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Abstract

Named entities (NE), the noun or noun phrases referring to per-
sons, locations and organizations, are among the most information-
bearing linguistic structures. Extracting and translating named en-
tities benefits many natural language processing problems such as
cross-lingual information retrieval, cross-lingual question answer-
ing and machine translation.

In this thesis work we propose an efficient and effective framework
to extract and translate NEs from text and speech. We adopt the
hidden Markov model (HMM) as the baseline NE extraction sys-
tem, and investigate its performance in multiple language pairs
with varying amounts of training data. We expand the baseline text
NE tagger with a context-based NE extraction model, which aims
to detect and correct NE recognition errors from automatic speech
recognition hypotheses. We also adapt the broadcast news trained
NE tagger for meeting transcripts.

We develop several language-independent features to capture pho-
netic and semantic similarity measures between source and tar-
get NE pairs. We incorporate these features to solve various NE
translation problems presented in different language pairs (Chinese
to English, Arabic to English and Hindi to English), with varying
resources (parallel and non-parallel corpora as well as the World
Wide Web) and different input data streams (text and speech).

We also propose a cluster-specific name transliteration framework.
By grouping names from similar origins into one cluster and train-
ing cluster-specific transliteration and language models, we man-
age to dramatically reduce the name transliteration error rates.



The proposed NE extraction and translation framework improves
NE detection performance, boosts NE translation and translitera-
tion accuracies and helps increase machine translation quality. Over-
all, it significantly reduces NE information loss caused by machine
translation errors and enables efficient information access overcom-
ing language and media barriers.
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Chapter 1

Introduction

1.1 Motivation

The amount of electrically accessible information has been increasing dramat-
ically over the last decade. By 15:28:02 June 14, 2005, Google has indexed
8,058,044,651 web pages. Back to year 2001, this number is 2 billion (Sherman
(2001)). Lawrence & Giles (1999) estimated that the whole publicly indexable
web data had 15 terabyte in 2000, among them 6 terabyte were textual content.
According to Lyman et al. (2003), new information produced and flowing in
2002 are as much as the following:

Information object How many bytes
Total new information produced in 2002 5 exabytes
New information produced per person 800 megabytes
New information stored in hard disk 92%
Information flow: telephone information 17.3 exabyte
Information flow: TV and radio broadcast information 3,500 terabytes
Information flow: World Wide Web information 170 terabytes
Information flow: instant messaging 274 terabytes
Information flow: e-mail information per year 400,000 terabytes

Table 1.1: How much information exists

Although this large information pool offers human information analysts a
great opportunity of discovering valuable information, the overwhelmingly

1



1. INTRODUCTION

huge amount is really a burden. It is extremely important to detect and extract
desired information in an efficient manner.

On the other hand, this information can be presented in many human lan-
guages. In September 2004 Global Reach 1 estimated the number of people on-
line in each language zone, and their result is shown in Figure 1.1. Although
English was the most widely used language online, there were still 65% non-
English speakers and resources. Nowadays or in the near future, Chinese may
replace English as the most often used language on the internet. As a result,
when a user fortunately locates web pages or documents containing desirable
information, he or she can not understand, utilize and manage them if they are
presented in a foreign language. Therefore, it is an essential technique to ex-
tract structured key information from unstructured data oceans and translate
them into user-understandable languages.

Named entities (NE), the noun or noun phrases referring to persons, lo-
cations and organizations, are among the most information-bearing linguistic
structures. Extracting and translating named entities benefits many natural
language processing tasks. NE recognition is one of the major tasks in informa-
tion extraction, and NEs are often key queries in information retrieval, correct
answers in question answering, and indicative features for summarization. On
the other hand, correct NE translations broaden the scope of information ac-
cess by incorporating facts presented in foreign languages. They bridge related
entities from different languages. They are also key structures in multilingual
natural language processing such as cross-lingual information retrieval (CLIR)
and machine translation (MT). In machine translation, incorrect NE transla-
tion not only loses meaningful information from original sentences, but also
introduces distorted semantic context which degrades the overall translation
quality.

Extracting NEs from well-formed text such as newswire text has been inten-
sively investigated in the past decade. Both NE recognition rules and statistical
models have been developed either manually or automatically, and satisfac-
tory performances have been achieved in multiple languages, including Chi-
nese, English, Japanese and Spanish (Chinchor (1998)). However, extracting

1http://global-reach.biz/globstats/index.php3
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Figure 1.1: Online Language Populations
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1. INTRODUCTION

NEs from ill-formed data, such as speech input, is still a challenging problem.
The reasons are:

• Speech transcripts lack format information, such as case and punctuation
marks, which can greatly facilitate NE extraction;

• In terms of style and genre, spoken language is quite different from for-
mal written text. Rules and models trained from written language may
not fit the speech data well;

• Automatic speech recognition (ASR) errors are particularly difficult for
NE extraction and translation from speech, as many ASR errors often
occur around NE words.

On the other hand, NE translation is also very challenging. In addition to
typical machine translation problems such as word alignment, word reorder-
ing and many-to-many translation correspondences 1, special challenges need
to be handled for NE translation:

• NE translations involve both phonetic transliteration (translation by pro-
nunciation) and semantic translation (translation by meaning), and some-
times both strategies are used. For example, the English NE ”Appalachian
Mountain” is translated into Chinese as ”�®nêÆÌs”, where ”Ap-
palachian” is phonetically transliterated as ”�®nêÆ / abalaqiya”,
and ”Mountain” is semantically translated as ”Ìs / shanmai”;

• Unlike common nouns and verbs, NEs often include many out-of-vocabulary
(OOV) words, which are not covered by existing bilingual corpora or
translation dictionaries. One has to find solutions to translate these OOV
NE words.

• If NEs are automatically extracted from text and speech, speech recog-
nition errors and automatic NE extraction errors further complicate the
translation problem.

1One source word, phrase or sentence can have more than one correct target translations.
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1.2 Thesis Statement

1.2 Thesis Statement

This thesis work provides a language-independent framework that extracts
and translates NEs from unstructured text and speech documents in multi-
ple language pairs. NEs are extracted based on a hidden Markov model,
and domain portability such as adaptive NE extraction is investigated. A
context-based model is proposed to detect and recover NE speech recogni-
tion errors. In terms of NE translation, this framework also incorporates sev-
eral NE translation phonetic and semantic features. These crosslingual sim-
ilarity features are applied to NE alignment, phonetic projection and trans-
lation mining tasks using parallel and monolingual corpora. Additionally, a
proposed cluster-specific name transliteration model generates more accurate
person name translations based on their origins. This framework significantly
improves NE extraction, translation and transliteration accuracies. When inte-
grated into a machine translation system, it also boosts the machine translation
quality.

1.3 Thesis Summary

We propose an effective language-independent framework to extract and trans-
late NEs from text and speech. Within this framework, we develop various fea-
tures and algorithms and apply them to text-based and speech-based NE ex-
traction tasks and NE translation tasks in multiple language pairs. We achieve
improved NE detection performance, reduced ASR character error rate and
improved NE translation and transliteration accuracies. These techniques re-
duce the information loss from incorrect NE translation by 50%.

We adopt the hidden Markov model (HMM) as our baseline NE extraction
system. With different resources and different problems to solve, we expand
the baseline model in the following ways:

• We use bootstrapping technique to train a Chinese NE tagger from im-
perfectly labeled monolingual data, where NEs are automatically tagged
using an existing NE tagger. Given enough noisy data, the bootstrapping

5



1. INTRODUCTION

technique is able to correct certain inconsistent NE tagging errors, and a
re-trained NE tagger achieves better NE extraction performance.

• Given an NE tagger trained from English broadcast news data, we want
to extract NEs from the transcripts of meeting dialogues, the speech from
a very different genre. We propose an adaptive NE extraction model
to incorporate global and local context information, which significantly
improves the NE extraction performance for meeting applications.

• To deal with errors in ASR hypotheses, we develop a context-based NE
extraction model which recognizes NEs only from their context words,
thus reduces its dependency on the actual misrecognized NE words. This
approach, combined with speech recognition confidence measures and
information retrieval techniques, reduces ASR errors from 18.2% to 18.0%,
improves speech NE extraction accuracy from 69F to 73F and translation
accuracy from 66F to 72F.

For NE translation, we develop several language-independent features to
capture different similarity measures between source and target NE pairs, in-
cluding

• Transliteration features representing their phonetic similarity;

• Word translation features characterizing their semantic similarity within
NE;

• Context vector features describing the semantic similarities around the
NE pair;

We incorporate these features into an NE translation framework to solve
various NE translation problems in different language pairs (Chinese-English,
Arabic-English and Hindi-English) with varying input data streams (text and
speech) and resources (monolingual and bilingual):

• To align NE translation pairs from sentence-aligned bilingual corpora,
where NEs have been independently labeled in both languages;

6



1.4 Thesis Contribution

• To discover target NE translations for a given source NE from a sentence-
aligned bilingual corpus, where only source language NEs are labeled;

• To search for a target NE translation from monolingual or non-parallel
corpora, given a source NE and possibly its context information.

We observe significant improvements in both NE extraction and translation
accuracies. When we combine the above NE translation strategies and apply
them to machine translation tasks, we also improve the overall text translation
quality.

We additionally propose a cluster-specific name transliteration framework.
By grouping names from similar origins into one cluster and training cluster-
specific transliteration and language models, we manage to dramatically re-
duce the name transliteration character error rates from 50% to 13%.

Finally we evaluate the effectiveness of the whole NE extraction and trans-
lation framework according to the NE information loss reduction. We propose
an information-theoretic measure to estimate NE information loss from speech
recognition and machine translation. Based on this measure, our NE extrac-
tion and translation techniques significantly reduce the NE information loss
by 50%.

1.4 Thesis Contribution

This thesis work advances the research on NE extraction and translation in the
following ways:

• We design a set of crosslingual, language-independent similarity features
which characterize the pronunciation similarity, the semantic similarity
and the contextual similarity between NE translations;

• We propose an NE translation framework that integrates the above fea-
tures to solve various NE translation problems: bilingual NE alignment,
NE projection and NE translation mining from non-parallel corpora. We
successfully apply the framework in multiple language pairs: Chinese-
English, Arabic-English and Hindi-English. We improve both NE trans-
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lation accuracy and machine translation quality when integrating the NE
translation into a statistical machine translation system.

• We develop a cluster-specific name transliteration framework and sub-
stantially improve name transliteration accuracy and reduce character
error rate.

• We design an information-theoretic measure to estimate information loss
from speech recognition and machine translation. Based on this measure,
the proposed NE translation techniques significantly reduce the NE in-
formation loss by about 50%.

• We extend the HMM NE tagger with a context-based NE extraction model,
aim to detect and correct speech NE recognition errors. This approach,
combined with speech recognition confidence measures and informa-
tion retrieval techniques, improves speech NE extraction and translation
accuracy. To the author’s knowledge, this is the first attempt towards
speech NE translation.

• We adapt a broadcast news trained NE tagger on meeting transcripts,
and significantly improve the NE extraction performance.

1.5 Thesis Structure

The rest of this thesis is structured as following:

In Chapter 2 we review the literatures on information extraction, machine
translation and especially NE translation.

In Chapter 3 we introduce the basic framework of our NE extraction sys-
tem, the hidden Markov model. We demonstrate its performances in multiple
languages. We also address the model training using imperfectly labeled noisy
data.

In Chapter 4 we present a set of crosslingual NE similarity features, includ-
ing phonetic, semantic and contextual features.
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In Chapter 5 we demonstrate how to apply them in several NE translation
tasks: NE alignment within an NE-tagged sentence-aligned corpus; NE pro-
jection from a resource-rich language to a resource-scarce language; and NE
translation mining from monolingual corpora.

In Chapter 6, we focus on NE extraction and translation from speech input.
We propose an adaptive NE recognition method to extract NEs from meeting
transcripts. We present a context-based NE extraction approach to detect and
correct NE ASR errors. This approach, combined with speech recognition con-
fidence measures and information retrieval techniques , demonstrates reduced
ASR errors and improved speech NE translation accuracy.

In Chapter 7, we describe the cluster-specific name transliteration frame-
work. We explain how we select name origin distance measures, origin clus-
tering algorithm, name origin classifiers and the phrase-based name transliter-
ation model.

In Chapter 8, we introduce an information-theoretic measure to estimate in-
formation loss from speech recognition and machine translation. We apply this
metric to estimate the NE information loss from ASR and MT. We also evaluate
our proposed techniques in terms of the relative information loss reduction.

Finally we conclude this thesis work with some conclusions and discus-
sions.
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Chapter 2

LITERATURE REVIEW

Named entity detection and translation stands between two research areas:
information extraction (IE) and machine translation (MT). The IE module en-
ables accurate detection of NEs, and the MT module ensure reliable transla-
tion of detected NEs. These two steps can be combined sequentially, where the
output of the IE module is the input of the MT module. Alternatively, when
NEs detection is less reliable, such as detecting NEs from speech recognition
hypothesis, NE detection and translation can be tightly coupled: information
from another language can be borrowed via information retrieval (IR) and MT
module to help the NE detection.

In this chapter, we will first introduce related research on information ex-
traction, especially on named entity detection, then we will give an overview
on machine translation, especially on statistical machine translation. Finally,
we will review relevant research on named entity translation.

2.1 Information Extraction

Broadly speaking, Information Extraction (IE) is to identify structured and
user-desired information from large volumes of unstructured text. This in-
volves retrieving relevant documents from text collections (domain-specific
corpora, general domain corpora or the World Wide Web) and tagging particu-
lar relevant words or phrases in text. A narrowed definition of IE, as Grishman
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(1997) described, is :

the identification of instances of a particular class of events or rela-
tionships in a natural language text, and the extraction of the rele-
vant arguments of the event or relationship.

Unlike information retrieval, IE involves shallow parsing of text, such as
part-of-speech tagging and text chunking. Compared with deep understand-
ing of full text where all the information in a text need to be explicitly repre-
sented, IE tasks usually have pre-specified semantic categories of output, their
relationships and allowable fillers in a relation. Because IE can efficiently han-
dle huge amount of text and achieve reasonably accurate information access,
it is particularly appealing to information users overwhelmed by explosive in-
formation volumes.

Although people have realized the importance of automatically converting
natural language text into structured data since 1950s, only in recent decades
rapid progress have been made in information extraction research, particularly
thanks to DARPA-funded TIPSTER program and MUC (Message Understand
Conferences), and the ACE (Automatic Content Extraction) program under
the TIDES (Translingual Information Detection, Extraction and Summariza-
tion) project. In the 1998 MUC-7 Information Extraction evaluation campaign,
five tasks were designed:

• Named Entity (NE): mark each string that represents a person, organiza-
tion, or location name, or a date or time stamp, or a currency or percent-
age figure.

• Template Element (TE): extract basic information related to organization,
person and artifact entities.

• Template Relation (TR): extract relational information on employee of,
manufacture of, and location of relations.

• Scenario Template (ST): extract pre-specified event information and re-
late the event information to particular organization, person or artifact
entities involved in the event.
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• Coreference (CO): capture information on coreferring expressions: all
mentions of a given entity, including those tagged in NE, TE tasks.

In 1999, the TIPSTER/MUC program was replaced by the ACE1 program,
which aims to automatic classify, filter and select information based on the
content, i.e., the meaning conveyed by the source language data (natural text
as well as derived text, such as ASR and OCR output). There are three primary
ACE research objectives:

• Entity Detection and Tracking (EDT):

– Identify five types of identities, Person(PER), Organization(ORG),
Location(LOC), Geo-political entity(GPE), Facility(FAC);

– classify them according to its types and subtypes;

– detect all mentions of each entity within a document, whether they
are named, nominal or pronominal.

• Relation Detection and Characterization (RDC): identify pre-defined re-
lations between entities.

• Event Detection and Characterization (EDC): identify and characterize
five types of events in which EDT entities participate.

In both the MUC IE tasks and the ACE IE tasks, named entity recognition
is the core task that provides the base of all remaining tasks, and research on
NE extraction has been the most intensively investigated.

2.2 Named Entity Recognition

Named entity recognition (NER), also known as NE extraction, NE detection,
NE tagging or NE identification, is to recognize structured information, such
as proper names (person, location and organization), time (date and time) and
numerical values (currency and percentage) from natural language text. It is

1http://www.ldc.upenn.edu/Projects/ACE/intro.html
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one of the first IE tasks to be researched. Many NER systems based on pattern-
matching rules or statistical models achieved satisfactory performances on
well-formed text. Based on the 1997 MUC-7/MET-2 evaluation, NE recog-
nition systems have achieved 94% F score on English newswire text and 85%-
91% on Chinese text, 87%-93% on Japanese text.

2.2.1 Rule-based Pattern Matching

Earlier NER systems were mainly based on pattern-matching grammars. Ap-
pelt et al. (1993) proposed the FASTUS system, an information extraction sys-
tem based on finite state automata. To fill a pre-defined event template, FAS-
TUS first identifies trigger words for each pattern of interest, then recognizes
noun phrases, verb phrases and other critical word classes. After that, FAS-
TUS recognizes patterns of events from phrases, identifies event incidents and
merges them to form a complete template. It achieves 44% recall and 55% pre-
cision on an IE task from 100 texts, the state-of-the-art performance in 1993.
In the New York University Proteus IE system (Grishman (1997)), names were
identified by a set of patterns (regular expressions) that were represented in
terms of part-of-speech, syntactic structures, orthographic features like capital-
ization and a dictionary of name list. Similar to the FASTUS, shallow syntactic
analysis was also applied to extract noun and verb phrases, and for the follow-
ing scenario pattern matching. Other rule-based IE systems include AutoSlog
(Riloff (1996)) and RAPIER (Califf & Mooney (1997)) etc..

2.2.2 Statistical Models

In recent years, when large amount of text data became electronically available,
several statistical methods for NE recognition have been developed. Their per-
formance has caught up with and even outperformed those of the above rule-
based IE systems.

Bikel et al. (1997) proposed a HMM-based NE recognition system, the first
high-performance statistical NE recognition system. In this framework, NE
classes are represented as hidden states, and words in a sentence are the out-
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put from different states. NE recognition problem is cast as a state sequence
decoding problem: find the state sequence that maximizes the probability of
generating the word sequence in a given sentence. This approach requires
NE labeled data to learn state transition probabilities and per state word gen-
eration probabilities. Easy to implement and with very good performances
(S. Miller & the Annotation Group (1998)), this framework is also the choice
for our NE recognition baseline system.

Another HMM NE tagger is proposed by Zhou & Su (2002), where a mod-
ified HMM chunk tagger is built to recognize and classify names. Internal
(lexical, semantic and gazetteer information) and external (macro context) fea-
tures are combined. Their system achieves very good performance on MUC-6
and MUC-7 test data.

Sekine et al. (1998) applied a decision tree to find and classify names in
Japanese texts. The decision tree incorporates POS information, character type
(Kanji, Hiragana, Katakana, alphabet, numbers or symbols etc.) and dictionary
information to determine the probability that an NE starts or ends at a given
position in the text.

Borthwick (1999) proposed a maximum entropy (MaxEnt) framework for
NE recognition. NE tagging is considered as a sequence labelling problem,
where multiple local and global, internal and external features are developed
and combined in the maximum entropy framework to classify each word as
one of the following: the beginning of an NE, a word inside an NE, the last
word of an NE and the unique word in an NE. These features include:

• binary features, such as ”Is the word a All-cap word?”;

• lexical features, local context words are compared with a vocabulary to
record vocabulary indices;

• section features, ”Does the text appear in ”Date”,”Preamble” or ”Text”
section in a given article?”;

• dictionary features, ”Does the word exist in a pre-compiled proper name
list?”

• external system features, i.e., NE outputs from other systems;
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• long range reference resolution features, i.e., partial names referring to
the same entity.

Recently Lafferty et al. (2001) proposed the Conditional Random Fields
(CRF) framework for sequence labelling problem, and McCallum & Li (2003)
applied it to the NER task. CRFs are undirected graphical models with effi-
cient procedures for complete, non-greedy finite-state inference and training.
Same as the MaxEnt model, it can incorporate a wide array of features flexibly.
For a given input sentence, CRF defines the conditional probability of a label
sequence (sequence of NE states) based on the total probability over the state
sequences. During training parameters can be efficiently learned with quasi-
Newton methods. CRFs achieved 84.04% F-score on English text in the CoNLL
2003 NER evaluation.

Transformation-based Learning (Brill (1995)) is a error-driven machine learn-
ing technique which applies sequence of transformation rules to maximally
decrease the number of errors from the initial classification. It has been suc-
cessfully applied to POS tagging and NP chunking and word sense disam-
biguation problems, and they are further applied in the NER problem(Ngai &
Florian (2001)).

In addition to above stand alone NE recognition algorithm, Collins (2001)
applied boosting and voted perceptron to rerank the NE recognition hypothe-
ses from MaxEnt tagger. Several NE classifiers are also combined based on
boosting Carreras et al. (2002), stacking and voting ( Florian et al. (2003) Wu
et al. (2003)) algorithms to achieve better performance.

2.3 Machine Translation

Research on automatic language translation by a computerized system has
been studied since 1950s, with various ups and downs. Machine translation
(MT) approaches can be roughly classified into three layers: (1) Interlingua-
based MT, (2) transfer-based MT and (3) direct MT, as shown in the pyramid
diagram in Figure 2.1(borrowed from Dorr et al. (1998)). These layers differ in
the depth of linguistic analysis.
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Figure 2.1: Types of MT Systems
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2.3.1 Interlingua-based MT

Interlingua-based approaches analyze source language text, produce a language-
independent semantic representation of the source sentence (called Interlin-
gua), then generate the target language translation based on the semantic rep-
resentation. This approach is efficient for translating between multiple lan-
guage pairs, where Interlingua analysis and language generation are devel-
oped for each language only once. When we add in a new language’s Inter-
lingua, we naturally acquire the translation between this language and other
languages, thus development cost is significantly reduced from O(n2) to O(n)

when there are n languages.
However, Interlingua development and maintenance require much human

effort, especially when the application domain is getting broader. Therefore,
Interlingua approach is only applied in specific domains. Typical Interlingua-
based systems include Uchida (1985), Farwell & Wilks (1990), Mitamura et al.
(1991) and Waibel et al. (1997).

2.3.2 Transfer-based MT

Transfer-based approaches stay between Interlingua and direct MT: syntactic
transfer is closer to the direct models while semantic transfer is closer to the
Interlingua models. The former applies syntactic analysis on the source lan-
guage text, converting them into syntactic representations, which are further
transformed into target language syntactic representations and target language
sentences output. Lavie et al. (2003) demonstrated a transfer-based system for
Hindi-English translation. Semantic transfer copes with many discourse parti-
cle and verb ambiguities that remain after syntactic/semantic analysis.

2.3.3 Direct MT

Direct machine translation models directly map source language sentences
into word strings in the target language directly. The advantage and disad-
vantage are that they usually do not need sophisticated syntactic and semantic
analysis, and often ignore meaningful linguistic knowledge. These methods
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often require a reasonable amount of sentence-aligned bilingual text transla-
tions to train various translation models. Example-based MT (EBMT) and sta-
tistical MT (SMT) are typical approaches in this category. Since large amount
of parallel corpora are electronically available for some language pairs nowa-
days, many corpora-based approaches, aka. data-driven MT, are proposed and
actively investigated, and they achieved great success.

2.3.3.1 Example-based MT

EBMT, proposed by Makoto Nagao in 1981, is essentially translation by anal-
ogy. EBMT systems usually use a parallel corpus as the translation candidate
pool, a thesaurus for semantic similarity computation, and a bilingual dictio-
nary for word translation lookup, if needed. Given a source language sen-
tence F , and a sentence-aligned parallel corpus, EBMT systems identify a set
of source sentences T that are similar to F from the bilingual corpora, then
translate F by selecting and combining best-match segments from the target
translations of T . To find similar sentences in the parallel corpus, both ”shal-
low” word-level alignment and ”deep” parse tree alignments have been used.
The EBMT approach has been combined with other MT techniques, such as
rule-based Interlingua and statistical approaches. It can also be used as a com-
ponent in a large MT system, such as multi-engine MT. An EBMT tutorial can
be found at Brown (2002).

Brown (2000) introduced a generalized EBMT system, where text are con-
verted into syntactic templates and strings are matched on the template level.
The inexact match allows one word gap in the middle of a match. A bilin-
gual dictionary and heuristic functions are used to identify word alignments
within matched text. Appropriate semantic equivalence classes such as num-
bers, days of the week, city names and syntactic equivalence classes such as
masculine nouns and first-person verbs are manually and automatically cre-
ated and generalized. In addition, members of equivalence class can be equiv-
alence classes, which enable the generation of a paired production-rule gram-
mar. Other extensions including single word equivalence classes, grammar
induction and word decomposition further improve the EBMT system’s per-
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formance.

2.3.3.2 Statistical MT

Statistical MT was first suggested by Warren Weaver in 1949, and was widely
recognized thanks to Brown et al. (1990). In their SMT framework, the trans-
lation is a probabilistic sentence generation process under the source-channel
model: to translate a source language (French) sentence f into a target lan-
guage (English) sentence e, we assume that every English string e′ is a possible
translation of f with a probability P (e′|f), and the French sentence is initially
encoded as an English sentence e∗ in the speaker’s mind. We want to find the
most likely translation, e∗, such that

e∗ = arg max
e′

P (e′|f). (2.1)

with Bayes’ rule,

P (e|f) =
P (e)P (f |e)

P (f)
. (2.2)

Combining 2.1 and 2.2, we get the Fundamental Equation of Statistical Ma-
chine Translation:

e∗ = arg max
e

P (e)P (f |e). (2.3)

P (e) is a target language model, which characterizes the fluency of the gen-
erated English sentence, i.e., how likely e is a valid English sentence. P (e) is
usually a standard N-gram model, such as trigram language model.

P (f |e) is a translation model, which characterizes the adequacy of e, i.e.,
how likely e and f carry the same information. This model is usually learned
based on

• Word alignment: Brown et al. (1993) introduced a series of five statistical
translation models featuring lexical translation probabilities, distortion
probabilities (position-dependent word alignment) and fertility proba-
bilities (the number of French words that a English word can generate).
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Translations process involves generating the number of French words for
each English word, generating their positions, and finally generating the
actual French word identity. Vogel et al. (1996) proposed HMM-based
word alignment which considers the alignment position of the previous
word when predict the alignment position of the current word.

• Phrase-based alignment: This is currently the most active research topic
in SMT. These phrases may not be linguistically well-defined, such as
noun phrases, verb phrases, but they are able to capture more contex-
tual information. Comparing with word-based alignment, phrase-based
models enable many-to-many word alignment and avoid the difficult
NULL word and one-to-many word alignment problems in IBM word
alignment models. These phrase translation pairs can be extracted based
on inverse transduction grammars (Wu (1997) and Zhao & Vogel (2003)),
from initial word alignment paths (Och et al. (1999) and Vogel et al. (2003)),
or estimated with various bilingual word statistics (Venugopal et al. (2003)
and Zhang et al. (2003)). Recently phrase-based translation model have
been achieving the best performances in several machine translation eval-
uations. New models are still proposed and investigated nowadays.

• Structure alignment: More sophisticated linguistic structures such as hi-
erarchical phrases and constituents (noun phrase, verb phrase, etc..) in a
parse tree are also proposed. The hierarchical phrases (Chiang (2005)) are
phrases containing subphrases, which are context-free grammars learned
from bilingual text without syntactic information. As a result, they can
represent linguistically meaningful, longer sentence segments. Yamada
& Knight (2001) presented a syntax-based statistical model, where a source
language parse tree is transformed into a target language parse tree by
stochastically applying reordering, insertion and translation at each node.
There operations capture the difference between source and target lan-
guages, such as word order and case mark. Wu (1997) propose inversion
transduction grammars for bilingual parsing of a parallel corpus. The al-
gorithm synchronously constructs parse trees for parallel sentences, and
produce word-level alignments within the sentence pair.
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Effective and efficient MT evaluation methods also attribute to the recent
rapid progress on MT. Traditionally, MT systems are evaluated by subjective
judgment, relying on human beings to judge the adequacy and fluency of
translation output, which is very expensive, inefficient and inaccurate. Objec-
tive evaluation metrics such as WER (word error rate), position-independent
WER, sentence error rate do not characterize translation quality well. Papineni
et al. (2002) proposed an automatic MT evaluation metric, Bleu, which scores a
translation output based on its segment similarities to human reference trans-
lations. The similarity is measured in terms of the percentage of matched N-
grams (N-1, 2,3, 4) between machine and human translation outputs.

2.3.4 Speech Translation

Although so far most MT research focuses on text translation, speech-to-speech
translation has been investigated for more than a decade and is becoming a
very active research topic. Among earlier speech translation research efforts,
C-STAR and Verbmobil are representative projects. C-STAR (Consortium for
Speech Translation Advanced Research)1 was founded by Advanced Telecom-
munication Research-Interpreting Telecommunications Research Laboratories
(ATR-ITL) in 1992, and gave the first public demo of phone translation be-
tween English, German, and Japanese. In 1993 the Verbmobil project (Wahlster
(2000)) focused on portable systems for face-to-face English business negoti-
ations in German and Japanese. These speech translation systems incorpo-
rate three modules: speech recognition module transcribing source language
speech into source text, machine translation module translating source text
into target text, and speech synthesis module converting target text into tar-
get language speech. Earlier speech translation systems used Interlingua for
machine translation, thus application domains were often very specific: travel
domains such as hotel reservation and flight ticket booking, or business nego-
tiation applications such as the NESPOLE! project (Lavie et al. (2001)).

The recent success of SMT also expands the horizon of speech translation
research. As large amount of open domain parallel text become available, sta-

1http://www.c-star.org/
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tistical domain-unlimited machine translation systems can be trained. The sta-
tistical framework is able to naturally integrate speech recognition and ma-
chine translation modules, and tightly coupling of SR and MT is possible (Ney
(1999)).

2.4 Named Entity Translation

Named entity translation and transliteration is a rather new research problem.
As the amount of machine-readable text and speech data rapidly increase, it is
more important to efficiently access desirable information from the huge data
pool, even if it is presented in a foreign language. NE translation is important
to many natural language processing tasks such as CLIR, MT and automatic
knowledge discovery.

One of the earliest works on NE transliteration is Arbabi et al. (1994), where
they presented a hybrid algorithm using neural networks and a knowledge-
based system to transliterate vowelized Arabic into English.

Knight & Graehl (1997) proposed a generative model for Japanese-English
back transliteration, where they presented a probabilistic framework of map-
ping from English words to English pronunciation, to Japanese pronuncia-
tion, to Japanese written format, and finally to the printed Japanese characters
sequentially; Stalls & Knight (1998) expanded that model to Arabic-English
transliteration, and Al-Onaizan & Knight (2002) combined phonetic-based model
with spelling-based model for transliteration, generated NE translation candi-
dates using bilingual dictionary, and ranked transliteration candidates by in-
corporating monolingual information retrieval results (candidates’ occurrence
frequency from web search).

Yarowsky & Ngai (2001) proposed the crosslingual induction of NE tagging
based on word alignment information within French-English corpora. Given
a sentence aligned parallel corpus, they align French and English words using
IBM models. They automatically tagged NEs in the English sentences, and the
corresponding French NEs can be identified with word alignment information.
As a result, they obtained a NE-tagged French corpus, which can be used to
train a French NE tagger. The effectiveness of this approach highly depends
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on the initial English NE tagging accuracy and the word alignment accuracy.
In the context of spoken document retrieval, Meng et al. (2001) developed

an English-Chinese NE transliteration technique using pronunciation lexicon
and phonetic mapping rules. Given an English name, its English pronuncia-
tion phonemes are first generated by pronunciation lexicon lookup and letter-
to-phoneme generation rules, then English phonemes are further converted
into Chinese pronunciation phonemes (syllable initials and finals) using cross-
lingual phonetic mapping. Finally, a Chinese phoneme lattice is constructed
from which the most probable Chinese syllable sequence is found.

In Huang & Vogel (2002), we extract NE translations from aligned parallel
corpus, where NEs are independently tagged for each language. Then we use
a bootstrapping method to correct initial NE tagging errors and improve the
NE translation accuracy. Moore (2003) proposed three progressively refined
phrase translation models to learn the translations of NE phrases from parallel
software manual corpus.

With the success of search engines such as Google, mining NE translations
from web corpora becomes a new trend. A large number of web pages con-
tain useful bilingual information, which may not be strictly parallel but con-
tain both source NEs and their translation in another language. These web
pages can be found using different information retrieval techniques, and NE
translations can be extracted from retrieved web pages with several alignment
features. Cheng et al. (2004) uses a source NE as the query and search only
within target language web pages. Zhang & Vines (2004) search the whole
web for all the web pages containing the source NE, then use format features
such as parentheses to find their translations. Huang et al. (2005a) search for
mixed language web pages using the source NE and semantically relevant tar-
get words as queries, then apply phonetic, semantic and frequency-distance
features for high-recall, high-precision NE translation mining.
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Chapter 3

NAMED ENTITY EXTRACTION
FROM TEXT

NE extraction from text is a very important research area. It is also the basic
technology for NE extraction from speech and NE translation. The text NE
extraction quality directly affects the performances of speech NE extraction
and NE translation. This problem has been thoroughly investigated, and the
state-of-the-art performance is satisfactory.

3.1 HMM-based NE Extraction

One of the state-of-the-art NE extraction models is based on the Hidden Markov
Model framework, as described in Bikel et al. (1997). In this framework several
named entity classes (such as PERSON, LOCATION and ORGANIZATION) as
well as one remaining class (NOT A NAME) are represented by four internal
”hidden” states. This is a generative model, assuming that a given sentence is
generated according to the following process:

• The current name class N is selected according to the previous word and
its name class;

• The first word in a name class is generated according to the current and
previous name classes;
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• Each subsequent word in this name class is generated from a class de-
pendent bigram model.

In the training procedure we want to estimate the following three probabilities:

1. pc(N |w−1, N−1), the name class transition probability;

2. pf (w1|N,N−1), the first word generation probability;

3. pb(w|w−1, N), the class-dependent bigram word generation probabilities.

where N and N−1 represent the current and previous name classes respectively,
w1 represents the first word in the current name class, w represents the current
word, and w−1 represents the previous word.

In the decoding process, the Viterbi decoding algorithm Viterbi (1967) is
applied to find the name class sequence which maximizes the probability of
generating words in the whole sentence. Suppose the sentence has L words,

~N∗ = argmax ~N P ( ~W, ~N) (3.1)

= argmax ~N p(N1)× p(w1|N1)×
L∏

i=2

P̃ (wi, Ni|wi−1, Ni−1), (3.2)

where ~W stands for word sequence (w1, w2, . . . , wL), ~N denotes name class
sequence (N1, N2, . . . , NL), and P̃ (wi, Ni|wi−1, Ni−1) represents the transition
probability from wi−1 to wi, assuming the class transition is from Ni−1 to Ni.

When the transition is between different classes,

P̃ (wi, Ni|wi−1, Ni−1) = p(end|wi−1, Ni−1)×
pc(Ni|wi−1, Ni−1) × pf (wi|Ni, Ni−1). (3.3)

When the transition is within the same class, i.e., Ni = Ni−1,

P̃ (wi, Ni|wi−1, Ni−1) =

p(no end|wi−1, Ni−1) × pb(wi|wi−1, Ni). (3.4)
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The p(end|wi−1, Ni−1) and p(no end|wi−1, Ni−1) denote the probability of ex-
iting or remaining in the previous name class given the previous word. Here
end and no end are considered as delimiters generated in each name class, but
they are not real words. Thus we do not calculate their word generation prob-
abilities.

To smooth data sparseness problem, we take the following back-off paths
for probability estimation.

• pc(N |w−1, N−1) → pc(N |N−1) → pc(N) → 1
number of name classes

• pf (w1|N,N−1) → pf (w1|N) → pf (w1) → P (N)
V ocabulary size

• pb(w|w−1, N) → pb(w|N) → P (N)
V ocabulary size

When a specific model cannot be reliably estimated (e.g., the occurrence fre-
quency of a certain event is too small), we interpolate it with the one-step-
further more general model. We manually set the interpolations weights as 0.7
for the specific model and 0.3 for the general model.

As our goal is to extract NEs from multiple spoken languages, we do not
exploit any case or punctuation information, which are very helpful features
for English NE extraction, as used in Bikel et al. (1997).

This framework requires supervised learning for model training. In other
words, the three probabilities pc, pf and pb are learned based on frequency
counting of specific events from labeled data, which are newswire and broad-
cast corpus with manually annotated NEs.

pc(N |w−1, N−1) =
C(w−1, N−1, N)

C(w−1, N−1)
(3.5)

pf (w1|N,N−1) =
C(N,N−1, w1)

C(N, N−1)
(3.6)

pb(w|w−1, N) =
C(w, w−1, N)

C(w−1, N)
(3.7)
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3. NAMED ENTITY EXTRACTION FROM TEXT

Language genre # of words # of NEs
newswire text 26,325 2,383

Arabic broadcast news 15,872 1,799
total 42,197 4,182

newswire text 36,689 2,410
Chinese broadcast news 29,300 2,140

total 65,989 4,550
newswire text 57,205 4,579

English broadcast news 33,479 2,440
total 90,684 7,019

Table 3.1: ACE multilingual NE training data

3.2 Multilingual Named Entity Extraction

We apply the HMM NE extraction model to several languages, including Ara-
bic, Chinese and English. For each language we have various amounts of text
with manually annotated NEs. They are mainly from the Linguistic Data Con-
sortium (LDC) TIDES Automatic Content Extraction (ACE) 2003 Multilingual
Training Data1. Table 3.1 shows the sizes and genres of multiple language
training data. The training data are from two genres, newswire text and broad-
cast news. Since the training data from each single genre are rather limited,
and considering that these two genres share similar NE occurrence patterns,
we combine them together and train a NE extraction system for each language.
We apply langauge-specific preprocessing steps:

• For Arabic, we convert UTF-8 encoding text into Darwish, i.e., to roman-
ize the original Arabic script.

• For Chinese, we apply word segmentation procedure with a word list
with 43,959 entries.

• For English, we ignore case information and convert all the words into
uppercase.

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2004T09
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3.2 Multilingual Named Entity Extraction

Test set # of words # of NEs Precision Recall F-score
Arabic 3,242 438 86.63 69.03 76.83

Chinese 4,680 425 87.60 69.25 77.35
English 9,532 608 84.73 69.84 76.57

Table 3.2: Multilingual NE extraction performances

We select 90% of the annotated text as the training data, and 10% as the test
data. The evaluation metrics for NE extraction include precision, recall and F-
score. Precision (P ) indicates the percentage of correctly extracted NEs among
all the automatically extracted NEs, recall (R) denotes the percentage of cor-
rectly extracted NEs compared with all the manually annotated true NEs, and
F-score is defined as

Fscore =
2PR

P + R
. (3.8)

Table 3.2 shows the NE extraction results for three languages. Although we
have different amount of training data for each language, the NE extraction
performances on all the three languages are at the same range. We further
evaluate the impact of different amount of training data on NE extraction per-
formance. We have a relatively large amount of manually annotated English
text from the Hub4 IE NE-tagged corpus. We select part of them (273K words)
and all of them (859K words) to train two NE taggers. Because the Hub4 NE
tagging guidelines are slightly different from the ACE annotation guidelines,
we additionally select one unseen Hub4 NE-tagged document as the test set.

Table 3.3 shows the sizes of different training corpora and their perfor-
mances. We train three English NE taggers with different training corpora, and
evaluate them on the same English test set. We see that with a relatively small
amount of training data (90K words with 6.4K NE examples for training), the
76.6% NE extraction performance is reasonably good. Double the NE training
samples, the F-score is improved by more than an absolute 10%. Further triple
the NE training samples, the F-score is still improved from 87.1% to 92.6%,
but the improvement curve is getting diminishing. For Arabic, other than the
42K NE annotated data from ACE, we have additional 223K data from FBIS
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3. NAMED ENTITY EXTRACTION FROM TEXT

Training corpus # of words # of NEs Precision Recall F-score
ACE-English 90,684 6,411 84.73 69.84 76.57
Hub4 (part) 273,496 12,183 90.28 84.14 87.10
Hub4 (all) 859,347 34,315 93.23 91.40 92.31

Table 3.3: NE extraction performance vs. various amount of training data:
English

Training corpus # of words # of NEs Precision Recall F-score
ACE-Arabic 42,197 4,182 86.63 69.03 76.83
FBIS-Arabic 223,577 16,906 92.28 82.52 87.12

Table 3.4: NE extraction performance vs. various amount of training data:
Arabic

corpus. We train another Arabic NE tagger with this larger amount of corpus,
and observe similar improvement on NE extraction performance, as shown in
Table 3.4.

3.3 Learning from Imperfectly Labelled Data

Table 3.3 and 3.4 show that the NE extraction performance highly depends on
the amount of training data. For Chinese, we do not have enough manually
annotated training data. However, we can use an off-the-shelf Chinese NE
tagger, such as IdentiFinder1, to automatically tag NEs from a Chinese text
corpus, thus obtain a large amount of NE annotation corpus with automatic
NE tagging errors. Using these imperfectly labeled data we can train our own
Chinese NE tagger.

Why bother to train a NE tagger using noisy data? Why not just use the
off-the-shelf NE tagger? Could the re-trained NE tagger perform better than
the original NE tagger? One motivation is that the performance of our NE
tagger can be carefully analyzed and new functions, such as NE tagging confi-
dence measures, top-N decoding hypotheses output, and a context-based NE

1IdentiFinder is an HMM-based NE tagger trained with much more training data.
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3.4 Summary

System Precision Recall F-score
Manual 87.60 69.25 77.35

IdentiFinder 79.43 79.06 79.25
Re-trained 87.12 84.11 85.59

Table 3.5: NE extraction performance vs. various amount of training data:
Chinese

extraction model (which can handle ASR NE errors for speech NE extraction,
see 6.2.1) can be designed and implemented. Moreover, we are interested in
the strength from bootstrapping. Running an imperfect NE tagger on large
amount of text, we expect that some inconsistent NE tagging errors will be
cancelled out, and the overall model reflects correct NE tagging results and
unavoidable systematic tagging errors. These systematic errors can be identi-
fied according to confidence measures, and the most widely appeared errors
can be selected and interactively corrected based on active learning (Tang et al.
(2002)).

We run the IdentiFinder on a Chinese newswire corpus with 5.5 million
words, and retrain our own NE tagger using these automatically labeled data.
Table 3.5 shows the NE tagger performances trained from different amount
of data: manually annotated 57K words ACE data (Manual), the IdentiFinder,
trained from several hundred thousands words of manually annotated newswire
data, and the NE tagger re-trained from 5.5M noisy newswire data (Re-trained),
respectively. As expected, the IdentiFinder achieves higher performance than
the manually trained model, possibly due to more training data. As for the re-
trained tagger, even if it is trained with imperfectly labeled corpus, it is able to
recover some inconsistent NE tagging errors and achieve the highest F-score,
85.59%.

3.4 Summary

Since NE extraction from text is the basic technology for both speech NE ex-
traction and NE translation, we implement one of the most widely used NE
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3. NAMED ENTITY EXTRACTION FROM TEXT

tagging model based on hidden Markov model. We evaluate its performances
on different languages, including Arabic, Chinese and English. For each lan-
guage, we also experiment with various amount of training data. Our results
are comparable to state-of-the-art results. We develop a bootstrapping tech-
nique to train an NE tagger from imperfectly labeled data, and the retrained
NE tagger achieves better performances than the original NE tagger.
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Chapter 4

CROSSLINGUAL NAMED
ENTITY SIMILARITY FEATURES

Different types of NEs are translated in different ways: while most person and
location NEs are translated according to their pronunciations, most organiza-
tion NEs are translated based on their meanings. One should take advantage
of these similarity measures to translate different types of NEs. In addition,
the context words with which an NE co-occurs indicate the semantic meaning
of the NE, thus the similarity between source and target context words reflect
the similarity between source and target NEs. In this chapter, we will present
different features capturing the phonetic similarity, the semantic similarity and
the context similarity between source and target NEs.

4.1 Surface String Transliteration

Transliteration is to translate a source NE into the target language based on
their pronunciation similarities. Traditionally transliteration is made on the
phoneme level, that is, a source name is first converted into a source lan-
guage phoneme sequence, which is further translated into a target language
phoneme sequence, and finally converted into a target name. In this process,
converting source names into phonemes and converting target phonemes into
names require name-phoneme mapping dictionaries for both source and target
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4. CROSSLINGUAL NAMED ENTITY SIMILARITY FEATURES

languages. This is difficult for OOV name translation.
Considering that the written forms of person and location names often re-

semble their pronunciations, it is possible to discover NE translations through
their written forms, i.e., the transliteration on the surface string form. Com-
pared with the traditional phoneme transliteration method, the surface string
transliteration does not require a pronunciation lexicon, which is especially an
advantage for OOV name translations. For non-Latin languages such as Chi-
nese and Arabic, an indirect surface string transliteration is feasible through a
romanization process. This process maps each source language character into
a Latin character (letter) or character sequence with similar pronunciations.
For example, the Chinese translation of the English name ”fitzwater” is ”9�
»�”, whose romanization form, aka pinyin, is ”fei ci wo te”.

The mapping from source language characters into their romanization forms
are usually deterministic, while the mapping between the romanization letters
and English letters are probabilistic. When a collection of name transliteration
pairs are available (e.g., the Chinese-English NE translation dictionary released
by LDC1, in 2003), the letter transliteration probabilities can be learned using
an unsupervised learning algorithm, Expectation-Maximization (EM) (Demp-
ster et al. (1977)). When such resource is unavailable, we can automatically
extract name translation pairs either from a general domain word translation
dictionary (e.g., the Chinese-English Translation Lexicon released by LDC in
2002), or from sentence-aligned parallel corpora (such as the Hindi-English
parallel corpora described in section 5.2), base on the character transliteration
model proposed here. Compared with manually compiled NE translation lists,
automatic NE translation extraction can easily acquire large amount of bilin-
gual NE pairs, although the translation accuracy is a little less than perfect.

4.1.1 Character Transliteration Model

The character transliteration model measures the pronunciation similarity be-
tween a source name and a target name. With this model we will be able to
extract name transliteration pairs from a bilingual dictionary.

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T34
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4.1 Surface String Transliteration

Given a general domain word translation dictionary D, we want to find
Chinese-English NE translation pair (f ∗ne, e

∗
ne), which has the highest joint translit-

eration probability,

(f ∗ne, e
∗
ne) = arg max

(f,e)∈D
Ptrl(f, e)

= arg max
(f,e)∈D

Pm(f)Pt(e|f) (4.1)

where f is the Chinese character sequence and e is the English word string.
Pm(f) is the probability of generating the character sequence of the Chinese
NE, and Pt(e|f) is the probability of transliterating the Chinese name into an
English one. While Pm(f) can be computed directly from a character-based
language model trained with Chinese NEs,

Pm(f) = p(f1)p(f2|f1)
m∏

i=1

p(fi|fi−1, fi−2), (4.2)

the transliteration model is computed in the following way. Suppose f has m

characters. For i = 1, 2, . . . , m, a Chinese character fi is transliterated into an
English letter string ei through a pinyin syllable yi . The generation process
can be depicted as:

fi ∈ f → yi → ei ∈ e

Note that English substrings are strictly monotone, i.e., there is no letter over-
lapping between ei and ei−1. The subscript i indicates that the substring is
transliterated from fi, and it is not necessarily the ith word/letter in e.

Let us assume each Chinese character is independently transliterated into
an English letter string through its pinyin syllable. Considering that the map-
pings from Chinese characters to their pinyin syllables are mostly determinis-
tic, i.e., p(yi|fi) ≈ 1 , then

Pt(e|f) =
m∏

i=1

p(ei|fi)

=
m∏

i=1

p(ei|yi)p(yi|fi). (4.3)

35
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Figure 4.1: Surface string transliteration example

Suppose yi is composed of mi letters. For j = 1, 2, . . . ,mi , the letter yi,j is
aligned to the letter ei,k, where the alignment is represented as k = aj . Note
that when two letters are aligned to one letter, usually that involves letter in-
sertion and deletion. With the independence assumption,

p(ei|yi) =

mi∏
j=1

p(ei,k|yi,j). (4.4)

Thus the transliteration probability between a source name and a target name,
Pt(e|f), can be computed as

Pt(e|f) =
m∏

i=1

[
p(yi|fi)

mi∏
j=1

p(ei,k|yi,j, k = aj ∈ A)

]
(4.5)

where A is the character alignment path identified based on dynamic program-
ming. Figure 4.1 shows an example of Chinese-English name transliteration.
Given the letter alignment path (the sequence of black dots), the name translit-
eration probability is the product of letter transliteration probabilities over all
the aligned letter pairs. We compute the joint transliteration probability for
each word translation pair in the C-E translation dictionary, rank them and
select top N entries as name transliteration pairs.
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4.1 Surface String Transliteration

4.1.2 Parameter Estimation Using EM

Dynamic programming has been successfully applied in searching for the ”op-
timal” alignment path between two strings, where ”optimal” means the mini-
mum accumulated editing cost between the aligned word/letter pairs. Usually
the alignment cost is defined as 0 if the aligned character pairs are the same, or
1 if there exists insertion, deletion or substitution errors.

However, such a spelling-based binary cost function is not appropriate for
pronunciation-based transliteration, where the phonetic similarity is more im-
portant than the orthographic similarity. Ideally the alignment cost between
letters with similar pronunciations (e.g., ”c” and ”k” or ”p” and ”b”) should
be smaller. Considering that the letter transliteration probability reflects the
alignment cost, we define the alignment cost between a English letter ei,k and
a pinyin character yi,j as:

D(ei,k, yi,j) = − log p(ei,k, yi,j). (4.6)

This cost function is defined as the minus logarithm of the letter transliteration
probabilities. Naturally, the transliteration cost between a source and a target
NEs is defined as:

Ctranslit =
∑

(k=aj)∈A∗
D(ei,k, yi,j) (4.7)

= −
∑

(k=aj)∈A∗
log p(ei,k, yi,j). (4.8)

A∗ is the optimal letter alignment path, and the character transliteration prob-
ability is calculated from the character alignment frequency,

p(ei,k|yi,j) =
C(ei,k, yi,j)∑

e′ C(e′, yi,j)
(4.9)

where C(ei,k, yi,j) is the frequency that ei,k and yi,j is aligned.

The alignment frequency is collected from character alignment paths over
all name transliteration pairs, and each path is identified using dynamic pro-
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gramming under a given character alignment cost function. This can be solved
with the EM algorithm, as following:

1. Initialization: set all character alignment costs to be binary.

D(e, y) =

{
0 if e = y;

1 otherwise.

2. E-step: Identify character alignment paths based on the current align-
ment cost function D(e, y).

3. M-step: Estimate character alignment frequencies, update the character
transliteration probabilities and alignment cost functions as in Formula
4.9.

4. Repeat step 2 and 3.

In practice, we first extract name transliteration pairs from a bilingual word
translation dictionary using the binary cost function. Based on this initial im-
perfect NE list, the letter transliteration model and the character language
model are trained, and used for the NE joint probability estimation (see for-
mula 4.1, 4.2, and 4.5). In the following iterations, the letter transliteration
probabilities and alignment cost functions are updated, NE transliteration pairs
are re-selected according to the updated joint probabilities, and the translation
and language models are re-trained using the cleaner NE pairs.

4.1.3 Experiment Results

The bilingual dictionary is the Chinese-English dictionary version 3.1 released
by the LDC1. This dictionary contains 81,945 translation entries. Initially we
apply the standard string editing distance with the binary cost function and
select top-ranked 3,000 NE translation pairs for transliteration model train-
ing. Under the string editing distance function, Chinese names are always

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002L27
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4.2 Word-to-Word Translation Model

ranked highly because the romanizations of Chinese characters are often cor-
rect translations. Selecting too few NE translation pairs, foreign name trans-
lations are not included and their transliteration patterns are not effectively
represented. On the other hand, extracting too many NEs also increases more
non-NE noises.

From this name transliteration list, the letter transliteration model and the
Chinese character language model are trained. In each of the following it-
erations, we expand the amount of training data by adding additional 500
NE transliteration pairs. These name pairs are extracted from the bilingual
dictionary according to their joint transliteration probabilities, which are cal-
culated based on Formula 4.1 using the current transliteration and language
models. Given more name transliteration pairs, these models are more accu-
rately trained in each iteration. By estimating the precision of these extracted
name pairs, we can evaluate each model’s quality. This process continues un-
til adding more NE pairs does not improve the name extraction accuracy any
more, which happens at the 6th iteration where totally 5,500 ˜6,000 NE translit-
erations are included.

We randomly select 10% of extracted translation pairs and evaluate the pre-
cision that they are actually true names. Figure 4.2 shows the precision curve
after the 0 (baseline), 2nd, 4th and 6th iterations. ”0/1 baseline” represents
the result when using the binary cost function. ”Ite N” illustrates the result
after the N th iteration. One can see that for well-trained models (those after
the 4th iteration) the NE translation extraction precisions remain high for up to
top 5000 entries. The NE precisions are consistently increased after each itera-
tion. It is noticed that the most significant accuracy degradation happens at the
6000th name translation pairs. This indicates that most NE pairs in the dictio-
nary have already been included, and adding more non-NE entries will ”pol-
lute” the transliteration and langauge models, thus the performance drops.

4.2 Word-to-Word Translation Model

The surface string transliteration model captures the pronunciation similarity
between source and target NE pairs, which is an important feature for person

39



4. CROSSLINGUAL NAMED ENTITY SIMILARITY FEATURES

 

 

Figure 4.2: NE translation precisions with iteratively trained transliteration
models.

and location NE translations. However, most organization NEs are translated
based on their semantic meanings, which is most effectively characterized by
a word–to-word translation model. This feature models the likelihood that
the source and the target NEs are semantically equivalent, by calculating the
translation probability between each source word and each target word. The
word translation probabilities can be estimated either from a parallel corpus
using various alignment models, such as IBM translation models (Brown et al.
(1993)) and the HMM alignment model (Vogel et al. (1996)), or from a pre-
compiled bilingual dictionary like the Chinese-English translation dictionary.

Assume an English NE ene has L English words, e1, e2, . . . , eL, and a Chi-
nese NE fne has J Chinese words, f1, f2, . . . , fJ . Suppose the word translation
probability p(f |e) is already acquired via IBM alignment based on a parallel
corpus. The semantic translation probability of the source NE given the target
NE is computed using the IBM model-1, as:

Ptrans(fne|ene) =
1

LJ

J∏
j=1

L∑

l=1

p(fj|el). (4.10)

This model allows one source word fj to be aligned to any target word el, while
one target word can only be aligned to one source word. Considering that the
semantic equivalence between the source and target NE translations should
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be symmetric, we estimate both P (fne|ene) and P (ene|fne), and define the NE
translation cost as:

Ctrans(ene, fne) ≡ Ctrans(ene|fne) + Ctrans(fne|ene) (4.11)

= − [log Ptrans(ene|fne) + log Ptrans(fne|ene)]

That is, the translation cost of a given NE pair (ene, fne) is the sum of the minus
logarithm of the bidirectional conditional translation probabilities.

4.3 Context Vector Semantic Similarity

The surface string transliteration model is effective to find NE translation pairs
with similar pronunciations and spellings, but it is less effective at identifying
NE pairs with dissimilar pronunciations or discriminating different target NEs
with similar pronunciations. On the other hand, NEs often occur within cer-
tain semantically related contexts, such as the title of a person, the neighbor
area of a location. It is possible to combine the contextual semantic similar-
ity with the phonetic similarity to improve the NE translation accuracy. For
example, the following sentence pair talks about the same person: Although

Chn: V}/dutch ×/at �/china L&/ambassador O/hao y/de
î/yang�	/Mr. k
/visitÉG/wuhan�

Eng: ...among those present at today’s signing ceremony were d . j .
van houten , dutch ambassador to china...

the ambassador’s name (”d. j. van houten”) pronounces differently from its
Chinese translations (”O/hao y/de î/yang”), the common context within
which they both occur (although in different languages), ”dutch ambassador
to china”, indicates the strong association between the source NE and the tar-
get NE. In this section, we want to measure the semantic similarity between
the contexts of a source NE and a target NE.

Usually different context words have different correlation weights with re-
gard to an NE, and the weights depend on the word types and distances to
the NE. These weights reflect their discriminative power in predicting an NE’s
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meaning. The context word identities and their correlation weights can be rep-
resented by a context vector, and the semantic similarity between the source
and target NE contexts can be computed in terms of their context vector se-
mantic similarity. In the following, we will describe how to construct a context
vector for a given NE, and how to calculate the crosslingual semantic similarity
between a Chinese context vector and an English one.

4.3.1 Context Vector Selection

A context vector represents the words within a certain context of a given NE,
and each word is associated with a weight reflecting its semantic significance
to the NE. We select the most relevant words to construct a context vector,
where the relevancy is characterized according to the word’s Part-of-Speech
(POS) and distance to the NE. We use Phi-square coefficients to represent the
word identity weights, and these weights are atomic elements for the estima-
tion of different POS tag weights and distance weights. The POS tag weights
indicate the types of words that should be included in the context vector, and
the distance weights indicate the optimal window length of the context vector.

As a variant of the χ2, φ2 is a measure of the correlation between two cat-
egorical variables. Its value ranges from 0 (no correlation between the two
variables) to 1 (perfect correlation between them). In our situation, we want
to measure the correlation between an NE and its context word. The NE-word
semantic correlation coefficient can be defined as:

φ(n,w) =
o11o22 − o12o21√

(o11 + o12)(o11 + o21)(o21 + o22)(o12 + o22)
, (4.12)

where n,w are the NE and its context word respectively. o11, o22, o21, o12 are the
frequencies that they co-occur, neither occur, one occur and the other does not
occur. The higher the coefficient is, the more likely that the NE and the context
word are semantically correlated.

We estimate the NE-word correlation coefficients from an English newswire
corpus. It is composed of 37M words from 188,755 documents. 380,641 unique
English NEs are automatically tagged using our NE tagger, and the coefficients
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are calculated for each (NE, word) pair as in Formula 4.12. Here the word
is within [-20, 20] window around the NE. Table 4.1 shows the top 20 words
having the highest coefficients with regard to the NE ”Ehud Barak”, the former
Israel Prime Minister. Obviously words with high coefficients are mostly topic
relevant words. This indicates that the φ2 NE-word correlation coefficient is an
effective measure to topical relevance. We estimate the semantic significance of
a POS tag, like the noun, by summing the (NE, word) correlation coefficients
over all (NE, word) pairs, and we factor in the probability that each word’s
POS matches the current POS tag. Then we normalize it over all POS tags.

Suppose an NE n has a context word w, whose POS tag is t. Under the
empirical (NE, word) pair distribution f(n,w), the weight of the POS tag t is
defined as:

W (t) =

∑
(n,w) C(n,w)φ(n,w)p(t|w)∑

(n′,w′) C(n′, w′)φ(n′, w′)
(4.13)

where C(n,w) is the frequency that (n,w) co-occur, p(t|w) is the probability
that word w has POS t. Figure 4.3 illustrates the normalized weights of dif-
ferent POS tags. One can observe that high weight POS tags are often content
words (e.g., NNS (plural noun), VBG (verb gerund), NNP (proper noun), etc.
1). This is in accordance with what we normally expect. One may consider
using more general tag set such as ”noun”, ”verb”, ”adjective” and ”adverb”
or even just ”content words” vs. ”functional words” to select context. How-
ever, such general POS tag set does not differentiate the most important con-
tent words (such as proper nouns) from less important content words (such as
comparative adverb). We select the top 14 POS tags whose weights are larger
than 0.03 as context vector weights. Only the context words with these POS
tags are selected as context vector (CV) words.

Similar to the POS tag weights, the distance weights represent the seman-
tic significance of CV words at different positions. Starting from a 20 words
long window ranging from -10 (left 10 CV words) to 10 (right 10 CV words),
the weight corresponding to words at location l can be estimated from the

1We use the Penn Treebank POS tag set as our POS tagger is trained from Treebank data.
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Word Correlation Coefficients
prime 0.0319
israeli 0.0222

minister 0.0194
caretaker 0.0160

yasser 0.0145
arafat 0.0115
leader 0.0069

palestinian 0.0063
outgoing 0.0060
al-shara 0.0047
clinton 0.0046

bill 0.0034
yatom 0.0032
david 0.0030

summit 0.0030
ariel 0.0029
camp 0.0028
likud 0.0028

sharon 0.0028
cabinet 0.0027

Table 4.1: Context words with high correlation coefficients for the NE ”Ehud
Barak”
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Figure 4.3: Normalized word POS weights
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Figure 4.4: Normalized word location weights

(NE,word) coefficients:

W (l) =

∑
(n,w) C(n,w, l)φ(n,w)∑

l′
∑

(n′,w′) C(n′, w′, l′)φ(n′, w′)
, (4.14)

where l is the location index, l ∈ [−10, 10], l 6= 0. C(n,w, l) is the frequency
that word w occurs at the location l in the context vector of n. Figure 4.4 illus-
trates the normalized location weights, which looks like a Gaussian distribu-
tion: words within short distances have higher correlation coefficients to NEs.
Notice that about 95% of weights are distributed within the [-7,7] window, so
we select the context window length to be 14.

To summarize, the context vector of an NE is constructed from its left and
right 7 content words, where ”content words” are those whose POS tags are
among the top 14 Content POS tag Set (CPS), as shown in Table 4.2. The com-
plete Penn Treebank Tag Set are listed at Appendix A. The context vector is
composed of both context word identities and their semantic weights:

V = {(w, W (t, l))|l ∈ [−7, 7], l 6= 0, t ∈ CPS} , (4.15)
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POS Tag Meaning Weights
NNS common noun, plural 0.116
VBG verb / gerund 0.110
NNP proper noun 0.109

JJ adjective 0.091
VBZ verb/present, 3rd singular 0.085
JJS adj. / superlative 0.076
JJR adj. / comparative 0.071

VBN verb/past particle 0.070
NN common noun 0.064
FW foreign word 0.059

VBD verb/past 0.052
VB verb, base form 0.051
RB adverb 0.043

Table 4.2: English Context Vector POS Set and Weights

where W (t, l) = W (t)W (l) is the product of their POS and location weights.

We apply similar processing on Chinese NE-tagged corpus. As a result, 9
out of 33 Chinese POS tags (different from the English POS tag set) are selected
as a context word POS set, as shown in Table 4.3, and similarly we select the
context window in the range of [-7, 7].

4.3.2 Semantic Similarity between Context Vectors

Given a bilingual NE pair (ne, nf ) with their context vectors (ve, vf ), the seman-
tic similarity between the two vectors can be defined as the ”mutual transla-
tion probability”, which is the product of two conditional semantic translation
probabilities,

S(ve, vf ) = P (vf |ve)P (ve|vf ) (4.16)

where P (ve|vf ) is the probability that the source vector is ”semantically trans-
lated” into the target vector. It is computed using a modified IBM translation
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POS Tag Meaning Weights
NN common noun, (except proper noun and temporal noun) 0.4248
VV verb (excepting predicative adjective, ”be” and ”have”) 0.2445
NR proper noun 0.1312
AD adverb 0.0782
CD cardinal number 0.0452
JJ adjective 0.0332
M measure word 0.0247
VA verb (predicative adjective) 0.0183
NT temporal noun 0.0139

Table 4.3: Chinese Context Vector POS Set and Weights

model-1 (Brown et al. (1993)),

P (ve|vf ) =
1

IJ

J∏
j=1

[
W (tj, lj)

I∑
i=1

p(ej|fi)

]
, (4.17)

where I is the length of the source context vector and J is the length of the
target context vector. p(e|f) is word translation probabilities. W (t, l) is the CV
weights of the target word. Incorporating W ensures that important context
words, such as the title of a person, should be translated correctly. P (vf |ve) is
estimated in the similar way.

The above three features represent various phonetic and semantic similar-
ities between source and target NEs. In the next chapter, we will demonstrate
how we apply these features to find NE translations in different scenarios.

4.4 Summary

In this chapter we propose a surface string transliteration model capturing the
phonetic similarity between a source NE and a target NE. We also adopt an
IBM word-to-word translation model measuring the semantic similarity be-
tween the source and target NEs. Finally we develop a context vector model
characterizing the semantic similarity between the contexts of source and tar-
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4.4 Summary

get NEs. We demonstrate how to select context words based on their POS and
distance information, and how to calculate each context word’s weight, which
reflects the semantic significance of that word.
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Chapter 5

NAMED ENTITY TRANSLATION
FROM TEXT

In this section we will demonstrate how to apply various NE translation simi-
larity features, introduced in Chapter 4, to translate NEs from text input stream.
In particular, we will tackle NE translations in the following three scenarios:

• Given a sentence aligned parallel corpus, where NEs are automatically
tagged in both languages independently, how to align these bilingual
NEs? Additionally, is it possible to improve the NE extraction accuracy
for each language given accurate NE alignments with another language?

• Given a sentence aligned parallel corpus as above, but NEs are automat-
ically tagged only in one language (usually in English), how to find their
translations in the other language? In other words, we attempt to project
NE tagging across languages.

• Given a source NE and its context, such as the sentence or the document
where this NE occurs, how to find the translation for this NE? This is a
very typical problem in machine translation, where the source NEs are
surrounded with contextual information, such as neighbor phrases, sen-
tences or documents.
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5. NAMED ENTITY TRANSLATION FROM TEXT

5.1 Named Entity Alignment from Parallel Corpus

We want to align NEs from a sentence aligned parallel corpus, for example,
a corpus containing Chinese and English sentence pairs. NEs are automati-
cally tagged for each language. We incorporate the transliteration and word-
to-word translation features to measure the phonetic and semantic similarities
between a source NE and a target one. We define the NE alignment cost as the
sum of the two features, and NE pairs with minimum alignment cost are con-
sidered as correct translations. The aligned NE pairs can be used to construct
a probabilistic NE translation dictionary, which is integrated into a statistical
machine translation system to improve its translation quality.

One problem is that the bilingual sentences in the parallel corpus may not
be strictly aligned. Since these sentences are automatically mined and aligned
from comparable corpora, many sentence pairs may talk about the same events
or topics, but may not be exact translations of each other. Some NEs occurring
in a Chinese sentence may disappear in the English sentence. For example, an
automatically aligned Chinese-English sentence pairs is : Here a Chinese NE,

Chn: â/According to j Ù î/ Macedonia cª/news ö/agency ç
w/report,jÙî/macedoniak�/join�/the\è/force{|
j/peopleÕ/about�/is 150|/troops .

Eng: Macedonia will send about 150 troops to join the force , the news
agency said .

”jÙî/Macedoniacª/newsö/agency” is just simply translated as ”the
news agency”, a non-NE English phrase. Thus it is impossible to align these
unparallel NEs and non-NE phrases.

Even if the sentence pair is a strict translation and all the NEs in the source
language are translated in the target languages, there exists automatic NE tag-
ging errors: some NEs are either untagged (missing), partially tagged or over-
tagged (false positive) with other words. These NE tagging errors also cause
NE translation problems. For example, an automatically tagged Chinese sen-
tence

�V PER{|}�)ORG{÷�Æ��\}� PER{j}}F 12�ó
$-ÌD LOC{¥)})�S,L
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should be tagged as

�V PER{|�)} LOC{÷�Æ}��\� PER{j}F} 12�ó
$-ÌD ORG{¥))�S,L}

To recover from these partial NE tagging errors, we apply an variable-length
sliding window around the original tagged NEs. The window initially matches
an automatically tagged NE, but both ends of the window are allowed to ex-
pand and shrink within a certain range. As a result, a set of candidate NEs are
generated, e.g., @PER{|} , @PER{| �} and @PER{| � )}, which is the
correctly tagged NE. To measure the likelihood that generated NEs are true
NEs, we use type-specific NE language model probabilities.

5.1.1 Type-specific NE Language Models

We assume that a bilingual NE translation pair (ene, fne) should have the same
NE types, i.e., person names should be translated as person names, and loca-
tion names should be translated as location names. Therefore we train word-
based language models for each NE type (person, location and organization) in
each language. The training data is collected from person/location/organization
NEs in manually or automatically annotated corpora, where the NE START
and NE END symbols are added as boundaries for each NE. We calculate the
probability that both ene and fne are generated from the same NE type language
models, and select the NE type that maximizes such probabilities (correspond-
ing to the minimization of the minus logarithm probabilities). If an NE is mis-
recognized (false positive or partial matching with incorrect NE boundaries),
the probability should be small under correct NE type language models.

We define the overall NE language model cost as

Clm(fne, ene) = min
N

[
− log P̃ (fne|N)− log P̃ (ene|N)

]
. (5.1)
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5.1.2 Multiple Feature Cost Minimization with Competitive

Linking

Given the NE-tagged sentence pair, we apply the variable-length sliding win-
dow around the originally tagged NEs. We consider all the extracted source
and target NEs as possible NE translation candidates. For each bilingual NE
pair, we combine several feature functions via linear combination. The lin-
ear combination framework includes a phonetic feature, the transliteration cost
Ctranslit , a semantic feature, the translation cost Ctrans and a NE language model
feature, the LM cost Clm. For a NE pair (ene, fne), the multiple feature alignment
cost is their linear combination:

Cmfa(fne, ene) = λ1Ctranslit(fne, ene) + λ2Ctrans(fne, ene) + λ3Clm(fne, ene), (5.2)

where Ctranslit, Ctrans, and Clm are defined in formulae 4.7, 4.11 and 5.1, respec-
tively. λ1, λ2 and λ3 are their interpolation weights. We consider translitera-
tion, translation and LM costs equally important. We selected some correctly
aligned NE pairs and examined the value range of different alignment costs.
We set the interpolation weights such that the weighted alignment costs are
in the same range. Another scheme is to set the interpolation weights accord-
ing to the type of aligned NE pairs. As most person names are phonetically
transliterated, one may set the transliteration weight with higher value if the
aligned NE pairs are person names. Similarly, one may set the translation
weight with higher value when aligning organization names, as most orga-
nization names are often semantically translated. Since location names can
be either phonetically or semantically translated, the three weights can be set
equally.

Given a bilingual sentence pair containing multiple NEs in each language,
we want to find the optimal NE alignment path A∗ such that the sum of the
NE pair alignment costs along A∗ is minimum.

Mathematically, let F = (fne1 , fne2 , . . . , fnen) denote the set of n source NEs
in a given source sentence, and let E = (ene1 , ene2 , . . . , enem) denote the set of
m target NEs in a given target sentence. The optimal NE alignment path A∗
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satisfies

A∗ = argminAS(A) (5.3)

= argminA

∑

(j=ai)∈A

Cmfa(fnej
, enei

).

where sentence alignment cost S(A) is the sum of NE alignment costs along an
alignment path A. We adopt an algorithm similar to the competitive linking
algorithm (Melamed (2000)) to find A∗ :

1. Initialization: the source sentence F has n tagged NEs, and the target
sentence E has m tagged NEs. T is an empty set to store aligned NE
pairs;

2. Let N store all possible source and target NE combination pairs, with
m × n entries in total. Compute the multiple feature alignment cost for
each pair with Formula 5.2;

3. Sort NE pairs in N according to their alignment costs, and the pair with
minimum alignment cost is on the top;

4. Move the topmost pair (fne, ene) from N to T ;

5. Remove all (fne, •) and (•, ene) pairs from N to avoid alignment conflic-
tion. In other words, if a source NE is aligned with a target NE, it can not
be aligned with any other target NEs. Vice versa;

6. Repeat Step 3, 4 and 5 until N is empty or the alignment cost is higher
than a threshold. T stores all aligned NE pairs, and implicitly represents
the optimal alignment path A∗.

Because bilingual sentence pairs may not be exact translation of each other,
it is very likely that NEs appeared in one language do not have their trans-
lations in the other language. Therefore we did not penalize unaligned NEs,
such as adding NE null alignment costs.

Note that this algorithm is a greedy search approximation. At each step it
chooses locally an optimal alignment pair, the NE translation pair with mini-
mum alignment cost, among all the unaligned pairs. It cannot guarantee the
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global optimality. But empirically it often finds the alignment path with mini-
mum or close to minimum sentence alignment cost.

We apply NE alignment over all the sentence pairs in a bilingual corpus.
For each source NE, we store all aligned target NEs, together with their align-
ment frequencies in the whole corpus. The NE translation probability is calcu-
lated according to the relative alignment frequencies:

Palign(ene|fne) =
C(fne, ene)∑
e′ne

C(fne, e′ne)
. (5.4)

We construct an NE translation dictionary that includes source NEs, their pos-
sible target translations and the translation probabilities, Palign(ene|fne) . Since
the alignment is bi-directional, the above formula can also be used to estimate
Palign(fne|ene).

5.1.3 Improving Named Entity Alignment

We evaluate the NE alignment performance on a set of Chinese-English sen-
tence pairs. We randomly select 100 Chinese-English sentence pairs with 4950
Chinese words and 5646 English words. After manually annotating and align-
ing, this test set yields 357 NE translation pairs. These manually aligned named
entities are used as the gold standard to evaluate the performance of automatic
NE alignments. The evaluation metrics for NE alignment include precision, re-
call and F-score. Similar to the evaluation metric for NE extraction, precision
measures the percentage of correct NE alignments over all the automatic NE
alignments, recall measures the percentage of correct NE alignments over all
the manual NE alignments.

Table 5.1 shows the precision, recall and F-score of NE alignment when
we use different similarity feature functions. Using the word-to-word trans-
lation cost alone achieves 74.5% F-score. The reason is, this model effectively
captures the semantic similarities between bilingual frequently occurring NEs,
thus a majority of NEs can be reliably translated. The variable-length NE align-
ment window and NE LM costs are able to correct some automatic NE tag-
ging errors, thus improve the NE alignment F-score by 3%. On top of that the
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Precision Recall F-score
Ctrans 66.1% 85.5% 74.5%

Ctrans + Clm 69.7% 87.7% 77.7%
Ctrans + Clm + Ctranslit 73.8% 90.5% 81.3%
ManualAnnotation 91.3% 96.1% 93.7%

Table 5.1: Precision, recall and F-score of NE alignment using different similar-
ity features

transliteration model effectively captures person name alignment, and addi-
tional 2.8% F-score improvement is achieved.

The last row shows the NE alignment accuracy when all the three feature
functions are applied on manually annotated test data, where there is no NE
tagging error. The significant improvement in F-score , from 81.3% to 93.7%,
indicates that initial automatic NE tagging errors (83F for Chinese NE tagging
and 87F for English NE tagging) remain the major cause of alignment errors.
Figure 5.1 also illustrates some NE alignment examples from Chinese-English
sentence pairs, where (*) indicates incorrect NE alignments.

5.1.4 Improving Machine Translation Quality

We construct an NE translation dictionary based on NE alignment frequen-
cies collected from a Chinese-English sentence-aligned parallel corpus. This
newswire corpus contains about 152K sentence pairs, with 6M English words
and 5.5M Chinese words, from Xinhua News Agency, Penn Treebank data and
subsampled FBIS data. After automatically NE tagging, 480K Chinese NEs
and 340K English NEs are labeled. It is rather surprising to find so many extra
Chinese NEs (30% of total Chinese NEs are not translated). Further analysis
shows that this is mainly due to the inexact translation between Chinese and
English sentences. Additionally, automatic NE tagging errors are also part of
the reason.

We apply multi-feature NE alignment on each sentence pair, then collect
NE alignment frequencies over all the sentence pairs. The more often two
NEs are aligned, the more likely they are correct translations. So we add the
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Figure 5.1: Selected parallel sentences and extracted NE translations with dif-
ferent feature combination
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logarithm of the alignment frequency on the multi-feature alignment cost, and
construct the NE translation dictionary based on the updated NE alignment
costs. After removing unreliable NE translation pairs whose alignment costs
below a threshold (-20 in our experiment), we get 300K NE translation pairs.
Removing duplicate entries, we have 71,848 unique NE translation pairs, with
25,721 unique Chinese NEs and 32,857 unique English NEs. On average, each
Chinese NE has three candidate translations. The NE translation dictionary
achieves 83% translation accuracy on automatic NE tagging sentence pairs,
and 88% translation accuracy on sentences with manual NE annotations.

We integrate this dictionary into a statistical machine translation (SMT) sys-
tem and evaluate it on the Chinese-English newswire translation task. The
SMT system is based on weighted finite state transducers (Vogel et al. (2003)),
where each transducer is a collection of bilingual translation pairs of words,
phrases or NEs. In our experiment, three transducers are used in the transla-
tion system:

• A word-based transducer (LDC), which is essentially the LDC Chinese-
English bilingual dictionary. Since this dictionary is manually compiled,
it has very high accuracy.

• Phrase-to-phrase transducers (HMM), where the phrase pairs are extracted
from the HMM Viterbi alignment path from each sentence pair in the
same bilingual corpus.

• A NE transducer based on the NE translation dictionary.

The evaluation data is the newswire test data used in TIDES 2001 machine
translation evaluation. It contains 993 Chinese sentences, 24,821 words. Auto-
matic NE tagging yields 2,379 NEs with 3,597 words. Evaluation metrics are
fully automatic, including Bleu (Papineni et al. (2002)) and NIST (Doddington
(2002)) scores. These scores measure the precision or the information gains of
matched N-grams between reference translations and the machine translation
hypothesis. Table 5.2 shows the improvement on translation qualities with
and without the NE transducer under various baseline systems. We find that
the NE translation dictionary showed improvements in both cases. When we
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NIST Bleu
LDC 6.01±0.1 22.04±0.5

LDC+NE 6.47±0.1 23.56±0.5
LDC+HMM 7.50±0.1 29.07±0.6

LDC+HMM+NE 7.57±0.1 29.22±0.6

Table 5.2: Improved translation quality by adding NE translations

only use the LDC dictionary in the baseline MT system, adding the NE trans-
ducer significantly increases the Bleu score by 2 points, which corresponds to
0.46 increase of NIST score. When the HMM-based phrase transducer is fur-
ther added into the baseline system, the improvement from NE transducer is
quite small, with 0.15 Bleu points and 0.07 on NIST score (not statistically sig-
nificant). This is because both the phrase transducer and the NE transducer
are trained from the same bilingual corpus, thus most of the information car-
ried by the NE transducer has already been included in the phrase transducer.
More improvement to MT quality is introduced by NE translation mining tech-
nique, which can access monolingual corpus to translate OOV NEs. Details are
given in section 5.3.

5.2 Named Entity Translation Projection Across Lan-

guage

Given a sentence-aligned parallel corpus where source and target languages
have different amount of resources (annotated data, NLP tools etc.), for NEs in
the resource-rich language we want to identify their translations in the resource-
poor language. For example, in the Surprise Language Exercise (Oard (2003)),
the Hindi to English (H-E) translation system was needed in a short period
of time (a month). Although many NLP resources and tools, including high-
performance NE taggers, are available for English, there are very limited re-
sources and tools for Hindi. As a result, without a Hindi-English translation
lexicon and a Hindi NE tagger, direct Hindi-English NE alignment is not pos-
sible. However, given automatically tagged English NEs, we can find their
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Hindi translations based on their phonetic similarity.

5.2.1 Extracting NE Translation Pairs with Limited Resources

Yarowsky & Ngai (2001) proposed a method that projects NEs from English to
another language using standard word alignment models (Brown et al. (1993)).
However, the performance of this approach highly relies on the quality of word
alignment. With limited amount of parallel corpus1, the word alignment qual-
ity is not satisfactory. As some NEs may be incorrectly segmented as sequence
of characters in a certain language, it is more difficult to align several NE char-
acters in one language with one NE word in another language, due to word
segmentation errors and alignment model limitations. Additionally, for ma-
chine translation purposes, this approach gives no additional benefits over
phrase-to-phrase translation model, where the phrase pairs are also extracted
based on word alignments from the bilingual corpus (Vogel et al. (2003)).

Considering that person and location names are often phonetically trans-
lated and their written forms resemble their pronunciations, it is possible to
discover NE translation pairs through their written forms, i.e., through sur-
face string transliteration. Compared with traditional phoneme transliteration
methods, a surface string transliteration model does not require a pronunci-
ation lexicon, which is an advantage especially for less frequently occurring
names. As introduced in section 4.1, the surface string model measures pho-
netic similarity according to probabilistic string editing distances. Similar to
the Chinese-English name transliteration, a romanization process is also re-
quired for Hindi-English transliteration. For example, a Hindi word is roman-
ized as ”kalakattaa”, which is the translation of ”Calcutta”.

We automatically learn the transliteration model between Romanized Hindi
and English letters, and apply this model to extract Hindi-English NE pairs
from the sentence aligned parallel corpora. Given a sentence pair, for each
tagged English person and location name we search for its Hindi correspon-
dence in the Hindi sentence. The Hindi candidate NEs are composed of N con-
secutive words (with varying N ), and we try to find the candidate NE with the

1The Hindi-English parallel corpus has several hundred thousands words.

61



5. NAMED ENTITY TRANSLATION FROM TEXT

minimum transliteration cost. Finally we construct an Hindi-English NE trans-
lation dictionary from the bilingual corpus. The Hindi-English transliteration
model can be learned either directly from the parallel corpus, or adapted from
an already learned Chinese-English transliteration model (see section 4.1). Be-
cause of the noise in the Hindi-English parallel corpus and the high quality
Chinese-English alignment model baseline, the adapted model outperforms
the directly learned model. Detailed experiment results are shown in section
5.2.3.

5.2.2 Adapting A Transliteration Model for Hindi NE Transla-

tion

Because of the difference in language pairs and encoding schemes, the follow-
ing problems must be tackled before applying the Chinese-English translitera-
tion model to Hindi-English NE translation:

• The Hindi sentences are encoded as Devanagari characters. A roman-
ization tool based on code table lookup is applied to convert Devanagari
characters into Roman letters.

• The transliteration model is originally trained on Chinese-English NE
pairs. Because of different Hindi-English letter alignment patterns, model
adaptation is required. In practice, the Chinese-English transliteration
model is first applied to compute the Hindi-English transliteration cost,
resulting in a list of Hindi-English NE pairs with minimum alignment
cost. From those imperfect NE pairs, the Hindi-English transliteration
model is re-trained and applied in the next round of NE pair extraction.
After each iteration, the transliteration model are updated.

• Given that Hindi NE tagger is not available, it is impossible to extract
Hindi-English NE pairs by ”monolingual NE detection followed by bilin-
gual NE alignment”. On the other hand, Hindi NEs can be detected by
projecting English NEs into Hindi, according to their phonetic similar-
ity or transliteration cost, where the English NEs can be automatically
detected using any existing NE tagger.
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The following steps describe the procedure of Hindi-English NE translation
extraction from aligned sentence pairs:

1. Convert UTF-8 encoded Hindi Devanagari characters into Roman letters;

2. Initialize the Hindi-English transliteration model using a Chinese-English
transliteration model;

3. Automatically extract NEs from English sentences.

4. For each extracted English NE, we select the Romanized Hindi word or
word sequences with minimum transliteration cost by applying a variable-
length window sliding from the beginning to the end of the correspond-
ing Hindi sentence.

5. Collect Hindi-English NE transliteration pairs over all the sentence pairs,
and sort them according to their transliteration cost weighted by align-
ment frequencies. Pairs with high transliteration cost (less than -7) are
removed;

6. Retrain the current Hindi-English string transliteration model with se-
lected Hindi-English name transliteration pairs, and collect letter align-
ment frequencies. Based on that we update letter transliteration proba-
bilities and transliteration model;

7. Repeat step 4 to step 6 until convergence or over-fitting are observed (see
below);

8. Map the Romanized Hindi words back to their corresponding Devana-
gari Hindi characters.

Figure 5.2 illustrates how the transliteration model is initially trained from
Chinese-English model, then adapted for Hindi-English NE translation extrac-
tion. Notice that this approach searches for an acoustically similar Hindi name
for a given English person and location name, and the corpora to be searched
are not necessarily strictly parallel. It can be applied to comparable and mono-
lingual corpora containing the Hindi name as well.
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Figure 5.2: Iterative training and adaptation of the transliteration models.

5.2.3 Experiment Results

In our experiments, the Hindi-English parallel corpus is from the India Today
news agency, with 10,096 sentence pairs, 223K Hindi words and 215K English
words. Automatic NE tagging on the English side yields 2,451 English loca-
tion NEs and 1,614 English person NEs, which in total generates 1,172 unique
names.

We study several transliteration models to extract Hindi-English NE trans-
lation pairs from the above corpus. These models are 0/1 binary cost model
(the standard string editing distance model), the original Chinese-English translit-
eration model and the adapted Hindi-English transliteration models (after the
1st and 2nd model update iterations). For each model, we select 220 bilingual
NE pairs as the evaluation set, which rank as 1st-20th, 80th-99th, 180th-199th,
... 980th-999th in the sorted NE translation list. As in the sorted list, top ranked
NE pairs always have higher translation accuracies than bottom ranked NE
pairs, the selected NE pairs present a complete evaluation set for the translit-
eration model. We ask a native Hindi speaker to check the translation accuracy
for selected NE pairs. Table 5.3 shows the NE translation accuracy using differ-
ent transliteration models. One can see that the Chinese-English transliteration
model outperforms the generic string alignment model by 7%, because the for-
mer model is able to capture Hindi-English pronunciation similarity to some
degree. When we adapt it to the right Hindi-English transliteration model,
we gain additional 4.6% improvement on NE translation accuracy. Further
adaptation within the Hindi-English language pair still yields small but notice-
able improvement. The Hindi-English transliteration model can be learned in
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Alignment models Precision
0/1 binary 79.1%

C-E 86.3%
H-E (1st iteration) 90.9%
H-E (2nd iteration) 91.8%

Table 5.3: H-E NE pairs translation accuracies using different alignment mod-
els

Iterations Precision
0 binary 79.1%

1 85.9%
2 86.8%
3 88.2%
4 87.2%
5 86.8%

Table 5.4: Iterative NE translation accuracies starting with binary cost align-
ment model

two ways: adapted from the Chinese-English transliteration model or directly
adapted from the binary cost string alignment model. In the second case the
Hindi-English model is initialized with the binary cost, then is re-trained itera-
tively using extracted NE translation pairs. Table 5.4 shows the NE translation
accuracies after each iteration. We notice a significant increase of translitera-
tion accuracy after the first iteration, then a small but noticeable improvement
after the second and third iterations, then slightly decreasing accuracy in sub-
sequent iterations. The performance drop is possibly due to model overfit-
ting. However, the best result achieved this way (88.2% in iteration 3) is not
as good as the best result (91.8%) when we use the Chinese-English translit-
eration model for initialization. The reason is that the Chinese-English model
already captures letter pronunciation similarities to some extent, thus it will
provide more reliable baseline NE pairs for further re-training.

We also show some extracted Hindi-English NE pairs examples in Figure
5.3, together with their modified transliteration costs (minus logarithm of the
alignment frequencies, thus the alignment cost can be negative). Note that the
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Figure 5.3: Extracted Hindi-English NE pairs

lower the weighted cost, the more accurate the transliteration. One can find
similar spelling patterns between aligned Romanized Hindi NEs and English
NEs, for both correct and incorrect (marked with ”*”) NE translation pairs.
Since for each extracted English NE the proposed approach always searches
for the best matching Hindi NE, its recall rate depends mostly on that of the
English NE extraction. We also share the bilingual NE list within the TIDES
Surprise Language Exercise community.

5.3 Search for Named Entity Translation

NE alignment from sentence-aligned parallel corpora usually achieves high
translation accuracy. However, because of the limited amount of bilingual cor-
pora, rarely occurring NEs may not be covered. Translating them correctly is
more difficult. For example, when translating an ambassador’s name,Oyî,
in the following Chinese sentence:

Chn: V}×�L&Oyî�	6¯ÉG

Ref: netherlands’ ambassador to china, van houtenÇ visited wuhan

Hyp: netherlands ambassador hao germany hurls visited wuhan

Because the correct translation ”van houten” was not included in the trans-
lation lexicon and parallel corpus, the ambassador’s name is first wrongly
segmented as a sequence of single characters, which then are inappropriately
translated based on the semantic meanings of each single character, ”O/hao
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y/germany î/hurls”. On the other hand, if these rarely occurring NEs do
appear in the parallel corpora, their translations may already be captured by
various phrase translation tables. As a result, the overall MT translation per-
formance is not improved much. This is especially true when NE translation
dictionaries is trained from the same parallel corpus where other phrase trans-
lation tables are learned.

However, correct translations of these rarely occurring NEs may exist in
a much larger target language monolingual corpus, which is much easier to
obtain compared with bilingual corpora. It would be desirable to make use
of relevant monolingual information to augment the limited coverage of the
bilingual corpus.

To extract relevant monolingual information, we developed an approach
combining information retrieval, NE extraction and machine translation tech-
niques. Given a source (Chinese) NE together with the context it occurs (e.g.,
the document or sentence containing the NE), we want to find the target (En-
glish) documents containing the NE translation. After automatically tagging
all the NEs in the retrieved English text, we can compare the source NE with
each extracted English NE based on their phonetic and semantic similarity
measures. Finally we can choose the best-matched English NE as the trans-
lation. Assuming that the documents containing the same NE share common
topics (even if the texts are in different languages), we want to retrieve topic
relevant English documents from a monolingual corpus using the translated
Chinese contexts as the query. Figure 5.3 illustrates the overall architecture.
We first automatically extract NEs in the source language (Chinese) document,
for which we want to find the translations. The Chinese document is auto-
matically translated into the target language (English) using our existing MT
system, then we search an English monolingual corpus using the MT hypoth-
esis as the query. Topic-relevant English documents are retrieved, and English
NEs are automatically extracted and compared with the Chinese NEs. The
best-matched pairs (in terms of phonetic and context semantic similarities) are
considered as correct translations.
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Figure 5.4: Overall architecture of NE translation

5.3.1 Query Generation

Given the source document, we can select the source language contexts in sev-
eral ways: a few key phrases around the NE, the sentence containing the NE,
or the whole document. Short queries usually include less irrelevant infor-
mation, thus retrieve less irrelevant target documents. However it is crucial
to correctly identify and translate these short contexts: key phrases such as
content words and NEs. If the queries are not carefully selected or correctly
translated, important topical information may be missing and retrieved target
documents may not contain correct NE translations. On the other hand, correct
contextual information is more likely to be included in longer queries, such as
the translation of a sentence or the whole document. Due to the high risk of
missing correct NE translations with short queries, we prefer to choose longer
contexts, the whole document translation, as the query. In our current im-
plementation, we use a statistical machine translation system to translate the
Chinese document into English, filter out the unreliable NE translation from
the hypothesis, and then select content words and feed them into any search
engine, such as Google 1 or the Lemur Toolkit (Ogilvie & Callan (2001)).

1http://www.google.com
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5.3.2 Corpus Indexing and Search Engine

Most commercial search engines can access and collect huge information from
the World Wide Web, which is very helpful for rare NE translations (Zhang
et al. (2005) and Huang et al. (2005b)). However for our research purposes
we prefer a more flexible corpus indexing strategy that allows both sentence
based and document based indexing such that we can select the most effective
corpus indexing unit. Additionally, we are able to analyze the NE translation
coverage of different corpora. So we start with building our own search engine
using Lemur1, a toolkit for language modeling and information retrieval.

The indexed corpus is composed of 963,478 English newswire documents
from 10 years Xinhua news articles (1992-2002), which corresponds to over 7.3
million sentences and 200 million words. The indexing just follows standard
procedures except stemming and stop word removal. The retrieval model is
the widely used TF-IDF model. Given an English query (MT hypothesis of the
source context), the search engine returns a ranked list of relevant English doc-
uments with relevance scores. We apply an English NE tagger on the retrieved
documents, finding candidate English NEs and compare them with the source
NE based on phonetic and context vector semantic similarities.

The toolkit allows us to select the appropriate indexing granularity: sen-
tences, paragraphs or documents. We experiment with both sentence and doc-
ument based query generation and corpus indexing. We want to select the ap-
propriate indexing units such that the retrieved texts have the highest coverage
of NE translations. From a set of Chinese newswire documents we selected 114
Chinese NEs, manually translated them and verified that the English transla-
tion is correct. As described above, we select appropriate context words from
MT hypothesis as the query, search the English corpus and use the top 100 sen-
tences or documents. We evaluated the NE translation coverage by counting
how many correct NE translations can be found in the retrieved texts. It turned
out that the document-based query/indexing covered 65.8% correct NE trans-
lations, while the sentence-based query/indexing has the coverage of 54.4%.
One reason is that the returned top 100 documents contain several hundreds

1http://www.cs.cmu.edu/˜lemur
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sentences since each document contains multiple sentences, thus the more text
the higher NE translation coverage. Another reason is, the sentence-level topic
information is rather limited. If its translation hypothesis is not reliable, the
generated query as well as the retrieved text may become irrelevant. In the
following experiments we select document based query and indexing.

Another factor related to NE translation coverage is the corpus’s time span.
As the corpus is synchronous with source documents containing the source
NEs, the coverage is higher. Since the above English corpus includes news
articles up to year 2002, it covers 65-70% NE translations for 2001 and 2002
MT evaluation test set, but less coverage on 2003 and 2004 test set. We observe
20% coverage decrease per year. It is desirable to search the most updated data
directly from the World Wide Web.

5.3.3 Combining Similarity Features for NE Translation

Given a Chinese NE nf , we construct its context vector vf using the approach
described in section 4.3.1. Similarly, for each tagged NE ne in the retrieved
English text we construct an English context vector ve. Their overall similarity
score is defined as:

D(nf , ne) = λtCtrl(ne, nf ) + λsS(vf , ve), (5.5)

where Ctrl is the NE pair’s transliteration cost and S is the context vector se-
mantic similarity. Because many rarely occurring NEs are person and loca-
tion names, whose translation are mainly phonetic transliteration, we set the
transliteration weight λt to be 0.75 and the context translation weight λs to be
0.25.

We select the most similar English NE (the one with minimum D), and con-
sider it the correct translation of the source NE. In addition, we feed it back
to the machine translation system such that the source NE can be correctly
translated and the overall MT quality can be improved. Notice the dashed line
connecting the NE Translation Selector and the Machine Translation module
in Figure 5.4. Notice that better MT hypotheses (especially the correctly trans-
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Token(325) Type(149)
Correct (Percentage) Correct (Percentage)

Bilingual Data 91 (28%) 41 (28%)
Translit 187 (57%) 71 (50%)

Translit+SCV 204 (68%) 83 (60%)

Table 5.5: OOV NE translation precision using bilingual and monolingual
corpora

lated NEs) will help to formulate more appropriate queries, which will retrieve
documents that are more relevant and improve NE translation quality again.
This procedure can be an iterative process.

5.3.4 Evaluation

To evaluate the effectiveness of the proposed NE translation strategy, we test it
on the Chinese-English machine translation task. The test data set is the NIST
2002 Machine Translation Evaluation test data. The test data is composed of
100 Chinese documents, 878 sentences, and 25,430 words. 2469 NEs are auto-
matically tagged, among which PERSON, LOCATION and ORGANIZATION
names roughly account for 20%, 60% and 20% respectively. Since most OR-
GANIZATION NEs are semantically translated word-by-word, given that we
already have good word and phrase translation components in the baseline
system, we will focus on PERSON and LOCATION NE translations, as they
are often transliterated. We evaluate both NE translation accuracy as well as
the overall machine translation quality, before and after the NE translations
are incorporated into the baseline MT system.

5.3.4.1 Improving NE translation accuracy

Among 1,986 tagged PERSON and LOCATION NEs, 354 NEs are not covered
by the 50K entries LDC bilingual dictionary, and we refer them as OOV NEs.
After removing incorrectly tagged NEs, there are 325 correct Chinese NEs left
which correspond to 149 unique NEs. Table 5.5 shows the type and token NE
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Total NEs(1986) Total Words (3057)
Correct (Percentage) Correct (Percentage)

LDC 1331 (67%) 1331 (43%)
LDC+ALNE 1608 (81%) 1944 (64%)

LDC+ALNE+OLNE 1771 (89%) 2462 (80%)

Table 5.6: All NE word translation accuracy using aligned and retrieved NE
pairs

translation precisions using bilingual and monolingual corpora. The bilingual
data are 6 million words Chinese-English sentence-aligned bilingual corpus.
We tag NEs in both language and apply the NE alignment approach (see sec-
tion 5.1) to construct a 39K entry NE translation dictionary. This bilingual data
still covers a relatively small amount of source NEs, and it achieves relatively
low NE translation accuracy (28%).

We observe much higher translation accuracy when using much more mono-
lingual information with different similarity models. If we only apply the
transliteration model (”Translit”), the accuracy is improved from 28% to 50%
for NE types, and from 28% to 57% for NE tokens. Additionally adding the
context vector semantic features (”+SCV”) further improves the accuracies by
10% (for type) and 11% (for token). Further error analysis indicates that 50% of
errors are due to the limited coverage of the retrieved documents, i.e., correct
NE translations are either not included in or not retrieved from the English
corpus. If all the correct NE translations can be retrieved (we manually add
the correct NE translations into the retrieved documents) , the translation ac-
curacy is expected to be about 78%. One could add more data from the web
to increase the corpus coverage. Table 5.6 shows the translation accuracy of
all the LOCATION and PERSON NEs as well as their words in the whole test
data. Because many rarely occuring NEs are composed of more than one word
and hard to translte, the word translation accuracy is lower than the NE trans-
lation accuracy. Here we use three different resources:

• LDC: the 50K entry Chinese-English word translation dictionary from
LDC;
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NIST Bleu
Baseline 6.51±0.1 24.1±0.6

Baseline + ALNE 6.55±0.1 24.4±0.6
Baseline+ALNE+OLNE 6.82±0.1 25.2±0.6

Table 5.7: Improving small-track Chinese-English MT quality

NIST Bleu
Baseline 7.82±0.1 29.45±0.6

Baseline + ALNE 7.87±0.1 29.62±0.7
Baseline+ALNE+OLNE 7.98±0.1 30.09±0.7

Table 5.8: Improving large-track Chinese-English MT quality

• ALNE: an additional 39K NE translation dictionary aligned from 6 mil-
lion words parallel corpus;

• OLNE: retrieved NE translations from relevant English documents.

We notice that the NE translation accuracy and the word translation accuracy
can be improved by 14% and 21% when adding the aligned NE pairs, and re-
trieved NE translations further improve the accuracies by 8% and 16%. Over-
all, the proposed NE translation framework significantly improves the trans-
lation accuracy by an absolute value of 22%-37%.

5.3.4.2 Improving Machine Translation Quality

We integrate the retrieved NE translation pairs into our machine translation
system, and test it in different translation tasks: the small data track and the
large data track. They differ in the amount of bilingual resources that is al-
lowed to use: for small data track we can only use 100K words for MT sys-
tem training, while for large data track there is constraints on the amount of
bilingual data. We use 6M words bilingual corpus for the large track MT sys-
tem training. Again, the translation quality is evaluated in terms of NIST and
Bleu scores. Table 5.7 and 5.8 show the translation quality when the MT sys-
tem uses different NE translation strategies: the baseline system uses the LDC
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Small track Large track
NIST Bleu NIST Bleu

Baseline 5.62±0.2 21.6±1.0 6.85±0.2 27.3±1.4
Baseline + Translit 6.27±0.2 24.1±1.0 7.20±0.2 29.2±1.6

Baseline + Translit + SCV 6.36±0.2 24.5±1.1 7.28±0.2 29.5±1.5

Table 5.9: Improving C-E MT quality on selected 164 NE sentences

bilingual dictionary as well as several phrase transducers trained from some
bilingual corpus, but no specific NE translation dictionary is used. ”ALNE”
is the NE alignment dictionary learned from the same bilingual corpus. It im-
proves NIST and Bleu scores in both small and large data tracks, even though
with a relatively small margin. This is because the NE dictionary and other
transducers are learned from the same bilingual resource, and many NE trans-
lation information are already captured by other phrase transducers. ”OLNE”
refers to extracting NE translations from retrieved English documents. Since
this approach is able to access and utilize information from much larger mono-
lingual corpora, it can translate NEs which are not covered by the bilingual cor-
pus, and bring the most improvement to machine translation qualities. Tables
5.7 and 5.8 show improved MT quality over all the test sentences, although
these improvements are mainly from more accurate translations of rarely oc-
curring NEs (frequent NEs have been reliably translated using the LDC dic-
tionary). To accurately measure the effect of these infrequent NE translations,
from the whole test set (878 Chinese sentences) we select 164 sentences con-
taining the 325 infrequent NEs in Table 5.5. We translate this subset using
the baseline MT system with and without the OLNE approach. The result is
shown in Table 5.9. As we can see, this subset is more difficult to translate
(lower Bleu/NIST scores compared with the whole test set, using the same
baseline MT system) since it contains these rarely occurring NEs. However, the
OLNE approach is very effective to translate these infrequent NEs and bring
in significant improvement of MT qualities on this subset sentences. We ap-
ply similar NE translation techniques on the Arabic-English translation task.
Similarly, we align the NE translation pairs from an Arabic-English parallel

74



5.4 Summary

NIST Bleu
Baseline 9.03±0.3 47.12±2.2

Baseline + ALNE 9.06±0.3 47.31±2.3
Baseline + OLNE 9.11±0.3 48.10±2.3

Baseline+ALNE+OLNE 9.17±0.3 48.71±2.3

Table 5.10: Improving Arabic-English MT quality

corpus. The parallel corpus includes 350K sentence pairs, 6 million Arabic
words and 6.5 million English words. Initially 151K NE pairs are extracted
from the corpus, which result in 46K unique Arabic-English NE pairs after re-
moving duplicates. Top 20K NE pairs are selected as reliable translations, and
are integrated into the existing machine translation system as the NE transla-
tion dictionary (ALNE). Additionally, we searched a monolingual English cor-
pus for the translations of some rarely occurring source NEs in the test data,
using the approach similar to the one in Figure 5.4. The result NE translation
pairs are represented as OLNE. Table 5.10 shows the improvement on Arabic-
English machine translation quality evaluated by the NIST and Bleu scores.
The test data is 203 Arabic sentences from 25 documents. The baseline system
combines several phrase transducers (the ISA transducer, the BiBr transducer
and the HMM transducer) (Vogel et al. (2003)). We observed that the aligned
NE translation pairs increase the NIST score by 0.03 over the baseline, while
the retrieved NE translations (OLNE) additionally increase the NIST score by
0.08. The combined NE translation techniques increase both the NIST score
(by 0.21) and the Bleu score (by 1.59). However, these improvements seem not
statistically significant.

5.4 Summary

In this chapter we demonstrate three applications of text NE translation. We
combine phonetic and semantic similarity features as well as NE language
models to align source and target NEs from sentence-aligned Chinese-English
corpus. In the parallel corpus NEs are automatically tagged for each language.
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We observe improved NE alignment quality with different combination of
alignment features. In the second task we work with a sentence-aligned Hindi-
English corpus, where only English NEs are automatically tagged. We project
English NEs into Hindi based on their pronunciation similarity, and achieve
over 90% NE translation accuracy. Finally we attempt to translate rarely oc-
curring NEs by searching for topic-relevant NEs from monolingual corpus.
We query a pre-indexed English corpus with the MT hypothesis of the NE’s
context, extract candidate NEs from retrieved English documents and select
the best match based on their phonetic and context vector semantic similari-
ties. We achieve significant improvement on NE translation accuracy (28% to
68%). When we add the translated NEs into the MT system, we also improve
the MT quality.
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Chapter 6

SPEECH NAMED ENTITY
EXTRACTION AND
TRANSLATION

Past research mainly focused on NE extraction from well-formatted written
text such as newspaper articles. These are grammatical sentences and carry
useful information for NE extraction, such as punctuation, alphanumerical
and word case information. Spoken languages such as broadcast news, pre-
sentations, meetings and casual conversations have rather different character-
istics, which make NE extraction more difficult (Zechner (2001)). Extracting
and translating NEs from speech present new challenges:

• Spoken language contains many ungrammatical segments and disfluen-
cies, such as filled pause, repetition, repair and false start;

• Spoken language appears in very different genres and styles, while the
styles of written texts are relatively consistent;

• Spoken language relies on automatic speech recognizers to transcribe
them into text, and the ASR hypotheses contain errors from speech rec-
ognizers.

Most recognizer output is just a sequence of word tokens, without punctua-
tion and case information to help NE extraction. Recently research on rich for-

77



6. SPEECH NAMED ENTITY EXTRACTION AND TRANSLATION

mat transcription of speech has been conducted, where the speech transcripts
include punctuations, cases, sentence boundaries and even disfluencies anno-
tations. Even though, because of all the above mismatches, rules and statistical
models learned from well-formed written text may not be suitable for speech
NE extraction, and new techniques should be developed to handle these new
challenges. Once NEs are extracted from the speech transcripts, we can simi-
larly apply the text-based NE translation to translate them.

In this chapter we will focus on two speech NE extraction problems:

• NE extraction from manual transcripts of meetings, where we have a
baseline NE tagger trained from broadcast news speech. and we want
to adapt it for meeting applications.

• NE extraction from broadcast news ASR hypothesis, where we aim to
develop an approach to detect and recover NE speech recognition errors,
and translate them from Chinese into English.

6.1 Named Entity Extraction from Manual Transcript

In this task we are working on manual transcripts of meeting dialogues, and
any off-the-shelf NE tagger can be directly applied to the error-free transcripts.
When we apply a commercial NE tagger, IdentiFinderTM, to broadcast news
manual transcripts, we get an F-score of 91%, just a slight drop from 93% (F-
score on newspaper articles) (Robinson et al. (1999)). This little degradation
is because the good match between NE tagger training text and the test tran-
scripts: both data are in the newswire domain (newspaper articles vs. broad-
cast news); and both data are with similar styles: compared with conversa-
tional speech, broadcast news data are more formal, more fluent and more
similar to the written text. However, if we apply the same NE tagger to more
informal speech (e.g., group meeting dialogues), because there are much more
disfluencies and diverse topics in the meeting dialogues, the NE tagging model
does not capture these new characteristics. As a result the NE extraction per-
formance drops significantly with the F-score around 40-60%.
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To deal with these mismatches between the NE tagging model and the test
data, we propose an adaptive method for named entity extraction for meet-
ing understanding. The baseline NE tagger is a statistical model trained from
broadcast news data. It additionally makes use of global NE cache information
and name list information from meeting profiles to adapt the baseline model
to each specific meeting, and improves the NE extraction performance. This
combination of unsupervised (NE cache model) and supervised (name list)
information sources significantly outperforms the baseline model by 26% F-
score. The performance is also comparable to that of a statistical model trained
from a small amount of manually annotated meeting transcripts.

The statistical baseline model is the HMM model introduced in section 3.
The model parameters are three kind of probabilities: NE class transition prob-
ability, first word generation probability and class-dependent bigram probabil-
ity. The adaptation model uses the NE cache information as well as meeting
profile information to re-estimate the class transition probabilities and word
generation probabilities, and improves the performance of named entity ex-
traction.

6.1.1 Global Context Adaptation Model: NE Cache Model

We assume that each meeting has certain coherent topics. A name (or more
generally speaking, a word) can have more than one NE class (e.g., ”Washing-
ton” could be a person name or a location name). Nevertheless, within a meet-
ing, all the occurrences of this name tend to have a consistent NE class, and
this type is related to the topic of this meeting. However, if we apply the base-
line broadcast news NE tagger on meeting transcripts, due to various speech
disfluencies and context mismatches, different instances of the same name can
be tagged with different name types. To alleviate this problem, we estimate
the average probability that a name has a certain NE class within this meet-
ing context. Such average probability is supposed to be internally consistent.
If we can reliably estimate such probabilities, we can correct some initial NE
tagging errors. In practice, we use the baseline model to identify ambiguous
NE words, whose several instances have different NE classes after the first-
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pass NE tagging. We build a cache model to store the probabilities that each
instance belongs to a certain NE class with different contexts, estimate their
global name class probability, select the most likely NE class and then relabel
these instances accordingly.

Formally, given a word w, the most likely name class over the whole meet-
ing should satisfies

ˆN(w) = arg max
N

P(N |w)

= arg max
N

∏
i

P (Ni|wi). (6.1)

P (N |w) is the global name class probability for word w. Under the indepen-
dence assumption, this is the product of all the local name class probabilities,
P (Ni|wi). The local probability is computed as the linear interpolation of two
kind of probabilities: forward name class probability P (Ni|wi, wi−1) and back-
ward name class probability P (Ni|wi, wi+1). Intuitively, this model estimates
the local name class probability based on its past and future contexts.

To calculate the forward probability,

P (Ni|wi, wi−1) =
P (wi, Ni|wi−1)

P (wi|wi−1)
, (6.2)

where

P (wi, Ni|wi−1) =
P (wi, Ni, wi−1)

P (wi−1)

=

∑
N ′

i−1
P (wi, Ni, wi−1, N

′
i−1)

P (wi−1)

=

∑
N ′

i−1
P (wi, Ni|wi−1, N

′
i−1)P (wi−1, N

′
i−1)

P (wi−1)

=
∑

N ′
i−1

p̃(wi, Ni|wi−1, N
′
i−1)p

′(N ′
i−1|wi−1) (6.3)
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and

P (wi|wi−1) =
∑

N ′
i

P (wi, N
′
i |wi−1). (6.4)

For backward probability,

P (Ni|wi, wi+1) =
P (wi+1, wi, Ni)

P (wi+1, wi)

=
P (wi+1|wi, Ni)P (wi, Ni)

P (wi+1, wi)

=
[
∑

N ′
i+1

p̃(wi+1, N
′
i+1|wi, Ni)]p

′(Ni|wi)

P (wi+1|wi)
(6.5)

In the above formulae, p̃ is the word and class transition probability, which
is calculated using class transition probabilities pc, first word generation prob-
abilities pf and class-dependent bigram word generation probabilities pb (see
3.3 and 3.4). p′(N |w) is a prior probability that word w has name class N , re-
gardless of its context. It is computed from the general domain broadcast news
training data.

Thus, the local name class probability for word w at position i is the inter-
polation of the forward and backward probabilities, and w’s global name class
probability is the average probability over all the occurrences in the whole
meeting. We select the most likely name class for w as the final NE type.

In summary, the whole NE tagging procedure is the following:

• Apply the baseline NE tagger on the test data;

• Identify ambiguous words, which have :

– different NE class labels over the whole meeting after the first pass
decoding;

– low class assignment confidence, which is defined as the ratio be-
tween the top 2 class-dependent word generation probabilities;

• Re-estimate the global name class probability for ambiguous words ;
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• Select the NE class which has the highest global name class probability;

• Relabel all the occurrences of the ambiguous word with the most likely
class label.

6.1.2 Supervised Adaptation: Learning from Meeting Profile

The effectiveness of NE cache model depends on the quality of the first pass
decoding. For a given word, after the first pass decoding if most of its occur-
rences are correctly tagged, the remaining few tagging errors can be corrected
according to the global name class probability. However, if the word is diffi-
cult to tag (such as an OOV word), the baseline NE tagger will make lots of
tagging errors. In this case, the global name class probability will be domi-
nated by incorrect NE classes, and the cache model can even discard the few
initially correct NE tags. On the other hand, meeting profiles usually contain
the attendants’ names, the topics to be discussed, or even a concise summary
of the meeting. When such information is taken into account in the form of
probabilistic name lists (e.g., person, location and organization name lists),
the adaptation model has more accurate estimation of the context-independent
prior name class probability p′(N |w). As a result, the NE tagging performance
will be improved.

In our current implementation, we only make use of meeting participants’
names from meeting profiles, and we assign them to the PERSON name class
with probability 0.9. The remaining probability mass, 0.1, is equally distributed
among the rest name classes. These probabilities, p′(N |w), are used in the com-
putation of word generation probabilities.

6.1.3 Experiment Results

To evaluate the performance of the baseline model and the adaptation ap-
proach, we conduct several experiments. We train our baseline model using
Hub4 NE-IE training data (52 broadcast news transcripts, about 260K words),
and test it on one manual transcript of broadcast news episode (2318 words,
106 named entities). The result is the Baseline. We also run the IdentiFinderTM(which
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BN MT1 MT2
IdF 87.91 27.14 47.03
Baseline 88.35 37.93 60.37

Table 6.1: Baseline model on BN and MT data

MT1 MT2
BL 37.93 60.37
BL+MP 50.07 65.65
BL+MP+CM 66.67 68.33

Table 6.2: Adaptation on baseline model for MT data I

is retrained with the same broadcast news training data) on the same test data,
and obtain the IdF result. Finally, we run both NE taggers on two meeting
manual transcripts, MT1 (10554 words,137 named entities) and MT2 (11146
words, 240 named entities). Table 1 summarizes the F-scores of these experi-
ments.

As shown in Table 6.1, both the IdentiFinder and our NE tagger work rea-
sonably well on broadcast news data. However, their performances drop con-
siderably on the two meeting transcripts. This clearly shows the severe effect
of model mismatch. Furthermore, we observe that their performances vary
significantly from meeting to meeting. This is mainly due to the nature of dif-
ferent meetings.

Table 6.2 demonstrates the experiment result when different adaptation
strategies are applied. BL, MP and CM represent the baseline model, the
meeting profile model and the NE cache model respectively. When the meet-
ing profile information is integrated into the baseline model, we observe im-
proved NE extraction performance, especially for person names. Specifically,
in MT1 the meeting profile covers 45 instances of the 137 named entity in-
stances, improving F-score by 32%, and in MT2, the meeting profile covers
24 of the 240 named entity instances, improving F-score by 8.7%, respectively.
When cache model adaptation is further applied on BL+MP, most of the local
NE tagging errors are corrected as long as the correct name classes have the
highest global name class probabilities after the baseline tagging. This leads to
additional improvement. Figure 6.1 illustrates the F-scores of different systems
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Figure 6.1: F-score comparison on ENAMEX class.

BL BL+MP+CM Improvement IdF(retrained)
MT1 37.93 66.67 75.77% 67.90
MT2 60.37 68.33 13.18% 61.11
MT3 47.76 54.99 15.13% 56.99
MT4 53.61 59.49 10.96% 63.87
MT5 53.87 58.23 8.09% 69.69
MT6 38.98 52.18 33.86% 66.10
MT7 60.33 61.13 1.32% 58.27
MT8 27.57 58.60 112.55% 68.32
Avg. 47.55 59.95 26.07% 64.03

Table 6.3: NE tagging adaptation for various meeting transcripts

on ENAMEX, which contains three name classes: LOCATION, ORGANIZA-
TION and PERSON.

More experiment results are presented in Table 6.3. We find that the NE
cache model plus meeting profile information is very effective in MT1, MT6
and MT8, and less effective in MT7. In general, the proposed adaptive NE
tagging approach increases the named entity extraction accuracy by an average
of 26.07% over the baseline system.

In Table 6.3, we compare the proposed adaptive NE extraction model with
the IdentiFinder system ( re-trained with a small amount of meeting man-
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ual transcripts (denoted as IdF(retrained)). Among all 8 meeting transcripts,
which share similar topics and genres, 6 are used for training, and the remain-
ing 2 are used as the test data. We make 4-fold cross validation experiments.
In each “fold”, the training set contains roughly the same number of words
(about 90K), and covers most of the meeting participants’ names in the test
set, with the instance coverage from 58% to 100%. Trained with such domain-
specific data, the NE tagger demonstrates much better performance than the
baseline system which is trained from broadcast news data. We also find that
the retrained NE tagger in general performs better than the NE adaptation
model, which does not use the domain-specific meeting transcripts. However,
in some applications it is possible that the adaptation model is comparable (as
in MT1, MT3, MT4), even outperforms the retrained model(as in MT2, MT7).

We select some segments from the test data, and present them in Figure 6.2.
We find that:

• The baseline NE tagger trained from broadcast news data can detect
typical named entities, such as “john”, from informal or ungrammatical
context, but it also misrecognizes non-names which are often labeled as
named entities in the broadcast news domain, e.g., “channel one”;

• Additional information from meeting profiles, although quite limited in
amount, can be very helpful because of its high relevance to the meeting;

• Even with the combination of the meeting profile information with the
baseline probabilistic model, some names appearing in the meeting pro-
file are still misrecognized, especially when the local context is highly
informal, e.g.,”...susi three nils four...”. Cache models can recover these
local tagging errors.

• The cache model adaptation works best when correct name classes are
assigned higher global name class probabilities. Otherwise — especially
for OOV words— it isn’t helpful, and even detrimental, as in the case of
“bbn”.
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Example 1 
BL: uh <b_enamex TYPE="PERSON">john <e_enamex> is on <b_enamex TYPE= 

"ORGANIZATION"> channel one <e_enamex> uh ty number two susi three nils four 
and myself five 

BL+MP: uh <b_enamex TYPE="PERSON"> john <e_enamex> is on <b_enamex TYPE= 
"ORGANIZATION"> channel one <e_enamex> uh <b_enamex TYPE="PERSON"> ty 
<e_enamex> number two susi three nils four and myself five 

BL+MP+CM: uh <b_enamex TYPE="PERSON"> john <e_enamex> is on  CHANNEL ONE  uh 
<b_enamex TYPE="PERSON"> TY <e_enamex>  number two <b_enamex 
TYPE="PERSON"> SUSI <e_enamex> three <b_enamex TYPE="PERSON"> NILS 
<e_enamex> four and myself five 

Reference: uh <b_enamex TYPE="PERSON"> john <e_enamex> is on  channel one uh <b_enamex 
TYPE="PERSON"> ty <e_enamex> number two <b_enamex TYPE="PERSON"> susi 
<e_enamex> three <b_enamex TYPE="PERSON"> nils <e_enamex> four and myself 
five 

Example 2 
BL/BL+MP: is bbn a name  

<b_enamex TYPE="PERSON"> bbn <e_enamex> 'S the name of a company 
yeah then it 'S just bbn without spaces 

BL+MP+CM:  is bbn a name 
BBN 'S the name of a company 
yeah then it 'S just bbn without spaces 

Reference: is <b_enamex TYPE="ORGANIZATION"> bbn <e_namex>  a name  
<b_enamex TYPE="ORGANIZATION ">bbn <e_enamex> 'S the name of a company 
yeah then it 'S just <b_enamex TYPE="ORGANIZATION "> bbn <e_enamex>  without 
spaces 

Figure 6.2: Some examples from test data .

86



6.2 Named Entity Extraction from ASR Hypothesis

6.1.4 Discussion: Information Retrieval Based on Meeting Pro-

files

Meeting profiles are usually short, and their limited topic-specific information
does not offer big benefits. Nevertheless, some topic-related information in
meeting profiles, e.g., scheduled topics, meeting summary, could be used as
queries to retrieve topic relevant documents. Since most of the retrieved doc-
uments are written text, the baseline model obtains more accurate NE tagging
results. Such additionally extracted named entities, together with their anno-
tation confidence, can be integrated into the model for adaptation.

6.2 Named Entity Extraction from ASR Hypothesis

Although NE extraction from well-formatted text input has been intensively
investigated and achieved satisfactory performance, NE extraction from speech
remains under-explored. Kubala et al. (1998) and Miller et al. (2000) applied
text-based NE tagger on the first best hypothesis of English broadcast news
speech recognition systems, and they noticed that on average 1% WER costs
0.7 points of NE extraction F-score. Palmer et al. (2000) extracted NEs directly
from word recognition lattices. Zhai et al. (2004) applied weighted voting on N-
best hypotheses for Chinese broadcast news speech NE extraction. They also
observed that NE extraction from Chinese speech seems more difficult than
from English speech, which was also in line with our findings, as we observed
on average 1.05 points of F-score drop for 1% WER.

Traditional NE recognition systems (Bikel et al. (1997), Grishman & Sund-
heim (1995) and Appelt et al. (1993)) developed statistical models or pattern-
matching rules that explicitly model the distribution or patterns of actual NE
words. However, when extracting NEs from speech, less frequently occurring
NEs, especially those containing OOV words, are often misrecognized. If we
apply the standard text-based NE extraction models on speech recognition hy-
pothesis, these recognition errors also lead to NE extraction errors, such as
insertion, deletion and substitution errors, as shown in the following exam-
ples (where we present each Chinese word, its pronunciation (pinyin) and its
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meaning (in English):

Insertion

Ref: Y%/zhejia/thisBn/xiaoxing/small0å/keji/airplane

Hyp:@LOC{ZT/zhejiang/zhejiang}Bn/xiaoxing/small0å/keji/airplane

Deletion

Ref:ib\�/waijiaobuzhang/foreign minister @PER{�Ù�/qian
qichen/qian qichen}�ñ/zhichu/pointed out

Hyp:ib\�/waijiaobuzhang/foreign minister��j/qiznyizhen/a
while ago�ñ/zhichu/pointed out

Substitution

Ref:@PER{�n��/alafate/Arafat}�
/xialing/orderÄÁ/chengli/to
set up

Hyp: @LOC{n®�/labate/Rabat}�
/xialing/orderÄÁ/chengli/to
set up

Rather than tagging the erroneous ASR hypothesis using the text-based NE
tagger, we distinguish reliably recognized words from unreliably recognized
ones in the hypothesis using ASR confidence scores. We apply the standard
text-based NE tagging only on the reliable hypothesis. For unreliably recog-
nized words, we rely on their correctly recognized context information to pre-
dict candidate NE types and lengths. For example, if ”foreign minister” is
followed by a unsure word X , which is followed by ”pointed out”, then most
likely X is a person name. We propose a context-based NE tagging model that
is able to discover the partial information of a candidate NE within the HMM
NE extraction framework. Querying with the reliable context information we
retrieve topic-relevant documents from a large monolingual corpora, and ex-
tract topic relevant NEs from retrieved documents. We compare them with the
candidate NEs, and select the best-fit NE or keep the original hypothesis based
on a phonetic score, a semantic score and a language model score. To translate
these NEs, we similarly retrieve target language relevant documents, extract
target NEs and compare them with the source NE.
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6.2.1 Context-based Named Entity Extraction

The context-based NE extraction attempts to identify partial information about
NEs when their actual word identities are missing. In other words, we aim to
detect the NE classes and positions from their contexts, as shown in the follow-
ing sentence pair (one with the actual NE words and one with a replacement
token:

ib\�/foreign minister @PER{�Ù�/qian qichen}�ñ/pointed
out

ib\�/foreign minister @PER{U3}�ñ/pointed out

Here U3 represents a universal word token with 3 characters. We encode the
word length (number of Chinese characters) in order to make use of duration
information from a speech recognizer.

Similar to the HMM NE extraction framework, the context-based model
estimates three generative probabilities (see Section 3) for a typical word. It
additionally models these parameters for Un, a universal word token with n

characters but without the word identity. In particular, we estimate the follow-
ing generative probabilities for Un (n=1,2,3...7):

1. pc(N |Un, N−1), the name class transition probability given Un as the last
word in the previous class;

2. pf (Un|N, N−1), the first word generation probability when w1 is Un;

3. pb(w|w−1, N), the class-dependent bigram word generation probabilities.
We have to consider different scenarios based on whether w and/or w−1

are Un or not.

Regarding to parameter estimation, we use the same training data for the
text-based NE tagger, 5.6M Chinese words corpus where NEs are automati-
cally tagged. Each word with n characters is considered as a word with iden-
tity wn , and a universal word token without identity, Un. We estimate the three
generative probabilities for wn based on frequency counting. We estimate the
name class transition and word generation probabilities for Un based on the
frequency counting of wn.
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The NE class transition probability, the probability of generating the current
NE class N when the previous word is a Un and the previous NE class is N−1,
is:

pc(N |Un, N−1) =
C(Un, N−1, N)

C(Un, N−1)

=

∑
wn

C(wn, N−1, N)∑
wn

C(wn, N−1)
(6.6)

where C(wn, N−1) is the frequency that the previous word w (length=n) and
the previous NE class N−1 co-occur. And C(wn, N−1, N) is the frequency that
the current NE class N follows N−1 and wn.

Similarly, the Un’s first word generation probability is estimated as:

pf (Un|N, N−1) =
C(fw = Un, N, N−1)

C(N, N−1)

=

∑
wn

C(fw = wn, N, N−1)∑
w′n

C(fw = w′
n, N, N−1)

(6.7)

where fw = Un means the first word in the new NE class N can be converted
into Un (a word with n characters).

As to the word generation probability, we have to distinguish cases accord-
ing to where the Un appears:

pb(w|Un, N) =
C(Un, w|N)

C(Un|N)

=

∑
wn

C(wn, w|N)∑
wn

C(wn|N)
(6.8)

pb(Un|w,N) =
C(w, Un|N)

C(w|N)

=

∑
wn

C(wn, w|N)

C(w|N)
(6.9)
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pb(Um|Un, N) =
C(Un, Um|N)

C(Un|N)

=

∑
wn

∑
wm

C(wn, wm|N)∑
wn

C(wn|N)
(6.10)

These probabilities can be learned from a Chinese corpus with NE annotations.
Other than the word duration feature, we do not model other features such as
case (not applicable for Chinese), digits or punctuation marks (not available
from ASR output).

During decoding, given a sequence of words with their confidence scores,
we first select unreliably recognized words, then map them into appropriate
Un tokens. With the context-based NE tagging model (Formulae 6.6 to 6.10,
we use a similar Viterbi decoding algorithm to find the most likely NE class
sequences. One can imagine the importance of word identity information for
NE recognition. NE extraction without such information cannot achieve as
good performance as the system with such information. However this ap-
proach demonstrates the contribution from NE context words and NE word
length information, which are particularly useful for detecting and recovering
NE speech recognition errors. Besides the typical one-best hypothesis, we can
also generate N-best hypotheses, as presented in the experiment section. This
will help increase the recall rate for the following candidate NE selection.

6.2.2 NE Extraction from ASR Hypothesis

We use speech recognition confidence scores to identify unreliably recognized
words. Suppose an acoustic signal X is recognized as a word W , the posterior
probability P (W |X) is a good confidence measure. With Bayes rule,

P (W |X) =
P (W )P (X|W )∑

W ′ P (W ′)P (X|W ′)
(6.11)

where theoretically W ′ is all the words in the vocabulary. Practically it is of-
ten the top N candidate words recognized from X , which can be generated
from a word recognition lattice. We compute the confidence score for each
word hypothesis, then convert words with low confidence scores into appro-
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priate Un’s. We apply the context-based NE extraction model on unreliably
recognized words, and the standard text-based NE extraction model on other
words.

The following example shows that a person name (��y/kataman) is mis-
recognized as ”Æ/heëw/full” with low confidence scores (the number in the
parentheses). Converting them into a universal word token U3, we are able to
find the correct NE class and position in the converted hypothesis.

Reference words

�)/US�/deputyÏ®/assistant)Ö7/secretary of state��
y/kataman�/said

Hypothesis with confidence scores

�)/US(0.99)�/deputy(0.99)Ï®/assistant(0.99))Ö7 /secre-
tary of state(0.95) Æ/ta/he(0.17) ëw/baoman/full(0.08) �/said
(0.85)

Converting unreliable words into universal tokens

@LOC{�)}/US �/deputy Ï®/assistant )Ö7/secretary of
state U3�/said

Recognizing NE class and positions from converted hypo

@LOC{�)}�Ï®)Ö7 @PER{U3}�

Note that speech recognizer may produce duration errors or word segmen-
tation errors, where a three-character word is recognized as a four character
word, or a two character word followed by a one character word. To deal
with this problem we will allow the character length n to vary within a certain
range, or we can select N-best NE recognition hypothesis to include correct NE
positions.

6.2.3 Candidate NE Selection and Ranking

Given a hypothesized partial NE (with NE type and position information) as
well as its context words, we want to find topic-relevant documents contain-
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Figure 6.3: Overall architecture for ASR NE error detection and correction

ing the correct NE. Base on reliably recognized context words, we query a pre-
indexed Chinese corpus and retrieve topic-relevant documents. NEs in the
returned documents are automatically extracted and compared with the hy-
pothesized ASR NE based on their phonetic and semantic similarities, and the
best-fit retrieved NE is considered as the the correct NE. Figure 6.3 shows the
overall architecture. The indexed corpus is composed of 63,092 Chinese docu-
ments from the Xinhua News Agency. The corpus has over 444K sentences and
22M words. We select top 100 retrieved documents and automatically tag NEs
in these documents. We compare each extracted NE with the hypothesized
NE words in the ASR hypothesis. The best-matched retrieved NE is selected
to replace the universal word token, if the matching cost is below a predefined
threshold. Otherwise we keep the original words.

Suppose Un is the hypothesized NE extracted from the ASR hypothesis us-
ing the context-based model, and its corresponding word(s) hypothesis is f ′.
For each retrieved NE fnei

, we compare it with f ′ based on their phonetic and
semantic similarities. We convert fnei

and f ′ into pinyin, and calculate their
phonetic similarity according to the string alignment distance, where letters
are aligned based on their pronunciation similarity, as described in 4.1. To cal-
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culate the semantic similarity, we construct context vectors for both fnei
and

f ′. The vectors include the most informative context words around fnei
and f ′,

as well as their weights. The context words are often NEs, nouns and verbs,
while the weights are calculated based on the word’s POS and distance to f

and fnei
, as described in 4.3.1. The semantic similarities between two context

vectors can be calculated in terms of WordNet, latent semantic analysis, or syn-
tactic structures. In the current implementation, we consider the percentage of
common words in both context vectors.

We first filter out unlikely NEs from the retrieved documents by comparing
their phonetic and semantic similarities with the candidate NE f ′. As a result,
we only keep a small number of the most likely NEs. We fit them within f ′s
left and right contexts, and use a language model to score each candidate hy-
pothesis. Overall we combine the phonetic similarity, the semantic similarity
and the language model score to rank all candidate NEs. The combination is a
linear interpolation model. The candidate NE with the minimum overall cost
is selected if the cost is above a certain threshold. This best-fit retrieved NE
replaces the recognized word(s) f ′ in the ASR hypothesis, and is marked with
the appropriate NE class from the relevant documents.

6.2.4 Named Entity Translation from Speech

Once NEs are identified from the recognition hypothesis, which may be either
directly extracted from reliably recognized words or recovered from unreli-
ably recognized words, translating them is straightforward. We just apply the
text-based NE translation techniques (see section 5) to translate these extracted
NEs. We either look up their translations from a pre-constructed bilingual NE
dictionary, which is especially applicable to those frequently occurring NEs, or
we can search for the correct NE translation from topic-relevant target docu-
ments, the same way as we search for the candidate source NEs.

However, the monolingual corpus to be searched must be in the target lan-
guage (English in our experiment), and the query (context words) should be in
English. To generate an English query, we use a statistical machine translation
system to translate the source context into English. The phonetic similarity be-
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tween a source NE fne and a target NE ene can be similarly calculated based on
the surface string transliteration model, and the semantic similarity between
the bilingual context vectors can be calculated with IBM models.

The tight coupling of NE speech recognition and translation is possible
with the context-based NE extraction model. With the NE class and position
information as well as the reliable context words, we can skip the source NE
recognition process and find the translations of these hypothesized NEs di-
rectly from the target topic-relevant documents. For example, in the above
example, the original transcript ”�) � Ï® )Ö7 �Éy” is misrecog-
nized as ”�) � Ï® )Ö7 Æ ëw”, where only the person’s name ”�
Éy/kataman” was misrecognized as ”Æ ëw/ta baoman”. When we de-
tect the type of the candidate NE is a person name, and we know the context
words in English are ”US Deputy Assistant Secretary”, we can directly search
the English corpus. From the retrieved relevant documents, we find the NE
”Kartman” which is phonetically similar to ”Æëw/ta baoman” and seman-
tically relevant to ”US Deputy Assistant Secretary”. Even if we do not recover
the source NE ”�Éy”, we still translate it correctly. This is appealing to
translate some English NEs whose Chinese translations are not included in the
Chinese corpus.

6.2.5 Experiments

We first compare the context-based NE extraction model with the standard
HMM NE extraction where NE word identity information is used. Secondly,
we compare the NE extraction performance on ASR hypothesis, when apply-
ing the standard HMM NE extraction versus the context-based NE extraction
with information retrieval techniques. Finally, we evaluate the improvement
on NE translation quality.

Our test data is the Chinese broadcast news transcription used in the 1997
Hub4 Mandarin Chinese Evaluation. This test data includes 114 segments
from 42 episodes, with 9176 words in total. For evaluation, we only consider
three NE types: person names, location names and organization names. Their
statistics are shown in Table 6.4.
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PER LOC ORG
number of NEs 211 478 209

number of Words 511 552 487

Table 6.4: Test data NE word distribution

6.2.5.1 Context-based NE Extraction from Manual Transcripts

We train both the standard HMM NE tagger and the context-based NE extrac-
tion model with the same data, 5.6M words of Chinese newswire text. This
is the imperfectly labeled data whose NEs are not manually annotated, but
automatically tagged using IdentiFinder (as described in section 3.3).

We first evaluate their performances on the manual transcript of the test
data. As Table 6.5 shows, the standard HMM NE tagger obtains comparable
performance as the IdentiFinder TM. To evaluate the context-based NE extrac-
tion model, we replace all the NE words in the test manual transcripts with
appropriate universal word tokens Un. The results are shown in Table 6.5.
As expected, recognizing NEs without word identity information significantly
decreases the performance, reducing the F-score from 85.6 to 24.8. This indi-
cates that the most important information for NE extraction is the actual NE
word identity. Without this information and only using the context informa-
tion, we can identify 14.8% NEs (the recall rate) in the top 1 hypothesis, even
though the precision is reasonably high. That means if a word is recognized
as an NE based on its context words, it is very likely a true NE. If we select
the best decoded sentence from the top 100 hypotheses, the F-score is signifi-
cantly increased from 24.8 to 50.3. Detailed analysis shows this is mainly due
to the increase on recall rate (from 14.8% to 35.1%), while precision rate is also
increased from 74.9% to 88.8%, which is even higher than that of the standard
HMM NE tagger. So to increase the recall rate, we select candidate NEs from
top 50 NE extraction hypotheses.
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Precision Recall F-score
IdentiFinder 86.63 84.41 85.50

Retrained NE Tagger 87.12 84.11 85.59
Context-Top1 74.91 14.85 24.78

Context-Top10 85.88 26.87 40.94
Context-Top50 88.12 32.78 47.78

Context-Top100 88.83 35.12 50.33

Table 6.5: NE extraction result on the manual transcript, using standard model
and context-based model

CER Precision Recall F-score
Standard NE tagger on manual transcript 0 87.12 84.11 85.59

Stand NE tagger on ASR hypothesis 18.2 74.39 59.73 66.25
Context-based model on ASR hypothesis 18.0 76.96 67.19 71.74

Table 6.6: NE exaction evaluation from speech input

6.2.5.2 NE Extraction from ASR Hypothesis

We manually annotated NEs from the manual speech transcripts. This is the
gold standard file for NE extraction evaluation. We evaluate the NE extraction
results under three scenarios:

• Apply the standard HMM NE tagger on the manual transcripts. This is
similarly to the text-based NE tagging;

• Apply the standard HMM NE tagger on the ASR hypothesis, as done by
most speech NE extraction systems;

• Apply the context-based NE extraction model to detect and recover speech
NE recognition errors, as proposed in this section.

For each scenario, we evaluate both the speech recognition character er-
ror rate (CER) and the NE extraction precision, recall and F-score. The results
are shown in Table 6.6. We find that the newswire-trained NE tagger works
reasonably well on broadcast news manual transcripts, although we observe
2% F-score degradation, which are mainly due to genre differences. Running
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Figure 6.4: Distribution of NE extraction errors in reference and ASR hypothe-
sis

the same tagger directly on the speech recognition hypothesis, we get a much
lower NE extraction quality with the F-score of 66.25. Detailed analysis in Fig-
ure 6.4 showed that with misrecognized NE words, both deletion and false
insertion NE errors increased by 15%. When we apply the context-based NE
extraction model and combine it with information retrieval approach to detect
and correct NE recognition errors, we observe slightly reduction on ASR char-
acter error rate (18.2% to 18.0%). The NE extraction performance is improved
prominently. The F-score is increased from 66.25 to 71.74. Detailed analysis in-
dicates that this is mainly because of the significant increase of recall rate (from
59 to 67), thanks to the context-based NE extraction from top 50 NE decoding
hypotheses.

6.2.5.3 Speech NE Translation from Reference and ASR Hypothesis

We translate both manually annotated as well as automatically extracted NEs
using both bilingual and monolingual resources, as described in Chapter 5.
The bilingual resource is a NE translation dictionary with 71K entries, au-
tomatically aligned from a 6M word sentence-aligned parallel corpus. The
monolingual resource is a 200M word English corpus containing 10 years news
articles from Xinhua New Agency.

We evaluate the NE translation quality by means of precision, recall and F-
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Precision Recall F-score
Correct Type 72.18 72.18 72.18

Token 83.07 83.07 83.07
Acceptable Type 75.70 75.70 75.70

Token 85.74 85.74 85.74

Table 6.7: NE translation performance on manually transcribed and manually
annotated NEs

score. Precision (P ) is calculated as the percentage of correctly translated NEs
among the total number of translated NEs, while recall (R) is calculated as the
percentage of correctly translated NEs among the total number of correct NEs
in the manual annotation. F-score is defined as 2PR/(P + R). Due to errors
from NE extraction and translation, we classified NE translation results into
three categories:

• Correct, neither NE extractions nor translations have any errors;

• Acceptable, there are minor errors in either NE extraction or translation,
but the results are acceptable. For example, two NEs ”�Æ±” and ”í
k” are recognized as one NE ”� Æ± í k” and translated as ”deng
yaping yang ying”;

• Wrong, there are significant errors in either NE detection or translation.

We evaluate NE translation performance in four scenarios. In addition to
the three scenarios in NE extraction evaluation, we also measure the NE trans-
lation in an ideal scenario: translating manually annotated NEs from manual
speech transcripts. In this case there are no errors from speech recognition
and NE extraction. This illustrates the oracle performance of the NE transla-
tion module, as shown in Table 6.7. We evaluate the NE translation quality in
both ”Correct” and ”Acceptable” categories. Type refers to the total number of
unique NEs, while token refers to the total number of NEs. Since the NEs to be
translated are the same as the correct NEs in the manual annotation, precision
equals recall and F-score.

In the second scenario, we apply the standard NE tagger to the manual
transcript, and then translate those automatically detected NEs. In this case,
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Precision Recall F-score
Correct Type 57.19 58.80 57.98

Token 75.66 73.05 74.33
Acceptable Type 63.01 64.78 63.87

Token 79.93 77.17 78.52

Table 6.8: NE translation performance on manually transcribed and automati-
cally extracted NEs

Precision Recall F-score
Correct Type 44.09 48.59 45.96

Token 70.28 56.34 62.54
Acceptable Type 54.00 59.51 56.62

Token 77.63 62.25 69.10

Table 6.9: NE translation performance on ASR hypothesis and automatically
extracted NEs

the only errors are from automatic NE extraction. We get the NE extraction F-
score of 85.59. The NE translation results are presented in Table 6.8. Notice that
15% NE extraction errors lead to an additional 7-10% NE translation errors.

In the third scenario, we apply the standard NE tagger directly on the ASR
hypothesis, and get 66% NE extraction F-score. 18% character error rate leads
to 19.3% increase on NE extraction errors. Translating these detected NEs, we
get even lower NE translation quality. As shown in Table 6.9, both speech
recognition errors and NE extraction errors lead to an additional 9% drop on
NE token translation and 12% drop on NE type translation.

Finally, we evaluate the proposed context-based NE extraction and error
correction method on the ASR hypothesis. Extracting NEs on the corrected
hypothesis improves the NE extraction F-score from 66.25 to 71.73. Table 6.10
shows the overall translation quality on the corrected hypothesis. We observe
an absolute 4-6% improvement on NE translation F-score over the straightfor-
ward ASR NE translation approach (shown in Table 6.9).

Figure 6.5 shows the F-score of overall NE extraction, type and token trans-
lations with degraded speech input. From left to right they are: manually tran-
scribed and annotated NEs, manually transcribed but automatically extracted
NEs, automatically recognized and extracted NEs, and the context-based NE
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Precision Recall F-score
Correct Type 53.42 57.75 55.50

Token 76.91 64.92 70.41
Acceptable Type 59.93 64.79 62.26

Token 80.47 67.93 73.67

Table 6.10: NE translation performance on improved ASR hypothesis and au-
tomatically extracted NEs

 

Figure 6.5: NE extraction and translation quality with degraded speech input

extraction and error correction. Obviously, with higher character recognition
error rate and lower NE extraction F-score, NE translation quality decreases.
However, compared with the degradation on speech recognition and NE ex-
traction, the NE translation quality decreases much slower.

Some speech recognition, NE extraction and translation examples are shown
as follows. To help non-Chinese speakers understand the pronunciation simi-
larity between the reference sentence and the ASR hypothesis, we attach pinyin
after each misrecognized Chinese word.

Manual transcription, NE annotation and translation:
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�× @PER{ï�T/liexianlun} @PER{�É/shencheng} @PER{Ý
��/baozhijin}�/weiª��Ó�÷��

appoint @PER{Henry Litton} @PER{Charles Ching} @PER{Kemal
Bokhary} as Court of Final Appeal permanent judges

ASR Hypothesis, automatic NE tagging and translation:

�×�"/dianxianX/lun�Â/xianchengÝ/bao�/zhie/xin
�/weiª��Ó�÷��

appointed wire by the county package of mind for final trials court
permanent judges

Corrected NE detection on ASR hypothesis and automatic trans-
lation:

�× PER@{ï/lie�T/xianlun}@PER{�/shenÉ/cheng}@PER{Ý/bao
�/zhi�/jin	/sheng}ª��Ó�÷��
appointed @PER{patrick chan}@PER {charles ching}@PER{bokhary}
for final trials court permanent judges

The first two sentences are manually transcribed speech and manually an-
notated and translated NEs. The middle two sentences are the ASR hypothesis
and automatic NE extraction and translation results. Due to speech recogni-
tion errors on these person names, almost all the words are misrecognized
and inappropriately translated according to their individual semantic mean-
ing, which are neither coherent nor related to the source NEs. In the last two
sentences, one may notice that three person names have been recovered from
the initial recognition errors (although one additional character is incorrectly
added into one person name). The last line shows the translations of these
newly detected NEs, where one NE is correctly translated and another is par-
tially correctly translated.

6.3 Summary

In this chapter we focus on NE extraction from speech input. We develop an
adaptive NE extraction strategy, applying the NE tagger trained with broad-
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6.3 Summary

cast news data on manual transcripts of meetings. We update the NE tagging
model using information from both NE cache models and meeting profiles. We
improve the NE extraction F-score from 47% to 60%. This result is even com-
parable to an NE tagger trained with a small amount of domain-specific NE
annotated data. We also develop a context-based NE extraction model. This
model identifies partial NE information, such as NE type and location, based
on their left and right context as well as NE word duration. Combined with
the information retrieval and candidate NE re-ranking techniques developed
in Chapter 5, this model is able to detect and correct NE speech recognition
errors. We also compare NE extraction and translation performances with dif-
ferent input, from manual broadcast speech transcripts to ASR hypothesis, and
observe significant improvement using the proposed approach.
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Chapter 7

NAME TRANSLITERATION

Previous NE translation approaches, either NE alignment from sentence aligned
parallel corpus, or searching for NE translations from target language mono-
lingual corpus, rely on the existence of correct NE translations in target sen-
tences or retrieved target language documents. With this precondition we ap-
ply several similarity feature functions to select the correct translation. When
correct NE translations do not exist in the target text, we have to generate the
name translation via transliteration, i.e., to translate based on phonetic approx-
imation.

Given a source NE, machine transliteration generates a phonetically simi-
lar equivalent in the target language. The transliteration patterns are highly
dependent on the name’s origin, i.e., the country or the language family this
name is from. For example, when transliterating names from Chinese into En-
glish, as shown in the following example, the same Chinese character ”�”
is transliterated into different English letters, according to the origin of each
person.

�|? — Jin Renqing (China)

�L¥— Kim Dae-jung (Korea)

j¶4y�— Martin Luther King (USA)

�of— Kanemaru Shin (Japan)

[¬��YT�— Jose Joaquin Brunner (Chile)
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7. NAME TRANSLITERATION

Several approaches have been proposed for name transliteration. Knight &
Graehl (1997) proposed a generative transliteration model to transliterate for-
eign names in Japanese back to English using finite state transducers. Stalls
& Knight (1998) expanded that model to Arabic-English transliteration. Meng
et al. (2001) developed an English-Chinese NE transliteration technique using
pronunciation lexicon and phonetic mapping rules. Virga & Khudanpur (2003)
applied statistical machine translation models to ”translate” English names
into Chinese characters for Mandarin spoken document retrieval. All these
approaches exploit a general model for NE transliteration, i.e., source names
from different origins or language families are transliterated into the target lan-
guage with the same rules or probability distributions, which fails to capture
their different transliteration patterns.

Ideally, to explicitly model these transliteration differences we should con-
struct a transliteration model and a language model for each origin. However,
some origins have not enough NE pairs for reliable model training. We pro-
pose a cluster-specific NE transliteration framework. Considering that several
origins from close language families may share the same pattern of translitera-
tion, we group these origins into one cluster, and build cluster-specific translit-
eration and language models.

Starting from a list of bilingual NE translation pairs with origin labeled,
we group closely related origins into clusters according to their language and
transliteration model perplexities. For each cluster we train language and
transliteration models from merged NE translation pairs. Given a source name,
we first select appropriate models by classifying it into the most likely cluster,
then we transliterate the source name with the corresponding models under
the statistical machine translation framework. This cluster-specific transliter-
ation framework dramatically improves the transliteration performance over
the general transliteration model. Further more, we propose a phrase-based
transliteration model, which effectively combines context information for name
transliteration and achieves significant improvements over the traditional char-
acter based transliteration model.
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7.1 Name Origin Clustering

7.1 Name Origin Clustering

Provided with a list of bilingual name translation pairs, whose origins are al-
ready labeled, we want to find the origin clusters where closely related ori-
gins (countries sharing similar languages or cultural heritages) are grouped
together and less related origins are apart. We consider the following factors
for clustering:

• Define a similarity measure between clusters;

• Select a clustering algorithm: hierarchical clustering vs. flat clustering. If
hierarchical, bottom-up or top-down clustering;

• Define the clustering termination condition: how many clusters should
be optimally generated?

Assuming a generative process in creating these name translation pairs
from cluster-specific models, we define the similarity measure between two
clusters as their LM and TM perplexities, i.e., the likelihood of generating
one cluster’s name pairs using the other cluster’s character LMs and TM. We
choose bottom-up hierarchical clustering, starting with each origin as a sepa-
rate cluster. Finally, we select the desirable number of clusters based on source
and target LM perplexities.

7.1.1 Cluster Similarity Measure Definition

Let Si = (Fi, Ei) denote a set of name translation pairs from origin i, from
which origin i’s model θi is trained:

θi = (Pc(i), Pe(i), Pt(i))

where
Pc(i): N-gram source character LM trained from Fi;
Pe(i): N-gram target character LM trained from Ei;
Pt(i): IBM-1 character translation models trained from Si, including Pt(i)(E|F ),
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7. NAME TRANSLITERATION

the probability of generating a target letter given a source character, and sym-
metrically Pt(i)(F |E) (Brown et al. (1990)).

The distance between origin i and origin j can be symmetrically defined as:

d(i, j) = − 1

|Si| log P (Si|θj)− 1

|Sj| log P (Sj|θi) (7.1)

Assuming name pairs are generated independently,

P (Si|θj) ∝
|Si|∑
t

log
[
Pc(j)(F

t
i )Pt(j)(E

t
i |F t

i ) + Pe(j)(E
t
i )Pt(j)(F

t
i |Et

i )
]

(7.2)

P (Sj|θi) is defined in a similar way.

To ensure each origin has enough name pairs for reliable model training,
we select M origins from a list of name translation pairs such that each ori-
gin has at least c pairs. Name pairs from the remaining origins are treated as
unlabeled data for model re-training (see Section 7.2.2). We calculate the pair-
wise distances among these origins, and cluster them based on group-average
agglomerative clustering (Manning & Schutze (1999)), where the distance be-
tween clusters Ci and Cj is the average distance over all member origin pairs,
defined as:

D(Ci, Cj) =

∑
i∈Ci

∑
j∈Cj

d(i, j)

|Ci| × |Cj| (7.3)

7.1.2 Clustering Scheme

The group-average agglomerative clustering algorithm implements bottom-
up hierarchical clustering, as follows:

• Initialization:

– Initialize current cluster number: m = M ;

– Specify desirable number of clusters: n

– For i = 1, . . . , M,Ci = i, i.e., each origin is a separate cluster.
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• Repeat:
while m > n

– ∀(i, j) ∈ [1,m], calculate D(Ci, Cj);

– if(i′, j′) = arg min(i,j) D(Ci, Cj), Ci′ = Ci′
⋃

Cj′ , Cj′ = ∅,m−−.

The bottom-up clustering algorithm can generate M different cluster par-
titions, ranging from the initial M individual origin clusters to the final single
general cluster. As a result, the order of origin merge represents a clustering
tree, where the most similar origins are merged in the early stage and are closer
to leaves in the tree. If we associate each node in the tree with its merging or-
der, every ordered node represents a clustering configuration, which indicates
the current clusters at that point.

7.1.3 Optimal Cluster Configuration Selection

To select the optimal number of clusters from the clustering tree, we calculate
the probabilities of generating a held-out name pair list L from different cluster
configurations, and select the one with the minimum perplexity.

Formally, the optimal cluster configuration

ω∗ = arg max
ω∈Ω

P (L|Θω); (7.4)

where
Ω: The set of M clustering configurations in the tree, Ω = ω1, ω2, . . . , ωM ;
Θω: The set of cluster-specific LMs under configuration ω. Θω = {θj|j ∈ ω};
P (L|Θω): The likelihood of generating held-out name pairs from Θω. It is the
product of generating each name pair from its most likely name origin cluster:

P (L|Θω) =

|L|∏
t=1

maxj∈ωP (F t, Et|θj)P (θj)

=

|L|∏
t=1

maxj∈ωPc(j)(F
t)Pe(j)(E

t)P (θj). (7.5)
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Figure 7.1: Perplexity value of LMs with different number of clusters

The language model perplexity is defined as:

pp(L, Θω) = 2−
1
|L| logP (L|θω) (7.6)

= P (L|Θω)−
1
|L| (7.7)

We cluster 56K Chinese-English name pairs from M = 112 origins (we set
c = 50 in our experiments) into different numbers of clusters. We evaluate the
perplexities of different cluster configurations with regard to the held-out 3K
name pairs from 112 origins. The held-out data have the same origin distri-
bution as the training data. Figure 7.1 shows the perplexities curve. As one
can see, it reaches its minimum when n = 45 . This indicates that the optimal
cluster number is 45. Table 7.1 lists some typical origin clusters. It can be eas-
ily seen that countries are often grouped together according to their language
families. These countries are either geographically adjacent or historically affil-
iated. For example, while the Kazakh language belongs to the Central Turkic
language family, many Kazakh names in our training data have sub-strings
like ”-yev”, ”-chenko” and ”-vich”, thus Kazakhstan is clustered into the Rus-

110



7.2 Name Origin Classification

sian group. In the English group, the Netherlands (Dutch) seems an abnor-
mity. Actually it is first merged with South Africa, which was colonized by the
English and Dutch in the seventeenth century, then further clustered into this
English-speaking group. Additionally, some origins cannot be merged with
any other clusters because they have unique names and translation patterns,
e.g., China and Japan, and they are kept as single origin clusters.

7.2 Name Origin Classification

After similar name origins are grouped into clusters, we can train an origin
classifier to classify source names or name translation pairs into their most
likely cluster. Identifying the source name’s origin enables appropriate cluster-
specific modeling for name transliteration, as presented in the next section.
Also, identifying a name pair’s origin helps combine more unlabeled training
data for each cluster, which has the potential to train better name classification
and transliteration models.

7.2.1 Identify Origin Cluster with Source Names

Given a source name, we want to find the most likely cluster it is from. We
use the source character language model as the classifier, and assign the name
to the cluster with the highest LM probability. Assuming a source name is
composed of a sequence of source characters: F = f1, f2, . . . , fl . We want to
find the cluster j∗ such that

j∗ = arg max
j

P (θj|F )

= arg max
j

P (θj)P (F |θj)

= arg max
j

P (θj)Pc(j)(F ) (7.8)

where P (θj) is the prior probability of cluster j, proportional to the number of
name translation pairs in all the training data. Pc(j) is the probability of gen-
erating this source name under cluster j’s character-based n-gram language
model.
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Arabic

Afghanistan, Algeria, Egypt, Iran,
Iraq, Jordan, Kuwait, Pakistan,
Palestine, Saudi Arabia, Sudan,
Syria, Tunisia, Yemen,�

Spanish-Portuguese

Angola, Argentina, Bolivia, Brazil,
Chile, Colombia, Cuba, Ecuador,
Mexico, Peru, Portugal, Spain,
Venezuela,�

English

Australia, Canada, Netherlands,
New Zealand, South Africa, UK,
USA,�

Russian
Belarus, Kazakhstan, Russia,
Ukraine

East European
Bosnia and Herzegovina, Croatia,
Yugoslavia

French

Benin, Burkina Faso, Cameroon,
Central African Republic, Congo,
Gabon, Ivory Coast

German Austria, Germany, Switzerland

French (2) Belgium, France, Haiti

Korean North Korea, South Korea

Danish-Swedish Denmark, Norway, Sweden

Single Clusters

China
Japan
Indonesia
Israel
�

Table 7.1: Typical name origin clusters (n=45)
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7.2.2 Identify Origin Clusters with Name Translation Pairs

In addition to the bilingual name pairs whose origins are manually labeled
for origin clustering, we have a lot more name pairs without origin labels.
We want to classify these name pairs into appropriate clusters, and retrain
each cluster’s classification and transliteration models with augmented train-
ing data.

We adopt the metric defined in formula 7.5 for name pair classification.
Given a name translation pair (F,E) , the most likely cluster j∗ is defined as:

j∗ = arg max
j

P (θj|F,E)

= arg max
j

P (θj)P (F,E|θj)

= arg max
j

P (θj)Pc(j)(F )Pe(j)(E) (7.9)

As the sizes of character vocabularies are relatively small ( 30 for the En-
glish vocabulary and 6000+ for the Chinese one), we can use large N ’s in N -
gram LM. A suffix array language model based on the implementation de-
scribed in (Zhang & Vogel (2005)) allows the access to history with arbitrary
length, and thus is a good candidate for this task.

After we classify these unlabeled name pairs into appropriate clusters, we
retrain the origin classifiers with augmented training data (original labeled
name pairs plus newly classified name pairs), similar to the co-training al-
gorithm (Blum & Mitchell (1998)). In our case, we combine decisions from
two independent classifiers: source character LM (CLM) and target letter LM
(ELM), and select name pairs which are confidently and consistently classified
by both classifiers for model re-training.

Define the confidence measure of classifying name F into cluster j based
on classifier k (k= CLM, ELM):

pk(θj|F ) =
P (θj)Pk(j)(F )∑′
j P (θ′j)Pk(j′)(F )

(7.10)
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Define the most likely cluster based on CLM:

j∗c (F ) ≡ arg max
j

pclm(θj|F ), (7.11)

and the most likely cluster based on ELM:

j∗e (E) ≡ arg max
j

pelm(θj|E). (7.12)

The standard co-training algorithm selects name pairs satisfying

{
pclm(j∗c |F ) > h or

pelm(j∗e |E) > h
(7.13)

for classifier re-training, where h is the confidence score threshold (h = 0.9
in our experiments). A more strict constraint is:





j∗c (F ) = j∗e (E); and

pclm(j∗c |F ) > h; and

pelm(j∗e |E) > h.

(7.14)

Based on these two criteria we add confidently classified unlabeled name
pairs to the labeled data, re-train two classifiers. We compare them with the
baseline classifier, which is trained only from the labeled data.

7.2.3 Experiments

Our labeled and unlabeled data are 56K Chinese-English name translation
pairs with origin labels, as well as 486K name pairs without origin labels. All
the name lists are from the Linguistic Data Consortium Chinese-English per-
son name lists, originally from Xinhua News Agency. We extract 3K name
pairs as a development set and 3K as a test set, with the same origin distri-
bution as in the training data. As mentioned above, 56K name pairs from 112
origins are clustered into 45 origin clusters. We evaluate name origin classifi-
cation accuracies.

We classify source names and name translation pairs using different fea-
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N 2 3 4 5 6 7
CLM 83.62 84.88 84.00 84.04 83.94 83.94
ELM 83.74 88.09 89.71 89.96 90.10 90.02

CELM 89.58 91.13 91.07 91.07 90.97 90.91
Best CLM, N=3, ELM, N=6, Accuracy = 91.15%

Table 7.2: Origin classification accuracies given source name and name trans-
lation pair, using different features.

Model Baseline Cot CotStr
CLM (N=3) 84.88 83.95 84.97
ELM (N=6) 90.10 89.00 89.87

CELM 91.15 90.06 91.02

Table 7.3: Co-training classification accuracies on dev. set Model

tures: source language character LM (CLM), target language character LM
(ELM), and the combination of both LMs (CELM). We also try N-gram LM
with different Ns, and select the best configuration (different Ns for CLM and
ELM). Table 7.2 shows the classification accuracy. We find that 3-gram is suffi-
cient for the Chinese LM, while 6-gram achieves the best result for the English
LM. Under these configurations, the combined CELM achieves 91.15% classi-
fication accuracy. A detailed analysis indicates that some classification errors
are due to the inherent uncertainty of certain names, e. g, ” (Gary Locke)”, a
Chinese American, is classified as a Chinese name while his country origin is
USA.

We apply the name origin classifiers to the 486K name pairs without ori-
gin labels, and select confidently classified name pairs for model re-training.
We apply the standard co-training constraint (Cot) and a more strict constraint
(CotStr) to select qualified name pairs (see formulae 7.13 and 7.14), and re-train
the origin classifiers with the augmented name translation pairs. As a result,
Cot select 289K name pairs for model re-training, and CotStr select 83K name
pairs. We compare their performances with the baseline model (Baseline)
trained only on the 56K labeled name pairs.

Table 7.3 and 7.4 list the classification accuracies on the development and
test set. As we can see, classifiers trained with the standard co-training con-
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Model Baseline Cot CotStr
CLM (N=3) 84.20 83.59 84.26
ELM (N=6) 89.52 89.45 89.81

CELM 90.76 90.25 90.92

Table 7.4: Co-training classification accuracies on eval set Model

straint (Cot) consistently have lower classification accuracy than the baseline
classifiers, while CotStr achieves comparable or even better performance. One
possible reason is that the Cot strategy aggressively adds misclassified name
pairs, which mislead the baseline classifiers.

7.3 Cluster-specific Name Transliteration

We propose a phrase-based transliteration model, which effectively combines
context information for name transliteration and achieves significant improve-
ments over the traditional character-based transliteration model.

7.3.1 Phrase-based Name Transliteration

Statistical NE transliteration is similar to the statistical machine translation in
that an NE translation pair can be considered as a parallel sentence pair, where
”words” are characters in source and target languages. Due to the nature of
name transliteration, decoding is mostly monotone.

NE transliteration process can be formalized as:

E∗ = arg max
E

P (E|F )

= arg max
E

P (E)P (F |E) (7.15)

where E∗ is the most likely transliteration for the source NE F , P (F |E) is the
transliteration model and P (E) is the character-based target language model.

A transliteration model provides a conditional probability distribution of
target candidates for a given source transliteration unit. It can be a single char-
acter or a character sequence, i.e., ”phrase”. Their transliteration candidates
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can be identified from a character alignment path through Viterbi search, and
the transliteration probabilities are estimated based on their co-occurrence fre-
quency.

A naive choice of transliteration unit is the single character. However, sin-
gle characters lack contextual information, and their combinations may gener-
ate too many unlikely candidates. Motivated by the success of phrase-based
machine translation approaches (Wu (1997), Och et al. (1999), Marcu & Wong
(2002) and Vogel et al. (2003)), we select appropriate transliteration units which
are long enough to capture contextual information while flexible enough to
compose new names with other units. We discover such source translitera-
tion phrases based on the character collocation likelihood ratio test (Manning
& Schutze (1999)). This test accepts or rejects a null hypothesis that the oc-
currence of one character f1 is independent of another character f2 by calcu-
lating the likelihood ratio between the independent (H0) and dependent (H1)
hypotheses:

log λ = log
L(H0)

L(H1)
(7.16)

= log L(c12, c1, p) + log L(c2 − c12, N − c1, p) (7.17)

− log L(c12, c1, p1)− log L(c2 − c12, N − c1, p2).

L is the likelihood of getting the observed word counts under each hypothesis.
Assuming the character frequency follows a binomial distribution,

L(k, n, x) =

(
n

k

)
xk(1− x)n−k, (7.18)

c1 and c2 are the frequencies of f1 and f2, and c12 is the co-occurrence frequency
of f1 and f2. N is the total number of characters. p, p1 and p2 are defined as:

p =
c2

N
, (7.19)

p1 =
c12

c2

, (7.20)

p2 =
c2 − c12

N − c1
(7.21)
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We calculate the likelihood ratio for any adjacent source character pairs,
and select those pairs with high ratios. Adjacent character bigrams with one
character overlap can be recursively concatenated to form longer source translit-
eration phrases. To discover translation candidates for a given source phrase,
we collect all NE translation pairs containing the source phrase. For each NE
pair we

• Convert the Chinese characters into their romanization form, pinyin, then
align them with English letters via phonetic string alignment.

• Segment the Chinese name into a sequence of source transliteration phrases.
The initial phrase alignment path can be identified from the character
alignment path.

• Apply a beam search around the initial phrase alignment path, searching
for the optimal alignment which minimizes the overall phrase alignment
cost.

The phrase alignment cost is defined as:

A∗ = arg min
A

∑
i,ai∈A

D(fi, eai
), (7.22)

where fi is the ith source phrase, eai
is its target candidate under alignment

A. Their alignment cost D is defined as the linear interpolation of the phonetic
transliteration cost and the semantic translation cost:

D(f, e) = λ1 log Ptrl(e|f) + λ2 log Ptrans(e|f). (7.23)

λ1 and λ2 are the interpolation weights, reflecting the relative contributions
of the transliteration cost and the translation cost. They usually differ from
cluster to cluster. For example, the transliteration cost is usually the domi-
nant feature for most Latin language clusters. However, for Japanese cluster,
the translation cost is more important. This is because Japanese names share
similar characters with Chinese, thus the Japanese names are often translated
semantically, using the same kanji characters. As a result, the translation fea-
ture weight is more important for the Japanese cluster (λ1 = 0 in this case). We
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û>åymohamed
Arabic �TÚ� abdul

�-ry ahmed
�: yo (0.27) y(0.19) you(0.14)�

Õ? john
English �Í william


z peter
�: u(0.25) you(0.38) joo(0.16)�

vnä²� vladimir
Russian �yLe ivanov

-��Û -yevich
�Õ yu(0.49) y(0.08) iu(0.07)�

Table 7.5: Transliteration unit examples from three name origin clusters

empirically select the interpolation weight for each cluster, and the combined
model with optimal interpolation weights achieves the best performance.

We extract phrase transliteration pairs from top N alignment paths, associ-
ated with their confidence scores. We estimate their transliteration probabili-
ties according to the fractional alignment frequencies (confidence scores). We
also include frequent sub-name translations (first, middle and last names) in
the transliteration dictionary. Table 7.5 shows some typical transliteration units
(characters or phrases) from three clusters. They are mostly names or sub-
names capturing cluster-specific transliteration patterns. It also illustrates the
same source character having different transliteration candidates with differ-
ent probabilities in different clusters, which justify the cluster-specific translit-
eration modeling.

7.3.2 Language Model and Decoding

For each cluster a target character language model is trained from target NEs.
We use the N-gram models with standard smoothing techniques. During mono-
tone decoding, a source NE is segmented into a sequence of transliteration
units via maximum length string matching, and each source unit is provided
with a set of candidate translations with corresponding probabilities. A translit-
eration lattice is constructed to generate all transliteration hypotheses, and the

119



7. NAME TRANSLITERATION

one with the minimum transliteration and language model costs is selected as
the final hypothesis.

7.3.3 NE Transliteration Evaluation

We first evaluate the name transliteration results for each cluster. In this sce-
nario we know each source name’s true origin cluster. Secondly we evaluate
the overall results without the origin label information. We need to classify
a given source name into the most likely cluster, then use the cluster-specific
transliteration and language models to translate the source name into the tar-
get language. Obviously, name origin classification errors will almost surely
lead to name transliteration errors.

The transliteration hypotheses are evaluated based on three metrics:

• Top1 accuracy (Top1), the percentage of correct NE transliterations in the
top 1 hypothesis, compared with human translations (reference);

• Top 5 accuracy (Top5), the percentage of correct NE transliterations in
the top 5 hypotheses, compared with reference translations;

• Character error rate (CER), the percentage of incorrect characters (in-
serted, deleted and substituted English letters) when the top 1 translit-
eration hypothesis is aligned with the reference translation.

Our baseline system is a character-based general transliteration model, where
56K NE pairs from all clusters are merged to train a general transliteration
model and language model (General). We compare the CERs of several typical
clusters using the general model and cluster-specific models, and the results
are shown in Table 7.6. Because in the training data more than half of the names
are from Latin language clusters (Arabic, English, French, Spanish-Portuguese
etc.), the general model favors Latin name transliteration patterns. As a re-
sult, it obtains reasonable (20-30%) CERs on these clusters, but strikingly high
(over 70%) CERs on other oriental language clusters such as Chinese, Korean
and Japanese, even though the Chinese cluster has the most name translation
pairs for training. Examples in Table 7.2 show a Chinese name’s western style
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Cluster Data size
General
CER (%)

Char. CER
(%)

Phrase
CER (%)

Avg.
trans. per
src. phrase

Arabic 8336 22.88 18.93 14.47 4.58
Chinese 27093 76.45 1.69 1.71 3.43
English 8778 31.12 29.21 17.27 5.02
French 2328 27.66 18.81 9.07 3.51

Japanese 2161 86.94 38.65 29.60 7.57
Russian 4407 29.17 9.62 6.55 3.64
Spanish 8267 18.87 15.99 10.33 3.61

Table 7.6: Cluster-specific transliteration comparison

transliteration, ”Van Tylen”, under this general model, while the correct trans-
lation should be ”Fan Zhilun”.

When applying the character-based (char) cluster-specific models, translit-
eration CERs are consistently decreased for all clusters (ranging from 6.13%
relative reduction for the English cluster to 97% for the Chinese cluster). As
one may expect, the most significant error reduction occurs on the oriental
language clusters because cluster-specific models are able to represent their
unique transliteration patterns. When we apply the phrased-based transliter-
ation models, CERs are further reduced by 23% 51% for most clusters, thanks
to the context information encapsulated in the transliteration phrases. Because
most Chinese names are translated according to the pinyins of single charac-
ters, phrase-based transliteration slightly decreases the performance.

Additionally, different clusters vary a lot in their transliteration accuracies.
The Chinese cluster achieves 96.09% top 1 accuracy and 1.69 CER with the
character-based model because Chinese name translation patterns are rather
regular: a single Chinese character’s pinyin is often the correct translation.
Other clusters have CERs ranging from 7% to 30%, which is partly due to less
training data (e.g, the Japanese cluster), and partly because of the language-
specific transliteration patterns. We measure the average number of transla-
tions per source phrase for each cluster, as shown in Table 7.6. This feature
reflects the transliteration pattern regularity of different clusters, and seems
a good indicator of the transliteration CERs. For example, the Russian clus-
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Figure 7.2: Transliteration examples from some typical clusters
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Model Top1(%) Top5(%) CER(%)
General (char) 3.78±0.69 5.84±0.88 50.29±1.21
Cluster (char) 51.08±0.84 56.50±0.87 14.00±0.34

Cluster (phrase) 56.00±0.84 62.66±0.91 12.84±0.41

Table 7.7: Transliteration result comparison

ter has 3.64 translations per source phrase on average, and obtains 6.55% CER
with around 4400 training data, while the English cluster includes more flex-
ible translation patterns, with 5.02 translations per source phrase, and gets
17.27% CER with over 8700 names for training. Transliteration examples from
some typical clusters are shown in Table 7.2. Here we compare the hypothe-
ses from the general model, the phrased-based cluster-specific model, and
BabelFish , a online machine translation system. The general model tries to
transliterate every name in the Latin romanization, regardless of each name’s
original languages. The BabelFish system sometimes incorrectly translates
source characters based on their semantic meanings, and the results are dif-
ficult to understand.

We also compare the overall performance on all the test data, where we
first classify the source name into the most likely cluster, then transliterate this
name with the appropriate models. The results are shown in Table 7.7. Because
the general model performs rather poorly when transliterating oriental names,
which account for almost half of the test data, the overall CER ( 50%) is rather
high. Note that these results is also comparable to other state-of-the-art statis-
tical name transliteration systems (Virga & Khudanpur (2003)). The character-
based cluster-specific transliteration model dramatically improves the top 1
and top 5 transliteration accuracies from 3.78% to 51.08%, and from 5.84% to
56.50%, respectively. Consistently, the CER is also reduced from 50.29% to
14.00%. Phrase-based transliteration further increases the top 1 accuracy by
9.3%, top 5 accuracy by 10.7%, and reduces the CER by 8%, relatively. All
these improvements are statistically significant.
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7.4 Summary

In this chapter we propose a cluster-specific model for name transliteration.
Noticing that name transliteration patterns are highly dependent on the name’s
origin, we group closely related origins into clusters. Starting from a list of
bilingual NE translation pairs with their origin, we build language and translit-
eration models for each origin. Models from different origins are recursively
merged until the optimal number of clusters is reached. For each cluster we
train language and transliteration models from merged NE translation pairs.
Given a source name, we first select appropriate models by classifying it into
the most likely cluster, then we transliterate the source name with the corre-
sponding models under the statistical machine translation framework. This
cluster-specific transliteration framework dramatically improves the translit-
eration performance over the general transliteration model. Further more,
we propose a phrase-based transliteration model, which effectively combines
context information for name transliteration and achieves significant improve-
ments over the traditional character based transliteration model.
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Chapter 8

NAMED ENTITY
INFORMATION-THEORETIC
MEASURE

8.1 Introduction

Existing evaluation metrics for both automatic speech recognition (ASR) and
machine translation (MT), such as word/character error rate or Bleu scores, do
not differentiate the information carried by different words. Content words,
functional words or even punctuation marks are treated equally. However,
considering the utility of ASR/MT hypotheses, the correct recognition and
translation of key words, such as named entities, should be more important
than a comma. On the other hand, the effectiveness of these key words has
been proved in other natural language processing tasks, such as information
retrieval and question answering. In this project, we propose to investigate the
information loss caused by misrecognized and mistranslated named entities.

8.2 LM-based Information Theoretic Measure

The information carried by a word is context-dependent. Intuitively, the word
”agency” carries more information by itself than the case when it is followed
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by ”Xinhua News”. In the latter case given the first two words, one natu-
rally expects the most likely next word is ”agency”. Therefore we calculate the
information carried by each word depending on its history. Using language
models,

Info(wi|wi−1, wi−2) = − log P (wi|wi−1, wi−2), (8.1)

where P is a 3-gram language model trained from general-domain text. This
training data represents the prior knowledge about the world, similar to hu-
man’s common sense. When i ¡= 2, the 3gram model is backoffed to 2-gram
and 1-gram models. The information carried by a sentence, a phrase or a
named entity is the sum of the information carried by each word:

Info(S : wn
1 ) =

n∑
i=1

Info(wi|wi−1, wi−2). (8.2)

Given a machine generated (ASR or MT) hypothesis, we measure the in-
formation loss from misrecognized or incorrectly translated named entities.
First we manually annotate NEs in the reference sentence (manual speech tran-
scripts or human reference translations). We calculate the information carried
by each NE. Given these reference NEs, we try to find the corresponding NEs
in the hypothesis via automatic NE tagging. Reference NEs that cannot be fully
matched cause NE information loss.

8.3 NE Alignment

To find the reference NEs in the ASR/MT hypotheses is not as straightforward
as one might expect. Errors in NE speech recognition, automatic tagging and
NE translation cause various problems:

• NEs may be misrecognized or incorrectly translated, thus it is impossible
to find the correct NEs in the hypotheses;

• Even if NEs are correctly recognized or translated, automatic NE tagging
may not be able to find them as the NE tagger tends to make more mis-
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takes on imperfect transcripts;

• The recognized or translated NEs may not be the same as the reference
NEs, but they carry the same meaning, e.g., ”UN” and ”United Nations”.
Therefore a synonym NE list is necessary to include acceptable variations
of NEs.

For example, in the following ASR sentence,

Ref: @ORG{IBM Corp.} announced its merge with @ORG{Leveno}
early today. ASR: @ORG{IBM} cops announced its merge with
the @ORG{Leveno} early today.

Automatic NE tagging identifies ”IBM” and ”Leveno” as organization NEs.
Notice that ”Leveno” occurs in both the manual transcript and the ASR hy-
pothesis, and can be perfectly aligned without any information loss. ”IBM
Corp.” in the manual transcript should be aligned with ”IBM” in the ASR hy-
pothesis. From information-theoretic point of view, we can calculate the infor-
mation loss of the missing word ”Corp.” given ”IBM” as its history:

Info(”corp.”|”IBM”) = − log P (”corp.”|”IBM”).

From user’s utility perspective, ”IBM” and ”IBM Corp.” could be considered
as equivalent, so we can generate a synonym NE list and consider certain NE
partial matches acceptable.

Sometimes NEs in the generated hypothesis are more difficult to align. This
problem is more serious for matching NEs in machine translation hypotheses
and reference translations. Because of the inherent non-monotone and one-to-
many mapping in machine translation, there are more variations regarding to
NE translation hypotheses. For example,

Src: @ORG{c�ö} @LOC{�²} 3Û 16��Ã�V @PER{½
�}Ä!c:�	�+Ç�# 1� 2ÛÇ@LOC{�À�}°c
�b�¬ñ= 37.67�ÃÇ3��� 34.8%,3\�ñ=��{
25.5% . Ref: @ORG{Xinhua News Agency} , @LOC{Guangzhou},
March 16 ( Reporter @PER{Chen Ji} ) The latest statistics show that
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from January through February this year , the export of high-tech
products in @LOC{Guangdong Province} reached 3.76 billion US
dollars , up 34.8% over the same period last year and accounted for
25.5% of the total export in the province . MT: @LOC{guangzhou},
march 16 ( @ORG{xinhua} ) – the latest available statistics show
that from january to february , @LOC{guangdong}, the export of
high-tech products 3.76 billion dollars , compared with 34.8% , the
province ’s total exports of 25.5% .

NEs from the reference translation and MT hypothesis are extracted, as shown
below:

RefNE: xinhua news agency — guangzhou — chen ji — guang-
dong province HypNE: guangzhou — xinhua — guangdong

For automatically NE alignment, we consider that each reference NE can be
aligned to any hypothesis NEs. Because correct NE translations may only dif-
fer in their word orders (e.g., ”FIFA Executive Committee” vs. ”the Executive
Committee of FIFA”), the alignment cost is based on word-to-word string edit-
ing distance. In other word, we try to find the optimal word-to-word align-
ment path between two NEs, and we consider the total number of unaligned
words in both NEs as the distance measure. With this approach we also con-
sider the NE partial match, and calculate NE information loss from missing
words. For example, the alignment cost between ”xinhua news agency” and
”xinhua” is the sum of the alignment costs for ”xinhua” and ”xinhua” (cost=0),
”news” and NULL (cost=constant) and ”agency” and NULL (cost=constant).
We calculate the string alignment cost for all the NE pairs, and select the pairs
with the minimum alignment cost as aligned NEs. We also identify the word
alignment path within each pair and calculate the information loss from miss-
ing word. To deal with automatic NE tagging errors, when the reference NEs
are not perfectly aligned, we also search for its occurrence in the hypothesis
sentence.

As a result, with the above extracted NE pairs, the NE ”guangzhou” is per-
fectly aligned. The NE ”guangdong province” is not found in the hypothesis,
but the closest match is the NE ”guangdong”. From the word alignment path
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we identify the missing word ”province”, and the corresponding information
loss:

Info(”province”|”in”, ”guangdong”) = 1.69 bit.

Similarly, the NE ”xinhua news agency” is aligned to ”xinhua”, with the infor-
mation loss:

Info(”news”|”xinhua”) = 5.53 bit

Info(”agency”|”xinhua”, ”news”) = 0.01 bit

So the total information loss is 5.54 bit. Finally, the person name ”chen ji” is
missing in the hypothesis, and the information loss is 24.2 bits. The total NE
information loss in the above sentence is 31.43 bits.

8.4 Experiments

We select 6M English words and 5.5M Chinese words from newswire resources
as our training data. The Chinese and English texts are parallel, i.e., they are
sentence-by-sentence translations. Based on formula 8.2, we calculate the total
amount of information carried by the source sentence in Figure 2 (328.95 bits),
the reference translation (325.24 bits), and the MT hypothesis (248.96 bits). We
notice that the source and target translations carry the same amount of infor-
mation while the MT hypothesis loses quite some information. Even so, the
information carried by the MT hypothesis may not be the same as the refer-
ence translation’s information.

8.4.1 NE Information Loss from ASR Hypothesis

We apply the above information loss measure on speech recognition hypothe-
ses. We experiment with both Chinese and Arabic speech. The Chinese test set
is 1 hr Chinese broadcast news speech from Hub 4 1997 test data. It contains
104 speech segments with 9176 words, and the ASR hypothesis from Janus

129



8. NAMED ENTITY INFORMATION-THEORETIC MEASURE

Perfect Acceptable
Chinese (WER=18.2) 23.71% 23.37%
Arabic (WER=20.2) 24.81% 24.81%

Table 8.1: NE Information Loss for Chinese and Arabic ASR

ASR system has a word error rate (WER) of 18.2%. The Arabic test set is 103
speech segments from FBIS test data. It contains 13277 words, and the ASR
hypothesis has a word error rate of 20.2%. We compare the information loss
under two conditions: perfect match and acceptable match where a synonym
NE list is created to allow flexible NE matches. The result is shown in Ta-
ble 1. We find that 23.7% of total NE information is lost due to Chinese NE
speech recognition errors, and 24.8% total NE information is lost for Arabic NE
speech recognition. We find that on average the NE information loss is about
5% higher than the WER, and this confirms our assumption that existing WER
is a lower bound of the actual information loss.

8.4.2 NE Information Loss from MT Hypothesis

We also apply the information loss measure on machine translation hypothe-
ses. We experiment with both Chinese-English and Arabic-English translation
tasks. The Chinese test set is 200 Chinese newswire sentences from NIST MT
evaluation test data. The Arabic test set is 203 Arabic newswire sentences from
NIST MT evaluation test data. We select one reference translation for each test
set, and manually annotate NEs in the reference translations. The machine
translation hypotheses are from CMU STTK system, with and without aug-
mented NE translation functions. The MT evaluation scores (Bleu and NIST)
are shown in Table 8.2 and 8.3. We create a synonym NE list for each test set to
evaluate the information losses under ”acceptable conditions”. Table 8.2 and
8.3 also show the percentage of NE information loss from machine translation.
As we can expect, the better the MT quality is, the less the NE information loss
is. We also find that adding the NE translation module significantly reduces
the NE information loss by 25% and 12% for Chinese and Arabic under the
perfect match condition, and 49% and 50% under the acceptable condition.
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MT Eval Metric NE InfoLoss Measure
Bleu NIST Perfect Acceptable

STTK 19.98 7.82 52.92% 35.81%
STTK+NE 20.79 7.98 39.70% (-24.95%) 18.38% (-48.67%)

Table 8.2: NE Information Loss for Chinese-English MT

MT Eval Metric NE InfoLoss Measure
Bleu NIST Perfect Acceptable

STTK 43.37 9.03 34.60% 20.51%
STTK+NE 44.04 9.17 30.32% (-12.37%) 10.11% (-50.71%)

Table 8.3: NE Information Loss for Arabic-English MT

8.5 Discussion

Our analysis focuses on the information loss caused by ASR and MT errors.
We did not measure the information noises introduced by misrecognized or
incorrectly translated NEs. Obviously these noises will significantly bring in
unwanted information and spread errors over context words around NEs. So
the information loss we estimate is the lower bound of the negative effect from
misrecognized and incorrectly translated NEs. It will be interesting to explore
the information noises in a quantitative manner.

Additionally, when certain names cannot be reliably recognized or trans-
lated, it may be more reasonable to transcribe them as name class tags in ASR
or keep the original foreign names in MT rather than introducing errors by
boldly recognize or translate them. One may measure how much information
loss there are in such a situation.

Finally, we measure the information carried by each word based on a lan-
guage model, which is trained with general domain text. The training data
represents the prior world knowledge. However, this world knowledge will
differ from person to person, as each individual has a unique knowledge base.
Even for the same person, his/her information needs will vary depending on
the document he/she reads, the specific task the reader fulfills and other fac-
tors. The task-oriented information utility measure such as answering certain
questions after reading a document may be relevant.
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8.6 Summary

We present an information-theoretic measure to estimate the information loss
from ASR and MT. We estimate the information loss caused by NE speech
recognition and machine translation. This measure provides another perspec-
tive to measure the utility of ASR and MT hypotheses. We observe significant
information loss reduction (about 50%) using our NE translation techniques.
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Chapter 9

Conclusions

In this chapter we conclude the dissertation by summarizing the thesis work
and proposing several directions for future research.

9.1 Summary

We proposed an effective language-independent framework to extract and trans-
late NEs from text and speech. Within this framework, we developed various
features and algorithms, applied them to text and speech NE extraction and
NE translation tasks in multiple language pairs.

We adopted the hidden Markov model (HMM) as our baseline NE extrac-
tion system, and trained and evaluated NE taggers in different languages (Ara-
bic, Chinese and English). With different resources and different problems to
solve, we expanded the baseline model in the following ways:

• We used a bootstrapping technique to train a Chinese NE tagger from
imperfectly labeled data. The re-trained NE tagger achieved better NE
extraction performance.

• We adapted the NE tagger trained from broadcast news data to NE ex-
traction from meeting transcripts. The adaptive NE tagging model incor-
porated global and local context information, and significantly improved
the NE extraction performance.
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• We developed a context-based NE extraction model to identify possible
NE types and locations from ASR hypothesis. This approach, combined
with speech recognition confidence measures and information retrieval
techniques, corrected NE speech recognition errors and improved NE
extraction performance.

For NE translation, we developed several language-independent phonetic
and semantic (NEs and their context) features to capture different similarity
measures between source and target NE pairs. We incorporated these features
into an NE translation framework to solve various NE translation problems in
different language pairs (Chinese-English, Arabic-English and Hindi-English)
with varying input data streams (text and speech) and resources (monolingual
and bilingual):

• To align NE translations from sentence-aligned bilingual corpora, where
NEs have been labeled independently in both languages;

• To project NEs within a sentence-aligned bilingual corpus, where NEs
have been labeled for only one language, and we attempted to find their
translations in the other language;

• To search for the target NE translation from monolingual corpora, given
a source NE and possibly its context information as the query.

We achieved significant improvements on NE alignment and translation ac-
curacy. When we incorporated the translated NEs into machine translation
systems, we also improved the overall machine translation quality.

Finally we developed a cluster-specific name transliteration framework.
By grouping names from similar origins into one cluster and training cluster-
specific character and phrase transliteration and language models, we man-
aged to dramatically reduce the name transliteration error rates. The combined
NE translation techniques reduced NE information loss by 50%.
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9.2 Conclusion

NE extraction and translation are important tasks for information extraction,
machine translation and crosslingual information retrieval and question an-
swering. In this thesis work, we mainly focus on speech NE extraction and NE
translation. We draw the following conclusions from our thesis work:

1. When reasonable amount of training data is available, existing NE ex-
traction methods achieve satisfactory performances on well-formed text.
Applying them to speech from a different genre, performances drop sig-
nificantly. Adaptation strategies such as domain and topic adaptation
can improve the speech NE extraction performance.

2. ASR errors are another difficult problem for speech NE extraction. Context-
based model help identify partial information about candidate NEs (in
particular, their positions and types). True NEs can be identified from
topic-relevant documents, which are retrieved using confidently recog-
nized NE context in the ASR hypothesis.

3. For NE translation, frequent NEs can be reliable translated using bilin-
gual lexicon and sentence-aligned corpus. Less frequently occurring NEs
are the most difficult to translate. Accessing additional monolingual in-
formation via information retrieval and utilizing translingual NE simi-
larity features significantly improve the NE translation accuracy.

4. Effectively capturing origin-specific transliteration patterns, the cluster-
specific name transliteration substantially improves transliteration accu-
racy.

5. The proposed information-theoretic framework estimates NE informa-
tion loss from speech recognition and machine translation. It provides
an alternative to existing word-matching NE extraction and translation
evaluation metrics such as precision, recall, F-score, as well as Bleu and
NIST scores for machine translation evaluation.
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9.3 Discussion and Future Research Directions

Although we have developed a series of approaches to various NE extraction
and translation problems, this problem has not been fully solved. There remain
many intriguing research problems which can be further explored. Here we
propose some possible directions for future research:

9.3.1 Improve Monolingual NE Tagging with Crosslingual NE

Alignment

NE tagging is one of the key components for NE translation. When manually
NE annotation data is not enough, bootstrapping method using unlabeled data
becomes more attractive. We demonstrate the monolingual bootstrapping in
section 3.3. Similarly, crosslingual bootstrapping based on NE alignment is
possible.

In the sentence-aligned bilingual corpus, NEs are automatically tagged for
each language. As experiment results in section 5.1 showed, automatic NE
tagging errors severely affected NE alignment quality. We applied a variable-
length sliding window around the initial NE boundary to correct some initial
NE tagging errors. As a result, the NE-aligned bilingual corpus contained less
NE tagging errors for both languages. Using these error-corrected NE tagging
data, one can train more accurate NE tagger for each language. One may apply
the retrained NE taggers on the parallel corpus again and hopefully further
improve the NE tagging quality and NE alignment accuracy, thus reduce more
NE tagging errors and obtain parallel data with higher NE label accuracies.

9.3.2 Search World Wide Web for NE Translation

In Section 5.3 we searched a pre-indexed monolingual corpus for NE trans-
lation. This strategy was appropriate for our research since we could query
with arbitrary number of words, experimented with different indexing units:
sentences, paragraphs or documents. We could also evaluate the NE transla-
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tion coverages of different corpora. However, the NE translation accuracy was
also hindered by the limited information included in the monolingual corpus.
Some articles have been outdated for ten years and they did not provide satis-
factory coverage to translate recent NEs.

One can search a much larger and constantly updated corpus, the World
Wide Web. The Web contains tremendous resources, constantly updating and
increasing. There are several search engines providing APIs for web search ap-
plications, but they often set constraints on query length, the maximum num-
ber of query words one can ask. So one needs to find the most discriminating
words to formulate effective queries, such as topic-relevant NEs or context
words. These query words are critical to efficiently find a small number of tar-
get language documents containing the NE translation. One can make use of
various information from web search for NE translation, such as the number of
returned results (for NE translation verification), top N returned snippets (the
most specific documents but possibly with less translation coverage), returned
URLs and the whole document from each URL, which are more complete but
more computationally expensive to identify the translation.

Additionally, rather than only searching target language web pages, one
may search mixed-language web pages (Zhang et al. (2005) and Huang et al.
(2005b)) that contain both a source NE and its translation in the same web
page. One can extract NE translations from the returned web pages based on
their phonetic, semantic, context similarities as well as occurrence frequencies.
This approach can be extended to translate not only NEs, but also other words
or phrases which we do not have reliable translations given existing bilingual
resources.

9.3.3 Measure Acoustic Similarity for Speech NE Error Correc-

tion and Extraction

In section 6.2.3, we calculated the string transliteration cost between the rec-
ognized NE hypothesis and the retrieved candidate NE, which implicitly esti-
mated their phonetic similarity. Due to speech recognizer errors, the pronun-
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ciation of the recognized NE hypothesis could be very different from the true
word(s), thus the phonetic comparison may be unreliable. One may explicitly
model the pronunciation similarity by calculating the speech recognizer’s con-
fusion matrix, which represents the most confusable and often misrecognized
words, characters, or phonemes. With such matrix, one can generate phonet-
ically similar words or characters for the hypothesized NEs. Even if the top
one hypothesized NE is phonetically incorrect, there are other variants which
the retrieved candidate NEs can be compared with. Similarly, ASR N-best hy-
potheses or confusion network can be used to generate more hypothesized
NEs.

9.3.4 NE Extraction and Translation Evaluation Method

We evaluated NE extraction and translation performances using precision, re-
call and F-scores. When applying to machine translation task, we adopted
the widely used Bleu and NIST scores. However, all these evaluation metrics
are based on word matching. A phonetically equivalent name translation is
considered incorrect and awarded no credit even if its spelling is only slightly
different from the reference translation, although for human readers that’s per-
fectly acceptable. We proposed an initial information-theoretic metric to mea-
sure the actual NE information loss to human readers, based on the context
of NEs. One may expand this metric by additionally considering informa-
tion noise caused by incorrect NE recognition and translation. To evaluate the
information loss for general machine translation task, one may combine the
information-theoretic measure with the word alignment information between
the hypothesis and reference sentences, as described in METEOR(Banerjee &
Lavie (2005)).
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Penn TreeBank Part-of-Speech Tag

Set
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Number Tag Description
1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative

10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun
36. WRB Wh-adverb

Table A.1: Penn TreeBank Part-of-Speech Tag Set
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