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result is not due to the availability of non-linear decision surfaces in the neural net, but to
overfitting in the LDA. While the amount of training data was, in roto, rather large, there
was only a small number of samples of each phone for a speaker. This limitation may have
led to the sample within group variances giving poor estimates of the population statistics.
Of course, the same limitations apply to the neural nets, since they use the same training
data, but it seems that for the training regime used, the nets have extracted only discriminant
information that generalises to new speakers, rather than specialising for the particular train-
ing speakers. These questions will be explored further in the following section.

An }mpunanl lesson lies in this experiment. The usefulness of applying a neural network
techmq_ur: to an application is difficult to fully evaluate in a vacuum. By comparing perform-
ance with that of related techniques from statistics, one can tell whether the purported bene-

fits of neural nets, such as their nonlinearity, are being used, and one can obtain useful
information about the nature of a training set.

3.9. Experiment: Does NN training of LDA improve generalisation?

An interesting possibility raised by the last experiment is that the somewhat improved per-
Eqnngnge of NNDA over LDA on testing data derives not from the availability of nonlinear
Iscriminant surfaces, but from the nature of the training applied to the classifier. If nonlin-

cantigs were important, the NNDA would have been expected to perform better than LDA
on training data as well as on testing data.

uni;ﬂ;&;;er:ﬁrnmaélfci-lm?;ummc?nqn in has suggested that the difference might be due to
R . A gh. 1n the limit, a linear neural nE[I'l-'-'ﬂrk classifier, and a classifier using
discnmunant functions that have been learned using discriminant analysis, should per-
{Eﬂlffm]?"y"u 1S possible that, in fact, this limit is not reached. By gras:-iuulix' approach-
un:krﬁ[a[s;ls; :;:::ugn mcfdfl dpproximating the training data, the neural net trhining may
ata in a way more likely to model those statistics of the training set that are

appropnate for generalisation, rather it] Ini
forg ; than qualities of traj ' ' ‘
by the data in testing sets. : e

3.9.1. Experiment Part |

T is hypothesi :
miz;;stﬂ;h{;s[:gillz_rms:fm, entirely linear three layer neural net classifiers (NNLDA) were
) and the non-linear NNDA classifiers.

ts'® for the fi '
and one hidden layer with 3 oy _ ¢ fixed length phone acoustic vectors.
: \ mber of i : 1
Networks for each phone and each F'PICIMaI i b irdand PRGN

. width we : i
learning rate of 0.0001, momentum of 0.9 and weiglr:t L?;::{L; %rﬂlﬂgg? x

18. Five frames of sixty-four FFT filterbank coefficients each
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Results

Discrimination performance, both as estimated by the J measure, and as measured using
nearest centroid classification, is given in Tables 9 and 10, respectively. Again, in terms of

Table 9: Discriminability measure (J) for PPCs for three discriminant methods. The
NNLDA is a neural network with only linear units.

| PPC Width
Method Means
1 2 3 4 5 10 15

LDA 23270 | 3.0750 | 3.5700 | 39689 | 43052 | 5.4825 | 6.2636 | 4.1417
?E NNLDA 0.7084 | 1.5231 | 19435 | 22141 | 24505 | 3.2561 | 3.7732 | 22670
2 NNDA 11205 | 16258 | 1.8922 | 20941 | 2.2495 | 2.8063 | 3.1099 | 2.1296
LDA 0.7190 | 09711 | 1.1491 | 1.2800 | 1.4095 | 1.8395 | 2.1721 | 1.3629
7 NNLDA 05307 | 09656 | 1.2483 | 14253 | 15698 | 2.0647 | 24172 | 1.4602
= NNDA 08179 | 1.2218 | 14707 | 1.6145 | 1.7368 | 2.2069 | 2.4499 | 1.6455

Table 10: Discriminant performance of PPCs for three discriminant methods. Figures
are correct classification of vectors using a nearest centroid method.

PPC Width
Method Means
1 2 3 4 5 10 15
i LDA 0.0291 | 0.0780 | 0.1355 | 0.1963 [ 0.2581 | 04753 | 0.5933 | 0.2522
E NNLDA 00155 | 0.0338 | 0.0606 | 0.0964 | 0.1340 | 0.3008 | 0.4098 | 0.1501
~ | NNDA 00226 | 0.0491 | 0.0841 | 01153 | 01435 | 02444 | 02862 | 0.1350
LDA 00383 | 0.0697 | 0.0960 | 0.1219 | 0.1547 | 02539 | 03273 | 0.1517
% | NNLDA 00342 | 00512 | 00826 | 0.1116 | 0.1483 | 02758 | 0.3442 | 0.1497
~ | NNDA 00441 | 00839 | 01227 |01520 | 0.1803 | 02682 [ 02994 [ 0.1644

the J measure. the neural network seems to have been trading off performance on the train-
ing set for performance on the test set. LDA generated the projection that best maximised
the J measure on the training set, followed by NNLDA, the linear network, and NNDA, the
potentially non-linear one.'” However, this ordering was not consistent across dimensions;
at low PPC widths (1,2) NNDA outperformed NNLDA on training data. For testing data, the
relative performance of the methods on the J measure was reversed. The NNDA network did
best, followed by the NNLDA net and the LDA projection. Again, the ranking was not con-
sistent, with LDA outperforming NNLDA for the lowest two dimensions.

Although weak, these results seemed to lend support the idea that one can get better test-
ing set discriminant performance, even from a linear discriminator, by using neural net train-
ing rather than the direct calculation of eigenvectors of the ratio matrix. However, when the
performance of the projections on a classification task is examined, the results are even less
clear. In this case, results for which are given in Table 10, the ordering of performance on

19. It should be noted at this point that there are more differences between NMLDA and NNDA than just whether linear units
are used. The NNDA network had five hidden layers with shortcut connections outside the bottleneck; the NNLDA net had

three layers.
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the three methods on training data followed that predicted by the J measure, except that the
NNLDA does not begin to outperform the NNDA until a PPC dimension of 10 is reached.
For testing, the NNDA outperformed the other methods. and the LDA and NNLDA tech-
niques have similar performance. The NNDA's superior performance was most evident at
lower dimensions; for ten- and fifteen-dimensional PPCs, the NNLDA net worked best, out-
performing the NNDA and LDA classifiers. respectively.

Discussion

The hypothesis was that the neural network worked best because it failed to learn spurious
features of the training set that would interfere with testing set performance. While this
hypothesis would seem to have been supported for the J measure, when it came to classifica-
tion the story was unclear. Although, as was noted before, the NNDA network generalised
better than LDA, though not at the highest PPC dimension, the generalisation performance
of the NNLDA was the same as or slightly below that of LDA., except at high dimensions.
While the results on the J measure do suggest that training classifiers with neural network
methods, possibly resulting in underfitting, has a good effect on generalisation, such an
effect remains to be clearly demonstrated. The improved performance of the NNDA over
NNLDA on classification tests in lower dimensions remains to be explained. More than just
the mere fact of neural net training is needed to account for this difference.

A pt:}ssiblf: mechanism for improved generalisation performance of a non-linear discrimi-
nator 1s suggested by Ayer [ayer93]. In this paper, the authors pointed out that the nonlinear-
|1_1es inherent in neural network outputs limit the effect of large recognition score
d1ﬁfer::nce;. and encourage the networks to concentrate on cases near the bor{fers of classifi-
cation regions. This argument is made in the context of networks with logistic outputs, and
cannot be directly gpplied to the networks used here. where linear nutpuct- units were used.
g?‘;f;:-:i [a}'.er.gj] 1 cm:i-:emed with pmdqcing a similar concentration on borderline cases

_ ! [ramlng_. and, in that context, derives an error measure similar to CFM. While one
would expect an improvement in generalisation from the use of CFM to ai;ap.lx’ in equal

measure to the NNLDA and the NNDA network th in hi ' ] 1t
; 2 N . there are remain hidd nes
in the NNDA that could further limit the effect of outliers. Tl

P;;;ﬁ;ﬁ;;o:si?ﬂil}’ s simglji that the NNLDA net reaches its maximum generalisation
arlier on than NNDA does, and that the “advantage” of NNDA on testing data

3.9.2. Part II: Time course of training.
To see whether this explanation, that

: the N :
tively greater underfitting due to slow NDA's performance advantage was due to rela-

identical structure to the NNDA, arg gﬁ;ﬁ:igw[gif:?:‘ was plausible, networks with
N e
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Figure 18: Evolution of classification performance, averaged over phones, through
time for S-hidden-unit NNDA and NNLDA networks. Maximum performance is

reached after one hundred and ten, and four hundred training epochs respectively.”
a. The slight difference in performance compared with table 10 were probably due to different ran-

dom nitial weights.

Results

Figure 18 graphs the mean classification accuracy, averaged over phones, on test data for
5-hidden-unit NNDA and NNLDA networks measured on every twentieth training epoch.
Unaveraged data appear in Table 11. Maximum performance was reached after 110(£10)
and 410(£10) epochs respectively, with the NNDA network achieving a maximum classifi-
cation performance of 20.5% and the NNLDA network reaching 15.2%. Since the NNDA
classifier reached its maximum generalisation performance early, well before the NNLDA, it
is clear that the generalisation advantage is not caused by underfitting due to undertraining.
It is important to note that the difference between the methods on training data is somewhat
exaggerated by the graph, since the ordinate does not start at zero.

20, Using the NN simulator written for this thesis, this could produce slightly different results than for the previous training
run. Stopping the training to measure performance on the fest set resulted in accumnulated momentum values being lost.
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Table 11: Epoch of maximum test set performance, and classification performance at
that epoch, for all phones and the linear and non linear NN classifiers. There is a great
deal of variation within network types and across phones, but the NNDA recogniser
tends to reach a higher performance, and earlier. Epoch #'s are +10,

'i
Phone aa | ae | ah | ax |axr | b d | del | dh | eh
Epoch 10 10 190 50 10 10 50 10 10 | 70
NNDA -
Perf 231 | 282 |26 (152 |140 | 227 | 357 18.2 23.3 159
Epﬂch 470 390 390 790 330 | 490 130 370 30 390
NNLDA
Perf 237 | 328 | 233 | 164 | 126 | 147 14.0 11.7 13.4 204
Phone ey f ih | ix iy kK | ke I m n
Epoch |30 (110 |10 |9 |[1400 |50 |50 50 1270 | 330
NNDA
Perf 211 | 298 | 170 | 131 188 | 224 | 152 |99 24 .4 21.2
Epoch [250 (790 |390 [200 {410 [270 | 750 | 310 430 | 810
NNLDA
Perf 278 1166 1199 (158 [213 131 [ 120 [ 144 | 215 | 241
| Phone P | pcd | gq r s t tel v w z
Epoch | 1010 [ 410 [230 [930 | 1470 10 1210 | 510 | 10 130
NNDA B
Perf 1269 1157 1200 (110 [274 | 244 |89 | 242 189 | 286
Epoch |370 [910 |130 |30 170 5 70
NNLDA P 10 810 | 210 |410 |1
Perf 17.8 i 125 1120 124 [193 [ 121 |63 156 | 74 | 173

Although the better performance, as
data held out the hope that its learning
retained when classificatio

assessed by the J Mmeasure, of the NNDA on testing

was at least more robust, this advantage was scarcely
Ml accuracy was measured directly.

Since the advantage of NNDA
networks over their Jj IV I
vaniage v pean e Inear equivalent, in a case where an

: ; Y On in training, it cannot be th d other
linear methods are suffering an disadvantage due to overfitting the da;§ S
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_ [t seems likely that there are no substantial modelling advantages to any of the networks
for this application, and that the differences in performance on training data that were appar-

ent between them might well have been due, for example, the initial choice of network
weights.

3.11. Reducing the effects of phonetic context

Although, as was mentioned during the discussion of the choice of phones (§3.2), it is
impractical to separate out the effects of phonetic context by the ideal method of modelling
the resulting allophones®' separately, in essence holding the context and phone constant
while varying speaker characteristics, it may be possible to achieve partial control for con-
text.

The idea is that if one is able to model the effect of context on the acoustic realisation of a
phone, that model can be used to generate the reference against which phones from different
speakers can be compared. What remains should show the effects of speaker variation more
clearly than if one had simply subtracted the overall phone mean from the speaker specific
instances, as was done in the experiments reported above.

Restating this idea more formally: if it is a reasonable approximation to assume that the
fixed length phone instance vector p is generated additively?? from an allophone mean
model a, . (where /,c,r represent the left context phone, the phone itself, and the right con-

text phone, respectively), and the speaker’s effect, s, on the phone i.e. p~a; . +s, then
the system’s ability to estimate the variation in s can be improved if an estimate of a, _ . can
be obtained.

One way to obtain such an estimate would be simply to calculate the allophone means
from the database, and, indeed. for frequently occurring allophones, this might be the best
solution. Unfortunately. in the TIMIT training database, many of the possible allophones
occur only once or not at all. If the allophone mean is “estimated” from a sole exemplar,
there will be nothing left from which to estimate speaker variation in the phone ¢, which is,
after all, the point of the exercise. In cases where the training database contains no examples
at all of an allophone used in testing, there is no data at all from which to estimate the allo-

phone mean directly.

Instead of trying to model each allophone separately, in this way, one can suppose that the
context dependencies are regular, just as the speaker modelling work supposes that speaker
dependencies are regular. Unlike speaker dependencies, however, context dependencies are
transparent - the dimensions of variation are known: they are the set of values the left and
right phoneme can have. It is therefore possible to make an estimate of a, ., as a function f

of the phone labels, i.e. 4, ., = f(l,¢c,r).In practice, the phone labels are represented as

one-from-n binary vectors, concatenated to form a label vector | specifying the allophone:

21. The term “allophone” will be used rather loosely in this section. Concerned readers may wish to read it as the more precise

“phone in context’” or the commonly used “context dependent phone”™,
22 Noting as we do so that we don't believe this assumption for a moment, since it is certain that there is a strong interaction

between speaker and phonetic context in determining allophone means. We hope however that this simplified model helps.
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' . ICS are gen-
' ‘ timates of allophone acoustics are g
d = the following experiment, such es
a, . .= f().In g

erated and compared.
3.12. Experiment

' ' A were
In this experiment, a number of ways of generating the allophone estimates a ot

'[ -
evaluated by comparing their ability to predict actual values of a, . ,measured from the data

' in the
base. This comparison was performed only for allophones that occurred twice or more in
testing set.

1 1 i, per
As a pessimal baseline estimate against which others could be compared, a constan 1]:1
! : a 1S esti was the overall mean value
phone estimate 4 ..r =3 ., was generated. This estimate was

of the means of the allophones means for those allophones of the ph_ane c Fhat Df_:i:ur::rt‘..i
twice or more in the training set. There were also four allophone specific esnmaies Eft?ese
ated by four forms for the function f mentioned in the previous p:fu'aglraph. The first o »
was a linear transformation from phone labels onto phone acoustics, zmp]gmen_ted as ane

ral net with no hidden units and linear outputs, and the remaining three estimation functions

- . '\IP_
were implemented as three layer neural nets, attempting the same transformation, and ha
Ing five, ten, and fifty sigmoidal hidden units respectively.

3.12.1. Procedure

= - . = 5 F re
For each centre phone ¢ in the set of thirty frequently occurring phones, mean vectors we

calculated for each phonetic context for which there was more than one jns[anf:e. A CDTT;‘»;‘
sponding 152 component vector was also generated to specify the identities of the left ( f
centre (¢) and right (r) phones. The centre phone was specified using thirty CDmPUT‘e_“IS i
which twenty-nine were set to zero, and the remaining one, corresponding to a phone index,
Was set to one. The two context phones were specified similarly, but in this case the vectors
used had sixty-one elements each, to allow for the full set of sixty-one possible phones. fre-
quent or not, to be used as context. > 5 513 training patterns were generated from the TIMIT
“train” data in this way, along with 2 417 lesting patterns from the “test” data.

The four allophone estimation models described in the
use the binary phone-in-context specification as in
g€ acoustic representation of that allophone as
direct connections from the input to ourput as we]

previous paragraph were trained to
put, and produce a prediction for the aver-
output. Neural networks with “bypass

 as the usual connections to units in the

momentum 0.9 and decay 0.0000]
Performance for each model

binary patterns from the testi

Was measured by running it in feed-forward mode with the
Ng set as input, and measuring mean Euclidean distance

23, The complete lis of these phones is given in §A.] gn Page 181 of Appendix A

Variation in Phones, Page 68



page 69

between the output allophone acoustic representation a, . , .and the corresponding target

a, . .. measured over the instances of that allophone found in the testing set.

Table 12: Comparison of methods for estimating the effect of allophone variation.
Four methods of estimating the acoustics of a context allophone were compared with
an estimate based on the mean phone acoustics. All four of the estimates were closer
to the actual allophone means than the phone mean was, and the nonlinear estimates
were closer than the linear one. The confidence tests are for the hypothesis that the
estimates better approximate allophone acoustics than the overall phone mean does.

_ | hidden | M™ean distance® from a | Test Set Statistics
) by Train Test tye | p-value®
Overall phone mean 5.81 6.35
| Linear estimate 0 units | 5.63 6.30 142 | <0.08
Nonlinear estimate 1 Sunits | 5.02 5.84 11.79 | 0.0
Nonlinear estimate 2 10 units | 4.74 5.80 11.02 | 0.0
: Nonlinear estimate 3 50 units | 4.01 5.98 6.26 0.0

a. Euclidean distance between vectors
b. probability that true mean of difference between estimate and that from overall phone mean 15
not greater than zero, using a paired (-test over all test phone means

3.12.2. Results

Table 12 gives the average Euclidean distance between the estimates generated as speci-
fied in the preceding paragraph and the corresponding allophone means calculated from the
actual data. This comparison 1s made between the estimated allophone acoustics and both
the set of means estimated from the training data, and the set estimated from the testing data.

One tailed t-tests were performed to test the hypothesis that the estimates matched the test
set allophone statistics more closely than the overall phone mean did. Even the very simple
linear estimate was slightly better than the overall phone mean estimate (the probability that
it was not was less than 10%). The non linear estimates were all substantially better fits to
the data than the phone mean. Of these estimates, there was some evidence of overfitting by
the network with 50 hidden units which had better training set performance but worse test-
ing set performance than the 5 and 10 unit networks.

Although the t-tests that demonstrate this have not been included in the table, the non-lin-
ear estimates of the effects of phone context were also all significantly better than the linear
one. with slightly greater confidence than for the tests shown.
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3.12.3. Discussion

Nonlinear estimates of phonetic context effects on phone acoustics were able to explain a
significant source of non-speaker-related variability in phone acoustics. By using these esti-
mates to reduce the context effects on phone acoustics before attempting to build models of
speaker variability, it should be possible to reduce the noise in these models and to improve
their quality. Since these experiments were done rather late in the course of this work. they
were not applied to any of the models reported. Their application should be pursued in
future work. Using neural networks to estimate the effects of context on phone acoustics
also has potential application in speech recognition, where gathering sufficient data to esti-
mate distributions over context dependent phones is also problematic.

3.13. What does the J measure mean?

0.8 T T d
LDA -
¥ NNLDA -
NNDA -
0E
2
S =
V2 oes
_E - - & = o = - -
— e
= sl
f 0.3 P ﬁc‘ad': E‘... 5 =
A ¥t B ':.. "I -
=3 .
i [} —r
25 3 T J 4

point represents a particular
s of J are on the ordinate and
f correct classifications, is given

combination of phoneme

discriminant performanc
on the abscissa,

¢ Measured as proportion o

When it was introduc
ed,
readily calculated estima i e Purpose of the J measure was (0 it
PPCs or SVCs lie. Since | y of speakers in the space in which a set of
CXperiments, nearest centroid classification
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scores were gathered along with the J measure for the PPC candidates in this chapter, it was
worth comparing the two measures.

Figure 19 shows the discriminant performance plotted against the J measure for PPCs pro-
duced by the three discriminant phone models applied to data in the test set. Each point
marked on the graph represents a particular combination of phoneme identity and PPC
dimension.

After inspecting the shape of the scatter plots, and making the reasonable assumption that

when the value of J 1s zero, the discrimination performance should be zero, an attempt was
made to fit a model relating the discrimination performance to the square of the J measure as

follows:
disc = ax +¢

Table 20 shows that when such a model is fit to the data using linear least squares, an

LDA NNLDA NNDA
X |
.é:fjf‘ll;h [t i“"&?:: ¢ : ;\--“-“"'i'..:..j h :
Equationf i = 0.066x% +¢ dise = Q05525 +€ disc = 0.0485° +¢
s.d (.0008 0.0006 0.0007
% Fit 97.1 07.2 05.6

Figure 20: The relationship between J and discrimination performance is well
accounted for by modelling discrimination as the square of J for each sort of PPC.
Such a model accounts for more than 95% of the variance in discrimination
performance in each case. The s.d. values are the standard error for fitted coefficients.

extremely good fit is obtained. The variation in J? accounts for over 95% of the variation in
discriminant [:verfn::-nﬂaru:f:.24 and the probability of obtaining a fit this good by chance is, in
each case, approximately zero.

There is clearly a difference in the coefficient relating J and discriminant performance for
the PPCs generated with the three different methods: LDA, NNLDA and NNDA. While the
source of this difference is not clear, it does indicate that caution is warranted in drawing
conclusions about the relative merits of phone models generated by the different methods.
Both measures. J and nearest centroid classification scores, measure the ability of a model to
discriminate between speakers, and although they are closely related within a model, this
relationship differs between models. Since it is difficult to say unequivocally that either the J

24. Other models, including disc - exp(]) and quadratics with more parameters were tried, but the simple square model fit best

with fewest coefficients.
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measure or the discrimination score is a better way of measuring the quality of a model, the
choice of which one to use when choosing between models may be regarded as largely a
matter of taste.

3.14. General observations and review

In this chapter, the first steps in modellin g speaker differences were taken by investi gating
methods for capturing the speaker based variation in the segments that make up Ihe SpEFCh
stream. The chapter began with a comparison of the basic encoding of the speech signal in a

spectral representation, and then moved on to discuss ways to deal with variability in the
time course of segment production.

The bulk of the chapter was taken up with a discussion of the potential benefits of neural
network encoders, and experiments to determine whether these benefits were realised in the
course of forming phone pronunciation codes. In general, they were not. The use of linear
methods to produce lower dimensional encodings of the speaker dependent phone variants
was statistically indistinguishable from the use of the more complex neural net models,
although the neural net models showed some signs of a slje

ght advantage in generalisation.
Since it seems unlikely that the linear methods produce an optimal encoding of speaker dif-

ferences, it may be that the data were just too badly contaminated with non-speaker-related
variation for hil climbing learning to be able to find a better-than-linear encoding solution.

In the final part of the chapter, one possible method for reduci
COntext — a major source of non-speaker related variation — was investigated. Neural net-
works were Successfully trained to predict these effects, giving hope that in future versions
of a speaker modelling system, the quality of PPCs can be improved,

For the present, the PPCs based on NNDA wil] be carried fo
overall speaker model, since the
performance.

ng the effects of phonemic

rward for use in forming _the
y exhibited, if only equivocally, the best test generalisation
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Chapter 4. Overall Speaker Models

The work described in the previous chapter furnished models that captured at least some of
the useful variation in individual phones. The ultimate goal, however, is to build models that
can support a human-like ability to rapidly adapt to voice differences. Inferences must be
made about a speaker’s pronunciation of unheard phones on the basis of the phones that
have already been heard, either for the purpose of better recognising them, or in order that
phones sounding them might be synthesised. If, for example, the phones /iv/, /ay/ and /ch/
from a speaker had so far been heard, it would be desirable to be able to predict the sound of
the phone /b/ from the same speaker.

The 1deal solution would be to have available a model that yields predictions about /b/ in
terms of just that subset of phones -- /iy/, /ay/ and /ch/ -- that have already been heard This
is, alas, a vain desire; since there are 61 phones used in the TIMIT data base, 2%' %61 such
models' would be needed - too many to store, let alone train. Of course, in suitable tasks,
one can attempt to gain a benefit from a smaller set of correlations, as in Cox’s [cox93] sen-
sible work with interphone regression models of variability. In some respects, the current
work can be seen as an attempt to generalise and extend the class of regression models
applied.

As explained in the introduction, the motivation for this work was the hypothesis that the
human ability to make use of arbitrary small sets of previously heard phones in adapting to a
new speaker’s voice is most simply explained by the notion that people learn a continuum,
or space, in which speakers lie. Under this model, phones that have been heard at a certain
point in time are used to identify the position of the speaker in this speaker space, and this
position is then used to make predictions about voice quality. The speaker space is a com-
pact model of the underlying variables that explain the variation between speakers. To give
this predictive ability to computers, then, such an underlying representation (an SVC, or
Speaker Voice Code) must be learned from the consistencies in the relations between the
qualities of the speech tokens in a speech stream heard from a single speaker. For the current
purposes, of course, these speech tokens will be represented by the PPCs developed in the

previous chapter.

4.1. Design Goals

In producing this speaker space from phone pronunciation codes, a number of design
goals have been pursued. While any realisable model will fail to meet these goals in some

respects, the final speaker voice code should exhibit:

«  Consistency within a speaker: a single speaker should be placed at a single posi-
tion in the space.

» Separation between distinct speakers: different speakers should be represented at
distinct positions in the space, if their voices are distinguishable.

»  Perceptual relevance: Speakers who are nearby, or who are widely separated in the

1. Which evaluates to about 142107 .
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speaker space, should have voices that sound similar or different. respectively,
when judged by human listeners.

*  Compacmess: To permit the model. and applications that use it, to be used to gen-
eralise to new speakers, the space needs to be reasonably densely covered by train-
ing speakers. This can only be achieved if the model has low dimension.

* Text independence: Human listeners do not need to have the voices they listen to
utter a fixed enrollment phrase, and neither should computers. The model should

reach the same point in the speaker space, for the same speaker, irrespective of
what the speaker has said.

* Rapidity of formation: Human beings show significant adaptation after a few sylla-
bles have been uttered. Similarly, the SVC produced by the model should approach
the final speaker position in speaker space as rapidly as possible, using information
from additional speech, as it becomes available, to refine the position.

*  Robustness in the face of noise: If the speaker says some tokens oddly, or some
tokens are obscured by noise, they shouldn't prevent the speaker model from

reaching the correct position. Given enough additional speech, the model should
recover from such noise in its input

*  Thoroughness: The model should retain enough of the ayv
speaker variability to make the voice codes produced wi

The obvious first Step to take in building such a mode] Is to simply concatenate the phone
models produced by one of the methods outlined in the Previous chapter, filling in the mod-
els for unheard phones with some estimate of their valye. Then, as with the PPCs, a neural
Net, or a linear method, can be used to reduce the dimension of this concatenated vector.
yielding a vector giving the position of the speaker in the speaker Space.

ailable information about
h it useful in applications.

vector, v:.'hn:r:-;e f:llmepsinnalit}' e a linear projection or a neural net. This
process is outlined in Figure 21

Within this framework, some of
others. Text independence is easil
cient variety of Strings to prevent
since the majority of the speech
lences unique to that

the goals for speaker modelling are easier to satisfy than
Y maintained so long as the training data contains a suffi-
the modelling of text characteristics in the training set —

for each speaker in the TIMIT database is for a set of sen-
speaker, the database chosen satisfies this constraint.

5.|rm¥ari}'. 4 compact representation wil] pe formed by any of the techniques if a low dimen-
S10n 1s chosen on which tg project the Concatenated vect;:nrs. The only tqask 1s to ensure that
enough n{ the spe;ker information is retained. Compactness angd thoroughness are somewhat
:ncm:;_paublg. a E!lfﬁClllt}“ that can only be reduced by finding the mfst efficient possible
fni;o J;‘ng:i._lt 1s thISI goal that firwes the attempt to apply neura] networks to the modelling
45K As discussed in the Previous chapter, the nonlinear functions that neural nets can com-

ute ou 1
Pute ought to be able 1o Provide more compact encodings for the same amount of data than
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Figure 21: The general speaker modelling scheme. Outputs p,’ of the phone model
for phone p on example x are concatenated to form speaker model inputs. PPCs for
unheard phones are estimated as p'. Successive examples of a single phone are
combined by some function f(), which may combine both PPCs based on actual
observations, and PPCs estimated from the SVC.

those found by linear statistical methods — although this was not clearly demonstrated for
the phone models.

Other model qualities compete with each other, and it is necessary to choose which to
favour. Consistency within a speaker competes with text independence, since no matter how
consistent individual PPC phone codes within a speaker may be, choosing a new set of
them. as a result of using different text, is bound to produce a somewhat different speaker
code. In this case, text independence will be favoured, since this strikes the author as an

indispensable part of human speaker modelling performance.

Although the aim is to produce a general model of speaker variation that, like the model,
or models, human beings are hypothesised to use, can be applied successfully to a wide vari-
ety of applications, there are also trade-offs between design goals, driven, to some extent, by
the applications to which the model is to be applied. For this reason, simply comparing
model performance on some set of speaker discriminability measures may not be enough. In
some cases. one can imagine wanting to use variational methods, even if discriminant tech-
niques make models that better distinguish speakers. One might, for example, have a use for
the estimates of PPCs that can be generated from SVCs produced by variational techniques
as inputs to a phoneme based speaker adaptation technique. In this case, using those tech-
niques would be justified, even if, by doing so, the consistency of the SVC was reduced.’
Moreover, as pointed out in the previous chapter, forming the model in the process of doing
speaker discrimination, as the discriminant models do, may cause the loss of some perceptu-
ally relevant variation that humans see as characteristic of speakers, if this information
doesn’t serve as one of the main features distinguishing the speakers in the training set.

2. This is likely, since a speaker discriminant constranl is intended to make the model head for a single known target for a

given speaker.
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4.2. Modelling techniques for speaker codes

The modelling problems faced in constructing SVCs differ scmewhall frlcrm _thf:fse of fﬂrmllng
the PPCs. While, in the phone modelling case, it was always the x'arla.lmn n Iulll}' occupied
vectors that was being modelled, when building speaker models, the intention 1s to capture
the variation in vectors that are missing entries for unheard phones. In fact, when little
speech from a speaker has been heard, most of the vector will be “unﬁll_ed". The differences
between input vectors from the same speaker, caused by these missing elements, could
greatly increase the variability in the SVCs formed. decreasing their ccnsistenp}f and there-
fore their usefulness. This problem is addressed by using the incomplete set of inputs to pre-

dict a complete set of output targets, in the hope that the code used to furnish this prediction
will be more consistent.

When the neural network using a bottleneck (NNCompress) to do non-linear compression
is used, on the other hand, the flexibility exists to train the system to do completion within
the existing structure. It is possible, while training, to use a target vector that differs from the
input vector. While the input vectors contain the phone codes that have been seen so far. the
target vectors can contain the PPC, for each phone, that was seen most recently, or, in the
case of phones that have yet to be “heard”, the PPC that will be seen next. Alternatively, the
target can contain the PPC that is heard least distantly in time, either in the future, or the
past, or it can contain the mean value of all PPCs. representing the phone in question, that
will be uttered by the speaker. Yet another possibility is to use the same vectors for input and
“target”, as in PCA, but to set up the training procedure so that it does not back-propagate
any error at all from unoccupied target codes. This last method leaves the network free to
make whichever estimates it likes for missing entries, so long as it efficiently represents the
information it does have in the SVC. In all these cases, of course, what the network can learn

to do is no longer directly analogous to PCA. since it 1s being used as a general function
approximator.

There is another modelling improvement available when neural net compressors are used
to do pattern completion: If the output prediction for missing inputs is a better estimate than
the mean, it should be possible to improve both the consistency of the models. and the rapid-
ity with which the models reach a consistent position, by repeatedly copying — or recircu-
lating — the output unit predictions for missing inputs back to the i*npul.*:smd re-running the
network to find an new set of output predictions along with the new SVC. Preliminary mod-

elling exPeriments with French digits, which will be described briefly in chapter 5, sup-
ported :thS approach [witbrock92], so it is instructive to explore whether the technique 1s
useful for larger modelling problems.

If connectionist techniques are able 1o outperform the linear models. one would expect
them to do so most substantially when used in building variational speaker models.

A number of experiments are described in
experiments in which SVCs w
press PPCs as input,
these are description
tion of their partial i

the remainder of this chapter, starting with two

-S Were built in the same Way as PPCs, in one case using NNCom-
and in thf: other using the better performing NNDA PPCs. Following
s of experiments with models trained,

: : as outlined above, to do comple-
nput, both with and without recirculation.
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Since the aim here is to contrast the models built using this variety of techniques, these
could be regarded as a single experiment. Their division into groups is more intended to
break them up for easier digestion, than as a claim of some fundamental division.

4.3. Experiment: Speaker Models derived from Neural Network
Compression PPCs.

The first large scale speaker model built was based on ten-dimensional PPCs from the neural
compression networks described in the previous chapter. While this phone model actually
performed the most poorly out of those tested, according to the evaluation criteria used, it
was the first one on which training was completed, making it a natural candidate for use 1n
building an initial speaker model. More importantly, comparison of this model with the one,
described in the following experiment, formed from the PPCs output by discriminant nets
will serve to give a sense of how PPC quality influences SVC quality.

4.3.1. Method

Before being assembled into speaker model input vectors, as shown in Figure 21, the PPCs
were normalised by subtracting the global mean of the PPCs for each phone from their
respective examples. This mean was computed over all training speakers. PPCs were not
normalised to uniform variance in this experiment. PPCs were presented to the speaker
modelling system in the order the corresponding phones appeared in the speech contained in
the database. These PPCs were inserted, one by one, into the three-hundred element® input
vector. The vector was reset to zero for each new speaker, equivalent to estimating unheard
phone PPCs by their mean®. The function used to combine successive PPCs for the same
phone within a speaker was replacement, i.e. f(p,_y"P;) = Px - Since this resulted in a total
of 43 354 training and 14 275 testing patterns, only every fifth pattern generated was used
for training or testing’.

A single speaker model was rained for each of the four modelling techniques, Linear Dis-
criminant Analysis, Principal Components Analysis, Neural Net Discriminant training, and
Neural Net Compression, described in the previous chapter, using parameters listed in

Appendix B.

4.3.2. Results

To estimate the dimensionality of the speaker information, sorted eigenvalues for the input
vector covariance matrix were examined. These values are plotted in Figure 22. Most of the
variation seemed to be contained in the first three dimensions. Although there was no sud-
den fall off in the eigenvalues, which would indicate a hard limit on the dimension of the
data, they fell off slowly and smoothly beyond around the tenth vs_x]ue. There was, therefore,
no clear reason to pick a particular value above ten for a model dimension. The presence of

3. Thirty phones by ten values per FPC
4 Normalisation having ensured that all the phone PPC means were Zerd . .
5 The final training set of § 670 patterns still occupied 17.5Mb, explaining, at lzast in historical context, why keeping all the

pattemns was impractical
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Figure 22: Eigenvalues the input PPC vectors used to construct the SVC, sorted by

size. The lower graph plots the same data as the upper graph, but the domain is
limited to the first fifty eigenvalues to show detail.

many reasonably large eigenvalues (up to about the 150t
ber of parameters one would imagine a mode]
the much of the variation in the Iputs, and by

The four kinds of speaker model were compared both by calculating the J measure f(:"f
SVCs from each, and also by measuring the accuracy with which speakers could be identi-
fied using a nearest mean match on the SVCs. Table I3 gives the discriminant measure, also
graphed in Figure 23, for each of the models, for the training and testing sets. For this exper-
iment, in both the variationa] and discriminant models. the linear methods outperformed the
neural networks — in the discriminant case, by a considerable margin — suggesting that for

this training regimen at least, the neural nets had learned, at best, to approximate the linear
models. The speaker 1dentific

ation rates given in Table 14 repeated the story told by the J
measure; the LDA derived mode] Was more successful than other models in all cases. The
NNCompress network (HidNNComp) had a Jeve] of performance almost indistinguishable
from PCA when measured with the J measure. While the NNDA network (HidNNDA) actu-
ally started off, at low dimension, with lower performance than PCA, when the model size

was jncreascd to fifteen it was abje to learn to Outperform PCA, and to almost reach the
training, but not the testing, discrimination performance of LDA_

Or s0) — many more than the num-
of speaker variation to have — suggests that
implication the PPCs, was noise.
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Table 13: Discriminability measures (J) for SVCs from speaker models derived from
PPCs produced by neural net bottleneck compression phone models. Larger values of
J indicate that the SVCs discriminate speakers more effectively.

Width
Method Means
! 2 3 4 5 10 15

LDA 3.0371 |3.8042 (42959 |4.6840 |[5.0200 |6.2315 |7.0465 |4.8742

| = [NNDA 09992 15292 (21115 [2.7131 29118 [4.7918 |6.0262 |3.0118
E PCA 1.6034 |2.4196 |2.4983 |2.6243 |2.8015 |3.2190 |[3.6905 |2.6938
: NNCompress | 15705 [2.3873 |2.4577 |2.5670 [2.7902 |3.2226 [3.6838 |2.6684
LDA 22004 (27600 [3.0328 [3.2051 |[3.3643 |3.9509 |4.2783 |[3.2572

| . [NNDA 06925 109594 |1.4573 [1.8756 |1.7024 |2.7982 [3.6317 |1.8739
E PCA 12162 |19933 |2.0684 |2.1477 |2.4047 |2.7847 |3.1924 |[2.2582
NNCompress | 1.1789 [1.9289 |2.0118 |2.0914 (24030 |2.7911 |[3.1857 |[2.2273

10

Train

NNCompres 55
2t PCA ]

NNDA
LDA —4
al e |
1 ? = @

NNCompres

0 ; . —

0 4 6 8 10 12 14 16
Figure 23: Discriminability measure for the speaker models in Table 13. Performance
for NNCompress and PCA is nearly identical in both cases.

L3 ]

For the neural net techniques, Table 12 gives two performance measurements for each net-
work. The “Hid” measurement in each case 1s the identification rate based on hidden unit
activities (i.e. on the SVC). The other is based on the output of thelnetwork. The reason both
figures are given is to give some indication of how well the de::_:admg layers beyond the bot-
tleneck performed. For the compression network, the recanstuutcd: nu_tpqt wr:ctnr was no
more distinctive for different speakers than the SVC was. For the discrimination network,
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Table 14: Speaker discrimination scores for Discriminant models. Score is the average
proportion of model vectors for a phone that are nearest to the group mean for theu;
speaker. A score of zero means no speaaker was identified correctly, while a score o
1.0 represents perfect speaker identification.

Method il — Means |
1 2 3 4 5 10 15
LDA 0.0291 | 0.1186 | 0.2452 | 0.3732 | 0.4636 | 0.7612 | 08507 | 02061
NNDA-out | 0.0248 | 0.0475 | 0.1000 | 0.1965 | 0.2648 | 0.6592 | 0.8371 | 03023 |
= | NNDA 0.0189 | 0.0468 | 0.0985 | 0.1941 | 0.2627 | 0.6498 | 0.8275 | 02998
£ Pca 0.0218 | 0.0510 | 0.0774 [ 0.1118 | 0.1479 | 0.3120 | 0.3360 | 0.1668

NNCompout | 0.0219 | 0.0546 [ 0.0785 | 0.1097 | 0.1491 | 0.3105 | 0.3241 | 0.1669
NNComp 0.0215 | 0.0550 | 0.0777 | 0.1076 | 0.1453 | 0.3093 | 0.4442 | 0.1658

LDA 0.0673 | 0.1667 | 02595 [ 0.3408 | 0.4105 | 0.6266 | 0.7198 | 0.3702

NNDA-out | 0.0371 | 0.0616 [ 0.1243 [ 02042 | 0.2053 | 04911 | 06550 | 0.2541
= | NNDA 00333 | 0.0595 | 0.1268 | 0.2021 | 0.2032 | 0.4806 | 0.6438 | 0.2499
< [Pca 00532 | 0.1149 | 0.1506 | 0.1709 [ 0.2308 | 0.3779 | 0.4932 | 0.2274

NNCompout | 0.0515 | 0.1075 | 0.1405 | 0.1674 | 0.2249 | 03507 0.4911 | 0.2234
NNComp | 0.0508 | 0.1075 | 0.1426 | 0.1681 | 0.2200 | 03681 | 0.4935 | 0.2215

the layers leading from the bottleneck t

o the output did increase the separation of speakers,
but not by a great deal.

4.4. Discussion

For this data the neural networks performed very poorly, at or below the level of the linear
model. This is perhaps to be expected. In the last chapter the difficulties in training neural
networks to perform highly non linear mappings, of the kind required to outperform linear
methods, were noted. Moreover. there were two grounds for believing that the training data

1s not entirely surprising
ty converging even to an accurate linear model of the input.
One consistent and rather mysterious obsery
is that, for the mode]

. Sing a projection derived from the tramning set. There is a plausible
explanation for this effect

- Note first that, for the hidden units perforce. and for the output

units approximately, because of their training, the projection space is bounded (by -0.50.5
in each dimension. That is. the Input vectors

' each : are projected in both cases into a unit cube of
dimension d (d in 1,2,3.4,5,10,15). Also not

_ ; , e that there are 190 training speakers, and 63
testing speakers (k and k’ respectively). Since there are § 670 training and 2 855 testing pat-
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the centroids of these 45 or so vectors are taken, for each speaker, and a decision is made
whether the speaker centroid nearest a pattern is that of the correct speaker.

Although the projection into the discriminant space is trained on the training data, and
should, therefore, separate that data better, imagine for a second that it is equally good in
both the testing and the training case, and, in fact, that it positions the centroids to optimally
separate the classes, and that the classes have equal variance. In this case, the centroids
should be arranged at the centres of the k or k' spheres of radius r and r’ respectively that
can fit in a unit hypercube of dimension d. Since these radii are hard to find, instead suppose
that the unit hypercube is completely divided into k or k' equal regions, each of which will
be regarded as a sphere. Then for each dimension d, the following equations hold.

1 = .i:'r""JI and 1 = krd
That is, as the number of speakers increases, the radius available to each decreases. The
variance of the training and testing sets is likely to be the same, but a point that differs from
its class’s centroid by some amount a, where r < a < r’ will be misclassified in the case that
there are k classes. but not in the case that there are k’. The expected proportion of cases
misclassified for this reason is related to the ratio of r' to r, or
[k 190

r sy
- = dl= dj—
- a;.llk' in this case 6

which rapidly approaches 1 as d. the dimension of the code, increases.

Bridle [personal communication 1995] suggests that classifiers of the kind used here do
not distribute the classes uniformly through the classification space, but instead distribute
them across the surface of a hypersphere. This is certainly approximately the case for the
outputs of the classifier, since they are attempting to place the classes at the vertices of a
hypercube. The extent to which it is true for the internal representations of neural networks
is not entirely clear. but even if the classes are not distributed precisely across the surface of
a sphere, the argument is likely to be similar. The problem in this case is the inverse of the
“kissing problem” [mount95, personal communication] i.e. how many patches with a given
angular separation can be fit on the surface of a sphere. Unfortunately, anal}ftica! solutions to
this problem are not known for dimension greater than three®. There are approximations that
provide bounds for the problem, but they are rather loose. Fortunately, these bounds can be
used to show [conway88, mount95] that when placing k spherical patches on the surface of a
sphere in a real space of dimension d, the minimum an gular separation ¢ between the cen-
tres for even the best possible packing, is proportional to the following expression, where

]
(1 -v'i'”}{‘l@

(0(1)) represents an unknown dependence on d that approaches zero with large values of d.

n i
6. It is known, for example, that in four dimensions, the number of patches of angular separation 318 either 24 or 25, but it 15
not known which [conway88].
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. . ERIIN # sy
Since this dependence does not vary with &, we find, as before (working with angles inste
of radii) that:

o |

==

-d
ﬁ!:

While this argument is approximate, and, in particular, does not yield a quaniltam'? mtl!zi—
ure of expected misclassification rates for the actual .ds.i[a' It demonstrates that erak -
dimensional spaces, the mere fact that there are more trainin g speakers thafn testing spe__ e
will inflate the relative misclassification rate of training speakers. For hlgher :dlmelmmn!i.
this effect diminishes, and the effect of the fact that the discriminant projection is trained on

the training, rather than the testing, speakers should be expected to dominate. This appears
to have been the effect observed in the data.

4.5. Experiment: Speaker Models derived from NNDA PPCs.

After all the experiments comparing training methods for phone models had been com-
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Figure 24: Eigenvalues the input vectors derjved from NNDA PPCs, sorted by size.
The lower graph is the same as the up

per graph, but only the first fifty eigenvalues
are shown, to make the detail in this region more visible,

pleted, it appeared that,

although the advantage over
slight, the PPCs derived

linear discrimination was somewhat
from the Neural Net Discrimi

nant models seemed to have the best
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performance with respect to the chosen criteria. A second experiment was therefore per-
tormed in an identical manner to the one described above, substituting these improved PPCs
in place of the NNCompression ones. Since this was the only change in the way the experi-

ment was done, repetition of the description of the experimental method 1s omitted here in
favour of proceeding directly to the results.
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4.5.1. Results

: " .2 : . b
Figure 22 plots the eigenvalues of the covariance matrix for the input vectors formed by

Table 15: J Discriminability measures (J) for SVCs derived from NNDA PPCs.

[ SVC Width Means
Method - 5 ‘
1 2 R 4 3 10 15
LDA 3.8410 | 4.8839 | 55951 | 6.1682 | 6.6645 | 8.3703 | 9.4642 | 64267
£ |NNDA | 12729 | 1.7766 | 25474 | 32388 | 3.7107 | 56766 | 7.2345 | 3.6368
£ [pca 2.5132 | 33117 | 3.8949 | 42093 | 46437 | 6.2049 | 69899 | 2.5382
" [NNComp [ 24772 [ 32997 13535 3360 | 46618 | 62263 | 69660 | 4.5404
LDA 25584 | 3.2983 | 36517 [ 3.9665 | 42912 | 29920 | 54535 1 20302
NNDA | 06650 | 1.0654 | 1.5408 | 19233 | 2.1321 | 3.1885 | 39276 | 20633
% [Pca 21182 | 28221 | 34018 [ 3.6836 | 4.0170 | 52018 | 57125 38510 |
| T | NNComp | 20729 | 23082 34257 | 37044 | 4.0494 [ 52030 | 5.6931 | 3.8509 |
10 -
Train
8
& NNCompress —a
.l ®_ NNDA
4 -""fﬁ-::_:-ﬁ-}
0 2 4 5 8 10 12 14 16
Test 1
NNCompress
5} & PCA
4 —_—— ®_ LDA
/—f’/f,—-—-—--*""_'_-_-_ ]
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(J) for speaker models. The PCA and
the plot. NNCompress and PCA are nearly

Figure 25: Discriminability measure
NNCompress results coincide,

: obscuring
identical in both cases,

the previous €Xperimen
for after the first ten to fi
that occurred in the taj]
compression networks,

as little variance in the PPCs unaccounted
s. In particular, the relatively small values

suggest that these PPCs are Jess noisy than the ones produced by the
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Table 16: Actual speaker classification scores for SVCs derived from NNDA phone

models. Scores are correct speaker identification rates using nearest centroid
classification.

| [ SVC Width

Method | Means
[petd 2 3 4 5 10 15
"LDA 0.0436 | 0.1810 | 0.3468 | 0.5190 | 0.6404 | 0.8651 | 0.9140 | 0.5015
= |NNDA 0.0262 | 0.0549 | 0.1349 | 0.2555 | 0.3772 | 0.7636 | 0.8905 | 0.3577
§ [rca 0.0280 | 0.1012 | 0.1664 | 0.2311 | 0.3303 | 0.6589 | 0.7791 | 0.3279
= [ NNComp | 00276 | 0.1001 | 0.1608 | 0.2245 | 0.3248 | 0.6806 | 0.7916 | 0.3300
LDA 0.0739 | 0.2404 | 0.3856 | 0.4928 | 0.5891 | 0.7454 | 0.8165 | 0.4790
~ | NNDA 0.0336 | 0.0844 | 0.1847 | 0.2067 | 0.2669 | 0.5695 | 0.7184 | 0.2892
< [Pca 0.0739 | 0.1797 | 0.2785 | 0.3520 | 0.4357 | 0.6946 | 0.7884 | 0.4004
[ NNComp | 00651 | 0.1828 | 0.2687 | 0.3370 | 0.4270 [ 0.7142 | 0.8046 | 03999
Output layer discrimination scores for neural nets

| NNDA 0.0334 | 0.0557 | 0.1356 | 0.2536 | 0.3787 | 0.7714 | 0.8897 | 0.3597
| Train [NNComp | 0.0304 | 0.1007 | 0.1661 | 0.2273 | 03300 | 0.6585 | 0.7682 | 0.3259
NNDA 0,048 | 0.0834 | 0.1426 | 0.2133 | 02729 | 0.5741 | 0.7268 | 0.2940
Test - oXGomp | 0.0680 | 0.1828 | 0.2827 | 03464 | 04340 | 0.6963 | 0.7842 | 0.3992

As in the previous experiment, the discriminability measure J for the four types of models
over seven SVC dimensions is tabulated, in Table 15, and plotted, in Figure 23. The meas-
ures were substantially higher than those for the models based on the PPCs from compres-
sion networks. Once again, the speaker models derived from the PPCs using LDA achieved
the greatest amount of separation of the speakers in the training data, and for all but the ten-
and fifteen-dimensional models on testing data. In the latter cases, the PCA and NNCom-
press based SVCs were more widely separated. The NNDA models were strikingly unsuc-
cessful. having smaller J measures than the other models in all testing cases, and in all but
one training c;se, Even these measures were higher than for corresponding models derived
from NNCompress PPCs, however.

Following the pattern of the last experiment, speaker classification scores derivzad using
nearest nei‘éhbuur classification are given in Table 16. Classification scores for this model
based on NNDA PPCs are considerably higher than for the previously discussed NNCom-
press PPCs, most markedly for the variation-based SVCs. When NNCompress PPCs were
used to build the speaker models, classification performance for these S?’Cs was around half
that for the LDA models. Using NNDA based phone models, the testing performance ff}r
these SVCs (PCA and NNComp Hidden) is over 80% of the L_DA performance, with the dif-
ference narrowing for higher dimensional models. Classification performance for tl'.je neural
discriminant model confirmed the story told by the J measure; a‘dlhnugh the cla*_ssnﬁf:r net-
work learned to separate training speakers more than the Ivanatmnai methoc!s, it failed to
generalise, producing a worse basis for classification 1c~f tes:tmg speakcrs than either thF PCA
or NNCompression SVCs. The other methods, classification using LDA, and capturing the
validation using neural compression or PCA all preformed similarly on testing data.
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4.5.2. Discussion

As might have been expected from the differences in performance. on similar measures,
between the PPCs used to form the models, the SVCs based on I‘:JI\'LDA PPCs contained
more speaker distinguishing information than the SVCs based on NNCompress PPCs.

More interesting, perhaps, is the observation that these original PPCs seem to have cap-
tured. in their ten dimensions each, much of the information that distinguishes speake_-rs-_ﬁ or
rather, much of the speaker-distinguishing information that is contained in the mrlg_mal
whole-phone representations. While the discriminant methods were able to find comb1r}a~
tions of these PPC vectors that were better at distinguishing training speakers than the prin-
cipal components, these combinations did not greatly outperform projections onto ten or
fifteen principal components for testing speakers. It appears that most of the separation

between speakers that can be found in ten dimensions is already available in any one of the
frequently occurring NNDA based PPCs.

4.6. Experiment: Speaker model based on Pattern completion
neural nets

In the experiments described above, the training techniques used aimed either to learn to
classify the training speakers, or to reproduce the partial input vector exactly on the output.
In the former case, there was a risk of concentrating too heavily on qualities of the training
speakers and consequently of failing to generalise to test speakers. More generally, there
was a risk of discarding important information about voice quality that did not help much
with speaker identification. In the latter case, where the system was learning an identity
function, it was possible that the system would both over-constrain the model to be learned,
when there was missing data, and under-use the available training data as follows: As the
introduction of this chapter pointed out. during training, the entire body of training data for a
particular speaker can be used to construct target patterns for a “cnrﬁpregsi{m“ neural net-
work. There is no good reason to limit targets to just the subset of the data that “has already
been heard” and that wil] be presented on the inputs. It is also to be hoped that the compres-

sion networks are doing what they are designed to do — pattern completion — and that this
can be used to improve the Incomplete input vectors received for a speaker.

In this experiment, the classification networks were left aside, and, stil] using the NNDA
based PPCs as inputs, neural network compression networks were trained applying the fol-
lowing techniques: ol s

* Maximally instantiated

PPCs presented to the nputs, wit
ues, a randomly chosen in
used in the target vector.

targets be the subset of
he mean, for missing val-
phone PPC available for the speaker was

h an identical estimate. t
stance of every

Minimally constrained trainin

: . g: Instead of back
getunits for which no PPC is ay

; Propagating error from those tar-
ailable for the

Speaker, training the network to out-
arts of the vector were left untrained.
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* Recirculation: Since the networks were being trained to produce estimates of
PPCs for unheard phones, it was reasonable to hope that they would produce more
consistent SVCs from PPC subsets on the network inputs, if the network outputs
were recirculated to the PPC inputs for unheard phones. The SVC used was the
activation pattern of the bottleneck layer after some number of iterations of this
process.

4.6.1. Method

In this experiment, neural networks were trained to do completion using both of the first
two of these technigues, both using (CR), and without using (C) the recirculation technique.
Networks with recirculation were also trained on input vectors with two different average

numbers of missing PPCs (CR and CR2).

Targets were constructed by choosing a random starting point in the list of PPCs for a
speaker, and looking forward from that point, adding the first instance encountered for each
phone to the target vector, until either all 50 phones had been found, or the starting point had

been reached again. On average, 99.4% of target phones where available”*. Missing phones
in the target vector were replaced by a marker value that was used to prevent error-back-
propagation from the corresponding outputs. Inputs patterns were chusein by randomly
choosing thirty (C. CR) or sixty (CR2) PPCs at random from the speaker, with replacement,
and lns'i;rling these into the inputs. This procedure resulted, on average, in 36% anc_l 54%
respectively of the fifty phone PPC sections of the input vector being filled. Unfilled inputs
were marked, and were replaced by overall PPC means, and later, in the case of the recircu-
lating networks, by estimated PPC values from the network outputs.

Since the training patterns were assembled internally by t‘he:l training program from PPCs,
it was no longer necessary to discard 80 percent of the training patterns as had Iqeen done
previously to save space. The difference in number of training patterns hetw_egn this and the
previous experiments was compensated for by reducing the number of training epochs so

the total number of pattern presentations was the same in both cases.

4.6.2. Results .

e. . and the nearest centroid classification scores for
the three networks are given in Tables 17 and 18, respz;tive]y, A comparison with Table 15
shows that on training data, the recirculating cnmpletllon networks (RC and RC2) hax{f: a
larger discriminant volume than all other models, including the one based on LDPE, The sim-
ple completion network (RC) outperformed all but thf: LDA based model on training data.
On testing data, the performance of these networks 1s even hf:tter_ - all of them_pmduce_a
larger discriminant space than the models of the previous experiment, and this space 1s

The discriminant-space volume measur

can be explained by the fact that only the fifty most fre-

ber of sentences used. It .
7. This number is rather high for the num B it AR b oy By ma B

quently occurring phones were being used, and by the fact that the
cally balanced.

8. While this procedure results in correlated
against the time that would be required to search the s

each pattern presentation.

sets of target pronunciations from a speaker, it seemed a reasonable trade-off
peakers PPCs for each phone separately from different starting points. for
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Table 17: The discriminant volume measure J for the three more complex neural
network based speaker models. Method C represents completion training with partial
input patterns and maximally completed target patterns. CR is similar, with the
addition of two iterations of output values to the inputs of “missing” input phones.

CR2 is similar, except that CR filled in, on average, 36% of its inputs during training,
and CR2 filled in 53%.

Mode | Method 1 2 3 4 5 10 15 Mean
Train | C 43011 | 54299 | 58392 | 5.9433 | 6.0667 | 7.4008 | 8.1892 | 6.1672
Train | CR 4.8560 | 6.4519 | 7.2323 | 7.6002 | 7.9201 | 9.3040 | 9.9626 | 7.6181
Train | CR2 46046 | 6.3648 | 7.1177 | 7.5319 | 7.7648 | 9.4174 | 99392 | 7 5343
Test C 34051 | 4.4627 | 4.6852 | 47270 | 49821 | 5.7830 | 6. 1780 | 4.8890
| Test |CR 3.5536 | 4.8766 | 5.3294 | 5.5600 | 5.8318 | 6.7531 | 6.9626 5.5524
Test | CR2 34885 | 47620 | 52373 | 5.4805 | 57804 | 6.8074 | 7 0387 | 5.5136

Table 18: Correct speaker identification rates

using nearest centroids for three more
complex neural net com

pression training regimens. The conditions are those described

in Table 17.
Method | 1 2 3 4 5 10 15 | Mean
& |6 00331 [ 0.1333 102647 | 0.2066 | 04986 | 57871 0.8488 | 0.4246
E CR 00376 | 0.416 | 02531 [ 04047 [ 05253 107565 105355 1 00363
3 — [cr2 0.0400 [ 0.1605 [ 02880 | 0.4433 | 0.5673 | 0.8196 | 0.8645 | 0.4548
E= - (= 0.0782 [ 02455 103323 0.4472 | 0.5886 0.7650 ] 0.8321 104670 |
& | CR | 0.1007 [ 0.2618 | 0.3475 04514 | 0.5891 [ 0.7463 | 07865 | 0.3601
| CR2 0.0994 | 02932 03879 | 04811 | 0:6313 0.7752 [ 0.8173 | 0.4965
B = | C 00383 01303 [0.3593 [ 0918 T 05553 08050 | 0.8531 [ 0.4333
o PSR 00344 | 01197 102375 [ 038% 03155 05055 T 5ees 00500
|_§ CR2 [ 00373 01380 [ 02687 (04131 o5 08193 | 0.8740 | 0.4418
2 uE | 90793 10357103383 [ 045303 0.7852 | 0.8346 | 0.4746
& |CR 0.0860 | 02272 [ 03236 103 399 | 0.5767 [ 0.7815 | 0.8368 | 0.4673
CR2 0.0958 | 02541 | 0.345¢ 0.4625 | 0.5945 [0.7971 | 0.8502 | 0.4857 |

net models used in the previous
ame level of classification accu-
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mean classification accuracy than the LDA classifier, but this advantage was not consistent
across dimensions.

4.6.3. Discussion

The fact that the recirculating completion networks produced a larger discriminant space
than the other methods, including the stubbornly successful linear discriminant analysis,
suggests that they were doing well at concentrating inputs from a single speaker into a small
region of space, and pushing inputs from different speakers apart. Although their success in
doing this did not generally translate into a higher speaker identification rate than that given
by LDA, the fact that they reached the same rate on test data is impressive in itself, since,
while the training in LDA was strongly supervised, the completion networks were weakly
supervised; the networks were not being given an explicit direction to separate the speakers
— they were only being told to predict PPCs from the same speaker. The discriminant train-
ing of the NNLDA PPCs caused these PPCs from different speakers to be differently distrib-
uted. and the networks were able to take advantage of this to learn an overall speaker model
that separated speakers well, without having to be told that this was a goal of learning.

4.7. Perceptual relevance

Ultimately. it would be desirable if the dimensions onto which the models project speakers
were to c-:;rrespand to some quality that human beings regard as being important to voice
quality. Unfortunately, a well defined set of descriptions of voice quality is not available,
and even if it were. one would be hard pressed to label the entire database with them. The
labels that are readily available in the database are sex and dialect region. To see whether
either of these qualiti'es was captured by the two most successful models, the LDA and CR2
models based on NNDA PPCs, a plot was generated of the mean model value computed
over the SVC state after each of ten PPC additions, starting from the point at which one hun-
dred phones had already been heard. Figure 26 shows these plots for both training and test
set data labelled with the sex of the speaker. Speaker sex was apparent from theiﬂmﬂdei in
almost all cases, and was represented by the first of the two model dimensions™. For [?'IE
LDA model, apparently, and perhaps not surprisingly, t!mel speaker’s sex was the most dis-
tinctive feature of their voice quality. In fact, although this is not shown in these plots, mod-
els separate for sex in most cases after only three phones had been heard from a speaker.

Figure 27, on the other hand, shows the same SVCs labﬂllt_:d by Ithe dialect region. of the
speaker: where in the US they grew up. If regional dialect is an important determiner of
voice quality, it was not captured by the strictly segmental model that has been adpptgq herf.:.
It is likely that the major effects of dialect are felt on prosody and phonology. While it is evi-
dent these components of accent are important in explaining perceived voice quality, it has

9. The NNCompress network and the PCA projection in the previous experiment reached similar classification performance in
odels of dimension fifieen. This is not 100 surprising, perhaps, in light of the fact that Figure 22 suggests that most of the var-
ability of the original data can be accounted for in fifteen dimensions. The higher performance at lower dimensions of the

odel. where the dimensions are sorted by their ability to distinguish speakers,
since there is no intnnsic ordenng on the hidden layer umits in which the

present networks suggests that their encoding is
10. This is meaningful in the case of the LDA m
but fortuitous in the case of the neural net model,
model is formed.
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LDA for 2 dimensions by speaker sex (train)

LDA for 2 dimensions by speaker sex (test)
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Figure 26: To examine the relationship between the models and perceptually
relevant components of voice quality, two dimensional speaker models were plotted
here labelled for speaker sex.

not been practical to include their investi gation
though, if the phone model had been extended
expected to measure an effect of dialect on that

In the scope of this thesis. It is worth noting
to include phone duration, one might have
model component.

4.8. Rapidity of formation

One of the main aims in building these models
human beings adapt to new speakers. It was consequently worth attempting to measure how
rapidly the speaker models Were approaching a final stable SVC value that represents a
speaker’s voice. The question was whether the SVCs formed after some small number of

S ' i rmed after many phones had been heard. Fig-
_ sional CR2 model after five phones had been
heard from a speaker against the Same component after one hundred phones had been heard.
Although there is by no means a total agreement between the models at these times. there
Was a strong correlation between the SVCs produced at the two times for both SVC compo-

nents. Table 19 enumerates significance tests for the correlation between SVCs formed after
m;, and -W}i{1 undmdtihmes nad been heard from a speaker, along with similar tests for two
other pairs of times [beckerss, chambers93]. Even for Sy f ird phone
was added to the input, the SVC $ formed when the third p

1, Was approaching its fina] Position in speaker space. as dem-
onstrated by the positive, and highly significant correlation helweenpﬁ and EVCS formed

Was to approach the rapidity with which

ure 26 plots the components of the two-dimen
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LDA for 2 dimensions by speaker region (test)
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[-'igure- ..".?: In thi;‘ figure the same data are plotted as in Figure 26, but in this case
they are labelled for the geographical region in the US where the speaker grew up.
There is no readily apparent component of the models that corresponds to regional

dialect.
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een SVCs formed by the CR2 neural net model after
have been heard. A strong positive correlation
. The plots on the left represent the first
the right, the second component. The top

data, and the bottom row for testing data.
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Figure 28: The relationship between SVCs formed by the CR2 neural net model af‘tE'I'
five phones and one hundred phones have been heard. A strong positive correlation
suggests that the SVCs are formed rapidly. The plots on the left represent the first

component® of a two component model, on the right, the second component. The top

row plots are for training data, and the bottom row for testing data.
a. corresponding roughly, as was pointed out above, to the speaker's gender.

from much more speech. As
where the second hundred pho
the first hundred.

It should be noted that these measurements w

that performed rather poorly on speaker classification because it was strai ghtforward to do
s0. One would, of course. expect higher dimensional models to be highly correlated within
speakers over time. In this case of multidimensional data. instead of the simple correlation
measurement used here, one would use the similar canonical correlation analysis.

time went on, the models became more stable. to the point
nes produced little change in the SVC position determined by

ere made on the two-dimensional models

4.9. Speaker Modelling Conclusions and Discussion

By combining models of the vaniability in individua]

phones, it was possible to build overall
spaces, of reasonably low dimension. in which talker

S can be placed. That these positions in
0des, are consistent within speakers and distinct for distinct
speakers was demonstrated by their ability to be useq for speaker classification. The models
are text independent by design; although an equivalent set of fixed text speaker models was
ot available to compare them against, this text Independence does not seem to have been
100 harmful: the models were fairly distinct across speakers, and they formed rapidly. The
models formed after only four phones had been heard from a speaker were highly correlated
with those formed after one hundred

fte and four phones had been heard. Clearly, which phones
a speaker uttered within the first four was not a critica determiner of the SVC.

Previous chapter coverin
be gained from the fact

Repeating the observations of the
there was no consistent advantage to
models were capable of
based models matched LDA in
training, this result

g phone variation modelling.
that the neural network based
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Table 19: Tests for the consistency of SVCs generated after different numbers of
phones from the same speaker, measured as correlation. The p values given are the
probability that t exceeds the given value if the correlation, r, is not positive. Speaker
models generated from smaller numbers of phones (SVC1) are highly predictive of
those generated from more speech in all cases. The shaded entries correspond to the
SV C components plotted in Figure 26,

| ].h::.fé. :i?‘:‘:;::;ﬂm Tested data Pearson’s Product Moment test
| SYC1 SVC2 Set SVC Cpt r t df p
100 200 Train 0 0.974 58.65 188 0
1: 100 200 Train 1 0.888 26.43 188 0
; 100 200 Test 0 0.962 27.72 61 0
100 200 Test 1 0.881 14.54 61 0
| 5 200 Train 0 0.928 34.04 188 0
5 200 Train 1 0.816 19.34 188 0
| 5 200 Test 0 0.872 13.89 61 0
j 5 200 Test | 0.683 7.31 61 0
| 2 100 Train 0 0.894 21.33 188 0
2 100 Train 1 0.766 16.35 188 0
| 2 100 Test 0 0.690 7.45 61 0
2 100 Test 1 0.573 546 61 0

inherentlv discriminant. For the input encodings of the speech signal used in this thes_ls, at
least. conventional statistical techniques produced speaker spaces that were as effective at
distinguishing speakers as those produced by neural networks. | |

hat the PCA based model can be improved on. Sin_ce the:re 15 no_d:s-
and targets in PCA, there is little choice when using lh:; lgchmque
an as an estimate of the value of missing data.
However, by construing the problem as one of ﬁndi_ng a Iirfear least square fit hetwe;n H:;E
partially filled vectors and the completed ones, this deficiency can, ?erhap;he re fuce .
Doing 50, using singular value decomposition, should be a useﬁ_ll addltipn tot f'.'i set 0 fnfﬂni
neural models used as reference points when future work provides an improved set of fea

tures on which to base models.

At present, the degree of within s

It is, moreover, likely t
tinction between Inputs
but to use just the overall phone model me

peaker variability in all the mn?dels developed here, ]imit-
ing their ability to be used even for accurate speaker idepnﬁcatmnt suggests t?at the vc;;ce
models used by human beings are based on far more specific and reliable voice features than
the ones supporting the statistical models described here.
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4.10. Applications

Up to this point, the main concern has been with constructing a description of a speaker’s
voice in terms of its relation to a model of how voices vary. This has been done by construct-

Ing variation spaces for speech segments, and assembling them into an overall speaker
space.

By some measures, at least, this space has the qualities that it was designed to have. It dis-
tinguishes speakers placed in it, it corresponds to a perceptually relevant speaker distinction
in at least one dimension, and it allows rapid identification of a speaker’s position after only
a few phones have been heard. Since the model packages speaker information in a compact
vector, it is technically straightforward to integrate the information it provides with other
inputs to speech processing systems that use neural networks or statistical learning.

By other measures the models were less successful, since they do not appear to have the
within speaker stability and descriptive and discriminant power that are available in the
models human beings were presumed to have. In part to better measure the power of the cur-
rent models, and in part to explore what could be achieved if higher quality voice models

were available, some speech technology related applications of speaker modelling were
explored.

The next two chapters describe efforts to integrate speaker information with two such
speech processing systems. In the next chapter, a study is made of the feasibility of applying
speaker models to the problem of quickly adapting speech recognition systems to a user's
voice. In the chapter that follows, the speaker models derived here are aﬁplied to the prob-
lem of synthesising speech with voice quality similar to that of the modelled speaker.
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Chapter 5. Speaker Models and Speech
Recognition

The original conception of this thesis was based, in part, on the notion that speaker differ-
ences were self-evidently a barrier to successful speech recognition, and that furnishing
speaker information to a classifier would improve its performance. It was presumed that the
main question to be addressed was how one could derive this information about a speaker
rapidly and accurately.

In fact, although initial experiments yielded speaker models which formed rapidly and dis-
tinguished fairly well between speakers, the goal of making the recogniser make any use at
all of these models proved frustratingly elusive.

The next section briefly reviews some of the work on speaker adaptation that had led to the
expectation that it would be possible to successfully apply the voice models to this task. This
expectation was explored in pilot experiments, described in the following section, with
speech from a very small vocabulary. The results of these experiments, although unspectac-
ular, had seemed promising and led to an attempt to extend the technique to a larger data-
base. This attempt, described in §5.4, was unsuccessful even when perfect speaker
information was used: it wasn't just the case that the information that could be derived from
a speaker’s speech and presented as an SVC wasn't particularly helpful — it turned out that
it was very difficult to make knowledge of speaker identity help at all. This lack of success
led to a series of experiments comparing the experimental setup used with that of experi-
ments in the literature where large gains from speaker adaptation had been obtained. The
fact that it was possible to replicate this gain, for the same data, but not possible, using any
of the techniques tried, to extend the gain to a more realistic databgsc, prompted a furthr?r
series of experiments that attempted to diagnose the source of the difference. Tfnesa E:Jtpn?l‘l—
ments, described in §5.8 led to the conclusion that, for some databases, speaker 19fﬂnﬂatmn
can improve recognition performance, but that, with the neural network recognisers used.
these improvements were under rather more constraints and rather less spectacular than the

HMM literature on adaptation might have lead one to expect.

aker modelling, and since it appeared that the best
for a speaker’s voice — or, indeed, a perfect voice
model — might not have an appreciable effect on recognition perfc_mn-'fmce in the recognis-
ers that were available, work on using recognition as a test application was aban_dane!:l,
Voice conversion was selected as a more transparent target application, as described in

Chapter 6.

Since the goal of the thesis was spe
model that could possibly be derived

5.1. A Glance at the Speaker Adaptation Literature

The work described in this chapter is not, of course, the first attempt at improving the accu-
haracteristics into account. Although there

racy of a speech recogniser by taking speaker ¢ : :
has recently been some related work in this area, e.g. [cox93] which describes the use of
interphone regression models to achieve similar purposes, the novel feature of the current
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work is its exploration of the possibility that a permanent model of the variability of speak-
ers can be built, and that model can be used to make adjustment to a new speaker happen
more rapidly [witbrock92].

A number of speaker adaptation schemes were described in Chapter 1 and in particular n
section 1.4.2 on page 20. In that section, speaker adaptation schemes were discussed in
terms of the models of variation they implied.

The majority of speaker adaptation schemes, and especially the ones that have proved use-
ful in working systems, have involved an off-line step in which the system is adjusted to the
new speaker. This can be done using some fixed enrolment speech that is used to set the
parameters of an acoustic normalisation [e.g. leggetter94, zhao93, lee93, rigol189]. In this
case, knowing which parameters to adjust is reasonably straightforward, since the speech

unit, and the state within that speech unit, is easy to identify for a frame of the enrolment
speech.

In other schemes, multiple passes are made through the speech with the first pass serving
as an opportunity to either to adapt the system parameters immediately [e. g. hild93 “tuning
in”], or to gather long term statistics about the speech that can be used to prepare the system
for a subsequent pass. For example, in their system for the 1995 ARPA HUB4 evaluation,
IBM [gopalkrishnan96] re-estimated Gaussian parameters from the nearest of a set of
speaker-specific HMM recognisers in a preliminary pass through the speech, before doing
the final decoding. The Abbot group at Cambridge did a similar initial pass to set parameters
on a linear normalisation network at the input to their hybrid connectionist-HMM recogniser
[kershaw96]. It should also be noted that Cox and Bridle's RecNorm system [cox89.90,

bridle91] could also be used in this two pass mode, with the first

15ati pass used to estimate the
spectral normalisation parameters.

| Although the majority of schemes have concentrated on adapting to the filter characteris-
tics of the vocal tract (e.g. [payan93]), this is not the only sr:surceur:rf variation that must be
accounltcd for. Blomberg [blomberg89]. for example, describes an unusual recogniser that
uses ahgnment of speech with synthetic reference frames generated by a mode lcm' speech
production. In this system, the synthetic reference frames are generated after tuning parame-
ters of a model of the speaker’s glottal source. In the small e;{periments reported on in this
paper, glottal source adaptation more than halved the recognition error rate

In the current work, of course, the attempt
fied speaker space, for the reasons identified
chief regard in which this work differs fro

ils made identify the speaker within a single uni-
In the chapter on speaker modelling. This is the

: S Wi m Cox’s [cox93] sensible work with interphone
regression models of variability. Because the output of the speaker modelling SFSI*:FH s a

EO:;LIH speaker space, t,he application to speaker adaptation shares similarities with multi-
peaker systems (e.g. [hild93], [watrous93]). In fact. as it will turn out, the course of experi-

;T?llamin' dictated that the majority of this chapter be devoted to an examination of when
ch multi-speaker systems can be made to use speaker information

5.2. Preview of Experimental Sequence

a:l chapter, it became clear that, despite some initial
€ speech recognisers to make use of speaker iden-
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tity information. The bulk of the experimental work described here was done 1n an attempt
to discover the source of this difficulty, so that it could be corrected. In particular, consider-
able work was done to explore the differences between the cases where speaker ID informa-
tion was not of use to recognisers, and seemingly similar experiments reported in the
literature in which it had had a large effect. Some of these latter differences were explained
by the ability of recognisers with a wide input window of complete frames of speech to infer
the information that could have be provided by speaker identity. It remains to be discovered,
however, what speaker characteristics are learned by speaker dependent recognisers that
enable them to perform better than speaker independent systems, and why these characteris-
tics cannot be usefully specified by a speaker identification.

The pilot experiments in using speaker codes in recognition were done using a French
Digits database. In these experiments, described in Section 5.3, providing a speaker code to
an MSTDNN recogniser allowed it to perform substantially better than when it was given an
identical, average, “speaker code” for all speakers. This was a promising rcspltj although
difficulties explored in later experimentation were presaged by the fact that a smular recog-
niser that was never trained to use speaker information had a performance intermediate
between the 5peaker-cnde—using network given speaker codes, and the same netwr::rrk
deprived of them. This was early evidence that the speaker codes were, in part, replacing
information that the recogniser could, if necessary, derive from the speech itself.

Despite this, the partial success of the pilot experiment with digits led to an attempt,
described in Section 5.4, to extend to use of speaker codes to a larger, spelled-word, data-
base. In this case, the speaker information was presented inlwhat_ should ll'lajae been a more
easily digestible form: each speaker was identified by a unique input unit in the netv:fcrk.
Des;_';ue this. the network with speaker information pedomd identically to a sl?eaker inde-
pendent recogniser. A review of a similar experiment with a large database (hild93], sug-
gested that this problem was not unique. However, in work that had, in part, motivated this
thesis. Watrous [watrous93] had found a large effect of speaker ID for a fonpant-hased
vowel classification task. If speaker codes were to be made useful to recognisers, 1t would be
necessary to discover how these tasks differed, and whetlhe:r the conditions that made
speaker ID useful to the vowel classifier could be duplicated in the larger-scale systems.

The original vowel classification experiments had used networks with second—nlrder, multi-
plicative.uconnectinns that allowed the speaker identity to mudu?ate the formant mpt:s. Ea
first experiment in this sequence. detailed in Section 5.6.1, was 1ntcnd_ecl to see whe L 3005
architectural difference accounted for the success of the v!:swd classifier over t.he ordinary
back-propagation network used in the spelled-word recogniser. In [fl:mhl,l f:d trmtrbtl];:h[;gnrz:{
network actually outperformed the second-order network, besting the highest pu

ognition accuracy. . T
Since the point of the exercise was not (0 use speaker identity in Eﬂ“f’g&lh"“‘l o E‘;""?fh:
in the form of a position in speaker space, SOme eyrcpenmetjts followed t z: ?l?] et imw
ability of the formant recogniser 10 Us€ this kind of l_nformgtmn. It was wort ‘l-‘:hl e :nd oy
whether speaker models would be useful, if the salient differences h-e;weend em s
spell-mode recogniser could be identified and mrrrectr:d, The sgeakc_r cg etx}se ;.:; e
den representation of a compression network trained, as described a:'l T‘c ;ona .a;ﬁ.a [ 53[ >
duce a complete set of formant pairs describing phones frnTn i —— df il formation
them. A classifier trained to use this speaker code 10 provide speaker identity inform
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had performance intermediate between a speaker independent recogniser and the recogniser
given speaker identity information. The performance was also dependent on the number of
phones from the speaker were used to form the speaker code.

Since speaker codes were clearly an imperfect, though useful, provider of speaker identity
information, several experiments, described in Section 5.6.3, were done to find out how
much information they would provide. In the first of these. speaker codes were generated by
a pattern completion network that recirculated output estimates of formant values to fill in
missing inputs. A separate network was trained to classify speakers when given this speaker
code as input. This network was able to correctly identify thirty-five percent of the speakers,
confirming that the speaker code contained a substantial proportion of the speaker identity
information, independent of what subset of phones was used to produce it. Further experi-
ments in this section showed that the network using speaker ID to aid recognition was mak-
ing use of more information than speaker age and sex. This was demonstrated by the
examining the way the hidden units that compressed the speaker identity clustered speakers,
and by training a classifier to use a man/woman/child input to improve recognition. These
latter inputs, though, improved performance almost as much as the voice codes had. When
voice codes were derived directly from the F1.F2 values in the speech, by providing these
values in place of speaker ID during training and testing of the recogniser, classification
accuracy was only a little worse than it was with speaker ID. Since the task independent
voice -._:c-des had a similar form to the task dependent voice codes and the hidden unit repre-
sr:mau_ons derived from speaker ID, but the latter representations improved recognition
more, 1t was concluded that forming speaker codes within the target task was a more produc-

tive path to take, and that useful one-size-fits-all speaker spaces would prove difficult to pro-
duce and apply than had been anticipated.

After it had been established that the formant-based vowe] recogniser was consistently and
s;t_mngl}-' helped by speaker information, whether that jnfgn-na[ica was provided in theift::rm
ot a speaker ID or information derived from previous speech, the focus returned to the spell-
mode task where speaker information had been ineffective. The first of the experiments
described in Sectinn 3.7 matched the formant recogniser by restricting attention to the vow-
els, and by using speaker ID inputs. This recogniser, which used three full frames of speech
a3 1ts input, and which may have been affected by the presence of superfluous speaker ID

e disappninting results of the first experiment with spell-
rfurm_ance gam from speaker ID compared to a control,

nei:,—;;:-;: P?LT!L I}E had been established that It was not the use of a ordinary backpropagation
infﬂnnalir; T[- :1 Zﬂ 2 second order recogniser that was preventing the use of speaker identity
n. 1t had also been established that, for the format based recogniser, strong effects

bility was that
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whereas the spell-mode data was presented as frames of melscale filterbank coefficients. An
experiment was done in which the formant values were replaced with synthetic “spectro-
grams’ derived from them. These inputs could be classified almost as well as the original
formants, excluding input representation as a salient difference. This representation did,
however, render the second-order networks unable to use speaker information, confirming
the virtue in simplicity.

The other most visible difference between the databases was that there was simply a great
deal more information contained in the spell-mode input frames than in the two formant val-
ues. It seemed possible that this additional information rendered speaker information less
useful than it was when the formant values only were available. To explore this possibility, a
series of experiments described in Section 5.8.2 explored the effect of speaker information
on classifiers working with reduced-dimensionality versions of the spell-mode data. In gen-
eral. for vowels, lowering the dimension of the input data increased the effect of speaker ID.
In these later experiments, where the networks were constructed to more closely match their
vowel classification task and training speaker set, there was still a very small effect of
speaker information on classification accuracy on unmodified input frames. The most plau-
sible explanation for the success of speaker adaptation in formant classification was that in

lassifier had to use speaker identity to reduce misclassifications,

these experiments, the ¢ :
1d infer most of the same information from the

whereas, with more complete inputs, it cou
data itself.

Sections 5.8.4 through to 5.
entire phoneme inventory. Inte
ognition that was just as strong as for v

8 6 describe the attempt to extend the result for vowels to the
restingly enough, speaker ID had an effect on consonant rec-
owels. and more consistent across representation
sizes. However, when a unified all-phone recogniser was constructed, the effect was greatly
diminished. Analysis of confusion matrices suggested that the recogniser was using the
speaker identity iﬁf ormation to improve performance on vowels at the expense of conso-
nants. This effect was ameliorated by partially separating the vowel, consonant and silence
recognition functions of the network, as described in Section 5.8.6. At this stage, it hgd helen
shown that it was possible to produce an effect, although not a large one, of speaker ldEl'!tf[}f
on recognition of training set speech for a respectably large task. In Section S.S.?, the Ial:n]:r,y
of this effect to generalise to other speech from the same set of speakers was investigated.
Although the effect was still present, it was diminished for the testing data.

Since, even in the case of the formant classifier, task independent speaker cnc!cs had sul?-
stantially less effect on classification accuracy than speaker ID, it seemed unlikely at this
point that they would have a useful effect in the spell-mode tas_k. However, for the sake of
completeness, Section 5.9 describes (W0 attempts to use task mdepe_n_dcnt speaker codes
with this data. As predicted, neither code had a useful effect on recognition accuracy.

Since the following sections serve to describe these experiments in detail, readers may
wish to use the foregoing outline t0 choose which exper{mems to regd about in detail, or
may wish simply to proceed directly to the overall conclusions in Section 5.10 on page 132.
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5.3. Early Application to French Digit Recognition

The earliest of the experiments in using speaker information to adapt a working recogniser
was done in collaboration with Patrick Haffner at CNET' [witbrock92]. In this experiment,
speaker voice codes (SVCs) produced by a recirculating hierarchical phone compression
network were provided as additional input to various layers of a multi-state time delay neu-
ral network (MS-TDNN, described in [haffner91]) that had been designed to recognize tele-
phone quality French digits.

Training and testing data for the experiment consisted of connected sequences of French
digits recorded over the French telephone network. Each speaker uttered. on average. nine of

the ten French digits. There were 3 540 spoken digits in the training set and 3 335 digits,
from different speakers, in the testing set.

The two dimensional SVCs for these experiments were generated off-line, using recircu-
lating completion networks similar to those described in the previous chapter. In this case.
however, since the vocabulary was very small, the units modelled by phone pronunciation
codes (PPCs) were not whole phones. Instead, each spoken digit was broken into five states
using an accurate HMM recogniser available at CNET, and the variation in each of these
fifty states, together with silence, was modelled separately”. These models of variation in
acoustical states were combined into a SVC by a five-layer bottleneck neural network using
the recirculation scheme in which missing inputs are filled in using estimates from the out-

put Iayer.r These resulting SVCs were averaged over the entire utterance for each speaker
before being presented to the MS-TDNN recoeniser.

~ The S‘f’C was made available as additional input to the MS-TDNN usine two additional
input units, fully connected to two additional hidden units, that were in turn connected to
every unit in the MS-TDNN. While the information from the SVC w
in the MS-TDNN during training, during testing
average value across speakers. )

: as available to all units
it could be replaced, for a given layer, by its

5.3.1. Performance results on digit recognition

Table 20 gives the performance of the M S-TDNN w

ith the SV rai ansatl.
able (X) to each of the three hidden layers Capptosd C available (v') or not avai

mately corresponding to acoustic, state,

1. CNET, the Centre National d'Enyge ¢lé Te

French national telecommunications T;‘:;St:':é:;:“hum»mﬂus. PR BT o s R e ik e
2. Since modelling variation in states,
ous vanation, it would be desirable if §
Into acoustic states was not available

like the nonlinear time warp described previously,

L could be done with other databases. This was not e S ity

possible because an accurate division
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and word level processing) of the MS-TDNN recogniser. The estimated standard deviation

Acoustic State Word | %Error | s.d.

X X X .77 | 023
X X / 1.62| 022
X v X 1.74 | 0.23
X v/ % 147 | 021

.H / X X 17| 0.19

I
7 X v/ 14| 018
/ J/ X 1.11| 0.18
7 / v/ 099 | 0.17

Table 20: Error rates given are the percentage of digit misrecognitions
on the test set. The marks in the column to the left specify which of the
three levels of the MS-TDNN the SVC was made available to during
testing. When the SCV was not made available, to a layer, it was
replaced with the overall mean value of the SVC across all speakers.

for each of the measured error rates is also given. This figure was calculated by assuming
that the digits were identified as correct or not according to a binomial distribution. The
probability of correct identification (p) is equal to the complement of the given probability
of error (g). Under this assumption, the standard deviation of each figure is estimated by

Jnpg , where n is the total number of digits in the test set. As a percentage error, this is writ-

ten as %E

There is a general trend evident 1n the data that the more places in the network the speaker
code was made available, the better was the recogniser performance. The most substantial
improvement occurred when the Speaker Voice Code biased the 1st hidden layer, which is
chiefly responsible for identification of acoustic features. At this level, the most straightfor-
ward use the MS-TDNN could make of the SVC would be to effect an acoustic normalisa-
tion, using the speaker information to separate out the acoustic variability due to speaker
differences from that relevant to the recognition task. The second layer of an MS-TDNN
combines acoustic features into state scores, and the speaker model could influence the rela-

tive importance of these features. The third layer combines state SCOTes into word scores, so

any influence the SVC had here represents, approximately, a transition penalty for a state.

rm information about a speaker’s voice encoded
in the SVC was. as intended, relevant to the recognition task, and that it was relevant to sev-
eral components of that task. Most importantly, the speaker code was able to i_nﬁue:llce_ t_he:
acoustic level of the MS-TDNN, enabling it to differentiate some of the acoustic variability
due to speaker differences from the other sources of variation with which that variability 1s

usually confounded.

This experiment suggested that the long-te
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5.3.2. Speed of SVC formation

While the pilot experiment described above indicated that the SVC' could supply u_seful
information to this recogniser, it did not test for all the qualities the SVC had been designed
to have. It was still necessary to verify that the SVC could be formed from a small anmum‘of
speech, and that it could be formed from speech other than that it would be used to recognise
and still be useful. In the previous experiment, the SVCs were formed from the entire utter-
ance to be recognised, which was a somewhat unrealistic test, since the SVC formation itself
depended on the speech being used having been labelled already.

To verify that the SVC could be formed from a subset of speech smaller than the whole
target utterance, and that it could be formed from different speech than that which it was
used to recognise, the experiment was repeated. This time, only the last four digits (of the
nine total) from each of the 383 testing speakers were recognised. The SVC was either
applied to all layers of the recogniser, which had been trained using SVCs derived. as
before, from entire training set utterances. or not at all. The SVCs used in testing were also
derived from only four digits, either, as in the previous experiment, derived from the four
digits to be recognised, or from the first four digits spoken by the same speaker.

The difference in recognition error rates. with SVC available, between Tables 20 and 21
seem 1o suggest that the final four digits from each speaker were easier to recognise than the
first four, although this difference was not significant’

- This difference makes comparison a
little difficult, but it is clear in Table 2] that the

SVCs derived from only four digits were not

Source of SVC % Errors s.d.
No speaker voice code 1.50 0.31
First 4 (different) digits | 0.85 0.23
Last 4 (same) digits 1 0.78 0.22
All nine digits 1 0.99 0.17

Table 21: Testing set
from each speaker,
being recognised,

performance of the system for the last 4 digits
with the SVC derived from either the four digits
or from another four digits from the same speaker.

a significantly less useful source of speaker information as those formed from nine. There
was also little difference between recognition scores for the final four digits from a speaker
whether recognition was done with the aid of SVCs derived from the digits being recognised
or from a different set of four digits from the same speaker. To the extent that the SVCs were

at?lc: to affect recognition accuracy, they satisfied the goal that SVCs derived from a sample
of speech should predict the sound of unheard speech from the same speaker.

3. The difference is less than on¢ standard deviation, and therefore cannen igni
_ 5 sibly be f
Argument 15 made, it will not be explicitly stated, PSR W paa e ot
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5.3.3. Discussion

For a network trained to use them, the SVC input resulted in a 43% decrease in recogni-
tion errors on new speech. Although this seems impressive, these recognition results must be
viewed in comparison with the 1.1% error rate achieved by the best similar MS-TDNN sys-
tem trained with ordinary non-speaker-dependent biases. Although this latter performance
was not as good as that of the speaker-biased recogniser, it was better than that of the biased
recogniser deprived of the SVC. The good performance of the speaker independent recogn-
iser could be due to the fact that the ordinary MS-TDNN still had available to it a considera-
ble span (>100ms) of speech context from which it could derive an approximate speaker
model. Since. in the current system, the MS-TDNN had speaker information provided to it
by the SVC. its performance suffered when it was deprived of this speaker information.
When the speaker code was available to the whole system, as it was during training, the rec-
ogniser did somewhat better than the ordinary MS-TDNN.

At the early point when this experiment was done, the practice of using speaker ID in_put_s,
via a bottleneck, as an idealised speaker model, had not yet been adopted. This practice 1s
useful, since it provides information both about the best-case gains from speaker infn_rma-
tion obtainable from a given recogniser, and about the relative level of performance achieved
by an SVC system in extracting this speaker information. Unfortunately, the programs and
data neces _~;u'rj.- to go back and do that experiment were proprietary to CNET and are no
loneer available to the author. If they were, and the experiment could be done, one would
L“&p::ct, based on the outcomes of other experiments, that the performance would be bi:::uer
than, but not qualitatively different from, that reported above for speaker models derived

from data. |

These preliminary experiments seemed to indicate that the voice code was usefu.]_ in tuning
a recogniser to a new speaker, but that the improvement was not sub;tantzal, ﬁ:spemally when
compared with the performance of a recogniser with no spc;}kar information whatsoever
was fairly clear, even in this early experiment, that, for the most part,
the speaker model was replacing information that could h.aw: been extracted from the {;aw
input, the consequences of this observation for adaptau.{m based on models related to
speaker identity were not yet fully apparent. The next step in the experimental strategy was

to try applying the techniques to a larger database, with more speech from each speaker, in

the hope that more substantial gains in recognition accuracy could be realised.

available. Although it

5.4. Scaling up to Resource Management Spell Mode Data.

Following the moderate success of the experiment applying the speaker model to the French

Digits task, it seemed appropriate (0 measure the performance of va:antlf of t?e rnarcllzi
applied to the larger Resource Management Spell Mode (RMSpell) data 35‘3'- n 3 p]ted
experiment for this new database and in subsequent experiments, the P;ac':lcﬁ “;f - Updel
of using 1-from-n* representations of speaker ‘1dem|t}r as a sort le idea 1;; sipe ;: mo .
giving perfect information about speaker identity. Performance with this ideal speaker co

4 A l-f +ker representation is one where each speaker is represented by an input unit, and a distinct input umit activa-
-from-n speaker rep

tion value is used to distinguish the current speaker
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would serve as a basis for comparison with the performance of various speaker models
derived from actual speech. For the pilot experiment using the new RMSpell database, rec-
ognisers® were trained with speech from three sentences from each of 20 speakers, both
without and with 1-from-n speaker identity input. The task was frame-by-frame phoneme
classification, for the entire phoneme inventory (vowels and consonants) of the database.

The hope that a larger, more realistic database would more clearly demonstrate effective
adaptation by speaker biasing was not borne out. Training performance for the recogniser
with speaker identity available was indistinguishable from that of the speaker independent
recogniser, at 81%° correct frame classification. The prospects were dimming for successful
adaptation by using speaker information as extra input to a quasi-speaker-independent rec-

ogniser, as opposed to retraining the system’ for new speakers, or modelling each speaker
separately.

Herman Hild [hild93], who was at the time a visitor in the Neural Net speech group at
CMU, had done some related experiments with multi-speaker recognition when developing
his high-accuracy recogniser for the RMSpell Database. In these experiments he had applied
a variety of speaker adaptation techniques to a high performance neural net based recogniser
for spelled letters. He used either a speaker identification network, similar in principle to the
speaker models investigated in this thesis, or a tuning-in procedure like that described by
Cox and Bridle [cox90.bridle91], to produce speaker specific additional mputs. These inputs
were used to bias a speech recognition network, or to combine the outputs of either com-
Elete networks, or speaker specific layers in a larger network, using multiplicative connec-
tions. In experiments with few speakers, using the six speaker CMU Alph database, the
methods involving combining speaker specific networks or subnetworks were successful.
However, biasing a single network with speaker identity information was only useful when
Fhe sgcal_(er Was in the training set, and explicitly identified. Biases produced by the speaker
identifying network were not significantly helpful, and neither were biases identifying
speaker gender. v

On the larger RMSpell database, with seventy

L0 -four male speakers clustered into six
speaker groups, even tuning in was not helpful. Fo

r this case, with many speakers used, the
tuning-in of a cluster mixture separately
bels for the tuning-in speech, and a rela-
s) for each new speaker, and, in any case,
on, the modest success achieved does not

f::rr each phoneme. Since this required phoneme la
m-e];; large amount of speech (five spelled word
required tuning in, rather than mode] identificati

satisfy the criteria for successfuy] speaker adaptati : - is i
: oo ptation that were ad S
'N N0 Way a criticism of [hild93], the work repo e sl Thisd

' : red in which is both valuable and interest-
Ing, particularly since it points out the sam : ; _ _

€ sort of diffi
present work. ifficulty in adaptation reported in the

5. The recogniser perimental neural net/Vitarhc
P el i Merbi recogniser that used separate nets for each phone state, and that

ing the next state. Work on this Wu;":::-‘f using “Emmncm bmahgnmn Path to decide what input to use in recognis
the only one using it that will be reported in this M“i*" allow concentration on Speaker modelling, and this experiment is
ﬁTnnuhinllm-r-I%mm:m“ : ;

= £ In accuracy between
7 Thmns.memmmngpumm:susingaq TR epochs.
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5.5. The utility of speaker Information

Although the initial application of the speaker model to a real-world speech recognition
task had shown some promise, the improvements had been less than spectacular, and review
of a similar experiment [hild93], described above, had suggested that this problem was not
confined to the current work alone. Since one of the assumptions driving the work had been
that substantial improvements in recognition accuracy could be obtained by giving a recogn-
1ser speaker-specific information, it was important, if speaker adaptation was to continue to
be used as a test bed for speaker modelling, to establish whether the problem lay in the
speaker information itself, or in the recogniser’s ability to use the information.

One of the major motivations for the belief that speaker information would help substan-
tially had been Watrous's [watrous93] paper on speaker adaptation using second order con-
nectionist networks. The experiments reported in that paper used phoneme recognition on a
multi-speaker vowel database as a model for the speech recognition task. Replicating these
experiments, using the SVC speaker modelling method for specifying speakers, presented
itself as an excellent way to test whether the speaker model was limiting performance on the
digits task, or whether the expectations engendered by Watrous's vowel discrimination work

were not justified for other reasons.

5.6. Peterson and Barney Database Experiments

The Petersen and Barney (PB) vowel data [petersonSZ,watmusQl] 1s a datahasef consisting
of formant values for two repetitions each of ten vowels spoken by ':r.event}rr-sm speakers
(thirty-three men, twenty-eight women and fifteen children). Because it contamsra substan-
tial amount of speaker based variability within a compact database, and because it has been
used to test other adaptation schemes, it was appropriate to use it as a \'ﬂhl.ClE for investigat-
ing why the speaker adaptation techniques app!iad to larger databases in the previously
described experiments had shown, at best, limited success.

The first stage of this investigation was a replication of the simp]e a:_:laptatic_n ;chema thgt
had failed for the RMSpell data. Was it possible to use speake; identity f:xpitc:tly as addi-
tional input to a network and obtain an improvement in vowel discrimination’

5.6.1. Speaker ID Biases

using the model of speaker variation as an adaptation

To provide a baseline for experiments ; ‘
source, initial experiments were done testing classification with a) no speaker dependent

information and b) complete knowledge of speaker identity. Etpeaker idﬂr:uty was made
available to the net either as a speaker dependent bias, or, following Watrous's PI‘&;UCE, azsga
modulatory input via second order units. The four conditions tested are shown in Figure 23.

In the first, Control, condition, the net was trained to output "’“WE! labels given ;hggﬂ
two formants. normalised to lie between 0 and 1, as mput. In the Bias and Secon er

conditions, the network was told which of the seventy-six speakers the formant values were

from, using a 1 from n representation via a two unit bottleneck. In_ thf; Bias condition, ;he
Gulpl;t of these units fed normally into the ‘first’ hidden layer, while in the Second Order
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9]
F1F2

Figure 29: Architectures used for the Peterson-Barney experiments. Linked grey
boxes surround corresponding units. The Bias Direct condition was the same as the
Bias condition, except that like the formant inputs, the seventy-six speaker ID inputs
were connected directly to the four hidden units.

condition, second order units® were used to form a linear combination between the two
~compressed speaker ID” unit activities and the formant values. The second order units were
connected conventionally to the hidden layer. The Bias Direct condition omitted the bottle-
neck between the speaker ID input units and the hidden layer.

The nets were trained using the backpropagation algorithm with momentum. All networks
had two input units (first and second formants), four units in the first and seven in the second
hidden layer, and ten outputs. In each case, training was done for 6 000 epochs. Following
the practice used in [watrous93], asymptotic training performance was measured: reported

results are the average of training set classification accuracy after epochs 5 600, 5 800 and
6 000.

The classification performances of the networks are displayed in Table 22. It is clear from

h
Network % Correct
Control 17.98%
Bias 95.83%

Bias Direct 98.40%

Second Order 92.52%

Table 22: Results for Various Architectures for Speaker

Adaptation applied to the Peterson and Barney database.
The networks are described in the text.

this table that substantial performance gains were available from speaker adaptation on this

8. Although four second order units are shown, in fact nine were used, since two constant bias units are also necessary.
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database, and that these gains were available even when speaker information was provided
as simple additional input to the net. Architectural differences between the networks that
were used in the previously described experiments and those used in Watrous’s work, then,
do not account for the unexpected failure of speaker information to affect recognition per-
formance on the RMSpell databases. In fact, Watrous’s suspicion [watrous93] that “in the
ltmut, the approaches [normalisation using second order nets, and direct modulation of the
classifier] may be equivalent” was more than confirmed. The simplest means of furnishing
speaker ID information to the PB vowel classifier, furnishing the ID as extra input, produced
the largest performance boost, slightly exceeding the best classification performance
obtained in the original [watrous93] paper.

Specialised Networks for Phone Classification - a brief digression

Because earlier pilot experiments, not reported here, had suggested that adaptation infor-
mation was more salient, and therefore more useful, to networks specialised for particular
phones, an comparison was made between this condition and the default of a single classifi-
cation network. The experiment reported above was actually done in each condition both
with the usual single net, trained to classify among the ten phones, and with ten distinct, one
output nets, trained to do the classification task collectively.

Unless otherwise noted, training was done for 6 000 epochs, and repnrteq Pcrfnnnar_lc:e is
the average of tests done after epochs 5 600, 5 800 and 6 000. All other training conditions

were the same as specified above.

Single {.ll]' m:tput} lelliple-l output e
Speaker Info Net. Nets
Control TT.QE%. ?.E.TT%- "
Bias 95.83% 97.55%"
Bias Direct 08.40 97.63
Second Order 02.52% 88.95%

Table 23: Baseline figures for effects speaker hia_s in Petersen/Barney task.
Four methods of providing the speaker information to the networks were used,

for both a single recogniser, and a set of cooperating phoneme-specific

recognisers.

a. Average of epoch 3 800, 4 000, 4 200, Training was stopped early

Although the recognition performance for the n?u]tiplc netwgrks was slightly higher [;n Fl-;e
Control and Bias (via 2 hidden unit) conditions, it was lower in the other twor:]a;serg_ffm t
ing the network into phone identification specialists d:d, not produce substan?l dy if +.=.-,ra.r:nf
results from the usual unified classifier, and was not continued. A_less ﬁne-gfame variant o
this division was, however, used in some Jater experiments that will be described towards the

end of this chapter.
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5.6.2. Using Speaker Models to Produce Biases

As an test of speaker model formation for this database, networks were trained to produce
an F1, F2 pair for each phone for a speaker, given a different random sample of phones from
the same speaker. Which of the two repetitions of each phone was used as the target was
chosen at random for each pattern. Zeros were placed on the inputs for unselected input
phones. The object of the exercise was to produce a network that would implement a model
of voice variation capable of inferring the sound of target phones from an incomplete sample
of phones from the same speaker. In doing so, the network would form an SVC for the
speaker in its “hidden” units. Since variation in the target patterns for a speaker was inde-
pendent the choice of which of the speaker’s phones would appear 1n the input pattern, this
system would be expected to produce a model of the speaker's voice which was largely

independent of which subset of phones had been heard, and which was robust in the face of
unheard phones.

The compression networks used in model formation each had twenty input and output
units, and three hidden layers of five, two and ten units respectively. The two unit layer was
the source of the SVC, and the five and ten unit layers served respectively to encode and
decode this SVC. Training was done using a leaning rate of 0.0001 and momentum of 0.8.
Training was done for 15 000 epochs in three blocks of 5 000 epochs each. In the first block,
weights were updated after each pattern presentation. In the second, they were updated after

every thirty-nine patterns, and in the third after an entire epoch of 1 520 patterns had been
presented.

P_er{}dels were formed in three conditions. The “bias” case was strictly feed-forward. In the
“bias recirc” case, phones missing from the input pattern were replaced with their estimates
from the output during production of SVCs, The recirculation process was repeated five
tlimes before the SVC was extracted for use in adaptation. In the last condition, the recircula-
tion was done during training as well as testing, with error gradients accumulated on each
cycle_. For this condition, a lower learning rate of 0.00001 was used. For each of the three
cundltl_nns. networks were trained for every case in the range from having one phone placed
on the Input to having examples of all ten phones from the speaker on the input. Thirty SVC-
producing networks were generated altogether. .

To evaluate performance. a set of twent

¥ SVCs from each netw k ach
speaker. These SVCs were used as additi Ork was produced for e

onal inputs to conventional four layer classification

! » [en output units, and four and seven units in the first
and second hidden layers respectively. The networks were trained for 6 000 epochs, in three

S;ages of 2 000 epm::hs eaf-:h. In the first stage, weights were updated after each pattern, in
the second, every t_h:rt}r-mne pattemns, and in the final stage, every complete epoch of 1 520
patterns. The learning rate used was 0.00] and the momentum was 0.9
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Results

Table 24 gives the classification performance on the training set of each of the thirty net-
works after the completion of training.

Number of phones presented in each input pattern
SVC used

1 2 3 4 5 6 7 8 9 10

Bias 853 [ 878 | 87.9 |89.0 | 893 | 888 |89.2 |89.6 | 89.9 | 89.6
Bias recirc 830 | 847 | 845 | 859 | 868 |88.2 | 88.8 |88.7 | 903 | 89.6

Bias recirc 85.1 | 87.8 | 884 |872 |87.7 |88.0 | 884 88.9 | 89.1 | 89.3
(train + test)

Table 24: Training set classification performance for Peterson and Barney Data. A
description of the three conditions is given in the text. The figures in ﬂlﬁi‘: cells are
percentages of correct phone classifications from the input formant pairs.

Overall. these results were clearly better than the completely speaker indePcndent_classi—
fier, which provided a baseline phoneme classification accuracy of ?E‘F_’a, but, as ml_ght be
expected, did not reach the level of performance (98.4%) of a natu.rurl": 'T_:rmned to tune its per-
formance to completely specified speakers in the “bias direct” condition of the experiment
using speaker ID. y

No particular benefit seems to have been gained from the tc{:_hniq_ue of recirculating esti-
mated phones back onto the input during speaker code production, in fact, the performance
was slightly better, on average, for the unrecirculated speaker model. mc models did, h-:.:rw-
ever, impr(;ve somewhat with increasing numbers of phones used to build the SVCs, going
from an average of 84.5% correct when one phﬂnﬂ was used up to an average of 89.5% cor-
rect when all ten phones contributed information.

Discussion

Speaker codes formed from formant pairs representing phones from the same spea:er
were an effective source of speaker information for speaker adaptation, pr?vldlng r_nﬁrcl_tﬁag
50% of the error reduction available using speaker ID. When used with thcf&‘.lmp i ef
speech data represented by the Peterson and Barney data-set, the hope thaxha useful SPa::fg_
speakers could be formed seemed to have been justified. Ut s ‘-‘-'El"i:dm er-
ciently many speakers represented in the data-set to test what_her the neth;k; T:i]ninge“
alise, improving classification performance for speakers outside the set us : ikt 25
retraining had been shown 10 be effective for the Peter-

son and Barney data, whether the speaker infonn_atinn was presenteddas prcakﬂa; r?tfc?; a'tstg
speaker code, but had been ineffective when applied to the ms?euan?;; AS% P
discover the salient differences between the two databases was warr .

Since speaker adaptation without
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Before proceeding to a description of that attempt, several more experiments that were
done to explore the characteristics of the speaker models built from the Peterson and Barney
data will be described.

9.6.3. Exploring Speaker Codes for Peterson and Barney
Did Speaker Models do Speaker ID?

Since the highest (training set) performance was reached when the net was able, using
Speaker IDs, to distinguish perfectly between speakers, it seemed worthwhile to find out

how well the adaptation codes resulting from neural net compression served to support this
distinction.

The speaker codes used for this experiment were ones generated in the bottleneck layer of
a five layer net, with twenty inputs, five units in the encoding layer, two units in the speaker
code layer, ten units in the decoding layer, and twenty output units. The compression net-
work was trained with a learning rate of 0.00] and momentum of 0.8 following a rather
complicated training schedule involving varying update frequency, number of phones pre-
sented to the input and the target, and the number of times outputs were recirculated back to
missing inputs”. No error was backpropagated from target units for which training values
were not available. Speaker codes were generated after training by running the network in
feed-forward mode with randomly chosen phones from the speaker placed on the input so

that on average, 60% of the Input units were used. Twenty speaker codes were generated this
way for each speaker.

To test the usefulness of these speaker codes as a means for speaker identification, another

net was trained to identify the speaker, given the (gender independent) speaker voice code.

This was not, apparently, a simple task, since a number of attempts were required before a
successful network architecture was found. A four layer network with bypass connections
Wwas trained to activate an output unit corresponding to one of the 76 input speakers when a

was placed on the input.'® After
: el _ 3.3% correct speaker identification
over the 1 520 input patterns, suggesting that the speaker voice codes the network had

fnrmed were at least somewhat effective at capturing the speaker’s vocal characteristics.
independent of the subset of vowels used to form them,

Did the Speaker Models model Sex and Age?

Since using the speaker ID as a bias gave the highest recognition performance, 95.8%, of

any of the networks employing a bottleneck, it was of interest to examine the representations

formed in the hidden bias units. These were plotted, labelled for the three main speaker

groups (man, Woman, child), in Figure 30. While these groups clustered, they were not dis-
Joint, suggesting that these groups do not represent the best possible division of speakers

9. The aim behind this schedule for what it's worth, etwo
_ . was | pattemn completi iour i
Details of the schedule are found in Appendix F e R TR >
10. The network had wo INpuls, seventy six oy is i i
o o tputs. and ten units in each of two hidden layers. The leaming rate used was 0.01
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Figure 30: The outputs of the two hidden units through which speaker ID biases were
présented to the “Bias” network, labelled by speaker class. Although much of the
variation in the learned speaker representation was due to speaker class, the
variation within the classes, and overlap between the classes, suggests that the
classifier could make useful distinctions between speakers that extended beyond class

alone.

the groups did not map only onto a single posi-

with respect to vowel separability. Moreover, ! :
: : information beyond group membership which

tion in bias space, indicating that there was
was used to separate the vowels.

Speaker Models Compared to Sex and Age Information

e was clerthat most ofhe asion 1 he e el B T P S
ender and age. What was less clear was how UScitt ‘ s ;
Epcaker ID wis for recognition. To answer this q}lest:un, an expenme::{tj S:E]];L t::nl ;:1:; :-E
which speaker IDs were provided was done. Using three input uzll;tsmaximal L
whether the speaker was a woman, a man or a child allowed it to m f.:t S tilie o
group information, and the difference in performance between 10 PERREE PR L
full speaker ID would indicate what proportior e speakﬂt: at all.;nin set and number of
variation other than simple group membership. Ap?n fn.)m e ;at segd for the speaker ID

input units, the network and training procedure Was e o e

' ' hidden units, to the first hidden layer
b : three eroup IDs were added, via two h the .
0;‘&: ;_1;5\:’;2:;: };ifi:scrimiﬁram F:letwork with two formant inputs, four units in the first hidden
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layer and seven in the second, and ten phone ID outputs. Training was done for six thousand
epochs with a learning rate of 0.001 and a momentum of 0.9.

The performance, measured as in the other experiments, was 87.4%. This performance is
substantially less than that of the network with speaker ID inputs, indicating that there are
additional learnable characteristics of speakers that can improve recognition accuracy. How-
ever, the figure accounts for almost, but not quite all of the effect of the speaker voice codes
derived from speech.

This result is enlightening. Although, for this data-set, relevant speaker information can be
of value in the task, this value is only fully realised when “relevance” is defined directly by
training in the context of the task. Task independent speaker codes, derived simply by exam-
ining the variation between speakers, provided, in essence, only the ability to distinguish
between men, women and children, a task not usually considered particularly challenging.

Model Types: Neural vs. Statistical Models

In the chapters on model formation, the utility of models based on hidden representations
formed by a compression neural network, as opposed to other models of variation, became a
matter of doubt. To continue that investigation, a comparison was made between a net
adapted using the SVCs from the compression network acting on examples of all ten
phones, and SVCs built using the classical methods of lowering the dimensionality of a

data-set: principal components analysis, and canonical discriminant analysis using “male”,
“female” and “child” as the target group labels!"

The forty element vectors representing all twenty phones from a speaker (two utterances
of ten phunesreach] were projected onto the first two directions of maximum variation and
group se_paratmn respectively for the data, and those values were supplied to networks in a
manner identical to that used for the compression network based speaker voice codes.'?

Speaker Info Pe.rformance
No Speaker Info 77.98%
SVC Adapt Bias 89.6%
Principal Cpts 88.64
Canonical Disc 88.00%

Table 25: Comparison of Neural and Statistically derived

Speaker Biases. All three biases had imil ili i
- 4 a similar abil ove
classification accuracy, RAEEHY I b
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All of the speaker codes produced approximately the same improvement in recognition
accuracy, confirming that the compression network used had not been able to find a substan-
tially better than linear encoding of speaker characteristics. The CDA projection designed to
maximise the separation of the speakers into groups of men, women and children provided
as much, or almost as much, useful information to the classifier as the techniques that
attempted to retain all the sources of information.

This result, together with the observation above that provision of group membership infor-
mation directly to the network led to similar recognition accuracy, suggests that the only
useful information that can be easily extracted by these variational methods is that pertain-
ing to group membership. The substantially better performance of the classifiers with
speaker /D information available, though, suggests that there is more consistent variation in
speaker’s voices, relevant to the classification task, than this. The next experiment is an
attempt to extract that information directly from the voice.

Raw speaker voice information

Since biases derived from speaker ID were so much more effective at improving classifi-
cation accuracy than the biases derived from voice information by variational methods, it
was worthwhile to see whether the difficulty in the latter case was that the speech, as such,
was inadequate as a source of information, or whether the problem was with the methods

used to extract the information from the speech.

To this end. a net was trained with the objective of producing the values that had appeared
as “bias unit™!? activities, in the network using speaker ID inputs, directly from voice infor-
mation. The three layer network used had twenty input units — two for each‘phﬂne, ten hid-
den units, and two output units. Training was performed on a ratht?r complicated schedule
detailed in Appendix G. The biases estimated by the outputs of this networ‘k were use_d to
provide adaptation input to a phone classifier of exactly the same type used in the previous
experiments. As a control, a second phone recogniser was trained \_lnth_ the prevPaus]y
learned biases. from the network adapted with speaker ID, as adaptation mnput. This pro-
vided a direct comparison with the estimation of these biases from voice data. It sh:;:ld II:;;
noted that using the Speaker ID based biases was not quite the same using the_ spe ier
inputs themselves, since the biases now passed through Ly hlddeﬂrkﬂfﬂt
Phone classification accuracy using the actual biases taken fr_nm the speaker ID network was
94.26%, and using the estimates of those biases based on voice data was 89.80? .
ed from accurate information about speaker identity per-
formed only slightly more poorly than the classifier using the SPffal'fm IE;‘“I{‘}‘I‘_E";IEE
directly. However, when an attempt was made to de;n'frc this samefm ormi 1:::I T
voice directly, the performance of the classifier was similar to that of networks using
derived using the variational methods. 2o R

While it might be tempting, at this point, to cqnclude that it |sfn_n: the H?Falglf::;:fin:{:
methods that is problematic, and that the speech information {tselt 15 n?:;:ted 5% thegnext
support the production of good speaker codes, this conclusion 1s not W ;

experiment demonstrates.

The classifier given biases deriv

i the classifier.
13. The two hidden units through which the speaker IDs were furnished (o
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A classifier using voice information directly for adaptation

The experiments using raw speech data for adaptation, up to this point, had involved using
that data to construct a predetermined model, and then applying the speaker codes derived
from that model to the adaptation task. In one case, the model involved was one of the vari-
ants on PCA or LDA, neural or otherwise, and in the other case, the model was one previ-
ously derived from adaptation with speaker ID. What remained to be seen was whether a
classifier free to use this speech data in any way whatsoever could learn to derive a code
from it that was effective for adapting the classifier, at least in the context of this greatly dis-
tilled speech data-set. To this end, a pair of phone classifiers were constructed to use the raw
formant values for phones from a speaker as the “speaker code”.

All forty F1,F2 pairs for each speaker were made available to a classification network as
“adaptation information” by one of two means. In one network, they were placed on forty
extra input units that were connected directly to the hidden layers; in the other they were
connected via two extra hidden units in the usual way. Apart from this difference, the two
networks were the same, having forty two units in the input layer, ten output units, and four
and seven units, respectively, in the first and second of two hidden layers.

Trainin_g was carried out in thirty stages of two hundred epochs each, with 1 520 pattern
presentations per epoch. The learning rate was 0.001 and the momentum was 0.9. For the

first ten _traini_ng stages, the weights were updated after every pattern, for the next ten, after
every thirty nine patterns, and for the final ten, once per 1 520 pattern epoch.

The phone recognition accuracy for these two networks is given in Table 26. In both cases,
the raw speech information proved useful to the classifier. whose performance approached,

Bias Presentation Performance
All FIF2 via 2 hidden units 93.75%
All F1F2 direct 94.12%

Tah_le 26: Phone classification performance for networks allowed to
derive speaker information from all available phonemes. Formant values
for all the phones from each speaker were made available to the
networks during classification of a particular formant pair. The network
was able to use this information to improve classification, whether the

twenty formant pairs were made available dj : : .
bottleneck. rectly or via a two unit

but did not match, that of the networks with explicit speaker ID input

5.6.4. General observations from these experiments

Adaptation information derived from the variat; i
: ational : S
pleting partial phone information, PC e dechniques: SVC from networks corn

i A over all phone information for
_ a speaker, and CDA
iiﬂi?:gg sl}eake;:lasses. was approximately equally useful: at most sliFg'ehtly better than
g¢ of gender and age. Deriving a “speaker identity” code from speech information
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provided a similar level of performance. None of these techniques matched the performance
of networks given accurate speaker identity as “adaptation” input, or allowed to use all
available acoustic information from the speaker in a similar manner.

The essential difference between these two cases is that in the former case, the speaker
representations that were formed were independent of the recognition task, but in the latter
case they were formed in the course of doing the recognition task. This observation does not
rule out the possibility of forming stable speaker representations that can be used to improve
recognition, but it does suggest that the mechanism that does so will have to be trained in the
context of the task in which the representation will be used. The ability of networks applied
to this small task to extract adaptation information from speech is a promising sign that this
can be done. Of course, to generate improvements in real-world recognition tasks, the
speaker information that is extracted in this way must exceed that previously available to the
recogniser. The difficulties of ensuring this for data less idealised than the Peterson Barney
set will be demonstrated in the remainder of this chapter.

Despite the disappointing performance of the task independent models, models based on
voice data, when developed in the context of the recognition task, had shown some promuse.
The next step was to attempt to replicate this success on a more realistic data-set: a subset of

the RM Spell data.

5.7. Using speaker information with the RM Spell Database

After the Peterson Barney Experiments, which showed a strong effect for known speaker,
an attempt was made to replicate those experiments using the less processed speech from the
RM Spell database. The first, pilot, experiment used vowels extracted from three sentences
spoken by each of twenty speakers, five women and fifteen men, randomly selected from the

database.

5.7.1. Initial Experiments with Speaker ID using the RM Spell Database.

rained to do vowel recognition, using input

A four layer backpropagation network was t )
consisting of three frames of melscale FFT analysed speech from the RM Spell mode data

base. The speech was presented on forty-eight input units, and there were e1g:t units dl.I:r[]:]ﬁ
first and fourteen in the second of two hidden layers. For the speaker‘ dependent cn? hl m];
speaker ID inputs were fed, via a two unit bottleneck, into the first t:;tifdent;?}’ﬂ- 1“; :irgle]ﬁt
there were only twenty speakers ip the subset of the data}:-as; ufsen d:trab ;::?em usedj
ninety-six speaker ID inputs, one for each of the speakers In the i S e of
The network was trained to activate a single phone output unit, oi:_respﬁn ;?ngce i eteri
the twenty-seven phonemes occurring in the RMSpell data. In this faseéven o,
ment was confined to vowel recognition, only nine of these twenty-s P

present in the training data. i igh
es of four thousand epochs, with intervals between weight

Training was done in three stag ntations respectively. The learning rate

updates of one, thirty-nine and 1 520 pattern prese
was 0.001 and the momentum was 0.9.
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Table 27 summarises the performance of the three networks that were trained. The recog-
nition accuracies given are means calculated over the accuracy at the end of each of the last

three sets of two hundred training epochs.

Percent inputs labelled correctly
Network Architecture
Random pattern order® Fixed pattern order
Control (no speaker ID) 84.1 82.8
Speaker ID as Bias 83.8 82.8
Speaker ID via Second 814 81.7
Order Units

Table 27: Comparison of performance of a control network, with no speaker
information, and nets with two kinds of speaker ID bias. The task was vowel
classification for a small subset of the RMSpell database. Three frames of speech were
available to the classifier as input. In this case, the availability of speaker ID did not
improve classification accuracy.
a. Random vs. Fixed order of presentation conditions represent an experiment to see whether

the order of pattern presentation affected the results. Randomizing the order seemed to help

slightly, but the distinction is not important. Where both ordering regimes were tried in fur-

ther experiments, both figures will be reported without further comment.

Disappointingly in the light of the experiments using the Peterson and Barney database,
there was no performance boost at all from the speaker dependent bias, and second order
modulation of the input patterns using speaker identity actually worsened performance.

5.7.2. Some Simplified Experiments

In the hope that a somewhat simplified experimental setup would demonstrate an effect of
speaker ID for real data, and that this would aid in the diagnosis of the cause of the failure of
the network in the previous experiment to make any use speaker ID, the experiment was
repeated with a smaller input window. In this case, the network was presented with a single
frame of input via sixteen input units. It had four units in the first and seven in the second
hidden layer, and output units for tWenty seven phones, although only nine were used.

Training with a single frame of Input,

» thirty nine, and 1 520 patlem presentations respectively. As in the

through ninety six speaker ID inputs, of which

L]

through a layer of two hidden units, befo i
_ _ : re reaching the recogniser Traini eters
were identical to those in the previous experiment, : i 1t
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The phoneme recognition accuracy, measured as mean classification performance for the
last three batches of two hundred epochs, is given in Table 27.

Percent inputs labelled correctly

Network Architecture

Random pattern order | Fixed pattern order

Simple Pl 73.1
Bias 73.4 73.4
Second Order 72.6 72.8

Table 28: Comparison of performance of asimple classification network, and nets with
two kinds of speaker ID bias, for a small subset of the RMSpell database. In this case,
only one frame of speech was used as input. This lowered performance compared to
the three frame case, but did not render biases effective.

Discussion

The aim of this experiment using a restricted amount of speech input was to make the clfas—
sification task more difficult, and thereby to improve the likelihood that speaker 5nfc:~rmatmn
would be useful for reducing ambiguity. The classification performance was significantly
lower than for the classifier with three frames of input, indicating success in making the

classification task more difficult. .
the speaker-id-based biases did not produce any improve-
k was not able to use the biases to modulate its
ed in the conventional

Despite the increased difficulty,
ment in recognition accuracy. The networ :
classification regions in any useful way, whether they were provid
manner or via second-order units. . .

Although the task independent speaker models had not been ]:fartv:a.llal,rh;r1 e;fectévi:;
improving performance on the previous, Peterson and Barney, database, theyda pmm:r,in
a measurable effect, and models constructed in the context of the task ;cem_;ﬂ 12;: p:]‘t:murkgs
possibility. The failure of speaker identity, itself, to produce an ﬂff*‘-’;‘: zgst‘m e
were applied to a recognition task involving 16 ke llad i d l};ti(:-n as :::- posed to
that the whole enterprise of speaker adaptation by network modu g Y

retraining, might be doomed.

For this reason, considerable effort had to be
ties of the Peterson and Barney task and the RM
ence.

focused on an attempt to identify the quali—
Spell task that might account for this differ-

5.8. How do Database Differences Affect Performance?

i eakers, was essentially similar to that
R S b gt ﬂi]iﬁr was did not help classifiers working

in the Peterson & Bamey set, knowing wg;::l illci:;;d T wady been established that the net-

on speech from the RM spell database. ; ; ek
Worfearchitecture was capzble of supporting the kind of adaptation wanted, remaining p
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ble sources for the differences between the effect of speaker information on classification of
data from the two data-sets included:

* The nature of the input representation: The Peterson & Barney data was repre-
sented using formant frequencies extracted from steady vowels, whereas the
Resource Management Spell data was presented as melscale spectra.

* The number of available parameters: The speech representation for the Resource
Management data was much richer - there were forty-eight or sixteen input param-

eters for the experiments on that database, compared with only two for Peterson
and Barney.

The following subsections describe efforts to investigate the effects that varying the data
representation and the number of parameters used in the representation had on the ability of

phone classifiers to use speaker information.

5.8.1. Input Representation - Frequencies vs. Filter banks

SEEEE EEEEN

Figure 31: Synthetic spectrum formed by constructing triangular “power functions”

with their maxima at the two formant frequencies given in the Peterson and Barney
database. -

The most obvious of the possible culprits for the lack of success with the Resource Manage-
ment (RM) data was the change in input representation from formant values to filterbank
outputs. T-:Ltest whether formant frequencies were somehow more amenable to speaker
a'_iaplauan. synthetic spectra were generated from the Peterson & Bamey data as shown In
Figure 31 ."I_hese sixteen-valued spectra replaced the two formant values on the inputs, and
the recognition experiments were repeated in exactly the manner as before '

14. This is plausible, since a shift in fundamental frequency

only by a linear transform in the filter bank representation can be represented by addition in the formant representation, but
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Recognition accuracies for networks trained with this kind of input are given in Table 29.

s, ity
Simple 79:
Bias 94.0
Second Order 79.1

Table 29: Recognition accuracy on Peterson and Barney formant
pairs converted into a synthetic spectral representation. Ordinary
biases inputs were nearly as effective with this represenation as with
the raw formants, but the second-order biases were rendered
ineffectial.

Although this representation seems to have prevented the second order networks from mak-
ing any use at all of the speaker ID information, ' it had very little effect on the normal
“bias” networks. Clearly, the formant representation offers no great advantage over the more
usual spectral representation, as far as speaker adaptation is concerned. The fact that a spec-
tral representation was used for the RM database is unlikely to have been the reason speaker

adaptation was ineffective in that case.
5.8.2. Number of Input Parameters - Reduced Input Representations

The Peterson & Barney data consisted of just two formant values per phone, an extrf::mely
parsimonious representation. It seemed possible that the RM_speech da_ta, with sixteen
meaningful coefficients per frame, was able to support a p.ilrlltlﬂl:l‘ﬂf the input space into
vowels sufficiently good to make speaker identity of marginal utility. In order to test this
hypothesis by reproducing the training conditions of the Peterson Bam_e}r Elata as closely as
possible, an experiment was done using input pattems producca{l by projecting RM data onto
their first n canonical discriminants. The discriminant funct_mns were built using vowel
classes as the groups to be discriminated. Again, conditions with both one and three frames

of input data were used. 1 |
The vowel discrimination networks used # nput units. four units in the first and seven n
the second hidden 1ayer"5, and n output units (one for each of the vm:is j;;; ialll::;i:g;
seven for previous experiments). For the biased cases, twenty extra spe dr_ bor:g g
presented to the network via two hidden units. The database was presentec in : 3
tional"? and randomised orders. Training was done in three Stage: of two thousand epochs,

with update intervals of one, thirty-nine and 1 520 Epochs respectively.

i nably well when the task (o be per-
utmmnrd:rumupcrfﬂnmdmm e
input (i.. with formant inputs) they seem Lo tw; pﬂﬂtl!:’tlj' harmful
res the wisdom of using a simple model, like vanilla backpropa-

15. It is interesting that this should be so. Although
formed was more or less exactly a linear transform of the:
instead of just neutral, with respect to other tasks. This reinfo
gation, until one is forced to use a more complex one. .

16. half the numbe {nf b dden units used in the preliminary experiment (% 51]3'”
17. That is, the order in which they appeared in the training ct file., In particular,
phones from a single speaker were adjacent.

all input patterns from asingle phone, and all
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One Frame of input

The first condition was the projection of a single frame of speech onto lower dimensional
representations identified using CDA. In addition to the fifteen reduced-dimension cases, a
network (labelled as n=16) was trained using the raw input frames directly, for the purposes
of comparison.

Table 30 gives classification accuracies for both the speaker-biased and unbiased networks
for each dimension. The percentage error reduction produced from speaker ID is displayed

Input Dimension Raw

Case |1|2|3|4ls5|6l7!8]90lw0lnlz]iz] @®

— 1 ===
Bias 660 | 705 | 736 | 740 | 745 | 747 | 751 | 750 | 754 | 752 | 750 | 759 | 760 | 763

Simp]e 593 | 66 686 1702 | 709 | 718 | 719 | 7201 | 721 |8 | 728 | 724 | 728 | 736

—
% Redn 165 | 132 | 159 | 128 | 124 | 103 | 114 | 104 | 118 | 121 | 81 127 | 11.8 | 102

Table 30: lmpr?ve:nent in recognition performance from speaker bias for RMSpell
vowel data projected onto various dimensions of canonical discriminants. These

figures are for networks trained with randomised training pattern order.
a. This table gives the result for randomised pattern presentation only.

in Figure 32, with number of canonical variants on the x-axis, and performance at the end of
training on the y-axis, both for the randomised training set order of Table 30, and for the

Percentage Error Reduction from Speaker Biases vs. Input Dimension

17
16 } Randomised —
15 ¢ Unrandomised - -
14 }
13 ¢
11 ¢
10
8 " - 5 ;
0 2 ; - :
4 6 8 10 12 14 16

Figure 32: Reducing the dimensionality of the

: input i
increase the effect that speaker ID information has put representation appears to

on recognition accuracy.
original pattern order. The graph suggests two things:

that there is some imp ' o
rovement in recognition accuracy!® ¢ :

i : 0 be

speaker biases, for inputs one frame wide, and, y gained from

that a possible source of the difference in the effect of speaker bias between the

18, Agaiu,asinthe?u:mnmdﬂmeydma,mﬂmtﬂimngdm
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RMSpell and the Peterson Barney data is the dimension of the data representation,
since lower dimensional representations (in Figure 32) show stronger performance
gains from speaker biases.

While the unbiased performance on raw frames (16 inputs) was almost identical to that in
the preliminary experiment described in §5.7.2, in this case the biased network showed a
modest improvement in recognition accuracy. However, despite the gain from speaker bias
in this case. the best biased recognition performance was still lower than the 84.1% accuracy
achieved in the preliminary experiments by a network with three frames of input speech
available (see Table 27 in §5.7.1). This suggests that speaker information, even if it increases
training set performance, may provide no more useful information than a recogniser could
extract directly from a little more speech.

Three Frame Input Case

To get some measure of the extent to which the success of speaker rm:-fiulatiun in ﬂ'fB last
experiment was simply due to the impoverished nature of input from a single fl:ame, it was
repeated using three frames of speech as input o the CDA projection. Thn:se inputs u:iere:
generated by pasting together barrel-shifted versions of the FFT file u_sed in the previous
experiment. Table 30 shows the results of training for these networks which, with the excep-
tion of one network with forty-eight inputs, were identical to those used for the one-frame
CaseE.

—— _#

Input Dimension Raw
3 s |6 7|89 1 11 12|13 | 48
Case U g
Bias 666 | 714 | 753 | 753 765 | 759 | 76.6 767 | 765 | T7.] 7|71 | 716 | 193

77.0
Simple so8 | 666 | 705 | 6 | 727 | 133 | B33 138 | 744 | 739 | 746 | 744 739"

% Redn | 167 | 142 | 161 | 127 142 |97 | ns | na &l 124 | 120 | 128 | 140 | 97

Table 31: Improvement in vowel classification performance due to Speaker Bias for

networks given three frames of RMSpell Vowel data projected onto canonical
discriminants of various dimensions.

' | ' tation only.
a. This table gives the result for randomised pattern presen o
b. Training for this case only continued for 1000 epochs, c.f. 5800 for the othe

. ; sd

ffect of using speaker biases was more pronounc
o ailable from the speech, and rather smaller
nted to the input. Overall performance was

As in the one frame of input case,
at lower dimensions, when little data Was av

(<10%) when all three frames of speech are preser : b
similar to that of the network with oné frame of input; the largest difference being wa

e Eaioh
apparent for the raw input case for each network, where the awa1tllal:::zlllgs?ftc atlrlu?:ge :;En:
inputs allowed both the biased and unbiased networks to correctly y

more of the inputs.

However, even the biased forty-eight input ,m htl{
of the unbiased net in the preliminary experimen

this case didn’t match the performance
§5.7.1), in which biases made no per-
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