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Abstract

Speaker based variability is an important component of the speech signal, whether it is regarded as a
nuisance, impeding speech recognition, or a goal, improving speech synthesis. Although many speech
recognisers attempt to avoid errors caused by speaker variation, and a few synthesisers attempt to pro-
duce a wide range of voices, these efforts tend to be narrowly focused on the task at hand, rather than
based on a general model of the variation. What work has been done on modelling variability itself, on
the other hand, has mainly aimed at understanding specific linguistic events, rather than at providing an
implementation that is practical.

This thesis attempts to bridge the gap between these two approaches, by using statistical and connec-
tionist techniques to separate out, and to model, the speaker variability component of the speech signal.
A number of these models are built and examined for speaker specificity and speed of convergence. Two
applications for speaker models are studied with mixed results: speaker adaptation without parameter
reestimation for recognition, and mimicry by transforming the voice personality of synthetic speech.
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Chapter 1. Introduction to Speaker
Variation

In computer science, most of the effort spent studying speech has been directed towards
the problem of speech recognition, where the goal is to reduce the speech signal to a finite,
invariable symbol set and to discard any components of the signal that do not serve to distin-
guish these symbols. Much research has been directed at supporting this goal by controlling
and decreasing speech variability. The work described by this thesis seeks to do just the
opposite - discarding the symbols that carry the meaning of the speech, and instead studying
the variability in the way those symbols are produced. In particular, this thesis studies the
variability associated with speaker 1dentity.

While this effort to understand the variability of speech is interesting in its own right, it
also has practical import for speech-based technologies. In the speech recognition domain,
some forms of speaker variation, which are noise with respect to the problem, are not a pri-
ori recognisable as such, and must be identified by a model of variability before they can be
eliminated. Unfortunately, there is presently a lack of such models at any but a very gross
level, and speech recognition systems must be trained to treat most such sources of variabil-
ity simply as noise. In speech synthesis, it is clear that the effort to produce a variety of nat-
ural sounding voices would be greatly aided by a study of the variability that underlies that
variety.

Many previous speech recognition applications have addressed speaker variability by
adapting their parameters over time to each new speaker. Others have sought to identify new
speakers with particular members of a small set of speakers on whose speech the system has
already been trained. The work described in this thesis takes a novel approach: an explicit
model of the dimensions along which speakers can differ from each other is built, and, faced
with a new voice, the system identifies where the voice fits within the model. This position
in “speaker space” constitutes a speaker code, which, if the model is adequate, represents
salient features of voice quality. Applications that need to deal with a variety of new speak-
ers are trained to use this code as a source of information with which they can make speaker-
specific adjustments to their processing. By designing the model of variability so that it gen-
eralises over speakers, producing reasonable codes for speakers outside the training set, it
becomes possible to adjust speech applications to new speakers by simply identifying the
position of each speaker’s voice in the space of the voice model.

el -

1.1. What the thesis does

This thesis applies neural network and statistical techniques to this task of characterising
speaker variability. Models are formed of the variability found in speech segments, and
these models are combined to form an overall model of speaker variability. Speaker models
formed this way are applied to two tasks:

» improving a speaker independent speech recognition system by allowing it to bet-
ter handle a variety of speakers’ voices, and

Introduction to Speaker Variation, Page 9
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 modifying a synthesised voice to more closely match that of a target speaker.

The neural net based recognisers, when applied to a realistic speech recognition task,
proved stubbornly unable to use information about speaker identity, whether presented in
the form of a voice model or more explicitly. Applying this speaker information to a simpli-
fied recognition task from the speaker adaptation literature was more successful. Although
experiments aimed at accounting for this performance gap gave some insight into what the
important differences were, it remains unclear how sources of speaker information can be
made useful to “speaker independent” recognisers working in realistic domains. It is possi-
ble that investigating the question using the better-understood variety of speech recognition
system based on hidden Markov models will permit this question to be answered in future,
but the resources to do so were not available during this thesis.

The second application, to speech synthesis, was more successful at using the information
contained in the speaker model, allowing the production of a variety of different voices from
the same synthetic speech source. When coupled with improved speech synthesis system,
and after refinement of both the speaker modelling technique and the voice transformation
systems, this work should provide a solid foundation for future work aimed at improving the
naturalness and accuracy of speech synthesis for multi-speaker applications.

1.2. The nature of speaker variability

This: introduction will review work on speaker variability to provide a general context for
work in speaker modelling. Discussion of the literature that is more closely related to the

two applications of speaker modelling to speech recognition and synthesis will be deferred
to the chapters concentrating on those applications. '

First, the review will cover the sources of variability in the speech signal, distinguishing
those that contribute to speaker characteristics from those that do ;0[. Then I;rew.'jouz
attempts to model that variability will be discussed, sometimes with reference to the target
applications. Finally, the studied approach to speaker modelling by positioning speakers in a

speaker space will be outlined and contrasted with other approaches. This

expanded in the following chapters. outline will be

1.3. Sources of variability in the speech signal

HIE comis dlfﬁcuh}' facing those who would do speech recognition or speech synthesis is
the fﬂ.CT. that the su_lgie speech signal carries a great many different kinds of informati ) d
that this information is intermingled 1 Information, an

in a way that makes it very dj i
: , _ ry difficult, and sometimes
impossible, to decompose. Roughly, these sources of information can be divi ;

R an be divided into three

Linguistic: information that conveys the speaker’s intent to the listener
* Speaker identity: information th |
V: at conve st

i YS permanent characteristics of the

State: information that conveys transient states of the speaker or envi t that
vironment tha
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are not relevant to the meaning of the signal.
1.3.1. Linguistic information

Linguistic information is conveyed by the speaker’s exerting control over the rate of air-
flow, the tension in the glottis, and the positions and rates of movement of the jaw, tongue
and lips, to produce the periodic voicing or aperiodic fricative noise that gives power to the
speech, and to shape the acoustic cavity that filters that sound into a signal representing the
intended information.

In a naive model of spoken language, one might view the speech signal resulting from
these processes as representing a stream of discrete units — symbols such as words or pho-
nemes — that convey the information in the signal. However, important information is also
conveyed by prosodic effects, such as the rate at which and rhythm with which someone
speaks, the relative pitch and amplitude of various parts of the utterance, and even by special
effects. such as the use of devoiced (i.e. whispered) speech or the deliberate production of a
mean fundamental frequency that is lower or higher than that of the speaker’s normal voice.

Linguistic information is also conveyed by signal characteristics that might otherwise be
interpreted as speaker differences. Abe [abe93] studied a single speaker of Japanese reading
samples of text from a novel, an encyclopaedia entry and an paragraph of advertising copy.
He found that the speech produced for the different genres of text showed effects on vowel
formant frequencies similar to those distinguishing speakers. He also found a strong influ-
ence from text type on sentence duration, and on the relationship between fundamental fre-
quency and power. These deliberate changes to speaking style are important not only
because they bear information and must be accounted for in any complete speech under-
standing or synthesis system, but, more immediately, because they blur the boundaries
between speech segments. A more detailed review of these effects can be found in
Eskénazi’s work [eskenazi93] which covers the influence speaking-style has on speech, and
Péan’s work [pean93] which discusses a database being constructed to investigate these
effects further. While it is clear that much has been already been found out about speaking
style, the similarity between changes in the speech signal due to speaker differences and
those due to speaking style suggests that a fully explicated model of how text genre is con-
veyed by speaking style will ultimately depend on the construction of a good model of
speaker differences.

1.3.2. Speaker Identity

There are several permanent characteristics of a speaker that affect voice quality. Charac-
teristics of the glottis affect both the natural pitch of the voice and the shape of the glottal
pulses that drive voiced speech. The range of dimensions that the vocal tract can adopt at the
speaker’s will, and the dimensions of the tract when relaxed, including the position and size
of the tongue and lips, affect the range of harmonics that can be produced from a given driv-
ing signal, and the harmonic content that the vocal tract is more likely to produce.

As well as these anatomically derived characteristics of voice personality, there are long
term preferences for the allophones a speaker uses to instantiate a given phoneme, or even
which phoneme to use, in a given context. These differences may be as glaring as the differ-
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ence between an English and an American pronunciation of the vowel in “can’t”, or as sub-
tle as the differences in voicing onset time for vowels following stop consonants for
francophones and anglophones speaking English [flege94]. There are also permanent prefer-
ences for prosodic characteristics, such as segmental duration!, and the degree of pitch,
amplitude or duration stress used to mark semantic and syntactic events in an utterance.

Unfortunately, the effects of these speaker characteristics on the speech signal qualities are
often indistinguishable, at least in the short term, from the effects of the language. What
appears, over the short term, to be a high fundamental frequency, characteristic of a speaker
with a high pitched voice, may turn out, in the long term, to have been a linguistic effect,
such as sotto voce speech. And, even more obviously, an American speaker can choose to

FaHr 2

pronounce the word “can’t” in the English way.

In general, many of the characteristics that make voices distinctive if they are observed

from a speaker over the long term, can be produced for purposes of communication in the
short term.

1.3.3. State

It is not just the communicative intent and long-term characteristics of a speaker. described
above, that affect voice quality. External or internal events can change the environment in
which speech is produced, or the internal state of a speaker, and affect voice quality.
Vroomen et al [vroomen93] showed that a speaker’s emotional state, or affect, was reflected
by duration and pitch changes® in speech, and that these changes were sufficiently pro-
nounced that even stylised versions were sufficient to convey emotion in synthetic sf:reech,
Emotion affects speech in a variety of ways; Murray and Amott [murray93], in their exten-
sive review of the literature on vocal emotion, identify seven aspects of voice quality, includ-
ing rate, pitch, intensity and mode of articulation, affected by vocal emotion. ‘

Speakers who are tiffd-_ﬂf who are under stress, produce speech reflecting those states
[arbe 19813 gnd 51}1}; 1977 in murray93], and speakers in very noisy envimnmecnts produce a
characteristic voice quality called “Lombard speech™. J '-11'1;-1113 et al. identified chan ges in
twelv.e: components of voice quality for this latter speech, many of which. like pitch, vowel
duration and formant frequency, are also important to voice P"’T'Sﬂnaliw [jl;nquagq] ;

by ol et st L Rl Deblsmat for st fo
| ; ¥- 1hey tend to occur over a reasonably long duration, and to
affe:]: mzn;[ of those voice features, such as pitch and speaking rate, that ar: cha:acte;istic of
spet:j er le erences. That thst confusion should be present is unsurprising if one accepts the
s P e et g s i
; ne . IL1s likely, then, that a model of speaker differences

would be aided by research enabling modellers to make the effects of eprc;mti{m imd ur;her

state on speech explicit, and by the collecti -
nents of speaker state were labelled. 1on of speech corpora in which visible compo-

2. It should be noted that the emotive speech in thi
A in this study i :
as linguistic. One hopes that it can be assumed that namyra] deliberately produced, and therefore could more properly viewed

mmmmﬁr:l i
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1.4. Models of variability

The foregoing discussion will have made it clear that the desire to separate variation due to
linguistic phenomena from that due to speaker characteristics will not be easily satisfied.
Sometimes the effects of these sources of variation have exactly the same form. The only
consistent difference between the sources is that speaker characteristics are nearly perma-
nent, and should be apparent in the long term statistics of the speech signal from a person,
and that state and linguistic phenomena affecting voice quality occur over a shorter time
course. The aim of this thesis work is to build a model of a speaker’s voice that can, in a
sense, be “subtracted” from the speech signal to yield a more consistent signal for speech
recognition, or “added” to a synthetic speech to mimic a particular voice. Since it is desir-
able to characterise a new speaker’s voice quickly, it will be assumed that the major factors
determining the form of the final speech signal are:

» the phone string to be produced, and
» the talker’s voice quality.

Medium term voice changes caused by mimicking speaker differences, or by the speaker’s
emotional or other state, will be treated as if they were produced by different speakers. It is
to be hoped that this assumption will not be harmful to applications. Before describing the
method for modelling speaker variation, some previous work on the topic of talker variabil-
ity will be reviewed.

The literature on speaker variation falls into two main classes:

« explicit attempts, with primarily linguistic motivation, to characterise the variabil-
ity in particular parts of the speech signal, and

« attempts to deal with variability in the pursuit of some particular task, such as
speech recognition.

Although the latter research has not been aimed directly at speaker modelling, an implicit
model of speaker variability is often apparent. In this section, both kinds of models will be

reviewed.
1.4.1. Explicit Models

Since variability amongst speakers is interesting in its own right, quite apart from its possi-
ble application in speech recognition and production systems, there have been a number of
studies that have attempted to study this variability. Roughly, these can be divided by the
degree to which the variability is expressed in terms of phonological rules, or in terms of sta-
tistical variability in the speech signal. Since the system to be described in this thesis relies
on a model of the latter kind, it is on these statistical models that the review will concentrate.

Phonological rules for variability
Kimura and Nara [Kimura87] view speaker variability in terms of the choice of a particu-

lar set of phonological rules that are applied to an orthographic (spelled) transcription of an
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utterance to transform it into a string of acoustical templates corresponding 10 the speech.
The rule set they used was developed in the context of a speech segmentation system where
the task was division of Japanese speech into string of symbols representing phoneme var-
iants. During training, the rule set, covering such transformations as palatalisation of conso-
nants, nasalisation of vowels, and so on, was expanded for successive speakers whenever
segmentation failed. A final set of 317 rules was sufficient to segment almost all of the
speech. Interestingly enough, the rate at which new rules had to be added to the rule set to
cover new utterances dropped dramatically after five speakers had been covered. suggesting
that the types of phonological variability in the speech signal are reasonably few. Each
speaker required about 53% of the available rules to describe his or her speech.

The interesting result in this work is that explicit models of the sources of segmental vari-
ability can be built, and that they can attain useful coverage from rules derived from rela-
tively few training speakers. While the fact that each speaker uses a subset of the possible
rules is interesting, it is not clear how one could use this characterisation in terms of rules to
build a representation of a speaker’s voice that could be used in other applications: it might
take rather a lot of speech to decide which rule subset should be selected for a new speaker,
especially if one wished to obtain probabilities for the application of alternate rules.
Although it is possible that use of certain rules entails or predicts the use of others, and that

such predictions could be used to group speakers by rule sets they are likely to use, this pos-
sibility was not investigated in the paper.

Vieregge and Broeders [vieregge93] looked for similar variability in @ much narrower
domain. They investigated variability in the realisation of the phonological variable /r/ in
Dutch, where /r/ can have a variety of realisations depending on context. They found some
talker specificity in the choice of realisation across speakers in some contexts, and also
found variability in the degree of intra-talker variation. Unfortunately, insufficient data was
available to clearly answer the question of whether even the variability in this single speech
sound was regular and predictable from other speaker characteristics. ‘ e

As will become evident when it is described, the model of speaker variation adopted for
this thesis assumes that it is possible to identify which speech segments — typically, which
phones — a speaker has used when producing an utterance, or that it is possible to chose
correctly which phones to synthesise for a speaker. Although the research to date has not
produced good algorithms to guide these choices, these studies of variation at the segmental

level, since they can help provide a basis for these decisi :
: ot ision .-
will be very important at improving performance in the furfu?m which the model depends.

Statistical characterisations of variability,

Although the statistical models in the li

e literature tend to hav
: : : il ¢ a narrower scope than one
n;ght like, often concentrating on a limited set of phones or speakers, the so have the
advantage over a purely rule based characterisation of variability that ti:;ey c};.n be learned

fully automatically. They are also, of cours i
o - ¥ t'r
in this thesis. Most directly comparable, per::pl': directly comparable to the work reported

i : are membe
models of speaker variation, which will be described in the nex?;{):;:it of neural network
on.

One of these narrowly focused statistical mod
; al models i i
[heuvel93], who investigated the sources of vaﬁ:biii::f f:?::a:l; 'i:‘::[:f ;;}:tzf HE?EI fli ‘:;f;
1ons of the thr
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Dutch vowels /a,iu/ in C-V-C-3 context (e.g. “tata™). They performed a discriminant analy-
sis on bark scale spectra for the steady state portions in 10 repetitions each, by 15 male
speakers, of these three vowels in 8 consonant contexts (/p,t.k.d,s,m,n,r/). The aim was to
discover where in the vowel spectra the speaker-distinguishing information lay. Their con-

pOwer

MY/

IS/

0 10 20 30 40 50 60 70
freq

Figure 1: An example of the spectrum of two speech sounds, /S/ and /TY/ as in “see”
(although the sounds displayed were not excerpted from an utterance of that word).
The illustrations on the left have time on the x axis, frequency on the y access, and
power represented as brightness. Each phone has been normalised to take up five time
slices. or “frames”. The plots on the right are the middle frame from each, with
frequency on the horizontal and power on the vertical axis. For the vowel, /IY/, the
middle three frames are nearly the same; this is the “steady state” portion of the
phone. On the right, lines have been drawn to mark spectral peaks and troughs in this
steady state portion. The frequency of the nth spectral peak is called the nth
“formant”.

clusion was that most of this information was to be found adjacent to the spectral peaks in
the speech; that it was chiefly formant shape, rather than formant position or some quality of
the spectral troughs, that distinguished speakers, and that, moreover, these distinctions were
captured by around four discriminant functions. Principal components analysis required
more functions to capture the same amount of variability. Although there seem to be some
problems in the interpretation of these results based to the difficulty of distinguishing the
effect of a small formant shift on the variability of the speech signal near the spectral peak
from that of a change in spectral shape, these experiments are interesting for two reasons:
The first is that the technique of using discriminant functions to highlight variability is one
that will be used in building the model described in this thesis. The second is that the limited
number of discriminant functions required to model the speaker variability in this admit-
tedly limited domain gives some hope that a reasonably compact, and therefore easily esti-
mated, statistical speaker model might be obtainable.

Ward and Gowdy [ward89] used even simpler acoustic measurements to distinguish
speakers, in this case for an application to speaker verification. Pitch at three points in the
vowel of the word “stop” was measured, along with the duration of voicing for that vowel.
Even with this simple model, voices were somewhat separable: a 70% correct speaker iden-
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tification rate was obtained when the acceptance threshold, based on Mahalanobis distance”,
was set at a point where the numbers of false acceptances and false rejections were equal. It
is not surprising, of course, that pitch is an important source of information for distinguish-
ing speakers. Perhaps more interestingly, for male but not for female speakers in this study,
the timing information also aided speaker discrimination. While Ward and Gowdy do not
believe that mean pitch, on its own, is sufficient for speaker discrimination, the speaker dis-
crimination performance they did manage to obtain using rather simple measures, althou gh
too low for practical use, points to a danger in attempts 10 build more sophisticated speaker
models: if one uses speaker discrimination as a goal to base a model’s training on, one
should be careful to make the discrimination task difficult enough that the model learns to
capture as much as possible of the desired speaker identity information, and cannot “suc-
ceed” by modelling, for example, only pitch. When the application of the model to voice
transformation is discussed in chapter 6, it will become apparent that it is far from easy 0
control for pitch when investigating whether other sources of voice personality have been
modelled.

Mathan and Miclet [mathan90] built a hierarchy of Markov models to do speaker cluster-
ing on a small-vocabulary recognition task. At each level of the hierarchy, a small set of
adaptation words was used to chose which of two subordinate trees of models to use. The
models at the leaves corresponded to speaker clusters. While this clustering technique 1s
quite sophisticated, allowing modelling of both acoustic and timing variability, the authors
reported that results were disappointing. Performance was better than for a system using a
single Markov model for all speakers, but only insignificantly better than a more sophisti-
cated recogniser (a “bi-model” recogniser) using two Markov models run in parallel for
each word. Moreover, this insignificant improvement was only possible after fifteen adapta-
tion words had been uttered. They note that performance of the bi-model recogniser was
improved if, dqﬁng training, words from a particular speaker were used to train gnlx' one of
the m::-::lells‘ This paper reflects a general trend in the literature of disappointing rec;‘:rsnilion
results using speaker clustering techniques, and, disappointingly in terms of e{ﬁciengw'. bet-

ter results from the use of parallel recognition models. More work on speaker clustering will
be reviewed in the next section on neural networks. 3

Tishby [tishby88] derived a mathematically sophisticated framework for describing the
effects of known contributors to the speech signal in terms of a combination of a crior
n;::#el. ?Ch g.;thf: state means and covariances used in a standard model. and a gzt prcﬂn-
fn g&gﬁﬂ;scﬂflle ;1;1;5[1 GEiTDablesguch as Spez!ker identity, related to the new information to be
of the set of possible di I'I-;SE_ ©5¢ constraints to select the one probability distribution, out
ables, such az speaker lti[: Utli;ﬂs Saru?-f}rmg the prior model, that also predicted the observ-
ntomy L e 1E % ;ﬂd5~1niﬁeir£l;ini ;h; ;ae; itnfnnnati;n and that had minimum cross
sentation of the observations w - eters to achieve this minimisation, a repre-

ons was formed that could be used for clustering. As a demonstra-

tion, the technique was used to exte 1 0
nd a prior ivi
R prior model that divided a set of speakers by sex for

Clustering in the parameter space usrzrgﬂin;;ﬁ?;i:;cﬁbeq speaker means for these states.
than a syst i ormation distinguished speakers better
soplicd :’0 :;;:;T;Edinf;;zla;cratrch to do speaker identification. Wiile tze izzhni;ic was

on in [tishby88], it is possible that with a large set of training

3. Ammmnfstpmﬂmnfﬁsﬁbnﬂmhasmmatwiﬂbcdiscmlm
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speakers, the parameter space formed could be used as a basis for a predictive speaker
model. Once simpler models of speaker contributions to the speech signal of the sort
described 1n this thesis have been successfully applied to a practical task, it may be worth-
while to investigate whether techniques such as Tishby’s can be usefully applied to the gen-
eral speaker modelling problem.

LLamel and Gauvain [lamel93] approached the problem of variability by training independ-
ent Markov models for each speaker, or in another case, for each sex. The problem of
speaker variation was viewed as applying to the entire speech signal, and an entire Markov
model used to model each speaker. In the final model, speakers were, in a sense, viewed as
independent from each other, and no attempt was made to take advantage of regularities in
voice differences.

The Markov models were run in parallel during recognition, and the speech labelled as
coming from the speaker or group whose model had the highest probability of having pro-
duced the observed acoustic string. The problem of sparse training data was alleviated by
first training a speaker independent Markov model and adapting copies of it to the individual
speakers. The technique was very successful when applied to the tasks of speaker, sex and
language identification, giving, for example, a text independent speaker identification rate of
98.3% after 2.5s of speech, for models adapted to TIMIT testing speakers starting from a
seed model trained on the entire training set.

While this technique of running full Markov models in parallel is obviously worth consid-
ering if one wishes to do speaker ID from a known set of speakers, and while it clearly
allows one to build a good model of each voice, it suffers from some deficits as a general
speaker model. It is, of course, computationally expensive to run even a single Markov
model recogniser. Running many in parallel compounds this cost. Moreover, the models
must be pre-trained for speakers, and do not satisfy the criterion that speaker models should
enable generalisation across speakers. Despite these difficulties, the success of this tech-
nique of running parallel specialised models makes finding generalisations that alleviate the
problems an attractive prospect. Although doing so is outside the scope of the work dis-
cussed in this thesis, some approaches that might be taken will be discussed in the chapter
on conclusions and future work (chapter 7).

A non-segmental model

The majority of models of speaker variation have attempted to characterise segmental var-
iation, but this is not the only component of speaker difference. Itahashi and Tanaka
[itahashi93] viewed the prosodic contour as an important component of variation due to dia-
lect differences in Japanese. In particular, they examined f; contours for fourteen male
speakers, each of whom represented a different Japanese dialect, reading a well known Jap-
anese short story. These contours were approximated using a piecewise linear function.
Eighteen aggregate statistics were calculated over parameters, such as starting F,, slope and
power, of the line segments. The resulting 18-element vectors were subjected to principal
components analysis (PCA)®. The authors plotted the vectors for the fourteen dialects pro-

4. A technigue for characterising variation that will be described in detail in later chapters.
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jected onto pairs of the first five principal components and observed that in some of these
projections the speakers appeared to group into linguistically plausible dialect clusters.

While one might have wished that the data had been gathered over a larger set of speakers,
the paper serves the useful function of pointing out that prosodic contours are an important
component of speaker variability, including variability between speaker classes. Explicitly
modelling variation in the prosodic contour in this way would be well worth pursuing fur-
ther, especially if a more sensitive model than aggregate statistics can be constructed.

Statistical models of variability such as those reviewed above reflect a useful approach to
understanding speaker differences. However, they have generally been either too narrowly
or two widely focused. A concentration on particular linguistic phenomena can be so narrow
that it is of little obvious use in applications dealing with multiple speakers. Or a model can
capture a great deal of the variability in 2 small set of speakers at the cost of a loss of compu-
tational tractability or the ability to generalise to new speakers. The aim of this thesis is, of
course, to build a model that is sufficiently expressive to capture a useful amount of the
avdilable information about speaker variation, but simple enough to be practical. Statistical

techniques, such as PCA, used in some of the previous work will be among the tools applied
to this task.

Neural Network models of variability

More closely matching the initial intention of this work, there have also been a number of
attempts to use neural network models to characterise variability. Although neural network
techniques are, in some respects, very similar to the statistical models described above, there
are important differences. The first of these is motivation: while the aim of building an
explicitly statistical model is generally to understand the variability in the signal itself, neu-
ral net models are frequently construed as offering a model of how human information
processing works. Neural net models may sometimes be built in the hope of understanding
how people represent speaker variability, but it is not clear that this hope is warranted. The
second main difference is that a neural network generally represents a larger class of possi-
ble modelling functions than a particular statistical tecﬁniqua. This may or may not be an
advantage; in applying a particular statistical model to a set of data the modelling assump-
tions — the form one expects the data to take — are usually explicit, and the causes of fail-
uri -:.:ur sllzccesés ;)f the modelling effort are generally understandable. :[he operation of neural
network models tends to be more difficult to analyse. On the other hand, by representing a

larger class of ?USSiblt models, ne u
, neural networks may have initi =
i y a greater chance of initial suc

Artig inari [artis
ieres and Gallinari [artieres93] looked to a neural network non-linear auto-regressive

model, where speech frames f,, and f, , are used to predict frame f,, to improve performance

at speaker classification over that of similar linear a :
: . uto-regress -
viously used [bimbot92]. Speaker identification was die fl(:r: L L en BP0

TIMIT database. Separate model networks were trained for each

Like the multiple Markov model s '
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speaker discrimination, a more accurate model of the speech signal from each particular
speaker did not necessarily translate into better speaker discrimination. They attempted to
improve the extraction of speaker distinguishing information from the networks by learning
to identify inputs that would generate correct speaker classifications. This boosted speaker
recognition accuracy somewhat, but at a cost of requiring more input for a classification
decision. since much of the information is thrown away. Nevertheless, the improvement is
interesting, since it implies that appropriately chosen subsets of the speech signal can be
used to improve the representation of speaker characteristics.

Konig and Morgan [konig93] constructed a rather simple model which viewed speakers
as belonging to one of between two and five speaker clusters. The speaker code used was the
long term average of cepstral parameters. These clusters were either supervised to distin-
guish men from women, or formed by an unsupervised k-means clustering in speaker code
space. Neural nets were trained to classify incoming data into the clusters, and the binary
decisions made by these networks used during training as an input to a phoneme classifica-
tion network. In recognition, all cluster inputs were tried, and the one with the highest
decoding probability was used for the whole utterance.

Results were disappointing, with not even the supervised clustering into males and
females producing a significant performance improvement over the baseline. This disap-
pointing result for speaker information added to the input of a single recogniser, as com-
pared to schemes using separate recognisers for each group is consistent with the findings
reported in chapter 5 of this thesis. The model explored by the Konig paper is one in which
speaker differences divide speakers into acoustic clusters based upon long term spectral
characteristics. Unfortunately, the assumption that the identity of these clusters can readily
be used as additional information to neural net phonetic classifiers appears to be problem-
atic. even when. as in this case, the system has the opportunity to try using all groups during
recognition. Existing classifiers, at least, do not seem to be equipped to make good use of
this type of speaker information.

Blackburn et al. [blackburn93] concentrated on speaker differences due to accent. They
trained neural network classifiers to distinguish between Arabic-accented, Chinese-accented
and unaccented Australian English when given features extracted from segmented pho-
nemes as input. Separate networks were trained for stops, voiced and unvoiced phones, and
energy dips, and their results combined over time to give an accent classification. Although
classification error rates were not detailed in the paper, except by giving segment by seg-
ment accent confusion rates, the authors claimed that the system classified accents as rapidly
as a trained phonetician. The model of variation implied by this work is, of course, that
speakers fall into classes with transparent descriptions, and that these accent classes can be
identified and used. If one is dealing with speakers with a variety of strong accents, it seems
natural to assume that preclassification into these accent classes is likely to be useful, before
attempting to form a more finely-grained speaker space, although, as the preceding paper
showed, applying these classifications may still be problematic. What is even less clear is
whether simple acoustic features such as those employed by Blackburn er al. are sufficient
to describe more subtle forms of accent variation, such as those distinguishing speakers
from different regions within the United States.
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1.4.2. Implicit models

There have been few, if any, applications of explicit descriptive models of speaker variability
to actual speech recognition or synthesis systems. Some systems, however, can be viewed as
having a model of the nature of speaker variation that 1s implicit in their choice of a method
for dealing with variability. Most of these systems are speaker-independent or multi-speaker
speech recognisers, but such implicit models are also to be found in synthesis systems that
allow user control of parameters meant to affect voice quality.

Most speaker adaptation schemes applied to speech recognition have involved partially
retraining the system, before recognition, using a set of “adaptation” samples of the new
speaker’s voice. In essence, these systems have used a variety of methods to look for corre-
sponding frames in the new and originally trained speakers’ speech and to attempt o find a
function that maps between them. When this mapping is found, it is either added to the sys-
tem as a preprocessing stage used during recognition to relate codebook entries for the new
speaker to those for the original speaker or speakers, or the training samples for the old
speaker are converted into the voice of the new speaker via the mapping, and the recognition
system is retrained with this new larger synthetic training set.

A number of recognition systems have used this adaptation by retraining scheme, with
some variation in implementation. Furui [furui89] formed hierarchical trees, based on an
inter-frame distance measure, for frames from both the reference and the new speaker, and
then used distance measures computed between nodes of these tree structures to learn a
transformation from position in the new speaker’s tree into position in the reference
speaker’s. The system was designed to map between corresponding spectral clusters.
Because this technique was based only on spectral structure, it could be performed on unla-
belled, unprompted speech, and could be carried out during recognition. A disadvantage of
the technique is that it required a large amount of training speech to estimate the cluster
positions. In this model, voices were regarded as similar in structure, but different in realisa-
tion. While the acoustic frames emitted by a given speech state might differ, the relationship

between states was regarded as consistent across speakers, enabling a correspondence to be
found between trees.

Rigoll [rigol189] adapted the IBM speech recognition system to a new speaker by having
the speaker utter a subset (25% or five minutes) of the sentences that had been used initiallz'
to train the system. A mapping function was generated between speaker specific cndebookls
by time aligning the data from the old and new speaker, transforming the remaining 75% of
the training data into the estimated templates of the new speaker, and retraining th;; system
on the new synthetic and natural speech. Similarly, but using mapping during recognition
instead of during training, Nakamura and Shikano [nakamura89] had their system learn a
mapping between a fuzzy labelling’ of frames for the new speaker and a fuzzy labelling for
the reference speaker in a standard hidden Markov model system. They defined a fuzzy

labelling as a scheme where frames are represented by the set of il
ob
was generated by each label. ¥ probabilities that the frame

Watrous [watrous91a] was one of the first to suggest the use of neural network models to
separate out the effects of different sources of variation on the speech signal. He suggested
= =

5. This system is called a fuzzy vector quantization in the paper.
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that this variability was best modelled by regarding each phoneme as having a canonical
form that is modified as each form of variation, such as loudness, context, or speaker, is
introduced. He suggested, moreover, that these transformations were reversible, In experi-
ments done using the Peterson and Barney database [petersonﬁz,watmusglb], which will be
described in detail later in the chapter on speaker adaptation in this thesis, Watrous showed
that normalisation of formant frequencies, by specialised neural nets using multiplicative
connections, significantly reduced classification errors. Inter-speaker variance was also
reduced for phonemes from the TIMIT database, although the effect of this reduction on
classification accuracy was not specified [watrous90,912,93]. It was Watrous' early success
with improving recognition of vowels from formant pairs by using speaker information,
together with Cottrell’s work on modelling variability in faces using compression networks
[cottrell90], that initially motivated the work reported in this thesis. However, the technique
used by Watrous required the use of labelled speech from the new speaker to train the input
transformation, making it somewhat difficult to apply in many contexts where adaptation
would be desirable, and required training of the transformation network for each new
speaker, a relatively time consuming process. The aim of the work contained herein was to
find adaptation techniques that did not share these faults. Unfortunately, the successes of
Watrous’ pilot experiments, and of the replications of them described in chapter five, were
not matched when the same sort of normalisation techniques were applied to more ambi-
tious tasks. It remains, therefore, a matter of controversy whether the effects of various
kinds of variability on the speech signal are separately reversible.

Hernandez-Mendez and Figueras-Vidal [hernandez-mendez93], developed speaker mod-
els based on performing a “non-linear principal components analysis” of acoustic frames
using neural networks specialised for each speaker. The speaker classifications produced by
these models were used to combine the results of speaker-specific recognisers in a spoken
digit recognition task for four male and two female speakers. Five repetitions for each of the
ten digits were used for training, and five more repetitions, collected after a one month
delay, were used in testing. High energy frames, representing voiced segments of the digits,
were extracted and modelled by projecting them onto a lower dimensional space using self
organising feature maps, radial basis functions, a variety of back-propagation networks, and
principal components. Unlike the models described in [witbrock92] and in this thesis, mod-
els were not specialised for phonological units - frames for all digits were modelled in a sin-
gle network.

Speaker identification performance using single digits from the test set ranged from 25%
to 29% error for the network speaker model. and 35% error for the principal components
model. Discriminant training, us#eg null targets for frames from other speakers, improved
speaker recognition performance by about 20%.

Results for applying the speaker discrimination from these speaker-identifying networks
in a digit classifier were mixed. While choosing the best speaker on a digit by digit basis
improved performance relative to choosing frame by frame or utterance by utterance, best
recognition for training speakers was obtained by running all speaker dependent models in
parallel. For novel speakers, merging speaker dependent recognisers using speaker models
did not produce any additional gain in performance improvement when more than four
speaker-specific recognisers were combined, and in general did not improve on the perform-
ance of a single multi-speaker recogniser.
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In this paper, Hernandez-Mendez et al. modelled a speaker’s voice quality by buildipg
specialised filters for their voices, and speaker similarity was judged by the amount of dis-
tortion introduced by these filters. A new speaker was modelled by using a mixture of these
filters. Although some success from such filters might be expected in multi-speaker
domains, even ones more realistic that the digit recognition task used, the models did not
generalise well for new speakers. It is this failure to generalise that the explicitly speaker-
independent voice models described in this thesis were intended to address.

Cox and Bridle [c0x89,90, bridle91] described neural network based systems that, like
Watrous® were based on the notion that there is a canonical form for speech that is affected
by speaker dependent transformations to produce the final speech signal. Given a speech
stream from a new speaker, their system simultaneously searched for the most probable
sequence of recognised symbols and the most probably correct speaker dependent transfor-
mation function, according to these three ways of modelling the speaker effect:

»  As aspectral bias - each speaker added a constant bias to each of twenty-seven spectral
frequency channels.

« As a variable shift plus bias - each speaker added a fixed bias vector, plus a weighed
combination of a three channel window to form a channel. The weights for the combina-
tion were fixed. This model represented a shift of up to one channel up or down.

+  As asimilar transformation, except the weights could vary across the spectrum, allowing
variable but limited spectral shifts, expansions and compressions.

In these three models, the speaker differences were purely acoustic and uniform across
time. There was no provision for varying the transformations depending on phone class, for
example. On the other hand, since there were few parameters to be estimated, the small
speaker adaptation effect available from these modelled speaker differences could be
obtained with relatively little adaptation speech, and in relatively little time, event though
back-propagation was used to do the search for speaker specific parameters.

Hampshire and Waibel's meta-pi network adapted a recogniser to new speakers by select-
ing amongst multiple speaker specific recognisers on a frame by frame basis, using a learned
weighted average of the individual recognisers’ outputs to make a final decision. This net-
work was found to perform significantly better than a single recogniser trained on the multi-
ple speakers [hampshire92]. This model differed from that of [hemandez-mendez93] in that
the speaker model was the weighting between the recognisers, and was optimised on a case
by case basis for each speaker, rather than being computed by an independent network.
Speaker_modelling was implicit in the way the recogniser operated, rather than being per-
formed in a separate subsystem. The advantage of networks such as this, which are con-
:-‘.Itrulcted to group parameter subsets by speaker, over a single multi~speakc1: recogniser, may
lie in the ability of the speaker specific models to more sharply cover their input s‘ acé
raﬂrl;r:r_tharrm modelling the between speaker variance. If this is the case, the model E}f s Eake;'
variation lmp]iﬁfi 1s one in which individual speakers have substantiaily less acousticpvaria-
l:ul:t.y than multiple speakers, and where speakers cluster to a sufficient extent that using a
particular speaker’s models — or a weighted combination of a set of speakers’ models —g 1s

closer to the truth about a new speaker than i
s an overall mean 3 .
all speakers’ speech. representation derived from
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More conventional — non connectionist — recognition systems have done something
with similar effect: by increasing the number of codebook entries® they use, they can divide
the input space into output classes more accurately. This sort of technique, of course, is lim-
ited. in that it selects between codebook entries derived from different speaker classes on the
basis of the single frame of input speech being processed. Each of these frames must still
contain all the information needed for its classification. Such systems cannot use informa-
tion from previous frames to improve performance, as human beings have been shown to do
[mullenix89]. One could imagine a variation on this scheme in which the system is encour-
aged to use the same speaker model for contiguous frames, switching between reference
speakers more slowly. In the systems reviewed this was done in one respect: Some systems,
such as Sphinx (hwang94] have maintained both male and female models, and chosen the
best one to analyse an entire utterance. While this does model a characteristic of the speaker.
the technique is not easily extended to a wider set of speaker characteristics. The attempt has
been made, of course. The system in [lamel93], described above, does the same thing in a
much more dramatic way, maintaining parallel Markov models for all speakers.

All these systems share the characteristic that they effectively retrain the system, or at least
a subset of the system, to be 2 speaker dependent recogniser for the new speaker. One can
draw a distinction between this learning-based “adaptation” t0 a new speaker, and a system
that is able to collect information about a speaker to make a transient adjustment in its rec-
ognition strategy. It is the latter strategy that is pursued in this thesis.

1.5. A space of speakers

The models of speaker variation evident in the work described above are limited in one
respect or another. If they are explicit, they are designed to cover variation in a narrow phe-
nomenon. This limits their applicability in two ways: it limits the amount of the speech sig-
nal that the model can make use of. and it may limit the applicability of the model to parts of
the speech signal not explicitly modelled. For implicit models, one is limited to trying to
build the complete model for a speaker only with the speech one has already heard from that
speaker, or to regarding the speaker as identical to its nearest neighbour in some small set.
The former limit makes it difficult to apply models to applications where limited speech is
available from the target speaker. The latter limit makes it hard to model novel speakers with

any fidelity.
1.5.1. What people can do

Human beings show a remarkable ability to handle speaker variation. Despite voice differ-
ences. the average person is able to understand utterances from a wide variety of speakers
correctly and with little or no apparent effort. There is substantial experimental evidence
showing that human listeners use information from earlier utterances to influence the pro-
cessing of later input; the identification of vowels by human listeners is more accurate when
the stimuli are drawn from a single speaker than when they are drawn from multiple speak-
ers, for isolated vowels [assman82], and for consonants [Fourcin, 1968 in mullinix89]. Sim-

. A codebook entry 15 a kind of “reference template™ for part of the speech signal. The signal is modelled by comparing it to a
sequence of these codebook entries.
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ilar effects apply for recognition of monosyllables [creelman57]. These effects of talker
change on human speech recognition accuracy apply strongly and consistently to whole
word recognition tasks as well [mullenix89, mullenix90]. Since the effects include changes
In processing latencies for words, the existence of a system for low level mandatory process-
ing of speaker differences is implied. On the other hand, there is some dispute over how
important these effects are in everyday performance [e.g. creelman57] and even whether
they are important at all [verbrugge76]. More research is warranted in this area to fully
understand the nature and role of speaker adaptation in human performance. Nevertheless.
since, currently, speech recognition systems trained speaker-independently do suffer perfor-
mance decreases relative to speaker independent systems, it is desirable for them to be able

to improve their performance by adapting to the voice of the speaker, as humans do in at
least some cases.

1.5.2. The model

What this thesis proposes is that there are underlying regularities in the way speakers’
voices differ, and that these regularities can be used to amplify the usefulness of a small
sample of a speaker’s voice. Using data from a large number of training speakers, models
are constructed for the variability of in each of a number of speech segments.” Using knowl-
edge of which speaker said each segment, these segmental models are used to construct an
overall model across speakers of the relationships between segmental pronunciation within a
speaker. This overall voice variation model can be used with information. extracted from the
appropriate segmental model, about the pronunciation of a given segment to make predic-
tions about the pronunciation of unheard segments from the same speaker. Once it is trained,
the model can be run in an entirely feed forward manner. allowing it to be applied in a
straightforward manner to speech tasks that might benefit from speaker specific information.

The feed-forward mode of operation also ensures that use of the model

_ _ imposes a very lim-
ited computational demand.

1.5.3. Comparison with others

Earlier, speaker models were divided into two classes for review: explicit models that
attempted to form a representation of v

_ . ocal personality as such, and implicit models, that
used some representation of voice personality formed in the course of trying to perform a
task. P

Since the model developed here contains an explicit representation of a speaker space, and
can place SPEEJ:‘AETS within it independent of any particular task, it is an explicit model. I:IOW'-
ever, it s_hgres, In Some respects, more of the qualities of some of the implicit models. In par-
tlculalj, 1t 1s closely related. in application, to the models of Cox and Bridle, and of \ifatrous
The d1ffe:rence_ is_thal: the speaker representations in their models are fonne;d as the result 01;
parameter optimisation in the course of a speech representation task, the current model is
trained to produce a voice personality representation for each of a‘ large set of trainin
speakers in a manner designed to permit generalisation to new speakers. Beyond that nf:edeg

'.-'.InfacLlhsmodclshl.li]tinlhsihﬂisha'ktalwa' vered 1ability i i
s ¥5 Co the variability in phonemes, but that is for practical, rather than
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to form the model from the initial training set, no further parameter optimisation should be
needed to handle new speakers.

1.5.4. Applications

The main aim of this thesis has been the construction of statistical and neural network mod-
els of speaker variation. Ideally, one would evaluate such models by measuring their ability
to capture salient differences between speakers. Unfortunately a well articulated set of
parameters for describing voice differences remains to be discovered. This makes the evalu-
ation task more complicated. Although, for the sake of comparison, two measures of speaker
discriminability are applied to the models to approximate a measure of speaker model qual-
ity, it must be noted that increasing the system’s ability to distinguish speakers is not neces-
sarily the same thing as increasing its utility in describing their voices.

Since a direct measure of model quality is lacking, the model has had to be evaluated in
the context of specific tasks for which voice differences are important, at the cost of not
inconsiderable extra effort. If the model can provide the information about speaker voice
needed by some realistic applications where speaker differences matter, it will have shown
its virtue as a representation of a speaker’s voice quality.

Recognition

One of the motivations for this research was the reported and evident ability of human
beings to use rapid adaptation to new speakers to improve speech recognition accuracy.
This, together with the extensive literature showing improvements in recognition accuracy
for speech recognisers adapted to new speakers led to the belief that a connectionist speech
recogniser, given an adequate description of a speaker’s voice, would be able to use the
information to adjust its classification surfaces, leading to improved recognition perform-
ance. Regrettably, it turned out to be the case that even providing a perfect speaker descrip-
tion, in the form of speaker ID, to such nets, had little effect on recognition accuracy.
Although it was possible to get some information about why this may have been the case,
the fact remained that this task was not serving well as way to measure model quality. In
future work, it is hoped that there will be opportunity to apply speaker models similar to
those described here to a hidden Markov Model (HMM) based speech recognition system.
The explicit statistical representation of the spectral characteristics of the input signal used
by these models, by allowing an understanding of the relationship between the position of a
speaker in speaker space and the acoustics of the speech signal they produce, may allow an
explanation of why the neural net based recognisers were unable to make use of this infor-
mation. It is to be hoped that this understanding will permit the design of recognisers that
are able to use speaker identity information, in a single recogniser, without retraining.

Voice transformation
Since speech synthesis based on the model would permit direct perception of the effects of
different speaker descriptions, voice mimicry was selected as an alternative application

domain. Using networks trained to convert SoftTalk® speech into the voice of the speaker
described by the speaker voice description, it is possible to produce speech that, although
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not of terribly high quality, is similar in sound to that of the modelled speaker. The low qual-
ity of the converted speech is at least in part due to the use of synthetic speech as the source
signal that is converted into the voice of the target speaker. Further quality deficits were
attributable to the fact that it was necessary to work entirely with speech represented in a
reasonably low quality linear predictive coefficient (LPC) encoding. The performance of the

model and of the voice conversion system was evaluated on the basis of perceptual experi-
ments using human subjects.

1.6. Outline of chapters

The next chapter gives an outline of the speaker model, and the speaker voice descriptions it
yields. Chapters 3 and 4 describe the model in more detail: the first of these describes the
phone pronunciation models from which the overall model is built, and compares a variety
of techniques that were tried for forming these phone models; chapter 4 describes the overall
speaker model, again comparing a number of methods for obtaining it. Chapter 5 describes
l_:he experiments with speech recognition, including some reasonably extensive work explor-
ing the circumstances under which a recogniser would use a speaker model. Chapter 6
c!escribes the application of the speaker model to mimicry synthesis by voice transforma-
tion, both comparing competing voice models, and various methods of achieving the voice
transform for quality. Finally, chapter 7 draws overall conclusions from the presented exper-

imeqtal work, and suggests future directions to take, both with voice modelling, and with
mimicry synthesis.

8. A commercial speech synthesis system produced by Digital Equipment Corporation.
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Chapter 2. Measuring Voice
Characteristics

2.1. Introduction - Speaker Models

The most important quality of a useful model of speaker variation is productivity. The model
must produce a representation of previously heard speech that allows it to make predictions
about future speech from the same speaker. For speech synthesis, the aim is to alter synthe-
sis parameters and produce novel utterances in the speaker’s voice. For speech recognition,
the aim is to alter a system’s expectations about such things as phoneme boundaries in
acoustic space and the timing of forthcoming speech, so as to improve its recognition per-
formance.

As a degenerate case, a set of labels uniquely identifying all speakers is a suitable speaker
model. when used with a application system that has been trained on the same speakers. A
recognition system using such a label model must have heard enough speech from a given
speaker to estimate the speaker specific parameters it uses 1o set classification boundaries. A
similar synthesis system must have learned a suitable set of synthesis parameters for each
speaker. In this degenerate scheme of using labels as a model, the modelling system would
have the task of identifying the speaker and assigning the appropriate label.

In the more interesting case that speech from novel speakers is to be recognised or mim-
icked. or where a reliable method of identifying speakers is not available, it is necessary to
look elsewhere for a model. Since there is available no a priori knowledge about whom the
speech comes from, a model must describe a means of extracting a set of features, describ-
ing the speech personality of any particular speaker, from the speech signal itself. Hence-
forth. such a set of features extracted for a particular speaker will be called a Speaker Voice
Code (SVC). Since it is desirable to form this SVC as rapidly as possible, and to have the
SVC easily useable by application systems, one criterion for choosing the model’s features
is that they should be as stable as possible within a speaker. Of course, the features must also
successfully distinguish what is distinct about the speech of different speakers, preferably in
an application independent manner.

If the parameters are chosen appropriately, so that speaker class characteristics can be
exploited, this sort of general speaker model should allow better estimation of adaptation or
synthesis parameters, where limited training data is available for each speaker, than is avail-
able from speaker identity alone, since parameter estimates can be smoothed by those of
other similar speakers.

2 2. Elements of a model

For speech technology applications, at least, the most important aspect of the speech sig-
nal is its symbolic content: a string describing what is said. In speech recognition, the aim is
to transcribe or otherwise identify this string, or at least some useful part of it. In synthesis,
the aim is to produce speech corresponding to the string. Although the assumption is not
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completely warranted, for the current purposes it can be supposed that the content of the
speech is independent of who is speaking. In building the speaker voice model, it is clearly
not desirable to capture variation due to what is being said. In fact, the goal is to avoid doing
s0, by separating this variation from the rest of the signal, and only modelling what 1s left.
How each of the audible symbols (lexemes, for example, or smaller “segments” such as syl-
lables or phonemes) making up the meaning of an utterance is represented in the speaker’s
voice is the essence of speaker variation. The elementary modelling technique used in this
thesis is that of holding symbolic content constant, modelling the variation within acoustic
symbols, and then combining the representations of this variation into an overall model of
the speaker’s voice. The choice of symbols will be discussed more thoroughly later, but gen-
erally a subset of phonemes will be used.

It is, of course, the case that the meaning of an utterance is also partially conveved by
prosody. Pitch, amplitude, rate, presence of voicing and other components of the speech sig-
nal can be varied at both the segmental and suprasegmental level to change the meaning of
the string. Moreover, differences in the way these prosodic effects are applied are an impor-
tant part of voice personality - distinguishing English from American voices. for example.
Lacking an adequate method for separating prosody from other components of the signal, or

the persnnality related aspects of prosody from the semantic, there is little choice but to treat
prosody as simply a source of noise in the speaker model.

The technique, then, is to segment phones from the speech signal using a phoneme
labeller,' to model the variation between examples of the same phone uttered by different
speakers, and to combine these models into an overal speaker model. Inconveniently
enough however, acoustic symbols vary greatly in duration, whereas. in general, the availa-
ble techniques for modelling variation require that their mput be a set of fixed length vec-
tors. As a first step, therefore, it is necessary to produce fixed length vectors from the
phcner_m: segments in the speech signal. This will be done by simply applying a linear trans-
fcrm:.xtmn to stretch or shrink the phoneme segments extracted from urte}ances to constant
fiurauon. Other methods of fixing the length of speech symbols will, however, be discussed
In a later section (3.5.).

The application of these speaker models. or rather of t
da:penr{ls on it being possible to train the target system (a synthesiser or recogniser. for exam-
ple) with L_he SVCs from some limited set of training sp-ea.kers. and on the s;stem!bein g able
to generalise to using SVCs from novel speakers to aid it in its task. For this hope to be jus-
tified, the space of SVCs has to be reasonably well populated by the training s Ekers SDJ the
target application can learn a speaker adaptation that reasonably interpolates Il:;itweet; train-
ing speakers. Two conditions must be met: 1) the number of training speakers must be rea-

sonably large. and 2) the parameters makin _
: e g up the SVC P
dimension of the space that must be filled. ' must be relatively few, limiting the

he SVCs produced by them,

1. Although fnrallﬁmcxpeﬂnmsrtpumd here, an oracle in the fnnnnhpr:-labe!lﬁddauhmwm used
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retaining the important voice quality information. First, descriptions for speakers vocal
quality when producing individual speech units (the phoneme /IY/ for example) will be
found, and then these phone descriptions will be combined into an overall speaker model.
For consistency, these reduced segmental representations will be called Phone Pronuncia-
tion Codes, or PPCs. The next chapter (3) will describe the experiments that were done to
explore and evaluate different kinds of PPC.

The final stage in building the speaker model is to combine the models of pronunciation of
individual symbols into an overall voice model. This model is intended to capture the regu-
larities that exist in relationships between the pronunciations of different phones by a single
speaker, for example, the way the pronunciation of the phone /ix/ varies with the pronuncia-
tion of /ah/. This model will be relied upon to predict the sounds of unheard speech units
from the sounds of previous heard units from the same speaker. Like the symbol codes (the
PPCs), this speaker model should produce SVCs with as low a dimension as possible. Its
derivation and use should also be robust in the face of missing inputs, since it is not possible
to rely on having a complete speech symbol inventory for a speaker during training, let
alone from the short segments of speech the speaker modelling system should be able to
make use of when applied. Again connectionist and neural net techniques will be used to
build a variety of candidate models. These experiments are described in Chapter 4.

2.3. A small example model

The requirements described above define a class of voice models. Before the discussion
continues, in later chapters, to cover a comparison of some of the members of that class, the
next few pages will be used to describe a particular instance from this class. This should
serve to illustrate each of the steps involved, and provide a framework for the comparison
between models in later chapters. In this illustrative example, attention will be paid to the
degree to which the model satisfies the criteria for the utility of models that have been have
set above, mainly with an eye to comparison with later models.

As is the case with nearly all of the work described in this thesis, the model was trained
and tested using the TIMIT acoustic phonetic corpus [fisher86, lamel86]. This corpus is
described in some detail near the beginning of the next chapter (§3.1), but for this illustra-
tion it should be sufficient to note only that it contains about thirty seconds of phonetically
labelled speech from each of 630 speakers from eight “regions” of the United States. For
this model speech from only regions 1, 2 and 3 (New England, Northern, North Midland)
was used. For training, the speakers from the “train” subset of the database were used, and
for these speakers, only speech from the 5 "sx” (phonetically compact® sentences per
speaker was used. There were 190 speakers in the training subset used, and a total of 950
utterances.

For the sake of speed in training this model, use was only made speech from the following
ten phonemes,” which occurred most frequently in the studied section of the database: /ix/,
Ist, I, liyl, ftcll, frf, I/, fkeld, /dcl/, Tk/.

3. These sentences were designed to provide good coverage of pairs of phones, and to include extra occurrences of phonetic
contexts thought to be difficult or of particular interest by the corpus designers.
3. A guide to the representation used in this document for phones and phoneme is contained in Appendix A
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2.3.1. Signal Processing

Using the phoneme level labels available for all sentences in the TIMIT data_base, each
example of any of the selected phones was excerpted from the speech recordings in tt_le data-
base. The digital recording of the excerpted phone was zero padded to ensure that it was a
multiple of 128 samples long, and an FFT power spectrum computed on non-overlapping
128-sample frames, yielding 64 power values per frame. These variable length collections of
frames were used to build phoneme models. Further details on these signal processing steps

can be found in §3.3 to §3.5, to which a reader unfamiliar with speech processing techniques
may wish to refer.

2.3.2. Phoneme models

All FFT spectral frames for each phone were warped, using a linear distortion (§3.5), to a
constant five frame duration. Each of the phones (which will be indexed with i) was, at this
stage, represented by a vector p, of 320 spectral coefficients. This fixed-length real-number

representation is suitable for further processing by connectionist networks or multivariate
statistical analysis.

As an indication of the amount of training data used for building these phone models, the
phoneme /kcl/, one of the less frequent of those selected, was represented by 1058 of these
320 element vectors, or an average of 5.6 occurrences per training speaker.

As noted above, it is desirable for phone models to be compact, consistent within a
speaker, and distinct across speakers (who are indexed here by j). The technique from multi-
variate statistics that is generally used to achieve these goals is Canonical Discriminant
Analysis (CDA) [james83, dennis91]. Although it will be described more thoroughly in the
next chapter, briefly, CDA involves computing the eigenvectors of the ratio of the between
groups*® and within groups® covariance matrices The data is then projected onto the eigen-
vectors corresponding to the largest eigenvalues of the ratio matrix. Putting aside the techni-
cal description, the important thing to note is that this projection turns out to be the linear
transformation of the original data that maximises the discriminability of the groups, while
resulting in vectors having the desired dimension. This analysis was. applied separately to
each of the ten phonemes. In this application, since the aim s to distinguish pmnunciati-ons
of a phoneme from different speakers, the goal of discrimination is to separate phone
Instances into groups by speaker identity.

A modified® version of the Aspirin CDA software
ical discriminants for speakers over the training ve
then projected onto the first eight of these discrimj
pronunciation was represented by those eight line
ponents in the p, vectors that maximally disting

[dennis91] was used to compute canon-
ctors for each phone, and the data were
nants. After this projection. each phone
ar combinations of the original 320 com-
uished between speakers. The choice to

4. The within groups covariance matnx is the covariance matrix of
%15 sample vectors after groy speaker) mean
jbee:h:u:cuamd, and measures the vanability of samples of a phone within a single Spe.af; a ) DA
; TWeEn EToups covariance matrix is the covanance matrix of peaker me.an. meas
of dispersion of speakers with respect 10 a given phone, il ]I i v g SRSt S

6. The modifications were simply made to increase the size of the datg handled ide more
the way results were output. No substantia] algonthmic changes were m“imu]d = o iy
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Figure 2: Eigenvalues for the phoneme /iy/, sorted by size. Since they fall off
smoothly, there is no obvious choice of the dimensionality at which the important
variation in the phone has been accounted for. A projection onto eight eigenvectors
was chosen for the phoneme models, to keep the representation reasonably compact.

make the dimension of these PPC vectors eight was taken rather arbitrarily; there are 189
eigenvectors’ resulting from the analysis and any set of the first n of them, ranked by eigen-
value. could have been chosen. As Figure 2 (for the phoneme /iy/) shows, the eigenvalues
fall off quite smoothly, offering no strong guide to where the useful variation in the phone
has been accounted for in a projection. The chief reason for the decision to use only eight
dimensions to represent each phoneme was a desire to limit the size of the input to the
speaker modelling phase. Improvements in the time warping used could reduce a source of
irrelevant variation in the phone vectors, and make the eigenvalues fall off more sharply.

Characteristics of the Phoneme Codes

To show what the PPCs look like, and to demonstrate that they are at least somewhat con-
sistent with a speaker, PPCs were extracted for the phone /iy/ for the three male and two
female training set speakers who used the phone at least six times.® Since these speakers
used the phone different numbers of times, the number m of PPCs for each speaker differed.
These PPCs were then divided into two groups for each training speaker, derived from the
first m/2 utterances of /iy/ from the speaker, and the second m/2, respectively. The plots in
Figure 3 are designed to give a graphical representation of first and second groups of PPCs
from each speaker. Since these are two dimensional plots, only the first two components of
the PPC are used. There is considerable variation amongst the PPCs from a given speaker, as
might be expected, considering the number of effects on the PPC that could not be control-
led for. Nevertheless, relationships among the speakers and position are largely preserved.
Despite the variation in the pronunciation of the phone within each speaker, maximising the
discriminant function has located the speakers within a subspace of speaker space for the
phone, and it is this information that will be combined with similar information about other
phones to form the speaker model. Plots for the other phones have similar characteristics.

7. The number of groups (Le. speakers) less one.
8 The fact that there were only this many speakers with enough data to compute variances for halves of the phone instances is
surely a sign that the TIMIT database is less than ideal for this sort of research.

Measuring Voice Characteristics, Page 31




page 32

Training Set Testing Set

) .

(%
=

Bl gl |
ey S S
Ll l bt o] 1
=== ortal
ey | 4

E-i--l-ilﬂu':it

=20 -10 o 10 20 30 40

Figure 3: The first two components of the Models of /ix/ pronunciation for first and
second half of the set /iy/ pronunciations available from each of a subset of speakers.
While the speakers could not easily be identified on the basis of these phone codes
alone, the codes from a given speaker are clearly located in nearby regions of the
speaker space for /iy/. This position will be combined with evidence from other
phones to form the speaker code. The within speaker variation of the speakers from
the testing set is even greater, but there is still visible clustering of points by speakers.

Another measure of code quality.

Table 1 gives the values of a discriminant measure designed to measure the relative dis-

Phone (| /del/ | fix/ | Ay/ | W

] 8.85 |3.55 [550 |59

Table 1: Discriminant measure on PPCs for
description of the measure is given in the accompa
separation of PPCs for different speakers when
PPCs within a speaker has been maximised,

small example phone models. A
nying text; it is based on the relative
the ratio of this separation to that of

of the ratio

i = - .
a speaker. The PPC for the phone /iy/, hi ering of PPCs within
about the middle of the range, the othe

distinguish speakers. It is also interesti

_ ng and somewhat Surprising to note that.
model is concerned, consonants are as

somewhat as far as this
good for d:scnmmating speakers as vow

els are.
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2.3.3. Speaker model

Correlations between phone models

Now that the PPCs for the example have been found, it is possible to proceed to combining
them into a speaker model. Before doing so, though, it is worth verifying that they have the
qualities that are needed. The previous paragraph showed that the phone models locate a
speaker within their particular space with some exploitable stability. If these PPCs are to be
useful in a speaker model, however, they must bear relationships to each other that can be
exploited to make predictions about unheard phones from heard ones. If it is possible to pre-
dict the PPC for one phone from that of another in a pairwise fashion, then it is reasonable to
expect that an underlying variable, the SVC, can be found that enable one to make all such
predictions simultaneously. To demonstrate this prediction, mean PPCs for each phoneme
were calculated for each speaker,''and canonical correlation analysis [becker88,manley86]
applied between pairs of these means, across speakers. This analysis finds a set of pairs of

1* pair of correlates 2™ pair of correlates 39 pair of correlates 4% pair of correlates

|

|
A |
Figure 4: Scatter plots of the first four canonical correlates between /ix/ and /iy/ for
the training speech. These correlates are pairs of projections of the PPCs that have
maximal correlation, such that successive such pairs are orthogonal. The projection
for /ix/ is given on the x-axis, and for /iy/ on the y-axis. The lines through the data are
locally linear fits using the loess method, and are included to give an impression of the
degree of correlation and how linear the fit is.

linear combinations of the components of the PPCs, such that the first pair has the highest
possible correlation, the second has the highest correlation among variables uncorrelated
with the first pair, and so on. Figure 4 shows the first four of these eight pairs, for the phones
/ix/ and /iy/ from the training set plotted with the appropriate projection for /ix/ on the ordi-
nate, and for /iy/ on the abscissa'Z, The values of the correlation coefficients, 7, for these four
pairs are r,=0.798, r,=0.636, r;=0.486 and r,=0.287 respectively. Using the Bartlett test
given below, from [manley86], it is possible to calculate the probability that each of these
measured correlations r; is greater than or equal to its given value, under the null hypothesis

that there is no correlation between the /ix/ and /iy/ vectors (n is 190, the number of speak-
ers, and p, g, and r, the width of the /ix/, /iy/ and correlate vectors, respectively, are equal to

11. overall means for the phoneme were used when the speaker did not utter a phone.
12. The graph was produced using the SPlus scatter smooth function. Interested readers are referred to the documentation for

that program, and to [chambers93].
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eight). The results of this analysis are laid out in Table 2; the first three correlates are highly

Table 2: Significance tests for the first four canonical correlates between the /ix/
and /iy/ vectors across speakers using test due to Bartlett. The first three
correlations are highly significant, and are almost certainly not due to chance.

index (j) | correlation q‘r? prid(p-jiq-1)2 'bff'
1 0.798 36345 | <<0.0001
2 0.636 179.37 << 0.0001
3 0.486 85.42 << 0.0001
4 0.287 36.497 > 0.06

significant, suggesting that there are at least three orthogonal dimensions in which the PPCs
for /ix/ and /iy/ are related.

The assumption behind speaker modelling on basis of segmental pronunciation — the
approach taken here — is that there are similar relations, although perhaps of different
strength or dimensionality, between the other pairs of phones a speaker mi ght produce, and
that, moreover, these correlations can be captured by a projection (although, perhaps, a non-
linear projection) onto a single underlying vector variable. Building the speaker model con-

sists of finding this projection of the phone pronunciation codes described above onto the
single underlying variable, or Speaker Voice Code (SVC),

Training the speaker model

In this example of speaker modelling, instead of havi
correlations by trying to produce predictions of the valy
it is assumed that the predictions made by

ng the system explicitly model the
es of PPCs from a subset of them,”
the PPCs are useful only in as much as that they
serve to distinguish speakers. The SVC will be generated using a non-linear projection of
the PPC:s onto a single vector. The projection will be found by optimisation performed with

the goal of learning this speaker disring;_jon. The model of speaker variation, in this case.
consists _c-f the neural net shown in Figure 5. This network attempts to do a non-linear dis-
crimination between speakers, using the information available from a subset of the ten cho-
sen phones.

[?u}-ing training, phones codes were randomly chosen from those available for the target
training speaker so that, on average, 5.75

of the ten sets of eight-c ——
had PPC data on them. Inputs for which ght-component phone inpu

mean of the appropriate PPC. A variety of wi

the bottl i ich
the speaker model was formed, producing a set e ek e

of speaker space models of differing dimen-

13. Although that too will be done, in a later chapter.
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Figure 5: A connectionist discriminator that can be trained to form a low-
dimensional speaker model. Phone codes from a speaker are placed on the
appropriate sets of input units to the network, and the network is trained to output
his or her identity. In doing so, the network produces a vector of hidden-unit
activities in a bottleneck layer, and these activities can be used a speaker code. The
purpose of the network is to form the SVC in the bottleneck layer.

sion. Training was carried out with a learning rate of 0.001 and momentum of 0.5 for a thou-
sand epochs. At the completion of training, for the network with a two unit bottleneck,
approximately 3% of the generated training input patterns resulted in correct speaker identi-
fication. It should be noted that this is an extremely difficult task, there is a great deal of
noise in the input patterns. and to make it easy to plot, the network is trying to encode the
speaker information into a very narrow, two unit bottleneck. Despite this, its classification
performance is almost six times greater than the rate that would be expected by chance.

After training, the SVCs were generated (again for the training speakers in this example)
by using input in the order that it had appeared in the original speech. For each speaker, all
of the banks of eight phone code units were initialised with zeros. As phone codes were read
from the file, they were placed on the appropriate input bank, replacing whichever value had
previously been there.

The hidden unit activities, constituting the SVC are plotted in Figure 6 for the two unit
bottleneck. SVCs for four female and four male speakers are shown at four points in time:
after each of the first 15 phones had been placed on the input, after phones 11-25, phones 21
to 35, and after phones 31-43. Over time, the speaker codes move towards final position in
the speaker space, and increase their within speaker clustering and between speaker separa-
tion. Not all speakers have easily identified positions; speaker fjcf0, for example, appears to
vacillate between two positions. A more detailed analysis of the speaker codes, including
their degree of clustering, and the time course of their formation, is deferred to chapter 4.

2.4. Summary

The example illustrates that, given an adequate division and classification of speech into
segments, it is possible to construct models of the segments that are consistent within speak-
ers. that differ between speakers, and that predict each other’s values. To take advantage of
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Figure 6: Evolution of speaker models.
formed after the addition of phones 1-15,
the first' four female and male trainin
variation within speakers, and overla
by sex, and clear differentiation betw
separated between speakers and mo

The four graphs represent speaker codes
11-25, 21-35 and 31-45 of those spoken by
g speakers. While there is considerable
P between speakers, there is a clear distinction

een speakers. Over time, the codes become more
re tightly clustered within speakers.

this abﬂit;v to predict the PPC of one segment from that of another, speaker models can be
built. designed to capture the relations between segmental pronunciations. The re presenta-

Eml‘;;;hal one of these speaker models forms of the set of segments it has heard from a
Speaker, at some given time, constitutes at least a partial isati :

: | characterisation of the speaker’s
voice — a Speaker Voice Code. "

Of course, there is more than one way 10 derive a PPC f .
e : , rom a speech signal, and more than
ey comOlle these PECS in an SVC. The following two chapters will explore these

alternatives for the PPC and SVC respectively :
: it , Y. after which two speech =
examine the utility of this partial characterisation of voice quaiit}f?&e tasks will be used to
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Chapter 3. Variation within Phones

The previous chapter contained an overview of the form the speaker models would take,
and illustrated that form with a particular instance of such a model. The next two chapters
will describe possible variants of that general form in detail, and describe the experimental
work that was done to select among them. The current chapter will concentrate on the con-
struction of models of the variation in individual speech units, and the following chapter will
cover the combination of the outputs of these segmental models into overall representations
of a speaker’s voice.

3.1. Database

Good data for speaker modelling work is not easy to obtain. Since it is desirable to attain
reasonably good coverage of the space of speakers, speech samples are needed from a large
number of people. Since speaker models are being built up out of models of the variability
within phones, it is necessary to estimate both how pronunciation of each phone varies
between speakers, and how it varies within a speaker. To accurately estimate the latter,
within speaker variability, it would be useful to have available an amount of speech from
each speaker sufficient to contain several examples of each of the phones composing the
model. Unfortunately, it was not practical to gather such a huge, specialised database solely
for the purpose of supporting this thesis work. Moreover, even with the considerable compu-
tational resources available to the CMU Neural Network Speech Group, many of the experi-
ments described here would have been computationally infeasible if done on a larger
database.

With these constraints in mind, a subset of the data in the TIMIT (Texas Instruments/Mas-
<achusetts Institute of Technology) database [fisher86,lamel86] was chosen as the training
and test set for the speaker and phone models. This database contains recordings of 6 300
sentences. ten sentences uttered by each of 630 speakers from eight dialect regions in the
United States. Because of computational and storage constraints, the experiments in this the-
sis used data only from speakers who had been raised in the first three of these regions,
labelled dr, (New England), dr, (Northern) and dr, (North Midland) in the database. These
groups contained, respectively, 49, 102 and 102 speakers, of whom 18, 31 and 23 were
women. Of the ten sentences spoken by each speaker, two were “dialect sentences” designed
to highlight dialectical variation, these sentences, sa, and sa, were identical for all speakers.
Three of the sentences were “diverse” sentences, selected from two existing corpora with
the aim of maximising the range of “allophonic™ contexts of the phonemes used. These sen-
tences (si,) were different for every speaker. The remaining five “compact” sentences (sx,)
from each speaker were each spoken by a total of seven speakers, and were designed to give
good diphone coverage, with a concentration on contexts thought to be difficult, or of partic-
ular interest, by the database designers.

The material on the database CDROM is divided into training and test directories, and this
division was used in the reported experiments.l rather that the division suggested in the doc-

1. This was done merely for convenience; the recommended division should be used for further experiments.
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' ini ) d, so
umentation contained on the disc. During training, the sa, , sentences were also exclude

T : o )
that they could be used as reference material in a comparison of thﬁ? results of voice c?m e
sions performed using speaker models from different speakers applied to the same text.

3.2. Symbol set

If every speaker could be constrained to utter the same utterance, over the same duration, the
voice modelling task would be relatively straightforward. A fixed set pf these utterances
could be collected from a great many speakers, and a model of the variation in them, of cho-

sen dimension, could be estimated by a technique such as principal components analysis or
compression in a bottleneck network.

In fact, for rapid, natural adaptation, no constraints can be placed on the speech uttered.
Instead, a set of speech units must be chosen within which voice variation can be moflellfzd*
and into which the speech can be divided for analysis. To the extent possible, the l'Elﬂ.?lSﬂllGﬂ
of these units should be constant within a speaker but vary between speakers. Additionally,
the units must occur sufficiently frequently in speech to make them useful for modelll_ng:
learning to extract information from a unit of speech is of little use to a system if that unit is
almost never used by speakers. This choice of a set of symbols for modelling depends on
satisfying two, mutually antagonistic goals:

I Itis desirable to minimise the number of symbols used to describe the meaning of

the speech signal, so that there will be enough samples of each symbol available to
provide a reasonably dense coverage of the space in which it varies. This is essen-
tial to producing a model that makes useful predictions, since otherwise it will not

be possible to obtain reliable estimates for the parameters of a phone model

(3%

Since the speech associated with each of the s
speaker differences, it is desirable to minimis
instances of each symbol that
I is necessary to minimise the

ymbols is to be used only to model
e the amount of the variation in the
is unrelated to speaker characteristics. In particular,
influence of phonetic and contextual variation.

A natural unit to choose as a symbol is the phoneme, since it
frequency and consistency within speakers. It
of recognition or synthesis. Information extrac
tion is likely to be useful to a phoneme based
units required should be reasonably easy
of these units is often a component of the target application,

Of course, there are disadvantages in the choice of
chiefly the amount of acoustic variation
tion is due to immediate phonetic cont
could be eliminated if it were possible t
the number of triphones is so large, an
and storage space so limited, that this
nique was not applied to the main b

provides a balance between
is also attractive, since it is generally the unit
ted by modelling differences in its pronuncia-
recognition or synthesis task, and the phoneme
10 extract from utterances, since the identification

phonemes as a basis of modelling —
in phones due to context. Since much of this varia-
©X1, a large source of non-speaker-related variation
O use triphones® as the modelling unit. Unfortunately
d the available resources of training data, computation
sort of modelling is not tractable. Although the tech-
ody of experimental work reported here, an initial

2. Triphones, also called PICs

(phones in context) are units consisting of the realisatio of - i
ular preceding and succeeding phoneme. 0 of a phoneme in the context of a p
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approach to the problem to reducing allophone variation, without modelling triphones sepa-
rately, was made, and will be described in §3.11.

In most of the experiments reported, the only source of phonetic variation that was con-
trolled for was the difference between phones, and this control was achieved by separately
modelling variation within each of a set of phones. Since uncommon phones are, in general,
unlikely to be particularly productive in predicting future speech, since they are not usually
available. and since this scarcity also makes it hard to get reliable estimates for the parame-
ters on which they vary, infrequent phones were not modelled. The choice of which phones
‘o0 use and which to omit was made with the assistance of the data shown in Figure 7, a
graph of the frequencies of phones used by the speakers in the first three geographic regions
(drl, dr2 and dr3) of the timit training set, sorted by frequency. The great majority of the

4500

ssarss?

L

40 50 60 70

Figure 7: Frequency distribution for phones in speech from speakers frm the TIMIT
dr, , ; regions, excluding sa sentences, for all speakers. The shaded region indicates
the Ehirly frequent phones used for the main experiments. These account for 78.3%
of the phone occurrences.

phones in the database are covered by the first thirty of these phones, and it is these phones
that were used to build models.

3.3. Analysis method

Once the set of symbols had been chosen, a representation of the raw speech signal was
selected for use as a starting point for building the phone models. The two candidate repre-
sentations were suggested by the target applications. Speech recognition systems typically
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use a spectral representation of the speech signal, mimicking th_e slgnq] apaiyms don,; tI:n. t}tv;
basilar membrane in the human ear, so it was natural to consider t_}mldm g the mode wi
FFT filterbank coefficients. Voice Transformation is performed, in the system de scr:bed
later in this thesis, in a representation consisting mainly of LPC log area ratio coefﬁcm_ms.
which are related to a speaker’s vocal tract dimensions, so it was also natulral to CGI‘IS_ICIEIP
using that representation for building speaker models. Both these representgnons_ are t?neﬁ y
described below, followed by an experiment that was done to compare their suitability for
voice modelling.

3.3.1. LPC log area ratios

LPC (linear prediction coefficient) coding is derived from the observation that the speech
signal at a given time can be approximated by a weighted sum of its values at a small num-
ber of past times. The weights used in this summation depend on the filter characteristics of
the vocal tract, and vary relatively slowly. The process of discovering a set of weights that
describe a speech signal is known as building an autoregressive (AR) model. The spf:ech
signal can be represented by a combination of a set of these weights and a crude approxima-
tion, such as a pulse train or white noise, of the error between the prediction of the AR
model and the actual speech signal. This error. or residual signal, corresponds to the excita-
tion signal generated by the vocal cords or by the movement of air past obstructions in the

throat and mouth. Far more detail on LPC coding can be found in [rabiner93] and
[markel76].

The compact representation of speech generated by LPC coding has desirable properties
as a representation of speech for speech for analysis [rabiner93]:

It models the speech well, especially for voiced segments.

It provides a reasonable separation between the

representation of glottal source
and vocal tract characteristics,

* Itis computationally tractable, and

* Ithas tended to work well in recognition applications, usually after conversion to a
quasi-spectral representation known as a cepstrum.

The LPC representation also has the very desirable property, from the point of view of
speech synthesis, that it is very straightforward to reconstruct a good quality speech signal
from the LPC representation -

The raw LPC Tepresentation of speech is not 1deal for speaker modelling purposes. These

models require Ie:'arping to place speech from different speakers at different points within a
space. During training, the modelled Position and the desired position of the speech in this
Space must be compared using a distance me

_ tric. With raw LPC “reflection” coefficients it is
not apprf:-pnate to use the sort of Euclidean distance measures appropniate for neural net-
work training [rabiner93), Fortunately, it is straightforward to convert the reflection coeffi-
cients generated by LPC analysis into a more appropriate representation.

The vocal tract can be viewed,

_ ‘ approximately, as a co
drical sections of Cross-section

ncatenation of p fixed length cylin-
al areas 4, (i=1,2,

+P) . Starting from reflection coeffi-
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cients, one can calculate coefficients that are each the log of the ratio between the areas of
successive cylindrical sections, starting from the lips, i.e. [, = log(A,, ;/4;) . These Log Area

Ratio (LAR) coefficients have two desirable qualities from the point of view of speaker
modelling: sensible Euclidean distances can be calculated on them [rabiner93], and they
represent directly a fairly good [kuc87] approximation to the vocal tract shape differences
between speakers that the models are trying to capture.

While linear predictive encoding is conceptually straightforward, producing a reliable
LPC encoder/decoder is not an entirely simple matter. Despite some misgivings about its
quality, a decision was made to use the freely distributable version of the government stand-
ard LPC-10 coder [tremain82]. This coder represents speech as a series of 22.5ms frames,
each of which consists of a pitch value, a RMS power value, two boolean voicing decisions
for half frames, and ten LPC reflection coefficients. In normal operation, bandwidth require-
ments would be reduced by a complicated bit encoding scheme detailed in the reference, but
this section of the code was defeated for the experiments described in this thesis, and the
frames produced were exactly as described above. For the majority of the experiments the
reflection coefficients were transformed into the Log Area Ratio (LAR) representation
before further use. and transformed back into reflection coefficients for the purposes of re-
synthesis.

Readers intending to use the LPC encoder should note that it introduces a two frame delay
in the speech stream, and that it drops the last two frames, making the delay difficult to
detect. Until this delay was detected and compensated for’, aligning the frames the encoder
produced with the labels in the timit database had not been successful.

3.3.2. FFT

The Fast Fourier Transform is an efficient algorithm for computing the Fourier decomposi-
tion of a time varying signal. The algorithm, which is explained in detail in many places
including the well known “Numerical Recipes” [press88], takes an array of floating point
numbers representing a signal and returns an array of complex numbers representing that
specify the phase and amplitude of a set of sine waves. These sine waves, at equally spaced
frequencies between 0 Hz and half the sampling frequency of the original signal, can be
summed to reproduce the original signal, or, more importantly for the present purpose, the
amplitude at each of these frequencies can be extracted to provide the power spectrum of the
signal. This representation, which is computed in approximation both by the basilar mem-
brane of the inner ear, and. it seems, by the auditory cortex, displays useful information
about a speech signal. Notably, thi¥information includes the spectral peaks, or formants, in
the signal resulting from vocal tract resonances controlled by the position of articulators
during vowel production, and the shape of the filter applied to the noise of turbulent airflow
during consonant production.

Since in speech processing, one is interested in the time course of the speech signal, and

not just its overall spectral characteristics, the FFT is computed on fixed duration “win-
dows” on the speech signal. The duration of the windows is chosen to be short enough to

3. By finding a minimum in the alignment error between encoded and unencoded speech, a process that the author feels com-
pelled to mention not because it is particularly interesting, but simply because of the effort it involved.
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capture important changes in the speech signal while still providing enough frequency reso-
lution too reveal important spectral peaks and troughs. Typically. and in the work reported
here. the frames contain 128 samples from a signal sampled at 16kHz, giving a ime resolu-
tion of 8ms and a frequency resolution of 125Hz. The resulting series of power spectrum
vectors are referred to as “frames” of speech.

It is common practice to smooth the signal by using overlapping windows, applying a win-
dowing function to the signal to reduce boundary effects, and by reducing the dimension of
the frames by combining contiguous frequencies into a smaller set of logarithmically spaced
bins. In the work reported here, however, the power spectrum of the raw signal was typically
used directly.

Figure 11 shows an example of an spectrogram computed from the utterance sa,, “She

had your dark suit in greasy wash-water all year.", spoken by a male speaker (mpghQ) from
the New England (dr,) region of the TIMIT data-set.

Figure 8: An example spectrogram generated using the Fast Fourier Transform
(FFT). The sentence “She had your dark suit in greasy wash-water all year.” was
spoken by a male speaker. a

3.4. Experiment: Choice of Analysis Method

A}though bn_th the LPC and FFT methods of extracting spectral information had been
widely used in speech research, it was not known which, if either, was a better representa-

tion to use for modelling speaker differences. In this experiment, phone models built using
both were compared for speaker discriminability. i

3.4.1. Materials

The models compared were produced from speech from the ten phones /dcl/, /ix/, /iy/, /k/
fkel/, N/, I/ . /rl. s/ and /tcl/, represented using both LPC LAR coefficients al"ld Fi:'I'yﬁ.her:
bank coefficients. In each case, the model was “trained” on the ‘sx’ sentences for “training”
speakers from dr), dr, and dr;, and “tested” on the ‘si’ train, ‘si’ test, and ‘sx’ test sentencges

for speakers from the same region. This testing data included speech from the same speakers

used to develop the phone model, and from differe
' t .
degree of overfitting, if any, in the model. fi SpEAREs, to permiit measurement of the

In the case of LPC coefficients, the phone boundaries available in the TIMIT database

were used to excerpt frames directly from
: m precomputed LPC-LAR versions of th h
files. The LAR coefficients were used directly, and the two voicing decisions w;esrl:'lﬁfi-

plied by 1.0, and the pitch and gain by 0.01 and 0.005 respectively, to convert them to float-
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ip g point numbers. The frames making up each instance of a phone were then warped to a
fixed length of ten frames using the linear warp described below, yielding a 140 element
vector per phone.

If the case of FFT coefficients, the raw speech from the TIMIT database was read in, and
converted to floating point values in the range [-1: 1]. The speech for the target phone was
excerpted, and FFTs calculated on non-overlapping 128 sample segments. The final segment
was zero padded to 128 samples, if necessary. The FFT analysis yielded frames of 64 power
values for each segment. The frames for each phone instance were linearly warped to a fixed
set of five frames, yielding a 320 element vector per phone.

3.4.2. Procedure

All vectors from both encodings and for the four data-sets (sx_train, si_train, sx_test,
si_test) for each phone were projected on to the first eight principal components for the
training data, yielding eight unit phone codes. The discriminability measure J, described in
section 3.7, was calculated for each phone and for each of the eight conditions.

3.4.3. Results

Table 3 shows the mean value across phones, and the variance, of the discriminant meas-
are for the two representations, for both training and test speakers. This measure describes
how closely clustered phone codes within a speaker are, compared to the spread of the
phone codes between speakers. In all conditions the LPC-LAR representation produced
slightly more tightly clustered phone models than the FFT representation, but the difference
was clearly not statistically si gnificant, since the differences between means are close to a
single standard deviation.

Table 3: Discrimination measure J calculated for two candidate input
representations to phone modelling. The phone models in question are generated by
PCA. The shaded entries are calculated from phone instances used in training.

l_ T SX si
| Representation Speakers
[ mean / s.d. mean / s.d.
LPC-LAR train 2.05/043 236/ 0.40
test 2.06/0.35 235/035
FFT train 176 /027 2.17/0.39
[ test 1.79/0.35 2.28/0.46

3.4.4. Conclusion

There was no strong reason to choose one representation over another, although there was
a nonsignificant tendency for the LPC to perform better. In the end, the FFT representation
was chosen for use in further phone modelling experiments, in part because this representa-
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tion is a more familiar one to workers in speech, and because the spectral representations it
produces are more readable.

3.5. Fixed Length Phonemes

Phonemes present a problem as far as modelling is concerned. They occupy a variable
duration. Moreover, the relative starting times within the phoneme of the acoustic states that
make them up vary between different instances if the same phoneme. If the aim were simply
to try to model vocal tract characteristics, this temporal variability would need to be elimi-
nated, as far as possible, from the modelling process. For the most part, in this thesis, 1t 1s
acceptable to accommodate this variability, since the dynamic aspects of speech production
are also important to voice quality. In this latter case, the linear warp described below suf-
fices to put the speech into a form suitable for model building. However, in recognition of
the fact that for some potential applications of speaker modelling, particularly applications
to recognition, reducing this variation will help highlight relevant speaker differences, an
algorithm for doing so will also be described.

3.5.1. Linear warping

The most straightforward method of fixing the length of FFT analysed phonemes for fur-
ther analysis is the linear time warp. This technique is rather straightforward; if the length of
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Figure 9: Fixing the length of a phoneme by linear warping. Part A of the diagramme
s!mws the general scheme: Multiple frames in the source spectrum are copied onto
single fra?mes in Eh? target in the case where the source length is a mu]ti]lz:le of the
target. Where this is not the case, target frames are linear combinations of source

:‘;aal::e;;:sms;hgu?*i:i in l:fm B uffthe diagramme. If the source spectrogram is shorter
€l duration, its fram i
shown above is applied. es are replicated until it is not, and the process

source

the sound i e
One can e;:’hse:l::k?z ’E‘a:eg: lengtth'L thff:“ the phone is divided into 7 sections s/f frames long.
resentative” frame from the middle of each section. i
section, 1n an attempt
tmcs redu:e sPec_tral smear, or produce the new frame by calculating the mean vector acrnfs
€ section, with frames from section borders being appropriately weighted. This process is

ases where the input sound sample is shorter than the target dura-
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tion, the length is doubled by frame replication until this is no longer the case, and then the
linear warp is done. If the target length is sufficiently long, the speech can be recovered with
reasonable fidelity after inverting the time warp, providing an invertible encoding, such as
LPC, has been used to produce the starting vectors. In the case of FFT power spectra, this

inversion is more difficult, but can still be done in approximation [Alex Waibel, personal
communication].

This linear warping technique results in fixed length vectors, but retains information about
timing within the phones. This information may not be particularly useful if used to con-
struct phone models used, for example, to adapt a recogniser based on frame labelling.

3.5.2. lterative alignment

Although this technique was not used in later experiments, in part because it is much more
time consuming than linear warping, some pilot work was done to develop an algorithm to
time align the excerpted phones used as input to the phone models. If an accurate recogniser
were available. of course, one could eliminate temporal distortions by using the states from
the alignment path generated during recognition. Speech information from a given recogni-
tion state would be inserted into the appropriate frame of the fixed length input vector.

In the absence of such a recogniser, an alternative method of identifying acoustic states
within excerpted phonemes needs to be used. One such method is to reduce temporal distor-
tions using a variation on the k-means clustering algorithm (described, for example, in
[rabiner93]). For each speech sound, a fixed number of templates are used. After initialisa-
tion, involving assigning every kth instance of a phone to the kth template, an iterative pro-
cedure is used. Each example of the speech sound is aligned by dynamic time warping
(DTW) alignment [ney84] against each template, and is assigned to the template with the
best alignment score. After all samples have been treated in this manner, the frames in the
templates are replaced by the mean of the frames in the samples of speech that aligned to
them. This procedure is applied repeatedly until the total Euclidean distance between the
input phones and the templates they align to reaches a stable minimum.

Table 4: These are the five, three frame long, template vectors for two vowel phones
Y/ and/EY/ and two consonants, /S/ and /K/ for the RMSpell database, at the end of
the iterative time alignment procedure has been performed.

Vowels: /TY/ and /EY/

Consonants /S/ and /K/
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3.5.3. Warping Chosen

The end result of either of these alignment procedures is a set of fixed length vectors cap-
turing the acoustical features of the speech unit. These fixed length vectors can be used to
build models of variation in pronunciation of the units they represent.

To accentuate the variation amongst instances of the same unit. the overall mean vector for
the unit can be subtracted from each sample, and the resulting vector can be divided by the
standard deviation, yielding vectors with zero mean and unit variance. This makes no differ-
ence to the statistical modelling techniques described later, but this sort of normalisation is

widely believed to speed neural net learning, since there is no need to learn an offset for the
output units.

Although the iterative warping method probably produces cleaner spectral estimates for
sections of a phone, if the phone is thought of as consisting of a sequence of spectral states.,
it is not clear that this is the most desirable thing to do when building general models of
voice variation. An important part of voice quality may be contained in the relative durations
of these states within a phone, and the alignment would lose this information®. For this rea-
son, and for practical reasons of computational load, a linear warping to five frames was
used for the major experiments that will be described in the rest of this document. After this
linear warping had been done, each phone was represented by a 320 element vector.

3.6. Capturing the Variation

After the length of the phone exemplar has been fixed, and any methods designed to correct
for context effects have been applied, the next step is to build a representation of the varia-
tion in phone exemplars that is as parsimonious as possible. It is this representation that will
be used as input to the system that combines the descriptions of variation in individual pho-
nemes into an overall model of speaker variation. Four such dimensionalitv reduction tech-
niques, two statistical and two using neural-networks. were Investigated, with the aim being

to retain as information as possible from the phone, in a representation of the lowest possi-
ble dimensionality. Figure 10 outlines the techniques.

Variational Discriminant
Linear Principal Components Canonical Discriminant
Analysis Analysis
| Non-Linear Bottleneck Neural Net Bottleneck Neural Net
| & Encoder Discriminator
Figure 10:

e 10: Methods t‘u_r reducing the dimensionality of data. Variational methods select
the directions of maximum variation in the input data. Discriminant

e dir ; va methods choose
directions of maximum variation relevant to a classification task

The “variational techniques”

involve forming a reduced dimensi '
S $10n representa a set
of data that aims simply to ret P tion of

an as much information as possible about the variation in the
4. Itmight. however, have been the best choice or the actual

: test applications built, since in e as timi

s . ; ; ncither case was timing important to
system Hwew.vtr. improved voice transformers, for example, should adjust timing, and the model of voi I';E Jieg

card this information without good reason. : ki s
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data. whatever that variation might be. The linear variational technique, Principal Compo-
nents Analysis (PCA) [james85, duda73, dennis91], finds a linear projection of the data onto
1 fixed. smaller. vector, that if inverted, most closely matches the original data set. Experi-
ments with PCA are described in § 3.6.1. In the non-linear version of PCA [sarle94], a net-
work with a bottleneck layer of the desired dimension is trained to match its outputs to its
inputs. While it is not clear that there is any way to be certain that the encoding found is
optimal, such networks can, as shown in § , exhibit impressive power when compared with
linear methods. § 3.6.2 describes the application of these methods to the speaker modelling
task.

Unlike the variational methods, which make no assumptions about the meaning of the
data. discriminant methods assume that the data can be divided into relevant classes, and
that. in fact. these classes are known at training time. These methods try to retain only varia-
tion that distinguishes the classes, and to discard that which distinguishes the members
within each class. In the case of the experiments described here, the groups of observations
to be distinguished are those coming from different speakers. The linear technique, Canoni-
cal Discriminant Analysis [james85, duda73, dennis91] (CDA)’, does this by maximising
the ratio of variation between groups to that within groups following the projection. Experi-
ments using this technique are described in §3.6.3. The non-linear technique, again, uses a
hottleneck network, but this time it is trained to label the speakers. Experiments with such a
network are described in §3.6.4.

3.6.1. Statistical Dimensionality Reduction

If one is unbiased about which dimensions of variation in the original signal are important,
principal components analysis gives the optimal linear projection of the original phone
space onto a subspace of limited dimension. It retains as much of the information about the
variability of the original space as can be retained in a linear subspace of the chosen dimen-
s10M.

Since the phones are all same length at this stage, it is possible to use this standard tech-
nique to find a subspace describing their variation. This is done projecting the set of vectors
on to an appropriately sized subset of the eigenvectors of their covariance matrix. By
restricting this projection to the m eigenvectors with the largest eigenvalues, one chooses a
set of m dimensions along which the original phone vectors vary the most. This is almost
exactly what is wanted. This projection has the additional advantages of not being terribly
expensive to compute and of being invertible. If the original analysis technique is invertible,
as is the case with LPC coding, it is even possible to recover the speech, more or less accu-
rately, by inverting the projection, reversing the time warp, and performing, for example,
LPC synthesis on the resulting frames of estimated LPC coefficients.

3.6.2. Connectionist Dimensionality Reduction

One of the widely touted advantages of neural networks trained with backpropagation
over other statistical methods is that they can learn non-linear transformations of their
inputs. An example of such a transformation is the one implemented by the network in Fig-

5 Sometimes also known as Linear Discriminant Analysis (LDA).
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ure 11. In principle, this ability gives neural nets far greater power than linear models

1.35691

1.24987

output

input (.5
Figure 11: A trivial example of a nonlinear function learned by a neural network,
out = lin|, or, more precisely {(-0.5,0.5), (0,0), (0.5,0.5)}. Weights are shown on the
links connecting nodes, biases are the values next to each non-input node. The input-
output fuction computed by this network is plotted at the right.

[minsky88], both as function approximators and as classifiers. if the appropriate weight set-
tings can be learned. What these networks are doing, in effect, is multivariate multiple non-
linear regression [sarle94]. It is the increased complexity in the regression function that the

nonlinearity provides, that gives these networks the potential to more closely match the tar-
get values.

The Power of Bottleneck Networks

The idea of non-linear dimensionality reduction using neural networks is to use a network
like that of Figure 11 to produce a non linear encoding of the input, and a second. similar
network, concatenated with the first, to invert the encoding. The layer at which the encoding
and decoding networks coincide is called a bottleneck®, and the hidden unit activations (or
outputs, if preferred) in this bottleneck layer constitute a reduced dimensionality representa-
tion of the inputs. Cottrell [cottrell90] used networks with a 64x64 grid of input and output
units, representing greyscale pixels, and 80 (or fewer) hidden units in a single hidden layer
to form reduced representations of face images. He then used these images as input to net-
works designed to extract features such as sex. The use of such networks is, however, some-
what controversial: in a very instructive paper, Boulard and Kamp [boulard88] showed that
for “standard” three layer networks, using their one hidden layer as a bottleneck, the repre-
sentations learned are at best equivalent to a subset of the principal components of the input.
In fact, they showed the more general result that no matter how many layers the network
has, if the bottle neck layer is the penultimate layer, then the rcpresenfatic;n learned can be
no better that the optimal linear subspace found by principal components analysis’.

There is a danger that this result wil] be seen as being more discouraging than it should be.
One widely used connectionist text [hertz91], for example, seems to imply, although it does
not state, that the Boulard and Kamp Paper showed non-linear compression to be a hopeless

leneck”, or “goulot d'éranglement” in French, has i i
sl been aseribed to Yann le Cun, but a suitable

7.1t is noted that this optimal linear subspace is_ in

mself,
widely used in the literature [valennngs)

a rather good reduced representation for faces, and one that has been
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prospect for all networks trained with backpropagation. This is not the case; while the
number of layers required may seem daunting, especially if one is not used to using net-
works with bypass (or short-cut) connections [lang88], networks with a layer (or layers)
between the bottleneck and the output units can learn non-linear encodings of considerable
complexity. In fact, DeMers and Cottrell [demers93] repeated the experiments in the earlier
paper [cottrell90]. compressing the first fifty principal components of the images to five
dimensions using such a five layer autoassociative net®.

To drive home the point that these networks can achieve better-than-linear performance,
the two networks shown in Figures 12 and 13, each with a hidden layer following the bottle-
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Figure 12: Non Linear Compression 1: four points on a square are passed without
significant error through a single hidden unit. The state shown was reached after
three hundred thousand training epochs. The outputs match the targets so well that
their positions are indistinguishable on the graph. For the input and output
activations. the dimensions of the graph correspond to the two input and output
units, respectively. For the hidden unit activations, successive exampes of the four
input patterns are spaced evenly across the x axis, and the y axis is the unit’s output.

neck. were trained, using backpropagation with momentum, to encode increasingly compli-
cated non-linear functions in a single dimension, by reproducing the input function on the
output of a network with a single unit in its bottleneck layer.

The first figure (12) shows a net that was trained to implement one of the simplest non lin-
ear compressions possible. After training, four input points on the corners of a square in 2-
space are encoded as four distinct points on a line by the single unit in the network’s bottle-
neck. The four input tuples are reproduced almost exactly on the network’s outputs after
decoding in the second hidden layer.

The second figure (13) shows an example of a non-linear problem familiar from the con-
nectionist literature [lang88] adapted to this context. A spiral, which goes through nearly 2
complete revolutions, is encoded, again, by a single hidden unit. It is perfectly evident, in
this case. that thanks to the hidden layer that follows the bottleneck, it has been possible for

& Thev did not, regrettably, compare the distortion of images compressed this way with those compressed by projection onto
five principal components.
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the representation in the bottleneck to be something much more complicated than a projec-
tion onto the first principal component of the training set.

'l
=

Target ——
Hidden —— 1
Output —— |

=
3k

(]

-6 -4 -2 0 2 4 6
Figure 13: Non Linear Compression 2: Forty points on a spiral are passed with only
slight error through a single hidden unit. The state shown was reached after fourteen
million training epochs. The match between targets and outputs is almost perfect,

except at the very centre of the spiral. See the previous figure for an explanation of
the layout of the figure,

As a note of caution against an over optimistic assessment of the power of neural net-

works, it should be noted that it was not trivial to train these examples. The author is not
confident that the examples given could have been learned without the use of the combina-
tion of short-cut connections outside the bottleneck, and comparatively large initial
weights®. Even with these conditions satisfied, the networks took an extraordinarily large

number of training passes'® to move beyond a “linear” hidden representation, and thence to
the performance shown.

Earlier in this chapter, models formed by projecting the vectors derived from each phone

onto their first few (n) principal components were discussed. If, instead, bottleneck networks
with the same number, n, of hidden units were trained on the same data, it is reasonable to
hope that they would form a more compact representation that retains more information
about the phones in the same sized representation. Given the difficulty of learning these non-
linear representations, thou gh, it is hard to predict how much of an a::ivanta?,e the representa-
tions formed in bottleneck networks will provide. i

In the light of this discussion, the e€Xperiments reported below, which compare the two

methods, are interesting in two S€parate respects. They serve both as a demonstration of
extracting speaker information from phones, the ostensible and primary purpose, and as an

expcri;nent 10 compare the usefulness of PCA and bottleneck networks as dimensionality
reduction tools on a real-world task.

9. It seems, perhaps, that the large initial
ima that involve seiung the non-shorteut
10. Founteen million, in

weights (of the order of 2.0/ prevent the netwo,

weights to zero, or making the weighs Symme

rk from too easily reaching local min-
the case of the spiral problem

trical
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3.6.3. Statistical Discrimination

Principal components analysis can reduce the dimensionality of speech segments by find-
ing a linear projection of those segments that retains as much as possible of the variation in
the segments, but in the lower dimensional space. Compression neural networks with a nar-
row bottleneck in one hidden layer can perform a similar reduction in the dimensionality of
speech samples, either by finding an approximation of the principal components, or, if nec-
essary, by learning a more complex non-linear encoding and a matching decoding.

Compressing the data in this way, however, is not necessarily the best choice if the goal is
speaker modelling. While the projections will capture variation, they do not care where the
variation comes from — there is no constraint that says that variation within a speaker 1s
irrelevant and should be discarded in favour of variation amongst speakers. A purely varia-
tion based model may chose a representation that retains non-speaker dependent variation in
the speech segments at the expense of speaker information. This loss of speaker information
and addition of possibly irrelevant information may reduce the speed with which the speaker
model reaches an appropriate location in speaker space, and the stability of that position
within a single speaker.

Earlier it was noted that one degenerate form of speaker model would consist of a 1-from-
n vector identifying the speaker. While one would not propose to use such a representation
as a model, since it certainly will not generalise to new speakers, there are other techniques
that can be used in an attempt to make speakers more distinct. As an alternative to the varia-
tional techniques, PPCs can be based on representations formed during attempts at classifi-
cation. While the 1-from-n representation that classification learns for training speakers will
not be used, it is to be hoped that the internal representations of such classifiers will separate
these training speakers well, and that they will also distinguish novel speakers. It is these
internal representation that will be used as PPCs.

The first of these classification methods is linear discriminant analysis (LDA). In this tech-
nique a linear transformation is learned that projects a database labelled by groups onto a
linear subspace which maximises the ratio of between groups variation to within groups var-
iation. In the speaker modelling application, of course, the technique is used to find the pro-
jection of the speech signal that maximises the distance between samples from different
speakers, while minimising the distances between samples from a single speaker.

The projection matrix used in LDA is made up of a chosen number of the eigenvectors,

. ; : : -1
with highest corresponding eigenvalues, of the ratio covariance matrix Zg Xy, , where Ip

is the between groups covariance matrix (i.e. the covariance matrix of the group mean vec-
tors), and Zy, 1s the within groups covariance matrix (i.e. the covariance matrix of all the

vectors, after the appropriate group means have been subtracted). Projecting onto these
eigenvectors produces a set of vectors that maximise the amount of retained variability that
is due to group differences in the original vectors, and minimises that due to within group

variability.
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3.6.4. Connectionist Discrimination

Perhaps the most popular use of connectionist networks is in pattern classification. If the
data fall into n classes, the network is trained to produce a distinct output value on the one
output unit, out of n, corresponding to the class of the input pattern. As was the case with the
compression networks above, the activations of units in a hidden bottleneck layer can be
used as a reduced dimensionality representation of the input, although not, this time, one
that can depended upon to be invertible. In this case, these hidden unit vectors should be
similar within speakers, and different between speakers, since they are the support for an
output representation that, if training is successful, will be almost identical within speakers,
and perfectly distinct between them. Webb and Lowe [webb90] show that, for a somewhat

simpler network architecture using linear output units connected to the hidden layer, the net-
work maximises a network discriminant function

While the same networks are employed, and they are still doing a sort of multivariate mul-
tiple non-linear regression, this use of neural networks differs somewhat from their use as a
functional approximator described above. Different sorts of output error are acceptable in
the two cases. While, in a function approximator, the output vector of the network should
match the target vector as exactly as possible, indicating that training should be done with an
error function that is proportional to the distance to be minimised, in classification, it does
not matter what the output values are, exactly, as long as the target class’s unit is the supre-
mum of some chosen function. Usually one wants the target unit to have a higher value than
all the non target units, but that is all that is required. John Hampshire [hampshire90] sug-
gested an “error” function, called a classification figure of merit, based on this goal of mini-
mising misclassifications. Using this error function, error is only backpropagated to the
target unit, and to the non-target unit with the highest output. In some of the experiments
reported here, an error function similar to Hampshire’s CFM error measure!! was used, as
follows.

ji= argmax(t ) k = argmax(o )
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Isn’t certain that it is best thing
the training speakers. the hope i
that distinguishes speakers,
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peed convergence and decrease error
for speaker modelling purposes. Whil
s that the network wi]l produce a hidd
?.’hile retaining the similarities that exist
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€N unit representation
between similar speak-
ifference measure in forcing

I1. When the neural net 1
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spplication. For this eason g ol ey gr.ui en. John Hampshire's function was, apparently, the subject of a patent

pendently produced thar Was intended to have similar properties.
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similar speakers (the target, and its closest competitor) apart. While this will improve classi-
fication performance, it may decrease the utility of the hidden representation for speaker
modelling purposes, by interferring with the aim of producing a topographic representation
of speaker similarity in the representation space.

In fact, this 1s a general danger, not only with this particular measure, but with using dis-
crimination of any sort to train the models. While discriminative training does provide an
incentive for the model to concentrate on those features of the speech that distinguish speak-
ers, there is a risk that the parts of the signal that best distinguish the training speakers do not
include the features a human listener would consider important components of voice person-
ality. It is to be hoped that the balance between these possibilities lies in favour of successful
speaker modelling, and that the speakers will be separated as meaningful groups, before
they are separated as individuals.

3.7. Measuring Performance

As various speaker models are developed, an objective measure under which they can be
compared is necessary. An ideal such measure could have two forms. If the model 1s
designed for a particular task, then, of course, the ideal performance measure is the change
in a performance measure specific to that task, if, indeed, such a performance measure
exists. If the model is intended to be task-neutral, the ideal speaker space would have the
same topology as a human speaker space. That is, speakers perceived as being more similar
by human listeners should lie closer together in this space. Unfortunately, obtaining similar-
ity measures of any reliability from human subjects on a speaker set of any size would be a
considerable research project in itself, and not one that could have been completed for this
thesis.

Despite the caveat in the previous section against blindly separating speakers without
regard for the larger speaker groups of which they are a part, a measure of model quality can
be approximated by measuring the degree to which a candidate model distinguishes differ-
ent speakers from each other.

: -1 i
Asoh [asoh90] used a discriminant criterion J = tr{EBZW}. where EB is the between

groups covariance matrix (i.e. the covariance matrix of the group mean vectors), and Zy, I8

the within groups covariance matrix (i.e. the covariance matrix of all the vectors, after the

_ - =k . . . ;
appropriate group means have been subtracted), so ZBEW , is the ratio covariance matrix

used in canonical discriminant analysis. The function tr() is the trace function, the sum of
diagonal elements.

However. the trace of a matrix is equal to the sum of the eigenvalues of the matrix and, fol-
lowing [freidman86], these eigenvalues can be regarded as mean squared length. The square
root of the trace can consequently be regarded as an overall radius for the data in the discri-
minant space, and is a figure of merit for classifiability. Consequently, in comparing reduced
data sets, the following measure will be used.
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I = hrqEBE;,J‘J

The values of J reported with experiments should be used to compare them .W”h other i Th
ilar experiments, rather than regarded as an absolute measure. Since J increases i
increasing dispersion of the group means relative to the dispersion within groups, larger »
ues of J suggest a better speaker or phone model. or. at least, a model that better serves
distinguish speakers.

After experiments comparing models of speaker variation in phones have_ been dESFl’leCfl-
in the following sections. the results of measurements of both J and a more direct measure o

classifiability will be compared in §3.13 to discover how well the measure predicts classifi-
cation accuracy.

3.8. Experiment: Comparing Dimension Reductions

Since speaker models based on PPCs derived by all four of the dimensionality reduction
techniques could not practically be produced, an experiment was performed to cnmpaf.ﬂ
these PPCs in isolation from the rest of the system. Although the measure J described ah_'ﬂ‘ve
IS not entirely satisfactory, it served as a practical objective measure on which a comparison
could be based. Since the main danger with the measure is a loss of speaker groupings, the
techniques were also compared with respect to their retention of the difference between men

and women, since this is the only obvious voice personality grouping for which have class
information was available in the database !

3.8.1. Materials

As explained at the beginning of this chapter, phone models were trained using speech

only from regions 1, 2 and 3 (New England, Northern, North Midland) of the TIMIT data-
base. For training, the speakers from the “train” subset of the database were used, dfllfi for
these speakers, only speech from the five "sX” and three “si" (phonetically compact'” and

diverse, respectively) Sentences per speaker was used, There were 190 speakers in the train-
Ing subset used, and a tota] of 950 utterances,

Before the dimension reduction techniques were applied, the speech was preprocessed 43
follows: All instances of each of the phones (“Ix”, “s™, “n”, “te1”. = 0 R R T el |
“del”, 7, 4k, “ax”, 4. m”, “eh”, “pcl”, “q7, “axr”, “p”, «dr, I e Tl s Tl T
“ah”, “b”, “ey” and “y) Were excerpted from the files of digitise
label files provided. In order that the original
arated phones later. indexing information, specifying the start and epd time of each phone,
and the sentence from which it w ed for each phone. The excerpted
speech was zero padded at the end to a mul

tiple of 128 samples, and analysed using a FFT
on 128 sample non-overlapping windows, yielding 64 filterbank power coefficients per 128

12. Geographical region, while it is distinguished in the database, hag jts main affect on accen. which the current work does not
anempt to model. Pilot ang) ¥ses looking for madelled differences between the regional groups did not produce positive results.
13. These sentences were designed 1o provide good

coverage of pairs of phones. and 1o include extry occurrences of phonetic
contexts thought to be difficyly or of panticular intenssy by the corpus designers,
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sample frame. Frames inside phones were linearly warped to a constant five frame length as
described earlier in this chapter, yielding a single 320 coefficient vector per phone. Speaker
identity, regional identification, and phonetic context information was stored with these vec-
tors. These 320 coefficient vectors extracted from each phone were subjected to the dimen-
sion reduction methods being compared.

3.8.2. Procedure

Although the input and the PPCs formed by each of the four techniques were identically
represented as vectors of floating point numbers, the way they were processed differed
somewhat. The method of construction for each of the models will be described before their
performance is compared. In all cases, the set of vectors representing a single phone were
modelled separately. For example, when the text describes the training of neural nets using
phone vectors, it means that thirty such nets were trained, each of these nets being trained
and tested only on the subset of vectors corresponding to a particular one of the thirty
phones.

For each dimension reduction technique, models producing PPC vectors of length 1, 2, 3,
4.5.10 and 15 were trained. In total, 210 (seven PPC lengths by thirty phones) models were
built for each modelling method.

Projection onto Principal Components

Using a version of the PCA program described in [dennis91] that had been slightly modi-
fied to allow it to handle larger vectors, eigenvectors of the covariance matrices for the
phone vectors were calculated. These eigenvectors were sorted by decreasing eigenvalue,
the eigenvectors with the n largest eigenvalues being the first n principal components. Pro-
jections of phone vectors onto the first n principal components were calculated, for the seven
values of n listed above, and these were used as PPCs of dimension n.

Neural net compression

Phone instance vectors were compressed by neural networks with the five-layer topology
shown in Figure 14. Bypass connections are present between every pair of layers, except

® 90 ® 320 Phone Vector Estimate Qutput Units @@

@®0®® :0Hidden Units @

Variable sized hidden la';E>PPC
n Hidden Units

@®® 20 Hidden Units @ @)

B@da 320 Phone Vector Input Units =T
Figure 14: Network Topology used when forming Phone models by nonlinear
compression.
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where such connections would bypass the bottleneck in the second hidden Igy'erl, The
number of units in the two fully hidden layers were chosen on the basis of a co_mbmaucrn of
the results of pilot experiments, the belief that the decoding task 1s more difficult than the
encoding task, and the need to control the amount of computation required - there are prqb-
ably maFr-.-‘ other choices for the size of these layers that would do just as well. During train-
ing'. the same phone vector was used as input and target. These networks were therefore
trained as constrained function approximators, where the function being approximated was
the identity function. In learning to reproduce their nputs on their output units'®, by chang-
Ing their weights to minimise the mean squared error between their outputs and the target.
the networks had to form a representation of the input that could be contained in the outputs

of the n units in the 2 hidden layer (shown in red). These n hidden layer outputs were col-
lected for each phone vector, and were used as PPCs,

Projection onto canonical discriminants

Using a version of a program (CDA) described in [dennis91. again slightly modified to
allow larger vectors, eigenvectors of the between group/w
ces' for the phone vectors were calculated.
eigenvalue, the eigenvectors with the n larges
minants - the directions that maximally separ
of a phone by a single speaker tightly cluster
canonical discriminants were calculated, fo
PPCs of dimension n.

ithin group ratio covariance matri-
These eigenvectors were sorted by decreasing
t eigenvalues being the first n canonical discri-
ated the speakers while keeping the utterances
ed. Projections of phone vectors onto the first »
r the usual values of n. and these were used as

Neural Net discriminator

Neural networks having the five-layer topology shown in Figure 14 were trained to iden-

o000 253 Speaker ID Output Units o0

000 :0Hdden Units @@

@0ae 320 Phone Vector Input Units

Figure 15: Network Topology used when forming
discrimination,

L)
Phone models by nonlinear

tify which of the 189 training set Speakers had uttered the phone vector presented to the

14, Training parameters for the networks are given

in Table B-| in A di
15. The reader may wish to refer hack 10 the desen g

ption of CDA Even earlier in this chapter
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- 15 y i = :
imput . Again, the vector of outputs of the units in the second hidden layer was used as the
PPC for the phone instance whose vector had produced them.

To investigate the role of the training criterion in deciding speaker modelling performance,
these experiments were done using both mean squared error and the previously described
approximation to Hampshire’s [hampshire90] CFM as the error function for the network
during training.

3.8.3. Results

Once the PPCs for the thirty phones had been calculated for all four of the modelling
methods, the corresponding speaker labels were used to permit calculation of the measure ]
for the PPCs. These values are a measure of the relative linear discriminability of the speak-
ers based on the PPCs. There is a strong relationship between the measure J and actual dis-
crimination scores that will be described later in this chapter. Full tables of the discriminant
measure, calculated on training set data, by phone and PPC size for the four techniques,
PCA, NNCompress, LDA and NNDA are given in Appendix D. as Tables D-1, D-2, D-3 and
D-4 respectively. Tables 5 and 6 and summarize these results and similar results for test set
data for consonants and vowels respectively, by giving the mean value of J across all PPC

51Zes.

Table 5: Discriminant measure (J) for the four types of PPC, averaged across all PPC
sizes, for vowels. The discriminant models separate speakers better than the
variational models. The clear advantage of LDA in separating speakers in the training
set is lost for the test set, on which the neural net discriminator has slightly better

performance.

Phone
Method Mean
ix iy ih | ax | eh |axr | ae | aa | ah | ey

PCA .00 130 [1.29 [120 142 [140 172 [172 |1.55 [1.78 |1.45
£ [NNCompress [105 [1.24 [1.d6 [115 [131 [136 [1.53 [158 [145 161 [134
= |LDA 237 |3.07 |328 [308 [374 [442 [555 |588 [566 |[5.84 |4.29

NNDA 200 |245 |259 |200 |278 |217 |[326 [303 [281 [3.25 |264

PCA 105 [134 [1.18 115 [142 [111 |171 [1.59 [153 [1.80 |1.39
«= | NNCompress 100 |1.26 |1.07 |1.13 1.22 (111 152 |L41 |137 J161 | L.27
= [LDA 1.57 [1.69 |18l 22 |176 |110 |209 [148 [145 [1.96 [1.6]

NNDA 180 |199 [200 [151 [216 [139 [262 [202 [204 |247 |2.00

Surprisingly enough, considering the importance that has been ascribed to vowels in deter-
mining voice personality. vowel models are not strongly favoured over those for consonants
in their ability to discriminate speakers. For principal components, for example, the mean
pooled discriminant measure, measured on the training set, for vowels was 1.45 and for con-
sonants 1.34. Since the standard deviations (0.22 and 0.28 respectively) are > 0.2, this differ-

16, There are 253 output units for convenience in dealing with both training and testing speakers, to avoid the necessity relabel-
ling the speakers. The 64 targets corresponding to fest speakers were not used dunng training. and one would not expect them

to be meaningful duning testing.
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Table 6: Discriminant measure for the four types of PPC, averaged across all PPC
sizes, for consonants.

—
Method o Mean
j s o]t |r|kd|dd|t |k |z|m|pa]q[plalan|w | r]|b].
PCA 185 [142]078 (098 102102112 o] S LA 1163 (L2017 149 [138 132 [1.31 [1.60 [1.34 [1.54 [ 1.34
E [NNCompress |1.75 [142 080 [0S [0S 1od T [1a7 1012 162110 LI9 (148 138|131 |1.29 1161 [135]1.54]1.33
E LDA 192 {282 1196|261 |271 |275| 285|308 |30z |[3s8 37 a2 397 (335 (300 500 [4.84 |5.64 |9.91 |6.63 [4.07
3 NNDA 16512271090 1193|191 |11 132|234 [198 |2 |230 |09 193 1oT 1200 180|193 |186 |1.75 [1.88 [1.87
PCA 175 1135 [0.84 1089 [0.96 [1.07 [1.25 | 141 | 131 |18 1501 T 015 LATILSS (128 (130 (169 1.41 [1.59 |1.34
% |MNCompress 166 [1.36 [0.85 [084 (050 1,09 |1.25 (141 131 [1 59 LA 1116 |16 139 [157 129 (127 (170 [1.81 [1.57 |1.33
2 LDA b el WL 5] IRTY NEGE) ) R E R ES s O3 O DS BT 118|123 |1.24 [1.25 [099 [1.31 [1.24
NNDA 178 |1.87 086 [1.33 [1.39 [1.10 [1.50 [1.80 [ 1.48 | 188 |1.88 0.9 131|160 {164 (12T 151 (170 [1.82 [1.71 | 1.7

ence is not significant (t,g =1.03 P(equal means) < 0.31). Visual Inspection suggests that

across all techniques, there might be slight trend toward vowels distinguishing speakers
more easily than consonants do. although statistical tests do not provide any compelling
confirmation of this trend. Vowels from the training set, pooled across all techniques have J
measures with a mean of 2.43 and s.d of 1.39. Consonants have a mean of 2.15 and s.d of
1.47. This difference is not significant (t,,,=0.996, P(equal means) < 0.32).

The same measure of speaker discriminability

for each PPC size, pooled across all thirty
phones is given in Table 7 and plotted in F

igure 16. The “variational” PCA and NNCom-

Table 7: Discriminant measure (J) for PPCs of various dimensions, for the four
techniques. Each cell represents an average across all phones.

Width "
Method  — Means
1 2 3 4 5 10 15
PCA 06661 109520 [1.1328 [1.2575 [1337 1.9218 [2.2713 [1.3755
£ |NNCompress  10.6394 [0.9068 |1.0804 123203 13732 [1.8688 |2.2378 |1.3324
-] =
& [LDA 23270 3.0750 [3.5700 |3.9689 43053 54825 6.2636 |4.1417
NNDA 11295 11.6258 |1.8922 (20041 22495 |2.8063 [3.1099 |2.1296
[PCA 0.63%0 10.9255 [10989 [1.2210 113055 19114 [2.2829 [1.3552 |
; NNCompress  [0.6169 [0.8912 |1.0533 11968 113459 138500 [2.2169 13074 |
= |LDA 0.7150 09711 [1.1491 |12800 1.4095 |1.8395 [2.1721 |1.3629
|NNLDA 0.8179 |12218 [1.4707 [16145 1.7368 12.2069 (24499 |1.6455

press methods appear to be similar the linear, PCA. method having slightly
better performance. The linear discriminant model separated training speakers sub:lanaall}’
better than the other methods. It has a significant]y higher J measure than NNDA, the next
F:restﬁ_tu = 3.50, P(means equal) < 0.005). Hﬂwe:uer, this very high value of the‘discrim—
inability metric for LDA on training speakers is, perhaps, to be €Xpected, since it is precisely
:I}:;s J measure that linear discriminant analysis attempts to maximise. ;CJn testing Spﬂaker;
cIi;.rng]tﬁt%ﬁaf:?zi;i]weu . >eparating speakers no more than the variational methods

_ net discriminator did better. out i - ia-
tional methods. although the differenc Pﬁl‘fnrmmgthe MBsarand Vae

€ Was not signif; - 5.
p(equal means) < 0.34), Significant (t,,=0.997

ly effective, with
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The second trend, displayed in Figure 16, is that, as one would expect, the discriminability

Hidden Units vs. Average Discriminability ]
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Figure 16: Discriminability of speakers on the basis of phones projected onto PPCs of
various dimensions, for the four techniques, each pooled across phones. Linear
discriminant analysis produce the most separated speaker codes for the training
speakers, but for the test set, this advantage was lost, and the neural net

discriminator was most successful.

of speakers in each model increases with the number of parameters in the PPC devoted to
modelling each phone, with diminishing returns from extra hidden units. Clearly the amount
of speaker information increases with the size of the PPC. Since the curve was levelling off
above this point, PPCs with ten components seemed a reasonable choice to carry forward for
use in building speaker codes.

Performance measured directly on a discrimination task

Since the training technique used for the NNDA model was trying to achieve good dis-
crimination performance, rather than match the LDA model in maximising the separation of
speakers in the space whose volume is approximated by the J measure, it was important, for
comparison purposes. to see how well the NNDA networks and LDA performed on the dis-
crimination task itself. To this end, a more direct measure of discriminability was calculated
for each condition. For each speaker, the centroid for all the PPCs associated with a given
phoneme was calculated. These centroids where used to calculate speaker classification
rates, using nearest centroid classification for both the output vector of the NNDA model
network and the PPCs formed in the hidden units, and for the LDA PPCs. The classification

was done as follows:

Variation in Phones, Page 59



page 60

* Within each phoneme, means were calculated for the set of vectors from each
speaker.

*  Each vector was assigned to the speaker class of the nearest mean vector.

*  The classification was judged correct if the assigned class corresponded to the true
speaker.

Table 8 shows the performance (0 = none correct. | = all correct) on this discrimination

Table 8: Speaker discrimination scores for Discriminant models. Score is the average
proportion of model vectors for a phone that are nearest to the group mean for their

speaker. A score of 1.0 would represent perfect speaker classification. A score of 0.0
would mean that all phone models were misclassified.

PPC Width
Method Means
1 2 3 4 5 10 15

LDA 0.0291 | 00780 | 0.1355 | 0.1963 0.2581 | 0.4753 0.5933 0.2522
,T:. NNDA 0.0437 | 0.0546 | 0088 | 0.1188 | 0.1478 0.2666 | 0.3323 | 0.1504
| HidNNDA [100226 | 0.0991 | 00831 01153 | 0.1435 | 02444 | 0.2862 | 0.1350
Z | LDA 00383 100697 | 00960 [01219 | 0.1547 103535 Tosn Tos
" | NNDA OO0713 | 00891 | 01250 | 01568 | 0187 | 02881 | 03355 01751

HidNNDA | 0.0441 [ 00839 | 01227 [ 01530 | 01803 | 02682 | 02994 | 0.1644

task for LDA PPCs (LDA). the outputs of the NNDA network (NNDA) and the PPCs
formed in the hidden units of that network (HidNNDA). The complete tables of results for
the discrimination tasks are given in Appendix D. as Tables D-5, D-6 and D-7.

As one would expect, the more units that were used, the better the
Ing the results with the J measure, LDA based PPCs serve to discriminate the training set
somewhat better than those based NNDA (1, =134, P(LDA<HidNNDA) < 0.102). but this
advantage is not robust. For test speakers, the hidden representations formed by the neural

net dis;rirr_linamr are more distinct than the LDA representations !’ although this difference
'S not significant (t,,=0.24 p(means equal)<0.814).

discrimination. Reflect-

Although, again, the difference IS Not significant, the discrimination score is higher for the
output gnits of the NNDA than for the hidden units, suggesting that the prex-'iguslv stated
reservations ablcnut the use of the J score in this case were not entirely unfounded - the inter-
nal representations formed are somewhat more distinct with respect En a non-linear classifier
than the linear classifiability meas

R . _ neasure J would lead one to expect. The measure seems to
slightly underestimate the quality of PPCs formed in non-linear models

3.8.4. Conclusions

f}ir;?:et::mv:we] f.l;d cnnson:;nt models have similar Power to distinguish speakers, the
rmost Irequent phonemes regardless of clas i di
S, as dels
was confirmed as a reasonable one. a basis for building the mo

17. In fact. the NNDA does slightly better for test speakers than for training speakers This is probabl incidental
. o ¥ coincidental.
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- Hidden Units vs. Average Discrimination Score
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Figure 17: Speaker discrimination scores for Discriminant models. Score is the
average proportion of model vectors for a phone that are nearest to the group mean
for their speaker. Again, in this case, the training set advantage for LDA is lost on
testing data, but here there is no clear advantage for the neural net during testing.

For the variational techniques, the principal components analysis and the neural network
compressor performed nearly identically. This suggests that these networks, like the ones
used in Cottrel's [cottrell90] early work on face compression, were simply calculating prin-
cipal components of the phone example vectors, and very inefficiently at that. When the
training of example compression networks was described earlier in this chapter, it was
pointed out that it took a very long time, even with the very clean data used, to escape from
the linear approximations of the solutions that the networks learned initially. Even if the net-
works could have learnt a non-linear compression from the noisy data used here, it is far
from clear that the number of training epochs used was sufficient, despite the fact that this
amount of training took a vast amount of computation when summed over the 210 networks
trained. If bottleneck compression networks are to be a useful technique for training non-lin-
ear encodings, then it is clear that specialised methods for improving the training of such
networks need to be found. One possibility, that there was not sufficient time to explore,
would be to preload the network with weights derived from principal components of the
training data, ensuring that the network’s training 1s focused entirely on learning a non-lin-

ear component of the encoding.

In the discriminant case - the more usual application of neural networks - there was weak
evidence that the neural nets performed somewhat better than the linear discriminant analy-
sis on testing data. Since the LDA discriminated training speakers better, it is likely that this

Variation in Phones, Page 61



