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Abstract

While the overall performance of speech recognition systems continues to
improve, they still show a dramatic increase in word error rate when tested
on different speaking styles, i.e. when speakers for example want to make
an important point during a meeting and change from sloppy speech to
clear speech. Today’s speech recognizers are therefore not robust with re-
spect to speaking style, although “conversational” speech, as present in the
“Meeting” task, contains several, distinctly different, speaking styles.

Therefore, methods have to be developed that allow adapting systems to
an individual speaker and his or her speaking styles. The approach presented
in this thesis models important phonetic distinctions in speech better than
phone based systems, and is based on detectors for phonologically distinctive
“articulatory features” such as ROUNDED or VOICED. These properties can
be identified robustly in speech and can be used to discriminate between
words, even when these have become confusable, because the phone based
models are generally mis-matched due to differing speaking styles.

This thesis revisits how human speakers contrast these broad, phono-
logical classes when making distinctions in clear speech, shows how these
classes can be detected in the acoustic signal and presents an algorithm
that allows to combine articulatory features with an existing state-of-the-
art recognizer in a multi-stream set-up. The needed feature stream weights
are automatically and discriminatively learned on adaptation data, which is
more versatile and can be handled more efficiently than previous approaches.

This thesis therefore presents a new acoustic model for automatic speech
recognition, in which phone and feature models are combined with a dis-
criminative approach, so that an existing baseline system is improved. This
multi-stream model approach captures phonetic knowledge about speech
production and perception differently than a purely phone based system.

We evaluated this approach on the multi-lingual “GlobalPhone” task
and on conversational speech, i.e. the English Spontaneous Scheduling Task
(ESST) and RT-04S “Meeting” data, which is one of the most difficult tasks
in Automatic Speech Recognition today. The algorithm is applied to gener-
ate context-independent and context-dependent combination weights. Im-
provements of up to 20% for the case of speaker specific adaptation outper-
form conventional adaptation methods.
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Zusammenfassung

Obwohl die durchschnittliche Erkennungsleistung steigt, leiden selbst moder-
ne Spracherkennungssysteme noch unter sehr schlechten Erkennungsraten,
wenn sie auf unterschiedlichen Sprechstilen getestet werden. Diese treten
beispielsweise auf, wenn ein Sprecher in einer Besprechung einen wichtigen
Punkt présentiert und von spontaner Sprache in einen deutlichen, besonders
klaren Sprechstil wechselt. Die Erkennungsleistung von Spracherkennungs-
systemen wird unter diesen Bedingungen sinken, da die Erkenner nicht gegen
Anderungen des Sprechstiles robust sind.

Es miissen daher Methoden entwickelt werden, die es erlauben, einen
Erkenner besser auf einen Sprecher und seine verschiedenen Sprechstile, wie
sie z.B. im NIST RT-04S “Meeting-Korpus” vorliegen, zu adaptieren. Der
hier vorgestellte Ansatz erlaubt es, wichtige phonetische Unterscheidungen,
niamlich “artikulatorische Merkmale” wie GERUNDET oder STIMMHAFT, bes-
ser als ein herkommlicher phonem-basierter Ansatz zu modellieren. Diese
“Features” konnen robust erkannt werden und konnen verwendet werden,
um die Unterscheidung zwischen Worthypothesen, die durch die aufgrund
des gednderten Sprechstils schlecht passenden Phonem-Modelle dhnlich ge-
worden sind, zu verbessern.

Diese Arbeit prisentiert Beispiele, wie Sprecher in deutlichem Sprechstil
diese phonologischen Merkmale verwenden, um wichtige Unterscheidungen
zu betonen, sie zeigt, wie diese im akustischen Signal detektiert werden
konnen und prisentiert einen Algorithmus, um die fiir die Kombination die-
ser komplementéren distinktiven Merkmale in einem Multi-Stream-Ansatz
benstigten Gewichte auf diskriminative Weise automatisch zu bestimmen.
Die Optimierung eines Maximum-Mutual-Information Kriteriums erlaubt
eine effizientere Modellierung und flexiblere Kombination phonetischer In-
formation als bisherige Ansitze.

Diese Arbeit stellt ein neuartiges akustisches Modell fiir die Erkennung
von Sprache aus Dialogen und Gesprichen vor, welches ein diskriminatives
Verfahren einsetzt, um herkémmliche Phonemmodelle bestmoglich mit Fea-
turemodellen zu kombinieren und die Erkennungsleistung eines bestehenden
Systems zu verbessern. Dabei wird phonetisches Wissen iiber die Produkti-
on und Perzeption von Sprache grundlegend anders behandelt, als in einem
rein phonem-basierten Ansatz.



Der vorgestellte Ansatz wird sowohl auf dem multi-lingualen “GlobalPho-
ne” Korpus als auch auf Spontansprache, ndmlich dem English Spontaneous
Scheduling Task (ESST, Verbmobil-II) und dem RT-04S “Meeting” Kor-
pus evaluiert. Dieser gilt als einer der derzeit interessantesten und schwie-
rigsten Korpora fiir die automatische Spracherkennung. Der Algorithmus
wird verwendet, um auf Adaptionsdaten kontext-unabhéingige und kontext-
abhingige Gewichte zu generieren. Fiir den Fall der sprecher-abhéngigen Ad-
aption wird die Fehlerrate um bis zu 20% relativ reduziert, was die Leistung
konventioneller Maximum-Likelihood basierter Verfahren deutlich tibertrifft.
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Chapter 1

Introduction

This thesis deals with an Automatic Speech Recognition (“ASR”) system
using acoustic models based on both sub-phonetic units and broad, phono-
logical classes motivated by articulatory properties as output densities in
a Hidden-Markov-Model framework. The aim of this work is to improve
speech recognition performance by using non-phonetic units as a basis for
discrimination between words whenever possible. For example, the differ-
ence between the words bit and pit would not be determined by looking for
the sounds /b/ and /p/, but by calculating the probability that the first
sound of the word being VOICED in the case of bit and UNVOICED in the
case of pit, which is a more generic decision problem and should allow for
more robust recognition.

In contrast to conventional ASR systems, the acoustic model used in
this work is not exclusively trained on a phonetic partition of the train-
ing data, i.e. on time alignments on the (sub-)phonetic level, but instead
“conventional” probability density distributions are combined with more
generic distributions based on broad classes such as VOICED, FRICATIVE,
or ROUNDED. During recognition, the combination is achieved in a stream
architecture on the log-likelihood (or acoustic score) level.

To automatically learn from data the features which can be used to dis-
criminate between given contexts, the stream weights needed for the model
combination are trained using discriminative approaches on training or adap-
tation data. This thesis compares two training approaches and presents a
new scheme to train weights using the Maximum Mutual Information (MMI)
criterion, which allows faster training on conversational speech task using
lattices when compared to a previously used Minimum Word Error (MWE)
criterion. The use of broad phonetic classes to distinguish between sounds
allows for more parameter sharing when compared to sub-phone based mod-
els, leading to greater robustness of the resulting recognizer with respect to
pronunciation variability.

A major advantage of this approach over other speech recognizers based
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on Articulatory Features (AFs) is that the presented architecture can be
integrated easily into an existing state-of-the-art baseline system, as was
shown by our experiments on the RT-04S “Meeting” task. Most approaches
based on articulatory properties alone are computationally tractable only
on small tasks or in a rescoring step, which is impractical in many applica-
tions. Our approach adds only little computational complexity and can be
integrated in a single decoding pass.

Also, this work demonstrates that the new approach performs better
for speaker adaptation than standard approaches based on the Maximum
Likelihood principle, which shows that a structured approach based on artic-
ulatory properties indeed captures speaker variability better than a “beads-
on-a-string” approach | |. Moreover, the feature based approach im-
proves the recognition of “hyper-articulated” or “clear” speech, which oc-
curs whenever speakers want to particularly emphasize some part of their
speech. As recognizers are usually trained on “normal” speech, these parts of
speech are usually recognized with below-average accuracy | ], which is
counter-intuitive to human speakers, as sentences spoken “clearly” are more
intelligible than those spoken “conversationally” under nearly all conditions
[PDBSS, , PUBY4].

Other aspects investigated in this work are the trans- and multi-lingual
properties of articulatory features, which as detectors for universal phono-
logical features can be shared and re-used across languages.

In contrast to other work on speech recognition based on articulatory
features, the approach presented in this work does not explicitly model tra-
jectories of a real or assumed articulator. Also, in our terminology, the
term “Articulatory Feature” does not refer to characteristic properties of
the speech signal, found only at a specific point in time, as is the case
in “landmark-based” automatic speech recognition and similar approaches.
Instead, we use the term “Articulatory Features” to describe an acoustic
model, in which the likelihood of a specific phone is expressed not as the re-
sult of the evaluation of a single phone model’s probability density function,
but as a combination of likelihoods computed for complementary linguistic
features such as VOICED, possibly also in combination with conventional
phone models. Apart from the feature inventory and the feature to phone
mapping, no further expert knowledge is used for the construction of the
speech recognizer and no claim as to the relation of feature values computed
with actual articulatory processes is being made. The term “Articulatory”
reflects the observation that most of the properties used in linguistic feature
theory, which forms the basis for our work, is in fact based on articulation
rather than perception.

The remainder of this chapter covers in more detail the (expected) poten-
tial of articulatory features in Automatic Speech Recognition, presents the
goals and contributions of this work, and gives an overview of the structure
of this thesis.
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1.1 Motivation

Speech recognition has advanced considerably since the first machines which
could convert human speech into symbolic form (i.e. transcribe it) were con-
ceived in the 1950s | |. Today’s state-of-the-art text-to-speech systems
are based on Hidden Markov Models (HMMs), for which efficient training
and evaluation techniques are known.

Still, humans are much better than machines at deciphering speech
[ | under changing acoustic conditions, in unknown domains, and at
describing somebody’s speech characteristics as “sloppy”, “nasal” or simi-
lar, which allows them to rapidly adjust to a particular speaking style. In
many important domains, this results in a human speech transcription per-
formance still unmatched by machines, particularly if the speaker’s original
goal was human-to-human, not human-to-machine communication.

Leaving aside the domain of the speech, which may also not be avail-
able to a machine, phonetics and phonology categorize human speech and
describe the process of speech understanding in humans. Today’s automatic
speech recognition systems use phones, a phonetic description unit, as atoms
of the speech model. These, however, are a shorthand notation for a bundle
of phonological properties such as voicedness or lip rounding, which charac-
terize a certain region of speech. As many of these categories are related to
articulation, they are often referred to as “Articulatory Features”, keeping
in mind that the physical processes of articulation, i.e. the movements of
the vocal cords etc., are not observable to a human listener or an automatic
speech recognizer operating on audio information only. In this sense, the
term “Articulatory Features” describes classes of speech sounds (i.e. voiced
sounds and unvoiced sounds), whose names are based on articulatory cate-
gories, although the partitioning is based on acoustic observations only. This
means the features are a perceptual categorization and should therefore be
helpful in the discrimination of speech sounds.

Particularly for spontaneous and conversational speech, it is not gener-
ally possible to identify discrete, clearly separated units in human speech,
instead it is only possible to mark transient phonetic events, which can be
aggregated into canonical phones using knowledge of the language. While
there is a long history of studies on speech articulation [ , , ,

], the focus of this work has usually been on a general understanding
of the articulation process in humans, less so on the usefulness of AF's for
Automatic Speech Recognition. Combining insights into human articulatory
processes and speech understanding in humans with standard HMM based
speech recognition system however is interesting for the following reasons:

e Existing, efficient, and well-understood tools can be re-used.

e AFs provide more, and different, degrees of freedom than standard
features, but they can still be formulated in a probabilistic framework.
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They might therefore complement existing acoustic models, thus di-
rectly leading to improved performance.

e AFs allow including linguistic knowledge differently, particularly for
non-native speech and hyper-articulated speech; cases which represent
a particularly challenging speech recognition tasks.

e AF's should be portable across languages as they are modelled on sup-
posedly universal, i.e. cross-lingual, properties.

e Speech recognition using AFs was shown to be more robust against
noise than a standard recognizer trained on the same data | ].

e By using AFs in a stream setup, it could be possible to amend some
aspects of the “beads-on-a-string” [ ] model while still retaining
a computationally efficient system structure.

e AFsmight be particularly useful for adaptation, particularly to speaker
and speaking style, as they have been used in respective verification
[ | or analysis | ] tasks.

Therefore, the approach taken in this work is to improve an existing
speech recognizer based on phones and HMMs by adding a description of
speech based on articulatory features, while still retaining the HMM based
speech model for efficiency. While we call our approach “Articulatory”, it
does not rely on the actual observation of articulatory parameters and does
not assume a particular articulatory process to occur for the production of
a particular sound as in a speech production model. Instead, we are using
articulatory categories to name and classify acoustic or auditory targets for
speech sounds, which is motivated by the findings in [ ]. “Lexical
access” (or speech-to-text) can then be described as the identification, as
a perceptive category, of articulation-inspired binary distinctive features,
which suffice to discriminate words | ].

1.2 Goals

The goal of this work is to improve an existing state-of-the-art ASR engine,
i.e. existing efficient training and decoding algorithms should be re-used in
order to avoid extra complexity and to ensure that the resulting recognizer
can be used in today’s ASR framework. It is therefore not the goal of
this work to build a system based solely on AFs or do “recognition through
synthesis”, i.e. retrieve the actual movements of the articulators from speech
data, as these approaches tend to have prohibitively high computational
complexity.
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Instead, we show how to adapt an existing, general recognizer to new
conditions (speaking styles) in the “Meeting” domain using articulatory fea-
tures. Also, we present results on the possibility of detecting articulatory
properties from speech and on multi-lingual data, i.e. in a language differ-
ent from the training data, and hyper-articulated speech as case studies of
further applications of this approach.

Our experiments are conducted on English data from the following tasks:

e Hyper-articulated data (“HSC”)

e Multi-lingual data (GlobalPhone, “GP”)

e English Spontaneous Scheduling Task data (“ESST”)
e “Meeting” data (RT-04S)

1.3 Outline

This work can be divided into three parts. The first part comprises Chapters
2 to 4 and presents an introduction to phonetics, speech production, funda-
mentals of current state-of-the-art ASR systems, and gives an overview on
speech recognition based on articulatory features. The second part, Chap-
ters 5 to 7, presents our results on detection of articulatory features from
speech and develop the approach to discriminative combination of knowl-
edge sources used in the ASR experiments on several tasks, presented in the
third part, Chapters 8 to 11.

More specifically, Chapter 2 introduces basic concepts of phonology and
phonetics and the underlying articulatory properties. It discusses multi-
lingual properties of phones and articulatory features and present the dif-
ferences occurring between different speaking styles, motivating the use of
“articulatory features” in ASR research. In Chapter 3, we review fundamen-
tal properties of mainstream automatic speech recognition, as far as they
are important in the context of this work.

Chapter j discusses other relevant work in the fields of large vocabulary
conversational speech recognition (LVCSR), using articulatory properties for
speech recognition, and approaches to the combination of several informa-
tion sources for speech recognition.

Chapter 5 describes how we detect articulatory properties from the speech
signal. In this work, we do not measure actual movements of the human
articulatory apparatus, instead we build models (“detectors”) on canonical
articulatory properties of the input speech. We show that the articulatory
properties used in this work can indeed serve to improve discrimination
by building a combined phone and feature based speech recognizer, as the
changes predicted when altering the speaking style can be modelled by de-
tectors for articulatory properties.
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Chapter 6 presents our stream architecture, which integrates these “fea-
ture detectors” with standard context-dependent acoustic models in an HMM
based recognizer.

Chapter 7 develops the theory behind the discriminative approach to
model combination developed in this work and investigates two different
criteria (“DMC” and “MMI”) for model optimization. It also introduces
global and context-dependent stream weights.

The following chapters present our large-vocabulary experiments on es-
timation of articulatory features from the speech signal, the combination of
classifiers in our stream architecture, and the discriminative estimation of
the stream weights. Results are presented on multi-lingual data in Chapter
8, spontaneous speech data vs. read speech data in Chapter 9, and conver-
sational “Meeting” speech in Chapter 10.

This thesis rounds up with a look at how articulatory features can further
improve the robustness of speech recognition systems: Chapter 11 presents
results on hyper-articulated speech. This is particularly important in con-
versational speech, as people want to “stress” important information by
altering the way they speak, i.e. they are speaking very clearly. Experi-
ments however show that this may result in a degradation of speech-to-text
performance, which can be alleviated by using articulatory features.

Chapter 12 presents a summary and conclusions, after which Appendiz A
shows the full derivation of the new discriminative stream weight estimation
scheme, Appendix B lists details of the systems used in our experiments
and Appendiz C' lists the weights computed with the training approaches
discussed in this work.



Chapter 2

Human Speech Production

This chapter presents descriptions of speech at different levels of abstraction,
as needed for research on articulatory features for speech recognition. We
set out with a brief introduction to the human speech production process,
then describe the role of articulatory features in phonetics and phonology,
and finally introduce multi-linguality and language independence, hyper-
articulation, and sloppy or conversational speech.

2.1 The Phonatory Apparatus

The production of human speech is mainly based upon the modification of
an egressive air stream by the articulators in the human vocal tract. Even
though different languages can exhibit vastly different sounds, the over-
whelming majority of sounds can be described sufficiently enough by mark-
ing very few parameters only, as the phonation is limited by the anatomical
properties of the speaker. By “sufficiently enough” we mean that, although
in spoken speech no two sounds, even when produced by the same speaker,
will ever be strictly identical, the intended meaning in the speaker’s language
will be evident by looking at very few parameters. In other words, phonolog-
ical knowledge helps to describe phonetic events with only a few parameters:
while phonetics deals with how speech sounds are actually produced, trans-
mitted and received in actual spoken language, phonology deals specifically
with the ways those sounds are organized into the individual languages,
hence dealing with abstractions on a virtual basis. The term “articulatory
features” strictly speaking is a phonetic term, but its interpretation requires
phonological knowledge, too, to be useful in practice.

The goal of this section is to give a functional overview of basic phona-
tory processes as they occur in English and most other languages. Other
languages exhibit different, but mostly similar, properties, which will not be
discussed here. In order to understand how humans produce speech sounds,
it is necessary to identify the essential components of the speech produc-

7
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tion process and describe how they work. As this section covers only these
topics in articulatory phonetics which are relevant to understand this work,
more detailed information about general phonetics is available for exam-
ple in | , , ]. More information about acoustic phonetics is
available in [ ]. A description of articulatory processes can be found in
[ : I

The production of speech sounds in humans involves three major pro-
cesses: the air stream, the phonation, and the configuration of the vocal
tract (oro-nasal process). Fant’s source filter model | | interprets these
processes as a system of linear, time shift invariant components. Figure 2.1
shows a sagittal view of the human head with the organs used for speech pro-
duction while Figure 2.2 shows a functional view of the source-filter model.

The Air stream process describes how sounds are produced and manip-
ulated by the source of air. The pulmonic egressive mechanism is based
on the air being exhaled from the lungs while the pulmonic ingressive
mechanism produces sounds while inhaling air. Ingressive sounds how-
ever are rather rare. Besides these pulmonic sounds, a closure of the
glottis leads to the so-called glottal air stream mechanism. There are
ejective and implosive glottal sounds, depending on whether the air is
directly pushed outward or if the glottis is lowered. A special sound
is the glottal stop produced by trapping of air by the glottis.

The Phonation process occurs in the vocal chords. Voiced sounds are
produced by narrowing the vocal chords when air passes through them.
The Bernoulli effect leads to a fast cycle of opening and closing of
the glottis, which produces a strong modulation of the air stream.
Depending on the length of the vocal chords, the frequency of this
process can be in the range of 120-230 Hz. An open glottis leads to
unwvoiced sounds. In that case, air passes through the glottis without
obstruction so that the air stream is continuous.

The Oro-nasal process: from a technical point of view, the vocal tract
can be described as a system of cavities. The major components of
the vocal tract are illustrated in Figure 2.1. The vocal tract consists
of three cavities: the oral cavity, the nasal cavity, and the pharyngeal
cavity. These components provide a mechanism for producing differ-
ent speech sounds by obstructing the air stream or by changing the
frequency spectrum. Several articulators can be moved in order to
change the vocal tract characteristic.

The sounds therefore depend on the air stream, the phonation, and on
how this signal is being modified, e.g. on the place of the modifiers.

Cine-radiographic (X-ray) films of the speech organs in action show
that they are in continuous fluent motion during speaking | , ,
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Figure 2.1: Organs of human speech production [Lem99]: (1) nasal cavity,
(2) hard palate, (3) alveolar ridge, (4) soft palate (velum), (5) tip of the
tongue (apex), (6) dorsum, (7) uvula, (8) radix, (9) pharynx, (10) epiglottis,
(11) false vocal cords, (12) vocal cords, (13) larynx, (14) esophagus, and (15)
trachea.
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Figure 2.2: Vocal tract as a system of cavities | |: lungs and glottis are
responsible for the air stream process, phonation occurs in the glottis, the
resulting sound is modified primarily in the oral and nasal cavities.

]. The same can be conjectured when looking at the spectrogram
representation of speech. The patterns are changing constantly and clear-
cut boundaries between sounds can only be identified for a few cases. Extra
knowledge of the underlying language is needed to determine which part of
the articulatory process is significant, i.e. carrying a meaning, and which is
simply due to the “laziness” of the speaker.

2.2 Distinctive Features

The description of the human phonatory apparatus in the previous section
already allows guessing which “features” can be used to describe speech
production and speech sounds: the behavior of the vocal cords for example
determines if a sound is “voiced” or “unvoiced”, while the velum makes
it possible to discriminate between “nasal” and “non-nasal” sounds. The
configuration of the oral cavity also influences the sound produced.

One of the aims of feature theory is to set up a universal inventory of
“distinctive features” (i.e. phonetic or phonological properties) which is
sufficient to characterize all sounds in all languages and which permits de-
riving phoneme systems (i.e. symbolic descriptions) for all the languages in
the world. Several feature systems have been proposed over time [ ,

, ], using a mixture of criteria and approaching feature theory
from a range of angles, for example from articulatory, acoustic, or auditory
perspectives. This is necessary, as articulation, acoustics and perception all
contribute to the transmission of information and therefore it is sensible to
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integrate them all into one model. As a short-hand notation for a certain
combination of features, “phonemes” are used to describe a certain com-
bination of distinctive features, which usually occur together in a specific
language. A list of features is presented in the next section together with a
categorization of phonemes into these features.

2.3 Phonetic Description of Speech

Linguistic analysis of a language’s vocabulary and its spoken speech rep-
resentation allows determining which sounds need to be distinguished in
a specific language (phonemes), because they serve to distinguish between
words. Phonetics describes the actual realization of phonemes, and actual
speech sounds are called phones. If two sounds are phonetically different,
i.e. they are produced by different configurations of the vocal tract, but
the distinction does not carry lexical information, these sounds are called
allophones. Germans for example have two different ways of producing the
/r/ phoneme, the [r] (alveolar trill) and [r] (uvular trill) sounds, where the
preference depends on the dialect of the speaker.

This linguistic knowledge of the underlying language permits segmenting
speech by identifying points where linguistically significant changes occur.
The existence of such a segmentation is the base of current phonological
analysis. It is assumed that every segment has an articulatory target, which
describes the configuration of the vocal tract and organs that are representa-
tive for the described segment and sound respectively. Usually the involved
articulators make a continuous movement from and to the target during the
speech production. And in some instances the target might be held for a cer-
tain amount of time. The transition phase between targets is influenced by
coarticulation, which can span several sounds. Heavy coarticulation occurs
in spontaneous speech and can make the identification of distinct sounds
very difficult.

The International Phonetic Alphabet IPA | , | has been cre-
ated to describe and categorize the speech segments or sounds occurring in
any language. A symbol is created as a short-hand notation for a specific
feature bundle, i.e. a configuration of the articulators, if the resulting phone
has phonemic value in a language. Diacritics serve to mark minor fo'netik
variations, which are of interest in specialized cases only.

For the description of the above segments IPA heavily relies on the dis-
tinction between vowels and consonants. Speech involves consecutive widen-
ing and narrowing of the vocal tract. The openings are used to define sylla-
bles and act as the nucleus of the syllable. Segments that involve a narrow
or closed vocal tract are called consonants. Sounds with a wide vocal tract
in which the air flows largely uninhibited carry the terminus vowel. Because
of this general difference between vowels and consonants IPA has decided
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to use different schemes to describe them. This results in an IPA chart for
describing phonemes that has separate sections for vowels and consonants.
For a detailed description of the IPA chart and the possibilities it offers for
describing the sounds of human speech the reader may refer to | ].
The generic classification into vowels and consonants as well as the dif-
ferent attributes used to describe the way the sounds from this classes are
articulated is what we refer to as “articulatory features” (AFs) in this work.

2.3.1 Consonants

There are commonly three articulatory feature dimensions in which to de-
scribe consonants:

e Firstly, there is place of articulation which describes the position of
the main constriction of the vocal tract on the mid-sagittal plane. The
different places are represented by the columns in the IPA consonant
chart (see Figure 2.3). Figure 2.4 shows the mid-sagittal plane of
the human vocal tract and names possible places of articulation, also
compare with Figure 2.1.

e Secondly, manner of articulation is used as another dimension. It
describes the degree of the constriction of the vocal tract, the position
of the velum, and some other attributes referring the behavior of the
articulators such as vibration and redirection of the air stream from
the middle to the side of the vocal tract.

e The third dimension describes the vocal cord vibration by classifying
consonants as either voiced (vocal cords vibrate) or unvoiced (no vi-
bration). In the IPA table for consonants every cell is split into half.
The left half always refers to the unvoiced version of a consonant and
the right one to the voiced version.

2.3.2 Vowels

Because of the generally open character of vowels they cannot be described
by means of “place of articulation” etc. as consonants can. For vowels it is
more appropriate to classify them by describing the horizontal and vertical
position of the highest point of the tongue called the dorsum. The two
dimensions of the dorsum position lead to the notion of an abstract vowel
space that is usually visualized using the vowel quadrilateral depicted in
Figure 2.3. In order to incorporate the use of the lips, un-rounded vowels
are placed to the left of the back or front line of the quadrilateral and
rounded ones to the right. Also, all vowels are classified as voiced sounds.
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Figure 2.4: Mid-sagittal plane of the human head [F1197]: Articulators are
marked by Roman numbers: I. nasal cavity, II. lower lip, III. mandible,
IV. tongue, V. hyoid, VI. uvula, VII. pharynx, VIII. epiglottis, IX. glottis.
Places of articulation are marked by Arabic numbers: 1. lips, 2. incisors,
3. teeth-ridge, 4. hard palate, 5. soft palate, 6. uvula, 7. pharynx, 8.
epiglottis, 9. glottis.
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2.4 Conversational Speech

In spontaneous or conversational speech, pronunciations differ significantly
from their canonic representations usually found in dictionaries and assumed
in the IPA chart. For example, the tongue will not reach its “target” position
in sloppy speech, voiceless sounds become voiced when they assimilate to
voiced neighbors or voiced sounds can become devoiced. For this reason, a
significant amount of ASR literature on conversational speech is devoted to
pronunciation modeling, i.e. finding appropriate phonetic descriptions for
conversational speech. Other factors, such as prosody and number as well as
type of disfluency, also change with speaking style, but we neglect them as
they are beyond the scope of this work. This does not generally invalidate
the concept of phones and the “beads-on-a-string” model of speech | 1,
however it makes it more difficult to use in practice. Still, the question for
the “atomic” units of speech remains unsolved.

Several studies have compared the degree of attention to the articula-
tion between conversational speech and clear speech. A good review can
for example be found in | ]. Attention to articulation is defined to be
the degree of attainment of articulatory targets, such as a given formant
frequency or stop releases. In general, articulatory targets are reached much
more often in clear/ read speech than in conversational/ sloppy speech, for
both consonants and vowels. Especially for vowels, there is much evidence
suggesting increased articulatory efforts in clear speech, or equivalently, de-
creased articulatory efforts in sloppy speech:

e Formant values tend to achieve the extremes of the “vowel triangle”
in clear speech, compared to more “central” values in sloppy speech.
Variability of formant values is also found to be smaller in clear speech,
indicated by a smaller cluster in a plot of F1/F2 values.

e Transition rates measure the movement of the formants at the on-
set and the offset of a vowel. They reflect the coarticulation of the
vowel with its neighbors and indicate whether articulatory targets are
achieved for the vowel or not. Some authors relate this to the casual-
ness of speech. [ | finds longer transition rates in clear speech,
and more CV (consonant-vowel) coarticulation in spontaneous speech
for most speakers | ].

e Sloppy speech exhibits increased phonological variability. In the Switch-
board Transcription Project [ |, linguists manually transcribed
a portion of the Switchboard corpus at the phonetic level. It is clear
that many words are not pronounced in the canonical way. Phonemes
could be either deleted, or have their phonetic properties drastically
changed, to such a degree that only the barest hint of a phoneme
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segment can be found. Greenberg consequently questioned the appro-
priateness of the phonetic representation in this project. Portions of
the data are found to be quite hard to transcribe phonetically. It was
reported that 20% of the time even experienced transcribers cannot
agree upon the exact surface form being spoken. The transcribing
process was unexpectedly time consuming, taking on average nearly
400 times real time to complete. For this reason, it was decided to
transcribe only at the syllable level later on. Greenberg argues that
syllables are a more stable, and therefore, a better unit for representing
conversational speech as they are much less likely to be deleted.

The changes occurring in conversational speech at the articulatory and
phonological level have also been studied with respect to ASR performance
in [ , ], differences between elicited and spontaneous speech
are described in | . [ | reports a re-speaking experiment, in which
three participants of a meeting, which was recorded using close-talking mi-
crophones, were asked to re-read the transcript using (1) a clear voice and
(2) a simulated (“acted”) “spontaneous” speaking style. Recognizing these
three data sets (which contain identical text) with a Broadcast News rec-
ognizers results in an error rate of 36.7% for the “read” part, 48.2% for the
“acted” part, and 54.8% for the original “spontaneous” part. It is therefore
clear that speaking style is a major factor influencing the performance of
speech recognition systems.

Pronunciation change in conversational speech as opposed to read or
“acted” speech is only partial most of the time; a phone is not completely
deleted or substituted by another phone but it is modified only partially.
Analysis of manual phonetic transcription of conversational speech reveals
a large number (> 20%) of cases of genuine ambiguity [ |, where even
human labelers disagree on the identity of the surface form. This obser-
vation leads us to our approach of modeling phonetic units as a combi-
nation of distinctive phonological features, which can then be varied ac-
cording to speaker, speaking style and context. This follows an approach
described in | |, which argues for a model of “lexical access” (or speech-
to-text), in which words are discriminated not by entire phones, but by a
bundle of binary distinctive features, or “landmarks”. While there is ongo-
ing discussion about the process of spoken word recognition [ ] and the
units underlying perceptual processes in humans | |, there is evidence
that sub-segmental cues play an important role in auditory lexical decision
[ , | by providing acoustic invariants in speech [ ].

[ ] and [ ] have observed increased robustness against speaker
changes in ASR systems (particularly speaker-dependent ones) based on
phonological features as opposed to systems based on phonemes. This obser-
vation also supports the notion that phonological features should represent
a useful invariant property to be used in the recognition of speech.



Chapter 3

Fundamentals of Statistical
Speech Recognition

This chapter presents the key concepts of today’s statistical speech recog-
nition systems, as far as they are necessary for the understanding of this
thesis. After formulating ASR as a statistical classification problem which
maps speech to text, we describe typical feature extraction schemes and
parameter estimation techniques for both acoustic and language models.
A more comprehensive introduction can be found in most text books, for
example | , , ].

Current state-of-the-art speech recognition systems are based on the con-
cept of Hidden Markov models (HMM, see Section 3.4) to represent acoustic
units. HMMs make it possible to model temporal variations in speech. The
structure or syntax of a language is usually captured by statistical n-gram
language models (LMs). Together with the acoustic model (AM), they form
the “backbone” of a modern speech recognizer. From an algorithmic point
of view, there are two basic problems:

Training: Techniques for robustly estimating the model parameters are re-
quired. Typically, today’s training databases contain several hundreds
of hours of speech and several millions of words.

Testing: The complexity of the acoustic and language models generated
during training requires efficient search techniques in order to find the
state sequence with the highest probability for a given test utterance
in a reasonable amount of time.

3.1 Speech Recognition as a Classification Prob-
lem

The recognition process of a word sequence W can be formulated as the
search for the maximum a-posteriori probability over all elements p(W|O)

17
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in the search space, given the acoustic observations as a time series of feature
or observation vectors and linguistic knowledge about the language. Given
an utterance represented by a sequence of T feature vectors O = (o1, .., 0r),
the classification problem, i.e. the search for the most likely word sequence
W*, can be expressed as:

w* = argmaxp(W|O) (3.1)

= argmax p(OIW) - P(W)
w P(0)
= argmaxp (O\W)-P(W)

The maximization process of the a-posteriori probabilities allows for a
separation of the a-priori probabilities P(T¥) and the class conditioned prob-
abilities p(O|W). The best word sequence W* is independent of the observa-
tion probability P(O), which can therefore be ignored. The a-priori proba-
bilities P(W') are computed using the “language model” (LM) P(W,Z). The
class probabilities p(O|W, ¥) with parameters ¥ are called “acoustic model”
(AM). Given this framework, research in speech recognition focuses on the
estimation of the parameter of the language model Z and of the acoustic
model parameters ¥ based on large training corpora.

3.2 Optimality Criterion

The previous section established a framework for statistical speech recog-
nition and defined the “best hypothesis” for a given test utterance as the
most likely hypothesis given a set of knowledge sources, namely acoustic and
language model.

In a Bayesian framework, training of acoustic and language models then
means creating good model estimates ¥ and E for p(O|W, ¥) and P(W, E).
Given two different sets of knowledge sources (¥, Z1) and (¥g, E2), the one
producing the best expected probability (or likelihood) (p(W]O)) over a test
corpus O is indeed the one producing better hypotheses in the sense that
these better correspond to what was actually said. However, in order for this
approach to be valid, complete knowledge about the process that generates
the probability distributions is assumed, which is not achievable in reality.
Nonetheless, the likelihood is usually used as an optimization criterion for
(acoustic) model training.

The quality of a trained ASR system is better measured in terms of the
“word error rate” (WER), which is defined as the minimum edit distance be-
tween a reference transcription and a given hypothesis divided by the length
of the reference transcription, which means that the performance of an ASR
system is evaluated using a criterion which is fundamentally different from
the system’s internal optimization model. This approach however works
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well in practice. Other approaches, which do not optimize the likelihood,
but the a posteriori confidence of the word hypothesis also exist [ l.
Nevertheless, this pragmatic approach has lead to significant improvements
(also in WER) over the last few years.

As there are three different kinds of errors (deletions, insertions, and
substitutions), the WER can be computed as

#DEL + #INS + #SUB
#REF_WORDS

In the following example the word error rate is Hg)ﬁ = 60%:

WER =

REFERENCE I HAVE HEARD YOUR VOICE
HyPOTHESIS I HEARD YOU’RE VOICE IT
ERROR DEL SUB INS

The “word accuracy” (WA) is defined as WA = 1 — WER. Other ap-
proaches to speech recognition evaluation focus more on the end-to-end per-
formance of an application, these include:

o Weighted WER (i.e. evaluated on content words only)
e Summarization score

e Information retrieval score

Also, systems participating in “rich transcription” evaluations | ,

) ) | are increasingly demanded to annotate their

output (word hypotheses) with meta information such as confidence mea-

sures | |, which can then be used in further processing, such as summa-
rization, IR, or language identification | ].

As mentioned before, ASR systems are evaluated using the WER metric,
the “best” recognizer is not necessarily the one producing the best p*(W*|0).
Therefore, models do not have to be trained using maximum likelihood,
other criteria can be employed as well, or criteria can be mixed. In this
work, therefore use discriminative training criteria for the acoustic model,
which do not improve the likelihood of the training data, but instead reduce
the WER (“minimum word error”, MWE) or related criteria. Nonethe-
less, the search process still computes the hypothesis with the best expected
probability, although the models have not been trained using maximum like-
lihood in the strict sense. This approach of using maximum likelihood and
discriminative training criteria in one system is prevalent in modern state-
of-the-art ASR systems. Currently popular discriminative criteria include:
Maximum Mutual Information Estimation (MMIE) [ ], and Minimum
Phone Error (MPE) | ]

Figure 3.1 gives an overview of the progress of speech recognition over the
years on different corpora with different speaking styles. It shows clearly that
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Figure 3.1: Progress (word error rates) in speech recognition over the years
[ ]. In 2005, best CTS numbers were around 15%, while “Meeting”-
type speech continues to pose a challenge at around 30% WER.

read or planned speech is much easier to recognize than spontaneous speech.
As of 2005, word error rates for the Conversational Telephony Speech (CTS)
task have dropped to around 15%, while the conversational “Meeting” task
has replaced CTS as the “most difficult” task in ASR research. State-of-the-
art systems have word error rates of around 30% on close-talking “Meeting”
data | ]. While absolute numbers vary from language to language, the
development of non-English speech recognition systems generally follows
the same pattern. As the largest and most active research community is
currently centered around English speech recognition, it defines the state-
of-the-art and most ideas are only ported to non-English systems once their
effectiveness has been confirmed on one of the tasks presented above.

3.3 Recognizer Design

A modern speech recognition system consists of three main information
sources, which have to be generated and trained:

Acoustic Model (AM): The AM contains the HMM’s observation prob-
abilities p(O|S) for a given observation O and states S, using the dic-
tionary for the mapping between word sequence W and state sequence
S, one can also write p(O|W).
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Www»
Pre-
processing Decoder Hypothesis

Figure 3.2: Components of a statistical speech processing system: The
acoustic model contains the HMM emission probabilities while the struc-
ture of the HMM, i.e. the possible transitions and their probabilities, are
determined by the dictionary and the language model. In this work, we are
only concerned with the acoustic model.

Language Model (LM): The LM contains the a-priori probability P(WW)
of a given word sequence W.

Dictionary: The dictionary (together with the language model) determines,
which state sequence S should be used to model a given word sequence
W, i.e. it contains a mapping of words to speech sounds, for example:

speech — /spiitf/

When writing p(O|W) for an acoustic model probability, the dictionary
(i.e. the mapping of words to speech sounds) is implicitly included into
the acoustic model.

Figure 3.2 presents a functional diagram of a modern statistical speech
recognition system: in this work, we will improve the acoustic model of an
existing speech recognizer, but leave the other components unchanged.

3.4 Hidden Markov Models

Today’s statistical speech recognition systems usually employ HMMs for
building acoustic models. Speech production is seen as a stochastic process:
we describe words, phones, etc. as “states” in a linear sequence describing
the speech production process. Each state “emits” (observed) sounds with a
certain probability distribution. ASR then becomes the problem of finding
the “most likely state sequence” for a given observation. This “decoding”
problem is discussed in Section 3.9.

HMMs are defined as a tuple of:
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A set of states S = {s1,52,...,5n}

e The initial probability distribution: P(s;) is the probability of s; being
the first state in a sequence

e The state transition probability matrix A = (a;;) for transitions from
s; to s

e The set of emission probability distributions or densities: {p!,p?,...,p"}
where p’(0) is the probability p(o|s;) of observing o when the system
is in state s;

e The feature space O can be discrete or continuous. Accordingly,
the HMM is called a discrete HMM or a continuous (density) HMM
(CDHMM)

This model is called a “Hidden” Markov Model as we observe the emit-
ted symbols, but not the associated state sequence. This formulation is very
compact and can be trained and evaluated efficiently, as there are no de-
pendencies between states apart from the transition probabilities. Systems
usually use several thousand context-dependent acoustic models which are
generated using various tree-based clustering schemes | |, starting from
about fifty base phones. Hence, each context-dependent model is trained on
a very small subset of the training data only, which can make generalization
to unseen contexts difficult.

HMDMs have a number of properties:

e For the initial probabilities we have ) . P(s;) =1
e Frequently, we choose P(s<s~) =1 (and call <s> “begin of sentence”)

° Z]‘ a;; = 1 for all 7 and a;; = 0 for most j in ASR

Examples for typical HMM topologies are shown in Figure 3.3. HMMs
pose three main problems, which are solved by different algorithms | |:

The evaluation problem: Given an HMM state sequence S = (s1, S2,. .., Sp)
and an observation sequence O = (01,09, ...,07), compute the prob-
ability p(O|S) that the observation was produced by H (typically:
n#T)

— Forward Algorithm
The decoding problem: Given an HMM state sequence S = (s1, 2, ..., Sp)

and an observation sequence O = (01, 02,...,0r), compute the most
likely state sequence (q1,q2,.-.,qr), i.€.
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-

Figure 3.3: Typical HMM topologies: (left-to-right) linear (left) and ergodic
(right). All examples employ self-loops, i.e. a;; > 0.

argmax (qi1,q2,.-..,q7]|0,95)
(q1,92,---qT)

— Viterbi Algorithm

The learning or optimization problem: Given an HMM state sequence
S = (s1,$2,..-,5,) and an observation O = (01,09, ...,0r), find a new
model S’ so that p(o1,09,...,07]S") > p(o1,09,...,07|S)

— Expectation Mazimization (EM) Algorithm, which makes use of the
Forward-Backward-Algorithm (see Section 3.6)

The left HMM in Figure 3.3 shows the structure used in Janus | ]
to model phones: A phone is modelled as a linear sequence of begin-, middle-
, and end-state (“tri-state architecture”). Transitions are allowed into the
same state (“self loop”) or the next state only (i.e. all other a;; = 0. Given
this type of phone model, words can be modelled by simply appending the
HMM phone models in the order the respective phones appear in the dictio-
nary, using the correct context-dependent model. Word transitions can be
modelled in the same way. Language model probabilities appear as transi-
tion probabilities at word boundaries.

3.5 Extraction of Relevant Features

The goal of the pre-processing step is to remove problem-invariant features
from the digitized acoustic signal and to construct an “optimal” feature
space for the acoustic models V. “Optimal” of course means resulting in a
lower word error rate and containing as few parameters as possible.
“Features” in the context of this section refer to time-series of n-dimensional
parameters describing the acoustic signal only (e.g. the energy in the 200Hz
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frequency bin), as opposed to “Articulatory Features”, which try to describe
the articulatory process that generated the acoustic signal. Of course, these
features could also spawn an “optimal” feature space usable for ASR, par-
ticularly as a low-bitrate coding scheme for transmission or recognition of
speech [ -

In the first step, a short-time spectral analysis is performed to extract
features in the spectral domain. This step is valid, since it can be assumed
that the speech signal is stationary over a short period of time. The next
assumption is that the phase spectrum does not contain meaningful infor-
mation for speech recognition. Consequently, only the power spectrum is
passed to the next step. The properties of human perception of audio
signals are emulated by a logarithmic scaling of the signal energy and a
frequency scaling by applying a filter bank, e.g. mel or bark coefficients.
Based on Fant’s source-filter model [ |, a so-called liftering process is
used to separate the vocal tract’s transfer function from the periodic excita-
tion signal. To that end, an inverse cosine function is applied to transform
the signal from the spectral to the cepstral domain. These features are
called mel-filtered cepstral coefficients (MFCC). Channel normalization is
performed by cepstral mean subtraction (CMS). Additionally, the feature
values can be divided by their variances (cepstral variance normalization,
CVN) on a per-utterance or global basis. The next step induces temporal
context information: cepstral features from adjacent windows are concate-
nated into a single feature vector. A linear discriminant analysis (LDA) is
used as a final step to transform the feature space. The LDA transform
attempts to maximize the inter-class variances while minimizing the intra-
class variances. At the end of so-called “pre-processing”, the original audio
file has been transformed into a sequence of T' N-dimensional feature vectors
O = (01,09,...,07). T is the length of the utterance expressed in frames of
typically 10ms and N is usually in the order of 16 to 42.

Vocal Tract Length Normalization (VTLN) is a feature transform which
attempts to normalize the frequency changes due to different vocal tract
lengths | ]. Fant’s source-filter model suggests that the formant fre-
quencies are scaled with the length of the vocal tract. Systematic speaker
variations can be compensated for by warping the frequency axis. To that
end, a piece-wise linear function f(w) can be employed:

ow Dow<wp
Bw+vy @ w>w

) ={

where 3 and 7 can be obtained via constraints at f(wp) and f(wx). The
“warping factor” « can be estimated using maximum likelihood | |:

L(a) =) log(J(a)P(f(or,)]$))



3.5. EXTRACTION OF RELEVANT FEATURES 25

Audio

8kHz

6kHz

4kHz

2kHz

OkHz
0.0s 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s

Figure 3.4: Pre-processing for ASR: the digitized audio signal (top) is con-
verted to a spectral representation for a succession of short segments (“vis-
ible speech”, bottom).

A Brent search is often used since no closed-form solution is available. Fur-
thermore, the derivative J(«) is ignored and the resulting function formally
no longer satisfies the requirements of a probability density function (PDF).

Example

Two different representations of speech are shown in Figure 3.4. The visual
effect of the MFCC mel transformation, which is applied to the short-term
Fourier spectrum (“visible speech”) shown in Figure 3.4 in addition to the
digitized signal, is a dimensionality reduction and smoothing of the fre-
quency axis. Again, details or further explanations can be found in most
text books, for example [Rog05, WLI0, Jel9g].

The sequence of feature pre-processing steps as presented here is fairly
standard in the ASR community, although countless variations and flavors
exist. Details of the pre-processing employed for every experiment in this
work are given in the respective sections.
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3.6 Acoustic Models

Acoustic modeling deals with the probabilities p(O|S), where S denotes a
state sequence and O is a sequence of feature vectors. Since speech signals
exhibit differences in temporal and spectral domain, an appropriate model
must deal with both dimensions in a statistically consistent way. The tem-
poral changes can be modelled as a finite state automaton with associated
transition probabilities between the states. Attaching observation probabil-
ities to each state extends the automaton to an HMM. This model is also
called “first order Markov process” since the state probability depends only
on the predecessor. Defining S = {s1,92,...,5,} as a set of n HMM states
and S = ST as the set of all state sequences of length T', the probability
p(O]S), given the model ¥, can be computed as:

O|S \I/ ZHatht-Hp Ot‘Qt) (3'2)

qgeS 't

The element ¢ € S represents one path through the state automaton
and ¢; denotes the state index at time ¢. The variable a;; represents the
probability for the transition from state s; to s;. The Forward-Backward
Algorithm computes these probabilities via dynamic programming with a
complexity of O(Tn?). The forward (a;) and backward (3;) probabilities
are defined as:

a(j) = plor..or,q = 55|V)
Be(j) = plogy1..or|qe = si, V)

The conditional probability p(O|S, ¥) can be expressed as a sum over the «
and (:

p(O|S, ¥) ZaT )Br(j

The a and 8 can now be computed using a recursion:

a(j) = Z ai—1(i)aiip(or|g = sj) (3.3)
BiG) = Y Beri(@)ajip(orei|gier = 5) (3-4)

7

The Viterbi algorithm is similar to the Forward-Backward algorithm but
requires only one pass: if the ) operator in Equation 3.3 is replaced by the
max operator, the best state sequence can be obtained as follows:

q = argmax H aqtqt+1p(ot|qt)
qeP
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This expression is evaluated by Viterbi-Decoding algorithms as discussed in
Section 3.9.

Despite the availability of efficient algorithms to work with HMMSs, there
are several drawbacks. One important point is that the emission probabil-
ities depend only on the current state. Thus, certain dependency relations
between states cannot be expressed. For example, the observed feature
vectors may depend on several factors such as speaking rate, dialect, gen-
der, error recovery mode, microphone, or environmental noise. In an HMM
framework, these factors must be treated as one state, although conditional
independence between these factors may be an issue. A factorization of
these random variables would allow for a better parameter sharing scheme.
In the HMM framework, a state must represent all of these combinations to
express the emission probabilities. As a result, the number of HMM states
would grow exponentially. Factorial HMMs | | or dynamic Bayesian
Networks (DBNs) | | make it possible to factorize such dependencies.
However, parameter estimation and decoding in a BN framework is complex
and computationally demanding, so that this approach is impractical even
with today’s resources for the systems described in this thesis.

Kullback-Leibler Statistics

Parameter Estimation for ASR usually focuses on the emission probabilities,
which are usually modelled by Gaussian Mixture Models (GMMs). Practical
considerations restrict the covariance matrix ¥ to diagonal form. The PDFs
for emission probabilities now look as follows:

plols, ¥) = Y wiN(olui, %)

Nop.®) = (21) e doe)
ﬂ-n

The HMM model is now fully specified. The parameters consist of the
transition probabilities, mixture weights, diagonal covariances, and mean
vectors.

Baseline parameter estimation is based on the ML principle. A direct
application of the ML-principle on HMMs is, however, not possible. Instead,
the Kullback-Leibler statistics are used to establish an iterative algorithm,
known as the Baum-Welch re-estimation procedure. Introducing a variable ¢
for the (hidden) state sequence and initial parameter ¥°, the Log-Likelihood
L of parameter ¥ for an HMM can be expanded as:
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L(T) = logp(Ol¥)> p(q|0,¥°)
qeP

= (logp(0,q|¥) —logp(q|O, ¥)) > p(qlO, ¥°)
qeP

= > logp(0,qP)p(q|0, ") —
qeEP

> logp(qlO, ¥)p(q|O, T°)
qeP

The likelihood can be expressed as the Kullback-Leibler statistics

QL ¥°) = "logp(0, q|¥)p(q|O, ¥°)
qeP

and a remainder term.

Maximizing the parameters ¥ with respect to the Kullback-Leibler statis-
tics, Q(¥,¥0) > Q(VY, W) increases the likelihood L£(¥) > L(¥°). In the
HMM framework, the term p(q|O, ¥°) in Q(¥, ¥Y) denotes the state occu-
pancies obtained using initial model parameters. The Baum-Welch algo-
rithm increases the likelihood in each training iteration until saturation is
reached. However, the model parameters depend on the initial settings W0,
as convergence is to a local maximum only. Various schemes such as deter-
ministic annealing strategies, which are also biologically inspired [ 1,
or merging and splitting of Gaussians | | during training exist to
improve the quality of the resulting PDFs on realistic data.

Semi-tied Full Covariances

Semi-tied full Covariances (STC) | ] or Maximum Likelihood Linear
Transform (MLLT) | ] introduce linear transforms for covariance mod-
eling. The motivation for this approach is that diagonal covariances are used
for practical reasons (i.e. speed), but the observation space does not really
support this restriction since the features are correlated, which results in sig-
nificant off-axis probability mass. A better parameter sharing scheme may
be achieved by sharing the full transform matrices. The PDF is structured
as follows:
P(o]s,®) =Y " w;N(o; i, AT A)
1

where Y; is a diagonal matrix per component and A is supposed to be a
full matrix which may be shared across components and states. Since the
term ATY; A represents a full matrix, the PDF evaluation becomes compu-
tationally expensive. If the inverse matrix B = A™! is used, a more efficient
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feature and mean transform can be obtained:

P(o|s,¥) = |B| > w;N(Bo; By, %)

The resulting Kullback-Leibler statistics are of the same form as for the
feature adaptation with the exception that the same matrix B is applied as
an extra transform to u:

Q(B,B%) =c+ Y ~(t)(log|B| — ¢ — f(Bot Bu)"v7 (Boy — Buy))

2t

3.7 Adaptation

Statistical models are optimized on a large amount of training data, which
should resemble the test data as closely as possible. As test conditions
are usually unknown in advance and subject to change, robust systems are
usually trained on a number of input conditions, to cover as many test con-
ditions as possible. The resulting system can then be improved by adapting
it to a specific test condition. Adaptation can be done using the reference
transcription of the adaptation data (“supervised adaptation”) or using a
recognizer hypothesis for the transcription (“unsupervised adaptation”).

Acoustic Model Adaptation

The ML-criterion can also be used for estimating a linear transform of the
model parameters | | in the Maximum Likelihood Linear Regression
“MLLR” framework. In the context of mixtures of Gaussians, an adaptation
of the means of Gaussians can be represented by such PDFs:

p(o|s, ¥) Zwl 0; Api, 3)

Keeping the Gaussian parameters w;, u;, >; fixed, the Kullback-Leibler
statistics can be used to estimate the linear transform A. The Kullback-
Leibler statistics can be written as:

Q(A, A% =c— Z% — Api) "5 (o — Api))

The state probabilities 7;(t) are computed using the initial parameter A°.
Terms not relevant for the optimization are denoted by ¢ and ¢;. The max-
imization of @) requires solving:

d

0
—Q(A4,A%) =0
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Differentiating @ with respect to A leads to a set of linear equation systems,
which can be solved row by row.

D O o =Y i) S Apap
it

it

In analogy, a similar transformation can also be applied to the covariance
matrices X; of the Gaussians.

Feature Adaptation

Linear transforms can also be applied in the feature space. This technique
has computational advantages over model adaptation since combinations
with adaptive training schemes and Gaussian selection algorithms are easy
to realize. When transforming the features, it is not possible to transform
means and covariances differently as is the case when transforming models,
so this approach is also called “constrained MLLR” or FSA (“feature space
adaptation”).

Given a PDF p(z) and a feature transform f(x), an appropriate PDF
with respect to f would be p(z) = p(f(x))-L f(x). This ensures that the
probability mass is conserved:

[r@ie = [ty = [ o Pas = [ o) D0 = [0

When f : £ — ¢ is a vector function, the corresponding substitution rule
is extended to the functional determinant or Jacobian. The corresponding
Kullback-Leibler statistics for a linear transform f(x) = Ax therefore are:

QA A%) = e+ 3 7i(t) 1o | A] — i — 5(Ao — )57 (Aoy — i)

it

The Jacobian |A| term complicates the optimization process. However, the
Laplace development for a row j results in the following representation of
the Jacobian:

Al = > ajiagn
ik
ajp = (=17 Ayl
where @, denotes the adjunct of A, given j and k. This allows for the im-

plementation of an iterative row-by-row optimization scheme. The adjuncts
aj, are being kept fixed while optimizing row j.
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3.8 Language Models

The language model (LM) describes the a-priori probabilities P(W), where
W = wi,wo,...,w, denotes a sequence of words.

For small, limited domains, context free grammars (CFG) are used to
introduce constraints for the search space. The disadvantage of CFGs is that
current algorithms to learn the structure from data do not work very well.
Human labor is, therefore, required to a great extent during the preparation
of grammars.

On tasks covering large domains, statistical n-gram models are popular.
The word “memory” is constrained to n words, so that an n-gram model
predicts the probability of the next word given a “history” of n — 1 words.
Typical systems use 3-grams, 4-grams, or sometimes 5-grams. Higher or-
der are impractical because of lack of training data and disc space. The
mathematical formulation of a trigram is as follows:

P(W) = Hp(wi|wiflawi—2)

Backing-off schemes are used to capture unseen n-grams. The models
may be “refined” by adding word classes, phrases, and interpolations of
them. The models can be trained by several criteria, such as maximum
likelihood or maximum entropy.

3.9 Decoding
The task of the decoder is to find the best solution W* to the problem

W* = argmax p(O|W) - P(W)
w

as quickly as possible. Decoding can be done in two ways

Depth first: expand every hypothesis and decode it until it no longer is the
best hypothesis, at which point it is discarded (time-asynchronous).

Breadth first: expand all hypotheses of the current frame into the next
frame (time-synchronous) and prune the worst hypotheses.

Sometimes, it is necessary to have more than one decoding pass to incor-
porate for example the full language model, new words, or complex acoustic
models, which cannot be handled in a time-synchronous way because of
context dependency. Also, acoustic models are frequently adapted on the
hypothesis of a previous decoding pass in multi-pass search strategies.

An example for depth first strategy would be “stack decoding” | 1,
which keeps a sorted list of partial hypotheses and sequentially expands the
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best hypothesis with words, re-inserting them into the list where appropri-
ate. This approach works similar to the well-known A* search.

Stack decoders can easily deal with complex language models. However,
for efficiency most ASR systems today use a time-synchronous beam search.
In these breadth-first designs, all hypotheses are pursued in parallel as the
decoder evaluates all time frames sequentially. Given a set of “active” hy-
potheses (or HMM states) S;—1 at time ¢ — 1, the decoder expands them to
time t and compute S; by evaluating the HMM topology, the AM, and LM
accordingly. In order to avoid factorial explosion, equivalent states are usu-
ally recombined at ¢ using the Viterbi approximation, after which the best
state s; at ¢ can be determined, so that all states in S; worse then sf by a
certain score difference (or “beam”) can be “pruned away”, i.e. discarded
before the states from S; are expanded into Sy41.

The main challenge during decoding is the organization of the search
space and the evaluation of the output probabilities for several thousand
distinct acoustic models. The trade-off in decoding is usually speed vs.
accuracy. The decoder used in this work is a Viterbi decoder capable of
using arbitrary language models and cross-word tri-phone acoustic models,
it is described in | ]. An overview of current decoding techniques is
given in [ ].

The output of a beam decoder is usually retrieved from the state sequence
using a back-trace from the best node in the final frame to the start frame.
In many applications, it is however necessary to retrieve not only the single
best hypothesis, but to get more information about the search space, i.e.
alternative (less likely) word sequences.

N-best lists

An N-best list is an ordered (by score) list containing not only the most
likely hypothesis, but alternative phrases, too. An example would be:

show me the interface please
show me in her face please
show me in her face see
show the in her face please
show the in her face see
show the inner face see

In a stack decoder, this corresponds simply to the N best complete
hypotheses at the end of the evaluation phase. Using a Viterbi decoder, it
is also possible to retrieve such a list by performing multiple trace-backs.

Very often, in particular when working with spontaneous speech, it is
found that N > 1000 is often required in order to capture variability not
only in “minor” words such as a, an, the or noises or to contain the correct
transcription show me the interface please as in the example above.



3.9. DECODING 33
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inneﬂ—{face

Figure 3.5: A directed a-cyclic graph of words or “lattice” typically used in
speech recognition.

Lattices

An alternative approach to N-best lists, which can also conveniently be ex-
tracted from the back-trace of a Viterbi decoder, is a directed, a-cyclic graph
of words, i.e. a “lattice”. Such a structure is shown in Figure 3.5. Typically,
every node (or word) in a lattice is annotated with start and end times and
acoustic score. Links are often annotated with acoustic cross-word model
scores and, if given, language model scores. Lattices are usually significantly
more compact then N-best lists, the above example of 6 sentences using 34
words can be represented in a lattice of just 13 nodes.

Lattices or N-best lists map the search space employed by the decoder,
showing the most likely competing hypotheses. Therefore, discriminative
training, also in this work, very often relies on them. Lattices are also used
to compute a-posteriori probabilities or confidence scores for words | ]
N-best lists and Confusion Networks | ] can also readily be derived
from lattices.
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Chapter 4

Related Work

The goal of this work is to improve an existing state-of-the-art speech rec-
ognizer and show how the inclusion of articulatory information can improve
performance. This chapter will therefore present relevant work in the field
of conversational speech recognition, use of AFs for ASR, combination of
several information sources, and give an overview on work in related areas
such as speaker recognition and language identification using AF's.

The experiments presented in this work were conducted using the Janus
[ | speech recognition toolkit and the Ibis | | decoder, which
provides a state-of-the-art environment for ASR research and includes all the
techniques mentioned in Chapter 3.

4.1 Large Vocabulary Conversational Speech Recog-
nition

For HSC, GlobalPhone, and ESST the experiments presented in this thesis
have been performed on the best available systems in-house, however there
are to our knowledge no comparable external systems to compare against.
The robustness experiments on conversational speech were performed using
ISL’s RT-04S “Meeting” evaluation system | , , 1,
which is a state-of-the art system on one of the most difficult tasks in Large
Vocabulary Conversational Speech Recognition (LVCSR) today.

Systems for the close-talking condition of the speech-to-text task on
meeting are typically trained on around 100h of dedicated meeting train-
ing data pooled with BN data [ ] or are trained on large corpora of
telephony speech and adapted on the meeting data [ ] to compen-
sate for the mismatch in bandwidth and channel. The best error rates in
2004 on the RT-04S meeting development data using manual segmentation
are 29.8% for the ICSI system | | and 28.0% for the ISL system
[ ], which will be used for AF experiments in this work. The best
number published on this task as of 2005 is 27.9%, which uses a larger

35
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amount of CTS acoustic training data and web-data for language modeling
[ | than was available in 2004. “Meeting” error rates are therefore
more than twice as high as CTS error rates, for which a comparable number
on the NIST 2004 development set is 13.0% [ ]

4.2 Pronunciation Modeling for Conversational Speech

Most of the work on dedicated models for conversational speech has focused
on finding dictionaries suitable for conversational speech. Pronunciation
variants of frequent words are added to the dictionary, allowing for typi-
cal and predictable changes in conversational speech. However, changes are
only possible at the phonetic level, i.e. one phone can be added, deleted,
or substituted. Changes at the sub-phonetic level, i.e. partial changes, are
not possible. This approach assumes that the deviation from the canonical
pronunciation can be represented in terms of complete changes from the
base-form phonemes to the surface-form phones. One problem with this ap-
proach is that pronunciation variants are related to a variety of factors such
as speaking style, speaking rate, individual speaker habits and dialectal re-
gion. If however the variants added to the dictionary are badly chosen with
respect to the particular task, recognizer, or speaker, the overall performance
may decrease. Great care therefore has to be taken when creating pronun-
ciation variants | |, which are often generated using expert linguistic
knowledge or trained on data [ ]. The recognizers used in this work
employ this approach by containing on average approximately 1.2 pronun-
ciations per word. Multi-words, which model reductions from “going to” to
“gonna” etc. are also used by our conversational speech systems | ].

Another approach to handling pronunciation variability is to create sev-
eral dictionaries using different phone sets and combine the hypotheses from
the separate recognizers | ] using ROVER [ ] or Confusion Network
Combination [ |. Phone sets then have to be created and maintained
separately, also the decoding effort increases linearly with the number of
phone-sets used. Other recent approaches to overcome the limitation of hav-
ing to model conversational speech with a fixed and limited sets of acoustic
units replace phones with articulatory instances of their phonetic attributes
[ |, while allowing other attributes (e.g. nasalization), too, which
results in a richer pronunciation model that can be learned on data. Another
approach generalizes the context clustering tree [ | by sharing the root
nodes between different phones. In this approach, models can be shared
for phones, where the surface pronunciation is not well represented by base
form pronunciations, resulting in a more robust estimation of models.



4.3. ARTICULATORY FEATURES FOR ASR 37

4.3 Articulatory Features for ASR

4.3.1 Overview

Inspired by the process a human expert uses to “read” a spectrogram, i.e.
which cues he or she uses to identify and classify segments in a graphical
representation of speech, there have been several attempts at incorporat-
ing articulatory and phonetic expert knowledge into systems for automatic
speech recognition, e.g. | |. Roughly, they can be grouped into the
following classes ranked according to complexity:

e Include AFs as additional features into the front-end of an otherwise
standard recognizer. These approaches basically assume that AFs are
a better projection of the speech signal for recognition than standard
auditory-based pre-processing and can therefore be used to augment
such a system.

e Segment-based recognizers using AFs. These systems can either solely
rely on AF's or combine AF's with existing acoustic models. Depending
on the kind of segmentation and integration (Hidden-Markov-Models,
Dynamic Bayesian Networks , ...), some degree of asynchrony between
features is permitted. However, AFs are regarded as abstract phono-
logical or perceptual classes, which do not necessarily exactly corre-
spond to physical movements.

e Explicit modeling of articulatory trajectories: these generative ap-
proaches (“analysis by synthesis”) try to recognize speech by evalu-
ating physical models and comparing them with the speech signal.
Therefore, dynamic constraints have to be used in order to overcome
a many-to-one mapping problem, in that many configurations of the
vocal tract can result in the same acoustic signal.

The approach pursued in this thesis fits in the second class, because
it promises a good compromise between theoretical motivation and perfor-
mance improvements (the main drawbacks of the first class) and compu-
tational complexity, the main disadvantage of most systems in the third
class.

4.3.2 AFs as Additional Features

Fide | ] used articulatory attributes to enhance the front-end of a speech
recognizer. She trained a classifier based on GMMs for articulatory at-
tributes. The output of these GMMs is then combined with the original
cepstral observation vector to form an extended front-end, which is then
used to train the “real” acoustic models. She observed an error reduction
of up to 256% on car audio data. She argues that the direct modeling of



38 CHAPTER 4. RELATED WORK

phonemes from the waveform as it is usually done in the beads-on-a-string
model | | disregards some of the phenomena of conversational speech
such as the relaxation of the requirements on the production of certain dis-
tinctive features. She claims that variations in the pronunciation may cause
big phonemic differences while in terms of articulatory features the differ-
ence may be considerably smaller because only few articulatory features
actually change their value. Therefore she argues that the task of recovering
a word sequence from a feature representation is more feasible than from
a phonemic representation. In earlier work, binary linguistic features have
been used for phoneme classification and word-spotting [ ]

Approaches for feature fusion can also be regarded as articulatory ap-
proaches, if merging for example the “Voicing” feature with standard fea-
tures using Linear Discrimination Analysis (LDA), as is done by Zolnay in
[ |, where a gain of up to 7% relative was observed on the German
Verbmobil IT data.

4.3.3 Segment-based Articulatory Features

Different explanations for the poor performance of HMM based recognizers
on spontaneous speech as well as reasons why articulatory features used
in pseudo-articulatory classes might help in overcoming the encountered
problems have been proposed by different researchers.

Ostendorf | |, for example, argues that pronunciation variability in
spontaneous speech is the main reason for the poor performance. She claims
that though it is possible to model pronunciation variants using a phonetic
representation of words the success of this approach has been limited. Os-
tendorf therefore assumes that pronunciation variants are only poorly de-
scribed by means of phoneme substitution, deletion, and insertion. She
proposes that the use of linguistically motivated distinctive features could
provide the necessary granularity to better deal with pronunciation variants
by using context dependent rules that describe the value changes of features.

Coarticulation and assimilation had been identified as a major source
of variability in the speech signal long before that time and a phone recog-
nizer was built based on the detection of place and manner of articulation
in an intermediate “Articulatory Feature Vector” level | . Overlap-
ping articulatory features are used in | | in an HMM-based recognizer.
[ | extends this approach to using diphones in the so-called “Hidden
Articulator Markov model” (HAMM). In this approach, articulatory states
are factorized into different parallel HMMs, which are synchronized at the
diphone boundaries. While the HAMM performs worse than the baseline
phone HMM, combining the two at the log-likelihood level improves word
error rate.

Kirchhoff | | also acknowledges that it is easier to model pronunci-
ation variants with the help of articulatory features. She points out that
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articulatory features exhibit a dual nature because they have a relation to
the speech signal as well as to higher-level linguistic units. Furthermore,
since a feature often is common to multiple phonemes, training data is bet-
ter shared for features than for phonemes. Also for AF detection fewer
classes have to be distinguished (e.g. binary features). Therefore statisti-
cal models can be trained more robustly for articulatory features than for
phonemes. Consequently feature recognition rates frequently outperform
phoneme recognition rates.

Another reason for the poor performance of automatic speech recognition
systems on spontaneous speech is the increased occurrence of coarticulation
effects as compared to planned or read speech. In [ ], Kirchhoff makes
the assumption that coarticulation can be modelled more robustly in the
production based domain than in the acoustic one. She also assumes artic-
ulatory features are more robust toward cross speaker variation and signal
distortions such as additive noise. Kirchhoff developed in her thesis | ]
an approach using articulatory information for robust speech recognition.
She used neural networks to classify attributes and a second classifier to
combine the attribute scores to a phone score. Furthermore, these scores
can be combined on the HMM state level with a traditional system [ ]

Wester, Chang, and Greenberg | | suggest that corpora are opti-
mally annotated at the articulatory-acoustic feature level. They argue that
the transformation from AF to phonetic segments does not transport suffi-
cient detail and richness common to the speech signal at the phonetic level.
This work extends to a more general approach integrating information about
syllables, articulatory features, as well as stress accent in a “syllable-centric
multi-tier model of speech recognition” | ]. Methods for deriving the
needed information from the audio signal are developed and improvements
are shown on a limited-vocabulary task.

Glass proposes another model for segment-based speech recognition Glass
[ ]. Here, decoding is done on a-posteriori probabilities derived from a
segment (feature) sequence, which is a subset of all possible feature vectors
in the total observation space, which consists of a graph of features instead
of a sequence of frames.

Lee | | suggests a “knowledge-rich” paradigm to ASR, which makes
it possible to include different speech event detectors | | into ASR.

Landmark-based ASR [ , |, in which phones are replaced
by times where the acoustic manifestations of linguistically motivated dis-
tinctive features are most salient, which can be binary and sparse, is both
linguistically motivated [ ] and has recently received increased attention
in the form of the 2004 Summer Workshop at Johns-Hopkins | .

Another approach is followed by Reetzin | |, where features detected
from the signal are directly converted into a lexical representation by using
a ternary classifier.
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4.3.4 Articulation-model-based Acoustic Modeling

Work on estimation of Vocal Tract Shapes/ Articulatory Trajectories from
Acoustic Data or actual “inversion”:

Dusan is working toward incorporating phonetic and phonological knowl-
edge in Speech Inversion | ]. As the acoustic-to-articulatory mapping is
essentially a one-to-many relationship, phonological constraints are used to
restrict the trajectories to realistic values using an extended Kalman filter.

The same problem is tackled in [ | by using a constrained form of a
HMM to attain a smooth and slow trajectory.

Deng [ , | sees “residual” variability in speech that is difficult
to explain in terms of general properties as the main obstacle in achieving a
high word recognition accuracy. He argues that today’s speech recognition
systems make use of statistical methods and automatic learning procedures
in order to model speech at a detailed level because of a lack of reliable speech
knowledge. He proposes to use constellations of overlapping articulatory
features as speech units that should be able to model these variations in
speech incorporating all necessary contextual information. At the same time
the number of units is small enough as not to demand too high an amount
of training data.

In [ | Deng developed a framework based on neural networks and
extended Kalman Filter. The Kalman filter was used to model the temporal
structure of speech units while the neural network induced a nonlinearity in
the system. In the same work, he proposed the concept of trended HMM,
whereby polynomials serve as trend functions describing the temporal struc-
ture of vocal tract resonances.

Recent work by Livescu | , | develops a feature-based pronun-
ciation model, which realizes an explicit representation of the evolution of
multiple linguistic feature streams using Dynamic Bayesian Networks. Pro-
nunciation variation is viewed as the result of asynchrony between features
and changes in feature values, which can be learned from data. However,
the benefits of this modeling approach could only be shown on feature values
derived from annotations and not from real data.

Blackburn [ ] describes the design and implementation of a self-
organizing articulatory speech production model which incorporates production-
based knowledge into the recognition framework. By using an explicit time-
domain articulatory model of the mechanisms of co-articulation, it obtains a
more accurate model of contextual effects in the acoustic signal, while using
fewer parameters than traditional acoustically-driven approaches, although
the system employs separate articulatory and acoustic models.

Tang, Seneff, and Zue | | model manner and place of articula-
tion separately for sub-word units. The multi-stage configuration permits
comparing early, intermediate, and late integration of different information
sources. However, they do not find significant differences for these kinds of
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integration.

Juneja and colleagues also developed a speech recognizer based on pho-
netic features and acoustic landmarks | ]. Their approach uses a prob-
abilistic phonetic feature hierarchy and support vector machines (SVMs) to
classify input speech into five classes and outperforms a context-independent
HMM based on an MFCC front end | ]. The input to the SVMs
consists of acoustic parameters like zero crossing rate, formant average fre-
quency, energy in frequency band, etc. Other detectors were proposed and
evaluated, semi-vowels for example are discussed in | |. The “Lexical
Access From Features” project’s detection module for nasal sounds is de-
scribed in | ]. SVMs are also employed for stop consonant detection
using energy and spectral flatness features in | .

Most of the approaches presented in this class however could only be
tested on small corpora or in N-best list rescoring experiments due to their
model complexity.

4.4 Physical Measurements

There have been a number of studies which have investigated the potential
of directly measured speech production parameters to improve the accuracy
of ASR systems. The MOCHA (“Multi-CHannel Articulatory”) database
[ | contains actual articulatory measurements which could be used for
verification of articulatory properties derived from speech or for speech
recognition experiments on articulatory data. This database contains (1)
Acoustic Speech Waveforms, (2) Laryngograph Waveforms, (3) Electromag-
netic Articulograph, (4) Electropalatograph Frames, and (5) Labeled data
for 460 sentences from 2 speakers, although more are planned. In | ]
Wrench shows that the measured articulatory information can be used to
improve speech recognition by integrating it with acoustic features using
LDA. However, the authors report that “preliminary attempts to estimate
the articulatory data from the acoustic signal and use this to supplement
the acoustic input have not yielded any significant improvement in phone
accuracy.” There also exist several non-public data sets with similar speci-
fications.

The authors of | | worked on both detection of articulatory prop-
erties from acoustic evidence only and on real physical measurements, the
paper also presents a brief overview of other related work.

Small command and control applications can be mastered using sur-
face electro-myographic readings of muscular activity when speaking silently
alone [ ]. This approach does not try to identify articulatory fea-
tures (i.e. rounded lips or opening of lips) as such, instead it measures the
muscular activity needed to move the articulators into that position. Recent
work on whispered speech uses data collected through a throat microphone
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and also reports improved recognition through the use of Articulatory Fea-
tures | ].

Other examples that combine acoustic measurements with actual physi-
cal measurements to improve automatic speech recognition can be found in

[ : J

4.5 Combination of several Information Sources
for ASR

Having several independent information sources available for a particular
decision allows us to reduce the error in that decision-making process. Sev-
eral approaches exist to combine information sources in the speech-to-text
process, although the information sources are usually hardly genuinely in-
dependent:

Feature fusion combines different feature streams and constructs a com-
mon classifier. This approach allows for a simple and efficient con-
struction of classifiers. Most modern speech recognizers use this tech-
nique when incorporating a feature context window for the final fea-

ture op = [Jy—n, Gt—nti1s .., Gty - .., Brin) although the MECC spectra
@ can hardly be regarded as independent; other recent examples in-
clude | ] and [LLi05], which also deals with other combination

approaches. Also, combining the signal from several microphones into
one audio signal through beam-forming to reduce background noise
could be regarded as “feature fusion”.

Classifier combination attempts to build dedicated classifiers for each
feature stream and combines the probabilities or likelihoods during
search. The stream approach presented here uses this approach. Most
audio-visual work prefers this approach over the feature fusion ap-
proach [ | because of its flexibility and quality. Some approaches
also decouple streams by allowing for a slight amount of asynchrony
between streams.

Decision Fusion builds dedicated recognizers for each information source
and combines the resulting hypotheses by some suitable algorithm.
This leads to good results, but is only a viable solution if the different
streams or classifiers produce hypotheses of comparable quality, which
usually requires models of comparable complexity, which is not the case
in the “asymmetric” stream architecture presented here. Examples for
this approach include the ROVER algorithm | | and Confusion
Network Combination (CNC) | ].

Model Changes aim to use a model in the first place, which allows to
treat several input streams properly and handles dependencies be-
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tween them accordingly. An example for such a framework, which
is also used in speech recognition, are Dynamic Bayesian Networks
[ ]. However, these approaches typically have high computational
demands.

A currently debated problem is how to generate different features, classi-
fiers, or hypotheses by running several independent recognizers for example
by varying the context decision tree or phone set | , ]. The
stream approach presented in this work can be classified as “classifier com-
bination”.

4.5.1 Audio-visual Speech Recognition

Although humans can understand speech without seeing their partner, they
make use of additional information such as visual cues, when they have the
opportunity to see their partner speaking. In fact, humans tend to rely more
on visual cues, when acoustic communication is difficult, for example in noisy
environments. There is a wealth of literature on audio-visual speech recog-
nition | , ], including a comparison of human and automatic
large-vocabulary audio-visual speech recognition | |, a comparison of
different weight estimation schemes | ], discriminative weighting of
information sources | |, asynchronous streams | ]. At this time,
model fusion seems to perform better on audio-visual data then feature fu-
sion (early integration) or hypothesis fusion (late integration) | ].

4.5.2 Multi-Stream Models

Many researchers have explored the potential of multi-stream speech recog-
nition [ ]. In most cases, the motivation comes from either combining
information from different spectral ranges [ | to improve noise robust-
ness or from being able to combine different acoustic models, different time
scales or a combination of both.
Estimation of stream weights has mostly been based on the ML | ,
|, MMI | ], Maximum a Posteriori (MAP) | |, Maximum
Entropy (ME) | | or directly on Minimum Classification Error (MCE)
[ | criteria.
Asynchrony between streams was explored by Mirghafori | ] with
limited success; other work [ ] reports improvements on a isolated word
task using an approach trying to approximate “loosely couple articulators”.

4.5.3 Classifier Combination

The structure of Equation 3.1 implies that instead of two knowledge sources,
language model and acoustic model, there could be more, presumably inde-
pendent, knowledge sources to be taken into account. Several approaches



44 CHAPTER 4. RELATED WORK

have therefore undertaken to create a unified framework to integrating sev-
eral knowledge sources | ], be they language models or acoustic models,
or even further side information | ], into the recognition process.

This is frequently achieved using log-linear interpolation, as one can
write

p(o|¥) := CHpi(OI‘Ifz')A" (4.1)

using a normalization constant C'. In log-space, the above multiplication
of exponentially weighted terms simplifies to a linearly weighted sum, which
is easy to compute for every state. The p;(o|¥;) can be N different inde-
pendent knowledge sources and the combination of the classifiers is achieved
by choosing the \; appropriately. In some cases, knowledge source integra-
tion is also achieved by rescoring lattices from a standard recognizer with
other, possibly non-local, information | ]. As in Equation 4.1 p(o|¥)
is written as a probability density function (PDF), it is important to notice
that the exponential weighting destroys the normalization property of the
individual p;, even if >, \; = 1, which makes re-normalization through C
necessary.

4.5.4 Dynamic Bayesian Networks

A Bayesian network is a general way of representing joint probability distri-
butions with the chain rule and conditional independence assumptions. The
advantage of the Bayesian network framework over HMMs is that it permits
for an arbitrary set of hidden variables s, with arbitrary conditional indepen-
dence assumptions. If the conditional independence assumptions result in a
sparse network, this may result in an exponential decrease in the number of
parameters required to represent a probability distribution. Often there is
a concomitant decrease in the computational load | ].

Recent advances in inference and learning of DBNs allow using in real-
world applications and it is therefore not surprising that many researchers
are using the extra modeling power stemming from the factored state rep-
resentation enabled by DBNs to model articulatory, or pseudo-articulatory
processes, in ASR: Wester, Frankel and King | , | describe a
training scheme, which allows to learn a DBN recognizer for articulatory
feature on asynchronous labels, where supported by the data. This results
in a more structured DBN, which results in less feature combinations in
the recognition output. In addition, this recognizer performs better than a
Neural Network.

Some of this work has already been discussed in Section 4.3. The main
pitfall of these approaches is that they are usually still too complex to be
tractable on large tasks.
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4.6 Speaker Verification and Language Identifica-
tion

While speech recognition aims to build statistic models for speech, which
focus on speaker (and language) invariant properties as much as possible,
techniques developed for these purposes can also be applied to investigate
inter-class variability in order to identify speakers or languages.

In the simplest case, a Language Identification (LID) system evaluates
the output of speech recognizers specialized for specific languages, assigning
the language to the recognizer which produces the highest confidence output
[ ] or the best acoustic likelihood | , ].

Information on articulatory properties derived solely from the acous-
tic signal is also valuable to identify speakers or languages. For language
identification, an approach based on n-gram modeling of parallel streams
of articulatory features has shown better performance on shorter test sig-
nals compared to baseline systems based on statistical modeling of phone
sequences extracted from the speech signal [ -

Speaker Verification (SV) using articulatory features has been demon-
strated in | ], the same authors have also investigated phone-level
confidence measures using articulatory features [ ].
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Chapter 5

Detecting Articulatory
Features from Speech

The aim of this research is to incorporate the concept of articulatory features
into a speech recognition system. A first step in that direction is to build
dedicated “detectors” for these features in order to examine whether it is
possible to reliably extract the feature information from the acoustic signal.
As we are expecting articulatory properties to be portable across languages,
we did also perform multi- and cross-lingual experiments at this stage.

By “detector”, we mean acoustic models which can be used to classify a
given speech frame as either “feature present” or “feature absent” by com-
paring the class-conditioned probabilities p(o|a) for the feature attributes a,
or the associated likelihoods.

As the goal of this work however is not to use the detectors for feature
classification on a per-frame basis, results in this chapter only serve to verify
our assumptions that

e (Pseudo-)articulatory features can be detected robustly from speech.
e Detectors for articulatory features can be transferred across languages.

e Articulatory features can be detected for different speaking styles, in-
cluding hyper-articulated speech.

As a case study on how speaking style influences articulatory features
as we are using them in this work, we present an analysis of AF's on hyper-
articulated speech, where we find that the changes occurring when switching
to a hyper-articulated speaking mode do not affect phones, but the feature
needed to distinguish between the words the speaker wants to discriminate
(see Section 5.3).

47
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5.1 Model Training for Articulatory Features

Detectors for articulatory features can be built in exactly the same way as
acoustic models for existing speech recognizers. Using time alignments from
an existing speech recognition system, we separated the training data into
“feature present” and “feature absent” regions for every articulatory prop-
erty we are interested in and trained acoustic models using MLE estimation
as described in Section 3.6. We trained our models on the middle states of
every phone only, assuming that features such as VOICED would be more
pronounced in the middle of a phone than at the beginning or the end, where
the transition into neighboring, maybe unvoiced, sounds has already begun.

Acoustic models for articulatory feature detectors were trained on the
ESST (English Spontaneous Scheduling Task) database collected during the
Verbmobil project | ], phases VM-I and VM-II. It consists of Ameri-
can speakers, who were simulating dialogs to schedule meetings and arrange
travel plans to Germany with a business partner. The participants were in
separate rooms, talking over a telephone, but could usually see each other.
Many also knew their conversation partner.

The ESST dialogs contain a large amount of spontaneous effects (partial
words etc.) and also contain a high proportion of foreign (mostly German)
proper names (restaurants, businesses, places, ...) pronounced by native
American speakers without knowledge of German. Because the ESST data
contains foreign words to an unusually high degree, it has been transcribed
narrowly, frequently employing “phonetic English paraphrases” in order to
facilitate acoustic model training. The hotel “Prinzenhof” for example re-
ceives the following “phonetic English” transcriptions in the training data:
Preezenhof, Presenhoff, Prinzenhof, Prinzenhof, Prinzenhoff, Prisenhoff,
Prisonhof, Prizenhof, Prizhof, Prosinhof.

Training data consists of approximately 32h of audio data recorded with
16kHz/ 16bit using high quality close-talking microphones. On the ESST
training labels, begin-, middle-, and end- states represent 32.9%, 34.1%, and
33.0% of phone-labeled data respectively. Even the rarest feature (ALv-FR,
0.4%) could still be trained on 101s (middle states only) of data. Every
feature model used 256 Gaussians with diagonal covariance matrices.

The general system setup and the pre-processing of the audio signal is
identical to the system used for the experiments on spontaneous speech,
which is described in Section 9.1 and Appendix B.2, although the feature
detectors used no STC matrix, a different LDA matrix and were evaluated
in a 32-dimensional feature space.

The feature detectors were evaluated on two different tasks: “ESST” and
“ReadBN”. The ESST test set was recorded under the same conditions as
the ESST training data and consists of 58 recordings from 16 speakers with
a total duration of 2h25. Details are presented in Appendix B.2. ReadBN
data consists of 198 sentences from the Broadcast News database, which
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Figure 5.1: Output of the feature detectors for part of the utterance “... be
more effective and you might even ...”; black bars mean feature present and
white bars mean feature absent. The height of the bars is proportional to
the score difference, i.e. the higher a black (white) bar, the more likely it
is that the corresponding feature is present (absent) at this point in time.
The numbers at the bottom represent the frame numbers for this excerpt:
1sec = 100 frames.

were re-read in a quiet environment by two speakers, so they are comparable
in channel and recording quality to the ESST data, although they are not
spontaneous (see Appendix B.3). There is no separate ReadBN training
corpus.

The output of some of the feature detectors as used in the classification
experiment on ReadBN data is shown in Figure 5.1. It seems that the output
of the detectors indeed approximates the canonical feature values quite well,
as is also indicated by the classification rates in Table C.1, although various
co-articulation effects (e.g. nasalization of /ui/ before /m/) are detected.

The same feature detectors were used to classify the test data into fea-
ture present and feature absent categories on a per-frame basis, by comparing
the likelihood scores produced for the test-data, also taking into account a
prior value computed on the frequency of features in the training data. The
reference for testing was given by the canonical feature values associated
with the phonetic label obtained through flexible transcription alignment
[ | (Viterbi) using the non-feature baseline system. The results shown
in the left two columns of Table C.1 were obtained on ReadBN test data,
while the right column was obtained on ESST (spontaneous speech). Overall
binary feature classification rates for ReadBN data reach 90.8% on middle
states and 87.8% on all states. As begin- and end-states account for about
two thirds of all speech data, this means that there is a 50% increase in fea-
ture classification error at the beginning and end of phones. As the phonetic
alignment however was produced automatically, these numbers can not be
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Figure 5.2: Output of the feature detectors for part of the phrase “... as far

as ...” in both read speech (top) and spontaneous speech (bottom) from the
same speaker. The numbers at the bottom represent the frame numbers for

this excerpt: 1lsec = 100 frames.

used to compare the accuracy rates presented here with feature detection
rates computed on corpora for which detailed annotations at the feature
level are available. On ESST data, feature classification accuracy is 87.3%
when measured on all states, so that there is no significant degradation
between controlled and spontaneous speech, which confirms our impression
from visual inspection that feature detection works nearly equally robust for
all kinds of speaking styles.

Although not directly comparable, the numbers reported here are in the
same range as the results reported in | ] for the detection of phonological
features using different feature systems on the TIMIT database using neural
networks.

Figure 5.2 shows a comparison for an utterance spoken by the same
speaker in both controlled mode (“Rob Malkin” in the ReadBN database)
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and sloppily (“RGM” in the ESST database, testing part). Phone durations
are markedly different in spontaneous speech and transitions are less marked,
although the output of the feature detectors again seems to be remarkably
similar.

5.2 Multi-Lingual Articulatory Features

Next, we built articulatory feature detectors for the five languages Chinese,
English, German, Japanese, and Spanish | , , | on
the GlobalPhone database | ]. These feature detectors were then
evaluated on their individual languages as well as on the other four languages
in order to investigate the potential of detecting articulatory features across
languages.

Using the ML-mix technique | | for language independent acoustic
modeling we trained and evaluated a set of multi-lingual detectors, using all
possible combinations of the five selected languages.

5.2.1 Mono-Lingual Detectors in Five Languages

In the experiments on the GlobalPhone database we built models for the
articulatory features as defined by IPA in the phoneme charts to describe
the sounds of human speech (see 2.3), in also adding linguistically motivated
questions, that are commonly used during the construction of the decision
tree for context-dependent acoustic modeling | ].

Every “feature present” and “feature absent” detector was modelled by a
mixture of 256 Gaussians. The input vectors for the mixtures were obtained
from 13 dimensional mel frequency scaled cepstral coefficients (MFCC) com-
bined with their deltas and delta-deltas, the zero crossing rate of the signal,
its power, and the first and second derivative of the power. The resulting
43 dimensional feature vector was then reduced to 32 dimensions using an
LDA transformation.

Recognizers based on context dependent sub-phonetic units already ex-
isted for the five languages used here. In those recognizers every phoneme
is modelled by three states (begin, middle, end). Using these recognizers we
produced state alignments of the training and test data on a sub-phonetic
level starting from word transcripts.

The first step in training the feature detectors was the calculation of the
LDA transformation with the context independent sub-phonetic units as
classes. Then the models for the feature detectors were initialized using the
k-means algorithm and trained with four iterations of label training. The
mapping of the sub-phonetic transcription to the features was done using
the TPA table that describes phonemes in terms of articulatory features
(see 2.3). For example the phoneme /9/ is attributed with the features
CENTRAL, CLOSE-MID, and UN-ROUND. So feature vectors that according
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Test Set
CH EN GE JA SP
CA 93.5% 93.8% 92.9% 95.2% 93.5%

Table 5.1: Average Classification Accuracy (CA) of the AF detectors.

to the transcription belong to /9/ were used to train the present models for
CENTRAL, CLOSE-MID, and UN-ROUND, as well as the absent models of all
the other features. The feature detectors were only trained with acoustic
material that belonged to sub-phonetic middle states. This was done because
articulatory features are not static but rather change dynamically. Since we
only model abstract classes of articulatory features, we assume that the
acoustic data that belongs to middle states is the most representative data
for the respective classes.

In addition to the acoustic models for the detectors, we also estimated
prior probabilities for the occurrence of the individual features by counting
the number of training vectors each model got. Using the acoustic models for
the features and the calculated prior probabilities we evaluated the feature
detectors by determining their classification accuracy on the development
set, of their language.

Just as during training, evaluation was performed on the acoustic vectors
that, according to the transcription, belong to sub-phonetic middle states.
Again, this alignment was automatically generated from the word transcrip-
tion using phone models. For each test vector every feature was classified
into either present or absent. To do so the likelihood score of the absent
model was subtracted from the score of the present model and an offset was
added that was the difference between the score of the feature present prior
probability and the score of the absent prior probability. If the resulting
value was below or equal zero the frame was classified as feature present,
otherwise as feature absent.

The resulting classification accuracies [ | averaged over all fea-
tures are shown in Table 5.1. Detailed results for every single feature can
be found in the appendix to | ].

Average classification accuracy is consistently high across all languages.
This is consistent with the expectation mentioned in 4.3.3, that statistical
models for binary features can be estimated very robustly. The individual
results are listed in Appendix C.1, one can see that within a language the
classification of the individual features lies roughly in the range from 80% to
99%. On the English GlobalPhone data the classification accuracy for AFs
is even higher than for the “ReadBN” data used in Section 5.1 (93.8% vs.
90.8%), we attribute this to the matched conditions for training and test.
No experiments were performed with unsupervised training.
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5.2.2 Cross-Lingual AF Detection

The next experiment establishes whether articulatory feature detection is
robust to inter-language variability. For this purpose we tested each mono-
lingual feature detector on the other four languages that it was not trained
on. For this cross-lingual classification we used the prior probabilities that
were estimated on the language that the classifiers were trained on. As
the GlobalPhone database was recorded under nearly identical conditions
for every language, differences can be attributed to language, not channel.
Speakers were unique to their language and their training, development or
evaluation set.

Table 5.2 shows the results of this evaluation. Every row gives the results
of the detectors trained on one of the five language when tested on each of
the five languages. The results are averaged over the classification accuracy
of the detectors for the individual features. Since not all features of the test
set language might be covered by the detectors from the language that is
being tested, the classification accuracies could only be averaged over the de-
tectors for features that exist in both, the test and training language. So for
example, when testing the Japanese feature detectors on Spanish, we could
not determine the classification accuracy for the features TRILL, DENTAL,
and FLAP. These features are attributed to some Spanish phonemes, how-
ever no Japanese phonemes with these features exist, and thus no Japanese
feature detectors for them. At the same time there are Japanese feature
detectors for GLOTTAL and UVULAR. Testing them on the Spanish test set
however would only produce false alarms, as these features do not occur
with a distinctive function in the Spanish phonemes. Similarly, German
consonants are generally aspirated, but as this feature is not used to distin-

guish two words with different meaning | , |, i.e. this feature does
not form a minimal pair, it is not retained in the German feature set and
serves to distinguish regional variants | |. The amount of false alarms

also differs between language pairs and was not measured. The diagonal of
the result matrix naturally gives the mono-lingual results mentioned earlier.
The detailed results for the individual feature detectors from all languages
tested on all languages can be found in Appendix C.1.

As one can see the highest relative drop in average classification accuracy
is 11.5%, and occurs when decoding Spanish with Chinese features. The
least loss occurs when using English feature detectors to classify the German
data. For this constellation the average classification accuracy drops only
4% relative.

However, for every test set there are detectors from languages other
than the test language that show a relative increase in performance. For
example, the classification error for CENTRAL is reduced by 25% relative to
8.4% when using German feature detectors on the English data as opposed
to the English detectors’ 11.2% (see appendix C.1). Therefore, gains can
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Test Set
Training CH EN GE JA SP
CH 93.5% 87.4% 88.2% 86.5% 83.2%
EN 87.7% 93.8% 89.2% 88.4% 87.9%
GE 88.6% 87.9% 92.9% 86.5% 82.7%
JA 87.1% 87.7% 86.8% 95.2% 87.4%
SP 84.8% 86.4% 83.3% 87.8% 93.5%

Table 5.2: Average classification accuracy of the AF detectors.

Test Set
Detector CH EN GE JA SP
CH 29 24 23 21 21
EN 24 30 260 24 25
GE 22 26 27 24 24
JA 21 24 24 25 23
SP 21 25 24 23 26

Table 5.3: Number of features shared by different language pairs.

be expected from combining data from different languages to build multi-
lingual speech detectors.

The number of distinctive features shared by different language pairs is
shown in Table 5.3. Chinese does not share any of its five tonal features
while the European languages German, English, and Spanish share more
features among themselves than with Chinese and Japanese.

5.2.3 Multi-Lingual Classification

We trained multi-lingual AF detectors by sharing the training data from
n languages to train detectors that are no longer language specific but can
be used to detect features in many languages. Since we used the training
method “Multi-Lingual Mixed” (see Section 5.2.3) we call a set of feature
detectors trained on n languages MMn. If we refer to a set of specific lan-
guages that the detectors were trained on, we do so by simply combining
the training language identifiers with underscores. E.g. MM3 feature detec-
tors trained on the languages English, German, and Japanese are be called
EN_GE_JA detectors.

When training acoustic models with the method “Multi-Lingual Mixed”,
combining n languages by simply using the training material from all n
languages would mean that the available training material would roughly
increase n fold. Therefore, in order to ensure that the observed effects do
not just occur because of an increase in training material, we only took a
fraction of the training material of each involved language depending on
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how many languages were involved. E.g. for MM AF detectors trained with
German and English data we used half of the German training utterances
and half of the English.

Since we are working on five languages, we can build MM2, MM3, MM4,
and MMS5 feature detectors. When training on n out of five languages there
are (75‘) possible combinations of languages. In order to explore the multi-
lingual possibilities, we trained all possibilities for combining two to five
languages.

Figure 5.3 gives an overview over the performance of the MMn detectors.
For every MMmn detector the corresponding chart shows the range of the
performance of all possible MMn detector sets on all possible test languages
compared to the performance of the mono-lingual AF detectors that were
trained on the test language. The performance averaged over the individual
AF detectors for all possible combinations training data can be found in the
appendix of | ]. We can see that if we choose the right combination of
languages for a given test set the performance of the MMn detectors is only
slightly worse than that of the corresponding mono-lingual ones.

In order to see whether using all available training data instead of just
a fraction for training the multi-lingual detectors would improve their per-
formance, we trained the MM5 detector on the complete training data of
the five languages. However the evaluation only showed very little absolute
improvements of 0.8% on the Chinese test set, 0.2% on English, and 0.2% on
Japanese. On the German and Spanish set the performance suffered slightly
by just 0.1%. So given the number of parameters of the feature detectors
the fraction of training material from the individual languages seems to be
sufficient to learn the language dependent properties of the features. This
might be an indication that the acoustic manifestation of articulatory fea-
tures is indeed very similar for different languages, so that there are only
few language dependent characteristics in the acoustic signal.

Given the five languages it is also of interest which influence the presence
of the test language among the training languages has. Table 5.4 compares
the performance of the MM4 detectors that were trained on all four lan-
guages except the test language with the performance of the the detectors
trained on all five languages (MM5 detectors), thus including the test lan-
guage. Again there is the problem that not all features of the test language
might be covered by the MM4 feature detectors. Therefore the classification
accuracy of the MMS5 detectors is only averaged over the features of the test
language that are also covered by the corresponding MM4 detectors.

As is to be expected the MM5 detectors always outperform the MM4 de-
tectors, since the test language has been seen during training, the difference
is however smaller than 5% relative.
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Figure 5.3: Performance overview of the MMn recognizers (from | ).
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Test language
CH EN GE JA SP
MM5 90.6% 90.4% 88.9% 90.9% 88.7%
MM4 89.5% 88.3% 88.0% 88.0% 87.1%
Rel. loss  1.6% 2.4% 1.0% 32% 1.9%

Table 5.4: Comparison between MM4 detectors that were not trained on
the test language and MM5 detectors.

5.3 Articulatory Features as Contrastive Attributes

Hyper-articulation is a particular speaking style which occurs when people
want to stress particular aspects of a linguistic message. As such, it is not
a global effect and the changes occurring depend on several factors. In
the context of a human-machine dialog system, which pretends to confuse
two words, a first-order description would predict changes in the articulatory
features used to distinguish the phones which are in turn used to distinguish
the confused words.

Contrastive Attributes (CAs) | | can be used for describing changes
occurring while disambiguating recognition errors. A CA is an attribute in
context of a word error which can be used to discriminate between the true
and the recognized token. In a hyper-articulated speaking mode, such a
contrastive attribute could be inverted to stress the mis-recognized part of
the word. The following example illustrates this process:

Assuming we have the word BITTER (canonically pronounced /bitor/)
[ ]. Let us now suppose that the word BETTER was recognized, e.g.
the recognized phone sequence is /betor/.

The difference is the quality of the vowels in the first syllable [ 1,
namely

1 the near-close near-front un-rounded vowel
e the close-mid front un-rounded vowel

In the Janus recognizer lexicon and linguistic question set these words are
represented by

BITTER {{B WB} IH T {AXR WB}} and
BETTER {{B WB} EH T {AXR WB}}.

WB marks a “word boundary” and can be ignored for our purposes. We
can use the Articulatory Features (defined as a set of phones, see Chapter
B.2)

HigH-Vow (IY IH UH UW IX) and
Mip-Vow  (EH AH AX)
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to distinguish between the two words.

Using contrastive attributes we can now predict what kind of changes
will occur during hyper-articulation, i.e. when the speaker tries to pro-
duce BITTER a second time, but this time tries to produce it phonetically
distinct from BETTER. In order to avoid the mis-recognized word BETTER,
a hyper-articulated variant of BITTER will exhibit activated attributes for
Hice-Vow. To demonstrate that the predicted effects actually occur in
real utterances, we can look at the output of our feature detectors:

Let an utterance (word sequence) W be represented as a sequence of
observable feature vectors (01,02, ...,0r), where T' denotes the length of the
utterance in terms of number of frames. The probability density functions
for p(o¢|la) are modelled by mixtures of Gaussian densities. The PDF's are
used for defining the conditionals for the articulatory attributes a. In the
same way, anti-models are available, e.g. p(o¢|a). The models are trained in
a speaker and speaking mode independent fashion as described before. The
conditionals are used to define a distance function as shown in Figure 5.1:

Aoy, a) = log p(o]a) — log p(oi|a)

The two acoustic signals are shown in Figure 5.4. Figure 5.5 shows two
curves: the solid line represents the output of the feature detector for HIGH-
Vow for the word BITTER in a normal speaking mode. In a hyper-articulated
speaking mode, the same word BITTER results in the A(o;, a)-curve shown by
the dashed line. Both words were uttered by the same speaker. The hyper-
articulated variant arose when the speaker tried to resolve the recognition
error BETTER vs. BITTER in the framework of a dialog system | ].

The output of the feature detectors in Figure 5.5 also clearly shows the
different lengths of the closure period and the overall longer duration of the
hyper-articulated variant of BITTER. However, the initial syllable clearly has
a higher mid-vowel character for the hyper-articulated variant then for the
normal variant. The second syllable seems relatively unaffected. Figure 5.6
on the other hand shows that the peak and area of the feature detector for
Mibp-Vow is hardly influenced by the speaking style. The visible change is
mainly due to the longer closure of the plosive.

On the other hand, we can look at what happens when the same speaker
tries to disambiguate BETTER from BITTER: Figure 5.7 shows that in this case
also, the MID-Vow feature is stressed for the duration of the first syllable
during production of the “stressed” variant.

This example illustrates that our articulatory feature detectors can in-
deed capture information that humans use to disambiguate words from each
other. Computing a Viterbi alignment of SIL BITTER SIL and SIL BETTER
SIL on our four examples (both words produced normally and hyper-articulated)
results in the following acoustic scores:

Table 5.5 shows that for the case where the speaker said BITTER (columns
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Figure 5.4: Log-MEL features for the word BITTER pronounced both “nor-
mally” (top) and “stressed” (bottom). It is obvious that the “stressed”
version includes a couple of differences, notably the length of the closure
and release of the /t/, leading to a larger overall length. Time (horizon-
tal axis) is in frames of .01s, vertical axis shows 30 Log-MEL feature bins
spanning a frequency range from 0 to 8kHz.
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Figure 5.5: A(o4,a) for attribute HIGH-VOwW while pronouncing BITTER,
both normally and hyper-articulated.
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Figure 5.6: A(o,a) for attribute MID-Vow while pronouncing BITTER,
both normally and hyper-articulated.
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Figure 5.7: A(oy, a) for attribute MiD-Vow while pronouncing BETTER, both
normally and hyper-articulated.

Normal Hyper-articulated
Hypothesis BITTER BETTER BITTER BETTER
BITTER 3.6789  3.830262  3.6386  3.888735
BETTER 3.70339 3.751807 3.648059 3.800349
Margin 0.02449 0.07455 0.009459 0.088386

Table 5.5: Acoustic scores (negative log-likelihoods -103) for alignment of
two hypotheses on normal and hyper-articulated versions of these two words.
“Margin” is the score difference between the correct and the wrong hypoth-

esis.
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marked BITTER), the score difference deteriorates from 0.024 for the “nor-
mal” version to 0.009 for the “hyper-articulated” variant, i.e. contrary to
the speaker’s intention, the hyper-articulated version of BITTER is even more
similar to BETTER, although the overall score has improved. For the case of
BETTER, the overall score deteriorates, but the two versions also become
more different acoustically (from 0.074 to 0.088).

Therefore, articulatory feature detectors can model the changes occuring
when speakers change from normal to hyper-articulated speaking style better
than standard acoustic models.



Chapter 6

Including Articulatory
Features in HMM based
ASR

The previous chapter introduced a method to build dedicated detectors for
articulatory features using Gaussian mixture models. The detectors are
based on two models with complementary distribution, one for “feature
present” and one for “feature absent”. This forms a simple binary deci-
sion tree, which can also be used in the acoustic model of a speech recog-
nizer. This chapter therefore takes the step from simply detecting features
to actively using them in the task of recognizing speech.

The goal of the research in this work is not to build a recognition sys-
tem solely based on articulatory features. Instead, we concentrate on sup-
porting an existing HMM based recognizer with models for M articulatory
features as an additional source of information. Therefore, our approach
integrates dedicated detectors for articulatory features with conventional
context-dependent sub-phone models, using a stream architecture | ]
Although the individual extra classifiers are very simple, they can contribute
to an improved overall classification | |, as they are “different” in the
sense that they have been trained on different partitions on the training
data.

In the taxonomy of approaches to combination of information sources
presented in Section 4.5, this “classifier combination” approach avoids the
overhead of creating separate hypotheses for the different information sources
and having to fuse them “late”, while it also avoids the relatively inflexible
“feature fusion” approach, which is simple to realize, but very inflexible, as
the training and classification occurs on a probability distribution trained
jointly over all information sources. It is therefore not possible to change the
relative weights of the different information weights at a later stage. The
stream approach taken in this work on the other hand, makes it possible

63
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Model Score
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Figure 6.1: Stream setup that combines a “main” stream (“Stream 07, left)
using N context dependent models with M = 2 “feature” streams, each con-
taining only two feature “absent” and “present” detectors (neglecting silence
and noise models for clarity of presentation). Every stream has a different
stream weight \; (examples here: 0.7, 0.2, 0.1) for additive combination in
log-likelihood space (® symbol). The @ symbol represents the selection of
exactly one model per state in the decision tree.

to use the relative weighting of different feature streams for adaptation to
speaker and speaking style.

6.1 Stream Architecture

Kirchhoff | | investigated several approaches to combine information
about different articulatory features and found the most promising approach
to be the combination of scores at the log-likelihood level. After initial ex-
periments with front-end approaches, we therefore used this approach to
combine information sources, be they “feature” or “main” stream, too. The
conventional models that we use in this research are context dependent sub-
phonetic units that are modeled as a mixture of Gaussians. Because of that,
and because of the design of our feature detectors as described in Chapter
5, the acoustic score (negative log probability) for a model is now computed
as the weighted sum of several Gaussian mixtures models, which represent
the standard models and “feature” probability distribution functions. The
result is a stream-based architecture which is illustrated in Figure 6.1. The
0-th stream consists of the context dependent standard models. For every
articulatory feature that we wish to use, we add an additional stream that
contains the “present” and “absent” models for this feature as described
in the last chapter. When the decoder now computes the score of a state
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s given a feature vector o it adds the score of the corresponding context
dependent model from the 0-th stream to the scores from either the “ab-
sent” or “present models” from the other streams, depending on whether
s is attributed with the respective feature or not. The mapping to deter-
mine whether a particular phone is attributed with a feature or not is done
according to the linguistic question set used during the construction of the
context decision tree, shown in the system descriptions in Appendix B. This
question set holds the same information as the IPA chart (see Figure 2.3),
but expressed in the phoneme set of a particular recognizer and in some cases
contains alterations that were found to be beneficial to ASR performance
during the years of development at ISL.

As discussed in Section 2.2, it is possible to obtain a complete description
of phones by composing them out of attributes, or features. These attributes
can represent multi-value structures such as place and manner of articula-
tion or binary features such as voicing or lip rounding. Still, multi-value
attributes can be broken down into sets of binary attributes, e.g. manner of
articulation can be described by the binary attributes plosive, nasal, frica-
tive, and approximant. This transformation obviously induces a correlation
between the attributes. Switching to binary attributes however creates an
unified view of discriminatory effects in an articulatory domain.

Also, in our approach, articulatory attributes are not used to enhance the
front-end. If that were the case, the constraints on the human body result
in mutual dependence of feature properties which would conflict with the
assumption of independent dimensions made for efficient score computation
using diagonal covariance modeling, even when semi-tied full covariances or
similar approaches were to be used.

The weighted combination of the scores from the HMM based models and
the articulatory feature detectors as described above requires the selection
of an appropriate set of weights. The weights control the influence that
the individual detectors have on calculating the score and thus have a great
impact on the search for the best hypothesis. The task is to find an optimal
set of weights A = (Ao, A1,...,Ay) that minimizes the word error rate of
the recognition system. Weight estimation is being discussed in Chapter 7.

6.2 Mathematical Analysis

In mathematical terms, the state-level combination of acoustic scores in the
log-likelihood domain used in this work can be derived from the log-linear
interpolation formulated in Equation 4.1. Neglecting the global normal-
ization constant C' and going into the logarithmic domain to better match
the dynamic range of numerical values encountered, one can write the score
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function g as
M

g(ot|A,T) = — Z Ailog pi(o¢|T;)
i=0
where I denotes the parameters of Gaussian mixture densities. As shown
in Figure 6.1, 'y consists of the parameters of several thousand context
dependent GMMs N;, while the I';»o model feature streams which only
have GMMs N, and Nj for feature present and feature absent. As mentioned
before, introducing weighting factors A; manipulates the probability mass:

/Zp,-(o|A,-)Aid$ #+1

Introducing constraints, such as ), )\ZK = L with constants K and L as sug-
gested in [ ] does not solve that problem. In fact, the function g(o|A,T")
is also not a probability density function (PDF) in the log domain. There
are two components in a speech recognizer where the loss of normalization
might have consequences:

From a decoding point of view, the Viterbi algorithm attempts to find
the best hypothesis with respect to the acoustic and language models. In
general, it does not matter if the scores rely on a PDF or not. Independent
from the optimization criterion, the decoder searches for the word sequence
with the best score.

From a training point of view, the acoustic model parameters I'; in the
individual streams can be estimated by optimizing the ML criterion since
the conditionals p;(0;|T';) are valid PDFs. On the other hand, the weighting
factors A\; cannot be estimated by maximizing the training likelihood without
further constraints | ], which is why we chose to work with a discrimi-
native criterion instead of introducing artificial constraints on the A; apart
from a normalization requirement ) 3, A\; = 1 to ensure the comparability of
acoustic scores during search.

Section 7 discusses these problems in detail.

6.3 HMM Topology and Decision Trees

The formalism presented in the previous section allows combining several
acoustic models into a single acoustic score. We therefore still need to define
more formally, which models to combine in order to compute a score for a
specific state or state sequence.

The acoustic models used in this work are tri-state left-to-right HMMs
as shown in Figure 3.3. The acoustic model to be used for a given state is
determined by evaluating a context decision tree containing the following
questions:

1. Type of phone HMM state (begin, middle, or end)
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Figure 6.2: Top nodes of ESST phonetic context decision tree for begin
states: YES answers go to the right, NO answers to the left. We see context-
independent “noise” models, then questions for phone identity, linguistic
class, and tags. Root node is marked “null”, leafs (acoustic models) are
shown in pink, tree nodes are shown in yellow.

2. Phone identity (e.g. /a/, /k/)
3. Phone identity of neighboring phones (context of +2)
4. Tags of neighboring phones (only “word boundary” WB currently used)

5. Linguistic classes (LABIAL, VOWEL) of neighboring phones (context of
+9)

The first two questions are always positioned directly after the root node
of the tree, questions of type 3 and 4 have multiple occurrences, which are
determined on the training data using a divisive clustering scheme based on
an entropy or likelihood criterion, typical systems employ several thousand
context dependent models.

Silence and noises (see Appendix B) are not treated in a context-dependent
way. The first few nodes of the ESST tree for begin states are shown in Fig-
ure 6.2. By contrast, the complete decision tree for the SYLLABIC feature
of the ESST system is shown in Figure 6.3: the acoustic model contains
—log p(o¢]a), the “feature present” model, —logp(oi]a), the “feature ab-

sent” model and models for non-phonetic events such as silence and noise.
The SYLLABIC phones are defined in Appendix B.2.
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Figure 6.3: Complete ESST decision tree for the SYLLABIC feature. YES
answers go to the right, NO answers to the left. The only acoustic models
used (apart from dedicated “noise” and “silence” models) are the mod-
els for “feature present” (here: SYLLABIC(|)) and “feature absent” (here:
NON_SYLLABIC(|)). Root node is marked “null”, leafs (acoustic models) are
shown in pink, tree nodes are shown in yellow.
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The same decision tree is used for begin, middle, and end HMM states
in the articulatory feature streams i # 0.

6.4 State Dependent Stream Weights

In the formulation so far, the stream weights A; were assumed to be stream-
dependent (or “global”, G) only, i.e. they were assumed to be equal for all
HMM states s or (equivalent) equal for all leafs of the phonetic decision tree
used for the “main” stream O.

To vary the relative weighting of the streams and increase the number
of parameters usable for modeling and adaptation, stream weights can be
made state dependent (SD), i.e. they can vary depending on base phone
identity or phonetic context. This results in a different set of weights A; s for
every context-dependent HMM state s. Independent of the actual estimation
method used to determine the stream weights A; 5, the phonetic decision tree
can also be used to tie states s during re-estimation, to make sure weight
updates are performed on sufficient statistics.

To ensure comparability of acoustic scores during search, >, A; s = const
has to be valid Vs. As JRTk employs a divisive clustering scheme for con-
structing context-dependent models and uses questions based on features
[ |, context dependent stream weights permits modeling for exam-
ple wvoicing of end-states of unvoiced fricatives before vowels or other related
effects, which means the proposed architecture can escape the “beads-on-a-
string” problem at the state level.
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Chapter 7

Discriminative Combination
of Knowledge Sources

The previous chapter presented the stream approach, which allows combin-
ing information from different sources in an intuitive and manageable way.
The approach introduces a new set of free parameters, the so-called “stream
weights” \; or \; s (for context dependent weights).

“Guessing” the weights for the feature streams is naturally unsatisfying
since it will most likely provide a solution that is far from optimal. Also
the fact that none of the heuristic feature selection methods tested | ]
seemed to be clearly superior to the others, gives the impression that more
improvements can be reached by better ways of selecting the stream weights.
It does not seem feasible to apply rules, e.g. obtained from linguistic knowl-
edge, in order to find an optimal set of weights, i.e. one that gives the
lowest word error rate. It is therefore desirable to have a data-driven ma-
chine learning method that finds a good, if not optimal, weighting of the
feature streams. In a first set of experiments, we set the weights globally,
i.e. we have the same weight \; for a feature 7, independent of the acoustic
model m evaluated.

In our approach, we do not train acoustic models discriminatively on
a large corpus, instead we train acoustic models using the fast and well-
understood Maximum Likelihood approach and then combine these models
by estimating the combination weights on a relatively small development
set. In this sense, our approach can also be interpreted as discriminative
adaptation. In the context independent case, we only have a few stream
weights to estimate, which ensures stable convergence, while for the more
powerful context dependent case more data and careful parameter selection
are necessary in order to ensure convergence (see Section 7.4).

The first section of this chapter briefly presents and compares the differ-
ent discriminative criteria employed in this work, while the following sections
discusses them in more detail.
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7.1 MLE vs MCE and MMIE criteria

The principle behind “Maximum Likelihood Estimation” (MLE) as pre-
sented in Section 3.6 is the optimization of a set of models on the training
data by improving the likelihood, i.e. the average expected probability of
the models, for every model separately. This approach eventually leads to
an optimal Bayesian classifier, but only for the impractical case of having
access to unlimited training data. As the goal in practically all ASR tasks is
to minimize the word error rate (WER), it would be preferable if one could
optimize the models used directly on this optimization criterion, or some-
thing more closely related. The popularity of MLE is due to its ability to
produce accurate systems that can be quickly trained using the globally con-
vergent Baum-Welch algorithm. Given that MLE’s assumptions are wrong,
it is not surprising that it often leads to sub-optimal results and many re-
searchers have employed discriminative criteria directly to acoustic model
training | , , , | and adaptation [ ].
Discriminative training attempts to optimize the correctness of a model by
formulating an objective function that in some way penalizes parameter set
that are liable to confuse correct and incorrect answers.

In this work, we apply two different discriminative criteria not to the
probability density functions themselves, but to the combination process
represented by the stream architecture. For the first criterion, “Minimum
Word Error Rate” (MWE, closely related to MCE, “Minimum Classifica-
tion Error”), this has already been developed in the “Discriminative Model
Combination” (DMC) approach | ], while the second one can be derived
from the same update rules but tries to optimize word posterior probabil-
ities instead. This “Maximum Mutual Information Estimation” (MMIE)
approach is much more practical for larger tasks, as it can easily be opti-
mized using word lattices instead of N-best lists. In practice, while MCE
works better on smaller tasks, MMIE, or further improvements such as MPE
[ ], reach equivalent error reductions on more general tasks [ ]
while being easier to handle. Here, we show how MMIE stream weight es-
timation can improve on MCE-based stream weight estimation (i.e. DMC)
when using context-dependent stream weights. By setting stream weights
at the state level, the importance of individual features in the overall speech
model can be set with sub-phonetic resolution, which permits modeling con-
text dependency and asynchronous transitions for articulatory features to a
certain degree

7.2 Weight Selection with DMC

First experiments to learn weights for feature streams from data were con-
ducted using the iterative Discriminative Model Combination (DMC) algo-
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rithm [ ]. DMC was developed to integrate multiple acoustic and/ or
language models into one log-linear model, i.e. it was used to automatically
set the language model weight(s). In this work, we used DMC to optimize
the weights of several acoustic models while leaving the language model
weight unchanged. Note that only one stream (0) can discriminate between
all states, while all the other streams can only discriminate between two
classes (e.g. VOICED and UNVOICED), we would therefore expect to work
with a high weight for stream 0 and relatively low values for the other “fea-
ture” streams, because each of them can only discriminate between some,
not all, hypotheses on its own. These decisions however should be more
robust than the standard models, because every feature detector is trained
on more, shared data.

So, given an hypothesis W, a weight vector A and the feature vector o
the posterior probability py(W|o) is:

M
pw(Wlo) = C(A,o0) exp{z )\ilogpi(W\o)} (7.1)

C(A, o) is a constant necessary for normalization so that pg (W |o) really
is a probability distribution. However since we are only interested in finding
the hypothesis W with the highest probability, we ignore C' for the sake of
simplicity, since it does not depend on W. Note that this simplified formula-
tion no longer represents a probability density function, but simply a “score”
function which our system uses to compute similarity measures for acoustic
features and we can directly use the acoustic model as an approximation to
this distribution, setting p(W|o) o p(o|W) | ].

In our special case, with the combination of a standard model stream
and the feature detector streams as described above, po(W o) is the posterior
probability of W as given by the standard models, while the pi1,...,pn
are the posterior probabilities from the M feature detectors. Our iterative

implementation [ | of DMC is based on Minimization of the Smoothed
Word Error Rate (MWE), which in turn is based on Generalized Probabilistic
Descent (GPD) | ]. Similar approaches have been presented in [ ].

MWE implements a gradient descent on a numerically estimated and
smoothed word error rate function that is dependent on the weight vector
A for the combination of the models. The estimation of the error function
is necessary because the real error function over A is not known. Even if
the error function were given, since it maps the weight vector A, which is
defined in R™, to the number of errors, which is defined in N, the derivative
of the function for any A would either be undefined or zero. Therefore it is
necessary to smooth the empirical approximation of the error function.

The smoothed approximation of the error function that is used for MWE
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is:

N
Buwn(d) = <y 30 3 LOVW)S(Won A) (72

Yoot L
n=1 """ n=1 W#W,,

In this equation the W # W, are all possible hypotheses, while the
Wy, (n=1...N) are the N given training references for the discriminative
training. £(W, W),,) is the Levenshtein distance. S(W,n,A) is an indicator
function that is used for smoothing the Levenshtein distance. If no smooth-
ing is done, then S would be 1 if W is the hypothesis from the decoder, and
0 otherwise. In order to get a differentiable error function Fywe, S is now
set to be:

S(Wom, A) = —PaWlon)" (7.3)

ZW’ pA(W/|On)77

pa(Wloy,) is the posterior probability of hypothesis W, given the set of
weights A and the internal model of the recognizer, for the feature vector o,
of the n-th training utterance. 1 determines the amount of smoothing that
is done by S. The higher n is the more accurately S describes the decision
of the recognizer, and thereby the real error function. However 7 should not
be chosen to be too large, in order to be able to numerically compute S.
After initial experiments with several values of 7, we used n = 3.

For the estimation of Eywg, Equation 7.2 and 7.3 take into account
all possible hypotheses W. This is clearly not feasible for the numerical
computation of Eywg. Therefore the set of hypotheses is limited to the
most likeliest ones. In our experiments, we used the hypotheses from an
N-best list, where N = 150, that resulted from a lattice rescoring.

The derivative of Eywg is now:

N
0 n 5 pi(Wlon)
EMWEA = —_—~ SW,TL,A,CVV,TL,A logi
where

LOW,n,A) = LOV, W) — > S(W,n, A)L(W', W)
W'£W,

With this partial derivative it is now possible to construct a gradient descent:

N
(I+1) _ (D) €n (I 7 (I p;(Wlon)
A =\ = E E S(W,n, AV LW, n, AY))log ————%
’ ’ 27]:[:1 Ln n=1 W;ﬁWn pg(Wn‘On)

Here € is the learning rate, and has to be chosen carefully in order to adjust
the change in the weights per iteration.
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Also, we approximated the posterior probabilities with the likelihoods
of the hypotheses that were returned by the decoder. Since in the case of
the likelihoods the classification rule stays the same as with the posterior
probabilities this does not change the update rules for the gradient descent.

7.3 MMIE-based Weight Selection

For tasks which include long utterances or highly spontaneous language,
which leads to many similar hypotheses, the N-best lists quickly become
very large. Beyerlein set N = 800, while in our experiments N = 150 gave
the best compromise between training time and model power. If however,
as is usually the case for systems built with JRTk, many of these hypotheses
only differ in one word, which like A (pronounced /o/) and A(2) (pronounced
/e1/) have different lexicon entries, but do not carry different meaning, the
list length cannot be increased sufficiently in order to still capture enough
variability for discrimination. N-best lists therefore are not a “dense” rep-
resentation of knowledge gained through the speech recognition process. A
better representation is given by word lattices, which are defined as directed,
a-cyclic graphs of words as described in Section 3.9. This choice also leads to
a new optimization criterion, which can be computed efficiently on lattices.

MMIE (Maximum Mutual Information Estimation) can best be devel-
oped from an information theoretic point of view | ]. Given an obser-
vation sequence O, a speech recognizer should choose a word sequence W
such that there is a minimal amount of uncertainty about the correct an-
swer. While this is still not the same as directly optimizing the word error
rate, it is a related principle. In other words, by asking to model the data so
that we can pick a hypothesis with “the minimum amount of uncertainty”,
we want to minimize the entropy, which is a measure of uncertainty. The
entropy of a discrete random variable W is defined as

Z P(W =w)log P(W = w)

In speech recognition, we therefore want to minimize the conditional entropy
H of W given O

v (W]0) = ZP = 0)log Py(W = w|O = o)

which gives the uncertainty in the random event W (the word hypothesis)
given another random event O (our observation). The subscript ¥ denotes
the dependence on the model parameters.

From this equation, it is easy to see that by minimizing the conditional
entropy, the probability of the word sequence given the observation must in-
crease. In speech recognition, this corresponds to the uncertainty in knowing



76 CHAPTER 7. DISCRIMINATIVE COMBINATION

what words were spoken given access to the alternative hypotheses present
in O. The amount of information provided by O about W can then be de-
fined as the difference between the two entropies above, i.e. the entropy of
W not knowing O minus the conditional entropy of W given O. The mutual
information I(W;O) between W and O can now be written as:

I(W;0) = HW) — HW|0) or H(W|0)=H(W) - I(W;0)

Since I(W;0) = I(O; W) this is known as the mutual information between
W and O. Thus, if our goal is to minimize H(W|O), then we can try and
minimize H (W) or maximize I(WW;0), which is the goal of MMIE training.
The minimization of H(W) would be called “minimum entropy language
modeling”, which is a difficult problem as the probabilities of all possible
word sequences must be estimated. In this work, as in most other work, the
language model which defines H(W) is therefore kept fixed.

Using the expressions for entropy, conditional entropy and the above
equations, it can be shown | | that maximizing the mutual information
on a set of observations O = {Oy, ..., Og} requires choosing the parameter
set ¥ to maximize the function

R

Fyvie(¥) =) _log

r=1

Py (O:|W;) P(W;)
>0 Pu(Op[w) P()

where W, enumerates the (correct) transcriptions, P(W) is the probability
of the word sequence W as determined by the language model, and the
denominator w sums over all possible word sequences.

To maximize Equation 7.4, the numerator must be increased while the
denominator must be decreased. The numerator is identical to the MLE
objective function. The difference now is the denominator term, which can
be made small by reducing the probabilities of other possible (competing)
word sequences. Thus MMIE attempts to both make the correct hypothesis
more probable, while at the same time making incorrect hypotheses less
probable.

As MMIE estimation uses local (i.e. frame level) posterior probabili-
ties instead of global (sentence level) estimates of word error to update the
model, it is possible to compute MMIE updates using word lattices and con-
fidence measures as estimates of the posterior probability. In our work, we
use the v confidence measure | ].

Following 7.4 we can now write Faypyige (V) as a difference of HMM like-
lihoods | , I:

R
e = ZlOgP\IJ(Or\RT) — log pw (O:[S;)

r=1

(7.4)

where R, represents the Hidden-Markov-Model for the correct transcription
of the utterance r and S, is an HMM containing all possible transcriptions
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(for example derived from a decoder lattice) of r. Both encode the full
acoustic and language model information used for recognition. Since the
“denominator HMM” S, includes all possible word sequences (including the
correct one), the objective function has a maximum value of zero. Following
Equation 7.1, we write the likelihoods as

10g py (Or¢]) Z/\logpz Opils)

and taking the partial derivative of this expression we can now write

R T

ZZ ’Yrt S; W 'Yr,t(s))logpi(or,tb)

r=1 t=1

Here, we have used Forward-Backward probabilities 7, ; | , ],
which can easily be computed from the lattice. s enumerates all states
of HMM S, and +,; is an estimate for the a-posteriori probability asso-
ciated with this state. Now it is straightforward to update the stream
weights \; using gradient descent with a re-estimation equation of the form

/\l(.IH) = )\( )+ ea)\ F(\) according to the following rule:

AT = A 1 (@NUM - pPEN) (7.5)

where the statistics ® can be collected for the numerator or the denominator
lattice as

R

XM= S S (s W) log pi(Onels)
r—lsG’Rr

D 3 SIS
r=1 seS,

In this formula, ¢ is implicitly dependent on s. The main difference
is that for (I);-\IUM the sum is over s € 5,, i.e. the reference for utterance
r (“numerator lattice”) while for @?EN the index s € S, enumerates all
possible HMM states for utterance r (“denominator lattice”). Obviously,
R, C S,. A detailed derivation can be found in Appendix A.

The simple structure of Equation 7.5 violates the normalization require-
ment of a probability density function. However, Equation 7.1 already is
no PDF and does not need to be. In order to ensure comparable acous-
tic scores needed with context-dependent stream weights during the beam
search, the \; can be re-normalized after every iteration of update Equation
7.5 to ensure Vs : ) . \; s = const.

The update equations presented here do not guarantee convergence of
the A\; to an optimum, however as long as € is small enough, Equation 7.4
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will be improved. As we are eventually interested in lowering the word error
rate and not the acoustic score or the mutual information, which we still use
as our optimality criterion for weights re-estimation, this does not pose a
problem in practice. In fact, other work | | which proves convergence of
the mutual information runs into the same problem, as word error rate does
not improve for later iterations in MMI training, although the optimality
criterion continues to improve monotonically. Here, the mutual information
is normally optimized for two iterations only, because word error rate does
not improve any further although the I criterion still improves. An example
of the convergence behavior of MMI re-estimation of A; is shown in Figure
8.1, Figure 9.1 shows an example of the evolution of Fyng during training.

Using the formulation above, the MMI re-estimation of stream weights
can also easily be done separately for different HMM states, i.e. in a con-
text dependent way. In this case there exist different tying and smoothing
strategies to improve generalization:

e Tie the statistics for every phone.

e Tie (cluster) the statistics bottom up using the context decision tree,
using a minimum count criterion to determine the number of classes.
Alternatively, it is also possible to only update the models which have
received a minimum count during training/ adaptation.

e Run state dependent MMIE on top of global MMIE, possibly with
a smaller step size. This approach resembles annealing strategies in
statistical physics.

In this work, the best results were reached with a combination of the
second and fourth approach, although no experiments with statistical sig-
nificance have been conducted.

7.4 Discussion

Most forms of discriminative training criteria suffer from three main prob-
lems:

It is difficult to maximize the objective function: the objective func-
tions in discriminative training cannot be optimized using the conven-
tional Baum-Welch algorithm. The only known methods that converge
for MMIE and MWE are GPD | | and the extended Baum-Welch
algorithm | ]. Given the high dimensionality of the parame-
ter space, this may lead to slow convergence and require extensive
parameter tuning.

As mentioned in the previous section, virtually all current implemen-
tations of MMI training, including this one, do not globally optimize
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the MMI objective function but instead perform very few gradient de-
scent steps around an optimum found by other optimization functions,
typical MLE. In our case, experiments with different initial values for
the stream weights and different numbers of iterations confirm that
the MMI-based estimation of stream weights is well-behaved in the
sense that the outcome does not depend significantly on the initial
values and the performance does not degrade for higher iterations,
even though it does not improve any more, as long as the step size is
reasonably chosen.

It is computationally expensive to maximize the objective function:
the expense for computing the MMIE objective function stems from
the denominator in 7.4, which requires a summation over all possi-
ble word sequences. This amounts to performing recognition on each
training or adaptation utterance and for each iteration of training. For
the MMIE objective function, lattices can be used, which provide a
compact representation of the hypothesis space. Formulations using
the MWE or similar objective function are usually based on N-best
lists, which cannot handle conversational speech very well.

Poor generalization to unseen data: discriminative training techniques
often perform very well on the training data, but fail to generalize well
to unseen test data. This effect arises, because Equations 7.4 and 7.3
are dominated by very few paths or from the modeling of globally
insignificant data. Optimizing only a few hundred stream weights
however does not lead to specialization even for only a few training
utterances, as it is very easy to use the context decision tree for pa-
rameter tying.

Despite these caveats, discriminative training provides significant gains
in many current state-of-the-art speech recognition systems. In contrast to
other systems, which use discriminative criteria to update acoustic models
directly, the approach presented here uses a discriminative combination of
acoustic models. This approach significantly reduces the complexity of the
problem to be solved and ensures that robust estimates can be found even
on little data, as only very few parameters have to be found.
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Chapter 8

Experiments on
Multi-lingual Speech

This section presents speech recognition experiments on combining artic-
ulatory features with standard acoustic models. The focus is on training
of stream weights and selection of features, for which we compare two ap-
proaches, Discriminative Model Combination (DMC) and Maximum Mutual
Information Estimation (MMIE). These experiments are conducted on the
multi-lingual GlobalPhone (GP) data, to investigate the multi-lingual prop-
erties of articulatory features. Experiments using DMC were only performed
on multi-lingual GlobalPhone | | data, as the generation of N-best lists
on spontaneous speech proved impractical on ESST and “Meeting” tasks
due to the high number of spontaneous effects (e.g. the frequent occurrence
of fillers such as <NOISE>, <AEHM>, etc.) in this data, which each leads
to a new entry in the N-best list, but which do not capture any discrim-
inative information. As a consequence, N-best lists have to be very long
(N > 1000), in order to represent semantically different information, which
results in very slow training.

The experiments described in this chapter were performed on the Glob-
alPhone corpus | ]. The purpose of this corpus is to support multilin-
gual speech recognition research by providing a corpus uniform with respect
to acoustic conditions, speaking style, and task in several languages. The
main motivation for multilingual speech recognition is the desire to be able
to share acoustic training data across languages for training or bootstrap-
ping of recognizers in languages for which no, or very little, training data
exists. In order to allow for uniform data to be collected cross languages,
texts from international newspapers available on the World Wide Web with
national, international political and economic topics were collected. Native
speakers read these texts in an otherwise quiet room and were recorded
through high-quality close-talking microphones.

For the experiments in this work, we used the Chinese (CH), German
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(GE), Japanese (JA), and Spanish (SP) languages from GlobalPhone to-
gether with the English (EN) Wall Street Journal (“WSJ0”, LDC93S6A)
corpus, after which GlobalPhone is modelled. These languages were se-
lected because they display a variety of different characteristics such as the
set of sounds and features that they cover, or traits such as tonality | .
Well-trained baseline systems were also available for these languages. In this
thesis, we will present results on an English baseline system being tested on
the GlobalPhone Corpus in the following three distinct:

Mono-lingual case: evaluate feature detectors on the same language, on
which they were trained, i.e. only use EN feature detectors.

Cross-lingual case: evaluate feature detectors from other languages. In
cases where not all features can be used in other languages (e.g. tonal-
ity), these were discarded. The MM4 models used for tests with the
EN baseline were trained on GE, CH, SP, and JA.

Multi-lingual case: use the feature detectors that were trained on all
available languages. In this work we use the MM5 feature detectors
trained on CH, EN, GE, JA, and SP.

[ ] also evaluates a Chinese baseline system, giving similar results.
Appendix B.1 gives an overview of the size of the training, development and
evaluation sets for these five languages as well as the size of the English
dictionary and language model. Every word in the dictionary is tagged with
the language it belongs to, so that it can be distinguished from words in
other languages that might share the same orthography. The multi-lingual
paradigm is based on the assumption that the articulatory representation of
phonemes across different languages is so similar that phonemes can be seen
as units independent of the underlying language. Thus the language specific
sets of phonemes Y, of languages L; (i = 1...n) can be combined into a
single language independent phoneme set T =Y, UY,, U...UY, . This
concept had first been proposed by the International Phonetic Association
(IPA) | |. Different language independent notation schemes for human
sounds exist, such as Sampa | | or Worldbet | .

In this work, the definition of the global phoneme set is based on the IPA
chart. In this global phoneme set sounds from different languages that share
the same IPA symbol share the same unit. The global phoneme set covers
162 symbols taken from twelve languages. 83 of them are shared between
languages, while 79 only occur in one language only. The English phone set
used in our recognizer is shown in Appendix B.1, more details can be found
in [ , ].

DMC and MMIE weight estimation on the GlobalPhone corpus are pre-
sented in Sections 8.2 and 8.3, a comparison of the two approaches is given
in Section 8.4.
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System Meeting EN (GlobalPhone)
dev 19.6% 13.1%
eval 20.8% 16.1%

Table 8.1: Word error rates on the GlobalPhone development and evalua-
tion sets. The “Meeting” number refers to unadapted “Meeting” acoustic
models with GP language model and shows that the GP system is indeed
the suitable baseline system for this task.

8.1 Baseline System

For the GlobalPhone baseline system, acoustic models were initialized using
a fast and efficient bootstrapping algorithm with the help of a four-lingual
phoneme pool | ]. The acoustic models for each language consist of a
fully continuous HMM system with 3000 quinphone models. Each Gaussian
mixture model contains 32 Gaussians with diagonal covariances.

The feature vector is made up of 13 Mel-scale cepstral coefficients plus
first and second order derivatives as well as power and zero crossing rate.
After cepstral mean subtraction the feature vector is reduced to 32 dimen-
sions by a linear discriminant analysis (LDA). Note that this is the same
feature extraction that we used for the training of the articulatory feature
detectors.

The sub-polyphone models were created with the use of a decision tree
clustering procedure that uses an entropy gain based distance measure de-
fined over the mixture weights of the Gaussians | |. The set of available
questions consists of linguistically motivated questions about the phonetic
context of a model. English acoustic models were trained with 4 iterations of
label training on 15h of training data. The English trigram language model
was trained on CSR data, the perplexity is 252 with an OOV rate of 0.1%
on the development set using a 9k vocabulary. A summary of the system
description is available in Appendix B.1.

The language model parameters used for decoding were optimized on
the development sets. Using these parameters, the final evaluation of the
recognizers was done on the corresponding evaluation set. Table 8.1 shows
the word error rate (WER) for the English recognizers with the optimized
language model parameters on their development (“dev”) and evaluation set
(“eval”).

8.2 Experiments using DMC

With the methods for integrating the trained feature detectors with HMM
based recognition systems and finding stream weights described in the pre-
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English data EN GE

Dev Eval Dev Eval
Baseline 13.1% 16.1% 13.1% 16.1%
DMC adapted weights 11.7% 14.4% 11.9% 15.1%
Best rel. reduction 10.8% 10.6% 92% 6.2%

Table 8.2: WER when decoding English data using AF streams in a mono-
lingual (EN) and cross-lingual (GE) scenario and DMC adapted weights.

English data MM4 MM5
Dev Eval Dev Eval
Baseline 13.1% 16.1% 13.1% 16.1%
DMC adapted weights 11.8% 14.8% 11.9% 14.5%
Best rel. reduction 9.9% 81% 92% 9.9%

Table 8.3: WER on EN data with AF streams in a cross-lingual (MM4) and
multi-lingual (MM5) scenario and DMC adapted weights.

vious chapters we performed a series of experiments | , ,

]. Our experiments show that porting AF detectors from one language
to another can result in WER reductions comparable to using detectors from
the original language.

8.2.1 Decoding using AF and Adapted Stream Weights

Using Discriminative Model Combination (see Section 7.2), we calculated
stream weights for the different scenarios as described in the last section
using the respective articulatory feature streams. For the calculation of the
smoothed word error rate function Fprwg the hypotheses from an N-best list
were used. The N-best lists contained N = 150 hypotheses and was obtained
from a lattice rescoring. The smoothing factor was experimentally set to
n = 3.0. Higher 1 led to numerical instability despite normalizations and
double precision calculations due to the high dynamic range of S(W,n, A),
lower values resulted in slow convergence.

The step width € for the gradient descent was selected so that the maxi-
mum change of a single stream weight equaled a constant §. For the mono-
lingual case § was initially set to § = 0.01; for the cross- and multi-lingual
case we chose d = 0.005. The smaller § compensates for the higher average
scores that the feature detectors gave when used across languages. As soon
as the weight estimation was fluctuating for several iterations around a local
minimum, § was decreased, and further iterations were calculated until no
further improvements were seen. A maximum of 30 iterations was trained.
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More details about the weights training using DMC can be found in | ]

The utterances from the development set served as training set for the
DMC. In order to see how well the weights found for the development set
generalize, we decoded the evaluation set using the stream weights calculated
on the development set.

Mono-lingual case

The mono-lingual case yields error reductions around 10% relative, as shown
in column “EN” of Table 8.2. It was possible to heuristically find a set of
stream weights, which resulted in the same reduction in word error rate
[ ], although using less features (these were POSTALVEOLAR, PALATAL,
GLOTTAL, AFFRICATE, LABIODENTAL, LATERAL-APPROXIMANT, NASAL,
RounD, and OPEN). These features have also received high weights dur-
ing DMC training, POSTALVEOLAR being the most important feature and
GLOTTAL being the third-important feature (see Table C.9). DMC however
does not try to reduce the number of streams to a minimum, so that different
weights will arise.

Cross-lingual case

Cross-lingual training of articulatory feature detectors also resulted in a
reduction in word error rate. As an example, the results when using Ger-
man as a second stream are shown in column “GE” of Table 8.2. German
was chosen as an example, because German feature detectors were best at
classifying English features (see Table 5.2).

Combining English standard models with German feature streams leads
to a word error rate of 11.9% on the development set, a relative reduction
of 9.2% compared to the baseline. Using the MM4 feature detectors, which
were trained on German, Chinese, Japanese, and Spanish, the word error
rate was reduced to 11.8%, a relative reduction of 9.9%.

Multi-lingual case

Adapting the weights for the MM5 streams with DMC also showed improve-
ments. On the English development set the word error rate was reduced to
11.9%, a relative reduction of 9.2% (see column “MM5” of Table 8.3). The
difference to the cross-lingual case is statistically insignificant.

Complete Detector Set

In Section 5.2.2 we showed that combining the feature detectors from many
languages can improve the average classification accuracy, still, it can be
better to pick individual feature detectors from a specific language (cross-
lingual approach) instead of merging them with data from another language
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All AF detectors

Dev Eval
Baseline 13.1% 16.1%
DMC adapted weights 11.5% 14.1%
Best rel. reduction 12.2% 12.4%

Table 8.4: WER when decoding the EN data using all AF detectors as
additional knowledge sources (streams) in a multi-lingual scenario and DMC
adapted weights.

(multi-lingual approach). In order to see whether it is possible to utilize this
effect for the combination of the standard models with the feature detec-
tors we presented the feature detectors from all languages and the standard
models from the English recognizer to the DMC.

The results are shown in Table 8.4: it is possible to get a relative re-
duction in WER of 12.2%. This is the best reduction that we were able to
achieve so far using weights trained with Discriminative Model Combination.

8.2.2 Weights Learned

Appendix C.2 shows the feature weights as learned by the DMC for the
different combinations of standard models and feature detectors. In these
tables only features with a weight greater or equal than 10~ are shown.

For the “complete detector set”, only Chinese and Spanish feature de-
tectors are chosen, when the English standard models and the feature de-
tectors from all languages are presented to the DMC. Neither the English
detectors, which show the best classification accuracy on English, nor the
German detectors, which show the best cross-lingual performance on En-
glish, are selected. It seems that Spanish and Chinese detectors provide the
“most complementary” information at locations, where the standard models
make mistakes.

As shown in Table C.9, DMC usually selects the same features indepen-
dent on which language(s) they have been trained on (provided they exist in
both languages). Among the 24 features that were selected when combining
English standard models and English feature detectors, 18 are also among
the selected German detectors, 17 among the MM4, and also 17 among
the selected MM5 detectors (see Table 5.3). AFFRICATE or GLOTTAL for
example receive a high relative probability in all languages, while LATERAL-
APPROXIMANT or ALVEOLAR don’t help for classification. BILABIAL seems
to be a good indicator when trained on EN audio data, while it does not
contribute significantly when trained on GE or MM4 (which is CH, GE, JA,
and SP). In the MMS5 setup, which includes EN training data, its weight
however is significantly increased.
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8.2.3 Conclusion

Using DMC it is possible to find suitable weights for the stream based ap-
proach described in Section 6.1 in a data-driven way for the mono-, cross-,
and multi-lingual setup.

The stream weights found on the development data generalize well, as the
improvement in word error rate is nearly as high on the evaluation data as on
the development data. There is good correlation between features selected
from different languages, which indicates that the underlying property, i.e. a
language-independent articulatory feature, carries useful information. Only
some features, e.g. BILABIAL, seem to be very specific to English, as the
English bilabial sounds / p b m w / are indeed produced differently (e.g.
with aspiration) in other languages, so that sharing is not possible.

8.3 Experiments using MMIE

Discriminative Model Combination (DMC) based on the MWE (Minimum
Word Error) rate criterion is desirable, as it directly optimizes the optimality
criterion for speech recognition, the word error rate (WER). Using the set-
tings given in Section 8.2, which were necessary in order to guarantee a stable
update, the experiments however required up to 30 (sometimes even more)
decoding runs and generation of N-best list (typically: 150 < N < 800) over
the adaptation data in order for the estimation to converge. This approach
is therefore not feasible for

e more data, i.e. larger tasks, which increases training time to the order
of days even on today’s machines. A large part of training time is spent
on the alignment and computation of acoustic scores for the N-best
lists.

e spontaneous tasks, which increase the required size of N-best lists,
because pronunciation variants are used extensively, which do not add
any semantic meaning and do not influence the WER. The N-best
lists however need to contain semantically different sentences in order
to be useful for MWE training.

We first conducted a couple of experiments to generate N-best lists from
confusion networks (CNs) | | instead of lattices and directly work on
CNs instead of N-best lists. These present a more compact representation of
the hypothesis space and also allow excluding homo-phones, i.e. words that
have identical phonetic transcriptions and cannot be distinguished by the
acoustic model, from the N-best list generation, but they can only partially
alleviate the second problem. Because it can be efficiently computed on
lattices, the Maximum Mutual Information (MMI) criterion is better suited
for this task, as discussed in Section 7.3.
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Iteration Lattice density
dev eval
5 10 20 10
0 12.7% 12.7% 12.7%  15.6%
1 124% 124% 13.0% 14.7%
2 12.3% 12.4% 13.0% 14.3%
3 11.7% 12.3% 13.0% 14.2%
4 11.6% 11.9% 13.0% 14.3%
5 11.5% 11.7% 13.0% 14.1%
6 11.4% 11.6% 13.0% 14.1%
7 11.9% 11.5% 13.0% 14.1%
8 12.2% 11.3% 13.1% 14.4%
9 12.8% 11.7% 13.1% 14.5%
10 13.1% 11.9% 13.1% 14.4%

Table 8.5: WER for global (G) stream weight training on GlobalPhone
“dev” and “eval” data. Weights \; are carried over from “dev” to “eval”.
The best relative improvement in word error rate is 11% on “dev” and 8%
“eval” for the 8th iteration and d = 10.

For comparison between DMC and MMIE, we ran multi-lingual experi-
ments on the English GlobalPhone data using CH and SP feature detectors
as in the the multi-lingual DMC setup. This permits comparing the DMC
and MMIE criteria on the best-performing setting for DMC training.

The results of a training of global (G, i.e. state independent) stream
weights for Spanish and English using the English GlobalPhone system for
different lattice densities' d are shown in Table 8.5.

The step size was set to € = 2 - 10~7 for the MMI training after initial
experiments, the initial stream weight was )\? o =1- 10~* A further param-
eter to set is the lattice density d (comparable to the length of the N-best
lists), which influences the posterior probabilities v used during the MMI
update. Experiments lead to an optimal value of d = 10, which proved to
be stable across tasks.

A comparison of performance reached with state independent MMI train-
ing on the development and evaluation set is also shown in Figure 8.1. While
the performance on the development data increases monotonously up to a
certain point, performance on the evaluation data increases also, but reaches
saturation earlier and starts to fluctuate. Nonetheless, generalization to the
evaluation data is good: on the training set, using the weights trained in the
eighth iteration, MMIE stream weight estimation reduces the error rate by

Tn the TIbis [ | framework, lattice density is defined as number of nodes mea-
sured without language model information, i.e. without linguistic poly-morphism, over
the length of the best path.
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Figure 8.1: Convergence of G-MMI stream weight estimation on Global-
Phone development and evaluation data.

1.4% absolute (which is 11% relative). On the disjoint evaluation data, the
error rate is still reduced by 1.2% (8% relative) when using the best parame-
ters as determined on the development set. The decoding experiments using
MMI were always run with a wider beam than the DMC experiments, so
the correct baseline for the DMC experiments has a WER of 12.7%/ 15.6%
(dev/ eval) instead of 13.1%/ 16.1%. Further widening of the beam does
not improve the WER.

When performing context dependent training using the MMIE criterion,
the algorithm is able to nearly reduce to half the error rate on the devel-
opment set (from 12.7% to 7.6%) when using state dependent (SD) stream
weights as shown in Figure 8.2. While this is of course meaningless in prac-
tice, as the improvement does not carry over to the evaluation set at all,
it shows the learning capabilities of the algorithm. In this setup, we are
adapting 75 - 3000 ~ 225k weight parameters \; s, while the original (main
stream) acoustic models contain 6’144k parameters and each feature stream
uses about 16k parameters.

To improve generalization, we reduced the learning rate and set egp =
0.1 - eg, starting the SD training in the spirit of an annealing scheme with
the best performing global weights A; on the development data (iteration 8
at d = 10) and perform one iteration of context dependent training using
state tying with a minimum count of 100 for performing a state dependent



90 CHAPTER 8. EXPERIMENTS ON MULTI-LINGUAL SPEECH

92.5 T T T T T

' DMC trainiﬁg
CI-MMI training -------
T CD-MMI training -~ i

915 | i |
=
b 91 | |
© K
g )
g 905 | |
o ;
o ;
[
> 90 | |
©
s
= 895 |
%)
g :
g el |
< i
S sssh
= - | -
= ‘:

88 | |

875 - |

87 ; . 1 1 1 1 1

0 5 10 15 20 25 30 35 40
Iteration

Figure 8.2: Convergence of DMC, G-MMI, and SD-MMI training on Global-
Phone EN development data. DMC needs 30 iterations to reach saturation,
MMIE is computationally much less expensive.

update. This results in a word error rate of 10.9% on the development data
and 13.9% on the evaluation data. Iterating context dependent training
continues to improve performance on the development data, but does not
transfer to the evaluation data because of over-specialization.

8.4 Comparison of DMC and MMIE Results

The convergence behavior of DMC, G-MMI, and SD-MMI are plotted in
Figure 8.2. G-MMI training can be made to converge on the development
and evaluation data by using slightly less aggressive settings. DMC training
is numerically instable for more aggressive settings.

The results of DMC-driven and MMIE-driven weight estimation are com-
pared in Table 8.6. While the error reductions are comparable for both DMC
and MMIE approaches, DMC reached its maximum after 23 iterations, while
MMIE required just 8 iterations to reach an equivalent level of performance.
In addition, every MMIE iteration requires much less time because the ac-
cumulation of statistics can be done on lattices and a confidence measure
instead of an N-best list and word error rates. While no controlled timings
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dev eval Iterations
DMC 11.5% 14.1% 30
G-MMIE 11.3% 14.4% 8

SD-MMIE 10.9% 13.9% 3+1

Table 8.6: WER for MMIE and DMC weight estimation. State dependent
(SD) MMIE estimation is reported after one iteration on top of G-MMIE.

have been computed, it is clear that MMIE estimation converges faster then
DMC estimation.

We can compare the features selected by DMC (see Table C.10) and
context-independent MMIE (Table C.11). These seem to be roughly simi-
lar, although not strictly identical. The languages English and Spanish get
similar average weights, although the weights of individual features vary.
For example, NASAL is almost universally switched off or reduced in all lan-
guages and for both DMC and MMIE when testing on English, while OPEN
receives a higher weight in English.
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Chapter 9

Experiments on Spontaneous
Speech

To investigate the performance of Articulatory Features on spontaneous
speech, we tested the feature detectors built on ESST data on the ESST
task. Training of feature weights was achieved with MMIE, which shows
comparable performance to DMC while significantly reducing the compu-
tational effort. The baseline (i.e. non-AF) system was the best system
available to us on the ESST task.

9.1 MMIE Experiments on Spontaneous Speech

The ESST speech data was collected during the Verbmobil project | ]
with close-talking microphones in 16kHz/16bit quality. The participants
were in separate rooms, talking over a telephone, but could usually see each
other. Many also knew their conversation partner. Training data for the
phone models and the non-feature baseline system consisted of 32h from
the ESST corpus, which was merged with 66h Broadcast News ’96 data,
for which speaker labels are available, for robustness. A system trained
on ESST only reaches comparable performance on the ESST test set, but
performs worse on other data. The system is trained using ML and uses
4000 acoustic models. The parameters of the training and test sets used in
this work are shown in Table 9.1. Further details about the system can be
found in Appendix B.2. The ESST evaluation data used in this work was
recorded during the second phase of the Verbmobil project (VM-II) and is
different from the VM-I evaluation data used in other work | ].

The ESST test vocabulary contains 9400 words including pronunciation
variants (7100 words without pronunciation variants) while the language
model perplexity is 43.5 with an OOV rate of 1%. The language model
is a tri-gram model trained on ESST data containing manually annotated
semantic classes for most proper names (persons, locations, numbers, etc.).

93
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Data Set Training Test

BN ESST 1825 ds2  xv2
Duration 66h 32h 2h25 1h26  0h59
Utterances 22°700 16’400 1’825 1’150 675
Speakers 175 248 16 9 7
Recordings 6’473 2’208 58 32 26

Table 9.1: The English Spontaneous Scheduling Task .

ESST Test Set 1825 ds2 xv2  # Gaussians
WER no LM rescoring 26.3% 25.5% 27.2% 128k
WER baseline 25.0% 24.1% 26.1% 128k
WER 24 Gaussians 25.6% 25.0% 26.3% 96k
WER 44 Gaussians 24.9% 24.4% 25.4% 176k
WER 5.2k models 25.0% 24.3% 25.8% 166k

Table 9.2: Baseline WER on the ESST task using a system trained on ESST
and BN ’96, with and without language model rescoring. The 44 Gaussians
and 5.2k models systems use the same number of parameters as the AF
based system (WER with rescoring).

Generally, systems run in less than 4 RTF on Pentium4-class machines.

The baseline results on the ESST test set 1825 of 1825 sentences divided
into a development test set ds2 (1150 utterances) and an evaluation set xv2
(675 utterances) are shown in Table 9.2.

The ESST test set is suitable to test speaker-specific properties of artic-
ulatory features, because it contains 16 speakers in 58 different recordings.
One recording consists of one side of a dialog by one speaker. There are
at least two recordings for every speaker. The system performance was
optimized on the ESST development set ds2.

As the stream weight estimation process introduces a scaling factor for
the acoustic model, we verified as in the GlobalPhone data that the baseline
system can not be improved by widening the beam or by readjusting the
weight of the language model vs. the acoustic model. In the experiments
presented here, the total weight of the acoustic model is slightly increased,
as the “rough” feature models produce on average a higher score as the
“main” models, so the beam is even effectively narrowed a little bit.

To improve turnaround times, the settings for MMIE AF weight esti-
mation on the ESST task have been optimized, so that one iteration of AF
statistics accumulation and a following update result in a significant im-
provement, although a second step would then decrease the word error rate,
as the step size used is too large to guarantee convergence of the discrimi-
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ESST Test set
AFs adapted on 1825 ds2 Xv2
No AF training 25.0% 24.1% 26.1%
1825 23.7% 22.8% 24.9%
ds2 23.6% 22.6% 24.9%

Table 9.3: WER on the ESST task using global stream weights when adapt-
ing on test sets 1825 and ds2.

native update. Results after one iteration of weight estimation on the 1825
and ds2 data sets (which is a sub-set of 1825) using step size € = 4 - 1078,
initial stream weight )\? 20 =3 1073, and lattice density d = 10 are shown
in Table 9.3:

While adaptation generally works slightly better when adapting and test-
ing on the same corpus (1825 and ds2), there is only a 0.1% loss in accuracy
on xv2 when adapting the weights ds2 instead of 1825, which has no speaker
overlap with xv2, so generalization on unseen test data is good.

As ESST provides between 2 and 8 dialogs per speaker, it is now possible
to adapt the system to individual speakers in a round-robin experiment, i.e.
it is possible to decode every test dialog with weights adapted on all remain-
ing dialogs from that speaker in the 1825 test set. Using speaker-specific
global weights computed with the above settings, the resulting WER  is
21.5%. The improvements from using speaker-dependent global AF stream
weights are therefore from 25.0% to 21.5%.

The training parameters for the results shown in Table 9.3 were chosen
to display improvements after the first iteration without convergence. Con-
sequently, training a second iteration of global weights does not improve the
performance of the speaker adapted system. It is however possible to com-
pute state dependent (SD) feature weights on top of the global (G) weights
using the experimentally determined smaller learning rate of egp = 0.2 - ¢5.
In this case, context dependent AF stream weights can further reduce the
word error rate to 19.8%. These are the lowest numbers reported on the
ESST test set reported so far.

To show the correspondence between improvements in optimization cri-
terion Fyvig and word error rate, an experiment was run with lower set-
tings of the learning rate e. Figure 9.1 shows that the optimization criterion
Fyvvte indeed improves with training and that improvements in F' generally
correspond with an improved Word Accuracy, although there is no direct
correspondence as discussed in Section 7.3.
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Figure 9.1: Correspondence between Maximum Mutual Information opti-
mization criterion Fyng and Word Accuracy (WA) in %. Settings: step
size € = 2-1078, initial stream weight )\?7&0 =1-107%, lattice density d = 10.

9.2 Analysis of ESST MMIE Results

9.2.1 Constant Feature Probabilities

Interpolating the standard models and the feature models in a stream archi-
tecture amounts to smoothing the standard models, depending on the weight
of the main stream. If we replace the feature detectors with an “average”
feature detector, which always outputs an average value for each feature,
determined on the test data, we can reach a word accuracy of 24.6% on
ds2, which is still an improvement over the baseline (25.0%), but clearly
behind the trained feature weights (23.3%). The improvement here comes
from a slight re-adjustment of the relative weights between language model
and acoustic model in the first decoding pass.

9.2.2 Phone Recognizer as Second Stream

Another approach would be to combine the information with a context in-
dependent (CI) recognizer. This recognizer would normally be used during
construction of the context decision tree. The CI acoustic models are trained
in exactly the same way as the standard models, however there is no context
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decision tree and the number of Gaussians is 143 * 60 = 8580, which is ap-
proximately the same number of parameters as a 16-stream feature model.
The baseline performance of this system is 38.2% WER on 1825 (37.9% on
ds2 and 38.5% on xv2).

Building a two-stream system “CD+CI” of CD and CI models, similar to
[ |, although we are using state likelihoods instead of phone posteriors
here, allows training the weights of the two streams on ds2 using the MMIE
criterion as for the feature streams. Doing this results in a best performance
of 23.3% on the ds2 data set after a maximum of 4 iterations of training,
which compares to 25.0% for the baseline system and 24.6% for the system
with constant “average” feature detectors. The trained context-independent
articulatory feature detectors reach 22.8% WER.

On the xv2 evaluation set, the respective numbers are 26.1% for the
baseline, 26.7% for the system with constant feature weights, 25.5% for the
CD+CI system, and 24.9% for the SD-AF system. The training of this
system is shown in Figure 9.2. For the CD+CI (and the SD-AF systems),
the final weights and the performance attained after training are practically
independent of the starting weights )\éoi) , which shows the numerical stability
of the algorithm. 7

9.2.3 Adaptation Experiments

When we trained speaker-dependent Articulatory Feature weights in Section
9.1, we were effectively performing supervised speaker adaptation using Ar-
ticulatory Features. It is therefore interesting to compare the performance
of AFs to other approaches to speaker adaptation. We therefore adapted
the ESST acoustic models to the test data using supervised constrained
MLLR | |, which exhibits a comparable number of free parameter as
an adaptation approach.

The results in Table 9.4 show that AF adaptation performs quite well
when compared to supervised C-MLLR adaptation, particularly for the
speaker-specific case. Supervised C-MMLR reaches a WER of 22.8% when
decoding every ESST dialog with acoustic models adapted to the other
(between 1 and 7) dialogs available for this speaker. AF-based adapta-
tion reaches a number of 21.5% for the global (G) case and a number of
19.8% for the state dependent (SD) case. The number of free parameters is
40*40=1.6k for the C-MLLR case and 69 for the G-AF case. The SD-AF case
has 69*4000=276k free parameters (equivalent to an extra 4k Gaussians),
but decision-tree based tying using a minimum count reduces these to 4.3k
per speaker. Full MLLR (adapting the means only) on a per-speaker basis
uses 4.7k parameters in the transformation matrix on average per speaker,
but performs worse than AF-based adaptation by about 1% absolute.
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Figure 9.2: Four iterations of MMI training of feature weights for a two-
stream “CD-+CI” system for initial values of )\OCD = 0.1 and )\OCD = 0.9.
The learned weights (top) and the word accuracy (on ds2 and xv2, bottom)
do not depend on initial values \(9).
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Adaptation Type 1825 ds2 Xv2
None 25.0% 24.1% 26.1%
C-MLLR on ds2 22.5% 25.4%

C-MLLR on speaker 22.8% 21.6% 24.3%
MLLR on speaker 20.9% 19.8% 22.4%
AF on ds2 (G) 22.8% 24.9%
AF on ds2 (SD) 22.5% 26.5%
AF per speaker (G)  21.5% 20.1% 23.6%
AF per speaker (SD) 19.8% 18.6% 21.7%

Table 9.4: Word error rates on the ESST task using different kinds of adap-
tation: The first three adaptations use C-MLLR, “on speaker” refers to
adaptation on all dialogs of the speaker, except the one currently decoded
(“round-robin”, “leave-one-out” method). Speaker-based AF adaptation
outperforms speaker adaptation based on C-MLLR.

9.2.4 Weights Learned

The combination of the “main” stream with the “feature” streams uses
different weights for different features, depending on how “important” these
streams are for discrimination. Features that help to avoid specific mistakes
(phonetic confusions) the main stream makes, will have a high weight, while
streams that do not contribute discriminative information will be reduced to
have a low weight by the iteration procedure. The resulting stream weights
therefore represent a measure of how “important” a specific stream is.

The global feature weights learned by MMI training on ESST data are
shown in Table C.12 in Appendix C.4. The most important questions are
for the VOwWEL/ CONSONANT distinction and then for vowel qualities (LOW-
Vow, CARDVOWEL, BACK-Vow, ROUND-Vow, LAX-Vow). These are
followed by questions on point (BILABIAL, PALATAL) and manner (STOP)
of articulation. The least important questions are for voicing and conso-
nant groups, which span several points of articulation (APICAL, VLs-PL,
VLs-FRr), particularly SIBILANTs and similar features (STRIDENT, ALVE-
OLAR). Similar (CONSONANT, CONSONANTAL and ROUND, ROUND-VoOW)
features receive similar weights while complementary (VOWEL, CONSONANT
and VOICED, UNVOICED) features receive (nearly) identical weights.

9.3 Comparison of Speaking Styles

To analyze the influence of the speaking style on the selected features for a
specific speaker, the features trained on different kinds of speech (e.g. read
and spontaneous) can be compared. Data is available for “Rob Malkin”, who
is speaker “RGM” in the ESST test set and also a speaker in the “Read BN”
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database (see Appendix B.3). This database consists of sentences from the
Broadcast News corpus re-read in a quiet anchor-speech like setting. We
therefore have this speaker’s speech in “read” (ReadBN) and “spontaneous”
(ESST) style, though we did not perform formal analysis of the speaking
styles present in the different recordings.

Comparing the stream weights from ReadBN and ESST in Table 9.5
we find that for spontaneous speech the feature streams place more weight
on the identification of vowel classes such as CARDVOWEL, Low-Vow,
Hice-Vow, FRONT-VOw, and LAX-VOw as well as generic classes such
as FRICATIVE, PLOSIVE, and CONTINUANT, while read speech requires fea-
ture streams to help with the recognition of DIPHTHONGS, lip rounding
(ROUNDED) and sounds introduced into the pronunciation lexikon to model
REDUCED realizations. Both speaking styles do not need feature streams
for classes such as VOICED, OBSTRUENT, or STRIDENT.

While this study on the only “found” data available for this experiment
is statistically insignificant, the results are consistent with the findings in
[ ], which concludes that generally the articulatory targets of vowels
are not normally reached in sloppy speech, so that a “feature” recognizer,
that tries to detect more general vowel classes in spontaneous speech, seems
a sensible strategy found by the weight training algorithm.
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Feature Rank

Read BN ESST difference
NASAL 55 1 -54
ALVEOPALATAL 63 11 -52
AFFRICATE 58 8 -50
DEL-REL 57 7 -50
ALV-FR 53 5 -48
LATERAL 65 17 -48
REDUCED-CON 69 23 -46
REDUCED 67 24 -43
ROUND-DIP 56 13 -43
SIBILANT 73 32 -41
APICAL 52 18 -34
MH-DIP 39 6 -33
ALVEOLAR 70 39 -31
‘W-DIP 46 16 -30
BF-DIP 59 30 -29
LH-DIP 51 25 -26
VEL-PL 40 14 -26
VCD-FR 62 38 -24
RETROFLEX 45 22 -23
DIPHTHONG 49 27 -22
ALVEOLAR-RIDGE 66 49 -17
BACK-CONS 17 4 -13
VELAR 16 3 -13
CENTRAL-VOW 14 2 -12
CORONAL 68 58 -10
VLS-FR 54 44 -10
Y-GLIDE 41 31 -10
REDUCED-VOW 20 12 -8
SONORANT 61 53 -8
LIQUID 35 28 -7
OBSTRUENT 71 65 -6
UNVOICED 72 67 -5
ROUND 22 20 -2
STRIDENT 64 62 -2
ANTERIOR 60 59 -1
VOICED 74 73 -1
LAB-FR 37 37
LABIODENTAL 36 36
W-GLIDE 42 42 0
Y-DIP 18 19 1
LAB-PL 6 10 4
MID-VOW 29 33 4
PALATAL 5 9 4
LQGL-BACK 43 48 5
BACK-VOW 19 26 7
LABIALIZED 38 45 7
LW 33 41 8
DNT-FR 48 57 9
INTERDENTAL 47 56 9
ASPIRATED 25 35 10
GLOTTAL 24 34 10
TENSE-VOW 50 61 11
HIGH-CONS 3 15 12
ALV-PL 27 40 13
CONSONANTAL 44 60 16
BILABIAL 26 43 17
ROUND-VOW 10 29 19
VCD-PL 2 21 19
VLS-PL 32 51 19
APPROXIMANT 31 55 24
LIQUID-GLIDE 30 54 24
LABIAL 21 46 25
PLOSIVE 23 52 29
FRONT-VOW 34 66 32
STOP 28 63 35
HIGH-VOW 9 47 38
LAX-VOW 7 50 43
FRICATIVE 15 68 53
SYLLABIC 13 70 57
CONSONANT 12 72 60
LOW-VOW 4 64 60
VOWEL 11 71 60
CONTINUANT 8 74 66
CARDVOWEL 1 69 68

Table 9.5: Rank for different features (1="highest weight”, 75="lowest
weight” in read (ReadBN) and spontaneous (ESST €029) speech for speaker
Rob Malkin.
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Chapter 10

Robustness against
Conversational Speech

By virtue of the high error rates shown in Figure 3.1, “Meeting” speech
is the most difficult task in current large vocabulary speech recognition.
This figure shows that, even though a-priori the recording conditions are
usually better for 16kHz RT-04S “Meeting” data than for 8kHz telephony
data (CTS), error rates are significantly higher even for the close-talking
condition. While some part of the loss can be attributed to the overall
limited amount of training data available today for the “Meeting” task, a
major difficulty in acoustic modeling is the wide range of speaking styles
found in meeting data. This is a result of the meeting participant’s physical
proximity, which allows them to interact more freely than for example during
telephone conversations.

This wide range of speaking styles observed can be dealt with either by
adaption, specialization, or by building a recognizer robust against variations
in speaking style. While there are a number of acoustic cues to speaking style
that can be computed, training data for speaking-style-specific or -adapted
systems is not abundant and laborious to label. As the AF-based recognizer
presented in the previous chapters has been shown to improve recognition
on spontaneous speech, this chapter will evaluate the robustness of the AF-
based approach against the different speaking styles found in “Meeting”-type
speech recorded through close-talking microphones. In this application, the
speaker is usually known, because the data has been recorded as part of
a series of recordings, so that speaker-adapted systems and feature stream
weights trained for a specific speaker can be used.

Meeting speech is characterized as being “Highly-Interactive/ Simulta-
neous Speech”:!

The speech found in certain forms of meetings is spontaneous

'From http://www.nist.gov/speech/test_beds/mr_proj/.
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and highly interactive across multiple participants. Further,
meeting speech contains frequent interruptions and overlapping
speech. These attributes pose great challenges to speech recog-
nition technologies which are currently typically single-speaker/
single speech stream contextual.

10.1 The NIST RT-04S “Meeting” Task

Because of its high spontaneity, “Meeting”-type speech is therefore suit-
able to verify the potential of AFs for improving automatic transcription
of conversational speech. The ASR system used in these experiments is
trained for 16kHz/ 16bit close-talking audio data from group meeting record-
ings. The acoustic models were developed for and used in ISL’s submis-
sion to the IPM (“Individual Personal Microphone”) condition of the STT
(“Speech-To-Text”) part of the NIST RT-04S “Meeting” evaluation system
[ , GLF04].

Training data for 16kHz acoustic models in the ISL system consisted of
the close-talking parts of the “Meeting” training data merged with 180h of
existing Broadcast News data from the 1996 and 1997 training sets. “Meet-

ing” training data | | was collected for the NIST RT-04S “Meeting”
evaluation [ | and consists of “naturally occurring multi-party inter-
action” | ] collected in meeting rooms at ICSI;, CMU, and NIST. As

is was collected at different sites over a longer period of time with different
recording procedures, it is not a homogeneous data set. Initial experiments
on a pre-release of the official development set with un-adapted single-pass
systems confirmed that merging meeting and BN data for acoustic model
training is beneficial.
A comprehensive description of each data set with recording conditions
and transcription conventions can be found in the literature | , ,
, |. For our experiments, BN data was automatically clustered
for VILN estimation and speaker-adaptive training. The parameters of
the training data are tabulated in Appendix B.4, durations reported are
the actual amount of data processed by the system. No training data was
available for “LDC” meetings.

10.1.1 Dictionary and Language Model

Language models were trained in analogy to the ISL Switchboard system
[ |]. We trained a simple 3-gram LM and a 5-gram LM with ~800
automatically introduced classes on a mixture of the Switchboard and Meet-
ing transcriptions and also a 4-gram BN LM. All LMs were computed over
a vocabulary of ~47k words with an OOV rate of 0.6% on the development
set. For the first decoding passes only the 3-gram LM was used, later de-
coding and CNC passes uses a 3-fold context dependent interpolation of all
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three LMs. The perplexity on the development set of the 3-fold interpolated
LM was 112.

All tests use a dictionary extended with vocabulary from the meeting
domain and the simple language model described above for decoding unless
stated otherwise. Consensus lattice processing (CLP) [ | and confu-
sion network combination (CNC) was also performed in later stages using
the interpolated language model (see Appendix B.4).

10.1.2 Development and Test Data

Three evaluation conditions using different amounts of information were
defined for RT-04S meeting data:

MDM Multiple Distant Microphones (primary)
SDM Single Distant Microphone (optional)

IPM Individual Personal Microphone (required contrast)

The experiments with articulatory features are run on the “IPM” (i.e.
close-talking) data. While the official evaluation system used automatic seg-
mentation, the experiments described here are using manual segmentation
to prevent possible interactions of AF adaptation and segmentation and to
speed up experimentation. The manual segmentation was derived from the
reference transcriptions, which were given as SDM files | ].

Development (“dev”) data for the RT-04S evaluation consisted of 10-
minute excerpts of eight meetings, two per site (CMU, ICSI, LDC, NIST),
with mostly identical speakers, although some meetings were recorded on
different days. Eight 11-minute excerpts of different meetings (two per site
again) were used for the evaluation (“eval”) data. Each meeting has between
three and ten participants, recorded on individual channels. The durations
reported in Appendix B.4 give the total amount of data processed by the
system. There is a significant amount of overlapping speech, as the total
audio duration (89m for dev and 100m for eval) is larger than the “wall-
clock-time” of the meeting excerpts (approximately 80m and 90m). The
data used in these experiments is documented further in | ].

10.1.3 RT-04S “IPM” Evaluation System

The ISL’s entry to the “IPM” condition of the NIST RT-04S evaluation uses
following acoustic models were used in the evaluation system:

PLAIN Merge-and-split training on all data followed by 2 iterations of
ML Viterbi training on the “Meeting” close-talking data, global
STC, no VILN
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SAT = PLAIN, but trained with VTLN and 2 iterations of Viterbi
feature-space speaker-adaptive training (FSA-SAT) | ] on
top of ML training

Tree6.8ms “Tree6” Switchboard acoustic models | ], decoded with
8ms frame shift
Treel50.8ms “Treel50” Switchboard acoustic models | |, decoded with

8ms frame shift

SAT.8ms “SAT” models decoded with 8ms frame shift

The acoustic models in every pass were always adapted using constrained
MLLR in feature space (C-MLLR) [ ] and model-space MLLR to the
hypotheses from the previous pass, only the first pass is unadapted. The
“Tree6” and “Treel50” models were taken from the ISL Switchboard system

[ J:

Tree6 ML-trained, global STC, VTLN, FSA-SAT, single-pronunciation
dictionary and context clustering across phones (6 trees)

Treel50 MMIE-trained, global STC, VTLN, MLLR, FSA-SAT, standard
phonetic decision tree

For the SWB-trained models, meeting adaptation and test data was
down-sampled to 8kHz and passed through a telephony filter. “SAT.8ms”
acoustic models are the same acoustic models as in “SAT”, only adapted
differently and run at a frame-rate of 8ms instead of 10ms. The largest
part of the gain between the two passes with “SAT” acoustic models is
due to the adaptation on the Switchboard acoustic models, which make
significantly different errors than the Meeting models, which results in a
“cross-adaptation” effect. The word error rates reached by the different
passes of the evaluation system for Manual segmentation (as used here) and
automatic segmentation (as used during the evaluation [ ]) are shown
in Table 10.1.

Comparing results achieved with both segmentations, it is clear that
segmentation is one of the IPM condition’s main challenges. The problem
lies mainly in the number of insertion errors, which increases from 9.8% for
manual segmentation to 14.7% with automatic segmentation. This is due
to the large amount of overlapping speech and the physical proximity of the
speakers, as a combination of these two factors results in a high amount of
cross-talk and background speech from other speakers to be present in each
speaker’s dedicated channel. For manual segmentation, overlapping speech
is still present, but to a lesser degree than for automatic segmentation, which
does not achieve a clean separation of foreground and background speech.

Table 10.2 shows a breakdown of word error rates to the individual sites.
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Models Segmentation
Manual IPM-SEG
PLAIN 39.6% 43.6%
SAT 33.8% 38.8%

Tree6.8ms 30.8% 35.0%
Treel50.8ms  29.9% 34.2%
SAT.8ms 30.2% 35.3%
CNC 28.0% 32.7%

Table 10.1: Results on the RT-04S development set, IPM condition for man-
ual and automatic segmentation. Confusion Network Combination (CNC)
is between the last three passes. There is a loss of ~4% absolute when using
automatic segmentation instead of manual segmentation.

Manual IPM-SEG
Overall 28.0% 32.7 %
CMU 39.6% 43.0 %
ICSI 16.2% 20.4 %
LDC 28.9% 33.3 %
NIST 28.2% 35.0 %

Table 10.2: Results on the RT-04S development set, IPM condition, per
data site.
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10.2 AF Detector Training

Feature detectors for the Meeting data were trained using the methods de-
scribed in Section 5.1 using the same setup and preprocessing as for the stan-
dard 16kHz “SAT” acoustic models. The fully continuous GMMs with diag-
onal covariance matrices were initialized with maximum likelihood merge &
split training up to a maximum of 256 components. Following the merge &
split training, one iteration of label training was performed on the meeting
training data to compute the distribution weights. Due to the large amount
of training data, all feature models reached 256 components.

For the decoding experiments, the AF detectors are evaluated on the
same 42-dimensional feature space as the normal acoustic models, which has
been adapted to the current speaker using un-supervised FSA (constrained

MLLR [Gal97)).

10.3 AF Experiments on Meeting Data

For the AF experiments, we worked with “SAT.8ms” 16kHz models, as
they run significantly faster than the SWB models. We opted to work with
manual segmentation in order to avoid problems with wrong segmentation
and in order to improve turnaround times.

In order to further reduce turnaround times, training experiments were
performed with a faster system that used tighter beams (1.2 instead of 1.5)
and no optimization of language model weight. This system reaches a WER
of 31.2% on the RT-04S development data instead of 30.2% for the “full”
system.

Using context-independent speaker-dependent stream weights with op-
timized settings for the learning rate, a word error rate of 30.2% can be
reached instead of 31.2% WER after a single iteration of MMIE training.
Using context-dependent and speaker-dependent stream weights the error
rate goes down to 28.7%. Using these stream weights in the fully optimized
system (i.e. with wide beams), the error rate reaches 28.2%, which is an 7%
relative improvement over and nearly equals the 3-way CNC step with the
SWB models.

For these experiments, as in the ESST experiments reported in Section
9.2.3, we used transcribed speaker data to adapt the acoustic models to a
known speaker. For the 19 of 43 speakers in the development data and 19 of
39 speakers in the evaluation data, which were only seen once, adaptation
was performed on the merged data of all other speakers. These speakers,
however, do not contribute much speech to the corpus. Doing this supervised
speaker-specific adaptation step using MLLR we can reach a performance
of 29.3%, which is clearly inferior to the AF-based adaptation as in the case
of the ESST experiments reported in Section 9.2.3.
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AF Model Test on Baseline Adapted

CMU CMU 43.1% 42.1%
ICSI CMU 43.1% 42.1%
NIST CMU 43.1% 42.3%
CMU ICSI 18.4% 17.4%
ICSI ICSI 18.4% 17.2%
NIST ICSI 18.4% 17.4%
CMU NIST 31.3% 29.0%
ICSI NIST 31.3% 28.9%
NIST NIST 31.3% 29.2%

Table 10.3: Results (word error rate) on the RT-04S development set; IPM
condition; CMU, ICSI, and NIST parts; using AF models trained on CMU,
ICSI, and NIST data and weights adapted to this data.

To evaluate the robustness of the feature approach and to quantify the
influence of different model training on the performance of an AF stream
system, we trained AF feature detectors on the CMU (ISL), ICSI, and NIST
meeting training data only to see if the performance depends on the amount
and source of training data.

The results in Table 10.3 show that performance depends very little on
the type of models and adaptation (feature weight training) used. ICSI
models (trained on 75h of data) are slightly better than CMU/ NIST mod-
els (trained on 11h/ 13h). NIST-trained models even perform worst on
NIST data. Articulatory Features therefore can be ported robustly from
one recording site and recording condition to another one. The generally
better performance of ICSI detectors is due to better model training given
the amount of training data and parameters, as the merge & split training
did only assign around 95% of the possible Gaussians for CMU and NIST
training.

The adapted 16kHz RT-04S “Meeting” evaluation system on the de-
velopment data can be improved from 30.2% WER to 28.2% WER using
“Meeting”-trained models alone, which is nearly as good as the confusion
network combination of the “Meeting” and “SWB” system. On the eval-
uation data, the improvement is from 31.9% to 29.7%, which is also close
to the respective performance of the combined system. AF-based speaker
adaptation therefore improves ASR also for adapted systems. Table 10.4
shows a summary of results.

MLLR is using a variable number of transforms per speaker. The number
of transforms used is determined by the amount of available adaptation data
using a minimum count of 1500 frames optimized on development data.
The average number of transforms per speaker is 7.1. AF-based adaptation
uses a minimum frame count of 150 for the tree-based tying approach, also
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System Description RT-04S Dev RT-04S Eval
AF Baseline Narrow beams, no LM opt 31.2% 33.5%
CI-AF 1i 30.2% 32.7%
CD-AF 2i 28.7% 31.8%
Meeting Baseline Wide beams and LM opt 30.2% 31.9%
Full CD-AF +CD-AF 28.2% 29.7%
Meeting+SWB CNC-Pass with Eval settings 28.0% 29.0%
Meeting Superv. Dialog-MLLR 26.9% 28.8%
Meeting Superv. Speaker-MLLR 29.3% 30.5%

Table 10.4: Results on the RT-04S development and evaluation sets, IPM
condition; gains through AF adaptation are 7% relative on development and
evaluation data. “Superv. Dialog-MLLR” is a cheating experiment to show
how much adaptation is possible using supervised adaptation on the test
dialog using MLLR.

optimized on the training set.

10.4 Analysis

The stream weights learned on the “Meeting task” are largely comparable
to the ones learned on the spontaneous ESST task, presented in Table C.12,
i.e. the system places weight on features describing vowel qualities (place of
articulation) and manner of articulation (e.g. FRICATIVE, PLOSIVE) while
again the VOICED feature is not used to a large extent. The important
features are usually the ones which have only few phones in their class.
Many of the most prominent features have two homorganic phones in their
class, which can be distinguished by voicing (e.g. DEL-REL=AFFRICATE (CH
JH), ALv-FR (SH ZH), LAB-PL (P B), LAB-FR=LABIODENTAL (F V); have
very similar places of articulation ALVEOPALATAL (SH ZH CH JH), VLs-FRr
(F TH SH), or are related to diphthongs or vowel characteristics: LH-Dip
(AY AW), BrF-D1p (AY 0Y AW OW), CENTRAL-VOW (AH AX IX), X-LMN (XL
XM XN), or REDUCED (IX AX AXR).

For further analysis, we computed a phonetic confusion matrix for the
Meeting data before and after adaptation with articulatory feature detectors
and check the most frequent confusions. In this case, we compute a Viterbi
alignment of the reference (allowing optional words and pronunciation vari-
ants) and compare it to the recognizer hypothesis.

Table 10.5 shows that the most frequent confusions are the ones between
Z and S, which is an inconsistency in the ISL dictionary (this is based on
LDC PronLex but has been extended using a rule-based approach), fol-
lowed by confusions between vowels and vowels and/ or consonants. The
“Change” column shows that the largest reductions occur in the confusion
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Rank No AFs Trained AFs Change
Confusion Count Confusion Count Confusion Change
1 ZS 3872 ZS 3817 OW AX 280
2 T IH 1504 T IH 1430 EH AE 229
3 IH AX 1233 T N 1158 N AX 208
4 T AX 1188 IH AX 1116 N M 182
5 EH AE 1143 T AX 1010 R AXR 179
6 T N 1132 TS 985 T AX 178
7 T S 1122 EH AE 914 N D 166
8 T D 936 IH AE 887 AX AE 162
9 N M 930 TD 849 ZzT 160
10 R AXR 919 N M 748 IY AX 158
11 IH AE 873 R AXR 740 IY ITH 155
12 N D 865 N D 699 UW AX 153
13 N AX 844 N AE 689 N EH 151
14 IY TH 797 1Y TH 642 T K 148
15 T K 775 N AX 636 IY EY 141
16 AX AE 746 T K 627 T S 137
17 IY EY 721 Y IY 593 L AX 136
18 ZzT 710 AX AE 584 AX AH 129
19 OW AX 704 T DH 582 OW EH 118
20 N AE 678 IY EY 580 UW EH 118
21 AY AE 659 AY AE 569 Y N 118
22 Y IY 653 Z'T 550 IH AX 117
23 DH AX 561 IH EY 510 DH D 109
24 N IH 560 UW 1Y 507 EH AX 102
25 T DH 556 N IH 502 TIY 98
26 OW L 541 N DH 484 T AXR 91
27 IH EY 524 S IH 478 AY AE 90
28 AX AH 521 DH AX 475 T D 87
29 N DH 506 OW L 457 DH AX 86
30 IH EH 501 NG N 455 N AXR 85
31 OW N 501 OW N 439 AY AXR 84
32 EH AX 489 OW AX 424 OW L 84
33 UW 1Y 487 IH EH 422 R ER 82
34 NG N 475 IH DH 411 AE AA 80
35 S IH 461 N IY 407 IH EH 79
36 DH D 454 AXR AX 405 DH B 7
37 AXR AX 451 UW OW 401 T CH 75
38 IH DH 451 ER AXR 395 T IH 74
39 UW AX 446 AX AH 392 L AY 72
40 EH AY 442 EH AX 387 V AX 72
41 N EH 421 EH AY 374 UW IH 71
42 NIY 415 EY AY 372 K AX 70
43 TIY 411 DH D 345 UW N 70
44 Z IH 396 OW AA 344 AY AH 68
45 OW AA 394 T AY 330 EH AH 68
46 L AX 393 Z IH 330 EH AY 68
47 UW OW 390 N AY 324 T EH 67
48 IY AX 382 TIY 313 Z IH 66
49 DH B 373 Z DH 309 T AE 65
50 N AY 365 T P 306 R AX 64
51 T AY 359 DH B 296 Y IH 64
52 R ER 351 UW AX 293 OW N 62
53 AY AX 350 AY AX 291 T R 60
54 OW EH 350 N AA 284 Y AE 60
55 ER AXR 347 Z AX 283 Y IY 60
56 Z DH 334 W L 272 AX AW 59
57 AE AA 333 N EH 270 AY AX 59
58 Z AX 322 R ER 269 IX AX 59
59 EY AY 320 W OW 269 T M 59
60 T AE 311 AO AA 267 Y AY 59
61 T P 311 IH AXR 267 N IH 58
62 Y IH 303 AH AA 264 OW AY 58
63 D AX 293 N L 261 R OW 58
64 UW N 292 L AX 257 XL UW 57
65 N AA 289 AE AA 253 OW M 56
66 IH AXR 284 D AX 251 TB 56
67 R AX 283 T AE 246 UH AX 56
68 W L 278 S F 243 v T 55
69 UW IH 277 Y IH 239 Y DH 55
70 Y N 277 UW D 237 ZS 55

111

Table 10.5: Influence of AF's on confusions: the left column shows the most
frequent phonetic confusions of a decoding on the RT-04S development set
without AFs (Z < S and S « Z have been merged for clarity), the middle
column shows the ones with trained weights. The reduction in classified
frames is given in the right column.
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of vowel qualities (REDUCED, REDUCED-VOw, and CENTRAL-VOW), which
is consistent with the high stream weights observed for vowel qualities and
the observation that vowel qualities are affected in sloppy, conversational

speech.
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Robustness against
Hyper-articulated Speech

The previous chapters presented results of articulatory feature based speech
recognition on conversational speech tasks. As different speaking styles are
not labeled in these data sets and there is no control over speaking styles
in naturally occurring human-to-human interaction, further insights into
the influence of articulatory features on the word error rate of a speech
recognition system can not be gained without manually annotating data.

While conversational speech mostly contains speech with reduced artic-
ulatory effort, i.e. “sloppy speech”, the most important linguistic messages,
i.e. utterances which contain particularly important information the speaker
wants to stress, will be spoken clearly, i.e. in a clear or at least partly hyper-
articulated mode. As speech recognition systems are not trained on this type
of speech, their performance usually suffers on this type of speech, although
a naive user would expect the opposite. A truly robust speech recogni-
tion system must therefore cope with clear speech or at least show as little
degradation on clear speech as possible.

11.1 Hyper-articulated Data

Speech recognition performance on hyper-articulated or clear speech can
be evaluated on a database of elicited speech collected at ISL, in which a
simulated dialog system prompts speakers to produce the same word both
“normally” and “clearly”, i.e. in two distinct speaking modes. As outlined
in Section 5.3, articulatory features now provide contrastive attributes to
perceived confusions, and speakers stress these attributes to better trans-
port their message. In this section, we evaluate the robustness of a speech
recognition system to this behavior and investigate if articulatory features
can improve the performance of an ASR system on this type of data.

To define two distinct speaking styles, we assume in our experiments that

113
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humans always try to get away with using minimal effort when choosing their
speaking mode. It is clear that hyper-articulation, i.e. attempting to pro-
duce very un-ambiguous speech sounds, requires much more effort from the
speaker. In human-human communication, hyper-articulation occurs to im-
prove the intelligibility of spontaneous speech. It is shown in | , ]
that hyper-articulated speech also occurs in human-computer interaction,
if users try to compensate for real or suspected recognition errors. Assum-
ing that the manifestation of hyper-articulation is not fundamentally differ-
ent between human-to-human and human-to-computer interaction types, an
understanding of improvements reached on the human-to-computer domain
can be ported to the human-to-human domain.

For our experiments, we collected data from users, who were told to
repeat a word to a simulated automatic dialog system until it finally “un-
derstands” (i.e. displays the word the screen) them correctly. The subjects
were naive users of speech technology and were not told that the system was
a simulation.

The recording scenario consisted of two sessions: during the first ses-
sion, the subjects used the dialog system under “normal conditions”, i.e.
they would not attempt to diverge from a canonical pronunciation. After
that, a list of recognition errors (word confusions) from the first session was
presented to the subjects, which they were told to correct, i.e. produce
again in a way the system could transcribe correctly by clicking on a button
wrong and repeating the same word. The recognition errors were presented
as phrases, e.g. “The word recounting was confused with recounted. Please
repeat recounting”. A maximum of three attempts were performed to cor-
rect an error. The subjects were also asked to disambiguate the words in
the other direction in order to investigate if opposite features are used to
contrast word confusions.

In order to induce realistic hyper-articulated speech, we analyzed typical
errors of our speech recognition systems and generated a list of frequent word
confusions, which were used to generate the system responses. In most cases,
recognition errors were caused by inflections and phonetically similar words.
Even though the set-up presented here may look extreme in that the user
is subject to artificial errors, the performance of speech recognition systems
suffers greatly in many situations, justifying research on error recovery in
dialog systems. The experiment presented here is also described in | ]
while the experimental design is described in more detail in | .

In total, the database consists of 4677 normal and 5367 hyper-articulated
recordings from 45 subjects (see Table 11.1). The recordings are compara-
ble in domain, vocabulary, microphone, and environmental noise for each
speaker across different speaking styles. The corpus was divided in a training
set, of 34 speakers and a test set of 11 speakers. As the set of training speak-
ers is rather small, we conducted supervised adaptation experiments using
acoustic models trained on large corpora, e.g. the SWB and BN databases.
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Speakers Utterances Duration
Normal Hyper Normal Hyper
Train 34 3506 3923  124min 158min
Test 11 1171 1444 34dmin  57min
Total 45 4677 5367  158min 215min

Table 11.1: Database for normal (“HSC-normal”) and hyper-articulated
(“HSC-hyper”) speech.

Group Basis

Manner Plosive, Nasal, Fricative, Lateral, Approximant

Place Alveolar, Bilabial, Glottal, Labiodental, Interdental, Retroflex
Vowel High, Mid, Low, Front, Central, Back, Round

Global Voiced, Consonantal

Table 11.2: Independent articulatory properties used for the experiments on
hyper-articulated speech.

In the following experiments, the described corpus is being referred to by
the name “HSC” (Hyper-articulated Speech Corpus).

11.2 Detection of Articulatory Properties

Feature detection experiments on the HSC corpus were run using feature de-
tectors trained on the Switchboard (SWB) corpus of around 300h of conver-
sational telephony speech | ] using the set-up of and labels generated
with ISL’s RT-03 CTS system | | and with systems trained on the
newly-collected data. The newly trained systems for normal speech from the
HSC database (“HSC-normal”) and hyper-articulated speech from the HSC
database (“HSC-hyper”) use a maximum of 48 Gaussians per feature detec-
tor during incremental growing of Gaussians in order to avoid over-training
on the limited amount of training data. The preprocessing for these systems
is the same as for the ESST system described in Appendix B.2.

We investigated the “independent” properties shown in Table 11.2 for
consonants. The likelihood is computed using the corresponding models and
anti-models for each frame as described in Section 5.3. The performance is
measured as the binary classification accuracy averaged over the number of
(middle) frames.

The results for the detection experiments are shown in Table 11.3. The
experimental setup permits comparisons of the performance across attributes,
speaking style (“normal” or “hyper”), and training corpus (“SWB”, “HSC-
normal”, and “HSC-hyper”):
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Corpus: SWB corpus HSC-normal HSC-hyper
Speaking style: Normal Hyper Normal Hyper Normal Hyper

Manner of Articulation Features

PrLOSIVE 90% 83% 91% 85% 92% 88%
NASAL 8% 2% 93% 7% 93% 90%
FRICATIVE 95% 92% 93% 91% 92% 91%
LATERAL 85% 7% 89% 80% 89% 81%

APPROXIMANT 90% 85% 88% 82% 87% 85%

Place of Articulation Features

LABIAL 83% 80% 88% 83% 86% 83%
BILABIAL 84% 8% 87% 83% 88% 85%
LABIODENTAL 90% 84% 80% 72% 78% 72%
ALVEOLAR 88% 86% 87% 84% 88% 85%
VELAR 82% 7% 81% 75% 84% 80%
GLOTTAL 84% 79% 83% 81% 81% 86%
Global Features

VOICED 96% 96% 92% 92% 86% 83%
CONSONANT 96% 93% 87% 83% 88% 85%
ALL 85% 81% 86% 81% 85% 83%

Table 11.3: Detection accuracy for different features for consonants.

Differences Between Attributes: The average classification accuracy over

all attributes is 86% (Table 11.3, bottom). The detection performance
for manner of articulation varied between 88% for approximants and
93% for fricatives and nasals. Classification is worse for place of artic-
ulation.

Differences Between Speaking Modes: The classification performance

can be analyzed across speaking modes by comparing the fourth with
the fifth column. The classification accuracy is 5% worse on hyper-
articulated speech over all attributes. The impact of hyper-articulation
on the detection accuracy is more or less equal for all attributes.

Differences Between Training Corpora: The detection accuracy for nor-

mal speech is independent from the training corpus. The models
trained on SWB reach 85% on average, training with HSC-normal
gives 86%, and 85% is also obtained by estimating the parameters on
HSC-hyper. The channel mismatch for the SWB models (8kHz, tele-
phony speech) does not seem to degrade the detection accuracy. By
comparing the fifth column with the seventh column, it can be seen
that hyper-articulated training data improves the performance from
81% to 83%. In particular, velar and glottal sounds profit from that
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data. On the other hand, the classification whether a sound is voiced
or not becomes significantly worse.

Therefore, articulatory features can be detected on hyper-articulated
speech with practically the same accuracy as on normal speech. Large dif-
ferences between normal and clear speaking style could only be found for
voicing.

11.3 Speech Recognition with AF Models

For the decoding experiments on the HSC database, the acoustic models
were used together with a zero-gram language model and a search vocabulary
of around 8000 words. The thresholds of the beam search algorithm were
sufficiently high to avoid search errors. This experimental setup ensures that
any recognition errors can be directly attributed to the acoustic models.

Initial experiments with the Switchboard models indicated significant
differences between normal and hyper-articulated speech. While an error
rate of 25.6% is obtained for unadapted models under “normal” conditions,
there is a relative error increase of more than 60% to 41.6% under conditions
of hyper-articulation on average over all test speakers. This relative error
increase however strongly depends on the speaker, as it varies between 4%
and 260% for the 11 speakers of the test set.

Acoustic models Error rate Relative error increase
Normal Hyper at hyper-articulation

Baseline 25.6%  41.6% 62.5%

MLLR 21.9%  35.0% 59.8%

MAP 23.4%  37.9%% 61.9%

Table 11.4: Supervised adaptation on hyper-articulated speech.

The observed speaker-dependent deterioration of word error rate sug-
gests that the way users change their speaking style in order to disambiguate
recognition errors is speaker dependent. The acoustic models, trained on
conversational telephone speech, are not able to deal with hyper-articulated
speech well. This experiment shows that:

e There are significantly more recognition errors under hyper-articulation

e The reaction on word confusions is a strongly speaker-dependent effect
in terms of an increase in recognition errors

This is particularly remarkable, as the performance of the detectors for
articulatory features did not degrade significantly between speaking styles.
On other data, | | finds that WER may be more related with user
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frustration than with hyper-articulation and argues that hyper-articulation
could be compensated for by using more speaking-mode specific training
data.

To improve on the results on our data, we tried to adapt the SWB models
using MLLR | ] and MAP | ] adaptation on the HSC corpus. The
regression tree contains 256 nodes and the minimum occupancy threshold
for the adaptation matrices is set to 1500 samples. The prior distribution
for MAP is estimated on the SWB corpus using 2.6h of hyper-articulated
adaptation data. The results are given in Table 11.4.

Adaptation data Error rate Relative error increase
Normal Hyper at hyper-articulation

Baseline 25.6%  41.6% 62.5%

Normal 21.9%  36.8% 68.0%

Hyper 21.9%  35.0% 59.8%

Normal+Hyper 21.4%  35.3% 64.9%

Table 11.5: Supervised MLLR on different training sets.

While significant reductions in word error rate can be achieved with stan-
dard likelihood based approaches, these fail to improve the performance on
hyper-articulated data, even when adapting on hyper-articulated data. The
relative increase in error rate between normal and hyper-articulated speech
stays at around 60%. To investigate if channel effects may be masking speak-
ing style adaptation, we repeated these experiments with the ESST+BN
models described in Chapter 9. The result of this experiment on the HSC
data is shown in Table 11.6.

Initially, the SWB models provide better WER. After MLLR adaptation
on the HSC-normal data however, the ESST+BN models give significantly
better results. The adaptation is more effective for the ESST+BN models,
resulting in an error rate of 18.9% for normal speech and 29.9% for hyper-
articulated speech. The degradation on hyper-articulated speech however
is still nearly 60% relative. The adapted ESST+BN models however set a
baseline for the multi-stream AF approach, since they provide a “harder”
baseline for ASR, experiments.

To see if particular phonological properties are affected differently by

Adapted on SWB models  ESST+BN models
HSC-normal Normal Hyper Normal Hyper
No 25.6% 41.6%  32.7% 46.3%
Yes 21.9% 36.8% 18.9% 29.9%

Table 11.6: Comparison of ESST+BN with SWB models and supervised
adaptation.
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hyper-articulation, we partitioned the set of articulatory features into four
sub-spaces shown in Tables 11.2 and 11.7. The total number of Gaussians in
the feature models is 1216. The number of additional parameters introduced
with the feature models is therefore negligible when compared to the phone
models.

A separate system was built for each sub-space in a first step investi-
gating the capabilities of each feature attribute group. The baseline is the
standard phone-based model set. The full vector space uses all attributes.
Stream weights were set equally for all feature streams with the main stream
receiving a weight of A\g = 0.5 and the sum of the feature streams set to 0.5.

Acoustic Models Speaking Style

Normal Hyper
Phone-based Models 18.9%  29.9%
+ Manner AF models 17.3%  22.2%
+ Place AF models 17.5%  22.3%
+ Vowel AF models 17.4%  22.4%
+ Global AF models 18.2%  23.2%
Full AF Models 17.8%  21.5%

Table 11.7: Recognition experiments with AF stream architecture.

The results in Table 11.7 demonstrate the advantages of using articula-
tory features for robust recognition of hyper-articulated speech. The error
rate is reduced from 29.9% with the phone models to 21.5% using the avail-
able detectors for articulatory features. This is an improvement of more
than 28% relative. Moreover, this improvement on hyper-articulated speech
does not cost performance for normal speech. The phone based models have
an error rate of 18.9% for normal speech, but the vector models achieve
17.8%. More important, by re-assigning part of the overall decision from
specialized phone models to generic detectors for articulatory features, the
performance of the speech recognition system is improved dramatically on
hyper-articulated speech, on which articulatory feature detectors are much
more reliable than standard phone models, as there is nearly no degradation
in feature classification rate. Also, for hyper-articulated speech, a combina-
tion of all features is better than the selection of feature sub-groups.

The performance on the articulatory sub-spaces is rather good. The
spaces formed by manner or place(s) of articulation give most of the gain.
This suggests that only a limited number of contrastive attributes are needed
to correct a recognition error. Vowel and consonants appear to be well sep-
arated, but apart from that there is no indication that one of the sub spaces
is more important than any other for compensating hyper-articulation. The
results for all sub spaces are comparable.
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Attributes changed as predicted 51.2%
Attributed changed in the wrong direction 14.8%
Attributes did not change 34.0%

At least one correct prediction per phone  78.6%

Table 11.8: Prediction of contrastive attributes.

11.4 Analysis of Contrastive Attributes

Using the contrastive attributes (CAs) introduced in Section 5.3 should al-
low us to predict changes in articulation when changing from “normal” to
“clear” speaking mode. Earlier individual examples of predictable changes
(see Figures 5.5, 5.6, 5.7, and Table 5.5) however need to be verified by a
comprehensive analysis of the changes occurring in real speech.

To arrive at feature change candidates, we aligned the phone sequences
of the confused words: for example, if bitter was uttered and better was
recognized, we aligned the sequences [bitor] and [betor] (and their pronun-
ciation variants) with the acoustic evidence, i.e. the “normal” and “hyper”
utterances using the Viterbi algorithm, at the same time selecting the best
pronunciation variant. The alignment procedure produces a set of inser-
tions, deletions, and substitutions at the phonetic level. The phone errors
can then be represented in the articulatory formulation as the activation of
one (or more) features (NEAR-CLOSE and NEAR-FRONT in the above ex-
ample) and the de-activation of others (CLOSE-MID and FRONT), i.e. the
hyper-articulated [1] will be “more closed” than the standard sound to dis-
ambiguate it from the “more mid” [e]. On average, phone confusions led to
an average of 3.5 feature changes per affected segment, while correct phones
did not generate any changes.

A CA is now correctly predicted, if the average score difference

to

1
A, = Ao, a
g tz_tlt;:l (o1, a)

per frame is larger (lower) for the activated (deactivated) feature in the
hyper-articulated realization than in the normal realization of the same word
over the region with different attributes. For the above example, this value
was plotted over time in Figures 5.5, 5.6, and 5.7 (cf. Table 5.5).

Table 11.8 shows how often contrastive attributes are correctly predicted
by the detectors for articulatory features. A wrong prediction does not neces-
sarily mean that the predictor models were not able to detect the attribute
change. Instead, it is also possible that the attribute change did not oc-
cur. For example, there are 3.5 predicted changes per phone on average
and it might also be possible that humans use only a limited number of
attribute changes for disambiguation between the true and mis-recognized
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Contrastive Attributes Speaking style
Normal Hyper
AF models 17.8%  21.5%

Enforced attributes (ref)  17.8%  17.0%
Enforced attributes (hyp) 17.8%  19.4%

Table 11.9: Enforcing contrastive attributes.

word. Keeping this in mind, the results can be interpreted only as a correla-
tion between predicted and observed changes and not as a correctness of the
predictor models. Indeed it is our initial assumption that phone models are
too coarse a model to accurately described the articulatory changes during
spontaneous or hyper-articulated speech.

The results in Table 11.8 show that 51.2% of all predictions occurred,
while 14.8% negative attribute changes were observed. In 34.1% of cases,
the attributes did not change. Furthermore, at least one attribute change
per phone is correctly predicted in 78.6% of all phone occurrences. In other
words, the probability for observing a contrastive attribute in a hyper-clear
speaking mode is 78.6%.

Given the predictions, a recognition experiment can be performed by
enforcing the contrastive attributes. The idea is to increase or decrease the
weighting factors of the contrastive attributes in the acoustic score compu-
tation. This recognition run is a kind of a “cheating experiment” since the
contrastive attributes are obtained by an alignment of the confused words,
i.e. with knowledge of the true hypothesis. The result of this experiment is
shown in Table 11.9. The error rate improves from 21.5% to 17.0% on the
hyper-articulated data. Instead of using transcripts to obtain contrastive at-
tributes, hypotheses from the corresponding normal utterances can be used.
As shown in Table 11.9, enforcing attributes based on hypotheses leads to a
recognition performance of 19.4% error rate, which represents an improve-
ment of 9.8% relative and is only 0.5% worse than the baseline performance
(without articulatory features) on the “normal” data.

The analysis presented in this section gives evidence that changes due to
a hyper-clear speaking mode can be explained by the concept of contrastive
attributes based on articulatory features. There is a correlation between the
observed and predicted attribute changes. Enforcing contrastive attributes
improves the recognition performance significantly. There is no need to
train feature detectors on hyper-articulated data, as these can be trained on
normal data.

Articulatory features therefore play an important role in how humans
produce speech in different situations, as they seem to particularly stress
contrastive attributes when trying to discriminate between confusion pairs.
It sounds plausible that a similar effect can be observed in sloppy speech,
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where only those features are retained, which are still needed for discrim-
ination in the current context. The discriminatively trained multi-stream
approach to ASR therefore improves automatic speech recognition by in-
corporating information about competing hypotheses in a linguistic space,
instead of a likelihood-based adaptation, which is mostly based on incorrect
model assumptions.



Chapter 12

Conclusions

This thesis presented an automatic speech recognition system particularly
suited for conversational speech, which allows combining standard context
dependent acoustic models with detectors of broad, phonologically moti-
vated “articulatory features” (AFs) such as VOICED or ROUNDED. Combin-
ing these two types of classifiers in a multi-stream approach with discrimina-
tively trained stream weights for the individual articulatory features allows
adapting the recognizer to the articulatory characteristics of an individual
speaker, his or her speaking style in a particular situation, e.g. in a meet-
ing, or a particular task better than existing approaches. The streams of
the approach presented model different articulatory features, which the dis-
criminatively trained stream weighting mechanism combines into an overall
decision. Because the feature streams directly model phonologically moti-
vated broad, distinctive categories, the multi-stream approach can capture
articulatory changes and characteristics occurring in individual speakers bet-
ter than a purely phone based approach. Adaptation is achieved by setting
the combination weights appropriately for each phonetic context. Experi-
ments on hyper-articulated data show that the proposed system improves
the performance on “clear”, i.e. “important”, parts of speech by more than
25%. Overall improvements on conversational speech show improvements
between 7% and 20% relative.

12.1 Thesis Results

This thesis evaluated a multi-stream approach to knowledge combination
using well-trained context-dependent phone models and models based on
articulatory features on a number of tasks and derived new formulae for the
computation of stream weights suitable for the combination of asymmetric
(i.e. differently salient) knowledge sources.

The experiments presented in this thesis show improvements over previ-
ous automatic speech recognition systems on several tasks:

123
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e The WER on English GlobalPhone data could be reduced from 15.6%
to 13.9%. Similar improvements could also be reached using feature
detectors from different languages (cf. Section 8.3, “multi-lingual”
data) or on other languages, which shows that articulatory features are
indeed a language-independent property of human speech production
and perception. On this data set, the new MMIE based stream weight
estimation was shown to outperform previous DMC based estimation
techniques in terms of computational effort while reaching comparable
reductions in error rate.

e On spontaneous speech (ESST), the WER could be reduced to 21.5%
using global (G) AF speaker adaptation. State-dependent (SD) AF
speaker adaptation reaches 19.8% WER while MLLR speaker adapta-
tion using a comparable number of parameters reaches 20.9%. Baseline
performance using ML-trained models without adaptation is 25.0%
WER (cf. Section 9.1). Using speaker-independent AF weights trained
on the development test set, the WER on the evaluation set can be
reduced from 26.1% to 24.9% while MLLR adaptation gives 50% of
that gain.

e On the ESST task, the proposed algorithm allows computing a weight
using a phone recognizer as a second stream instead of the feature
streams. This improves the WER by 0.6% absolute while the AF sys-
tem improves the performance by 1.2%. This shows that the algorithm
works robustly and can be applied to the combination of other types
of knowledge sources as well (cf. Section 9.2).

e The RT-04S “Meeting” system can be improved from 30.2% WER to
28.2% WER on the development data using “Meeting” models alone
in the last decoding pass, which is nearly as good as the combined
“Meeting” and “SWB” system (28.0%). The best non-AF single pass
system reaches 29.9%. On the evaluation data, the system is improved
from 31.9% to 29.7% (cf. Section 10.1).

e Experiments on “hyper-articulated” speech confirm that modeling speech
using articulatory features can improve the performance over a stan-
dard phone based recognizer particularly for cases when users change
their speaking mode in order to speak “more clearly”. When enforcing
distinctive attributes for confusable word pairs on hyper-articulated
data, the WER is reduced from 29.9% without AFs to 19.4%, which
is nearly as good as the performance of the non-AF system on clean
data (18.9%) (cf. Chapter 11).

Table 12.1 summarizes the improvements in word error rate reached on
the different tasks considered in this thesis.
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Experiment WER Improvement
absolute  relative

Hyper-articulated data (HSC)

Normal Baseline 18.9%

Normal AF 17.8%  -1.1% -6%
Hyper Baseline 29.9%
Hyper AF 21.5% -8.4% -28%

GlobalPhone data (GP)
EN Baseline Dev 12.7%

G-MMI-AF 11.3%  -1.4% -11%
SD-MMI-AF 10.9%  -1.8% -14%
EN Baseline Eval  15.6%

G-MMI-AF 14.4%  -1.2% -7%
SD-MMI-AF 13.9%  -1.7% -11%
English Spontaneous Scheduling Task data (ESST)
1825 Baseline 25.0%

Speaker AFs (G) 21.5%  -3.5% -14%
Speaker AFs (SD) 19.8%  -5.2% -21%

“Meeting” data (RT-04S)
Dev Baseline (fast) 31.2%

G-AF 30.2% -1.0% -3%
SD-AF 28.7% -2.5% -8%
Dev Full Baseline  30.2%
SD-AF 28.2% -2.0% -1%
Eval Full Baseline  31.9%
SD-AF 29.7% -2.2% -1%

Table 12.1: WER improvements achieved with articulatory features and a
multi-stream HMM architecture on different tasks.
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12.2 Thesis Contributions

The experiments presented in this thesis allow the following conclusions,
which contribute to improved automatic speech recognition:

1. Articulatory features in combination with existing well-trained acous-
tic models are helpful for recognizing spontaneous, conversational speech.
Even though they are simpler in structure, they perform better than
a context independent phone recognizer added as a second stream.
This supports the notion that atomic “articulatory” properties such
as VOICED or ROUNDED can help to discriminate between words, while
phones, which represent a whole bundle of these features, are a con-
venient short-hand notation of the articulatory process, but do not
necessarily play a major role in perception.

2. Articulatory features can increase the robustness of a recognizer as
they are particularly suitable for recognizing “emphasized” or “hyper-
articulated” speech. While automatic speech recognition systems can
be made to recognize “standard” speech rather well, they tend to fail
as soon as users are excited, angry, or otherwise under pressure and try
to speak “hyper-clear”, i.e. with emphasis. People hyper-articulate,
as they expect this type of speech to be more easily understandable
for a human, however the effect when using a machine is usually just
the opposite. AFs have been shown to be effective at reducing that
degradation, therefore contributing to the applicability of dialog sys-
tems and other “end-user” products. AFs are particularly suitable for
building systems adapted to a specific speaker.

3. The MMI based discriminative training approach developed as part of
this thesis can successfully combine specific models (standard context-
dependent phone based acoustic models) with generic ones (context-
independent models based on phonetic classes) or other acoustic mod-
els, e.g. a context-independent phone recognizer.

4. Articulatory features can be reliably detected from speech by using
well known standard acoustic modeling techniques. Articulatory fea-
tures can also be recognized across languages, i.e. the phonetic as-
sumption that phonological features are “universal” seems justified.

5. As the phonetic properties the detectors are built on can be detected
reliably and these are more portable across languages than phones, ar-
ticulatory features can help to improve speech recognition in languages
with sparse data or can help to bootstrap systems in new languages,
therefore enabling speech recognition to be made available to more
users more easily.
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12.3 Recommendations for Future Work

The present work represents significant improvements in terms of word error
rate over well-trained state-of-the-art baseline systems on several tasks, yet
still there are many open issues within the field of ASR that the approach
presented here could contribute to.

The approach was shown to be working well when adaptation has been
performed on data from the same speaker. As AFs have also been used for
speaker verification, it is interesting to investigate the suitability of articu-
latory features for an integrated approach to speaker verification and speech
recognition. Also, the dependency of stream weights on other factors such
as speaking style, emotion, or dialect should be investigated further in order
to improve the selection of weights for unknown conditions. Another area of
research would be the portability of speaker specific stream weights across
different tasks or channels.

Also, the language-independent properties of articulatory features lend
themselves to further research on multi-lingual speech recognition or boot-
strapping of systems in new languages. Recognition of non-native speech
might also profit from the use of articulatory feature detectors ported to the
foreign language recognizer from the speaker’s mother tongue.

Articulatory features performed particularly well on extreme, i.e. hyper-
articulated or clear, speech, without the need to train extra models. Reliable
detection of extreme speech would allow improving the performance of a
speech recognition system particularly on these important parts of speech
by appropriately including articulatory features.

Next, existing work on noise-robust speech recognition could be repli-
cated with the proposed multi-stream approach and the change of optimum
feature stream weights with noise condition could be investigated. This
would permit to quickly adapt the recognition system to different noise con-
ditions.

Also, the dependency of word error rate improvements on the accu-
racy of the underlying feature detectors has not been studied extensively
in this work. It seems plausible that some feature detectors could be im-
proved by computing their likelihoods not on MFCCs, but on other features
(power, PLP coefficients), which should in turn improve word error rate.
Finally, first experiments on speech recognition based on feature streams
alone (without pairing them with the baseline models) did not lead to im-
proved performance on the tasks covered in this work, but careful training
of state-dependent stream weights should allow for a feature-only speech
recognition system.
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Appendix A

MMIE Update Equation

Derivation of Equation 7.5 starting from the MMIE criterion 7.4:

pu (Or W) P(Wy)
® 3 pu (O ]0) P()
R

= Z <logp‘ll(0r|Wr)P(Wr) - logZp\p(Orhb)P(ﬁ)))

r=1

Fynve(¥) = Zl

where W, is the correct transcription of utterance r and w enumerates all
possible transcriptions of r with a non-zero likelihood given the lattice pro-
duced using the acoustic model PDF pg and language model probabilities
P. Formally deriving Fyrare with respect to A\; (U comprises the full pa-
rameter set {\; s, pur, ¢, £} for all streams ¢ and all Gaussians [, independent
of their state s) gives:

r=1

R
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Let S denote all possible states s contained in the possible hypotheses w.
Using the Markov property of any state sequence through &, we can write
the partial derivatives with respect to the weights A; s in the time range 1
to 15

log p(O,|W;) Zp = 5|0, W) log p(Or.4|5)

9
8)\1 s a)\i,s

Now introducing the Forward-Backward probabilities

Yrt(s; W) = pa(se = 5|0y, W,.) and
Yri(8) = palse = s|Oy)
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we can write

R T, 9
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As in our case (independent of the state s)

0 9
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we can write
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Defining
R
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r=1serR
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the update equation can now be written as follows:

I+1) () g
A = N+ Ea)\ F(\)
A P

Here, the enumeration s € R is over all reference states (“numerator lattice”)
and s € S is over all states given by the recognizer output (“denominator
lattice”).

q.e.d.

A more detailed discussion of some of the steps, particularly those in-
volving the exploitation of the Markov chain and the definition of the FB
probabilities, can be found in | | and | ].
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System descriptions

B.1 GlobalPhone Systems

Training: GlobalPhone corpus recorded in 16kHz/ 16bit with close-talking
microphones and quiet environment [ | (“Wall-Street-Journal”
(WSJ) style); EN data taken from WSJ-0 corpus

Language # Speakers Duration (h) Utterances

CH 132 27 8663
EN 103 15 7137
GE 7 17 9259
JA 144 24 9234
SP 100 18 5426

Test: test data was recorded under the same conditions as training data

Development test set
Language # Speakers Duration (h) Utterances

CH 10 0.7 250
EN 10 0.4 144
GE 3 0.4 199
JA 11 0.7 250
SP 10 0.7 250

Evaluation set
Language +# Speakers Duration (h) Utterances

CH 10 0.7 240
EN 10 0.4 152
GE 3 0.4 250
JA 5 0.7 250
SP 8 0.7 250
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APPENDIX B. SYSTEM DESCRIPTIONS

Pre-processing: the same pre-processing was applied to all languages:
10ms frame-shift, ML-VTLN, per-utterance CMS, 32-dimensional fea-
ture space after LDA computed on MFCCs with A, AA, zero-crossing-
rate and power coefficients

Acoustic models: 3000 fully continuous models trained with 4 iterations
of maximum likelihood label training, 32 Gaussians per model, diago-
nal covariances (for all languages)

Dictionary and LM: English

Dictionary: 17k vocabulary

Language model: 9k unigrams, 1.6M bigrams, 6.6M trigrams, PPT=252,
0O0V=0.1% trained on CSR 1994 LM (200M words)

Phone Set: English

Name
Type

: ps
: PhonesSet

Number of Items : 2

MO e e v e e e

@ M_+QK/EN M_+hGH/EN M_il/EN M_ip/EN M_ae/EN M_ale/EN M_i2/EN M_etu/EN M_ov/EN M_u/EN

M_vst/EN M_oc/EN M_ab/EN M_eI/EN M_aIp/EN M_ocI/EN M_aVs/EN M_oVs/EN M_1/EN M_r9/EN M_j/EN

M_w/EN M_r3/EN M_ETr/EN M_m/EN M_n/EN M_ng/ENM_tS/EN M_dZ/EN M_D/EN M_b/EN M_d/EN

M_rfd/EN M_g/EN M_ph/EN M_th/EN M_kh/EN M_z/EN M_Z/EN M_v/EN M_f/EN M_T/EN M_s/EN M_S/EN M_h/EN SIL

M_ph/EN M_b/EN M_f/EN M_v/EN M_T/EN M_D/EN M_th/EN M_d/EN M_s/EN M_z/EN M_S/EN M_Z/EN M_tS/EN M_dZ/EN
M_kh/EN M_g/EN M_h/EN M_m/EN M_n/EN M_ng/EN M_r9/EN M_j/EN M_w/EN M_1/EN M_r3/EN M_rfd/EN M_ETr/EN
M_ph/EN M_b/EN M_f/EN M_v/EN M_T/EN M_D/EN M_th/EN M_d/EN M_s/EN M_z/EN M_S/EN M_Z/EN M_tS/EN

M_ph/EN M_b/EN M_f/EN M_v/EN M_T/EN M_D/EN M_th/EN M_d/EN M_s/EN M_z/EN M_S/EN M_Z/EN M_tS/EN

M_m/EN M_n/EN M_ng/EN M_r9/EN M_j/EN M_w/EN M_1/EN M_r3/EN M_ETr/EN M_rfd/EN
M_aIp/EN M_ocI/EN M_eI/EN M_il/EN M_aVs/EN M_oVs/EN M_ae/EN M_ip/EN M_oc/EN M_ale/EN

M_aIp/EN M_ocI/EN M_eI/EN M_il/EN M_aVs/EN M_oVs/EN M_ae/EN M_ip/EN M_oc/EN M_ale/EN

M_il/EN M_ip/EN M_ae/EN M_ale/EN M_ab/EN M_ov/EN M_oc/EN M_vst/EN M_u/EN M_i2/EN M_etu/EN

M_b/EN M_d/EN M_g/EN M_dZ/EN M_v/EN M_D/EN M_z/EN M_Z/EN M_m/EN M_n/EN M_ng/EN M_w/EN M_r9/EN
M_j/EN M_1/EN M_r3/EN M_aIp/EN M_ocI/EN M_eI/EN M_il/EN M_aVs/EN M_oVs/EN M_ae/EN M_ip/EN M_oc/EN
M_ale/EN M_ab/EN M_ov/EN M_u/EN M_vst/EN M_rfd/EN M_ETr/EN M_i2/EN M_etu/EN M_b/EN M_v/EN M_D/EN
M_d/EN M_z/EN M_Z/EN M_dZ/EN M_g/EN M_m/EN M_n/EN M_ng/EN M_j/EN M_w/EN M_1/EN M_ETr/EN

M_b/EN M_d/EN M_g/EN M_dZ/EN M_v/EN M_D/EN M_z/EN M_Z/EN M_m/EN M_n/EN M_ng/EN M_w/EN M_r9/EN M_j/EN
M_1/EN M_r3/EN M_aIp/EN M_ocI/EN M_eI/EN M_il/EN M_aVs/EN M_oVs/EN M_ae/EN M_ip/EN M_oc/EN M_ale/EN

M_f/EN M_T/EN M_s/EN M_S/EN M_v/EN M_D/EN M_z/EN M_Z/EN M_w/EN M_r9/EN M_j/EN M_1/EN M_r3/EN

M_ph/EN M_th/EN M_b/EN M_d/EN M_f/EN M_T/EN M_s/EN M_S/EN M_v/EN M_D/EN M_z/EN M_Z/EN M_m/EN

M_th/EN M_d/EN M_tS/EN M_dZ/EN M_T/EN M_s/EN M_S/EN M_D/EN M_z/EN M_Z/EN M_n/EN M_1/EN M_r9/EN M_rfd/EN

M_th/EN M_d/EN M_n/EN M_s/EN M_z/EN M_1/EN M_S/EN M_Z/EN M_tS/EN M_dZ/EN M_rfd/EN

Date : Sat Oct 28 13:48:39 1995
HONES
NOISES M_+QK/EN M_+hGH/EN
SILENCES SIL
CONSONANT
CONSONANTAL
M_dZ/EN M_kh/EN M_g/EN M_h/EN M_m/EN M_n/EN M_ng/EN M_rfd/EN
OBSTRUENT
M_dZ/EN M_kh/EN M_g/EN
SONORANT
SYLLABIC
M_ab/EN M_ov/EN M_u/EN M_vst/EN M_i2/EN M_etu/EN M_r3/EN M_ETr/EN
VOWEL
M_ab/EN M_ov/EN M_u/EN M_vst/EN M_i2/EN M_etu/EN
DIPHTHONG M_aIp/EN M_ocI/EN M_eI/EN M_aVs/EN M_oVs/EN
CARDVOWEL
STIMMHAFT
VOICED
M_ab/EN M_ov/EN M_u/EN M_vst/EN M_rfd/EN M_ETr/EN M_i2/EN M_etu/EN
UNVOICED M_ph/EN M_f/EN M_T/EN M_th/EN M_s/EN M_S/EN M_tS/EN M_kh/EN
CONTINUANT
DEL-REL M_tS/EN M_dZ/EN
LATERAL M_1/EN
ANTERIOR
M_n/EN M_w/EN M_j/EN M_1/EN M_rfd/EN
CORONAL
APICAL M_th/EN M_d/EN M_n/EN M_rfd/EN
HIGH-CONS M_kh/EN M_g/EN M_ng/EN M_w/EN M_j/EN
BACK-CONS M_kh/EN M_g/EN M_ng/EN M_w/EN
LABIALIZED M_r9/EN M_w/EN M_r3/EN M_ETr/EN
STRIDENT M_tS/EN M_dZ/EN M_f/EN M_s/EN M_S/EN M_v/EN M_z/EN M_Z/EN
SIBILANT M_s/EN M_S/EN M_z/EN M_Z/EN M_tS/EN M_dZ/EN
BILABIAL M_ph/EN M_b/EN M_m/EN M_w/EN
LABIODENTAL M_f/EN M_v/EN
LABIAL M_ph/EN M_b/EN M_m/EN M_w/EN M_f/EN M_v/EN
INTERDENTAL M_T/EN M_D/EN
ALVEOLAR-RIDGE M_th/EN M_d/EN M_n/EN M_s/EN M_z/EN M_1/EN M_rfd/EN
ALVEOPALATAL M_S/EN M_Z/EN M_tS/EN M_dZ/EN
ALVEOLAR
RETROFLEX M_r9/EN M_r3/EN M_ETr/EN
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PALATAL M_j/EN

VELAR M_kh/EN M_g/EN M_ng/EN M_w/EN

GLOTTAL M_h/EN

ASPIRATED M_h/EN

STOP M_ph/EN M_b/EN M_th/EN M_d/EN M_kh/EN M_g/EN M_m/EN M_n/EN M_ng/EN
PLOSIVE M_ph/EN M_b/EN M_th/EN M_d/EN M_kh/EN M_g/EN
FLAP M_rfd/EN

NASAL M_m/EN M_n/EN M_ng/EN

FRICATIVE M_f/EN M_v/EN M_T/EN M_D/EN M_s/EN M_z/EN M_S/EN M_Z/EN M_h/EN
AFFRICATE M_tS/EN M_dZ/EN

APPROXIMANT M_r9/EN M_1/EN M_j/EN M_w/EN

LAB-PL M_ph/EN M_b/EN

ALV-PL M_th/EN M_d/EN

VEL-PL M_kh/EN M_g/EN

VLS-PL M_ph/EN M_th/EN M_kh/EN

VCD-PL M_b/EN M_d/EN M_g/EN

LAB-FR M_f/EN M_v/EN

DNT-FR M_T/EN M_D/EN

ALV-FR M_S/EN M_Z/EN

VLS-FR M_f/EN M_T/EN M_S/EN

VCD-FR M_v/EN M_D/EN M_Z/EN

ROUND M_oc/EN M_oVs/EN M_vst/EN M_u/EN M_ocI/EN M_aVs/EN M_oVs/EN
HIGH-VOW M_il/EN M_ip/EN M_vst/EN M_u/EN M_i2/EN
MID-VOW M_ae/EN M_ov/EN M_etu/EN

LOW-VOwW M_ab/EN M_ale/EN M_oc/EN

FRONT-VOW M_il/EN M_ip/EN M_ae/EN M_ale/EN
CENTRAL-VOW M_ov/EN M_etu/EN M_i2/EN

BACK-VOW M_ab/EN M_oc/EN M_vst/EN M_u/EN
TENSE-VOW M_il/EN M_u/EN M_ale/EN

LAX-vVOwW M_ip/EN M_ab/EN M_ae/EN M_ov/EN M_vst/EN
ROUND-VOW M_oc/EN M_vst/EN M_u/EN

REDUCED-VOW M_i2/EN M_etu/EN

REDUCED-CON M_ETr/EN

REDUCED M_i2/EN M_etu/EN M_ETr/EN

LH-DIP M_aIp/EN M_aVs/EN

MH-DIP M_ocI/EN M_oVs/EN M_eI/EN

BF-DIP M_aIp/EN M_ocI/EN M_aVs/EN M_oVs/EN
Y-DIP M_aIp/EN M_ocI/EN M_eI/EN

W-DIP M_aVs/EN M_oVs/EN

ROUND-DIP M_ocI/EN M_aVs/EN M_oVs/EN

LIQUID-GLIDE M_1/EN M_r9/EN M_w/EN M_j/EN

W-GLIDE M_u/EN M_aVs/EN M_oVs/EN M_w/EN

LIQUID M_1/EN M_r9/EN

LW M_1/EN M_w/EN

Y-GLIDE M_il/EN M_aIp/EN M_eI/EN M_ocI/EN M_j/EN
LQGL-BACK M_1/EN M_r9/EN M_w/EN

B.2 English Spontaneous Scheduling Task System

Training: mixture of BN’96 and Verbmobil I4+II (ESST) data

BN’96 training set: 66h, 6467 manually labeled speaker clusters

ESST training set: 32h, 2208 speakers consisting of Verbmobil CDs
6, 8, 9, 10, 13, 23, 28, 31, 32, 39, 42, 43, 47, 50, 51,
52, 55, 56 unless dialog marked as test data

Total: 98h in 16kHz/ 16bit quality, varying acoustic conditions, Verb-
mobil corpus is close-talking, spontaneous speech in tourism and
scheduling domain

Test: test data is taken from Verbmobil II corpus only.

Development test data ds2: AHS_e056achl, AHS e057achl, BJC_el25achi,
BJC_el126achl, BJC_el27achl, BJC_el128achl, CLW_eO44achi,
CLW_eO45achl, DRC_el2bach2, DRC_el26ach2, DRC_el27ach2,
DRC_e128ach2, JLF_el100achl, JLF_elOlachl, JLF_el02achil,
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JLF_ellb5ach2, MBB_e0O44ach2, MBB_e045ach2, SNC_e094achi,
SNC_e095achl, SNC_e096achl, SNC_e097achl, SNC_el100ach2,
SNC_el10lach2, SNC_el02ach2, SNC_ellb5achl, VNC_e094ach2,
VNC_e095ach2, VNC_e096ach2, VNC_e097ach2, WJH_e056ach?2,
WJH_e057ach2 (32 dialogs, 9 speakers)

Evaluation data xv2: BAT_el16achl, BAT_ell17achl, BAT_el18achi,
BAT el19achl, BAT_el123ach2, BAT_el24ach2, BMJ_el20achil,
BMJ_el2lachl, BMJ el22achl, DNC_e029ach2, DNC_e030ach2,
DNC_e031ach2, DNC_e032ach2, JDH_ell6ach2, JDH_ell7ach2,
JDH_e118ach2, JDH_el19ach2, KRA_el23achl, KRA_el24achl,
RGM_e029achl, RGM_e030achl, RGM_e0O31achl, RGM_e032achi,
TAJ e120ach2, TAJ el2lach2, TAJ el122ach?2 (26 dialogs, 7 speak-
ers

)

Pre-processing: 10ms frame shift, ML-VTLN, per-dialog (-cluster) CMS/
CVN, 40-dimensional feature space after LDA computed on 43 frames
context window, global STC matrix

Acoustic models: 4000 fully continuous models trained with 6 iterations
of maximum likelihood label training, 32 Gaussians per model, diago-
nal covariances, global STC matrix

Dictionary and LM:

Training: 40k words, 49k pronunciation variants (BN’96 and ESST
merged )

Testing: 7100 words, 9400 pronunciation variants

Language model: 7k unigrams, 39k bigrams, 119k trigrams, PPT=43,
OOV rate=1% trained on ESST training data

Phone Set:

; Name : ps
; Type : PhonesSet
;  Number of Items : 2
; Date H
;  Remarks: DX->T, add XL/XM/XN
removed DX from SONORANT & VOICED, added X-LMN class

PHONES PAD IY IH EH AE IX AX AH UW UH AO AA EY AY OY AWOW LR Y W ER AXR M N
NGCHJHDHB D G P TKZZHV F TH S SH HH XL XM XN SIL GARBAGE
+FILLER+ +BREATH+

HUMANSND IY TH EH AE IX AX AH UW UH AO AA EY AY OY AW OW L R Y W ER AXR M N
NGCHJHDHB D G P TKZZHV F THS SH HH XL XM XN

VOLATILE ADO EY AY OY AWOWL R Y WER AXRMNNGCH JHDHBDGPTKZZHVF
TH S SH HH XL XM XN

NOISES GARBAGE +BREATH+ +FILLER+

FILLERS +FILLER+

BREATH +BREATH+

SILENCES SIL

CONSONANT PBFVTHDHTD S ZSHZHCH JE KGHHMNNGRY WL ER AXR XL XM XN

CONSONANTAL PBFVTHDHTD S Z SH ZH CH JH K G HH M N NG XL XM XN

OBSTRUENT PBFVTHDHTD S Z SH ZH CH JH K G

SONORANT M N NG R Y WL ER AXR XL XM XN
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SYLLABIC AY OY EY IY AW OW EH IH A0 AE AA AH UW UH IX AX ER AXR XL XM XN

VOWEL AY OY EY IY AW OW EH IH A0 AE AA AH UW UH IX AX

DIPHTHONG AY 0Y EY AW OW

CARDVOWEL IY IH EH AE AA AH A0 UH UW IX AX

VOICED BDGJHVDHZZHMNNGWRYLERAY OY EY IY AW OW EH IH A0 AE AA AH
UW UH AXR IX AX XL XM XN

UNVOICED PFTHTS SH CH K

CONTINUANT FTHSSHVDH ZZHWRYLERXL

LATERAL L XL

ANTERIOR PTBDFTHSSHVDHZZHMNWYL XM XN

CORONAL TDCHJHTHS SHDH Z ZH N L R XL XN

APICAL TDN

HIGH-CONS KGNGWY

BACK-CONS K GDNGW

LABIALIZED R W ER AXR

STRIDENT CHJHF SSHV ZZH

SIBILANT S SH Z ZH CH JH

BILABIAL PBMW

LABIAL PBMWFV

ALVEOLAR-RIDGE T DN S Z L

ALVEOPALATAL SH ZH CH JH

ALVEOLAR TDNSZL SHZH CH JH

RETROFLEX R ER AXR

PALATAL Y

GLOTTAL HH

STOP PBTDKGMN NG

PLOSIVE PBTDKG

NASAL M N NG XM XN

FRICATIVE FVTHDH S Z SH ZH HH

AFFRICATE CH JH

APPROXIMANT RLYW

LAB-PL P B

ALV-PL T D

VEL-PL K G

VLS-PL PTK

VCD-PL BDG

LAB-FR FV

DNT-FR TH DH

ALV-FR SH ZH

VLS-FR F TH SH

VCD-FR V DH ZH

ROUND AQ OW UH UW 0Y AW QW

HIGH-VOW IY IH UH UW IX

MID-VOW EH AH AX

LOwW-vaow AA AE AO

FRONT-VOW IY IH EH AE

CENTRAL-VOW AH AX IX

BACK-VOW AA AQ UH UW

TENSE-VOW IY UW AE

LAX-vVOW IH AA EH AH UH

ROUND-VOW A0 UH UW

REDUCED-VOW IX AX

REDUCED-CON AXR

REDUCED IX AX AXR

LH-DIP AY AW

MH-DIP 0Y OW EY

BF-DIP AY OY AW OW

Y-DIP AY OY EY

W-DIP AW OW

ROUND-DIP 0Y AW OW

W-GLIDE UW AW OW W

LIQUID LR

LW Lw

Y-GLIDE IY AYEY OY Y

LQGL-BACK LRW

X-LMN XL XM XN

B.3 ReadBN System

Training, system setup, and pre-processing identical to ESST system de-
scribed in Appendix B.2. Test data consists of 198 sentences re-read under
FO0-like conditions by 2 speakers:

Rob Malkin this speaker also appears as “RGM” in the ESST database
(part of xv2 evaluation data)
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Michael Bett

Total duration is 17min.

B.4 Meeting System

Training: mixture of BN’96, BN’97 and RT-04S “Meeting” corpus

BN data: 137h after segmentation, 3912 automatically determined
speaker clusters from BN’96 and BN’97 corpora

RT-04S “Meeting” data: close-talking data from NIST training set
recorded in different meeting rooms using different setups

Site  Duration Meetings Speakers

CMU 11h 21 93
ICSI 72h 75 455
NIST 13h 15 7

Test: official NIST RT-04S “Meeting” development and evaluation test data

Dev data: 2090 segments marked in STM reference file, 43 speakers
and 8 meetings (2 each from CMU, ICSI, LDC, NIST), total 89
minutes

Eval data: 2502 segments resulting from STM reference file, 40 speak-
ers and 8 meetings (2 each from CMU, ICSI, LDC, NIST), total
100 minutes

Pre-processing: 10ms frame shift in training, 8ms frame shift during test;
ML-VTLN, per-utterance CMS/ CVN, 42-dimensional feature space
after LDA on %3 frames context window, global STC matrix

Acoustic models: 24000 semi-continuous HMM states tied over 6000 mod-
els, up to 64 Gaussians per codebook, 300k Gaussians in total trained
with merge & split training and 2 iterations of Viterbi training

Dictionary and LM:

Training: 47k words, 55k pronunciation variants
Testing: 55k vocabulary
Language model: 47k vocabulary, PPT=112, OOV rate=1%, 3-fold

interpolation consisting of
3-gram LM trained on SWB-+Meeting data (252k 3-grams)
4-gram LM trained on BN (3.3M 4-grams)
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5-gram LM trained on SWB+Meeting (800 automatically clus-

Phone Set:

tered classes, 200k 5-grams)

;  Name : ps

; Type : PhonesSet

;  Number of Items : 2

; Date H

; Remarks: DX->T, add XL/XM/XN

H removed DX from SONORANT & VOICED, added X-LMN class

PHONES PAD IY IH EH AE IX AX AH UW UH A0 AA EY AY OY AWOWL R Y W ER A
XRMN NGCHJHDHB D G P TKZZHV F TH S SH HH XL XM XN SIL GARBAGE
+FILLER+ +BREATH+

HUMANSND IY IH EH AE IX AX AH UW UH AO AA EY AY OY AW OW L R Y W ER AXR M
N NGCHJHDHB D G P TKZZHV F THS SH HH XL XM XN

VOLATILE AO EY AY OY AWOWLR YWER AXRMNNGCH JHDHBDGPTKZ?Z
HV F TH S SH HH XL XM XN

NOISES GARBAGE +BREATH+ +FILLER+

FILLERS +FILLER+

BREATH +BREATH+

SILENCES SIL

CONSONANT PBFVTHDHTD S ZSHZHCH JI K GHHMNNGRYWL ER AXR
XL XM XN

CONSONANTAL PBFVTHDHTD S Z SH ZH CH JH K G HH M N NG XL XM XN

OBSTRUENT PBFVTHDHTD S Z SH ZH CH JH K G

SONORANT M N NG R Y WL ER AXR XL XM XN

SYLLABIC AY 0OY EY IY AW OW EH IH AO AE AA A] UH IX AX ER AXR XL XM XN

VOWEL AY 0Y EY IY AW OW EH IH A0 AE AA AH UW UH IX AX

DIPHTHONG AY 0Y EY AW OW

CARDVOWEL IY IH EH AE AA AH A0 UH UW IX AX

VOICED BDGJHVDHZZHMNNGWRYL ER AY OY EY IY AW OW EH IH AO
AE AA AH UW UH AXR IX AX XL XM XN

UNVOICED PFTHTS SH CH K

CONTINUANT FTHSSHVDHZZHWRYLERXL

DEL-REL CH JH

LATERAL L XL

ANTERIOR PTBDFTHSSHVDHZ ZHMNWYL XM XN

CORONAL TDCHJHTH S SHDH Z ZH N L R XL XN

APICAL TDN

HIGH-CONS KGNGWY

BACK-CONS KGNGW

LABIALIZED R W ER AXR

STRIDENT CHJHFSSHVZZH

SIBILANT S SH Z ZH CH JH

BILABIAL PBMW

LABIODENTAL FV

LABIAL PBMWFV

INTERDENTAL TH DH

ALVEOLAR-RIDGE T DN S Z L

ALVEOPALATAL SH ZH CH JH

ALVEOLAR TDNSZLSHZH CH JH

RETROFLEX R ER AXR

PALATAL Y

VELAR K GNGW

GLOTTAL HH

ASPIRATED HH

STOP PBTDKGMNNG

PLOSIVE PBTDKG

NASAL M N NG XM XN

FRICATIVE FVTHDH S Z SH ZH HH

AFFRICATE CH JH

APPROXIMANT RLYW

LAB-PL P B

ALV-PL TD

VEL-PL K G

VLS-PL PTK

VCD-PL BDG

LAB-FR FV

DNT-FR TH DH

ALV-FR SH ZH

VLS-FR F TH SH

VCD-FR V DH ZH

ROUND AO OW UH UW 0Y AW OW

HIGH-VOW IY IH UH UW IX

MID-VOW EH AH AX

LOW-VOW AA AE AD

FRONT-VOW IY IH EH AE

CENTRAL-VOW AH AX IX
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BACK-VOW
TENSE-VOW
LAX-VOW
ROUND-VOW
REDUCED-VOW
REDUCED-CON
REDUCED
LH-DIP
MH-DIP
BF-DIP
Y-DIP

W-DIP
ROUND-DIP
LIQUID-GLIDE
W-GLIDE
LIQUID

LW

Y-GLIDE
LQGL-BACK
X-LMN

EY
AW OW

ow

ow w

EY OY Y

APPENDIX B. SYSTEM DESCRIPTIONS



Appendix C

Result Tables

C.1 Feature Classification Rates
C.1.1 ReadBN and ESST Classification Rates

Feature/ Task ReadBN ESST
Test on Frames Middle — All All
UNVOICED 91.0% 84.5% 80.8%

ROUND 89.6% 88.5% 87.9%
STOP 87.3% 78.9% T74.6%
VOWEL 84.6% T7.2% 76.2%
LATERAL 95.0% 94.3% 95.0%
NASAL 94.2% 91.8% 90.1%
FRICATIVE 92.1% 86.2% 84.0%
LABIAL 90.2% 90.2% 85.7%
CORONAL 78.3% 72.0% 70.5%
PALATAL 96.7% 96.6% 96.2%
GLOTTAL 98.8% 97.9% 97.3%
HIGH-VOW 87.6% 85.7% 86.3%
MID-VOW 83.7% 80.4% 85.6%
LOW-VOW 90.3% 89.9% 91.4%

FRONT-VOW  84.8% 81.2% 84.8%
BACK-VOW 91.4% 90.8% 91.8%
RETROFLEX  95.9% 94.1% 94.7%
OBSTRUENT  90.6% 81.3% 79.6%
ALV-FR 99.1% 98.9% 99.3%
OVERALL 90.8% 87.8% 87.3%

Table C.1: Feature classification accuracy for selected features on the
ReadBN and ESST tasks (English language).
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C.1.2 GlobalPhone Classification Rates

Feature CH EN GE JA SP

LABIODENTAL 98.46% 96.77% 93.09% 96.36% 98.02%
VOICED 97.73% 83.16% 85.66% 89.51% 84.79%
APPROXIMANT 97.53% 91.80% 95.12% 92.46% 93.02%
TONALS5 97.02% — — — —

LATERAL-APPROXIMANT 96.72% 92.39% 92.90% 92.42% 88.44%
BACK 96.39% 90.12% 95.28% 72.63% 90.87%
FRICATIVE 96.31% 88.83% 90.95% 93.07% 85.30%
PLOSIVE 96.27% 88.04% 90.75% 89.63% 84.89%
OPEN 95.64% 95.45% 92.96% 90.53% 89.88%
ASPIRATED 95.46% 90.79% — — —

BILABIAL 94.95% 91.05% 86.65% 88.63% 90.90%
CONSONANT 94.87% 85.03% 87.23% 85.23% T71.20%
VOWEL 94.81% 84.65% 87.51% 84.83% 70.42%
NASAL 94.78% 91.53% 90.27% 87.37% 79.65%
ROUND 94.70% 93.48% 93.53% 87.85% 90.19%
AFFRICATE 94.58% 88.47% 92.49% 91.19% 86.94%
UNVOICED 94.51% 80.66% 83.26% 85.53% 76.32%
PALATAL 94.19% 87.48% 91.35% 86.79% &7.77%
CLOSE 94.10% 92.88% 89.16% 84.40% 91.65%
OPEN-MID 93.31% 84.94% 88.29% — —

RETROFLEX 91.57% 83.69% — — —

VELAR 91.29% 88.48% 82.84% 82.79% 82.70%
TONAL3 90.39% — — — —

FRONT 89.71% 78.98% 80.98% 79.67% 70.23%
UNROUND 89.04% 78.52% 79.06% 76.29% 69.26%
TONAL2 88.30% — — — —

ALVEOLAR 87.62% 70.96% 71.83% 78.35% 65.23%
TONAL1 87.54% — — — —

TONAL4 84.37% — — — —

Table C.2: Chinese AF Detectors.
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Feature EN CH GE JA SP

POSTALVEOLAR 99.25% — 98.67% 96.38% 94.92%
PALATAL 99.00% 89.90% 96.13% 97.16% 96.85%
GLOTTAL 98.84% — 97.22% 96.64% —

FLAP 98.84% — — — 94.50%
AFFRICATE 98.63% 91.01% 96.74% 96.21% 99.44%
LABIODENTAL 97.99% 98.98% 94.26% 98.08% 97.95%
LATERAL-APPROXIMANT 97.39% 91.74% 91.06% 90.74% 88.90%
DENTAL 97.04% — — — 91.65%
NASAL 96.66% 90.82% 94.49% 93.19% 91.76%
ROUND 95.55% 90.72% 91.09% 85.59% 88.70%
OPEN 95.54% 92.87% 94.94% 89.69% 88.07%
VELAR 95.48% 87.86% 91.27% 91.59% 92.18%
RETROFLEX 95.28% 90.14% — — —

FRICATIVE 94.71% 91.88% 89.12% 91.93% 90.59%
BILABIAL 93.86% 94.81% 89.41% 91.63% 92.08%
ASPIRATED 93.81% 90.99% — — —

APPROXIMANT 93.79% 92.22% 92.08% 93.88% 93.69%
CLOSE 93.40% 87.57% 88.07% 85.02% 88.48%
PLOSIVE 92.99% 89.00% 89.74% 89.29% 84.09%
BACK 91.38% 85.65% 85.36% 76.49% 86.64%
VOWEL 91.08% 86.24% 87.34% 86.76% 78.81%
CONSONANT 91.03% 85.64% 87.44% 85.47% 78.34%
OPEN-MID 90.92% 87.32% 87.59% — —

UNVOICED 90.46% 83.69% 83.88% 86.35% 84.72%
CLOSE-MID 89.87% — 83.14% 76.59% 80.45%
FRONT 89.65% 78.35% 82.99% 85.19% T77.67%
VOICED 89.31% 81.36% 83.52% 86.23% 84.54%
CENTRAL 88.81% — 86.50% — —

ALVEOLAR 87.43% 70.59% 72.14% T1.78% T73.97%
UNROUND 86.76% 76.29% 84.10% 79.84% 78.49%

Table C.3: English AF Detectors.
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Feature GE CH EN JA SP

POSTALVEOLAR 99.46% — 98.20% 96.60% 94.29%
APPROXIMANT 98.86% 96.87% 93.02% 95.60% 95.97%
AFFRICATE 98.31% 90.33% 97.45% 95.59% 98.80%
PALATAL 98.20% 90.98% 97.83% 94.52% 95.13%
GLOTTAL 97.90% — 96.06% 94.72% —

OPEN-MID 97.11% 89.50% 92.17% — —

OPEN 95.36% 88.64% 93.77% 88.40% 85.68%
BACK 95.00% 93.99% 89.69% 75.11% 90.35%
LABIODENTAL 94.39% 97.92% 95.13% 94.95% 96.23%
NASAL 94.11% 89.54% 91.14% 89.90% 86.22%
LATERAL-APPROXIMANT 93.97% 94.71% 95.60% 90.23% 89.01%
FRICATIVE 93.94% 90.75% 82.82% 92.09% 85.99%
PLOSIVE 93.81% 92.40% 87.67% 87.69% 78.22%
ROUND 93.79% 92.26% 94.29% 88.25% 90.08%
TRILL 93.46% — — — 85.13%
VOICED 92.36% 83.02% 75.46% 83.75% T75.73%
UNVOICED 91.77% 84.79% 73.99% 82.81% 74.79%
VOWEL 91.77% 86.98% 75.09% 77.23% 63.79%%
CONSONANT 91.06% &5.75% 73.07% 77.86% 65.53%
VELAR 90.66% 87.05% 91.74% 87.20% 84.90%
FRONT 90.41% 77.31% 81.27% 83.85% 70.62%
CENTRAL 89.88% — 91.63% — —

BILABIAL 89.27% 95.43% 93.15% 92.52% 91.32%
UNROUND 89.15% 77.20% 77.70% 76.73% 70.00%
CLOSE 89.01% 87.29% 88.78% 81.21% 83.10%
CLOSE-MID 86.74% — 90.98% 78.46% T76.15%
ALVEOLAR 79.54% 75.84% 67.63% 69.89% 57.36%

Table C.4: German AF Detectors. Note that the German detectors for
CENTRAL perform better on the English data than the English detectors.
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Feature JA CH EN GE SP

LABIODENTAL 99.23% 98.70% 95.88% 94.50% 98.23%
PALATAL 97.96% 89.47% 97.23% 94.09% 95.03%
POSTALVEOLAR 97.711% — 95.00% 96.11% 91.15%
GLOTTAL 97.50% — 96.15% 91.85% —

OPEN 97.23% 87.19% 86.99% 91.12% 91.66%
APPROXIMANT 96.99% 94.68% 91.69% 94.43% 94.89%
AFFRICATE 96.80% 93.88% 94.50% 96.60% 97.51%
ROUND 96.61% 88.25% 87.74% 90.00% 91.32%
LATERAL-APPROXIMANT 96.59% 96.02% 92.83% 92.26% 91.40%
UVULAR 96.24% — — — —

FRICATIVE 95.40% 91.96% 89.00% 90.41% 87.17%
FRONT 95.25% 77.47% 85.31% 79.78% 76.62%
BILABIAL 94.94% 96.61% 92.70% 91.80% 93.07%
NASAL 94.84% 90.63% 93.35% 92.74% 89.70%
PLOSIVE 94.72% 92.63% 87.44% 87.65% 90.82%
VOICED 94.68% 84.94% 83.86% 83.96% 87.82%
VELAR 94.40% 85.78% 91.35% 88.71% 90.92%
UNVOICED 94.00% 85.81% 83.89% 84.35% 87.58%
CLOSE-MID 93.78% — 83.61% 82.46% 83.44%
CONSONANT 93.73% 85.48% 81.48% 80.37% 81.68%
VOWEL 93.53% 83.95% 81.81% 79.50% 80.53%
BACK 93.37% 68.05% 74.97% 71.58% 76.77%
CLOSE 92.56% 82.74% 88.92% 82.17% 82.53%
UNROUND 92.48% 73.12% 77.01% 77.02% 77.10%
ALVEOLAR 89.92% 81.86% 70.95% 69.08% 72.97%

Table C.5: Japanese AF Detectors.
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Feature SP CH EN GE JA
AFFRICATE 99.33% 91.45% 95.56% 96.76% 95.05%
LABIODENTAL 98.84% 98.78% 96.35% 94.14% 97.67%
TRILL 98.12% — — 91.43% —
APPROXIMANT 97.05% 89.84% 90.41% 92.69% 95.26%
DENTAL 96.49% — 96.68% — —
PALATAL 96.43% 84.35% 94.56% 91.63% 94.04%
VOICED 95.84% 87.00% 83.76% 78.70% 90.18%
UNVOICED 94.92% 86.04% 83.28% T7.77% 88.08%
CLOSE 94.39% 88.64% 91.52% 87.79% 81.48%
NASAL 94.07% 87.59% 91.04% 87.75% 91.45%
FRICATIVE 93.91% 88.71% 87.07% 83.03% 89.26%
PLOSIVE 93.43% 86.39% 84.43% T77.19% 83.12%
BACK 93.31% 88.31% 85.43% 86.87% 80.85%
ROUND 93.31% 87.13% 88.28% 85.99% 92.89%
LATERAL-APPROXIMANT 93.26% 89.81% 89.94% 88.63% 92.49%
FLAP 93.07% — 87.90% — —
POSTALVEOLAR 93.07% — 86.59% 86.19% 90.79%
OPEN 92.87% 86.90% 83.30% 89.93% 95.42%
BILABIAL 92.81% 90.89% 90.06% 84.81% 84.64%
VELAR 92.00% 81.29% 85.86% 81.00% 82.86%
CONSONANT 90.76% 73.45% 76.43% 70.06% 82.68%
VOWEL 90.47% 70.13% 77.53% 67.37% 82.75%
UNROUND 90.42% 72.13% 79.05% 74.11% 84.17%
FRONT 90.42% 71.88% 75.88% 77.97% 80.94%
CLOSE-MID 87.98% — 82.91% 78.22% 86.65%
ALVEOLAR 83.34% 79.18% 75.33% 69.41% 75.71%

Table C.6: Spanish AF Detectors.
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Test Set
Languages CH DE EN JA SP Train
CH.DE_EN_JA 91,82% 90,05% 91,04% 91,45% 87,06% 92,66%
CH.DE_EN.SP 91,56% 89,87% 90,68% 88,02% 88,48% 91,99%
CHDE_JASP 91,07% 89,30% 88,27% 90,99% 88,16% 91,93%
CH.EN_JASP 91,28% 88,04% 90,81% 91,65% 89,05% 92,58%
DE_EN_JASP 89,51% 90,06% 91,78% 92,25% 89,49% 92,37%

Table C.7: MM4 Detectors

Test Set
Languages CH DE EN JA SP Train

CH.DE_EN_JASP 90,36% 89,00% 90,22% 90,77% 88,29% 91,32%

Table C.8: MM5 Detectors
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C.2 DMC GlobalPhone Stream Weights

EN Feature Weight GE Feature Weight
AFFRICATE 0.02061 AFFRICATE 0.00811
APPROXIMANT 0.01613 ALVEOLAR 0.00003
BACK 0.02765 APPROXIMANT 0.00561
BILABIAL 0.03270 ASPIRATED 0.00011
CENTRAL 0.01757 BACK 0.00391
CLOSE 0.00058 BILABIAL 0.00020
CLOSE-MID 0.00879 CLOSE 0.00704
CONSONANT 0.00391 CLOSE-MID 0.00067
DENTAL 0.04785 CONSONANT 0.01118
FLAP 0.02847 DENTAL 0.00407
GLOTTAL 0.05009 FLAP 0.00304
LABIODENTAL 0.01890 FRICATIVE 0.00320
LATERAL-APPROXIMANT 0.01549 FRONT 0.00001
NASAL 0.00191 GLOTTAL 0.01057
OPEN 0.02349 LABIODENTAL 0.02340
OPEN-MID 0.02227 LATERAL-APPROXIMANT  0.00011
PALATAL 0.03478 NASAL 0.00015
PLOSIVE 0.03056 OPEN-MID 0.00445
POSTALVEOLAR 0.06919 PALATAL 0.00139
ROUND 0.02823 PLOSIVE 0.00086
UNVOICED 0.05961 POSTALVEOLAR 0.00233
VELAR 0.03079 RETROFLEX 0.00470
VOICED 0.02356 ROUND 0.01235
VOWEL 0.02314 VELAR 0.00539
MM4 Feature Weight MMb5 Feature Weight
AFFRICATE 0.05515 AFFRICATE 0.02780
ALVEOLAR 0.00145 ALVEOLAR 0.00062
APPROXIMANT 0.01678 APPROXIMANT 0.01645
BILABIAL 0.01435 BILABIAL 0.01719
CENTRAL 0.00004 CLOSE 0.00773
CLOSE 0.00812 CLOSE-MID 0.00496
CLOSE-MID 0.00700 DENTAL 0.00007
DENTAL 0.00318 FLAP 0.01933
FLAP 0.03879 FRONT 0.00811
FRONT 0.00737 GLOTTAL 0.03064
GLOTTAL 0.02548 LABIODENTAL 0.04350
LABIODENTAL 0.03969 LATERAL-APPROXIMANT 0.00726
LATERAL-APPROXIMANT 0.00715 OPEN 0.00031
OPEN-MID 0.01898 OPEN-MID 0.00925
PALATAL 0.03780 PALATAL 0.02197
PLOSIVE 0.01157 PLOSIVE 0.00574
POSTALVEOLAR 0.03209 POSTALVEOLAR 0.02024
RETROFLEX 0.00525 ROUND 0.02471
ROUND 0.02358 VELAR 0.01071
VELAR 0.00153

Table C.9: Feature weights as learned by DMC on English (EN) data.
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Feature Weight Feature Weight
AFFRICATE_CH 0.00764 AFFRICATE_SP 0.01316
ALVEOLAR_CH 0.00614 ALVEOLAR_SP 0.01398
APPROXIMANT_CH 0.00491 APPROXIMANT_SP 0.01101
ASPIRATED_CH 0.00655
BACK_CH 0.00927 BACK_SP 0.01465
BILABIAL_CH 0.00778 BILABIAL_SP 0.01249
CLOSE_CH 0.00794 CLOSE_SP 0.01073
CLOSE-MID_SP 0.01253
CONSONANT_CH 0.00537 CONSONANT_SP 0.01093
DENTAL_SP 0.01463
FLAP_SP 0.01329
FRICATIVE_CH 0.00625 FRICATIVE_SP 0.01267
FRONT_CH 0.00325 FRONT_SP 0.00788
LABIODENTAL_CH 0.00537 LABIODENTAL_SP 0.01273
LATERAL-APPROXIMANT_CH 0.00969 LATERAL-APPROXIMANT_SP 0.01523
NASAL_CH 0.00527 NASAL_SP 0.00649
OPEN_CH 0.01075 OPEN_SP 0.01343
OPEN-MID_CH 0.00655
PALATAL_CH 0.00577 PALATAL_SP 0.01258
PLOSIVE_CH 0.00451 PLOSIVE_SP 0.01150
POSTALVEOLAR_SP 0.01284
RETROFLEX_CH 0.00920
ROUND_CH 0.00560 ROUND_SP 0.01233
UNROUND_CH 0.00442 UNROUND_SP 0.00787
UNVOICED_CH 0.00666 UNVOICED_SP 0.01568
VELAR_CH 0.00751 VELAR_SP 0.01425
VOICED_CH 0.00224 VOICED_SP 0.00958
VOWEL_CH 0.00556 VOWEL_SP 0.01105

Table C.10: Feature selection and weighting as learned by DMC on English
when using the feature detectors from all languages.
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C.3 MMIE GlobalPhone Stream Weights

Feature Weight Feature Weight
AFFRICATE_CH 0.006076 AFFRICATE_SP 0.012825
ALVEOLAR_CH 0.005061 ALVEOLAR_SP 0.013173
APPROXIMANT_CH 0.006575 APPROXIMANT_SP 0.012937
ASPIRATED_CH 0.007076
BACK_CH 0.005404 BACK_SP 0.013021
BILABIAL_CH 0.006678 BILABIAL_SP 0.013696
CLOSE_CH 0.008719 CLOSE_SP 0.014257
CLOSE-MID_SP 0.012735
CONSONANT_CH 0.007173 CONSONANT_SP 0.012575
DENTAL_SP 0.013653
FLAP_SP 0.013350
FRICATIVE_CH 0.006383 FRICATIVE_SP 0.013784
FRONT.CH 0.004371 FRONT_SP 0.009640
LABIODENTAL_CH 0.005948 LABIODENTAL_SP 0.013738
LATERAL-APPROXIMANT_CH 0.006127 LATERAL-APPROXIMANT_SP 0.013434
NASAL_CH 0.006905 NASAL_SP 0.008883
OPEN_CH 0.009671 OPEN_SP 0.013744
OPEN-MID_CH 0.006135
PALATAL_CH 0.005710 PALATAL_SP 0.012878
PLOSIVE_CH 0.005780 PLOSIVE_SP 0.012823
POSTALVEOLAR_SP 0.012923
RETROFLEX_CH 0.006396
ROUND_CH 0.005016 ROUND_SP 0.012910
UNROUND_CH 0.005563 UNROUND_SP 0.008286
UNVOICED_CH 0.005670 UNVOICED_SP 0.014720
VELAR_CH 0.006298 VELAR_SP 0.013158
VOICED_CH 0.005004 VOICED_SP 0.010538
VOWEL_CH 0.007204 VOWEL_SP 0.012349

Table C.11: Feature weights as learned by MMIE on English when using
CH and SP feature detectors (all languages).
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C.4 MMIE ESST Stream Weights

Feature Weight  Feature Weight
VOWEL 0.016926 DNT-FR 0.006808
CONSONANT 0.016926 LQGL-BACK 0.006802
LOW-VOW 0.016866 ANTERIOR 0.006784
CARDVOWEL 0.016134 HIGH-CONS 0.006690
SYLLABIC 0.015692 BACK-CONS 0.006616
BACK-VOW 0.014194 REDUCED-CON 0.006576
ROUND-VOW 0.013140 SONORANT 0.006552
ROUND 0.011844 REDUCED 0.006524
CONSONANTAL 0.010746 VEL-PL 0.006450
BILABIAL 0.010330 ROUND-DIP 0.006436
LAX-VOW 0.010242 BF-DIP 0.006216
CONTINUANT 0.010060 TENSE-VOW 0.006128
LAB-PL 0.009762 APPROXIMANT 0.006006
STOP 0.009570 AFFRICATE 0.005970
VCD-PL 0.009354 ALV-PL 0.005796
Y-DIP 0.008552 GLOTTAL 0.005742
LABIAL 0.008416 RETROFLEX 0.005732
PALATAL 0.008348 ALV-FR 0.005580
DIPHTHONG 0.008288 HIGH-VOW 0.005562
NASAL 0.008232 STRIDENT 0.005484
MID-VOW 0.008020 ALVEOPALATAL 0.005406
FRICATIVE 0.007938 LIQUID 0.005220
Y-GLIDE 0.007872 APICAL 0.005214
CENTRAL-VOW  0.007760 LAB-FR 0.005194
MH-DIP 0.007694 LATERAL 0.005038
W-GLIDE 0.007428 LH-DIP 0.004840
Lw 0.007418 VLS-PL 0.004692
REDUCED-VOW  0.007412 VLS-FR 0.003932
OBSTRUENT 0.007340 CORONAL 0.002360
PLOSIVE 0.007226 ALVEOLAR-RIDGE 0.002260
W-DIP 0.007146 ALVEOLAR 0.002068
FRONT-VOW 0.007134 UNVOICED 0.002002
VCD-FR 0.006886 VOICED 0.002000
LABIALIZED 0.006832 SIBILANT 0.001212

Table C.12: Feature weights as learned by MMIE on the ESST data: most
important questions are for vowel qualities, least important are questions
for specific points of articulation and voicing.
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