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Abstract of the Dissertation

Preference Grammars and Decoding Algorithms
for Probabilistic Synchronous Context Free

Grammar Based Translation.

by

Ashish Venugopal

Doctor of Philosophy in Language Technologies

Language Technologies Institute

Carnegie Mellon University 2008

Professor Stephan Vogel, Chair

Probabilistic Synchronous Context-free Grammars (PSCFGs) [Aho and Ullmann,

1969, Wu, 1996] define weighted transduction rules to represent translation and re-

ordering operations. When translation models use features that are defined locally,

on each rule, there are efficient dynamic programming algorithms to perform trans-

lation with these grammars [Kasami, 1965]. In general, the integration of non-local

features into the translation model can make translation NP-hard, requiring decoding

approximations that limit the impact of these features.

In this thesis, we consider the impact and interaction between two non-local fea-

tures, the n-gram language model (LM) and labels on rule nonterminal symbols in the

Syntax-Augmented MT (SAMT) grammar [Zollmann and Venugopal, 2006]. While

these features do not result in NP-hard search, they would lead to serious increases

in wall-clock runtime if näıve dynamic programming methods are applied.

We develop novel two-pass algorithms that make strong decoding approximations

during a first pass search, generating a hypergraph of sentence spanning translation
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derivations. In a second pass, we use knowledge about non-local features to explore

the hypergraph for alternative, potentially better translations. We use this approach

to integrate the n-gram LM decoding feature as well as a non-local syntactic feature

described below.

We then perform a systematic comparison of approaches to evaluate the relative

impact of PSCFG methods over a strong phrase-based MT baseline with a focus on

the impact of n-gram LM and syntactic labels. This comparison addresses impor-

tant questions about the effectiveness of PSCFG methods for a variety of language

and resource conditions. We learn that for language pairs that exhibit long distance

reordering, PSCFG methods deliver improvements over comparable phrase-based sys-

tems and that SAMT labels result in additional small, but consistent improvements

even in conjunction with strong n-gram LMs.

Finally, we propose a novel approach to use nonterminal labels in PSCFG decoding

by extending the PSCFG formalism to represent hard label constraints as soft prefer-

ences. These preferences are used to compute a new decoding feature that reflects the

probability that a derivation is syntactically well formed. This feature mitigates the

effect of the commonly applied maximum a posteriori (MAP) approximation and can

be discriminatively trained in concert with other model features. We report modest

improvements in translation quality on a Chinese-to-English translation task.
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CHAPTER 1

Introduction

Statistical machine translation defines the task of automatically translating a sen-

tence f in a source language into a sentence e in a target language via techniques

that take advantage of commonly available resources and generalize easily to new lan-

guage pairs. The availability and development of large parallel corpora, inexpensive

hardware, efficient machine learning techniques and well defined automatic evalua-

tion measures, have lead to the dominance of statistical machine translation as the

primary approach to the machine translation task.

Statistical machine translation (SMT) systems often consist of two separate, but

mathematically related components. In the training component, parallel and mono-

lingual corpora are used to estimate the parameters of a translation model, represent-

ing structured, weighted operations that transform source language sentences into

target language sentences. Well designed translation models capture both the trans-

lation of source language words into target language words as well as the relative

reordering of target words, ensuring that the meaning of the source sentence is accu-

rately and fluently conveyed in the target language.

In the second component, referred to as decoding in the literature, new source

language sentences are translated by selecting the most likely translation according

to the translation model. Decoding is effectively a search through the space of pos-

sible translations licensed by the operations represented in the translation model. In

statistical machine translation, like in many natural language tasks, this search is
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conducted in a space that is exponentially large relative to the length of the input.

When strong independence assumptions that facilitate local decision making and

sub-structure sharing are introduced into the statistical translation model, efficient

dynamic programming solutions are available for decoding. While these independence

assumptions lead to efficient search, they are often inadequate to explain the genera-

tion of natural language. Relaxing these independence assumptions to take non-local

information into account during search holds the potential for improvements in trans-

lation quality but can lead to a dramatic explosion in the search space.

In this dissertation we consider the use of non-local information to improve trans-

lation quality. We focus our efforts within a particular class of translation model that

has the potential to efficiently and effectively represent the long-distance reorder-

ing effects that often occur when translating natural language. We are particularly

interested in non-local information that can be used to improve the fluency of the

target language output. We propose novel decoding algorithms that approximately

integrate non-local information in ways that improve runtime and translation quality,

and we empirically evaluate the impact of non-local features in a large scale systematic

comparison of approaches.

1.1 Background

We focus on a particular class of translation models that represent translation op-

erations in the form of Probabilistic Synchronous Context Free Grammar (PSCFG)

rules. We will refer to approaches that use the PSCFG formalism as grammar based

approaches.

Figure 1.1 contains example rules from a sampling of translation models that

take advantage of the PSCFG formalism. In each case, a single rule represents the

2



X → ne X1 pas # does not X1 : w Chiang [2005]

VP → ne VB1 pas # does not VB1 : w Zollmann and Venugopal [2006]

VP

!!!!!!!

"""""""

AUX RB VB

does

############# not

!!!!!!!

"""""""

ne pas

: w Galley et al. [2004]

Figure 1.1: Example rules from a sampling of PSCFG approaches [Chiang, 2005,

Zollmann and Venugopal, 2006, Galley et al., 2004]. In each approach, the French

words ne and pas are translated in the context of source words in between ne and

pas. These rules are automatically learned from word aligned corpora and assigned a

stochastic weight w.

translation of the source language French words ne and pas into the target language

English words does not, in the context of source words in between ne and pas.

Unlike their purely lexical phrase-based predecessors like Koehn et al. [2003], Och

and Ney [2004], PSCFG rules perform translation and reordering within a single

operation, allowing these decisions to be made with more contextual information.

For example, the translation of the word ne in our example above is made in the

context of pas which could be separated from ne by many source words. Each rule

is associated with a weight w, which reflects the translation model’s confidence in

the rule being applied to translate its source words. Source sentences are translated

by applying rules recursively to transform source input into a derivation with an

associated target translation.

Figure 1.2 shows how the example rules that follow Zollmann and Venugopal

[2006] in Figure 1.1 compose to form derivations. In this example, constraints en-

3



VB → go
VBZ → goes
VBN → went

il ne va pas

VP → does not VB
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VB → go
VBG → goes
VBN → went

il ne va pas

a b c

Figure 1.2: The translation of a French source sentence il ne va pas using rules

from Zollmann and Venugopal [2006], where rules are applied during decoding in

Figures a, b, c to form a derivation. In this example, multiple alternatives exist for

the translation of the word va, each alternative producing a different target output.

Rules that successfully compose to form a sentence spanning derivation are in bold.

forced by nonterminal labels cause the decoder to find a fluent translation, discarding

alternative derivations that produce translations such as he does not went.

When the translation model relies only on local information, like weights w as-

sociated with each rule, there are efficient polynomial time dynamic programming

solutions to select the most likely derivation that translates a source sentence.

In practice however, machine translation systems introduce additional features

into the translation model that use non-local information to complement the decoder’s

search towards fluent target output. The locality of features in a translation model

is a function of dynamic programming algorithm used for translation. Dynamic pro-

gramming algorithms are used to solve problems that decompose into sub-problems

whose solutions can be efficiently found and re-used towards solving the larger prob-

4



lem. Non-local features introduce dependencies between these sub-problems. For

some non-local features, like those that we consider here, the definition of the sub-

problem can be extended to accommodate these non-local features, ensuring that sub-

problems can still be solved correctly. Extending the definition of the sub-problem

has the consequence of creating more sub-problems that need to be solved 1.

In this work, we will be using the bottom-up CYK decoding algorithm [Kasami,

1965] to translate source sentences with PSCFG rules. This algorithm aims to find

the lowest weighted derivation that translates a source sentence using a PSCFG gram-

mar. The sub-problems in this algorithm correspond to finding the lowest weighted

derivations that translate sub-spans of the input sentence.

We consider features to be local for this algorithm when they are defined on each

rule and do not introduce dependencies or constraints across rules in a derivation.

Under this definition of locality, we will consider two approaches to using non-local

information. First, we consider the integration of n-gram language models (LMs) and

second, the use of nonterminal labels on PSCFG rules during search.

N -gram language models define a distribution pLM(e). For PSCFG decoding, this

makes the selection of a rule in a derivation dependent on derivations that translate

neighboring sub-spans. In our example from Figure 1.2, an n-gram LM would intro-

duce additional weights that measure the likelihood of generating target sequences

does not go versus does not went. The decoder must consider these weights when

making decisions about which rules to select.

The use of multiple nonterminal labels also serves to propagate non-local infor-

mation during decoding. In our example, nonterminal labels like VP and VB, which

are Penn Treebank categories [Marcus et al., 1993] that represent syntactic behavior,

constrain the the rules that can be used for form a derivation. The rule VP → 〈
1This approach is only feasible when the resulting number of sub-problems does not grow expo-

nentially as a function of sentence length.
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ne VB pas # does not VB 〉, requires a label of VB as input, and thus restricts the

search to produce does not go. These labels summarize the syntactic behavior of the

translation that they represent, allowing this information to constrain the rules that

can be used to extend the derivation.

Both of these approaches have a significant impact on search space that the de-

coder must explore. The CYK decoding algorithm [Kasami, 1965] to perform decod-

ing with PSCFG rules and an n-gram LM has a runtime of:

O(|f |3|[|N ||T |2(n−1)]K) (1.1)

where |f | is the length in words of the source sentence to be translated, N is the

set of nonterminal labels in the grammar, T is the set of target terminals that can

be output by the grammar, n is the order of the n-gram language model, and K is

the maximum number of nonterminal symbols on the right-hand-side of each rule in

the grammar. [Chiang, 2007]. In this dissertation we work with grammars that are

restricted to at most two right-hand-side nonterminal symbols2 therefore K = 2 .

The constant factor (with respect to f) in Equation 1.1 arises from the increase

in the number of sub-problems that we must now solve when using these non-local

features. Sub-problems are represented by items in the dynamic programming al-

gorithm. Using notation from Chiang [2007], the corresponding item structure to

perform search with a n-gram LM and nonterminal labels is:

[X, i, j, ẽ] : w (1.2)

where X is the nonterminal label of a derivation, i, j define a span in the source

sentence, and ẽ maintains context required to apply the n-gram language model to

2There are efficient methods to transform most rules with more than two nonterminal symbols
into equivalent binarized rules with at most two right-hand-side nonterminal symbols [Zhang et al.,
2006]
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score derivations. Under the maximum a posteriori approximation (MAP) that is

often used in SMT 3 we can discard derivations of lower weight that share this item

structure. Integrating non-local features into the model corresponds to adding more

elements (like ẽ) to the item structure. In practice, this approach requires pruning to

limit the number of items produced, thereby limiting the potential impact of non-local

features.

Instead we might choose to perform search under a simpler model with only local

features and generate a list of alternative derivations that we can efficiently score

under the more complex model. If we chose to ignore the n-gram LM and use a

grammar with only a single nonterminal symbol we could use the item structure

[i, j] with a corresponding runtime of O(|f |3). In practice, the alternative derivations

generated by this simpler model represent a very small fraction of the complete search

space, yielding limited potential for improvements during rescoring [Chiang, 2007].

In this dissertation, we propose novel approaches to better integrate n-gram lan-

guage models and nonterminal labels into the PSCFG translation model and decod-

ing search strategy. We evaluate our work primarily with the Syntax-Augmented

MT (SAMT) grammar from Zollmann and Venugopal [2006]. Our techniques take

advantage of knowledge regarding the structure of these non-local features, suggest-

ing efficient search and modeling approximations to improve translation runtime and

quality. We also conduct a systematic comparison of approaches, where we evaluate

the relative impact of PSCFG methods when using strong n-gram LMs and syntactic

labels on a variety of language and resource conditions.

3Selecting the most likely translation, marginalizing over alternative derivations that produce the
same translation instantiates an NP-hard inference task for even simple word-based models [Knight,
1999]
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1.2 Thesis Outline and Contributions

• In Chapter 2, we describe the motivation behind the PSCFG approach to ma-

chine translation. We discuss two approaches to grammar based decoding, the

hierarchical approach from Chiang [2005] (Hiero) and the syntax-augmented ap-

proach from Zollmann and Venugopal [2006] (SAMT) that differ only in their

use of nonterminal labels. We will use systems built from these grammars in

the following chapters.

• Chapter 3 develops two multi-pass decoding algorithms to efficiently introduce

n-gram language models into a PSCFG decoder. These algorithms make strong

approximations in a first pass search and generate a pruned hypergraph repre-

sentation of the search space that can be explored with non-local features to

select better translations. We evaluate our algorithms on a small, but challeng-

ing Chinese-to-English translation task using the SAMT grammar.

• In Chapter 4, we answer important questions about the impact of PSCFG meth-

ods, specifically studying the impact of nonterminal labels on translation qual-

ity. We conduct a large-scale systematic study across multiple language pairs

that ultimately addresses the question as to whether grammar based approaches

(SAMT and Hiero), can deliver improvements over phrase-based approaches un-

der comparable conditions.

• In Chapter 5 we propose a novel grammar formalism and associated transla-

tion model feature to take advantage of nonterminal labels without aggravating

the impact of the common MAP approximation that is often used in machine

translation. Our approach transforms hard syntactic constraints into soft pref-

erences that are used to estimate a syntactic consistency feature, whose weight

can be tuned to improve translation quality. We evaluate our work on small
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and medium sized Chinese-to-English translation task.
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CHAPTER 2

Background: Statistical Machine Translation and

PSCFG Approaches

In this chapter we provide the background to understand our contributions to the

field of PSCFG based translation. Starting with an introduction to statistical machine

translation, we discuss the motivations for grammar based approaches and survey the

major research directions in this field. We pay particular attention to Hierarchical

Phrase-based translation (Hiero) [Chiang, 2005] and its labeled extension Syntax

Augmented Machine Translation (SAMT) [Zollmann and Venugopal, 2006]. Systems

built from these grammars will be used in the following chapters.

2.1 Statistical Machine Translation

SMT suggests an approach to natural language translation based on machine learning

approaches, where statistical models are estimated from natural language corpora and

applied to translate new source sentences. Comprehensive surveys and tutorials of

the field are available in Lopez [2008], Koehn [2007]. Here we survey the literature

that motivates our work with PSCFG methods, starting with a brief overview of the

major components in SMT systems.

Early work in SMT [Brown et al., 1990, 1993] followed a noisy channel approach,

modeling the conditional probability of generating a sequence of target language words
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e from a sequence of source language words f as:

p(e|f) =
p(f |e)p(e)

p(f)
(2.1)

The model defined above decomposes neatly into a translation model : p(f |e) and

a language model : p(e), whose parameters can be estimated from bilingual paral-

lel data and monolingual target language data, respectively. Brown et al. [1993]

developed techniques to estimate p(f |e) from sentence-aligned parallel corpora via

an Expectation Maximization procedure [Dempster et al., 1977], generating, among

other intermediate models, the most likely word-to-word alignment across source and

target sentences. The language model component p(e), which assigns a probability

to sequences of target language words can be estimated from monolingual data.

Translating a new sentence f can be defined as a search task:

ê = arg max
e

p(e|f) (2.2)

= arg max
e

p(f |e)p(e) (2.3)

Equation 2.2 selects the target sequence ê that maximizes p(e|f). It is unnecessary

to calculate the normalization constant p(f) during search since its value is constant

for all e that translate f . In practice, most SMT systems introduce additional inde-

pendence assumptions into p(e|f) to facilitate efficient search via dynamic program-

ming. These independence assumptions correspond to restrictions in the operations

that can be taken to translate a source sentence. A sequence of these translation op-

erations is referred to as the derivation that creates a target translation. While there

are efficient techniques to select the most likely derivation for the models discussed

in this work, selecting the most likely translation is NP-hard for word-based [Knight,

1999] and grammar based translation models [Casacuberta and de la Higuera, 2000,

12



Sima’an, 2002]. Most systems therefore use the maximum a posteriori (MAP) ap-

proximation, selecting the most likely derivation under the model and outputting the

associated translation:

ê = arg max
e

∑

d

p(e, d | f) (2.4)

≈ arg max
e

max
d

p(e, d | f) (2.5)

Och and Ney [2002] generalize the model from Brown et al. [1990] using the

maximum entropy framework [Berger et al., 1996b] to directly model the posterior

probability p(e|f) as:

p(e, d|f) =

∏m
i=1 hi(e, d|f)λi

Z(λ)
(2.6)

where hi(d, e|f) are feature functions that model translation quality and λi are

corresponding weights that assign relative importance to these features. Under this

framework, p(f |e), p(e) can be introduced as features in h. An important advan-

tage of this framework is that model parameters λ can be discriminatively trained

on development data to maximize either model likelihood or an external evaluation

measure.

Many approaches have been proposed to evaluate the quality of machine transla-

tion output, traditionally requiring human evaluators who are knowledgeable in the

target language to compare SMT output to a human produced reference translation

on two dimensions. The first is adequacy, which measures the degree to which in-

formation in the reference is conveyed in SMT output. The second is fluency, which

measures how fluently the MT output reads [White et al., 1994]. While human eval-

uations are the ultimate standard to judge SMT output, they are expensive and

time-consuming to conduct on scales large enough to inform research in the field.
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As an alternative to human evaluation, several automatic evaluation measures

have been proposed, each considering alternative methods to compare SMT with

reference output [Vidal, 1997, Papineni et al., 2002, Doddington, 2002]. The most

widely accepted measure is the BLEU (BiLingual Evaluation Understudy) score [Pa-

pineni et al., 2002], which considers word sequence matches between SMT output

and potentially multiple reference translations. BLEU calculates n-gram precisions—

the number of n-grams that occur in both the MT output and the corresponding

reference translations as a fraction of the total number of n-grams hypothesizes in

the MT output. The n-gram precision is calculated as:

pn =

∑
C∈Candidates

∑
gn∈C Countclip(gn)

∑
C∈Candidates

∑
gn∈C Count(gn)

where C is a MT output sentence from the set of outputs (Candidates) for a test

corpus, gn is a sequence of n target words, Count(gn) is the number of times gn

occurs in C, and Countclip(gn) is the maximum number of times gn occurs in both C

and a set of reference translations. The precision component of the score is balanced

by a recall component that penalizes translation output with fewer words than the

reference translation. BLEU is calculated as:

BLEU = BP · e
1/N

N∑

n=1

log pn

(2.7)

BP =





1 if c > r

e1−r/c if c ≤ r
(2.8)

where c is the combined length of all the SMT outputs in Candidates and r is the

length of the corresponding reference translations. When multiple references are

available, the reference of closest length is selected for each c. This score is efficient

to calculate on large corpora and Och [2003] describes a procedure called Minimum

Error Rate Training (MERT) to learn λ such that the BLEU score is optimized on
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development corpus. In this work, the BLEU metric will be our primary measure of

translation quality, with N = 4.

While the BLEU metric has been successful in driving the whole field of machine

translation forward, the emergence of syntax based approaches has renewed interest

in metrics that can reward correct sentence structure, like Banerjee and Lavie [2005]

rather than surface level n-gram matches. A survey of the most common automatic

evaluation metrics and their respective correlation to human judgement on a variety

of languages can be found in Callison-Burch et al. [2007]. With a brief overview of

SMT completed, we now discuss techniques to perform the search in Equation 2.4.

2.2 Motivating PSCFG Approaches

While the model defined in Equation 2.6 explains how to score a candidate trans-

lation, it does not define how to generate and search through the space of possible

translation alternatives. The space of translation alternatives is exponential in the

number of words in the input sentence. Enumerating all possible alternative transla-

tions and scoring each one according to the model is not computationally tractable.

This is a common challenge in many natural language processing tasks and is often

solved by introducing additional structure to the search task, typically corresponding

to strong model independence assumptions. For example, efficient dynamic program-

ming algorithms exist to find the most likely derivation of hidden states for a Hidden

Markov Model (HMM) when the model includes only local transition and emission

features [Rabiner, 1989]. The most probable derivation from applying a grammar to

an input sentence can be efficiently found when the probability decomposes at each

rule used in the derivation [Kasami, 1965, Aho and Ullmann, 1969]. Most popular

SMT approaches follow a similar strategy, the optimal derivation can be efficiently

found when p(e, d|f) decomposes into local (partial sentence) translation and reorder-
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ing decisions. The design of these local translation and reordering decisions and the

independence assumptions that they correspond to, have a large impact on transla-

tion quality and runtime. The PSCFG approach to SMT generates the full sentence

translation via the composition of weighted grammar rules [Aho and Ullmann, 1969],

where most features in h can be computed locally, on a per-rule basis. We now moti-

vate the PSCFG approach by briefly surveying the development of word and phrase

based translation models.

Brown et al. [1993] define a translation model that makes strong independence

assumptions about how translation occurs. These independence assumptions allow

the model’s parameters to be efficiently estimated from parallel corpora and suggests

the basic operations that are applied to translate new sentences. Knight and Al-

Onaizan [1998] provide a finite state interpretation of the models proposed in Brown

et al. [1993] (upto Model 3) to perform decoding using the well understood weighted

automata framework. That work, along with Wang and Waibel [1997], Tillmann

et al. [1997], propose decoding algorithms to translate source sentences based on the

translation model parameters estimated in Brown et al. [1993].

Even with these relatively simple models, there are computational challenges that

result from modeling the reordering effects that occur across languages. Under Brown

et al. [1993], words are translated and permuted according to a position based distor-

tion model. Generating the full space of possible permutations for an input sentence

is computationally challenging [Och, 2003] and selecting the most likely translation

considering all possible permutations is NP-hard [Knight, 1999]. In practice, most

systems constrain these word order permutations to permit only local, short distance

reordering [Berger et al., 1996a].

These word-based models have significant limitations. They are unable to capture

non-literal phrasal translation, would require many-to-many word alignments. Word-
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he does not

!!!!!!!

""""""" go

!!!!!!!

il ne va pas

Figure 2.1: Word alignment for an example French-English sentence pair. Alignments

between words are represented by links across languages.

based models are also too poorly parametrized to produce the complex reordering

patterns that exist across natural languages. Phrase-based models were introduced

[Och et al., 1999] and developed [Koehn et al., 2003, Marcu and Wong, 2002, Och

and Ney, 2004, Venugopal et al., 2003] to directly address these issues. For these

approaches, the fundamental unit of translation is a word sequence or phrase. Using

phrase-based models, the input sentence is segmented into phrases where each phrase

is translated and permuted to produce the final translation. Simple and relatively

short phrases can capture non-literal translation, local word reordering and insertion

or deletion of source and target words [Koehn et al., 2003]. Most phrase-based ap-

proaches [Och and Ney, 2002, Koehn et al., 2003] identify bilingual phrase pairs based

on the word alignments from Brown et al. [1993], while others, like Marcu and Wong

[2002], propose generative models to learn phrase translations directly from parallel

corpora.

Since the phrase-based approach provides the foundation for the PSCFG meth-

ods used in this thesis, we follow a simple example to highlight the advantages and

disadvantages of phrase-based translation. Consider the word-aligned French-English

sentence pair in Figure 2.1.

The method in Och et al. [1999], Koehn et al. [2003] extracts all bilingual phrase

pairs that do not have words aligned outside the phrase pair. The phrase pairs in

Figure 2.2 would be extracted for the sentence pair in Figure 2.1.

For each of these phrase pairs, identified by their source words f and target words
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il # he

il # he does

va # go

ne va pas # not go

il ne va pas # he does not go

Figure 2.2: Phrase pairs as extracted by Koehn et al. [2003] for the example

word-aligned sentence from Figure 2.1.

e the following features hi are computed [Koehn et al., 2003, 2004]. We use named

feature functions instead of indices for clarity:

• htrans = p(f |e) = cnt(f,e)P
f cnt(f,e) : a translation model probability estimated by

relative frequency from rule occurrence counts (cnt) in the training corpora.

• hlex = p(f |e, a) =
n∏

i=1

1

{|j|(i, j) ∈ a}
∑

∀(i,j)∈a

w(fi|ej) : a lexical weight computed

by considering word-to-word translation probabilities w(f |e) where a is a word

alignment between word positions i = 1, · · · , n ∈ f and j = 0, 1, · · · , m ∈ e.

• hlen = |e| : a factor that allows the decoder to control the length of the output

translation.

• hcount = 1 : a factor that allows the decoder to control the number of phrases

used in the output translation.

Each of the features described above decomposes locally. They can be precom-

puted for each phrase pair used in a derivation. Koehn et al. [2004] also use additional

features that are conditioned in reverse, i.e p(e|f), p(e|f, a), while the following fea-
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tures which are computed based on the derivation of phrases used to translate a

sentence:

• hLM = p(e) : the language model feature as proposed in Brown et al. [1990].

• hdist = d(ai − bi−1) = 1|ai−bi−1−1| : a simple distortion model that penalizes

reordering, where ai denotes the start position of the foreign phrase that was

translated into the i’th English phrase and bi−1 denotes the end position of the

foreign phrase translated into the (i− 1)’th English phrase.

Phrase-based translation has been, until very recently, the dominant approach to

machine translation. Open-source decoders such as Pharaoh [Koehn et al., 2004] and

its successor Moses [Koehn, 2007], have been used to build machine translation for a

variety of languages [Koehn and Monz, 2005]. While local reordering operations are

well represented within each phrase pair, empirical results show that longer and more

complex reordering effects are required for effective translation [Fox, 2002, Hwa et al.,

2002, Wellington et al., 2006]. To account for these effects, phrase-based models allow

phrases to be translated, or distorted out of order and introduce additional features

to evaluate distortion operations.

There has been significant work in the field to model distortion for phrase-based

approaches. Koehn et al. [2003], Vogel et al. [2003] introduce additional features

that penalize long distance reordering, independent of the phrases involved in the

reordering, while Och and Ney [2004], Zens and Ney [2006a] take into account the

lexical content of each phrase. Nießen and Ney [2004], Xia and McCord [2004], Wang

et al. [2007] avoid generating permutations during decoding, they pre-process the

input sentence to reflect target language word order.

The approaches above rely on the decoder, or a pre-processing step, to propose

alternative permutations of the source sentence. The PSCFG approach to SMT allows
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these operations to be learned and parameterized from training data. In Section 2.3

we review the PSCFG formalism and describe specific instantiations that have been

proposed in the literature, followed by a discussion of the two specific approaches,

Chiang [2005] and Zollmann and Venugopal [2006], used in this work. In Section 2.6

we discuss decoding with PSCFGs.

2.3 Grammar Based Approaches

The PSCFG formalism can be viewed as an extension of the phrase-based approach,

using nonterminal symbols, as in monolingual parsing, to extend the context that is

available to make translation and reordering decisions. PSCFGs are defined in Chiang

[2005] by a source terminal set (source vocabulary) TS, a target terminal set (target

vocabulary) TT , a shared nonterminal set N and rules of the form:

X → 〈γ, α,∼, w〉 where

• X ∈ N is a left-hand-side (lhs) nonterminal symbol

• γ ∈ (N ∪ TS)∗ is a sequence of nonterminals and source terminals.

• α ∈ (N ∪ TT )∗ is a sequence of nonterminals and target terminals.

• ∼ enforces a one-to-one mapping between co-indexed nonterminals in γ and α.

• w ∈ [0,∞) is a non-negative real-valued weight assigned to the rule. In practice,

we define w as part of a log-linear model that includes several rule features with

learned weights i.e w =
∏m′

i=1 hi(r)λi where m′ ≤ m, which is the total number

of features in the model.

For visual clarity, example PSCFG rules in this thesis will use the # character

to separate the source side of the rule γ from the target side α. PSCFG rules trans-
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form input source words into the target language words via intermediate nonterminal

symbols, similar to monolingual parsing. Decoding with PSCFG rules is discussed in

Section 2.6. Aho and Ullmann [1969], Melamed [2003], Wu [1996] present complex-

ity analysis for various PSCFG approaches and show efficient dynamic programming

solutions for parsing with these grammars. PSCFG approaches vary in the restric-

tions placed upon their formal components. The following approaches all use a single

nonterminal label, i.e N = {X}:

• Wu [1997] separate purely nonterminal based reordering rules from lexicalized

translation rules.

• Chiang [2005] allows up to two nonterminals in lexicalized rules that include

both terminal and nonterminal symbols.

• Watanabe et al. [2006] restricts the rules from Chiang [2005] to those that have

Chomsky-Normal Form.

The hierarchical nature of this formalism is similar to our understanding of syntactic

structure and several approaches have been suggested to take advantage of this. The

approaches below use syntactically derived nonterminal labels:

• Zhang and Gildea [2005] extend Wu [1997] by lexicalizing the nonterminal labels.

• Zollmann and Venugopal [2006] extend Chiang [2005] to use labeled nontermi-

nal symbols. Labels are identified based on target language syntactic phrase

structure parse trees.

• Galley et al. [2004, 2006] uses target language syntactic structure to inform the

identification of rules. These approaches are built upon the more powerful tree

transducer grammar formalism, but in practice the rules generated by these

approaches can be represented by PSCFG rules.
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Each of the approaches above correspond to alternative parameterizations of the

PSCFG formalism. We use two PSCFG grammars in our work; Hiero [Chiang, 2005],

which uses a single nonterminal label and SAMT [Zollmann and Venugopal, 2006],

which uses a large syntactically motivated nonterminal set. These approaches differ

primarily in their use of nonterminal labels. We describe the grammar extraction

procedures of these two approaches in Section 2.4, 2.5 and provide background to

understand our decoding contributions in Section 2.6.

2.4 Hierarchical PSCFG

Chiang [2005] describes a procedure for learning a hierarchical phrase-based model

(Hiero) from word-aligned parallel corpora, generating a PSCFG with a single non-

terminal label. Initial phrase pairs are identified following Koehn et al. [2003] and

initial phrases are limited to have up to βlen source words. Initial phrases are assigned

a generic nonterminal label X, forming initial rules. These rules are used as a lexical

basis to form rules with right-hand-side nonterminal symbols using the procedure

below: For each rule:

X → f1 . . . fm # e1 . . . en

for which is an initial rule:

X → fi . . . fu # ej . . . ev

where 1 ≤ i < u ≤ m and 1 ≤ j < v ≤ n, a new rule can be generated that has the

form:

X → f1 . . . fi−1 Xk fu+1 · · · fm # e1 . . . ej−1 Xk ev+1 . . . en

where nonterminal indices in γ, α are co-indexed by k. This generalization procedure

can be performed recursively to create rules with multiple nonterminal symbols. Chi-
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ang [2005] imposes the following grammar restrictions; rules are limited to at most

two, non-adjacent nonterminals, rules must have at least one aligned word and when

multiple initial phrases contain the same set of word-to-word alignments, only the

smallest phrase is retained. The following initial rules would be extracted for the ex-

ample French-English parallel sentence in Figure 2.1 (note the removal of the phrase

pairs that have the unaligned target word does):

X → il # he

X → va # go

X → ne va pas # not go

X → il ne va pas # he does not go

resulting in the following rules with right-hand-side nonterminal symbols:

X → X1 ne va pas # X 1 does not go

X → il ne X1 pas # he does not X 1

X → il X1 # he X 1

X → ne X1 pas # not X 1

In addition to the automatically identified rules above, two additional rules are

added to the grammar to allow the decoder to serially combine translations, similar

to phrase-based decoding:

S → S1 X2 # S1 X2

S → X1 # X1
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The first of these two rules is referred to as the “glue” rule. Rule features h for Hiero

rules include those from Koehn et al. [2003] (described in Section 2.2), as well as an

additional binary feature hglue that allows the decoder to discriminate (using λglue)

between derivations that use the glue rule and those that do not.

2.5 Syntax Augmented PSCFG

Syntax Augmented Machine Translation (SAMT) [Zollmann and Venugopal, 2006]

extends Hiero to use nonterminal labels identified using target language parse trees.

The motivation for using target language parse trees for labels is similar to Galley

et al. [2004]; using target language syntactic labels can constrain translation output

towards syntactically well formed target sentences.

Inputs to SAMT rule extraction procedure are tuples: 〈f, e, Phrases(a, f, e), π〉,

where f is a source sentence, e is a target sentence, a is a word-to-word alignment

associating words in f with words in e, Phrases(a, e, f), are the set of phrase pairs

(source and target phrases) consistent with the alignment a [Koehn et al., 2003, Och

and Ney, 2004], and π is a phrase structure parse tree of e. π is a phrase structure parse

tree that follows the Penn Treebank [Marcus et al., 1993] annotation conventions. The

Penn Treebank is a large corpus of human-parsed sentences that is often used to build

and evaluate syntactic parsers. In this work, we will generate π using a stochastic

parser like Charniak [2000] that has been trained on the Penn Treebank corpus. The

constituent labels in π include Part-of-Speech labels like DT for determiners, phrase

labels like NP for Noun Phrase, Clause labels like S for a simple declarative clause.

See Marcus et al. [1993] for the complete list of labels that can occur in π.

SAMT rule extraction associates each initial phrase pair from Phrases(a, e, f)

with a left-hand-side label to form initial rules. Labels are assigned based on the
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S

!!!!!!!

"""""""

NP VP

!!!!!!!

"""""""
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Figure 2.3: Alignment graph [Galley et al., 2004], for a French-English sentence pair.

constituent spanning the target side of the phrase in π. The rule extraction procedure

from Chiang [2005] is then applied to generate rules with labeled right-hand-side

nonterminal symbols.

Consider the example alignment graph (word alignment and target language parse

tree Galley et al. [2004]) for the example French-English sentence pair in Figure 2.3.

When the target side of the initial phrase pair is spanned by a single constituent in

π, the constituent label is assigned as the lhs for the phrase pair. If the target side

of the phrase is not spanned by a single constituent in π, SAMT uses the labels of

subsuming, subsumed, and neighboring constituents in π to assign an extended label

of the form C1+C2, C1/C2, or C2\C1 (similar in motivation to the labels in Steedman

[1999]). These labels indicate that the phrase pair’s target side spans two adjacent

syntactic categories (e.g., she went : NP+VB), a partial syntactic category C1 missing

a C2 at the right (e.g., the great : NP/NN), or a partial C1 missing a C2 at the left

(e.g., great wall : DT\NP), respectively. The label assignment is attempted in the

order just described. If no label is assignable by either of these three methods, then

triple-concatenation is used to create a label of the form C1+C2+C3. If this approach

still does not yield a label, the generic label X is assigned. An ambiguity arises for
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unary rules N1 → · · ·→ Nm in π are encountered, such as the NP→PRN subtree in

Figure 2.3. In this case, a composite label N1 : · · · :Nm is assigned.

Coming back to our example, the initial phrases from Figure 2.2 would be labeled

as:

PRP:NP → il # he

PRP+AUX → il # he does

VB → va # go

RB+VB → ne va pas # not go

VP → ne va pas # does not go

S → il ne va pas # he does not go

The following rules with right-hand-side nonterminal symbols are then produced:

S → PRP:NP1 ne va pas # PRP:NP1 does not go

S → PRP+AUX1 ne va pas # PRP+AUX1 not go

S → il ne VB1 pas # he does not VB1

S → il VP1 # he VP1

S → il RB+VB1 # he does RB+VB1

VP → ne VB1 pas # does not VB1

RB+VB → ne VB1 pas # not VB1

VP → RB+VB1 # does RB+VB1

Unlike Chiang [2005], when multiple initial phrases contain the same set of align-

ment points, all of these alternatives are retained since each one could correspond to

a different lhs label. In addition, the SAMT system also retains rules that have no

aligned words as long as they have at least one nonterminal symbol, while rules that
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have consecutive source nonterminals are discarded. The labeling method described

above generates a large number of nonterminal labels, many of them occur very rarely

in the training data. As a form of smoothing, the SAMT grammar includes all X la-

beled rules from Hiero as well. The following additional features, beyond those from

Hiero, are introduced by SAMT:

• hlhs(r) = p(r| lhs(r)): probability of a rule given its lhs label as in monolingual

parsing.

• hlex(r) = 1: if the rule has no nonterminals, 0 otherwise.

• hX(r) = 1: if the rule is a Hiero rule.

• hmono(r) = 1: if the rule does not reorder its nonterminals, 0 otherwise.

• hrare(r) = e(1/cnt(r)): uses the number of times a rule has been seen during

training, cnt(r), to allow penalization of derivations that use rare rules.

Since the source and target side of SAMT rules contain nonterminals labels, rule

counts are likely to be sparse. To provide further smoothing, each PSCFG rule

is stripped of its labels and an additional translation model feature is calculated

htransu = p(ul(γ)| ul(α)), where the ul function replaces nonterminal labels with.Like

Hiero, the SAMT system introduces one glue rule for each unique lhs symbols en-

countered during in the grammar. Each of these glue rules has hglue = 1.

2.6 Decoding with PSCFGs

For clarity, we reformulate the model (Equation 2.6) and search task (Equation 2.4)

to refer to the components of the PSCFG formalism and the features that are used

in this work. Given a source sentence f and a PSCFG G, the translation task can be
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expressed similarly to monolingual parsing with a PCFG. We aim to find the most

likely derivation d of the input source sentence and read off the English translation,

identified by composing α from each rule used in the derivation. This search for the

most likely translation under the MAP approximation can be defined as:

ê = tgt

(
arg max

d∈D(G):src(d)=f
p(d)

)
(2.9)

where tgt(d) is the target-side yield of a derivation d, and D(G) is the set of G’s

derivations. Using an n-gram language model to score derivations and rule labels to

constrain the rules that form derivations, we can define p(e|f) as a log-linear model

in terms of the rules r ∈ R used in d as:

p(d) =

(
m′∏

i=1

pi(d)λi

)
× pLM(tgt(d))λm′+1 × psyn(d)λm

Z(λ)
(2.10)

pi(d) =
∏

r∈R

hi(r)
freq(r;d)

psyn(d) =





1 if d respects label constraints

0 otherwise
(2.11)

The features in p(d) include the n-gram language model pLM , a collection of m′ rule

feature functions hi : R → R≥0, and a “syntax” feature that, redundantly, requires

every nonterminal label to be expanded by a rule with the same nonterminal label

on its lhs. freq(r; d) denotes the frequency of the rule r in the derivation d. Note

that psyn(d) can be effectively ignored as defined in Equation 2.11; it corresponds

to the constraints specified in the PSCFG formalism where rule nonterminal labels

must agree at their shared nonterminals. The Viterbi algorithm for Context Free

Grammars (CFGs) [Kasami, 1965] can be used to select the most likely derivation

under this model in polynomial time as a function of source sentence length.

As discussed in Section 1.1 (repeated here for clarity), this algorithm proceeds in

a bottom-up fashion, selecting the most likely derivation for short spans of the source
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sentence and extending them with rules to translate longer spans. Partial derivations

are stored in a chart, which is a dynamic programming data structure where partial

solutions are efficiently stored and indexed. In order to make optimal local decisions

according to the model, each derivation is identified by information that could impact

its selection. The set of annotations that identify a derivation is called a chart item.

The chart item structure (notation from Chiang [2007]) required to do search based

on the model in Equation 2.10 is:

[X, i, j, ẽ] : w (2.12)

where X is the nonterminal label of a derivation, i, j define a span in the source

sentence, ẽ is the minimal context information required to compute pLM(α), where α is

the target translation associated with the derivation. When derivation d is the highest

weighted derivation identified by this chart item, w = p(d). Under the MAP criterion

we can discard derivations of lower weight that share the same item structure. The

corresponding runtime of a decoder that uses this chart item structure is [Chiang,

2007]:

O
(
|f |3

[
|N ||TT |2(n−1)

]K
)

(2.13)

where |f | is the length in word of the source sentence to be translated, N is the

set of nonterminal labels in the grammar, T is the set of target terminals that can

be output by the grammar, n is the order of the n-gram language model, and K is

the maximum number of nonterminal symbols in the grammar. In this dissertation

we work with grammars that have at most two nonterminal symbols on the right-

hand-side of each rule, therefore K = 2. We use the open-source decoder described

in Zollmann and Venugopal [2006] for the experiments in this thesis.

For the SMT systems considered here (Hiero, SAMT), the constant term in Equa-
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tion 2.13 has a significant impact on wall-clock translation time. To reduce translation

time beam search is used. Chart items are pruned away based on their relative weight

compared to the best item shares the same X, i, j.

Beam pruning is performed with two parameters, βn and βw. βn is a limit on the

number of chart items that have the same X, i, j and βw is the maximum allowed

weight difference between an item and the best item. Following Chiang [2005], the

decoder used in this work enforces a reordering limit, set to the same value as the

initial phrase length limit βlen. Derivations whose source span is more than βreo words

can only be extended by glue rules. Pruning of this nature can produce search errors;

discarded items might have had the potential to participate in a higher weighted

derivation than was found after pruning. This kind of pruning reduces the impact

that non-local features can have on translation quality.

Chiang [2007] explicitly represents the steps taken by a PSCFG decoder as in-

ference operations [Shieber et al., 1995] as reproduced in Figure 2.4. Each inference

operation (Equations 2.14,2.15,2.16) represents inputs in its numerator and outputs

in its denominator. Inputs are existing chart items (antecedents items) and gram-

mar rules, outputs are longer chart items (consequent items). The q function is

used to retain the elements of the target translation α that are needed to correctly

make MAP decisions based on pLM . This algorithm assumes that the source sen-

tence has begin-of-sentence 〈s〉 and end-of-sentence 〈\s〉 markers. The inference rules

are explored in bottom-up fashion in ascending order of j − i until the Goal item is

produced—representing the translation of the complete source sentence. The com-

putational impact of using non-local information can be seen from inference Equa-

tion 2.16. This inference operation must be performed for each antecedent item pair:

〈[X, i1, j1, ẽ1] , [Y, i2, j2, ẽ2]〉 that is compatible with the potentially multiple rules that

have the form: Z → 〈f i1
i+1X1f

i2
j1+1Y2f

j
j2+1, ·〉.
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X → 〈γ,α〉 : w
(X → 〈γ,α, w〉) ∈ G (2.14)

X → 〈f j
i+1, α〉 : w

[X, i, j, q(α)] : wp(α)
(2.15)

Z → 〈f i1
i+1X1f

i2
j1+1Y2f

j
j2+1, α〉 : w , [X, i1, j1, ẽ1] : w1 , [Y, i2, j2, ẽ2] : w2

[Z, i, j, q(α′)] : ww1w2p(α′) (where α′ = α [ẽ1/X1, . . . , ẽ2/X2])
(2.16)

q(a1 · · · am) =






a1 · · · an−1 " am−n+2 · · · am if m > 2(n− 1)

a1 · · · am else

p(a1 · · · am) =
∏

g≤i≤m,"/∈ai−n+1···ai−1

PLM (ai|ai−n+1 · · · ai−1)

Goal item:
[
S, 0, |f |, 〈s〉n−1 " 〈\s〉

]

Figure 2.4: CYK parsing with an integrated n-gram LM [Chiang, 2007]. The inference

rules are explored in ascending order of j−i. α [e/Y ] is the string α where the NT occurrence

Y is replaced by e. Function q takes as input a sequence of target words and elides words,

replacing them with ", that do not impact future n-gram LM calculations, p calculates

n-gram LM probabilities for target word sequences that include the " symbol. 〈s〉n−1

repeats the 〈s〉 symbol n− 1 times.
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Consequent chart items maintain backpointers to the antecedent items that were

used to create them. These backpointers can be used to follow the choice of rules

(derivation) that produced the goal item. While the decision rule in Equation 2.9

searches for the highest weight derivation in D(G), in practice, items that participate

in lower weighted derivations are often maintained in the chart in order to generate

alternative derivations for discriminative training of weights λ via Minimum Error

Rate Training (MERT) [Och, 2003].

This packed forest of alternative derivations of a sentence has a hypergraph struc-

ture [Gallo et al., 1993, Klein and Manning, 2001]. Hypergraphs are a generalization

of directed graphs to allow edges to point to multiple nodes. In Klein and Manning

[2001] they define: A directed hypergraph G is a pair (N, A) where N is a set of nodes

and A is a set of directed hyperedges. A hyperedge is a pair (T,H) that connects a

set of head nodes H and tail nodes T , both of which are subsets of N . The output of

a decoder that retains lower weight derivations forms a hypergraph structure where

each node in N is a chart item, each hyperedge in A is a PSCFG rule, and the set of

tail nodes for a hyperedge is the set of antecedent items used to form the node. The

tail nodes on the hyperedge are ordered in left-to-right target order as specified by

the rule’s target side α.

Figure 2.5 shows an hypergraph formed using the example rules from Section 2.5.

Based on this structure, there are efficient algorithms to select the best K weighted

derivations [Huang and Chiang, 2005].

2.7 Conclusions

In this chapter we have provided the background for our contributions. We motivated

the PSCFG approach based on challenges faced by the traditional word and phrase-
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[S, 1, 4, he ! go]
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!!!!!!!

r1
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"""""""

[VP, 2, 4, does ! go]

[PRP, 1, 2, he] [VB, 3, 4, go]

Figure 2.5: A partial hypergraph generated when translating our example sentence

il ne va pas using the example rules from Section 2.5. Initial rules produce chart

items [PRP, 1, 2, he], [VB, 3, 4, go], [VP, 2, 4, does ! go], and rules r1 and r2 form

hyperedges that both produce [S, 1, 4, he ! go]. ẽ are computed using a q function

that represents a 2-gram LM.

based models. We described the rule extraction procedures of the Hiero [Chiang, 2005]

and SAMT [Zollmann and Venugopal, 2006] grammars that we will use in this thesis.

In Section 2.6 we discussed the bottom-up chart parsing algorithm and structures

that we will modify in Chapters 3,5 to make better use of the non-local n-gram LM

feature pLM and label constraint psyn.
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CHAPTER 3

Two-Pass Approaches to PSCFG Decoding:

Hypergraph Search

This chapter develops two-pass approaches to PSCFG decoding based on the intuition

that search errors made in an approximate, and therefore fast, first pass can be

corrected by performing a second pass search of the first pass hypergraph. Our

techniques are focused on efficiently integrating the n-gram feature into PSCFG search

for the SAMT grammar. We propose two approaches: a left-to-right and top-down

search of the hypergraph, each corresponding to a different approximation of the pLM

feature during first pass decoding. Much of this chapter is based on Venugopal et al.

[2007].

3.1 Motivation

As discussed in Section 2.6, new chart items are produced by combining existing

chart items with rules to form chart items that represent larger spanning deriva-

tions. For each rule: Z → 〈f i1
i+1X1f

i2
j1+1Y2f

j
j2+1, ·〉, we need to consider | [X, i1, j1, ·] |×

| [Y, i2, j2, ·] | possible combinations of existing chart items, where | [X, i1, j1, ·] | refers

to number of chart items that share the same X, i, j across alternative LM contexts

ẽ, as indicated by the ·. Under the MAP decision rule, we are searching for a single

sentence spanning derivation; most of the items generated during decoding will not
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be used in the highest weighted derivation due to grammar constraints and pruning.

Limiting the size of | [X, i1, j1, ·] | results in search errors when a discarded item could

have combined with other items to create the highest weighted derivation.

In this chapter we explore algorithms that make strong approximations during a

first pass search, generating a hypergraph that includes derivations that potentially

have higher weight than the derivation found in the first pass. In a second pass, we

explore this hypergraph. Each derivation in this hypergraph is known to be a valid

sentence spanning derivation. We propose two methods to search this hypergraph,

corresponding to the choice of approximations made during the first pass search. In

our first algorithm, called Left-to-Right hypergraph search, we remove ẽ from the

chart item structure, but continue to use ẽ in order to score consequent derivations.

The feature pLM contributes to the choice of first pass derivation but search errors

are made. In a second pass search, we generate alternative derivations from the

hypergraph in a process that allows the n-gram LM to influence the search. In our

second algorithm, called Top-Down hypergraph search, we approximate pLM by using

an item structure that represents a g < n-gram LM context in the first pass. Fewer

chart items are produced during first pass decoding at the cost of increased search

errors. In a second pass hypergraph search, we adapt the K-Best extraction algorithm

from Huang and Chiang [2005] to find better derivations based on the full order n-

gram LM.

3.2 Related Work

A baseline approach to the integration of non-local features, like the n-gram LM, is

to use these features in a second pass re-ranking of the K-best derivations from the

hypergraph. In the field of monolingual parsing, re-ranking has been a successful

approach to integrate large number of non-local features [Charniak and Johnson,
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2005, Collins and Koo, 2005]. In SMT however, even large K-best lists expose a very

small fraction of the search space licensed by the grammar, providing limited potential

for non-local features to select better translations. Och et al. [2004] re-rank K-best

translation derivations using a large number of features, including more powerful

language models and syntactic features. In their experiments, only a single feature,

the IBM Model 1 lexical weight, resulted in statistically significant improvements in

translation quality.

Using the n-gram LM in a purely re-ranking capacity also yields limited improve-

ments in translation quality [Chiang, 2007, Zollmann and Venugopal, 2006]. The

n-gram has a strong impact on translation quality [Brants et al., 2007], making it

more important to allow this feature to have a role during search.

Chiang [2007] proposes “Cube Pruning”, a single pass approach where the gener-

ation of new items is limited during decoding. By using the pLM feature to influence

which new items are generated, this approach avoids generating many low weighted

items. The Cube Pruning algorithm, which we will compare our algorithms against,

is described below.

3.2.1 Cube Pruning: A Single Pass Baseline

Cube Pruning [Chiang, 2007] is an optimization to the intersected LM parsing al-

gorithm presented in Figure 2.4. It addresses the creation of the | [X, i1, j1, ·] | ×

| [Y, i2, j2, ·] | chart items when generating consequent items. Rather than generat-

ing all possible consequent items that have item structure [X, i, j, ·], Cube Pruning

generates only a subset of them.

The search for the approximate best subset of items is performed using the K-best

derivation extraction algorithm from Huang and Chiang [2005]. We sketch the Cube

Pruning algorithm in Figure 3.1. The algorithm assumes that prior to generating
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consequent items [X, i, j, ·], there exists a list of rules )r, sorted in decreasing weight

w that produce the same lhs=X. The set of possible antecedent items for each non-

terminal in ri is sorted in decreasing weight as well. Rule weights do not include

the feature pLM , while antecedent item weights do include pLM . Assume that each

rule in )r has two nonterminal symbols. We represent consequent items as a tuple

over antecedent inputs: )r(〈a, b, c〉) selects the a’th rule from )r, the b’th item from

the sorted list of antecedents at the first nonterminal of ra, and the c’th item at the

second nonterminal.

The Cube Pruning algorithm uses the following functions and data structures.

• Score()r(〈a, b, c〉)) scores consequent items according to p(d) (Equation 2.16).

• GenerateNeighbors()r(〈a, b, c〉)) generates “neighboring” [Huang and Chi-

ang, 2005] tuples, where each tuple differs from the input argument in one

dimension, and calls Score on each one.

• h is a priority queue that maintains tuples with weights.

• L is the list of consequent items generated.

CubePruning creates the consequent chart items L based on Equation 2.16

of Figure 2.4. The functions PopBest and AddToList are utility functions to

manipulate data structures h and L. Since the function Score uses the feature pLM ,

the n-gram LM influences the set of L generated consequent items. The object stats

maintains the weight of the best generated consequent item and tracks the number

of items generated. CubePruning terminates when stopping criteria have been

reached, typically the number of generated items or the cost difference between the

most recently generated item and the best generated item. The termination condition

can be relaxed to generate additional lower weighted items to compensate for search
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CubePruning()r)

1 AddToH(h,)r(〈1, 1, 1〉),Score()r(〈1, 1, 1〉)))

2 count ← 0

3 L ← ∅

4 while !Stop(stats)

5 do

6 z ← PopBest(h)

7 AddToList(L, z )

8 for z′ ∈ GenerateNeighbors(z )

9 do AddToH(h, z′,Score(z′))

10 stats ← {cost(z ), + + count}

11 return L

Figure 3.1: Generation of a list of consequent items L using the Cube Pruning

algorithm [Chiang, 2007]. See description of variables and functions in the text.
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error by a “fuzz” factor. In Chiang [2007], Cube Pruning is compared against a)

rescoring with pLM only and b) performing traditional beam search with no early

stopping during generation of consequent items. Cube Pruning outperforms both the

baseline solutions. We will compare our algorithms against Cube Pruning as a strong

single pass baseline.

3.2.2 Related Multi-Pass Approaches

Charniak et al. [2006] propose a multi-pass approach to mitigate the impact of non-

terminal labels during decoding for the monolingual parsing task. The use of a large

number of nonterminal labels in the grammar fragments the search space and often

requires pruning to perform search in reasonable times — the authors report a base-

line per sentence parsing time of 1 sentence per second. They propose a multi-pass

approach where early decoding passes use a reduced nonterminal set. The chart from

early decoding passes are used to constrain search in subsequent passes. Zhang and

Gildea [2008] propose a multi-pass solution where a lower order n-gram LM is used

in the inital pass to constrain the search space in a future pass. This approach is sim-

ilar to the Top-Down approach discussed in Section 3.4, but uses inside and outside

heuristics to prune derivations within a full O(|f |3) second pass decoding, as opposed

to using a larger order LM during hypergraph search as we do. Petrov et al. [2008]

take a more dramatic step towards reducing the number of chart items generated

during decoding. Rather than reducing the order of the n-gram LM, they reduce the

target language vocabulary, creating very weak (1-bit and 2-bit) LMs. These weak

LMs are used during initial decoding passes and posterior probabilities calculated to

estimate the probability of using a particular span during translation. These poste-

rior estimates restrict the possible derivations in subsequent passes that use stronger

LMs.
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3.3 Two Pass Approaches: Left-to-Right Hypergraph Search

In our first algorithm, called Left-to-Right hypergraph search, we remove the LM con-

text ẽ from the chart item structure, but continue to use ẽ that is associated with each

derivation in order to score consequent derivations. The feature pLM contributes to

the choice of first pass derivation but search errors are made. In a second pass search,

we generate alternative derivations from the hypergraph, in a way that provides the

left context for the pLM feature.

3.3.1 First Pass: Approximate Parsing

We begin by relaxing the criterion that determines when two chart items are equiv-

alent during parsing. Rather that maintaining ẽ in the chart item, we treat ẽ like α,

as a term that is associated with each item rather than as an identifying component.

In Equation 3.1 we show this approximation explicitly:

Z → 〈f i1
i+1X1f

i2
j1+1Y2f

j
j2+1, α〉 : w , [X, i1, j1] , ẽ1 : w1 , [Y, i2, j2] , ẽ2 : w2

[Z, i, j] , q(α′) : ww1w2p(α′) (where α′ = α [ẽ1/X1, . . . , ẽ2/X2])
(3.1)

Note that the weight of the consequent item is still calculated based on the

p(α′), which uses ẽ1, ẽ2. The runtime complexity of the decoding algorithm is now

O (n3|N |2) at the risk of increased search errors. By removing e from the item struc-

ture, we commit search errors because derivations with different LM contexts result

in the same chart item. This is a form of greedy approximation; the item’s weight,

and associated LM context, represents the derivation with the highest weight among

all derivations that share X, i, j, but it is possible that a lower weighted derivation

might have composed better with a longer spanning rule due to its e component. This

approximation corresponds to an extreme parameterization of Cube Pruning where

only one consequent item is propagated for each X, i, j.
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This relaxation is different from approaches that do not use the LM during parsing.

The derivation weights in the hypergraph have LM probabilities factored into them,

but represent a non-optimal search according to the model. The hypergraph does,

however, represent a set of derivations that successfully translate the source sentence,

according to grammar constraints and pruning based on all features in p(d). The

second pass of the Left-to-Right hypergraph algorithm uses this hypergraph as a

starting point to find derivations that potentially have higher weight. New derivations

can be found by exploring the alternative hyperedges at each hypernode.

3.3.2 Second Pass: Hypergraph Search

The goal item of the first pass decoding is a chart item that represents a sentence

spanning hypergraph of alternative derivations. Instantiating alternative derivations

from this hypergraph might yield derivations of lower weight than the first pass max-

imum weight derivation. This is possible because considering alternative hyperedges

that were not selected during the first pass might score better according to pLM .

Exploring the whole space of alternative derivations in this hypergraph is not

tractable since there are exponentially many derivations with respect to source sen-

tence length. Selecting the top K derivations and rescoring them based on the LM

feature does not yield sufficient diversity to correct search errors made in the first

pass [Zollmann and Venugopal, 2006, Chiang, 2007].

We propose a search strategy that explores this hypergraph allowing the pLM

feature to influence the sections of the hypergraph that are explored. If we treat

the top K derivations from the first pass hypergraph as sample derivations of rea-

sonable quality, then if we make small changes to these derivations, we might find

better derivations. If a modified derivation has lower weight then we should explore

“neighboring” derivations that differ only slightly in their choice of hyperedges.
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We define an agenda item : [ẽ, ρ] : w based on the components of a hyperedge.

Assume a hyperedge representing a rule r : X → 〈α, γ〉 with nonterminals X, Y in

α and a list of backpointers to chart items: )b = [X, i1, j1] , ẽ1 : w1 , [Y, i2, j2] , ẽ2 : w2.

We define ρ′ = α [b1/X1, b2/Y2] where nonterminal elements in α are substituted with

pointers to their corresponding antecedent items b1, b2 ∈ )b represented as hypernodes.

ω is defined to be the series of leading consecutive terminal symbols in ρ′ while

ρ represents the remaining pointers and terminal symbols, therefore ω ∈ T ∗, ρ ∈

(T ∪ )b)∗. The weight of the agenda item w is the weight of the derivation that

it represents. Item component ẽ = q′(ω) where q′(ω) is defined similarly to the q

function in Figure 2.4 as:

q′(ω1 · · ·ωm) =






ωm−n+2 · · ·ωm if m > n− 1

ω1 · · ·ωm else

Unlike q, q′ only retains the right most n-1 words from ω.

We conduct our second pass search through the hypergraph via agenda items.

Agenda items are sorted by weight in a map data structure B, which maintains only

unique agenda items and discards duplicate items of lower weight. B is initialized with

agenda items corresponding to the hyperedges of the sentence spanning goal item.

Each of these agenda items represents a section of the hypergraph to be explored. To

conduct our search for alternative derivations we explore “neighboring” agenda items

using the function Unwind in Figure 3.2.

The Unwind function takes the agenda B and an agenda item x as input, where

x has already been removed from B. x is a hypergraph where some of its left most

branches have been instantiated into specific derivations, resulting in a sequence of left

most target terminal symbols. Unwind generates new agenda items that represent

alternative derivation choices at the remaining left most branches of the hypergraph.
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Unwind(B, βτ , x = [ẽ, ρ] : w)

1 bp1 ← GetFirstBP(ρ)

2 [ẽ1, ρ1] : w1 ← AgendaItem(bp0, 1)

3 ρ′, i1, j1 ← Expand(ρ, bp1, [e1, ρ1])

4 w′ ← FactorOut(w, ẽ, ρ′, i1, j1, w1)

5 for 1 ≤ k ≤ |edges(bp1)|

6 do

7 [ẽk, ρk] : wk ← AgendaItem(bp1, k)

8 ρ′k, ik, jk ← Replace(ρ′, i1, j1, [ẽk, ρk])

9 wk ← FactorIn(w′, ẽ, ρ′k, ik, jk, wk)

10 ẽk, ρk ← q′(ẽ ·Prefix(ρ′k)),Suffix(ρ′k)

11 if BestW(B)/wk ≤ βk

12 then AddToB(B, [ẽk, ρk] : wk)

Figure 3.2: Unwind(B, x) generates new agenda items based on x that differ in

their choice of hyperedge at x’s left-most backpointer. Generating new agenda items

in this way produces sequences of consecutive terminal symbols in ρ.
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By generating alternatives in this way, the pLM feature can be used to score consec-

utive terminal sequences that start from the beginning of the sentence, unlike in first

pass decoding. When new agenda items are created, they can be efficiently scored

with the pLM feature. New items that have high weight should be explored further,

while items that have a low weight relative to the best item found should not be

explored further.

We describe each subroutine in Unwind below:

• GetFirstBP: Returns the left-most backpointer to a chart item from ρ, which

is a sequence of target terminals and backpointers.

• AgendaItem: Takes a backpointer to a chart item and a hyperedge index

and forms an agenda item as described above. This function assumes that

the hyperedges in the chart item are sorted by weight where 1 represents the

hyperedge with highest weight.

• Expand: Takes an existing ρ and replaces the first backpointer with its corre-

sponding agenda item. The result is an expanded sequence ρ′. We also track the

positions in ρ′ that represent this substitution. ρ′ now represents a hypergraph

where one of the nodes in ρ has been instantiated as a (non-hyper) edge.

• FactorOut: Removes the weight contributions from w that came from [e1, ρ1] :

w1 during first pass parsing. The weight contributions include the weight from

the pLM features as well as other feature functions hi. The left context ẽ allows

the pLM feature to be calculated for the sequence ẽ, ρ′.

• Replace: Replaces elements in ρ′ that correspond to the original edge, rep-

resented by symbols ρ′i1 · · · ρ
′
j1 , with ẽk, ρk—an alternative agenda item. This

represents following an alternative hyperedge at the left-most backpointer of x.
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Returns a new sequence ρ′ with positions indicating the relative location of the

new agenda item.

• FactorIn: Multiplies in the weight contribution due to selecting hyperedge k.

The weight contributions include the weight from the pLM features as well as

other feature functions hi. Using left target terminal context ẽ allows the pLM

feature to be calculated for the sequence ẽρ′k. The resulting wk can be higher

than w, representing a recovery of search error.

• Prefix: Returns the leading consecutive terminals in ρ′k.

• Suffix: Returns all symbols after and including the first backpointer in ρ′k.

• BestW,WorstW: Returns the highest and lowest weight of agenda items

that have no backpointers in B. If all the elements in B still have backpointers,

then these functions return values that indicate this condition.

• AddToB: Adds a new agenda item to B. If the agenda already has an item

with the same structure, the item with highest weight is retained.

The FactorIn and FactorOut functions call the p function to calculate the

LM probability of a sequence ẽ, ρ. Before calling the p function, backpointers items

in ρ are substituted with their corresponding ẽ.

The LeftToRightSearch search algorithm, defined in Figure 3.3, uses Unwind

to generate alternative chart items in sections of the hypergraph that have high

weight. At each iteration during search, every item that still has backpointers in the

agenda is explored by Unwind. Newly generated items with low weight, relative to

the best agenda item with no backpointers, are discarded, while higher weighted items

remain in the beam and are explored further. Search is terminated by considering

the items on the agenda that have no backpointers. When the difference in weights
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for these items is greater than βτ , search is terminated. We now highlight particular

characteristics of this search algorithm.

The Unwind function generates new agenda items in left-to-right order, main-

taining a sequence of left-most consecutive target terminal symbols. This search

strategy is similar in motivation to the grammar constraint applied in Watanabe

et al. [2006]. They propose restricting the PSCFG grammar to include only rules

that have Griebach Normal form, so that all target terminal symbols in γ come be-

fore nonterminal symbols. This reduces the number of chart items created during

decoding since all items will share the same left context.

The agenda item structure allows us to discard items under the MAP decision

rule just as we did during first pass search. Duplicate agenda items with lower weight

are discarded. Matching of agenda items [ẽ, ρ] : w is performed by hashing the target

terminals in ẽ, ρ and memory addresses of the backpointers in ρ. In order to perform

discriminative training we need to be able to generate K-best alternative derivations.

By maintaining backpointers to duplicate items with lower weight we can run the

algorithm from Huang and Chiang [2005] to extract alternative derivations from the

hypergraph of agenda items.

The computationally expensive portion of the Left-to-Right hypergraph search

algorithm is the generation of new agenda items. For each agenda item we need to

call FactorOut once, and FactorIn once for each alternative that is generated

from it. These functions need to recalculate the pLM feature based on agenda item

components ẽ, ρ. Rather than calculating n-gram language model probabilities for

all symbols in ẽ, ρ, we use the position information ik, jk to limit the number of new

probabilities requested. We only need to request new probabilities at the symbols

that surround the ik, jk.

Second Pass Example: Consider a simple example, where we have completed
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LeftToRightSearch(g, βτ )

1 B ← ∅

2 for 1 ≤ i ≤ |edges(g)| AddToB(GetAgendaItem(g, i))

3 while !Stop(BestW(B)/WorstW(B) > βτ )

4 do

5 B′ ← ∅

6 while |B| > 0

7 do

8 a ← Pop(B)

9 if |bps(a)| > 0

10 then Unwind(B′, a)

11 else AddToB(B′, a)

12 B = B′

Figure 3.3: LeftToRightSearch(g) takes as input the goal item g and a pruning

parameter βτ . Agenda items are formed based on the hyperedges of the goal items

and alternative agenda items are explored using the Unwind function. The search

maintains a sorted agenda B where unique agenda items are maintained. Search

terminates when the weight ratio of the best and worst agenda item’s that have no

nonterminals is greater than βτ .
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the first pass search and produced a sentence spanning goal item. Figure 3.4 shows

the goal item label S.

This goal item has two hyperedges, each representing an alternative reordering of

antecedent chart items. The solid arrow represents the hyperedge that was selected

during first pass decoding and the dashed arrow represents an edge that was not

selected.

Each hyperedge has a tail of backpointers to chart items that represent subspan

translations. In this example, the hyperedges point back to PP, NP and VB chart

items 1.

At each chart item, we have listed the n-gram LM context assuming a 2-gram LM,

with one word at the left boundary and one word at the right boundary, from the

first pass search. The antecedent chart items represent multiple purely lexical rules

(no nonterminal symbols) in the boxed regions below them.

Each iteration of the agenda B is indicated by a boxed list. The first list includes

two agenda items representing the two alternative hyperedges that lead into the goal

item. In this example, w1∗ indicates the weight of the derivation from first pass

decoding. In the second iteration, we Unwind both agenda items. The initial item

[ẽ = ∅, ρ = NP2 VP3 PP1] generates two new agenda items that have the same item

structure: [ẽ = man, ρ = VP3 PP1]; only the item with higher weight is retained. We

maintain a pointer to the lower weight item, as indicated by the arrow in the example.

The last agenda item in the second iteration list is an example of an agenda item that

has been pruned due to its relative performance, as indicated by the strike through.

As per our algorithm, we explore alternative items for each element in B during the

third iteration.
1In our experiments, we limit SAMT rules to have at most two nonterminal symbols, but for the

purposes of illustrating our second-pass algorithm, we use rules with three nonterminal symbols.
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Figure 3.4: Illustration of the second-pass of the Left-to-Right search algorithm. The

result of the first pass is the hypergraph rooted at goal item item S. The hypergraph

structure and agenda items are explained in the text.
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3.3.3 Empirical Results: Left-to-Right Search vs. Cube Pruning

We present empirical results on the IWSLT 2006 Chinese to English translation task

[Paul, 2006]. Training and development data are described in Appendix A, Table A.1.

A 5-gram LM was trained based on the target side of the parallel corpus using Kneser-

Ney smoothing [Kneser and Ney, 1995].

We compare the single pass Cube Pruning (CP) algorithm [Chiang, 2007] (de-

scribed in Section 3.2.1), with the two pass Left-to-Right (LR) hypergraph search

algorithm from Section 3.3. We do not evaluate our approach against the simpler

rescoring and full search with beam pruning baseline options. This comparison is

available in Chiang [2007] where they show that CP outperforms both of these alter-

natives.

We evaluate the Left-to-Right algorithm using the Hiero ([Chiang, 2005], Sec-

tion 2.4) and SAMT ([Zollmann and Venugopal, 2006], Section 2.5) grammars. The

SAMT grammar rules use labels from target language parse trees generated by the

Stanford Parser [Klein and Manning, 2003]. The Hiero grammar contains 50K rules,

while the SAMT grammar contains 300K rules. Parameters λ are trained using MERT

training [Och, 2003] on the development set IWSLT DevSet4 (Table A.1) using the

baseline CP decoding algorithm.

We evaluate each decoding algorithm by considering search errors made during

decoding and by the BLEU score on evaluation data. We define search errors based on

the weight assigned by the model to the goal item for each sentence in the evaluation

corpus. Treating weights as negative log probabilities (costs), we accumulate the

value of these model costs for each sentence in the evaluation corpus as we vary beam

pruning settings.

We vary βw (which specifies the maximum allowed weight difference between chart
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items that share X, i, j) for CP, and βτ in the second pass of LR. βw for the first pass

in LR search is 5. βτ , βw are given as multiples of the pLM feature weight in λ.

Large values of βτ , βw correspond to exploring more alternative derivations. In the

experiments below we also limit the size of B to 1000 for memory considerations.

The first pass of LR can be performed with no pruning. If the accumulated cost

is reduced using wider beam settings, search errors have been reduced over previous

beam settings. For CP we accumulate the weight of the goal item after the single

search pass and for LR we accumulate the weight from BestW after the second pass.

We compare decoding algorithms by evaluating the accumulated model cost versus

effort made during search.

We consider two measures of effort. We first evaluate search errors as a function

of novel queries made to the n-gram LM. It is our intuition that novel queries to

the n-gram LM represent areas of the search space that have not been previously

explored. Ideally, a decoding algorithm will quickly explore only the most promising

regions of the search space and result in low accumulated model cost. We propose this

measure in order to abstract away some of the low level implementation decisions that

apply to each algorithm. Novel queries are also an important decoding statistic when

using distributed LMs like those in Brants et al. [2007]. Repeated n-gram queries can

be maintained efficiently in local caches while novel queries require time consuming

remote procedure calls. When we compare algorithms under this measure, the better

algorithm would achieve each level of search error with fewer novel queries to the

n-gram LM.

The second measure is the wall-clock time required to achieve a particular level

of search error; the better algorithm would achieve each level of search error in less

time. In order to demonstrate the relationship between the BLEU score and search

error, we report BLEU score results at each level of pruning. We use wider beams for
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both algorithms until we see no change in BLEU score.

Figures 3.5,3.6 plot model cost as a function of LM cache misses for the Hiero and

SAMT grammars, while Figure 3.7 plots model cost as a function of decoding time

for the SAMT grammar.

For both the Hiero and SAMT grammars we see that LR achieves a given model

cost earlier in terms of novel LM calls for most of the plotted region, but ultimately

fails to achieve the same lowest model cost as the CP method. Under both LR and

CP, the Hiero grammar achieves a BLEU score of 19.1%, while the SAMT grammar’s

score is 1.6% higher at 20.7%. Hiero demonstrates a greater variance of BLEU score

for both CP and LR compared to the SAMT grammar. The use of syntactic labels as

an additional model of target language fluency might explain the fact that the SAMT

grammar quality is more robust to differences in the number of items explored that

differ in their n-gram LM context. We see similar results when considering decoding

time for the SAMT grammar. While LR achieves a relatively low model cost quickly,

it ultimately does not achieve the same low model cost as CP.

The Left-to-Right search algorithm demonstrates that it is possible to make strong

approximations during first pass decoding and partially recover from them during a

second pass. Ultimately, Left-to-Right search does not outperform the strong single

pass Cube Pruning baseline, failing to achieve equally low model costs. The second

pass of LR search uses derivation weights from first pass decoding to guide the search

for alternative derivations in the hypergraph. Methods to underestimate the cost of

agenda items that still have unexplored backpointers could lead to a better search

heuristic (ideally an admissible heuristic [Dechter and Pearl, 1985]) that can guide

the second pass.
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Figure 3.5: Model cost vs. LM cache misses with BLEU scores for the IWSLT Hiero

grammar for Cube Pruning and Left-to-Right hypergraph search.
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3.4 Two Pass Approaches: Top-Down Hypergraph Search

In the Left-to-Right approach described above, we reduced the search space in the

first pass by only the preserving best chart item amongst those items that shared

X, i, j, but retained the lower weighted alternatives for a second pass hypergraph

search. The implied approximation was that local greedy decisions during the first

pass would generate a hypergraph representing high scoring derivations that could be

further explored in a second pass. The search strategy in the second pass provided

additional context (leading target terminals) for the pLM feature to drive this search.

In this section we explore an alternative approximation. Rather than making

greedy decisions about the number of chart items to propagate, we make an approx-

imation in the context that identifies derivations in the item structure. Rather than

maintaining sufficient LM context in the item to make locally optimal decisions ac-

cording to the n-gram LM (the operation performed by the q function in Figure 2.4),

we maintain LM context in the item as if we were using a lower order g < n-gram LM.

This causes non-optimal decisions to be made during first pass search, with respect to

the full n-gram model used by the pLM feature. In a second pass, we explore the first

pass hypergraph in a Top-Down manner, similar to the K-best algorithm of Huang

and Chiang [2005], to select derivations according to the full order n-gram LM.

3.4.1 First Pass: Approximate Parsing

In first pass decoding, we follow the bottom-up decoding algorithm from Figure 2.4

with the following modifications to the q function. Rather than using n− 1 words to

maintain LM context, we use g − 1 words, where g < n:
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q(a1 · · · am) =






a1 · · · ag−1 ! am−g+2 · · · am if m > 2(g − 1)

a1 · · · am else

The p function, which calculates the feature pLM still continues to use the n-gram

LM:

p(a1 · · · am) =
∏

g≤i≤m,"/∈ai−n+1···ai−1

PLM(ai|ai−n+1 · · · ai−1)

The result of this decoding approximation on runtime is shown below, where g− 1 is

used instead of n− 1:

O
(
n3

[
|N ||TT |2(g−1)

]2
)

First pass parsing will generate fewer chart items since more derivations will pro-

duce the same chart item structure when considering only 2(g − 1) words of LM

context. More search errors are introduced since lower weighted derivations that

share the same item structure have the potential to form higher weighted derivations

when scored with the complete n-gram LM in pLM .

In the second stage, we attempt to recover from the potential search errors made

by the approximation above. As shown below, rescoring a large K-best list extracted

from the first stage fails to achieve the lowest levels of search error. As in the Left-

to-Right method above, we will use the full-order language model to drive the search

through the hypergraph generated in the first pass, but we now use a Top-Down

(instead of Left-to-Right) strategy, which is effectively a modification of the K-best

extraction algorithm of Huang and Chiang [2005].

3.4.2 Second Pass: Top Down Search

Huang and Chiang [2005] describe an efficient algorithm (Lazy-K-Best) to select the
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top K ranked derivations from a hypergraph. The algorithm works recursively, re-

questing the top ranked derivation corresponding to the goal item in the hypergraph

triggers the same request along each incoming hyperedge. At each hyperedge, the

request for the first best derivation is passed down to each backpointer item. Re-

questing the second best derivation follows the same strategy, but takes advantage

of previously computed derivations at each chart item. As defined in Huang and

Chiang [2005], this algorithm computes K-best derivations in decreasing weight order

from a hypergraph. We use this algorithm to correct for search errors made during

approximate first pass decoding. Our approach is similar to recent work in Huang

and Chiang [2007].

We sketch the recursive component of the algorithm from Huang and Chiang [2005]

in Figure 3.8, it is similar to the Cube Pruning algorithm in Figure 3.1, but refers to

hypergraph elements that were created during decoding. The input to GetKthBest

is a chart item x, and a request for the K-th best derivations at x. Two data structures

are maintained at each x; a list of weight derivations rooted at x accessed by L(x),

and a priority queue of possible alternative derivations h(x) to explore. Assuming

that each rules has two backpointers, alternative derivations are represented as tuples

〈a, b〉, where a refers to the a’th incoming hyperedge of x, and b corresponds to the

choice of the b’th best derivation at the first backpointer of the a’the edge. Each of

these derivations is weighted according to the model p(d) by the Score function.

The recursive component of the GetKthBest algorithm is represented by HasKthBestAll

and GetKthBestAll. HasKthBestAll checks each input tuple 〈a, b · · · 〉, fol-

lowing x’s a’th edge to each of its backpointers chart items. If the backpointer item

has already generated its b’th best derivation and the same is true at all other back-

pointers, HasKthBestAll returns true. If any of these requested derivations are

missing, GetKthBestAll recursively calls GetKthBest on the corresponding
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GetKthBest(x, K)

1 h ← ∅

2 if x(h) == ∅, x(L) == ∅

3 then

4 for 1 ≤ i ≤ |edges(x)|

5 do AddToH(x(〈, i, 1〉),Score(x(〈i, 1〉)))

6 if |L| ≥ K

7 then return L(K)

8 while |L| < K

9 do

10 z ← PopBest(h)

11 AddToList(L, z )

12 for z′ ∈ GenerateNeighbors(z )

13 do

14 if !HasKthBestAll(z′)

15 then GetKthBestAll(z′)

16 AddToH(z′,Score(z′))

Figure 3.8: The recursive component of the Lazy-K-Best extraction algorithm from

Huang and Chiang [2005]. We use this algorithm in a second pass search in the

Top-Down algorithm. Function calls and variables are defined in the text.
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backpointer items.

Score evaluates a choice of hyperedge and derivation choices at each of its back-

pointers and evaluates this choice based on p(d). When the same order n in the q

function, as is used to evaluate the n-gram LM in p(d), the algorithm will always

return derivations of strictly increasing weight.

In this Top-Down approach, using a restricted LM context during decoding will re-

sult in derivations found with lower weight during K-best extraction. This represents

a recovery from search errors. K is therefore the parameter that controls our explo-

ration of the hypergraph in the second pass. Note that L(x) is not resorted as new

derivations are found, doing so would make the algorithm return different derivations

at each choice of K at a particular chart item. Unlike Left-to-Right search, which

maintains a single sentence level agenda, Top-Down search effectively maintains an

agenda of alternative derivations to explore at each node in the hypergraph.

3.4.3 Empirical Results: Top-Down Search vs. Cube Pruning

Top-Down search is based on the intuition that MAP decisions made based on the

lower n-gram LM context serves as a good approximation to use the full order n-gram

LM context, and that the resulting search errors can be corrected in a second pass

search. We evaluate Top-Down (TD) search against Cube Pruning (CP) by consid-

ering accumulated model cost just as we did above on the IWSLT (Appendix A)

translation task. Note that Top-Down search still uses CP during first pass search.

Results below are presented on the IWSLT 2007 test set, with development param-

eters trained on IWSLT DevSet4 (Table A.1). The test sets from previous years

(2005, 2006) have been added to the training data, resulting in improved BLEU score

performance relative to experiments in Section 3.3.3.

We generate model cost versus total decoding time curves for three systems —
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CP, TD and rescoring. The CP system uses a 5-gram LM (system “5-gram-CP”), the

TD system maintains effective 3-gram context during the first pass followed by the

full 5-gram LM in the second pass (system “3-gram-TD”) and the rescoring system

that uses the 3-gram context during decoding but then rescores a K-best list (system

“3-gram-Res”).

We use the SAMT grammar for these experiments. Figure 3.9 shows relative per-

formance between the three systems mentioned above, using K=1000 for the system

3-gram-TD, and K=5000 for system 3-gram-Res. The relatively higher K is used

for the rescoring system since we want to demonstrate that even with a large K we

cannot recover from search errors by K-best list rescoring.

The absolute pruning threshold βn is varied in these experiments, limiting the

number of consequent items propagated during CP. The CP fuzz factor is set to

10000 items. Note that the TD approach uses CP in its first pass, except with the

shortened LM context. We see that 3-gram-TD achieves the lowest model cost in 53%

less time (36904 seconds for the 5-gram-CP system and 17112 seconds for the 3-gram-

TD system) than the 5-gram-CP single pass CP system. 3-gram-TD also achieves the

same low model cost achieved by the 5-gram-CP system. The TD approach achieves

a lower cost than the rescoring method.

BLEU scores on Figure 3.9 are placed near corresponding pruning levels on each

system to show improvements in translation quality when search error is reduced.

There is an improvement in the BLEU score from 36.7% to 37.4% when using larger

beam values βn for the rescoring method. However, the additional reduction in accu-

mulated cost from the best rescoring system to the Cube Pruning and TD systems

does not result in additional BLEU score improvement, all systems ultimately achieve

a score of 37.4%.
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Figure 3.9: Decoding time for IWSLT SAMT grammar and BLEU scores for varied

pruning parameters comparing the Top-Down approach (3-gram-TD) to two-pass

rescoring (3-gram-Res) and to Cube Pruning (5-gram-CP).
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3.5 Conclusions and Contributions

In this Section we focused on the problem of efficiently integrating the n-gram LM

feature into a PSCFG decoder. We proposed two-pass approaches to mitigate the

increase in the number of chart items during decoding when fully integrating the

n-gram LM into search. Our approaches are based on the intuition that search errors

made during an approximate, fast first pass can be corrected in a more extensive

search of the resulting hypergraph.

The first pass is used to narrow the search space to those derivations that success-

fully translate the source sentence under grammar and pruning constraints, while the

second pass is able score partial derivations by taking advantage of more contextual

information. In the Left-to-Right algorithm, the second pass is conducted so con-

secutive target terminals are produced at each new derivation allowing the n-gram

LM to have a complete history when applied in the feature pLM . In the Top-Down

algorithm, the second pass rescores partial derivations in the context of higher up

rules in the sentence spanning derivation.

We compared the performance of our two-pass approaches against a strong Cube

Pruning [Chiang, 2007] baseline, by evaluating the effort each approach made to

achieve a particular level of search error. Search error was measured by considering

the accumulated model cost of the selected translation in a test corpus. While Left-

to-Right search achieves low search error quickly, it is unable to achieve the lowest

level of search error that was achieved by the Cube Pruning approach. The Top-Down

algorithm achieves the lowest level of search error in our experiments in 53% less time

than single pass Cube Pruning for the SAMT grammar. The methods developed to

establish improvements in search strategy by measuring model cost were novel as

of their presentation in Venugopal et al. [2007], and several new methods use this

strategy to demonstrate improvements [Huang and Chiang, 2007, Zhang and Gildea,
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2008].

These search strategies can be applied to the broad class of PSCFG grammars

that generate synchronous derivations on the source and target language. Beyond

n-gram models, our work proposes general strategies to integrate non-local features,

taking advantage of knowledge about their contextual requirements and fashioning

our search based on this information. In Chapter 5 we use the ideas developed here to

integrate syntactic constraints as a non-local feature into the translation model. We

expect our approximations to be more valuable when non-local information causes

greater increases in the number of chart items during decoding, the feature we explore

in Chapter 5 has this effect.
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CHAPTER 4

A Systematic Comparison: Phrase-Based vs.

PSCFG

As discussed in Chapter 2, PSCFG based approaches offer the potential for trans-

lation and reordering decisions to be made with more contextual information than

typically available to phrase-based models. In this chapter we perform a systematic

comparison between PSCFG approaches (Hiero and SAMT) against a strong phrase-

based baseline using the same initial lexical phrases and reordering constraints across

all systems, with a focus on understanding the impact of the non-local n-gram LM

and syntactic label features. We evaluate these systems across a variety of resource

conditions to translate Chinese, Arabic and Urdu to English. Our work shows that

PSCFG methods deliver consistent improvements, even when all systems have access

to large language models and we show further improvements when using syntactic

labels for languages that exhibit long distance reordering, such as Chinese and Urdu.

Most of the work in this chapter was published in Zollmann et al. [2008].

4.1 Motivation and Related Work

PSCFG methods introduce extensions beyond the traditional phrase-based systems

like Och and Ney [2004], Koehn et al. [2003], Vogel [2005]. These extensions, like

the identification of rules with nonterminal symbols and corresponding decoder mod-
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ifications, have a significant runtime impact and present challenges when used for

large scale tasks. In this chapter, we focus on isolating the relative improvements due

the PSCFG grammars when compared against a large scale, strong, phrase-based

baseline. We break down this impact into improvements using Hiero and further im-

provements when using SAMT. We use the phrase-based system from Brants et al.

[2007] as a strong baseline to compare performance against the PSCFG methods.

We run these comparisons on three standard NIST evaluations tasks, Chinese-to-

English, Arabic-to-English and Urdu-to-English,each representing unique challenges

in statistical machine translation.

The purpose of this evaluation is to understand the effectiveness of PSCFG ap-

proaches. It is important to understand the circumstances in which PSCFG ap-

proaches can deliver improvements in translation quality. These circumstances range

from the choices of language pair, the size of the available parallel and monolingual

training corpora and the use of nonterminal labels in the grammar. Furthermore,

given the sensitivity of machine translation systems to the data sets used to evaluate

them, we present a comprehensive evaluation on multiple test corpora.

We pay particular attention to the influence of non-local features on translation

quality. Significant work has been done to efficiently integrate n-gram LMs into

PSCFG decoding [Chiang, 2007, Venugopal et al., 2007], discussed in Chapter 3. We

would like to know whether phrase-based systems, when capable of the same long

distance reordering as PSCFG systems, can achieve the same performance as PSCFG

systems when strong LMs are available. We would also like to know whether the

benefits of nonterminal labels persist when used in concert with strong n-gram LMs.

Systematic empirical comparisons have played an important role in the develop-

ment of machine translation models and systems. Och and Ney [2003] compare al-

ternative alignment models which form the basis for most phrase-based and PSCFG
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approaches. The development of multilingual resources like Koehn [2005] have facili-

tated work like Callison-Burch et al. [2009], where multiple systems and approaches

are evaluated on multiple language pairs.

4.2 Experimental Framework

We begin with a description of the experimental framework used for our evaluation.

We describe model parameters from each system and discuss additional components

that are required to facilitate this comparison.

4.2.1 Phrase-Based Baseline

We compare Hiero and SAMT against a strong phrase-based baseline, which is able to

perform the same long distance reordering effects as these PSCFG systems. Results

reported in Chiang [2005, 2007], show significant improvements when using a PSCFG

grammar, with a single nonterminal symbol, when compared against a phrase-based

baseline. The PSCFG grammar in Chiang [2005, 2007] allowed the decoder to reorder

phrases within a window of 10 source words, while the phrase-based system was

limited to a 4 word window. Similarly, in Marcu et al. [2006], Galley et al. [2006], a

PSCFG system where rules are learned based on phrase structure parse trees, shows

improvements over a phrase-based baseline that is limited to a reordering window

of 7. In this work, our phrase-based baseline uses reordering limits that match the

reordering capabilities of the PSCFG grammars, thereby isolating the impact of the

nonterminal based approach to reordering. Furthermore, all PSCFG rules are learned

from the same initial phrases that are used within the phrase-based system. This

removes possible variance due to phrase identification techniques.

In our experiments, initial phrases are extracted by the method described in Och
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and Ney [2004] and phrase-based reordering during decoding is modeled by the lex-

icalized distortion approach in Zens and Ney [2006a]. All initial phrase pairs are

limited to have source length of at most 6 words and target length of at most 12

words, allowing for significant differences in source and target lengths for each phrase.

The reordering limit βreo for the phrase-based system is increased until there are no

additional improvements.

The pLM feature is computed using several, large, high order (up to seven gram),

distributed n-gram LMs as described in Brants et al. [2007]. These models are able

to report to the decoder when an n-gram probability is the result of a backoff event

[Kneser and Ney, 1995].

4.2.2 PSCFG Systems

We build systems using the Hiero and SAMT grammars. These systems were chosen

for comparison because they differ primarily in their choice of nonterminal labeling

strategy. Unlike in Chiang [2005], PSCFG rules that have no remaining alignment

points are allowed in our grammar. Loosening this restriction allows both PSCFG

grammars to explicitly represent deletion of source words and insertion of target

words in the context of nonterminal symbols. Parse trees for the SAMT system are

generated on the target side of the bilingual corpus with the stochastic parser from

Charniak [2000], which is trained on the Penn Treebank corpus [Marcus et al., 1993].

4.2.3 Minimal State Language Models

The n-gram LMs described in Brants et al. [2007] are able to report when the prob-

ability of an n-gram is the result of a backoff event. Under the decoding algorithm

from Chiang [2007], chart items are identified by 2(n − 1) context words, causing

an explosion of chart items for high order n-gram LMs. In order to efficiently inte-
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grate these large language models into the PSCFG decoder, we take advantage of the

reported backoff information.

We note that the full n− 1 left and right word histories are unnecessary to safely

compare two competing chart items when using an n-gram LM. Rather, given the

sparsity of high order n-gram LMs, we only need to consider histories that can be

found in the n-gram LM. This allows more derivations to share the same chart item

during decoding, without the risk of additional search error. The n-gram LM imple-

mentation, described in Brants et al. [2007], indicates when a particular n-gram is

not found in the model and returns a shortened n-gram or minimal state to represent

the shortened n-gram that was found. This state is then used to identify the left and

right chart item histories and differentiate between chart items.

We now describe the modifications required to efficiently use minimal states rather

than a fixed n−1 words in the chart item structure. We modify the q function, which

generates the language model context e in the chart item, to return a context that

includes both terminal symbols and minimal states. Minimal states are terminal

sequences [a1 · · · aj]. The language model is able to return probabilities for terminal

sequences, as well as a terminal sequence given a state, i.e p([ai · · · aj] aj+1 · · · am).

The p function as defined in Figure 2.4 does not change, we treat the state markers

as annotations on the terminal elements rather than a separate token type.

The input to the q function is a sequence of terminals and minimal states, a1 · · · am.

The modified q function as well as additional helper functions are defined in Figure 4.1.

The goal of the q function is to determine an identifying left and right language

model context ẽ based on a1 · · · am to allow subsequent language model calculations

to be performed exactly. The context consists of one or two parts, separated by

the ! symbol as previously defined in Figure 2.4, except now, the right context is

represented by a minimal state. We need to retain the first j terminals of a1 · · · am,
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q(a1 · · · am) =






a1 · · · aj " [ak · · · am] if FirstBackoff(a1 · · · am) = j < m,

LMState(a1 · · · am) = [ak · · · am]

a1 · · · am if FirstBackoff(a1 · · · am) = m

LMState(a1 · · · am) =






LMState(akak+1 · · · am) if k 2= 1,

type(ak) = [.],∀i>ktype(ak) 2= [.]

InModel(a1 · · · am) else

InModel(ai · · · am) =






[ai · · · am] if LM contains a1 · · · am

[] if |ai · · · am| = 0

InModel(ai+1 · · · am) else

FirstBackoff(a1 . . . am) = max{i = 0 · · ·m| LM contains a1 · · · ai}

Figure 4.1: Modified q function to generate state based LM contexts to identify

chart items when using a language model that is capable of returning information

regarding the existence of n-grams and their shortened histories in the model. The

helper functions LMState, InModel and FirstBackoff are described in the text.

The type function checks whether a token ak is a state, indicated by [.].
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where j is the number of consecutive terminal symbols from a1 · · · am that actually

exist in the LM. j is determined by the FirstBackoff function. This function takes

a sequence of terminals and states, returning the length of the longest terminal-only

prefix that can be found in the LM. The second half of the context is the longest

state found in the model when calculating p for a1 · · · am. In the case where all of

a1 · · · am is found in the model, the resulting LM context is a1 · · · am. The longest

state found in the model is calculated by the LMState function, which seeks past

the last state in a1 · · · am to process the remaining terminal words with the last state

as left context.

Using a state-based language model context, instead of representing n− 1 words

of history to identify language model context, allows us to use the same large, higher

order language models typically deployed in state-of-the-art phrase-based systems.

Recent work by Li and Khudanpur [2008] follows this same approach.

4.2.4 Decoding Parameters

In all of the experiments in this chapter we chose pruning parameters βn such that

further time spent decoding does not yield further improvements. Due to the large

number of nonterminal labels generated by the SAMT rule extraction procedure, an

additional parameter βlhs is introduced, which limits that number of items share i, j.

βlhs is set to 1000 in our experiments. For the PSCFG based methods, we set the

reordering limit (described in Section 2.6) βreo = 15, for sentences up to a length of

20 words, and βreo = 12 for longer sentences. This reduced reordering limit for long

sentences was necessary to limit memory usage.

71



4.3 Language and Resource Conditions

We run experiments on three NIST language pair tracks under standard and alterna-

tive data conditions. These conditions are listed in Appendix A in Tables A.3, A.4,

A.5.

For the Chinese-to-English and Arabic-to-English translation tasks, we define

three configurations. The Full configuration represents the use of all resources as

specified by the NIST large track task. These resources include parallel source and

target data aligned as sentence pairs, mostly from broadcast news data sources, and

monolingual English data used to estimate the n-gram language model. The second

configuration, TargetLM, uses a LM trained from the target side of the parallel cor-

pora only, in order to compare approaches under a relatively weaker n-gram LM. The

third configuration, Target-LM-10%TM, is a simulation of a low data scenario, where

only 10% of the bilingual training data is used with the language model from the

TargetLM configuration.

These alternative data configurations allow us to explore the relative impact of

PSCFG methods under varied data conditions. PSCFG methods apply reordering

operations via rule with nonterminal symbols. These reordering operations are per-

formed in context of the lexical symbols in each rule. Phrase-based system typically

use simpler, reordering models even when they are based on specific phrases [Zens

and Ney, 2006a]. As a result, the phrase-based system can be expected to rely more

heavily on the n-gram language model more heavily to select fluent translations.

We test this hypothesis by checking relative improvements from PSCFG methods

with both large and small language models. We want to determine if the relative

improvements reported for PSCFG methods persist when large language models are

available to influence the selection of reordered translations. The small data configu-
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rations (Target-LM-10%TM), allow us to judge the impact of PSCFG methods when

training data is limited. Since PSCFG methods represent their reordering operations

via rules extracted from the training data, it is interesting to determine if the relative

impact reduces when available training data is limited.

Translation quality is automatically evaluated by the BLEU score [Papineni et al.,

2002] (case-sensitive, using length of the closest reference translation) on the follow-

ing publicly available NIST test corpora: MT02, MT03, MT05, MT06, MT08. We

used the NIST MT04 corpus as development data to train model parameters λ. All

decoders used the MAP decision rule. For the purposes of stable comparison across

multiple test sets, we additionally report a TstAvg score, which is the average of all

test set scores. The test sets are described in Table A.6.

4.4 Analysis of Results

Results in Tables 4.1,4.2,4.3 demonstrate the relative impact of PSCFG methods

over the phrase-based baseline evaluated at several alternative reordering window

parameters for the Chinese, Arabic and Urdu to English tasks.

Chinese-to-English: We see consistent improvements by increasing the reordering

limit in the phrase based system, increasing the limit from 4 to 12 yields 3.3% BLEU

(absolute difference) on the composite TstAvg. Moving from the top performing

phrase-based system to Hiero yields an additional 0.8%, and an additional 0.3% comes

from using the SAMT grammar. Results on individual tests sets confirm this general

trend as well, but we see significant variance in the improvements across test sets.

Our results with the Hiero system are consistent with those reported in Chiang

[2007], where the PSCFG system uses βreo = 10 and is compared to a phrase-based

system with βreo = 7. Results using the FULL configuration verify that PSCFG
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Zh.En System MT04

(Dev)

MT02 MT03 MT05 MT06 MT08 TstAvg

FULL

Phrase βreo = 4 37.5 38.0 38.9 36.5 32.2 26.2 34.4

Phrase βreo = 7 40.2 40.3 41.1 38.5 34.6 27.7 36.5

Phrase βreo = 12 41.3* 41.0 41.8 39.4 35.2 27.9 37.0

Hiero 41.6* 40.9 42.5 40.3 36.5 28.7 37.8

SAMT 41.9* 41.0 43.0 40.6 36.5 29.2 38.1

TARGET-LM

Phrase βreo = 4 35.9* 36.0 36.0 33.5 30.2 24.6 32.1

Phrase βreo = 7 38.3* 38.3 38.6 35.8 31.8 25.8 34.1

Phrase βreo = 12 39.0* 38.7 38.9 36.4 33.1 25.9 34.6

Hiero 38.1* 37.8 38.3 36.0 33.5 26.5 34.4

SAMT 39.9* 39.8 40.1 36.6 34.0 26.9 35.5

TARGET-LM, 10%TM

Phrase βreo = 12 36.4* 35.8 35.3 33.5 29.9 22.9 31.5

Hiero 36.4* 36.5 36.3 33.8 31.5 23.9 32.4

SAMT 36.5* 36.1 35.8 33.7 31.2 23.8 32.1

Table 4.1: Translation quality (% case-sensitive IBM-BLEU) for Chinese-to-English

NIST-large systems. We mark Development corpus scores with * to indicate that the

parameters of the corresponding decoder were MERT-tuned for this configuration

and also used in the corresponding non-marked configurations.
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Ar.En System MT04

(Dev)

MT02 MT03 MT05 MT06 MT08 TstAvg

FULL

Phrase βreo = 4 51.7 64.3 54.5 57.8 45.9 44.2 53.3

Phrase βreo = 7 51.7* 64.5 54.3 58.2 45.9 44.0 53.4

Phrase βreo = 9 51.7 64.3 54.4 58.3 45.9 44.0 53.4

Hiero 52.0* 64.4 53.5 57.5 45.5 44.1 53.0

SAMT 52.5* 63.9 54.2 57.5 45.5 44.9 53.2

TARGET-LM

Phrase βreo = 4 49.3 61.3 51.4 53.0 42.6 40.2 49.7

Phrase βreo = 7 49.6* 61.5 51.9 53.2 42.8 40.1 49.9

Phrase βreo = 9 49.6 61.5 52.0 53.4 42.8 40.1 50.0

Hiero 49.1* 60.5 51.0 53.5 42.0 40.0 49.4

SAMT 48.3* 59.5 50.0 51.9 41.0 39.1 48.3

TARGET-LM, 10%TM

Phrase βreo = 7 47.7* 59.4 50.1 51.5 40.5 37.6 47.8

Hiero 46.7* 58.2 48.8 50.6 39.5 37.4 46.9

SAMT 45.9* 57.6 48.7 50.7 40.0 37.3 46.9

Table 4.2: Translation quality (% case-sensitive IBM-BLEU) for Arabic-to-English

NIST-large systems. We mark dev. scores with * to indicate that the parameters of

the corresponding decoder were MERT-tuned for this configuration and also used in

the corresponding non-marked configurations.

75



System UrEn-Dev UrEn-MT08

Phrase βreo = 4 12.8 18.1

Phrase βreo = 7 14.2 19.9

Phrase βreo = 10 14.8* 20.2

Phrase βreo = 12 15.0 20.1

Hiero 16.0* 22.1

SAMT 16.1* 22.6

Table 4.3: Translation quality (% case-sensitive IBM-BLEU) for Urdu-English

NIST-large. We mark Dev. scores with * to indicate that the parameters of the

corresponding decoder were MERT-tuned for this configuration.

methods retain their relative improvements when using a large scale, high order, n-

gram model. Furthermore, SAMT labels bring small, but consistent benefits even in

the presence of strong language models.

Moving down to the TARGET-LM configuration, we still see that the size of

the reordering window plays a large role in the translation quality of the phrase-

based system, but comparing absolute scores against the FULL configuration shows

a significant drop in translation quality (2.4% at each reordering window size on

TstAvg). The Hiero system is no longer consistently better than the phrase-based

system, specifically on MT02,03,04,05, where Hiero scores are lower. SAMT perform

relatively better than Hiero under TARGET-LM configuration, perhaps due to the

corrective influence of the syntactic labels. This confirms our intuition that the Hiero

system relies more heavily on strong LMs than SAMT to navigate its decoding search

space.

The TARGET-LM-10%TM configurations simulate a low data scenario. The

phrase-based system degrades more than Hiero from the reduction in parallel train-
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ing data — from 34.4 to 31.5 (3.1%) for phrase-based, compared to 34.4 to 32.4

(2%) for Hiero. This result is surprising, since PSCFG systems rely on rules learned

from data to perform reordering operations. SAMT does not continue to outperform

Hiero at this configuration. Data sparsity is the likely explanation for this relative

drop in SAMT performance. Syntactic labels fragment a single rule form into several

alternative labelings, resulting in poorly estimated features.

Arabic-to-English: Neither Hiero nor SAMT show consistent improvements over

the phrase-based system for the Arabic-to-English translation task in Table 4.2. In

contrast to the Chinese-to-English task, increasing the phrase-based reordering win-

dow beyond 4 does not yield significant improvements in any configuration. The

n-gram LM still has a significant impact in Arabic-to-English, with relative drops

of more that 3.4% from FULL to TARGET-LM, measured on the phrase-based sys-

tem at reordering level 9. These results indicate that translational equivalence can

be modeled locally for Arabic-to-English translation. The n-gram language model

serves this purpose by influencing the selection of locally reordered translations. This

focus on local translation effects indicates that the potential for context sensitive long

distance reordering, via PSCFG methods, is limited for Arabic-to-English translation.

Urdu-to-English: Table 4.3 shows clear improvements when moving from phrase-

based to PSCFG based systems. Like Chinese-to-English translation, increasing the

reordering window has a significant positive effect on the BLEU score (18.1 to 20.1

from window 4 to 12). SAMT brings added benefits above Hiero but the improvements

are relatively small and only measured on a single data set.

Summary over Languages: Results on Chinese-to-English and Urdu-to-English

indicate that PSCFG methods outperform phrase-based methods when significant,

long distance reordering effects are required to generate fluent translations. The

techniques described in the previous section allow us to deploy PSCFG systems that
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can take advantage of the large n-gram language models, traditionally used in phrase-

based systems. There are small, but consistent, improvements in translation quality

when using the SAMT grammar, which use nonterminal labels from target language

parse trees. Results for Arabic-to-English translation confirms the importance of the

n-gram LM in selecting locally reordered translations, but also highlights the fact that

PSCFG decoders are sometimes unable to reproduce the quality of a phrase-based

system.

Expressiveness of Search: Based on our comparison, we would like to know

how much of the improvements we see from PSCFG methods come from perform-

ing reorderings that the phrase-based system cannot generate. In order to answer

this, we attempt to regenerate translations produced by the Hiero system with the

phrase-based decoder, by limiting the phrases and reordering operations applied dur-

ing decoding to those that match the desired translation from the Hiero system. By

forcing the phrase-based system to follow derivations consistent with the Hiero out-

put, we can determine whether the phrase-based system could generate the same

output. We used the Chinese-to-English NIST MT06 test set (1664 sentences) for

this experiment. Out of the hierarchical system’s translations, 1466 (88%) were gen-

erable by the phrase-based system. The relevant part of a sentence for which the

Hiero translation was not phrase-based generable is shown in Figure 4.2. The reason

for the failure to generate the translation is rather uninteresting. While the Hiero

system is able to delete the Chinese word meaning already using the rule spanning

[27-28], the phrase-based system has to account for this Chinese word in a phrase

combining the previous word (Chinese for epidemic) or the following word (Chinese

for outbreak).

Out of the generable translations, 1221 (83%) had a higher cost than the phrase-

based system’s preferred output. In other words, the phrase-based system does not
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Figure 4.2: Example from NIST MT06 for which the Hiero system’s best derivation

was not generable by the phrase-based system. The Hiero system’s decoding deriva-

tion contains the translation in its leaves in infix order (shaded). Each non-leaf node

denotes an applied PSCFG rule of the form: [Source position span, Left-hand-side

>source/target]. Nonterminal markers are indicated by @ symbols with their index

in γ.

prefer these forced translations due to the phrase-based model. These results indicate

that a phrase-based system with sufficiently powerful reordering features and LM

might be able to narrow the gap with the Hiero system.

4.5 Conclusions and Contributions

In this chapter we performed a systematic comparison between PSCFG systems (Hiero

and SAMT) and a strong phrase-based baseline. This comparison addressed some of

the major questions regarding the relative improvements from PSCFG methods.

For language pairs with significant long distance reordering (like Chinese-

to-English and Urdu-to-English): we showed relative improvements from PSCFG

methods when compared to a strong phrase-based model. These improvements per-

sist even when using strong n-gram LMs, and that syntactic labels from SAMT can

79



bring small but consistent additional benefits. We also evaluated the space of deriva-

tions explored by the Hiero system and showed that the phrase-based system, with

sufficiently long distance reordering operations, could generate the same translations

with a more powerful reordering model.

For a language pair (Arabic-to-English) with limited long distance re-

ordering: We showed that PSCFG methods bring little additional benefit over

phrase-based approaches and have the potential to reduce translation quality.

The results in this chapter highlight both the potential and risk in PSCFG meth-

ods. PSCFG methods are effective at modeling long distance reordering effects, but

the introduction of syntactic labels partition the search space, requiring more pruning

and increased decoding time. In Chapter 5 our focus shifts to the problem of making

the best use of the syntactic labels in the SAMT grammar.
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CHAPTER 5

Making Better Use of PSCFG Labels: Preference

Grammars

Nonterminal labels can be viewed as a non-local feature during decoding, propagat-

ing summary information about a derivation. Traditional PSCFGs view labels as a

hard constraint which is enforced during decoding; nonterminal labels of rules must

match at the derivation node that they share. In this chapter we propose a novel

grammar formalism and associated syntactic translation model feature that repre-

sents syntactic constraints as “soft” preferences, allowing the importance of following

syntactic constraints to be learned alongside other features and partially mitigating

the effects of the MAP approximation. Most of the work in this chapter is to appear

in Venugopal et al. [2009].

5.1 Motivation

Nonterminal labels constrain the application of rules during decoding, requiring that

rules share the same nonterminal label at their shared node in a derivation. This

constraint is represented explicitly in the PSCFG formalism. In Section 2.6, we stated

this constraint redundantly in our definition of p(d) by using the feature psyn(d):
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psyn(d) =





1 if d respects label constraints

0 otherwise

to assign zero weight to derivations that do not obey this constraint.

Selecting the maximally weighted derivation using a grammar with nontermi-

nal labels requires maintaining the lhs label of a derivation as an element of the

chart item. As with the n-gram LM feature pLM , the introduction of additional

item elements results in a trade-off between maintaining non-local information ver-

sus searching through a more fragmented search space. Under the MAP approxi-

mation, different derivations that represent the same translation compete with each

other. Introducing labels further aggravates the impact of this approximation. The

more Bayesian approach of finding the most probable translation (integrating out

the derivations) instantiates a NP-hard inference problem even for simple word-based

models [Knight, 1999]; for grammar-based translation it is known as the consensus

problem [Casacuberta and de la Higuera, 2000, Sima’an, 2002].

The SAMT approach ([Zollmann and Venugopal, 2006], Section 2.5) relies on

target language parse trees to generate nonterminal labels, resorting to heuristically

generated labels for non-constituent phrases. While this choice of labeling strategy

results in a positive impact of translation quality for some languages (Section 4.4),

the PSCFG formalism does not account for variance in parser quality or choice of

labeling heuristics. The label constraint enforced by psyn(d) cannot be influenced on

a per language or task basis to improve translation quality.

The question then is, how can we make the best use of syntactic labels?

In this chapter, we will propose a novel technique that aims to find the most prob-

able equivalence class of unlabeled derivations, rather than a single labeled derivation,

reducing the fragmentation problem. Solving this problem exactly is still a NP-hard

82



consensus problem, but we provide approximations that build on well-known PSCFG

decoding methods. Our model falls between PSCFGs that extract nonterminal labels

from parse trees and treat them as part of the derivation [Zollmann and Venugopal,

2006], and unlabeled hierarchical structures [Chiang, 2005]. We treat nonterminal

labels as random variables chosen at each node, with each (unlabeled) rule expressing

“preferences” for particular labels, learned from data. We use these preferences to

estimate psyn(d) as a real-valued feature function for an unlabeled derivation, allowing

the corresponding feature weight in λ to be learned via MERT [Och, 2003]. This fea-

ture will reflect the probability that an unlabeled derivation can be generated under

syntactic constraints.

5.2 Related Work

Nonterminal labels and label annotations have been used extensively in the literature.

Galley et al. [2004, 2006] identify PSCFG rules with syntactically motivated labels,

while Huang and Knight [2006] re-label the target language parse trees in training to

reflect important syntactic distinctions that are helpful to produce fluent target out-

put. Examples of additional annotations include lexicalization of common functional

nonterminal labels and adding number markers to nouns. The parsers of Collins

[1999], Charniak [2000], Klein and Manning [2003] attribute their success to annota-

tions made to the PCFGs directly licensed by manually constructed treebanks, while

Petrov et al. [2006] and Matsusaki et al. [2005] propose techniques to automatically

learn label annotations.

There have been significant efforts in both the parsing and machine translation

literature to address the impact of the MAP approximation and the choice of labels

in their respective models. We survey the work most closely related to our approach.

The annotations generated by the techniques in Matsusaki et al. [2005], Petrov et al.
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[2006] need to be removed in order to evaluate the quality of the output parse tree.

Their annotations add an additional level of structure that must be marginalized dur-

ing search. They demonstrate improvements in parse quality only when a variational

approximation is used to select the most likely unannotated tree rather than simply

stripping annotations from the MAP annotated tree.

May and Knight [2006] demonstrate an algorithm to determinize weighted finite

tree automata, reducing spurious ambiguity in the grammar by summing up the

weighted alternative derivations that form the same tree. This spurious ambiguity

problem is particularly severe in methods like Data Oriented Parsing [Scha, 1990]

which extract overlapping features (grammar rules) from a single tree. May and

Knight [2006] show improvements in translation quality when applying their technique

to determinize packed forests from a syntax-based SMT system.

Kumar and Byrne [2004] use the Minimum Bayes Risk decision rule to select the

lowest risk (highest BLEU score) translation rather than derivation from a K-best

list. Tromble et al. [2008] extend this work to lattice structures. These approaches

only marginalize over alternative candidate derivations generated by a MAP-driven

decoding process.

Zens and Ney [2006b] extend the concept of word posteriors from speech recogni-

tion [Mangu et al., 1999] to the n-gram level. If we consider the whole sentence as the

n-gram, the posterior computes
∑

h P (e, h|f), where h refers to alternative segmen-

tations of the source sentence into phrases. Zens and Ney [2006b] compute n-gram

posteriors on K-best lists and augments a log-linear model of translation with these

additional posterior features to rescore the K-best list. Despite the relative paucity

of alternative translations seen in the K-best list (compared to the full search space),

results in Zens and Ney [2006b] demonstrate the value of introducing features that

mitigate the impact of the maximum approximation.
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Smith and Smith [2007] suggest a novel approach to introduce labels into the

dependency parsing task. By introducing labels on the edges (rather than on nodes),

they are able to marginalize over alternative labels in composing dependency rules.

More recently, work by Blunsom et al. [2007] propose a purely discriminative

model whose decoding step approximates the selection of the most likely translation

via beam search.

In our work, we focus on approximating the selection of the most likely unlabeled

derivation during search, rather than as a post-processing operation [Kumar and

Byrne, 2004, Tromble et al., 2008, May and Knight, 2006]. These post-processing

methods might further improve this approximation, at some computational expense.

5.3 The Effect of Labels

We have seen evidence in Chapter 4 that syntactic labels can have a positive impact on

translation quality. The primary downside to label usage (using the SAMT labeling

procedure from Section 2.5), is the increase in the number of chart items created

during decoding. In order to design the feature psyn, we studied rules in the SAMT

grammar to identify cases where a single rule form has many alternative labelings.

As a first step, we separated rules into three categories; rules without right-hand-

side nonterminal symbols (“Phrases”), rules with nonterminal symbols on the left

or right boundary of the source side α (“Open” rules), and rules with nonterminal

symbols that are surrounded by terminal symbols in α (“Closed” rules). For each

rule type, we measured the average number of unlabeled translations per source side

and the average number of labeled translations per source side. The results of this

analysis, using a SAMT grammar trained on the IWSLT corpus, is shown in Table 5.1.

Comparing the number of unlabeled vs labeled translations per unique α in the
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Type #Source #Unlabeled

translations

Unlabeled /

#Source

Labeled

translations

Labeled /

#Source

Phrase 472568 963530 2.03 987894 2.09

Closed 1752575 3054183 1.74 3389282 1.93

Open 1618848 3750855 2.31 7351514 4.54

Table 5.1: Number of unique sources α, unlabeled and labeled translations and ra-

tios of unlabeled and labeled translations for Phrase, Open and Closed rules from a

grammar trained on the IWSLT corpus.

grammar shows us that the Open rules have significantly more label configurations

per translation than Closed rules and Phrase rules. Phrase rules are at the opposite

end of the spectrum, where they have on average 2.03 unlabeled translations per

source sequence, and 2.09 labeled translations per source side. Closed rules have

slightly more label variation per translation, but are still significantly less than Open

rules. These results shows that the real source of alternative label variation comes

from the Open rules. One potential solution to reducing the number of chart items

during decoding, would be to discard Open rules. We could try to compensate for

these rules by using a longer initial phrase length (βlen) during training and reordering

limit (βreo) during decoding. The intuition is that by using a larger βlen, we might

be able to find a Closed rule that represented the same reordering operation as a

discarded Open rule.

In Table 5.2, we show how translation quality using the Hiero grammar on the

IWSLT task degrades when removing Open rules.

Removing open rules (“Remove Open”), results in a significant drop in translation

quality, both on development and test data. Increasing to βlen, βreo = 15, increases

translation quality but does not come close to baseline performance, while βlen, βreo =
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System Dev. BLEU Test. BLEU

All rules βlen, βreo = 10 0.280 0.370

Remove Open βlen, βreo = 10 0.246 0.346

Remove Open βlen, βreo = 15 0.254 0.350

Remove Open βlen, βreo = 20 0.243 0.334

Remove Open βlen, βreo = 15 w/Delete 0.254 0.345

Table 5.2: Comparing translation quality when removing Open rules and increasing

the initial phrase length βlen and maximum reordering limit βreo during decoding to

compensate. Translation quality is measured by the BLEU score (mixed case), on

the IWSLT 2006 (Dev.) and 2007 (Test) corpora.

20 reduces translation quality. We also considered re-introducing those Open rules

that have unaligned source words that are deleted in translation (these rules would not

be generated according to Chiang [2005]), as indicated by “w/Delete”, but this did

not recover the baseline score. These results show that Open rules play an important

role within the decoder, concatenating the translations of long spans without resorting

to the purely monotonic glue rule. Using an Open rule allows the derivation to be

used with other non-glue rules. In the SAMT grammar, these Open rules have many

alternative labelings, aggravating the impact of the MAP approximation. We now

design the feature psyn to mitigate the impact of labels on the MAP approximation,

using a Open rule as a motivating example below.

5.4 Preference Grammars

We extend the PSCFG formalism to include soft “label preferences” for unlabeled

rules that correspond to alternative labelings that have been encountered in training

data for the unlabeled rule form. These preferences, estimated via relative frequency

87



counts from rule occurrence data, are used to estimate the feature psyn(d), the prob-

ability that an unlabeled derivation can be generated under traditional syntactic

constraints.

In classic PSCFG, psyn(d) enforces a hard syntactic constraint (Equation 2.11). In

our approach, label preferences influence the value of psyn(d). We follow an example

below that demonstrates the impact of labels on the MAP approximation.

Motivating example: Consider the following labeled Chinese-to-English PSCFG

rules:

(4) S →     VB1 #

a place where I can VB1

(3) S →     VP1 #

a place where I can VP1

(2) SBAR →     VP1 #

a place where I can VP1

(1) FRAG →     AUX1 #

a place where I can AUX1

(8) VB →  # eat

(1) VP →  # eat

(1) NP →  # eat

(10) NN →  # dish

where the numbers are frequencies of the rule from the training corpus. In classical

PSCFG we can view the nonterminals labels mentioned in the rules as hard con-

straints on which rules can be used to expand a particular node; e.g., a VP can only

be expanded by a VP rule. In Equation 2.10, psyn(d) explicitly enforces this hard

constraint. Instead, we propose softening these constraints. In the rules below, labels
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are represented as soft preferences.

(10) X →     X1 #

a place where I can X1




p(H0 = S, H1 = VB | r) = 0.4

p(H0 = S, H1 = VP | r) = 0.3

p(H0 = SBAR, H1 = VP | r) = 0.2

p(H0 = FRAG, H1 = AUX | r) = 0.1






(10) X →  # eat




p(H0 = VB | r) = 0.8

p(H0 = VP | r) = 0.1

p(H0 = NP | r) = 0.1






(10) X →  # dish
{

p(H0 = NN | r) = 1.0
}

Each unlabeled form of the rule has an associated distribution over labels for the

nonterminals referenced in the rule; the labels are random variables Hi, with H0 the

left-hand-side label. These unlabeled rule forms are packed representations of the

original labeled PSCFG rules. Rule features hi(r) can now be estimated as relative

frequencies from the labelings of the base, unlabeled rule. Our primary contribution is

how we compute psyn(d) for derivations built from preference grammar rules. By using

psyn(d) as a feature in the log-linear model, we allow can use a discriminative training

procedure like Minimum Error Rate Training (MERT) [Och, 2003] to evaluate the

importance of syntactic structure relative to other features.

The example rules above highlight the potential for psyn(d) to affect the choice of

translation. The translation of the Chinese word sequence      can be

performed by expanding the nonterminal in the rule a place where I can X1 with either

eat or dish. The Hiero grammar would allow either expansion, relying on features
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like pLM(d) to select the best translation since both expansions occurred the same

number of times in the data.

The SAMT grammar would immediately reject the rule generating dish due to

hard label matching constraints, but would produce three identical, competing deriva-

tions. Two of these derivations would produce S as a root symbol, while one derivation

would produce SBAR. The two S-labeled derivations compete, rather than reinforce

the choice of the word eat, which they both make. They will also compete for con-

sideration during chart item pruning.

The rule preferences indicate that VB and VP are both valid labels for the rule

translating to eat, and both of these labels are compatible with the arguments ex-

pected by a place where I can X1. Alternatively, dish produces a NN label which is

not compatible with the arguments of this higher-up rule. We design psyn(d) to reflect

compatibility between two rules (one expanding a right-hand side nonterminal in the

other), based on label preference distributions.

We now define the preference grammar formalism that will represents rule label

preference distributions.

5.5 Preference Grammars Formalism

Probabilistic synchronous context-free preference grammars are defined as PSCFGs

with the following additional elements:

• H: a set of implicit labels, not to be confused with the explicit label set N .

• π: H→ N , a function that associates each implicit label with a single explicit

label. We can think of H symbols as refinements of the nonterminals in N

[Matsusaki et al., 2005].
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• For each rule r, we define a probability distribution over vectors )h of implicit

label bindings for its nonterminals, denoted ppref()h | r). )h includes bindings for

the lhs nonterminal (h0) as well as each right-hand side nonterminal (h1, ..., h|$h|).

Each hi ∈ H.

In this work, we define:

• N = {S, X}

• H = {NP, DT, NN · · · } = NSAMT

where N corresponds to the generic labels of Chiang [2005] and H corresponds to

the syntactically motivated SAMT labels from Zollmann and Venugopal [2006], and

π maps all elements of H to X. We will use hargs(r) to denote the set of all )h =

〈h0, h1, ..., hk〉 ∈ Hk+1 that are valid bindings for the rule with nonzero preference

probability. Glue rules are not assigned preferences and do not participate in the

computation of the psyn(d) feature. Unknown words are assigned uniform preferences

over the Penn Treebank noun labels NN, NNS, NP, NNP.

Grammar Formalism: The formalism presented here can be parameterized to

represent several of the PSCFGs commonly applied in the literature. We list these

PSCFGs and the appropriate parameters in our formalism below, using example rules

to demonstrate the mapping between rules in the PSCFG and our preference grammar

formalism.

Purely Hierarchical (single nonterminal) grammar [Chiang, 2005]:

• N = {S, X}

• |H| = 0

• ppref ()h|r) = ∅ ∀r
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Standard SPCFGs derived from treebanks ([Galley et al., 2004, 2006]:

• N = {S, X}

• H = {NP, DT, NN · · · ∈ NPennTreebank}

• If r : NP → DT, NN

– ppref ()h|r) = ppref (H0 = NP, H1 = DT, H1 = NN | r) = 1.0

where NPennTreebank represent the set of nonterminals represented in the Penn Tree-

bank [Marcus et al., 1993]. Alternatively, the grammars above can be represented

using explicit labels only.

Multiple nonterminals with nonterminal specific hidden labels [Mat-

susaki et al., 2005, Petrov et al., 2006]:

• N = {NP, DT, NN · · · ∈ NPennTreebank}

• H = x, y, z · · · where |H| represents the number of latent annotations each

nonterminal label can have.

• If r : NP[x] → DT[y]NN[z]

– ppref ()h|r) = ppref (H0 = x, H1 = y, H1 = z | r) = 1.0

Note that while our formalism is a generalization of those described above, the

choice of translation model and the independence assumptions encoded in the model

determine the distribution assigned to the resulting derivations. Design decisions in

the computation of psyn(d) can be made to simulate the models discussed above. We

now describe how preference distributions ppref()h|r) from each rule used in d are used

to compute psyn(d).
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5.6 Computing Feature psyn(d)

Let us view a derivation d as a collection of nonterminal tokens nj, j ∈ {1, ..., |d|}.

Each nj takes an explicit label in N . The score psyn(d) is a product, with one factor

per nj in the derivation d:

psyn(d) =
|d|∏

j=1

φj (5.1)

Each φj factor considers the two rules that nj participates in. We will refer to the

rule above nonterminal token nj as rj (the nonterminal is a child in this rule) and

the rule that expands nonterminal token j as rj.

The intuition is that derivations in which these two rules agree (at each j) about

the implicit label for nj, which is in H, are preferable to derivations in which they

do not. Rather than making a decision about the implicit label, we want to reward

psyn(d) when rj and rj are consistent. Our way of measuring this consistency is an

inner product of preference distributions:

φj ∝
∑

h∈H

ppref(h | rj)ppref(h | rj) (5.2)

This is not quite the whole story, because ppref(· | r) is defined as a joint distribution

of all the implicit labels within a rule; the implicit labels are not independent of each

other. Indeed, we want the implicit labels within each rule to be mutually consistent,

so that they to correspond to one of the rule’s preferred labelings, for both hargs(r)

and hargs(r).

Our approach to calculating psyn(d) within the dynamic programming algorithm

is to recursively calculate preferences for each chart item based on (a) the smaller

items used to construct the item and (b) the rule that permits combination of the

smaller items into a larger one. We describe how the preferences for chart items are

calculated. Let a chart item be denoted [X, i, j, u, · · · ], where X ∈ N and i and j are
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positions in the source sentence, and:

u : {h ∈ H | π(h) = X}→ [0, 1]

(where
∑

h u(h) = 1) denotes a distribution over possible X-refinement labels. We will

refer to it below as the left-hand-side preference distribution. Additional information,

such as language model context ẽ, may also be included in the chart item.

The simplest case is for a nonterminal token nj that has no nonterminal children.

Here the left-hand-side preference distribution is given by

u(h) = ppref(h | rj) .

and we define the psyn(d) factor to be φj = 1.

Now consider the dynamic programming step of combining an already-built item

[X, i, j, u, ...] rooted by explicit nonterminal X, spanning source sentence positions i

to j, with left-hand-side preference distribution u, to build a larger item rooted by

Y through a rule r = Y → 〈γX1γ′, αX1α′, w〉 with preferences ppref(· | r).1 The new

item will have signature [Y, i− |γ|, j + |γ′|, v, ...]. The left-hand-side preferences v for

the new item are calculated as follows:

v(h) =
ṽ(h)∑
h′ ṽ(h′)

where (5.3)

ṽ(h) =
∑

h′∈H:〈h,h′〉∈hargs(r)

ppref(〈h, h′〉 | r)× u(h′)

Renormalizing keeps the preference vectors on the same scale as those in the rules.

The psyn(d) factor φ, which is factored into the value of the new item, is calculated

as:

φ =
∑

h′∈H:〈h,h′〉∈hargs(r)

u(h′) (5.4)

1We assume for the discussion that α,α′ ∈ T ∗
S and γ, γ′ ∈ T ∗

T . If there are multiple nontermi-
nals on the right-hand side of the rule, we sum over the longer sequences in hargs(r) and include
appropriate values from the additional “child” items’ preference vectors in the product.
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ṽ(S) = ppref (〈h = S, h′ = VB〉 | r)u(VB) + ppref (〈h = S, h′ = VP〉 | r)u(VP)

= (0.4× 0.8) + (0.3× 0.1) = 0.35

ṽ(SBAR) = p(〈h = SBAR, h′ = VP〉 | r)u(VP)

= (0.2× 0.1) = 0.02

v = 〈v(S) = 0.35/(ṽ(S) + ṽ(SBAR)), v(SBAR) = 0.02/ṽ(S) + ṽ(SBAR)〉

= 〈v(S) = 0.35/0.37, v(SBAR) = 0.02/0.37〉

φ2 = u(VB) + u(VP) = 0.8 + 0.1 = 0.9

Figure 5.1: Calculating v and φ2 for the running example in the chapter.

so that the value considered for the new item is w× φ× ..., where factors relating to

pLM(d), for example, may also be included. Coming back to our example, if we let r

be the leaf rule producing eat at shared nonterminal n1, we generate an item with:

u = 〈u(VB) = 0.8, u(VP) = 0.1, u(NP) = 0.1〉

φ1 = 1

Combining this item with X → 〈     X1 # a place where I can X1 〉 as r2

at nonterminal n2 generates a new target item with translation a place where I can

eat, φ2 = 0.9 and v as calculated in Fig. 5.1. In contrast, φ2 = 0 for the derivation

where r is the leaf rule that produces dish.

This calculation can be seen as a kind of single pass, bottom-up message passing

inference method embedded within the usual dynamic programming search.

5.7 Decoding with Preference Grammars

As defined above, accurately computing psyn(d) requires extending the chart item

structure with the item’s left-hand-side preference distribution v. For models that
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r : X → 〈f j
i+1, α, ppref (h̄|r)〉 : w

[X, i, j; q(α)] , ppref ($h|r)
︸ ︷︷ ︸

lhs preference distribution

: wp(α)

r : Z → 〈f i1
i+1X1f

i2
j1+1Y2f

j
j2+1, α, ppref (h̄|r)〉 : w , [X, i1, j1, ẽ1] , u1 : w1 , [Y, i2, j2, ẽ2] , u2 : w2

[Z, i, j, q(α′)] , v : ww1w2p(α′)φ (where α′ = α [ẽ1/X1, . . . , ẽ2/X2])

Figure 5.2: CYK parsing with integrated n-gram LM and integrated computation of

the composition preference feature psyn(d). The computation of φ and v are given in

the text.

use the n-gram LM feature, the item structure would be:

[X, i, j, ẽ, v] : w (5.5)

Since v effectively summarizes the choice of rules in a derivation, this extension would

partition the search space further. To prevent this partitioning, we follow the ap-

proach of Venugopal et al. [2007] (Chapter 3). Rather than including v in the item

structure, we treat v as information associated with the chart item:

[X, i, j, ẽ], v : w (5.6)

Using this item structure, extensions to this chart item would use v from the highest

weighted derivation that shares the X, i, j, q(α). Our intuition is that derivations

that share the same LM context ẽ can be expected to have relatively similar syntactic

behavior and thus relatively similar left-hand-side preference distributions v.

Decoding with preference grammars under this approximation is shown in Fig-

ure 5.2. In the first inference, we show the formation of a chart item from a rule that

has no right-hand-side nonterminal symbols. In the second inference, two chart items

with their associated distributions u are combined with a rule to form a new chart

item. When rules have k nonterminal symbols, the computation of ṽ(h) is extended

as:
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ṽ(h) =
∑

h′1···h′k∈Hk:〈h,h′1···h′k〉∈hargs(r)

ppref(〈h, h′1 · · ·h′k〉 | r)×
k∏

i=1

ui(h
′
i) (5.7)

where ui is the preference distribution for the i’th antecedent item.

After first pass decoding, we follow the Top-Down approach described in Sec-

tion 3.4. We perform a Tow-Down hypergraph search where the feature psyn(d) is

recomputed while extracting a K-best list. During Top-Down search, each hyperedge

is associated with a rule. When we consider alternative derivations at the tail nodes

of the hyperedge, we recompute the psyn(d) feature based on the rule and the alter-

native tail items. It is therefore possible to find a higher weighted derivation due to

more compatible preferences in the second pass.

Preference Pruning Parameters: As noted in Section 5.3, Open rules have

a large number of alternative label configurations when extracted by the SAMT la-

beling procedure. As the size of the training data grows, the number of alternative

label configurations grows as well. This is especially true for Open rules that are

essentially agnostic about their label choices. Dealing with the number of label pref-

erences at each rule presents serious memory and runtime challenges. Consider the

sentence specific preference grammar extracted for the Chinese-to-English sentence

in Table 5.3.

The grammar for this sentence from system NIST-M (defined below) includes

4654 rules but the number of label configurations for each rule varies significantly.

Table 5.4 shows the rules that have the most number of label configurations in this

grammar.

The Chinese-to-English rule X → 〈 X1  X2 # X1 ’s X2 〉 has over 24K elements

in hargs(r) when learned for the NIST-M task (Table 5.4). In order to limit the

memory requirements of maintaining large preference distributions and the compu-
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     ,          ,

              

there are growing indications that sunni arabs will either boycott the january

30th election or will be prevented from taking part in it by the iraqi authority

due to a spreading insurgency .

there has been growing evidence that sunni muslims may boycott the elections

on january 30 or may be prohibited from participating in the elections by the

relevant iraqi authorities due to their spreading of insurgency .

more and more evidence has shown that sunni muslims will either boycott the

january 31 election or will be prevented from participating in the election by

the iraqi authorities for spreading insurgency .

there are growing indications that sunni muslims may either boycott the january

30 elections or be banned from the elections by relevant iraqi authorities for

spreading insurgency .

Table 5.3: An example sentence from the NIST MT06 Chinese-to-English translation

task with 4 reference translations.

tational impact of iterating through these distributions to compute psyn(d), we limit

the number of elements in ppref ()h|r) and number of elements in the item preference

vector v via the following pruning parameters:

• βR: This parameter limits the size of hargs(r) to the βR top-scoring preferences,

defaulting other values to zero.

• βL: This parameter is the same as βR but applied only to rules with no nonter-

minals. The stricter of βL and βR is applied if both thresholds apply.

• βP : This parameter limits the number labels in item preference vectors (Equa-

tion 5.3) to the βP most likely labels during decoding, defaulting other prefer-
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#Label Conf. Source γ Target α max ppref ()h|X, γ, α)

24597 X1  X2 X1 ’s X2 NP+JJ → NNP JJ =0.02

22879 X1  X2 X1 X2 JJ+NN → JJ NN=0.02

6803 X1  X2 X1 of X 2 NP → NP NP=0.03

6155 X1  X1 . VP+. → VP =0.15

6043 X1  X X1 also X2 NP+RB+VBD → NP VBD =0.01

5777 X1  X X1 X2 CC+NP → CC NP=0.01

5082 X1  X X1 X2 JJ+NNS → JJ NNS=0.01

4465 X1  X X1 . X2 VP+.+NNP → VP NNP =0.07

4438 X1  X X1 X2 CD+NNS → CD NNS=0.04

3749 X1  X the X1 X2 NP → JJ NN=0.06

Table 5.4: Example preference grammar rules from a medium size Chinese-to-English

translation task, highlighting rules with the most label configuration preferences and

the most likely preferences for each rule.
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ences to zero.

5.8 Empirical Results

In this Section we empirically evaluate our preference grammar translation model

on the IWSLT and NIST-M Chinese-to-English translation tasks as described in the

Appendix A, Table A.1). For the IWSLT task, development data from the IWSLT

2003-2005 are added to the training data, IWSLT 2006 is the development data,

IWSLT 2007 and 2008 are the test corpora. For the NIST-M task, MT05 is used as

development data, MT06 is the test data. A 5-gram LM is built for the IWSLT task

from the target side of the training data and a 4-gram LM is built for the NIST-M

task based on the monolingual resources described in Appendix A.

We compare the performance of our preference grammar approach, evaluated by

the BLEU score, against two baseline approaches; SAMT and Hiero. Development

corpora are used to train model parameters λ via MERT. We use a variant of MERT

that prefers sparse solutions where λi = 0 for as many features as possible. At each

MERT iteration, a subset of features λ are assigned 0 weight and optimization is

repeated. If the resulting BLEU score is not lower, these features are left at zero.

All systems use a trigram LM during search and the full-order LM during a second

Top-Down hypergraph rescoring pass. The initial phrase length and reordering limit

are βlen, βreo = 10. For the NIST-M task, rare rules are discarded based on their

frequency in the training data. Purely lexical rules (that include no terminal symbols)

that occur less than two times, or non-lexical rules that occur less than four times

are discarded.

IWSLT task: We evaluate the preference grammar system “Pref.” with pa-

rameters βR = 100, βL = 5, βP = 2. Results comparing systems Pref. to Hiero
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System Dev

BLEU

(lpen) ↑

2007

BLEU

(lpen) ↑

2008

BLEU

(lpen) ↑

2008

WER ↓

2008

PER ↓

2008

MET. ↑

2008

GTM ↑

Hiero 28.0

(0.89)

37.0

(0.89)

45.9

(0.91)

44.5 39.9 61.8 70.7

SAMT 30.9

(0.96)

35.5

(0.94)

45.3

(0.95)

45.7 40.4 62.1 71.5

Pref. 28.3

(0.88)

38.2

(0.90)

46.3

(0.91)

43.8 40.0 61.7 71.2

Table 5.5: Translation quality scores on the IWSLT translation task, with IWSLT

2006 as the development corpora, and IWSLT 2007 and 2008 as test corpora. Each

score is annotated with an ↑ if increases in the score’s value correspond to increases

in translation quality and a ↓ if the opposite is true. We also list length penalties

for the BLEU score to show that improvements are not due to length optimizations

alone.
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and SAMT are shown in Table 5.5. Automatic evaluation results using the prefer-

ence grammar translation model are positive. The preference grammar system shows

improvements over both the Hiero and SAMT based systems on both unseen evalua-

tion sets IWSLT 2007 and 2008. The improvements are clearest on the BLEU score

(matching the MERT training criteria). On 2007 test data, Pref. shows a 1.2% (abso-

lute) improvement over Hiero, while on the 2008 data, there is a 0.6% improvement.

For the IWSLT task, we report additional automatic evaluation measures that gener-

ally rank the Pref. system higher than Hiero and SAMT. As a further confirmation,

our feature selection based MERT chooses to retain λm (the corresponding weight

for the psyn(d) feature) in the model. While the IWSLT results are promising, we

perform a more complete evaluation on the NIST-M translation task.

NIST-M task: This task generates much larger rule preference vectors than the

IWSLT task due to the size of the training corpora. We build systems with both

βR = 100, 10 varying βP . Varying βP isolates the relative impact of propagating

alternative nonterminal labels within the preference grammar model. βL = 5 for all

NIST-M systems. Parameters λ are trained via MERT on the βR = 100, βL = 5,

βP = 2 system. BLEU scores for each preference grammar and baseline system are

shown in Table 5.6, along with translation times on the test corpus. We also report

length penalties to show that improvements are not simply due to better tuning of

output length.

The preference grammar systems outperform the Hiero baseline by 0.5% on de-

velopment data, and up to 0.8% on unseen test data. While systems with βR = 100

take 15 times longer to translate the test data than Hiero, setting βR = 10 takes 50%

longer than the the SAMT based system but produces slightly better results (0.3%).

The improvements in translation quality with the preference grammar are positive,

but how much of this improvement can be attributed to MERT finding a better local
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System Dev. BLEU (lpen) Test. BLEU (lpen) Test time (h:mm)

Baseline Systems

Hiero 34.1 (0.99) 31.8 (0.95) 0:12

SAMT 34.7 (0.99) 32.3 (0.95) 0:45

Hiero(λ") - 32.1 (0.95) 0:12

Preference Grammar: βR = 100

βP = 1 - 32.5 (0.96) 3:00

βP = 2 34.6 (0.99) 32.6 (0.95) 3:00

βP = 5 - 32.5 (0.95) 3:20

Preference Grammar: βR = 10

βP = 1 - 32.5 (0.95) 1:03

βP = 2 - 32.6 (0.95) 1:10

βP = 5 - 32.5 (0.95) 1:10

Table 5.6: Translation quality and test set translation time (using 50 machines with

2 tasks per machine) measured by the BLEU score for the NIST-M task. NIST 2006

is used as the development (Dev.) corpus and NIST 2007 is used as the unseen

evaluation corpus (Test). Dev. scores are reported for systems that have been sepa-

rately MERT trained. Pref. systems share parameters from a single MERT training.

Systems are described in the text.
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optimum for parameters λ? To answer this question, we use parameters λ" optimized

by MERT for the preference grammar system to run a purely hierarchical system,

denoted Hiero(λ"), which ignores the value of λm during decoding. While almost

half of the improvement comes from better parameters learned via MERT for the

preference grammar systems, 0.5% can be still be attributed purely to the feature

psyn(d). In addition, MERT does not set parameter λm to zero, corroborating the

value of the psyn(d) feature again. Note that Hiero(λ") achieves better scores than

the Hiero system which was trained via MERT without psyn(d). This highlights

the local nature of MERT parameter search, but also points to the possibility that

training with the feature psyn(d) produced a more diverse derivation space, resulting

in better parameters λ. We see a very small improvement (0.1%) by allowing the

runtime propagation of more than 1 nonterminal label in the left-hand side posterior

distribution, but the improvement doesn’t extend to βP = 5. Improved integration

of the feature psyn(d) into decoding might help to widen this gap.

5.9 Analysis of a Translation

We present an example sentence from the NIST MT06 test corpus and compare

the translation output from two systems. We compared output from the preference

grammar system βR = 10, βL = 5, βP = 2 above against output from the Hiero(λ")

system. These systems differ only in the use of the preference grammar feature. All

other weights in λ are identical.

We chose our sentence pair based on simple inspection of the translation ouput.

Our goal was to find a relative short sentence (long enough to exhibit reordering but

not too long to analyze), where translation output differed significantly across the

two systems. Table 5.7 shows the source and four reference reference translations for

sentence that we chose for comparison of systems.
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                , 

     

an egyptian official is currently investigating a southern chicken farm that saw group-

ings of sudden deaths ; they worry that the virus will likely continue to spread .

egyptian officials are investigating the sudden mass death of chickens on a chicken

farm in the south , and there is concern that the virus might continue to spread .

egyptian officials are investigating a sudden incidence of mass chicken deaths on a

chicken farm in the south , fearing that the virus may continue to spread .

egyptian officials are also investigating the sudden unexplained death of a batch of

chickens in a poultry farm , raising concerns that the virus may continue to spread .

Table 5.7: Source and four reference translation for an example sentence from NIST

MT06. We use this example sentence to compare translation output between the

Pref. system βR = 10, βL = 5, βP = 2 and the Hiero(λ") system.

The translation output from preference grammar system is:

a chicken farm in southern egyptian officials are investigating cases of collective 

 chickens suddenly occurred , worried that the virus may continue to spread .

while the output from the hierarchical system Hiero(λ") is:

a chicken farm in southern egyptian officials are investigating the chickens of the

collective  incident occurred suddenly and may be worried that virus continued to

spread .

While the lexical content of both system outputs are very similar, the reordering

effects and therefore both the syntax and semantics of the sentence are ultimately

very different. The first few words of both outputs are the same (a chicken farm

in southern egyptian officials are investigating); the differences are in the remainder

of the sentence. Overall, the preference grammar system captures the meaning of

the source sentence better, indicating that the officials are investigating cases of
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System 1-gram 2-gram 3-gram 4-gram Reference

Pref. 20 / 26 13 / 25 10 / 24 7 / 23 28

Hiero(λ") 20 / 28 9 / 27 6 / 26 3 / 25 28

Table 5.8: N -gram precision ratios for the translation output from the Pref. system

and Hiero(λ") .

something rather than investigating chickens, and clearly stating that the officials are

worried that the virus may continue to spread ., rather than the fact that they may

be worried. The respective BLEU precision ratios at each n-gram level are shown in

Table 5.8 and confirm the relative performance of the preference grammar system.

We now analyze the rules used in the preference system’s translation to highlight

cases where the psyn(d) had an impact on the decisions made during translation. The

output from the preference grammar is composed of the translations of four spans that

have concatenated monotonically with the glue rule to form the complete sentence

translation. For each span, we show the composition of rules that form the span’s

translation in Figures 5.3,5.4, 5.6. Each rule is annotated with the lhs distribution of

the corresponding chart item formed by the rule.

The span translation from Figure 5.4 is illustrative of the impact of the psyn(d)

feature. We list the rules used in Figure 5.4 with their label configurations in Table 5.5.

We list the highest probability preferences until the preference(s) that were used in

the example translation, which is marked by a !.

Both systems, Hiero(λ") and Pref. use the rule X → 〈  X1 # worried that X1

〉, but compose it with different derivations. In Pref. , this rule is composed with the

chart item generated by the rule X → 〈 X1  #the X1 may〉. In Figure 5.4,

we can see that the resulting lhs distribution of the virus may is NP+MD. This lhs

combines with worried that X1 with non-zero probability. The Hiero(λ") system
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combines X → 〈  X1# worried that X1 〉 with X → 〈 # virus 〉 directly.

This combination would result in a relative larger penalty in the preference grammar

system, since the corresponding label configuration in the worried that X1 rule is

VP/VP→ NN=0.00.

5.10 Conclusions and Contributions

In this chapter, we developed a novel grammar formalism that generalizes existing

work to integrate syntactic labels into natural language tasks. Our formalism trans-

forms hard syntactic constraints into soft preferences that can be efficiently estimated

during the extraction of SAMT rules from parallel data.

These preferences are used to compute a machine translation feature (psyn(d)) that

scores unlabeled derivations, taking into account traditional syntactic constraints.

Representing syntactic constraints as a feature allows MERT to train the correspond-

ing weight for this feature relative to others in the model, allowing systems to learn

the relative importance of labels for particular resource and language scenarios as

well as for alternative approaches to labeling PSCFG rules. Our computation for

psyn(d) is designed to avoid penalizing rules that are used for generic operations like

concatenation and as a result, have a large number of label preferences.

We showed moderate improvements in translation quality as measured by auto-

matic evaluation measures for both small and medium resource translation tasks. On

the medium resource translation task we improve 0.3% over the SAMT baseline and

0.5% over the best performing Hiero baseline.

By moving syntactic labels into soft preference structures, we introduce an avenue

by which label preferences can be automatically learned via discriminative training.

Future work will focus on methods to improve on the integration of the psyn(d) feature
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during decoding.
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X1  X2 # X2 in southern X1

++
++

++
++

++
++

++
++

,,
,,

,,
,,

,,
,,

,,
,,

NP+AUX+VBG=1
X1   # X1 are investigating

NP=1
  X1 # a X1

NP=1
  # egyptian officials

NP=0.33 NN+NN=0.66
  # chicken farm

Figure 5.3: Rules applied in the preference grammar system for the example sentence

in Table 5.7. The target translation generated by these rules is: a chicken farm in

southern egyptian officials are investigating
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X1  # X1 to spread .

--------------

VP/PP=0.52 VP/VP=0.47
X1  # X1 continue

..................................

VP/VP=1
 X1 # worried that X1

///////////////////////

NP+MD=1
X1   # the X1 may

--------------

NN=1
 # virus

Figure 5.4: Rules applied in the preference grammar system for the example sentence

in Table 5.7. The target translation generated by these rules is: worried that the virus

may continue to spread .
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X → X1 #X1 to spread




p(H0 = RB+TO+VB, H1 = RB | r) = 0.22

p(H0 = NP+CC+VP, H1 = X | r) = 0.11

p(H0 = S, H1 = NNS | r) = 0.11

p(H0 = NN+CC+VP, H1 = X | r) = 0.11

"p(H0 = VP, H1 = VP/VP | r) = 0.11






X → X1 # X1 continue




p(H0 = MD+VB, H1 = MD | r) = 0.29

p(H0 = NN+MD+VB, H1 = NN+MD | r) = 0.09

p(H0 = X, H1 = X | r) = 0.05

p(H0 = NP+MD+VB, H1 = NP+MD | r) = 0.03

p(H0 = NP+VBP, H1 = NP | r) = 0.03

p(H0 = NNS+VBP, H1 = NNS | r) = 0.03

"p(H0 = VP/PP, H1 = VP/VP | r) = 0.02

"p(H0 = VP/VP, H1 = VP/VP | r) = 0.01






X → X1 # worried that X1




p(H0 = VP/VP, H1 = NP | r) = 0.09

p(H0 = X, H1 = X | r) = 0.08

p(H0 = VP/VP, H1 = NP+MD | r) = 0.04






X → X1  # the X1 may
{

"p(H0 = NP+MD, H1 = NN | r) = 0.84
}

Figure 5.5: Rules with label configurations for rules that generated: worried that

the virus may continue to spread . in our example sentence. For each rule we list

the highest probability label preferences until the preference(s) that were used in the

example translation, which is marked by !.
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X1  X2  #cases of X2 X1

++
++

++
++

++
++

++
++

,,
,,

,,
,,

,,
,,

,,
,,

RB+VBN=0.10 RB+VBD=0.89
 X1 # suddenly X1

00000000000000

X=0.3 NP=0.26
X1  X2 # collective X2 X1

--------------

00000000000000

VBN=0.33 VBD=0.66
 # occurred

NNP=0.5 NP=0.5
 # UNK

NNS=1
 # chickens

Figure 5.6: Rules applied in the preference grammar system for the example sentence

in Table 5.7. The target translation generated by these rules is: cases of collective

UNK chickens suddenly occurred.

112



CHAPTER 6

Conclusions and Future Work

The use of non-local features in translation models is an important step towards

automatically generating human quality translations. In this work we have explored

the integration and interaction between two non-local features within the PSCFG

framework; the n-gram language model and nonterminal labels for PSCFG rules. We

have made the following contributions in this work:

• We developed two-pass decoding algorithms to efficiently integrate n-gram LMs

into PSCFG decoders (Chapter 3). Our two algorithms explore techniques to

find alternative derivations from the hypergraph that results from first pass

decoding. Our two-pass Top-Down algorithm (which uses Cube Pruning in its

first pass) achieves the lowest model cost in our experiments 53% faster than

the single pass Cube Pruning algorithm for the SAMT grammar. We use the

two-pass decoding algorithms developed in Chapter 5 to integrate a non-local

syntactic feature into decoding.

• In Chapter 4, we answered important questions about the impact of PSCFG

methods, specifically studying the impact of nonterminal labels and large n-

gram LMs on translation quality. Our large scale study showed that for language

pairs with longer distance reordering effects (Chinese, Urdu to English) the Hi-

ero grammar outperforms a strong phrase-based baseline approach with compa-

rable reordering ability and strong n-gram LMs to inform reordering decisions.
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The SAMT grammar delivers small, but consistent, additional improvements.

We also show that phrase-based systems can generate 88% of the translations

from the Hiero system, which suggests that improved distortion models might

close the performance gap.

• In Chapter 5 we proposed a novel grammar formalism and associated feature

to take advantage of nonterminal labels without aggravating the impact of the

common MAP approximation that is often used in machine translation. Our

approach transforms hard syntactic constraints into soft preferences that are

used to estimate a syntactic consistency feature, whose weight can be discrimi-

natively learned to improve translation quality. We demonstrate small improve-

ments over the SAMT (0.3% BLEU) and Hiero baselines (0.5% BLEU) for a

medium sized Chinese-to-English translation task and find that feature selection

retains the syntactic feature in the translation model.

We hope to consider the following future research directions:

• Better search: While in this work we considered approximate first pass search,

we might also consider developing admissible search heuristics that would al-

low more chart items to be compared and pruned during search. Initial direc-

tions would include using n-gram LMs that could report the maximum prob-

ability of a word sequence w1 · · ·wn over all observed history contexts h i.e

max p(w1 · · ·n |h) ∀h. Using this probability to score the left context in ẽ, we

would have an admissible heuristic to safely compare items that differ in their

LM context component but share the same span.

• Hybrid systems: Results in Chapter 4 indicate that phrase-based systems are

capable of producing many (88% in our Chinese-to-English experiments) of the
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translations generated by the Hiero PSCFG system but current reordering mod-

els are too weak to select these translations during search. We hope to explore

techniques to apply the highly lexicalized PSCFG rules to re-rank derivations

in the hypergraph produced by phrase-based search. This could result in an

overall reduction in decoding time since the first pass would use phrase-based

decoding.

• Better integration of the preference grammar feature psyn into search: The ap-

proach used in this work makes greedy approximations to integrate psyn into

search. These approximations limit the impact that this feature can have in

selecting derivations. We hope to explore techniques that allow multiple deriva-

tions to share the same lhs preference distribution.

• Exploring independence assumptions: In this work we try to stay close to the

way traditional PSCFGs use labels to propagate non-local information about

a derivation. Alternatively, we might choose to make stronger independence

assumptions in the estimation of rule preferences that facilitate more efficient

decoding with the psyn feature.

• Discriminative training of preferences: By representing labels via soft prefer-

ences, we have created the potential to learn label preferences discriminatively

like Matsusaki et al. [2005], Petrov et al. [2006] do for monolingual parsing.

Ultimately we will continue to focus on finding efficient ways to improve transla-

tion quality by using non-local features within the PSCFG framework.
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APPENDIX A

Resources Used

This Appendix describes the corpora and resources used for the systems built in this

thesis. Training corpora for systems identified by IWSLT and NIST-M are described

in Table A.1. The IWSLT task is a limited domain dialogue travel expressions task

that uses the Basic Travel Expression Corpora for training data.

The language model for the IWSLT task is built from the target side of the parallel

corpus. The NIST-M task is a (M)edium resource task in the broadcast news domain.

The NIST-M parallel corpus has been compiled from a variety of data sources made

publicly available by the Linguistic Data Consortium for the NIST MT Evaluation

competition. The NIST-M corpus includes all available data for the NIST evaluation

except the UN and HK Law corpora. Sentences with less than 70 source words are

selected from the remaining corpora, and the FBIS corpus is further restricted to

sentences up to 60 source words. The language model for the NIST-M system is built

on the target side of the selected parallel data and includes the Xinhua news stories

from the years 1995 - 2006. NIST-M resources are comparable in size to medium

data configurations available in several languages [Koehn, 2005]. Development and

test corpora for the IWSLT and NIST-M task are described in Table A.2.

Resource conditions for experiments in Chapter 4 are shown in Tables A.3,A.4,A.5.

For the Chinese and Arabic tasks, multiple data configurations are presented to sim-

ulate weaker language and translation models. We report corpus statistics and the

total number (non-singleton) n-grams in the LM training data for each configuration.

117



For the Chinese and Arabic tasks, the language model data comes from three sources;

the target side of the parallel data (448M 1· · · 5-grams), the LDC Gigaword corpus

(3.7B tokens, 2.9B 1· · · 5-grams) and the Web 1T 5-Gram Corpus (1T tokens, 3.8B

1· · · 5-grams).
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System Sentence Pairs Words in Target Text

IWSLT 163K 1.2M

NIST-M 3.7M 67M

Table A.1: Training data for the IWSLT and NIST-M tasks. Target text is tokenized

to separate punctuation from attached words. Chinese source text is segmented using

the LDC segmenter.

Data Set # Sentences # Source Words # References

IWSLT DevSet4 489 5214 16

IWSLT03 506 3404 16

IWSLT04 500 3505 16

IWSLT05 506 3826 16

IWSLT06 500 5550 7

IWSLT07 489 3166 6

IWSLT08 1014 5678 6

MT05 1082 30306 4

MT06 1664 38939 4

Table A.2: Development and test corpora for the IWSLT and NIST-M tasks.

Zh.En. Conf. # Sentences # Src, Tgt words # 1..5 Grams (mono.)

FULL 15.4M 295M(zh) 336M(en) 448M + 2.9B + 3.8B

TARGET-LM 15.4M 295M(zh) 336M(en) 448M

TARGET-LM-10%TM 1.54M 29.5M(zh) 33.6M(en) 448M

Table A.3: Chinese-to-English Data configurations under which we compare

phrase-based methods to PSCFG methods.

119



Ar.En. Conf. # Sentences # Src, Tgt words # 1 · · · 5 Grams (mono.)

FULL 9.1M 223M(ur) 236M(en) 448M + 2.9B + 3.8B

TARGET-LM 9.1M 223M(ur) 236M(en) 448M

TARGET-LM-10%TM 0.91M 22.3M(ur) 23.6M(en) 448M

Table A.4: Arabic-to-English Data configurations under which we compare

phrase-based methods to PSCFG methods.

Ur.En. Conf. # Sentences # Src, Tgt words # 1..5Grams (mono.)

TARGET 207K 2.2M(ur) 2.1M(en) 4M

Table A.5: Urdu-to-English Data configurations under which we compare

phrase-based methods to PSCFG methods.

DataSet # Sentences NumRefs Average # Words per Reference

MT02 878 4 30

MT03 919 4 31

MT04 (dev) 1788 4 32

MT05 1082 4 32

MT06 1554 4 28

MT08 1357 4 30

UrEn-dev 1840 1 21

UrEn-MT08 1864 4 22

Table A.6: NIST development data statistics for Chinese-to-English and Arabic–

to-English (MT-0x) and Urdu-to-English (UrEn-x). For each data set we note the

number of sentences, the number of source words, number of references per source

sentence, and the average number of words per reference.
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