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formance difference. The major difference between these cases was that the current net-
works, due to their number and the time required for their training, had been constructed
with fewer hidden units -- and consequently fewer tunable parameters. For this reason, the
experiment was repeated with a network with the same number of hidden units as had been
used in the initial experiment. The superfluous I/O units for absent speakers and phones
were, however, omitted. There were n input units, eight units in the first hidden layer and
fourteen in the second, and nine output units. The biased network had twenty speaker ID
inputs available via two hidden units in a separate layer.

These networks had the training'® set classification performance given in Table 30. The
unbiased raw input (48 input) performance was almost the same as in the preliminary exper-
iment, although in this case the biased performance was slightly better, not worse, than the
unbiased performance®. As before, the improvement in recognition performance was more

Input Dimension Raw

Case® |12 |3|4|5|6|7|8|9|10(12|12]|13]| 48

Bias 669 | 740 | 77.5 | 784 | 79.1 | 804 | 813 | 807 | 817 | 811 | 821 | 820 | 824 | 857

Slmple 598 | 665 | 713 | 727 | 749 | 758 | 763 | 764 | 174 | 17 799 | 791 | 193 84.0

% Redn 177 | 224 | 216 | 208 | 170 | 192 | 212 | 184 | 192 | 154 | 111 136 | 149 10.9

Table 32: Improvement in Recognition performance from Speaker Bias for RMSpell
Vowel data projected to various dimensions.
a. Thus table gives the result for randomised pattern presentation only.

suhsta_ntia] when there_ was less speech data available for the classifier to work with. This
effect is demonstrated in the following graph which displays the percentage error reduction

avai]ablg from speaker ID, plotted against input dimension, for both the networks with wide
(8,14) hidden layers and the network with narrow (4.7) hidden layers:

5.8.3. Conclusions from Peterson Barney/RMSpell Comparison

These experiments were prompted by the observation that while the SVC-generating
spe.aker models hgd been of unspectacular utility in the French Digits recogniser (§) 3"5
while sEeakcr ID inputs had produced no improvement at all in the pilot RMSpell Ex‘peri-
ment ( §::_.4}. experiments in [watrous93] that ought to have served as a model fr::rpl:his kind of
speaker “adaptation”, using information about speaker identity, had shown impressive gains.

shall see later a wise one, if we wish 1o estimate the
. : usefulness of speaker i practice is justi
the data-sets available are very small, it would have been wise to aban:lon!f: im ml'mh oo ey

10.“’!nydm:ﬁ;ﬂif:p:akumbiasnnuainjngmpufmnumm 'I' i e e e dun s

Page 122, Speaker Models and Speech Recognition



page 123

Input Dimension vs. Percentage Error Reduction from Speaker Biases

7L ¢ Narrow Hiddens — |
: A Wide Hiddens - -

0 5 10 is 20 25 30 35 40 45 50
Figure 33: Error reduction vs. dimension onto which the three fra‘mzs of input data
were projected. The “Narrow Hiddens” case was for a network with four antl seven
hidden units in the first and second hidden layers, respectively. The “Wid? Hldflens"
network had eight and fourteen units in the corresponding layers. Especially in t?le
case of the “Wide Hiddens” network, speaker biases produce a more substantial
error reduction when less information is available from the speech directly.

The experiments in §5.6.2 showed that when speaker voice cade_s were derln_red from the
Peterson and Barney vowel data (PB), they were effective at improving rv_amg_munn perform-
ance on the task, aithgugh not as effective as perfect spcal_cer information; if Petersgn atrl;d
Barnev data could be used as a model for adaptation at all, 1t Fnuld be used as such with the
et oF speaker “ID” provided by the SVCs invgstiga@ in this thesis. The almtn;t zﬁtﬁgﬁ
failure of the pilot experiments with the more realistic Resource Mana%iemen Eut i
(RMSpell) data-set suggested, therefore, that either the Peterson Bamey _ala ans b t%ain-
data set to work with as a model of real speech, or that there was snmethlrng about the 5
ing done on the two data sets that made speaker adaptation work well with one, but not the

other. .

The experiments in §5.6.1 compared second order nets of the sort {2 ::;;iﬁnﬁ
[watrous93] with the more conventional first order nets used in the bu A
in this thesis. In no case did the second order nets prmfldni: any advamﬁajge Aa
ones. In fact, a conventional backpropagation netork VLR (‘;5‘5%} re Oﬂﬁg in
with a 98 4% classification accuracy, outscored the best perfonnanfie i .nnt thepcaum of
Watrous’s paper for a second-order net. Network architecture was clearly

the performance differences. . d in the
Moreover. the difference in input representation bettweﬂil thﬁ::i?ﬂ:: ;?il:tfpiscﬁment to
PB experiments and the spectra used for RMSpell dl'% L hﬂPII:B formant data to a spectral
adaptation, at least for conventional nets,since COMEINB T 00 M Feoie /oy clighily
representation, while holding the amount of information constan 8.

decreased recognition accuracy. | . |
: the amount of information available in the raw

What did to make a difference was 1, furnished
pcechdaa. To P s, conann o) O T S Lol e
only a very small, measured, amount of informa arison, contained, along with

i om
1 e mesdines R expe;ler:fz;s t;ﬂ]?tirﬂinfnlz‘matiﬂn in the sixteen to forty-
information about formant position, a
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eight components of the input vector. Some of this information, presumably, was reievapt to
the classification task. It is this information that seems to have made a difference, since
when the RMSpell speech was projected down to dimensionality similar to that of the PB
data (in § 5.8.2), moderately substantial gains from speaker ID were possible.

Although the RMSpell vowel experiments following the pilot still did show some effect
from speaker ID when the unreduced speech input was used, the gain was relatively minor
compared, for instance, to the gain from increasing the number of hidden units. Moreover,
since these experiments were done with training data only, it was unclear what, of any, of
this residual gain from speaker ID would remain for similar experiments, that, like the pilot
study with French digits, used test data. Before continuing to an examination of that ques-
tion, though, it is worth completing the current set of experiments by extending the task to
recognition of constants, and to speech with a full phoneme inventory.

5.8.4. Speaker ID used with Consonants

Since it had been possible to demonstrate a small amount of utility in using speaker IDs to
inform the recognition of vowels from the RMSpell database, but none at all for the all-
phone recogniser in the pilot RMSpell experiment in §5.4 it seemed possible that speaker ID
was unhelpful for consonant recognition, and that the rather small effect that had been
shown for vowels had been diluted by the presence of consonants in the all-phone case. This

hypothesis was also consistent with the widely held notion that voice quality or voice per-
sonalty is expressed more strongly in vowels,

Input Dimension Raw

Case AASZ s e eS| 63T ale 8 44Dl 1023 12 48

Bias 419 | 680 | 685 | 73.0 | 730 [ 756 | 763 | 760 | 766 | 775 | 7700 | 783 79.8

Simple [ 312 | 588 | 632 | 654 | 673 | 687 | 704 | 702 | 718 | 706 | 118 | 21 | 754

%% Redn 155 | 224 | 143 | 222 | 174 | 220 | 200 195 | 170 | 234 | 183 2.1 19.2

Table 33: Improvement from speaker bias in recognition performance for RMSpell
Consonant data projected to various dimensions.

a. Tra;m:ng stopped after 5 600 epochs for this case. Others trained for 5 800 epochs.
b. Training stopped after 5 400 epochs for this case

A network like the one used in the vowel case, but with ou
Seventeen consonants, was trained to classify
tences used in the vowel experiments.
speaker ID on recognition accuracy was
In contrast to the vowel case, fairl
even when all the information in

tput units corresponding to the
consonants extracted from the same sixty sen-
Surprisingly, as shown in Table 30, the effect of
actually stronger than it had been for vowels, and,
y stable across input dimensionalities, remaining present
the three frames of speech was available.
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5.8.5. Speaker ID used with Vowels, Consonants and Silence.

The effect of speaker ID in the previous experiment and the preceding vowel experiments
had suggested that, for training data at least, and contrary to the results of the pilot experi-
ment. there was a variable but reliable effect of speaker ID availability on recognition accu-
racy for both vowels and consonants The next experiment attempted to combine these
results by using such inputs for classification of the entire twenty-six phoneme + silence
RMSpell phoneme inventory. The network differed from the previous ones only in the num-
ber of output units.

Table 30 and Figure 34 show the effect of speaker ID bias on the phoneme classification

e ————— == == —

Input Dimension Raw

Case
1| 21 416 | 9ukdnleds

P de
' g | 752 | 7m0 | W
Bias %7 | 657 | 119 | 748
' 2 | 719 | 736 | 748 | 770
Simple sa6 | 599 | 682

' 7 4|60 [83 |47
% Error Reduction 75 | 145 | 119 | 104 | 60

Table 34: Improvement in Recognition performance from speaker ID bias
for RMSpell data. This experiment used the full qhune:_ne set. As usual,
three frames of input were projected to various dimensions. The networks

had 8 and 14 hidden units respectively in two hidden layers.

Input Dimension vs. Percentage Error Reduction from Speaker Biases
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Figure 34: Error reductions of Table 30 plotted against dimension.

. : i d considerably less in this case than in
s Sprald See hdf: Analysis of confusion matrices for the

1 1ali '=|s or consonan _
- b spema]lsed o i biases were allowing the network to

forty-eight input case suggested that the speaker‘ID i
improve vowel recognition, but that this Was achieved 2

ified i ' bias, the
consonants. While the number of vowels correctly classified increased with the

numerated in Table
number of correctly classified consonants decreased. Thaseﬁchﬂiezt?n ;mving 5
35. Since, in the previous experiment, biases were more eliect!
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tion accuracy for consonants than for vowels, it appeared that the effects of bias on vowels
and consonants might be incompatible.

Vowel AA | AH | AX | AY | EH | EY | IV | OW | UW

3 |- - 15 |44 | 36 | - -3 20

Consonant | B CH|D F JH | K L M N B R s T vV | W Y Z

-1% 1 - 5 -1 -7 - 41 | -20 | -24 - =12 |13 | -22 | - 1 18

Table 35: Speaker biases appear to affect vowels and consonants differently. This table
summarises the change in the number of correctly classified frames for each phone
when speaker information is available. In a unified network, improvements in the
number of correctly classified inputs for vowels were largely offset by decreases for

consonants. Cells containing *“-” exhibited no change in recognition accuracy when
speaker biases were used.

5.8.6. All Phones, split nets - Separate Vowel, Consonant and Silence Nets

In an effort to prevent any such interference, it was worthwhile to experiment with a sys-
tem in which the network was divided up, below the level of the output units, into separate
recognisers for vowels, consonants and silences, all of which received the same input. The
architecture is illustrated in Figure 35. This splitting of the network was intended to force

Phone Labels

ala alalaialaTals

?Igure a5: Netta'urk with specialised processing for Vowels, Consonants and
llence. In the diagram, only the vowel and consonant components of the network
are shown. Note that the networks share a common input, and a common output

layer, but that the hidden units are speciali
% pecialised for vo
and silence (omitted from the diagramme). N ouuaks (shovin)

the lower layers of the network to adapt i .
i pt, if at all, in w i
specialised for. It is oA ays relevant to the speech sound being

this architecture, sinc
: : ! > e the three networks were
5111]] competing with f:-,ach other to produce the highest output, the training was fully discri-
minant across the entire phone set. .
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Table 30 and Figure 36 give the effect of biasing the network as in the previous experi-

—
Input Dimension Raw
Case
12| 4191 9913 [*43
| —
Bias 437 | 659 | 733 | 763 | 777 [ 801 | 811
Simple 146 | 599 | 686 | 726 | 737 | 766 | 792
| % Error Reduction |74 | 151 [ 149 | 133 151 | 150 | 91

Table 36: Improvement in Recognition performance from Speaker Bias
for RMSpell data for all phones projected to various dimensions, using
split nets (8,14 hiddens)

Input Dimension vs. Percentage Error Reduction from Speaker Biases

1f‘ L L L
13— Percent Error Reduction — 4
T3

3l |

12 k
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|
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Figure 36: Error reduction plotted against the dimension of the speecll to .he
classified. These data are for all phones, and were obtained from classification

networks with partially separated modules for consonants, mw.els at}d silence.
Speaker biases reduced error substantially for most of the low-dimension speech

inputs, and less when all three frames of raw speech were available.

ments. Apart from the anomalously low effect of speaker ID for the_une dimensional vnwt:]
representation, the pattern here i< similar to that in the experiment w!th '-{uwels only; there 1s
a rather strong effect at low input dimensions, which decreases, but s still present, when all

three frames of input speech are present.

Discussion
and although the experiments with

d Barney data-set (§5.6.2) had suggested that the effect of
that of the idealised speaker-ID “model” used here, an_d
Peterson Barney data, it had, at least, by this
on phoneme recognition for all

Although a true speaker model was not being used,

speaker models for the Peterson an
such models would be smaller than
although the effect of bias was less than for the

stage, been possible to obtain an effect of speaker bias ! :
phones, on rraining data. This matched, more or less, the status of Watrous work with

Peterson & Barney data. Of course, if adaptation by biasing, whet_her by idea:finputs or by
speaker models, was to be of any practical use, it would have to improve performance on
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untrained speech as well as on the training set, and, in the case of speaker models, on
untrained speech from novel speakers. The next experiment was designed to test for such an
effect.

5.8.7. Testing the Speaker ID effect for Generalization

In order to see how well the effect of bias would generalise to other speech from the same
speakers, the experiment was repeated. This time three utterances of training speech and one
of testing speech were used for each speaker. As before, the networks were split into vowel,
consonant and silence subnetworks internally. Table 30 gives the recognition accuracies for

= e T —
Input Dimension Raw
Case
: 0 R i e 6 9 13 48
-— : " — .

Train Bias 47.1 | 674 | 769 | 728 | 790 | 751 76.1

Simple 43 | 614 | 738 | 675 | 769 | 705 72.9
Test Bias 369 | 542 | 580 | 619 | 620 | 660 | 658

Simple 380 | 560 | 600 | 622 | 636 | 641 64.9
% Error Reduction | Train 50 | 156 | 119 | 163 | 0 15.8 11.6

Test 17 | 42 | 51 | -08 | 46 | 52 27

Table 37: Improvement in Recognition performance from Speaker Bias for
RMSpell data for all phones projected to various dimensions, using split nets. In

tm:a;ase, three utterances of training and one of testing data were used for each
speaker.

a number of input dimensions.

The difference between trainin g and test set performance was wider
expected. In the unbiased condition. the misclassification rate increase
test set. suggesting that the network might hav

than one might have
d almost 30% for the

e been overtrained. More interestingly, th
I _ : - y, there
was an odd effect of the speaker ID information on the lower dimensionality versions of the

test set (projected along the same axes as the training set). It would seem, at these dimen-

sionalities, there was no generalisation at all of the large effect that speaker ID had on the

training set. Even in the higher dimensi
i g mensional cases, the effect of speaker ID on the test set
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More Training data

This experiment used six training utterances for each speaker, but was otherwise identical
to the previous experiment. Table 30 displays the performance of this network in the usual

T—
Input Dimension Raw
Case
1 raspegs (e W S8 130 48
— - -T —
Train Bias 439 | 625 | 700 | 73.0 | 744 | 757 | 783
Simple 417 | 589 | 665 | 697 | 71.8 | 738 | 762
Test Bias 491 | 649 | 604 | 727 | 741 | 747 | 765
Simple 491 | 625 | 688 | 709 | 732 | 142 | 740
% Error Reduction | Train 37 |88 | 106|100 |93 |73 8.7
—Tcst 02 |66 |22 |60 |32 |2l 96

Table 38: Improvement in Recognition performance from Speaker Bia? for
RMSpell data for all phones projected to various dimensions, using split nets (8,14

hiddens)

manner. The addition of more training data per speaker was successful at reducing the dif-
ference between training and testing set on the raw remgniti{?n task. In fact, there was better
than 100% generalisation for some of the lower dimensionality resylts, prnh_ahly just due to
chance differences between the composition of the training and testing set. Figure 37. shows

Input Dimension vs. Percentage Error Reduction from Speaker Biases
5 : I i . . . i Test — |
10 ¢ :

2L

6|

4 L

0 - il e

_ : . . : . ' 50
:ﬂ 5 10 15 20 25 0 35 40 45

dimension - All Phones, Split Net, with Test data,

the previous experiment.

for this data. Although there was lit-

ition performance, the effect of speaker ID on perform-

ini aker dependent
than for the training set. The spe
e is able to learn seem to be less robust than the

Figure 37: Error reduction Vs.
trained on twice as much data as

the percentage error reduction from Speaker ID biases,

tle sign of overtraining in the recogn
ance for the test set was still generall
characteristics of the data-set that the network
speaker independent ones.
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Although, again, in this experiment, as in the experiments where only training set classifi-
cation performance was measured, there was some evidence that having access to informa-
tion about speaker identity had a useful effect on recognition performance, even in these
cases of perfect speaker information, the effect was slight. It was certainly too slight to jus-
tify any particular confidence that these sorts of connectionist classifiers, or full recognisers
built on top of them, would furnish a practical tool for measuring the performance of com-
peting imperfect speaker models, where the effects on classification performance, if present
at all, would be more or less guaranteed to be smaller.

5.9. Using a Speaker Model in Recognition

Despite lack of a particularly promising outlook for the activity, an attempt was made to
apply speaker 1_'nodels derived from speech, rather than speaker IDs, to the task of improving
speech recognition. The speaker models used here differed somewhat from most of those

described in the previous chapter, since not all of the work described there preceded these
speech recognition experiments.

5.9.1. Information derived from only the phoneme /1Y/.

Since full speaker models are somewhat complex, it is difficult, when usin g them, to have an
accurate understanding how much information had been presented to the recogniser. Fol-
]mm‘fmg a suggestion form Bridle [Bridle, 1993, personal communication], it seemed worth-
while to see whether any effect on recognition performance could be obtained from a single
phancme._The _pr_mneme MY/ was used for this purpose, since it is relatively frequent, and
because, since it is a vowel, it should contain information about voice personality.

. In this experiment, a recogniser was trained using a network and training regimen nearly
identical to that of the last of the experiments with speaker ID: The network was divided into

sections by output class, and six training and one testing utterance were used for each of
twenty speakers.

] Speaker clocies were generatf_:d by iteratively time aligning whole /IY/ phones to a three
r_am*le duration using the technique outlined in section 3.5.2. Canonical discriminant analy-
sis was performed on all of the forty-eight element vectors resulting from this process, and

each vector was projected onto the first three canonical variates. The code generated from
the most recently spoken /IY/ was used as adaptation input

The phone based speaker codes were
presented to the network i
the speaker ID had been, using three input units, S & oihc dame ey as

The performance of this network after training is given in Table 30
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There was no consistent improvement in classification accuracy for networks given the
/TY/ bias.

Input Dimension Raw
Case
1 2 4 6 9 13 48
S — —

Train Bias 424 |89 |661 |683 | 704 |[T3 735
Simple a6 |86 |67 |682 |93 |71 742

Test Bias 95 |69 |es2 [709 |T8 |7 728
Sjmp]g 492 618 686 7-0.1 1.1 722 136

% Error Reduction | Train 14 0.7 12 03 36 07 217
Test 06 |03 A -]-g3—1 21 18 30

Table 39: Improvement in Recognition Mnmw from Spfwker Blas for RMS[:(eEI:
data for all phones projected to various dimensions. In the Bias cuudltmn; a spea
code derived solely from the information in instances of the phoneme /IY/ was

available to the network.

Although it is hard to doubt that there is meani_ngf_lgl ininﬂfa;u::;h;u:h ip;:fgnil? a;geﬂ;ef
/TY/ phones, it was either insufficient to make a signiicant ¢i :
the pr;mne classification task, or it was information that the network could get from else

where in the three frames of speech it was attempting to classify.

5.9.2. Speaker model derived from all phones

: s i ilable in the
To investigate whether the former — that there was msufﬁcm“t, mfurm:tallzi:r iﬁ??nc]uding
phoneme /TY/ — was the case the experiment Was rcpt?teiusmjwaosri was the same as the
information extracted using CDA from all phones. Again, ;;er:- ID units replaced by three
network that had used speaker ID, but with the twenty spe

speaker model inputs.

The speaker models were generated
frame duration using the technique out

iterati i :oning whole phones to a three
by iteratively time aligning WhoIe paHH™ i
]i;ed in section 3.5.2. Canonical discriminant analy

i this process,
within each phone, and each vector was p[:{)]EC[ﬁd onto ;1 ?n o ninifiEnlar iy
These phone models were then inserted 1nto an GF’E!'aht {::na Sgoiny . etors?). These
appeared in the database, resulting in a sequence of e1ghty

21. Three elements per phone, multiplied by twenly-seven p
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vectors were, again, subject to a CDA by speaker, yielding a three element speaker code.

Input Dimension Raw

s 1 2 4 6 9 13 48
Train Bias 418 |4 671 |05 | 723 | 737 76.1
Simple 417 589 |665 |697 |7ns | 738 76.2
Test Bias o5 | os less 1718 |72 | 1s 75.3
Simple 93 |65 |e688 |709 |732 | 742 74.0

% Error Reduction | Train 02% |12% |21% |26% | 18% | -04% 04%
Test 04% | 08% | 0% 1% | 04% | 27% 5.0%

Table 40: Improvement in Recognition performance from Speaker Bias for RMSpell
data for all phones projected to various dimensions. In the Bias condition, three
units are used to present a CDA based SVC derived from previous speech.

that changed on every phone boundary. This code was fed into the three speaker model input
units of the recogniser.

Recognition results for the training network are given in Table 30. There was no consistent
gain in recognition performance from using the SVC, either for training or testing data. This
is consistent with the prediction that, since the SVC i1s, almost certainly, only an imperfect
approximation to speaker ID, which itself produced only a small change in recognition per-
formance, any effect of the speaker model based biases would be difficult to detect.

5.10. Conclusion

Information about speaker identit
directly, can contribute to improv
obtained even within relatively sim
using powerful classifiers and su
than spectacular. When a classifie
fact, speaker information derived
detected, if it had an effect at al].

The work described in this chapter to bridge the 2ap between the very strong effect of
speaker information in previous work with the Peterson and Bamney vowel database and the
rather weak effect of similar information used in realistic tasks, suggested an important
caveat for speech researchers: If simplified speech signals are used, care must be taken to
ensure that speaker adaptation is providing information that cannot be obtained from the

speech signal over short durations, rather than simply replacing information which has been
lost from the speech signal by the chosen input coding.

Yy, whether derived from a speech signal or supplied
ing recognition performance, and these gains can be
ple connectionist architectures, However, in recognisers
fficiently rich input representations, the gains can be less
r for all phonemes was applied to the RMSpell database, in
from speaker models had an effect that was too weak to be
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These experiments also served to expose some weaknesses in speech recognition as a
vehicle for comparing speaker models. Clearly, the major difficulty was the fact that build-
ing recognisers that can be adapted by biasing or other forms of modulation, as opposed to
adaptation by retraining, is a difficult problem in itself, quite apart from the matter of
whether or not that modulation is derived from previous speech, and how. Even if that prob-
lem were solved, though, and a suitable recogniser could be built, it would still be true that
recognition is a rather opaque task. If the speaker models were successfully applied, the only
evidence would be an increase in classification or transcription accuracy, perhaps broken
down by speech unit. This would offer a poor vehicle for investigation of such questions as
whether the speaker model is perceptually relevant.

To provide a more transparent application, where the influence of changes in spea]lcer
model would be directly visible (or, rather, audible), and to investigate another applicatfnn
area for voice models. a series of experiments in mimicry synthesis by voice transformation
were carried out, These are described in the following chapter.
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Chapter 6. Synthesis By Voice
Transformation

fppeech recognition had not proved to be as good a test bed for speaker modelling as one
might have hoped, and, even if it had been, the effect of the speaker models would have been
opaque. .[ f a clear effect had been present. it would only have been visible as a change in a
recognition score, making it difficult to understand how the speaker model was encoding
speaker differences. For both these reasons, but chiefly the former, a new application where
the effects of modelling would be more transparent was chosen. That application is the
transformation of one voice into a set of other voices, with the target voice being described
by the speaker model.

Although the main purpose here was to provide an environment for evaluating the speaker
_moch:lling system, and although none of them would be adequately served by the system as
it stands, one can imagine practical uses for this sort of mimicry synthesis:

» In speech synthesis, it is important to provide a voice that the listener finds agree-
able: It would be very convenient to be able to select the voice one wants one’s
computer to use simply by playing it a sample of that voice.

* In Speech-to-Speech translation systems such as Janus [waibel91], it would be
desirable to produce the translated speech in the original speaker’s voice, both for
aesthetic reasons, and because of the obvious utility of being able to distinguish
multiple speakers in conference calls and other meetings.

voice transformation, it would be useful for automated

prompts) to be able to utter user-

r's name) in the same voice as the

e original speaker.
if the characters inhabiting them

* Using an inverted form of
voice-response systems (such as voice-mail
recorded segments (such as the mailbox owne
standardised prompts, rather than the voice of th

«  Works of interactive fiction would be enhanced
could be given a variety of realistic voices.

6.1. Other voice transformation systems

Despite the existence of these potential applications, there has been relatively little work
done in this area. The work that has been done has focussed entirely on the problem of trans-

forming the speech of a single source speaker into that of a single target spﬁakef, although
voice normalisation, the attempt to transform the speech of a number of speakers 1nto that of
gnition, could be considered closely

a single reference speaker, for use in speech reco
related.

Transformation with manual intervention

ce transformation was directed more

Dnﬂ f t 5 l'ﬂb'].em Of V’DI
of the earliest approaches to the P g the differences between speakers.

towards the central problem of this thesis, understandin

Synthesis by Voice Transformation, Page 135



page 136

Childers et al. [childers85,childers89] looked at converting single sentences from a single
pair of speakers, one male and one female, into the voice of the other, using an analysis-syn-
thesis system. The system allowed them to modify the pitch, spectral expansion, and glottal
pulse shape of the source speech to more closely match the target speech. Based on their
hypothesis that it is the accurate rendering of transients that is important for intelligibility,
and the accurate rendition of steady voiced segments that is chiefly responsible for voice
personality, they performed the transformation entirely in these latter segments, simply cop-
ying the other segments from the source speaker. They found that by adjusting the pitch and
the spectral expansion they could produce many of the characteristics of the target speaker,
but that non-linear spectral expansion, different spectral expansions in different segments,

and altering the shape of a glottal pulse produced by a parameterised model all improved
voice quality.

Itis difficult to evaluate this work as a practical technology, since it was aimed at discover-
ing what factors in a voice were essential to its personality. What it does demonstrate is that
one needs a flexible spectral transformation, rather than a fixed normalisation, to achieve
good quality, and that ultimately, voice transformations — and speaker modelling systems

that support them — are going to have to account for speaker differences in the excitation
signal.

Codebook based transformations

| One of the earliest papers describing a voice transformation technology [shikano86], was,
in fact, u:!irected not towards producing speech matching a particular speaker, but towards
frame-wise normalisation of speech from multiple speakers, allowing it to be used as input
to a speaker dependent speech recognition system. Since this system formed the basis for
the largest coherent body of work in voice transformation [abe88, abe89, abe91a, abe91b,

mizuno94], if is worth discussing in some detail. omitting details of the normalisation
scheme that did not survive in later incarnations.

In this system, the speech from the target speaker and the source speech were LPC
encoded, and the LPC gpectral coefficients vector quantised’ separately for each speaker.
The speech was then aligned by Dynamic Time Warping alignment [nye84], and, for each

source codebook entry, a histogram was made of target codebook entries that were aligned

with it. These histograms were used to CIeale new entries, one for each entry in the source
speaker’s codebook, that were linear com )

> . binations of the target codebook templates,
reeud Uil .hm‘:'gram counts. This new codebook was used to quantise the speegh, and
Ithe process was m::ira;ed. several times. Each source codebook entry then had a correspond-
Ing “mapping” codebook entry that was simp]
aligned with that frame. Ply an average of the speech frames that were

I . : _
. :dthen;m of Ehe recognition system they were Investigating, a single target speaker was
» and mapping codebooks were used to move the speech of several source speakers

can then be efficiently transmi . '“"'“"’”’“”’“thnﬁmalmbcdecmnpmm,nu ignal
. Ciorquantisation is widely used in speech compressi :
speech necognisers. on, and, more relevantly here, in HMM based
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towards the target, resulting in an improvement from 64.0% to 83.1% in recognition accu-
racy.

The development of this system for voice transformation will be discussed in the follow-
ing paragraphs, but it 1s worth pointing out at this point that the quality of the transformation
that can be produced 1s highly dependent on how good an alignment can be achieved
between the source and the target speech. Imperfect alignments will result in mapping code-
book entries that are smeared over many different target frames, resulting in poor quality
synthetic speech. Most, if not all, of the papers discussed here have chosen or selected data
in such a way that good alignments are easier to achieve’, a luxury of choice that this author
would have liked to have had available, considering the efforts that had to be exerted
towards improving the alignments used in this synthesis task.

After their initial success with voice transformation for recognition, Abe et al. applied the
VQ transformation technique to speech synthesis, with the eventual goal, shared by }he
work in this thesis, of retaining voice personality during speech-tn-spa‘?ch translation
[abe88]. In this case, the VQ codebooks were supplemented by scalar quantised codebooks
for pitch and power. The training samples were one hundre_;d Japar_mse v:rords per profes-
sional speaker used. Each word was uttered in isolation, again, n?akmg al:g;m;mnt reasona-
bly straightforward. Voice transformation was achieved by 51.111.1}]}r applying the three
mapping codebooks for the speaker pair in question and resynthesising.

The performance was measured both objectively and subjectively. The objective measure
used was the difference in vector distortion between the transformed source speech aqd lht;
target, compared with the original source speech and the target, and in the ab;:;l;ﬁts:z: ;:;_
the average pitch difference between the transformed pitch and the_target, On frn .
ure, the transformation reduced distortion by 27% for transformations between t;m fu:-,m |:
speakers, of 49% between two male speakers, and by .66%. between a malei Ea[:rrg?ve
speaker. The transformation reduced the average pitch dls?anty to less than l§ ]1 X
use will be made of distortion measures like this in reporting the results of this chapter.

The subjective measures used involved presentrati_cm ,ﬂf Fhe nngma]Tang ;;ansig:::ﬂd
speech to human subjects who were asked to make smulantyjudgemcntsﬁ [:ree gsms o
setups were used. In the first, the original spcech,tthf: target Stpﬂmh- an B et
converted speech — one of which was produced missing the pltcth and cmaf I;un Igaﬂﬂi o8
conversion — for a male-female speaker pair welre_pr-.?seqted ina stet; azcaﬁe Seomaid
assigned pairs. The listeners were asked 10 mak}a 5"“1]3?1‘;" JPdgFmednfdissimilar“. s
lar”, “slightly similar”, “difficult to decide”, “slightly dls_slmﬂarman o
dimensional scaling technique [hayashi85] was used t0 display t]:emrmle esberpersenit
technique suggested that not only did the full conversion ma-:;vwe L R
ally towards the female speaker, but that pitch and spectral altera

ived similarity of voices.
tant, independent contribution towards the perceived stmll@ty st
ed to assess conversion between (W0 e speakers.

i followed by a
d N respectively were played, _ )
. peLiswners were asked to judge which

The second subjective measure was us
Words A and B from the two speakers ;
word X resulting from an M->N or N->M conversion.

i i gted that the recogniser was
2. While we shall not dwell overly on matters we left behind in a previots chapter,it should be 0 4
trained in Speaker Dependent mode and used in Multiple spe:k:r i gl o i igh. Relecting
st st e s s mjﬁ?u #nmmmﬁdﬂa than one needs from cach speaker.
outliers this way is an excellent practice, but is only possible if one
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token A or B the voice in token X most closely resembled. The best of the voice conversion
efforts explored later in this chapter was assessed using this second listening test.

The main purpose in reviewing this work in VQ transformation was to introduce the prob-
lems of alignment and to explain techniques for assessing the quality of voice conversions.
For the sake of completeness, however, and to preview some of the tec hniques that are
applied here in different contexts, it is worth mentioning more recent versions of the system.

Since the system was intended for use in a speech-to-speech translation system, an attempt
was made to determine whether there were consistent differences between speech in two
languages that should be modelled during conversion [abe90, abe91a]. Codebooks were cre-
ated for speech from a single, bilingual speaker speaking Japanese and English, and both
codebooks were used to encode speech from both languages. Although differences were
found, they were insignificant compared to interspeaker differences. It should be noted,
however, that although the speaker was, apparently, at “native speaker” proficiency in both
languages, there is a possible confound stemming from the use of a single speaker. Bilingual
speakers tend to move their pronunciation of both languages towards an intermediate pho-

nology [flege94]. Differences between languages may therefore be greater than those meas-
ured.

In_ the same papers [abe90, abe91a], Abe et al. introduced an application of voice transfor-
mation to speech synthesis, by applying it to the output of the MITalk [allen87]. speech syn-
fhr:siser, This is similar to the technique adopted in this thesis. The synthesiser produced
1solated Japanese words matching those uttered by a Japanese speaker. The phoneme string
to be uttered was chosen by hand. MITalk synthesised it using American En glish phonolog-
ical rules, except for duration rules, which were modified to more closely match those for
Japanese. Mapping codebooks were derived from alignments of the MITalk “Japanese”
v_mrds with the human speech, and used on the output of MITalk speaking American Eng-
lish, to pmdu-j.:e English in the Japanese speaker’s voice. Although the authors expressed
some reservations about the quality of the speech produced, it is clear that applying target-
speaker based transformations to synthetic speech is a useful path to take, if vc;icecconvtr-
sion 1s to be of significant technological import, :

In [abe91b] this work was taken further.
whole segments were transformed. In this manner, it was
b-;:-th the static spectral qualities of the speech and the withi
nique reduced the spectral distortion between the converted and target speech for a pair of
males to one third of the distance between the original voices, and improved speaker ID
accuracy by 20% over that of a frame by frame conversion. ‘ .

A ﬁna] VQ based paper [mizuno94] is worth discussin
a universal function approximator, such as a neural net
15 a good idea. While this is not what Mizuno et al. didj
of voice quality is a step in this direction. ,
entry for the source speaker’s voice was an

g because it suggests why applying
to the problem of voice conversion.
! their use of piecewise linear models
In this voice conversion system, each codebook
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then resynthesised from this frame. Although the speaker ID accuracy for the resulting
speech was actually slightly less than for VQ converted speech, perceived naturalness of the
voice was higher. This suggests that smooth spectral transitions, of the sort that functional
approximators can generate, are important for natural speech, If a neural network can be
trained to produce the target spectrum with adequate fidelity, its smooth interpolation
between frames should result in speech that is more natural than that from a system using
VQ coding.

Neural net methods

In fact, some recent work has sought to take advantage of this power, at least with respect
to the source speech. Nam and Savic [nam90][savic91] constructed a system that used a
neural network classifier to select a target codebook entry given a frame GE,LPC cnefﬁc?ents
of the source speaker. The training data was generated by doing a forced a!lgnmenl. as-mmd
by using voicing decisions, in the LPC cepstrum parameter space. During synth::ms, the
LPC coefficients from the target codebook were used either with a pulse train or with a fre-
quency shifted version of the source excitation signal to pri.:-duce the transfol_'med S13"‘3"3"5_""-
The authors reported that the modified source excitation signal produced higher quality
speech. :

It is not clear why the authors used the network as a classifier, rather than as :}funcnon
approximator, although one might imagine that it was in an effort to reduce smear mdﬂ'm :::t
put LPC coefficients®. Besides this difference, the system that will be develope mh t_lz
chapter could be seen as an extension of Nam and Savik’s system to the use of syntheti

source speech and plurispeaker synthesis using speaker model input.

A more sophisticated synthesis scheme

i ibutors to seg-
Valbret er al. [valbret92b] propose a scheme that treats the two main contri g

mental variation, the voicing source and the spectral characteristics, sl;zpan‘ﬂely.t;l'ge::i :Uﬂ:
was also motivated by the notion that a “speaker can be charactermc: ay r:n ds;]pezxpﬁgm}r. *
some parameter space”, although they do not try to construct _sucm e
their review of the work of Abe et al. and Nam et al., they clalmh _ats koot
those systems was limited by the use of the LPC vncﬂd;r. In';r ! :sunfypitch ‘synchmnous
decomposed the input signal into the excitation mgnalt a_ndeda_sm e
LPC spectral envelopes. The spectral envelopes were _dwl IE o ajte regrosion (LMR)
and either a dynamic frequency warping (DFW) or linear muill e G atsas e
based transformation was learned between the source and target vﬂtfunned spectial envelopes
target speakers’s excitation signal was used together with the trans

i i SOLA synthesis
were used to produce a target waveform for each pitch period, and the B y

' i et speech signal. Because
technique was applied to combine these waveforms into the targ pef:h'3 e

er, {
prosodic modelling was considered to be beyond the 5’-‘03;5‘;‘;2‘;]?_“9
timing of the target signal were applied to the transform

; i developed
in the voice transformation s:fllfm
4. Although this is a reasonable hypothesis, a preliminary mﬁrﬂlﬂ m;r;umt':n:‘-l;ﬂm:ﬁm. Since time was limited “d e
here produced no improvement in the synthesised speech ¢ . pheral to the problem of model based synthesis, this
detailed comparison of voice transformation systems was somewhat pet
atempt is not reported in detail here.
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Training was performed using specially recorded CVC logatoms, which were used
because the authors were unable to obtain sufficiently accurate time alignments for training
speech consisting of simple noun phras,esﬁ, This difficulty is mentioned here because it 1s
likely that alignment problems were partially responsible for the comparatively low quality
of the transformed speech produced in the experiments reported in this thesis.

Of the two techniques, DFW and LMR, the authors reported that LMR produced speech
that more closely matched the voice of the target speaker. This is promising for the neural
network techniques used here, since, as has been pointed out in great detail earlier, the use of
a neural network as a functional approximator is exactly a non-linear multivariate regression
and often degenerates to being exactly an LMR model. In the current system, however,
instead of dividing the acoustic space into non-linear regions and hoping for piecewise line-
arity within those regions, the system relies on the possibility of non-linear mapping by the
network to build a unified transformation of the entire acoustic space.

6.2. Introduction to the Experimental work

The remainder of this chapter is a description of experiments in which a voice transforma-

tion system with multiple target speakers was developed, modified to use the SVCs
described in chapter 4, and then evaluated by human listeners.

First, though, Section 6.3 briefly describes an attempt to produce the target speech directly
from the speaker models, rather than by transforming another voice. Since this attempt was
unsuccessful, the system was built by producing a neural network function approximator
that converted the output of a commercial text-to-speech system into the target voice. This
allowed the transformation network to concentrate on altering only the spectral characteris-

tics of the speech, about which the voice code could be expected to contain useful informa-
tion.

The voice transformation network was rather similar to the speaker dependent recognition
netwo!'ks described in the previous chapter, but trained to produce an LPC frame in ;he tar-
get voice instead of a phoneme label. Frames output by this network could be synthesised by
the LPC10 vocoder. Details of the network, and of the alignment between the dinput and the
target speech, are given in Section 6.5 to 6.7. Initial evaluation of the transformation net-
work (Section 6.8) showed that, while the quality of the speech produced was poor, the neu-
ral network was able to move both the pitch and the filter characteristics of the input speech
c.loser to those of a single target speaker (Section 6.8.2). In the experiment described in Sec-
tion 6.8.3, the transformation network was given I-from-n speaker IDs, and was able to
move the speech closer to that of any chosen target speaker from a set of ﬁ‘ve

Section 6.8.4 describes an initial attempt to drive th ;
For this experiment, the code was P e transformation from a speaker code.

generated by averaging eight-element PCA-based phone
codes for each speaker, and then compressing the concatenated average phone cnder; in a
bottleneck network. This yielded ol

one four element speaker code per speak ‘
| er. C son of
the output of a transformation network trained to use this code '-E;.h gzee: na;ura{;?g;r::h of a

3. Given the importance that pitch and timin in determinin rove
; £ seems to play in determini idents

: = e P g ;pt-aher identity, one would expect this to imp

6. These noun phrases consisted solely of an article, an adjective and a nmn:;
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set of speakers, including the target speaker, showed that the network produced speech that
was, on average closer to that of the target speaker than to that of other speakers.

Finally, a voice transformation network was built that was designed to use the actual
speaker codes from one of the speaker models described in Chapter 4. This, network, whose
construction is detailed in Section 6.9., could produce speech intended to mimic that of any
speaker in the TIMIT speaker set. Testing, again by measuring the best alignment distance
between the output speech and natural speech from a large group of speakers, including the
target speaker, showed that the transformation was moving the speech towards the specified
target on average. This system produced the best quality output speech, presumably because
the amount of training speech was much larger than for the other transformations, but the
quality was still poor. Because voice transformation per se was not the goal of the thesis, it
was not possible to invest the work that would have been required to produce high quality
speech from the basic transformation.

After the model-based transformation system had been built, a final series of experiments
was run to see whether human listeners could identify the output speech with the voice of
one of a pair of speakers. ABX designs were used in all cases. In the first of these experi-
ments. described in detail in Section 6.11, speech was produced at every stage of the conver-
sion process between natural and DECtalk speech to asses how each step affected voice
personality. Even LPC coding the natural speech and time aligning it with the synthetic
speech significantly affected the perception of voice personality. For the speech output by
the transformation network, the target speaker could be identified only in the case where t._hc
other speaker choice was not the same gender. This finding was consistent with the earlier
indication that most of the useful information in the task independent schker_mndels con-
cerned speaker gender. What remained to be seen was whether this distinction Was sup-
ported entirely by the network’s ability to change the pitch of the BSECEalk speech. In
Section 6.11, the subjects compared the output of the transformation with ]E}ECtalk speech
whose pitch contour had been replaced with that of the target s;_:eaker urgdlfferent spﬁa}cer.
Subjects were able to distinguish the speakers when their sex differed, using no crth;r ]11n or-
mation than pitch. In Section 6.13, an attempt Was made to see whether, given that pitch Was
sufficient to account for the amount of voice personality in th:_transﬁ:rmed spm:hé{it was
also necessary. The output of the speech transformation, lt?awng pitch unconvert cﬂ, t:nalsj
compared with human speech that had been time aligned with the D,chﬂ; u'rtlcl:ai[;fn!rma-
that had had its pitch contour replaced with that from DECtalk. Deprived 0 Hlfl c e
tion, subjects were unable to identify the correct speaker, even when the speaxer g
fered. ’ wof B0

Although the voice transformation achieved was not of high quality, :fmd ﬂe’i:;la:; i is
confirm the difficulty of forming task-independent i o s gt; su esti:}n‘S for
likely that it could be improved. With sufficient engineering work, som mﬁfg e
which are given in the conclusions for this chapter, it seems = tqiir];nsfupniuatinn sys-
transformation system could be built with quality comparable t0°V0*

tems reported in the literature.

The following sections describe experiments 1n more
an overview may wish to skip forward to the conclusions

detail. A reader wishing to gain only
in Section 6.14 on page 166.
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6.3. Initial work - direct synthesis from models

Since the aim of working with synthetic speech was primarily to provide a test-bed for the
speaker modelling work, some initial experiments were done using the rather radical
approach of trying to synthesise speech directly from a speaker model. The speaker models
that are built using compression are invertible, in the sense that they can be used to estimate
the input that produced the low dimensional representation representing the speaker’s voice.
If they are based on a representation, such as LPC coding, allowing convenient resynthesis,
they can be used “in reverse” to produce speech. Although these experiments were done
using earlier, pilot versions of the speaker models, and might be improved by the use of the
final speaker model, neither of these methods produced even marginally acceptable speech
quality, and they are chiefly included here to as an explanation for the move to voice trans-
formation. Two methods for producing speech directly from speaker models were tried:

6.3.1. Inverting the model all the way through

First, the overall speaker model was expanded to produce estimates of each of the phone
codes. Then the phone codes were each expanded to produce fixed length vectors in the
same vector space as the original speech. These vectors were simply concatenated to pro-

duce the desired phone sequence, and the result resynthesised. The resulting incoherent bab-
ble discouraged pursuit of this method of synthesis.

6.3.2. Concatenating segments

Given the recent success of systems doing concatenative synthesis [sorin91, hauptmann94],
it seemed reasonable to expect that the speech quality could be improved if, instead of using
the inverted model speech directly, this speech was replaced by that section of actual speech
from the database most closely matching the speech produced from the model. The speech
was additionally constrained to match the phonetic context desired, so long as sufficiently
many choices were available with that context. For this experiment, the PSOLA technique,
which has enabled much of the recent success of concatenative synthesis, was not applied. It
didn’t seem warranted for the initial experiment, and as it turned out, the speech produced

!J}’ segment concatenation was not noticeably better than that produced by direct model
inversion. It is unlikely that PSOLA would have improved it significantly.

6.4. Voice transformation.

It had bECO}TIE clear at this point that, even if the speech produced by direct model inversion
was matching speaker voice characteristics at a segmental level, the underlying synthesis
technology of naive concatenation would never produce a conv;ncing demnnstrat_ian that
speaker modelling was a useful technology for practical purposes
the introduction to this chapter, other researchers had ¢ +
tems that transformed the voice of one spe
transformation should be
new voice whole. One is

However, as mentioned 1n
‘ laimed good performance from sys-
: peaker into that of another. It is clear why doing this
relatively straightforward, compared to the task of synthesising a
not forced to reproduce every characteristic of the speech — the
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information bearing properties, including the Sequence and articulation of phones, and the
pitch and amplitude contour can be taken from the original voice and altered as necessary.

the speech sound like English, while changing the spectrum into that of the target speaker,
since static spectral characteristics provide clues to speaker identity,

Although the goal of producing any modelled speaker’s voice as the target was somewhat
more ambitious than the usual single speaker pairs used in the literature, the underlying
1deas that had been developed to support such transformations were easy to apply.

6.5. Transformation Method

The general technique used was relatively straightforward, and amounted to a non-discrete
version of Savic and Nam's [nam90, savic91] codebook based voice transformation network
which was described above, with. of course, additional inputs for the speaker model.

A connectionist network was used to perform a non-linear transformation from a combi-
nation of a number of LPC frames of input speech from the source speaker and the speaker
model representing the target speaker, into a frame of speech in something approximating
the target voice. An example of such a network is shown in Figure 38,

Speaker Modelling

Speaker Code 'ﬁ*’ % g

( 30 hidden units

14 | e | PC synthesis

Figure 38: The voice transformation network combines source 5pee¢l} with a target
speaker model to produce target speech. One example netwm:k is shown, but
variations with different numbers of input frames, speaker code widths and number

and size of hidden layers were also used.
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Obviously, since the speaker modellin g experiments were done with TIMIT speakers, it
was desirable to use these speakers as the target set of voices for synthesis. To train a voice
transformation, though, one needs to have available corresponding speech from two differ-
ent speakers. Since it was intended that the system should achieve transformations to multi-
ple target speakers, it was necessary to have a single source speaker produce all the training
utterances for all the target speakers. The author’s voice, since its pronunciation of words
differs dramatically from the TIMIT speakers’, could not be used. Even if its use had been
possible, uttering of the order of a thousand sentences for this purpose would have been
rather taxing. Fortunately, just as this section of the work was beginning, Digital Equipment
Corp. (DEC) released Software DECtalk [dectalk94] a software-only version of the well
known speech synthesis product. Software DECtalk provides a consistent source voice that
will say more or less whatever one pleases. Moreover, since the program can be persuaded

to output phoneme boundary information as it speaks, the experimenter is freed from the
need to label the source speech by hand.

Tr:aiping a voice transformation was done in four stages, which will be described in more
detail in following sections:

* Producing _Sﬂftware DECtalk Speech for utterances corresponding to the training
speech available for each TIMIT speaker.

*  Time aligning the target speech with the corresponding Software DECtalk speech.

* Locating the target speaker in speaker Space by using the speaker models to gener-
ate the appropriate SVC.

* Training a network to produce each frame of target speech, given as input both a

window of synthetic speech centered op the corresponding source frame and the
target speaker’s SVC.

6.6. Limitations of the method

: ch of what is perceived as voice quality is
based on dynamic aspects of the speech signal that are expressed over periods much longer

than a few frames._Fn:-r example, lexical choice and selection of which social register to use
to express an idea is an Important aspect of vojce personality that, if it could be captured by
a neural network mode] at all, certainly could not be captured by c:ne as simple as those used
here. Closer to Lhe_ signal level, the nature of the Input to the [ransfnnnatj(}?] used here pre-
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reviewed. A.Ith-::u gh one hopes that these longer term effects can eventually be addressed by
voice transtormat_mn systems, it is currently worth pursuing the goal of obtaining good
transtormations of the short term components of voice personality.

6.7. Details of the transformation

6.7.1. The speech representation

[n all these experiments, the speech was encoded using the standard LPC10 encoder
[tremain82], with the quantisation component defeated, and the LPC reflection coefficients
converted into the Log Area Ratios described in earlier chapters [rabiner93, Bridle 1994 per-
sonal communication]®. The encoder was also modified to eliminate a three frame delay that
had prevented direct use of the TIMIT label files with the LPC10 encoded speech. The
speech representation consisted, therefore, of a series of 22.5ms non-overlapping frames
each containing fourteen values: two half-frame voicing decisions, pitch, power, and ten
LAR LPC coefficients.

No claims are made here that the LPC10 coder is the best, or even a good, choice for doing
this work. It was simply available, and easy to modify. Future versions of the system would
almost certainly be improved by choosing a better parameterisation of the speech signal.
Besides the distortion inherent in a low frame rate coder with pitch and half frame
voiced/unvoiced decisions as its only source of voicing information, there is the additional
difficulty that the LPC reflection coefficients the vocoder emits are not good candidates for
the kind of transformation the neural net performs, since, as Rabiner points out [rabiner93

p191]:

“A Euclidean distance, defined on the predictor coefficients
directly, is usually considered an inadequate measure of spectral
difference, unless the two spectra are extremely close to ea_ch other.
This is because small deviations in the predictor coefficients can
result in an unstable all-pole filter, and any measurement of spectral
distance involving the spectrum (spectral rtesgansej o{ an unstable
filter usually does not have much physical significance
is an attempt to mitigate this problem, one would undoubt-
ned information about the glottal source,
er to the formant positions and width,

in distinguishing speakers.

While the use of log area ratios
edly be better off with a representation that retai
and whose filter characteristic representation was clos
and other voice characteristics known to be important

6.7.2. Producing Software DECtalk Speech

el and a phoneme level transcriptions of
d, they would have been instructed to
With Software DECtalk one can
honeme sequence nearly iden-

The TIMIT database used contained both word lev
the speech. If a human source speaker had been usec,
produce an utterance matching the word level transcription.
do slightly better than this; it can be instructed to produce a p

coefiicients. They are inended to approximate the log ratio of the

g - reflection
Log Area ratios can be calculated from LPC cal sections through the vocal tract.

areas of successive equally spaced approximately cylindr
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tical to that used by the original speaker. Since the phoneme labels used in the TIMIT tran-
scriptions, and those required by Software DECtalk differ somewhat, a rather ad hoc
conversion was done, specified in Appendix A.3.

The Software DECtalk software was used to convert each phoneme string into a di gital
audio file of the speech and to produce a corresponding phonetic transcription’. Each speech
file was encoded, using the LPC10 encoder, in the same way as the target speech, and the
timing information in the transcription was converted so that timings were given in terms of
LPC frame indices.

6.7.3. Aligning the speech

In order to learn a mapping between the source and target speakers’ speech, it was necessary
to find a correspondence between the Software DECtalk speech generated for each utterance
and each training speaker, and the natural speech that was the target. It has been noted,
above, that doing this well is not a trivial affair when two human speakers are involved, and.
unfortunately, it has been shown [hunt84] that aligning MITalk'® synthesised speech with

The TIMIT speech was aligned with the Software DECtalk speech by subtracting overall
means from the frames in each file before alignment and then finding an path minimising the

total frame distance 4 - f'ﬂ.lr,}:+{E|'.lr:}:+[ﬂ.m5pl:+ﬂ.ﬂlr:+ZEf » Where v+, were the differences

between the two frame voicing decisions, » was the pitch difference between the two
frames, . was the RMS energy difference. and o was the difference between the i* LAR
coefficients. An additional constraint Was applied to ensure that a sip gle frame of speech

took up no more than five frames after warping. The alignment was set up so that the target

speech was distorted to match the timing of the source speech, enabling arbitrary source
speech to be used during testing.

Initial experiments with this, whole sentence, alignment suggested that the alignment
process did not produce very good speech. Plotting just the energy contour for the original,
dectalk, and aligned speech made jt clear that simply minimising a simple frame distance

did not produce the precise alignment needed to learn the best possible mapping between
source and target speech. In fact, it did not come close. 5

The reason for this was not clear

possibility. Although Rabiner and Juang [rabiner93
ure used ought to have been 2 reasonable choj

experiments was not done, comparing the alj
gested that, if anything, the LAR measure was performing better!!,
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[n order to improve the alignment by using more information, the labelling information
available for the two speech samples was used to identify areas of correspondence. A similar
alignment procedure to that described above was used, but now the path could be con-
strained 50 that frames known to correspond in fact, could be forced to coincide i the align-
ment. At first, the intention was to align the starts of words within the sentences, but,
promises in the manual notwithstanding, Software DECtalk could not be persuaded to out-
put whole word timing information. Instead, it was necessary to use phoneme based con-
straints. While this produced a more constrained, and, one would hope, more accurate
alignment, it was more difficult to achieve, since the phonemes and phoneme labels used by

the TIMIT database labelling and those produced by Software DECtalk do not exactly coin-
cide.

For this reason, alignment paths for the LPC coded speech were forced to coincide at a
subset of phoneme starts, themselves chosen by a lexical alignment of the phoneme labels
for the two strings. The distance between phoneme labels was set to zero if they were identi-
cal, to 0.5 if they shared a first letter*?, and to one otherwise. Only exact coincidences (zero
distance) were used to constrain the path, and then, only if they were separated by more than
one frame. Figure 39 shows the energy contour of speech aligned using this phoneme con-
strained alignment, compared with the original speech and the Software DECtalk speech for
an example sentence from the database.

6.8. Testing the basic voice transformation method

Although the neural net converter chosen was not entirely diSSiI_“ﬂaI to those mpan&d e the
literature, especially in [abe91b, mizuno94 and nam90], it was important to ;stahhsp single
speaker performance as a baseline against which multi-speaker and model-driven voice con-
version could be measured. The first goal was to establish whether Software DECtalk

speech could be transformed into something more closely resembling the voice of a single
human speaker.

6.8.1. Evaluation technique

After the networks had been trained, the quality of ﬂ}je M‘P‘fﬂmt;i.n “““Idtif;i'ﬁ:
by simply measuring the average frame distortion (d,) for a DTW gﬁﬂler;emence 3
transformed synthetic speech, and the aligned target ?peﬂ':h fqr ﬂ].e e eval;lated
smaller this distortion, the better the transfﬂﬂnaﬂ':’“_achl?ﬁd' s dlsmmﬂ;: ;cunverted
by comparing it with the original average frame distortion (d,) he;wee;lmn et
synthetic speech and the target; any decrease indicated that the trans um:i ol
some success. It was also useful to express the rcsult; as a percentage dis
100 (d, -d_)+d, relative to the unconverted speech distortion.

ot i ent of voice

To compare the extent to which changes in pitch — the most ult:-;;o];ls tc];lemtgﬁﬂ ey

quality — as opposed to changes in the spectral shape T?Pfeie“ rfrtag: distuLjrﬁdnnt e
cients in the frames, contributed to the transformation achieved, perce

output phoneme labels.
12. This is an odd criterion, but worked well for the TIMIT and dectalk B2
13. Defined in section 6.7.3 on page 146.
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Figure 39: Energy contours for the original speech, the corresponding Software

DECtalk speech, and the original speech aligned to the Software DECtalk speech
using the techniques described in the text. The speech in question is the TIMIT
sentence sx75 — “The prowler wore a ski mask for disguise.” — spoken by training set
speaker drl-mgrl0. Although the alignment improves the correspondence between
the energy contours as it is designed to do, it is evident that there is stll a

considerable difference between the two speech signals and a great deal of
opportunity for misalignment.

0

tions were also measured for alignments using only

the pitch and spectral components
respectively.

6.8.2. Experiment: Transforming Dectalk speech into single Human speaker

Table 41 gives these distortion measures for a variety of neural network architectures
applied to the task of converting speech from Software DECtalk into the voice of the TIMIT
speaker fsjw0 from dialect region three. The performance figures are for the TIMIT sentence
sa,;, which was not used in training the conversion. Training parameters common to the net-
works are given in Table B-1 on page 182 of the Appendices.

The average frame distance for an ali

gnment between the target speech and the Software
DECtalk input is given at the top of the table f ey 2

: : e Or purposes of comparison, together with the
distances for an alignment using just the ten LPC-LAR coefficients, and an alignment using

just pitch.'* The remaining rows of the table give the corresponding distances after the Soft-

14. In this case, the distances given are the average difference betwesn the unweightad pitch values from the aligned f
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ware DECtalk speech had been converted using neural networks with between one and thir-
teen frames of input, and between thirty and one hundred hidden units, arranged in one or

two hidden layers.
The closest match with the target speech was attained by the simplest network, which con-
verted the speech in a single source frame at a time using only thirty hidden units.

Table 41: Effects of voice conversion of Software DECtalk speech with a single human
speaker as the target. Distances of converted speech from the target are given for a
variety of neural network architectures,

Distance from Target Speech | % Improvement by Conversion
:: ;: Spectral | Pitch Total | Spectral | Pitch
Raw Software | 3.24 1.44 242 |0 0 0
DECtalk
Input | Hidden | Converted spectral | Pitch | Total spsctral | Pitch
Frames | Units [dc}
1 30 1.99 0.85 851 |38.6% |[410% |[64.8%
30 2.18 109|903 |327% |243% |62.7%
J 60 2.14 106|898 |340% |264% |62.9%
9 30 2.06 1.09 010 |364% |243% |624%
30 3.39 o8 |830 |46% |-346% |65T%
60 2.55 1.12 100 |213% |222% |388%
3 30-30 | 4.11 236|995 |-269% |-639% 58.8%
50-50 | 3.70 2.18 118 | -142% |-514% |51.2%

ows actually produced speech t];tat diﬁgfﬂd thﬁk?l

ware ;
the target speech to a greater degree than the unaltered Speftci:l frt;n; :jnﬁmﬁ g
Since there were only a total of nine training utterances cnntam_r:]gmmﬂ i supcpemrinur
available for this speaker, it is reasonable to suspect that the ﬂilal T it
performance of the small network on testing data wes that the Ja8

1 - .o that pitch conversion
ting the training data. This hypothesis is supported h;f the nbseravasl.:];:;lﬁ;mgum i
was moderately successful for all the networks, since even

The networks with the widest input wind
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speech ought to be enough to estimate reasonable linear model of the pitch change. Further

Table 42: Training and testing set errors for single speaker conversion networks.
These errors are the usual Euclidean distance used with connectionist training.

Input Frames 1 5 9 13

Hidden units 30 30 60 30 30 60 | 30-30 | 50-50

Mean Train Error 0.506 | 0.503 | 0.522 | 0.389 | 0.143 | 0.437 | 0.059 | 0.073
Mean Test Error (sa;) | 0.505 | 0.537 | 0.527 | 0.702 | 1.66 |0.71 | 1.811 | 1.620

support is provided by the mean output unit errors measured during training, for the net-
works for training frames and for frames from sa;, which are given in Table 42. The net-

works with more than five input frames showed clear signs of overfitting, although this noes
not seem to have greatly harmed performance in the case of the network with nine frames of
input. The differences between the performance of the single frame network and those with
five frames may be due to over-fitting, or may simply be due to chance differences in the
nature of the conversion function learned from the training data.

Conclusion

The effects of voice conversion were not just confined to a pitch normalisation, although
such a normalisation was performed by the network. In almost all cases, the conversion net-

work moved the spectral representation of the synthetic speech, contained in the ten LAR
coefficients, substantially closer to that of the target speech.

1A1thnugh the 5peegh produced was not of high quality, this experiment had verified that a
single neural net, acting as a function approximator, could successfully transform the speech

of the Software DECtalk synthesiser into something more closely matching the speech of a
target speaker.

6.8.3. Experiment: Plurispeaker synthesis, using perfect speaker information.

: If the transformation was to be driven by the speaker model, as intended, the transforma-
tion network would have to produce speech from more than one speaker. Following the pat-

tern of the recognition experiments, a one-from-N representation was used as an idealised
speaker model.

To this end, separate transformation networks were trained for speech from five individual
speakers. The task was to convert a single frame of input speech into the corresponding tar-
get speech, using the additional information supplied on five speaker ID units. Three varie-
ties of networks were used, the shared parameters for which are given in :Tab]e C-2in

1 ork, with no hidden uni
linear transformations of the input units - this netwo ts, that could compute only

: rk was capable of only a simple spectral
power, and pitch normalisation, and was included to act as a i ik
performance of the non-linear networks Saglin, foc Compansaniofithe

with greater powers of functi s mati
[hertz91]. The other two networks both had thirty hid.dlllzn units. In ::élgzﬁlw:fkpr;fﬁtézz
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speech aligned to the Software
transform network, both as
rmation network used was one using a
t of training speakers. The synthetic

Fi
DIEg:l;‘l;Ea] :0: Software DECtalk speech, natural
Zanry rmsspeech, and synthetic speech produced by the

and as spectrograms. The transfo

1- =
(Cf:v::ed u}lput encoding to select among a Sé
speech seems to share qualities of both the Software DECtalk and target

Speech
likely t;ut:t':-i f]huws substantially more spectral smear than either. This smearing is a
utor to the poor quality of the synthetic speech after transformation.

units were ; [
arranged in a single layer, and in the other they were arranged in WO Jayers of fif-

teen units each.
The foll :
owing table (Table 43) gives distortion measurements for the three types of net-
) and one that was held out for

Wm-kS‘

testing :::h for a sentence included in the training data (sa;

speakers aﬂdmm .the. exception only of the linear network applied to test set speech for two

thetic speech training speech for one speaker, the ransformation networks altered the syn-
so that it more closely matched speech from the targe! speaker. As one would
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Table 43: Speaker dependent Voice Transformation for five randomly chosen speakers.
Distances shown are frame averages. Alignments were done using the whole frame
distance mentioned in the text, and also using only pitch and only LAR spectra. In
these two cases, only the percentage improvements from conversion are shown.
Sentence sa, was included in the training data, sa; was held out for testing.

Dﬁtant;pﬁ N % Improvement by Conversion
Sentence | Network Speaker S[:’:;:: Cnr{':;ted Total Spectral Pitch
3_fatb0 911 467 | 281% | 69.1% 48.2%
2_femmo0 123 683 | 444% | 939% 48.6%
Sha 2_mmag0 104 545 | 478% | 8.48% 39.6%
1_mkiw0 93 435 | s32®% | 15.1% 45.4%
3_fw0_ 79 352 554% | 827% 57.1% |
mean 981 4.9I 613% |  50.1% 55.5%
3_fotb0 o.11 | 444 | 513% | 671% 53.3% |
2_femm0 123 4.67 62% |  809% 61.4%
sa, oy | 2mmag0 104 476 | 545% 16.6% 471%
1_mkiw0 93 383 | S88% | 229% 53.5%
3_fsiw0_ 1] 33| sisw | 7sa% 59.5%
mean 531 a,,za 08% | 472% | 644% |
3_fatb0 9.11 4.8 3% | 65.5% | 53.7%
2_femm0 123 497 596% | 874% 58.5%
OneHid 2_mmag( 104 4] 60.7% 2.32% 56.3%
1_mkiw0 93 38| 590% | 9.54% 53.4%
3_fsjwd 19 336 s1sw | 715% 59.9%
mean 9.81 4.1 -?2.2% 46.2% 65.5%_
3_fntb0 10.7 305 | 716% | 89.4% 68.8%
2_femmd 10.6 453 s71% | 869% 58.9%
Fiiiae 2_mmag0 8.27 3.14 62% 1.23% 57.6%
1_mklw0 9.1 3.54 61.1% 9.17% 54%
3_fsjw0 8.28 3.01 63.7% 82% 62.7%
mean 93] 345 71m] S19% 68%
a0 | 107 2.79 74% | 778% 71.6%
2_fomm0 10.6 3.59 6% |  83.7% 68.8%
sa, Twolid | =mwmag 827 285 | 65.5% -19% 62.3%
1-“‘#“"9 9.1 2.89 68.2% -19.7% 62.5%
L=fsiw0 828 279 | 664% | 80.7% 65.2%
mean 939 298 | 774% | 46.1% |  74.4%
3_fnth0 107 275 | 744% | 81.7% 72.4% |
2_fcmm0 106 3.37 63% |  84.6% 70%
Onelig | ---mag0 8.2 28| 662% | 0537% | 623%
;f‘: ;; 2.82 69% | -3.33% 62.3%
28 | 301 | 637% | 773% 61.7%
mean 939 295 |  778% |  483% |  742%
T — =
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expect, the transformation matched the speech (sa,) from the training set more closely than

held-out speech. There was about a third less reduction in overall distortion for the testing
speech than for the training speech.

As the networks became more complex, they did a better job of voice transformation, with
the network with a single hidden layer substantially outperforming the linear network. The
three layer network with one hidden layer, was, in turn, slightly outperformed by the net-
work with two hidden layers.

Using an idealised /-from-n speaker model as input, it was possible to move synthetic
speech towards the speech of the target speakers, both in terms of pitch and of other spectral
features. While the output speech quality produced was inadequate for practical uses, it was
clear that effects of speaker information on output speech were measurable, wh_ich enabled
taking the next step of using those measurements to investigate the effect of using speaker-
space based speaker models.

6.8.4. Experiment: Plurispeaker synthesis, mean speaker models.

Having established that neural networks could use speaker infurm_atiun to move s;.rpthet_lc
speech towards that of a target speaker, the next goal was to &m-wﬁm‘miﬂ ulrlf
speaker space, automatically derived from speech, could be used tutram e ?mﬁ g
mation. and whether. after that had been done, the transformation was useful 1o
speaker targets.

The speaker model used in this experiment was generated by first linearly wmplﬂiphzz*:;
to ten fourteen-element frames each, and then projecting these 14D glengent vetft elisemem
their first eight principal components, computed within each phﬂl'lﬂ. 'I:;:e:leeltimt e
phone codes were averaged for each speaker, and cnncatepated into a 45 cs e 3
The one hundred and eighty-nine such vectors cgnesPOBME to the tfu;sﬂ:ld“ti b duce four-
then used to train a neural network compressarl - This n.::twark_ o d si pl:atwu testing
element speaker codes for all one hundred and eighty-nine training and SIXty
speakers.

g se voices had
Three sets of these speakers were chosen at rmdnménii;zsiﬁﬁk‘?:;hmgl fifteen
§ o kd 1o trdin boft e sprlbel B sty t::n rzodels but who were not used o train

test speakers who had been used to train the speak st
the voice transformation (fest), and fifteen test speakers who had not been used p

(true test). similar manner to that in the preceding

i : as trained in a
A voice transformation network W ke voiod code f0r each speaker Was

experiment except that the four component mean Spe 000 and haf oo raTen
used to replace the binary speaker ID used in the premusrcxp:rllmf; O forion T
of speech, centred around the target frame, Were u_secl as mpuh‘gden layer, and addition al
transformation network had thirty hidden units in a single hi

- ‘ output layer.
bypass connections were present directly connecting the input and outp

s s Eﬂ r
15. The network had 488 mmmdﬂmpﬂﬂ-“d‘*“‘?“‘”"'mmwd mmm@hmﬂmﬁmmﬂ
den layers. No bypass connections were used. Speaker ’-""d::dm 503,
was trained for & 000 epochs with a leaming rate of 0.001 184 in the Appendices.
16. Details of the training parameters are given in Table C-3 on page
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Testing the model based transformation

A difficulty with these voice transformation experiments is determining whether one has
succeeded in producing the modelled voice. In recognition experiments, the matter is
straightforward: if recognition accuracy is better with the speaker information than without
it, then one can be said to have succeeded, although the details of how this success was
achieved may be difficult to discern. In synthesis, no such simple scoring criterion is availa-
ble. What must be done is to compare the synthetic speech with actual speech from the tar-
get speaker, and see whether it matches that speaker more closely than other speakers.
Fortunately, this is possible for the TIMIT database, which provides two particular sen-
tences which are said by every speaker. One of these, sa, (“She had your dark suit in greasy

wash-water all year”) was selected for use in testing.

Within each group of fifteen speakers, synthetic sa; speech s, was produced for each-
speaker. Natural speech, », was also available for each speaker. An average alignment dis-
tance p,; could be computed between the synthetic speech from any speaker i and natural
speech for any speaker j by measuring the average distortion of a frame on the best align-
ment path. These distortion measures form a 15 x 15 matrix, with the distance between natu-
ral and synthetic speech for each speaker lying along the diagonal, and the distances
between the synthetic speech for a speaker, and natural speech from other speakers, off the
diagonal. If the speaker model is successful, then the diagonal elements should be row
minima. To measure whether this was the case, the diagonal elements were subtracted from
each row, and the elements of the matrix summed. The result was then normalised by divid-
ing by the number of elements in the matrix, in this case 225.

A positive value of this measure is an indicator of success. Table 44 gives this measure for
each of the three speaker groups used in this experiment.

Table 44: The effect of speaker model input on the match between synthetic and
natural speech is shown here for training speakers, speakers used to train the speaker
model, but not the voice transformation, and completely untrained speakers. The
measure, described in the text, compares the match between synthesised speech for a
particular speaker and that speaker’s natural speech with the match between the

synthesised speech and natural speech from other speak
better conversion. speakers. Larger values represent

Speaker Group Measure
: -
Train 0.397
Test 0.119
True Test 0.105

The speaker model clearly moved the s '
speaker, on average, with the strongest effect being seen on speakers within the training set.

As one would expect, the effect of the speaker model was Jess pronounced for speakers who
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had been used to train the speaker modelling network, but not used to train the voice trans-
formation, and still less pronounced for speakers who had not been used in training at all.

Using a real speaker voice code generated by a network modelling speaker variation, it
was possible train a voice transformation to convert synthetic speech into something, resem-
bling, on the average, the target speaker more closely than other speakers, even for speakers
who had never been encountered in training. Although a significance test for this effect was
not readily available, there was evidence that speaker spaces could be used to model speaker
variation in a way that the voice transformation could use, and in a way that generalised to
new speakers.

6.9. Voice Transformation using a speaker model for the whole
database

Having established that the simplified speaker models of the last two experiments could
affect the voice transformation in an appropriate, if insufficiently accurate, way, the final
step in the development of the system was to use one of the fully developed speaker mudel;
from Chapter 4 to build a transformation network that could cover the complete set 0

speakers in the TIMIT database.

6.9.1. A neural net speaker model used for voice transformation.

10N
The speaker model used for this purpose was the NNCCR2 (Neural Ni‘-’t":’glfkﬁgi?mm r
with Pattern completion and Recirculation of outputs to inputs) model Wi speake

model units as described in Section 4.6.

is model after
During training, fifteen-dimensional speaker codes were extracted from this m

i 17 and these
all the available speech had been presented to the speaker modelling network' ', and

: : input
: : i tion network with a five frame 10pu
codes were presented as speaker input to a transforma st of al of the & 1able

window.'® The training data for the transformation itse b

S ce of sa; by
speech from the training set speakers, except for that occurring in ﬂ;;:?:g;{:tﬂk ﬁifter
each speaker, time aligned with the same utterance % Spokmgzisnfh pendix C., its per-
the network was trained, using the parameters given InTae S

formance was tested using the same technique outlined in section .

peaker codes for each speaker in
The speaker modelling networks were used 10 generate § h:d peen heard, or after all

the training or testing set at the point when (w0 hundred P]mnes e st Thess speaker
the speech from the speaker'? had been exhausted, whichever € .

uce synthetic
codes were used, along with Software DECtalk’s utterance of 5a;, 0 produce Sy

ith the actual utter-
Speech in every modelled voice. This modelled spegch was m.:;nwpmith mtlscftware DECtalk
ances of sa, by the speakers, after they had been tme aligne

This five

codes produced was ussd.

l'||’..:"ur.:t'uzuljznr‘.i:lv.:ml.arl.'u:nmdunctheeﬁmufnutliﬂ!.r.h:a.-.-.-rl,gf-:rflbc_llstﬁ::a:p:;wﬁ:mm“rmbe S

frame smoothing window was also used on models produced using less input described ’“"‘“‘m"“
' — seal moe training data — from al e hundr?

la'umgﬂ’kﬁﬁﬂnwindawmmndjmﬁﬁbdinﬂmmnMIﬂﬂ

cighty nine training speakers — was being used.

19. Except, of course, that from the sentence 5a;.

i 5
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speech. As before, distances were calculated by aligning every “training set” synthetic utter-
ance with every actual “training set” utterance. Since there are one hundred and ninety
speakers in the training set, this involved more that thirty six thousand alignments.

For training set speakers, on average, the mean frame distance on the best alignment path
between the synthetic speech and the real speech it was aimed at mimicking was 0.38 lower
than the distance from speech from other speakers. For testing speakers, the effectiveness of
the transformation was lower; the distance was 0.26 less, on average, for the target speaker
than for other speakers.

The results of the test with a simpler speaker model and fewer speakers were confirmed.
The speaker model was allowing the transformation network to move the synthetic speech in
the direction of the target speaker’s voice.

6.9.2. The time course of transformation quality

To get an idea of how rapidly the useful information became available in the speaker code,
the same procedure was repeated, using speaker codes extracted after fewer phones had
been heard. The results are summarised in Table 45. For training speakers, the effect of the

Table 45: The influence of amount of speech used to form the speaker code on the
quality of the voice transformation achieved. The measure given is explained earlier in
the chapter. Larger values suggest better conversion.

Number of phones used to form

speaker model 2 5 0 ot o
Train 0332 | 0371 | 0380 | 0.373 0.379
Test 0228 | 0.242 | 0.283 | 0.270 0.265

speaker model was fairly stable for all models built with more than five phones. For the test-

ing speakers, the fall off in quality was perhaps more gradual, with an apparent decline for
the models formed from fifteen phones or fewer.

Although it is fairly clear that five phones were not enough input to allow the speaker

model to reach the final speaker code, there was enough variation among codes formed with
more speech to prevent any trend beyond that from being evident.

6.10. Validating the final system with human listeners.

Results presented above showed that transformations controlled by a speaker model could
reduce the distance between the output of the synthesiser and

: th t
speaker, when that distance is measured by spectral distortion, e speech of the targe

It was a]_sc: important to know whether this measured distance reduction corresponded to a
Edum? o perceptual distance. Did the transformed speech from Software DEthalk sound
more similar to'thr. voice of the target speaker than the original dectalk speech did? If so, did
it sound more like the voice of the particular speaker it is intended to imitate than; the v::)ice
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of some randomly chosen alternative speaker? The following experiment was intended to
provide initial answers to these questions. The aim was to determine whether listeners can
identify which of a pair of target speakers, an utterance generated on the output of the trans-
formation is intended to mimic the utterances of a particular target speaker. This experimen-

tal design loosely follows the practice of the papers from Abe er al. described in this
chapter’s introduction.

6.11. Experiment: Human ability to discriminate transformed
voices.

In this experiment, unaltered Software DECtalk speech was viewed as being at one end of
a continuum and the speech from the target speaker was viewed as being at the other eqd,
with stages in the transformation of the former into the latter lying between them. The aim
was to measure the degree to which each step in the cupvcrsinn process affected the per-
ceived voice personality of the speech. These steps are illustrated in Figure 41. Measure-

Start
—

Recorded Speaker 1\
( Sentence | /

Y Different Sentence

Recorded Speaker 1
Sentence 2

LPC Coding
Recorded Speaker |
LPC Sentence 2

Alignment to Machine
Prosody

ecorded Speaker
LPC Sentence 2

Aligned

“Speaker 1" voice from speaker ID

hased Voice Conversion
" voi Voice Conversion
Voice Conversion "Speaker 1" voice e mudcl
based Voice Conversion
version. At the left, we have the factors

Figure 41: Transformation stages for voice con s the output of the
that increase the distance between the actual tﬂl'get:l; mﬂ;:::i distance between
voice conversion network. At the right, the factors

i i that we do have
the input we would like to have to the voice conversion, and j7ip
identi i speakers, introduce
ments were made of the ability of listeners t0 ldﬂl‘ll?.f}’ which i t:::s E: R
with samples raw speech — labelled ugtart” in the mwabi]ity hoden 2 thpeake: B
the transformation. Measurements were made of subjec ;

: . i an effort to get an indi-
speaker from the specch output from every sicpn the COnve L 3
cation where the greatest changes in speaker personailty
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6.11.1. Method

Materials

Using the transformation steps shown in Figure 41 as a guide, utterances for a variety of
processing conditions, listed in Table 46, were produced for four sets of thirty six target
speakers. These sets of thirty-six were composed of nine male and nine female speakers,
chosen at random from each of the training and testing speaker sets. Speakers could be
reused between sets of thirty six speakers, but not within. Within sets, the training speakers
were divided into three groups of three pairs of speakers: three pairs of males, three pairs of
females, and three pairs of whom one was male and one was female. Test speakers were
similarly divided.

The aim of the experiment was to determine the rates at which speakers in each of the six
sets of three pairs could be distinguished from each other, for each of the listed processing
conditions, to measure the degree to which voice personality was retained by the conversion
process, and, as a base line, the rates at which speakers could be distinguished given a short
utterance from each.

Table 46: Conditions for the voice conversion perceptual test. The experiment
involved comparing speech from two speakers with speech in the following conditions,
using an ABX design.

Condition Description 3 = :
A | sa2, wave file The same recording of sa, repeated again.
B | sa2,lpc coded sa, from the same speaker after LPC10 encoding

C | sa2 Ipc coded and aligned | sa; from the same speaker after LPC10 encoding and aligning with the equiv-
alent Software DECralk utterance.

! o i The original recording of 2 second, sa,, sentence from the same speaker, to
measure the variation in perceived voice quality due merely to a change in
material.

2 , =
|E: sa: DECtalk, Ipc Completely unmodified Software DECtalk speech for the same sa, utterance
sa2, DECtalk Ph, Ipc Unmodified Software DECtalk speech, using the same phonemes as the orig-

inal speaker to produce the speech.

5 ﬁfpeakerﬂ] Lt Sﬂm;t DECtalk U%Sfm by multi (fixed set) speaker transform into the

H, | sa2, SVC5 Gansformation :m::e_m . This is only possible for training set speakers. _|
_ ECualk transformed by speaker model based speaker transform

into the sa, “from the speaker”, using an SVC generated after 5 phones had

been heard, and smoothed over a 5 pho i i that point.
H, | sa. SVCI5 ransformation Bid_ but 2 15 phones phoneme window starting from po

H; | sa2. SVC50 transformation ibid, but after SOphones heard
H, | sa. SVCI00 transformation | ibid, but after 100phones heard

H; | sa2. SVC200 transformation | i but afes 300 —-

H, | Novel, SVC200 transforma- ==
tion m‘mwwmmamemummmemmmmbm

v transformed usi
. Since speaker 1D THpUG Were using the SVC produced after 200 phones had been heard.

P op noL, of course, trained for the tesun speakers MEES
mmhscmmumndywmmfmmedghmuﬁnig:gos;fakﬂ& e

—

e

—
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Within each of the four speaker sets, two hundred and twenty five ABX stimulus triples
were generated, using techniques covered in detail earlier, from the eighteen speaker pairs.
In each case the A and B stimulus were down-sampled”® versions of the original (16 bit,
16kHz) recording of sa,, “Don't ask me to carry an oily rag like that”, from two speakers A
and B, and the third sample, X, was generated under one of the conditions of Table 46.
Which of the two speakers in a pair were assigned to be A or B, and which of A or B would
be used to generate the “matching” stimulus X was chosen randomly for each stimulus.
Even the unmodified Software DECtalk speech had one of the target speakers randomly
assigned as a “correct” match. To minimise the effect of any bias from the particular choice
of X to be deemed correct, and of a listener bias in favour of the second utterance, stimuli
were generated for subjects in groups of four, with the only difference being that the presen-
tation order within each triple and which of the reference speakers “A” and “B” would be
used to generate the test stimulus, as shown in Table 47. It would be better to do this coun-

Table 47: Permuting the triples across subjects. Entries are lm'get
speakers used or each of the four subjects in a quad, for each position

in a stimulus triple.
Subject A B X_
1 sl sl sl =
2 51 52 52
3 52 51 sl
4 52 sl $2

terbalancing within subjects, but it is unlikely that subjects would have hafi the patience f";
a six hour experimental run. Sixteen sets of 225 stimuli were general_ed_m four gﬂﬂ;i
four. Between groups, different sets of speaker pairs were chosen. Within groups,

were chosen to balance for presentation order and choice of target.

ing in silent “X" record-
Occasionally target stimuli were not generated correctly, resulting 1n silent * [
: and the affected stimulus pairs were 10

ings. These occurrences were noted by the subjects, S
included in the analysis. These problems were infrequent enough that they are unlikely

have undone the balancing.

Equipment
ino identi ts plugged
Stimuli were presented monaurally through the left ear usmggdmu:kﬂs]tlaﬁ;:- Pllja}r%g =
into the headset outlets of Digital Equipment Corporation Alp at‘::i'un +ystem [ref]. Rav
was managed using the freely available “Audiofile audio Prﬁﬁﬂﬂl o and LPCLAR
recordings were down-sampled to 8kHz immediately before playbare

i C-10 coder used
recordings were decoded immediately before playback by the mod{iﬁ::hﬁ::ts’ judgements
throughout the thesis. Stimuli were presented (0 subjects, an

Im =tmu]dt:prﬁmuslng‘nh I:ﬁ] a8
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recorded, using the user interface shown in Figure 42. This user interface was written in the

ajgh _Playings _Playg X |

- Choose

| m —_—
. dlosesttoX

Figure 42: User interface for perceptual experiments, shown while the first stimulus in
a triple is playing, and after the speaker has made an initial match X=A.

Tk/Tcl language.
Subjects

Sixteen volunteer subjects in their mid-twenties to early thirties were used. Most were
CM[_.T computer science graduate students. Fourteen subjects were male, and two female. No
special attempts were made to keep the purpose of the experiment from the subjects.

Procedure

Subjects were seated before one of three alpha work stations displaying the user interface

in Figure 42. They were read the introductory passage given in Appendix E., and then asked
to start the experiment.

For each stimulus triple, the subject would hit the “Start” button. The three stimuli were
played in order, with the user interface indicating which stimulus, A, B, or X was being
played by highlighting the appropriate label in green, as shown on the left side of Figure 42.
After all three stimuli had played, it became possible to make a choice between A=X or
B=X, as shown in the right hand side of the figure. This choice could be changed, or the

stimulus triple represented, repeatedly until the “OK” button w
i : : as presented. N b-
jects had any difficulty completing the task. P one the su
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6.11.2. Results

Table 48: Results of the first perceptual experiment. Each cell contains the percentage
of correct identifications of stimulus X as matching the voice in stimulus A or B. These
numbers are for three target speakers in each condition for sixteen subjects, giving 48
trials per cell®. Means in the bottom row are calculated over the SVC model based
conversions indicated by background shading,

Train Test
Condition
Both | Female | Male | Both | Female | Male
A | sa2, wave file 100.0 000 1979 1979 |99 979
B sa2, Ipc coded 100.0 95.8 89.6 979 95.8 938
C sa2, Ipc coded,aligned 97.9 89.6 7.1 1000 | 854 81.3
D sal, wave file 979 §7.5 833 979 833 89.6
E sa2, DECtalk, Ipc 52.1 58.3 438 521 419 115
F sa2, DECtalk Ph, Ipc 458 60.4 478(46) | 609(46) | 38.6(44) | 563
G sa2, SpeakerlD transforma- | 91.7 56.3 60.4 = 4
tion”
H, | sa2, SVCS transformation | 66.7 479 438 813 417 | 563
H, | sa2. SVC15 transformation | 81.3 50.0 52.1 66.7 39.6 583
H; | sa2. SVCS0 transformation | 79.2 521 56.3 7.1 $48 | 604
H, | sa2. SVCI00 transformation | 79.2 479 5006 |8L3 | 563 sl
H, | sa2. SVC200 transformation | 76.1(46) | 489(47) | 646 68.8 563 563
H, | Novel, SVC200 transforma- | 77.1 489 @7) | 542 813 e
tion :
| Mean 765 04 534 750 T
3 As noted above, 3 Tew of the X targets were not properly produced, regucing the cells marked (0
the number of trials shown in brackets. pspeaketsfthiﬂﬁmm

b. Since speaker ID inputs were not, of course, trained for the testing grou
in this condition were only produced for the eighteen raining speakers.

Subject’s selections of “A” or “B” as the match for “X” were cm_npar?d %ths;:cﬂ:
assignment recorded during stimulus preparation, and the proportion 0 :;: e
tabulated in Table 48. It is clear that the task is not an €asy one; Even on the

which of the original two utterances had been repeated exactly (oW A:aker i
did not perform perfectly, and by the time the speech of the target SPCta]k e
Ipc encoding and decoding (B) and then aligned with the SoftV&rc DE o S
were having considerable difficulty telling speakers apart choosing cof malz iR
of the cases for pairs of female, and about 80% of the time fcr_r pairs 0 T il effctan e
basic encoding used for speech in this transformation Was having 2 suansfunnatinn i
Perception of voice personality differences, even when the voice If

been applied.

The difficulty of making voice personality disti

et peakers had t0
each speaker, is illustrated by condition D, where the ® ha:s"]:ﬂﬂmh“
tWo utterances of “Don 't ask me to carry an oily rag like 11at

- iven a single phrase from
pctions at all, g1  hoose which of the

d the voice that had

i 1
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uttered “She had your dark suit in greasy wash water all year.” Subjects made a great many
errors telling speakers apart in pairs of matched gender, even though they were listening to

clean speech.

It is worth noting that in almost all these conditions with untransformed (but, in some
cases, altered) speech, subjects found it easier to distinguish pairs of male test speakers than
to distinguish pairs of male training speakers, and that they found it easier to distinguish
women than men. While one could easily imagine that there might be gender based differ-
ences in the degree of voice personality, the source of the difference between the training
and test set remains somewhat mysterious.

Conditions E and F were included as controls. In condition E, raw Ipc processed Software
DECtalk speech, was presented in the X condition, using phonemes chosen to match those
of the target speaker. In condition F, the utterance X was the completely unaltered Ipc
encoded Software DECtalk speech, regardless of who A and B were. One would expect per-
formance in condition E to be almost completely random, and on F completely random. The
fact that some cell values skate dangerously close to significance reminds one of the dangers
of reading too much into any individual cell of a large table. Pooled across all conditions in

E and F, however, there was no evidence that listeners could guess above chance (P(rate of
correct guessing > 0.5, 568 trials) = 0.48).

Conditions H, ; and H, were, of course, the focus of the experiment. To deal with the
obvious observation first, the speaker model clearly imposed enough voice personality on
ﬂ_ls transformation to enable men and women to be told apart in many cases — correct iden-
tification rates for all the speaker model conditions for pairs of mixed gender were signifi-
cant at or above the 2% level. What is perhaps more surprising, given the clear separation
for gender of the speaker models when plotted in a previous chapter, is that gender could not
be separated more reliably. Within pairs of the same gender, the effect of the model is subtle.
There was clearly no information retained by the transformation that allowed subjects to tell
women apart. F_nr men, though, there was some evidence that the model-based voice trans-
formation was imposing some personality. Although the evidence is not overwhelming for
models generated from any of the particular amounts of speech (5, 15, 50, 100 or 200
phones), when results were pooled over all model transforms, within the m;ﬂe slpcaker pairs,
the probability that subjects performing were performing at or below chance was less than
10% for the training speakers, and less than 3% for the test speakers. And, as noted above.
the test males seemed to be intrinsically easier to distinguish. s

inFt?:n t:;e ﬂ:a.ke of completeness note tha;, as one would expect, since they were played nearer
utteram‘:‘.e ;fﬂ:;;ﬁfﬂ&;ﬂ ;{hﬁléligim ficant bias in favour of matching the second (B)
across speakers by the ha]ancéd df:si 53.7%B). This bias was completely controlled for

from the trials with missing X. gn of experiment, except for a possible slight effect

It is also worth noting, for the sake of informin
many of the subjects in the
to match utterances — cu

experim rming the course of future experimentation, that
es which th lmm,mmunmm that they were using mainly prosodic cues
: ttransformation could not possibly capture.
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6.11.3. Discussion

It is clear that the speaker model tested included sufficient information about the speaker to
specify their gender in many cases. Beyond this the evidence is less clear. It is possible that
other salient speaker differences were represented form men, but not for women. Part of the
difficulty in determining this is due to the fact that the voice transformation developed here
was not as sensitive instrument for measuring the effects of speaker codes as one might have
hoped. A discussion of possible reasons for this will be deferred to the end of the chapter.

Since there was clear evidence only that the speaker code allowed gender identification, and
weaker evidence that it differentiated usefully between some male speakers, it seemed pos-
sible that it was simply affecting pitch. Now, it is true that it is important for such a model to
capture pitch, as Valbret et al point out [valbret92b}:

“The average level of the fundamental frequency is a crucial fac-
tor [in voice personality]. Even on nonsense words, the average
pitch-value seems to be the most important factor for speaker ldmn
fication: spectral transformation without the correct pitch modifica-
tion results in a voice that is not recognised as the target Voice; on
the other hand, pitch modification without any speﬂmf:m-'f-ﬁfm'
tion significantly improves the speaker recognition rate. et
However. one can measure average pitch by less involved means ﬂ'{at the models investi-
gated here. It was useful to investigate whether the voice mfommﬂm modulated by the
speaker code were doing anything beyond affecting the average pitch.

6.12. Experiment: Is the effect of the speaker code accounted for
by pitch changes?

6.12.1. Method

: - : ition H, in the
To investigate this question, another set of trials closely resembling condition Hy

: : - * ifferent this time.
Previous experiment was run. The experimental materials were slightly diff

: ifferent speakers utter-
Utterances A and B were derived from samples of speech from m&ﬁmwﬂh

ing the sa, sentence. This time, though, this speech was LPC o .o but the pitch
Software DECtalk speech for the same sentence. After alignment, EHCIa]k: nggpaf.'.ch so that
of utterances A and B was replacgd with data from the Software DEbﬁtw““ then'l. Asin
only pitch differences between the speakers could be used 0 select L
condition H, above, the utterance X in the ABX design was S-:lrff""*"“f"= system, using the
another utterance (sa), transformed using the voice tRSOTEEL S o

fore was used to
speaker code for speaker A or speaker B. The same spe]:k;:;“ﬁ]f:;: Et:hv: speaker. If
generate the speaker code after one hundred phones had should be able 10 match

transformation was affecting only pitch, subjects in this experiment O s el
the speaker for utterances in A and B with the target speaker for the speake

they had in the previous experiment.

on, Page 163
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There were three experimental conditions: comparison of two men’s voices, comparison
of two women'’s voices, and comparison of a woman’s voice with a man’s. All conditions
were presented in both possible orderings of the voices used for A and B, and both choices
of whether X would match A or match B.

Stimuli were presented using the same user interface as before, and the experiment was
introduced using the same preamble with only the number of trials chan ged to eighteen.
Subjects were twelve male members of the CMU Computer Science Department in their
early twenties to thirties.

6.12.2. Results

Results for this experiment are given in Table 49. The first row of the table gives the rate at

Table 49: In this experiment, the effect of the ability of the speaker models to affect
voice personality by altering pitch was investigated. The A and B stimuli were
Software DECtalk speech with the pitch contour replaced with that from two human
speakers, one of whom was the target of the voice transformation that produced
stimulus X. Each cell contains the percentage of correct identifications of stimulus X
as matching the voice in stimulus A or B. These numbers are for three target speakers
for twelve subjects, giving 36 trials per cell

Train T Test
R A_Buth Female | Male | Both | Female | Male
Percentage correct 718 2| 639 a4 | 500 | 417
Number of standard deviations 333 -0.33 1.67 233 0.00 -1.00
from chance

t.vhich the subjects were able correctly to identify which of the speakers A and B the speech
in X corresponded to. As in the previous experiment, the speaker models were clearly able
to produce an effect on the synthetic voice that allowed subjects to identify the speaker’s
1gem:lt::r in many cases, with only the pitch of the reference speakers available as a cue o their
identity. A::-, one might expect, this effect was greater for the training set than for the test set.
For the training set, there was also some evidence that the model was providing information
that a{]awed ma]f: speakerst to be distinguished on the basis of pitch, but, unlilze the similar
tr_end in the previous experiment, this effect did not generalise at all to the test set. It is pos-
sible that the model was learning to set parameters for particular male training speakers
from the speaker model that made the speech match the targets better, but if it did so, it did
n{)‘tﬂ u;e the speaker models as positions in a speaker space into which ,te:st-set male sp:eakﬂl's
:]as urs%efulzz placed. Where 5pea]_;er_ idf:ntiﬁcatinn was possible using these stimuli, it
refﬂp; ; :1::11 i rates that were not I:l.'I.SS!IID.l]EI.F to those when spectral characteristics of the
feeg peakers were available for comparison with the output of the speaker model. If
more information than Pltch was being used in the previous experiment, it was only apparent
in the case of male testing set speakers, and that evidence was very we,;k i
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6.12.3. Discussion

As far as it was possible to tell, using the instrument provided by the voice transformation
networks, the only perceptually salient information that was consistently encoded by the
speaker models was information related to gender, and that information did not have a per-
ceptible effect on anything but the pitch of the talker’s voice.

6.13. Experiment: Speaker information apart from pitch?

6.13.1. Procedure

In a final attempt to see whether there were modelled voice qualities apart from pitch that
could be used to distinguish speakers, an experiment was run using stimuli in which all dif-
ferences in pitch had been removed. As before, stimuli were presented in an ABX setup,
with each subject listening to nine pairs of women, nine pairs of men and nine pairs of men
and women from each of the training and test set, for a total of fifty-four comparisons per
subject. The order of presentation of the stimuli, and which corresponded to the X stimuli,
were counterbalanced across the four listeners used.

The materials for the A and B stimuli were prepared by taking natural, LPC-coded, speech
for sentence sa,; and time aligning it to the same sentence spoken by Software DECtalk.
After alignment, the pitch signal in the speech was entirely replacedbythai from the Soft-
ware DECtalk version, yielding samples all of which had identical pl!‘.l:h contours. The X
stimuli was generated as in the previous tW0 experiments, by producing the $4; sentence
using the voice transformation network with the speaker code the selected spcakﬂl‘sﬂ;l;i
those who produced sample A and B. After this transformed utterance had been prod

its pitch contour was also replaced with that of the input SaﬁmeECIa]kspeeCh-

: _ : o sub-
Materials were presented to subjects using the prﬂ‘-’IGUSIY described interface, and the

= . four”.
jects were read the usual preamble, with the number of ABX triples replaced by “fifty

on, Page 165
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6.13.2. Results

Results for this experiment are given in Table 50. The first row of the table gives the rate at

Table 50: In this experiment, the ability of the speaker models to affect voice
characteristics other than pitch was investigated. Pitch contours for all three stimuli
were replaced with that from Software DECtalk, forcing subjects to use other cues if
possible. Each cell contains the percentage of correct identifications of stimulus X as
matching the voice in stimulus A or B. These numbers are for nine target speakers for
four subjects, giving 36 trials per cell.

Train Test
Both | Female | Male Both | Female | Male
Percentage comect ] 0.0 TR ) 383 444 44
Number of standard deviations | 0.00 -1.00 1.67 1.00 067 0.67
from chance

which the subjects were able correctly to identify which of the speakers A and B the speech
in X corresponded to. With pitch differences removed, subjects reported that it was very dif-
ficult to tell speakers A and B apart, let alone to tell which of them corresponded to the tar-
get of X, and this is reflected in the Table. In none of the conditions were listeners able to tell
which of speaker A and B was the target in X at rates significantly greater than chance,
although in the case of male training set speakers they came close. If any information
beyond pitch is contained in the speaker codes, it is either lost during the transformation, or

the speakers are unable to use it once the pitch and timing components of voice personality
has been destroyed.

There b weak “idﬂfm_ ﬂ:mt some voice personality beyond pitch was retained for
male training set speakers, but if it is, future work on improved speaker models, and particu-

larly on improved voice transformation networks will be required to demonstrate the fact
conclusively.

6.14. General Conclusions from the Voice Transformation work.

Although the experiments in which spectral distortion for transformed speech were mea-
sures indicated that the speaker codes were allowing the transformation to move the Soft-
ware DECtal_k speech towards the targeevoice, human beings were not able to detect the
effects of tl.-us Ipuvement except in as much as the pitch of the voice was concerned.
Although me:h 1s surely an important component of voice personality it is important to
extend the voice codes to include prosodic qualities such are relative se . ent durgtiun and
to ensure that they accurately represent long term spectral charactcristicgsmbe ond itch, It is
also important to improve the transformation so that it produces high ity syntietic
speech, and so that it accurately expresses the information contained in qthe spzak};r code.

Since there was considerable discussion of the quali
W quality of th ; + .
ter, the discussion here concentrates on the voice tr tgfg e speaker codes in earlier chap
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In_ [abe91a] the authors make an interesting observation that the codebook size of repro-

ducing speech from two speakers accurately must be approximately twice as large as that for
as single speaker. While this rate of increase ma

y level off with more speakers, it suggests
that the multi-speaker voice transformation probl

em is, in fact, much more difficult than the
same problem with single speakers. Certainly that possibility is supported by the quality of

the speech output by the voice transformation system used here, which presented a consider-

able barrier to its use in evaluating the speaker models used with it in perceptual experi-
ments.

[tis difficult to know how far the plurispeaker transformation has to be improved before it
matches the quality of other systems in the literature. Savic and Nam said of their voice
transformation system that “Experimental results [not included in their paper] demon-
strated that there was almost no difference between the target voice generated by the voice

fransformation system and the target voice output from the LPC Vector Quantisation Voco-
der, which was used as a reference.” On the other hand, In the case of the system in the liter-
ature [abe90, abe91a] that had goals most similar to those of the current work, although the

training data used was more friendly to alignment, the authors seemed to have reservations
about quality:

“In terms of the converted voice quality, cross-language voice
conversion is not as effective as voice conversion between Japanese

speakers. One reason for this may well be that in the cross-language

voice conversion experiment MITalk speech was used instead of
human speech” [abe91a].

[t would have been very useful, when first building the system, to have used the same kind
of neural network and speech representation to build a transformation between two human
speakers and to do so using very short utterances as has been done in the literature. Since
both the speaker models and the test applications were being developed together, there sim-
ply wasn’t time to gather the data for this experiment and to train such a transformation. It
should however be done. If the transformation in such a system proved to be of low quality,
in contrast to those reported in the literature, the cause would plainly be due to the speech
representation, or to the use of a neural network functional approximator instead of a code-
book based-mapping or connectionist classifier. If the voice quality was high, the system
would provide a gold standard from which one could proceed to replacing the source
speaker with soft-talk, and thence to the synthesis of multiple target speakers.

Earlier it was pointed out that one of the greatest problems in building the transformation
lay in generating a good alignment between the source and target speech. When the align-
ment is imperfect, the network it trained to transform an input frame into the mean of the
target frames to which it is aligned, some of which will be completely inappropriate. The
end result of this being “blurred” frames being fed into the resynthesis system, and the pro-
duction of distorted speech. Obtaining a good alignment was made difficult both by the use
of synthetic speech as one of the signals to be aligned, and by the fact that the system
depended on aligning entire sentences. It may be possible to improve this alignment by bor-
rowing an idea from the recirculating speaker models. If the transformation moves the
source speech towards the target speech, the transformed source speech should be easier to
align with the target utterance. By training the system, using this method to obtain a better
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alignment, and retraining, iteratively, a sharper iransformation should be able to be trained.
Another possibility for improving the transformation may be to use a great deal more train-
ing data per speaker, obtained from a database other than TIMIT, and to simply discard sec-
tions for which poor alignments are obtained from the training data.

A further difficulty with the voice transformation, which is shared by those reviewed in the
introduction, is that there are components of voice personality that it can’t currently model.
Instead of simply transforming the data on a frame by frame basis, future systems should
cover all the components of voice personality, beginning with the choice of the correct pho-
netic realisation for the target speaker of the lexemes in the utterance, and ending with the
adjustment of relative durations of the phones within those lexemes, O even of the pitch and
loudness profile of the utterance as a whole. Although this is certainly an ambitious goal, it
is also a necessary one. In the perceptual experiments here, which compared whole utter-
ances, subjects often commented that they had used prosodic, rather than spectral, qualities
of the utterances to match speakers.

Although the quality of the target voice representations and of the transformation used to
express them was far from ideal in this initial implementation, it seems likely that both can
be improved with further science, to make more of the variation explicit, and further engi-
neering to express it. More will be said on those matters in the next chapter; this one is
closed with sentiment the author would like to heartily endorse, with respect to the current
work in multi-speaker synthesis with conversion:

“Because cross-language voice conversion is a very new idea, and
also a very difficult problem, we would like to claim that we have at

least shown the possibility of such conversion and demonstrated a
possible method” [abe91a]

Synthesis by Voice Transformation, Page 168



page 169

Chapter 7. Conclusions and Future Work

Although none of the systems investigated in this thesis was a complete success, a good
deal was learned about the speaker modelling enterprise itself, and about the prospects for
applying such models in real world tasks. Perhaps the most important lesson was that doing
work in this area is currently very challenging. It was necessary to build both the speaker
models. and the mechanisms for testing them, and neither of these tasks were straightfor-
ward. If there had been a pre-existing speech recognition system or voice transformation
system that was known to show clear performance improvements when told which of a large
set of speakers it was dealing with, then a larger number of possible speaker models
designed to distil that identity into a point in speaker space could have been developed and
evaluated, increasing the likelihood of success. If there had been a body of work in develop-
ing free-standing models of speaker variation, then there would have been both established
criteria for evaluating the current models, and a those models could have been applied to the
chosen applications to provide a clear baseline of performance. Instead, the models and the
applications had to be pull each other up by their bootstraps, a clumsy and imperfectly exe-
cuted manoeuvre.

Despite the inadequacies of the models developed here, and despite the difficulty us?ng
them with systems that do useful work. the idea of developing speaker spaces and using
them to help speech systems adjust to new voices seems as promising as it did at the begin-
ning of this work.

There is a great deal of work to be done if this idea is to be realised. The following paré-
graphs will summarise the conclusions that can be drawn by the _wark reported he'r_e in the
areas of speaker modelling generally, and the application areas In specr:_h recognition aﬂnwd
synthesis. They will also outline plans for future work that may be useful in approaching
goal of produc'ing systems that can use their knowledge of Ihf: way voices vary 10 1mprove
their performance in the face of the great variety of human voIces.

7.1. Speaker models

: i irements. The
The speaker models that were built satisfied many of the stated design requirements y

: ' t charac-
were compact, text independent and formed rapidly. They also CﬂPﬂH;; ﬂnﬂﬁﬂe i
teristics of the speakers, as demonstrated by the fact Lhz_lt speaker gESh Muighrtr
code, and by the fact that they could reduce the distortion between the outp

code.
transformation system and speech from the speaker represented by @ speaker

; s vable, since the full-

The failure of the models to be useful in speech remguﬂc_nn was alf‘_lor‘iig};ﬁ & oot g

scale recognisers were unable to make use of speaker ldzgfw a[aﬁ.:;n work that the speaker
pointing was the lack of clear evidence from the voice transiorm

s ted for by the
models had captured perceptually relevant variation that mﬁ:ll nn;:;:m“:r " assification
pitch of a speaker’s voice. Nevertheless, the fact that reason ?rdgclassiﬁpeakcaﬁm "4 the bigh
accuracies could be attained using the SVCs for nearest centrol

1 ' ounts of
correlation between speaker models produced from gn;feren:i fnnaMul .
same speaker both support the suspicion that more informa
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speaker models than the transformation application was capable of revealing. Ways of
improving on the transformation to produce a more sensitive instrument for making explicit
the content of speaker codes will be discussed below, but even if one accepts that the speaker
models developed here have made a decent start at a representation of speaker variation,
there are clear steps that should be taken to improve them.

7.1.1. Improving segmental models

In the Chapter 3, when the segmental models that combine to make the speaker models
were discussed, there was some discussion of methods for normalising the duration of states
within speech segments, so that a component of the input to the segmental models would
correspond to a spectral channel and a state, rather than a time. Two methods of doing this
were discussed: DTW alignment to a set of reference templates, and using states identified
by a Markov model based speech recogniser. In the work here, no such normalisation was
done — segments were reduced to identical size by linear time warping. While differences
in the relative duration of states within phones may well be important to voice personality, it
would be probably be better to model this explicitly, by including a vector of relative state
duration, along with the set of state spectra, in the input to the segmental models. A compar-
ison should be made between phoneme models produced this way with the current set

should be made, to see to what extent explicit modelling of timing variation reduces the
intra-speaker stability of the phoneme models.

The other component of the variation in phone models that should be made explicit is the
variation due to phonetic context. This context has a strong effect on the way a phoneme is
realised, but has nothing to do with speaker variation. Ideally, one would control for this by
modelling speaker variation in every context-dependent phone separately, but lack of data
and the difficulty of combing the results into and over all speaker model preclude this path.
However, preliminary experiments suggested that neural networks could be used to estimate
the effect of this variation on a phone within an additive model. This estimate could then be
used to control for the context effect when measuring the differences between a phone
uttered by different speakers. Phone models that include such a control for context effects

ought, again, to improve the stability of phone models within speakers, and would be well
worth constructing.

7.1.2. Improving overall speaker models

In general, the linear, statistical speaker models performed as well at forming speaker codes
thf'tt distinguished speakers as _tha:: neural networks did, and the discriminative models, as one
might expect, formed more distinctive codes that the “variational” or compression models

The sole exception was the recirculating neural network i : -
: model, which d m-
pression network, produced codes that distinguished speakers well ch despite being a co

mlf the phoneme codes provide more information about voice characteristics together than
ey do separately — if they are more than just linear combinations of each other — the neu-
ral networks ought to have been able to produce more compact speaker codes than the linear

methods. It was certainly demonstrated, on to
. s Y problems, that
under ideal conditions, of producing much-better-than-lin e: thf" E:tworks are capable,
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One reason for this promise not being realised might simply have lain in the fact that the
phone models were very noisy and this noise may have masked the interphone correlations
the networks needed to observe. If this was the case, simply improving the phoneme models
might be sufficient to give a modelling advantage to the neural networks. In any case, to
ensure that the neural networks do at least as well as the linear methods, and that training is

not expended in learning an imperfect linear model, they should be pre-loaded with weights
derived from a linear model before training begins.

Beyond whatever improvements can be made to the raw modelling technology, there is
still the matter of perceptual relevance. It was not possible to demonstrate conclusively that
perceptually relevant voice properties beyond speaker gender were retained by the current
model. It should be possible to improve on this situation. If a very large number of judge-
ments of the degree of similarity of pairs of human voices are gathered from human listen-
ers, the technique of multidimensional scaling can be applied to place these voices within a
space in which distances between voices correspond to human perceptual distance.
Although the effort involved in collecting the large number of similarity judgements needed
would be considerable, the speaker model produced would be valuable; it would provide a
standard against which other speaker models could be compared, and the codes representing
the position of a speaker in this space could be used as training targets for models, like the
present ones, derived automatically from the speech itself.

7.2. Speaker models for speech recognition

Although the application of speaker models to speech recognition here was unsumessful_m
almost every respect, this failure cannot be ascribed to the speaker moftcls. In the recognis-
ers that were able to use speaker information at all, namely the recognisers furthePet;]rfsun
and Barney data, task independent speaker models provided about the same amount of infor-
mation about sex and age. Of course, one would hope for more t_haniihat from a general
model of speaker variation. The measures described in the last section intended to m]f
the amount of irrelevant variation are likely to improve the quality of these general Whm;
but even of that effort remains relatively unsuccessful, there remains reason for hﬂﬁm_
voice information about a speaker was made available to the Peterson and Bamf:_i];er i)
iser, by making the formant values from other phonemes spoken by the same Spe

3 ; o

able throu gh a bottleneck, the classifier was able to use this mfunqaﬂ;ntg g{:;:ril;fﬂ stm]jkehr

its recognition performance. In light of the results presented in this tEsIS, o
lies in building models tha

path to success in applying speaker models to recogmtion : ppices
general, in as muchp;js 1,trha% they work for new swaker%, anld do Emt ﬁm;?um;“u:;‘f
which are trained in the context of the particular ©eCORISEt in which they . s
That said, the major problem with applying speaker mntllelh.ng to Spﬁgﬂnﬁfgﬂ Seeth
that an attempt was made extend to use speaker information in COMNEC iven perfect infor-
realistic recognition tasks met with very little success. Ijjven moggms::rs %udjng the possitik
mation about speaker identity benefited little from that lﬂfﬂfmﬂ“";ﬁ;&mvﬁu hatsge
ity of large gains from imperfect information derived from SP thaI ;
Specific recognisers still outperform speaker indﬁp?ﬂﬂenF ones, an e of speech from 2 new
involving additional training of parts of a recogniser Wi

r why §
Speaker are generally somewhat successful, it is important to explore WhY

7
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not beneficial. A start was made here: part of the difficulty lies in ensuring that one is pro-
viding the recogniser information that it cannot obtain elsewhere. The connectionist recogn-
isers used here, despite their imperfect classification performance, had the advantage of
being able to use a wide input window. The experiments with reducing the amount of infor-
mation visible through this window suggested that the much of the information that could
have been derived from speaker ID was already available in the multi-frame input. It also
appeared that part of the difficulty was due to the homogeneous nature of connectionist clas-
sifiers, in which the use of speaker information to improve vowel classification appeared to
interfere with the same classifier’s ability to correctly recognise consonants.

If rapid adaptation using speaker models, whether those models are task independent or
recogniser specific, is to fulfil its promise, then it will be necessary to gain a far better under-
standing than we presently have of what recognisers actually do with speech with different
speakers, and how this causes errors to be produced. Then it will be clearer what prior infor-
mation about a speaker’s voice could be used to prevent the errors, and when. It may be
more productive to pursue such an investigation using a Markov model recogniser, such as
Sphinx, where the model parameters have more transparent roles than the weights in a neu-
ral net. In Markov models, the distributions associated with inputs to be associated with a
particular acoustic state are explicit. If there are many misrecognitions associated with par-
ticular examples of these states in speaker recognition mode, then one can compare the dis-
tributions for the individual speaker and see whether, for example moving the means of the
reference distributions for the state would suffice. If so, and if these mean shifts were corre-
lated across acoustic states for a speaker, one would have a good idea of what sort of speaker

model — in this case a regression model between deviations from acoustic state means — 1S
likely to be productive.

7.3. Speaker models for voice transformation

. Using a single connectionist network as a functional approximator, it was possible to trans-
form frames of input speech into something more closely approximating the voice of a tar-
get speaker, reducing the pitch and spectral distortion between the synthetic source speech
corresponding speech from the target speakers. This was the case both where speaker ID
was used to select the target speaker, and when speaker codes derived from one of the
speaker mcrde]s_ was used. When listening tests were done, however, the only information
about speaker identity th_at was imposed with any reliability on the target speech was
speak_er gender, and that imperfectly. Despite the fact that the speaker information was
affecting other components of the speech signal that pitch, it appeared that audible change=s
in fundamental frcql.':ency of the transformed speech were sufficient to account for ?he:
effect_s of the mod_els 1n1ti1e listening tests. Given that pitch is such an important component
of voice I_*st‘ff_ﬂa!it}'i this may not be entirely surprising. When samples of natural speech
had identical timing' and pitch information imposed on them, there was very little percepti-

?;ih dif;'erent;-:l h:l:ween thi:‘;:mices of different speakers, especially speakers of the same S€X.
pec anges produced by the transformation were related to voice personality

1. Or as nearly identical as possible, given the di .
are difficalt 1o give. difficulty of doing whole-sentence forced alignments, guarantees about iming
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they may have been rendered undetectable by the generally poor quality of the synthetic
spcech. .

Disappointingly, in the light of the claims made for the similar voice transformation sys-

tems reviewed from the literature, the synthetic speech produced was, at best, barely intelli-
gible.

Given that the voice transformation did serve to make the effects of speaker codes on the
speech produced observable, work to improve the basic transformation system is likely to be
rewarding. The main difference between the system used here and those in the literature was
the relatively small amount of speech available for a particular target speaker, and the use of
synthetic speech as input. It was clear that the alignments produced between the source and
target training set were imperfect, even after the work that was done to improve them, and
that misalignments in training data are likely to decrease the quality of the transformation
that can be learned. Although time consuming, the only obvious way to find out how much
an improvement in alignment can improve the voice transformation is to do the alignment
by hand, for a larger amount of speech from a single target speaker, matching the quality of
training data used in the systems in the literature.

If high quality transformed speech can be produced from synthetic speech by improving
the alignment in training, a series of experiments needs to be performed to determine
exactly which components of the target speaker it is most important to produce to transmit
voice personality. Speech in which only the pitch has been changed, or the relative segmen-
tal duration, or the phonetic realisation of the lexemes, or the LPC coefficients, or particular
combinations of all of them, should be compared for its ability to transmit voice personality.
Only then will it be clear what sort of voice models need to be built to support plurispeaker
synthesis well. It may turn out, for example, that relative segmental duration, :“fe“mm that
was not included at all in the speaker models developed here, is one of the main features of
perceived voice personality.

7.4. General Conclusions

Although technological artifacts, in the form of a recogniser with an improved ahﬂlt{ntg
handle speech from a variety of speakers, ora synthesis system producing CIWI:PW!‘
variety of voices, were not produced in the course of this thesis, the work done here
contribute to their production in the future.

; : . an important One.
The idea of quantifying the dimensions along which speakers vary e ];:El ointed to
The models built here captured the variation in some of those d:meﬂ:'::;ﬁhgmszlves need
others sources of variation that contaminate the current models and W

to be mode
modelled. 1o be learned

: al
The work in applications for the models showed Ehal there 1;*‘ greal dc with speaker
i.lbnut_ the applications themselves. It is not clear, for instance, wﬂzrat are trained on specific
identity information provided do not perform s weollano ated in the

odul

speakers — what are the parameters set in the latter 2% that canfn;;gcﬁ ::1 e

former? What are the components of voice personality that 8 transformatl it o
scribe? Building exphcit M 5

learn to affect and that a speaker model should de
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speaker variation that address these questions will improve our understanding both of the
problems of these speech technologies and of speech itself.

It is hoped that both by improving the task independent models so that they capture more
of what is truly distinctive about a speaker’s voice, and are less contaminated by what is said
and how, and by working in specific domains to discover exactly what is distinctive about
speaker’s voices, the difficult and often frustrating start made here can be turned into a first

step leading to the sort of universal models of speaker variation that were hoped for when
this work was begun.
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