as constraints on the syntactic category and the semantic
role of the new word. For instance, if the new word follows “the” it must be a noun, adjec-
tive or adverb. The rest of the sentence provides further constraints, although it may not
be possible to narrow down the new word to a single part of speech or thematic role; in that
case all possible options are kept open awaiting more instances of the word to completely
disambiguate its syntactic and semantic memberships. In addition, precompiled world-
knowledge is also used to infer the meaning of a new word, but this world-knowledge turns
out not to be as reliable as the constraints derived from syntax and conceptual-dependency
case-frames. Two methods are then proposed to deal with inaccurate inferences: one is
to simply not use world-knowledge; the other is to recover from wrong inferences: Once a
contradiction (logical inconsistency) is found, the inference rule from which the erroneous
conclusion was derived is deleted, as well as any other facts arising from such a conclusion.
Finally, a limitation of POLITICS is that it assumes that each word has only one meaning.
In comparison with the POLITICS system, GSG requires much less effort in the encoding
of domain knowledge, since all the required domain knowledge is encoded in a context-free
grammar. Therefore, even if it takes a few questions to learn the meaning of a new word,

GsaG is more flexible and easier to port to new domains.

3.4 Adapting to the User’s Language

Automated adaptation to the user’s language is discussed in [Lehman and Carbonell, 1989]
and [Lehman, 1989]. It is understood that total grammar coverage would be ideal but proves
an infeasible goal: “Users will invariably provide unparsable input: idiosyncratic phrases,
linguistically deviant utterances, or sentences simply beyond the linguistic sophistication of
the interface.” Therefore mechanisms for grammar adaptation to the user must be provided.

In fact, one could also decide to let the users find out for themselves, through trial and error,

Chapter 3: Related Work 19

what the limitations of the grammar are. But such an approach, instead of leading the users
to learn the system’s sublanguage, often brings “frustration and disenchantment.”
Regarding the nature of such user sublanguages, empirical evidence is provided that suggests

the following points.

1. Speed and accuracy of task completion increase significantly as the system adapts to

the linguistic usage patterns of individual users.

2. The size of each individual grammar is much smaller than their union, and individual

grammars do not overlap greatly.

That is, linguistic usage patterns are diverse across users, but consistent within users.
Lehman’s goal is to create a system that acquires an idiosyncratic grammar with minimal
ambiguity and maximal coverage via experience with the user: the CHAMP adaptive parser
remembers the recovery actions performed in the presence of an unfamiliar utterance by
augmenting the grammar for that particular user with a representation that can parse the
same structure directly.

The key concepts of such deviations and recoveries are:

e Kernel grammar: the lexicon, caseframe concept definitions, default semantic val-
ues, and syntactic forms that are present in the system prior to interaction with any

user.
e System canonical form: any syntactic form in the kernel grammar.

e Deviation: the violation of an expression as embodied in a syntactic form. Four

types are possible:

1. Deletion: lack of expected token. E.g., I have € book.
2. Insertion: presence of unexpected token. E.g., I have a the book.

3. Substitution: presence of a token different from the expected one. E.g., I have a

bok (which in turn is a deletion deviation at the character level).

4. Transposition: presence of a token in an unexpected position. E.g., I a book

have.

e Recovery action: correction of a deviation by its inverse operation, namely:

1. Deletion: recovered by insertion. E.g., I have € book — I have a book.

2. Insertion: recovered by deletion. E.g., I have a the book — I have a book.

Chapter 3: Related Work 20

3. Substitution: recovered by substitution. E.g., I have a bok — I have a book.

4. Transposition: recovered by transposition. E.g., I a book have — I have a book.
e User canonical form: a new syntactic form created in response to recovery actions.
e User model: the union of system and user canonical forms.

It is proven that user canonical forms grow in a self-bounded fashion, that is, an individual’s
language usage converges on a stable subset of the language, as opposed to unbounded
growth.

The learning algorithm proceeds as follows: The system begins with the kernel grammar;
if the user is known and individual canonical forms have been previously created, those are
loaded as well to form that user’s complete model. As user inputs are processed, the system
attempts to parse them using the possibly augmented kernel grammar. If non-deviant
parsing is possible, no further modification is needed. Otherwise, recovery strategies are
attempted in a least-deviant-first manner, i.e., to obtain minimal-distance parse. If a deviant
parse is confirmed as correct by the user, the transformed grammar construct is subjected
to a “conservative generalization process” and added to the user model.

GsG has adopted Lehman’s philosophy of language acquisition in a goal-oriented envi-
ronment by augmenting the grammar with new rules that encode the learning epiosodes.
However, whereas Lehman’s CHAMP requires a complex caseframe representation to define
the actions and objects in the domain that are brought to bear in constraining the parse
search, GsG only requires a context-free grammar, from which the domain concepts and
their relations are automatically extracted (see §6.2.2).

Also, a major difference between GsG and CHAMP is the stochastic framework of Gsa: from
the Probabilistic Recursive Transition Networks used to encode the grammar (see §5.3), to
the statistical Prediction Models (see §6.2.4), the usage of quantitative information abounds,
giving the system more flexibility and the abilility to fine-tune parameters (e.g., skipping
a certain word should be more costly than skipping another one, or violating a certain
constraint should be penalized less than violating another). This contrasts with CHAMP,
where all deviations in its minimal distance parsing are penalized equally.

Another difference is CHAMP’s restriction, due to the time complexity of minimal distance
parsing (compounded with the performance of computers in 1989), of only being able to
learn from sentences that contain at most two deviations from the grammar. GSG has no
such limitation.

Finally, there is a plethora of small details that make GSG a worthy descendant of CHAMP.

They include the usage of part-of-speech information and shallow syntactic parsing to seg-

Chapter 3: Related Work 21

ment unparsed segments (see §6.2.5), which represents an improvement over CHAMP’s Single
Segment Assumption, a much clearer distinction between task information (all contained
in the grammar) and learning strategies, the mixed-initiative nature of the conversation
that GsG engages in (cf. the tight control CHAMP mantains over the dialogue), and, in
general, the multiplicity of strategies that GsG pursues (All-top Parsing, Anchor Mother
Predictions, Required/Is-a/... Daughter Search, Verbal Head Search, Parser Predictions,
Vertical Generalization, Horizontal Generalization), which contrasts with CHAMP’s single

strategy of minimal distance parsing.

3.5 Linguistic Knowledge Acquisition from Parsing Failures

When a system fails to analyze a certain input sentence, some robust parsers hypothesize
errors in the input string in order to recover and achieve a parse. [Kiyono and Tsujii, 1993],
however, propose a different set of actions in the presence of an extragrammatical utterance:
instead of assuming error on the user’s part, assume lack of grammar coverage. Such an
approach, which can be carried out both at the word level and at the sentence level, can be

expressed in the following principles.

e If a word is not in the dictionary, do not assume that it is a misspelling by trying to
apply the recovery operators (as described in §3.4), which in fact define a potentially
infinite search space. Instead, assume it is a genuine new word and try to learn as

much as possible.

e If a sequence of nonterminals cannot be parsed, again, do not attempt recovery oper-

ations but instead treat it as a new rule and try to learn its intended meaning.

In Kiyono and Tsujii’s program, when the parse fails to analyze a sentence, the partial
parsing results are investigated and all possible modifications to the existing grammar that
would produce a complete parse of the input sentence are hypothesized. The formal algo-
rithm is listed in Figure 3.1.

The algorithm starts at the starting symbol S and proceeds to explore each nonterminal in
a top-down fashion. If CatA is a failed category, the procedure is called recursively for all
daughter categories in any right-hand side of a CatA rewrite rule. (CatA is considered a
failed category iff it does not appear in the partial parse tree constructed in the attempt to
analyze the input sentence, a notion similar to that of an inactive edge in a chart parser.)
Then, if a certain daughter CatB; ; is also a failed category, a new left recursive rule for

the preceding category CatB; ; 1 is hypothesized, i.e. CatB;; 1 — CatB;; 1 CatR; o ...

Chapter 3: Related Work 22

hypo-gen(CatA)
begin
if CatA is a failed category then
for each i in CatA — CatB;; ... CatB;,
for each j in CatB; ;
call hypo-gen(CatB; ;)
if CatB; j is a failed category then
hypothesize(left-recursive-rule(CatB; j_1))
end if
end foreach
hypothesize(feature-disagreement(CatB, i,...,CatB; ,,))
end foreach
end if
if CatA is a non-lexical category then
hypothesize(CatA — CatC) ... Cat(y)
else-if CatA is a failed category then
hypothesize(CatA — Word)
end if
end

Figure 3.1: Kiyono and Tsujii’s algorithm for parse recovery (from [Kiyono and Tsujii,
1993]).

CatRy where CatR; 5 ... CatR; are adjacent successful categories next to CatB;; 1. If,
on the other hand, all the daughter categories are successful (and yet the mother category
failed), a feature disagreement among the daughters is hypothesized. When the procedure
has been applied to all the daughters of CatA, unless CatA is a lexical category (i.e., a
preterminal) the new rule CatA — CatC; ... CatC) is hypothesized, where CatC ...
CatC) are the adjacent successful categories starting from the word position where CatA
is expected. Finally, if CatA is a failed lexical category, the lexical entry CatA — Word
is hypothesized, where Word is the word in the input string at the position where CatA is
expected. In this way, an unknown word (or a known word in an unexpected position) is
learned.

Needless to say, this approach overgenerates, and some way of eliminating redundant or
“linguistically nonsensical” hypothesized rules is needed. An example of a linguistically
nonsensical rule is the trivial S — Word, ... Word, where Word, ... Word, form the
input sentence. Clearly, adding such a rule will make the grammar accept that sentence,
but without any generality. Thus different criteria for disregarding hypothesized rules are

proposed, with the underlying assumption that most of the induction processes required

Chapter 3: Related Work 23

in grammar learning have already been done by linguists and embodied in the form of the

existing grammar. These criteria include:

e Priority to the hypotheses of feature disagreement. Assuming comprehensive
coverage of the existing grammar, priority is given to feature disagreement hypotheses
because they do not create new rules (they just modify their applicability conditions
by lifting or generalizing certain feature agreements). In fact, in the reported imple-
mentation of the above algorithm, once a feature disagreement hypothesis is found
that restores a category, the recursion is stopped and no more hypotheses are gener-

ated.

e Restrictions on the number of daughter nodes. The maximum number of
daughter nodes that a new rule can have is empirically limited to four, the exposed
reasoning being that it does not seem viable for a new rule to collect at once too
many constituents into one large constituent. (I.e., once again it is assumed that such

a structure would already be present in the grammar if it were linguistically sensible.)

e Priority to the hypotheses that use generalizations embodied in the ex-
isting grammar. Hypotheses containing sequences of constituents which can be
collected into larger constituents by existing rules are discarded as redundant, that
is, hypothesized rules containing higher-level nonterminals in their right-hand side
are preferred since they make better use of the generalizations already defined in the

grammar. For instance, if the following rules are present in the grammar:

N-head — Adj N-head
NP — Det N-head

the hypotheses whose right-hand side contain NP will be preferred over those that
contain, say, Det Adj N-head.

e Distinction of preterminals from other nonterminals. While the general form
of context-free grammars (CFGs) does not distinguish lexical categories (preterminals)
from other nonterminals, it is proposed to allow hypothesizing new lexical rules only

if the mother category (left-hand side) is a preterminal.

¢ Distinction of closed vs. open lexical categories. It is assumed that the existing
grammar has a complete list of function words. This means that the left-hand sides
of rules for new lexical entries are restricted to members of the predefined set of open

lexical categories, such as Noun, Verb, Adjective and Adverb.

e Distinction of closed vs. open categories. The above reasoning can be extended

to other nonterminals; that is, depending on the completeness of the existing grammar

Chapter 3: Related Work 24

one could specify a set of categories as closed and disallow the algorithm to hypothesize

new rules whose left-hand sides belong to that set.

e Use of subcategorization frames. Before hypothesizing any new rule or lexical
entry, it should be checked that such a rule is not redundant via a subcategorization
frame checking mechanism. The reason is that, in the grammar formalism presented,
a subcategorization frame is embedded in the feature structure of the head category
and thus the correspondence with its subcategories does not appear explicitly in the

rules.

e Restrictions on the pattern of new rules. There could be meta-rules that re-
strict the form of new rules. For instance, if X-bar theory is followed, only maximal

projections should be allowed in the complement position.

e Prohibition of non-lexical unary rules. Again, while the general form of CFGs
allows unary rules, it is assumed that the existing grammar exhausts all meaningful
category conversions (which is what unary rules perform) and thus unary rules are
discarded if hypothesized by the algorithm. (However, lexical rules, unary in nature,

are of course allowed).

e Restrictions on lexical rules. Still, lexical rules can be restricted by taking into
account a priori knowledge of the likeliness of multiple lexical category membership.
For instance in English it is very common for a word to be both a noun and a verb,

but extremely rare for an adverb with the suffix ly to be, say, a verb.

What GsaG takes from this approach are some of the guidelines for the judicious extension
of the grammar, in the form of the learning strategies and licensing constraints as described
in §6.3. Also, it is worth noting that, in the above paradigm, as in GS@G, the creation of

new nonterminals is not allowed.

3.6 Automatic Acquisition of Spoken Language

In [Gorin, 1995] the principles and mechanisms underlying automatic acquisition of spoken
language are reviewed. It is again noted that, traditionally, in NLU systems the hierarchy
of linguistic symbols and structures has been manually constructed, “involving much labor

” and this underlines

and leading to fragile systems that are not robust in real environments,
the necessity of constructing NLU systems that are “trainable, adaptive and robust.” Gorin

states the following principles of language.

Chapter 3: Related Work 25

input action _ .
network » user and environment

A

parameter modifications

A

Figure 3.2: The reinforcement learning cycle (from [Gorin, 1995]).

1. The purpose of language is to convey meaning.

2. Language is acquired during interaction with a complex environment: the language-
acquiring device receives some input stimuli, responds to that input and receives

feedback as to the appropriateness of its response.
3. Meaning is grounded in a device’s operational environment.

4. In order to provide rapid learning and generalization, the language-acquiring device

must reflect the structure of its input/output periphery and environment.

5. Language acquisition proceeds in developmental stages, from the concrete to the ab-

stract, from the simple to the complex.

Then four architectures are proposed, in accordance with these principles: information-
theoretic networks, structural networks, symbols from signals, and grammatical inference,

which are summarized next.

3.6.1 Information-theoretic Networks

Within the paradigm of the reinforcement learning cycle (see Figure 3.2) the first architec-
ture reported maps inputs to actions is a connectionist network. The idea is that positive
(or negative) reinforcement will strengthen (or weaken) the associations or weights of the
connections between input and output. Many methods for learning such weights are known
(e.g., backpropagation), but Gorin proposes to define them directly via mutual information,

with the claim that such an approach has the following theoretical and practical advantages.

e Theoretical properties. Given suitable Markovian and independence assumptions on
the language of the input sentences, it has been shown that the proposed information-
theoretic network algorithm is equivalent to the criterion of classification via mini-

mum description length, where the selected action is the one which provides for the

Chapter 3: Related Work 26

minimum code length of the input sentence, as well as equivalent to a mazimum a
posteriori decision. [Goodman, 1992] observes that in statistical rule-based systems
such as expert systems, the strength of a candidate rule can be characterized by the
mutual information between the preconditions and the actions of a rule. Furthermore
[Tishby et al., 1994] proves a universality theorem for information-theoretic associa-
tions: any association measure functionally related to probabilities can be rescaled to
mutual information. Although the implications of such equivalences are not yet fully
understood, they seem to point out that the traditional debate between connectionist

and (statistical) rule-based approaches may not be an issue after all.

e Practical advantages. For such an algorithm, weights are computable in a single

“epoch” (as opposed to thousands in backpropagation).
The described network is composed of three layers:

e Input layer: M nodes (called “word detectors”) encode the vocabulary (one node per

word).

e Intermediate layer: M x M nodes (called “phrase detectors”) encode word pairs. This
layer could naturally be extended to word triplets, etc. (at the cost of an exponential

explosion in the number of nodes and weights).

e Qutput layer: K nodes (called “semantic nodes”) encode the actions (i.e., the “mean-

ing” of the sentence).

The M x M x M weights between input and intermediate nodes, and the M x M x K weights
between intermediate and output nodes are calculated via smoothed relative frequencies.
How the system then works is very simple: Given a sentence, it is run through the network
and classified into the action whose output node value is highest.

Gorin reports on the implementation of such a system for an automated call routing appli-
cation in a department store, where the possible “actions” (K = 4) are Furniture, Clothing,
Hardware, and a catch-all Unknown. (In fact, the actual network constructed for this
experiment had only two layers, input and output.) Another application was built for cus-
tomer /operator telephone transactions, this time with K = 21. In both cases incremental
growth of vocabulary and updating of weights is allowed, but no final performance results
are reported.

The limitation of such systems is clear: they are equivalent to sorting natural-language
sentences into bins or classes, thus providing only a flat analysis of the input. In certain

applications such as topic identification that may be all that is needed, but of course for

Chapter 3: Related Work 27

the applications that GsG supports, where the target semantic structures are much richer,

such an approach is not sufficient.

3.6.2 Structured Networks

It is precisely the above limitation that motivates structured networks. Two subclasses of

structured networks are described:

e Product networks. In this case the output is not only a semantic action, but a pa-
rameterized semantic action. If the parameter values are the same for all actions,
the action space is isomorphic to the Cartesian product K x N, where K is again
the number of actions (now called “semantic primitives”) and N is the number of
parameter values. For instance, in the ALMANAC system, a two-dimensional product
network was constructed, with K = 20 queries about N = 50 U.S. states. The system
works by building two separate information-theoretic networks (one with K output
layer nodes, the other with N output layer nodes). Given an input sentence, it is run
through both networks and then the pair of semantic primitive and parameter value

that gives highest outer sum of the two output vectors is selected as the final result.

This approach could be extended to more dimensions, but still, the structure of the
output will never be richer than the given number of dimensions, which constrasts

with GSG’s semantic parse trees, that have no a priori limit on their depth.

e Sensory primitive subnetworks. In many cases the appropriate machine response
(action) depends not only on the input sentence, but on the state of the environ-
ment. A minimal example is the command Lights, please, whose correct action is
turn-on-lights or turn-off-lights depending on whether the lights are currently
on or off. Of course a solution would be to map such a sentence to a toggle-lights
action, but still that would only delay the ambiguity, so it is in fact very useful to
supply extra-linguistic information to the classification process. This idea is developed
in Sankar’s BLOCKS WORLD [Sankar and Gorin, 1993], where a learning device with

the following innate characteristics is described.

It can sense the color and shape of the objects in its visual scene.

It is attracted to bright and moving objects.

— After focusing on some object, it becomes bored, i.e., its attraction to the focus

object diminishes over time.

It constructs associations between linguistic and visual events that cooccur tem-

porally.

Chapter 3: Related Work 28

This last characteristic is implemented by sensory primitive subnetworks that learn
associations between the linguistic and visual sensory inputs. In this case the learn-
ing of a word (i.e., the association between input string and object shape) is made

dependent on the environment in the form of two-dimensional focus coordinates.

3.6.3 Symbols from Signals

In the speech recognition context, the task of natural language understanding can be seen
as the correct mapping between the speech signal and the desired action, i.e., the notion of
word need not be defined a priori; instead one would hope that it emerges spontaneously
from the learning process.!

It is noted that for humans, an input stimulus evokes memories of associated perceptions
and activities. This realization motivates defining the meaning of a word for a particular
language-learning device to be the network associations between that word and the device’s
input/output periphery. Some of these sensory-semantic associations are incorporated in
the systems described above. For instance, in the BLOCKS WORLD there are network
associations between a word and the visual input periphery, factored through the color
and shape sensory primitives. It is conjectured that, as a device’s input/output periphery
becomes more anthropomorphic, so will its representation of meaning. This can not be
tested however until “sufficiently complex” devices are constructed.

Also, the concept of saliency of a word or phrase is defined mathematically to capture the
information content of that word or phrase for the language-acquisition device, and such
a definition is contrasted with the traditional Shannon measure of entropy or information

content understood as the uncertainty about the occurrence of a word or phrase.

3.6.4 Grammatical Inference

All the above experiments were in fact very much tailored to the word level. For instance,
the network associations of a word or phrase are context-independent. Grammar, however,
serves to modulate the meaning of a word according to its position in the sentence as well
as constraining the allowable word sequences.

As a first step it is then suggested to automatically learn grammatical categories, since
parts-of-speech are often the preterminals of grammars with a more complex hierarchy of
nonterminals. A part-of-speech or preterminal is defined relative to a learning device as

the set of words that are strongly associated to some dimension of the device input/output

!Taking this idea to the extreme, one may hypothesize a machine that directly maps “brain patterns”
representing thoughts and desires into actions, thereby altogether bypassing the usual notion of natural
language.

Chapter 3: Related Work 29

U: Pittsburgh kara Frankfurt made.
[From Pittsburgh to Frankfurt.]

S: Would you like to see the flights from Frankfurt
to Pittsburgh?

U: TIie, gyaku desu.
[No, the other way around.]

U: Barcelona kara Hong-Kong made.

S: Would you like to see the flights from Barcelona
to Hong-Kong?

U: Hai.
[Yes.]

Figure 3.3: Example interaction between the user (U) and the system (S) to illustrate the
behavior of embedded information-theoretic networks. (See §3.6.4.)

periphery, and only one preterminal can be learned per such dimension. A method of
saliency thresholding within an information-theoretic connectionist network is proposed:
For each dimension of the device periphery a subnetwork that corresponds to a part-of-
speech is defined via saliency thresholding. The resultant subnetwork is then activated only
by those words or phrases that are highly salient for its semantic or sensory primitive.

As discussed above, information-theoretic networks are very limited in the output structure
they can handle. A first solution to this problem is the design of multi-dimensional net-
works. Another approach is to construct a network of embedded subnetworks, as reported
in [Gertner and Gorin, 1993] (although limited to two levels): a system to analyze queries
to the ATIS database is built as an information-theoretic network in which each node of the
main network is in itself another information-theoretic subnetwork. Thus, the subnetworks
correspond to nonterminals for place and object names, thereby adding an extra level of
generality in the learned “grammar.” Note that, following the developmental nature of
language learning, those subnetworks must be learned first. As an example, consider the
interaction between an English-understanding, Japanese-speaking user (U) and the system
(S) depicted in Figure 3.3.

In contrast to non-embedded information-theoretical networks, the system described is able
to abstract the association between Pittsburgh kara and from Pittsburgh to the general
association between <city-name> kara and from <city-name>, thanks to the embedded

subnetworks that act as preterminals for locations.

Chapter 3: Related Work 30

While agreeing on the underlying principles expressed by Gorin, GsG takes a more symbolic
approach as its final objective is to extend a rule-based grammar. However, the Prediction

Models (see §6.2.4) can be seen as a generalization of structured networks.

3.7 Concluding Remarks

GsaG benefits from the research described in the literature and attempts to incorporate the
best features of the systems sketched above (such as stochastic framework, interaction with
the user, and rule acquisition and generalization). At the same time, even though GsaG is
based on grammars and Newell and Simon claim that production systems are central to
human cognition [Newell and Simon, 1972], it should be clear that GsG does not intend to
model the cognitive processes whereby humans acquire language. (For the interested reader
in the cognitive aspect of language acquisition, see, for example, [Brent (ed.), 1997; Baker

and McCarthy (eds.), 1981; Bloom (ed.), 1994].)

Chapter 4

Philosophy and Modus Operandi of GsG

This chapter details the motivation for and advantages of GsG. First, it begins with a
review of the traditonal approach to grammar development and presents an alternative

model. Then, it shows how GsG implements the new paradigm.

4.1 A New Paradigm in Grammar Extension

As mentioned in §2.1, defining the mapping from words onto a semantic representation
constitutes one of the critical paths in the development of conversational NLU systems: It
takes in the order of months or years of highly-skilled labor (usually computational linguists)
to develop a semantic mapping, for example in the form of a semantic grammar, that is
comprehensive enough for a given domain. Yet, due to the very nature of human language,
such mappings invariably fail to achieve full coverage on unseen data.

If we analyze the process of developing a semantic grammar for a new domain, we find that

the following stages are involved.

1. Data collection. Naturally-occurring data from the domain at hand are collected.
For example, in an e-mail application, one would want to gather the kinds of utter-
ances that a real user of the final application may say, such as Do I have mail?, or
Sort messages by sender. Typically, these data are gathered through a Wizard-of-Oz

setting, where a human simulates the system’s response.

2. Design of the domain model. A hierarchical structuring of the relevant concepts
is built in the form of an ontology or domain model. Through the analysis of the data
collected and the knowledge of the functionality that the end-application provides,
the relevant concepts are defined. For example, as discussed in §2.1.2, the concepts of

<readMessage>, or <index> are deemed necessary in the E-mail Task domain.

31

Chapter 4: Philosophy and Modus Operandi of Gsa 32

3. Development of a kernel grammar. A grammar that covers a small subset of the
collected data is constructed. This initial grammar usually contains only one or two

ways to express a concept.

4. Expansion of grammar coverage. Lengthy, arduous task of developing the gram-
mar to extend its coverage over the collected data and beyond. Typically, it takes
a computational linguist many develop-and-test cycles over the course of months to
bring coverage on unseen data to minimally acceptable levels. (See Figure 4.1 for an

example.)

5. Deployment. The grammar is frozen and released in the final application. Usually
no mechanisms are in place to collect extragrammatical sentences; and, even if there
are, not until the next release will the extragrammatical words and constructions

become grammatical.

However, as noted in [Lehman, 1989], this paradigm can be greatly improved: If we allow
the deployed system to dynamically extend the underlying grammar, then point 4, the most
time-consuming stage, can be eliminated (or, more precisely, it becomes distributed among
the users of the end-application).

And this is what the proposed system Gsa accomplishes: it changes the traditional paradigm
by reordering the last two points, i.e., deployment comes before expansion of grammar cov-
erage. In other words, after the ontology and kernel grammar are defined, the final appli-
cation can already be launched, because the grammar will be extended, at runtime, as an

epiphenomenon of engaging the user in clarification dialogues.

4.1.1 Assumptions

This approach is based on two premises: (i) after deployment the domain model is fixed, and
(7i) the communicative goal of the end-user is expressible in the domain. The justification
for these assumptions comes from the fact that they allow a clean delimitation of the
problem that this thesis addresses (extension of grammar coverage but not acquisition of
new concepts), and also from the realization that they are quite reasonable: Even if the
ontology were not fixed and the system were able to learn a new concept, the back-end
application would, most likely, not know how to handle it. Also, even though passing the
urestricted Turing Test should always be at the back of our minds, it is clear that the
current state of the art in language technologies (and artificial intelligence in general) only

allows for modeling domains rather narrowly defined by the application at hand. (Still,

Chapter 4: Philosophy and Modus Operandi of Gsa 33

100 : | | | | |
development —<—
test -+--
80 |- /’—Q—ﬁ
}\e/e/v
o 60 [|
(@]
o
]
>
: I —— -
O\o ////
40)_/4/‘/’* 1
““““““““ ‘F*****——A-*‘*"”"“”"‘"""‘"’_
20 | |
0 | . | | | |
10 20 30 20 s o

day

Figure 4.1: Coverage fluctuation over a period of two months as the grammar is extended
by a computational linguist. Data is taken from the English Spontanous Speech Scheduling
Task (briefly described in [Waibel et al., 1996]). The top line depicts coverage of the
development set, the bottom one coverage of an unseen test set.

GsaG does incorporate mechanisms to identify utterances that are beyond its capabilities

(see §6.4.1.2).

4.1.2 The Philosophy of Gsa

Thus, the philosophy of Gsa is to treat an extragrammatical sentence that traditionally
results in a “parse failure” as an opportunity to learn new semantic mappings. It exploits
domain and linguistic knowledge to pose clarification questions and interactively constructs
and learns new meaning representations. Therefore one can describe the aim of the Gsa
learning system as to judiciously extend a grammar through simple, natural-language only
interactions with application end-users.

The applications of GSG are many, most notably, allowing a very fast development of NLU

components in a variety of tasks. GsSG enhances the usability of any application that

Chapter 4: Philosophy and Modus Operandi of Gsa 34

incorporates it, because the end-users are able to easily customize the interface by teaching

Gsa to understand their individual language patterns.

4.2 Overview of GsG

So how exactly does GSG acquire these individual language patterns? Chapter 5 details
the workings of the SOUP parser, the robust parser of CFGs that lies at the core of the
system, and Chapter 6 provides the system diagram and a detailed explanation of each of
the remaining components, but what follows is a high-level vision of the information flow

and learning algorithms that enable GsG to acquire new grammar rules.

4.2.1 Gsa’s Metagrammar

Since GsaG allows for mixed-initiative dialogues and the volunteering of linguistic informa-
tion, it is necessary to identify utterances that are about the task (say, send a message to
bob) from “meta-utterances” that are corrections (such as wrong or that’s not what i mean)
or that provide linguistic information (such as noon is a time of day or by christmas i’m re-
ferring to december twenty-fith). To that effect Gsa always runs the incoming user sentence
through its Metagrammar. Table 4.1 explains the top-level concepts of the Metagrammar
and §C.1 lists it in full. Note that it is also written in the JSGF formalism.

It could be argued that it is better to keep meta-comments simple (e.g., single-word key-
words) so as to guarantee that the metagrammar will never interfere with the task grammar;
at the same time, on the other extreme, one could also argue that the metagrammar it-
self should be learnable. In this particular implementation, GsG takes a middle position:
the metagrammar is not restricted to keywords (to obviate special training and keep the
conversation natural), but it is not automatically extendible.

In any case, when an incoming utterance can be parsed by the Metagrammar, the appro-
priate action is triggered. The most important operators, from the language acquisition

perspective, are MEANS and ISA, which are two of the fundamental algorithms of GsaG.

4.2.2 Gsaé’s Fundamental Algorithms

Gs@G implements three fundamental algorithms to construct meaning representations for
extragrammatical utterances: Interactive Parsing, MEANS Operator and ISA Operator, as
well as five other ones dedicated to rule management: Subsumption Detection, Ambiguity

Detection, Vertical Generalization, Horizontal Generalization and Rule Merging. They

Chapter 4: Philosophy and Modus Operandi of Gsa 35

Name Example Effect

<means> If is shorthand for fast forward Triggers MEANS Operator Algorithm
<isa> noon is a time of day Triggers IsA Operator Algorithm
<cancel> that’s not what i meant Cancels current learning episode
<ignore> never mind Ignores current question

<help> 1’m not sure i understand Provides help

<summarize> nutshell Provides a summary of the dialogue so far
<yes> that’s right Affirmative response to current question
<no> 1 don’t think so Negative response to current question
<greeting> i Triggers appropriate nicety as reply
<farewell> bye now Idem

<thank> thanks Idem

<thankBack> it was a pleasure Idem

Table 4.1: Main concepts of GSG’s Metagrammar, always the first grammar that attempts
to interpret the user’s utterances to determine whether they are “meta-comments” about
the dialogue (<means>, <isa>, <cancel>, <ignore>, <help> and <summarize>), binary
answers to the current question (<yes> and <no>), conversational pleasantries (<greeting>,
<farewell> <thank>, and <thankBack>) or whether they are sentences addressed directly
to the end-application.

constitute the essential machinery that enables GSG to judiciously extend the task grammar

upon encountering extragrammatical utterances.

4.2.2.1 Algorithms for Interactive Parse Construction

When an incoming sentence is not dealt with by the Metagrammar it is passed to the task
grammar. If the sentence is extragrammatical, i.e., not parsable in SOUP’s default mode
(see §5.5.1), then the Interactive Parsing Algorithm is applied to construct an analysis for
it.

The Interactive Parsing Algorithm is introduced in Figure 4.2 (and later expanded in
Figures 6.8 and 6.9). Basically, it parses the extragrammatical sentence in all-top mode (see
§5.5.3.1) and uses the parse subtrees and unparsed words to establish the overall meaning
of the sentence (i.e., the NT at the root of the hypothesized parse tree being constructed)
using both internal knowledge sources (the Prediction Models described in §6.2.4) and
external knowledge sources (possibly the End-Application Manager, and most importantly,
the end-user). Once the root is set, the daughter arguments are searched for by using the
evidence, constraints from the Ontology, and guidance from the user offered either in the
form of answers to specific questions formulated by the system or in the form of volunteered

information (which trigger the MEANS or ISA operators). The intermediate result of this

Chapter 4: Philosophy and Modus Operandi of Gsa 36

Input: natural language sentence.

1. Collect evidence: Parse sentence with all NTs as top-level, i.e., able to stand at the

root of a parse tree. This will result in a sequence of subtrees and unparsed words.

2. Establish anchor mother: Apply Prediction Models to hypothesize NT roots from
the evidence collected in Step 1. This will result in a ranked list of NTs. Possibly
filter or re-rank list with information about the state of the end-application as given
by the Backend-application Manager. Pose confirmation or multiple-choice question

to the user to establish anchor mother.

3. Construct daughters: Apply Daughter Argument Selection strategies (Verbal Head
Search, Required/Is-a/... Daughter Search, and Parser Predictions) to hypothesize the

structure under the anchor mother.

4. Update grammar: Extract rules from the hypothesized tree. Perform vertical and
horizontally generalization and add resulting rules to the grammar if they are not al-
ready subsumed by existing rules in the grammar, do not increase grammar ambiguity,

and do not disrupt previoulsy correct parses.

5. Update Prediction Models: Use hypothesized tree to update the Paratactical and
Hypotactical Models.

Figure 4.2: Summary of GsG’s Interactive Parsing Algorithm for sentences that are parsed
neither by the Metagrammar nor by the task grammar (in default, non-all-top mode).
Chapter 6 provides a more detailed view of this algorithm (see Figures 6.8 and 6.9).

algorithm (except of course when the learning episode is canceled) is a parse tree that covers
the previously extragrammatical sentence with the correct structure. Then, from this parse
tree, rules are extracted, generalized and possibly added to the current task grammar. If
this rule is not already subsumed by the grammar and it does not introduce ambiguity, it
is vertically and horizontally generalized and merged with the existing grammar. (These
steps are explained in §4.2.2.2 and §6.3.)

On the other hand, when an incoming sentence is identified by the Metagrammar to be
of type MEANS, the MEANS Operator Algorithm is invoked. The MEANS operator
establishes the meaning equivalence of two sentences, such as arrange MEANS sort (an
operation that can be triggered by the user saying, for example, that arrange means the
same as sort). The MEANS Operator Algorithm is in fact an instantiation of the Interactive

Parsing Algorithm with the further constraint that the hypothesized roots (i.e., candidate

Chapter 4: Philosophy and Modus Operandi of Gsa 37

anchor mothers) be present in the trunk' of the paraphrase’s analysis. That is, given
MEANS y (where z and y are sequences of words) a tree T'(z) is hypothesized as the correct
interpretation of z with the constraint that the root of T'(x) be present in the trunk of T'(y).2
Such construction, however, is not always possible, e.g., when the number of words in z is
less than the number of required branches to emulate the structure of T'(y), as in christmas
MEANS december twenty-fifth. In that case, the meaning of x cannot be encompassed by
a parse tree from which new rules will be acquired but rather the mapping from string to
tree has to be learned as a single unit (see, for example, Figures 6.20 and E.3). Note that
in the case of such direct mappings, no vertical generalization is performed.

Similarly, when a sentence is parsed by the Metagrammar as an ISA meta-concept, the IsA
Operator Algorithm is applied. The ISA operator establishes the class of an expression,
as in tuesday ISA <day0fWeek> (triggered, for example, by the user saying that tuesday is a
day of the week), or, more generally, establishes a conceptual instance-of or part-of relation,
as in <dayOfWeek> ISA <time>. The ISA Operator Algorithm is also an instantiation of
the Interactive Parsing Algorithm with the further constraint that the hypothesized root
(anchor mother) is already given. In this case GSG’s capability of fuzzily matching NT
names (see §6.3.6.4) is employed to establish the anchor mother from the expression given

by the user.

4.2.2.2 Algorithms for Rule Management

Once a parse tree has been constructed for the extragrammatical sentence, rule candidates
are extracted from the parse tree® and run through a series of algorithms to determine the
final form that they should take, if any. First, the Subsumption Detection Algorithm

is applied to establish whether the candidate subRHS is a particular case of an existing one

!The trunk of a parse tree is the sequence of N'Ts starting at the root node and descending as long as
the current node has only a single daughter node that is of type NT. For example, the trunk of the parse
tree in Figure 5.1 (b) is < <request>, <suggestTime> >.

2This of course requires y to be parsable; if it is not a message is issued and the learning episode concluded.

3For each parse tree node that is not a leaf, a rule is created with the left-hand side as the NT in the
parse tree node and the right-hand side as the sequence of node’s immediate daughters (i.e., in general, a
combination of Ts and NTs). For example, from the parse tree in Figure 2.3 the following rule candidates
would be extracted:

e <readMessage> — <_read> again the <index> <_message> <_sender>
e <_read> — read

e <index> — last

e <_message> — message

e <_sender> — from <senderName>

e <senderName> — alice

Chapter 4: Philosophy and Modus Operandi of Gsa 38

and thus redundant; then the Ambiguity Detection Algorithm is invoked to establish
whether adding the candidate subRHS would increase the ambiguity of the grammar. If
the subRHS is deemed safe, it is generalized through the Vertical Generalization Al-
gorithm, which follows Is-a links in the Ontology, and the Horizontal Generalization
Algorithm, which makes selected constitutents of the subRHS optional and/or repeatable.
Finally, the Rule Merging Algorithm is applied to insert the new subRHS into the task

grammar in a generalized manner. (See §6.3 for the details.)

4.2.3 Enabling a Natural Dialogue

An aspiration of GSG is to provide a natural feel not only to the interface of the end-
application but also to the dialogue that takes place during the learning episodes. Integral
requirements for that purpose are (i) ability to remember what the interlocutor has said,
and (77) ability to keep a stack of attentional topics, that is, the capacity to shift the focus
of attention, deal with a subtopic, and then return to the original focus of attention. Gsa
models (i7) through the Dialogue Manager, which contains a focus stack; and (7) both via
the Interaction History, a repository of the answers the user has given during the session
to questions formulated by the system, as well as via the extension of the task grammar
through the acquisition of rules.
Also, related to this conversational naturalness, is GSG’s ability to dynamically create gram-
mars to parse the user’s response to multiple choice questions. For example, given a question
such as
"get rid of all messages from spamela" is a way to express:

1. delete mail, e.g. '"delete"

2. reply mail, e.g. '"reply"

0. None of the above

one can answer with either 1, one, delete, or delete mail and still select the same choice.

The following Chapter 5 details the workings of the SOUP parser. It is in Chapter 6 where

the algorithms outlined in this chapter are revisited in more detail.

Chapter 5

The Soupr Parser

This chapter describes the SOUP parser. It starts with a brief overview of parsing and
grammar formalisms, then explains the algorithm and principal features of the SOUP parser,

and ends with a note on the graphical user interface GSouP.

5.1 Parsing

Parsing can be described as the assignment of structure to a sequence of words according
to a grammar. A sentence (sequence of words) can obtain very different analyses depending
on the grammar it is parsed with. Figure 5.1 illustrates this point by showing the parses
for Are you free on Tuesday morning? according to two grammars, one syntactic (where
the nonterminals correspond to grammatical categries), and the other semantic (where the
nonterminals correspond to concepts relevant in a particular domain).

We see therefore that the grammar with which sentences are analyzed is very important, as
it determines the parse structures and thus the information that will be extracted from the
analysis. From a theoretical standpoint, it is worth mentioning the study by Noam Chomsky
[Chomsky, 1956; Chomsky, 1959] of different types of grammar formalisms, in particular the
weak generative capacity of different rewrite systems. (See Table 5.1.) The grammars that
SouP handles are context-free, because this class of grammars allows for fast parsing speed
and still has sufficient power to cover most of natural language. In fact, although there is
evidence that natural languages are not, in general, context-free (see [Culy, 1985; Shieber,
1985]), it has been proposed [Mayfield et al., 1995a; Mayfield et al., 1995b; Woszczyna et al.,
1998] that, at least for task-oriented semantic grammars, the advantages in parsing speed
and ease of grammar construction of a pure-CFG formalism outweigh the lack of features
offered by other formalisms (cf., for example, the [Verbmobil Semantic Specification, 1994]).
Parsing then becomes a search for the “best” analysis of a sentence according to a grammar.

Many parsing algorithms have been proposed in the literature (see [Grune and Jacobs, 1990]

39

Chapter 5: The Soup Parser 40

<interrogativeSentence>

<copulativeVerb> <pronoun> <attribute> <prepositionalPhrase>
I
I I
Are you <adjective> <preposition> <nominalPhrase>
free on <noun> <noun>
Tuesday morning

<request>

<suggestTime>

I
I | I |
Are Yyou <_AVAILABLE> <temporal>

| 1
I I I
free <_PREPOSITION> <day0fWeek> <timeQfDay>

on Tuesday morning

(b)

Figure 5.1: Syntactic (a) and semantic (b) parses for the same sentence.

and [Tomita and Bunt, 1996] for a good sample), but here only SOUP’s top-down beam
search will be described.

Some of the terminology employed in the explanation that follows may be worth clarify-
ing: a parse tree is a tree covering a contiguous subsequence of the input sentence'; an
interpretation is a sequence of non-overlapping parse trees that cover the input sentence
(either fully or partially); finally, an analysis of the input sentence is a ranked list of

interpretations.

'Except in the case of intra-concept skipping, where some input words may be omitted.

Chapter 5: The Soup Parser 41

Grammar Grammar Laneuage Accepting
Type Productions guag Machine
ivel
Type 0: U —>v (ljne;l;r:rllﬁlz Deterministic,
Unrestricted, ve (Vux)t (Any computable nondeterministic
phrase structure ve (VUx)* y comp Turing machine
function)
Type 1: vy
szl tex.t—sensi tive ve (Vux)t Context-sensitive Linear-bounded
. ’ ve(VuUx)* (E.g. a"b"c") automaton
monotonic
length(u) < length(v)
A—
Type 2: Y Context-free Pushdown
Context-free AeV (E.g. a"b") automaton
ve (VUx)* ©
A— aB .
Type 3 “ Deterministic,
A—a L
Regular, Regular nondeterministic
. A— A n .
left-linear (E.g. a™) finite-state
. . A BeV .
right-linear machine
a€X

Table 5.1: The Chomsky hierarchy of grammars, a classification of grammar families ac-
cording to their weak generative capacity. V is the set of nonterminal symbols, ¥ the set of
terminal symbols, and X represents the empty string. (VUX)™ denotes the set of non-empty
strings composed exclusively of symbols from V and/or £; (V U X)* denotes the same set
except that the empty string is included.

5.2 Grammars

As shown in Table 5.1, a context-free grammar is composed of a set of terminals X (i.e., the
vocabulary of the language), a set of nonterminals V', a set of starting nonterminals S C V/,
and a set of rules R. Each rule in R is of the form A — v (i.e., symbol A can be rewritten
as v), where A € V (i.e., the left-hand side of the rule is composed of a single nonterminal
A), and v € (V UX)* (i.e., the right-hand side of the rule is composed of a combination of
terminals and nonterminals).

Many different grammar theories and grammar formalisms have been proposed to analyze
natural language: Lexical-Functional Grammar (LFG, see [Neidle, 1994; Dalrymple, 1999]),
Head-driven Phrase Structure Grammar (HPSG, see [Pollard and Sag, 1994]), Generalized

Chapter 5: The Soup Parser 42

Figure 5.2: Lattice representing the RHS of the JSGF rule<A> = a (b | (<C> d)*) e.
(Cf. Figure 5.3.)

<A> = a [<_A_aux1>] e;
<_A_aux1> = b | <_A_aux2>+;
<_A_aux2> = <C> d;

Figure 5.3: Rules in the Phoenix formalism equivalent to the single rule <A> = a (b |
(kC> d)*) e in JSGF. Since no grouping of constituents is allowed, two auxiliary NTs
(<_A_aux1> and <_A_aux2>) have to be introduced.

Phrase Structure Grammar, Goverment and Binding (GB, see [Napoli, 1993]), Relational
Grammar (see [Pearlmutter, 1983; Pearlmutter and Rosen (eds), 1984]), Link Grammar
(see [Sleator and Temperley, 1993]), Categorial Grammar (see [Morrill, 1994; Carpenter,
1998]), and others. SOUP’s formalism, however, is only defined in as much as it has to be
representable by a context-free grammar. In particular, SOUP accepts grammars written

according to the JSGF format (see §1.3 and [JSGF, 1998]).

5.2.1 A Note on the Grouping of RHS Constituents

The JSGF formalism allows to group right-hand side constituents (comprising terminals
and/or nonterminals) in order, for example, to repeat or skip them as a whole. This in
fact means that a grammar written in the JSGF formalism is a compact representation
of a rewrite system that strictly complies with the definition of context-free grammars in
Table 5.1.2 In JSGF, RHSs are no longer linear sequences of symbols but rather constitute
lattices of symbols. Therefore, if we take a formalism such as Phoenix [Ward, 1994], which
does not allow grouping, nonterminals may have to be added. Figures 5.2 and 5.3 exemplify

this situation.

2And the same holds for the allowance of optional and repeatable constituents.

Chapter 5: The Soup Parser 43

Arc Type | Explanation

ASEQ Beginning of RuleSequence

AgElQ End of RuleSequence

AALT Beginning of RuleAlternatives
AKiT End of RuleAlternatives

ACNT Beginning of RuleCount

>‘611\IT End of RuleCount

ATAG Beginning of RuleTag

AMAc End of RuleTag

AFWD Forward empty transition

ABWD Backward empty transition

>\VOID <V0ID> Rule

ANULL <NULL> Rule

ANT Grammar nonterminal (RuleName)
AT Grammar terminal (RuleToken)
AWLD Wildcard (to match out-of-vocabulary words)

Table 5.2: Arc types used to encode JSGF grammars as PRTNs.

5.3 Probabilistic Recursive Transition Networks

In Soup, a context-free grammar, such as a JSGF RuleGrammar, is represented via Prob-
abilistic Recursive Transition Networks (PRTNs). Each rule is encoded in a PRTN, where
the nodes are either Regular or Final, and the arcs are tuples of <type, ID, probability>.?
Table 5.2 lists the different types of arcs employed.* The probabilities of all the arcs leaving
a particular node sum to one. Figure 5.4 shows two PRTNs as examples.

The main advantage of representing a CFG as a collection of PRTNs is the dynamism and
flexibility it allows: PRTNs are constructed on the fly as the source text file describing
a grammar is being read, and they can be modified at runtime with little effort (which
contrasts with the need to recompute the shift-reduce table in some parsers).

In addition, the definition of probabilities at the arc level allows not only to incorporate
them into the parse scoring function (see §5.4) but also to generate synthetic data, from

which, for instance, a language model can be computed.

3In fact, they also contain a boolean to encode activity status.

“For expository clarity all A™" arcs are shown with their subtype (SEQ, ALT, CNT, or TAG) and as a
distinct arc, but in the real implementation, there is no need to distinguish, say, between)\géQ and)\;iT (a
generic A~ ' suffices, since the subtype information is obtainable by keeping track of the A types). Moreover,
for efficiency reasons, contiguous A~! arcs may be collapsed into a single one (with the appropriate marking).

Chapter 5: The Soup Parser 44

Figure 5.4: SOUP’s representation of the JSGF rules <A> = a (b | (<C> d)*) e and
<C> = c1 | c2 as PRTNs. A PRTN is a directed graph, where the nodes are either Initial
(leftmost node), Regular, or Final (denoted by a double circle), and the arcs contain a tuple
<type, ID, probability>, where the type is one of the types listed in Table 5.2.

Grammar arc probabilities are initialized to the uniform distribution but can be perturbed
by a training corpus of desired (and achievable) parses. Given the direct correspondence

between parse trees and grammar arc paths, training the PRTNs is very fast (see §5.8).

5.3.1 Generation from PRTNs

By traversing the PRTNs according to the arc probabilities SOUP, can generate not only a
corpus of sentences but also a corpus of parse trees (i.e., a parsebank) which can then be
used to train Gsa’s Prediction Models (see §6.2.4). In the generation function, the following
parameters can be selected. (In parentheses are examples of generation from the PRTN in

Figure 5.4.)

e Word vs. subtree generation: whether the result of the generation is a sequence

of terminals (e.g., “a €”) or a parse tree (e.g., Figure 5.5).

e Starting point: whether to generate (i) from the entire grammar, (7i) from a given

NT, or (éii) from a given PRTN node.

Chapter 5: The Soup Parser 45

Figure 5.5: Example of a tree generated from the PRTN in Figure 5.4.

44

e Treatment of optionals: whether to always omit optionals (e.g. “a e”) or make

by EN43

stochastic decisions (e.g. “a c2 d e,” “a e”).

e Treatment of repeatables: whether to always generate repeatables by a fixed num-
ber (e.g., with rep=3, “a c1 d ¢2 d c2 d e”) or make stochastic decisions (e.g. “a

c2 d e”).

e Exhaustive vs. stochastic generation: whether to generate all possible expan-
sions (e.g., with rep=2, { “a e,” “a b e,” “acl d cl de,” “acl dc2de “a
MW

c2dclde” “ac2dc2d e’ })or make stochastic decisions (e.g. “a b e,” “a

e, “a c2 d e”).

e Number of generations: how many sentences or trees to generate.

5.4 Parsing Heuristics

As mentioned above, parsing can be seen as a particular instance of a search problem.
To guide the search, a scoring function is defined to assess the goodness of a particular,
possibly partial interpretation. SOUP’s scoring function maximizes coverage, minimizes
fragmentation, minimizes complexity, minimizes usage of the wildcard, and maximizes arc
probabilities. The general rationale behind such heuristics is to favor the simplest, most
specific, most informative interpretation, in the technical, information-theoretic sense of
informative.

Let us look at each of these factors in detail. The highly ambiguous g3 grammar listed in

§A.1 is used to illustrate SOUP’s heuristics with concrete examples.

Chapter 5: The Soup Parser 46

<t>

<1>

<11>

—

<111> <112>

111 112

Figure 5.6: Best interpretation of 111 112 according to the g3 grammar listed in §A.1.

<t>

<11>

<111>

111 112

Figure 5.7: Interpretation of 111 112 with less coverage than best in Figure 5.6.

5.4.1 Maximization of Coverage

The most obvious factor is coverage, defined as the ratio of parsed words to the total number
of words. For example, the parse of 111 112 with grammar g3 in Figure 5.6 is preferred to

the one in Figure 5.7.

5.4.2 Minimization of Fragmentation

Another factor is fragmentation, defined as the number of parse trees per interpretation.
Given two interpretations with the same coverage, the interpretation that consists of fewer
non-overlapping parse trees is preferable, as it represents a more succinct explanation of the

input sentence.

Chapter 5: The Soup Parser 47

<t> <t>
<1> <1>
<11> <11>

<111> <112>

111 112

Figure 5.8: Interpretation of 111 112 with same coverage but more fragmentation than best
in Figure 5.6.

For example, Figure 5.8 shows another interpretation for 7111 112 that has the same coverage
as the one in Figure 5.6, but, since it consists of two parse trees, it is more fragmented and

therefore dispreferred.

5.4.3 Minimization of Complexity

A third factor is “parse complexity,” approximated by the number of parse tree nodes and

their branching scores.

5.4.3.1 Minimization of the Number of Nodes

The above factors of coverage and fragmentation being equal, the number of nodes is to be
minimized, in this case to attain the simplest explanation. For example, Figure 5.9 shows
another interpretation for 777 112 that has the same coverage and fragmentation as the

one in Figure 5.6 but has more nodes (six instead of five) and is therefore dispreferred.

5.4.3.2 Maximization of Branching Score

Even when two interpretations have the same coverage, fragmentation and number of nodes,
it is still preferrable to select the interpretation with the most specific branching. For ex-
ample, the parse trees in Figure 5.10 and Figure 5.11 both have the same coverage and
number of nodes, but the analysis in Figure 5.10 is preferred because the branching occurs
lower in the tree. Formally, the algorithm employed is to compute a branching score and

then prefer the analysis with highest value. The branching score (bs) for a tree T' is defined,

Chapter 5: The Soup Parser 48

<t>
<1>

<11> <11>

<111> <112>

111 112

Figure 5.9: Interpretation of 111 112 with same coverage and fragmentation but more nodes
than best in Figure 5.6.

recursively, as

1 2 Sub(T) =@
bs(S) <1

0 : < . u
> vS:SeSub(T) (1 +{ bs(S) : bs(S)> 1 }) 2 Sub(T) # D

where Sub(T) is the set of immediate subtrees of T
Thus, analyses that group constituents that bond together (i.e., reduce) low in the tree are
preferred, as their score will compound up to the root. For example, the branching score

for the tree in Figure 5.10 is six and for the one in Figure 5.11 is three.

Chapter 5: The Soup Parser 49

<listMail>
(bs = 6)
I | 1
<_LIST> <_MAIL_ARGUMENT>
(bs =1) (bs = 4)
list <_DATE>
(bs =1) (bs = 3)
<datePoint>
(bs =2)
I | 1
<_DATE_POINT_ARGUMENT> <_DATE_POINT_ARGUMENT>
(bs =1) (bs =1)
<_DATE_POINT_MODIFIER> <_DATE_RELATIVE>
(bs =1) (bs =1)

<datePointModifier_previous>

(bs =1)
|
last
(bs =1)

<dateRelative__week>

(bs =1)
l
week
(bs =1)

Figure 5.10: Preferred interpretation of list last week, as it obtains a branching score (bs)

of six (cf. Figure 5.11).

Chapter 5: The Soup Parser

50

<listMail>
(bs = 3)
I T I 1
<_LIST> <_MAIL_ARGUMENT> <_MAIL_ARGUMENT>
(bs=1) (bs=1) (bs=1)
list <_MESSAGE_IDX> <_DATE>
(bs=1) (bs=1) (bs=1)
<messagelndex__last> <datePoint>
(bs =1) (bs =1)
last <_DATE_POINT_ARGUMENT>
(bs =1) (bs =1)
<_DATE_RELATIVE>
(bs =1)

<dateRelative__week>

(bs =1)
|
week
(bs =1)

Figure 5.11: Dispreferred interpretation of list last week, as it obtains a branching score

(bs) of three (cf. Figure 5.10).

Chapter 5: The Soup Parser 51

public <nicety> <greeting> | <farewell>;

<greeting> = ciao [<knownPerson> | <unknownPerson>];
<knowPerson> = <Maria>;

<Maria> = maria;

<unknownPerson> = <_WILDCARD>;

Figure 5.12: Grammar fragment to illustrate the dispreferral of wildcard usages. See Fig-
ures 5.13 and 5.14.

<nicety>

<greeting>

——

c1ao <kownPerson>

<Maria>

maria

Figure 5.13: Preferred interpretation of ciao maria according to the grammar in Figure 5.12
(with a preference for <greeting> over <farewell>). (Cf. Figure 5.14.)

5.4.4 Minimization of Wildcard Usages

When a parse exists that does not require the usage of the wildcard® and has the same
coverage, fragmentation, and similar tree complexity as another one that uses the wilcard,
the former is preferred. For example, the analysis in Figure 5.13 is preferred over the one
in Figure 5.14.

The reasoning behind this heuristic is, again, for parses to be as specific and informative as

possible.

5.4.5 Maximization of Arc Probabilities

Finally, the arc probabilities are also taken into account. For example, given the ambiguous
grammar in Figure 5.12 and the sentence ciao, two parses of identical coverage, fragmenta-
tion, branching score and complexity are possible (as depicted in Figures 5.15 and 5.16). If

the grammar has not been trained, both trees would also tie in their sum of arc probabili-

A special nonterminal that is able to cover any out-of-vocabulary word (or any in-vocabulary word
present in a special set).

Chapter 5: The Soup Parser 52

<nicety>

<greeting>
I
I I

c1ao <unkownPerson>

<_WILDCARD>

maria

Figure 5.14: Dispreferred interpretation of ciao maria according to the grammar in Fig-
ure 5.12 and with maria present in the set of in-vocabulary words allowed to match the
wildcard. (Cf. Figure 5.13.)

<nicety>

<greeting>

ciao

Figure 5.15: One interpretation of ciao as <greeting> with grammar in Figure 5.12. (Cf.
Figure 5.16.)

ties, but if, say, a parsebank with more ciaos under <greeting> than under <farewell> is

used to train the grammar, then the parse of cico under <greeting> will be preferred.

5.4.6 Combining Heuristics

The heuristics described above are weighted differently in the scoring function. Table 5.3
shows the weight factor for each component in the parse lattice scoring function. These
weights were set manually after a short tuning process and are fixed across all grammars.
Basically, an order of magnitude separates the weight of each factor, so that they behave

hierarchichally (e.g., only if coverage is tied do the rest of the heuristics have an effect).

Chapter 5: The Soup Parser 53

<nicety>

<farewell>

clao

Figure 5.16: Another interpretation of ciao as <farewell> with grammar in Figure 5.12.
(Cf. Figure 5.15.)

Component Weight
Coverage (number of covered Ts) +1000
Intra-concept skips (number of skipped Ts) -100
Wildcards -20
Fragmentation (number of trees) -100
Number of principal NTs -1
Number of auxiliary NT's -1
Branching score +1
Sum of arc probabilities +10

Table 5.3: Weights used in SOUP’s scoring function of parse lattices. Components with a
positive weight will be maximized and components with a negative weight minimized.

Chapter 5: The Soup Parser 54

5.5 Parsing Modes

The flexibility of SOUP is well exemplified by the variety of parsing modes. Ordinarily,
parsing is understood as the assignment of structure to a sequence of words according to
a grammar. In the strict sense, a sequence of words constitutes a valid sentence of the
language defined by the grammar if and only if there exists a parse tree (sequence of rule
rewrites) that, from a starting symbol of the grammar, is able to generate (cover) all the
words in the input sequence. Robust parsing however relaxes this constraint by, for example,
allowing the input words to be parsed as a sequence of non-overlapping parse trees (i.e.,
building an interpretation that consists of more than one parse tree), or by allowing the
skipping of words. As detailed below, SOUP supports all these different modes, as well as a

few truly novel ones, such as the parsing of right-hand sides.

5.5.1 Word-level Default Parsing Mode

The word-level mode is SOUP’s typical way of parsing, namely, find an interpretation for a
given sequence of terminals.® SOUP’s robustness adds (i) the ability to find interpretations
consisting of multiple, non-overlapping parse trees, and (ii) the ability to skip input words

at any point (i.e., the inter- and intra-concept skipping described in §5.7).

5.5.2 Word-level Constrained Parsing Mode

Soup’s default parsing can be constrained to produce only single-tree interpretations, to

make use of speaker side information, and to omit certain NTs.

5.5.2.1 Parsing Constrained to Single-tree Interpretations

In this case, interpretations can only consist of a single tree and the single tree must span
(i.e., cover, if no skipping takes place) the entire input sequence. This is the mode specified
by JSAPI [JSAPI, 1998]. For example, given the sentence 111 aaa 112 and grammar g3,
SouP in default mode would skipp eaa and produce the interpretation in Figure 5.17 as its
best. In single-tree interpretation mode, however, it would find no interpretation, as there

is no legal, single tree that can cover the input sentence.

5.5.2.2 Parsing Constrained to Speaker Side

Nonterminals can be marked to belong to a speaker side only. For example, in a travel

reservation domain, there may be a single grammar to parse the utterances of both the

50r multiple interpretations if the sentence is ambiguous.

Chapter 5: The Soup Parser 55

<t> <t>

<1> <1>

<11> <11>
<111> <112>

111 aaq 112

Figure 5.17: Interpretation of 111 aaa 112 allowing for skipping and multiple-tree
interpretations.

travel agent and the client, but certain concepts may only make sense for the agent (e.g.,
<requestCreditCardInfo>), or the client (e.g., <giveRoomPreference>). Since speaker
information (channel source) is readily available at runtime, on a per utterance basis SOUP

can disallow the NTs that are exclusive of the other speaker.

5.5.2.3 Parsing Constrained to Given Set of NTs

More generally, the grammar can be partitioned into subsets that can be activated or

deactivated for each parse search.

5.5.3 Word-level Augmented Parsing Mode

SouP’s default parsing can be augmented by allowing all NTs to be considered top-level.

5.5.3.1 Parsing Augmented to All-top Mode

In this mode, all NTs are considered top-level, i.e., able to stand at the root of a parse tree.
For example, Figure 5.18 shows the result of parsing ciao maria under the same conditions
as in Figure 5.13 except that in Figure 5.18 all-top parsing mode is set.

Note that the scoring function is the same, therefore coverage maximization, fragmentation
and complexity minimization, etc, still apply.

To prevent spurious parses, the wildcard is not allowed to be a root. That is, the special NT
<_WILDCARD> is only allowed to match an input word if there already exists parsed material
to the left of the word in question in the top-level parse lattice currently being pursued.

For example, as depicted in Figure 5.19, given the sentence please retrieve messages from

Chapter 5: The Soup Parser 56

<greeting>

EE—

ciao <kownPerson>

<Maria>

maria

Figure 5.18: Interpretation of ciao maria according to the grammar in Figure 5.12 in all-top
parsing mode (with a preferece for <greeting> over <farewell>). Note that the root node
is <greeting> rather than the more general <nicety>.

peter, this restriction has the effect of not parsing out-of-vocabulary word retrieve under

the wildcard, but doing so for the other out-of-vocabulary word peter.

5.5.4 Character-level Parsing Mode

SouP has the ability to define N'T's that operate at the character level. This is useful, for
example, for languages with a rich, surface-expressed morphology such as German. Fig-
ure 5.20 lists a grammar fragment with rules that operate at the characer level. Figure 5.21
shows an example parse.

Character-level parsing is achieved using the same methods that parse at the word-level. In
fact, it is during word-level parsing that character-level parses are spawned by segmenting
the current word into its characters and recursively invoking the parse method. The only
difference is that, in the search for a character-level parse, the desired root nonterminal is

already known and no skipping or multiple-tree interpretations are allowed.

5.5.5 Parsing of Right-hand Sides

Another of SOUP’s major parsing modes is the parsing of right-hand sides, that is, of se-
quences of terminals and non-terminals. This is used to detect the introduction of ambiguity
in the grammar, as well as to compute subsumption of right-hand sides. This mode repre-
sents a generalization of the usual parsing of terminals, for, in this case, the input vector is
constructed as a vector of type-ID pairs (where type is either in-vocabulary terminal (T),
out-of-vocabulary terminal (OOV), or nonterminal (NT)). Since parsing in SOUP is finding
a path along the PRTNs that best covers the input vector, the algorithm for parsing RHSs

is the same as the one for parsing T's: when the element to match in the input vector is of

Chapter 5: The Soup Parser 57

<_SENDER>
I
I |

from <sender>

<name__STRING>

<_PERSON_OR_INSTITUTION_NAME>

<_VERB_DESIRE> <_MAIL> <_WILDCARD>

please retrieve messages peter

Figure 5.19: Interpretation of please retrieve messages from peter according to the E-
Mail Task grammar (see §B.3.qq) in all-top parsing mode. Note that in all-top mode
the <_WILDCARD> is not allowed as the first (leftmost) daughter of a parse tree (cf. unparsed
retrieve vs. parsed peter).

type NT, a corresponding arc of type NT has to be found in the PRTNs, as is the usual

case for Ts.

5.5.5.1 Generation and Expansion Sets of Right-hand Sides

An important distinction is made between the generation and the ezpansion sets of a right-
hand side. Given an RHS R, its generation set Gen(R) is defined as the sublanguage in
3" defined by R, i.e., the exhaustive listing of all sequences of Ts permissible under R via
the recursive expansion of N'Ts until all possible Ts are reached. Obviously, in the case
of infinitely-repeatible blocks (‘*’ and ‘+” operators in JSGF) an approximation has to be
made, e.g., by repeating them five times. Figure 5.22 shows an example of the generation
set for an RHS.

On the other hand, given an RHS R, its expansion set Exp(R), is defined as the sublanguage
in (XUV)* defined by R, i.e., the exhaustive listing of all sequences of T's and NTs permissible
immediately under R. Figure 5.23 gives an example of the expansion set for the same RHS

as the one in Figure 5.22.

5.5.5.2 Detection of Ambiguity Introduction

A key feature of SOUP is its ability to dynamically modify the grammar, as when new rules

are acquired. It is important, however, not to disrupt the exisiting grammar when new

Chapter 5: The Soup Parser 58

public <requestRoom> = <_VERB_DESIRE> [<_C_roomQuantity>]
<_C_roomFeature>* <_ROOM>;

<_VERB_DESIRE>

ich (moechte | will | haette gern);

<_C_roomQuantity> = ((ein {1

{/l

<_c_ENDING>;
<_C_roomFeature> = ((klein {smalll})

| (gemuetlich {cozy})

{/l

<_c_ENDING>;
<_c_ENDING> = <NULL> | er | e | es em | en;
<_ROOM> = zimmer | stube;

Figure 5.20: Grammar fragment to illustrate character-level NTs. NTs whose name starts
with _C_ are principal NTs that operate at the character level. NTs whose name starts
with _c_ are auxiliary NTs that operate at the character level. Note the factorization of
adjectival endings via <_c_ENDING>, thereby preémpting a six-fold increase in the number
of terminals representing adjectives. See Figure 5.21 for an example parse.

rules are added. For example, it is not a good idea to introduce ambiguity. How can the
introduction of ambiguity be detected? A first approach would be, given a new right-hand
side R, to add it to the grammar, compute Gen(R), and see whether any s € Gen(R) is
parsable by the current grammar. If that is the case, it means that the new RHS R does
introduce ambiguity. But this algorithm is quite inefficient, as the exhaustive construction
of Gen(R) may give rise to a very large set. But upon the realization that precisely most
of the exponential growth of Gen(R) is due to the expansion of its nonterminals, the time
complexity of the ambiguity detection algorithm can be reduced by computing Exp(R)
instead.

Figure 5.24 shows the existence of a parse for <greeting> according to the grammar in
Figure 5.12, indicating that adding an RHS that has <greeting> as a member of its ex-
pansion (such as <greeting> [again]), would introduce (or increase) the ambiguity in the

grammar.

5.5.5.3 Detection of Rule Subsumption

Similarly, SOUP’s parsing of RHSs can be used to detect rule subsumption, i.e., when the
language of one RHS is already contained in the language of an NT. For example, the RHS
a b b is subsumed by the rule <r> = ¢ | [al b+ because L(a b b) = { “a b b” } is
contained in L(<r>) = L(c | [a] b+) ={ “c”, “b”, “a b”, “b b”, “a b b”, “b b b”, “a
bbb, ..}

Chapter 5: The Soup Parser 59

<requestRoom>
|
I I I I I

<_VERBDESIRE> <_C_roomQuantity> <_C_roomFeature> <_C_roomFeature> <_ROOM>
ich moechte {1} {small} {cozy} zimmer

7 T 1

, , [T T TTTETT !
ein klein<_cENDING>gemuetlich<_cENDING>
es es

Figure 5.21: Parse of ich mdchte ein kleines gemdiitliches zimmer with the grammar in
Figure 5.20 to exemplify character-level parsing.

In this case, given RHS R; and RHS Ry, R; is subsumed by Ry iff L(Ry) C L(Ry) iff
Vs € Exp(Rq) JP(s,<r>), where P(s,<r>) is a non-empty parse of sequence s under NT <r>.
In other words, if all expansions of the new RHS obtain a parse under a certain NT, that
NT is already covering the language of the new RHS and therefore it is not necessary to
add the new RHS to the grammar.

For example, if the grammar already contains the rule <farewell> = [good] bye+, a new

RHS alternative bye bye under <farewell> would be redundant.

Chapter 5: The Soup Parser

60

() aaaaablcdeececee
(2) aaaaableeecee
(3) aaaaacdeececee
(4) aaaaaeeeccece

(5) Plcdeeeee

(6) bleeecee

(7) cdeeeee

(8) eeeee

(9) aaaaab2cdeeecee
(1) aaaaab2eeecee
(11) b2 cdeeeee

(12) b2 eeeece

(13) aaaaab2b3cdeecece
(14) aaaaab2bld3eeceece
(15) b2 b3 cdeeecee

(16) P2 b3 eeeee

Figure 5.22: The Gen(a* [] [c d] e+) set, with = b1 | b2 [b3]. Infinitely re-
peatable constituents are approximated by five copies. (Cf. Figure 5.23.)

() aaaaaccd
(2) aaaaacee
(3) aaaaacdee
(4) aaaaaeeece
(5) c deeecee
(6) eeeee
(7) cdeeeee
(8) eeeee

Figure 5.23: The Exp(ax [] [¢ d] e+) set.
approximated by five copies. (Cf. Figure 5.22.)

<nicety>

<greeting>

e e e e
e e
e e

® ®© © O

Infinitely repeatable constituents are

Figure 5.24: Example of detection of ambiguity introduction through parsing of right-hand
sides: The existence of a parse for <greeting> under <nicety> according to the grammar
in Figure 5.12 means that adding, say, <nicety> — <greeting> [again] would increase

the ambiguity of the grammar.

Chapter 5: The Soup Parser 61

public <time> = <point>+;
<point> = <hour> | <minute> | <second>;
<hour> = one | two;
<minute> = one | two;
<second> = one | two;

Figure 5.25: Grammar to illustrate ambiguity packing. (See Figure 5.26.)

<time>

<point> <point>

A

<hour>—<minute>—<second> <hour>—<minute>—<second>

two

Figure 5.26: Parse lattice for input one two according to the grammar in Figure 5.25. It
encodes the 32 = 9 different parse trees in Figure 5.27.

5.6 Sketch of the Parsing Algorithm

In Soup, parsing proceeds in the following steps: processing of the input string, population

of the chart, and search for the best analysis.

1. Construction of the input vector. Given an utterance to be parsed, it is converted into
a vector of type-ID pairs.” In the usual mode of parsing terminals all elements in the
input vector will be of type T (in-vocabulary terminal) or OOV (out-of-vocabulary
terminal). In the case of parsing RHSs (see §5.5.5 above) some elements may be of

type NT.

Special terminals <s> and </s> are added at the beginning and end of an utterance,
respectively, so that certain rules only match at those positions. (For example, the
rule <accept> = <s> ok </s> will only match if ok constitutes the entire utterance.)

8

Also, global search-and-replace string pairs defined in the grammar® are applied, e.g.,

to expand contractions (as in I'd like — I would like) or to remove punctuation marks.

If the input is an array of tokens, no segmentation is needed; otherwise the input string has to be
segmented into tokens.

8This is an extension of JSGF: string mappings are defined via keyword @stringMap in the JavaDoc
comment. See grammars in §A, §B, and §C for examples.

Chapter 5: The Soup Parser

62

<time> <time> <time>
| | |
<point> <point> <point>
<hour> <hour> <hour> <minute> <hour> <second>
| | | | |
one two one two one two
<time> <time> <time>
| | |
<point> <point> <point>
<minute> <hour> | <minute> <minute> | <minute> <second>
| | | | | |
one two one two one two
<time> <time> <time>
| | |
<point> <point> <point>
<second> <hour> | <second> <minute> | <second> <second>
| | | | | |
one two one two one two

Figure 5.27: Exhaustive listing of the parse trees encoded in the parse lattice in Figure 5.26.

Other settings determine whether out-of-vocabulary words should be removed, and

whether the input utterance is case-sensitive.

2. Population of the chart. The first search populates the chart (a two-dimensional table

indexed by input-word position and nonterminal ID) with parse lattices. A parse

lattice is a compact representation of a set of parse trees (similar to Tomita’s shared-

packed forest [Tomita, 1987]). Figures 5.25, 5.26, and 5.27 provide an example.

The beam search involves top-down, recursive matching of PRTNs against the input

vector. All top-level nonterminals starting at all input vector positions are attempted.

The advantage of the chart is that it stores, in an efficient way, all subparse lattices

Chapter 5: The Soup Parser 63

found so far, so that subsequent search episodes can reuse existing subparse lattices.
More concretely, for each nonterminal and input word position the chart stores the
corresponding list of parse lattices ordered by score (computed from the scoring func-

tion defined in §5.4).

To increase the efficiency of the top-down search, the set of terminals with which a
nonterminal is allowed to start is precomputed (i.e., the FIRST set), so that many
attempts to match a particular nonterminal at a particular input vector position can
be preémpted by the lack of the corresponding terminal in its FIRST set. This top-
down filtering technique (also used, for example, in the TINA parser [Seneff, 1992])

typically results in a threefold speedup.

The beam serves to restrict the number of possible subparse lattices under a certain
nonterminal and starting at a certain input position, e.g., by only keeping those sub-
parse lattices whose score is at least 30% of the best score. As described in §6.4, the
score function is such that (i) coverage (number of words parsed), (i1) branching score,
and (4ii) sum of arc probabilities are maximized, whereas (iv) parse lattice complexity
(approximated by number of nonterminals) and (v) usages of the wildcard (approxi-
mated by the maximal number of arcs encoding the out-of-vocabulary wildcard along
the parse lattice) are minimized. Also, pruning of structurally-equal parse lattices
is performed, thereby eliminating the redundancy that arises from several right-hand

sides matching the same input vector span under the same nonterminal.’

3. Finding the best interpretations. Once the chart is populated, a second beam search
finds the best N interpretations, i.e., the best N sequences of top-level, non-overlapping
parse lattices that cover the input vector. Scoring of interpretations adds, to the
above scoring function, a sixth factor, namely the minimization of parse fragmen-
tation (number of parse trees per utterance). This search problem can be divided
into subproblems (instance of a so-called divide-and-conquer strategy) since both un-
parsed words and words parsed by a single parse lattice offer a natural boundary to
the general problem.'® For example, Figure 5.28 shows how sentence segments can
be covered by more than one top-level NT. Then a beam search is conducted for

each subproblem. In this case, the beam limits the number of active sequences of

9This can happen, for instance, when the grammar is inherently redundant as in, say, <r> = a [b] |
a [c] instead of <r> = a [b | c]. Then, presented with input a two seemingly identical parses would be
possible. However, with SOUP’s pruning technique, only one would be kept alive. (Of course, rather than
performing this pruning at parse time, SOUP’s subsumption detection capabilities (see §5.5.5.3) could be
used a priori to rid the grammar of such redundancies.)

ONote that such boundaries would not exist if ordering of top-level NTs were to be taken into account in
the scoring function (e.g., via a bigram of top-level NTs).

Chapter 5: The Soup Parser 64

.hello.i.would . like.to.make. a. reservation . for . a. hotel . room .

[greet]:SST [reqg-action+reservation]:GIR [g_i+h]:HTL [g_i+r]:HTL
[greet]: GIR

[gi ve_i nf o+roonj: HTL

[gi ve_i nfo+rooni: HTL

[reqg-action+reservati on+f eat ur es+r oom : HTL

.do.you. have.time.on. friday .

[req_info+tinme]: GTR [tenmporal]: SST
[query_your _avail ability]: SST [give_info+time]: GTR

[tenporal]: SST
[give_info+tine]: GIR

[query_your _avail ability]: SST

Figure 5.28: Example, in a travel domain, of second order search (see Step 3 in §5.6).
For example, the word room is covered by four different top-level NTs: three times by
<HTL.give-information+room> (by itself, as part of hotel room, and as part of a ho-
tel room), and once by <HTL.request-action+reservation+features+room> (as part of
i would like to make a reservation for a hotel room). The second order search decides
which sequence of non-overlapping parse trees best accounts for the input words. In
this case it finds <greet :GTR>, <HTL.request-action+reservation+features+room>, and
<SST.query_your_availability> as they minimize overall fragmentation.

top-level, non-overlapping parse lattices that form a partial interpretation. Since the
single best interpretation is simply the concatenation of the best sequence of each
subproblem, even when asked to compute the top NN interpretations for N > 1, the
best interpretation is always computed separately and output immediately so that

backend processing can begin without delay.

The final result is a ranked list of N interpretations, where the parse lattices have

been expanded into parse trees.

5.7 Skipping

Given the nature of spoken language it is not realistic to assume that a grammar can ever

be complete in the sense of covering all possible surface forms. In fact, it turns out that a

Chapter 5: The Soup Parser 65

66 T T T T T 300 T T T T

65 |- E

64 g

62 |- f

61 |- T

60 1 1 1 1 1

average coverage (%) —<— average parse time (ms) <—

Figure 5.29: (a) Average coverage and (b) parse times for different values of mcs (maximal
number of contiguous words that can be skipped within a nonterminal). Same test set and
machine as in Table 5.4 (see §5.8) but with the Travel grammar only.

substantial portion of parse errors comes from unexpected insertions, e.g., adverbs that can
appear almost anywhere.

SOuP is able to skip words both between top-level nonterminals (inter-concept skipping)
and inside any nonterminal (intra-concept skipping). Inter-concept skipping is achieved by
the second-level search just described in Step 3 of §5.6 (i.e., the search that finds the best
interpretation as a sequence of non-overlapping parse lattices), since an interpretation may
naturally contain gaps between top-level parse lattices. Intra-concept skipping, on the other
hand, occurs during the first search step, by allowing, with a penalty, insertions of input
words at any point in the matching of a PRTN. The resulting exponential growth of parse
lattices is contained by the beam search. A word-dependent penalty (e.g., one based on
word saliency for the task at hand) can be provided, but the experiments reported in this
dissertation use a uniform penalty together with a list of non-skippable words (typically
containing, for example, the highly informative adverb not). The parameter mcs regu-
lates the maximal number of contiguous words that can be skipped within a nonterminal.
Figure 5.29 plots coverage and parse times for different values of mcs. These results are
encouraging as they demonstrate that coverage lost by skipping words is offset (up to mcs

= 4) by the ability to match longer sequences of words.

Chapter 5: The Soup Parser 66

‘ Scheduling Travel + Scheduling

NTs 600 6,963
Top-level NTs 21 480
Ts 831 9,640
Rules 2,880 25,746
Nodes 9,853 91,264
Arcs 9.866 97,807
Avg. cardinality of FIRST sets (Ts) 44.48 240.31
Grammar creation time (ms) 143 3,731
Training time (ms/tree) 0.452 0.765
Memory (MB) <2 <14
Avg. parse time (ms) 10.09 228.99
Max. parse time (ms) 53 1070
Avg. coverage 85.52% 88.64%
Avg. fragmentation (trees/utt) 1.53 1.97

Table 5.4: Grammar measurements and performance results of parsing 606 naturally-
occurring utterance in a scheduling domain, with an average length of 9.08 words. The
first column lists results for the scheduling grammar; the second for the travel grammar
(which includes the scheduling grammar). Tests were run on a 266-MHz Pentium II run-
ning Linux.

5.8 Performance

A guiding principle in the design and implementation of SOUP is that of efficiency, since
real-world, real-time applications are to be supported. Encoding the grammars as PRTNs
and conducting the first- and second-order beam searches described above result in very
satisfactory parse times.

The upper portion of Table 5.4 lists some parameters that characterize the complexity of
two grammars, one for a scheduling domain and the other for a travel domain (plus the
same scheduling domain); the lower portion lists performance results of parsing a subset
of transcriptions from the English Spontaneous Speech Scheduling Task corpus (briefly
described in [Waibel et al., 1996]).

Parsing time increases substantially from a 600-nonterminal, 2,880-rule grammar to a 6,963-
nonterminal, 25,746-rule grammar but it is still well under real-time. In addition, as depicted
in Figure 5.30, although worst-case complexity for chart parsing is cubic on the number of
words, SOUP’s parse time appears to increase only linearly. Such behavior, similar to the
findings reported in [Slocum, 1981], is due, in part, to SOUP’s ability to segment the input
utterance into parsable chunks (i.e., finding multiple-tree interpretations) during the search

process.

Chapter 5: The Soup Parser 67

T T T T T T ° T T T T T T T T
50 o] 1000 | ,
&>
<
40 | o a 800 - < < .
&>
3 o’ 3 0o, ®
= = &
o 30 | o OZOOOO B @ 600 - e o iOgo 7
£ o % 8 £ g géoog
o O O
2 §88 88 2 o ogggg
© > © - .
20 |- 00g%0 i 400 §
= 289800 < é 0
e il
10 + g%iéé g 200 - 05350 1
18 1
dditt it
0 Qg d 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35
utterance length (words) utterance length (words)

(a) (b)

Figure 5.30: Utterance length vs. parse time for (a) Scheduling grammar and (b) Scheduling
plus Travel grammar. Same test and machine as in Table 5.4. Parse time appears to increase
only linearly with regards to utterance length.

With these results, even though comparisons of parsers using different grammar formalisms
are not well-defined, SOUP appears to be faster than other “fast parsers” described in the

literature (cf., for example, [Rayner and Carter, 1996] or [Kiefer and Krieger, 1998]).

5.8.1 Comparsion with LCFLEX

Still, in order to have a concrete, external reference point, an experiment was conducted to
compare parse times of SOUP against the LCFLEX parser [Rosé and Lavie, 1999] on a few
domains.

The LCFLEX parser, a descendant of GLR* [Lavie, 1996], is a left-corner parser with many
robustness features, such as skipping, insertion of terminals, and flexible feature unification,
as well as significant performance improvements over GLR* (see [Rosé and Lavie, 1999] for
details).

Table 5.5 quantifies the grammars and test sets used in the comparison, and Table 5.6
presents the results. The grammars were translated into LCFLEX’s formalism and the
LCFLEX tests were conducted by Carolyn Penstein Rosé, the designer and implementer of
LCFLEX, to whom the author is indebted.

With the strong caveat that comparisons of parsers that are designed for different kinds
of grammars are never quite commensurable, it is worth noting that SOUP is between
10 and 367 times faster in average parse time, and between 79 and 1826 times faster in
maximal parse time. It has to be stressed that the grammars used in the comparison

were not optimized for LCFLEX (e.g., do not use feature unification) and that LCFLEX is

40

Chapter 5: The Soup Parser 68

E-Mail Scheduling Scheduling and Travel
NTs 382 600 6,963
Ts 469 831 9,640
Rules 947 2,880 25,746
Avg. card. of FIRST sets (T’s) 16.46 44.48 240.31
Utts in test set 318 606 3438*
Avg. length of utts in test set 6.9 9.1 6.9

Table 5.5: Grammars and test sets used in comparison experiment of Table 5.6. *Only first
200 in LCFLEX.

E-Mail Scheduling Scheduling and Travel

‘ LCFLEx Soupr | LCFLEX Soup | LCFLEX Soup

Avg. parse time (ms) 32 3 570 10 84,150 229
Max. parse time (ms) ‘ 5,480 13 ‘ 4,190 53 ‘ 1,112,590 1070

Table 5.6: Comparison of LCFLEX and SOUP parse times on grammars and test sets listed
in Table 5.5.

implemented in Lisp, whereas SOUP is written in C+4 and Java, which may account for
an order of magnitude.'" Still, the results do show that for a pure-CFG formalism SoUP

offers a very good performance.

5.9 The Graphical Development Environment GSoup

Finally, to conclude this chapter on SOUP, what follows is a cursory presentation of GSOUP,
a graphical development environment for the construction, editing and testing of grammars
also built by the author. GSoOUP provides full-fledged editing capabilities, as well as the

more advanced features listed below.

e Logical zoom on the grammar.

— High-level view: Graphical depiction of the N'T's and their relations in the form
of a graph (see §6.2.2).
— Low-level view: Graphical depiction of individual grammar rules, down to their

probability.

e Logical zoom on the corpus of sentences to parse.

" Estimated from the fact that the KANT project’s C++ implementation of GLR was about an order of
magnitude faster than the Lisp implementation. (Carolyn Penstein Rosé, personal communication.)

Chapter 5: The Soup Parser 69

— High-level view: Graphical depiction of parsed/unparsed words as color-coded

bullets to quickly spot areas of extragrammaticality.

— Low-level view: Graphical depiction of parse trees.
e Automatic generation from NTs.
e Automatic detection of ambiguity introduction when a rule is added or modified.

e Automatic detection of changes in a control or regression parsebank when a rule is

added or modified.

e Quick switch between initial grammar and extended grammar (initial grammar plus

the new rules acquired in the current session) for easy comparison.

e Automatic annotation of rules: New rules are annotated with author, date, and the

previously extragrammatical sentence that triggered their construction.

Generally, all graphical objects are clickable and manipulable, e.g., parse tree operations are
provided (such as sever branch, attach branch, rename node, etc) for interactive construction
of parse trees. Also, changes are dynamically propagated, and feedback is immediate.

Figures 5.31 to 5.35 show screenshots of GSOUP.

Chapter 5: The Soup Parser

= GrophcalSOUPonEmgTeyformarsa [

Show Concept | Mew Concept | Words 1o Rules

IE=TEN BT |

|

Figure 5.31: Screenshot of GSOUP: Visualization of the ontology.

’f

"~ Parse [bomain v [0

Show Concept | Mew Concept | Words 1o Rules

by monday | assume you mean monday the twenty seventd

Figure 5.32: Screenshot of GSOUP: Visualization of top-level NTs.

70

Chapter 5: The Soup Parser

— Graphical SOUP on all for marsal |
Parse Domain Model | [suggest_meeting]:SST = | Graphical SCUP on all for marsal
[suggest_time]:SST| [lets_do_x]:55T
[suggest_meeting]:38T gen lon del edit word-level top non-lockup closed -class
[_HT_SUGGEST_MEETING]:SST| [temporal]:SST| [i_suggest]:SS5T | [mealtime]:55T
15
0z gen fonl del edit [_NT_SUGGEST_MEETING]:SST * temporal] SST from by on note
02 gen lon) del edit [_suggest]:5S8T [mealtime]:55T from by on note
02 gen [OR) el edit letss s - — " . P from by on note
- scheduling a meetin o hig o robal e agoo In
02 gen fon del edit scheduli 4 4 g p ¥ Bl g from by on note

“i am looking lunch hour”

0.2 gen (on) del edit wWe hav “wanted to pull it for meeting” from by on note
55 “scheduling a meeting anything would probably be a good thing™

“let+s see ifwe can resalve this”

“if we try and make it for for meeting lunch hour

“heing there some other within the next three time™

“we have 1o reschedule this”

“we have 1o reschedule this”

“scheduling a meeting within the next couple day+s would probably be a good thing”

e rulg

by monday | assume you mean monday the twenty seventh

Show Concept | Mew Concept | Words 1o Rules | Stats | Save Grammar | Mot All Top | Showing aux HT | Max abstraction | Short tips | Refresh | about | Bt

Clear Utt

Utt Up Litt Down by monday | assume you mean monday the twenty seventr{

“|Generating from concept [suggest_meeting]:S5T.

Figure 5.33: Screenshot of GSOUP: Generation from an NT.

=| Graphical SOUP on EngToy for marsal |
Parse Domain Model | # [sugges e] = Graphical SOUP on EngToy for marsal
[suggestion]
[suggest_time] gen (&R el edit word-level non-top non-lookup closed-class
[time]
11
|I gen fon) del ecit how about [time] from by on note
11

Fossible conflict with:

= [suggest_time] <—- how about [time]

° [time] <-- [point]

* [point] <-- *on [day_of_week] "[time_of_day]
* [day_of_week] <-- thursday

° [suggestion] <-- [suggest_time]

° [suggest_time] <—- how about [time]

o [time] <-- [point]

@ [point] =-- “on [day_of_week] “[time_of_day]
* [day_of_week] =-- thursday

how *ahout [day_of_week] E.g. “haw about thursday™

gen conflict? cancel SEommit

Show Concept | Mew Concept | Words to Rules | Stats | Save Grammar | Mot &Il Top | Showing aux NT | MaX abstraction | Short tips | Refresh | About | Exit

Clear Utt

Utt Up Litt Down

“|Searching for possible conficts new rule may cause

Figure 5.34: Screenshot of GSOUP: Detection of rule conflicts.

71

Chapter 5: The Soup Parser

E
Domain Model | [suggest_time] —
e

el et
—

el et [time]
el et Itime]

-
St Concept | New Concopl_| Words o Fuls | tals | Save Grarmar | ol A Top | Shoving i NT | ¢ abstraion | S s | eesh] about] &t

[| mm |

ol

Figure 5.35: Screenshot of GSOUP: Rule annotation.

72

Chapter 6

The GsG Learning System

This chapter provides a detailed view of all of GsSG’s components, revisits GsG’s funda-
mental algorithms for interactive parse construction and rule management first outlined in

Chapter 4, and ends with a full example of its inner workings.

6.1 System Architecture

Figure 6.1 depicts the overall architecture of the system. The foundation of the system is
the SOUP parser, just described in Chapter 5. On top of it lie the core components of the
learning machinery: the Dialogue Manager, GSG Engine, and Parse Tree Builder, which
are aided in their operation by the principal knowledge sources: the Ontology, Prediction
Models and Interaction History, and ultimately driven by the user.

What follows is, first, a detailed explanation of each of the components, including the knowl-
edge sources (§6.2) and the fundamental algorithms (§6.3), and then illustrative examples

of GSG in action (§6.4).

6.2 Knowlege Sources

The models, hypotheses and strategies that GSG employs when postulating meanings and
formulating clarification questions are based on a variety of knowledge sources that ulti-
mately derive from the Kernel Grammar (i.e., the task grammar in its initial form). The
external knowledge sources (ovals outside the dashed line in Figure 6.1) are given to GSG.
Note that the only required external knowledge source is the Kernel Grammar;' the re-
maining external knowledge sources (Kernel Parsebank, User Grammar A, and Syntactic
Grammar) are optional. Finally, the internal or derived knowledge sources are: the Gram-

mar, Ontology, Parsebank, Prediction Models, and Interaction History.

'And the Metagrammar, as discussed in §4.2.1.

73

Chapter 6: The GsG Learning System 74

Back-end Application
Manager

I
! Interaction
! History

A
Y

S
P -] H
P -) H H H
P GSGEngine [Dialogue — User
P !I : 7| Manager Interface
el

o

: Y ‘\:\siéup

|
|
|
|
|
|
1
|
|
|
Parse Tree 1
Parser 1
|
|
1
i
|
|
|
|
|
|

Builder

Prediction
Models

Bwwels v,
. ofpRuAg A

Figure 6.1: GsaG’s system diagram. Ovals enclose knowledge sources, rectangles enclose
modules, and arrows indicate information flow. Dotted components are optional. Note
that, optionally, information may also flow from the Back-end Application Manager to the
Dialogue Manager, as in the Musicbox Task where information of the current state of the
end-application is used by the GsG Engine to filter out hypotheses.

6.2.1 Grammar

As shown in Figure 6.1, the Grammar is the Kernel Grammar possibly augmented with a
User Grammar A containing user-specific rules acquired in previous sessions. In any case,

it is a context-free, semantic grammar such as the ones listed in §C.2 and §C.3.

6.2.2 Ontology

The first knowledge source that is automatically computed from the Grammar is the On-
tology. The Ontology encodes the nature and inter-relations of the concepts in the domain,
and is often called upon to provide guidance during the learning episodes.

More concretely, the Ontology is a directed acyclic graph in which the nodes correspond
to grammar nonterminals and the arcs record immediate dominance relations. That is, the
presence of, say, NT; in the right-hand side of NT}; will result in an arc from NT; to NTj.

The nature of the ontological nodes is determined as follows.

Chapter 6: The GsG Learning System 75

e Principal vs. Awuxiliary. A distinction is made between principal and auxilary
NTs. Principal NTs represent the truly relevant concepts in the domain (such as
<composeMail> or <messageIndex> in the E-Mail Task) whereas auxiliary N'Ts repre-
sent useful groupings, that tend to be either syntactic in nature (such as <_VERB_DESIRE>,
which covers I want, I wish, I would like, etc), or encode semantic equivalences (such
as < DELETE>, which covers delete, remove, destroy, etc). Auxiliary NTs are typically
removed from the final parse tree, e.g., before a feature structure is computed. Note,
however, that principal and auxilary NTs can be interleaved (i.e., a principal NT can
appear under an auxiliary NT and viceversa) and that the parsing algorithm does
not treat them differently. A simple naming convention is used to distinguish auxil-
iary from principal NTs: an NT is auxiliary if and only if its name? starts with an

underscore ¢_’.

e Top-level vs. Non-top level. Top-level concepts® are the starting symbols of the
grammar, i.e., the N'Ts able to stand at the root of a parse tree. A further distinction
is made between topologically and logically top-level nodes. A node is topologically
top-level if and only if it never appears as the daughter of another, whereas a node is
logically top-level if and only if it is designated as such? by the grammar developer.
For example an N'T <time> could be logically top-level as designated by the grammar
writer but at the same time appear under, say, <suggestMeeting>, in which case it
would not be topologically top-level. Thus topological top-levelness implies logical

top-levelness,® but not the other way around.

e Pre-NT vs. Pre-T vs. Mixed. Depending on the nature of the immediate daugh-
ters, a node is classified as Pre-NT if all its daughters are NT or all T daughters are
Always Optional (see below); as Pre-T if all its daughters are T or all NT daughters
are Always Optional; and as Mixed otherwise. This information is used to establish
whether an NT can directly license a terminal. More exactly, an NT is deemed able

to license a T if it has at least one immediate T daughter that is not Always Optional.

As for the ontological arcs, they are annotated as being:

e Is-a vs. Expresses. Is-a links denote the typical is-a or instance-of relation in
knowledge representation. For example, in the E-Mail Task grammar listed in §C.2 one

can extract that < DATE_OF WEEK> Is-a <_DATE POINT ARGUMENT> Is-a <_DATE POINT>

*Most specific RuleName name in JSGF, e.g. _VERB_DESIRE in <voiceEMail. VERB_DESIRE>.
3Public enabled rules in JSGF.

4With keyword public in JSGF.

SExcept when the NT in question is unreachable.

Chapter 6: The GsG Learning System 76

<_DATE> = <dateRange>
| [<_DATE_POINT_PRE>] <datePoint>;

<dateRange> = <_DATE_START_PRE> <dateStart>

| <dateStart> <_DATE_START_POST>

| <_DATE_END_PRE> <dateEnd>

| <dateEnd> <_DATE_END_POST>

| <_DATE_RANGE_PRE> <dateStart> <_DATE_RANGE_IN> <dateEnd>;
<dateStart> = <datePoint>;
<dateEnd> = <datePoint>;

Figure 6.2: Grammar fragment to illustrate computation of dominating Is-a mother on the
face of multiple Is-a mothers.

Is-a < DATE>. All non-Is-a arcs are considered Expresses, e.g., <dateAfter> is a way

to express <dateRange>, or <_VERB_DESIRE> a way to (help) express <listMail>.

This distinction is estimated as follows: The relation between NT; under NTj is of Is-a
type if and only if there exists an expansion® of N T; that contains only N T;." Note
that according to this definition it is possible for an NT to have more than one mother
Is-a. If that occurs, Vertical Generalization (see §6.3.4.1) will stop at such juncture.
However, if a single one of the multiple Is-a mothers dominates the rest of the Is-a
mothers, then that dominating Is-a mother is taken as the next step in the Vertical
Generalization. For example, given the grammar fragment in Figure 6.2, we note
that <datePoint> has three Is-a mothers (<_DATE>, <dateStart> and <dateEnd>)
but since one of them (<_DATE>) dominates the others, it is the one designated as
Is-a mother. If none would dominate the others, the generalization would stop at

<datePoint>.

e Always Required vs. Always Optional vs. Mixed. In order to conduct Horizon-
tal Generalizations (see §6.3.4.2), it is important to analyze the nature of the presence
of the immediate NT daughers under an NT. If all ocurrences of NT; under NT; are
in a required context,® the ontological arc from NT; to NTj is labeled as Always
Required. If, on the other hand, all occurrences of NT; under N7} are in an optional
context,? the ontological arc from NT; to NTj is labeled as Always Optional. And if

none of the above cases holds, the arc is labeled as Mixed. For example, in the E-Mail

SRecall the definition of expansion set in §5.5.5.1.

Le., formally, NT; Is-a NT; iff < NT; >€ Exp(NTj).

8That is, in JSGF, if NT; never occurs inside a RuleCount with count OPTIONAL (i.e., zero or once) or
ZERO_OR_MORE.

9That is, in JSGF, if NT; always occurs inside a RuleCount with count OPTIONAL (i.e., zero or once) or
ZERO_OR_MORE.

Chapter 6: The GsG Learning System 7

Task grammar, under <moveMail>, <destinationFolder> is Always Required and

<_VERB_DESIRE> is Always Optional.

e Always Repeatable vs. Never Repeatable vs. Mixed. Also for the purpose
of performing Horizontal Generalizations, it is useful to record what NTs can be
repeatable when immediately under another N'T. Specifically, if NT; under N7} always
appears in a repeatable context,'® the ontological arc from NT; to N T; is labeled as
Always Repeatable. If, instead, NT; under N7} always appears in a non-repeatable
context, the ontological arc from NT; to NTj is labeled as Never Repeatable. And
if none of the above cases apply, the arc is labeled as Mixed. For example, in the
E-Mail Task grammar, under <moveMail>, < MAIL_ARGUMENT> is Always Repeatable
and <_MQOVE> is Never Repeatable.

Finally, in addition to establishing the nature of the nodes (Principal vs. Auxiliary, Topo-
logically Top-level vs. Logically Top-level vs. Non-Top-level, and Pre-NT vs. Pre-T vs.
Mixed) and the arcs (Is-a vs. Expresses, Always Required vs. Always Optional vs. Mixed,
and Always Repeatable vs. Never Repeatable vs. Mixed), a topological sort on the on-
tological nodes is computed to derive a general-to-specific partial order of the NTs. (This
requires that the grammar be acyclic, which, although theoretically limiting, has not proven
to be a problem, since well-designed semantic grammars hardly require cyclicity.)

As an example, Figure 6.3 shows a fragment of the ontology derived from the E-Mail Task,
Figure 6.4 shows an example parse, and Figure 6.5 highlights the ontological nodes that
appear in Figure 6.4.

10That is, in JSGF, if NT; always occurs inside a RuleCount with count ONCE_OR_MORE or ZERO_OR_MORE.

Chapter 6: The GsG Learning System 78

FE3 voiceEMail for test test [_[51x]
Fles View Parse Edf Grammar Hep

hiding names showing all LHSs showing arcs show all nodes 200m N zoom OUT

Clear Utt | utt Up | utt Down | listall mails from boh that were sent on monday

Viewing Grammar as Ontalogy

Ao CAFEH e OB EFO | @0 |Bdss. | Fomo | Einbo. | [Com | eorb-. [9088. | Fena| @t | 0o | @l [[Fwi. ©o. | SE.| @ | BMsb.| Fvoc.| /@ s23pm

Figure 6.3: Partial vision of the Ontology of the E-Mail Task grammar listed in §B.2.
Nodes in gray indicate unreachable N'Ts, nodes in blue principal N'T's, and nodes in green
auxiliary NTs. Arcs in red indicate Is-a relations, and black ones indicate Expresses re-
lations. Arcs in solid lines represent Always Required, pointed lines Always Optional,
and dashed lines Mixed. Double-thickness indicates Always Repeatable. For example,
< DATE RELATIVE_ tomorrow> is a principal NT and has <datePoint_DATE RELATIVE> as
its Is-a mother.

Chapter 6: The GsG Learning System 79

[voiceE Mail for test test
Files ‘iew Parse Edit Grammar Help

[_[Ofx]
1119

Coverage 75.0% (8/8) in 1 tree

Interpretation Ok
<s» please list all emails from hoh
Cv VB DT NN FREP NNP

<>

[System Paraphrase

[Selected Sentence I'd like to rephrase..

please list all emails from hob

FarseTree Operations Mew Relabel Copy Sever Del

wvoiceEMaillisthail
voiceEMail._VERB_DESIRE il._LIST i il._MAIL il._MAIL il._MAIL
T T T T T
please list wvoiceEMail._MESSAGE_IDX wvoiceEMail._MAIL voiceEMail._SENDER
= —

woiceEMail. messageldx__all emails fram ‘woiceEMail.sender
T T
all

voiceEMail.name__ STRING
T
wvoiceEMail. PERSON_OR_INSTITUTION_NAME
T
voiceEMail._WILDCARD
e

boh

J! uil
Clear Utt | Utt Up | Utt Down I please listall emails from hob

Wiewing Parse

Figure 6.4: Parse of please list all emails from bob according to the E-Mail Task grammar
in §B.2.

[F] woiceE Mail for test test
Files “iew Parse Edit Grammar Help

[_[o0x]
hiding names showing all LHSs showing arcs show all nodes zoomIN 200m OUT 2
_VERB_DE!_MAIL_

_MESSAGE IDK| =~~~ ~= =~ _SENDER
S =
messagelx_all~ _MalL . sender
,,,,,,, ——— name__STRING|
___PERSON_OR_INSTITUTION_NAME| "~
_wwpcarn’ T
Clear Ut | Utt Up | Utt Down [please lstall emails from bon
Viewing Grammar 33 Ontology

Figure 6.5: Subset of the Ontology in Figure 6.3 comprised by the N'T's that are present in
the parse in Figure 6.4.

Chapter 6: The GsG Learning System 80

6.2.3 Parsebank

After the Ontology, the next knowledge source that is derived from the Grammar is the
Parsebank, a collection of parse trees. The Parsebank in GSG comprises in fact three
sets of parse trees: the Kernel Grammar Set, the Training Set, and the Session Set. The
Kernel Grammar Set is constructed automatically from the grammar using the generation
capabilities of SOUP described in §5.3.1; the Tranining Set is the optional Kernel Parsebank
depicted in Figure 6.1, and the Session Set keeps the parse trees collected from the current
session that are deemed correct, i.e., the parse trees of grammatical sentences and the
parse trees of previously extragrammatical sentences that have been constructed via the
Interactive Parsing Algorithm.

Specifically, the Parsebank is seeded with fized-point parse trees only, i.e., trees whose yield,
when parsed, result in themselves as the top interpretation. This fixed-point property is
needed because, to efficiently determine whether a new rule changes the existing parses,
one has to quickly (i.e., in top-interpretation mode) reparse the yields of the parsebank and
search for any differences in the resulting parses.

The Kernel Parsebank can optionally be provided to, on the one hand, train the grammar
probabilities, and, on the other, ensure that, as the grammar grows, certain parses still
obtain.

A typical way of constructing a Kernel Parsebank is by saving a Session Set parsebank at
the end of the session, as it will contain the parses that have been produced during the
session (and not rejected by the end-user).

The Parsebank can thus be seen as a repository of correct parse trees and a provider, for

the Prediction Models, of a tree-based interface to the Grammar.

6.2.4 Prediction Models

The goal of Gsa is to go beyond the robust parsing features of SOUP (such as skipping and
multiple-tree interpretations) and actually hypothesize the overall meaning of extragramat-
ical utterances. The Prediction Models are a key component for this purpose because, given
a sequence of Ts and parse subtrees, they provide a list of NT's ranked by the likelihood
of being the anchor mother of the input sequence. For example, in the E-Mail Task, given
the sequence <_MATL_ARGUMENT> <MAIL_ARGUMENT> <MAIL_ARGUMENT> /ist (obtained, for ex-
ample, from having parsed the extragrammatical sentence from bob all messages list in
all-top mode) the Prediction Models come up with the values in Table 6.1, i.e., they predict
that the overall meaning of the sentence is, in ranked order, <listMail>, <sendMail> or

<deleteMail>.

Chapter 6: The GsG Learning System 81

NT Name Score
<voiceEMail.listMail> 0.9
<voiceEMail.sendMail> —5-106
<voiceEMail.deleteMail> | —5- 106

Table 6.1: Scores of the Prediction Models for the sequence <_MAIL_ARGUMENT>
<MAIL_ARGUMENT> <MAIL_ARGUMENT> [ist (which is obtained from having parsed from bob
all messages list in all-top mode).

In other words, the function of the Prediction Models is to hypothesize a mother for a se-
quence of T's and parse subtrees. It is used most notably in the first step of the Interactive
Parsing Algorithm (see Figure 6.8 in §6.3) but also during the application of Daughter Ar-
gument Selection strategies (see §6.3.2), for example to determine which unparsed segments
best match a particular required daughter.

How are these predictions made? After some experimentation with a variety of models and
classifiers (mostly HMMs, decision trees and n-gram models), the most useful model found
for this specific task of predicting likely mother N'T's for a sequence of subtrees and unparsed
words is what can be termed hypotactical and paratactical n-gram models. N-gram models
are probabilistic models of word sequences with equivalence classes of order n, that is, the
probability of a word following a sequence of words is equated to the probability of that
word following the last n — 1 words of the sequence.'! The hypotactical and paratactical n-
grams encode and predict two kinds of linguistic relations: the hypotactical n-gram models
the nestedness of language (e.g., in the E-Mail Task, the fact that Tuesday tends to occur
under <dayOfWeek_ 2>, which in turn tends to occur under <_DAY_OF WEEK>, itself under
<_DATE POINT_ARGUMENT>, etc.), whereas the paratactical n-grams model adjacency (e.g.,
the fact that the sequence <New, Years> is often followed by Day, especially under NT
<dateFixed__jan01>).

These special n-grams are described in more detailed below.

6.2.4.1 Hypotactical Model

The hypotactical n-gram model (from the Greek hypotassein, meaning to arrange under)
describes the nestedness relation of parse tree nodes. There is one hypotactical model per
grammar. Its vocabulary is the union of the terminals and nonterminals of the grammar,
i.e., the labels of the nodes of the parse trees contained in its training Parsebank, and its

events are the spines of such trees, i.e., all the paths from leaf to root in the parse trees.

"¥ormally, P(wilwi...wi—1) = P(wi|wi—n—1...w;—1); see, for example, [Jelinek, 1997] or [Manning and
Schiitze, 1999] for an in-depth study.

Chapter 6: The GsG Learning System 82

<suggestMeeting>
|
| I I
how about <time>

<point>

I
I I
<dayOfWeek> <timeOfDay>

monday morning

Figure 6.6: Example parse tree to illustrate events for hypotactical and paratactical models.

Again, this serves to model the nestedness or dominance relations of NTs over other NTs
and Ts.
For example, from the parse tree in Figure 6.6, the following nestedness relations are ex-

tracted and given as input sequences (i.e., events) to the hypotactical n-gram model:

e < how , <suggestMeeting> >
o < about , <suggestMeeting> >
o < monday , <dayOfWeek> , <point> , <time> , <suggestMeeting> >

e < morning , <time0fDay> , <point> , <time> , <suggestMeeting> >

6.2.4.2 Paratactical Models

The paratactical n-gram model (from the Greek paratassein, meaning to arrange side by
side) describes the distribution of NTs and Ts within an NT. There is one paratactical
model for each NT in the grammar. Their vocabulary is also the union of the terminals and
nonterminals of the grammar, and the events are ordered daughters occurring immediately
under their namesake nonterminal.

For example, from the same parse tree in Figure 6.6, the following events are extracted:

e For <suggestMeeting>’s paratactical model:
— < how , about , <time> >

e For <time>’s paratactical model:

Chapter 6: The GsG Learning System 83

— < <point> >
e For <point>’s paratactical model:
— < <day0fWeek> , <timeOfDay> >
e For <day0fWeek?’s paratactical model:
— < monday >
e For <time0fDay>’s paratactical model:

— < morning >

6.2.4.3 Combination of Hypotactical and Paratactical Models

After training the hypotactical and paratactical models from the events extracted from the
parse trees contained in the Parsebank, the models are ready to be used.

At runtime, given a piece of evidence in the form of a sequence of unparsed terminals and
parse subtrees, the models are queried to hypothesize an overall mother. More exactly, the
procedure is as follows: Given the evidence e =< ej...e;, > (sequence of Ts and subtrees),

compute the score of the hypotactical n-gram model for each NT, defined as
m
Puypo(NTile) dif Z Puypo(NTile;)
j=1
This results in a vector of reals of dimension |NT'| (the number of grammar nonterminals),

hereafter referred to as viypo. Also compute the score of e for each paratactical n-gram

model, defined as

Prara(NTile) def N Poora vy (7(€5) |7 (ej— (n—1))---(€j-1))

Jj=1
where
e; : e; is a terminal
rle) def { :
- root(e;) : e;is a tree

that is, the sum of the probability of the overlapping windows of order n over the terminals
and the roots of the subtrees present in the evidence. This again results in a vector of reals
of dimension |[NT|, hereafter referred to as vpara. Finally, interpolate viypo, and vpara via

a linear combination
v(i) def N.vypo[i] + (1= A) - Vpaali] Vi:1<i<|NT|

where 0 < A < 1, and sort v descendingly, i.e., generate a ranked list of mother nonterminals.

Chapter 6: The GsG Learning System 84

To automatically test the goodness of the hypotactical and paratactical models, and to em-
pirically find a suitable A as interpolation weight between the hypotactical and paratactical
scores, the following experiment was conducted.

First a parse tree distance metric was devised to capture the degree of similarity between
two parse trees. The main factors in the distance metric are a penalty for NTs present in
one tree but not in the other, penalty for NT and T mismatches under the same NT, a
depth decay factor (agreement at the root more important that at the leaves), and, finally,
a normalization factor on the number of nodes. Then, a test parsebank was obtained
by parsing test utterances with a fully-developed grammar. Subsequently, the grammar
was decimated (RHS alternatives were removed at random), and the hypothesized trees
predicted by the models from the evidence obtained by parsing with the decimated grammar
was compared (via the distance metric) against the correct trees in the test parsebank.
Tables 6.2-6.5 list the scores for an experiment with a Scheduling grammar, consisting of
about 600 NTs and 3000 RHS alternatives. The test parsebank contained 457 parse trees.
There are four tables, each with a different degree of decimation. The first number indicates
the actual portion of rules removed from the grammar, e.g., 45% (50%:1) means that from
a target decimation of 50% but with the constraint of leaving at least one RHS alternative
per NT, the real decimation was 45%.

In each table, the first column lists the value of Amypo. i.e., the weight of the hypotactical
score (with the weight of the paratactical score, Apara, being 1 — Apypo). The other three
main columns list the average tree distance over the test parsebank of 457 examples and
the number of cases in which the distance is exactly zero (i.e., a perfect match). Baseline
refers to a baseline hypothesis where no prediction models are employed. In that case, a
tree with a dummy root and the evidence obtained from all-top parsing directly attached to
it is used as the hypothesized tree. GSG-0 refers to using the Prediction Models statically,
i.e., without dynamic updates. GSG-1 refers to using the Prediction Models dynamically,
i.e., incrementally adding the new rules hypothesized by the system into the grammar and
into the models themselves. Still, GSG-1 is conservative in the sense that it does not add
rules that introduce ambiguity or change previous parses.

Note that in all cases, GSG-1 is better (average distance smaller) than GSG-0, which in
turn is better than the baseline. As for the effect of Ayyp,, it is interesting to observe that,
in the case of low decimation (Table 6.2) as well as high decimation (Table 6.5), the best
results are obtained with Agy,, = 0, i.e., using the paratactical models only. However, in
medium decimation (Tables 6.3 and 6.4) the optimum is achieved with Ayp, ~ 0.5, which

is the value taken for the rest of the experiments reported in this dissertation.

Chapter 6: The GsG Learning System 85

Baseline GSG-0 GSG-1

AHypo || Avg. d |d=0| | Avg. d |d=0] | Avg. d |d=0]
0.0 | 1.4364 148 | 0.8579 149 | 0.6933 153
0.2 | 1.4364 148 | 0.8692 149 | 0.8192 160
0.4 || 1.4364 148 | 0.8817 149 | 0.8612 156
0.6 | 1.4364 148 | 0.9190 149 | 0.8940 156
0.8 || 1.4364 148 | 0.9351 150 | 0.9149 161
1.0 1.4364 148 | 1.3926 148 | 1.3172 166

Table 6.2: Experiment to determine optimal weight (Aypo) for linear interpolation of hy-
potactical and paratactial models. Results for grammar decimation 17% (25%:1), i.e., of a
target removal of 25% of RHS alternatives but leaving at least RHS alternative per LHS,
an actual decimation of 17% was achieved. Hypotactical model weight Agyp, ranges from
0.0 to 1.0, paratactical model weight is defined as 1 - Apypo. Avg. d refers to the average
parse distance between the canonical parse trees (obtained with no grammar decimation)
and the decimated grammar. |d=0| refers to the number of trees that obtain a distance
of zero, i.e., are identical to the canonical ones. Baseline indicates the baseline model, i.e.,
without Prediction Models. GSG-0 indicates the usage of static Prediction Models. GSG-1
indicates the usage of dynamic Prediction Models.

Baseline GSG-0 GSG-1

AHypo || Avg. d |d=0| | Avg. d |d=0] | Avg. d |d=0]
0.0 || 1.9934 68 | 1.2164 71| 1.1857 70
0.2 1.9934 68 | 1.2165 71 | 1.1447 81
0.4 | 1.9934 68 | 1.2040 71| 1.1788 79
0.6 || 1.9934 68 | 1.1994 71 | 1.1640 74
0.8 || 1.9934 68 | 1.2502 71| 1.1917 80
1.0 || 1.9934 68 | 2.0577 68 | 2.0400 83

Table 6.3: Results with decimation 45% (50%:1). (See 6.2 for details.)

6.2.4.4 Model Adjustments

As an extra step, the evidence can be “jump-started,” that is, a sequence of unparsed Ts is
substituted by its most likely mother according to the hypotactical and paratactical models,
and then the new evidence is considered.

In addition, a “boost” is given to those N'T's that are top-level, or can reach a top-level NT
through Is-a links, to accommodate eztension of coverage of an NT (rather than postulating

another NT). For example, list messages of today parses list messages as <listMail> which

Chapter 6: The GsG Learning System

Baseline GSG-0 GSG-1
AHypo || Avg. d |d=0| | Avg. d |d=0] | Avg. d |d=0]
0.0 || 2.2756 31| 1.7939 32 | 1.7629 38
0.2 2.2'756 31 | 1.8023 32 | 1.7415 37
0.4 | 2.2756 31| 1.7871 32 | 1.7260 39
0.6 || 2.2756 31 | 1.8450 32 | 1.7092 40
0.8 || 2.2756 31 | 1.8102 32 | 1.7597 38
1.0 2.2'756 31| 3.1511 31 | 3.1412 42

Table 6.4: Decimation 66% (75%:1). (See 6.2 for details.)

86

Baseline GSG-0 GSG-1
AHypo || Avg. d |d=0| | Avg. d [d=0| | Avg. d |d=0]
0.0 | 2.3601 9| 2.0865 11 | 1.9319 13
0.2 | 2.3601 9| 2.0754 11 | 1.9356 11
0.4 2.3601 9| 2.1629 11 | 1.9425 12
0.6 | 2.3601 9| 2.1583 11 | 1.9681 12
0.8 || 2.3601 9| 2.1682 11 | 2.0117 12
1.0 2.3601 9 | 4.0438 9 | 4.0444 10

Table 6.5: Decimation 79% (100%:1). (See 6.2 for details.)

is in fact the correct anchor mother. Thus, when gathering evidence, <1istMail> is found
and is given a predefined score of 0.9 so that it surfaces as the top option.'?

Note that the paratactical models are a generalization of Seneff’s TINA parsing [Seneff,
1992], where bigrams of NTs are used to find most likely parses.!3 Also, the hypotactical
models appear to be a better modeling of natural language compared to that of Minker’s
[Minker, 1997], where each different parse tree spine (chain from leaf to root NTs) is con-
sidered a different token.

All the experiments reported in this thesis used a language model order of n = 4, for the

hypotactical models, and n = 2, for the paratactical models, with a back-off interpolation

mechanism for unseen events.

12Should there be more than one top-level NT present in the evidence, then they would all get a score of
0.9.

3However, in the actual runs of GsG described in this thesis, the n-grams for the paratactical models are
of order 2 and thus equivalent to TINA’s.

Chapter 6: The GsG Learning System 87

6.2.5 Part-of-Speech Tagging and Shallow Syntactic Parsing

Gs@’s philosophy is to require as little knowledge as possible for the development and
launching of new applications. However, this does not prevent the exploitation of domain-
independent linguistic knowledge, such as morphosyntaxis. GSG incorporates, for English,
Brill’s part-of-speech tagger [Brill, 1994], with modifications from Klaus Zechner and the
author, as well as a shallow syntactic grammar written by Klaus Zechner. The set of
part-of-speech (POS) tags and the shallow syntactic grammar are listed in §B.1 and §B.3
respectively, and an example of a POS-tagged sentence and its syntactic parse can be seen
in Figure 6.7.

The purpose of obtaining the POS tags for an incoming utterance is twofold: on the one
hand, it is a required step for the syntactic analysis (since the vocabulary of the syntac-
tic grammar is comprised of POS tags); on the other, it is useful to know the syntactical
category of the extragrammatical words to determine whether they should be learned at
all or simply skipped. For example, in the current implementation of GSG, unparsed con-
junctions, determiners and pronouns that constitute a single-word segment (see below) are
ignored in the Daughter Argument Selection phase of the Interacive Parse Algorithm (see
§6.3.2).

As for the shallow syntactic parse, its main utility is in helping the segmention of contiguous
sequences of unparsed words: As an improvement over [Lehman, 1989)’s Single Segment
Assumption, which considers a sequence of contiguous unparsed tokens a single segment,
Gsa takes a different approach and considers each word to form a different segment unless
it belongs to the same noun-phrase bracket.

For example, the sentence obtain my sister’s messages, where the only known words to the
semantic grammar are ‘s and messages, the Single Segment Assumption would consider
obtain my sister as one segment that performs a single function in the utterance, whereas
Gsa is able to identify obtain and my sister as separate segments to learn. In particular,
GsaG uses the POS tagger to obtain the sequence VB PRP$ NN NNP NNS which is then parsed
with the syntactic grammar to obtain the parse in Figure 6.7.

Since obtain is on a syntactic tree of its own, it is considered a single segment. But given
that my and sister belong to the same syntactic root <NP> they are grouped.'*

In a few cases this approach over-segments (see, for example, learning episodes LE e.5.1 (can

you check), LE e.7.2 (did i receive) and LE €.10.3-4 (get rid of) in §E.1) but, in general, it

1This also illustrates that if a noun phrase bracket covers a pronoun, the the pronoun is not ignored (as
it would if it stood in a segment by itself).

Chapter 6: The GsG Learning System 88

<Verb> <NP>

|
[| | |
<VHead> <PRP$> <NHead> <NHead> <NHead>

<V> my <N> <N> <N>
VB NN NNP NNS
obtain sister s messages

Figure 6.7: Syntactic analysis of obtain my sister’s messages. First, Brill’s part-of-speech
tagger [Brill, 1994] is run to obtain the sequence of part-of-speech tags VB PRP$ NN NNP
NNS (see §B.1 for an explanation); then, the tags are parsed by the sytantactic grammar
(listed in §B.3), which yields the above parse tree.

performs better than assuming all contiguous unparsed words constitute a single functional

segment.

6.3 Learning Strategies

The aim of Gsa is to postulate meanings for extragrammatical sentences and subsequently
update the grammar as a way to remember and generalize such learning episodes. As
first outlined in §4.2.2, the fundamental algorithms of GsG are Interactive Parsing, MEANS
Operator and IsA Operator (for the construction of meaning representations for extra-
grammatical utterances), as well as Subsumption Detection, Ambiguity Detection, Vertical
Generalization, Horizontal Generalization and Rule Merging (for rule management). In this
section a more detailed explanation is presented. Figures 6.8 and 6.9 refine the Interactive
Parsing Algorithm first sketched in Figure 4.2, and Table 6.6 summarizes the strategies
employed by Gsa, which are described below.

Chapter 6: The GsG Learning System 89

Input:

Step 1.

Step 2.

Step 3.

Step 4.

Natural language utterance as sequence of words.

Parse in default mode: Parse input utterance in SOUP’s word-level default mode
(see §5.5.1, i.e., with only logically top-level NTs able to stand at the root of a parse
tree). If no parse is found, or the end-user is not satisfied with the resulting interpre-
tation (as evidenced by rejecting a paraphrase of such interpretation), go to Step 2,

else exit algorithm.

Collect evidence: Parse sentence in SOUP’s all-top mode (see (§)5.5.3, i.e., with
all grammar NTs able to stand at the root of a parse tree). This will result in a
sequence of subtrees and unparsed words, called evidence. For all subtrees, extend
trunk following ontological Is-a links, i.e., perform Vertical Generalization on subtree

roots.

Establish anchor mother (automatic part): Apply Prediction Models to hypoth-
esize N'T roots from the evidence collected in Step 2 as described in §6.2.4. Possibly
re-rank list with information about the state of the end-application as given by the

Back-end Application Manager.

Establish anchor mother (interactive part): Pose confirmation or multiple-

choice question to the user to establish anchor mother. The user may

(7). Select one of the options proposed by the system, in which case that becomes

the anchor mother.

(7). Volunteer linguistic information that triggers ISA or MEANS Operator, in which
case a sub-learning episode is launched through the invocation of the ISA or
MEANS Operator Algorithm, at the completion of which, unless the sub-learning
episode has been canceled, this algorithm goes back to Step 1 (as new rules may

have been introduced).

(#ii). Cancel learning episode (metagrammar NT <cancel>), in which case this algo-

rithm exits.

Figure 6.8: GsG’s Interactive Parsing Algorithm (Part I).

Chapter 6: The GsG Learning System 90

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Construct Daughters (automatic part): While unparsed segments remain, ap-
ply Daughter Argument Selection strategies (Verbal Head Search, Required/Is-a/...
Daughter Search, and Parser Predictions) to hypothesize a daughter argument under

the anchor mother.

Construct Daughters (interactive part): Pose confirmation or multiple-choice

questions to the user to establish daughter arguments. The user may

(7). Select one of the options proposed by the system, in which case that becomes

the anchor mother.

(7). Volunteer linguistic information that triggers ISA or MEANS Operator, in which
case a sub-learning episode is launched through the invocation of the IsA or
MEANS Operator Algorithm, at the completion of which, unless the sub-learning
episode has been canceled, this algorithm goes back to Step 1 (as new rules may

have been introduced).

(#ii). Cancel learning episode (metagrammar NT <cancel>), in which case this algo-

rithm exits.

Construct parse tree: Build a complete parse tree for the extragrammatical sen-
tence from the anchor mother obtained in Step 3 and the daughter subtrees obtained
in Step 4. (If the anchor mother is not logically top-level, follow ontological Is-a links

to a top-level node. This sequence becomes the trunk of the parse tree.)

Update grammar: Extract all rules form the parse tree (see §4.2.2.2). For each new
grammar rule: discard if already subsumed by the grammar (see §6.3.5.1); discard
if it introduces ambiguity (see §6.3.5.2); discard if it disrupts existing parse trees
(see §6.3.5.3); generalize via Vertical and Horizontal Generalization Algorithms (see

§6.3.4); add to the grammar via Rule Merging Algorithm (see §6.3.5.4).

Update hypotactical and paratactical models: For each new rule added to the
grammar in Step 8: generate a few or all distinct parse trees rooted at its left-hand
side nonterminal. Add all parse trees to the current Parsebank. Update hypotactical

and paratactical models using the new data. Exit algorithm.

Figure 6.9: Gsa’s Interactive Parsing Algorithm (Part IT).

Chapter 6: The GsG Learning System

Strategy

Explanation

91

Knowledge source

All-top Parsing

All NTs treated as starting symbols
of the grammar to collect evidence for
overall meaning of sentence

Grammar

Anchor Mother
Predictions

Bottom-up hypothesis of most likely
NT to cover evidence

Prediction Models

Required/Is-a/...

Top-down search of most likely daugh-

Daughter Search ter to fulfill required/Is-a/... role Ontology

Verbal Head Search Top-down search of most likely daugh- POS Tagger,
ter to be verbal head Ontology

Parser Predictions Bottom—up/ top-down search of most Grammar
likely NT to follow parsed segment

Vertical Generalization Bot‘tom—up generallzatlon along onto- Ontology
logical Is-a links

Horizontal Generalization Generalization by making RHS con- Ontology

stituents optional and/or repeatable

Table 6.6: Summary of GSG’s prediction, learning and generalization strategies.

6.3.1 Establishing the Anchor Mother

As explained in Steps 2 and 3 of Figure 6.8, the techniques employed to establish the anchor

mother of the hypothesized parse tree for an ungrammatical sentence are All-top Parsing,

to collect the evidence, and the Prediction Models, to hypothesize the anchor mother.

6.3.1.1 Collectig Evidence

To collect evidence for the Prediction Models, the extragrammatical utterance is parsed in

Soup’s all-top mode (see §5.5.3). Since all NTs are considered top-level it is much more

likely to find parses for segments of the utterance.

Chapter 6: The GsG Learning System 92

SOUP’s heuristics (see §5.4) imply that in all-top parsing mode the most specific trees will
be preferred. For example, the parse tree root of tuesday would be <day0fWeek> instead
of <time>. However, this specialization is overcome by applying Vertical Generalization to

the trees in the evidence.

6.3.1.2 Predicting Anchor Mother

After collecting the evidence, the next step is to establish the overall meaning of an utter-
ance, i.e., find its “anchor mother” or root node of the desired analysis. To that effect the
Prediction Models are employed as described in §6.2.4.3, i.e., given the evidence as a vector
of unparsed words and parse trees, the scores of the Hypotactical and Paratactical Models
are combined to provide a ranked list of the most likely anchor mothers. The NTs whose
likelihood falls above a certain threshold are presented to the end-user.

To cushion the end-user from the actual names of the NTs, an automatically generated ex-
ample is presented, e.g. <trackTitle> becomes “track title, e.g. '"my all".” Also,
in order not to overwhelm the end-user (especially if the options are conveyed by speech)

the suggested NTs are grouped in batches of three.

6.3.2 Daughter Argument Selection

Once the anchor mother has been established, it is time to build the rest of the parse tree
as the meaning representation for the extragrammatical sentence. For that purpose, three
types of strategies are used: Required/Is-a/... Daughter Search, Verbal Head Search, and

Parser Predictions.

6.3.2.1 Required/Is-a/... Daughter Search

In this strategy, the Ontology is used to find potential daughters for the anchor mother: the
semantic roles (daughter NTs) licensed by the anchor mother according to the Ontology are
considered candidates to cover unparsed segments of the evidence. The subcategorization

candidates of the anchor mother are ranked by the following, manually-set scores:

e Required daughter: Score 1.0. Search for most likely unparsed segment to give rise

to a Required ontological daughter of the anchor mother.

e Is-a daughter: Score 0.9. Search for most likely unparsed segment to give rise to
a Reversed Is-a ontological daughter of the anchor mother (i.e., a daughter that Is-a

anchor mother).

Chapter 6: The GsG Learning System 93

e Non-optional daughter: Score 0.5. Search for most likely unparsed segment to
give rise to any Non-optional ontological daughter of the anchor mother. This in fact

means a Mixed daughter, since Required daughters have already been considered.

e Any other daughter: Score 0.1. Search for most likely unparsed segment to give

rise to any remaining ontological daughter of the anchor mother.

For example, given an Ontology in which NT <m> has NT <d1> and <d2> as Required
daughters and N'T <d3> as a Reversed Is-a daughter, and an evidence uj...un Upyi-..Unp
<d2> uy...u, (where u; denote unparsed words)'® and anchor mother <m>, the Required/Is-
a/... Daughter Search would proceed as follows. First, possible daughters of <m> would
be gathered from the Ontology and ranked according to their nature (e.g., preference for
Required ones). That would give <d1> and <d2>, followed by <d3>. But <d2> would be
discarded since its role is already fulfilled in the evidence.'® Thus, <d1> would be a candidate
to cover unparsed segments w1...Up, Up41-..Upm, O Up...uq. The Prediction Models would be
used to establish which unparsed segment should be considered first, and a question would
be posed to the user (e.g., a formulation to the effect of By uy...u, do you mean <d1>?).

(See §6.3.6.3 for details on the formulation of questions).

6.3.2.2 Verbal Head Search

Since most utterances contain a verb,!” it is useful to locate the principal or head verb in
an utterance. Similar to the Required/Is-a/... Daughter Search, if the Ontology licenses a
daughter that is mostly verbal in nature, a search for an unparsed verb is launched. The
“verbness” degree of each NT is established by computing a “verbness ratio” defined as the
proportion of words tagged as verbs in a set of automatically generated sentences'® from
the NT in question. For example, the NT <_LIST> of the E-Mail Task grammar (§C.1)

t19 0.8, for most of its generations are verbs (e.g., list, get,

obtains a verbness ratio of abou
search, search for).?°
In this strategy, the POS of the evidence is also employed to find the unparsed segment?!

that is most likely to be a verb.

15Note that unparsed segments may be contiguous: as described in §6.2.5, unparsed words are only grouped
into segments if they belong to the same noun phrase.

16Unless it were Repeatable.

1"1n fact, all complete sentences in the traditional, grammatical sense of the term sentence must contain
a verb or predicate.

18Now in the sense of a sequence of words.

19Depending on the stochastic generation.

20The fact that POS membership may be ambiguous for many words is ignored; only the top POS tag, as
given by Brill’s tagger, is used.

2IMost probably containing a single word, since no verb would be part of a shallow noun phrase.

Chapter 6: The GsG Learning System 94

6.3.2.3 Parser Predictions

Another strategy in the selection of daughter arguments is to use the grammar as a predictor
of what can come after a parsed sequence. That is, given the context in which an unparsed
sequence occurs, the grammar is traversed to find likely continuations of the context. It
is both a bottom-up and top-down strategy: if the nonterminal predicted does not license
terminals (see §6.2.2), its daughters are followed top-down, collecting the NTs that allow
for immediate Ts.

This is exemplified by the case of christmas in the detailed example presented in §6.4.2, or
by the learning episode LE e.4.2 in §E.1.4.2, where the class (NT) of recency is deduced by

appearing immediately after by.

6.3.2.4 Strategy Ordering

The actual order in which the strategies are applied is fixed for all the experiments described

in this dissertation, and is listed below.

1. Required Daughter Search.

2. Verbal Head Search.

3. Parser Predictions (only applied if anchor mother does not license Ts).

4. Is-a Daughter Search.

5. Non-optional Daughter Search (only applied if anchor mother does not license T's).
6. Any Daughter Search (only applied if anchor mother does not license Ts).

7. Any NT Search (only applied if anchor mother does not license Ts).

It is of course conceivable that a dynamic ordering of the strategies may perform better,
e.g., by reducing the average number of choices. One could train, say, a decision tree to find
the most efficient ordering of the strategies given a certain context, but this second-order

search lies beyond the scope of this work.

6.3.3 Licensing Constraints

Similar in spirit to the strategies employed by [Kiyono and Tsujii, 1993] (see §3.5), the above
strategies are subject to the following constraint: Ts and principal N'T's must be licensed by
the Ontology. That is, an NT can have a T as immediate daughter only if it does so in the

Ontology (i.e., ultimately, in the Kernel Grammar). Also, principal NTs must be licensed

Chapter 6: The GsG Learning System 95

by the Ontology, i.e., an N'T can have another principal NT as its immediate daughter only
if such dominance relation occurs in the Ontology. (An auxiliary NT, on the other hand,
has no such constraints.) The reasoning behind these constraints is the need to preserve the
topology of the principal NTs in the Ontology, as they define the backbone of the feature
structure definition that the Back-end Application Manager interprets and executes. These
constraints guarantee that all resulting feature structures are structurally correct, for they
will not contain unknown combinations of principal NTs (i.e., attributes), although they

may contain unexpected (atomic) values.

6.3.4 Rule Generalization

Upon completing a successful learning episode, one would like the system to not only learn
the meaning of that particular sentence but also be able to generalize to account for similar
constructions. This is accomplished in GsaG via the Vertical and Horizontal Generalization

algorithms.??

6.3.4.1 Vertical Generalization

The Vertical Generalization algorithm takes a sequence of Ts and NTs (e.g., a candidate
subRHS extracted from a validated parse tree) and follows ontological Is-a links for all the
NTs in the sequence. This serves the purpose of making the sequence more general, for
example, given the E-Mail Task grammar in §C.2, the sequence in the morning, is parsed in
all-top mode as the tree in Figure 6.10, which gives <_TIME_OF DAY> as the root NT. But,
upon applying Vertical Generalization, this NT becomes <_MAIL_ARGUMENT> (through the
<_TIME_OF DAY> —Is-a— <_DATE_POINT_ARGUMENT> —Is-a— <datePoint> —Is-a— <_DATE>
—Ts-a— < MAIL_ARGUMENT> chain).?3

6.3.4.2 Horizontal Generalization

The Horizontal Generalization algorithm relaxes a candidate rule by attempting to make
some of the constituents in its RHS optional and/or repeatable. It uses the information
in the Ontology (specifically, the nature of the arcs that go from RHS constituents of the
given rule to its LHS) to determine whether the Ts and NTs present in the RHS can be
made optional and/or repeatable. In addition, the presence of an NT in two consecutive

positions makes it repeatable, e.g., <a> <a> becomes <a>+.

22 As well as via the Rule Merging algorithm as described in §6.3.5.4.

231f this generalization appears too extreme, it is only because of the high degree of orthogonality that
the E-Mail Task grammar possesses. One could choose not to group all the mail arguments under the single
NT <_MAIL_ARGUMENT>, in which case the Vertical Generalization of in the morning would stop at < DATE>
(see §6.3.7 for further discussion).

Chapter 6: The GsG Learning System 96

<_TIME_OF DAY>
|
| I |
m the <_TIME_OF DAY_VAL>

morning

Figure 6.10: All-top parse of in the morning according to the E-Mail Task grammar.
Upon applying the Vertical Generalization the root <_TIME_OF DAY> is generalized to
<_MAIL_ARGUMENT>.

<_MAIL> <_TIME_OF _DAY>

l
| [
messages in the <_TIME_OF _DAY_VAL>

morning

Figure 6.11: All-top parse of messages in the morning according to the E-Mail Task gram-
mar. Upon applying the Horizontal Generalization algorithm after Vertical Generalization,
the root sequence < MAIL> <_TIME_QF DAY> is generalized to <_MAIL_ARGUMENT>+.

For example, the sentence messages in the morning, is parsed in all-top mode as the
analysis in Figure 6.11. The sequence of roots would be first vertically generalized to
<_MATL_ARGUMENT> <_MAIL_ARGUMENT> and then horizontally generalized to <_MAIL_ARGUMENT>+.
Similarly, a please parsed as <_VERB_DESIRE> under, say, <1istMail> would be horizontally
generalized to [<_VERB_DESIRE>], i.e., made optional, since, according to the Ontology, the
NT <_VERB_DESIRE> is Always Optional under <listMail>.

Chapter 6: The GsG Learning System 97

6.3.5 Rule Management

The aim of GSG is to extend the Kernel Grammar, but in a judicious manner. A concern
about allowing the end-user to (indirectly) modify a grammar is that the grammar may
grow untamed and become filled with new rules that disrupt the original grammar. To
prevent this, besides the careful construction of interpretations via the strategies described
above, GsG employs three safety mechanisms: before a rule is added to the grammar, it
is checked whether it is redundant, whether it introduces ambiguity to the grammar, and

whether it disrupts existing, correct interpretations.

6.3.5.1 Detection of Rule Subsumption

As explained in §5.5.5.3, rule subsumption or redundancy detection is accomplished by
using SOUP to parse the candidate subRHS (the set of expansions of the subRHS, to be
precise). If all expansions can be parsed under the candidate’s LHS (i.e., by the current
RHS), then the new rule is subsumed by the existing RHS and can therefore be discarded
since it is redundant (adding it to the grammar would not change the language that the

grammar defines).

6.3.5.2 Detection of Ambiguity Introduction

If the candidate rule is not subsumed, SOUP is again employed to detect introduction of
ambiguitity (see §5.5.5.2). In that case, the existence of a parse for an expansion of the
candidate subRHS, under any NT in the grammar, indicates ambiguity. If a rule introduces
ambiguity it is typically discarded, although, depending on the user settings (advanced vs.

naive) the ambiguity may be presented to the user and the decision delegated.

6.3.5.3 Parsebank Disruption Check

Finally, before adding a rule, a reparse of all or a random sample of the Parsebank is
performed?* to ensure that the new rule does not disrupt correct parses.

6.3.5.4 Rule Merging

Once it has been determined that a subRHS needs to be added to the grammar, the
rule merging algorithm is invoked. A naive algorithm would just add the new subRHS

as an alternative to the current RHS. For example, given initial rule <S> = [please] sort

24Recall that SOUP can typically parse on the order of 100 utterances per second for a 600-NT grammar
(see §5.8).

Chapter 6: The GsG Learning System 98

please please
ASEQ ~ ACNT 0.5 ANt - sort ACNT 0.5 AoNT ~ Asiq
<S>:_)01u1<@1§>1\/1\/1<@1E1u1©
0.5 0.5

arrange

subRHS:()——I—+C)

Figure 6.12: PRTN for initial rule <S> = [please] sort [please] and PRTN fragment
for subRHS arrange.

[please] and subRHS arrange, a naive merge would yield the rule <S> = ([please] sort
[please]l) | arrange (see Figures 6.12 and 6.13).

However, GsG implements a more advanced algorithm: Add the new subRHS as an alterna-
tive to the segment between the first non-skippable constituent and the last non-skippable
constituent in the current RHS. That is, the insertion start point is found by skipping initial
optional constituents and the insertion end point by skipping final optional constituents.
In the case of the example, the resulting rule is <S> = [please] (sort | arrange) [please]
(see Figure 6.14), which generalizes better, as it covers {sort, arrange, please sort, please
arrange, sort please, arrange please, please sort please, please arrange please }, as opposed
to the naive merge, whose resulting rule only covers {sort, arrange, please sort, sort please,
please sort please}.

In some cases this algorithm does not yield the most compact RHS for the language it
defines (e.g., cf. a b* b* vs. a bx, or see all Learning Episodes in §E whose score ends in a
minus sign, such as LE e.1.1). But that is not a problem because what matters is coverage,
not the succinctness of the rule. In any case, as elaborated in §8.3.7, a specialized algorithm

could be applied to find the most compact representation of a rule after merging.

Chapter 6: The GsG Learning System 99

please please
—1 —1
ACNT 0.5 ACNT sort ACNT 0.5 ACNT
FWD 1 1 1 FWD
A
<5>: (Yt 0.5 0.5

arrange

0.5

Figure 6.13: Naive merging of rule <S> = [please] sort [please] and subRHS arrange,
resulting in <S> = [please] sort [please] | arrange.

please sort please
A A Aot A Al A Aot pyst;
<S> _,O SEQ O CNT 0.5 O CNT O ALT 0.5 O ALT O CNT 0.5 O CNT O SEQ @
1 1 AFWD 1 1 rrange 1 1 AFWD 1 1
0.5 0.5 0.5

Figure 6.14: GsG’s merging of rule <S> = [please] sort [please] and subRHS arrange,
resulting in <S> = [please] (sort | arrange) [please]. Note that the resulting rule
is more general than that of Figure 6.13.

Chapter 6: The GsG Learning System 100

6.3.6 Enabling a Natural Dialgoue

As mentioned in §4.2.3, GsG is able to both remember what the user has said as well as
shift the focus of attention. This behavior is modeled by the Dialogue Manager and the
Interaction History (pictured in Figure 6.1). In addition, to achieve a naturally-sounding
dialogue, it is important to minimize the number of choices presented to the user, and be
flexible in understanding the concepts the user may be referring to. Finally, mechanisms
should be in place to cope with the ever-present ambiguity of natural language. All of these

points are discussed below.

6.3.6.1 Dialogue Manager

The Dialogue Manager mantains a stack of learning epiosodes, which allows for the mixed-
initiative nature of the conversation: if the user volunteers some information during a
learning episode, a new Parse Tree Builder object is pushed onto the stack and becomes
the current focus of attention. Once that information is processed, resulting in, say, a new
semantic mapping, the previous Parse Tree Builder is reévaluated and regains the focus of

attention.

6.3.6.2 Interaction History

The Interaction History is a database of the sentence-meaning pairs given by the user during
the current session. This serves as a memory bank and thus preémpts the system from asking
a question that the user has already answered. Note that it stores both positive associations
(e.g., christmas is a <timePoint>) as well as negative ones (e.g., retrieve is not a <_SEND>
or <_FORWARD> (since, for example, they were not selected by the user in a multiple-choice
question)).

However, in some cases, a question, although present in the database with a positive asso-
ciation, is not considered as an answer. This is the case if the system is specializing. For
example, given sing MEANS play, and assuming <play> has been established as the anchor
mother, when pursuing strategy Is-a Daughter Search <_PLAY> is found as a candidate (be-
cause the Ontology records that <_PLAY> Is-a <play>). But <_PLAY> should not be filtered
out just because it does not match the answer that the history records for the word play
(namely, <play>). Therefore, when the suggestion is less abstract than the current answer
provided by the user, it is allowed as a choice. In other words, the history mantains the

most specific answer given so far for a particular phrase.

Chapter 6: The GsG Learning System 101

6.3.6.3 Formulating Questions

A key feature of GsG is the interactive nature of the construction of an interpretation
for an extragrammatical utterance. Why interactive? Rather than exposing the system
to diminishing success as (erroneous) decisions are compounded, the user is invoked at
certain decision points (e.g., in establishing the anchor mother) to secure pivotal elements
in the working interpretation. Because, as [Manning and Schiitze, 1999] note, what makes
semantic analysis hard is the nested nature of its result (parse tree): One has to make many
consecutive, dependent correct decisions in order to succeed, and the overall success rate is
basically the n'™™ power of the success rate of the individual decisions, a number that easily
becomes small.

Therefore GSG poses questions to the user at different stages of the construction of the
interpretation. For example, when the system is hypothesizing daughter NTs under the
anchor mother to cover an unparsed segment of the evidence (see §6.3.2.1), two different
strategies are possible: One is to gather all NTs under the anchor mother that license
a T and ask a single multiple-choice question to the user (with typically many choices);
the other is to directly engage the user in the top-down traversal of the Ontology, from the
anchor mother, to the correct, pre-terminal NT, i.e., by asking the user a few multiple-choice
questions (with typically very few choices). The advantage of the first strategy is that it only
requires a single question to the user. However, the number of choices, in this multiple-
choice question, is, roughly, exponential on the ontological distance between the anchor
mother and the leaf nodes. On the other hand, the second option, does require, roughly,
a number of questions equal to the ontological distance between the anchor mother and
the leaf nodes, but each of the questions will have no more than the number of ontological
daughters of the node at hand. Thus, the second strategy is preferred: Even if it involves
more than one round of questions, the search is directed by the end-user, thereby avoiding

the compounding of errors.

6.3.6.4 Fuzzy Matching of NTs

To increase flexibility, GsG allows the end-user to refer to NTs in a “fuzzy” way, e.g. send
mail will match <sendMail>, and send alone will match, in ranked order, <_SEND> and
<sendMail>. This is achieved by mantaining an n-gram model (specifically, a bigram) for
each NT. The training events for the NT-dependent name n-gram are the segmented words
comprising the NT name in question. For example, for <sendMail> the training corpus for

its name n-gram consists of <send, mail>.

Chapter 6: The GsG Learning System 102

6.3.6.5 Coping with Ambiguity

Finally, ambiguity, this omnipresent and difficult problem for any branch of Natural Lan-
guage Processing, is dealt with in GSG in a way that is consistent with the rest of the
decision making processes, namely, by a combination of stochastic models and direct inter-
action with the user. For example, in the following interaction, two cases of ambiguity (a

and to bob) are found, and asked to be disambiguated by the user.

Interaction 6.3.6.5

> create a new message to bob
I don’t understand right away what you mean but let me guess...
"create a new message to bob" is a way to express:

1. move mail, e.g. "move to <folderName>"
2. sort mail, e.g. "sort"
3. count mail, e.g. "count mail"
0. None of the above
>0
"create a new message to bob" is a way to express:
1. forward mail, e.g. "forward"
2. read mail, e.g. '"read"
0. None of the above
>0

"create a new message to bob" is a way to express:
1. 1list mail, e.g. "list"
2. compose mail, e.g. "compose"
3. send mail, e.g. "send"
0. None of the above

> 2
By "a" do you mean:
1. article, e.g. "a"
2. integer cardinal 1, e.g. "1"
3. string a, e.g. "a"
> 1
By "to bob" do you mean:
1. destination folder, e.g. '"to <folderName>"
2. recipient, e.g. "<personName>"
> 2
Is "create" a way to express compose, e.g. 'compose'?
1. Yes
2. No
> 1

Thanks for teaching me the meaning of 'create a new message to bob"!
I understand "create a new message to bob"

Obviously, some distinctions are more important than others. For example, distinguishing
<destinationFolder> from <recipient> is more important than differentiating between
<_ARTICLE>, <INTEGER_CARDINAL_ 1> and <_STRING__a>. However, the current system finds

all the ambiguities 2% and cannot model differences in importance.

%To be precise, all the ambiguities that cover the same segment in the evidence.

Chapter 6: The GsG Learning System 103

At the same time, if the grammar had been less orthogonal and encoded the fact that,
under <composeMail>, <destinationFolder> does not make sense, the ambiguity would
never have arisen.

This last consideration begs an important question: How sensitive is GSG to the nature of

the Kernel Grammar?

6.3.7 The Effect of Grammar Design on GSG’s Learning Abilities

As Lehman writes in [Lehman, 1989], “Any representation of the grammar biases what
is learned from a single event,” and a potential pitfall of GsG lies in its heavy reliance
on the grammar. On the one hand GsG’s approach greatly simplifies the creation and
maintenance of an application, because all the domain knowledge is represented by the
grammar; but, on the other hand, it makes a good design of the grammar crucial for the
correct behavior of the system, as all of its domain-dependent knowledge sources (such as
the Ontology and Parsebank) are derived from it. Experience, however, indicates that this
is not a real problem because GSG works well with any kind of well-structured grammar
(see Chapter 7). Nonetheless, it is the case that the heuristics that determine the nature of
a NT-NT relationship may not always be correct or may sometimes be overly sensitive.
For example, Figure 6.15 shows a grammar in which <_BY> is present in all expansions
of <sortBy>. This prevents the sorting criteria (<sortBy_date>, <sortBy_.subject>,
<sortBy__sender>, etc) from being considered Is-a daughters of <sortBy> and may impact
the kind of rule that will be acquired. For example, given the utterance sort by ascending
size means sort by size ascending, a MEANS operation sort by ascending size MEANS sort
by size ascending is triggered. Then, the evidence for the extragrammatical sentence sort
by ascending size is found to be <_SORT> <_BY> <sortMode__ascending> <sortBy__size>,
and, upon establishing <sortMail> as the anchor mother, the final subRHS acquired, after
Vertical Generalization, is <_SORT> <_BY> <sortMode> <sortBy_.size>. That is, the fact
that the sorting mode can be inserted between by and the sorting criterion has not been
generalized to all sorting criteria but only to <sortBy__size>.

In contrast, Figure 6.16 shows a grammar fragment very similar to that in Figure 6.15, ex-
cept that an additional, explicit grouping of the sorting criteria under <_SORT_BY> is present.
In this case, the sorting criteria are considered Is-a daughters of <_SORT BY> and thus,
when it comes to vertically generalizing evidence <_SORT> <_BY> <sortMode__ascending>
<sortBy__size> under <sortMail>, not only is <sortMode__ascending> generalized to

<sortMode>, as in the previous case, but also <sortBy__size> is generalized to <_SORT_BY>.

Chapter 6: The GsG Learning System 104

<sortBy> =

<_BY> [the]
<sortBy__date>
<sortBy__subject>
<sortBy__sender>
<sortBy__recipient>
<sortBy__size>

/N ————

of [the] <_MAIL>];

<_BY> =
by
| according [to]
| following;

<sortMode> =
[in] (<sortMode__ascending> | <sortMode__descending>) [mode];

<sortMode__ascending> = ascending | increasing;

<sortMode__descending> = descending | decreasing;

Figure 6.15: First grammar fragment to illustrate effect on GsG’s generalization abilities.
Note that sorting criteria (<sortBy_.date>, <sortBy__subject>, etc.) are not grouped.
(Cf. Figure 6.16.)

Therefore, since the final subRHS acquired is <_SORT> <_BY> <sortMode> <_SORT_BY>, a
subsequent sentence such as sort by descending date would be correctly understood.

An easy solution to such sensitivity would be to allow the grammar writer to override the
default heuristics and explicitly set the nature of the ontological arc. For example, one
could add /* Q@ontArc <sortBy_size> Is-a <sortBy> */ to the grammar in Figure 6.15

and achieve the same generalization as with the grammar in Figure 6.16.

6.4 GSG in Action

Having described the components and algorithms of Gsa, let us now turn to their actual
behavior when the system is fed with real-life grammars and sentences.
Chapter 7 explains a formal evaluation of Gsa, but here a brief typology of the interactions

is presented, followed by a detailed example of a learning episode.

6.4.1 Typology of User Interactions

The effect of user interactions can be classified into two basic categories: learning episodes
and detections of conflicting information. The first case is by far the most common, and
the one that results in the acquisiton of rules. (See also §7.3 and §E for more examples of

interactions.)

Chapter 6: The GsG Learning System 105

<sortBy> =
<_BY> [the] <_SORT_BY> [of [the] <_MAIL>];
<_SORT_BY> =
<sortBy__date>
| <sortBy__subject>
| <sortBy__sender>
| <sortBy__recipient>
| <sortBy__size>;

<_BY> =
by

| according [to]

| following;
<sortMode> =

[in] (<sortMode__ascending> | <sortMode__descending>) [mode];
<sortMode__ascending> = ascending | increasing;
<sortMode__descending> = descending | decreasing;

Figure 6.16: Second grammar fragment to illustrate effect on GSG’s generalization abilities.
Note that sorting criteria are grouped under <_SORT_BY>. (Cf. Figure 6.15.)

6.4.1.1 Learning Episode

An interaction with the user typically results in a learning episode, as in the following ex-

ample.

Interaction 6.4.1.1a

> toss thunder road into cart

I understand "thunder road into cart"

> wrong

"toss thunder road into cart" is a way to express:
object, e.g. 'great"

to cart, e.g. ‘'cart"

add to cart, e.g. "add"

None of the above

O WN -

> 3

Thanks for teaching me the meaning of "toss thunder road into cart"!
I understand "toss thunder road into cart"

Thanks for teaching me the meaning of '"drop thunder road from cart"!

In this case, the subRHS toss is acquired under <shoppingcart.addToCart>, i.e., as a
synonym of the existing RHS add.

Sometimes what is needed is an extension of the coverage for an NT, as in this example.

Chapter 6: The GsG Learning System

Interaction 6.4.1.1b

106

> play again

I understand "play"

> wrong

"play again" is a way to express:
1. play, e.g. "i want hear"
2. softer, e.g. '"softer"
0. None of the above

> 1

Is "play again" a way to express play, e.g. '"play"?
1. Yes
2. No

> 1 Thanks for teaching me the meaning of "play again"!
I understand "play again"

Here, the subRHS play again is acquired under <shoppingcart.play>.

6.4.1.2 Detection of Conflicting Information

In some instances GsaG is able to detect a conflict or inconsistency with its current knowlege,

as in the following two examples.

Interaction 6.4.1.2a

> play

I understand "play"

> wrong

Is "play" a way to express play, e.g. "i want hear"?
1. Yes
2. No

> 2

"play" is a way to express:
1. reset, e.g. '"reset"
2. 1list all songs, e.g. '"what do you have"
3. get information, e.g. "list information"
0. DNone of the above

>3

Sorry, I can’t learn what you mean as it conflicts with my existing
knowledge.

In this case, since the utterance is already fully parsed under an anchor mother (<musicbox.play>)

which is different from the one that the user suggests (<musicbox.getInformation>), GSG

refuses to learn, as adopting this meaning equivalence may be too disruptive to the Kernel

Grammar.

Chapter 6: The GsG Learning System 107

Interaction 6.4.1.2b

> send means forward

Learning from MEANS...

"send" is a way to express:
1. forward mail, e.g. "forward"
2. forward, e.g. "forward"
0. None of the above

> 1
Sorry, I can’t learn what you mean as it conflicts with my existing
knowledge.

Here the same situation arises since the left argument of the send MEANS forward operation
is not extragrammatical and its anchor mother (<sendMail>) differs from the one for the
right argument (<forwardMail>).

It should be noted that, if the interpretation of the right argument of a MEANS or ISA
operation consists of more than one top-level NT (as in, say, mail means compose and
send), the system is unable to learn and an appropriate message is issued. Also, if the
system exhausts candidates for anchor mother, it determines that the extragrammatical

utterance is out of domain (see §7.3.2.2 for an example).

6.4.2 Detailed Example

Finally, to illustrate the inner workings of GSG in action, what follows is the detailed analysis
of an interaction drawn from the E-Mail Task.?6

Figure 6.17 shows the example dialogue and Figure 6.18 presents the relevant fragment of
grammar used to analyze the input.

Let us proceed step by step. The user inputs (Ul) (retrieve all messages from bob that
were sent after christmas, see Figure 6.17) and, as it turns out, neither retrieve, nor bob,
nor christmas are in the grammar, and no full parse of (Ul) can be found. Rather than
responding with I don’t understand — please rephrase, GSG sets its predictive machinery
in motion with the goal of constructing a full interpretation for (U1).%7

The first step is to reparse (Ul) in all-top mode, i.e., with all NTs able to stand at the
root of a parse tree. This produces a set of still unparsed words, such as retrieve, and parse
subtrees, such as from bob being parsed under <_SENDER> (via grammar rules (R6) to (R10))
and, ambiguously, under <sourceFolder> as well (via grammar rules (R11) and (R12)).
Then, the full content of the chart is taken as evidence by the Prediction Models to postulate

the overall meaning of the original utterance.

26n a slightly different, earlier form from the one included in §C.2.
2"The hypothesized interpretation assumes that a single parse tree will cover the entire utterance.

Chapter 6: The GsG Learning System 108

(U9)
(U10)

(U11)
(U12)

w

w

n

U:
S:

retrieve all messages from bob that were sent after christmas
I don’t understand right away what you mean but let me guess...
“retrieve all messages from bob that were sent after christmas” is a way to express:
1. send mail
2. reply mail
3. read mail
0. None of the above
none
“retrieve all messages from bob that were sent after christmas” is a way to express:
1. move mail
2. list mail
0. None of the above
list
By “from bob” do you mean:
1. source folder
2. sender
sender
“christmas” is a way to express:
1. yesterday (date relative yesterday)
2. tomorrow (date relative tomorrow)
3. today (date relative today)
0. None of the above
by christmas i’m referring to december twenty fifth
Thanks for teaching me the meaning of “christmas”!
Thanks for teaching me the meaning of “retrieve all messages from bob
that were sent after christmas”!
I understand “retrieve all messages from bob that were sent after
december twenty fifth”
retrieve last email to mary before christmas
I understand “retrieve last email to mary before december twenty fifth”

Figure 6.17: Example dialogue between a user (U) and the system (S) in the E-Mail Task.
(See full explanation in §6.4.2.)

Chapter 6: The GsG Learning System 109

<listMail> = [<_VERB.DESIRE>] <_LIST> [<_TO_FOR_ME>]

(R1)
<_MATL_ARGUMENTS>+;

(R2) <moveMail> = [<_VERB_DESIRE] <_MOVE> < _MAIL_ARGUMENTS>*
[<sourceFolder>] <destinationFolder>;

(R3) <LIST> = list | get;

(R4) <MOVE> = move;

(R5) <_MAIL_ARGUMENTS> = <_SENDER> | <_RECIPIENT> | <_SUBJECT> |
< DATE> | <MESSAGE_IDX> | ...;

(R6) <_SENDER> = [<_SENDER_PRE>] <sender>;

(R7) <_SENDER_PRE> = from | by;

(R8) <sender> = <name_STRING> | <emailAddress_STRING>;

(RO) <name__STRING> = <_PERSON_OR_INSTITUTION_NAME> |
<_MATILING_LIST_NAME>;

(R10) <_PERSON_OR_INSTITUTION_NAME> = <_WILDCARD>+;

(R11) <sourceFolder> = from <folderName__STRING> [<_FOLDER>];

(R12) <folderName_STRING> = <_WILDCARD>;

(R13) <dateRange> = (<_DATE_AFTER PRE> <dateAfter>) |
(< _DATE_BEFORE_PRE> <dateBefore>) | ...;

(R14) < DATE_AFTER PRE> = after | from | since;

(R15) <dateAfter> = <datePoint_DATE>;

(R16) <datePoint_ DATE> = < DATE POINT ARGUMENT>+;

(R17) <_DATE_POINT_ARGUMENT> = <datePoint_DATE RELATIVE> |
<datePoint_DATE FIXED> | ...;

(R18) <datePoint_DATE RELATIVE> = <DATE RELATIVE_ _yesterday> |
<DATE_RELATIVE__tomorrow> | ...;

(R19) <DATERELATIVE__yesterday> = yesterday;

Figure 6.18: Grammar fragment relevant to the dialogue in Figure 6.17. (See full explana-
tion in §6.4.2.)

Chapter 6: The GsG Learning System 110

The suggestions of the Prediction Models (see (U2) to (U5)%®) are, in this case, not par-
ticularly accurate (the correct choice is presented only in fifth place), but, considering that
the head verb (retrieve) is not even in the grammar, such a response to (Ul) is definitely
better than simply rejecting the extragrammatical input.

The effect of (U5) is to select <listMail> as (Ul)’s anchor mother (the logical root of the
overall interpretation). But, in order to complete the parse tree, a few details still need to
be filled in. To that effect (U6) is generated to disambiguate from bob and (U8) to find the
right mapping for christmas.

The reasoning behind the seemingly puzzling choices offered by (U8) comes from applying
the Parser Predictions strategy: given the context in which an unparsed sequence (in this
case, single word) christmas appears, i.e., the subtree <_DATE_AFTER_PRE> covering after (via
(R14)), the grammar is traversed to find likely continuations of the context (left context
only in this case). Since < DATE_AFTER PRE> can be immediately followed by <dateAfter>
(see (R13)) that makes <dateAfter> a candidate to cover the unparsed word christmas.
However, since, according to the Ontology, <dateAfter> does not license terminals, a search
is performed to find NTs under <dateAfter> that permit terminals as immediate daughters.
In this case (via (R15) to (R19)) it suggests yesterday, tomorrow, etc.2? The user, however,
realizing that the system does not directly understand christmas, volunteers (U9),30 from
which the mapping in Figure 6.20 is learned.

At this point one may wonder about the fate of the unparsed word retrieve, since no question
was asked about it. The answer is that GsG need not ask about every single prediction, if
the confidence value is high enough. In this case, as soon as <1istMail> was established (in
(U5)) as the anchor mother, a Verbal Head Search strategy was launched to see whether,
among the unparsed words, a verb was found that could be placed in a mostly-verb NT3!
directly under <listMail>. The result was highly positive and led to the acquisition of the
RHS alternative in Figure 6.19.

It is worth recalling (see §4.2.2.1) that there are two kinds of mappings that GsG learns:
RHS alternatives and subtree mappings. Learning new RHS alternatives is the preferred
way because not only is the new linguistic knowledge better generalized, but also it is

incorporated into the Parsebank, and, in turn, into the Prediction Models. This is, precisely,

28The options presented in (U2) and (U4) are generated at the same time; the only reason they are split
is to prevent overwhelming the end-user, who may be hearing the choices spoken over the telephone.

29Tn fact it suggests <DATE_RELATIVE__yesterday>, <DATE_RELATIVE__tomorrow>, etc, but it presents an
example automatically generated from such NTs.

300bviously “the meaning of Christmas” (cf. cheerful (U10)) may be much more profound than a short-
hand for December 25 — but, alas, conveying that is well beyond the simple grammar presented here.

31Recall that a “verbness ratio” is automatically computed for each candidate NT by running the POS
tagger on automatically generated sentences from the NT in question.

Chapter 6: The GsG Learning System 111

<LIST> = list | get [| retrievel;

Figure 6.19: Resulting rule for NT <_LIST> after the dialogue in Figure 6.17. Boxed alter-
native highlights the new subRHS acquired (cf. (R3) in Figure 6.18). (See full explanation
in §6.4.2.)

the effect of acquiring the subRHS in Figure 6.19: Since the Parsebank and the Prediction
Models are updated on-line, the presence of the word retrieve in subsequent utterances
becomes a strong indicator of <_LIST> and, associatively, of <listMail>. However, when
the source expression can not be mapped into the desired target structure via grammar rules,
as in Figure 6.20, the only solution is to remember the equivalence. This type of learning,
although definitely useful since the meaning of the source expression will be henceforth
remembered, cannot be incorporated into the Prediction Models.

Note also that the rule <1istMail> = <_LIST> < MAIL_ARGUMENTS>+, extracted from the
final interpretation of (Ul), was a candidate too, but it was discarded when the system
detected its subsumption by existing rule (R1).

Right after (U9), (U1) is considered fully understood and the interpretation is automatically
mapped into the feature structure (FS1)32 in Figure 6.21, which is then sent to the Back-end
Application Manager.

Finally, when (U11) comes in, a correct analysis is produced thanks to the mappings just

learned from (U1), and (FS2) in Figure 6.21 is generated.

32 As sketched in §2.1.1 (footnote 4), the mapping from parse tree to feature structure consists of recursively
converting principal NT parse nodes into feature structure attributes. Some additional processing is involved
to extract the value of certain attributes, such as dates, numbers and strings. For example, the tree in
Figure 6.20 becomes the feature substructure under <datePoint> in (FS1).

112

Chapter 6: The GsG Learning System

yof fauamy

< GIVNIQHO HdDILNI > < 0C IVNIQYVD YdDILNI >

< SLINN YIdWAN TVNIQH0™ > < SNAL YIIWAN TYNIAYVD™ >

< 6670 H4gWAN TVNIQH0™ >

< ggHIINI yauopFoLep >

< HLNOW d0°AV@T >
_

49QULIIIP

< g1 qjuouw >

<'IVA HLNOW >

< HLNOW >
|

< LNIWADYY ILNIOd dLVa >

Al

SDUWISTLYI

Figure 6.20: Direct mapping learned from the dialogue in Figure 6.17. (See full explanation

in §6.4.2.)

Chapter 6: The GsG Learning System

listMail

messageIndex: all
sender

name bob
dateRange

dateAfter

datePoint
month: 12
i dayO0fMonth: 25 |

(FS1)

(

113
listMail i

messagelIndex: last
recipient

name: mary
dateRange

dateBefore

datePoint
month 12

dayOfMonth: 25 |

(FS2)

Figure 6.21: Feature structures sent to the Back-end Application Manager after (U10) and

(U12) in Figure 6.17. (See full explanation in §6.4.2.)

Chapter 7

Experiments and Results

This chapter describes the different experiments conducted to evaluate GsG and presents
a summary of the results obtained. Appendix D (Utterances from User Sessions) and

Appendix E (Learning Episodes) exhaustively list all the user interactions.

7.1 Introduction

The principal claim of this thesis is that it is possible to extract enough information from a
simple context-free grammar and be able to correctly extend it, as a side-effect of conversing
with the users of the end-application.

To test the validity of this claim and the effectiveness of the learning methods and strategies
described in the preceding chapters, a study was conducted in which non-expert! end-users
interacted with GsaG in two different domains.

As we shall see, GsG’s overall performance can be qualified as very satisfactory, as it is indeed
able to learn, generalize and acquire very reasonable rules through interactions conducted
in natural language.

The two domains tested were an email client task, where users can check their e-mail, and
a “musicbox” task, where users can listen to and buy songs. The users were undergradu-
ates and staff at Carnegie Mellon University, on a first-come, first-serve basis without any
screening.’

In each case, a union grammar was created as the union of all user grammars, i.e., the
kernel grammar plus the subRHSs acquired from the users. In the case of a discrepancy (for
example, show, to some users, meant <1listMail>, whereas to others it meant <readMail>),

a majority vote was taken (and broken at random if tied).?

1.e., not versed in computational linguistics.
2Except to disallow members of the Language Technologies Institute.
3Specifically, such inter-user ambiguities occurred for check, create, draft, see and show.

114

Chapter 7: Experiments and Results 115

Nonterminal Example

<countMail> 1’d like to know how many messages i received yesterday
<listMail> please list all messages about the site visit sent last month
<readMail> read bob’s latest message

<composeMail> compose a new message to bob about the party
<sendMail> send mail to bob

<forwardMail> forward bob’s message to alice
<replyMail> reply to cynthia

<deleteMail> delete all messages from last year
<sortMail> sort mail by date descendingly

Table 7.1: Main concepts (i.e., top-level NTs) of the E-Mail Task grammar, and examples
thereof.

In the E-Mail Task, 56 rules were learned, out of which 48 were unique (i.e., in 8 cases
different users triggered the creation of the same rule); in the Musicbox Task, 19 rules, all
unique, were acquired. And, as detailed below, the performance of the union grammars on
independent test sets shows an increase in semantic accuracy between 20 and 32 absolute

percentage points.

7.2 Experiments

To establish the generality of GsG’s learning methods it is important to test GSG in a
variety of environments. In this case the two applications (E-Mail and Musicbox) and their
corresponding grammars present very different approaches, the only commonality being

that both grammars are written in the JSGF format.

7.2.1 E-Mail Task

The first task is an interface to an e-mail client. The full grammar is listed in §C.2, but
the main concepts of the domain are summarized in Table 7.1. Two example parses in this
domain are given in Figures 7.1 and 7.2.

As can be seen from the example parse trees, the E-Mail Task grammar is extremely or-
thogonal in its design. That is, it basically allows free ordering of all the arguments. It is
well known that such a design overgeneralizes and cannot model certain dependencies. For
example, in a flight reservation task, the meaning of the following sentences Is the earliest
flight going to Boston on a 747¢ and Is the earliest flight on a 747 going to Boston? is not
the same, yet, an orthogonal, free-order argument design is not able to model the difference

because all the arguments (earliest, going to Boston, and on a 747) are at the same level

Chapter 7: Experiments and Results 116

and their order not taken into account. Nonetheless, for restricted domains with rather
coarse semantics, this kind of approach is advantageous because the resulting grammar is
easier to design and mantain.

As for the experiment itself, Figure 7.3 shows the instructions given to the testers, and

Figure 7.4 presents a screenshot of a session.

117

Chapter 7: Experiments and Results

fivpaoysali

<Kepaoqseof—oaTqeToyslep>

<IAILVTIY J1Lvd >

<ILNAWNDYV LNIOd 41Vd >

!

<I>

<jutogeiep> PaNL0A.L / sabpssowus 231 ppmom
<4LYaT > <HAVH I™> <TIVW > fiuvw moy mouy 01 <INVM™>
- L L
<LNAWNODUV TIVIW > <LNAWNODUV TIVIW > <ANVW MOH > <MONY > <HUISAT gdIA™>
_ _ _ _ _ |
<TTeR3unos>

Figure 7.1: Parse of i’d like to know how many messages i received yesterday according to

the E-Mail Task grammar listed in §C.2.

118

Chapter 7: Experiments and Results

yruows 75D]
<YUOUr "OATFRTOYeIEp> <snotaexd ~IOTITPOIUTOJOFEP>
<FEAILYVTIY ALYA> <¥dIATQOW LNIOd™ELVA > s ans
<LNIWNDYY " INIOd ELVA > <LNIWNDYY™LNIOd™ELVA > <QEyDATIN™> <QUVRATIM™> 2Y7 moqo nve
,|_L
Apnﬂowcpmvv juas <DNI¥LS ~30efqns> <dTOILYY > <HYd"LDIErdNs™> sabvssaw <TTe ~xepureSesseu>
| | |
<ALYa > <LSVd™dYAA"TIVW > Ahomummm|v <TIVW™EDVSSHW™> <XAITFDVSSIW > 157] asva)d
<LNIWADEY TIVW™> <LNIWADEY TIVW™> <LNIWODEV™TIVW > <LNIWADEY TIVW > <LNIWODEV™TIVH > <LSIT > <HYISHA"YdIA™>

<TTEeH3ISTI>

Figure 7.2: Parse of please list all messages about the site visit sent last month according

to the E-Mail Task grammar listed in §C.2

Chapter 7: Experiments and Results 119

What you’ll have to do is very simple: think about what you’d like to say to your e-mail
client (that is, an email reader such as Pine, Mulberry, Eudora, Outlook, etc), type it on

the text box and see whether the system understands you. Example sentences:

e do i have any mail

please show me all messages about the meeting

reply to the last message from peter

e sort messages by size

Note that along the way the system may ask you some clarification questions, as it attempts

to understand what you mean. Also, please be aware of the following “power commands”:

e wrong: Tells the system it didn’t (fully) understand what you meant.

cancel: Cancels the current learning attempt.

ignore: Ignores the current clarification question.

e X means Y: Teaches the system a meaning equivalence. E.g., christmas means

december twenty fifth.

X is a Y: Teaches the system the category of a word or phrase. E.g., my sister is a

person.

During your session please make sure that, at least, you:

e Check your mail.

Sort all your messages by date.

Get rid of some messages.

Reply to Cynthia.

Create a new message to Bob.

Figure 7.3: Instructions given to the users for the E-Mail Task.

Chapter 7: Experiments and Results 120

From Subject Date

Cynthia Marsal Gavalda Potluck Mon Apr 17 18:42
Donald Marsal Gavalda Reception Sun Apr 16 11:31
Goku Marsal Gavalda Greetings Thu Apr 15 21:08
Joseph Marsal Gavalda Presentation Sun Apr 16 11:31 Subject: Re: Greetings
Lucy Marsal Gavalda Marsal, your gaing on a Free Cruise Thu Mar 16 18:43 2019 Date: Tue Apr 18 23:40
Newsiire Newswvire Financial Masdag Mose Dives Wed Mar 01 11:05 580 Size: 605

NewsiWire Newswvire Financial Greenspan Waves Hand Mon Apr17 16:08 633 Dear Goku,

From: Marsal Gavalda
To: Goku

Newswire Newswire Politics Elian Tue Apr 18 10:23 800 Sounds good to me -- Keep up the good work!
Newswvire Newsyvire Financial Lowest Unemployment Rate Ever FriMar 03 12:22 Cheers,

Newswire NewsWire Financial Masdag Soars Tue Apr 18 21:02 388 Marsal Gavalda

Newswire Newswire Financial Nascag Plunges Tue Apr 18 22:07 989
SearchBot Marsal Gavalda Plane tickets bought Tue Apr 18 18:18 880
Spamela Marsal Gavalda Get rich Thu Apr 13 08:42 734
Spamela Marsal Gavalda Get richer Tue Apr 13 08:42 734

> do i have any mail

| understand "do i have any mail”
> reply to goku

| understand "reply to goku"

> sort by sender

l understand "sort by sender”

Figure 7.4: E-Mail Task screenshot. The lower window is the GSG interface; user input is
preceded by a ‘>’. The upper left window shows the e-mail inbox. The upper right window
popped up as a result of the sentence reply to goku.

Chapter 7: Experiments and Results 121

7.2.2 Musicbox Task

The second task is an interface to a music database, MP3 player, and shopping cart. The
approach to grammar design in this second application is very different from the one in the
E-Mail Task. The Musicbox Task was developed by Matthias Denecke using the principles
of typed feature structures and the grammar contains many independent top-level concepts
that are then unified to determine the satisfiability of dialogue goals. A dialogue goal can be,
on the one hand, either enabled or disabled, and, on the other, if it is enabled, it can be either
neutral (no information present), or selected (current information is compatible with goal),
or deselected (current information is not compatible with goal), or determined (current
information leaves only one goal compatible), or finalized (all information requirements
of uniquely determined goal are met and action associated with the goal fires). Then, at
runtime, history accumulates from multi-tree interpretations that give rise to multiple typed
feature structures and it also accumulates over utterances, until a goal is finalized,* at which
point the history is reset.

For a full account of Denecke’s approach see [Denecke, 1997], but let the brief explanation
above serve to illustrate that GsG’s strategies are general enough to support a variety of
domain and grammar development philosophies.

Another point worth noting is that in this application GSG was able to take Denecke’s
notion of goal activity into account as an additional external knowledge source employed
to rank hypotheses: Goals were mapped back to N'Ts, and NT's whose goals were disabled
in the current state of the application (say, <continue> when the player is playing) were
filtered out. Of course, this particular scheme only works if there is a one-to-one correspon-
dence between application goals and grammar NTs, but it serves to illustrate that GsG can
incorporate external knowledge sources, and in the case where such one-to-one mappings
would not exist, a stochastic model could be built so that NT probabilities would depend
on the dialogue state (see §8.3.2 for a more formal proposal).

The static parts of the grammars® for the Musicbox Task are listed in §C.3, but, at runtime,
the Musicbox grammar is dynamically augmented with entries from a live database con-
taining the song titles, artist, album, country and language information, as well as pointers
to the audio files. The main concepts of the domain are summarized in Table 7.2 and an
example parse is shown in Figure 7.5. Note that, given the way that the grammars are

structured, it is very common to find cross-grammar, multiple-tree interpretations.

4Or all goals become deselected, which triggers an error message.

*Note Gsa’s ability (following the specifications of the JSAPI) to take the multiple JSGF grammars and
operate on all of them at once. In this case, the application consists of three grammars: Generic, Musicbox,
and Shopping Cart.

Chapter 7: Experiments and Results

122

Nonterminal Example
<listAllSongs> please show me all available songs
<getInformation> give me some info
<play> please play

<pause> pause

<stop> please stop
<continue> go on please
<fastForward> fast forward
<fastBackward> fast backward
<rewind> please rewind
<louder> play louder

<softer> please play softer
<mute> mute

<object> a groovy song
<addToCart> buy
<removeFromCart> remove

<checkout> checkout please
<balance> what’s my balance
<toCart> into my shopping cart
<fromCart> from my cart

Table 7.2: Main concepts (i.e., top-level NTs) of the Musicbox Task grammar, and examples

thereof.

As for the experiment, Figure 7.6 shows the instructions given to the testers, and Figure 7.7

presents a screenshot of a session.

123

Chapter 7: Experiments and Results

7400

spDm woy

<owe|[3ST3IySUTPIODeI " XOqOTSIU> fiq

<LSILYY~ " xoqoTsnu

<3ueumBayuoridraoseqyoelqo--xoqoTsnuy

buos

<DNOS™ - ¥oqoTsTm>

<8uoggoelqo- xoqoTsnuy

<3ueumBayuorzdraoseqyoelqo~ - xoqoTsnuy

<£31quenb- - xoqoTsnuy

burddoys o3

_

<3xedoy - gresfurddoysy

_

<uotgdraoseqyoelqo - xoqoTsnuy

<30e[qo-xoqoTsnuy

ppo

<3xeporppe - 3xesutddoys>

Figure 7.5: Parse of add a song by tom waits to shopping cart according to the Musicbox

Task grammar in §C.3.

Chapter 7: Experiments and Results 124

What you’ll have to do is very simple: imagine that you have $20 dollars to spend in music

and you want to buy a few songs from the musicbox. Example sentences:

e what do you have

play my all

add my all to shopping cart

what’s my current balance

1 want to check out now

Note that along the way the system may ask you some clarification questions, as it attempts

to understand what you mean. Also, please be aware of the following “power commands”:

e wrong: Tells the system it didn’t (fully) understand what you meant.

cancel: Cancels the current learning attempt.

ignore: Ignores the current clarification question.

e X means Y: Teaches the system a meaning equivalence. E.g., track means song.

X is a Y: Teaches the system the category of a word or phrase. E.g., French is a

language.

Figure 7.6: Instructions given to the users for the Musicbox Task.

Chapter 7: Experiments and Results 125

=[0] x|
File Edit Debug
Now playing vaga luna by Jiaxing Weng
B e el Artist Sang Tille Price
T HIANEY TIee (e o, | 700 =
Boh Marley Buffalo goldier |6.00 !
Bob Marley Getup stand... |8.00
Bob Marley Stirit up 7.00
Boh Marley One love 6.00
Boh Marley I shotthe sh... |5.00
Bob Marley Waiting in vain |7.00
Bob Marley Redermption ... |6.00
ST Bob Marley | Satisty my 50...|4.00
louder Bob Marley Exodus 5.00
fastForward Boh Marley Jamming B.00

rewind Bruce Spring... Thunder Road |2.00
addToCart

halance

Song Title
vaga luna
0 cessate

Bruce Spring... Jersey Girl 3.00
Bruce Spring... Fade 2.00
Bruce Spring... Border 1.00
Bruce Spring... Paoint Blank 8.00
Jiaxing Weng Caro mio ben |5.00
Jiaxing Weng |0 cessate 5.00
WJiaxing YWWeng Waga luna 10.00
Jiaxing Weng An die Musik (8.00
Jiaxing Weng Litanel 8.00
Jiaxing Weng | Fruehlingsagl... |8.00
WJiaxing ¥Weng |Heidenroesl... [10.00
Jiaxing Weng Wanderer M. |7.00
Jiaxing Weng |Bao lixin 3.00
Jiaxing Weng | Da hai 4.00
Jiaxing iWeng | Gan wen luzai |4.00
WJiaxing ¥Weng |Hong he gu 200
Jiaxing Weng Huiniangjia 3.00
Jiaxing Weng | Jing hua chu... [4.00
Jiaxing ieng | Mu ge 5.00
Jiaxing Weng |Ka gui sa 200
Jiaxing ¥Weng | Qian shou 8.00
Jiaxing Weng Tong nian 8.00
Jiaxing Weng Waisammo 500

l understand "buy vaga luna"
> buy o cessate

lunderstand “buy o cessate™
> play vaga luna

lunderstand “play vagaluna”
> list all songs

lunderstand "list all songs "'

Figure 7.7: Musicbox Task screenshot. Again, the lower window is the interface to GSG,
with user input preceded by ‘>’. The upper left window depicts the current dialogue goals:
enabled goals in black and disabled goals in gray (in this case <play> and <continue>,
since the application is already playing). The upper middle window lists available songs
and shows playing status. The upper right window displays the contents of the shopping
cart.

Chapter 7: Experiments and Results 126

7.3 Example Interactions

Listing all the interactions that were recorded in the experiments would take too much
space and not be as informative as the learning episodes (which are presented in full detail
in Appendix E). But, in order to have a sense of the kind of “conversation” that the users
engaged in with Gsa, what follows is a sample of the types of interactions that took place

in the user sessions.

7.3.1 Successful

Most of the interactions in the user studies can be classified as successful, for they trigger

the acquisition of correct rules. This is exemplified by the two interactions below.

Interaction 7.3.1a

> see email from goku
I don’t understand right away what you mean but let me guess...
"see email from goku" is a way to express:

1. count mail, e.g. "count"
2. 1list mail, e.g. "list"
3. send mail, e.g. "send"

0. None of the above
> read email from goku
By '"read email from goku" are you referring to:

1. read, e.g. '"read"
2. read mail, e.g. '"read"
3. email address part string, e.g. "a"
0. None of the above

> 2

Is "see" a way to express read, e.g. 'read"?
1. Yes
2. No

> 1

Thanks for teaching me the meaning of "see email from goku"!
I understand "see email from goku"

As detailed in learning epiosode LE e.2.1 (see §E.1.2.2) this interaction triggered the acqui-
sition of the subRHS see under NT <voiceEMail. READ>.

Chapter 7: Experiments and Results 127

Interaction 7.3.1b

> get rid of all messages from spamela

I understand "get"

> wrong

"get rid of all messages from spamela" is a way to express:
1. 1list mail, e.g. "list"

2 count mail, e.g. "count"
3. sort mail, e.g. "sort"
0. None of the above

>0

"get rid of all messages from spamela" is a way to express:
1. delete mail, e.g. "delete"
2. reply mail, e.g. '"reply"
0. None of the above

> 1

Is "rid" a way to express delete, e.g. 'delete"?
1. Yes
2. No

> get rid of means delete
Learning from MEANS...

Is "get rid of" a way to express delete, e.g. '"delete"?
1. Yes
2. No

> 1

Thanks for teaching me the meaning of '"get rid of"!

I understand "get rid of"

Thanks for teaching me the meaning of "get rid of all messages from
spamela"!

I understand "get rid of all messages from spamela"

In this case the user volunteered the correct segmentation and the entire expression get rid
of was acquired under NT <voiceEMail. DELETE>. (See LE e.10.4 in §E.1.10.2 for more
details.)

7.3.2 Neutral

In some occasions an interaction does not lead to the creation of a new rule. This can
happen for a few reasons: the utterance is out of domain (i.e., not supported by the end-
application), the utterance is partially parsed but with the same meaning, or the utterance

conflicts with existing knowledge.

7.3.2.1 TUser Cannot Map Own Intention onto Task Concept

Sometimes users are not able to match their intentions to the existing concepts defined for

the task, as in the following example.

Chapter 7: Experiments and Results

Interaction 7.3.2.1

128

> check messages
I don’t understand right away what you mean but let me guess...
"check messages" is a way to express:
1. 1list mail, e.g. "list"
2. count mail, e.g. "count"
0. None of the above
> 1
"check" is a way to express:
1. ask to check, e.g. "do i have"
2. 1list, e.g. "list"
0. None of the above
> cancel
Ok, back to square one

In this case the user’s *

or list and decided to terminate the entire learning episode.

7.3.2.2 TUtterance is Out of Domain

‘world view” did not allow her to equate check to either ask to check

Other times, the user’s intention may truly lie beyond the application’s (and, correspond-

ingly, the grammar’s) ability, as in the example below.

Interaction 7.3.2.2a

> delete message from lucy
I understand "delete message from lucy"
Message deleted.
> undelete message from lucy
I don’t understand right away what you mean but let me guess...
"undelete message from lucy" is a way to express:
1. count mail, e.g. "count"
2. 1list mail, e.g. "list"
3. reply mail, e.g. '"reply"
0. None of the above

>0
"undelete message from lucy" is a way to express:
1. read mail, e.g. '"read"
2. compose mail, e.g. '"compose"
3. send mail, e.g. 'send"
0. None of the above
>0
"undelete message from lucy" is a way to express:
1. forward mail, e.g. "forward"
2. delete mail, e.g. "delete"
3. sort mail, e.g. '"sort"
0. None of the above
>0

Sorry, I can’t learn what you mean. Maybe what you are trying to say is
beyond my abilities.

The user was trying to undo her last action but it turned out that such a command was

not supported by the end application. After many attempts, the system was able to detect

Chapter 7: Experiments and Results 129

that the utterance was in fact out of domain, as no anchor mother could be found.

Interestingly enough, the self-assessed limitations of the system may sometimes be overrid-

den by an eager user, as in the following example.

Interaction 7.3.2.2b

> put song in my shopping basket
I understand "song"

> wrong
"put song in my shopping basket" is a way to express:
1. to cart, e.g. '"cart"
2. track title, e.g. 'my all"
3. from cart, e.g. "from cart"
0. None of the above
> 1
Sorry, I can’t learn what you mean as it is not supported by the end
application.

> shopping basket means shopping cart
Learning from MEANS...

Is "shopping basket" a way to express to cart, e.g. '"cart"?
1. Yes
2. No

> 1

Thanks for teaching me the meaning of "shopping basket"!
I understand "shopping basket"
> put song in my shopping basket
I understand "song in my shopping basket"
> wrong
"put song in my shopping basket" is a way to express:
1. object, e.g. 'great"
2. to cart, e.g. '"cart"
3. add to cart, e.g. "add"
0. None of the above
> 3
Thanks for teaching me the meaning of "put song in my shopping basket"!
I understand "put song in my shopping basket"

7.3.2.3 Utterance is Partially Matched

Sometimes, even though the system is not able to parse the entire sentence, what it under-
stands (i.e., the partial analysis) is close enough to the meaning of the entire sentence. If
the user accepts it (e.g., by not saying wrong) no learning episode is triggered. Here is an

example.

Interaction 7.3.2.3

> a little louder
I understand "louder"

Chapter 7: Experiments and Results 130

Of course, GSG could automatically acquire subRHS a little louder under <musicbox.louder>
but, in that case, (i) it may have to bother the user with clarification questions as it de-
termines the substructure of the analysis, and (4i), more importantly, henceforth it would
give the false impression that it understands a little louder as well as louder, i.e., that it is
making a nuanced distinction that is in fact not supported by the end application (since

the execution of <louder> raises the volume by a fixed amount).

7.3.2.4 TUtterance Conflicts with Exisiting Knowledge

As explained in §6.4.1.2, in order to prevent not only catastrophic results from malicious
users (such as list means delete) but also slight conflicts inherent in the carving up of the
world that a particular application and grammar entail, GSG rejects new rules that contra-

dict existing knowledge. Her is an example.

Interaction 7.3.2.4

> i want to send an email to bob
I understand "i want to send an email to bob"

> wrong
Is "i want to send an email to bob" a way to express send mail, e.g.
"send"?
1. Yes
2. No
> 2
"i want to send an email to bob" is a way to express:
1. count mail, e.g. "count"

2. 1list mail, e.g. "list"
3. read mail, e.g. '"read"
0. None of the above

>0
"i want to send an email to bob" is a way to express:
1. compose mail, e.g. "compose"
2. forward mail, e.g. "forward"
3. reply mail, e.g. '"reply"
0. None of the above
> 1

Sorry, I can’t learn what you mean as it conflicts with my exisiting
knowledge.

It seems that in the user’s mind, sending an e-mail to someone means composing it (and
probably actually sending it afterwards). However, since according to the design of the
application as reflected in the Ontology, sending an e-mail corresponds to a different concept
from that of composing an e-mail. Therefore, when the two meanings are equated GSG

detects a conflict and refuses to learn.

Chapter 7: Experiments and Results 131

7.3.3 Unsuccessful

In a few occasions an interaction triggers the acquisition of a wrong rule, as in the following

example.

Interaction 7.3.3

> how much is lullaby
I understand "lullaby"
Maybe you are trying to say:
1. add to cart, e.g. "add"
2. rewind, e.g. '"rewind"
3. Dbalance, e.g. '"balance"
0. None of the above
> 1
Learning from ISA...
Thanks for teaching me the meaning of "how much is"!

It seems that the user’s intention changed from wanting to know how much the song Lullaby
cost, to placing it into the shopping cart, or rather, the user may have thought that placing
it into the shopping cart may be the only or easiest way to obtain the price for it. In any
case, the end result is the acquisition of how much is under <shoppingcart.addToCart>

(see LE m.2.2 in §E.2.2.2 for details).

7.4 Results

As mentioned before, the utterances from the user sessions are available in Appendix D, and
the exhaustive listing of the learning epiosodes in Appendix E. What follows is a summary
of these results, which includes statistics on the user sessions, analysis of the degree of
exploration of the domain, results on the semantic accuracy of the resulting grammars on

independent corpora, and analysis of the types of rules acquired.

7.4.1 E-Mail Task

Table 7.3 presents a tally of the user sessions for the E-Mail Task. The explanation of each

row is as follows.

e Duration: duration of the session, in minutes.

e Number of utterances: number of utterances directed to the end-application, that

is, not counting meta-utterances such as wrong, or answers to clarification questions.

e Number of learning episodes: number of attempts to learn the meaning of utter-

ances. This number is of course less than or equal to the number of utterances.

Chapter 7: Experiments and Results 132

e Average number of choices: average number of choices presented to the user per
learning episode. For example, a multiple-choice question with three questions plus a
generic “none of the above” counts as three choices® and a binary (yes/no) question
counts as one choice. More exactly, in the multiple-choice case, the number of choices
counted is the number of choices presented to the user until the correct choice is

presented, i.e., the rank of the correct choice.

e Number of rules learned: number of distinct grammar subRHSs acquired in the
session. The number of rules learned is not determined by the number of learning
episodes because (i) a learning episode may not trigger the acquisition of any rule (for
example, when it is realized that the input utterance is out of domain, or when a newly
acquired rule is re-used), and (ii) a learning episode may trigger the acquisition of more
than one subRHS (since more than one rule candidate extracted from the hypothesized
parse tree may pass the subsumption, ambiguity, and parsebank disruption tests and

added to the grammar).

e Average GSG score: average score of the behavior of the system per learning episode
and acquired rule, according to the scoring table in Table 7.4. A score is given to each
subRHS acquired (or lack thereof); therefore the denominator in the computation of
the average is the sum of the number of learned subRHSs plus the number of learning
episodes that did not trigger any rule acquistion. Also note that a minus sign after the
score indicates that the resulting merged rule could be expressed by a more compact

rule.

Looking at Table 7.3 one could argue that the user sessions, at an average duration of fifteen
minutes, are not long enough to test the system. However, given the self-bounded nature
of an individual’s language” system performance will, if anything, increase over time, as
the ratio of extragrammatical utterances decreases. In fact, the existence of “hits” by the
newly acquired rules® even within a short session, provides additional, if anectodal, support

for this principle.

50ne could argue that it should count as four choices but the reasoning is that “none of the above” is
more of a meta-choice, such as the ever-possible responses of “cancel” or “ignore.”

"As demonstrated in [Lehman, 1989], e.g., “It is proven that user canonical forms grow in a self-bounded
fashion, that is, an individual’s language usage converges on a stable subset of the language, as opposed to
unbounded growth” and “Self-bounded behavior was demostrated by constructing a performance graph for
each user in an adaptive experimental condition. Each graph showed decreases over time in both the number
of new grammatical constructions per utterance and the number of rejected utterances per session.”

8L.e., the fact that a newly acquired rule is used (see, e.g., LE e.5.3 in §E.1.5.2).

Chapter 7: Experiments and Results 133

User 1 | User 2 | User 3 | User 4 | User 5
duration (minutes) 7 17 28 14 12
utterances 13 37 37 21 17
learning episodes 3 6 8 2 8
cancelations 0 0 2 1 0
avg. choices per LE 5.67 5.50 7.50 10.00 6.25
rules 7 5 4 4 6
Gsa score 1.57 1.33 1.33 2.00 1.67

User 6 | User 7 | User 8 | User 9 | User 10 | Total | Average
duration (minutes) 8 20 12 18 9 145 14.50
utterances 12 27 6 19 14 203 20.30
learning episodes 5 7 4 9 7 59 5.90
cancelations 0 1 0 0 0 4 0.40
avg. choices per LE 5.00 3.00 8.25 6.89 3.57 — 5.93
rules 4 5 8 8 5 56 5.60
Gsa score 1.00 1.63 1.13 0.92 1.50 — 1.37

Table 7.3: Summary of results for the E-Mail Task. (See §7.4.1 for details.)

As a way of summarizing the user utterances in §D.1, Table 7.5 analyzes the degree of
exploration of the domain performed by the users. <listMail> and <readMail> are the
most frequent actions.

As for the actual rules acquired, as mentioned in §7.1, the user sessions resulted in the
acquisition of 56 rules (48 of them unique). One evaluation of the goodness of the acquired
rules is provided by the average Gsa score of 1.37 reported in Table 7.3. An even more
compelling evaluation is provided on Tables 7.6 and 7.7.

Table 7.6 shows the semantic accuary of the kernel grammar and the union grammar (i.e.,
the grammar resulting from adding, to the kernel grammar, the 48 distinct new rules) on
the user session corpus. The user session corpus is comprised of the 203 utterances collected
from the user sessions.

A grade is assigned by a human expert to each utterance, according to the semantic accuracy
of its analysis. A correct grade is given if and only if the parse tree is accurate and triggers
the intended action. An incorrect grade is given if the utterance could be handled by the
application and yet the semantic analysis would not trigger the action intended by the
user. Finally, an OOA grade (for out-of-application) is assigned when the end-application
would not be able to handle the utterance (e.g., in the E-Mail Task sessions, when the
user requested for a spell-check, scroll-down, or undeletion of messages, none of which are

supported by the e-mail client).

Chapter 7: Experiments and Results 134

Score | Explanation

Terrible: Acquisition of a wrong rule that prevents construction of cor-
-2 | rect and achievable parse (and all subsequent usages).

Bad: Acquisition of a wrong rule without harmful side effects (and all
-1 | subsequent usages).

Good: Acquisition of a good rule but with poor generalization (and
all subsequent usages), acquisition of a semantic mapping without rules
1 | (and all subsequent usages), no acquisition if utterance is out of domain,
or detection of conflict with existing knowledge.

Excellent: Acquisition of a good rule with good generalization (and all
2 | subsequent usages).

Table 7.4: Scores for the numeric evaluation of learning episodes.

As shown in Table 7.6, correct analyses increase from 56.16% (parsing with the kernel
grammar) to 88.18% (parsing with the union grammar), achieving a 5-fold reduction in
error rate.

To further evaluate the goodness of the acquired rules, in fact, to test their degree of
generalization, the same two grammars were used to parse a completely independent test
set in the same domain,’ the results of which are presented in Table 7.7. Even in an
independent test set it can be observed that correct analyses increase when using the union
grammar, in this case from 44.33% to 74.23%, achieving a a 2-fold reduction in error rate.
After establishing that the acquired rules do indeed correctly extend the initial grammar,
we turn our attention to the nature of the acquired rules. The detailed listing of learning
episodes in §E.1 contains the acquired subRHS, the initial rule, and the rule after merging.
Here, as a way of summary, an analysis is presented on the lezical vs. structural nature of
the rules acquired.

A rule is considered lezical if its RHS is composed of terminals only, and structural otherwise
(i.e., when its RHS contains at least one nonterminal). Table 7.8 shows the counts for

lexical and structural acquired rules, broken down by user and grade, Table 7.9 provides

9The independent test set for E-Mail domain was obtained by asking the Language Technologies Institute
community to donate sentences; the one for the Musicbox task was adapted from a similar task developed
at Interactive Systems, Inc.

Chapter 7: Experiments and Results

135

User 1 | User 2 | User 3 | User 4 | User 5
<countMail> 0 0 0 0 0
<listMail> 5 9 14 2 3
<readMail> 2 15 7 3 3
<composeMail> 1 2 1 0 2
<sendMail> 0 1 1 1 2
<forwardMail> 0 0 0 0 0
<replyMail> 1 7 4 2 1
<deleteMail> 2 2 3 9 3
<sortMail> 2 1 4 3 2
OO0A 0 0 3 1 1
Total 13 37 37 21 17

User 6 | User 7 | User 8 | User 9 | User 10 | Total | Percentage
<countMail> 0 0 0 0 0 0 0.00%
<listMail> 4 10 1 5 3 56 27.59%
<readMail> 2 6 0 1 2 41 20.20%
<composeMail> 1 2 2 1 1 13 6.40%
<sendMail> 2 3 0 2 0 12 5.91%
<forwardMail> 0 1 0 0 0 1 0.49%
<replyMail> 1 2 1 2 2 23 11.33%
<deleteMail> 1 1 1 3 3 28 13.79%
<sortMail> 1 2 1 4 3 23 11.33%
OO0A 0 0 0 1 0 6 2.96%
Total 12 27 6 19 14 203 100.00%

Table 7.5: Degree of domain exploration in the E-Mail Task. For example, of the thirteen
utterances from User 1 that were directed to the end-application, five where <listMail>

commands.

the distribution of rule grades given rule types, and Table 7.10 the distribution of rule types

given rule grades. It can be observed that lexical rules are more common than structural

ones (about a 3:2 ratio), and that structural rules are slightly more difficult to learn correctly

(cf. the 80.00% chance a lexical rule has of being graded ezcellent vs. the 60.87% chance

for a structural one).

Chapter 7: Experiments and Results

136

Grade Kernel Grammar | Union Grammar
Correct 56.16% 88.18%
Incorrect 40.39% 8.37%
OO0OA 3.45% 3.45%

Table 7.6: Semantic accuracy on the E-Mail Task’s user session corpus. Corpus size is 203

utterances.

Grade Kernel Grammar | Union Grammar
Correct 44.33% 74.23%
Incorrect 55.67% 25.77%

Table 7.7: Semantic accuracy on the E-Mail Task’s independent corpus

utterances.

. Corpus size is 97

Grade and Type || User 1 | User 2 | User 3 | User 4 | User 5

+2 Lexical 3 4 3 1 4

+2 Structural 2 — 1 3 —

+1 Lexical 1 - - - -

+1 Structural 1 — - 1 2

-1 Lexical - 1 - - -

-1 Structural — — — — —

-2 Lexical - - - - -

-2 Structural — — — — —

Grade and Type | User 6 | User 7 | User 8 | User 9 | User 10 | Total | Percentage
+2 Lexical 2 1 3 4 3 28 48.28%
+2 Structural 1 2 3 1 1 14 24.14%
+1 Lexical - 1 1 - 1 4 6.90%
41 Structural - 1 1 1 — 7 12.07%
-1 Lexical - - - 2 - 3 5.17%
-1 Structural - - - 1 — 1 1.72%
-2 Lexical - - - - - 0 0.00%
-2 Structural 1 - - - — 1 1.72%

Table 7.8: Type of rule acquired in the E-Mail Task. The first column indicates the grade
(from ezcellent (42) to terrible (-2) (see Table 7.4)) and the type (lezical or structural) of

the rules acquired.

Chapter 7: Experiments and Results 137

+2 +1 -1 -2 Total
Lexical 80.00% | 11.43% | 4.35% | 0.00% || 60.34%
Structural || 60.87% | 30.43% | 4.35% | 4.35% || 39.66%

Table 7.9: Distribution, in the E-Mail Task, of the grade of acquired rules given their type.
For example, given that an acquired rule is lexical, it has an 80.00% chance of being graded
+2 (excellent). The column of totals indicates overall distribution of types.

+2 +1 -1 -2
Lexical 66.67% | 36.36% | 75.00% | 0.00%
Structural || 33.33% | 63.64% | 25.00% | 100.00%
Total 72.41% | 18.97% | 6.90% 1.72%

Table 7.10: Distribution, in the E-Mail Task, of the type of acquired rules given their
grade. For example, given that the grade of an acquired rule is +2 (excellent), it has a
66.67% chance of being lexical. The row of totals indicates overall distribution of grades.

Chapter 7: Experiments and Results 138

User 1 | User 2 | User 3 | User 4 | User 5 || Total | Average
duration (minutes) 11 18 12 15 14 70 14.00
utterances 18 24 13 22 20 97 19.40
learning episodes 9 7 8 5 4 33 6.60
cancelations 0 1 0 0 0 1 0.20
avg. choices per LE 3.56 3.29 4.25 4.00 7.00 — 4.15
rules 4 5) 2 3 19 3.80
GSs@ score 1.88 1.14 1.50 1.40 1.75 — 1.53

Table 7.11: Summary of results for the Musicbox Task. (See §7.4.1 for details.)

7.4.2 Musicbox

This section presents an analysis of the results for the Musicbox Task that is parallel to
the one just offered in §7.4.1 for the E-Mail Tagk. Table 7.11 presents a summary of the
user sessions for the Musicbox Task. Contrasting Table 7.11 with Table 7.3 one can observe
that, whereas session duration and average number of utterances per session are about the
same, the average GSG score in the Musicbox is superior to the one in the E-Mail Task
(1.53 vs. 1.37), as is the lower average of choices per learning episode (4.15 vs. 5.93).

As for the exploration of the domain, Table 7.12 presents the degree of exploration of the
domain performed by the users. In this case, <addToCart> and <listAllSongs> are the
most frequent actions.

As mentioned in §7.1, the user sessions resulted in the acquisition of 19 rules (all of them
unique). To evaluate their correctness, the test shown in Table 7.13 was conducted. It
shows the semantic accuracy of the kernel grammar and that of the union grammar, on
the user session corpus (i.e., the 97 utterances collected from the user sessions, listed in
§D.2). Note that correct analyses increase from 62.89% (parsing with the kernel grammar)
to 94.85% (parsing with the union grammar), achieving a 16-fold reduction in error rate.
In addition, to evaluate the degree of generalization of the union grammar, the same two
grammars were used to parse a completely independent test set in the same domain. Ta-
ble 7.14 presents the results. Again, correct analyses increase from 21.28% to 41.49%,
achieving a 1.35-fold reduction in error rate.

As for the type of rules acquired, Table 7.15 provides the absolute counts for lexical and
structural rules, broken down by user and grade, Table 7.16 provides the distribution of rule
grades given rule types, and Table 7.17 provides the distribution of rule types given rule

grades. It is again found that lexical rules are more common (a 4:1 ratio in this case), and,

Chapter 7: Experiments and Results

139

User 1 | User 2 | User 3 | User 4 | User 5 || Total | Percentage
<listAllSongs> 3 3 2 5 3 16 16.49%
<getInformation> 0 2 0 0 0 2 2.06%
<play> 3 4 2 2 2 13 13.40%
<pause> 0 0 0 0 0 0 0.00%
<stop> 2 2 1 1 1 7 7.22%
<continue> 0 0 0 0 0 0 0.00%
<fastForward> 3 0 1 1 1 6 6.19%
<fastBackward> 1 0 0 0 0 1 1.03%
<rewind> 0 0 0 0 4 4 4.12%
<louder> 0 1 1 0 2 4 4.12%
<softer> 0 1 0 1 2 4 4.12%
<mute> 0 0 1 0 0 1 1.03%
<addToCart> 3 3 3 6 3 18 18.56%
<removeFromCart> 1 1 0 3 0 5 5.15%
<checkout> 1 1 1 1 1 5 5.15%
<balance> 1 6 1 2 1 11 11.34%
Total 18 24 13 22 20 97 100.00%

Table 7.12: Degree of domain exploration in the Musicbox Task. For example, of the

eighteen utterances from User
<1istAl1lSongs> commands.

Grade

Kernel Grammar

Union Grammar

Correct
Incorrect
O0A

62.89%
34.02%
3.09%

94.85%
2.06%
3.09%

1 that were directed to the end-application, three where

Table 7.13: Semantic accuracy on the Musicbox Task’s user session corpus. Corpus size is

97 utterances.

albeit less clearly (possibly due to data sparseness), that structural rules are more difficult

to learn correctly.

Chapter 7: Experiments and Results 140

Grade Kernel Grammar | Union Grammar
Correct 21.28% 41.49%
Incorrect 78.72% 58.51%

Table 7.14: Semantic accuracy on the Musicbox Task’s independent test corpus. Corpus
size is 94 utterances.

User 1 | User 2 | User 3 | User 4 | User 5 || Total | Percentage
+2 Lexical 5 1 3 1 1 11 55.00%
+2 Structural - - 1 - 2 3 15.00%
+1 Lexical - 2 1 1 - 4 20.00%
+1 Structural - 1 - - - 1 5.00%
-1 Lexical - 1 - - - 1 5.00%
-1 Structural - - - - - 0 0.00%
-2 Lexical - - - - - 0 0.00%
-2 Structural - - - - - 0 0.00%

Table 7.15: Type of rule acquired in the Musicbox Task. The first column indicates the
grade (from ezcellent (42) to terrible (-2) (see Table 7.4)) and the type (lezical or structural)
of the rules acquired.

+2 +1 -1 -2 Total
Lexical 68.75% | 25.00% | 6.25% | 0.00% || 80.00%
Structural || 75.00% | 25.00% | 0.00% | 0.00% || 20.00%

Table 7.16: Distribution, in the Musicbox Task, of the grade of acquired rules given their
type. For example, given that an acquired rule is lexical, it has a 68.75% chance of being
graded + 2 (ezcellent). The column of totals indicates overall distribution of types.

+2 +1 -1 -2

Lexical 78.57% | 80.00% | 100.00% | n/a
Structural || 21.43% | 20.00% | 0.00% | n/a
Total 70.00% | 25.00% | 5.00% | 0.00

Table 7.17: Distribution, in the Musicbox Task, of the type of acquired rules given their
grade. For example, given that the grade of an acquired rule is + 2 (excellent), it has a
78.47% chance of being lexical. The row of totals indicates overall distribution of grades.

Chapter 7: Experiments and Results 141

100%
80%
60% [OOA
4096 iy
20%
0% - ' -

o o - =
$28¢ B2s .24 3.
=4 S = §== §==
g8 6688 wag wvasg
Qw0 (L) X U9 2 99

X =] b= =

= =

(= (=

Figure 7.8: Semantic accuracy results for the E-Mail Task. The first column depicts the
percentage of correct, incorrect, and out-of-application (OOA) utterances for the kernel
grammar (KG) on the corpus comprised of the utterances taken from the user sessions
(Session Corpus). The second column shows the performance of the union grammar (UG)
on the same Session Corpus. The union grammar is created by adding, to the kernel
grammar, all the rules acquired during the user sessions. The third and fourth columns
repeat the experiment, this time over an independent corpus of sentences.

7.4.3 Summary

As a final summary of results, Figures 7.8 and 7.9 depict the data contained in Tables 7.6,
7.7, 7.13 and 7.14 in graphical form. They show a substantial improvement in semantic
accuracy of the union grammar over the kernel grammar for all tasks and corpora. Finally,
7.18 gives another view on the same data, this time in terms of correctness increment and
error decrement factors. Clearly, these results are very satisfactory and validate the thesis

of this dissertation.

Chapter 7: Experiments and Results 142

100%0
809%
60%0 O OO0A
o B Incorrect
40% B Correct
20%0
0% . : :

- -))
T T c =
we v W o= 9 [T (TR
:Og_ 302_ ST 3 cT 3
s @ = =9 = QEE °§e
°o 8 °© 338 ©2g Oag
0w 0w X0 280
x = s s
= =

Figure 7.9: Semantic accuracy results for the Musicbox Task. (See Figure 7.8 for an
explanation.)

Chapter 7: Experiments and Results

143

Correctness
.Increment Correctness | Error
Corpus in Absolute
. Increment Decrement
Size Percentage
. Factor Factor
Points
E-Mail Task, wuser
sessions corpus 203 32.09 1.57 4.83
E-Mail Task, inde-
pendent corpus 97 29.90 1.67 2.16
Musicbox Task, user
sessions corpus 97 31.96 1.51 16.51
Musicbox Task, in-
94 20.21 1.95 1.35

dependent corpus

Table 7.18: Comparison of semantic accuracy between the union grammar and the kernel
grammar for both the E-Mail Task and the Musicbox Task, from the data reported in
Tables 7.6, 7.7, 7.13 and 7.14. The first column lists the corpus sizes; the second column
lists the difference in absolute percentage points between the semantic accuracy of the
union grammar and the semantic accuracy of the kernel grammar; the third column lists
the factor that the increment in semantic accuracy reported in the second column represents,
in terms of correctness increment; and the fourth column lists the factor that the increment
in semantic accuracy reported in the second column represents, this time in terms of error

reduction.

Chapter 7: Experiments and Results 144

7.5 User Comments

A rather unexpected (and very rewarding) aspect of conducting the studies just described
was the enjoyment that the users seemed to experience as they intereracted with Gsa. A

few of their comments:

e “Fascinating to do — would like to see how more sophisticated concepts might be

taught”
e “Quite an interesting way of interacting with computer”

e “Really enjoyed being able to ‘teach’ the computer to pick up synonyms for commands

and the concept of the computer ‘understanding’ ”
e “Learned quickly”

e “Fun to interact with — appears ‘intelligent’ — it’s like talking to a kid”

Being compared to a child, with its small “knowledge base” but immense potential and

eagerness to learn, is probably the best compliment GSG can receive.

Chapter 8

Conclusion

This chapter concludes the main body of the document with a review of the principal

contributions of this dissertation and a sketch of future directions for research.

8.1 Discussion

The results presented in Chapter 7 demonstrate that it is feasible to program a computer
to carry on meaningful dialogues with end-users through which linguistic knowledge is ac-
quired, without requiring exorbitant amounts of domain knowledge coded into it. Gsa, the
system described at length in the preceding chapters, incorporates a mixture of quantita-
tive and qualitative reasoning that allows it to exhibit both robustness in the analysis of
natural language and flezibility in the acquisition of linguistic knowledge. Thus, one can
argue that, compared to other systems in the literature, GsG is in the best position to (7)
give a reasonable answer to the end-user in the face of extragrammaticality, and (4i) extend
the underlying grammar in a general way.

Several systems or, rather, behaviors, can be taken as a baseline comparison to GSG. The
first baseline would be provided by a parser that is not robust, that, for example, does not
allow for multiple-tree interpretations or any type of skipping. In that case the answer to
any extragrammatical sentence would most likely be an uncooperative No parse found —
please rephrase. (GSG is obviously superior to that. Another baseline could be provided
by a robust parser, such as Lehman’s minimal-distance parser CHAMP [Lehman, 1989,
Senefl’s NT-bigram-based TINA [Seneff, 1992], Lavie’s GLR* skipping parser [Lavie, 1996],
or Rosé’s fragment-combining ROSE [Rosé, 1997]. The behavior of all these systems, with
the exception of Lehman’s, are robust parsers but not learners, i.e., they are not able
to incorporate new knowledge and in fact, given the same extragrammatical utterance,
would have to go through the same repair steps. The differences with Lehman’s system

are discussed in §3.4, but GSG’s main improvement is the usage of a variety of learning

145

Chapter 8: Conclusion 146

strategies rather than relying on minimal-distance parsing alone. Finally, when compared
to systems whose main advantage is that they are completely trained from data, such as the
topic detector presented in [Chu-Carroll and Carpenter, 1999], or the NLU systems based
on HMMs or other information-theoretic networks discussed in §3.2 and §3.6, it is clear that
Gsa is in a different class, as these systems are mainly flat classifiers and cannot produce

the nested structures necessary to analyze natural language in non-trivial domains.

8.2 Major Contributions
The main contributions of GSG can be summarized as follows.

¢ Rapid deployment of NLU front-ends. GsG decreases development time: The
grammar for a new application can be developed and launched within days (as opposed

to months), as only a Kernel Grammar is required.

e Low initial knowledge, high yield approach to NLU interfaces. GSG ex-
tracts, from a relatively simple context-free grammar, enough information (Ontology,

Parsebank, Hypotactic and Paratactic Models) to operate sucessfully.

e Combination of knowledge sources. GSG incorporates multiple knowledge sources
(semantic grammar, part-of-speech tags and syntactic grammar, end-application con-
straints) into a unified framework of quantitative (e.g., Prediction Models) and qual-

itative (e.g., Ontology) reasoning.

e Combination of learning strategies. GsG utilizes the knowledge sources in a va-
riety of learning strategies (All-top parsing, Anchor Mother Prediction, Required /Is-
a/... Daughter Search, Verbal Head Search, Parser Predictions, Vertical Generaliza-

tion, Horizontal Generalization, Rule Merging).

e Natural-language dialogue. GSG is able to combine these different knowledge
sources and learning strategies into a coherent, mixed-initiative conversation with the

end-user.

e Sophisticated rule management. GsG vertically and horizontally generalizes ac-
quired rules and tests them for subsumption and ambiguity introduction. Moreover,
the Rule Merging algorithm constructs rules that are more general than a simple

addition as an alternative.

Chapter 8: Conclusion 147

e Usage of a standard grammar formalism. GSG uses grammars written in the
standard JSGF formalism for both its input (Kernel Grammar) and its output (ex-

tended grammar).

e Acquired rules improve coverage on independent corpus. Empirical results
show that the acquired rules not only resolve the particular extragrammatical sentence
that gave rise to them, but also that they are general enough to apply to other

sentences.

e Results hold across domains and developers. These positive results hold across

different application domains and developers.

e User satisfaction increases. Application end-users enjoy the ability to teach the

system their language patterns.

8.3 Future Directions

When building a system of GSG’s magnitude there are many places where one has to choose
between what is possible (and even desirable) and what is feasible to accomplish within a
reasonable amount of time. What follows are some of the directions in which Gsa could

improve.

8.3.1 Integration with a Speech Recognizer

An objective of Gsa has always been to provide a speech interface to the end application.
The design of GSG (from using a fast and robust parser to limiting multiple-choice questions
to three items at a time) has been done in view of an eventual integration with a speech
recognizer and a speech synthesizer. When GsG becomes fully integrated with a speech
recognizer, it remains to be seen how an optimal point in the tradeoff between the wide
coverage but relatively low word recognition accuracy obtained with a loose dictation gram-
mar, and the narrow coverage but high word accuracy achieved with a tight task grammar,

can be found, and how the degradation of the input is going to affect GSG’s behavior.

8.3.2 End-application as Knowledge Source

It is clear that the more linguistic and domain knowledge GsG has, the better its hy-
potheses will be. The fact that GsG is able to work with a grammar as its sole source of
domain knowledge is definitely an advantage, but, at the same time, it also makes sense

to incorporate other knowledge sources, as demonstrated in the Musicbox Task where the

Chapter 8: Conclusion 148

end-application provided further filtering of anchor mothers depending on its dialogue state
(see §7.2.2).

This filtering can be seen as a first step toward a more sophisticated collaboration between
Gsa and the end application: A stochastic model could be built so that NT probabilities
would depend on the state of the end application and possibly other parameters. Then, for
example, the likelihood of <shoppingcart.checkout> in the Musicbox Task could be made
to automatically increase over time (within a session) as well as, say, with the number of
songs in the cart (and maybe the purchasing history of the user could even be taken into
account).

From GsG’s perspective, all the mechanisms necessary to support such a model are in place:
Even if direct participation in the prediction of the anchor mother is not feasible, reranking

of the predicted anchor mothers is definitely allowed.

8.3.3 Context-dependent Learning

A related question is allowing for context-dependent learning. For example, in one occasion
in the E-Mail Task a user wanted to teach GsG that ok, do it means <sendMail>, but only
after a <forwardMail> command. The present system, however, is unable to model such
inter-utterance contextual constraints. An idea would be, therefore, to extend GsG beyond
a pure context-free grammar so that the particular subRHS ok do it under <sendMail>
would only be active if the previous action had been a <forwardMail>. At the same time,
this limitation on the applicability of acquired rules would, of course, negatively impact

generalization performance.

8.3.4 Acquisition of New Concepts

A very interesting area of research would be the acquisition of new concepts within Gsa. In
fact, from the implementation’s point of view, all the mechanisms are in place to allow for the
creation of new N'T's. The problem is rather the difficulty of handling new concepts once they
are created. For example, it would be possible, at the end of Interaction 7.3.2.2 (undelete
message from lucy, see §7.3.2.2), to create a new NT <undelete> and rule <undelete>
= undelete < MAIL_ARGUMENT>+. But the end application would not be able to process
this new command. In fact, if the concept is not in the grammar, it most likely means
that it is not supported by the end application. Thus, not until a new class of flexible end
applications exists, does it make sense to attempt the acquisition of concepts. Otherwise,
the system would only mislead the user by purporting to understand a concept that cannot

be executed.

Chapter 8: Conclusion 149

8.3.5 Usage of Semantic Distance

Gsa is flexible in its naming of NTs (see §6.3.6.4) but such flexibility could be taken a step
further by using existing semantic knowledge sources such as WordNet [Fellbaum (ed.),
1998] to compute a semantic distance between words and NTs. For example, when a user
in the E-Mail Task said read email about travel, she was referring to a message with the
subject you’re going on a cruise. In a semantic net, cruise would have a strong association

with travel, and so it could be selected as the most likely message the user has in mind.

8.3.6 Anaphora Resolution

An important extension of GSG would be an Anaphora Resolution module, i.e., an algorithm
that given, say, show last message from cynthia followed by reply to her would identify her
as referring to cynthia. The lack of such a module is perhaps the largest impediment to

mantaining a truly natural conversation in the current system.

8.3.7 Rule Compaction after Merging

More for aesthetic reasons that for any other consideration, GSG could benefit from an
algorithm that would compact the RHS resulting from a rule merger (see §6.3.5.4, and all
learning episodes in Appendix E whose score ends with a minus sign) to its most succinct
representation. For example, a b* b* would become a b*. At the same time, such an
algorithm would be expensive (NP-hard, see [Kam et al., 1994]), and having a compacted

RHS would make it less straightforward to undo a merger.

8.3.8 Library of Grammars

With the establishment of a language technologies industry, it has become an economic ne-
cessity to reuse grammar components (as exemplified by Nuance’s SpeechObjects [Nuance,
2000] or Tellme’s Intrinsic Grammars [Tellme, 2000]). GSG supports the full JSAPT import
mechanisms, which allow for modularized grammars and dynamic changes. Yet, it would be
useful to, on the one hand, develop a set of foundational grammar modules (for, say, dates
and times), and, on the other, design a meta-JSGF language to parameterize such mod-
ules, so that, say <PizzaPrice[Price:USD:0-50]> would mean that N'T <PizzaPrice> is

a <Price> with values ranging from free to US$50.

Chapter 8: Conclusion 150

8.4 Conclusion

As one user remarked (“At times I felt the computer was teaching me to use its vocabulary,
altough eventually I taught it”), there will always be users that adapt their language to
what they know the system understands, rather than the other way around. In a sense, this
is a normal human response: as we engage in a dialogue, we tend to adopt our interlocutor’s
words and mannerisms. At the same time, given the open-endedness of natural language, it
is clear that adaptive systems are extremely useful: A crucial difference between a speech
interface and, say, a graphical user interface, is that in the latter case the user can easily
learn the functionality of the application by clicking on menues and submenues. In the case
of speech, however, the functionality will become apparent through the dialogue, so it is of
paramount importance, if the interaction is to be a real conversation, that the NLU system
be able to learn.

Gsa, by virtue of its built-in robustness, minimal initial knowledge requirements, and learn-
ing abilities, begins to embody the kind of qualities that NLU systems should possess, if
they are to provide, without exorbitant development effort, a conversational interface to a

multiplicity of applications that feels truly natural to humans.

Appendices

Appendix A

Small Grammar to Illustrate SOUP’s
Heuristics

Al G3
#JSGF V1.0 IS08859-1 en;

I Qauthor Marsal Gavalda

A

A

w

N

\%
I
H- 500

=

w

N

152

Appendix A: Small Grammar to Illustrate SOUP’s Heuristics 153

/] ==
e H--=-=Iz=—-
<211> = j | 211 ;
<212> = k | 212 ;
<213> = 1 | 213 ;
e
<221> = m | 221 ;
<222> = n | 222 ;
<223> = o | 223 ;
/] =mmmmmm e
<231> = p | 231;
<232> = q | 232;
<233> = r | 233;
[/ mmmmm e
-
<311> = s | 311 ;
<312> = t | 312 ;
<313> = u | 313 ;
<321> = v | 321 ;
<322> = w | 322 ;
<323> = x | 323 ;
<331> = y | 331;
<332> = z | 332 ;
<333> = - | 333;

Appendix B

154

Appendix B: Syntactic Grammars

Syntactic Grammar

B.1 Part Of Speech Tag Set

ANA
PRPA
NEG
AFF
cccC
AUX-N
Ccv
AUX
cC
CD
DT
PDT
DT-AUX
EX
EX-AUX
Fw
JJ
JJR
JJs
NN
NNS
NNP
NNPS
PREP
PRP
PRP$
RB
RBR
RBS
RP
TO
UH
VB
VBD
VBG
VBN
VBP
VBZ
WDT
WP
WRB

Anaphoric element, e.g. I can understand that/ANA.
Personal pronoun in accusative case.
Negation particle.

Affirmative particle.

Constituent conjunction (cf. CC).

Negated AUX, e.g. isn’t.

Conversational words, e.g. hi, bye-bye.
Auxiliary verb, e.g. might, can.

Clause conjunction (cf. CCC).

Cardinal number.

Determiner.

Plural determiner, e.g. all.
Determiner-auxiliary, e.g. that’s

Expletive, e.g. there, here.
Expletive-auxiliary, e.g. there’s, here’s.
Foreign word.

Adjective.

Comparative adjective.

Superlative adjective.

Noun.

Plural noun.

Proper noun.

Plural proper noun.

Preposition.

Personal pronoun.

Possessive personal pronoun.

Adverb (modifier), e.g. always, just, kind_of.
Adverb (complementizer).

Adverb (superlative).

Verbal particle, e.g. set ... up/RP, walked ... out/RP.
to 4 infinitive.

Filled pause, e.g. uh-huh.

Verb (infinitive).

Verb (past).

Verb (gerund).

Verb (past participle).

Verb (present).

Verb (inflected 3rd-person, singular, present).
Relative pronoun.

Adjectival wh-particle, e.g. what company is ...

Oblique argument wh-particle, e.g. where, how, when.

155

Appendix B: Syntactic Grammars

B.2 Top-level Categories of Syntactic Grammar

NP Noun phrase.

ADV Adverbial phrase.

PP Prepositional phrase.
VB Verb.

VBNEG Negated verb.

VPART Verbal particle.

BABB Babble.

EXPL Expletive.

CONJ Conjunction.

WH wh-word.

WHNP wh-word 4+ noun phrase.
PRDADJ Predicate adjective.
TOINF to + infinitive.

NEG Negative particle.
AFF Affirmative particle.
AUX Auxiliary.

AUXNEG Negated auxiliary.

B.3 Syntactic Grammar

#JSGF V1.0 IS08859-1 en;

"Syntactic chunk grammar for English"

* __
: QtaskDescription "syntactic shallow parsing"

% @StringMap non -_—> ll+ll

* @stringMap "+d like " --> " would like "

* Q@stringMap "+s had " --> " has had "

* Q@stringMap "+s been " --> " has been "

* @stringMap " youtre " --> " you are "

* @stringMap " what+s " --> " what is "

* Q@stringMap " there+s " --> " there is "

* Q@stringMap " that+s " --> " that is "

* @stringMap " it+s " -=> " it is "

* @stringMap " i+m " -=>"1i am "

* Q@stringMap "+s " -=> " +s "

* Q@stringMap " can+t " --> " can not "

* @stringMap "n+t " --> " not "

* @stringMap " per cent " --> " percent "

¥ ———————————= ——e
* Qauthor Klaus_Zechner

X Q@author Marsal Gavalda .
*/

grammar SynEng;

public <np>
([pat]l [at | "prp$"]l [<JJI_MOD>] <n_head>+)

| (<pn_head>)

! ([pdt] ana)

3

public <pp>
(<p_head> [pdt] [dt | "prp$"] [<JJ_MOD>] <n_head>+)

| (<p_head> (<pn_head> | ([pdt] ana)))

156

Appendix B: Syntactic Grammars 157

3

public <vb> =
([aux] [<adv>] <VB>* <vb_head>)

b

public <vbneg> =
(¢ ([aux | <VB>] neg) | aux-n) [<adv>] <VB>* <vb_head>)

3

public <babb> =

(xx)
| (uh)

3

public <adv> =
(<RB>+)
! (prep rb)

3

public <expl> =
(ex [<VB> | aux])

| (ex-aux)
3

public <conj> =
(cce)

| ¢ cc)

| (wdt)

bl

public <wh> =
(wp)
| (wrb)

3

public <prdadj> =
(<JJ_MOD>)

bl

public <toinf> =
. (to <vb_head>)
public <neg> =

(neg)

bl

public <aff> =
. (aff)
public <vpart> =
. (rp)
public <whnp> =
(wp [<JJ_MOD>] <np>)

bl

public <aux> =

(aux+)

public <auxneg> =
(aux-n)

bl

[mm e
// non-top principal NTs

/] =

<n_head> =
(<NN>)

Appendix B: Syntactic Grammars

3

<vb_head> =
g <VB>)

<p_head> =
g prep)

<pn_head> =

(prp)
| (prpa)

// auxiliary NTs

e

<NN> =
(nn)
| (nns)
| (nnp)
| (nnps)
<YB> =
vbz)
vbp)
vbd)
vbg)
vbn)
vb)

NN AN A

|
|
|
|
!
3

rb)

<R%> =
(rbr)
(

rbs)

I

I

<JJ_MOD> =
([cd] <adv>* <JJ_ONLY>+)

A we

JJ> =
<JJ_ONLY>)
l|prp$ 11)
rb)

rbr)

rbs)

AN AAG

<JJ_ONLY> =
Cij

[C j3js)

[¢ jjr)

| C cd)

158

C.1

Appendix C

Semantic Grammars

GsG’s Metagrammar

#JSGF V1.0 IS08859-1 en;

"Growing Semantic Grammars’s Metagrammar"

Q@exampleSentence "help"
¥ —om——m——e———o ——e
% @StrlngMap non __> ll+ll
* Q@stringMap "+d like " --> " would like "
* @stringMap "+s had " --> " has had "
* Q@stringMap "+s been " --> " has been "
* Q@stringMap " youtre " --> " you are "
* @stringMap " what+s " --> " what is "
* @stringMap " there+s " --> " there is "
* Q@stringMap " that+s " --> " that is "
* Q@stringMap " it+s " --> " it is "
* @stringMap " i+m " -=>"1i am "
* @stringMap "+s " -=> " +s "
* Q@stringMap " can+t " --> " can not "
* Q@stringMap "n+t " --> " not "
* @stringMap " per cent " --> " percent "

* ¥ ¥
®
)
c
ot
=g
0
H

Marsal Gavalda

public <top> =
<means>)
<isa>)
<ignore>)

<help>)
<yes>)
<no>)
<cancel>)
<greeting>)
<farewell>)

<thank>)
<thankBack>)

<summarize>)

N AN AN A AN A

|
|
|
|
|
|
|
|
|
|
!
/
/

/ Special GSG operators

159

Appendix C: Semantic Grammars 160

/] =

<means> =

means)

means the same as)
means like)

is the same as)

is like)

is shorthand for)

is short for)

stands for)

has the same meaning as)
has the same meaning like)
refers to)

i mean)

i am referring to)

FNANAN AN ANANANANANANANANA

<isa> =

is a)

is an)

isa)

is-a)

is an example of)

is a kind of)

is a form of)

is a way of)
is a way to express)
is a way of expressing)

NN AAA AAAAAN

<ignore> =
("<s>" (ignore | skip | forget [about] | never mind) [it | this | that] "</s>")
| ("<s>" (it | this | that) is not (relevant | important) "</s>")

/
<help> =
("<s>" help "</s>")
[("<s>" help me [out] [here] "</s>")
| (i <_NEED> [some] help [herel)
| (i am not <_SURE> i [really] <_UNDERSTAND>)
¢
I

what do you (understand | know [about]))
what can i (say | do))

<yes> =
(ngg>" yes "</S>")
| ¢ "<s>" affirmative "</s>")
[("<s>" positive "</s>")
| ("gs>" ok “</S>")
| ("ga>" o0 k ll</s>ll)
| ("<s>" sounds <_GOOD> "</s>")
| ("<s>" [that is] <_RIGHT> "</s>")
<no> =
(ll<S>ll no lI</S>lI)
| ("<s>" negative "</s>")
| ("<s>" none of the above)
| ("<s>" all [<_CHOICES>] <_BAD>)
| ¢ "<s>" [(this | that) is] <_BAD>)
| ("<s>" i do not <_THINK> so)
<cancel> =

("<s>" (cancel | abort) "</s>")
| ((that | this) is not what i
(mean | meant | ((wanted | intended) [to say]l))

.)

<greeting> =
(hello)
| (how are you [todayl)

Appendix C: Semantic Grammars

how is it going)
how are you doing)
hi)

hullo)

what is up)
whassup)

AN ANANAN AN A

bl

<farewell>_ =

[good] bye+ [now])

[may] god be with (ye | you))
farewell)

fare [you] well)

so long)

see (you | ya) [later])
[i will be] seeing you)
adieu)

neg>" quit)

"<s>" exit)

ll<S>ll die)

ANANANAN AN AN AN AN AN

bl

<thank> =
(thank you)
| (thanks)
| (thank you [so] very* much)
| (many thanks)

<thankBack> =
you are [always] welcome)

| (you are more than welcome)
| (my pleasure)

| (it was a pleasure)

| (

~~

no problem)

<summarize> =
("<s>" summarize)

("<s>" summary)

(show summary)

(make summary)

(create summary)

(display summary)

("<s>" [so] [in a] nutshell)
("<s>" sum up)

|
|
|
|
|
|
|
//
// Auxiliary
//
<_RIGHT> =
([alll right)
| (alright)
| (correct)

<_GOOD> =
(good)

| (great)

| (perfect)

| (wonderful)

<_B

(bad)

(wrong)

(incorrect)

(not <_RIGHT>)

([way] off)

(terrible)

(awful)

E nonsense)

(

nonsensical)

|
|
1
|
|
|
|
| rubbish)

161

Appendix C: Semantic Grammars

(bullshit)

|

<_THINK> =

(think)

(believe)

|
<_NEED> =

([can | could | would] [<_DEFINETELY>] (need | use))
<_DEFINETELY> =

(definetely)
(

(

surely)
positively)

|
|
<_SURE> =
([<_ENTIRELY>] (sure | positive))
<_ENTIRELY> =
(entirely)
| (hundred percent)
| (100 percent)
| ¢ at all)
| (really)
<_UNDERSTAND> =
(understand)
| ¢ follow)
| (get it)
<_CHOICES> =
(choices)
(suggestions)
(guesses)
(estimates)
(guestimates)

I
I
|
’

// =EQOF ——

162

Appendix C: Semantic Grammars 163

C.2 E-Mail Task Grammar

#JSGF V1.0 IS08859-1 en;

/%%

% ——=————————== —==
* QtaskName "E-Mail Manager"

* __
* QtaskDescription "where you can manage your e-mail through spoken commands!"
K e —————— e ————— -
* QexampleSentence "do i have any mail"

* QexampleSentence "please show me all messages about the meeting"

* QexampleSentence "reply to the last message from peter"

* QexampleSentence "sort emails by sender"

* QexampleSentence "retrieve all messages from bob that were sent after christmas"
* QexampleSentence "by christmas i’m referring to december twenty fifth"

* QexampleSentence '"please retrieve emails to mary before christmas"

% —————m—————o— —==
% @StringMap non -_—> ll+ll

* @stringMap "+d like " --> " would like "

* Q@stringMap "+s had " --> " has had "

* Q@stringMap "+s been " --> " has been "

* @stringMap " youtre " --> " you are "

* @stringMap " what+s " --> " what is "

* Q@stringMap " there+s " --> " there is "

* Q@stringMap " that+s " --> " that is "

* @stringMap " it+s " -=> " it is "

* @stringMap " i+m " -=>"1i am "

* Q@stringMap "+s " -=> " +s "

* Q@stringMap " can+t " --> " can not "

* @stringMap "n+t " --> " not "

Marsal Gavalda

* ¥ ¥
®
)
c
ot
=g
S
H

*/

//
// The Wilcard rule

/] =============
<_WILDCARD> =

(u_any_n)

// =============
// Top-level

//

public <countMail> =
([<_VERB_DESIRE>] <_COUNT> [<_TO_FOR_ME>] <_MAIL_ARGUMENT>x*)
| ¢ [<_VERB_DESIRE>] [<_KNOW>] <_HOW_MANY> <_MAIL_ARGUMENT>x)
public <listMail> =
([<_VERB_DESIRE>] (<_LIST>

[<_TO_FOR_ME>] | <_ASK_TO_CHECK>) <_MAIL_ARGUMENT>*)

public <readMail> =

([<_VERB_DESIRE>] <_READ> <_MATIL_ARGUMENT>*)
public <composeMail> =

([<_VERB_DESIRE>] <_COMPOSE> <_MAIL_ARGUMENT>*)

public <sendMail> =
([<_VERB_DESIRE>] <_SEND> <_MAIL_ARGUMENT>*)

bl

public <forwardMail> =
([<_VERB_DESIRE>] <_FORWARD> <_MAIL_ARGUMENT>x*)

public <replyMail> =
([<_VERB_DESIRE>] <_REPLY> [<_TO_FOR_ME>] <_MAIL_ARGUMENT>*)

bl

public <deleteMail> =
([<_VERB_DESIRE>] <_DELETE> <_MAIL_ARGUMENT>*)

3

public <sortMail> =

Appendix C: Semantic Grammars 164

(E E_VERB_DESIRE>] <_SORT> <_MAIL_ARGUMENT>x*
<
)

_SORT_MODE>] [<_SORT_BY>] | (<_SORT_BY> <_SORT_MODE>))

//
<_VERB_DESIRE> =
(<_I> <_WANT> to)
| (please)
<_MAIL_ARGUMENT> =
([<_ARTICLE>] <_MAIL> [<_I_HAVE> | <_TO_FOR_ME>])
(<_RECIPIENT>)
(<mailUnread>)
(<_SENDER>)
(<_SUBJECT>)
(<_DATE>)
(<_MESSAGE_IDX>)
(<_RELATIVE> [<_MAIL_VERB_PAST>])
(<_MAIL_VERB_PAST>)

RTICLE> =

_MAIL_VERB_PAST> =
(sent)
(received)

_HOW_MANY> =
how many)

e NA ee—

<_KNOW> =
(know)
| (find out)
<_COUNT> =
(count)
| (add up)

<_ASK_TO_CHECK> =
(do i have)
(is there [any | anything])
(there is [any | anything])

|

|

<_LIST> =
(list)

(get)

(search [forl)

|
I
<_TO_FOR_ME> =
([for | tol me)
<_I_HAVE> =

(i (have | got))
| (i [have] received)

<_READ> =
(read)
| (print)
| (tell [me about])

<_DELETE> =
(delete)

<_SORT> =

Appendix C: Semantic Grammars 165

(sort)
<_SORT_BY> =
(<_BY> [the] <_SORT_BY_> [of [the] <_MAIL>]) // _BY is required
<_SORT_BY_> =
(<sortBy__date>
| <sortBy__subject>
| <sortBy__sender>
| <sortBy__recipient>
| <sortBy__size>
)
<_BY> =
(by)

| (according [tol)
| (following)
<sortBy__date> =
(date)
| (time)
| (the order in which <_MAIL> was recieved)
<sortBy__subject> =
(subject)
| (thread)

bl

<sortBy__sender> =
(sender)

| (origin)

| (source)

3

<sortBy__recipient> =
(recipient)

| (recipients)

| (addressee)

| (addressees)

3

<sortBy__size> =
. (size)
<_SORT_MODE> =
([in] (<sortMode__ascending> | <sortMode__descending>) [model)
<sortMode__ascending> =
(ascending)
| (increasing)
<sortMode__descending> =
(descending)
| (decreasing)
<mailUnread> =
(new)
| (unread)
<_SUBJECT> =
(<_SUBJECT_PRE> [<_ARTICLE>] <subject__STRING>)

<_SUBJECT_PRE> =

(on)

(about)

(regarding)

(dealing with)

(<_THAT_WHICH> (deals | deal) with)
(with regards to)

(

|
|
|
|
|
| on the <_SUBJECT_WORD> of)

Appendix C: Semantic Grammars 166

| ¢ [with] subject [keyword | keywords])
<subject__STRING> =

("<subject>")
| (<_WILDCARD>+)
<_SUBJECT_WORD> =

(subject)
| (matter)
| (issue)
| (problem)
<_DATE> =

(<dateRange>)
| ([<_DATE_POINT_PRE>] <datePoint>)

3

<dateRange> =
(<_DATE_START_PRE> <dateStart>)
(<dateStart> <_DATE_START_POST>)

I

| (<_DATE_END_PRE> <dateEnd>)
| (<dateEnd> <_DATE_END_POST>)
I

(<_DATE_RANGE_PRE> <dateStart> <_DATE_RANGE_IN> <dateEnd>)

<dateStart> =
. (<datePoint>)
<dateEnd> =
(<datePoint>)
<datePoint> =
. (<_DATE_POINT_ARGUMENT>+)
<_DATE_RANGE_PRE> =
(between)
(within)
(from)
(<_DATE_START_PRE>)

<_DATE_RANGE_IN> =
(and)
(t
(

o)
<_DATE_END_PRE>)
<_DATE_START_PRE> =
(after)
| (past)
| (¢ since)
| ((starting | beginning) [at | from])
| (no earlier than)
| (not (before | prior to | preceding))
<_DATE_START_POST> =
(or (later | after that | thereafter))
| (old)
| (ago)
<_DATE_END_PRE> =
(before)
| ¢ until)
| ¢ till)
| (prior to)
| (older than)
| (no later than)
| (preceding)
<_DATE_END_POST> =
(or (earlier | before that))

bl

Appendix C: Semantic Grammars

<_DATE_POINT_PRE> =
(on)
| C at)
// e.g. "list messages from march" means march only,
// cf. "list messages from march to april" --> <dateRange>
| (from)

’

<_DATE_POINT_ARGUMENT> =
(<_DATE_RELATIVE>)
| (<_DATE_FIXED>)
| (<_DAY_OF_WEEK>)
| (<_MONTH> <_DAY_OF_MONTH>) // july first
| ¢ [<_DAY_OF_MONTH>] <_MONTH>) // first of july
| ([on] [the]l <_DAY_OF_MONTH>) // on the first
| (<_HOUR>)
| (<_TIME_QF_DAY>)
| (<_YEAR>)
| (<_DATE_POINT_MODIFIER>)
<_DATE_FIXED> =
(<dateFixed__jan01>)
| (<dateFixed__jul04>)
<dateFixed__jan01> =
(new year)
| (new years day)
| (new year "+s" day)
<dateFixed__jul04> =
(independence day)
| (fourth of july)
<_DATE_RELATIVE> =
<dateRelative__today>)
<dateRelative__tomorrow>)
<dateRelative__yesterday>)

D
(
| (
[(
| (<dateRelative__week>)
| (<dateRelative__month>)
| (<dateRelative__year>)
| (<dateRelative__century>)
| (<dateRelative__millennium>)
<dateRelative__today> =
(today)

<dateRelative__tomorrow> =
(tomorrow)
<dateRelative__yesterday> =
(yesterday)
<dateRelative__week> =

(week)
| (weeks)

3

<dateRelative__month> =
(month)
| (months)

3

<dateRelative__year> =
(year)

| (years)

3

<dateRelative__century> =
(century)

| (centuries)
3

167

Appendix C: Semantic Grammars

<dateRelative__millennium> =
(millennium)
(millennia)

|
<_DATE_POINT_MODIFIER> =
(<datePointModifier__this>)
| (<datePointModifier__next>)
| (<datePointModifier__previous>)

<datePointModifier__this> =
(this)

<datePointModifier__next>
(next)
<datePointModifier__previous> =
(previous)
| (last)
<_DAY_OF_WEEK> =
(<dayOfWeek__0>)
| (<dayOfWeek__1>)
| (<dayOfWeek__2>)
| (<dayOfWeek__3>)
| (<dayOfWeek__4>)
| (<dayOfWeek__5>)
| (<dayOfWeek__6>)
<_MONTH> =
([<_MONTH_PRE>] <_MONTH_VAL>)
<_MONTH_PRE>
(on)
<_MONTH_VAL> =
<month__1>)
<month__2>)
<month__3>)
<month__4>)
<month__5>)
<month__6>)
<month__7>)
<month__8>)
<month__9>)
<month__10>)
<month__11>)
<month__12>)

INANANANANANANANANANANAN

A we—

_?AY_OF_MONTH> =

[[on] the] <dayOfMonth__INTEGER> [of])

<dayOfMonth__INTEGER> =

(<_CARDINAL_NUMBER_1_31>)
| (<_ORDINAL_NUMBER_0_99>)

<_HOUR> =
([at] <hour__INTEGER> <_HOUR_POST>*)
<hour__INTEGER> =

(<_CARDINAL_NUMBER_0_24>)

<_HOUR_POST> =
(hour)
| (¢ hours)
| ([and] <_MINUTE>)

<_MINUTE> =
(<minute__INTEGER> [minute | minutes])

3

168

Appendix C: Semantic Grammars 169

<minute__INTEGER> =
. (<_CARDINAL_NUMBER_0_60>)
<_YEAR> =
([on] <year__INTEGER> [year | anno domini])
<year__INTEGER> =
(<_CARDINAL_NUMBER_0_99999>)

<_TIME_OF_DAY> =
. C[at | in thel <_TIME_OF_DAY_VAL>)
<_TIME_OF_DAY_VAL> =
(<timeOfDay__am>)
| (<timeOfDay__pm>)
| (<timeQfDay__STRING>)
<timeOfDay__am> =
(am)
| (ante meridiem)
| (morning)
<timeOfDay__pm> =
(pm
| (post meridiem)
| (afternoon)

bl

<time0fDay__STRING> =
(noon)
| (midnight)
| (evening)
| (night)
<_MESSAGE_IDX> =
(<messageIndex__all>)
| (<messagelndex__1>)
| ([number] <messageIndex__INTEGER>)
| ([the]l <messageIndex__INTEGER_ORDINAL> <_MAIL>)
// e.g. "the last two"
| ¢ [the]l <messagelndex__last> [<messageIndex__INTEGER>])

<messagelndex__all> =
(all)

[(any)

| (anything)

| (everything)

<messageIndex__1> =
(top)

(initial)

(first)
<messagelndex__last> =
(last)

(latest)

(most recent)

(newest)

(bottom)

(final)

bl

<messageIndex__INTEGER> =
(<_CARDINAL_NUMBER_0_99999>)
| (<_CARDINAL_NUMBER_O_9>+)
<messageIndex__INTEGER_ORDINAL> =
(<_ORDINAL_NUMBER_0_99999>)

bl

Appendix C: Semantic Grammars

(
(desire)
(would like)

_COMPOSE> =
(compose)
| (write)
<_SEND> =
((send | ship) [itl)

("<s>" (mail | email | e-mail | e mail) it)

!
<_FORWARD> =
(forward)
| (pass [on | along]l)

<_REPLY> =

(reply [tol)
| (answer)
<

AIL> =
message)
messages)

_M
(
(
(
(email)
(emails)
(e-mail)
E e-mails)
(letter)
(letters)
(memo)
(memos)
(note)
(notes)

3
<_SENDER> =

((from | sent by) <sender>)

(<sender> "+s'" <_MAIL>)

!
<RECIPIENT> =

[electronic] (mail | mails))

(piece | pieces) of (mail | email | e-mail))

([addressed | sent] to) <recipient>)

<_RELATIVE> =

<_THAT_WHICH> (was | were |

((has

(
| ("+s") // as in "today+s message"

<_THAT_WHICH> =
(that)
| (which)

3

<sender> =
(<name__STRING>)
! (<emailAddress__STRING>)
<recipient> =
(<name__STRING>)
! (<emailAddress__STRING>)

3

<name__STRING> =

(<_PERSON_OR_INSTITUTION_NAME>)

| (<_MAILING_LIST_NAME>)

3

<_PERSON_OR_INSTITUTION_NAME>
("<personName>")

| have) been)))

170

Appendix C: Semantic Grammars 171

lucy | donald | joseph | spamela | cynthia)
<_WILDCARD>)

~

I
!
<_MAILING_LIST_NAME> =

(the <_WILDCARD>+ [mailing] list)
<emailAddress__STRING> =
. (<_EMAIL_ADDRESS_PART>+ <STRING__d064> <_EMAIL_ADDRESS_PART>+)
<_EMAIL_ADDRESS_PART> =
. (<emailAddressPart__STRING>)
<emailAddressPart__STRING> =

(<_CHARACTER>)
| (<_WILDCARD>)

3

[/ ============= ===

// Time expressions

1/ ===

//
<day0fWeek__0> =
(sunday)
<dayOfWeek__1> =
(monday)
<dayOfWeek__2> =
(tuesday)
<day0fWeek__3> =
(wednesday)
<dayOfWeek__4> =
(thursday)
<day0fWeek__5> =
(friday)
<day0fWeek__6> =
(saturday)

’

[/ mmmm
// Months

/

<month__1> =
(january)

<month__2> =
(february)

<month__3> =
(march)

<month__4> =
(april)

<month__5b> =
(may)

<month__6> =
(june)

<month__7> =

Appendix C: Semantic Grammars

3

(july)

<month__8> =

bl

(august)

<month__9> =

3

(september)

<month__10> =

bl

(october)

<month__11> =

bl

(november)

<month__12> =

//

//
//
<

I
3
<

|

3

<_
|

|

3

<_
3
<
|
|
|
|
|
|
|
1
3

//

<_

3

//

<_

(december)

Cardinal Numbers

CARDINAL_NUMBER_0_99999> =

(<_CARDINAL_NUMBER_THOUSANDS> [<_CARDINAL_NUMBER_HUNDREDS>]
) [<_CARDINAL_NUMBER_TENS>] [<_CARDINAL_NUMBER_UNITS>]

(

<_CARDINAL_NUMBER_0_999>)

CARDINAL_NUMBER_0_999> =

(<_CARDINAL_NUMBER_HUNDREDS> [<_CARDINAL_NUMBER_TENS>]
, [<_CARDINAL_NUMBER_UNITS>]

(

<_CARDINAL_NUMBER_0_99>)

CARDINAL_NUMBER_0_99> =
(<_CARDINAL_NUMBER_TENS> [<_CARDINAL_NUMBER_UNITS>])
(<_CARDINAL_NUMBER_11_19>)

(<_CARDINAL_NUMBER_0_9>)

CARDINAL_NUMBER_0_9> =
(<_CARDINAL_NUMBER_UNITS>)

_CARDINAL_NUMBER_11_19> =

(<INTEGER_CARDINAL__11>)
(<INTEGER_CARDINAL__12>)
(<INTEGER_CARDINAL__13>)
(<INTEGER_CARDINAL__14>)
(<INTEGER_CARDINAL__15>)
(<INTEGER_CARDINAL__16>)
(<INTEGER_CARDINAL__17>)
(<INTEGER_CARDINAL__18>)
(<INTEGER_CARDINAL__19>)

For day of month

CARDINAL_NUMBER_1_31> =

(<INTEGER_CARDINAL__1>)

(<INTEGER_CARDINAL__2>)

(<INTEGER_CARDINAL__3>)

(<INTEGER_CARDINAL__4>)

(<INTEGER_CARDINAL__5>)

(<INTEGER_CARDINAL__6>)

(<INTEGER_CARDINAL__7>)

(<INTEGER_CARDINAL__8>)

(<INTEGER_CARDINAL__9>)

(<_CARDINAL_NUMBER_11_19>)

(<INTEGER_CARDINAL__20> [<_CARDINAL_NUMBER_UNITS>])
(<INTEGER_CARDINAL__30> [<INTEGER_CARDINAL__1>])

For hour

CARDINAL_NUMBER_0_24> =

(<_CARDINAL_NUMBER_0_9>)

(<_CARDINAL_NUMBER_11_19>)

(<INTEGER_CARDINAL__20> [<INTEGER_CARDINAL__1>])

172

Appendix C: Semantic Grammars

(<INTEGER_CARDINAL__20> <INTEGER_CARDINAL__2>)
(<INTEGER_CARDINAL__20> <INTEGER_CARDINAL__3>)
(<INTEGER_CARDINAL__20> <INTEGER_CARDINAL__4>)

|
|
|
|
|
|
|
|
!
3
<

|
|
|
|
|
|
|
1
3
<

For minute

ARDINAL_NUMBER_O_60> =
<_CARDINAL_NUMBER_0_9>)
<INTEGER_CARDINAL__10>)

<_CARDINAL_NUMBER_11_19>)

<INTEGER_CARDINAL__30> [<_CARDINAL_NUMBER_UNITS>])
<_CARDINAL_NUMBER_UNITS>])
<_CARDINAL_NUMBER_UNITS>])

<INTEGER_CARDINAL__40>
<INTEGER_CARDINAL__50>
<INTEGER_CARDINAL__60>)

C

(

E

E <INTEGER_CARDINAL__20> [<_CARDINAL_NUMBER_UNITS>])
(

(

(

CARDINAL_NUMBER_UNITS> =
(<INTEGER_CARDINAL__0>)
(<INTEGER_CARDINAL__1>)
(<INTEGER_CARDINAL__2>)
(<INTEGER_CARDINAL__3>)
(<INTEGER_CARDINAL__4>)
(<INTEGER_CARDINAL__5>)
(<INTEGER_CARDINAL__6>)
(<INTEGER_CARDINAL__7>)
(<INTEGER_CARDINAL__8>)
(<INTEGER_CARDINAL__9>)

CARDINAL_NUMBER_TENS> =
(<INTEGER_CARDINAL__10>)
(<INTEGER_CARDINAL__20>)
(<INTEGER_CARDINAL__30>)
(<INTEGER_CARDINAL__40>)
(<INTEGER_CARDINAL__50>)
(<INTEGER_CARDINAL__60>)
(<INTEGER_CARDINAL__70>)
(<INTEGER_CARDINAL__80>)
(<INTEGER_CARDINAL__90>)

ARDINAL_NUMBER_HUNDREDS>

|
H
<

|

<INTEGER_CARDINAL__0O>
(0

| (zero)

<INTEGER_CARDINAL__1>
(1D

| (one)

<INTEGER_CARDINAL__2>
(2

| (two)

<INTEGER_CARDINAL__3>
(3)

| (three)

3

<INTEGER_CARDINAL__4>
(4
| (four)

3

<INTEGER_CARDINAL__5>
(5)
| (five)

bl

<I¥TE§ER_CARDINAL__6>
6

_C
(<INTEGER_CARDINAL__100>)
(<_CARDINAL_NUMBER_0_99> <INTEGER_CARDINAL__100>)

_CARDINAL_NUMBER_THOUSANDS> =
(<INTEGER_CARDINAL__1000>)
(<_CARDINAL_NUMBER_0_999> <INTEGER_CARDINAL__1000>)

173

Appendix C: Semantic Grammars 174

| (six)

bl

<I¥TE§ER_CARDINAL__7>
7

| (seven)

bl

<INTEGER_CARDINAL__8>
8

| (eight)

bl

<I¥TE?ER_CARDINAL__9>
9

| (nine)

<INTEGER_CARDINAL__10> =
(10)

| (ten)

<INTEGER_CARDINAL__11> =
(11

| (eleven)

<INTEGER_CARDINAL__12> =
(12)

| (twelve)

<INTEGER_CARDINAL__13> =
(13)

| (thirteen)

<INTEGER_CARDINAL__14> =
(148

| (fourteen)

<INTEGER_CARDINAL__15> =
(18)

! (fifteen)

bl

<INTEGER_CARDINAL__16> =
16

| (sixteen)
3

<INTEGER_CARDINAL__17> =
17

| (seventeen)

bl

<INTEGER_CARDINAL__18> =

| (eighteen)

bl

<INTEGER_CARDINAL__19> =

| (nineteen)

bl

<INTEGER_CARDINAL__20> =

| (twenty)

bl

<INTEGER_CARDINAL__30> =
30
| (thirty)

bl

<INTEGER_CARDINAL__40> =
40
| (forty)

bl

<INTEGER_CARDINAL__50> =
| (fifty)

bl

Appendix C: Semantic Grammars

<I
!

bl

<I
!

bl

<I
!

bl

<I
!

bl

<I
!

3

<I

NN

I
3
<

I
3
<

|
|
!
3
<

NNNNNNNNN ve—,———— — ——
NN

~
~

<_

NTEGER_CARDINAL__60>
(60)
(sixty)

NTEGER_CARDINAL__70>
(70
(seventy)

NTEGER_CARDINAL__80>
(80)
(eighty)

NTEGER_CARDINAL__90>
¢ 90)
(ninety)

NTEGER_CARDINAL__100> =
(100)
(hundred)

NTEGER_CARDINAL__1000>
(1000)
(thousand)

RDINAL_NUMBER_0_99999> =

<_ORDINAL_NUMBER_THOUSANDS>)
<_CARDINAL_NUMBER_THOUSANDS> <_CARDINAL_NUMBER_HUNDREDS>
<_ORDINAL_NUMBER_TENS> [<_ORDINAL_NUMBER_UNITS>]

<_CARDINAL_NUMBER_THOUSANDS> <_CARDINAL_NUMBER_HUNDREDS>
[<_ORDINAL_NUMBER_TENS>] <_ORDINAL_NUMBER_UNITS>

<_ORDINAL_NUMBER_0_999>)

ORDINAL_NUMBER_0_999> =

(<_ORDINAL_NUMBER_HUNDREDS>)

(<_CARDINAL_NUMBER_HUNDREDS> <_CARDINAL_NUMBER_TENS>
) <_ORDINAL_NUMBER_UNITS>

(

<_ORDINAL_NUMBER_0_99>)

ORDINAL_NUMBER_0_99> =
(<_ORDINAL_NUMBER_TENS>)
(<_CARDINAL_NUMBER_TENS> <_ORDINAL_NUMBER_UNITS>)
(<_ORDINAL_NUMBER_11_19>)
(<_ORDINAL_NUMBER_UNITS>)

ORDINAL_NUMBER_11_19> =
(<INTEGER_ORDINAL__11>)
(<INTEGER_ORDINAL__12>)
(<INTEGER_ORDINAL__13>)
(<INTEGER_ORDINAL__14>)
(<INTEGER_ORDINAL__15>)
(<INTEGER_ORDINAL__16>)
(<INTEGER_ORDINAL__17>)
(<INTEGER_ORDINAL__18>)
(<INTEGER_ORDINAL__19>)

A

ORDINAL_NUMBER_1_31> =
(<_ORDINAL_NUMBER_UNITS>)
<INTEGER_ORDINAL__10>)
<_ORDINAL_NUMBER_11_19>)
<INTEGER_ORDINAL__20>)
<INTEGER_CARDINAL__20> <_ORDINAL_NUMBER_UNITS>)
<INTEGER_ORDINAL__30>)
<INTEGER_CARDINAL__30> <INTEGER_ORDINAL_

b

AAAAAA

1>)

ORDINAL_NUMBER_UNITS> =

175

Appendix C: Semantic Grammars 176

<INTEGER_ORDINAL__1>)
<INTEGER_ORDINAL__2>)
<INTEGER_ORDINAL__3>)
<INTEGER_ORDINAL__4>)
<INTEGER_ORDINAL__5>)
<INTEGER_ORDINAL__6>)
<INTEGER_ORDINAL__7>)
<INTEGER_ORDINAL__8>)
<INTEGER_ORDINAL__9>)

INANANANANANANANA

_ORDINAL_NUMBER_TENS> =
(<INTEGER_ORDINAL__10>)
| (<INTEGER_ORDINAL__20>)
| (<INTEGER_ORDINAL__30>)
| (<INTEGER_ORDINAL__40>)
| (<INTEGER_ORDINAL__50>)
| (<INTEGER_ORDINAL__60>)
| (<INTEGER_ORDINAL__70>)
| (<INTEGER_ORDINAL__80>)
| (<INTEGER_ORDINAL__90>)
<_ORDINAL_NUMBER_HUNDREDS> =
(<INTEGER_ORDINAL__100>)
(<_CARDINAL_NUMBER_O_99> <INTEGER_ORDINAL__100>)

I
3
<

|

<INTEGER_ORDINAL__1>
(1st)

| (first)

<INTEGER_ORDINAL__2> =
(2nd)

| (second)

<INTEGER_ORDINAL__3> =
(3rd)

| (third)

<INTEGER_ORDINAL__4> =
(4th)

| (fourth)

<INTEGER_ORDINAL__5b> =
(5th)

| (fifth)

<INTEGER_ORDINAL__6> =
(6th)

| (sixth)

<INTEGER_ORDINAL__7> =
(7th)

| (seventh)

<INTEGER_ORDINAL__8> =
(8th)

| (eighth)

<INTEGER_ORDINAL__9> =
(9th)

| (ninth)

<INTEGER_ORDINAL__10>
(10th)

| (tenth)

<INTEGER_ORDINAL__11>
(11th)

| (eleventh)

_ORDINAL_NUMBER_THOUSANDS> =
(<INTEGER_ORDINAL__1000>)
(<_CARDINAL_NUMBER_0_999> <INTEGER_ORDINAL__1000>)

Appendix C: Semantic Grammars 177

<INTEGER_ORDINAL__12> =
(12th)

| (twelfth)

<INTEGER_ORDINAL__13> =
(13th)

| (thirteenth)

<INTEGER_ORDINAL__14> =
(14th)

| (fourteenth)

<INTEGER_ORDINAL__15> =
(15th)

| (fifteenth)

<INTEGER_ORDINAL__16> =
(16th)

| (sixteenth)

<INTEGER_ORDINAL__17> =
(17th)

| (seventeenth)

<INTEGER_ORDINAL__18> =
(18th)

| (eighteenth)

<INTEGER_ORDINAL__19> =
(19th)

| (nineteenth)

<INTEGER_ORDINAL__20> =
(20th)

| (twentieth)

<INTEGER_ORDINAL__30> =
(30th)

| (thirtieth)

<INTEGER_ORDINAL__40> =
(40th)

| (fortieth)

<INTEGER_ORDINAL__50> =
(50th)

| (fiftieth)

<INTEGER_ORDINAL__60> =
(60th)

| (sixtieth)

<INTEGER_ORDINAL__70> =
(70th)

| (seventieth)

<INTEGER_ORDINAL__80> =
(80th)

| (eightieth)

<INTEGER_ORDINAL__90> =
(90th)

| (ninetieth)

<INTEGER_ORDINAL__100> =
(100th)

| (hundredth)

<INTEGER_ORDINAL__1000> =
(1000th)

Appendix C: Semantic Grammars 178

(thousandth)

I
[mm e e e
;; Characters
<_CHARACTER> =
<STRING__d097>)
<STRING__d098>)
<STRING__d099>)
<STRING__d100>)
<STRING__d101>)
<STRING__d102>)
<STRING__d103>)
<STRING__d104>)
<STRING__d105>)
<STRING__d106>)
<STRING__d107>)
<STRING__d108>)
<STRING__d109>)
<STRING__d110>)
<STRING__d111>)
<STRING__d112>)
<STRING__d113>)
<STRING__d114>)
<STRING__d115>)

_C
(
| (
| €
| €
| €
| €
| €
(
(
(
(
(
(
(
(
(
(
E
E <STRING__d116>)
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

I
I
I
| (<STRING__d117>)
<STRING__d118>)
<STRING__d119>)
<STRING__d120>)

<STRING__d121>)
<STRING__d122>)

<STRING__d064>)
<STRING__d046>)
<STRING__d045>)
<STRING__d095>)

<STRING__d048>)
<STRING__d049>)
<STRING__d050>)
<STRING__d051>)
<STRING__d052>)
<STRING__d053>)
<STRING__d054>)
<STRING__d055>)
<STRING__d056>)
<STRING__d057>)

<_DIGIT> =
(<STRING__d048>)
(<STRING__d049>)
(<STRING__d050>)
(<STRING__d051>)
(<STRING__d052>)
(<STRING__d053>)
(<STRING__d054>)
(<STRING__d055>)
(<STRING__d056>)
(<STRING__dO57>)

|
|
!
3

<STRING__d097>

o (a)

<STRING__d098>
(b

<STRING__d099>
(o

bl

<STRING__d100>
d

3

Appendix C: Semantic Grammars 179

<STRING__d101> =
(e

<STRING__d102> =
D)

<STRING__d103> =
(g

bl

<STRING__d104> =
(h)

bl

<STRING__d105> =
)
<STRING__d106> =
)

<STRING__di107> =
)

<STRING__d108> =
(D
<STRING__d109> =

(m
<STRING__d110> =

(n)
<STRING__di111> =
(o)

<STRING__di112> =

(p)
<STRING__d113> =
.(q)
<STRING__d114> =

()
<STRING__d115> =

(s)
<STRING__d116> =
BEGR)

<STRING__di117> =
o ()
<STRING__di118> =

(v
<STRING__di119> =

(w
<STRING__di120> =
(%)

<STRING__di121> =
Cy)

<STRING__di122> =
(2)

<STRING__d064> =
(ll@ll)

| C at)

bl

Appendix C: Semantic Grammars 180

<STRING__do046>

| (dot)

| (period)

<STRING__d045>
l|_l|)

(dash)

(hyphen)

(minus)

bl

<SERINGj_d095> =

| (under score)

| (underscore)

<STRING__d048>
(0

| (zero)

<STRING__d049> =
(1D

| (one)

<STRING__d0b0> =
(2

| C two)

<STRING__dO0b1> =
(3)

| (three)

<STRING__d052> =
(4

| (four)

<STRING__d0b3> =
(5)

| (five)

<STRING__d0b4> =
(6)

| (six)

<STRING__dO055> =
(n

| (seven)

<STRING__d056> =
(8)

| (eight)

<STRING__dO057> =
(9

| (nine)

Appendix C: Semantic Grammars

C.3 Musicbox Grammars

C.3.1 Generic Grammar
#JSGF V1.0 IS08859-1 en;

grammar generic;
public <reset> =

([please] (reset | abort) [please]);

181

Appendix C: Semantic Grammars

C.3.2 Musicbox Grammar
#JSGF V1.0 IS08859-1 en;

/%%

% —o——————————= ——e
} QtaskName MMusicbox™
: Q@taskDescription "where you can play and buy mp3s through spoken commands!"
* QexampleSentence "what do you have"

* QexampleSentence "play vaga luna"

* QexampleSentence "add point blank to shopping cart"

* QexampleSentence "wait means pause"

% —mm——m——————o ——
* @stringMap non —=> 4"

* Q@stringMap "+d like " --> " would like "

* Q@stringMap "+s had " --> " has had "

* @stringMap "+s been " --> " has been "

* @stringMap " youtre " --> " you are "

* Q@stringMap " what+s " --> " what is "

* Q@stringMap " there+s " --> " there is "

* @stringMap " that+s " --> " that is "

* @stringMap " it+s " -=> " it is "

* Q@stringMap "oi+m " -=> " 1iam"

* Q@stringMap "+s " -=> " +s "

* @stringMap " can+t " --> " can not "

* @stringMap "n+t " --> " not "

* Q@stringMap " per cent " --> " percent "

Matthias Denecke

* ¥ ¥
I
o
=]
ot
=
o
R

*/
grammar musicbox;
<_WILDCARD> = "_any_";

public <listAllSongs> =
((what | which | whose) [<_SONG>] <_ARE_AVAILABLE> "</s>")
| ¢ [please] <_SHOW> [me] all [<_AVAILABLE>] <_SONG> "</s>")

’

public <getInformation> =
((list | get | give) [me] [some] (information | info) [on | about])
| ([<_I>] <_VERB_DESIRE> know [on | about])
| ((what | which | whose) [<_SONG>] <_ARE_AVAILABLE> (in <language> | <_ARTIST>))
| ((do you have | is there) (anything | any thing | ([a | any] <_SONG>)))
| ([please] <_SHOW> [me] [<_AVAILABLE>] <_SONG>)

b

public <play> =

(<_I> <_VERB_DESIRE> <_HEAR> | [<_POLITE_WORD>] <_PLAY>);

public <pause> =
([<_POLITE_WORD>] pause [<_POLITE_WORD>]);

public <stop> =
([<_POLITE_WORD>] (stop | halt) [<_POLITE_WORD>]);

public <continue> =
([<_POLITE_WORD>] (continue | go on) [<_POLITE_WORD>]);

public <fastForward> =
([<_POLITE_WORD>] [fast] forward [<_POLITE_WORD>]);

public <fastBackward> =
([<_POLITE_WORD>] [fast] backward [<_POLITE_WORD>]);

public <rewind > =
([<_POLITE_WORD>] rewind [<_POLITE_WORD>]);

public <louder> =
([<_POLITE_WORD>] [<_PLAY>] louder [<_POLITE_WORD>]);

Appendix C: Semantic Grammars 183

public <softer> =
([<_POLITE_WORD>] [<_PLAY>] softer [<_POLITE_WORD>]);

public <mute> =
([<_POLITE_WORD>] mute [<_POLITE_WORD>]);

public <object> =
(<objectDescription> |
<objectName>);

<objectName> =
([<_quantity>] <recordingTitle>
[<_quantity>] <trackTitle>);

<objectDescription> =
([<_quantity>] [<ordinal>] <_objectDescriptionArgument>+)
<_objectDescriptionArgument> =
(<_ADJECTIVE>)
| (<objectSong>)
| (<_ARTIST>)
| (<recordingArtistName>)
| (<_IN_LANGUAGE>)

<_IN_LANGUAGE> = in <language>;

<objectSong> =
(<_SONG>);
<_SONG> =
(item | items | song | songs | piece | pieces | hit | hits);
<_SHOW> =
(show | list | display)
<_ARE_AVAILABLE> =
(do you have [<_AVAILABLE>])

((is | are) (there | <_AVAILABLE>))
((i can | can i) (hear | listen [to]))

|

|

<_AVAILABLE> =

. (available)
<_VERB_DESIRE> =
(want [to] |
will |

need [to] |

+d like |

like);

<_I> =

(il we);
<_HEAR> =

(hear | listen to);

<_POLITE_WORD> =
(please);

<_quantity> =
(al| an | some | all | the);

<_ARTIST> =
([by | from] <recordingArtistName>) ;

<_PLAY> =
(play);
<_ADJECTIVE> =
(great |

Appendix C: Semantic Grammars 184

greatest
cool |

coolest |
groovy |

hip);

<ordinal> =
(first | second | third | fourth | fifth | sixth | seventh | eighth

| ninth | tenth | eleventh | twelfth) ;

[/ to be read in from the database
<trackTitle> =

<_WILDCARD>;

[/ to be read in from the database

<recordingArtistName> =
<_WILDCARD>;

[/ === to be read in from the database
<recordingTitle> =

<_WILDCARD>;

A to be read in from the database
<language> =

<_WILDCARD>;

Appendix C: Semantic Grammars 185

C.3.3 Shopping Cart Grammar

#JSGF V1.0 IS08859-1 en;
/*
*

*
®
ot
©
1]
<5
E
)
)
=
)

e

o]
.
=]

(00
Q
o
H
o

grammar shoppingcart;

public <addToCart> =

(add | buy);

public <removeFromCart> =

(remove);

public <checkout> =

([please] checkout [please] |
[okay] i am done);

public <balance> =

([what] [is] [the | my] balance
how much is that);

public <toCart> =

([in | to | into] [my | the] [shopping] cart);

public <fromCart> =

(from [my | the] [shopping] cart);

Appendix D

Utterances from User Sessions

D.1 E-Mail Task

D.1.1 User1

do i have any mail

check for new mail

sort mail by date in descending order
delete mails dated 12th april
reply to message from cynthia
compose to bob

main

check mail

delete mail with size 600
show topics on nasdaq

read mail nasdaq soars

check mail

sort by size descending

D.1.2 User 2

did i get any email from peter

did i get any email today

read the email from spamela

see the list of current emails again
see email from goku

delete email from goku

see cynthia’s email

186

Appendix D: Utterances from User Sessions

reply to cynthia

list

read email from cynthia
reply to this message
reply to cynthia’s email
read email from cynthia again
reply

reply to cynthia

list

read donald

list

read joseph

read donald

list

read donald’s email

see donald’s email

reply to joseph

list

show message from donald
reply to donald

remove email from donald
i want to send peter a message
compose email to peter
send

list

arrange email by date
read lucy’s email

see lucy

open lucy’s email

list

D.1.3 User 3

do i1 have mail

sort messages by date

187

Appendix D: Utterances from User Sessions

sort messages by time

delete newswire messages
delete messages from newswire
reply to spameta

check messages

do i have any mail

create a new message to goku
send message to goku

display new messages

list messages

show messages from spameta
show messages from spamela
sort messages by size

delete message from lucy
undelete message from lucy
retrieve message from lucy
undo last deleted message
undo delete

show all messages about travel
display all messages

list all messages

display message from searchbot
list messages

reply to cynthia

list messages

open message from donald
display message from donald
show message from lucy
display message from lucy
reply to lucy

reply to message from lucy
list messages from newswire
sort newswire messages by date

list messages from donald

188

Appendix D: Utterances from User Sessions

display messages from donald

D.1.4 User 4

please check my mail
scroll down

delete spamela’s emails
delete spamela’s mails
delete get rich

delete spam mail

sort by date

please arrange messages by recency
read goku

delete spamela

delete 3rd

read mail

list mail

sort by date

delete 5th message
delete 3rd message
delete 6th message
read 4th message

reply

reply to 4th message

send message to bob

D.1.5 User 5

can you check if i got a new mail from cynthia

reply to cynthia

ok send it

draft a new mail

draft a new mail to bob
spell check the message

send message

189

Appendix D: Utterances from User Sessions

show me all the mails i got today

show me mails from cynthia

open cynthia’s mail

find messages with subject potluck
now find messages with subject nasdaq
delete messages from today

delete all messages from spamela
delete everything

sort by date

sort by size

D.1.6 User 6

do i have any new messages
open message from cynthia
reply to cynthia

send

go back to messages

delete messages from spamela
check messages

sort messages by date
message to bob

send

open messages

list messages

D.1.7 User 7

do i have any mail

sort my mail by date received
did i receive mail yesterday
read mail from cynthia

reply to cynthia

compose a message

compose a message to bob

190

Appendix D: Utterances from User Sessions

send message to bob
check for new mail

sort mail by date

delete mail from goku
read mail from searchbot
close mail from searchbot
read mail from cynthia
display inbox

read mail from don

list mail

reply to lucy’s mail

send lucy mail

list mail

forward mail from lucy to bob
send mail

check for new mail

list mail

read mail from josehp
read mail from joseph

close mail from joseph

D.1.8 User 8

can i see my mails

show me my messages by date

will you get rid of mails from newswire
i would like to reply to cynthia

can i draft a new message to bob

can i create a new message to bob

D.1.9 User 9

check my email
kill spam

check mail

191

Appendix D: Utterances from User Sessions

newest first

show all messages

sort by date

read cynthia’s message
reply to her

reply to cynthia

send it

write to bob

check spelling

send it

show messages

put lists first

show all messages

put important messages first
delete mail from spamela

block mail from lucy

D.1.10 User 10

do i have mail

show me all mail from donald
sort the mail by date

sort the mail by size

sort the mail by sender

delete all mail from newswire
read cythia’s message

read cynthia’s message

reply to cynthia’s message

show me my mail

i want to send a message to bob
get rid of all messages from spamela
ignore message from lucy

respond to goku’s message

192

Appendix D: Utterances from User Sessions

D.2 Musicbox Task

D.2.1 User1l

what songs do you have
play thunder road

ff

ff

fb

ff

toss thunder road into cart
stop

drop thunder road from cart
list all songs

play another song by springsteen
play fade

shut up

list all songs

buy jamming

buy exodus

show balance

go to checkout

D.2.2 User 2

what do you have

play jamming

how much is it

add bob marley to my shopping cart
add jamming to my shopping cart
what do you have

make it softer

play overture

what’s my current balance

what’s my current balance

buy overture

193

Appendix D: Utterances from User Sessions

what’s my total

play lullaby

a little louder

how much is lullaby

what’s my total

what’s my total

remove overture from my shopping cart
how much do i owe

what other music do you have
stop playing lullaby

play fade

i'm ready to pay

stop

D.2.3 User 3

what do you have

play three little birds

put song in my shopping basket
put three little birds in my basket
stop

what do you have

play no woman no cry

make it louder

fast forward

put no woman no cry into basket
quiet please

what’s my current total

time to pay up

D.2.4 User 4

search for songs by title
find songs played by they might be giants

what songs do i have now

194

Appendix D: Utterances from User Sessions

get new songs

buy a song

list songs

play a song

what do you have

remove songs by bob marley

add jamming to my shopping cart
add fade to my shopping cart

add border to my shopping cart
remove all bruce springsteen songs from my shopping cart
remove fade from my shopping cart
how much have i spents so far

add i shot the sheriff

add all tom waits songs

play jamming

make is softer

fast forward a bit

stop playing

check out

D.2.5 User 5

show me all the songs
play caro mio ben
repeat caro mio ben
lower the volume
show me all the songs
what songs do you have
play caro mio ben
repeat caro mio ben
louder

louder

lower the volume
repeat caro mio ben

rewind

195

Appendix D: Utterances from User Sessions

fast forward

stop

i want to buy caro mio ben
buy o cessate

buy vaga luna

what’s my balance

ok proceed to checkout

196

Appendix E

Learning Episodes

E.1 E-Mail Task’s Detailed Results

E.1.1 User 1

E.1.1.1 Summary

Duration: 7 minutes
Number of utterances: 13
Number of learning episodes: 3
Number of cancelations: 0
Average number of choices: 5.67
Number of rules learned: 7
Average GsG score: 1.57

197

Appendix E: Learning Episodes

E.1.1.2 Details

LE e.l1.1

Trigger utterance: check for new email

Total number of choices: 2

SubRHS learned under <voiceEMail.listMail>:
<voiceEMail._ASK_TO_CHECK> fm’ <voiceEMail. MAIL_ARGUMENT>*

Original rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |
<_ASK_TO_CHECK>) <_MAIL_ARGUMENT>*;

Resulting rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |

<_ASK_TO_CHECK> | <_ASK_TO_CHECK> for < MAIL_ARGUMENT>*) <_MAIL_ARGUMENT>%*);

Score: 2-. An expert grammar writer would have created a more compact
rule, e.g., public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FOR_ME>]
| <_ASK_TO_CHECK> for) <_MAIL_ARGUMENT>#*; but the coverage would be the

same.

SubRHS learned under <voiceEMail._ASK_TO_CHECK>:
check

Original rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] ;

Resulting rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] | check;

Score: 2

198

Appendix E: Learning Episodes

LE e.1.2

Trigger utterance: main

Total number of choices: 8

SubRHS learned under <voiceEMail.countMail>:

<voiceEMail. _KNQOW>

Original rule:
public <countMail> = [<_VERB_DESIRE>] <_COUNT> [<_TO_FOR_ME>]
<_MAIL_ARGUMENT>* | [<_VERBDESIRE>] [<_KNOW>] <_HOW_MANY> <_MAIL_ARGUMENT>*;

Resulting rule:
public <countMail> = [<_VERB_DESIRE>] <_COUNT> [<_TO_FOR_ME>]
<_MATL_ARGUMENT>* | [<_VERBDESIRE>] [<_KNOW>] <_HOW_MANY> <_MAIL_ARGUMENT>=*

| <_KNOW>;

Score: 1. Slightly surprising rule but user did select <countMail> as the meaning

of main.

SubRHS learned under voiceEMail. KNOW:

main

Original rule:

<KNOW> = know | find out;

Resulting rule:

<KNOW> = know | find out | main;

Score: 2. Again, user explicitly said that main is an example of know.

199

Appendix E: Learning Episodes

LE e.1.3

Trigger utterance: show topics on nasdag

Total number of choices: 7

SubRHS learned under <voiceEMail.listMail>:

<voiceEMail._ASK_TO_CHECK> <voiceEMail._LIST> <voiceEMail. MAIL_ARGUMENT>x*

Original rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |

<_ASK_TO_CHECK> | <_ASK_TO_CHECK> for <_MAIL_ARGUMENT>*) <_MAIL_ARGUMENT>*;

Resulting rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |
<_ASK_TO_CHECK> | <_ASK_TO_CHECK> for <_MAIL_ARGUMENT>* | <_ASK_TO_CHECK>

<_LIST> <_MAIL_ARGUMENT>*) <_MAIL_ARGUMENT>*;

Score: 2-. Same comment as in e.1.1.

SubRHS learned under <voiceEMail._ASK_TO_CHECK>:

show

Original rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] | check;

Resulting rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] | check | show;

Score: 2

SubRHS learned under <voiceEMail. LIST>:

topics

Original rule:

<voiceEMail. LIST> = list | get | search [for];

Resulting rule:

<voiceEMail. LIST> = list | get | search [for] | topics;

Score: 1. An expert grammmar writer would probably placed topics under

SUBJECT_PRE but user answered yes to whether topics is a way to express list.

200

Appendix E: Learning Episodes

E.1.2 User 2

E.1.2.1 Summary

Duration: 17 minutes
Number of utterances: 37
Number of learning episodes: 6

Number of cancelations: 0

Average number of choices: 6.17
Number of rules learned: 5

Average GsG score: 1.33

E.1.2.2 Details

LE e.2.1

Trigger utterance: see email from goku

Total number of choices: 5. User initiative at choice 3.

SubRHS learned under <voiceEMail. READ>:

see

Original rule:

<_READ> = read | print | tell [me about];

Resulting rule:

<_READ> = read | print | tell [me about] | see;

Score: 2

LE e.2.2

Trigger utterance: read donald

Total number of choices: 10

SubRHS learned: None.

Score: 1. User didn’t like any of the choices presented.

201

Appendix E: Learning Episodes 202

LE e.2.3

Trigger utterance: show message from donald
Total number of choices: 5
SubRHS learned under <voiceEMail. READ>:

show

Original rule:

<READ> = read | print | tell [me about] | see;

Resulting rule:

<_READ> = read | print | tell [me about] | see | show;

Score: 2

LE e.2.4

Trigger utterance: remove email from donald
Total number of choices: 9

SubRHS learned under <voiceEMail. DELETE>:

remove

Original rule:

<_DELETE> = delete;

Resulting rule:

< DELETE> = delete | remove;

Score: 2

LE e.2.5

Trigger utterance: arrange email by date

Total number of choices: 2
SubRHS learned under <voiceEMail._SORT>:

resort

Original rule:

<_SORT> = sort;

Resulting rule:

<_SORT> = sort | arrange;

Score: 2

Appendix E: Learning Episodes 203

<NP>
l
| ! |
<JJmod> <NHead> <NHead>
<JJonly> <JJonly> <N> <N>
JJ CD NNP NN
open lucy ’s email

Figure E.1: Syntactic parse of open lucy’s email. Note that open is tagged as adjective
rather than verb, and lucy as a cardinal number rather than proper noun. The wrong
tagging misleads the learning methods, which construct the rule in LE e.2.6.

LE e.2.6

Trigger utterance: open lucy’s email

Total number of choices: 6
SubRHS learned under <voiceEMail. READ>:

open lucy

Original rule:

<_READ> = read | print | tell [me about] | see | show;

Resulting rule:

<READ> = read | print | tell [me about] | see | show | open lucy;

Score: -1. Error arises from wrong segmentation, which is triggered by the syn-

tactic parse in Figure E.1. Both open and lucy are OOV words and since they are

syntactically parsed under a noun phrase they are thought to belong together.

Appendix E: Learning Episodes 204

E.1.3 User 3

E.1.3.1 Summary

Duration: 28 minutes
Number of utterances: 37
Number of learning episodes: 8

Number of cancelations: 2

Average number of choices: 7.50
Number of rules learned: 4

Average GsG score: 1.33

E.1.3.2 Details

LE e.3.1

Trigger utterance: reply to spameta

Total number of choices: 9
SubRHS learned: None.

Score: 1. The original utterance was correctly parsed but due to a bug in the

application, no reply message was generated, at which point the user said wrong

and triggered a fruitless learning episode.

Cancelation e.3.1

> check messages
I don’t understand right away what you mean but let me guess...
"check messages" is a way to express:
1. 1list mail, e.g. "list"
2. count mail, e.g. "count"
0. None of the above
> 1
"check " is a way to express:
1. ask to check, e.g. "do i have"
2. 1list, e.g. "list"
0. None of the above
> cancel

Ok, back to square one

Comment: User did not like choices — there could be some learning curve to the

interface, as later in the session she did map her intentions to the presented choices.

Appendix E: Learning Episodes

Cancelation e.3.2

> undo last deleted message
I don’t understand right away what you mean but let me guess...
"undo last deleted message'" is a way to express:

1. 1list mail, e.g. "list"

2. count mail, e.g. "count"
3. send mail, e.g. '"send"
0

None of the above

>0

Is "undo last deleted message'" a way to express reply mail, e.g. '"reply"?
1. Yes
2. No

>0

By "O" are you referring to:
1. integer cardinal 0, e.g. "O"
2. ordinal number 0 99, e.g. "10th"
3. ordinal number O 999, e.g. "100th"
0. None of the above

> cancel

Comment: GSG’s interface, always eager for a flexible, mixed-initiative dialogue,
assumes that 0, since it is not one of the options given to the second question
above, refers to the anchor mother; whereas the user obviously was using 0 to mean
option “2. No,” accustomed to the constant “0. None of the above” option in
multiple-choice questions. The solution would be of course to change “1. Yes, 2.

No,” into a more consistent “1. Yes, 0. No.”

205

Appendix E: Learning Episodes

LE e.3.2

Trigger utterance: create a new message to goku

Total number of choices: 5

SubRHS learned under <voiceEMail.composeMail>:

<voiceEMail._COMPOSE> <voiceEMail._ARTICLE> <voiceEMail. MAIL_ARGUMENT>*

Original rule:
public <voiceEMail.composeMail> = [<_VERB_DESIRE>] <_COMPOSE>

<_MAIL_ARGUMENT>x*;

Resulting rule:
public <voiceEMail.composeMail> = [<_VERBDESIRE>] (<_COMPOSE> |

<_COMPQOSE> <_ARTICLE> <_MATIL_ARGUMENT>*) <_MAIL_ARGUMENT>*;

Score: 2-.

SubRHS learned under <voiceEMail._COMPOSE>:

create

Original rule:

public <_COMPOSE>

compose | write;

Resulting rule:

public <_COMPOSE> = compose | write | create;

Score: 2.

LE e.3.3

Trigger utterance: display new messages

Total number of choices: 5

SubRHS learned under <voiceEMail. READ>:

display

Original rule:

<_READ> = read | print | tell [me about];

Resulting rule:

<READ> = read | print | tell [me about] | display;

Score: 2

206

Appendix E: Learning Episodes 207

LE e.3.4

Trigger utterance: show messages from spameta
Total number of choices: 5
SubRHS learned under <voiceEMail. LIST>:

show

Original rule:

<_LIST> = list | get | search [for];

Resulting rule:

<_LIST> = list | get | search [for] | show;

Score: 2

LE e.3.5

Trigger utterance: undelete message from lucy

Total number of choices: 9
SubRHS learned: None.

Score: 1. Out of domain.

LE e.3.6

Trigger utterance: retrieve message from lucy

Total number of choices: 9
SubRHS learned: None.

Score: 1. Out of domain.

LE e.3.7

Trigger utterance: undo last deleted message

Total number of choices: 9
SubRHS learned: None.

Score: 1. Out of domain.

Appendix E: Learning Episodes

LE e.3.8

Total number of choices: 9

Trigger utterance: open message from donald

SubRHS learned: None.

Score: 1. User did not accept any choice, including list mail and read mail.

E.1.4 User 4

E.1.4.1 Summary

Duration:

Number of utterances:
Number of learning episodes:
Number of cancelations:
Average number of choices:
Number of rules learned:
Average GSG score:

14 minutes
21

2

1

10.00

2.00

208

Appendix E: Learning Episodes 209

E.1.4.2 Details

LE e.4.1

Trigger utterance: please check my mail

Total number of choices: 4

SubRHS learned under <voiceEMail.readMail>:
[<voiceEMail. VERB_DESIRE>] <voiceEMail. READ> my

<voiceEMail. MAIL_ARGUMENT>*

Original rule:

public <readMail> [<_VERBDESIRE>] <_READ> <_MAIL_ARGUMENT>*;

Resulting rule:

public <readMail> [<_VERBDESIRE>] (<_READ> | [<_VERB_DESIRE>] <_READ> my

<_MAIL_ARGUMENT>*) <_MAIL_ARGUMENT>x*;

Score: 2-

SubRHS learned under <voiceEMail. READ>:
check

Original rule:

<_READ> = read | print | tell [me about];

Resulting rule:

<_READ> = read | print | tell [me about] | check;

Score: 2

Cancelation e.4.1

> scroll down
I don’t understand right away what you mean but let me guess...
"scroll down" is a way to express:
1. count mail, e.g. "count"
2. 1list mail, e.g. "list"
3. read mail, e.g. '"read"
0. None of the above
> cancel

Ok, back to square one

Comment: User probably realized that his intention was not supported by the

application.

Appendix E: Learning Episodes

LE e.4.2

Trigger utterance: please arrange messages by recency

Total number of choices: 16

SubRHS learned under <voiceEMail._SORT>:

arrange

Original rule:

<_SORT> = sort;

Resulting rule:

<_SORT> = sort | arrange;

Score: 2

SubRHS learned under <voiceEMail.sortBy_date>:

recency

Original rule:

<sortBy_date> = date | time | the order in which <MAIL> was recieved;

Resulting rule:
<sortBy_date> = date | time | the order in which <_MAIL> was recieved |

recency;

Score: 2

E.1.5 User 5

E.1.5.1 Summary

Duration: 12 minutes
Number of utterances: 17
Number of learning episodes: 8

Number of cancelations: 0

Average number of choices: 6.25
Number of rules learned: 6

Average GsG score: 1.67

210

Appendix E: Learning Episodes

E.1.5.2 Details

LE e.5.1

Trigger utterance: can you check if i got a message from cynthia

Total number of choices: 21

SubRHS learned under <voiceEMail.listMail>:
can you check zf <voiceEMail._I_HAVE> <voiceEMail. MAIL_ARGUMENT>x*

Original rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |

<_ASK_TO_CHECK>) <_MAIL_ARGUMENT>*;

Resulting rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |
<_ASK_TO_CHECK> | can you check if <_I_HAVE> <_MAIL_ARGUMENT>*)

<_MAIL_ARGUMENT>*;

Score: 1-. An expert grammar writer would have probably place can you check

if under <_ASK_TO_CHECK>, but segmentation algorithm treated each word as a

separate segment.

211

Appendix E: Learning Episodes 212

LE e.5.2

Trigger utterance: draft a new mail

Total number of choices: 3

SubRHS learned under <voiceEMail.composeMail>:

<voiceEMail._COMPOSE> <voiceEMail._ARTICLE> <voiceEMail. MAIL_ARGUMENT>*

Original rule:
public <voiceEMail.composeMail> = [<_VERB_DESIRE>] <_COMPOSE>

<_MAIL_ARGUMENT>x*;

Resulting rule:
public <voiceEMail.composeMail> = [<_VERBDESIRE>] (<_COMPOSE> |

<_COMPQOSE> <_ARTICLE> <_MATIL_ARGUMENT>*) <_MAIL_ARGUMENT>*;

Score: 1. A human writer would have simply inserted [<_ARTICLE>] between
<_COMPOSE> and <_MAIL_ARGUMENT>*, a much more compact rule than the produced

by GSG, but the coverage would be the same.

SubRHS learned under voiceEMail._COMPOSE:
draft

Original rule:

<voiceEMail. _COMPOSE> = compose | write;

Resulting rule:

<voiceEMail._COMPOSE>

compose | write | draft;

Score: 2

LE e.5.3

Trigger utterance: draft a new mail to bob

Total number of choices: 0
SubRHS learned: None.

Score: 2. Re-use of rule acquired in e.5.2.

Appendix E: Learning Episodes 213

LE e.5.4

Trigger utterance: spell check the message
Total number of choices: 11
SubRHS learned: None.

Score: 1. Out of domain.

LE e.5.5

Trigger utterance: show me all the mails 1 got today

Total number of choices: 4

SubRHS learned under <voiceEMail. LIST>:

show

Original rule:

<_LIST> = list | get | search [for];

Resulting rule:

<_LIST> = list | get | search [for] | show;

Score: 2

LE e.5.6

Trigger utterance: open cynthia’s mail

Total number of choices: 5
SubRHS learned under <voiceEMail. READ>:

see

Original rule:

<_READ> = read | print | tell [me about];

Resulting rule:

<_READ> = read | print | tell [me about] | open;

Score: 2

Appendix E: Learning Episodes

LE e.5.7

Trigger utterance: find messages with subject potluck

Total number of choices: 6

SubRHS learned under <voiceEMail. LIST>:
find

Original rule:

<_LIST> = list | get | search [for] | show;

Resulting rule:

<_LIST> = list | get | search [for] | show | find;

Score: 2

LE e.5.8

Trigger utterance: now find messages with subject nasdaq

Total number of choices: 0

SubRHS learned: None.

Score: 2. Re-use of rule acquired in e.5.7. (Harmless skipping of now.)

E.1.6 User 6

E.1.6.1 Summary

Duration: 8 minutes
Number of utterances: 12
Number of learning episodes: 5
Number of cancelations: 0
Average number of choices: 5.00
Number of rules learned: 4

Average GSG score: 1.00

214

Appendix E: Learning Episodes 215

E.1.6.2 Details

LE e.6.1

Trigger utterance: open message from cynthia

Total number of choices: 5

SubRHS learned under <voiceEMail. READ>:

open

Original rule:

<_READ> = read | print | tell [me about];

Resulting rule:

<READ> = read | print | tell [me about] | open;

Score: 2

LE e.6.2

Trigger utterance: go back to messages

Total number of choices: 10

SubRHS learned under <voiceEMail.readMail>:

go back <voiceEMail. DATE RANGE_IN> <voiceEMail. MAIL_ARGUMENT>*

Original rule:

public <readMail> [<_VERBDESIRE>] <_READ> <_MAIL_ARGUMENT>*;

Resulting rule:
public <readMail> = [<_VERBDESIRE>] (<_READ> | go back <_DATE RANGE_IN>

<_MAIL_ARGUMENT>*) <_MAIL_ARGUMENT>x*;

Score: 2-. Harmless generalization of o to <_DATE RANGE_IN>.

Appendix E: Learning Episodes

LE e.6.3

Trigger utterance: check messages

Total number of choices: 3

SubRHS learned under <voiceEMail._ASK_TO_CHECK>:
check

Original rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] ;

Resulting rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] | check;

Score: 2

216

Appendix E: Learning Episodes

LE e.6.4

Trigger utterance: message to bob

Total number of choices: 4

SubRHS learned under <voiceEMail.composeMail>:

<voiceEMail. MAIL_ARGUMENT>+

Original rule:

public <composeMail> = [<_VERB.DESIRE>] <_COMPOSE> <_MAIL_ARGUMENT>*;

Resulting rule:

public <composeMail> [<_VERBDESIRE>] (<_COMPOSE> | <_MAIL_ARGUMENT>+)

<_MAIL_ARGUMENT>*;

Score: -2. This rule has the potential of disrupting the grammar, because, hence-
forth, a single <_ MATL_ARGUMENT> can be considered a <composeMail>. It was not
flagged as changing the parsebank because in fact the parsebank does not change,
since all the current parses remain achievable. Also, the rule by itself does not
introduce ambiguity nor is subsumed by any existing rule. In fact, it is a special-
ization of a rule such as the very same RHS of <composeMail> before the addition.
A solution to prevent this overtly horizontally generalized rule would be to have a
“negative parsebank” of phrases that should remain unparsable. Another solution
(and the one used to create the Union Grammar) is to add beginning and end of
utterance markers to the acquired RHS so that, e.g., message to bob be parsed as
<_MAIL_ARGUMENT> only if that’s the entire sentence. In general, however, we would
lose the generalization achieved at the merging of the new RHS with the original
rule, e.g., insertion after <_VERB_DESIRE>. In any event, a “reset” command can

always be given to revert to the original grammar.

217

Appendix E: Learning Episodes

Interaction e.6.5

218

> open messages
I understand "open messages"

> wrong

Is "open messages" a way to express read mail, e.g. "read"?
1. Yes
2. No

> 2

"open messages" is a way to express:
1. count mail, e.g. "count"
2. 1list mail, e.g. "list"
3. compose mail, e.g. "compose"
0. None of the above

> 2

Sorry, I can’t learn what you mean as it conflicts with my existing
knowledge.

LE e.6.5

Trigger utterance: open messages

Total number of choices: 3

SubRHS learned: None.

Score: 1. See Interaction e.6.5. Detection of conflict since user had said (see LE
e.6.1) that open means readMail. Of course the user may argue that open means
readMail if he wants to open a single piece of mail, whereas it means 1istMail
if more than one piece of mail match his criteria. That, however, is beyond the

abilities of GsG given the context-freedom of the grammar.

E.1.7 User 7

E.1.7.1 Summary

Duration: 20 minutes
Number of utterances: 27
Number of learning episodes: 7

Number of cancelations: 1

Average number of choices: 3.00
Number of rules learned: 5

Average GsG score: 1.63

Appendix E: Learning Episodes 219

E.1.7.2 Details

LE e.7.1

Trigger utterance: sort means rank

Total number of choices: 1
SubRHS learned: None.

Score: 1. As it turns out, sort was already in the grammar (but not rank). Cf.

rank means sort.

LE e.7.2

Trigger utterance: did i receive any mail yesterday

Total number of choices: 9

SubRHS learned under <voiceEMail.listMail>:

did <voiceEMail._I> receive <voiceEMail. MAIL_ARGUMENT>*

Original rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |

<_ASK_TO_CHECK>) <_MAIL_ARGUMENT>*;

Resulting rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |
<_ASK_TO_CHECK> | did <_I> receive <_MAIL_ARGUMENT>*) <_MAIL_ARGUMENT>*;

Score: 1-. An expert grammar writer would have probably placed did i receive un-

der <_ASK_TO_CHECK>, but segmentation algorithm treated each word as a separate

segment.

Appendix E: Learning Episodes 220

LE e.7.3

Trigger utterance: check for new mail

Total number of choices: 3

SubRHS learned under <voiceEMail.countMail>:

[<voiceEMail. KNOW>] for <voiceEMail. MAIL_ARGUMENT>*

Original rule:
public <countMail> = [<_VERB_DESIRE>] <_COUNT> [<_TO_FOR_ME>]

<_MAIL_ARGUMENT>* | [<_VERB_DESIRE>] [<_KNOW>] <_HOW_MANY> < MAIL_ARGUMENT>*;

Resulting rule:
public <countMail> = [<_VERB_DESIRE>] <_COUNT> [<_TO_FOR_ME>]
<_MATL_ARGUMENT>* | [<_VERBDESIRE>] [<_KNOW>] <_HOW_MANY> <_MAIL_ARGUMENT>=*

| [<KNOW>] for < MAIL_ARGUMENT>*;

Score: 2-

SubRHS learned under voiceEMail. _KNQOW:
check

Original rule:

<KNOW> = know | find out;

Resulting rule:

<KNOW> = know | find out | check;

Score: 2. User explicitly said that check is an example of know.

Cancelation e.7.1

> close mail from searchbot
I don’t understand right away what you mean but let me guess...

"close mail from searchbot" is a way to express:

1. count mail, e.g. "count"
2. reply mail, e.g. '"reply"
3. 1list mail, e.g. "list"
0. None of the above

> cancel

Ok, back to square one

Comment: User may have realized that no concept matches his intention. But see

LE e.7.4.

Appendix E: Learning Episodes

LE e.7.4

Trigger utterance: close mail means list mail

Total number of choices: 5

SubRHS learned under <voiceEMail.listMail>:

close < MATL_ARGUMENT>*

Original rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |
<_ASK_TO_CHECK> | did <_I> receive <_MAIL_ARGUMENT>*) <_MAIL_ARGUMENT>*;

Resulting rule:
public <listMail> = [<_VERB_DESIRE>] (<_LIST> [<_TO_FOR.ME>] |
<_ASK_TO_CHECK> | did <_I> receive <_MAIL_ARGUMENT>* | close

<_MAIL_ARGUMENT>*) <_MAIL_ARGUMENT>*;

Score: 2-. This meaning equivalence may be a bit surprising. Most likely, the
user wanted to close the current message and then list all the messages (cf. LE
e.6.2 go back to messages) and, since there is not explicit “<closeMail>” concept

in the ontology, the most effective way is to map close into <1istMail>.

LE e.7.5

Trigger utterance: display inbox

Total number of choices: 3

SubRHS learned under <voiceEMail. LIST>:
display inbox
Original rule:

<voiceEMail. LIST> = list | get | search [for];

Resulting rule:

<voiceEMail. LIST> = list | get | search [for] | display inbox;

Score: 1. Similar case as in LE e.2.6. To begin with, the first part-of-speech
for display, was, according to the POS lexicon used, NN, followed by VB. So the

syntactic parse in Figure E.2 is obtained, which groups the two unknown words.

221

Appendix E: Learning Episodes 222

<NP>

—

<NHead> <NHead>

<N> <N>
NN NN
display imnbozx

Figure E.2: Syntactic parse of display inbox. Note that display is tagged as a noun rather
than verb. The wrong tagging misleads the learning methods, which construct the rule in
LE e.7.5.

LE e.7.6

Trigger utterance: check for new mail

Total number of choices: 0
SubRHS learned: None.

Score: 2. Re-use of rule acquired in LE e.7.3.

LE e.7.7

Trigger utterance: close mail from joseph

Total number of choices: 0
SubRHS learned: None.

Score: 2. Re-use of rule acquired in LE e.7.4.

E.1.8 User 8

E.1.8.1 Summary

Duration: 12 minutes
Number of utterances: 6

Number of learning episodes: 4

Number of cancelations: 0

Average number of choices: 8.25
Number of rules learned: 8

Average GsG score: 1.13

Appendix E: Learning Episodes

E.1.8.2 Details

LE e.8.1

Trigger utterance: can ¢ see my emails

Total number of choices: 9

SubRHS learned under <voiceEMail.listMail>:
<voiceEMail. ASK_TO_CHECK> <voiceEMail._I> <voiceEMail. LIST> my

<voiceEMail. MAIL_ARGUMENT>*

Original rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |
<_ASK_TO_CHECK>) <_MAIL_ARGUMENT>*;

Resulting rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |
<_ASK_TO_CHECK> | <_ASK_TO_CHECK> <_I> <_LIST> my <_MAIL_ARGUMENT>*)

<_MAIL_ARGUMENT>*) ;

Score: 2-. An expert grammar writer would have probably placed can i
under <_VERBDESIRE>, but, being a semantic grammar, the placement under
<_ASK_TO_CHECK> does make sense too. In fact, it is reused in subsequent utterances

(see LE e.8.3 and LE e.8.4) without harmful effects.

SubRHS learned under <voiceEMail._ASK_TO_CHECK>:

can

Original rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] ;

Resulting rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] | can;

Score: -1. See comment above.

SubRHS learned under <voiceEMail. LIST>:

see

Original rule:

<voiceEMail. LIST> = list | get | search [for];

Resulting rule:

<voiceEMail._LIST>

list | get | search [for] | see;

Score: 2

223

Appendix E: Learning Episodes

LE e.8.2

Trigger utterance: show me my messages by date

Total number of choices: 6

SubRHS learned under <voiceEMail.sortMail>:
show <voiceEMail. TO_FORME> my <voiceEMail. MAIL_ARGUMENT>*

<voiceEMail._SORT_BY>

Original rule:
public <sortMail> = [<_VERBDESIRE>] <_SORT> <_MAIL_ARGUMENT>* (

[<_SORT_MODE>] [<_SORT_BY>] | <_SORT_BY> <_SORT_MODE>);

Resulting rule:
public <sortMail> = [<_VERBDESIRE>] (<_SORT> < MAIL_ARGUMENT>* (
[<_SORT_MODE>] [<_SORTBY>] | <_SORT.BY> <_SORT_MODE>) | show <_TO_FORME>

my <_MAIL_ARGUMENT>* <_SORT_BY>);

Score: 1. Note that show has been added directly under <sortMail>; this is be-
cause the user rejected the system’s initial suggestion that show is a way to express
<_SORT> and later asked for the entire question about show to be ignored. Also,
my has been placed directly under <sortMail> too by virtue of being a posses-
sive pronoun. Note that <_TO_FOR_ME> could have been horizontally generalized to
[<_TO_FOR_ME>] if global optionality of <_TO_FOR_ME> would have been taken into

account.

224

Appendix E: Learning Episodes

LE e.8.3

Trigger utterance: can i draft a new message to bob

Total number of choices: 8

SubRHS learned under <voiceEMail.replyMail>:
<voiceEMail. _ASK_TO_CHECK> <voiceEMail._I> <voiceEMail. REPLY>

<voiceEMail._ARTICLE> <voiceEMail. MAIL_ARGUMENT>x*

Original rule:

public <replyMail> [<_VERB_DESIRE>] <_REPLY> [<_TO_FOR_ME>]

<_MAIL_ARGUMENT>*;

Resulting rule:
public <replyMail> = [<_VERBDESIRE>] (<_REPLY> | <_ASK_TO_CHECK> <_I>
<_REPLY> <_ARTICLE> <_MAIL_ARGUMENT>*) [<_TO_FORME>] <_MAIL_ARGUMENT>*;

Score: 2- - 1 = 1. Re-use of can under <_ASK_TO_CHECK> discounts 1 point.

SubRHS learned under <voiceEMail. REPLY>:
draft

Original rule:

<REPLY> = reply [to] | answer;

Resulting rule:

<REPLY> = reply [to] | answer | draft;

Score: 2

225

Appendix E: Learning Episodes 226

LE e.8.4

Trigger utterance: can i create a new message to bob

Total number of choices: 10

SubRHS learned under <voiceEMail.composeMail>:
<voiceEMail._ASK_TO_CHECK> <voiceEMail._I> <voiceEMail._COMPOSE>

<voiceEMail._ARTICLE> <voiceEMail. MAIL_ARGUMENT>x*

Original rule:

public <voiceEMail.composeMail> [<_VERB_DESIRE>] <_COMPOSE>

<_MAIL_ARGUMENT>*;

Resulting rule:
public <voiceEMail.composeMail> = [<_VERBDESIRE>] (<_COMPOSE> |
<_ASK_TO_CHECK> <_I> <_COMPOSE> <_ARTICLE> <_MAIL_ARGUMENT>*)

<_MAIL_ARGUMENT>*;

Score: 2- - 1 = 1. Re-use of can under <_ASK_TO_CHECK> discounts 1 point.

SubRHS learned under voiceEMail._COMPOSE:

create

Original rule:

public <_COMPOSE> = compose | write;

Resulting rule:

public <_COMPOSE> = compose | write | create;

Score: 2

E.1.9 User 9

E.1.9.1 Summary

Duration: 18 minutes
Number of utterances: 19
Number of learning episodes: 9

Number of cancelations: 0

Average number of choices: 6.89
Number of rules learned: 8

Average GsG score: 0.92

Appendix E: Learning Episodes

E.1.9.2 Details

LE e.9.1

Trigger utterance: check my email

Total number of choices: 3

SubRHS learned under <voiceEMail.listMail>:
<voiceEMail. ASK_TO_CHECK> my <voiceEMail. MAIL_ARGUMENT>*

Original rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |
<_ASK_TO_CHECK>) <_MAIL_ARGUMENT>*;

Resulting rule:
public <listMail> = [<_VERBDESIRE>] (<_LIST> [<_TO_FORME>] |

<_ASK_TO_CHECK> | <_ASK_TO_CHECK> my <_MAIL_ARGUMENT>*) <_MAIL_ARGUMENT>*) ;

Score: 2-

SubRHS learned under <voiceEMail._ASK_TO_CHECK>:
check

Original rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] ;

Resulting rule:
<_ASK_TO_CHECK> = do i have | is there [any | anything] | there is [any |

anything] | check;

Score: 2

227

Appendix E: Learning Episodes

LE e.9.2

Trigger utterance: kill spam

Total number of choices: 10

SubRHS learned under <voiceEMail. DELETE>:
kill

Original rule:

<_DELETE> = delete;

Resulting rule:

< DELETE> = delete | kill;

Score: 2

SubRHS learned under <voiceEMail._SUBJECT>:

<voiceEMail.subject_STRING>

Original rule:

<_SUBJECT> = <_SUBJECT_PRE> [<_ARTICLE>] <subject__STRING>;

Resulting rule:
<_SUBJECT> = <_SUBJECT_PRE> [<_ARTICLE>] <subject__STRING> |

<subject__STRING>;

Score: -1. Structurally similar situation as in LE e.6.3. In this case <_SUBJECT>
loses the requirement that it be preceded by <_SUBJECT_PRE>, with the consequence
that henceforth any word parsed as wildcard can be a <_SUBJECT>. However, this
proves not to be so disruptive because the wildcard-alone RHS does not percolate
up to a top-level NT (i.e., <_SUBJECT> can not be parsed alone by any top-level
NT). Also, even though the user said that lists is a way to express “subject string”
(i.e., <subject__STRING>) it is not the right place; in fact, this utterance is out of
domain because it requires that some messages be flagged as “spam” (unsolicited

e-mail). However, see next LE e.9.3.

SubRHS learned under <voiceEMail.subject_STRING>:

spam

Original rule:

<subject_STRING> = "<subject>" | <_WILDCARD>+;

Resulting rule:

<subject_STRING> = "<subject>" | <_WILDCARD>+ | spam;

Score: -1. See comment above.

228

Appendix E: Learning Episodes

LE e.9.3

Trigger utterance: kill spam means delete mail from spamela

Total number of choices: 0

SubRHS learned: None.

Score: 1. Learned meaning equivalence represented in Figure E.3.

LE e.9.4

Trigger utterance: check mail

Total number of choices: 0

SubRHS learned: None.

Score: 2. Re-use of rule acquired in LE e.9.1

LE e.9.5

Trigger utterance: newest first

Total number of choices: 10

SubRHS learned: None.

Score: 1. The learning episode constructs the parse tree in Figure E.4 which
gives rise to the sub RHS <_MAIL_ARGUMENT>* <_ORDINAL NUMBER_0_99> under
<sortMail>, but it is found that it introduces ambiguity (since, for instance,
<_ORDINAL NUMBER_0.99> is parsed under <dayOfMonth INTEGER), so the learn-
ing epiosode is canceled. Note that this is safer than LE e.6.3. In any case, the

next utterance from the user was newest first means sort by date (see LE €.9.6).

LE e.9.6

Trigger utterance: newest first means sort by date

Total number of choices: 0

SubRHS learned: None.

Score: 1. Learned meaning equivalence represented in Figure E.5.

229

230

Appendix E: Learning Episodes

DpouwDds

< HWNVN NOILINLILSNI 40 NOSYdd >

< DNIYLS ™ >

< I9puss > wouf
_ | |
< Y4aNds™ >

< LNIWNDYY TIVW >
_

o

<'IIVW >

< LNIWADYY TIVW >

919]2p

< 4IFTAC >
|

_ _
< TTeRe39Top >

— wnds)y

Figure E.3: Mapping learned for kill spam after LE e.9.3.

Appendix E: Learning Episodes 231

<sortMail>
| ! |
<_MAIL_ARGUMENT> <ORDINAL_NUMBER_0_99>
<_MESSAGE_IDX> <ORDINAL_NUMBER_UNITS>
<messagelndex__last> <INTEGER_ORDINAL__1
newest first

Figure E.4: Parse tree for newest first as constructed by the learning methods in LE e.9.5.
No rules are learned from it as they would introduce ambiguity.

newest first — < < sortMail >
|
| |
< _SORT > < _SORT_BY >
|
| |
sort < _BY > < _SORTBY_ >
by < sortBy_date >

date

Figure E.5: Mapping learned for newest first after LE e.9.6.

Appendix E: Learning Episodes 232

LE e.9.7
Trigger utterance: check spelling

Total number of choices: 10
SubRHS learned: None.

Score: 1. Out of domain.

Appendix E: Learning Episodes

LE e.9.8

Trigger utterance: put lists first

Total number of choices: 20

SubRHS learned under <voiceEMail.sortMail>:

<voiceEMail. _SORT> <voiceEMail.sortBy_sender> <voiceEMail. MAIL_ARGUMENT>+

Original rule:
public <sortMail> = [<_VERBDESIRE>] <_SORT> <_MAIL_ARGUMENT>* (
[<_SORT_MODE>] [<_SORTBY>] | <_SORT_BY> <_SORT_MODE>);

Resulting rule:
public <sortMail> = [<_VERBDESIRE>] (<_SORT> <_MAIL_ARGUMENT>* (
[<_SORT_MODE>] [<_SORT_BY>] | <_SORT_BY> <_SORT_MODE>) | <_SORT>

<sortBy__sender> <_MAIL_ARGUMENT>+);

Score: 1-. The user’s intention is in fact out of domain because it requires that
some messages be flagged as coming from a mailing list server rather than a single

person.

SubRHS learned under <voiceEMail._SORT>:

put

Original rule:

<_SORT> = sort;

Resulting rule:

<_SORT> = sort | put;

Score: 2

SubRHS learned under <voiceEMail.sortBy_sender>:

lists

Original rule:

<sortBy_.sender> = sender | origin | source;

Resulting rule:

<sortBy_sender> = sender | origin | source | lists;

Score: -1. Concept out of domain — see note above.

233

Appendix E: Learning Episodes 234

LE e.9.9

Trigger utterance: block mail from lucy

Total number of choices: 9
SubRHS learned under <voiceEMail. DELETE>:
block

Original rule:

<_DELETE> = delete | kill;

Resulting rule:

< DELETE> = delete | kill | block;

Score: 2

E.1.10 User 10

E.1.10.1 Summary

Duration: 9 minutes
Number of utterances: 14
Number of learning episodes: 7
Number of cancelations: 0
Average number of choices: 3.57
Number of rules learned: 5
Average GSG score: 1.50

E.1.10.2 Details

LE e.10.1

Trigger utterance: show me all mail from donald
Total number of choices: 3

SubRHS learned under <voiceEMail. LIST>:

show

Original rule:

<_LIST> = list | get | search [for];

Resulting rule:

<_LIST> = list | get | search [for] | show;

Score: 2

Appendix E: Learning Episodes 235

LE e.10.2

Trigger utterance: show me my mail
Total number of choices: 0
SubRHS learned: None.

Score: 2. Re-use of rule acquired in LE e.10.1.

LE e.10.3

Trigger utterance: i want to send an email to bob
Total number of choices: 5
SubRHS learned: None.

Score: 1. Conflict detected. See interaction e.5.

LE e.10.4

Trigger utterance: get rid of all messages from spamela

Total number of choices: 5
SubRHS learned: None.

Score: 0. User volunteered information: see below.

LE e.10.5

Trigger utterance: get rid of means delete
Total number of choices: 1
SubRHS learned under <voiceEMail. DELETE>:

get rid of

Original rule:

<_DELETE> = delete;

Resulting rule:

< DELETE> = delete | get rid of;

Score: 2. See interaction e.2.

Appendix E: Learning Episodes

LE e.10.6

Trigger utterance: ignore message from lucy

Total number of choices: 9

SubRHS learned under <voiceEMail. DELETE>:

ignore

Original rule:

<_DELETE> = delete | get rid of;

Resulting rule:

< DELETE> = delete | get rid of | ignore;

Score: 2.

LE e.10.7

Trigger utterance: respond to goku’s email

Total number of choices: 2

SubRHS learned under <voiceEMail.replyMail>:

<voiceEMail. REPLY> <voiceEMail. DATE_RANGE_IN> <voiceEMail. MAIL_ARGUMENT>x*

Original rule:

public <replyMail> = [<_VERBDESIRE>] < REPLY> [<_TO_FORME>]
<_MAIL_ARGUMENT>*;

Resulting rule:

public <replyMail> [<_VERB_DESIRE>] (<_REPLY> | <_REPLY> <_DATE_RANGE_IN>

<_MAIL_ARGUMENT>*) [<_TO_FORME>] <_MAIL_ARGUMENT>*;

Score: 2-. Harmless generalization of o to <_DATE_RANGE_IN> (same as in LE
e.6.5), but it would have been better to place the to under < _REPLY> (see below).

SubRHS learned under voiceEMail. REPLY:

respond

Original rule:

<REPLY> = reply [to]l | answer;

Resulting rule:

<REPLY> = reply [to] | answer | respond;

Score: 1. An expert grammar writer would have generalized to <_REPLY> =

(reply | respond) [to] | answer;.

236

Appendix E: Learning Episodes

E.2 Musicbox Task’s Detailed Results

E.2.1 User1l

E.2.1.1 Summary

Duration: 11 minutes
Number of utterances: 18
Number of learning episodes: 8

Number of cancelations: 0

Average number of choices: 3.13
Number of rules learned: 4

Average GSG score: 1.88

E.2.1.2 Details

LE m.1.1

Trigger utterance: ff

Total number of choices: 6

SubRHS learned under <musicbox.fastForward>:

Vi

Original rule:

[<_POLITE_WORD>] [fast] forward [<_POLITE_WORD>];

public <fastForward>

Resulting rule:
public <fastForward> = [<_POLITEWORD>] [fast] (forward | ff)
[<_POLITE_WORD>];

Score: 2+

237

Appendix E: Learning Episodes

LE m.1.2

Trigger utterance: fb means fast backward

Total number of choices: 1

SubRHS learned under <musicbox.fastBackward>:
fb

Original rule:

public <fastBackward> = [<_POLITEWORD>] [fast] backward [<_POLITE_WORD>];

Resulting rule:

public <fastBackward> = [<_POLITEWORD>] [fast] (backward | fb)

[<_POLITE_WORD>] ;

Score: 2+

LE m.1.3

Trigger utterance: ff

Total number of choices: 0

SubRHS learned: None.

Score: 2. Re-use of rule acquired in m.1.1.

LE m.1.4

Trigger utterance: fb

Total number of choices: 0

SubRHS learned: None.

Score: 2. Re-use of rule acquired in m.1.2.

LE m.1.5

Trigger utterance: ff

Total number of choices: 0

SubRHS learned: None.

Score: 2. Re-use of rule acquired in m.1.1.

238

Appendix E: Learning Episodes

LE m.1.6

Trigger utterance: toss thunder road into cart

Total number of choices: 3

SubRHS learned under <shoppingcart.addToCart>:

toss

Original rule:

public <addToCart> = add | buy;

Resulting rule:

public <addToCart> = add | buy | toss;

Score: 2

LE m.1.7

Trigger utterance: drop thunder road from cart

Total number of choices: 14

drop

Original rule:

public <removeFromCart> = remove;

Resulting rule:

public <removeFromCart> = remove | drop;

Score: 2

SubRHS learned under <shoppingcart.removeFromCart>:

Interaction m.1.8

239

> play another song by springsteen
I understand "play song"

> wrong

"play another song by springsteen" is a way to express:
1. play, e.g. "i want hear"

2. object, e.g. '"great"

3. recording artist name, e.g. "tom waits"

0. None of the above

> 1

application.

Sorry, I can’t learn what you mean as it is not supported by the end

Appendix E: Learning Episodes

LE m.1.8

Trigger utterance: play another song by springsteen

Total number of choices: 1

SubRHS learned: None.

Score: 1. Beyond the capabilities of the application.

LE m.1.9

Trigger utterance: shut up

Total number of choices: 7

SubRHS learned under <musicbox.stop:

shut up

Original rule:

public <stop> = [<_POLITEWORD>] (stop | halt) [<_POLITE_WORD>];

Resulting rule:

public <stop> = [<_POLITEWORD>] (stop | halt | shut up) [<_POLITE WORD>];

Score: 24. Note that henceforth the system understands please shut up please
(should anyone say that!)

E.2.2 User 2

E.2.2.1 Summary

Duration: 18 minutes
Number of utterances: 24
Number of learning episodes: 7

Number of cancelations: 1

Average number of choices: 3.29
Number of rules learned: 5

Average GSG score: 1.00

240

Appendix E: Learning Episodes

E.2.2.2 Details

Cancelation m.2.1

> how much is it

I don’t understand right away what you mean but let me guess...
"how much is it" is a way to express:

1. balance, e.g. '"balance"

2. track title, e.g. "my all"

3. recording notes, e.g. '"rolling stone on what is something of a
transit"

0. None of the above

>0

Is "how much is it" a way to express get information, e.g. "list

information"?

1. Yes
2. No
> cancel

Ok, back to square one

Comment: User probably realized there was no direct way of obtaining price, but

see LE m.2.2.

LE m.2.1

Trigger utterance: what’s my total

Total number of choices: 1

SubRHS learned under <shoppingcart.balance>:

what is my total

Original rule:

public <balance> = [what] [is] [the | my] balance | how much is that;

Resulting rule:

public <balance> = [what] [is] [the | my] balance | how much is that |

what is my total;

Score: 1. An

expert grammar writer would have generalized to public <balance> = [what]

[is] [the | my] [balance | total]l | how much is that;.

241

Appendix E: Learning Episodes

LE m.2.2

Trigger utterance: how much is lullaby

Total number of choices: 1

how much is

Original rule:

public <addToCart> = add | buy;

Resulting rule:

public <addToCart> = add | buy | how much is;

Score: -1. See interaction m.2

SubRHS learned under <shoppingcart.addToCart>:

LE m.2.3

Trigger utterance: what’s my total

Total number of choices: 0

SubRHS learned: None.

Score: 2. Re-use of rule acquired in m.2.1

LE m.2.4

Trigger utterance: what’s my total

Total number of choices: 0

SubRHS learned: None.

Score: 2. Re-use of rule acquired in m.2.1

242

Appendix E: Learning Episodes

LE m.2.5

Trigger utterance: how much do i owe

Total number of choices: 1

SubRHS learned under <shoppingcart.balance>:

how much do i owe

Original rule:

public <balance> = [what] [is] [the | my] balance | how much is that;

Resulting rule:

public <balance> = [what] [is] [the | my] balance | how much is that | how

much do i owe;

Score: 2

LE m.2.6

Trigger utterance: what other music do you have

Total number of choices: 6

SubRHS learned under <musicbox.listAllSongs>:
what other music <musicbox. ARE_AVAILABLE>

Original rule:
public <listAllSongs> = (what | which | whose) [<_SONG>] <_ARE_AVAILABLE>
"</s>" | [please] <_SHOW> [me] all [<_AVAILABLE>] <_SONG> "</s>";

Resulting rule:
public <listAllSongs> = (what | which | whose) [<_SONG>] <_ARE_AVAILABLE>
"</s>" | [please] <_SHOW> [me] all [<_AVAILABLE>] <_SONG> "</s>" | what

other music <_ARE_AVAILABLE>;

Score: 1. An expert grammar writer would have probably inserted [other
] between (what | which | whose) and [<_SONG>] and placed music under
<_SONG>.

243

Appendix E: Learning Episodes

LE m.2.7

Trigger utterance: i’m ready to pay

Total number of choices: 14

SubRHS learned under <shoppingcart.checkout>:

1 am ready to pay

Original rule:

public <checkout> = [please] checkout [please] | [okay] i am done;

Resulting rule:

public <checkout> = [please] checkout [please] | [okay] i am done | i am
ready to pay;
Score: 1. An expert grammar writer would have probably general-

ized to public <checkout> = [please] checkout [please] | [okay] i am
[done | ready to pay];. Note that ¢ has not been generalized to <musicbox._I>

because <musicbox._I> belongs to a different grammar that is never referenced

(imported) from shoppingcart.

E.2.3 User 3

E.2.3.1 Summary

Duration: 12 minutes
Number of utterances: 13
Number of learning episodes: 8

Number of cancelations: 0

Average number of choices: 4.25
Number of rules learned: 5

Average GsG score: 1.50

244

Appendix E: Learning Episodes 245

E.2.3.2 Details

LE m.3.1

Trigger utterance: put song in my shopping basket
Total number of choices: 1
SubRHS learned: None.

Score: -1. System responded with a “not supported by end-application” message
because put and in my shopping basket were two non-contiguous unparsed segments
that surround an ontologically top-level segment. In this case the answer was not
appropriate because the intention is supported by the end-application. But see

next learning episode (LE m.3.2).

LE m.3.2

Trigger utterance: shopping basket means shopping cart

Total number of choices: 1

SubRHS learned under <shoppingcart.toCart>:

[shopping]l basket

Original rule:

public <toCart> = [in | to | into] [my | the] [shopping] cart;

Resulting rule:

public <toCart> = [in | to | into] [my | the] [shopping]l (cart |

[shopping] basket);

Score: 2-. An expert grammar writer would have written a more com-

pact public <toCart> = [in | to | into]l [my | thel [shoppingl (cart

| basket) but GsG does correctly make the shopping in shopping basket optional.

Appendix E: Learning Episodes 246

LE m.3.3
Trigger utterance: put song in my shopping basket

Total number of choices: 3

SubRHS learned under <shoppingcart.addToCart>:

put

Original rule:

public <addToCart> = add | buy;

Resulting rule:

public <addToCart> = add | buy | put;

Score: 2

LE m.3.4
Trigger utterance: put three little birds in my basket

Total number of choices: 0

SubRHS learned: None.

Score: 2. Re-use of rules acquired in m.3.2 and m.3.3.

LE m.3.5

Trigger utterance: put no woman no cry into basket

Total number of choices: 0

SubRHS learned: None.

Score: 2. Re-use of rules acquired in m.3.2 and m.3.3.

Appendix E: Learning Episodes

LE m.3.6

Trigger utterance: quiet please

Total number of choices: 11

SubRHS learned under <musicbox.mute>:

quiet [<_POLITE_WORD>]

Original rule:

public <mute> = [<_POLITE_WORD>] mute [<_POLITE_WORD>];

Resulting rule:
public <mute> = [<_POLITE WORD>] (mute | quiet [<_POLITE WORD>])

[<_POLITE_WORD>] ;

Score: 2-.

LE m.3.7

Trigger utterance: what’s my current total

Total number of choices: 1

SubRHS learned under <shoppingcart.balance>:

what is my current total

Original rule:

public <balance> = [what] [is] [the | my] balance | how much is that;

Resulting rule:
public <balance> = [what] [is] [the | my] balance | how much is that |

what is my current total;

Score: 1. An expert grammar writter would have written public <balance>
= [what] [is]
[the | my] [current] (balance | toal) | how much is that; but that re-

quires external knowledge that current is in this case optional and that total is in

this case synonym of balance.

247

Appendix E: Learning Episodes 248

LE m.3.8

Trigger utterance: time to pay up

Total number of choices: 17

SubRHS learned under <shoppingcart.checkout>:

time to pay up

Original rule:

public <checkout> = [please] checkout [please] | [okay] i am done;

Resulting rule:

public <checkout> = [please] checkout [please] | [okay] i am done | time
to pay up;
Score: 2. Correct rule but user had to go through 17 choices! See Future Di-

rections ***: more dialogue-state modeling, e.g., likelihood of checkout should

increase with time and with number of songs in cart.

E.2.4 User 4

E.2.4.1 Summary

Duration: 15 minutes
Number of utterances: 22
Number of learning episodes: 4

Number of cancelations: 0

Average number of choices: 4.00
Number of rules learned: 2

Average GsG score: 1.40

E.2.4.2 Details

LE m.4.1

Trigger utterance: search for songs by title

Total number of choices: 3
SubRHS learned: None.

Score: 1. GsaG detects impossibility to learn as the unparsed material surrounds a
segment parsed by an ontologically top-level root (songs). The response here is ap-

propriate as the end-application would not support the resulting feature structure

with an embedded <musicbox.object>.

Appendix E: Learning Episodes

LE m.4.2

Trigger utterance: find songs played by they might be giants

Total number of choices: 4

SubRHS learned: None.

Score: 1. Same case as m.4.1.

LE m.4.3

Trigger utterance: how much have i spents so far (sic)

Total number of choices: 1

SubRHS learned under <shoppingcart.balance>:

how much have i spents so far

Original rule:

public <balance> = [what] [is] [the | my] balance | how much is that;

Resulting rule:
public <balance> = [what] [is] [the | my] balance | how much is that | how

much have i spents so far;

Score: 2-

LE m.4.4

Trigger utterance: check out

Total number of choices: 12

SubRHS learned under <shoppingCart.checkout>:

check out

Original rule:

public <checkout> = [please] checkout [please] | [okay] i am done;

Resulting rule:

public <checkout> = [please] checkout [please] | [okay] i am done | check

out;

Score: 1. Note that an expert grammar writer would have generalized to [please]
(checkout | check out) [please]. At the same time, GSG would have gener-

alized to exactly that if the initial [please] in the original rule had scoped over

all the alternatives.

249

Appendix E: Learning Episodes 250

LE m.4.5

Trigger utterance: check out means checkout

Total number of choices: 0
SubRHS learned: None.

Score: 2. For some reason, user explicitly restated meaning equivalence even after

successful LE m.4.4.

E.2.5 User 5

E.2.5.1 Summary

Duration: 14 minutes
Number of utterances: 20
Number of learning episodes: 4

Number of cancelations: 0

Average number of choices: 7.00
Number of rules learned: 3

Average GSG score: 1.75

Appendix E: Learning Episodes

E.2.5.2 Details

LE m.5.1

Trigger utterance: show me all the songs

Total number of choices: 1

SubRHS learned under <musicbox.getInformation>:

<musicbox. SHOW> me <musicbox._quantity>

Original rule:

public <getInformation> = (list | get | give) [me] [some] (information
| info) [on | about] | [<_.I>] <_VERBDESIRE> know [on | about] | (what |
which | whose) [<_SONG>] <_ARE_AVAILABLE> (in <language> | <_ARTIST>) |
(do you have | is there) (anything | any thing | [a | any] <_SONG>) |
[please] <_SHOW> [me] [<_AVAILABLE>] <_SONG>;

Resulting rule:

public <getInformation> = (list | get | give) [me] [some] (information
| info) [on | about] | [<_.I>] <_VERB.DESIRE> know [on | about] | (what |
which | whose) [<_SONG>] <_ARE_AVAILABLE> (in <language> | <_ARTIST>) |
(do you have | is there) (anything | any thing | [a | any] <_SONG>) |
[please] <_SHOW> [me] [<_AVAILABLE>] <_SONG> | <_SHOW> me <_quantity>;

Score: 2-

LE m.5.2

Trigger utterance: repeat caro mio ben

Total number of choices: 9

SubRHS learned: None.

Score: 1. Choice “rewind” was presented but was not liked by user. But see LE

m.5.4.

251

Appendix E: Learning Episodes 252

LE m.5.3

Trigger utterance: lower the volume

Total number of choices: 12 (9) + 1 (Choice 9th was correct but was overseen
by the user, who, at choice 12th decided to rephrase: lower the volume means softer

after which only a confirmation question had to be answered.)

SubRHS learned under musicbox.softer:

lower <musicbox._quantity> wvolume

Original rule:

public <musicbox.softer> = [<_POLITEWORD>] [play] softer [<_POLITEWORD>];

Resulting rule:

public <musicbox.softer> = [<_POLITE_WORD>] [play] (softer | lower

<_quantity> volume) [<_POLITE_WORD>];

Score: 2. Expert grammar writer could have hardly done better — overgeneral-

ization of the as musicbox._quantity is harmless.

LE m.5.4

Trigger utterance: repeat caro mio ben

Total number of choices: 5

SubRHS learned under musicbox.rewind:

repeat

Original rule:

public <musicbox.rewind> = [<_POLITE_WORD>] rewind [<_POLITE _WORD>];

Resulting rule:

public <musicbox.rewind> = [<_POLITE_WORD>] (rewind | repeat)

[<_POLITE_WORD>] ;

Score: 2+. User eventually mapped her idea of repeating to the application’s

<rewind>.

253

References

Allen, James (1995). Natural Language Understanding, 2nd ed., Benjamin/Cummings.

Allen, James, et al. (1996). Robust Understanding in a Dialogue System. In Proceedings
of ACL-1996.

Baker, C.L. and J.J. McCarthy (eds.) (1981). The logical problem of language acquisition.
The MIT Press.

Bloom, P. (ed.) (1994). Language acquisition — Core readings. The MIT Press.

Brent, M.R. (1997). Computational approaches to language acquisition. The MIT Press.
Brill, Eric (1994). Some Advances in Part of Speech Tagging. In Proceedings of AAAI-199).
Carbonell, Jaime G. (1979). Towards a self-extending parser. In Proceedings of ACL-79.
Carpenter, Bob (1998). Type-Logical Semantics. The MIT Press.

Chomsky, Noam (1956). Three models for the description of language. In IRE Trans. Info.
Theory, 2(3), 113-124.

Chomsky, Noam (1959). On certain formal properties of grammars. In Information and
Control, 2 (3), 137-167.

Chu-Carroll, Jennifer and Bob Carpenter (1999). Vector-Based Natural Language Call
Routing. In Computational Linguistics, 25(3), pages 361-388.

Culy, Christopher (1985). The Complexity of the vocabulary of Bambara. In Linguistics
and Philosophy, 8, pages 345-351.

Dalrymple, Mary (1999). Lexical-Functional Grammar. In MIT Encyclopedia of the Cogni-
tive Sciences, edited by Rob Wilson and Frank Keil. The MIT Press.

Denecke, Matthias (1997). An Information-based Approach for Guiding Multi-modal
Human-Computer Interaction. In Proceedings of IJCAI-1997.

Dennett, Daniel C. (1984). Can machines think? In How We Know, edited by M. Shafto.
Harper & Row.

Fellbaum, Christiane (ed.) (1998). WordNet: An Electronic Lexical Database. The MIT
Press.

Glass, James (1999). Challenges for Spoken Dialogue Systems. In Proceedings of the 1999
IEEE ASRU Workshop.

Gertner, A.N. and A.L. Gorin (1993). Adaptive language acquisition for an airline informa-
tion subsystem. In Artificial Neural Networks for Speech and Vision, edited by R. Mam-
mone.

Goodman, R.M., C.M. Higgins, J.W. Miller, and P. Smyth (1992). Rule-based neural net-
work for classification and probability estimation. In Neural Comput.

254

Granger, R.H. (1977). FOUL-UP: A program that figures out meanings of words from
context. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence
(ILJCAI-77).

Gorin, Allen L. (1995). On automated language acquisition. In Journal of the Acoustical
Society of America, June 1995.

Grune, Dick, and Ceriel J.H. Jacobs (1990). Parsing Techniques: A Practical Guide. Ellis
Horwood.

Hall, P. and G. Dowling (1980). Approximate string matching. In ACM Computing Surveys,
vol. 12, pp. 381-402.

Jelinek, Frederick (1997). Statistical Methods for Speech Recognition. The MIT Press.

Java™ Speech API, version 1.0 (1998). http://java.sun.com/products/java-media/
speech.

Java™ Speech Grammar Format, version 1.0 (1998). http://java.sun.com/products/
java-media/speech/forDevelopers/JSGF.

Jurafsky, Dan, and James H. Martin (2000). Speech and Language Processing. Prentice Hall.

T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli (1994). A Fully Implicit
Algorithm of Exact-state Minimization. In Proc. IEEE Design Automation Conf., pp. 684—
690.

Kiefer, Berrnd and Hans-Ulrich Krieger (1998). A Bag of Useful Techniques for Efficient
and Robust Parsing. DFKI Research Report 98-04.

Kiyono, M. and J. Tsujii (1993). Linguistic knowledge acquisition from parsing failures.
In Proceedings of the Sizth Conference of the European Chapter of the Association for
Computational Linguistics.

Lavie, Alon (1996). GLR*: A Robust Grammar-Focused Parser for Spontaneously Spoken
Language. Ph.D. dissertation. School of Computer Science, Carnegie Mellon University.

Lehman, Jill, and Jaime Carbonell (1989). Learning the user’s language: A step towards
automated creation of user models. In Wahlster, W. and A. Kobska (eds), User Modelling
in Dialog Systems.

Lehman, Jill (1989). Adaptive Parsing: Self-extending Natural Language Interfaces. Ph.D.
dissertation, School of Computer Science, Carnegie Mellon University.

Manning, Cristopher D. and Hinrich Schiitze (1999). Foundations of Statistical Natural
Language Processing. The MIT Press.

Mayfield, Laura, Marsal Gavalda, Wayne Ward and Alex Waibel (1995). Concept-Based
Speech Translation. In Proceedings of ICASSP-1995.

Mayfield, L., M. Gavalda, Y.-H. Seo, B.Suhm, W. Ward, and A. Waibel (1995). Parsing
real input in JANUS: A concept-based approach. In Proceedings of TMI-95.

Miller, S., R. Bobrow, R. Ingria, and R. Schwartz (1994). Hidden understanding models of
natural language. In Proceedings of ACL-94.

255

Miller, S., M. Bates, R. Bobrow, R. Ingria, J. Makhoul, and R. Schwartz (1995). Recent
progress in hidden understanding models. In Proceedings of the spoken language systems
technology workshop, ARPA, Morgan Kaufmann.

Mitchell, Tom. (1997). Machine Learning. McGraw Hill.
Miller, Wolfgang (1997). Ph.D. dissertation. Universitat Karlsruhe.

Morrill, Glyn (1994). Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic
Publishers.

Napoli, Donna Jo (1993). Syntax: Theory and Problems. Oxford University Press.

Neidle, Carol (1994). Lexical-Functional Grammar. In Encyclopedia of Language and Lin-
guistics. Pergamon Press.

Newell, A. and H. A. Simon (1972). Human Problem Solving. Prenctice-Hall.

Nigam, Kamal, Andrew McCallum, Sebastian Thrun and Tom Mitchell (2000). Text Classi-
fication from Labeled and Unlabeled Documents using EM. To appear in Machine Learning.

Nuance™ (2000). http://www.nuance . com/index.htma?SCREEN=speechobjects.

Parekh, R. and V. Honavar (2000). Automata Induction, Grammar Inference, and Language
Acquisition. In Handbook of Natural Language Processing. Dale, Moisl and Somers (eds).
Marcel Dekker.

Perlmutter, David M. (1983). Studies in Relational Grammar I. University of Chicago Press.

Perlmutter, David M. and C. Rosen (eds.) (1984). Studies in Relational Grammar II. Uni-
versity of Chicago Press.

Pieraccini, R. and E. Levin (1993). A Learning Approach to Natural Language Under-
standing. In New advances and trends in speececognition and coding, NATO ASI Series,
Springer-Verlag.

Pollard, Carl, and Ivan A. Sag (1994) Head-Driven Phrase Structure Grammar. The Uni-
versity of Chicago Press.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. In Proceedings of the IEEE, 77(2), pp. 257-286.

Manny Rayner and David Carter (1996). Fast Parsing using Pruning and Grammar
Specialization. In Proceedings of ACL-1996.

Rosé, Carolyn Penstein (1997). Robust Interactive Dialogue Interpretation. Ph.D. dis-
sertation. Language Technologies Institute, School of Computer Science, Carnegie Mellon
University.

Rosé, Carolyn P. and Alon Lavie (1999). LCFLEX: An Efficient Robust Left-Corner Parser.
University of Pittsburgh, Learning Research and Development Center, LRDC Technical
Report LRDC-NLU-1.

Rudnicky, Alex, et al. (1999). Creating Natural Dialogs in the Carnegie Mellon COMMU-
NICATOR System. In Proceedings of Eurospeech-1999.

256

Sankar, A. and A.L. Gorin (1993). Adaptive language acquisition in a multisensory device.
In Artificial neural networks for speech and wvision, edited by R. Mammone.

Seneff, Stephanie (1992). TINA: a natural language system for spoken language applications.
In Computational Linguistics, 18(1), pp. 61-83.

Shieber, Stuart (1985). Evidence Against the Context-freeness of Natural Language. In
Linguistics and Philosophy, 8, pp. 333—-343.

Sleator, Daniel and Davy Temperley (1993). Parsing English with a Link Grammar. In
Proceedings of the Third International Workshop on Parsing Technologies.

Jonathan Slocum, Jonathan (1981). A Practical Comparison of Parsing Strategies. In
Proceedings of ACL-1981.

Tellme™ (2000). http://studio.tellme.com/library/grammar/.

Tishby, N.Z. and A.L. Gorin (1994). Algebraic learning of statistical associations. In Com-
puter, Speech & Language.

Tomita, Masaru (1987). An Efficient Augmented-Context-Free Parsing Algorithm. In
Computational Linguistics, 13(1-2), pp. 31-46.

Tomita, Masaru, and Harry Bunt (eds.) (1996). Recent Advances in Parsing Technology.
Kluwer Academic Publishers.

Turing, Alan (1950). Computing machinery and intelligence. In Mind, 59, pp. 433-460.

Universitat des Saarlandes (1994). The Verbmobil Semantic Specification. Verbmobil
Report 1994-6.

Waibel, Alex, Michael Finke, Donna Gates, Marsal Gavalda, Thomas Kemp, Alon Lavie,
Lori Levin, Martin Maier, Laura Mayfield, Arthur McNair, Ivica Rogina, Kaori Shima, Tilo
Sloboda, Monika Woszczyna, Torsten Zeppenfeld, and Puming Zhan (1996). JaNus-II:
Translation of Spontaneous Conversational Speech. In Proceedings of ICASSP-1996.

Waibel, Alex. (1996) Interactive Translation of Conversational Speech. In IEEE Computer,
20(7).

Walker, Marilyn, et al. (1998). Learning Optimal Dialogue Strategies: A Case Study of a
Spoken Dialogue Agent for Email. In Proceedigns of COLING/ACL-1998.

Ward, Wayne (1994). Extracting information in spontaneous speech. In International Con-
ference for Spoken Language Processing, Yokohama, Japan.

Woszczyna, Monika, Matthew Broadhead, Donna Gates, Marsal Gavalda, Alon Lavie, Lori
Levin, and Alex Waibel (1998). A Modular Approach to Spoken Language Translation for
Large Domain. In Proceedings of AMTA-1998.

Zue, Victor, et al. (2000). JUPITER: A Telephone-Based Conversational Interface for
Weather Information. In IEEE Transactions on Speech and Audio Processing, 8(1).

