
Multilingual Modulation by

Neural Language Codes

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Markus Müller
aus Zweibrücken

Tag der mündlichen Prüfung: 29.6.2018

Erster Gutachter: Prof. Dr. Alexander Waibel

Zweiter Gutachter: Prof. Dr. Laurent Besacier

http://www.informatik.kit.edu
http://www.kit.edu
mailto:m.mueller@kit.edu

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe, sowie dass
ich die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht
habe und die Satzung des KIT, ehem. Universität Karlsruhe (TH), zur Sicherung guter
wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, den 3. Mai 2018

Markus Müller

Abstract

Multilingual Speech Recognition remains one of the great challenges in speech
processing. Each of the 7,000+ languages of the world and also many di�erent
accents and dialects require their own acoustic model to achieve acceptable recognition
performance. Even though the human sound inventory is finite and the same phone
symbols are used to transcribe speech across languages, each language and accent
imposes its own coloring to the sounds. Many approaches towards multilingual
adaptation have been proposed, but they generally are inferior to monolingually
trained models and still require language specific data and manual tuning.

In this thesis, we propose a di�erent approach based on a large multilingual model,
which is adapted rapidly using learned language codes. Extracted via an auxiliary neural
network, the language codes encode language properties which are used to gate the
activity of neurons in the multilingual acoustic model network. Using such a large
multilingual model and this language modulation, we are not only able to achieve
parity with monolingually trained models, but even surpass their performance.

This thesis is developed in several stages to investigate the e�ectiveness of the
proposed methods. We built two types of systems using either a classical approach
with multiple explicitly modeled components or a novel approach based on a single
bi-directional Long Short-Term Memory (BiLSTM) network. In traditional systems,
the networks are trained frame-wise using a pre-computed alignment between the
sequence of acoustic feature vectors and the targets. Using BiLSTM networks in
combination with the Connectionist Temporal Classification (CTC) loss function, the
network itself learns the alignment between the sequence of input vectors and output
targets. We begin with a classical speech recognition system which has multiple
components: an acoustic model, a language model, a pronunciation dictionary and

v

an acoustic front-end for signal pre-processing. In state-of-the-art speech recognition
systems, some (or all) of these components are based on neural networks.

Additive Language Codes. Initially, we use an approach similar to speaker
adaptation. But instead of appending a low-dimensional representation of speaker
properties to the acoustic features, we here append the language identity information
using one-hot encoding. Adding such a code to the acoustic features of the
pre-processing and the acoustic model improves the recognition accuracies. Next, we
attempt to develop a low-dimensional representation of language properties. To extract
such a code, we train a feed-forward network for language identification. This network
is composed of multiple layers, with a bottleneck layer as second-to-last layer. After
training, the layers after the bottleneck are discarded and the output activations of the
bottleneck are taken as Language Feature Vectors (LFVs). Supplying this language
code instead of the one-hot encoded language identity increases the performance
further.

Multiplicative Language Codes. Beyond additive codes, we wish to maximize
the language adaptation of the system using neural network modulation with
multiplicative language codes. For this reason, we prefer to do experiments using
RNN/CTC based setups. As these systems are based on single BiLSTM networks,
fewer components are modeled explicitly, e.g. no context-dependent polyphones as
in traditional systems are required. Adapting the neural network in this all-neural
architecture enables better language adaptation, as all implicitly learned components
are adapted as well. This architecture maximizes the impact of language adaptation
and is therefore ideal for studying its e�ects, even though traditional systems do
achieve lower word error rates (WERs).

For integrating language codes into BiLSTM networks, we evaluate two
approaches. Appending them to the acoustic features results in gains similar to
traditional systems. But language properties are not as signal related as speaker or
channel properties. Adding these language codes at the same place as the acoustic
features is therefore not optimal. Based on prior work on speaker independence
(Meta-Pi), we propose a method called “modulation” to enable the deeper integration
of language codes into the network architecture. By using the language codes to

vi

gate the outputs of BiLSTM cells, the learned features of the network are modulated
depending on language properties. This stimulates the network in developing feature
detectors based on language codes. Supplying language codes this way enables
the quick adaptation of the neural network based acoustic model to languages, and
improves the recognition accuracy further compared to the simple addition.

Adaptive Neural Language Codes. As an alternative to large monolithical networks,
we also investigate the modulation involving multiple language specific networks
as part of a giant network superstructure, similar to Meta-Pi networks. We adapt
this method to our setup by pre-training monolingual subnets and an ancillary
Neural Language Code (NLC) network. During the joint training of the network
superstructure the weights of all subnets are updated. The ancillary network learns to
adapt the language codes to code more useful representations of language properties.
By applying this method, we do not only achieve parity with the monolingual setup
(24.2% WER), but are able to improve the recognition accuracy further (23.5% WER).

vii

Zusammenfassung

Systeme zur automatischen Spracherkennung haben in den letzten Jahren enorme
Fortschritte in der Erkennungsleistung gemacht, doch es gibt weiterhin viele ungelöste
Probleme. Eines dieser Probleme ist die Multilingualität. Jede der über 7000 Sprachen
in der Welt, ebenso Dialekte, benötigen ein eigenes akustisches Modell um eine
akzeptable Erkennungsleistung zu erzielen. Obwohl das Inventar an menschlichen
Lauten begrenzt ist und es ein sprachenübergreifendes phonetisches Alphabet gibt,
prägt jede Sprache den Phonemen ihre spezielle Färbung auf. Grund dafür sind
koartikulations Artefakte, welche beim Übergang zwischen Phonemen entstehen.
In der Vergangenheit wurden verschiedene Ansätze zur multilingualen Adaption
vorgestellt, aber multilingual trainierte Modelle erreichen im Allgemeinen nicht
die Leistung von Modellen, welche auf nur einer Sprache trainiert wurden. Wir
verfolgen einen Ansatz, bei welchem ein großes, multilinguales Modell trainiert und
mittels eines Sprachencodes adaptiert wird. Diese Sprachencodes werden mittels
eines zusätzlichen neuronalen Netzes extrahiert und kodieren Sprachenmerkmale,
welche dazu benutzt werden, um die Ausgaben von Neuronen im multilingualen
Netz zu steuern. Basierend auf dem Sprachencode werden die Ausgaben von
Neuronen entweder verstärkt oder abgeschwächt. Dank der Kombination eines großen
multilingualen Modells und dieser sogenannten Modulation erreicht unser System
nicht nur die Leistung eines monolingual trainierten Modells, sondern übertri�t sie
sogar noch.

Ein Spracherkennungssystem besteht aus mehreren Komponenten, beispielsweise
dem akustischen Modell, Sprachmodell, Aussprachewörterbuch oder der
Signalvorverarbeitung. Bei Systemen welche dem Stand der Technik entsprechen
bestehen diese Komponenten aus neuronalen Netzen. Ein Beispiel sind akustische

ix

Modelle, bei welchen mehrschichtige neuronale Netze (Deep Neural Networks, DNNs)
zum Einsatz kommen. Um ein solches Netz beispielsweise an Sprecher zu adaptieren,
fügt man eine niedrigdimensionale Repräsentation von Sprechereigenschaften an die
akustische Merkmale an. Dies erlaubt es dem Netz, sich an Sprechereigenschaften
einzustellen. Zur Adaptation an Sprachen verwenden wir einen ähnlichen Ansatz.

Additive Sprachencodes. Für ein erstes Experiment wählen wir einen naiven Ansatz
und kodieren die Eingabesprache als Bitvektor. Jedes Bit entspricht einer Sprache
und ist gesetzt, sofern diese Sprache die Eingabesprache ist. Dieser Code wird an die
akustischen Merkmale angehängt und wir beobachten so bereits eine Verbesserung
bei multilingual trainierten Systemen. Jedoch bildet ein solcher Code lediglich die
Identität der Sprache ab, nicht aber deren Eigenschaften. Als nächstes haben wir daher
eine niedrigdimensionale Repräsentation von Spracheneigenschaften entwickelt. Um
einen solchen Code zu erzeugen, trainieren wir ein neuronales Netz darauf, Sprachen
zu erkennen. Dieses Netz enthält als vorletzte Schicht ein sogenanntes Bottleneck, eine
Schicht welche im Vergleich zu den übrigen Schichten des Netzes nur sehr wenige
Neuronen beinhaltet. Nach dem Training werden die Schichten nach dem Bottleneck
verworfen und die Ausgaben des Bottlenecks als Sprachencode (Language Feature
Vectors, LFVs) verwendet. Angehängt an die akustischen Merkmale steigert dieser
Code die Erkennungsleistung des multilingualen Systems gegenüber dem Bitvektor
mit der Spracheninformation.

Multiplikative Sprachencodes. In jüngster Zeit rücken Spracherkennungsysteme,
welche auf einem einzigen neuronalen Netz basieren, in den Fokus der Forschung.
Diese bestehen üblicherweise aus bi-direktionalen Long Short-Term Memory
(BiLSTM) Netzwerken, welche ein mächtiges Werkzeug zur Sequenzmodellierung
sind. In traditionellen Spracherkennungssystemen werden die Netzwerke frame-weise
trainiert. Dafür werden in einem zusätzlichen Schritt vorab die Zielsymbole
an den akustischen Merkmalsvektoren ausgerichtet. Beim Einsatz von einem
BiLSTM Netzwerk, welches mittels der Connectionist Temporal Classification (CTC)
Fehlerfunktion trainiert wird, entfällt dieser zusätzliche Schritt: Das Netzwerk wird
direkt auf den Ausgabesymbolen trainiert und lernt die Ausrichtung selbstständig.

x

Ein solches System beinhaltet außerdem weniger explizit modellierte
Komponenten, beispielsweise keine kontextabhängigen Polyphone eines traditionellen
Systems. Das Netz lernt solche Aspekte implizit zu modellieren. Die Adaptation des
zentralen neuronalen Netzes eines solchen Systems ermöglicht daher eine bessere
Adaption an Sprachen, da die implizit gelernten Aspekte ebenfalls mit adaptiert
werden. Diese Systemarchitektur maximiert die E�ekt der Sprachenadaption und
ist daher ideal um seine Auswirkungen zu messen, obwohl traditionelle Systeme im
Allgemeinen geringere Wortfehlerraten (WER) aufweisen.

Zur Integration der Sprachencodes in BiLSTM Netzwerke vergleichen wir
zwei Ansätze. Das Anhängen an die akustischen Merkmale führt zu ähnlichen
Verbesserungen wie bei traditionellen Systemen. Aber Spracheneigenschaften sind
nicht so signalbezogen wie beispielsweise Sprecher- oder Kanaleigenschaften. Das
Hinzufügen der Sprachencodes an der gleichen Stelle wie die akustischen Merkmale
ist daher nicht optimal. Im Rahmen von Meta-PI Netzwerken wurde eine Methode
namens Modulation vorgestellt. Sie erlaubt die tiefere Integration von Sprachencodes
in die Netzwerkarchitektur. Anhand der Sprachencodes werden die Ausgaben
von BiLSTM Einheiten basierend auf Spracheneigenschaften entweder verstärkt oder
abgeschwächt. Dies stimuliert das Netzwerk Merkmalsdetektoren in Abhängigkeit
von Sprachencodes zu lernen. Die Integration der Codes auf diese Art erlaubt die
schnelle Adaption des auf neuronalen Netzen basierenden akustischen Modells auf
Sprachen. Der Einsatz dieser Methode führt zu einer besseren Erkennungsleistung
gegenüber dem Anhängen der Sprachencodes an die akustischen Merkmale.

Adaptive neuronale Sprachencodes. Der zweite Aspekt von Meta-PI Netzen ist
der Einsatz von vortrainierten Teilnetzen in einem großen Supernetzwerk. Wir
haben diesen Ansatz für unseren Anwendungsfall adaptiert und monolinguale
Teilnetze, sowie ein Hilfsnetzwerk zur Extraktion neuronaler Sprachencodes (NLC)
trainiert. Während des gemeinsamen Trainings als Teil des Supernetzwerks werden
die Parameter aller Teilnetze mit optimiert. Das NLC Hilfsnetz lernt die Sprachencodes
so zu adaptieren, dass sie Spracheneigenschaften extrahieren, welche bei der
Spracherkennung ein besseres Ergebnis liefern. Durch die Anwendung dieser
Methode erreicht unser System nicht nur die gleiche Leistung wie ein monolingual
trainiertes (24.2% WER), sondern sogar ein besseres Erkennungsergebnis (23.5% WER).

xi

To my parents.

In gratitude.

Acknowledgements

I would like to thank every one who has supported and helped me during the work on
my thesis. First and foremost, I want to thank Prof. Alex Waibel for making me part
of his team and letting me perform the research leading to my thesis, for his advice
and support, for our discussions, and for being a rich source of new ideas. Working at
the Interactive Systems Laboratories has been a real joy. I would also like to extend my
thanks to Prof. Laurent Besacier for showing interest in my thesis and for being my
co-advisor. I enjoyed working with Laurent during the JSALT workshop in 2017 and
the BULB project.

With Alex being the “father” of this thesis, I also have thank my “big brother”,
Sebastian Stüker. Always available for discussions, he gave important advice and
contributed very much to the success of my thesis. I also have to thank Sarah Fünfer,
with who I shared an o�ce during my first years at the institute. Thank you for being
the best o�ce mate ever.

A special thank goes to Elizabeth Salesky, Florian Deßloch and Jan Niehues for
proof-reading parts of my thesis. My thanks also extend to all the past and present
members of the ASR team with whom I have worked over the years: Jonas Gehring,
Michael Heck, Christian Mohr, Huy Van Nguyen, Bao Quoc Nguyen, Thai Son
Nguyen, Matthias Sperber, and Thomas Zenkel. Additionally to the ASR team, I
would like to thank the members of the MT and Dialog teams with whom I had many
fruitful discussions during my time at the lab: Jan Niehues, Eunah Cho, Thanh-Le Ha,
Ngoc Quan Pham, Teresa Herrmann, Mohammed Mediani, Maria Schmidt, and Stefan
Constantin.

My thanks also go out to all secretarial, technical and administrative sta�. First
and foremost Silke Dannenmaier and Margit Rödder, Bastian Krüger, Franziska

iii

Vogel, Virginia Roth and Mirjam Simantzik. I would like to thank our colleagues in
Pittsburgh: Florian Metze, Alan Black, Susanne Burger, Ramon Sanabria, Yajie Miao,
Jae Cho and Eric Riebling. Thank you for welcoming me during my stays at the CMU.
I am also thankful to Odette Scharenborg and Emanuel Doupoux for including me at
the JSALT workshop in 2017, and to all members of the Rosetta team, especially Pierre
Godard.

At last but not least, I would like to thank my parents for always supporting and
encouraging me on my journey. Thanks go also to Marcel Noe who got me interested
in studying computer science in Karlsruhe. I would like to also thank my relatives and
friends for their support and interest, notably Kurt Werle.

iv

Contents

Abstract v

Zusammenfassung ix

Acknowledgements iii

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Main Contribution . 1
1.2 Overview and Structure . 2

2 Theory and Background 5
2.1 Automatic Speech Recognition . 5

2.1.1 Evaluation Metrics . 8
2.2 Artificial Neural Networks . 10

2.2.1 Feed Forward Neural Networks 10
2.2.2 Recurrent Neural Networks . 11
2.2.3 Activation Functions . 11
2.2.4 Error Functions . 12
2.2.5 Update Functions . 14

v

CONTENTS

2.2.6 Parameter Initialization . 15
2.2.7 Regularization . 16
2.2.8 Learning Rate Scheduling Methods 17

2.3 Speech Recognition Using Neural Networks 19
2.3.1 Bottleneck Features . 19
2.3.2 DNN Acoustic Models . 20
2.3.3 DNN Acoustic Model Adaptation 20

2.4 Speech Recognition Using Recurrent Neural Networks 21
2.5 Articulatory Features . 22
2.6 Multilingual Speech Recognition . 25

2.6.1 GMM/HMM Based Setups . 25
2.6.2 DNN/HMM Based Setups . 25
2.6.3 All-neural Based Approaches . 26

2.7 Meta-PI Networks . 27

3 Experimental Setup 31
3.1 Data Sets . 31

3.1.1 IARPA BABEL . 31
3.1.2 Euronews Corpus . 32
3.1.3 Data Collected by BULB . 33

3.2 Pronunciation Dictionaries . 34
3.3 Tasks . 34

3.3.1 Acoustic Unit Discovery . 35
3.3.2 Low-resource ASR . 35
3.3.3 Multilingual ASR . 35

3.4 Toolkits . 36

4 Acoustic Unit Discovery for Language Documentation 39
4.1 Our Approach Towards Acoustic Unit Discovery 40
4.2 Phone Boundary Detection . 40

4.2.1 Evaluation of Segmentation Quality 41
4.2.2 Experimental Setup . 42
4.2.3 Results . 42

vi

CONTENTS

4.2.4 BiLSTM Based Segmentation . 42
4.3 Articulatory Feature Extraction . 43

4.3.1 Articulatory Features for Low-Resource ASR 45
4.3.2 Cross-lingual AF Extraction . 51
4.3.3 BiLSTM Based AF Detection . 51
4.3.4 Neural Modulation Enhanced AF Detection 57

4.4 Articulatory Feature Based Clustering . 59
4.4.1 Evaluation of Features for Clustering 60
4.4.2 Unsupervised Evaluation on Mbosi 61

4.5 Conclusion . 63

5 Language Selection 65
5.1 Experimental setup . 65
5.2 Combination of a Single Language with Tamil 67
5.3 Methods of Using Data from Additional Languages 69
5.4 Combining Multiple Languages . 70
5.5 Conclusion . 72

6 Language Adaptation by Additive Language Codes 73
6.1 Adaptation Using Language Identity . 74

6.1.1 Experimental Setup . 74
6.1.2 Results . 76
6.1.3 Concluding Remarks . 77

6.2 Language Feature Vectors . 78
6.2.1 LFV Network Architecture and Training 78
6.2.2 LFV Network Hyperparameter Optimization 79
6.2.3 LFV Analysis . 82
6.2.4 Multilingual Speech Recognition 86

6.3 Conclusion . 88

7 Language Adaptation by Multiplicative Language Codes 91
7.1 Multilingual Systems Using Two Languages 92

7.1.1 Experimental Setup . 93
7.1.2 Monolingual Baseline . 94

vii

CONTENTS

7.1.3 Multilingual Experiments . 95
7.1.4 Language Adaptive Networks . 95

7.2 Multilingual Systems Using Multiple Source Languages 96
7.3 Neural Network Modulation . 99

7.3.1 Experimental Setup . 101
7.3.2 Results . 101

7.4 Optimizing the Network Architecture . 104
7.5 Phonetic Pre-Training . 106
7.6 Conclusion . 108

8 Adaptive Neural Language Codes 109
8.1 Relation to Meta-PI Networks . 109
8.2 Neural Language Codes . 110
8.3 Network Architecture . 112
8.4 Experimental Setup . 113
8.5 Comparison of LFVs and NLCs . 116
8.6 Integration of Monolingual Subnets . 116
8.7 RNN LM Optimization . 118
8.8 Final Results . 119
8.9 Conclusion . 120

9 Conclusion 121
9.1 Language Selection . 122
9.2 Language Adaptation by Additive Language Codes 123
9.3 Language Adaptation by Multiplicative Language Codes 124
9.4 Adaptive Neural Language Codes . 125
9.5 Outlook . 125

Bibliography 127

Appendices 149

A Appendix A 151
A.1 Acknowledgments . 151

viii

List of Figures

2.1 Components of an ASR system. 5
2.2 LSTM cell, from [Gra13] . 12
2.3 Network for bottleneck feature (BNF) extraction. 20
2.4 Overview of the network architecture used in hybrid DNN/HMM

systems. Starting with the stack of the acoustic features, BNFs are
extracted, stacked and used as input to the DNN acoustic model, which
computes the phone posterior probabilities. 21

2.5 IPA Chart, http://www.internationalphoneticassociation.org/content/ipa-chart,
available under a Creative Commons Attribution-Sharealike 3.0
Unported License. Copyright © 2015 International Phonetic Association. 24

2.6 Meta-PI combinational superstructure, taken from [HW92]. 28

4.1 Example of extracted articulatory features, height of the tongue (vheight). 45
4.2 Network architecture of DNN based articulatory feature detectors

using multi-task learning (MTL): the hidden layers were shared,
while individual output layers for each articulatory feature were used.
Language codes (LC) were optionally supplied. 46

4.3 BiLSTM network architecture. The full sequence gets propagated
through all BiLSTM layers. At the last layer, only the final output is
retained, being modulated and forwarded to the output layer. 52

4.4 Comparison of FER using Adam and Adadelta for updating the weights. 53
4.5 BiLSTM Output Configurations: Using the entire or only the final output. 54
4.6 Comparison of FER using mini-batches of size 256, 1024 and 2048. 55
4.7 FER of di�erent context sizes, comparing DNNs and BiLSTMs 56

ix

LIST OF FIGURES

4.8 FER of the best DNN (context = 6) and BiLSTM (context = 15) setup

during training over several epochs. 56

4.9 BiLSTM network architecture with modulation. The full sequence is

propagated through the BiLSTM layers. Only the final output is retained

after the final BiLSTM layer, being modulated and forwarded to the

output layer. 58

4.10 Multilingual phoneme mapping: Mapping AFs to English phoneme

targets. The system was trained on DE, EN, FR and TR. 61

4.11 Crosslingual phoneme mapping: Mapping AFs to English phoneme

targets. The system was trained on DE, FR and TR. 61

4.12 Comparison of adjusted mutual information (AMI) scores using

di�erent class counts for k-Means clustering, with features based on

ML-BNFs and AFs . 62

6.1 Naïve approach to encode language features by using the language

identity only. 74

6.2 Overview of the network architecture used in our setup. We first stack

the acoustic features (AF) and append a language identification (LID)

code, before feeding them into the ML-BNF network. The ML-BNFs

are stacked as well and the LID code is again added. The second DNN

computes the phone posteriors as part of the acoustic model. 75

6.3 Overview of the network architecture used for LFV extraction. We first

stack the acoustic features (AF) as input to the ML-BNF in order to

extract BNFs. The BNFs are stacked and input into the LID network.

This DNN is trained for language identification. 79

6.4 t-SNE projection of LFVs, colored by language identity 83

6.5 Comparison of distances from prototype vectors to LFVs from speaker

1 (German mother tongue). 85

6.6 Comparison of distances from prototype vectors to LFVs from speaker

2 (French mother tongue). 85

x

LIST OF FIGURES

6.7 Overview of the network architecture used in our setup. We first stack
the acoustic features (AF) and augment them with language feature
vectors (LFV) before feeding them into the ML-BNF network in order
to extract adapted ML-BNFs. The ML-BNFs are stacked as well and
the LFV code is added again. The second DNN computes the phoneme
posteriors. 86

7.1 Network architecture, based on Baidu’s Deepspeech2 configuration. . . . 92
7.2 Network architecture with LFVs being added after the final convolution

layer. 96
7.3 Network layout, based on Baidu’s Deepspeech2 [AAA+16]. Modulating

the output of the second LSTM layer improves the performance more
than adding LFVs after the CNN / TDNN layers. 100

7.4 Network architecture with modulation, BiLSTM outputs for each
direction are combined pairwise. 105

7.5 Network architecture used for pre-training. The red box indicates which
layers were pre-trained. BiLSTM block 3 is added after pre-training. . . . 107

8.1 Example of output activations of the same network configuation, trained
multiple times. The detection of word boundaries is shown. 110

8.2 Neural Language Codes (NLC) network architecture, pre-trained to
output stacked language codes (LC) . 111

8.3 Network architecture, based on Meta-PI, using adaptive neural
language codes (NLC) for network modulation. 112

xi

List of Tables

3.1 Overview of available data from the BABEL project 32
3.2 Overview Euronews Corpus . 33

4.1 Overview of results for cross-lingual phoneme segmentation. The
F1-Score shows 3.7% relative improvement. 43

4.2 Results for cross-lingual phoneme segmentation on English. 43
4.3 Results for cross-lingual phoneme segmentation on Basaa. 43
4.4 Overview of articulatory feature types used 44
4.5 FER of AFs for consonants on the validation set. Networks were trained

using 70h from French, German and Turkish. The addition of LFVs
decreases the error in setup 2. Using MTL shows mixed results and does
not improve the FER for all AFs (setup 3). 46

4.6 FER of AFs for vowels on the validation set. Networks were trained
using 70h from French, German and Turkish. The addition of LFVs
decreases the error in setup 2. Using MTL shows mixed results and does
not improve the FER for all AFs (setup 3). 47

4.7 Consonants: Classification error of AFs using di�erent training
schedules. Networks that were already trained on 3 languages and
then fine-tuned again with data from 4 languages (setup 2) show better
results than using only 10h of data from 4 languages (setup 1). 47

4.8 Vowels: Classification error of AFs using di�erent training schedules.
Networks that were already trained on 3 languages and then fine-tuned
again with data from 4 languages (setup 2) show better results than
using only 10h of data from 4 languages (setup 1). 47

xiii

LIST OF TABLES

4.9 Comparison of WERs using di�erent system configurations. Using
only AFs does not improve the performance (2). Using LFVs for both
lMel+T (setup 3) and AFs (setups 4 and 5) based systems improves the
performance. However, systems based on AFs (4,5) did not improve
beyond the lMel+T baseline (setup 1). 49

4.10 Adding AFs to acoustic features results in a slightly improved WER over
the baseline. 49

4.11 Evaluation of di�erent system combinations. Using AFs in combination
with either system yields identical results to lMel+M2 in system
combination. The three systems are additive, however, and combining
all 3 systems results in the lowest WER. 50

4.12 Contrastive experiments using a language dependent phone set. By the
addition of the best system combination from the previous section, an
improvement over the baseline could be achieved. 50

4.13 Evaluation of classification performance on English, either
multilingually (EN ML) or cross-lingual (EN CL). Cross-lingual
recognition results in higher error rates. Results for consonants are
shown. 51

4.14 Evaluation of classification performance on English, either
multilingually (EN ML) or cross-lingual (EN CL). Cross-lingual
recognition results in higher error rates. Results for vowels are shown. . 51

4.15 Classification error of di�erent context lengths, evaluated using FFNNs
as well as BiLSTM based NNs. 55

4.16 Classification error of AFs trained on German, French and Turkish using
70h per language. The results show the FER on the validation set. 57

4.17 Classification error of AFs trained on German, French and Turkish using
70h per language. The results show the FER on the validation set. 57

4.18 Classification error of AFs for consonants, being trained on German,
French and Turkish using 70h per language. The results show the FER
on the validation set. 59

4.19 Classification error of AFs for vowels, being trained on German, French
and Turkish using 70h per language. The results show the FER on the
validation set. 59

xiv

LIST OF TABLES

4.20 AMI Score for clusterings using either ML-BNFs or AFs. 60
4.21 Comparison of MCD Scores for di�erent conditions 62

5.1 Language overview, including the language family, size of phone set and
amount of phones each language shares with Tamil 66

5.2 Tamil LLP plus additional 40h of another language. The last column
shows the amount of phones each language shares with Tamil 68

5.3 Use of di�erent amounts of data in combination with Tamil LLP. The
number on the left denotes WER, the one on the right ATWV. 69

5.4 Tamil LLP plus additional source languages (Haitian Creole, Lao,
Assamese and Bengali) and training methods: a) ML pre-training, b)
ML pre-training and shifting, c) additional fine-tuning on Tamil LLP
after shifting. The number on the left denotes WER, the one on the right
ATWV. 70

5.5 Overview of languages fitting best and worst to Tamil. The best fitting
languages are sorted starting with the best fitting one, the worst fitting
languages are starting with the worst fitting one. 70

5.6 Use of additional languages (Turkish, Haitian Creole, Pashto and
Bengali) with either 40h of data per language or 40h in total for all
additional languages. The number on the left denotes WER, the one
on the right ATWV. The last column shows the amount of phonemes
shared with Tamil. 71

5.7 Use of additional languages (Vietnamese, Zulu, Cantonese and
Assamese) with either 40h of data per language or 40h in total for all
additional languages. The number on the left denotes WER, the one on
the right ATWV. The last column shows the amount of phonemes shared
with Tamil. 72

6.1 Overview of results for multilingual systems with a merged phoneme
set, showing WERs for English. Applying the LID code improved the
performance. 76

6.2 Overview of results for systems using separate phoneme sets per
language, showing WERs for English. 77

xv

LIST OF TABLES

6.3 Comparison of results for monolingual systems and multilingual setups
using separate phoneme sets per language, showing WERs for English. . 77

6.4 Di�erent network configurations for LFV extraction, using local or
global shu�ing, and optionally a tree-like structure. 81

6.5 Validation error for di�erent hidden layer and bottleneck configurations
for LFV extraction. 81

6.6 Overview of di�erent context widths for LFV extraction, showing FER
for language classification. 82

6.7 Overview of WERs for multilingual systems, comparing LID and LFVs
for adaptation. 87

6.8 Comparison of WERs using mono- and multilingual phoneme sets in
combination with LID and LFVs for language adaptation 87

6.9 Overview of results for cross-lingual phoneme recognition. The results
show the phoneme error rate (PER). 88

7.1 Size of di�erent phone sets . 94
7.2 Monolingual results on the test set showing the phone error rate (PER) . 94
7.3 Multilingual results showing the phone error rate (PER) for di�erent

network configurations . 95
7.4 Multilingual results showing the phone error rate (PER) 96
7.5 Comparison of using ML-BNFs over log Mel + tone features 97
7.6 Character Error Rate (CER) of multilingual (ML) phoneme CTC based

systems, trained on 4 languages. 97
7.7 Character Error Rate (CER) of multilingual grapheme based systems,

trained on 4 languages. 98
7.8 Word Error Rates (WERs) of English grapheme based CTC systems.

Adding LFVs improves the multilingual performance. 99
7.9 CER of grapheme based system trained on 8h per language, 420 BiLSTM

cells per layer . 102
7.10 CER of grapheme based system trained on 45h per language, 420

BiLSTM cells per layer . 102
7.11 PER of grapheme based system trained on 45h per language, 840

BiLSTM cells per layer . 102

xvi

LIST OF TABLES

7.12 PER of phoneme based system trained on 8h per language, 420 LSTM
cells per layer . 103

7.13 CER of phoneme based system trained on 45h per language, 840 LSTM
cells per layer . 103

7.14 WER of English grapheme based systems, trained using 8h of data and
420 cells per BiLSTM layer (8h-420), or 45h and 840 cells per layer (45h-840)104

7.15 Evaluation of merging strategies, PER on phoneme based systems 106
7.16 Evaluation of merging strategies, PER on grapheme based systems . . . 106
7.17 Evaluation of phonetic pre-training, CER on grapheme based systems . 107
7.18 Evaluation of phonetic pre-training, WER 108

8.1 Comparison of adding LFVs and NLCs as language codes to our default
RNN/CTC architecture, showing CERs. 116

8.2 CERs of monolingual subnets, using larger networks increases the
performance. 117

8.3 Comparison of Meta-PI configurations, showing CERs. 118
8.4 Comparison of di�erent subnet sizes, showing CERs. 118
8.5 RNN LM optimization, showing WERs. 119
8.6 Final results on English, showing WERs. 119
8.7 Final results on English, showing WERs from new LM. 120

xvii

Chapter 1

Introduction

Multilingual Speech Recognition is one of the most challenging AI problems. Each
language and even di�erent accents require their own acoustic model to obtain the
best recognition performance. Even though an universal phonetic alphabet exists, each
language and accent has is own coloring or “twang”. Many adaptive approaches have
been proposed, but they are generally inferior to monolingually trained models. In
this work, we propose a novel approach for language adaptation. Using an all-neural
multilingual architecture, we are able to not only reach parity with monolingually
trained models, but surpass their performance.

1.1 Main Contribution

The main contribution of this thesis is a novel neural network adaption technique. A
large multilingual model is modulated by the codes generated by an ancillary network
trained on an auxillary task. This ancillary network learns to code useful language
properties. This language code is used to gate the activity of neurons in the large
network, which is trained to recognize speech from multiple languages. By applying
these codes, the network is stimulated to learn features based on language properties
which allow for rapid language adaptation. While we study this method in the regimen
of multilingual speech recognition, it can also be used in other areas, e.g. to adapt to
speaking modes or dialects.

1

1. INTRODUCTION

1.2 Overview and Structure

We first use traditional speech recognition systems with multilingual acoustic models.
They feature neural network based multilingual components as part of the acoustic
front-end for feature pre-processing and as part of the acoustic model. We study
neural network adaptation methods for adapting networks to languages. Inspired by
speaker adaptation of neural networks which uses a low-dimensional feature vector
encoding speaker and channel properties, we use a similar approach for language
adaptation by appending language codes to the acoustic features, as outlined in
Chapter 6. First, we use a naive approach by providing only the language identity
as one-hot encoded vector to the network. This improves the performance but this
vector does not represent language properties. We therefore shift towards language
codes which encode language properties. To extract such a code, we train a neural
network for language identification. This network features a narrow bottleneck layer
and the output activations of this layer are used as language code after training.
Using this language representation improves the performance more than using the
one-hot encoded language identity. While we could close the gap between mono- and
multilingual systems with this approach further, we still observe a loss in performance
when training acoustic models for multiple languages.

Language properties are not as signal related as speaker or channel characteristics.
Adding language codes deeper into the network architecture should therefore improve
the performance, as we study in Chapter 7. We also transition from a traditional
system architecture to an all-neural architecture. While traditional setups feature
many explicitly modeled components, all-neural approaches learn to model aspects
implicitly. Adapting the network to languages adapts the learned features as well and
the adaptation has a larger e�ect. With this system architecture, we use multiplicative
codes, inspired by Meta-PI networks which feature Meta-PI connections to gate the
activity of neurons. These connections apply a weight to the output of a neural unit
by multiplication with a coe�cient. We call this type of adaptation modulation. We
modulate the output of a hidden layer in our network architecture with language codes
which improves the performance over the simple addition of the codes to the acoustic
features at the input layer of the network.

2

1.2 Overview and Structure

Once extracted, we keep the language codes fixed during system training. Using
adaptive codes is a better approach, as the code is modified to improve the overall
system performance. In Chapter 8, we study using such adaptive codes in our
network architecture. Inspired by Meta-PI, we create a network superstructure
which combines multiple subnets which were pre-trained on di�erent tasks. We use
monolingually pre-trained subnets and a neural language code network. During the
joint optimization, the parameters of all networks are updated. This includes the
language codes which are updated for optimal multilingual performance. Using this
approach, we could not only reach parity with monolingual acoustic models, but also
improve the recognition accuracy further.

3

Chapter 2

Theory and Background

2.1 Automatic Speech Recognition

Automatic speech recognition (ASR) is the translation of speech into the corresponding
word sequence. This is a di�cult problem, because speech is a highly variable
biosignal. There are variabilities on multiple levels: signal, phonetic and linguistic.
Special methods have been proposed to mitigate these variabilities. This section
provides a brief overview, [HAH01] provides a more detailed description.

Audio
(Speech)

Pre-
Processing Decoder

Acoustic
Model

Language
Model

Pron.
Dictionary

Transcribed
Text

Figure 2.1: Components of an ASR system.

Figure 2.1 shows a block diagram of a typical ASR system. It features components
like, e.g. the pre-processing of the raw audio signal, the acoustic model, language
model and the pronunciation dictionary. ASR can be described by the following

5

2. THEORY AND BACKGROUND

fundamental equation:
ŵ = argmax

W

P (W |X) (2.1)

With ŵ being the word sequence, W being words and X the acoustic representation
thereof. argmax

w

determines the most likely word sequence, given the acoustic
representation X . Using the Bayes rule, the equation can be rewritten as in:

ŵ = argmax
W

P (W |X) = argmax
W

P (X|W) · P (W)

P (X)
= argmax

W

P (X|W) · P (W)

(2.2)
The term P (X) can be omitted as we are only interested in the most likely word
sequence and P (X) becomes constant when applying the argmax. Components of
an ASR system can be found in this formula, e.g. the acoustic model P (X|W) or the
language model P (W).

Audio Pre-processing

The first step in the speech recognition pipeline is the feature pre-processing. Input
is the digital representation of an analogue audio signal containing speech. The
pre-processing extracts speech features out of the raw audio signal, thereby performing
a dimensionality reduction as well as to address variability. Ideally, the extracted
features should be robust towards noise, channel distortions and di�erent speakers.
Typical features are Mel frequency cepstral coe�cients (MFCCs) [DM80], the mean
variance distortion response (MVDR) [MR97] or the logarithmic Mel scaled spectrum
(logMel) [SVN37]. All these features operate in the frequency domain instead of the
time domain, which requires a transformation of the signal. The Fourier transform
[Fou22] is used to transform the signal into the frequency domain. In order to retain
the temporal structure of the signal, windowing is applied. Typical window sizes are
16ms or 32ms, which provide a good trade-o� between frequency and time resolution.
Within each window, the signal is considered to be stationary.

There exist so-called tonal languages, where pitch and tone carry semantic
information, e.g. Vietnamese or Cantonese. Special features were developed for this
type languages. In this work, we used the fundamental frequency variation (FFV)
[LHE08], as well as a pitch tracker [Sch99]. Estimating the fundamental frequency is
di�cult because of ambiguity. The speech signal, as it is modulated by the human vocal

6

2.1 Automatic Speech Recognition

tract, contains harmonics and depending on the acoustic conditions, such a harmonic
may be wrongly recognized as the fundamental frequency.

Pronunciation Dictionary

The task of speech recognition is to generate a transcript from speech. Systems
therefore need to know which tokens to recognize. Training systems directly on words
is possible [SLS16], but requires a massive amount of data. Adding new words also
proves di�cult in such a system architecture. Therefore, smaller units are generally
chosen to model the acoustics. The pronunciation dictionary provides the mapping
from words to these tokens, the acoustic units. Typically, phonemes are being used
to model the pronunciations of words. A common set of phones is the international
phonetic alphabet (IPA) [Ass99]. Derived from it are SAMPA [W+97] and an extension
to it X-SAMPA [Wel95] which encodes the IPA symbols using only ASCII1 characters.

It is also possible to build ASR systems using only the written representation of
the target language. By using so-called graphemes as acoustic units, systems infer the
letter-to-sound rules themselves. Depending on the language, automatically learning
these rules is di�cult and the resulting system produces more recognition errors.
Given enough training data, systems can also be trained to recognize words as acoustic
units [SLS16].

Acoustic Model

The acoustic model is a central part of ASR systems. It estimates P (X|W), the
conditional probability that the sequence of acoustic feature vectors X is produced
by the word sequence W . The challenge is to build a model which closely
reflects the acoustic properties of the language spoken. Phonemes are not uttered
isolated, but in context of other phonemes, which results in co-articulation artifacts.
Context-dependent acoustic units therefore improve the recognition accuracy in
traditional systems.

There are two types of acoustic models: traditional systems use an HMM
based model [Rab89], whereas novel approaches are based entirely on neural
networks [GFGS06, CJLV16]. HMM based models can be further divided into

1American Standard Code for Information Interchange

7

2. THEORY AND BACKGROUND

GMM/HMM and DNN/HMM based systems. Although DNN/HMM based
setups are the state-of-the-art approach, GMM/HMM based systems still play in
important role. They are well researched and because the knowledge is modeled
explicitly instead of implicitly by a neural network, they are required for certain
adaptation techniques [BBdSM86, PKK+08, GW96]. GMM/HMM systems are also
required for bootstrapping DNN/HMM systems, especially for determining the
context-dependent polyphone models, which are context-dependent phone models
[YW93, HHL89].

Language Model

The language model estimates the prior probability P (W) of a given word sequence.
It is an additional source of information and helps to address acoustic ambiguity.
Without a proper language model, speech recognition systems tend to hypothesize
acoustically similar, but wrong word sequences:

This machine can recognize speech/This machine can wreck a nice beach
European elections campaign/European election scum paying
Show me a new display/Show me a nudist play

To compute the prior probability of a word sequence, it is broken down into the product
of the probability of each word, given the word history. These probabilities are di�cult
to estimate, because not all word histories are seen during training. An approximation
are fixed word histories, so-called N-grams. By limiting the word history to n words, a
more robust estimation of the probabilities is possible. Depending on the length of the
word history considered, the N-grams are called unigrams (n = 1), bigrams (n = 2),
trigrams (n = 3), 4-grams (n = 4), etc. Language models typically use 3-5 grams,
depending on the amount of training data. But even with N-grams, not every word
is encountered in all possible contexts in the training data. Additional techniques like
back-o� are used to fall back to shorter word histories [KN95, CG96].

2.1.1 Evaluation Metrics

Multiple objective metrics were developed to assess the performance of speech
recognition systems. We outline two of them: the word error rate (WER) and the
average term weighted value (ATWV).

8

2.1 Automatic Speech Recognition

Word Error Rate

The word error rate (WER) is a very widespread measure in the field of automatic
speech recognition. It is based on the Levenshtein minimal editing distance and
computed by counting the operations required to transform the hypothesis of the
system into the reference transcript. As outlined in [HAH01], chapter 9.2, the errors of
an ASR system can be classified into 3 types:

Substitutions: The ASR system misrecognizes one word for another.

Deletions: The system omits a word in the hypothesis.

Insertions: An additional word not present in the reference is recognized.

The WER is computed in the following way:

WER =
#subs+#dels+#ins

#words in the reference
(2.3)

A perfect system would achieve a WER of 0%, whereas a bad system could generate
a hypothesis with more words than are present in the reference and thereby could
even exceed a WER higher than 100%. For logographic or syllabic languages, related
measures like character error rate (CER) or syllable error rate (SER) exist, which are
computed in the same manner.

Average Term Weighted Value

Average term weighted value (ATWV) is a measure to evaluate keyword spotting
(KWS) systems. It was originally developed by Fiscus [FAGD07] for the NIST 2006
Spoken Term Detection evaluation. The errors a KWS system generates are thereby
weighted based on the frequency of the keywords: Missing or false detecting a rare
keyword weights higher compared to errors on frequent keywords. Using arbitrary
weights per keyword is also possible. A perfect system would achieve a score of 1.0,
a system outputting nothing a score of 0.0. A bad system is able to obtain a negative
score by outputting many false positives.

9

2. THEORY AND BACKGROUND

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a powerful machine learning method dating
back half a century ago. In 1957, Rosenblatt formulated the perceptron algorithm
[Ros57]. Inspired by biology, a perceptron features one or multiple inputs, biases,
an activation function and output(s). In recent years, due to increased computing
capabilities and the emergence of specialized hardware for e�cient computation,
ANNs have become very popular. A single perceptron can only be applied to linear
separable problems, which was the main criticism of Minsky [MS69]. More complex
problems, e.g. the exclusive disjunction (“XOR”), can also be solved, but do require
a so-called multi-layer-perceptron (MLP) with non-linear activation functions, which
is a more sophisticated network architecture. Using linear activation functions would
allow to collapse the multiple layers and no advantage would be gained.

Being a data driven method, ANNs do not require explicit modeling of knowledge,
but do learn implicitly. The components to be modeled are the network architecture,
as well as the representation of the input features and output targets. Choosing a good
representation of the data is vital. To train a neural network, an input vector is input
into the network and a forward pass of the data through the network is computed. At
the output layer, an error function is used to compute the error based on the output
of the network and the corresponding target vector. To determine how the weights
should be updated, error backpropagation [RHW85] is used. The derivative of the
error function is computed to obtain the gradients of this function for all weights of the
network. Gradient descent is used to apply the weight updates based on the computed
loss.

2.2.1 Feed Forward Neural Networks

MLPs are also called feed forward neural networks (FFNNs). The neurons in such a
network are organized in layers. While the neurons of two layers are fully connected,
there are no connections of neurons within the same layer. Using a non-linear
activation function is required, because the layers could otherwise be collapsed and
the advantage of using multiple layers would vanish. Networks of this type are used
for frame-level classification, where the current classification result only depends on
the current input frame, typically including a certain context around this frame. There

10

2.2 Artificial Neural Networks

are special variants like time-delay neural networks (TDNNs) [WHH+87a, WHH+87b,
WHH+88], which aim at modeling context in an e�cient manner.

2.2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of networks which are a powerful at
sequence modeling [Elm90], or time-series in the scope of ASR. They feature recurrent
connections which allow to transfer information between adjacent time-steps. There
are two configurations possible: The information can either flow only forward in
time, or in both directions: forward and backward. Such networks are called
bi-directional [SP97]. Instead of single frames, RNNs are trained on sequences, using
backpropagation through time [Wer90].

Long Short-Term Memory Networks

While RNNs are able to model context, they are limited in capturing long term
dependencies due to the vanishing gradient problem [BSF94, HBFS01]. Long
short-term memory (LSTM) networks were proposed to mitigate this problem [HS97,
Hoc98]. By using internal memory cells, these networks are able to preserve
information over longer distances. Each LSTM cell has 3 gates for controlling the
hidden state: 1) a forget gate which determines how much information is preserved, 2)
an input gate to decide how much new information should be stored and 3) an output
gate to control how much of the internal state is output. Figure 2.2 (from [Gra13])
shows the information flow within an LSTM cell, including peephole connections
[GSS03]. LSTM networks exist also in a bi-directional variant (BiLSTM).

2.2.3 Activation Functions

A multitude of activation functions exists. They can be divided into two groups:
continuous and discrete. In addition to these functions, there is a special function,
called “softmax” [Bri90]. It features a non-linearity, but in addition conditions the
output in such a way, that it can be interpreted as a probability distribution:

'(x)
j

=
exj

P
K

k=1 e
xk

(2.4)

11

2. THEORY AND BACKGROUND

Figure 2.2: LSTM cell, from [Gra13]

with K being the total number of neurons in the layer and x being the summed and

weighted input of the neuron j. The output of all neurons is conditioned to sum to 1,

with the output of each neuron being in the range of [0, 1]. A refinement is shown in

formula 2.5, called temperature or tempered softmax:

'(x)
j

=
e

x

T j

P
K

k=1 e
x

T k

(2.5)

It allows to adjust the spikiness of the output by the scaling the activation x with a

temperature coe�cient T . Setting this value to 1 corresponds to a regular softmax.

2.2.4 Error Functions

In order to train an ANN, a loss function is required. It computes the error between

the output of the network and the actual value. Based on the task, an appropriate loss

function has to be selected.

12

2.2 Artificial Neural Networks

Mean Squared Error

This function computes the mean squared error between the output and the ground
truth. This function is suitable if multidimensional, real valued outputs are required. It
is not suitable for classification problems with hard targets encoded using, e.g., one-hot
encoding, because the error signal generated by this function does not account for the
type of error.

Cross Entropy

To train networks on classification tasks, using cross-entropy loss is suitable for this
type of problems [B+95].

Connectionist Temporal Classification

Recurrent neural networks are a powerful tool for sequence classification tasks.
In these scenarios, a series of feature frames I = i0, i1, . . . , im are input into a
neural network and the system is supposed to output a series of output tokens
O = o0, o1, . . . , on. Input frames and output sequences can vary in length, whereas
in the regimen of speech recognition typically m > n. The ratio m : n also varies.
The traditional approach of training neural networks for speech recognition would be
to pre-compute an alignment and assigning a label to each frame. The network would
then be trained frame wise to predict the label of each time step. But for most tasks, only
the correct sequence of output tokens is relevant but not the frame wise classification.

The connectionist temporal classification (CTC) loss function [GFGS06] allows
neural networks to be trained directly on the sequence of output symbols O (taken
from an alphabet L), without the need of a pre-computed alignment. CTC introduces
the following concepts: a) a special blank label as additional output of the network b)
an operator (called B in [GFGS06]) which performs the many-to-one mapping of the
network outputs, removing blank labels as well as repeated labels. The blank label is
required to account for the imbalance between the length of the sequence of feature
frames and the sequence of output tokens.

As defined in [GFGS06], let L0T denote the set of sequences with length T over the
alphabet L0 = L [{blank}. With yt

k

defining the activation of output unit k at time t,

13

2. THEORY AND BACKGROUND

we can compute the probability of a sequence ⇡ given an input sequence x of length T :

p(⇡|x) =
TY

t=1

yt
⇡t
, 8⇡ 2 L0T (2.6)

Applying the B operator, we can map L0T 7! LT . The following example outputs
would be considered equal (“�” denoting the blank label):

B(aa� b����cccc) = B(abbbb��� c���) = B(aaaa����bc��) = abc (2.7)

B can be used to define the conditional probability of a given labeling l 2 LT by
accumulating the probabilities of all paths corresponding to it:

p(l|x) =
X

⇡2B�1(l)

p(⇡|x) (2.8)

Based on this, a classifier can be constructed which can be used for network training.
Thereby, a forward backward algorithm similar to the one used for HMMs [Rab89] is
used. Further details can be found in [GFGS06].

2.2.5 Update Functions

After updates to weights and biases have been computed, they need to be applied to
the network. Here, again, multiple strategies can be used.

Stochastic Gradient Descent

One method is Stochastic Gradient Descent (SGD) [RM51]. Based on a learning rate, the
weights and biases are being updated. There exist several improvements including a
momentum term that varies the learning rate dynamically based on the error gradients.
The basic idea behind the introduction of a momentum term is to make the training
more robust by building up momentum as long as the gradient’s direction does not
change. This prevents lingering in a local minima and thereby lowers the overall error
rate.

14

2.2 Artificial Neural Networks

Update with (Nesterov) Momentum

An extension was proposed in the way how the momentum term is computed.
Nesterov proposed a method [Nes83, Nes13] for applying momentum to gradients,
which could also be applied in the context of neural networks. Modifying the gradients
based on this method leads to faster convergence of the networks [SMDH13].

Family of Ada Methods

Another family of update methods has been proposed: Adam [KB14], Adagrad
[DHS11, Dye13] and Adadelta [Zei12]. While SGD features the learning rate as free
parameter, these methods do not require a manually set learning rate (although this is
possible). Based on the computed loss, the learning rate is being scaled dynamically.

2.2.6 Parameter Initialization

Initializing the parameters of a network carefully does not only enable faster
converging, but also results in a local minimum which is closer to the global one.
The parameters should be initialized with respect to the activation function chosen
to prevent neurons from saturating early. Di�erent methods have been proposed
to set the parameters initially. One approach is to select the parameters randomly,
but condition the values based on certain criteria, e.g., based on the used activation
function. The default initialization scheme draws values from a uniform distribution
in the range of [��;�] with

� =
1p
|H|

with |H| = # of hidden units in layer (2.9)

The default method used in PyTorch samples values from a normal distribution,
conditioned towards the number of neurons in each layer.

Glorot

Another approach is Glorot [GB10], which conditions the random values based on the
input and output degree of each neuron by drawing samples from a uniform (U) or

15

2. THEORY AND BACKGROUND

normal (N) distribution.

a =

r
12

fan
in

+ fan
out

Weights = U [�a, a] (2.10)

� =

r
2

fan
in

+ fan
out

Weights = N [0,�] (2.11)

Pre-Training

Pre-training serves the purpose to pre-condition randomly initialized network weights.
One possibility to pre-train networks would be Restricted Boltzmann Machines
(RBMs) [YS11]. Another method for initializing the parameters is greedy (layer wise)
pre-training [HOT06, BLP+07]. This training step is unsupervised and trains the
network in the notion of a de-noising auto-encoder [VLBM08, GMMW13]. Artificial
noise (called “salt and pepper noise”) is added to the input features and the network is
trained to reconstruct the data without noise. This forces the network to learn feature
detectors based on the internal structure of the data.

By using this method, networks are constructed greedily on a layer-per-layer
basis where each layer of the network is added and trained individually, with the
weights frozen once the training of the layer at hand is finished. To reconstruct
the original input, each layer has an inverse layer as counterpart which reverts the
transformation applied to the data. The most common variant is to train such
de-noising auto-encoders with tied weights between each layer and its counterpart.
As this method is unsupervised, it does not require labeled data. In the regimen of
ASR, no transcripts or forced alignments are required which allows the use of data
where no such annotations exist.

2.2.7 Regularization

With many, often several millions, parameters, neural networks are prone to
overfitting. One possibility to avoid this is the use of more data, which is potentially
not available. Another option is to reduce the size of the model. With fewer parameters
to train, the model is less likely to overfitting. But a smaller model would potentially be
not as powerful. Several regularization methods were developed to avoid overfitting.

16

2.2 Artificial Neural Networks

Dropout Training

One commonly used technique is called dropout training [HSK+12]. During training,
connections between neurons are being dropped on a random basis with a certain
probability. This way, neurons are less likely to co-adapt because the network features
a di�erent configuration during each training step. Training a network using dropout
can be considered as training a multitude of networks in parallel, all with linked
parameters. Dropout training introduces a parameter for the likelihood of a connection
being dropped. Depending on the task, a dropout rate of up to 0.5 can prove beneficial.
Connections are only dropped at training time. During inference, no connections are
dropped, but the output of each neuron is being attenuated by the dropout factor to
account for the input of the additional (not dropped) connections. Dropout training
prevents co-adaptation between neurons in two ways: First, it prevents neurons
from learning similar features, and second, it prevents neurons at higher layers to
compensate for errors learned in lower layers which in turn forces the neurons at lower
layers to not produce errors.

Gradient Clipping

Another technique is gradient clipping, where the computed gradients are limited to
a certain threshold [GBC16]. This limits the impact of exploding gradients which may
occur during training.

2.2.8 Learning Rate Scheduling Methods

To further optimize the training, methods for adapting the (initial) learning rate have
been proposed. By adjusting the learning rate, the network training could converge
faster and/or reach a local minimum which is closer to the global minimum. Multiple
techniques have been proposed.

Fixed Scheduling

One method uses a fixed schedule where the learning rate is being adjusted based on
the number of epochs trained. But being a static method, it does not account for the

17

2. THEORY AND BACKGROUND

network’s progress. It further needs to be estimated prior to the training process, based
on expert knowledge.

Exponential Decay

Instead of updating the learning rate at a fixed interval, there exists a method called
exponential decay which decreases the learning rate after each epoch by a fixed factor.
A good analogy for this would be playing golf. At the beginning, a long distance cup
is chosen to play the ball into the broad direction of the hole. With every subsequent
shot, the distance to the hole decreases and so cups for driving the ball for shorter
distances are chosen. With respect to the learning rate, given a decreasing error, a
smaller learning rate should be chosen instead of applying updates which are too big
and would overshoot the minima.

Newbob

There exists yet another method, combining static learning rate scheduling with
exponential decay, called “newbob” [MB90]. Based on the progress the network shows
w.r.t. the error rate on the development set after each epoch, di�erent stages are being
selected. The training starts using a fixed learning rate. Once the decrease of the
error rate falls below a certain threshold, newbob switches to exponential decay. The
training continues in this mode until the observed delta of the error rate drops below
the second threshold. After this threshold is met, the training stops. In total, this
method introduces two additional parameters: The first threshold to determine the
switch from a static learning rate to the exponential decay and the second threshold to
stop the training.

Newbob+

Based on the idea of newbob, we used a similar method which we call “newbob+”.
With this approach, we attempted to eliminate the need for setting thresholds, at the
cost of training time: We start by selecting an initial learning rate and monitor the drop
in error rate after each epoch. Once the error rises, we restart the network training using
the best set of parameters so far and decrease the learning rate by a fixed factor. In the

18

2.3 Speech Recognition Using Neural Networks

notion of exponential decay, we chose a learning rate decay of 0.5. The network training

is stopped once a decrease in learning rate does not result in a decrease in error rate.

2.3 Speech Recognition Using Neural Networks

Neural network have been utilized in any part of speech recognition systems [Kil15].

In this work, we focus on using ANNs as part of the pre-processing and acoustic

modeling.

2.3.1 Bottleneck Features

In Section 2.1, we have already covered traditional methods for feature extraction.

Pre-processing pipelines extracting features can be enhanced by the use of neural

networks. State-of-the-art speech recognition systems use bottleneck features (BNFs)

[YS11, MKC+11, SKR12]. As input, traditional features like MFCCs, MVDRs or logMel

scaled features are used. Frame stacking is applied to input a window covering a

context of typically 5-7 frames in each direction into the network. As shown in Figure

2.3, the network features multiple hidden layers, each of which is typically 1,000 to

2,000 neurons wide. The second-to-last layer is a very narrow layer with less than

100 neurons. The purpose of this so-called “bottleneck” layer is to force the network

to develop a low-dimensional feature representation, thereby discarding information

irrelevant to speech recognition.

The network is trained in two steps: Pre-training and fine-tuning. We pre-trained

the network greedy layer-wise, as described in Section 2.2.6. After pre-training, the

narrow bottleneck layers and another wide layer are added and the whole network

is trained using frame-wise state labels generated by an existing ASR system. After

training, all layers after the bottleneck are discarded and the output activations of the

bottleneck layer are taken as acoustic features. It is also possible to use a network

architecture based on Time Delay Neural Networks (TDNNs) [WHH+87a, WHH+87b,

WHH+88], which were also called shifting DBNFs [NGM+14].

19

2. THEORY AND BACKGROUND

Acoustic Features Bottleneck

Pre-trained layers

Output layer

Figure 2.3: Network for bottleneck feature (BNF) extraction.

2.3.2 DNN Acoustic Models

DNNs can also be used in traditional system’s acoustic models. Instead of estimating
the phone posterior probabilities using GMMs, a DNN can be used instead [BM94,
SLCY11, SLY11]. Trained on context-dependent phone state targets, the network
outputs a probability distribution over phone states [DYDA12]. Figure 2.4 shows a
combination of two DNNs in a hybrid system. The first DNN is trained to extract BNFs
which are then fed into the DNN of the acoustic model for estimating phone posterior
probabilities. The training procedure is the same as for BNF networks. It is divided
into a pre-training and fine-tuning phase.

2.3.3 DNN Acoustic Model Adaptation

Neural networks can be adapted to various conditions by supplying additional
features. These features will typically be appended to the acoustic input features of the
network. Speaker adaptation is a very common example of adapting neural networks
in the regimen of ASR. So-called “i-vectors” which encode speaker and/or channel
properties are used [DDK+09, DKD+11, GBM+11]. Such speaker adapted networks
achieve lower WERs [SSNP13]. As speaker and channel characteristics are strongly
signal related, directly shifting the acoustic features based on i-vectors using a neural

20

2.4 Speech Recognition Using Recurrent Neural Networks

Bottleneck network

DNN Acoustic Model

Acoustic features BNF stack Output layer

Figure 2.4: Overview of the network architecture used in hybrid DNN/HMM systems.
Starting with the stack of the acoustic features, BNFs are extracted, stacked and used as
input to the DNN acoustic model, which computes the phone posterior probabilities.

network improves the performance [MZM14b] even more. This method can also be
applied to compensate for channel properties [MM15, GMNM17].

2.4 Speech Recognition Using Recurrent Neural Networks

In the same way as feed-forward neural networks can be used for acoustic modeling,
recurrent neural networks can be used alternatively [ZSN16, ZDV+16], and replacing
DNNs with RNNs reduces the WER. In addition to training traditional systems, a
novel system architectures using the Connectionist Temporal Classification (CTC) loss
function [GFGS06] for training recurrent neural networks recently gained substantial
research interest. ASR can be considered a sequence labeling task. Based on a
sequence of acoustic feature frames, a sequence of output tokens needs to be predicted.
In traditional DNN/HMM based systems, a DNN is trained to predict a label for
each acoustic frame. This done independently for each frame, and no sequential
dependencies between frames are taken into account. An existing ASR system is
required for bootstrapping. It generates a force alignment between the audio and the
transcripts, which is kept fixed during neural network training. While this approach
is successfully used to build ASR systems, it does not take temporal dependencies into
account. Only the final sequence of output tokens is relevant, whereas the actual timing

21

2. THEORY AND BACKGROUND

information (or the frame-wise alignment) does not matter. CTC is a novel method
for training RNNs by not requiring a pre-defined alignment between a recording and
its transcript. It trains the networks in such a way that it an alignment is discovered
automatically. RNNs are very powerful in learning sequence tasks and therefore very
well suited.

As pointed out in [GFGS06], traditional approaches based on Hidden Markov
Models (HMMs) or Conditional Random Fields (CRFs) are the dominant frameworks
for sequence labeling tasks. Their drawbacks are, that they require task specific
knowledge, e.g. the design of state models for HMMs or the assumption that HMM
observations are independent of each other. RNNs on the other hand do not require
knowledge about the data or task at hand. They feature an internal state which
provides a powerful, general mechanism for time-series modeling. In addition, RNNs
are robust against temporal and spatial noises. Such perturbations occurs especially
in the scenario of speech recognition, imposed by e.g. di�erent speaking styles or
conditions.

2.5 Articulatory Features

Phonemes can be described by the configuration of the articulators in the human
vocal tract. Articulatory features characterize this configuration. They are the atomic
units describing speech sounds produced by the vocal tract. The human sound
inventory is limited by it. The International Phonetic Association published the
International Phonetic Alphabet (see Figure 2.5) which organizes the phones based
on their articulatory features. Two major classes can be distinguished: Vowels and
consonants, each characterized by di�erent properties:

Vowels are articulated without obstructions in the vocal tract with the vocal cords
vibrating. Relevant articulatory features are the position of the tongue and the
rounding of the lips.

Consonants are articulated with constrictions in the airflow. Features for
characterization are the place and manner of articulation as well as the voicing.

While speaking, human articulators are in constant motion, transitioning between
phones in an asynchronous manner. As a consequence, the canonically defined targets

22

2.5 Articulatory Features

may not be reached. The thereby introduced co-articulation artifacts depend on the
phonetic context and may account for language specific colorings. More details can
be found in [HAH01]. Articulatory features can be used to improve the performance
of ASR systems [MW02]. Training feature detectors multilingually does improve the
performance [SSMW03, SMSW03]. A more recent study of articulatory features and
their application in ASR can be found in [MSN+14]. DNN acoustic models trained for
ASR do learn articulatory feature detectors implicitly [NSM15].

23

2. THEORY AND BACKGROUND

CONSONANTS (PULMONIC) © 2015 IPA

 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive �
Nasal �
Trill �
Tap or Flap � � � � � � � � � � � � � � � � � � � � �
Fricative �
Lateral
fricative �
Approximant �
Lateral
approximant �

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

Clicks Voiced implosives Ejectives

 Bilabial Bilabial Examples:

 Dental Dental/alveolar Bilabial

 (Post)alveolar Palatal Dental/alveolar

 Palatoalveolar Velar Velar

 Alveolar lateral Uvular Alveolar fricative

VOWELS

Front Central

Back

Close � � � � �
� � � � �

Close-mid � � � �
� � � � �

Open-mid � � �
�� � � �

Open � � � �
Where symbols appear in pairs, the one
to the right represents a rounded vowel.

OTHER SYMBOLS

 Voiceless labial-velar fricative Alveolo-palatal fricatives

 Voiced labial-velar approximant Voiced alveolar lateral flap

 Voiced labial-palatal approximant Simultaneous and

 Voiceless epiglottal fricative
Affricates and double articulations

can be represented by two symbols

joined by a tie bar if necessary.

 Voiced epiglottal fricative

 Epiglottal plosive

�

SUPRASEGMENTALS

 Primary stress

 Secondary stress

 Long

 Half-long

 Extra-short

 Minor (foot) group

 Major (intonation) group

 Syllable break

 Linking (absence of a break)

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g.�
 Voiceless Breathy voiced Dental

 Voiced Creaky voiced Apical

 Aspirated Linguolabial Laminal

 More rounded Labialized Nasalized

 Less rounded Palatalized Nasal release

 Advanced Velarized Lateral release

 Retracted Pharyngealized No audible release

 Centralized Velarized or pharyngealized

 Mid-centralized Raised (= voiced alveolar fricative)

 Syllabic Lowered (= voiced bilabial approximant)

 Non-syllabic Advanced Tongue Root

 Rhoticity Retracted Tongue Root

TONES AND WORD ACCENTS

LEVEL CONTOUR

or
Extra or Risinghigh

 High Falling

 Mid

High
rising

 Low

Low
rising

Extra Rising-
low falling

Downstep Global rise

Upstep Global fall

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015)

Typeface: Doulos SIL

Figure 2.5: IPA Chart, http://www.internationalphoneticassociation.org/content/ipa-chart,
available under a Creative Commons Attribution-Sharealike 3.0 Unported License.
Copyright © 2015 International Phonetic Association.

24

2.6 Multilingual Speech Recognition

2.6 Multilingual Speech Recognition

Multilingual speech recognition poses several challenges [WGT+00]. Training a system
jointly on a combination of languages requires special adaptation techniques to account
for language specific idiosyncrasies. We first describe traditional systems and how
their components are adapted to multiple languages and then provide an overview of
multilingual all-neural approaches.

2.6.1 GMM/HMM Based Setups

Traditional systems feature explicitly modeled components which need to be adapted.
Proposed methods include e�cient bootstrapping of systems for new languages
[SW97] by first training a multilingual systems and then mapping the multilingual
phones to language dependent ones. This method of bootstrapping enabled system
building for new languages in low-resource conditions e�ciently [SW98b] by the
reduction of the number of parameters and system complexity by training a monolithic
system. GMM/HMM based systems typically use polyphones as acoustic modeling
units. As not all possible polyphones are seen during training, it is necessary to
reduce the set of polyphones based on available training data. Language specific
information can be utilized during this step [SW98a]. By adapting the polyphone
decision tree to new languages using, e.g. ML-Mix or ML-Tag [SW00, SW01], acoustic
models can be estimated for the target language given a variety of source languages.
But this adaptation is limited to the polyphones seen during training. Approaches
for cross-lingual adaptation were proposed [Stü08a], also by including articulatory
features as language universal feature detectors [Stü08b]. Such methods can also be
applied if limited data is available [Stü09].

2.6.2 DNN/HMM Based Setups

Traditional speech recognition systems use neural networks at two places to model the
acoustics: The front-end for audio pre-processing to extract acoustic features and the
acoustic model itself. Both parts can be trained using data from multiple languages.

25

2. THEORY AND BACKGROUND

Multilingual Bottleneck Features

Neural networks for BNF extraction can be trained multilingually. Because of the
additional data and larger variety in speakers and acoustic phonetic sound inventories,
the network parameters can be estimated more robustly and the extracted features
show better results. There are multiple ways of integrating data from additional source
languages into the training process. One approach is to train the hidden layers jointly,
but use language dependent output layers. While the shared hidden layers learn to
extract features for multiple languages, the output layers, being language dependent,
only learn language specific features. Multilingual bottleneck (ML-BNF) features are
language independent [VKG+12]. Using a single output layer and dividing it into
language dependent blocks is also possible [GKV14].

Multilingual DNNs

Di�erent strategies for training DNN based acoustic models multilingually were
proposed. The DNN can be pre-trained multilingually [SGR12, SLF+08]. It is also
possible to parallelize this training by working on distributed copies of the network
[HVS+13]. Multilingual training of the ML-BNF and the DNN does improve the
performance even further [VBMS12]. Another proposed method is to train the DNN
on a number of languages in turn [GSR13]. For low-resource scenarios with only a
limited amount of transcribed training data, using a combination of data from multiple
source languages increases the recognition performance [MM13]. It is also possible to
use untranscribed data semi-supervised increases the recognition accuracy [TSCH13].
Given that training on more data increases the training time of a system, di�erent
approaches to speed up the training process were proposed [MZM14a].

2.6.3 All-neural Based Approaches

In addition to approaches using traditional speech recognition systems, multilingual
systems using an all-neural architecture were proposed as well. To the best of
our knowledge, we were the first to propose using a global set of acoustic units
[MSW17b] with a CTC/RNN setup, which we then improved in multiple iterations
[MSW17c, MSW18b, MSW18c]. A similar approach was proposed [KS17], but with
the di�erence of providing the language identity explicitly. There was also a di�erent

26

2.7 Meta-PI Networks

approach [TSW+17] for this task proposed using and end-to-end architecture with an
attention mechanism [CJLV16]. Using attention in combination with CTC was also
proposed [WHH17] and refined [SWH+18] for better code switching. Similar to our
study on data selection [MSS+14] (see Chapter 5), an analysis using an RNN/CTC
based approach was carried out with similar findings [DSMB18].

2.7 Meta-PI Networks

Meta-PI [HW90, HW92] networks were proposed to build a neural network based
modular classifier. The title of the original paper1 summarized the two key aspects
of Meta-PI networks: a) the distributed knowledge representation and b) multisource
pattern recognition. The original work proposed a setup for speaker independent
phoneme recognition, where subnets were trained speaker specific. The paper defines
multiple scenarios:

“source independent” describes a classifier which is able to classify all sources
correctly, not only ones seen during training.

“multi source” refers to the recognition of speech from speakers which were
encountered during training.

“source dependent” The system is trained and tested on data from a single speaker.
This scenario can be considered to be the gold standard, as it typically shows how
good the recognition performance can be under optimal circumstances.

The main concept of Meta-PI is to assemble a classifier using submodules. As shown
in Figure 2.6, it features multiple subnets, called “modules”. Those modules were
trained speaker specific. The outputs were then merged based on the output of another
network, the “source id net”. This network is trained to modulate the outputs of
the subnets to achieve the best classification performance possible. The subnets itself
remained unchanged.

The key aspect of the “Meta-PI combinational superstructure” are Meta-PI
connections which allow to modulate the outputs of neurons with a coe�cient. Based

1The Meta-Pi Network: Building Distributed Knowledge Representations for Robust Multisource
Pattern Recognition

27

2. THEORY AND BACKGROUND

Figure 2.6: Meta-PI combinational superstructure, taken from [HW92].

on these connections, the outputs of individual subnets are being integrated into the
architecture. Outputs of multiple subnets are combined in this way to obtain a global
classification result. Two modes of operation exist: It is either possible to select the
output of the best subnet for a given training sample, or to combine the outputs of
all subnets to make a decision. The latter approach has the advantage ob being more
robust towards errors in a single subnet. To compute the final outputs O

i

, the Meta-PI
network weighs the outputs of the k individual subnets p

k,i

in the following manner:

O
i

=
1

µ̂

KX

k=1

p
k,i

·M
⇡k

with µ̂ =
KX

k=1

M
⇡k

(2.12)

The Meta-PI network outputs one coe�cient M
⇡k

per source network k. Using
this architecture, speaker independent phoneme recognition using a combination of
speaker dependent networks is possible [HIW90].

28

2.7 Meta-PI Networks

A similar approach to Meta-PI was proposed after [JJNH91]. In the scope of
our work, the distributed knowledge representation are multiple language dependent
components. Recognizing speech from multiple languages can be considered to be a
multisource pattern recognition problem. Each language is thereby a single source.

29

Chapter 3

Experimental Setup

In this chapter, we will outline our experimental setup. Starting with data sets, we will
also provide an overview of the tasks used for evaluation, as well as short descriptions
of all the toolkits used.

3.1 Data Sets

In this work, we used data sets from 3 di�erent projects, covering a wide variety of
acoustic conditions. The most challenging data set originates from the BABEL project
and consists of telephone recordings. Data from Euronews is of a better acoustic
quality, but the available annotations are limited. Data sets used from the BULB project
contain only very little data, which is challenging as well.

3.1.1 IARPA BABEL

Data used from the IARPA BABEL1 project covers a total of 10 languages, as shown
in Table 3.1. For each language, 100h of transcribed data is available. There exist two
o�cial splits of the training data: A limited language pack (LLP) with only 10h of data
and a full language pack (FLP) containing all available data. The data was collected
and carefully annotated by Appen2 for this project. The annotations were provided

1https://www.iarpa.gov/index.php/research-programs/babel, accessed: 2018-03-29
2http://www.appen.com, accessed: 2018-03-29

31

3. EXPERIMENTAL SETUP

both in the native script of the language and in Romanized form. A pronunciation
dictionary based on SAMPA phonemes was supplied as well.

The recordings are narrowband telephone speech, sampled with 8kHz. As not
only landlines, but also cellphones were used, the quality of the recordings varies,
with some featuring heavy distortions introduced by data compression. The data
was gathered in the field and as such does contain di�erent types of background
noises, e.g. street noise, animal sounds or people talking in the background. These
channel conditions renders speech recognition di�cult, even though the annotation is
excellent.

Table 3.1: Overview of available data from the BABEL project

Language Language Family # Speakers Total Hours
Assamese Indo-European 790 52.6
Bengali Indo-European 751 58.2
Haitian Creole (French) Creole 697 53.9
Lao Tai-Kadai 731 54.3
Pashto Indo-European 1028 159.6
Tagalog Austronesian 3051 73.2
Tamil Dravidian 778 61.3
Turkish Turkic 993 71.9
Vietnamese Austroasiatic 1042 87.5
Cantonese Sino-Tibetan 420 67.6
Zulu Niger-Congo 767 52.6

3.1.2 Euronews Corpus

This corpus was created as part of the EU-BRIDGE project, which focused on
developing automatic transcription and translation services1. The corpus [Gre14]
consists of TV broadcast news recorded from the Euronews TV station. Given that
all recordings originate from the same station, the acoustic conditions should be
similar across languages. As shown in Table 3.2, the corpus features data from
10 languages, with 70h of data available per language. Annotations were created
semi-automatically using a speech recognition system. Noises were annotated only
in a very basic way with a single noise marker indicating all types of noises like,

1https://www.eu-bridge.eu/, accessed: 2018-03-29

32

3.1 Data Sets

e.g. music, non-human sounds, hesitations, false starts. No additional resources like
pronunciation dictionaries were provided.

Table 3.2: Overview Euronews Corpus

Language Audio Data # Recordings
Arabic 72.1h 4,342
English 72.8h 4,511
French 68.1h 4,434
German 73.2h 4,436
Italian 77.2h 4,464
Polish 70.8h 4,576
Portuguese 68.3h 4,456
Russian 72.2h 4,418
Spanish 70.5h 4,231
Turkish 70.4h 4,385
Total 715.6h 44,253

3.1.3 Data Collected by BULB

The BULB project (“Breaking the Unwritten Language Barrier”) [SAAD+16, ASAD+16]
addresses the documentation of unwritten languages. It is focused on 3 less-resourced
and mostly unwritten African languages from the Bantu family: 1) Basaa which is
spoken in Cameroon, 2) Myene spoken in Gabon and 3) Mbosi which is spoken
in Congo-Brazaville. The project has 3 goals: a) collection of data from those
3 langugages, b) Generation of automatic transcripts at phoneme level and the
French translation thereof, c) development of tools based on the data and generated
alignments aimed at supporting linguists in their work. For our experiments, we used
data from Basaa and Mbosi.

Mbosi

Mbosi (also spelled “Embosi”) is spoken in the region of Congo-Brazaville by 150k
speakers. A detailed description of this corpus can be found in [GAAD+18]. The data
was obtained using an established workflow [BHAL14]: First, recordings were created
in the field, then later re-spoken by a native speaker in a controlled environment

33

3. EXPERIMENTAL SETUP

and also translated into French. The data was phonetically transcribed using a
non-standard graphemic form close to the language’s phonology. Force alignments
between the recordings and the transcription were created using an ASR system.

Basaa

Basaa is spoken by 300k speakers in the center and littoral provinces of Cameroon
[SF17]. The data collection was done in a similar manner to Mbosi and a detailed
description of this corpus can be found in [HMM+18]. Two data collection e�orts were
made. In the first one, local radio broadcasts were recorded, whereas in the second one
elicited speech was recorded. Our experiments are based on only the first one, as it was
available earlier.

3.2 Pronunciation Dictionaries

While pronunciation dictionaries were provided with the BABEL data, the Euronews
corpus featured only transcriptions. In order to generate pronunciation dictionaries
with a consistent set of acoustic units across languages, we used the MaryTTS [ST03]
text-to-speech (TTS) system. It provided an interface which could be queried with
the grapheme sequences of words and would return the corresponding phoneme
sequence. While such automatically generated pronunciation dictionaries do not
match the quality of manually created ones, they do however perform reasonably well.
Given the available languages in the Euronews corpus and MaryTTS, we identified
a set of 6 languages (English, French, German, Italian, Russian, Turkish) for which
pronunciations and data would be available.

3.3 Tasks

There are more than 7,000 living languages in the world [JE05]. These languages can be
divided into three categories. Tier 1 languages are high-resource and well-researched
languages, but there are very few of these. Tier 2 languages are documented, but do
lack su�cient resources to train ASR systems. There exists a long tail of tier 3 languages

34

3.3 Tasks

which are undocumented. In this work, we addressed languages from each category
and choose multiple tasks for evaluating our language adaptation methods.

3.3.1 Acoustic Unit Discovery

One of the first steps in documenting an unknown language (tier 3) is to determine the
phoneme inventory. This is the goal of the acoustic unit discovery (AUD). As part of the
BULB project we addressed the discovery of phone-like units. Our pipeline consists
of multiple steps, and one is the extraction of articulatory features (AF). We studied
methods to improve the extraction of AFs in multilingual scenarios using language
adaptation techniques in Chaper 4.

3.3.2 Low-resource ASR

Methods for low-resource ASR address tier 2 languages who are documented, but do
lack su�cient resources to build ASR systems with a good recognition performance.
The availability of transcribed recordings for the acoustic model training is an
important factor. A common approach is to use data from additional so-called “source
languages” for acoustic model training. Source languages should be chosen regarding
the target language. We evaluated methods for language selection in Chapter 5 to
maximize the performance on the target language. [BBKS14] provides a general
overview of methods for under-resourced languages.

3.3.3 Multilingual ASR

Given enough training data (tier 1), training an acoustic model monolingually results
in the best performance. If speech from multiple languages is to be recognized, a
common approach is to combine multiple monolingual ASR systems with a system
for language identification. The output of the ASR systems is then switched based
on the detected language. An alternative approach is to use a multilingual acoustic
model which is trained on multiple languages. While is results in improvements for
low-resource languages, the joint training on high-resource languages does not match
the monolingual baseline. We address this issue as main topic in this thesis by studying
multiple adaptation techniques in Chapters 6 to 8.

35

3. EXPERIMENTAL SETUP

3.4 Toolkits

Janus Recognition Toolkit

Our traditional speech recognition systems were built using the Janus Recognition
Toolkit (JRTk) [ea94] which features the IBIS decoder [SMFW01]. It is being developed
at the Carnegie Mellon University (CMU) and at the Karlsruhe Institute of Technology
(KIT). In addition to training ASR systems, we also used the audio pre-processing
pipeline of JRTk for the extraction of features for all our experiments.

Theano

Feed-forward neural networks were trained using a setup based on Theano [BLP+12,
BBB+10]. Theano being recently discontinued at the time of writing was one of the
first toolkits with support for automatic di�erentiation. It allowed for writing code in
Python which would then be compiled to run on either CPUs or GPUs. While this
resulted in fast execution, the drawback of this approach is that runtime debugging
required special methods.

Lasagne

Lasagne [DSR+15] built on Theano and provided a lightweight abstraction layer to
ease handling of neural networks without the need for starting from scratch and
implementing, e.g. recurrent or LSTM layers. We used it to train our LSTM networks
for articulatory feature detection.

PyTorch

PyTorch [PGC+17] is a novel machine learning library, which provides Python
bindings to Torch [CKF11]. It does not require a special compilation step like Theano.
Being more recent, it also features a better integration with up-to-date CUDA1 versions
which result in faster processing times. It was used for training the RNN/CTC based
ASR systems.

1CUDA (Compute Unified Device Architecture), a framework for general purpose GPU programming
by Nvidia

36

3.4 Toolkits

DyNet

The dynamic neural network toolkit (DyNet) [NDG+17] is developed at the Carnegie
Mellon University. It is designed for networks having dynamic structures and was
used for training the RNN based language models.

37

Chapter 4

Acoustic Unit Discovery for

Language Documentation

While the main focus of this work is multilingual ASR, we also applied the adaptation
methods which we will present to a related task, the discovery of acoustic units
for undocumented languages. There are more than 7,000 living languages in the
world. The long tail of these languages are only spoken by a minority. They are
not documented and in danger of becoming extinct. Language documentation is
required in order to preserve those languages and the cultural heritage linked to
them. The vast majority of undocumented languages do not have established writing
systems. This renders documentation, which is a very time-consuming process, even
more di�cult. By using natural language processing (NLP) technology, we aim to
improve this process by supporting linguists. This field of computational linguistics
is relatively new research area. Fully automating the process of language discovery
is next to impossible, as shown in [KM14]. Many language-specific phenomena
create idiosyncrasies, with cases where even linguists disagree about certain features
languages have.

Our aim is therefore not to fully automate the entire process of language
documentation, but to develop tools to support linguists during their field work.
One step in the documentation process is the discovery of the acoustic units of
a language. We attempted to derive this set of acoustic units based on entirely
unsegmented recordings of speech from the language at hand. Working without

39

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

traditional resources like pronunciation dictionaries or writing systems poses certain
interesting challenges.

4.1 Our Approach Towards Acoustic Unit Discovery

There exist multiple approaches to acoustic unit discovery and a special “zero
resource” challenge was created to evaluate them. Run first in 2015 [VTS+15, VAJD16]
and then in 2017 [DCB+17], multiple methods for discovering linguistic units from
raw speech in an unknown language were proposed. Here, we propose a three step
pipeline for the discovery of linguistic units:

Phone Boundary Detection We first use a component to detect the boundaries of
phone-like units. The other parts of our pipeline operate on this segmentation.

Feature Extraction For each segment, we extract features which are the basis for the
clustering. It is important to extract features which are able to perform robustly
in a cross-lingual scenario. In this work, we mainly focus on this step.

Clustering Based on the extracted features, we cluster the segments to derive the
set of units. The clustering algorithm needs to determine the size of the set of
phone-like units.

This process modularizes our pipeline and allows us to change individual parts, as
well as to incorporate feedback from linguists at each stage. In the remainder of this
chapter, we will discuss our approaches towards each step of the pipeline.

4.2 Phone Boundary Detection

There exist di�erent methods to the detection of phone boundaries. One is to look for
changes in the signal [SWE09]. Other methods include using Bayesian approaches, as
in [yLG12, OB�16]. RNN-based approaches have been proposed as well [MRTD17,
WCL17]. We used a setup based on an ASR system, which was modified to recognize
single phones. This approach was first proposed using only a monolingual speech
recognition system for English [MB14, BSMB15], which we then extended using an
ASR system with a multilingual set of acoustic units [VMH+16].

40

4.2 Phone Boundary Detection

By using a system trained on only one language, the segmentation quality depends
to a great extent on how well the source language fits the target language. Choosing
the best source language given a particular target language is important, but making
this determination is di�cult to do in an unsupervised way. We therefore opted to
train a system on multiple languages [MSW16a]. Such a setup should balance out the
di�erences between individual languages and be less dependent on the performance of
a single language. Even though choosing the best language for a given language in an
oracle experiment would most likely result in a better segmentation, the multilingual
system should generate a segmentation of a higher quality than one trained on a single,
poorly-matched language.

We trained a multilingual system using data from 5 languages, in the same manner
as described in Section 6.2. The DNN/HMM based system was trained like a regular
ASR system, but was modified afterwards to recognize single phonemes. We used a
special pronunciation dictionary with one “word” per phone and no language model.
After decoding, we discarded the phone identities and retained only the boundaries. In
addition to this baseline system, we also trained an adapted multilingual system using
language codes (LFVs, see Section 6.2). As outlined in the following chapters, these
codes improved performance of multilingual ASR systems, as well as for cross-lingual
phone recognition (see Section 6.2.4), and we show them to also be beneficial for this
task.

4.2.1 Evaluation of Segmentation Quality

To evaluate the quality of the segmentation, a common measure in literature [SWE09,
yLG12, QSM08] is the F1-Score. It is the harmonic mean between precision and recall:

F1-Score =
Precision · Recall
Precision + Recall (4.1)

Human speech is very ambiguous. The transition of the articulators in the human
vocal tract between two phones is continuous, with co-articulation artifacts observed
at the boundaries. It is therefore common to allow for a fault tolerance of 20ms. This
margin of error displays a good trade-o� between the ambiguity of speech and being
too permissive. In addition, the ground truth may also contain some noise, due to the
aforementioned properties of speech.

41

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

4.2.2 Experimental Setup

We evaluated our method using data from Basaa [HMM+18] (see Section 3.1.3), a
language from the Bantu family. It is spoken by approx. 300,000 speakers from center
and littoral regions of southern Cameroon. The data consists of radio broadcasts that
were re-spoken by a native speaker in a quiet environment. There exists no common
orthography, as Basaa is an unwritten language. The recordings were phonetically
transcribed by a linguist. The subset used consisted of 1h of speech. The phonetic
transcription did not contain any time markers for phone boundaries.

We therefore created them using an ASR system. Given that there was only
one hour of data available, training a system entirely on Basaa was not feasible, as
the recognition quality would have been too low. Therefore, we used a pre-trained
multilingual ASR system and adapted it to Basaa. We first mapped the phones of the
phonetic transcription to the phonetic inventory of the ASR system. As the phone
sets di�ered and not all Basaa phones had a matching counterpart in the multilingual
system, we mapped the phones as best as possible manually to existing ones. The
system was then re-trained using only Basaa data to adapt the acoustic model. The
adapted system was then used to force align the phonetic transcripts to the recordings,
and those alignments were taken as references in our experiments. But, using only
1h of speech data is not enough to fully adapt the ASR system to the new language,
hence the created references do not represent a gold standard segmentation, but rather
a “silver” standard with some alignment errors.

4.2.3 Results

The results [MSW16a] of the automatic segmentation are shown in Table 4.1. By
applying LFVs as language codes, improvements for precision, recall and F1-score
were observed. This language adaptation technique, applied in this cross-lingual
scenario, is able to improve upon the segmentation quality.

4.2.4 BiLSTM Based Segmentation

ASR systems are trained to recognize the best word sequence, but not to detect the
precise timing when words or phones are uttered. We therefore evaluated an approach
based on neural networks trained to recognize phone boundaries directly [FMSW16].

42

4.3 Articulatory Feature Extraction

Table 4.1: Overview of results for cross-lingual phoneme segmentation. The F1-Score
shows 3.7% relative improvement.

System Baseline with LFV
Precision 0.520 0.542
Recall 0.515 0.532
F1-Score 0.518 0.537

For this task, we opted for a BiLSTM based architecture, as the recurrent nature of
such networks enables them to model temporal dependencies. We trained the network
on data from the Euronews corpus, using data from 5 languages (French, German,
Italian, Russian, Turkish). To evaluate the performance, we used both English data
from Euronews as in-domain data, and data from Basaa, which was recorded using
di�erent acoustic conditions. The results are shown in Table 4.2 for English and 4.3 for
Basaa. For the English and Basaa data, the BiLSTM based approach outperformed the
ASR system.

Table 4.2: Results for cross-lingual phoneme segmentation on English.

System Precision Recall F-Score
ASR based 0.67 0.73 0.70
BiLSTM 0.74 0.84 0.79

Table 4.3: Results for cross-lingual phoneme segmentation on Basaa.

System Precision Recall F-Score
ASR based 0.54 0.53 0.54
BiLSTM 0.68 0.72 0.69

4.3 Articulatory Feature Extraction

After segmentation, the next step in our pipeline is the extraction of features for each
segment. The discovery of phone-like units should be as language independent as
possible. Therefore, we opted for a language-universal setup which is restricted as
little as possible by the acoustic units of the source languages. Looking at the definition

43

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

of phonemes, they describe the configuration of the articulators in the human vocal
tract. By directly detecting individual articulatory features (AFs), we achieve greater
flexibility, as we are not limited to the AFs configurations imposed by the phones of
our source languages.

There are di�erent types of AFs, each with di�erent numbers of classes. In total, we
used 7 di�erent AF types, 4 for vowels and 3 for consonants. Based on previous work
[Met05], we used discretized versions of continuous features, like tongue position in
the x and y direction, by dividing the continuous space into three buckets, either top,
middle, bottom or front, middle, back. As each articulatory feature only applies to
either vowels or consonants, we added an additional class to each feature representing
“does not apply”. The AF definitions used and the number of classes per feature are
shown in Table 4.4. In addition, we optionally added a feature detector to detect the
type of the phone (ptype).

Table 4.4: Overview of articulatory feature types used

Type # Classes Description
cplace 8 Place of articulation
ctype 6 Type of articulation
cvox 2 Voiced
vfront 3 Tongue x position
vheight 3 Tongue y position
vlng 4 Type of vowel
vrnd 2 Lips rounded
ptype 4 Type of phone

In order to generate AF training data for our experiments, we used ASR systems in
combination with a TTS system. First, the ASR systems were trained for each source
language, using our default method as described in Section 6.1.1. After training, we
force aligned the training utterances to the audio in order to create frame-level phone
labels. Based on the AF definitions embedded in MaryTTS’ language definition files,
we mapped phones to AFs and obtained frame level AF labels for our training data.
The acoustic model of the trained ASR system used 3 sub-phone states per phone:
beginning, middle and end. Similar to [Met05, MW02], we selected only the middle
frames for training, because the articulators are more stable at the center of a phone. At

44

4.3 Articulatory Feature Extraction

the phone boundaries, co-articulation artifacts are likely to occur, as shown in Figure
4.1, where extracted AFs are shown.

Figure 4.1: Example of extracted articulatory features, height of the tongue (vheight).

4.3.1 Articulatory Features for Low-Resource ASR

In a first approach [MSW16c], we evaluated the use of feed-forward neural
network-based AF detectors in an ASR setup. As targets, we used the AF classes for
each AF type, encoded using one-hot encoding. We trained individual networks for
each AF, as we wanted to prevent co-adaption between AF detectors by learning that
certain AF combinations are more likely to occur than others. Learning probabilities
of AF combinations is an issue, because the target language may show a di�erent
distribution of AF combinations. We also applied multitask learning by sharing the
hidden layers between networks, but with AF-specific output layers. The network
configuration is shown in Figure 4.2.

Multilingual Articulatory Features

All systems were trained on data from the Euronews corpus (see Section 3.1.2). For this
set of experiments, we used the full data set (70h) for German, French and Turkish. We
simulated English as a low-resource language by using only a limited amount of data
(10h). As input features to our networks, we used our default pre-processing pipeline
for ASR systems and extracted logMel and tonal features using a window of 32ms and
a frame-shift of 10ms.

As baseline (setup 1), we trained multilingual AF detectors on 70h of data from
French, German and Turkish. For each feature, a separate network was trained. We

45

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

Input Features

LC Shared Layers

AF Output Layers

AF1

AF
n

AF2

Figure 4.2: Network architecture of DNN based articulatory feature detectors using
multi-task learning (MTL): the hidden layers were shared, while individual output layers
for each articulatory feature were used. Language codes (LC) were optionally supplied.

then added LFVs to the input features (setup 2). In addition, we evaluated the use
of multi-task learning (setup 3) by sharing the hidden layers, while using individual
output layers per AF. The results for consonants (Table 4.5) and vowels (Table 4.6) show
that the frame error rate (FER) can be lowered by suppling LFVs to the networks. Each
AF network benefited from the additional features and outperformed the baseline.
Using multi-task learning showed mixed results, with two consonant features (cplace,
ctype) exhibiting higher FERs compared to the setup with individual networks.

Table 4.5: FER of AFs for consonants on the validation set. Networks were trained using
70h from French, German and Turkish. The addition of LFVs decreases the error in setup
2. Using MTL shows mixed results and does not improve the FER for all AFs (setup 3).

Setup LFV MTL cplace ctype cvox ptype
1 – – 8.4 8.2 7.8 14.8
2 + – 7.0 6.8 6.3 12.7
3 + + 7.3 6.9 6.2 12.6

Multilingual Pre-Training

Next, we evaluated the performance on data from the target language (English) only.
We chose setup 2 from the previous section, using individual networks for each AF as
well as LFVs. As a baseline, we trained networks using 10h of data from each language

46

4.3 Articulatory Feature Extraction

Table 4.6: FER of AFs for vowels on the validation set. Networks were trained using 70h
from French, German and Turkish. The addition of LFVs decreases the error in setup 2.
Using MTL shows mixed results and does not improve the FER for all AFs (setup 3).

Setup LFV MTL vfront vheight vlng vrnd
1 – – 7.2 7.9 7.3 6.2
2 + – 5.8 6.6 5.7 5.0
3 + + 5.7 6.6 5.5 4.9

(English, French, German, Turkish), denoted as setup 1 in Tables 4.7 and 4.8. Our

training process consists of two steps: pre-training and fine-tuning. In setup 2, we

pre-trained the networks using 70h of data from French, German and Turkish. Then,

two fine-tuning steps were performed. First, using only data from French, German

and Turkish. Next, an additional fine-tuning step using data from all 4 languages was

performed. As shown in Tables 4.7 and 4.8, by pre-training the networks on the 3

additional source languages, the performance on the target language can be improved

for all AFs.

Table 4.7: Consonants: Classification error of AFs using di�erent training schedules.
Networks that were already trained on 3 languages and then fine-tuned again with data
from 4 languages (setup 2) show better results than using only 10h of data from 4 languages
(setup 1).

Setup 3L pre-train cplace ctype cvox ptype
1 – 9.1 9.7 9.5 16.4
2 + 8.8 8.2 8.2 15.2

Table 4.8: Vowels: Classification error of AFs using di�erent training schedules. Networks
that were already trained on 3 languages and then fine-tuned again with data from 4
languages (setup 2) show better results than using only 10h of data from 4 languages (setup
1).

Setup 3L pre-train vfront vheight vlng vrnd
1 – 8.8 7.9 8.3 6.0
2 + 7.8 7.2 7.5 5.3

47

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

ASR Using Articulatory Features

Next, we compared using AF detectors to traditional feature extraction for ASR
systems. Features like logMel-scaled cepstral coe�cients transform the raw audio
signal into a low-dimensional representation of features emphasizing the parts of the
signal relevant for speech recognition. We used a combination of logMel coe�cients
combined with tonal (FFV [LHE08] and pitch [Sch99]) features (see Section 2.1),
denoted as “lMel+T” in the tables. The dimensionality of these features is 54 (40
dimensional logMel and 14 dimensional tonal features). AFs on the other hand model
explicit features describing the configuration of the human vocal tract. In addition,
AFs are divided into two groups for vowels and consonants, which results in only
half of the detectors encode features relevant for detecting the current phone (as it is
either a vowel or a consonant). Stacking the outputs of all AF networks resulted in a
39 dimensional feature vector.

To evaluate both feature extraction methods, we built multilingual ASR systems,
trained on 10h of data from 4 languages (English, French, German, Turkish). We first
evaluated using only one type of feature. For the baseline experiments, we did not
supply language codes. As shown in Table 4.9, using AFs (setup 2) over lMel and
tonal features (setup 1) does not improve the performance. Supplying language codes
(LFVs) to these systems (setup 3 and 4) does lower the WER. Replacing AF nets with
ones which have been pre-trained using more data from the source languages (setup 5)
increases the performance, but does not match the setup using lMel+T features. One
reason could be that each articulatory feature applies to only one type of phone (vowel
or consonant). At each point in time, only the outputs of feature detectors for one class
can be used to classify the sound, as the detectors for the other class are supposed to
output “does not apply”. Out of the 39 dimensional feature vectors, only half of the
coe�cients do carry information. In contrast to this, traditional features are agnostic to
the type of phone encountered and do always output a 54 dimensional vector encoding
audio features.

Combining Input Features

Using articulatory features exclusively showed no improvement in performance over
traditional features, so we next evaluated di�erent ways to combine both. Keeping the

48

4.3 Articulatory Feature Extraction

Table 4.9: Comparison of WERs using di�erent system configurations. Using only AFs
does not improve the performance (2). Using LFVs for both lMel+T (setup 3) and AFs
(setups 4 and 5) based systems improves the performance. However, systems based on
AFs (4,5) did not improve beyond the lMel+T baseline (setup 1).

Setup Features LFV WER
1 lMel+T – 20.2%
2 AF (3L) – 22.6%
3 lMel+T + 18.7%
4 AF (3L) + 21.8%
5 AF (4L) + 20.2%

ASR setup identical to the previous experiment, we now evaluated adding either AFs
trained on only 10h per language, or pre-trained using 70h of data from the source
languages. As baseline, we used a system with lMel+T only. All setups used LFVs
as language codes for multilingual adaptation. The results are shown in Table 4.10.
Adding AFs trained on three languages (French, German, Turkish) did not improve
performance (setup 2). However, using AFs which were fine-tuned using data from all
4 languages lowered the WER to 18.5% (setup 3).

Table 4.10: Adding AFs to acoustic features results in a slightly improved WER over the
baseline.

System Input Features WER
1 lMel+T 18.7%
2 lMel+T + AF(3L) 19.0%
3 lMel+T + AF(4L) 18.5%

System Combination

We combined the outputs of di�erent setups using Confusion Network Combination
(CNC) [MBS00] in a final experiment. CNC is a technique for combining outputs of
ASR systems, similar to ROVER [Fis97], but instead of operating on the final output,
it combines the intermediate confusion networks. In Table 4.11, we first provide
the WERs of each system individually. In addition to using lMel+T, we also trained
a baseline system on MFCC and MVDR features (M2). LFVs were supplied to all

49

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

systems. Setups 4 through 6 show the WERs of combining each pair of two systems. In
all cases, the WER drops from 18.7% to 18.1%. Combining the outputs of all 3 setups
(setup 7) further reduces the WER down to 17.3%. This shows that the systems built
using a di�erent feature extraction pipeline do complement each other. This diversity
leads to each system producing di�erent errors, which are cancelled out by the system
combination.

Table 4.11: Evaluation of di�erent system combinations. Using AFs in combination
with either system yields identical results to lMel+M2 in system combination. The three
systems are additive, however, and combining all 3 systems results in the lowest WER.

Setup lMel M2 AF WER
1 + – – 18.7%
2 – + – 18.7%
3 – – + 20.2%
4 + + – 18.1%
5 – + + 18.1%
6 + – + 18.1%
7 + + + 17.3%

Monolingual Phone Sets

As a contrastive experiment, we evaluated our approach using a system with a
language-dependent phone set. This system was trained in the same manner, but
using a DNN AM with language-dependent output layers. As shown in Table 4.12, the
baseline of such a system is better compared to a system with multilingual phoneme
inventory. By combining the system output of the best system combination in the
previous section, we could decrease the WER from 16.5% to 15.7% which corresponds
a relative improvement of 5%.

Table 4.12: Contrastive experiments using a language dependent phone set. By the
addition of the best system combination from the previous section, an improvement over
the baseline could be achieved.

System WER
Baseline 16.5%
CNC 15.7%

50

4.3 Articulatory Feature Extraction

4.3.2 Cross-lingual AF Extraction

Next, we evaluated our approach for AF extraction in a cross-lingual setting. Using
data from 4 languages (English, French, German, Turkish), we first trained AF
networks on 3 languages, leaving English out for the cross-lingual evaluation (“EN
CL”). In comparison, we trained AF networks on all 4 languages (“EN ML”). The results
for consonant features are shown in Table 4.13, and features for vowels in Table 4.14.
Detecting AFs for an unknown language does result in higher error rates. The increase
can be attributed to the acoustic phenomena not seen in one of the training languages
(French, German, Turkish). Also the TTS system used to establish the mapping may
feature language and voice dependent mappings of phones to articulatory features.

Table 4.13: Evaluation of classification performance on English, either multilingually
(EN ML) or cross-lingual (EN CL). Cross-lingual recognition results in higher error rates.
Results for consonants are shown.

Setup cplace ctype cvox
EN ML 8.34 8.01 8.22
EN CL 15.93 15.60 14.29

Table 4.14: Evaluation of classification performance on English, either multilingually
(EN ML) or cross-lingual (EN CL). Cross-lingual recognition results in higher error rates.
Results for vowels are shown.

Setup vfront vheight vlng vrnd
EN ML 7.71 7.52 7.49 5.23
EN CL 14.07 14.43 14.96 9.49

4.3.3 BiLSTM Based AF Detection

We improved the existing approach using bi-directional LSTM networks [MFSW17a].
For speech recognition, it was demonstrated [ZSN16] that using bi-directional LSTM
networks for acoustic modeling does improve the performance. The setup used
multiple BiLSTM layers and sequences of fixed length. We adapted the proposed
setup for AF detection. The network was trained to classify the center frame given
a sequence of frames as input: To classify a frame x

i

, the network was fed a sequence
of frames with a fixed length ranging from x

i�ctx

to x
i+ctx

, where ctx indicates the

51

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

context width. The network architecture is shown in Figure 4.3. Each layer has two
sublayers with 500 cells for each direction. The outputs from the two sublayers are
concatenated and forwarded to the next layer. At the final BiLSTM layer, only the final
sequential output is forwarded to the output layer, as we wanted to obtain only a single
target value for the entire sequence of input features. The final feed-forward layer then
computed the classification result. We call operating a RNN in this manner “fixed
sequence mode”. As input features, we used our default ASR pipeline which uses
lMel and tonal features, extracted using 32ms windows with 10ms frame shift. For
training the networks, we used newbob+ scheduling (see Section 2.2).

Input Layer

L1 Fwd Bwd

L2 Fwd Bwd

L3 Fwd Bwd

LFV Modulation Layer

Output Layer

Full sequence

Final output

Figure 4.3: BiLSTM network architecture. The full sequence gets propagated through all
BiLSTM layers. At the last layer, only the final output is retained, being modulated and
forwarded to the output layer.

As baseline configuration, we were using a context width of 6 frames, a batchsize
of 256, cross-entropy loss and Adam for computing the weight updates. In a first
set of experiments, we evaluated di�erent methods for computing the parameter
updates, the output configuration of the recurrent layers, the mini batch size and

52

4.3 Articulatory Feature Extraction

1 2 3 4
6

7

8

9

10

Epoch

FE
R

on
Va

lid
at

io
n

Se
t Adadelta

Adam

Figure 4.4: Comparison of FER using Adam and Adadelta for updating the weights.

context size. For these experiments, we trained only a single AF network to detect
the place of articulation for consonants (cplace) for 4 epochs. Although a network
is not fully trained after 4 epochs, these experiments should allow to optimize the
hyperparameters evaluated.

Parameter Updates

We evaluated two methods for parameter updates: Adadelta and Adam. For both
methods, the default parameter configurations were used. As shown in Figure 4.4,
using Adam results in the error rate dropping marginal faster compared to Adadelta.
After 4 epochs, the frame error rate dropped to 7.7% using Adam, in comparison to
7.8% when using Adadelta. With di�erences being this little, we continued using
Adam from our baseline setup.

RNN Layer Output Configuration

As we operated the RNN in “fixed sequence mode”, there are di�erent options for
forwarding the outputs from the final BiLSTM layer to the feed-forward layer. Our
baseline configuration forwards only the final outputs of the forward and backward
layers to the output layer. But forwarding the output for the entire sequence is also
possible. A comparison in FERs of both techniques is shown in Figure 4.5. Providing
the full output to the feed-forward layer resulted in higher error rates. After 4 epochs

53

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

1 2 3 4
6

7

8

9

10

Epoch

FE
R

on
Va

lid
at

io
n

Se
t Only Final

Full Output

Figure 4.5: BiLSTM Output Configurations: Using the entire or only the final output.

of training, using only the final output does result in a FER of 7.7%, whereas taking the

entire output results in 7.8%. Using only the final output reduces the dimensionality

of the input to the feed-forward network and so the number of parameters in this layer.

This makes the network less prone to overfitting. With the di�erences being marginal

here as well, we continued using the baseline setup which uses only the final output.

In addition, this allowed the framework used to apply further optimizations during

training which reduced the training time.

Mini-Batch Size

Next, we evaluated di�erent mini-batch sizes for applying the updates. Using larger

batches results in fewer updates which are averaged over a larger number of samples.

Smaller batches update the network parameters more frequently, but the updates are

more localized as they have seen fewer training examples. In our experiment, we

evaluated increasing the size of the mini-batch updates from 256 to 1024 and 2048. As

shown in Figure 4.6, there is little to no di�erence between mini-batch sizes, with all

conditions resulting in a FER of 7.7%. Hence, we did not change our default mini-batch

size and kept it at 256 samples.

54

4.3 Articulatory Feature Extraction

1 2 3 4
6

7

8

9

10

Epoch

FE
R

on
Va

lid
at

io
n

Se
t 256

1024
2048

Figure 4.6: Comparison of FER using mini-batches of size 256, 1024 and 2048.

Context Size

As final parameter, we evaluated using di�erent context sizes (here: sequence lengths)
for BiLSTMs. We first used the same context (6 frames) for both the feed-forward
network as well as the BiLSTM based setup. As shown in Figure 4.7 and Table 4.15,
using a context of 6 frames does result in worse results for the BiLSTM based setup
(7.7% vs. 7.4%). Increasing the context size (sequence length) did improve the accuracy
of the BiLSTM setup, but did not improve the feed-forward network based setup. In
total, using the best BiLSTM based setup resulted in a FER of 5.9%, whereas using the
best DNN configuration had a FER of 7.4%. The BiLSTM based setup benefited more
from increasing the context size. Due to technical limitations1, we could not increase
the context size beyond 15 frames.

Table 4.15: Classification error of di�erent context lengths, evaluated using FFNNs as well
as BiLSTM based NNs.

Network Type Context FER
DNN 6 7.4
DNN 15 8.8
BiLSTM 6 7.7
BiLSTM 10 6.3
BiLSTM 15 5.9

1Available GPU memory and training time

55

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

1 2 3 4
5

8

11

14

Epoch

FE
R

on
Va

lid
at

io
n

Se
t DNN, ctx=6

BiLSTM, ctx=6
BiLSTM, ctx=10
BiLSTM, ctx=15

DNN, ctx=15

Figure 4.7: FER of di�erent context sizes, comparing DNNs and BiLSTMs

1 2 3 4 5 6 7 8 9

5

10

Epoch

FE
R

on
Va

lid
at

io
n

Se
t DNN

BiLSTM

Figure 4.8: FER of the best DNN (context = 6) and BiLSTM (context = 15) setup during
training over several epochs.

56

4.3 Articulatory Feature Extraction

Multilingual Results

Based on the optimal configuration (context of +/� 15 frames, minibatch size of 256,
Adam, forwarding only the final output of the last BiLSTM layer), we trained AF
classifiers for each AF, using a combination of 3 languages (French, German, Turkish).
We omitted English as this language was used to determine the hyper parameters.
As shown in Tables 4.16 and 4.17, using BiLSTMs instead of feed-forward networks
did result in an improved recognition accuracy across all AFs. BiLSTMs are able to
e�ectively use a larger context window (sequence length).

Based on the optimal configuration of DNNs and BiLSTMs, we trained networks of
each kind for more epochs. As shown in Figure 4.8, the gap in FERs between the two
network architectures remains stable.

Table 4.16: Classification error of AFs trained on German, French and Turkish using 70h
per language. The results show the FER on the validation set.

Network Type cplace ctype cvox
DNN 8.4 8.2 7.8
BiLSTM 5.7 6.4 7.1
Relative Gain 33% 22% 9%

Table 4.17: Classification error of AFs trained on German, French and Turkish using 70h
per language. The results show the FER on the validation set.

Network Type vfront vheight vlng vrnd
DNN 7.2 7.9 7.3 6.1
BiLSTM 6.1 6.0 6.9 5.7
Relative Gain 16% 25% 6% 7%

4.3.4 Neural Modulation Enhanced AF Detection

We further improved our setup by applying neural modulation [MFSW17b, MSW17a],
as we will propose in Section 7.3. Using the same network architecture, we modulated
the outputs of the last recurrent layer, as shown in Figure 4.9. The modulation was
applied in a manner similar to Meta-PI [HW92]. But instead of training the mixture
weights after the main model, we derived language feature vectors (LFVs) prior to the

57

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

training (see Section 6.2). The network was then trained with these features, which
allowed it to adapt to language properties. Modulation can be considered similar to
dropout, but instead of randomly omitting connections, the outputs of the units will
be gated systematically by multiplication with language codes which stimulates the
network to learn features depending on language properties. The number of LSTM
cells per layer (504) was chosen to the be a multiple of the dimensionality of the LFVs
(42), because the output of each LSTM cell will be modulated with one coe�cient. Both
the dimensionality of the output and the language code have to match.

Input Layer

L1 Fwd Bwd

L2 Fwd Bwd

L3 Fwd Bwd

LFV Modulation Layer

Output Layer

Full sequence

Final output

Figure 4.9: BiLSTM network architecture with modulation. The full sequence is
propagated through the BiLSTM layers. Only the final output is retained after the final
BiLSTM layer, being modulated and forwarded to the output layer.

The results are shown in Tables 4.18 for consonants and 4.19 for vowels. As
contrastive experiments, we included results using feed-forward neural network
based setups. All articulatory feature detectors benefit from adding language codes,
improvements were observed by the use of LFV as additional features. Using BiLSTMs
modulated with LFVs resulted in the lowest frame error rates.

58

4.4 Articulatory Feature Based Clustering

Table 4.18: Classification error of AFs for consonants, being trained on German, French
and Turkish using 70h per language. The results show the FER on the validation set.

Network Type cplace ctype cvox
DNN 8.4 8.2 7.8
DNN + LFV 7.0 6.7 6.3
BiLSTM 5.7 6.4 7.1
BiLSTM + LFV 5.0 5.3 5.0

Table 4.19: Classification error of AFs for vowels, being trained on German, French and
Turkish using 70h per language. The results show the FER on the validation set.

Network Type vfront vheight vlng vrnd
DNN 7.2 7.9 7.3 6.1
DNN + LFV 5.8 6.6 5.7 5.0
BiLSTM 6.1 6.0 6.9 5.7
BiLSTM + LFV 4.8 5.2 4.6 4.0

4.4 Articulatory Feature Based Clustering

As last step in our pipeline, we clustered the segments based on extracted AFs to derive
a set of acoustic units. Performing this clustering process is a di�cult task because
of the variability in speech and unknown idiosyncrasies of the language at hand.
Example methods for clustering segments are hierarchical clustering [MB14, BSMB15],
the Dirichlet process [HSN16c, HSN16b, HSN16a] or the Chinese Restaurant Process
[Ald85]. In this first approach, we used k-Means clustering [Har75]. This method
requires the number of classes to be known beforehand, which we pretended to be
known. We therefore could assess whether the proposed workflow would be suitable
in general, given the number of classes.

In a first experiment, we compared the clustering performance using AF extractors
trained multi- and crosslingually. We extracted AFs for each segment. By stacking
the outputs of all AF detectors, we obtained a 36 dimensional feature vector. For each
segment, we extracted AFs only for the inner third of frames and averaged the vectors
to obtain a single feature frame per segment. The restriction to the inner third is due to
co-articulation artifacts (see Section 4.3.1). We clustered all segments given the actual
number of classes. Figure 4.10 shows the confusion matrix of the reconstructed set

59

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

of phone-like units for English. The AFs were trained multilingually on 4 languages
(English, French, German, Turkish). English, the test language, was included in the
training data. For the second setup (Figure 4.11), we removed English from the set
of training languages and trained the detectors only on 3 languages (French, German,
Turkish). Both figures show a similar result, but deriving a phone set crosslingually
(Figure 4.11) shows an image which is more perturbed, containing more noise and
more outliers. But the diagonal is still clearly visible.

4.4.1 Evaluation of Features for Clustering

We evaluated di�erent features to cluster the segments, using features extracted in a
cross-lingual manner. Multilingual bottleneck features (ML-BNFs) and articulatory
features were used. The ML-BNFs were trained using a combination of 5 languages
(French, German, Italian, Russian, Turkish), as described in Section 6.1.1, and the
AFs were trained using 3 languages (French, German, Turkish). The quality of
the clustering was determined using the adjusted mutual information (AMI) score
[VEB10]. Computing this score requires the ground thruth. We therefore evaluated
this approach supervised using English data. For this evaluation, we again used
k-Mean clustering and computed the scores using a varying amount of classes, ranging
from 20 to 80. Figure 4.12 shows the results: The scores using ML-BNFs plateau
over a wide range of class counts, whereas the articulatory feature based results show
generally higher scores and a peak at 33 classes. The scores for both 33 and 38 classes
are given in Table 4.20. Given that the actual number of classes is 38, peaking at 33
does indicate that the clustering approach is able to derive a sub-optimal, but still
reasonable set of acoustic units. As not all acoustic phenomena present in English
were encountered during training with the source languages, the peak at a lesser class
count may account for this.

Table 4.20: AMI Score for clusterings using either ML-BNFs or AFs.

Feature Type 33 classes 38 classes
ML-BNFs 0.397 0.394
AFs 0.489 0.481

60

4.4 Articulatory Feature Based Clustering

Figure 4.10: Multilingual phoneme mapping: Mapping AFs to English phoneme targets.
The system was trained on DE, EN, FR and TR.

Figure 4.11: Crosslingual phoneme mapping: Mapping AFs to English phoneme targets.
The system was trained on DE, FR and TR.

4.4.2 Unsupervised Evaluation on Mbosi

As final experiment, we evaluated our pipeline using data from Mbosi [GAAD+18]
(see Section 3.1.3), a language from the Bantu family. The data was pre-processed in
the same manner as the Basaa dataset: Recordings collected in the field were re-spoken
by a native speaker in a controlled enviroment. Phonetic transcriptions were provided

61

4. ACOUSTIC UNIT DISCOVERY FOR LANGUAGE DOCUMENTATION

20 30 40 50 60 70 80

0.4

0.45

0.5

Number of classes

A
M

Is
co

re

AFs
ML-BNFs

Figure 4.12: Comparison of adjusted mutual information (AMI) scores using di�erent class
counts for k-Means clustering, with features based on ML-BNFs and AFs

as well. For the unsupervised evaluation, we used the Mel Cepstral Distorion (MCD)
score [MTSC01]. This metric, which is used to evaluate TTS systems, can also be used
in the regimen of acoustic unit discovery [BSMB15]. First, a TTS system [TBC98] is
trained [BL03, Bla06] based on transcripts created using the discovered units. Next,
the trained TTS system is used to reconstruct the original recording and the distortion
is determined by the MCD score.

Because of the size of the dataset and as we are only evaluating the quality of the
acoustic units, we trained and evaluated the TTS on the same data. While this is not
a fair evaluation of the TTS as such, it should provide an indication of the quality of
the discovered units. As contrastive experiment, we trained a TTS on the manually
created phonetic transcripts. As shown in Table 4.21, the MCD score using the manual
transcripts is lower compared to using the inferred units to synthesize Mbosi speech.
While the performance of the system based on the derived units is slightly worse, it
shows that these units can be used to synthesize Mbosi speech.

Table 4.21: Comparison of MCD Scores for di�erent conditions

System MCD Score
Manual Transcripts 5.25
Acoustic Unit Discovery 5.78

62

4.5 Conclusion

4.5 Conclusion

We presented an approach towards the unsupervised discovery of acoustic units.
Our pipeline consists of 3 steps: segmentation, articulatory feature extraction and
clustering. Each of these components can be optimized independently. In this work, we
focused on the extraction of articulatory features. By using additive and multiplicative
language codes, we improved the performance of the feature detectors. Future work
includes the optimization of the clustering process. Possible improvements are the use
of a better distance measure which takes the properties of articulatory features into
account by, e.g. applying weights to certain features.

If transcripts using phone-like units are available, they can be used to discover
words [GAAD+16, OGB+18]. It is also possible to build speech-translation systems
which directly translate the acoustic input into an other language without a written
representation of the source language in between [Stü09].

63

Chapter 5

Language Selection

As outlined in Section 2.6.2, training neural networks for multilingual bottleneck

feature extraction (ML-BNF) on a mixture of languages improves the performance.

Especially in low-resource conditions, the extracted features become more robust due

to the training on more data. We studied three aspects to optimize the ML-BNF training

[MSS+14]: a) at which training stages data from additional source languages should

be used, b) e�ects of language selection and amount of data used and c) the optimal

set of source languages given a target language.

5.1 Experimental setup

For these experiments, we used data from the IARPA BABEL project (see Section 3.1.1),

which covers many low-resource languages. As shown in Table 5.1, we used a total

of 10 languages. During the course of the BABEL project, language resources were

released at certain intervals, with Tamil being the latest addition at the time of these

experiments. We therefore selected it as target language with the aim of analyzing

the use of di�erent source language combinations. The table also shows the amount

of phones each source language shared with the target language. Depending on the

source language, the sound inventory of the target language is covered to a varying

degree.

65

5. LANGUAGE SELECTION

Table 5.1: Language overview, including the language family, size of phone set and
amount of phones each language shares with Tamil

Language Language Family # Phones # Phones w/ Tamil
Tamil Dravidian 34 -
Assamese Indo-European 50 20 (59 %)
Bengali Indo-European 51 21 (62 %)
Haitian Creole (French) Creole 32 17 (50 %)
Lao Tai-Kadai 41 20 (59 %)
Pashto Indo-European 43 24 (71 %)
Tagalog Austronesian 46 20 (59 %)
Turkish Turkic 41 25 (74 %)
Vietnamese Austroasiatic 68 18 (53 %)
Cantonese Sino-Tibetan 37 14 (41 %)
Zulu Niger-Congo 47 16 (47 %)

Baseline

As a baseline, we trained a system using the Tamil LLP data set only. We first built
a context-independent system from scratch using a flatstart approach to bootstrap the
acoustic models, as described in [SMNW14]. Trained for several iterations, the pipeline
consisted of incremental splitting of Gaussians training (MAS) [KFN98], followed by
optimal feature space training (OFS), which is a variant of semi-tied covariance (STC)
[Gal99] training using a single, global transformation matrix. After 6 iterations of
context-independent training, we trained a context-dependent system using 2,000
models. In preliminary experiments, we determined a size of 2,000 context-dependent
models to result in the best performance for the given amount of data. Using this
system, we generated labels for training the networks for BNF extraction.

Network architecture

The network for extracting BNFs featured 5 hidden layers, with 1,000 neurons each.
The second to last layer was the bottleneck layer with only 42 neurons. The network
was trained in two stages. We first pre-trained the network in the notion of a de-noising
auto-encoder using Gaussian noise and a corruption rate of 0.2. Newbob learning rate
scheduling was applied, starting the exponential learning rate decay if the frame error
rate on the validation set decreased by less than 0.005 between two epochs. The training

66

5.2 Combination of a Single Language with Tamil

was stopped when the FER decreased by less than 0.0001 between two epochs in the

exponential phase.

Additional languages

We studied the e�ect of adding auxiliary languages. As aforementioned, we evaluated

3 di�erent aspects: a) language diversity by using more languages in contrast to more

data (Section 5.2), b) stages at which the data is included (Section 5.3) and c) language

selection (Section 5.4). We thereby focused on the pre-processing pipeline and trained

GMM/HMM based systems in the same manner while evaluating di�erent training

schedules for the ML-BNFs. The target language of all experiments is Tamil.

5.2 Combination of a Single Language with Tamil

In this first set of experiments, we used 40h of speech data from a single additional

source language in combination with Tamil LLP (10h). By running these experiments,

we assessed the performance gains resulting from adding each available language

individually, which also served as a baseline for later experiments. By using only

one additional language, the choice of languages does have the largest impact on the

system performance. To increase this e�ect, we chose to use 4 times as much data from

the additional language compared to the target language. As shown in Table 5.2, the

observed gains di�er depending on the language.

67

5. LANGUAGE SELECTION

Table 5.2: Tamil LLP plus additional 40h of another language. The last column shows the
amount of phones each language shares with Tamil

Language WER ATWV # Phones w/ Tamil
Tamil (Baseline) 82.6 2.67 -
+ Assamese 82.7 3.00 20
+ Bengali 81.5 3.26 21
+ Haitian Creole 81.5 3.82 17
+ Lao 82.3 2.97 20
+ Pashto 81.5 3.48 24
+ Tagalog 82.0 3.40 20
+ Turkish 81.3 3.96 25
+ Vietnamese 86.5 -1.34 18
+ Cantonese 83.3 1.53 14
+ Zulu 84.6 -0.04 16

While some languages improved the system performance, others had a negative
e�ect. This emphasizes the need to carefully select the source language(s) depending
on the target language. The amount of phones shared between the auxiliary and
the target language is, within certain limits, an indication of the improvement in
performance. Turkish, which shares the most phones with Tamil, does lead to the
highest improvements. On the other hand, languages like Vietnamese or Cantonese
decrease the performance relative to the baseline. Despite the fact that these are tonal
languages, they do share less phones with Tamil. One exception is Haitian Creole,
which only shares 17 phones, but displays similar improvements as languages sharing
more phones.

Data Mixtures

In a second experiment, we evaluated adding di�erent amounts of data from a single
source language, using the 4 languages (Haitian Creole, Lao, Assamese and Bengali)
that were released during the second year of the BABEL project (Option Period 1, OP1).
We trained the ML-BNFs using multilingual pre-training and shifting (see Section
2.3.1) steps. The Tamil system in Table 5.2 (WER: 82.6%, ATWV: 2.67) is the baseline.
As the results in Table 5.3 indicate, using all available data (70h, FLP) from the source
languages results in only marginal improvements. This maybe due to the unbalanced
data ratio of 7:1, as we are using only 10h from the target language. Using only 40h does

68

5.3 Methods of Using Data from Additional Languages

improve the performance, leading to the best results for Bengali and Haitian Creole as
additional source languages. While the composition of the data is still unbalanced,
a ratio of 4:1 is more leveled than 7:1. Using only the LLP data set (10h), the data
is balanced and the best results for Assamese and Lao were observed. Using a more
leveled data set does improve the performance, but as both a ratio of 4:1 and 1:1 lead
to the best results in di�erent languages, further experiments are needed to determine
the optimal mixture of data.

Table 5.3: Use of di�erent amounts of data in combination with Tamil LLP. The number
on the left denotes WER, the one on the right ATWV.

Language FLP 40h LLP
Assamese 82.4% / 2.54 82.7% / 2.37 82.0% / 3.28
Bengali 82.0% / 2.61 81.5% / 3.26 81.7% / 3.03
Hait. Creole 82.2% / 2.30 81.5% / 3.82 81.6% / 3.14
Lao 82.5% / 2.20 82.3% / 2.97 81.6% / 3.31

5.3 Methods of Using Data from Additional Languages

Next, we evaluated di�erent methods of adding data during the training process.
Neural networks are trained in multiple steps. In our setting, we perform pre-training,
fine-tuning, shifting and optionally another fine-tuning step. At each step, either
mono- or multilingual data can be used. We assessed 3 di�erent cases: a)
using multilingual data only during pre-training, b) using multilingual data during
pre-training, fine-tuning and shifting, c) the same setup as in (b), but with an additional
fine-tuning step at the end using only monolingual data.

The multilingual data was taken from all 4 OP1 languages. While we limited
ourselves to this set of languages for this analysis, an evaluation based on all available
languages within year 1 and 2 of the BABEL project can be found in the next section
(5.4). From the target language (Tamil), we used the LLP with 10h hours of data,
whereas 40h of data per language were used from the additional source languages.
This results in up to 160h of additional training data.

We varied the training parameters in two dimensions: a) the training strategy, by
adding multilingual data during di�erent training steps and b) adding more source
languages. We evaluated the setups using both WER and ATWV. The results are shown

69

5. LANGUAGE SELECTION

in Table 5.4. Baseline is the Tamil system in Table 5.2 (WER: 82.6%, ATWV: 2.67).
Using multilingual data during pre-training (a), shifting (b) in combination with a final
fine-tuning step (c) results in the best performance throughout the di�erent language
combinations. Each network is first trained to extract multilingual features which are
then re-fined for the target language.

Regarding the aspect of adding more languages, we chose to add each language
individually to the set of training languages, in the order to increase the phoneme
coverage of the target language. As the results indicate, adding more languages
gradually improves the recognition accuracy.

Table 5.4: Tamil LLP plus additional source languages (Haitian Creole, Lao, Assamese
and Bengali) and training methods: a) ML pre-training, b) ML pre-training and shifting,
c) additional fine-tuning on Tamil LLP after shifting. The number on the left denotes WER,
the one on the right ATWV.

H H+L H+L+A H+L+A+B
a) 82.5% / 2.18 83.3% / 1.47 82.3% / 2.93 82.2% / 2.42
b) 81.5% / 3.82 81.2% / 3.63 80.8% / 4.06 80.6% / 4.05
c) 81.2% / 3.85 80.7% / 4.13 80.8% / 4.34 79.9% / 5.05

5.4 Combining Multiple Languages

After establishing the optimal multilingual training strategy, we looked into the impact
of language selection on the system performance given a set of available languages.
Following our initial experiments in Section 5.2, we selected two sets with four
languages each: The best and worst fitting ones, determined by the gains in WER and
ATWV. The languages chosen are shown in Table 5.5.

Table 5.5: Overview of languages fitting best and worst to Tamil. The best fitting languages
are sorted starting with the best fitting one, the worst fitting languages are starting with
the worst fitting one.

Best fitting Worst fitting
Turkish Vietnamese
Haitian Creole Zulu
Pashto Cantonese
Bengali Assamese

70

5.4 Combining Multiple Languages

With this experiment, we aim at answering the following questions: a) will the
combination of the best four languages result in additive gains, b) how big is the
di�erence between the best and worst fitting languages, c) what is the impact of the
amount of data per language and d) does using data from more languages improve
the WER and ATWV more than using the same amount of data from fewer or only
a single language. We trained systems using the optimal ML training strategy (see
previous Section 5.3) and carried out the same set of experiments for both groups of
languages.

The results using the best fitting languages are shown in Table 5.6. Adding these
source languages results in better performance with each new language. Regarding
the amount of data added, the series of experiments with a fixed amount of 40h
of additional data in total displays the same behavior and similar improvements.
Adding all 4 languages shows the best results. Although the results using only 40h of
additional data over 160h in total are slightly lower (79.9% WER versus 79.7% WER),
one conclusion is that adding data from more languages is more important than adding
simply more data from a smaller set of source languages. Using 40h of only a single
language decreases the WER to 81.3%, whereas adding the same amount but from a
combination of 4 language lowers the WER to 79.9%.

Table 5.6: Use of additional languages (Turkish, Haitian Creole, Pashto and Bengali) with
either 40h of data per language or 40h in total for all additional languages. The number
on the left denotes WER, the one on the right ATWV. The last column shows the amount
of phonemes shared with Tamil.

Language 40h p. l. 40h total # Phones w/ Tamil
Baseline 82.6% / 2.67 82.6% / 2.67 -
T 81.3% / 3.96 81.3% / 3.96 25
T+H 81.0% / 4.50 80.9% / 4.21 25
T+H+P 80.3% / 5.41 80.5% / 4.66 28
T+H+P+B 79.7% / 5.65 79.9% / 5.52 28

Using the second set of languages, a similar trend in improvements can be
observed, see Table 5.7. The absolute numbers are slightly lower compared to the
best fitting languages, which can be explained by the languages individually having a
lower performance in combination with the target language. Using a combination of 4

71

5. LANGUAGE SELECTION

languages yields the best performance, and di�erences between 160h and 40h are only
marginal.

Table 5.7: Use of additional languages (Vietnamese, Zulu, Cantonese and Assamese) with
either 40h of data per language or 40h in total for all additional languages. The number
on the left denotes WER, the one on the right ATWV. The last column shows the amount
of phonemes shared with Tamil.

Language 40h p. l. 40h total # Phones w/ Tamil
Baseline 82.6% / 2.67 82.6% / 2.67 -
V 86.5% / -1.34 86.5% / -1.34 18
V+Z 82.4% / 1.98 82.5% / 1.91 20
V+Z+C 82.0% / 3.05 81.9% / 3.19 22
V+Z+C+A 81.6% / 3.90 81.7% / 3.85 24

5.5 Conclusion

We have evaluated multiple training techniques for neural network based multilingual
speech recognition systems using di�erent sets of source languages in combination
with Tamil as the target language. Regarding the three aspects studied, based on the
results we conclude that a) using data from additional languages during all training
stages leads to the best results. Regarding the aspect b) of language selection and
amount of data used, the best strategy is to use data from a larger set of source
languages. If the total amount of data a system is trained on is kept identical, then
selecting data from more languages improves the performance. The ML-BNFs become
more robust by training on more languages. This observation also holds true for
all-neural ASR systems (see Section 2.4) trained using the CTC loss function [DSMB18],
where a larger variety of training languages improves the recognition accuracy as well.

To select of the optimal set of source languages (aspect c), one strategy is to base
the decision on the number of phones shared with the target language, but our results
also showed that this does not hold true in all cases. Selecting languages based on their
individual performance regarding the target language resulted in better performance.

72

Chapter 6

Language Adaptation by Additive

Language Codes

In the previous Chapter 5, we demonstrated that speech recognition systems benefit
from using multilingual data during training. In this section, we propose a
first approach towards a multilingual adaptation of neural networks in speech
recognition systems. While neural networks display improvements from adding
additional languages, adapting the networks to those languages should improve their
performance even further.

There are two major approaches to train neural networks for multilingual speech
recognition: 1) Share the hidden layers between languages, but use language-specific
output layers. This is a typical approach used in multi-task learning, where multiple
related tasks are learned jointly. Language-dependent information is encoded by using
one output layer per language. 2) Share all layers between languages by having a
multilingual output layer which features a joint set of acoustic units, combined from
all languages.

It has been demonstrated that neural networks do benefit from using additional
information sources. One example is speaker adaptation by the use of “i-vectors”
[SSNP13]. They encode speaker and/or channel characteristics in a low-dimensional
representation. Appending them to the acoustic features results in lower WERs as the
networks are able to adapt to those characteristics, which renders them more robust.

73

6. LANGUAGE ADAPTATION BY ADDITIVE LANGUAGE CODES

Similar to this adaptation method, we propose an approach for adapting networks to
di�erent languages by providing features encoding language properties.

6.1 Adaptation Using Language Identity

In this first set of experiments [MW15], we evaluated encoding the language identity
information (LID) as feature vector in a naïve manner using an one-hot encoding.
In our scenario, we used data from 6 languages, resulting in a 6-dimensional vector
with each dimension representing one language. As shown in Figure 6.1, if the input
language is, e.g. English, then the coe�cient for English is set to 1, while the others are
set to 0. Providing the LID to the network renders it aware of the di�erent languages
and it is able to learn language- related features, similar to speaker-related features,
that allow for better adaptation. This approach provides a first indication of whether
neural networks benefit from language information in a multilingual scenario, but it
does not take di�erences or similarities between languages into account.

DE EN TR
Figure 6.1: Naïve approach to encode language features by using the language identity
only.

6.1.1 Experimental Setup

We conducted this series of experiments on the Euronews Corpus, see Section 3.1.2.
In total, we used data from 6 languages (English, French, German, Italian, Russian,
Turkish), with English as the target language. The languages were selected based on
the availability of pronunciation dictionaries (see Section 3.2).

We evaluated the use of LID in two di�erent cases: a) using adapted ML-BNF
features with GMM/HMM based acoustic models and b) using adapted ML-BNF
features with DNN/HMM based acoustic models. Figure 6.2 shows two possibilities

74

6.1 Adaptation Using Language Identity

for adding the LID code: the early fusion by appending the LID prior to the
ML-BNF network, and the late fusion, where the LID code is appended to the
stack of ML-BNFs which is used as input to the DNN of the DNN/HMM acoustic
model. For both conditions, we built systems using either a shared phone set or
language-dependent phone sets. The setup with language-dependent phone sets
featured networks with shared hidden layers and language-dependent output layers.
As contrastive experiment, we trained an unadapted GMM/HMM based system, as
well as a monolingual system on English only.

ML-BNF

DNN Acoustic Model

AF stack

LID
early fusion

LID
late fusion

BNF stack Output layer

Figure 6.2: Overview of the network architecture used in our setup. We first stack the
acoustic features (AF) and append a language identification (LID) code, before feeding
them into the ML-BNF network. The ML-BNFs are stacked as well and the LID code is
again added. The second DNN computes the phone posteriors as part of the acoustic
model.

ML-BNF and DNN Training

The training schedule for both networks is identical. First, greedy layer-wise
pre-training is applied (see Section 2.2.6) to initialize the weights. Next, the network
is fine-tuned. Newbob learning rate scheduling with an initial learning rate of 1.0
was applied, starting the exponential learning rate decay if the frame error rate of
the validation set decreased by less than 0.005 between two epochs. The training

75

6. LANGUAGE ADAPTATION BY ADDITIVE LANGUAGE CODES

was stopped when the FER decreased by less than 0.0001 between two epochs in the
exponential phase.

Both networks were trained multilingually, with hidden layers shared between
languages. Depending on the setup, either multiple language dependent output layers
were used, or a single language universal output layer was used. The ML-BNF network
features 6 layers with 1,000 neurons each and the DNN for the acoustic model featured
5 layers with 1,600 neurons each.

6.1.2 Results

We first present results using a merged phone set, followed by language-dependent
phone sets. This section concludes with a comparison to monolingual systems. For all
experiments, we used English as the target language.

Merged Phoneme Sets

Using ML-BNFs improved the performance over the baseline, and providing the LID to
the network improved the performance even further (see Table 6.1). Replacing GMMs
by a DNN in a hybrid setup further lowers the WER. Applying LID in both early
and late fusion resulted in the lowest WER of 17.7%, an improvement of 9% relative
compared to non-adapted neural networks. The gains from adapting ML-BNFs and
the DNN AM were additive. Supplying the LID code to the ML-BNFs enabled the
extraction of more suitable features in this setting.

Table 6.1: Overview of results for multilingual systems with a merged phoneme set,
showing WERs for English. Applying the LID code improved the performance.

System Baseline LID adapted Rel. gain
Unadapted GMM/HMM 26.3% - -
ML-BNF 21.7% 21.2% 2.4%
+ Hybrid 19.3% 17.7% 9.0%

Language-Dependent Phoneme Sets

In a resource-rich scenario, the performance of speech recognition systems with
a language-dependent or monolingual phone set is typically better compared to

76

6.1 Adaptation Using Language Identity

their multilingual counterparts. As shown in Table 6.2, using the early fusion and
adapting only the ML-BNF-network degrades the performance of the system. Using
multiple language dependent output layers encodes the language information in itself.
Applying the LID in addition shows no improvement. For the hybrid system, we
therefore only applied the late fusion and observed a 3.5% relative gain over the
unadapted baseline.

Table 6.2: Overview of results for systems using separate phoneme sets per language,
showing WERs for English.

System Baseline LID adapted Rel. gain
Unadapted GMM/HMM 18.9% - -
BNF 17.5% 18.7% -6.4%
Hybrid 14.9% 14.4% 3.5%

Comparison to Monolingual Systems

As constrastive experiments, we trained monolingual systems on English
and compared their performance to the best language-adapted systems with
language-dependent phone sets. Table 6.3 shows the results. Training a multilingual
system with language-dependent phone sets and applying LID by late fusion resulted
in an improved WER compared to a system trained monolingually, although the gain
is smaller compared to adding this feature to the multilingual system.

Table 6.3: Comparison of results for monolingual systems and multilingual setups using
separate phoneme sets per language, showing WERs for English.

System Monolingual Multilingual Rel. gain
GMM/HMM 18.9% 18.9% -
BNF 18.6% 17.5% 6.3%
Hybrid 14.6% 14.4% 1.4%

6.1.3 Concluding Remarks

We have demonstrated that neural networks can be trained to adapt to languages in a
multilingual scenario. Depending on the condition, early and/or late fusion of the

77

6. LANGUAGE ADAPTATION BY ADDITIVE LANGUAGE CODES

language information lowered the WERs. Providing LID explicitly to the network
enables the network to capture language-specific features, which results in better
multilingual performance.

6.2 Language Feature Vectors

Previous experiments have shown that neural networks benefit from supplying
language information in a multilingual scenario. But providing only the language
identity information does not account for language properties, relationships or
similarities between languages or language families. Therefore, a better solution to
encode language properties is required, and is expected to improve performance. In
the regimen of speaker adaptation, a method similar to i-vectors but using neural
networks was proposed. These so-called bottleneck speaker vectors (BSVs) [HS15]
encode speaker properties, but are extracted entirely using a neural network. This
network is trained to discriminate speakers and features a bottleneck layer. After
training, all layers after the bottleneck are discarded and the output activations of this
layer are taken as BSVs. We extracted language feature vectors (LFVs) in a similar
manner [MSW16a], by training a bottleneck network for language identification.

6.2.1 LFV Network Architecture and Training

The network architecture is based on the architecture of hybrid ASR systems and
composed of two networks: a ML-BNF net for feature extraction and a DNN with a
bottleneck for language identification as shown in Figure 6.3. The ML-BNF is trained
in the same manner as for an ASR system, using logMel and tonal acoustic features,
similar to Section 6.1.1. It features 7 layers with 1,600 neurons each. The DNN for
language classification has 6 layers and 1,000 neurons per layer, with the second-to-last
layer being a bottleneck layer with only 42 neurons. Language information is expected
to be longer-duration in nature compared to the length of phones. The pipeline
therefore needs to be adjusted to capture language properties by using a larger context
window of input frames. The same training strategy as for our ASR systems was
used, with a pre-training and fine-tuning step. Newbob learning rate scheduling
was applied, starting the exponential learning rate decay if the frame error rate in

78

6.2 Language Feature Vectors

the validation set decreased by less than 0.005 between two epochs. The training
was stopped when the FER decreased by less than 0.0001 between two epochs in the
exponential phase.

The ML-BNF net was trained first using data from 5 languages (French, German,
Italian, Russian, Turkish) and then kept fixed. For training the LID network, we used
data from all languages within the Euronews corpus, except for English. English,
as our target language, was omitted since we wanted to assess the performance of
LFVs on a language that was not seen during training. To extract language feature
vectors (LFVs), we discarded all layers after the bottleneck layer and used the output
activations of the bottleneck as feature vectors.

ML-BNF

LID Network

AF stack BNF stack

LFV
Bottleneck

LID

Output

Figure 6.3: Overview of the network architecture used for LFV extraction. We first stack
the acoustic features (AF) as input to the ML-BNF in order to extract BNFs. The BNFs are
stacked and input into the LID network. This DNN is trained for language identification.

6.2.2 LFV Network Hyperparameter Optimization

We evaluated various parameters of the setup for LFV extraction [MSW16b]. We first
studied using di�erent kinds of acoustic features. Next, we varied the size of the
hidden layers and the bottleneck. With the network geometry fixed, we determined
the optimal context width. Based on the best network configuration, we built ASR
systems using both multilingual and monolingual phone sets [MSW16a]. In a final

79

6. LANGUAGE ADAPTATION BY ADDITIVE LANGUAGE CODES

set of experiments, we evaluated the cross-lingual performance of LFVs on a phone
recognition task.

Input Features and Network Topology

As input features, we evaluated using both logMel and tonal features, as well as
ML-BNFs extracted based on these features. In addition, we varied both the network
topology, as well as how the data is shu�ed during training. We studied two
kinds of topologies: using the default geometry where all hidden layers except the
bottleneck layer have the same size, and a tree-shaped topology where each additional
hidden layer has fewer neurons than the previous one. The expectation is that each
hidden layer extracts higher order and more abstract features, which can potentially be
represented by fewer neurons. Such an architecture uses fewer parameters and should
therefore be less prone to overfitting and require less resources for training.

The second aspect explored concerns the shu�ing of the data during training.
When preparing data files for training, the data is divided on a per-speaker basis to
multiple jobs which generate the data files. Those files will be merged afterwards,
with the e�ect that the data is semi-randomly shu�ed on a per-speaker basis. During
training, the data is loaded in chunks of approx. 3 GB in size into memory, with a total
number of chunks of approximately 100. Locally within each chunk, the data is then
shu�ed on-the-fly. Using an additional global shu�ing step prior to training, the data
within each chunk contains samples from a larger set of speakers.

The results are shown in Table 6.4. The column “tree” denotes whether results use
a tree-shaped network geometry. With respect to shu�ing, we indicated using local
or global shu�ing in the column “shu�e”. As the results indicate, shu�ing the data
globally does reduce the frame error, as the network sees frames from a larger pool
of speakers during each mini-batch. But given only minor improvements in the error
rate, the increased computational e�ort required to train networks in such a way was
not borne out. Using a tree-like structure resulted in a higher error rate, hence we kept
a network architecture with large, equally sized hidden layers. Using a network with
a non-tree shaped structure and local shu�ing, we evaluated the use of ML-BNFs. In
contrast to logMel and tonal features, this resulted in a lower FER.

80

6.2 Language Feature Vectors

Table 6.4: Di�erent network configurations for LFV extraction, using local or global
shu�ing, and optionally a tree-like structure.

Type Tree Shu�e FER
logMel + T – local 0.218
logMel + T – global 0.204
logMel + T + local 0.245
logMel + T + global 0.212
ML-BNFs – local 0.172

Hidden Layers and Bottleneck Size

Next, we varied the size of the hidden layers and the bottleneck. Starting with a
configuration of 1,600 neurons per hidden layer and 42 neurons for the bottleneck like
for an ASR setup. For speech recognition, the size of the bottleneck (42) is chosen
to be much smaller than the number of output neurons (>1000). In the current case of
language recognition, the network has a much lower number of output neurons (9). We
therefore evaluated two di�erent hidden layer sizes: 42 neurons, which we would use
for the extraction of BNFs, and 5 neurons, to have a bottleneck layer which is smaller
than the number of output neurons.

As shown in Table 6.5, using either smaller hidden layers or a smaller bottleneck
decreases the performance of the network. The best configuration uses 1,600 neurons
with a bottleneck of 42 neurons.

Table 6.5: Validation error for di�erent hidden layer and bottleneck configurations for LFV
extraction.

Hidden layer size Bottleneck Size FER
800 42 0.181

1,600 42 0.172
1,600 5 0.178

Context Width

Another parameter to be optimized is the amount of context which is fed into the LID
network. Networks trained for speech recognition typically use a context window of
100 - 150ms, which is in the range of the average length of a phone. But language

81

6. LANGUAGE ADAPTATION BY ADDITIVE LANGUAGE CODES

information is supposedly longer-duration in nature and therefore requires a larger
context. For varying the context width, we kept the number of input frames fixed, but
used di�erent spreads by omitting every n-th frame. We chose this method because
preliminary experiments indicated that increasing the input dimensionality would
degrade the performance. By increasing the spread, the context window increases
to a multiple of 11 frames on each side with the same dimensionality. Since we
extracted feature frames over a 32ms window with a 10ms frame-shift, there are some
redundancies present in adjacent frames. We did not alter the context of the ML-BNFs
network. This network uses a context of +/� 7 frames in each direction, so the
actual context which contributes to a single ML-BNF feature frame is much larger. We
evaluated various context lengths, as shown in Table 6.6. It can be seen that using
a spread of 3 results in the best performance. Increasing the context width further
decreases the classification performance, presumably due to skipping too many frames
in between. By using a spread of 3, there is still an overlap between adjacent frames by
2ms.

Table 6.6: Overview of di�erent context widths for LFV extraction, showing FER for
language classification.

Context width Spread FER
460ms 2 0.142
690ms 3 0.136
1380ms 6 0.139

6.2.3 LFV Analysis

Based on the previously determined optimal configuration, we now evaluate if the
extracted LFVs do in fact encode language properties or if they correspond to other
di�erences between recordings from di�erent languages, e.g. a di�erent subset of
speakers, or a di�erent TV studio with di�erent acoustic conditions. Given that we
chose the Euronews corpus, di�erences between languages related to acoustics should
be minimal. As a first experiment, we extracted LFVs using data from all speakers
in the training set. For better visualization, we applied the t-stochastic neighborhood
embedding (t-SNE) [MH08] to reduce the dimensionality, so that the LFVs could be
projected onto a 2D plane. t-SNE is known for being able to project high dimensional

82

6.2 Language Feature Vectors

data into a low dimensional space while preserving the structure. Figure 6.4 shows
the projection. Each data point was colored according to the language identity. For the
figure, we selected 10,000 samples across the training data randomly. As the figure
indicates, t-SNE clustered the LFVs by language. This is an indication that LFVs
represent language properties, as LFVs from the same language are projected onto
the same region and appear to be clustered together.

Figure 6.4: t-SNE projection of LFVs, colored by language identity

Language Identification Across Corpora

As a contrastive experiment, we attempted to detect languages across corpora to rule
out that the network determines the language by acoustic cues other than the language
spoken. Examples would be di�erent types of air conditioning, jingles (as we are using
TV broadcast news) or the microphones used. While such factors definitely have an
impact on the system performance and the system should adapt to them, our goal

83

6. LANGUAGE ADAPTATION BY ADDITIVE LANGUAGE CODES

for adaptation using LFVs is to be transparent to those e�ects. For our experiment,
we recorded two speakers in our lab reading English text as test data. Speaker 1 is
a German native speaker and has a very strong German accent. The recording was
performed in Karlsruhe at KIT. The mother tongue of speaker 2 is French. He speaks
with an accent, although it is not as noticeable as the one from speaker 1. He recorded
the data in Pittsburgh at CMU. Both recordings were done in a controlled environment,
but the acoustic conditions di�er from our training data.

In order be able to recognize the language based on LFVs, we derived so-called
language prototype vectors by extracting LFVs for all speakers in the training database
and averaging the LFVs per language. This resulted in 10 LFV representations, one
for each language in the training set. For each speaker in our test set, we created a
single LFV and computed the Euclidean distance between each of these vectors and
the language prototype vectors.

As shown in Figure 6.5, the distance of the speaker 1’s LFV to the English prototype
vector is the lowest. The second lowest distance is to German, but only by a small
margin compared to other languages like Italian or Arabic. Figure 6.6 shows a similar
behavior for speaker 2. Here, the distance to English is the lowest as well, but the
second lowest is Spanish, whereas the distance to French is the highest. These results
indicate that the LFV network has learned to extract language features, as LFVs can
be used to distinguish languages, independent of other factors like, e.g. acoustic
conditions, which may be di�erent between languages. In case of speaker 1, the LFVs
also indicated his strong German accent, but this does not hold true for speaker 2.
It may be related to the strength of the accent, but the available data is insu�cient
for a clear judgment. A systematic evaluation of accents is di�cult as the degree
to which someone speaks with an accent is di�cult to measure. A single canonical
accent does not exist, although people having the same mother tongue often pronounce
foreign languages similarly. The language classification performance was studied in
more detail [Dra17], evaluating di�erent conditions. Trained on the Euronews corpus,
we evaluated the systems on European Parliament speech, as well as on an internal
data set based on lecture recordings. We showed that our approach enables language
recognition across corpora, including the on-line recognition of the language with little
delay and high accuracy.

84

6.2 Language Feature Vectors

Germ
an

Po
lish

Fre
nc

h

Sp
an

ish
Ita

lia
n

Russi
an

Arab
ic

Tu
rki

sh

Eng
lish

Po
rtu

gu
ese

0.5

1

1.5

2

1.17
1.36

1.59

1.3 1.24

1.71

1.27
1.38

0.63

1.39

D
ist

an
ce

to
pr

ot
ot

yp
e

ve
ct

or
s

Figure 6.5: Comparison of distances from prototype vectors to LFVs from speaker 1
(German mother tongue).

Germ
an

Po
lish

Fre
nc

h

Sp
an

ish
Ita

lia
n

Russi
an

Arab
ic

Tu
rki

sh

Eng
lish

Po
rtu

gu
ese

0.5

1

1.5

2

1.25
1.4 1.48

1.15
1.29

1.47
1.32 1.27

0.58

1.34

D
ist

an
ce

to
pr

ot
ot

yp
e

ve
ct

or
s

Figure 6.6: Comparison of distances from prototype vectors to LFVs from speaker 2
(French mother tongue).

85

6. LANGUAGE ADAPTATION BY ADDITIVE LANGUAGE CODES

6.2.4 Multilingual Speech Recognition

We chose the best configuration for LFV extraction and trained ASR systems with it
[MSW16a]. For evaluation, we used a setup similar to the one described in Section
6.1 for the LID as language code. We again used data from the Euronews Corpus
(see Section 3.1.2). In total, we used data from 6 languages (English, French, German,
Italian, Russian, Turkish), limiting ourselves to 30h per language. Figure 6.7 shows
the network architecture and where LFV language codes were added. The ML-BNF
network featured 6 hidden layers with 1,000 neurons per layer, and the bottleneck had
a size of 42 dimensions. Multiple input feature frames were stacked using a context
of +/� 6 frames. The network was trained multilingually with shared hidden layers
and language-dependent output layers. The DNN acoustic model featured 6 hidden
layers with 1,600 neurons per layer. As input features for this network, ML-BNFs with
a context of +/� 7 frames were used. Both networks were trained in a similar manner
using a pre-training and fine-tuning step (see Section 6.1 for details). LFVs were added
to both feature frame stacks, as indicated.

ML-BNF

DNN acoustic model

AF stack

LFV
early fusion

LFV
late fusion

BNF stack Output layer

Figure 6.7: Overview of the network architecture used in our setup. We first stack the
acoustic features (AF) and augment them with language feature vectors (LFV) before
feeding them into the ML-BNF network in order to extract adapted ML-BNFs. The
ML-BNFs are stacked as well and the LFV code is added again. The second DNN computes
the phoneme posteriors.

86

6.2 Language Feature Vectors

Multilingual Phones Set

We first studied adding LFVs to a DNN/HMM hybrid system with a merged phone set.
The GMM/HMM base system was trained multilingually using a joint set of phones
on all 6 languages. Table 6.7 shows an overview of the results. To compare our results,
we also included numbers from systems trained using LID (see Section 6.1). The WER
of the setup trained using LFVs is lower compared to using the LID. This indicates that
the networks are able to better adapt to multiple languages if LFVs are used instead
of the LID. The extracted language properties allow for better adaptation compared to
the language identity.

Table 6.7: Overview of WERs for multilingual systems, comparing LID and LFVs for
adaptation.

System BNF Hybrid
w/o LI 21.4% 19.1%
LID 20.7% 17.7%
LFVs 20.7% 16.2%

Language-Dependent Phone Set

In addition to using a multilingual phone set, we trained systems with multilingual
acoustic models and language-dependent phone sets. We first trained monolingual
systems for each language, which were used to obtain training data for the DNN
acoustic model. It was trained in such a way that the hidden layers were shared among
languages, with language-specific output layers. The results in Table 6.8 indicate that
there is still a gap between language-specific and multilingual systems. However, this
gap decreases by using LID and even further by using LFVs.

Table 6.8: Comparison of WERs using mono- and multilingual phoneme sets in
combination with LID and LFVs for language adaptation

System w/o adaptation with LID with LFVs
Monolingual 16.7% 16.6% 15.3%
Multilingual 19.1% 17.7% 16.2%
Loss in perf. 14.4% 6.7% 5.8%

87

6. LANGUAGE ADAPTATION BY ADDITIVE LANGUAGE CODES

Cross-lingual Phone Recognition

In addition to building multilingual speech recognition systems, we also evaluated
the use of LFVs in a cross-lingual scenario. In cases where no training data for the
target language is available, one method is to use an existing speech recognition system
and establish a mapping between the phone set of the source and the target language.
For this experiment, we pretended English to be a language without available training
data. We trained an ASR system with a multilingual phone set on 5 languages (French,
German, Italian, Russian, Turkish). This system was configured for phone recognition
and a manual mapping between the multilingual phone inventory of the system and
the target language (English) was established. Table 6.9 shows the phoneme error
rate (PER). Although the PERs are high (which is to some degree typical for phoneme
recognition systems, especially for cross-lingual systems), the additional use of LFVs
results in a decreased PER.

Table 6.9: Overview of results for cross-lingual phoneme recognition. The results show
the phoneme error rate (PER).

System PER rel. improvement
Baseline 84.0% —
with LFV 81.4% 3.2%

6.3 Conclusion

We studied two methods for adapting neural network based multilingual acoustic
models to languages. Improvements were observed by supplying the language
identity information as one-hot code to the network. But this method does not take
language properties into account. We therefore used an ancillary neural network
trained for language identification to extract language feature vectors, which encode
language properties and not only the language identity alone. Using these features as
language codes improved the performance further. We evaluated both setups using
multilingual ASR systems. With a language universal phone set, the WER drops from
19.1% to 17.7% using the language identity and to 16.2% using language properties for
adaptation. When training a multilingual acoustic model with a language dependent

88

6.3 Conclusion

phone set, the WER drops from 16.7% to 15.3% when using language properties for
adaptation. While the performance of systems with a monolingual phone set is not yet
met using a multilingual one, the use of additive language codes decreases the gap in
recognition performance between the two setups.

For future work, an alternative to the extraction of language codes using neural
networks is to explicitly model language properties, based on the World Atlas of
Language Structures (WALS) [DH13]. It is a large database of structural language
properties, which could be used instead of language features extracted entirely via
a neural network.

89

Chapter 7

Language Adaptation by

Multiplicative Language Codes

Using language codes which are added to the acoustic features improved the

performance of multilingual ASR systems. But language properties are not as signal

related as channel or speaker properties. In this chapter, we evaluate integrating

language codes deeper into the network architecture. Traditional speech recognition

systems feature many explicitly modeled components, like, e.g. context-dependent

phones. In a multilingual setting, these components need to be adapted [SW98b, SW00]

to the training on multiple languages. Recently, systems based on RNNs trained

using connectionist temporal classification (CTC) [GFGS06] have gained in popularity.

Instead of featuring many explicitly modeled components, such setups rely on a single

neural network which models all aspects implicitly. As a consequence, the WER of such

systems is typically higher compared to traditional systems because of less explicitly

modelled knowledge. The networks have to learn everything by themselves.

Neural adaptation techniques become more important for all-neural setups, and

adapting the neural network also adapts all implicitly learned features. Such systems

are therefore better suited to study the e�ects of adaptation. We here present a method

called “modulation” which uses language codes to gate the outputs of BiLSTM layers.

This stimulates the network to learn features based on language properties.

91

7. LANGUAGE ADAPTATION BY MULTIPLICATIVE LANGUAGE CODES

7.1 Multilingual Systems Using Two Languages

We started by building systems using data from a pair of languages [MSW17b], English
and German. Using a neural network architecture based on Baidu’s Deep Speech
2 system [AAA+16], our setup featured two 2D convolutional / TDNN layers and
4 bi-directional LSTM layers, as it is shown in Figure 7.1. The output layer is a
feed-forward layer which maps the output of the last BiLSTM layer to the output
targets. To compute the loss, Baidu’s CTC implementation called “warp-ctc” was used.

Deep Speech 2 uses a so-called end-to-end approach, where a single neural
network is trained to recognize speech without explicitly modeling components like
context-dependent acoustic models, pronunciation dictionaries or a language models.
Using only the audio and the sequence of output characters, the network learns to
generate transcripts from recordings. The Baidu setup uses the log spectrogram as
input features. Instead of using a pre-processing pipeline with Mel-Scaled filterbanks,
the 2D CNN layers implicitly learn filters to extract features relevant for speech
recognition from the raw spectrogram. Traditional systems would use an additional
neural network trained to extract bottleneck features.

CNN

CNN

BiLSTM Part 1

BiLSTM Part 2

Output Layer

Figure 7.1: Network architecture, based on Baidu’s Deepspeech2 configuration.

92

7.1 Multilingual Systems Using Two Languages

7.1.1 Experimental Setup

We used phones as acoustic modeling units. While the original Baidu setup used
graphemes as acoustic modeling units, we chose phones as we opted for a simpler
task in this first approach. By using phones, the networks do not need to learn
pronunciation rules. To create a global phone set, we merged the phones sets of English
and German, ensuring that the same sounds would map the symbols across languages.
While the same sounds do share the same symbols independent of the language, the
network has to learn phone contexts, which are language specific as the sounds do
feature a language specific coloring.

We based our experiments on the Euronews corpus (see Section 3.1.2). Utterances
shorter than 1s or having phonetic transcripts longer than 639 items were removed
because of an internal limitation of the CUDA/warp-ctc implementation1. In total, we
used 35h of data for training, and 5h for testing. The pronunciation dictionaries were
created using MaryTTS. Each language has its own set of phone symbol. While most
symbols represent the same phone across languages, some symbols di�er between
English and German. To ensure that the same symbols represent the same sounds
across languages, we manually mapped symbols to create a global set of acoustic
units. We used the definition of articulatory features for each phone in the language
definition files of MaryTTS.

In addition to the mapping of sounds across languages, we also mapped symbols
within languages. MaryTTS uses markers to indicate long vowels. In a series of
preliminary experiments, we determined that our setup frequently confused long and
short instances of the same vowel. Hence we discarded the length markers and use
only one symbol per vowel. Table 7.1 shows the amount of phones before and after the
mapping. The resulting multilingual phone set has a size of 56 phones, with 39 phones
from English and 48 from German.

To extract acoustic features, we used the Janus Recognition Toolkit (JRTk) [ea94],
which features the IBIS single-pass decoder [SMFW01]. We used our standard
pre-processing pipeline consisting of 40 dimensional log Mel scaled coe�cients and
14 dimensional tonal features (FFV [LHE08] and pitch [Sch99]). The features were
extracted using a 32ms window with 10ms shift. For training the networks, we created

1see: https://github.com/baidu-research/warp-ctc, accessed 2018-04-13

93

7. LANGUAGE ADAPTATION BY MULTIPLICATIVE LANGUAGE CODES

Table 7.1: Size of di�erent phone sets

Language Phone Set Size
English MaryTTS 42

Mapped 39
German MaryTTS 59

Mapped 48
Combined Merged 56

a setup based on PyTorch. We applied stochastic gradient descent with Nesterov

momentum of factor 0.9, and used a batch size of 20 with batch normalization and

learning rate annealing with a factor of 1.1 after each epoch. In addition, we applied a

max norm constraint of 400. The utterances were sorted ascending by length to stabilize

the training, because the weights of the network are initially uninitialized. Shorter

utterances feature less acoustic frames and target symbols and therefore account for

less ambiguity.

7.1.2 Monolingual Baseline

We first trained monolingual systems, evaluating the di�erent phone sets. The

networks featured 2 2D CNN layers and 4 layers with 400 bi-directional LSTM cells

each. As shown in Table 7.2, mapping phones based on articulatory features improved

the performance. For English, the PER drops from 20.4%, while an improvement from

16.0% to 15.5% could be observed for German.

Table 7.2: Monolingual results on the test set showing the phone error rate (PER)

System Phone Set PER
English MaryTTS 20.4%
English Mapped 19.0%
German MaryTTS 16.0%
German Mapped 15.5%

94

7.1 Multilingual Systems Using Two Languages

7.1.3 Multilingual Experiments

Next, we built multilingual systems using the combined data from English and
German. We varied the amount of layers and the number of BiLSTM cells per layer. As
shown in Table 7.3, using 4 layers with 1,000 BiLSTM cells per layer results in the lowest
PER. The “ML PER” shows the performance of the multilingual system evaluated on
both English and German. For reference, we also trained an English monolingual
system for some conditions.

Table 7.3: Multilingual results showing the phone error rate (PER) for di�erent network
configurations

BiLSTM layer size # BiLSTM layers ML PER EN PER
350 5 19.6% –
400 4 20.0% 19.0%
400 5 19.6% –
600 4 17.3% –
800 4 16.9% 17.8%
800 5 17.0% –
1000 4 16.3% 17.7%

7.1.4 Language Adaptive Networks

Using the best network configuration as determined in the previous section, we applied
LFVs to the network for multilingual adaption. Encoding language properties and
being extracted using a neural network, adjacent dimensions in LFVs do not display a
spacial relationship. We therefore appended them not to the input but to the output
of the convolutional layers. The addition of LFVs did reduce the PER, see Table 7.4.
Trained for only 7 epochs, the multilingual setups outperformed the monolingual ones.
But training for more epochs, the PER of the monolingual systems drops below the
multilingual one. One explanation for this behavior could be the amount of data used.
The multilingual system uses twice as much data as the monolingual one. Hence, the
network is trained with twice as much data during each epoch, therefore twice as much
mini-batch updates are applied.

95

7. LANGUAGE ADAPTATION BY MULTIPLICATIVE LANGUAGE CODES

CNN

CNN LC

BiLSTM Part 1

BiLSTM Part 2

Output Layer

Figure 7.2: Network architecture with LFVs being added after the final convolution layer.

Table 7.4: Multilingual results showing the phone error rate (PER)

System Type LFV PER (7 ep.) PER (70 ep.)
English Monolingual – 17.7% 13.1%

Multilingual – 18.7% 14.8%
Multilingual + 16.4% 13.5%

German Monolingual – 14.6% 10.8%
Multilingual – 14.0% 11.8%
Multilingual + 13.8% 11.0%

Combined Multilingual – 16.3% 12.9%
Multilingual + 15.7% 12.4%

7.2 Multilingual Systems Using Multiple Source Languages

Based on initial results in the previous section, we extended our approach in three ways
[MSW17c]: a) using data from 4 languages, b) using ML-BNFs over plain input features
and c) omitting the pronunciation dictionary to train the systems on graphemes only.
The data of the additional languages, French and Turkish, was processed in the same
way as English and German. The additional phone symbols were mapped in the same
manner to expand our global phone set. For evaluation, we used WER in addition to
the PER/CER. For this, we decoded using a RNN based a basic character language

96

7.2 Multilingual Systems Using Multiple Source Languages

model.

Multilingual BNFs

We first evaluated using ML-BNFs instead of basic input features. In traditional
systems, the use of (ML-)BNFs does improve the system performance. Similar gains
should be observable for RNN/CTC based setups. We evaluated the performance
by training monolingual systems for both English and German. The ML-BNFs were
trained on 5 languages (French, German, Italian, Russian, Turkish) in the same manner
as described in Section 6.1.1. As shown in Table 7.5, using ML-BNFs does improve
the performance for both languages. Even though the ML-BNFs were not trained on
English, the improvement from 13.0% to 10.2% indicates that ML-BNFs are able to
extract generalized features across languages.

Table 7.5: Comparison of using ML-BNFs over log Mel + tone features

Condition English CER German CER
log Mel + Tone 13.0% 10.8%
ML-BNF 10.2% 7.8%

Multilingual Phoneme Based Systems

Next, we built systems using data from all 4 languages (English, French, German,
Turkish). As contrastive experiments, we trained monolingual systems for each
language. In the multilingual case, we also appended LFVs to the output of the
CNN layers for language adaptation. As shown in Table 7.6, the monolingual systems
do outperform the multilingual ones, but when using LFVs for adaptation, the gap
between mono- and multilingual systems becomes smaller.

Table 7.6: Character Error Rate (CER) of multilingual (ML) phoneme CTC based systems,
trained on 4 languages.

Condition DE EN FR TR
Monolingual 7.8% 10.2% 8.3% 7.1%
ML 9.9% 14.1% 12.8% 8.4%
ML + LFV 8.9% 12.9% 10.7% 7.6%

97

7. LANGUAGE ADAPTATION BY MULTIPLICATIVE LANGUAGE CODES

Multilingual Grapheme Based Systems

As the final experiment in this series, we evaluated the performance of our setup
using graphemes as acoustic modeling units over phonemes. Using graphemes
allows to omit the pronunciation dictionary, but the networks then have to infer
the pronunciation rules in addition. Automatically learning pronunciation rules
is a di�cult task, e.g. the character sequence “ough” has eight di�erent acoustic
realizations1 in English. In a multilingual scenario, inferring pronunciation rules
becomes more di�cult, as di�erent acoustic inputs will result in the same grapheme
sequence, e.g., “hat” or “die” in English or German.

As shown in Table 7.7, applying LFVs improves the performance throughout the
di�erent languages. In comparison to phoneme based systems, the CER of German
and Turkish is lower for the grapheme case. A possible explanation would be that those
languages feature a closer letter to sound mapping compared to English or French.
Hence, the pronunciation rules could be learned more easily. On the other hand, the
quality of the pronunciation dictionary might be not optimal as it was created fully
automatically using a text to speech system.

Table 7.7: Character Error Rate (CER) of multilingual grapheme based systems, trained
on 4 languages.

Condition DE EN FR TR
Monolingual 7.5% 12.9% 11.5% 6.6%
ML 9.1% 15.6% 13.4% 7.9%
ML + LFV 7.9% 14.3% 12.5% 7.3%

Decoding with RNN LM

In order to assess the performance of our setup by computing WERs, we used a
neural network based language model to perform a greedy decoding [GFGS06]. The
RNN LM was trained on the training utterances of the acoustic model only. While
language models are typically trained on several million sentences, we here used only

1The following sentence of unknown origin contains all pronunciation variants of “ough”: “A
rough-coated, dough-faced, thoughtful ploughman strode through the streets of Scarborough; after
falling into a slough, he coughed and hiccoughed.”

98

7.3 Neural Network Modulation

110k sentences. But this being in-domain data, decoding with this model should still
indicate if the gains observed in CER are also reflected in WER. The results in Table 7.8
show improvements by the use of LFVs after decoding.

Table 7.8: Word Error Rates (WERs) of English grapheme based CTC systems. Adding
LFVs improves the multilingual performance.

Condition Mono ML ML + LFV
English 25.2% 30.8% 28.1%

7.3 Neural Network Modulation

Appending LFVs to the acoustic features did show improvements for both
feed-forward and recurrent neural network based setups. Given the recurrent nature
of the latter, adding static features to the input is potentially not the best way for
adapting this type of networks. In addition, language properties are not as signal
related as, e.g. channel or speaker properties. Therefore adding language features
deeper into the network architecture should improve the performance. We therefore
evaluated a method called “modulation” in order to incorporate language codes in the
network architecture [MSW18b]. Our goal is to force networks to learn features based
on language properties.

Modulating Layers

First introduced as part of Meta-PI networks (see Section 2.7), the modulation is
implemented as special connections which allow to multiply the outputs of a unit
with a coe�cient. In the original work [HW90, HW92], the modulation was used
to combine the outputs of multiple source networks by a weighted sum, using one
coe�cient per network. We here applied the modulation in a di�erent manner to the
outputs of a hidden layer. One method to alter the way how networks learn features
was proposed with “dropout training” [HSK+12, SHK+14]. By omitting connections
between neurons randomly, dropout prevents co-adaptation as each training step
would see a di�erent network configuration. Instead of randomly omitting connections
between neurons, the modulation emphasizes or attenuates the outputs, based on

99

7. LANGUAGE ADAPTATION BY MULTIPLICATIVE LANGUAGE CODES

language codes. It can therefore be considered as an “intelligent” way of dropout,
where connections are systematically altered instead of on a random basis. The
network will learn features modulated by language properties, as the outputs of units
will be gated by language codes. In order to modulate the output of a layer, the same
amount of coe�cients as there are outputs are required.

In our scenario, we modulated the outputs of a BiLSTM layer with LFVs, while
otherwise using the same architecture as in our previous experiments. The network
architecture is shown in Figure 7.3. In a series of preliminary experiments, we
determined that modulating the output of the second layer does result in higher
performance. Possible reasons for this are that the lower two layers of the network
are able to learn the relevant features and that the upper layers after the modulation
learn language adaptive higher order features.

A related approach to modulation is stimulated training of DNNs [TSG15,
WKGS16], where constraints are applied during training which influence the behavior
of hidden units by arranging them in a 2D grid and enforcing spacial relationships.

CNN

CNN LC

BiLSTM Part 1

*

BiLSTM Part 2

Output Layer

Figure 7.3: Network layout, based on Baidu’s Deepspeech2 [AAA+16]. Modulating the
output of the second LSTM layer improves the performance more than adding LFVs after
the CNN / TDNN layers.

100

7.3 Neural Network Modulation

Network Architecture

For our setup, we chose the number of BiLSTM cells per layer to be a multiple of
the dimensionality of the language codes. Given that c is the dimensionality of the
language code and the number of BiLSTM cells per layer are n · c, we then needed
to stack the language codes n times to match the dimensionality. This way, we could
match the dimensionality of both by stacking the language codes multiple times. The
output layer could therefore be considered divided into n groups of c, with each group
being modulated by the same coe�cient.

7.3.1 Experimental Setup

To evaluate this approach, we used the same setup as in the previous Section 7.2. The
systems were trained using a combination of 4 languages from the Euronews corpus.
To study the e�ectiveness of the modulation in comparison to the addition, we trained
systems of each type using identical conditions. We evaluated using graphemes and
phonemes as acoustic units, as well as networks with both 420 and 840 bi-directional
LSTM cells per layer. We evaluated our method also by varying the amount of
data, using either 8h to simulate a resource constraint task or 45h for a resource-rich
environment.

7.3.2 Results

The resource constraint condition was only applied to English in full, as we were using
ML-BNFs as input to our setup and these were trained using 70h of data from French,
German, Italian, Russian and Turkish, see Section 6.1.1. We present the results of our
multilingual systems on the test set for each language individually, as well as averaged
across all languages.

Grapheme Based Systems

We first evaluated the performance using graphemes as acoustic modeling units. As
shown in Table 7.9, applying the modulation improves the performance in contrast to
the simple addition of the language codes to the acoustic features. Improvements can
be observed across languages. Using the full training set (45h), improvements across

101

7. LANGUAGE ADAPTATION BY MULTIPLICATIVE LANGUAGE CODES

Table 7.9: CER of grapheme based system trained on 8h per language, 420 BiLSTM cells
per layer

Condition AVG DE EN FR TR
ML Baseline 31.2% 30.8% 38.0% 29.4% 30.9%
Appending 25.9% 22.9% 33.3% 27.3% 21.3%
Modulation 24.6% 20.7% 32.7% 25.4% 19.6%

all conditions were observed (Table 7.10) as well. The relative improvements are within
the same order of magnitude. As we were using more data, we evaluated increasing the

Table 7.10: CER of grapheme based system trained on 45h per language, 420 BiLSTM cells
per layer

Condition AVG DE EN FR TR
ML Baseline 14.4% 10.6% 18.2% 15.9% 9.1%
Appending 13.0% 9.5% 16.1% 14.3% 8.1%
Modulation 12.4% 9.1% 15.5% 13.6% 8.0%

size of the layers, as with more data more parameters can be estimated. With approx. 4
times as much data (8h vs. 45h), we doubled the number of BiLSTM cells per layer. As
shown in Table 7.11, the CER decreases by the increase in layer size. Supplying LFVs
still improves the performance, but the di�erence between modulation and addition
becomes smaller, reaching parity for Turkish.

Table 7.11: PER of grapheme based system trained on 45h per language, 840 BiLSTM cells
per layer

Condition AVG DE EN FR TR
ML Baseline 12.2% 8.9% 15.0% 13.5% 7.9%
Appending 10.8% 7.9% 13.6% 11.8% 7.1%
Modulation 10.7% 7.7% 13.3% 11.7% 7.1%

Phoneme Based Systems

Next, we evaluated phoneme based systems in the same manner as grapheme based
ones. Starting with only 8h of data (Table 7.12), improvements by modulation over
addition can be observed for all languages. Increasing both the amount of training

102

7.3 Neural Network Modulation

Table 7.12: PER of phoneme based system trained on 8h per language, 420 LSTM cells per
layer

Condition AVG DE EN FR TR
ML Baseline 23.2% 21.7% 27.2% 23.9% 21.6%
Appending 21.9% 20.9% 26.4% 21.3% 19.5%
Modulation 20.6% 19.0% 25.6% 19.8% 17.6%

data and the size of the hidden layers improved the performance (see Table 7.13). In
contrast to grapheme based systems, phoneme based ones benefited more from the
modulation in this configuration. 45h of acoustic training data may not be enough
for the networks to capture pronunciation rules needed for generalizing. Training
on phonemes multilingually is an easier task, as the same sounds are represented by
the same targets across languages. The phones appear in language specific contexts,
which accounts for language dependent co-articulation artifacts. Using language
codes enables a better adaptation to such scenarios, as the lower error rates indicate.

Table 7.13: CER of phoneme based system trained on 45h per language, 840 LSTM cells
per layer

Condition AVG DE EN FR TR
ML Baseline 12.0% 9.6% 14.6% 12.1% 8.5%
Appending 11.0% 9.3% 13.2% 10.8% 7.7%
Modulation 10.5% 8.6% 12.5% 10.2% 7.3%

Decoding with a RNN Language Model

As the final evaluation in this section, we used the grapheme based systems in
combination with a RNN based language model to perform a greedy decoding for
English. As shown in Table 7.14, the improvements in CER also propagate to WER for
both 8h and 45h of training data per language.

Conclusion

We evaluated a novel approach for incorporating language codes into the network
architecture. In comparison to previous methods, the error rates improved by the

103

7. LANGUAGE ADAPTATION BY MULTIPLICATIVE LANGUAGE CODES

Table 7.14: WER of English grapheme based systems, trained using 8h of data and 420
cells per BiLSTM layer (8h-420), or 45h and 840 cells per layer (45h-840)

Setup Baseline LFV add LFV mod
8h-420 32.4% 30.6% 29.9%
45h-840 29.2% 27.7% 27.3%

modulation over the addition to the acoustic features. Language properties are not as
signal related as speaker or channel properties. The modulation with language codes
stimulates networks to learn features based on language properties. Depending on
the language representation, the outputs of units will be emphasized or attenuated,
similar to dropout training, but in a systematic manner. This allows for rapid
(re-)configuration of networks to languages, as language characteristics modulate the
signal flow inside the network. Di�erent parts of the network become more or less
active, depending on the language.

7.4 Optimizing the Network Architecture

After establishing modulation as the best method for performing language adaptation,
we next optimized the network architecture, as well as the training strategy [MSW18a].
We originally started with Baidu’s Deepspeech2 system. But it’s network architecture
and training strategy may not be ideal for our use case, so we optimized both aspects.

Removal of 2D CNN Layers

Baidu’s original setup was developed to be trained end-to-end, including the extraction
of acoustic features out of the spectrogram. For this task, the architecture uses 2 2D
CNN layers to process the spectrogram and to learn filters for the extraction of features
relevant for speech recognition. In our setup, these layers were no longer needed as
we trained the system on ML-BNFs, which themselves already provide a well suited
and robust feature representation for speech recognition. Applying 2D CNN layers
to these features should not lead to improvements, as, in contrast to a spectrogram,
no spacial relation between adjacent dimensions exist. Thus, removing these layers

104

7.4 Optimizing the Network Architecture

should not decrease the performance and the architecture then features less parameters
to be trained.

Combining Layer Outputs

In addition to removing the CNN layers, we also looked into possible optimizations in
applying the modulation. As we were using bi-directional LSTM layers, each layer
featured two outputs for each BiLSTM cell, one for each direction. These outputs
could be passed along unchanged, or the outputs for each direction could be combined
pairwise. There are multiple options for the combination. As default, the outputs for
each direction were appended, resulting in the dimensionality of the outputs to be
twice the number of BiLSTM cells. But other ways for combination are also possible.
We evaluated using pairwise addition, multiplication and taking the maximum. The
latter is inspired by maxout networks [GWFM+13] and maxpool layers. The new
network architecture is shown in Figure 7.4.

ML-BNF LFV

BiLSTM Part 1

µ

*

BiLSTM Part 2

Output Layer

Figure 7.4: Network architecture with modulation, BiLSTM outputs for each direction are
combined pairwise.

We evaluated the merging strategies using both graphemes and phonemes. Results
for phoneme based systems are shown in Table 7.15. Appending the outputs for both
directions can be considered to be the baseline. Pairwise multiplication lead to the

105

7. LANGUAGE ADAPTATION BY MULTIPLICATIVE LANGUAGE CODES

worst results. Improvements could be seen by the pairwise summation or taking the
maximum. Across all languages, taking the maximum for each direction results in the
lowest PER. Using graphemes as acoustic modeling units had a similar outcome, see

Table 7.15: Evaluation of merging strategies, PER on phoneme based systems

Strategy DE EN FR TR
Append 7.8% 11.2% 8.9% 6.1%
Sum 7.7% 11.0% 9.0% 6.2%
Multiply 7.9% 11.7% 9.2% 6.2%
Max 7.7% 11.0% 8.8% 6.0%

Table 7.16. Taking the maximum here resulted in the best performance for 3 languages.
Multiplication again lead to the worst results.

Table 7.16: Evaluation of merging strategies, PER on grapheme based systems

Strategy DE EN FR TR
Append 6.7% 11.8% 9.5% 5.8%
Sum 7.0% 12.1% 10.1% 6.0%
Multiply 7.2% 12.8% 10.5% 6.0%
Max 6.7% 11.7% 9.8% 5.7%

In both conditions, improvements gained from di�erent merging strategies are
limited and in the case of the grapheme based French systems even worse. But as using
an optimized strategy did slightly improve the performance in almost all conditions,
we chose to take the pairwise maximum as default merging strategy.

7.5 Phonetic Pre-Training

We were building a speech recognition system based on a graphemic acoustic model.
But incorporating phonetic information into the training process should improve the
performance. Related to work presented in [RS17], we choose to pre-train part of the
network architecture using phonemes as targets. The training of the network was
divided into two steps. The network architecture is shown in Figure 7.5. First, the
base network (4 BiLSTM layers, part 1 and 2) was trained on phonemic targets for a

106

7.5 Phonetic Pre-Training

fixed number of epochs. Next, two additional layers (part 3) were added and the whole
network was trained again, this time using graphemes as targets.

ML-BNF LC

BiLSTM Part 1

*

BiLSTM Part 2

BiLSTM Part 3

Output Layer

Figure 7.5: Network architecture used for pre-training. The red box indicates which layers
were pre-trained. BiLSTM block 3 is added after pre-training.

We evaluated the performance of our approach by training a system in the
described two stages. Table 7.17 shows the results. The CERs after applying the
pre-training are lower for each language. As a contrastive experiment, we trained a
network with 6 layers, but the numbers indicate that simply using more layers does
not result in better performance.

Table 7.17: Evaluation of phonetic pre-training, CER on grapheme based systems

Strategy DE EN FR TR
Baseline (4L) 7.7% 11.0% 8.8% 6.0%
Baseline (6L) 9.0% 12.7% 10.3% 7.5%
Pre-training 6.0% 10.0% 8.7% 5.3%

As final evaluation in this section, we compared the WER of the resulting
systems by decoding with a language model, identical to the setup used in previous
experiments. As shown in Table 7.18, the improvements observed in CER are also

107

7. LANGUAGE ADAPTATION BY MULTIPLICATIVE LANGUAGE CODES

reflected in WER of the system.

Table 7.18: Evaluation of phonetic pre-training, WER

Strategy EN
Baseline 26.3%
Pre-training 25.4%

7.6 Conclusion

We applied BiLSTM/CTC based setups to multilingual speech recognition. In
traditional ASR systems, all explicitly modeled components need to be adapted to
multiple languages. The all-neural architecture was chosen because it models all
aspects implicitly. No explicit adaptation to languages is required, as neural adaptation
methods adapt the neural network and all implicitly learned features. This enabled a
better multilingual adaptation.

Using this new architecture, we first studied the e�ects of using additive language
codes as proposed in the previous Chapter 6. While we first added the language codes
to the acoustic features similar to features for speaker adaptation, language properties
are not as signal related as channel or speaker properties. We therefore improved
the adaptation by applying the language codes in a di�erent manner. Inspired by
Meta-PI networks, we used the language codes to gate the outputs of BiLSTM cells
in hidden layers. We call this adaptation method “modulation”. In comparison to
simply adding language codes to the acoustic features, using modulation to integrate
them as multiplicative codes deeper into the network architecture increased the
recognition accuracy. Using a system with additive language codes as a baseline, the
WER decreases from 28.1% to 25.4% using multiplicative codes in combination with
additional optimizations.

108

Chapter 8

Adaptive Neural Language Codes

We have shown that choosing the right training strategy and adaptation methods
can improve the recognition accuracy of multilingual systems. But reaching the
monolingual baseline is still challenging when building systems with a multilingual
acoustic model. In order to leverage the full potential of monolingual models in our
multilingual setup, we explored how such models can be integrated into our network
architecture [MSW18c]. One method is to use a network architecture based on Meta-PI
[HW90, HW92]. In this approach, parts of the network are pre-trained and then
combined into a single network superstructure. We adapt this method to our scenario
by pre-training language dependent subnets. We also evaluate using adaptive neural
language codes for modulation.

8.1 Relation to Meta-PI Networks

In the original publication, the Meta-PI combinational superstructure uses subnets
which were pre-trained speaker dependent. An additional Meta-PI network was
trained to provide mixture weights which were used to combine the classification
outputs of the speaker dependent networks. One weight per network was used. We
adapted this idea to the task of multilingual speech recognition. In our setup, we used
language dependent subnets, each trained on a single language. The combined outputs
of these networks were then fed into our main network. In contrast to the original
approach, we discarded the output layer of these networks after training, as we aimed

109

8. ADAPTIVE NEURAL LANGUAGE CODES

for extracting language dependent features instead of the final classification results.
This also allowed the use of language dependent targets without the need to map them
to a global set of targets.

The language dependent BiLSTM based subnets were trained using CTC. This loss
function trains the network to output spikes when it detects the occurrence of a target.
With the actual point in time where this spike occurs being irrelevant, networks trained
on the same task achieve the same performance, but the spikes appear at slightly
di�erent points in time, as shown in Figure 8.1. Multiple training runs lead to similar
peaks, but they do not match exactly. Combining the outputs would therefore also

Figure 8.1: Example of output activations of the same network configuation, trained
multiple times. The detection of word boundaries is shown.

have not been ideal, compared to a frame-based classification task presented in the
original introduction of Meta-PI, where the networks are trained to output the same
classification result at the points in time.

8.2 Neural Language Codes

In Section 6.2, we introduced LFVs and have shown that the language properties they
encode carry more information than the language identity alone. We also proposed to
apply them to neural networks using a method called modulation. As such, in order
to modulate the outputs of a layer, the number of coe�cients has to match the number
of outputs. As described in Section 7.3, if the language code has a dimensionality of
c, then the number of BiLSTM cells per layer are chosen to be n · c. By stacking the
language codes n times, the dimensionality of both could be matched. But this also
means that n neurons are being modulated with the same coe�cient. The output layer

110

8.2 Neural Language Codes

could therefore be considered to be divided into n groups of size c, with each group
being modulated with the same coe�cient. This division of the layer’s outputs into
groups of equal size for modulation is arbitrary.

A better solution would be to break free of this fixed grouping imposed by the
stacking of the language code multiple times. Also, the network for the extraction
of these codes was trained for language identification. While these features lead
to improvements, adapting the codes for speech recognition should improve the
performance further. To address both matters, we trained a BiLSTM network to refine
the extracted codes. This network was pre-trained to output stacked language codes,
using both the language codes and acoustic features as input. During the training
process, it will most likely learn to simply forward the language codes and output
them in a stacked manner, while ignoring the acoustic features. But as this network
will later be integrated into our network superstructure, it will potentially be able to
adapt during the joint training and to extract language codes better suited for ASR.

While we were use this method to adapt neural networks to language properties,
the architecture itself is agnostic to the kind of features used for adaptation. By
using “hidden speaking modes” [OBB+96], adaptation to other properties, e.g.
representing systematic variations in pronunciation, would also be possible. Human
language carries multiple kinds of information. Extracting and adapting on features
representing the emotional state of the speakers have proven to be useful [PW98] in
ASR as well.

ML-BNF LC

BiLSTM Layer

BiLSTM Layer

LC LC LC LC

Figure 8.2: Neural Language Codes (NLC) network architecture, pre-trained to output
stacked language codes (LC)

111

8. ADAPTIVE NEURAL LANGUAGE CODES

8.3 Network Architecture

We combined multiple subnets into a network superstructure. The network

architecture used is shown in Figure 8.3. As input features, we used ML-BNFs (see

Section 6.1.1), and LFVs (see Section 6.2). While they were each extracted using another

neural network, we did not depict these networks here for clarity reasons.

We used 4 language dependent subnets. The merged outputs of these were fed into

the first block of the main network, which consists of 2 BiLSTM layers, as described

in Section 7.3. The outputs of the first BiLSTM block were modulated using NLCs.

A feed-forward layer maps the outputs of the second BiLSTM block to the output

targets.

Pre-trained
sub nets

Main
Network

ML BNF LFV

DE FR TR EN NLC

BiLSTM Part 1

*

BiLSTM Part 2

Output Layer

Figure 8.3: Network architecture, based on Meta-PI, using adaptive neural language codes
(NLC) for network modulation.

112

8.4 Experimental Setup

Monolingual Sub Networks

The layers of the monolingual nets were smaller in size compared to the layers of the
main network. We evaluated using networks having both only a quarter or half the
amount of LSTM cells per layer in comparison to the main network. We also reduced
the number of layers from 4 to 3. This network configuration was selected to limit
the number of parameters to not only prevent over-fitting, but also due to memory
constraints of the GPUs used for training. We trained multiple networks per language,
using graphemic and phonemic targets.

Main Network

For our main network, we used the same architecture as in Section 7.4 with 4 BiLSTM
layers and 420 neurons per layer. The network was divided into two blocks, with
the modulation being applied between these parts. The modulation was applied as
described in Section 7.4, with the outputs of the first block being merged pairwise by
taking the maximum value prior to the modulation.

Network Training

In the original Meta-PI approach, all subnets were first trained separately, and then
the Meta-PI net was trained to determine the mixture weights. Here, we followed a
di�erent training schedule. Initially, the parameters of the pre-trained subnets were
loaded. This includes all the language specific nets, as well as the NLC network.
The weights of the main network were initialized randomly. The entire network
superstructure was then jointly trained on the combined graphemic targets of the 4
languages. This joint training allows the individual subnets to be optimized to the
global task. Especially the language codes, which were originally trained for language
classification will now be updated based on the new objective.

8.4 Experimental Setup

We used data from the Euronews corpus (see Section 3.1.2). For our experiments here,
we used data from 4 languages (English, French, German, Turkish). The data was

113

8. ADAPTIVE NEURAL LANGUAGE CODES

filtered removing utterances shorter than 1s or having a transcript with more than
639 symbols1. The Euronews corpus featured only a very basic annotation of noises
with a single noise marker representing any type of noise, e.g. music, human and
non-human noises or unintelligible speech. Utterances containing only noise were
therefore removed. In total, 50h of data per language remained after the cleaning
process, and this dataset was split into two datasets: 45h of training and 5h of test
data. We used English as our target language for the evaluation. As a contrastive
experiment, we trained an English monolingual system by applying the same language
independent optimizations to compare our multilingual results against a matching
monolingual baseline.

As acoustic input features, we used multilingual bottleneck features (ML-BNFs).
They were trained for previous experiments [MSW16a] on Euronews data, using a
combination of 5 languages (French, German, Italian, Russian, Turkish) (see Section
6.2.4). The network used a combination of logMel and tonal features (FFV [LHE08]
and pitch [Sch99]), extracted using a 32ms window with a 10ms frame-shift.

Acoustic Units

Phones and graphemes were used as acoustic modeling units. Similar to previous
experiments, the pronunciation dictionaries were created automatically using
MaryTTS (see Section 3.2). In order to create a global phone set, we mapped the phones
of each language using the articulatory features embedded in MaryTTS’ language
definition files. In addition, we used a token representing word boundaries.

Language Dependent Subnets

We trained monolingual networks for each of the 4 languages, using both graphemic
and phonetic targets. Each network featured 3 bi-directional layers with either 105
or 210 BiLSTM cells. The number of cells was chosen based on the size of the main
network. We opted for using layers with half or a quarter the amount of BiLSTM
cells as we intend to use these networks only for extracting intermediate features. As
input features, we used ML-BNFs. A feed-forward layer was used as output layer to

1Internal limitation within the implementation of CUDA/warp-ctc, see:
https://github.com/baidu-research/warp-ctc, accessed 2018-03-16

114

8.4 Experimental Setup

map the outputs of the last hidden layer to the output targets. The networks were
trained using the CTC loss function, stochastic gradient descent (SGD) and Nesterov
momentum [SMDH13] with a factor of 0.9. The utterances were sorted ascending
by length to stabilize the training, as shorter utterances are easier to align. After the
initial training, the feed-forward output layer was discarded and the outputs of the last
BiLSTM layer were used as input to the main network. As we were using bi-directional
LSTM layers, the output of each layer contains two coe�cients per BiLSTM cell, one
for each direction. Based on previous experiments [MSW18a], we opted for taking the
pairwise maximum value for each direction, in the notion of a maxpool layer to reduce
the dimensionality.

Neural Language Codes

For the modulation of our main network, we extracted NLCs based on a two layer,
BiLSTM network with 420 BiLSTM cells per layer. As input features, we supplied
ML-BNFs and LFVs. The network was trained to output stacked LFVs using the mean
squared error as loss function. Given the bi-directional nature of the network, each
cell outputs two coe�cients. To apply a dimensionality reduction in the same manner
as for the other networks, we chose to sum the outputs for each direction pairwise.
Preliminary experiments indicated, that using the sum over the maximum yields better
results.

Training Strategy

The whole network architecture was trained in multiple steps. First, the language
dependent subnets and the NLC network were trained individually. These networks
were then combined with the main network. The network superstructure was trained
jointly, allowing updates to the parameters of all networks. Similar to training the
subnets, SGD and Nesterov momentum [SMDH13] with a factor of 0.9 were used. As
indicated, we also applied Dropout training with a rate of 0.2.

Grapheme Based RNN LM

We trained an RNN based LM using the same configuration as in Section 7.2 as a
baseline configuration with a single layer and 1024 BiLSTM cells. Here, we further

115

8. ADAPTIVE NEURAL LANGUAGE CODES

refined it by optimizing the amount of BiLSTM cells used in a separate experiment.

8.5 Comparison of LFVs and NLCs

Using our setup as described in Section 7.4, we first evaluated using NLCs instead of
LFVs. This setup used 4 BiLSTM layers, divided into two blocks with the modulation
applied to the outputs of the first block. When applying the NLCs as language code,
we allowed updates to the NLC network, training both networks jointly. As shown in
Table 8.1, we got mixed results from using NLCs instead of LFVs. While performance
for English improved marginally, there was no change for German and the CER of both
French and Turkish increased.

Table 8.1: Comparison of adding LFVs and NLCs as language codes to our default
RNN/CTC architecture, showing CERs.

Setup DE EN FR TR
No adaptation 7.58% 12.94% 11.23% 6.59%
Modulation LFV 6.00% 11.99% 9.22% 5.46%
Modulation NLC 6.00% 11.92% 9.52% 5.72%

8.6 Integration of Monolingual Subnets

Next, we added the pre-trained language dependent subnets, assembling the network
superstructure. We first provide an overview of the pre-trained networks, and then
studied their addition in di�erent configurations to the combination of networks.

Monolingual Subnets

Table 8.2 shows the CERs of the monolingual subnets. Increasing the layer size
did improve the performance of the source nets for all languages, using graphemes
and phonemes. The networks trained on Graphemes for German and Turkish
outperformed their phonemic counterparts. As outlined before, a possible reason for
this could be that the quality of the automatically generated pronunciation dictionaries
may not be optimal. Based on the experiments in Section 7.1.3, a drop in recognition

116

8.6 Integration of Monolingual Subnets

accuracy is expected as using fewer BiLSTM results prohibits the networks from
learning better features. But as we do only want to use these networks to extract
language dependent features, the overall recognition performance of the individual
networks is not as important as the error rate of the final system. Even though networks
with more BiLSTM cells result in a better recognition accuracy, the increased parameter
count may decrease the overall performance of our network superstructure.

Table 8.2: CERs of monolingual subnets, using larger networks increases the performance.

Type Size DE EN FR TR
Phone 105 9.0% 14.3% 11.7% 7.0%
Phone 210 7.2% 12.2% 8.6% 5.9%
Grapheme 105 8.3% 16.5% 13.3% 7.2%
Grapheme 210 6.4% 13.1% 9.6% 5.6%

Using Graphemic and Phonemic Pre-trained Subnets

Next, we added the pre-trained subnets to our architecture, evaluating the use of
networks trained on graphemes, phonemes and di�erent layer sizes. We first used
subnets with 105 neurons per BiLSTM layer. We evaluated three conditions: a) using
subnets in combination with LFVs, b) using NLCs instead of LFVs and c) using subnets
trained on phonemic targets for French, German and Turkish, still using the subnet for
English as target language trained on graphemes.

The results are shown in Table 8.3. As baseline, we compare against a setup
without pre-trained subnets from Section 8.5. We first evaluated using subnets trained
on graphemes. Using static LFVs for modulation, this setup shows a decrease in
performance. Switching to adaptive NLCs improves the recognition accuracy over
the baseline. Similar to results reported in Section 7.5, the use of phonetic features
improves the performance. We therefore swapped the subnets trained on German,
French and Turkish with their counterparts trained on phonemes. This further
improved the performance. The phonetically pre-trained networks enable a better
knowledge transfer between languages as they were trained on subsets of the same
phoneme set. The targets for the graphemic networks are more language specific, as

117

8. ADAPTIVE NEURAL LANGUAGE CODES

each language has their own pronunciation rules. We applied dropout training to the
best configuration which lowered the CER further.

Table 8.3: Comparison of Meta-PI configurations, showing CERs.

Setup DE EN FR TR
Baseline 6.00% 11.99% 9.22% 5.46%
Grapheme, LFV 6.07% 12.07% 10.36% 5.41%
Grapheme, NLC 5.47% 11.26% 8.79% 5.29%
Phoneme, NLC 5.27% 11.08% 8.32% 5.19%
Phoneme, NLC, dropout 4.95% 10.39% 7.83% 4.69%

Using Larger Subnets

As shown in Table 8.2, subnets with larger BiLSTM layers show an improved
classification performance of the individual networks and languages. But as shown
in Table 8.4, using larger subnets as part of the network superstructure decreases the
performance. But while those networks displayed a better performance individually,
they feature more parameters and this lead to a decrease in performance as the network
superstructure then features more parameters and may be prone to overfitting. We
applied dropout training, but while it improved the performance, the setup using the
smaller subnets still outperformed the setup with the larger ones.

Table 8.4: Comparison of di�erent subnet sizes, showing CERs.

Setup DE EN FR TR
Small subnets 5.27% 11.08% 8.32% 5.19%
Small subnets, dropout 4.95% 10.39% 7.83% 4.69%
Wide subnets 5.22% 10.80% 8.55% 5.22%
Wide subnets, dropout 5.26% 10.83% 8.47% 5.00%

8.7 RNN LM Optimization

We used a BiLSTM based language model trained on characters to compute WERs.
Based on the baseline configuration with 1 layer and 1024 BiLSTM cells, we
evaluated di�erent amounts of BiLSTM cells to optimize the WER. The results on the

118

8.8 Final Results

development set are shown in Table 8.5. Reducing the number of cells to 512 achieved
the best WER. Organizing 1024 BiLSTM cells in 2 layers with 512 each did not improve
the performance.

Table 8.5: RNN LM optimization, showing WERs.

BiLSTM Size WER
1 ⇥ 256 22.9%
1 ⇥ 512 22.6%
1 ⇥ 768 23.3%
1 ⇥ 1024 23.3%
1 ⇥ 1536 23.1%
2 ⇥ 512 23.3%

8.8 Final Results

To obtain WERs, we applied greedy-decoding using the best RNN LM from the
previous Section 8.7. We first present results using our baseline LM, including
results from previous chapters for reference. Table 8.6 shows the current results
and results from the phonetic pre-training (Section 7.5) for comparison. Incremental
improvements are obtained by the modulation, phonetic pre-training and from using
pre-trained language dependent subnets in a network superstructure. Combining the
best multilingual setup with the optimized language model improves the WER further,
as shown in Table 8.7.

Table 8.6: Final results on English, showing WERs.

Setup WER
Monolingual baseline 25.3%
No adaptation 27.4%
LFV Modulation 26.3%
Phonetic pre-training 25.4%
Meta-PI + NLC 24.2%

119

8. ADAPTIVE NEURAL LANGUAGE CODES

Table 8.7: Final results on English, showing WERs from new LM.

Setup WER
Monolingual baseline 24.2%
Best multilingual setup 23.5%

8.9 Conclusion

We developed an all-neural, multilingual open vocabulary system trained on
graphemes. In contrast to traditional systems, such a system is not limited by a
vocabulary, but at the same time is also not constrained to recognize only valid words.
Multilingual acoustic models in general are inferior to monolingual ones. By using
advanced neural adaptation techniques, we improved the performance of multilingual
models not only to reach parity with monolingual ones, but even to surpass them. Key
is a method called modulation, which stimulates the network to develop features based
on language properties. Modulating neural networks with language codes allows for
rapid re-configuration of the network’s inner structure, depending on the properties
of the input language. Moving to an approach inspired by Meta-PI networks by
using pre-trained subnets improved the performance further. Pre-training parts of the
network superstructure on di�erent tasks allows the stimulation of the neural to learn
feature detectors depending on language properties which have proven to be beneficial
when training a network jointly on a combination of languages. In addition, adapting
the neural language codes during the joint training further improved the performance.

120

Chapter 9

Conclusion

In this work, we addressed multilingual speech recognition. Multilingual speech

recognition is a challenging problem, as each language and dialect requires a separate

acoustic model and there are more than 7,000 living languages in the world. We

approached this problem by building a large, language universal acoustic model.

Many approaches have been proposed, but the performance of multilingual acoustic

models is generally inferior to monolingually trained ones. We focused on neural

network adaptation techniques to improve the performance of a language universal

model.

We developed an all-neural speech recognition system with a large multilingual

acoustic model based on a BiLSTM network architecture. It is based on a combination

of several subnets, which were partly pre-trained on individual languages. For

language adaptation, an ancillary network was trained to code useful language

properties. This language code is used to gate the activity of BiLSTM cells in the main

network. This method stimulates the main network to adapt the learned features based

on language properties. Both networks were trained jointly, allowing the language

code to be adaptive and to be optimized. The adapted multilingual acoustic model

does not only reach parity with its monolingual counterpart (24.2% WER), but even

surpasses its recognition performance (23.5% WER).

121

9. CONCLUSION

Acoustic Unit Discovery

In addition to working on speech recognition systems, we also attempted to build
tools for supporting linguists in documenting (unwritten) languages. Out of the
more than 7,000 living languages in the world, many are facing extinction. Language
documentation is required to preserve the languages and the cultural heritage linked
with them. But this is a very time-consuming and resource intense task. By supporting
linguists with natural language processing (NLP) technology during this task, we aim
at speeding up this process. One step in language documentation is the discovery
of the acoustic units of a language. We developed tools which are able to derive a
preliminary set of acoustic units and envision a workflow where linguists are able to
iteratively refine this set to determine the acoustic inventory faster. The main focus
is the extraction of articulatory features as part of our AUD pipeline. Starting with a
baseline of an average frame error rate (FER) of 7.6%, we could decrease the error rate
by additive codes to 6.2% and by multiplicative codes to 4.8%.

9.1 Language Selection

Building ASR systems for new languages is a challenging task because language
resources are typically sparse. One common method to build ASR systems in such
low-resource conditions is to use data from additional languages. The selection of
these so-called source languages has an impact on the performance of the system on the
target language. Language selection a�ects the phone coverage of the target language
and seen phone contexts during training. If multiple source languages are available,
data selection becomes important. We studied the e�ect of using di�erent sets of
languages during training given a fixed target language. A typical ASR pre-processing
pipeline includes the extraction of bottleneck features (BNFs). As they are extracted
using a neural network, the amount of data used for network training has an impact
on the quality of the extracted features and ultimately on the system performance. If
only limited resources from the target language are available, training the BNF network
multilingually (ML-BNF) on a combination of languages improves the quality of the
extracted features by better generalization. In a series of experiments, we studied the
e�ects of choosing di�erent language combinations given the target language.

122

9.2 Language Adaptation by Additive Language Codes

We showed that selecting the right mix of languages does result in better
recognition performance of the ASR system. Moreover, we also determined that
adding more source languages to the mix of training data is more important than
adding more data from a smaller set of languages. Training on more languages
includes a wider variety of phones and other acoustic conditions (e.g. channels or
noises), which enables the ML-BNF network to better generalize and the extracted
features become more robust against such distortions. Starting with a baseline of 82.6%
WER, using the combination of the 4 best fitting languages results in a WER of 79.7%,
whereas using the 4 worst fitting languages a WER of 81.6% as achieved.

9.2 Language Adaptation by Additive Language Codes

Our main goal was to train a system with a multilingual acoustic model which is
able to recognize speech from multiple languages in parallel. This model is based
on neural networks. A well established method for speaker/channel adaptation is to
use features representing those properties as low-dimensional vector. These so-called
“i-vectors” are appended to the acoustic features and enable the network to adapt to
those conditions. We used a similar approach for language adaptation by suppling
low-dimensional language codes to the network. As first approach, we encoded
the language identity (LID) in a naïve way using one-hot encoding. The system
performance improved from 19.1% WER to 17.7% WER using a multilingual phoneme
set by appending this code to the acoustic features, but the LID does not take language
properties into account.

To further improve the performance, we opted to provide a language code
which encodes language features. Similar to bottleneck speaker vectors (BSVs) or
bottleneck features (BNFs), we trained a neural network to extract a low-dimensional
representation of language properties. This network was trained for language
identification and contained a bottleneck layer as second-to-last layer. After training,
all layers after the bottleneck were discarded, and the output activations of the
bottleneck were taken as language feature vectors (LFVs). We appended those features
as language code to the acoustic input features of the acoustic model. Comparing
the results of using the LID or LFVs as language code, the system improved from

123

9. CONCLUSION

17.7% WER (LID) to 16.2% WER (LFV). The performance gain by using LFVs is larger

compared to the LID.

9.3 Language Adaptation by Multiplicative Language Codes

In addition to traditional speech recognition systems, we also chose a novel approach

based entirely on neural networks. While traditional ASR systems feature many

explicitly modeled components, all-neural setups learn to model all aspects implicitly.

Language adaption of the neural network also updates all implicitly learned features.

Recently, systems based on recurrent neural networks (RNNs) have become popular.

RNNs are a powerful tool for sequence modeling and can be trained for speech

recognition using the connectionist temporal classification (CTC) loss function.

Networks trained this way model aspects implicitly, which were modeled explicitly

in traditional ASR systems. Based on a single BiLSTM network, the language adaption

by language codes is more e�ective as all the implicitly learned aspects are adapted as

well. We first used additive language codes, which improved the system performance

from 30.8% WER to 28.1% WER. The WERs of all-neural systems are in general higher

compared to traditional systems.

But language adaptation di�ers from speaker/channel adaptation. The latter

is more focused on the acoustic signal, because many aspects of speaker/channel

variability are directly reflected in the signal. Although some language dependent

aspects are signal related, e.g. language specific articulation of phones by small shifts

in the tongue positions, the di�erences between languages are higher order concepts.

Adding language codes at the signal level does improve the performance, but adding

these features at a deeper level to the network enables better adaptation. Based on

Meta-PI networks, we used Meta-PI connections which allow to modulate the output of

neural units by multiplication with a coe�cient. By modulating the outputs of BiLSTM

layers with language codes, the performance improved over appending the codes to

the acoustic features from 27.7%WER to 27.3% WER.

124

9.4 Adaptive Neural Language Codes

9.4 Adaptive Neural Language Codes

Using additive and multiplicative language codes improved the performance of
multilingual systems. But the language features used are immutable, extracted via
a network trained for language classification. To refine these codes, we trained an
ancillary network which outputs Neural Language Codes (NLCs). This network is
part of a network superstructure, inspired by Meta-PI. We trained multiple language
dependent subnets and combined them together with the NLC network into a larger
network. This larger network would then be trained for multilingual ASR, allowing
updates to all pre-trained subnets. The features of the individual subnets which were
pre-trained on di�erent tasks would be updated thereby to maximize the performance
for multilingual ASR. By this, we could improve the performance further and reach not
only parity with monolingual acoustic models, but improve the recognition accuracy
even beyond that.

9.5 Outlook

In the field of multilingual speech recognition, using and improving on adaptation
techniques is very important. Unlike for speaker adaptation, where collecting data
from 100+ speakers is feasible, collecting data from the same amount of languages is
a very resource-intense, time-consuming process and next to impossible1. We here
studied the proposed adaptation methods only in the context of multilingual speech
recognition. Next steps in adaptation are to also consider dialects [LSS+17] and
accents, or adaptation to speaking modes. Adapting to these domains poses interesting
new challenges.

All-neural approaches are data-driven and very resource-intense methods. One
of the big challenges will be to model features in networks explicitly by stimulate the
network during training to elicit feature detectors which are beneficial for the task at
hand. We have shown approaches to pre-training parts of the network to force the
learning of certain features which then results in better performance. Especially for
scenarios with only a limited amount of available training data, enabling networks
to learn relevant features more e�cient should prove beneficial. Using advanced

1Although some of the large companies did acquire this amount of data, but it is not publicly available.

125

9. CONCLUSION

methods to train networks and to analyze their weights is one step on the way to
transition from artificial neural networks (ANNs) seen as black boxes to knowing their
inner workings. Applied to the field of ASR, explicit neural modeling could be used
to condition a network to model the building blocks of speech: articulatory feature
detectors, or to pre-train a network on large text corpora to learn a language model. In
the notion of Meta-PI, this language model could also be an external network which
is then integrated into the superstructure. Pre-conditioned networks should make for
better systems by using the data more e�ciently.

126

Bibliography

[AAA+16] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai,
Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro,
Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech
recognition in english and mandarin. In International Conference on
Machine Learning, pages 173–182, 2016. xi, 92, 100

[Ald85] David J Aldous. Exchangeability and related topics. In École d’Été de
Probabilités de Saint-Flour XIII—1983, pages 1–198. Springer, 1985. 59

[ASAD+16] Gilles Adda, Sebastian Stüker, Martine Adda-Decker, Odette
Ambouroue, Laurent Besacier, David Blachon, Hélène
Bonneau-Maynard, Pierre Godard, Fatima Hamlaoui, Dmitri Idiatov,
Guy-Noël Kouarata, Lori Lamel, Emmanuel-Moselly Makasso, Annie
Rialland, Mark Van de Velde, François Yvon, and Sabine Zerbian.
Breaking the unwritten language barrier: The Bulb project. In
Proceedings of SLTU (Spoken Language Technologies for Under-Resourced
Languages), Yogyakarta, Indonesia, 2016. 33

[Ass99] International Phonetic Association. Handbook of the International Phonetic
Association: A guide to the use of the International Phonetic Alphabet.
Cambridge University Press, 1999. 7

[B+95] M Bishop, Christopher et al. Neural networks for pattern recognition.
1995. 13

[BBB+10] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David

127

BIBLIOGRAPHY

Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU math
expression compiler. In Proceedings of the Python for Scientific Computing
Conference (SciPy), June 2010. Oral Presentation. 36

[BBdSM86] Lalit Bahl, Peter Brown, Peter V de Souza, and Robert Mercer. Maximum
mutual information estimation of hidden markov model parameters for
speech recognition. In Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP’86., volume 11, pages 49–52. IEEE,
1986. 8

[BBKS14] Laurent Besacier, Etienne Barnard, Alexey Karpov, and Tanja Schultz.
Automatic speech recognition for under-resourced languages: A survey.
Speech Communication, 56:85–100, 2014. 35

[BHAL14] Steven Bird, Florian R Hanke, Oliver Adams, and Haejoong Lee.
Aikuma: A mobile app for collaborative language documentation. ACL
2014, page 1, 2014. 33

[BL03] Alan W Black and Kevin A Lenzo. Building synthetic voices. Language
Technologies Institute, Carnegie Mellon University and Cepstral LLC, 4:2,
2003. 62

[Bla06] Alan W Black. Clustergen: A statistical parametric synthesizer using
trajectory modeling. In Ninth International Conference on Spoken Language
Processing, 2006. 62

[BLP+07] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al.
Greedy layer-wise training of deep networks. Advances in neural
information processing systems, 19:153, 2007. 16

[BLP+12] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J.
Goodfellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio.
Theano: new features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop, 2012. 36

[BM94] Herve A Bourlard and Nelson Morgan. Connectionist speech recognition:
a hybrid approach, volume 247. Springer Science & Business Media, 1994.
20

128

BIBLIOGRAPHY

[Bri90] John S Bridle. Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition. In
Neurocomputing, pages 227–236. Springer, 1990. 11

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is di�cult. IEEE transactions on
neural networks, 5(2):157–166, 1994. 11

[BSMB15] Pallavi Baljekar, Sunayana Sitaram, Prasanna Kumar Muthukumar, and
Alan W Black. Using articulatory features and inferred phonological
segments in zero resource speech processing. In Sixteenth Annual
Conference of the International Speech Communication Association, 2015. 40,
59, 62

[CG96] Stanley F Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. In Proceedings of the 34th annual
meeting on Association for Computational Linguistics, pages 310–318.
Association for Computational Linguistics, 1996. 8

[CJLV16] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend
and spell: A neural network for large vocabulary conversational speech
recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on, pages 4960–4964. IEEE, 2016. 7, 27

[CKF11] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like
environment for machine learning. In BigLearn, NIPS Workshop, 2011. 36

[DCB+17] Ewan Dunbar, Xuan Nga Cao, Juan Benjumea, Julien Karadayi, Mathieu
Bernard, Laurent Besacier, Xavier Anguera, and Emmanuel Dupoux.
The zero resource speech challenge 2017. arXiv preprint arXiv:1712.04313,
2017. 40

[DDK+09] Najim Dehak, Reda Dehak, Patrick Kenny, Niko Brümmer, Pierre Ouellet,
and Pierre Dumouchel. Support vector machines versus fast scoring in
the low-dimensional total variability space for speaker verification. In
Tenth Annual conference of the international speech communication association,
2009. 20

129

BIBLIOGRAPHY

[DH13] Matthew S. Dryer and Martin Haspelmath, editors. WALS Online. Max
Planck Institute for Evolutionary Anthropology, Leipzig, 2013. 89

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. The Journal of
Machine Learning Research, 12:2121–2159, 2011. 15

[DKD+11] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and
Pierre Ouellet. Front-end factor analysis for speaker verification. IEEE
Transactions on Audio, Speech, and Language Processing, 19(4):788–798,
2011. 20

[DM80] Steven B. Davis and Paul Mermelstein. Comparison of parametric
representation for monosyllabic word recognition in continuously
spoken sentences. IEEE Transactions on Acoustics, Speech and Signal
Processing, 28(4):357–366, 1980. 6

[Dra17] Daniel Draper. Online neural network-based language identification.
Master’s thesis, Karlsruhe Institute of Technology, Germany, 2017. 84

[DSMB18] Siddharth Dalmia, Ramon Sanabria, Florian Metze, and Alan W Black.
Sequence-based multi-lingual low resource speech recognition. arXiv
preprint arXiv:1802.07420, 2018. 27, 72

[DSR+15] Sander Dieleman, Jan Schlüter, Colin Ra�el, Eben Olson, Søren Kaae
Sønderby, Daniel Nouri, Daniel Maturana, Martin Thoma, Eric
Battenberg, Jack Kelly, Je�rey De Fauw, Michael Heilman, diogo149,
Brian McFee, Hendrik Weideman, takacsg84, peterderivaz, Jon,
instagibbs, Dr. Kashif Rasul, CongLiu, Britefury, and Jonas Degrave.
Lasagne: First release., August 2015. 36

[DYDA12] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition. Audio, Speech, and Language Processing, IEEE Transactions on,
20(1):30–42, 2012. 20

130

BIBLIOGRAPHY

[Dye13] Chris Dyer. Notes on adagrad. School of Computer Science, Carnegie Mellon
University, 5000, 2013. 15

[ea94] Monika Woszczyna et al. JANUS 93: towards spontaneous speech
translation. In International Conference on Acoustics, Speech, and Signal
Processing 1994, Adelaide, Australia, 1994. 36, 93

[Elm90] Je�rey L Elman. Finding structure in time. Cognitive science,
14(2):179–211, 1990. 11

[FAGD07] Jonathan G Fiscus, Jerome Ajot, John S Garofolo, and George
Doddingtion. Results of the 2006 spoken term detection evaluation. In
Proc. sigir, volume 7, pages 51–57, 2007. 9

[Fis97] Jonathan G Fiscus. A post-processing system to yield reduced word
error rates: Recognizer output voting error reduction (ROVER). In
Automatic Speech Recognition and Understanding, 1997. Proceedings., 1997
IEEE Workshop on, pages 347–354. IEEE, 1997. 49

[FMSW16] Jörg Franke, Markus Müller, Sebastian Stüker, and Alex Waibel.
Phoneme boundary detection using deep bidirectional LSTMs. In Speech
Communication; 12. ITG Symposium; Proceedings of. VDE, 2016. 42

[Fou22] Joseph Fourier. Theorie analytique de la chaleur, par M. Fourier. Chez Firmin
Didot, père et fils, 1822. 6

[GAAD+16] Pierre Godard, Gilles Adda, Martine Adda-Decker, Alexandre Allauzen,
Laurent Besacier, Helene Bonneau-Maynard, Guy-Noël Kouarata, Kevin
Löser, Annie Rialland, and François Yvon. Preliminary experiments on
unsupervised word discovery in mboshi. In Interspeech 2016, 2016. 63

[GAAD+18] Pierre Godard, Gilles Adda, Martine Adda-Decker, J. Benjumea, Laurent
Besacier, J. Cooper-Leavitt, Guy-Noel Kouarata, Lori Lamel, H. Maynard,
Markus Müller, Annie Rialland, Sebastian Stüker, Francois Yvon, and
M. Zanon-Boito. A very low resource language speech corpus for
computational language documentation experiments. In LREC 2018 (in
press), Japan, 2018. 33, 61

131

BIBLIOGRAPHY

[Gal99] M.J.F. Gales. Semi-tied covariance matrices for hidden markov models.
IEEE Transactions on Speech and Audio Processing, 7(3):272–281, 1999. 66

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the di�culty of
training deep feedforward neural networks. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics,
pages 249–256, 2010. 15

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org. 17

[GBM+11] Ond�ej Glembek, Lukáö Burget, Pavel Mat�jka, Martin Karafiát, and
Patrick Kenny. Simplification and optimization of i-vector extraction. In
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International
Conference on, pages 4516–4519. IEEE, 2011. 20

[GFGS06] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber. Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In
Proceedings of the 23rd international conference on Machine learning, pages
369–376. ACM, 2006. 7, 13, 14, 21, 22, 91, 98

[GKV14] Frantisek Grézl, Martin Karafiát, and Karel Vesely. Adaptation of
multilingual stacked bottle-neck neural network structure for new
language. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, pages 7654–7658. IEEE, 2014. 26

[GMMW13] Jonas Gehring, Yajie Miao, Florian Metze, and Alex Waibel. Extracting
deep bottleneck features using stacked auto-encoders. In Proceedings of
the ICASSP, Vancouver, Canada, May 2013. 16

[GMNM17] Abhinav Gupta, Yajie Miao, Leonardo Neves, and Florian Metze. Visual
features for context-aware speech recognition. In Acoustics, Speech and
Signal Processing (ICASSP), 2017 IEEE International Conference on, pages
5020–5024. IEEE, 2017. 21

132

http://www.deeplearningbook.org

BIBLIOGRAPHY

[Gra13] Alex Graves. Generating sequences with recurrent neural networks.
arXiv preprint arXiv:1308.0850, 2013. ix, 11, 12

[Gre14] Roberto Gretter. Euronews: A multilingual benchmark for ASR and LID.
In Fifteenth Annual Conference of the International Speech Communication
Association, 2014. 32

[GSR13] Arnab Ghoshal, Pawel Swietojanski, and Steve Renals. Multilingual
training of deep-neural networks. In Proceedings of the ICASSP,
Vancouver, Canada, 2013. 26

[GSS03] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. Learning
precise timing with lstm recurrent networks. The Journal of Machine
Learning Research, 3:115–143, 2003. 11

[GW96] Mark JF Gales and Philip C Woodland. Mean and variance adaptation
within the mllr framework. Computer Speech & Language, 10(4):249–264,
1996. 8

[GWFM+13] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville,
and Yoshua Bengio. Maxout networks. arXiv preprint arXiv:1302.4389,
2013. 105

[HAH01] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken language
processing : a guide to theory, algorithm, and system development.
Voice/speech recognition technology. Prentice Hall, Upper Saddle River,
NJ, 2001. Includes bibliographical references and index. 5, 9, 23

[Har75] John A Hartigan. Clustering algorithms. 1975. 59

[HBFS01] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen
Schmidhuber. Gradient flow in recurrent nets: the di�culty of
learning long-term dependencies, 2001. 11

[HHL89] XD Huang, Hsiao-Wuen Hon, and Kai-Fu Lee. Large-vocabulary
speaker-independent continuous speech recognition with
semi-continuous hidden markov models. In Proceedings of the

133

BIBLIOGRAPHY

workshop on Speech and Natural Language, pages 276–279. Association for
Computational Linguistics, 1989. 8

[HIW90] John B Hampshire II and Alex Waibel. Connectionist architectures for
multi-speaker phoneme recognition. In Advances in neural information
processing systems, pages 203–210, 1990. 28

[HMM+18] Fatima Hamlaoui, Emmanuel-Moselly Makasso, Markus Müller, Jonas
Engelmann, Gilles Adda, Alex Waibel, and Sebastian Stüker. BULBasaa:
A bilingual Bàsàá-French speech corpus for the evaluation of language
documentation tools. In LREC 2018 (in press), Japan, 2018. 34, 42

[Hoc98] Sepp Hochreiter. The vanishing gradient problem during learning
recurrent neural nets and problem solutions. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.
11

[HOT06] Geo�rey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural Computation, 18(7):1527–1554, July
2006. 16

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997. 11

[HS15] Hengguan Huang and Khe Chai Sim. An investigation of augmenting
speaker representations to improve speaker normalisation for
DNN-based speech recognition. In ICASSP, pages 4610–4613. IEEE,
2015. 78

[HSK+12] Geo�rey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R Salakhutdinov. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.
17, 99

[HSN16a] Michael Heck, Sakriani Sakti, and Satoshi Nakamura. Iterative training
of a DPGMM-HMM acoustic unit recognizer in a zero resource scenario.
In Spoken Language Technology Workshop (SLT), 2016 IEEE, pages 57–63.
IEEE, 2016. 59

134

BIBLIOGRAPHY

[HSN16b] Michael Heck, Sakriani Sakti, and Satoshi Nakamura. Supervised
learning of acoustic models in a zero resource setting to improve
DPGMM clustering. In INTERSPEECH, pages 1310–1314, 2016. 59

[HSN16c] Michael Heck, Sakriani Sakti, and Satoshi Nakamura. Unsupervised
linear discriminant analysis for supporting DPGMM clustering in the
zero resource scenario. Procedia Computer Science, 81:73–79, 2016. 59

[HVS+13] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin,
and J. Dean. Multilingual acoustic models using distributed deep neural
networks. In Proceedings of the ICASSP, Vancouver, Canada, May 2013.
26

[HW90] John B Hampshire and Alex H Waibel. The Meta-Pi network:
Connectionist rapid adaptation for high-performance multi-speaker
phoneme recognition. In Acoustics, Speech, and Signal Processing, 1990.
ICASSP-90., 1990 International Conference on, pages 165–168. IEEE, 1990.
27, 99, 109

[HW92] John B Hampshire and Alex Waibel. The Meta-Pi network: Building
distributed knowledge representations for robust multisource pattern
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(7):751–769, 1992. ix, 27, 28, 57, 99, 109

[JE05] R. G. Gordon Jr. and B. F. Grimes (Eds.). Ethnologue: Languages of the
World. SIL International, Dallas, Texas, USA, 2005. 34

[JJNH91] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geo�rey E
Hinton. Adaptive mixtures of local experts. Neural computation,
3(1):79–87, 1991. 29

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 15

[KFN98] T. Kaukoranta, P. Fränti, and O. Nevalainen. Iterative split-and-merge
algorithm for VQ codebook generation. Optical Engineering,
37(10):2726–2732, 1998. 66

135

BIBLIOGRAPHY

[Kil15] Kevin Kilgour. Modularity and neural integration in large-vocabulary
continuous speech recognition. Karlsruhe, [2015]. 19

[KM14] Timothy Kempton and Roger K Moore. Discovering the phoneme
inventory of an unwritten language: A machine-assisted approach.
Speech Communication, 56:152–166, 2014. 39

[KN95] Reinhard Kneser and Hermann Ney. Improved backing-o� for m-gram
language modeling. In Acoustics, Speech, and Signal Processing, 1995.
ICASSP-95., 1995 International Conference on, volume 1, pages 181–184.
IEEE, 1995. 8

[KS17] Suyoun Kim and Michael L Seltzer. Towards language-universal
end-to-end speech recognition. arXiv preprint arXiv:1711.02207, 2017. 26

[LHE08] Kornel Laskowski, Mattias Heldner, and Jens Edlund. The Fundamental
Frequency Variation Spectrum. In Proceedings of the 21st Swedish Phonetics
Conference (Fonetik 2008), pages 29–32, Gothenburg, Sweden, June 2008.
6, 48, 93, 114

[LSS+17] Bo Li, Tara N Sainath, Khe Chai Sim, Michiel Bacchiani, Eugene
Weinstein, Patrick Nguyen, Zhifeng Chen, Yonghui Wu, and
Kanishka Rao. Multi-dialect speech recognition with a single
sequence-to-sequence model. arXiv preprint arXiv:1712.01541, 2017.
125

[MB90] Nelson Morgan and Hervé Bourlard. Generalization and parameter
estimation in feedforward nets: Some experiments. In Advances in neural
information processing systems, pages 630–637, 1990. 18

[MB14] Prasanna Kumar Muthukumar and Alan W Black. Automatic discovery
of a phonetic inventory for unwritten languages for statistical speech
synthesis. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, pages 2594–2598. IEEE, 2014. 40, 59

[MBS00] Lidia Mangu, Eric Brill, and Andreas Stolcke. Finding consensus in
speech recognition: word error minimization and other applications of
confusion networks. Computer Speech & Language, 14(4):373–400, 2000. 49

136

BIBLIOGRAPHY

[Met05] Florian Metze. Articulatory Features for Conversational Speech Recognition.
PhD thesis, Karlsruhe, Univ., Diss., 2005. 44

[MFSW17a] Markus Müller, Jörg Franke, Sebastian Stüker, and Alex Waibel.
Improving phoneme set discovery for documenting unwritten
languages. Elektronische Sprachsignalverarbeitung (ESSV) 2017, 2017.
51

[MFSW17b] Markus Müller, Jörg Franke, Sebastian Stüker, and Alex Waibel.
Towards phoneme inventory discovery for documentation of unwritten
languages. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on. IEEE, 2017. 57

[MH08] Laurens van der Maaten and Geo�rey Hinton. Visualizing data using
t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008. 82

[MKC+11] L. Mangu, Hong-Kwang Kuo, S. Chu, B. Kingsbury, G. Saon, Hagen
Soltau, and F. Biadsy. The ibm 2011 gale arabic speech transcription
system. In Proceedings of the ASRU, Waikoloa, HI, USA, December 2011.
19

[MM13] Yajie Miao and Florian Metze. Improving low-resource CD-DNN-HMM
using dropout and multilingual DNN training. In Interspeech, volume 13,
pages 2237–2241, 2013. 26

[MM15] Yajie Miao and Florian Metze. Distance-aware DNNs for robust speech
recognition. In Sixteenth Annual Conference of the International Speech
Communication Association, 2015. 21

[MR97] Manohar N Murthi and Bhaskar D Rao. Minimum variance
distortionless response (mvdr) modeling of voiced speech. In Acoustics,
Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International
Conference on, volume 3, pages 1687–1690. IEEE, 1997. 6

[MRTD17] Paul Michel, Okko Räsänen, Roland Thiolliere, and Emmanuel Dupoux.
Blind phoneme segmentation with temporal prediction errors. In
Proceedings of ACL 2017, Student Research Workshop, pages 62–68, 2017.
40

137

BIBLIOGRAPHY

[MS69] Marvin Minsky and Papert Seymour. Perceptrons. 1969. 10

[MSN+14] Vikramjit Mitra, Ganesh Sivaraman, Hosung Nam, Carol Espy-Wilson,
and Elliot Saltzman. Articulatory features from deep neural networks
and their role in speech recognition. In Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International Conference on, pages
3017–3021. IEEE, 2014. 23

[MSS+14] Markus Müller, Sebastian Stüker, Zaid Sheik, Florian Metze, and Alex
Waibel. Multilingual deep bottle neck features - a study on language
selection and training techniques. Proceedings of the 11th International
Workshop on Spoken Language Translation (IWSLT), 2014. 27, 65

[MSW16a] Markus Müller, Sebastian Stüker, and Alex Waibel. Language adaptive
DNNs for improved low resource speech recognition. In Interspeech,
2016. 41, 42, 78, 79, 86, 114

[MSW16b] Markus Müller, Sebastian Stüker, and Alex Waibel. Language
feature vectors for resource constraint speech recognition. In Speech
Communication; 12. ITG Symposium; Proceedings of. VDE, 2016. 79

[MSW16c] Markus Müller, Sebastian Stüker, and Alex Waibel. Towards improving
low-resource speech recognition using articulatory and language
features. In Proceedings of the 11th International Workshop on Spoken
Language Translation (IWSLT), Seattle, U.S.A., 2016. 45

[MSW17a] Markus Müller, Sebastian Stüker, and Alex Waibel. DBLSTM based
multilingual articulatory feature extraction for language documentation.
In Automatic Speech Recognition and Understanding Workshop (ASRU), 2017
IEEE, pages 417–423. IEEE, 2017. 57

[MSW17b] Markus Müller, Sebastian Stüker, and Alex Waibel. Language adaptive
multilingual CTC speech recognition. In International Conference on Speech
and Computer, pages 473–482. Springer, 2017. 26, 92

[MSW17c] Markus Müller, Sebastian Stüker, and Alex Waibel. Phonemic and
graphemic multilingual ctc based speech recognition. arXiv preprint
arXiv:1711.04564, 2017. 26, 96

138

BIBLIOGRAPHY

[MSW18a] Markus Müller, Sebastian Stüker, and Alex Waibel. Enhancing
multilingual graphemic rnn based asr systems using phone information.
Elektronische Sprachsignalverarbeitung (ESSV) 2018, 2018. 104, 115

[MSW18b] Markus Müller, Sebastian Stüker, and Alex Waibel. Multilingual
adaptation of rnn based asr systems. In Acoustics, Speech and Signal
Processing (ICASSP), 2018 IEEE International Conference on. IEEE, 2018. 26,
99

[MSW18c] Markus Müller, Sebastian Stüker, and Alex Waibel. Neural language
codes for multilingual acoustic models. In Interspeech, 2018. submitted
to. 26, 109

[MTSC01] Mikiko Mashimo, Tomoki Toda, Kiyohiro Shikano, and Nick Campbell.
Evaluation of cross-language voice conversion based on gmm and
straight. 2001. 62

[MW02] Florian Metze and Alex Waibel. A flexible stream architecture for asr
using articulatory features. In INTERSPEECH, 2002. 23, 44

[MW15] Markus Müller and Alex Waibel. Using language adaptive deep neural
networks for improved multilingual speech recognition. IWSLT, 2015. 74

[MZM14a] Yajie Miao, Hao Zhang, and Florian Metze. Distributed learning of
multilingual dnn feature extractors using GPUs. In Fifteenth Annual
Conference of the International Speech Communication Association, 2014. 26

[MZM14b] Yajie Miao, Hao Zhang, and Florian Metze. Towards speaker adaptive
training of deep neural network acoustic models. 2014. 21

[NDG+17] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed
Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang,
Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia
Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro,
Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng
Yin. Dynet: The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980, 2017. 37

139

BIBLIOGRAPHY

[Nes83] Yurii Nesterov. A method of solving a convex programming problem
with convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27,
pages 372–376, 1983. 15

[Nes13] Yurii Nesterov. Introductory lectures on convex optimization: A basic course,
volume 87. Springer Science & Business Media, 2013. 15

[NGM+14] Quoc Bao Nguyen, Jonas Gehring, Markus Müller, Sebastian Stüker,
and Alex Waibel. Multilingual shifting deep bottleneck features for
low-resource ASR. In Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, pages 5607–5611. IEEE, 2014. 19

[NSM15] Tasha Nagamine, Michael L Seltzer, and Nima Mesgarani.
Exploring how deep neural networks form phonemic categories.
In INTERSPEECH, pages 1912–1916, 2015. 23

[OBB+96] M Ostendorf, B Byrne, M Bacchiani, M Finke, A Gunawardana, K Ross,
S Roweis, E Shriberg, D Talkin, A Waibel, et al. Modeling systematic
variations in pronunciation via a language-dependent hidden speaking
mode. In 1996 LVCSR Summer Research Workshop Technical Reports,
volume 8, 1996. 111

[OB�16] Lucas Ondel, Lukáö Burget, and Jan �ernockỳ. Variational inference for
acoustic unit discovery. Procedia Computer Science, 81:80–86, 2016. 40

[OGB+18] Lucas Ondel, Pierre Godard, Laurent Besacier, Elin Larsen, Mark
Hasegawa-Johnson, Odette Scharenborg, Emmanuel Dupoux, Lukas
Burget, François Yvon, and Sanjeev Khudanpur. Bayesian models
for unit discovery on a very low resource language. arXiv preprint
arXiv:1802.06053, 2018. 63

[PGC+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic di�erentiation in PyTorch. 2017. 36

[PKK+08] Daniel Povey, Dimitri Kanevsky, Brian Kingsbury, Bhuvana
Ramabhadran, George Saon, and Karthik Visweswariah. Boosted

140

BIBLIOGRAPHY

mmi for model and feature-space discriminative training. In Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE International
Conference on, pages 4057–4060. IEEE, 2008. 8

[PW98] Thomas S Polzin and Alex Waibel. Detecting emotions in speech. In
Proceedings of the CMC, volume 16. Citeseer, 1998. 111

[QSM08] Yu Qiao, Naoya Shimomura, and Nobuaki Minematsu. Unsupervised
optimal phoneme segmentation: objectives, algorithm and comparisons.
In Acoustics, Speech and Signal Processing (ICASSP), 2008 IEEE International
Conference on, pages 3989–3992. IEEE, 2008. 41

[Rab89] Lawrence Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989. 7, 14

[RHW85] David E Rumelhart, Geo�rey E Hinton, and Ronald J Williams.
Learning internal representations by error propagation. Technical report,
California Univ San Diego La Jolla Inst for Cognitive Science, 1985. 10

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method.
The Annals of Mathematical Statistics, 22(3):400–407, 1951. 14

[Ros57] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957. 10

[RS17] Kanishka Rao and Ha�im Sak. Multi-accent speech recognition
with hierarchical grapheme based models. In Acoustics, Speech and
Signal Processing (ICASSP), 2017 IEEE International Conference on, pages
4815–4819. IEEE, 2017. 106

[SAAD+16] Sebastian Stüker, Gilles Adda, Martine Adda-Decker, Odette
Ambouroue, Laurent Besacier, David Blachon, Hélène
Bonneau-Maynard, Pierre Godard, Fatima Hamlaoui, Dmitri Idiatov,
Guy-Noël Kouarata, Lori Lamel, Emmanuel-Moselly Makasso, Markus
Müller, Annie Rialland, Mark Van de Velde, François Yvon, and
Sabine Zerbian. Innovative technologies for under-resourced language

141

BIBLIOGRAPHY

documentation: The Bulb project. In Proceedings of CCURL (Collaboration
and Computing for Under-Resourced Languages : toward an Alliance for
Digital Language Diversity), Portoroz̃ Slovenia, 2016. 33

[Sch99] Kjell Schubert. Grundfrequenzverfolgung und deren anwendung in der
spracherkennung. Master’s thesis, Universität Karlsruhe (TH), Germany,
1999. In German. 6, 48, 93, 114

[SF17] Gary F. Simons and Charles D. Fennig, editors. Ethnologue: Languages of
the World, Twentieth edition. SIL International, Dallas, Texas, 2017. Online
version: http://www.ethnologue.com. 34

[SGR12] Pawel Swietojanski, Arnab Ghoshal, and Steve Renals. Unsupervised
cross-lingual knowledge transfer in DNN-based LVCSR. In SLT, pages
246–251. IEEE, IEEE, 2012. 26

[SHK+14] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014. 99

[SKR12] T.N. Sainath, B. Kingsbury, and B. Ramabhadran. Auto-encoder
bottleneck features using deep belief networks. In Proceedings of the
ICASSP, Kyoto, Japan, March 2012. 19

[SLCY11] Frank Seide, Gang Li, Xie Chen, and Dong Yu. Feature engineering
in context-dependent deep neural networks for conversational speech
transcription. In Automatic Speech Recognition and Understanding (ASRU),
2011 IEEE Workshop on, pages 24–29. IEEE, 2011. 20

[SLF+08] Stefano Scanzio, Pietro Laface, Luciano Fissore, Roberto Gemello, and
Franco Mana. On the use of a multilingual neural network front-end. In
Proceedings of the Interspeech, pages 2711–2714, 2008. 26

[SLS16] Hagen Soltau, Hank Liao, and Hasim Sak. Neural speech recognizer:
Acoustic-to-word lstm model for large vocabulary speech recognition.
arXiv preprint arXiv:1610.09975, 2016. 7

142

http://www.ethnologue.com

BIBLIOGRAPHY

[SLY11] Frank Seide, Gang Li, and Dong Yu. Conversational speech transcription
using context-dependent deep neural networks. In Interspeech, pages
437–440, 2011. 20

[SMDH13] Ilya Sutskever, James Martens, George Dahl, and Geo�rey Hinton.
On the importance of initialization and momentum in deep learning.
In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pages 1139–1147, 2013. 15, 115

[SMFW01] Hagen Soltau, Florian Metze, Christian Fugen, and Alex Waibel. A
one-pass decoder based on polymorphic linguistic context assignment.
In Automatic Speech Recognition and Understanding, 2001. ASRU’01. IEEE
Workshop on, pages 214–217. IEEE, 2001. 36, 93

[SMNW14] Sebastian Stüker, Markus Müller, Quoc Bao Nguyen, and Alex
Waibel. Training time reduction and performance improvements from
multilingual techniques on the babel ASR task. In Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE,
2014. 66

[SMSW03] Sebastian Stüker, Florian Metze, Tanja Schultz, and Alex Waibel.
Integrating multilingual articulatory features into speech recognition. In
Eighth European Conference on Speech Communication and Technology, 2003.
23

[SP97] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. Signal Processing, IEEE Transactions on, 45(11):2673–2681, 1997.
11

[SSMW03] Sebastian Stüker, Tanja Schultz, Florian Metze, and Alex Waibel.
Multilingual articulatory features. In Acoustics, Speech, and Signal
Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE International
Conference on, volume 1, pages I–I. IEEE, 2003. 23

[SSNP13] George Saon, Hagen Soltau, David Nahamoo, and Michael Picheny.
Speaker adaptation of neural network acoustic models using i-vectors.
In ASRU, pages 55–59. IEEE, 2013. 20, 73

143

BIBLIOGRAPHY

[ST03] M. Schröder and J. Trouvain. The german text-to-speech synthesis
system mary: A tool for research, development and teaching.
International Journal of Speech Technology, 6(4):365–377, 2003. 34

[Stü08a] Sebastian Stüker. Modified polyphone decision tree specialization for
porting multilingual grapheme based asr systems to new languages. In
Proceedings of the 2008 IEEE International Conference on Acoustics, Speech,
and Signal Processing, pages 4249–4252, Las Vegas, NV, USA, April 2008.
IEEE. 25

[Stü08b] Sebastian Stüker. Multilingual acoustic features for porting speech
recognition systems to new languages. ESSV, Frankfurt, Germany, 2008.
25

[Stü09] Sebastian Stüker. Acoustic modelling for under-resourced languages. PhD
thesis, Karlsruhe, Univ., Diss., 2009. 25, 63

[SVN37] Stanley Smith Stevens, John Volkmann, and Edwin B Newman. A scale
for the measurement of the psychological magnitude pitch. The Journal
of the Acoustical Society of America, 8(3):185–190, 1937. 6

[SW97] Tanja Schultz and Alex Waibel. Fast bootstrapping of lvcsr systems with
multilingual phoneme sets. In Eurospeech, 1997. 25

[SW98a] Tanja Schultz and Alex Waibel. Language independent and language
adaptive large vocabulary speech recognition. In Fifth International
Conference on Spoken Language Processing, 1998. 25

[SW98b] Tanja Schultz and Alex Waibel. Multilingual and crosslingual speech
recognition. In Proc. DARPA Workshop on Broadcast News Transcription and
Understanding, pages 259–262. Citeseer, 1998. 25, 91

[SW00] Tanja Schultz and Alex Waibel. Polyphone decision tree specialization for
language adaptation. In Acoustics, Speech, and Signal Processing (ICASSP),
volume 3, pages 1707–1710. IEEE, 2000. 25, 91

144

BIBLIOGRAPHY

[SW01] Tanja Schultz and Alex Waibel. Language-independent and
language-adaptive acoustic modeling for speech recognition. Speech
Communication, 35(1):31–51, 2001. 25

[SWE09] Odette Scharenborg, Vincent Wan, and Mirjam Ernestus. Unsupervised
speech segmentation: An analysis of the hypothesized phone
boundaries. Acoustical Society of America, Journal of, 127(2):1084–1095,
2009. 40, 41

[SWH+18] H Seki, S Watanabe, T Hori, J Le Roux, and JR Hershey. An end-to-end
language-tracking speech recognizer for mixed-language speech. 2018.
27

[TBC98] Paul Taylor, Alan W Black, and Richard Caley. The architecture of the
festival speech synthesis system. 1998. 62

[TSCH13] Samuel Thomas, Michael L Seltzer, Kenneth Church, and Hynek
Hermansky. Deep neural network features and semi-supervised
training for low resource speech recognition. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on, pages
6704–6708. IEEE, 2013. 26

[TSG15] Shawn Tan, Khe Chai Sim, and Mark Gales. Improving the
interpretability of deep neural networks with stimulated learning.
In Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE
Workshop on, pages 617–623. IEEE, 2015. 100

[TSW+17] Shubham Toshniwal, Tara N Sainath, Ron J Weiss, Bo Li, Pedro Moreno,
Eugene Weinstein, and Kanishka Rao. Multilingual speech recognition
with a single end-to-end model. arXiv preprint arXiv:1711.01694, 2017. 27

[VAJD16] Maarten Versteegh, Xavier Anguera, Aren Jansen, and Emmanuel
Dupoux. The zero resource speech challenge 2015: Proposed approaches
and results. Procedia Computer Science, 81:67–72, 2016. 40

[VBMS12] Ngoc Thang Vu, Wojtek Breiter, Florian Metze, and Tanja Schultz.
Initialization schemes for multilayer perceptron training and their

145

BIBLIOGRAPHY

impact on ASR performance using multilingual data. In Proceedings of
the INTERSPEECH, Portland, Oregon, September 2012. 26

[VEB10] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information
theoretic measures for clusterings comparison: Variants, properties,
normalization and correction for chance. Journal of Machine Learning
Research, 11(Oct):2837–2854, 2010. 60

[VKG+12] Karel Vesely, Martin Karafiat, Frantisek Grezl, Milos Janda, and
Ekaterina Egorova. The language-independent bottleneck features. In
Proceedings of the Spoken Language Technology Workshop (SLT), 2012 IEEE,
pages 336–341. IEEE, 2012. 26

[VLBM08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international conference on Machine
learning, pages 1096–1103. ACM, 2008. 16

[VMH+16] Marco Vetter, Markus Müller, Fatima Hamlaoui, Graham Neubig,
Satoshi Nakamura, Sebastian Stüker, and Alex Waibel. Unsupervised
phoneme segmentation of previously unseen languages. In Proceedings
of the Interspeech, 2016. 40

[VTS+15] Maarten Versteegh, Roland Thiolliere, Thomas Schatz, Xuan Nga Cao,
Xavier Anguera, Aren Jansen, and Emmanuel Dupoux. The zero
resource speech challenge 2015. In Proceedings of Interspeech, 2015. 40

[W+97] John C Wells et al. Sampa computer readable phonetic alphabet.
Handbook of standards and resources for spoken language systems, 4, 1997. 7

[WCL17] Yu-Hsuan Wang, Cheng-Tao Chung, and Hung-Yi Lee. Gate activation
signal analysis for gated recurrent neural networks and its correlation
with phoneme boundaries. Proc. Interspeech 2017, pages 3822–3826, 2017.
40

[Wel95] John C Wells. Computer-coding the ipa: a proposed extension of sampa.
Revised draft, 4(28):1995, 1995. 7

146

BIBLIOGRAPHY

[Wer90] Paul J. Werbos. Backpropagation through time: what it does and how to
do it. Proc. IEEE, 78(10):1550–1560, 1990. 11

[WGT+00] Alex Waibel, Petra Geutner, L Mayfield Tomokiyo, Tanja Schultz, and
Monika Woszczyna. Multilinguality in speech and spoken language
systems. Proceedings of the IEEE, 88(8):1297–1313, 2000. 25

[WHH+87a] Alexander Waibel, Toshiyuki Hanazawa, Geo�rey Hinton, Kiyohiro
Shikano, and Kevin J Lang. Phoneme recognition using time-delay
neural networks. In Meeting of the Institute of Electrical, Information and
Communication Engineers (IEICE), pages SP87–100. IEICE, 1987. 11, 19

[WHH+87b] Alexander Waibel, Toshiyuki Hanazawa, Geo�rey Hinton, Kiyohiro
Shikano, and Kevin J Lang. Phoneme recognition using time-delay
neural networks. Technical report, ATR, 1987. ATR Technical Report,
TR-I-0006. 11, 19

[WHH+88] Alexander Waibel, Toshiyuki Hanazawa, Geo�rey Hinton, Kiyohiro
Shikano, and K Lang. Phoneme recognition: neural networks vs. hidden
markov models vs. hidden markov models. In Acoustics, Speech, and
Signal Processing, 1988. ICASSP-88., 1988 International Conference on, pages
107–110. IEEE, 1988. 11, 19

[WHH17] Shinji Watanabe, Takaaki Hori, and John R Hershey. Language
independent end-to-end architecture for joint language identification
and speech recognition. In Automatic Speech Recognition and
Understanding Workshop (ASRU), 2017 IEEE, pages 265–271. IEEE,
2017. 27

[WKGS16] Chunyang Wu, Penny Karanasou, Mark JF Gales, and Khe Chai Sim.
Stimulated deep neural network for speech recognition. Technical report,
University of Cambridge Cambridge, 2016. 100

[yLG12] Chia ying Lee and James Glass. A nonparametric bayesian approach
to acoustic model discovery. In 50th Annual Meeting of the Association
for Computational Linguistics, pages 40–49. Association for Computational
Linguistics, 2012. 40, 41

147

BIBLIOGRAPHY

[YS11] Dong Yu and Michael L. Seltzer. Improved bottleneck features using
pretrained deep neural networks. In INTERSPEECH, pages 237–240,
2011. 16, 19

[YW93] Steve J Young and Phil C Woodland. The use of state tying in continuous
speech recognition. In Third European Conference on Speech Communication
and Technology, 1993. 8

[ZDV+16] Albert Zeyer, Patrick Doetsch, Paul Voigtlaender, Ralf Schlüter, and
Hermann Ney. A comprehensive study of deep bidirectional LSTM
RNNs for acoustic modeling in speech recognition. arXiv preprint
arXiv:1606.06871, 2016. 21

[Zei12] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012. 15

[ZSN16] Albert Zeyer, Ralf Schlüter, and Hermann Ney. Towards
online-recognition with deep bidirectional lstm acoustic models.
In Proceedings of the Interspeech, San Francisco, CA, USA, 2016. 21, 51

148

Appendices

149

Appendix A

Appendix A

A.1 Acknowledgments

Data from IARPA BABEL Program

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via
Department of Defense U.S. Army Research Laboratory (DoD / ARL) contract
number W911NF-12-C-0015. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the o�cial
policies or endorsements, either expressed or implied, of IARPA, DoD/ARL, or the U.S.
Government. This e�ort uses the following IARPA Babel Program language collection
releases:

• Assamese: IARPA-babel102b-v0.4

• Bengali: IARPA-babel103b-v0.3

• Cantonese: IARPA-babel101b-v0.4c

• Haitian Creole: IARPA-babel201b-v0.2b

• Lao: IARPA-babel203b-v3.1a

• Pashto: IARPA-babel104b-v0.4bY

151

A. APPENDIX A

• Tagalog: IARPA-babel106-v0.2f

• Tamil: IARPA-babel204b-v1.1b

• Turkish: IARPA-babel105b-v0.4

• Vietnamese: IARPA-babel107b-v0.7

• Zulu: IARPA-babel206b-v0.1d

BULB

This work was in part realized in the framework of the ANR-DFG project BULB (STU
593/2-1 and ANR-14-CE35-002) and also supported by the French Investissements
d’Avenir - Labex EFL program (ANR-10-LABX-0083).

JSALT Workshop 2017

This work used in part the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation award number
ACI-1053575. Specifically, it used the Blacklight system, which is supported by NSF
award number ACI-1041726, at the Pittsburgh Supercomputing Center (PSC). Part of
the work reported here was done at the Jelinek Speech and Language Technology
Workshop JSALT 2017, in Pittsburgh, and was supported by JHU and CMU via grants
from Amazon, Apple, Google and Microsoft.

152

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Main Contribution
	1.2 Overview and Structure

	2 Theory and Background
	2.1 Automatic Speech Recognition
	2.1.1 Evaluation Metrics

	2.2 Artificial Neural Networks
	2.2.1 Feed Forward Neural Networks
	2.2.2 Recurrent Neural Networks
	2.2.3 Activation Functions
	2.2.4 Error Functions
	2.2.5 Update Functions
	2.2.6 Parameter Initialization
	2.2.7 Regularization
	2.2.8 Learning Rate Scheduling Methods

	2.3 Speech Recognition Using Neural Networks
	2.3.1 Bottleneck Features
	2.3.2 DNN Acoustic Models
	2.3.3 DNN Acoustic Model Adaptation

	2.4 Speech Recognition Using Recurrent Neural Networks
	2.5 Articulatory Features
	2.6 Multilingual Speech Recognition
	2.6.1 GMM/HMM Based Setups
	2.6.2 DNN/HMM Based Setups
	2.6.3 All-neural Based Approaches

	2.7 Meta-PI Networks

	3 Experimental Setup
	3.1 Data Sets
	3.1.1 IARPA BABEL
	3.1.2 Euronews Corpus
	3.1.3 Data Collected by BULB

	3.2 Pronunciation Dictionaries
	3.3 Tasks
	3.3.1 Acoustic Unit Discovery
	3.3.2 Low-resource ASR
	3.3.3 Multilingual ASR

	3.4 Toolkits

	4 Acoustic Unit Discovery for Language Documentation
	4.1 Our Approach Towards Acoustic Unit Discovery
	4.2 Phone Boundary Detection
	4.2.1 Evaluation of Segmentation Quality
	4.2.2 Experimental Setup
	4.2.3 Results
	4.2.4 BiLSTM Based Segmentation

	4.3 Articulatory Feature Extraction
	4.3.1 Articulatory Features for Low-Resource ASR
	4.3.2 Cross-lingual AF Extraction
	4.3.3 BiLSTM Based AF Detection
	4.3.4 Neural Modulation Enhanced AF Detection

	4.4 Articulatory Feature Based Clustering
	4.4.1 Evaluation of Features for Clustering
	4.4.2 Unsupervised Evaluation on Mbosi

	4.5 Conclusion

	5 Language Selection
	5.1 Experimental setup
	5.2 Combination of a Single Language with Tamil
	5.3 Methods of Using Data from Additional Languages
	5.4 Combining Multiple Languages
	5.5 Conclusion

	6 Language Adaptation by Additive Language Codes
	6.1 Adaptation Using Language Identity
	6.1.1 Experimental Setup
	6.1.2 Results
	6.1.3 Concluding Remarks

	6.2 Language Feature Vectors
	6.2.1 LFV Network Architecture and Training
	6.2.2 LFV Network Hyperparameter Optimization
	6.2.3 LFV Analysis
	6.2.4 Multilingual Speech Recognition

	6.3 Conclusion

	7 Language Adaptation by Multiplicative Language Codes
	7.1 Multilingual Systems Using Two Languages
	7.1.1 Experimental Setup
	7.1.2 Monolingual Baseline
	7.1.3 Multilingual Experiments
	7.1.4 Language Adaptive Networks

	7.2 Multilingual Systems Using Multiple Source Languages
	7.3 Neural Network Modulation
	7.3.1 Experimental Setup
	7.3.2 Results

	7.4 Optimizing the Network Architecture
	7.5 Phonetic Pre-Training
	7.6 Conclusion

	8 Adaptive Neural Language Codes
	8.1 Relation to Meta-PI Networks
	8.2 Neural Language Codes
	8.3 Network Architecture
	8.4 Experimental Setup
	8.5 Comparison of LFVs and NLCs
	8.6 Integration of Monolingual Subnets
	8.7 RNN LM Optimization
	8.8 Final Results
	8.9 Conclusion

	9 Conclusion
	9.1 Language Selection
	9.2 Language Adaptation by Additive Language Codes
	9.3 Language Adaptation by Multiplicative Language Codes
	9.4 Adaptive Neural Language Codes
	9.5 Outlook

	Bibliography
	Appendices
	A Appendix A
	A.1 Acknowledgments

