
AA FFrr aammeewwoorr kk aanndd TToooollkkii tt ffoorr tthhee CCoonnssttrr uucctt iioonn
ooff MM uull tt iimmooddaall LL eeaarr nniinngg II nntteerr ffaacceess

Minh Tue Vo

April 29, 1998

CMU-CS-98-129

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Thesis Committee

Alex Waibel, Chair
Bonnie John
Tom Mitchell

Allen Gorin, AT&T Laboratories

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright © 1998 by Minh Tue Vo

This research was sponsored by the DARPA under Department of the Navy, Naval
Research Office under grant number N00014-93-1-0806, and Project GENOA under
grant number 97047-ISX/SOW-600066. The views and conclusions contained in this
document are those of the author and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of the DARPA or
the U.S. Government.

i

ABSTRACT

Multimodal human-computer interaction, in which the computer accepts input from
multiple channels or modalities, is more flexible, natural, and powerful than unimodal
interaction with input from a single modality. Many research studies ([Hauptmann89],
[Nakagawa94], [Nishimoto94], [Oviatt97b], [Chu97], to name a few) have reported that
the combination of human communication means such as speech, gestures, handwriting,
eye movement, etc. enjoys strong preference among users. Unfortunately, the develop-
ment of multimodal applications is difficult and still suffers from a lack of generality,
such that a lot of duplicated effort is wasted when implementing different applications
sharing some common aspects. The research presented in this dissertation aims to provide
a partial solution to the difficult problem of developing multimodal applications by
creating a modular, distributed, and customizable infrastructure to facilitate the construc-
tion of such applications.

This dissertation contributes in three main areas: theory of multimodal interaction,
software architecture and reusable application framework, and rapid application
prototyping by domain-specific instantiation of a common underlying architecture.

The foundation of the application framework and the rapid prototyping tools is a
model of multimodal interpretation based on semantic integration of information streams.
This model supports most of the conceivable human communication modalities in the
context of a broad class of applications, specifically those that support state manipulation
via parameterized actions. The multimodal semantic model is also the basis for a flexible,
domain-independent, incrementally trainable multimodal interpretation algorithm based
on a connectionist network.

The second major contribution is an application framework consisting of reusable
components and a modular, distributed system architecture. Multimodal application
developers can assemble the components in the framework into a new application,
accepting default options when appropriate and providing application-specific customi-
zations when needed.

The third major contribution is a design process backed by a workbench of tools to
permit the rapid prototyping of a multimodal application. This design process systemati-
cally constructs customizations needed to interpret multimodal inputs in a given domain,
allowing an application structure created in the proposed framework to be instantiated for
that domain.

The application framework and design process have been successfully applied to the
construction of three multimodal systems in three different domains.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my thesis committee,
especially my advisor, Dr. Alex Waibel. Without the help and support of Dr. Waibel,
together with Dr. Bonnie John, Dr. Tom Mitchell, and Dr. Allen Gorin, my dissertation
would never have taken form. Everyone on the committee took precious time out of their
incredibly busy schedules to discuss this thesis with me and to provide invaluable advice
and comments. Dr. Waibel has been advising me during all my years at CMU, and I’m
glad all the hard work he spent on me has finally born fruit. Not only is he my advisor, he
considers me a friend and a collaborator as well, for which I am doubly grateful.

I am indebted to all my colleagues who took the time to read my drafts and comment
on the dissertation, especially Jie Yang, Matthias Denecke, and Michael Bett. Jie and
Matthias also helped me practice my thesis defense. Special thanks to Wes Mingin who
proofread the thesis and provided technical writing expertise. Any errors that remain are
of course my own.

Numerous people were involved with many software packages that contributed
significantly to my work. I would like to thank Markus Baur, Michael Finke, Bernhard
Suhm, Monika Woszczyna, and the rest of the JANUS team for their help with JANUS;
Wayne Ward, Eric Thayer, and other people on the SPHINX team for their help with
SPHINX; Stefan Manke for creating the NPen++ handwriting recognizer; and Xing Jing
and Weiyi Yang for writing the speech recording plug-in.

There remain so many teachers and colleagues to whom I am grateful. I would like to
mention Dr. Bernd Bruegge who introduced me to object-oriented software engineering;
Cindy Wood who helped me collect Wizard-of-Oz data for my research; Gregory Cortis
Clark who agreed to be my “guinea pig” and created an innovative multimodal
application using my system; and Sharon Burks who always had an answer for
everything. Many thanks also to everyone who took part in my user observation sessions.

I would also like to thank my parents for believing in me and encouraging me to do
my best in all my endeavors. My father has a passion for life-long learning which has
rubbed off on me. My mother took wonderful care of me while I was living with my
parents, and even now, after I have been on my own for quite a while, she still reminds
me all the time to eat properly and take time off from work to relax.

I am also grateful to my future parents-in-law who embraced me into their family and
provided me with a second home during the years I spent in Pittsburgh.

I have saved the best for last. There are no words that can describe what my bride-to-
be, the light of my life, means to me. I underestimated the magnitude of the task that I
undertook when I enrolled in the doctoral program at CMU, and without Thuy by my
side, encouraging me all the way, I would never have made it. Now that the ordeal is
over, I can devote all my time to our happiness together. This is for you, my darling!

iii

TABLE OF CONTENTS

CCHHAAPPTTEERR 11 INTRODUCTION .. 1

1.1 Motivating Example.. 2

1.2 Target Class of Applications... 3

1.2.1 Types of Inputs... 3

1.2.2 Types of Tasks ... 4

1.2.3 Supported Applications.. 4

1.3 Outline...4

1.4 What Is Not Covered... 7

1.5 Notes.. 7

CCHHAAPPTTEERR 22 BACKGROUND AND RELATED WORK ... 8

2.1 Automatic Speech Recognition and Understanding.. 8

2.1.1 Types of Speech Recognizers .. 8

2.1.2 Acoustic Modeling ... 10

2.1.3 Language Modeling.. 10

2.1.4 Measuring Recognition Accuracy.. 11

2.1.5 Speech Understanding.. 12

2.1.6 Speech Recognition APIs and Toolkits.. 14

2.2 Gesture and Handwriting Recognition.. 14

2.2.1 Handwriting Recognition ... 15

2.2.2 Pen-Based Gesture Recognition... 16

2.2.3 Gesture-Enabled User Interface Toolkits... 18

2.3 Other Input Modalities .. 19

2.4 Multimodal Human-Computer Interaction.. 20

2.4.1 General Discussions and Simulation Studies... 20

2.4.2 Multimodal Integration Approaches .. 24

2.4.3 Actual Systems... 26

2.4.4 Frameworks and Toolkits... 27

iv

CCHHAAPPTTEERR 33 SEMANTIC INTEGRATION OF MULTIMODAL INPUTS................................... 30

3.1 Input Modeling and Interpretation .. 30

3.2 A Multimodal Semantic Model... 32

3.2.1 Combination of Multimodal Input Signals... 32

3.2.2 Meaning of Multimodal Input Events .. 36

3.3 Multimodal Input Modeling.. 39

3.3.1 Traditional Grammar Formulations ... 39

3.3.2 The Multimodal Grammar Language... 40

3.4 Multimodal Input Integration.. 43

3.4.1 Basic Mutual Information Network ... 43

3.4.2 The Multi-State Mutual Information Network... 46

3.4.3 Training the MS-MIN .. 49

CCHHAAPPTTEERR 44 MULTIMODAL APPLICATION FRAMEWORK ARCHITECTURE 50

4.1 Object-Oriented Concepts and Design Patterns .. 50

4.2 Overall System Design.. 52

4.2.1 System Architecture ... 54

4.2.2 Component Interface and Implementation... 55

4.2.3 Input Processing Issues .. 55

4.3 Existing Software Components... 57

4.3.1 The JANUS Speech Recognizer .. 57

4.3.2 The SPHINX Speech Recognizer .. 58

4.3.3 The NPen++ Handwriting Recognizer... 58

4.3.4 The NetscapeSRec Speech Recorder Plug-In .. 59

4.4 Speech Components .. 60

4.4.1 The SRecServer Speech Recorder.. 60

4.4.2 The SpeechRecorder Interface ... 60

4.4.3 The SpeechRecognizer Interface.. 62

4.5 Pen Components.. 63

4.5.1 The XPRecServer Pen Recorder .. 63

4.5.2 The TmplGRec Gesture Recognizer .. 64

4.5.3 The PenRecorder Interface... 69

4.5.4 The PenRecognizer Interface ... 70

v

4.6 Communication Layer... 71

4.6.1 Client/Server Model ... 71

4.6.2 Remote Service Request... 72

4.6.3 Switchboard-Based Communication.. 72

4.7 Graphical User Interface ... 73

4.7.1 SpeechPanel ... 75

4.7.2 PenPanel ... 76

4.7.3 InputCoordinator .. 77

4.7.4 MultimodalApplet .. 77

CCHHAAPPTTEERR 55 MULTIMODAL DESIGN AND RAPID PROTOTYPING 81

5.1 Design Process .. 81

5.1.1 Selecting Action Frames and Parameter Slots ... 82

5.1.2 Designing the Input Model... 82

5.1.3 Generating Unimodal Language Models ... 85

5.1.4 Instantiating the Multimodal Semantic Integrator 85

5.1.5 Implementing the Parameter Extraction Postprocessing.............................. 87

5.2 Multimodal Grammar Implementation ... 88

5.3 Visual Grammar Designer... 92

5.3.1 Graphical Display of Grammar Components... 92

5.3.2 Drag-and-Drop Editing .. 92

5.4 Random Sample Generator ... 94

5.5 N-gram Language Model Generator ... 94

5.5.1 Basic N-gram Counting Algorithm.. 95

5.5.2 Handling Recursive Grammar References... 96

5.5.3 Computing N-gram Probabilities ... 98

5.6 Interpretation Engine Builders .. 98

5.6.1 Input Preprocessor Generator... 99

5.6.2 Integration Network Generator .. 99

5.6.3 Postprocessor Generator... 100

CCHHAAPPTTEERR 66 DESIGN EXAMPLE : A M AP SYSTEM ... 102

6.1 Requirement Analysis ... 102

6.2 Design.. 104

vi

6.3 Implementation.. 108

CCHHAAPPTTEERR 77 EVALUATION ... 111

7.1 Evaluation of the Development Procedure.. 111

7.1.1 Portability... 111

7.1.2 Ease of Development ... 114

7.1.3 Incremental Improvement .. 117

7.2 Evaluation of the Product.. 119

7.2.1 Performance of the MS-MIN ... 120

7.2.2 User Observation Results ... 124

CCHHAAPPTTEERR 88 CONCLUSION AND FUTURE DIRECTIONS .. 140

8.1 Contributions... 140

8.1.1 Theory of Multimodal Interaction.. 140

8.1.2 Software Architecture and Reusable Framework....................................... 141

8.1.3 Design Process and Supporting Tools.. 142

8.2 Future Directions... 143

AAPPPPEENNDDII XX AA GLOSSARY ... 145

AAPPPPEENNDDII XX BB SUMMARY OF THE UNIFIED MODELING LANGUAGE 149

AAPPPPEENNDDII XX CC SUMMARY OF DESIGN PATTERNS ... 150

C.1Abstract Factory .. 150

C.2Adapter .. 151

C.3Factory Method ... 151

C.4Observer .. 152

C.5Template Method .. 153

C.6Visitor.. 154

AAPPPPEENNDDII XX DD USER OBSERVATION PROTOCOL FOR THE MAP APPLICATION 155

BIBLIOGRAPHY ... 172

INDEX .. 190

vii

LIST OF FIGURES

Figure 1. Nigay and Coutaz’s Multimodal Design Space .. 23

Figure 2. Input Grouping by Temporal Proximity .. 34

Figure 3. Alignment and Joint Segmentation of Multimodal Inputs 36

Figure 4. Multimodal Grammar Structure... 42

Figure 5. Mutual Information Network Architecture ... 45

Figure 6. Path Score of Input Segmentation and Labeling ... 47

Figure 7. Output Path Over Multidimensional Inputs .. 48

Figure 8. Multi-State Mutual Information Network Architecture............................. 49

Figure 9. Multimodal Application Framework Architecture 54

Figure 10. Gesture/Handwriting Combination .. 57

Figure 11. SpeechRecorder Interface.. 61

Figure 12. SpeechRecognizer Interface... 62

Figure 13. Preprocessing of Gesture Strokes.. 65

Figure 14. Gesture Recognition Example ... 67

Figure 15. PenRecorder Interface.. 69

Figure 16. PenRecognizer Interface .. 70

Figure 17. Multimodal Applet User Interface .. 74

Figure 18. Control Flow for Multimodal Input Interpretation 79

Figure 19. Class Hierarchy for Multimodal Grammar Components......................... 88

Figure 20. Implementing Optional and Repeating Grammar Nodes......................... 89

Figure 21. Grammar Traversal with Polymorphic Recursive Method...................... 90

Figure 22. Grammar Traversal with Visitor .. 91

Figure 23. Multimodal Grammar Designer.. 93

viii

Figure 24. Example of State Machine for Input Preprocessing.................................. 99

Figure 25. Preprocessed Parse Tree for a Macro Concept.. 99

Figure 26. Postprocessor Skeleton for Parameter Extraction................................... 101

Figure 27. Multimodal Map Application .. 110

Figure 28. Multimodal Appointment Scheduler Application 112

Figure 29. Multimodal Football Application .. 113

Figure 30. MS-MIN Incremental Learning .. 122

Figure 31. Vocabulary Acquisition During MS-MIN Training 123

Figure 32. Network Growth During MS-MIN Training ... 124

Figure 33. Modality Distribution in User Data... 127

Figure 34. Modality Distribution for Each Task.. 127

Figure 35. Distribution of Interpretation Error Categories...................................... 135

Figure 36. Number of Multimodal Commands to Complete a Task........................ 136

Figure 37. Incremental Learning with Real Data .. 137

Figure 38. Vocabulary Acquisition with Real Data ... 138

Figure 39. Network Growth with Real Data... 138

Figure 40. Additional Incremental Training of Generated Network 139

Figure 41. The Abstract Factory Design Pattern ... 150

Figure 42. The Adapter Design Pattern .. 151

Figure 43. The Factory Method Design Pattern... 152

Figure 44. The Observer Design Pattern .. 152

Figure 45. The Template Method Design Pattern.. 153

Figure 46. The Visitor Design Pattern... 154

ix

LIST OF TABLES

Table 1. Supported Applications ... 5

Table 2. Basic Gesture Vocabulary ... 67

Table 3. Gesture Recognition Accuracy for 5 Shapes.. 68

Table 4. Speech Recording/Recognition States... 75

Table 5. Action Frames and Parameter Slots for QUICKTOUR............................. 104

Table 6. Size of Software Component Libraries... 114

Table 7. QUICKTOUR Application Development Effort ... 115

Table 8. QUARTERBACK Application Development Effort................................... 116

Table 9. Incremental Improvement in QUICKTOUR .. 118

Table 10. MS-MIN Interpretation Accuracy on Artificial Data............................... 121

Table 11. Values of Nz for Two-Sided %N Confidence Intervals........................... 121

Table 12. Discarded Input Events in User Data ... 126

Table 13. Speech Recognition Accuracy ... 128

Table 14. Speech Recognition Accuracy After Adaptation....................................... 128

Table 15. Gesture Recognition Accuracy.. 129

Table 16. MS-MIN Interpretation Accuracy on Real Data....................................... 130

Table 17. Interpretation Accuracy for Each Input Type .. 131

Table 18. Effect of Recognition Errors on Interpretation Accuracy........................ 131

Table 19. Interpretation Accuracy for Each Participant .. 133

1

CChhaapptteerr 11
INTRODUCTION

Human-computer interface technology has come a long way since the early days of
toggle switches and light-panel readouts. However, human-computer interaction still
cannot compare even remotely to the richness and flexibility of communication taken for
granted among humans. In everyday life we convey a wealth of information through a
multitude of communication channels, among them speech, gesturing, writing, drawing,
facial expressions, gaze, and many others. The advent of the graphical user interface
(GUI) paved the way for computer applications that attempt to take advantage of the rich
human communication modes by presenting information over multiple channels, includ-
ing text, images, sound, video, virtual reality, etc. This form of output presentation has
become familiar under the designation of multimedia. In contrast, applications that take
advantage of multiple input channels have been appearing much more slowly. Because
input channels or sources are also called input modes or modalities, such applications are
said to support multimodal human-computer interaction.

Many researchers have pointed out the benefits of multimodality. Numerous user
studies (e.g., [Hauptmann89], [Nakagawa94], [Nishimoto94], [Oviatt97b], [Chu97]) have
reported that multimodal human-computer interaction results in greater flexibility and
naturalness of expression than unimodal input methods, to the point where people prefer
multimodal interfaces. Accordingly, the work presented in this dissertation rests on the
assumption that multimodality is desirable and only explores issues involved in the
construction of multimodal applications.

The thesis of this dissertation is that there is enough commonality among multimodal
applications to justify the development of a common infrastructure and design methodol-
ogy for their construction.

First, a broad class of multimodal applications supports a common notion of input
interpretation, namely the derivation of an action or command to perform in response to
user input. This lays the foundation for a multimodal semantic model that forms the core
of a design process applicable to all applications belonging to that class. This design
process incorporates a common multimodal interpretation algorithm structure that can be
instantiated for specific applications.

Second, certain basic capabilities required to support commonly used input modalities
are essentially the same across applications; these capabilities include the recording,
recognition, and synchronization of inputs from the supported channels. The common
functionality factors into reusable software components, and multimodal applications can
be constructed with a system architecture that makes use of such components to reduce
development time.

2

1.1 Motivating Example

Consider a map application that can display a geographical map and answer various
queries such as: search for places matching some criteria and display their locations on
the map, find the distance between two places and the best way to go from one to the
other, manipulate the map view by zooming and panning, etc. The user can issue these
queries multimodally by speaking and/or drawing gestures on the screen. Similar appli-
cations have been studied or implemented by many other researchers
[Neal91][Matsu’ura94] [Cheyer95][Oviatt96][Martin97].

The construction of such an application involves many components, some specific to
the map system and others mandated by the multimodal input requirements. It is unlikely
that the map display and the underlying geographical database can be reused in a text
editor or an appointment scheduler; however, those two applications, like the map
system, must also have facilities for recording and recognizing speech and pen inputs if
they are to support verbal and gestural commands. These facilities, having little to do
with map manipulation, text editing, or appointment scheduling, remain essentially the
same across all three applications.

The visual user interface component of the map system does not require great com-
putational power; in fact, it is totally feasible to deploy it on the World Wide Web to run
inside Web browsers. However, other components of the system may be very computa-
tion-intensive, especially the speech and gesture recognition subsystems. The
computationally demanding processes can be offloaded to high-end workstations as
servers, with the added advantage that multiple user interface components can make use
of a single server on a time-shared basis. The infrastructure required by this distributed
architecture is evidently not specific to the map application.

The developers of the map application must select and implement policies that govern
the synchronization and interpretation of multimodal inputs. In other words, the applica-
tion developers must answer questions such as, “What constitutes a verbal/gestural
command (i.e., how to group input data from the two input channels)?”, “What does it
mean to interpret a spoken utterance and/or a gesture?”, “How does one derive the correct
interpretation given the inputs?”, etc. Some details of the relevant policies may be
specific to the map application, but the broad outline should be applicable to the text
editor, the appointment scheduler, and other speech- and pen-enabled applications as
well. In fact, the design process that the map application developers follow may contain
steps that can be generalized to apply to the design of other applications.

The map application example illustrates the feasibility of deriving a common infra-
structure and design methodology that could serve as the foundation of many multimodal
applications in diverse domains. This example will be revisited in Chapter 6 which
describes an actual implementation of a multimodal map system using the framework and
design process presented in this dissertation.

3

1.2 Target Class of Applications

Computer applications can be classified along many dimensions using many different
attributes. However, for the purpose of determining whether an application can be
constructed using the framework and design process described in this dissertation, there
are two highly relevant attributes:

• The types of inputs that the application must support, and

• The types of tasks that the user must perform using the application.

Depending on those attributes, an application may be

• Strongly supported, i.e., the application can be constructed using the frame-
work and design process described in this dissertation;

• Supported, i.e., the application fits the proposed framework, but some mod-
ules may have to be added to accommodate this type of applications;

• Not supported, i.e., it is not possible to fit the application into the constraints
of the proposed framework.

1.2.1 Types of Inputs

There are many types of inputs that can convey information from a human user to a
computer program. The traditional input devices include the keyboard for typing and the
mouse for clicking and dragging. Speech is becoming more and more popular as an input
modality because of recent advances in automatic speech recognition technology. Lip-
reading has been shown to be an effective aid in improving speech recognition accuracy.
Pen devices such as digitizing tablets, light pens, touch-sensitive screens, etc. can ac-
commodate handwriting and pen-based gestures (simple pointing as well as signs and
symbols drawn with the pen device). 3-dimensional hand gestures can be tracked by
devices such as the Data Glove [Eglowstein90] and visual hand modeling techniques
[Rehg93] [Kuch95]. Gaze tracking devices [Jacob91][Baluja94] enable the eye to be used
for input. Future devices may be able to track facial expressions or body language, etc.

All of the above input modalities can be interpreted as information streams, or se-
quences of packets carrying information that may contribute to the discovery of what to
do with the input†. These information packets are words or groups of words in the case of
typing, speaking, or writing; pointing actions as well as signs and symbols in the case of
gesturing; eye fixations (periods of relative stability in eye position) and saccades (sud-
den, rapid eye movements) in the case of gaze tracking; and so on.

Because these input modalities are information streams, they can all be accommo-
dated by the semantic model described in Chapter 3. However, at the present only speech

† Chapter 3 defines this notion more precisely.

4

and pen modalities are strongly supported in the sense that the framework described in
Chapter 4 includes software components supporting speech and pen inputs.

1.2.2 Types of Tasks

Multimodal systems currently make use of inputs in two ways: either for data entry or for
issuing a command.

The data entry task is exemplified by dictation systems. Speech input is converted to
words that a word processor or text editor records verbatim. There is no interpretation
beyond the conversion of sounds into words. Another example is a gesture-based drawing
application in which the user can make rough sketches of geometric shapes, and the
program converts the sketches to perfectly regular drawings. The only interpretation
involved is the recognition of geometric shapes from the raw sketches.

In contrast, systems that use multimodal inputs as commands must determine what
action to take based on the information conveyed by the inputs; in other words, the inputs
have to be interpreted. The result of input interpretation is a command that changes the
state of the application in some way.

The semantic model described in Chapter 3 strongly supports the use of inputs to is-
sue commands. However, data entry can also be accommodated by interpreting the data-
carrying inputs as a special command that changes the state of the application by adding
data in a predefined manner.

1.2.3 Supported Applications

Table 1 on page 5 summarizes the types of applications supported by the framework and
design process described in this dissertation. The entries indicated by “?” are not pre-
cluded but it is uncertain whether the corresponding modalities would be useful for the
given tasks.

1.3 Outline

The work presented in this dissertation addresses three challenges in the construction of
multimodal applications:

• The development of a multimodal interpretation algorithm that can integrate
information from multiple input modalities in a general and application-
independent way. This necessitates a clear notion of what exactly is meant by
multimodal interpretation.

• The design of a system architecture that clearly separates the functionality that
remains the same across different multimodal applications from the applica-
tion-specific functionality, such that the system infrastructure can be reused in
different applications.

5

Type of task

Data entry Command

Speech 9 ;

Handwriting 9 ;

Pen gestures 9 ;

3-D gestures 9 9

Lip-reading 9 9

Gaze tracking ? 9

Keyboard 9 9

Mouse 9 9

T
yp

e
of

 in
pu

t

Facial expressions ? 9

Table 1. Supported Applications

; = strongly supported; 9 = supported; ? = not precluded

• The rapid prototyping of a multimodal application. This requires the instan-
tiation of the application structure and the multimodal interpretation algorithm
for a specific application domain.

During the course of my research in multimodal interfaces, I have implemented sev-
eral multimodal applications belonging to different domains (i.e., developed to solve
different tasks). I have distilled from those experiences an underlying design process
backed by a collection of reusable software components and tools. The software compo-
nents and the underlying system architecture constitute an application framework that
allows new multimodal applications to be built in a modular fashion by connecting
existing components and providing application-specific customizations only when
necessary. The associated toolkit helps automate certain steps in the design process when
the multimodal interpretation algorithm is instantiated for a particular application.

The contributions of this research are threefold:

• A theory of multimodal interaction based on a multimodal semantic model,
and a domain-independent multimodal integration algorithm that combines in-
formation from multiple sources following the semantic model;

• A modular, distributed, customizable application framework to facilitate the
construction of multimodal applications from reusable components;

• A design process and a supporting toolkit to facilitate the instantiation of mul-
timodal applications for specific domains, within the application framework,
using the semantic model and the multimodal integration algorithm.

6

The remainder of this dissertation presents the results of this research in a systematic
way.

Chapter 2 (page 8) surveys current literature on topics related to the research de-
scribed in this dissertation. These topics include the automatic recognition of speech,
gesture, and handwriting, as well as user studies in multimodal human-computer interac-
tion and actual multimodal systems. This background discussion will help place the
present work in the context of current multimodal research.

Chapter 3 (page 30) lays a theoretical foundation for the notion of interpreting multi-
modal inputs. The chapter describes a semantic model that offers a definition of what it
means to interpret user input in a multimodal application. This leads to the development
of the Multimodal Grammar Language (MMGL), a multimodal input modeling language
that enables application developers to describe the kind of inputs an application expects,
as well as their semantics. The chapter also presents an information-theoretic network
architecture that performs semantic integration of multimodal inputs by alignment and
joint segmentation of multiple information streams.

Chapter 4 (page 50) presents the Multimodal Application Framework (MMApp), a
modular, distributed, and customizable infrastructure that can be used to develop multi-
modal applications. The components that compose the framework are described in detail
and placed in the context of a common multimodal system architecture.

Chapter 5 (page 81) describes the design process that instantiates and customizes a
common multimodal interpretation algorithm for a particular application. This design
process makes use of the Multimodal Toolkit (MMTk), a design workbench that enables
the automatic construction of components needed in the design process, based on an
MMGL model of user inputs.

Chapter 6 (page 102) places the discussion in the previous three chapters into context
by presenting the complete development of a map application, QUICKTOUR, using
MMApp and MMTk, from requirement analysis to design and implementation. The
principles previously described are clarified when they are applied to the construction of
the QUICKTOUR application.

Chapter 7 (page 111) offers some validation of the work presented in previous chap-
ters. The development procedure using MMApp and MMTk is evaluated with respect to
development effort and portability (i.e., applicability to different task domains). To
illustrate the workability of this development procedure, one of its products—the
QUICKTOUR application—is evaluated with respect to enabling real users to accom-
plish given tasks using the multimodal interface.

Chapter 8 (page 140) summarizes the contributions of this dissertation and outlines
some directions for future research.

7

1.4 What Is Not Covered

As mentioned in section 1.2.1 above, the multimodal semantic model proposed in this
dissertation supports many input modalities, but only speech and pen modalities are
strongly supported by the software. The discussion in this dissertation does not include
the specifications and implementation details of software modules to record and recog-
nize inputs from any modality other than speech, pen gesture, and handwriting.

Even for the strongly supported modalities, the description of the application frame-
work in Chapter 4 is limited to the interface protocols between the recognizers and the
rest of the framework, omitting many of the details involved in setting up speech and
gesture/handwriting recognizers as well as the training and optimization procedures
necessary for high recognition performance. The focus of the work described herein is the
combination of information from multiple modalities, hence no attempt was made to
optimize the component technologies.

The multimodal interpretation algorithm in Chapter 3 works on the outputs of the
modality recognizers (e.g., text strings from the speech recognizer, gesture shapes from
the gesture recognizer, etc.) rather than raw input signals. As such, the algorithm cur-
rently has no provision for constraining the recognition of one modality using another
modality. Theoretically speaking, it should be possible to achieve higher recognition
accuracy for each individual modality using information contained in other modalities.
This is a topic for future research. The issue of data fusion at different levels of input
representation is briefly discussed in section 3.2.1.

1.5 Notes

Some terms used throughout this dissertation need to be clearly defined or clarified with
respect to the specific connotations of their use. Appendix A contains a compilation of
these terms.

A few typographical conventions have been followed to improve readability. Names
of programming entities such as classes, methods, and MMGL nodes are in a Helvetica 12
point typeface. Code and input examples are in Courier 11 point .

All company and product names that appear in this document are trademarks of their
respective holders.

8

CChhaapptteerr 22
BACKGROUND AND RELATED WORK

This chapter presents an overview of research related to multimodal human-computer
interaction. The first two sections discuss the processing of input data in two major
modalities—speech and pen—that are strongly supported by the application framework
described in this dissertation. The next section presents an overview of other input
modalities that fit within the constraints of the framework but are not as strongly sup-
ported. The last section surveys the literature on combining multimodal inputs in user
interfaces.

2.1 Automatic Speech Recognition and Understanding

Automatic speech recognition (ASR) refers to the process of mapping an audio data
stream to a sequence of words. This has been a target of active research since the 1950’s.
Despite dramatic advances that have been made since the early days of speech recogni-
tion research, the problem of recognizing unconstrained speech is still far from being
solved. However, speech science and computer technology have advanced to the point
where large vocabulary, continuous dictation on a desktop personal computer has become
feasible, as attested by recent commercial products from Dragon Systems and IBM.
[Waibel90] presents a selection of research papers on various speech recognition topics.
[Jelinek98] is a more up-to-date compilation of speech recognition techniques.

2.1.1 Types of Speech Recognizers

Speech recognizers are usually classified along several dimensions that introduce serious
design difficulties or significantly degrade performance. The most notable dimensions are
briefly described below. Some materials in the following discussion are from [Waibel90].

Isolated and Continuous Speech

Isolated speech is spoken one word at a time, whereas the words are connected in
continuous (normal) speech. Continuous speech recognition (CSR) is much more diffi-
cult than isolated (or discrete) word recognition (IWR) because the absence of clear word
boundaries in continuous speech creates more words and phrases that are confusable (e.g.
“I love you” and “isle of view”), and poorer articulation as well as stronger inter-
phoneme coarticulation results in much greater variability in continuous speech.

Continuous speech can be further classified as spontaneous speech or read speech.
Read speech, typically used in dictation systems, is much easier to recognize than spon-
taneous speech which may contain speaker induced noises (lip-smacks, pops, clicks,
coughing, sneezing), hesitations, false starts, and other natural speech phenomena.

9

Because multimodality promotes flexibility and naturalness of expression, it is usu-
ally desirable to use a spontaneous, continuous speech recognizer in a multimodal
application supporting speech, if a recognizer exists that can provide acceptable accuracy
for the kind of inputs the application expects.

Vocabulary Size

Recognition accuracy and efficiency vary inversely with the vocabulary size as more
words introduce more confusion and require more processing time. One way to manage
the resulting complexity is to exploit higher-level knowledge (e.g., syntactic or semantic
knowledge) to constrain the set of words that are legal at a given time. The constraining
power of such high-level knowledge in a language model can be measured by perplexity,
roughly the average number of words that can occur at any decision point.

Multimodal applications supporting speech may require a large vocabulary if flexi-
bility is an important design goal. To achieve acceptable recognition performance, it is
usually necessary to restrict at least the domain or the topic of spoken utterances. It would
be ideal if speech recognition systems could acquire vocabulary during actual use, but
this is still a subject of research.

Speaker Dependence/Independence

A speech recognition system has a number of model parameters that can be adjusted
to fit a particular speaker’s speech. Such a speaker-dependent system can achieve higher
accuracy than a speaker-independent system that must model a variety of speakers’
voices. However, accuracy comes at a price because a speaker-dependent system must be
trained separately for each new speaker. Some systems take a speaker-independent
approach but also incrementally adapt to new speakers.

For maximum flexibility, multimodal applications should use speaker-independent
speech recognizers with speaker adaptation capabilities if possible.

Environmental Factors

Variability and noises in speech can also severely degrade recognition performance.
The channel characteristics play an important role; recognition systems that achieve
respectable performance on high-quality speech recorded using a close-talking micro-
phone may deliver mediocre performance on telephone-quality speech or speech recorded
using a table microphone. Environmental and speaker induced noises also affect recogni-
tion accuracy, as do cross-talk (simultaneous talking by several people, also called the
“cocktail party effect”), speaking rate, and speaker stress.

For desktop applications it is usually feasible to employ high-quality microphone and
speech recording hardware. However, in some deployment situations (e.g., palmtop
computers, wearable computers for field workers, etc.) the speech recognition system
may have to handle noisy input. Achieving high accuracy in these situations is still an
active goal of current research.

10

2.1.2 Acoustic Modeling

Digitized speech waveforms are usually transformed to a more compact representation
that retains or even enhances perceptual cues thought to be relevant to recognition. This
feature extraction process is usually based on spectral-encoding strategies that exploit
information contained in the power spectrum of the speech signal. Important examples
include linear predictive coding (LPC) [Markel76], Fast Fourier Transform (FFT), and
cepstral analysis [Schafer75]. The feature vectors extracted from the speech signal can be
compressed further by clustering them using vector quantization (VQ) [Gray84].

The encoded speech signals are matched against acoustic models which represent
speech units (phonemes, syllables, words, etc.). Successful acoustic modeling techniques
include stochastic and connectionist approaches. The most popular stochastic modeling
approach employs Hidden Markov Models (HMMs) [Rabiner89] to estimate the prob-
ability that a speech unit, say a phoneme, is active at some point in time given the speech
signal at that point. Connectionist approaches train neural networks to perform that
probability estimation. Neural network algorithms that have been studied include the
Time Delay Neural Network (TDNN) [Waibel89a][Waibel89b][Waibel89c], Learning
Vector Quantization (LVQ) [Kohonen88], and Linked Predictive Neural Network
(LPNN) [Tebelskis90]. Hybrid approaches that combine neural networks with conven-
tional approaches such as HMM and Dynamic Time Warping (DTW) have also been
studied with good results [Bourlard88][Burr88][Huang88][Lippmann87][Sakoe87].

2.1.3 Language Modeling

Given the acoustic probabilities estimated by the acoustic models, a speech recognizer
must perform a search through the space of all possible sentences to find the sentence
that best matches the acoustic signals, in the sense of maximizing the a posteriori prob-
ability of the sentence given the acoustics. The complexity of the search grows
exponentially with vocabulary size and quickly becomes unmanageable without some
way of constraining the search to only the most promising regions of the hypothesis
space. Language modeling refers to the exploitation of non-acoustic sources of informa-
tion (e.g., syntax, semantics, pragmatics, dialogue, etc.) to constrain the search.

One type of language modeling, termed N-gram modeling [Jelinek90], employs a sta-
tistical approach to predict the likelihood of encountering a word, based on preceding
words. A bigram model (N=2) uses a single preceding word whereas a trigram model
(N=3) uses two preceding words. N-gram language models become too large very
quickly as N gets larger, hence tree-based statistical language models have been devel-
oped to estimate dependencies on a large number of preceding words using decision trees
[Bahl89].

A grammar-based language model defines a set of (possibly infinite) acceptable sen-
tences via a grammar. The approaches that have been proposed use finite-state grammars
[Lowerre80], context-free grammars [Ney87], or unification grammars [Hemphill89].
Finite-state grammar approaches are the most easily and efficiently implemented.

11

A desirable goal for multimodal human-computer interaction is to let the user employ
any speaking style, vocabulary, phrasing, etc. within the designated domain. Grammar-
based language models are usually inadequate for this purpose as they restrict the user to
a fixed set of sentences. Statistical language models favor sentences covered by the
models, yet still allow for almost arbitrary sentences, and thus are more suitable when
flexibility is an important design criterion. However, the choice of language model can be
made on a per-application basis without affecting how the speech recognizer is interfaced
to the application program. If an application would benefit from a fixed command
language, perhaps because recognition performance requirements dictate tight constraints
on the language, it would be better to use a grammar-based language model.

2.1.4 Measuring Recognition Accuracy

There are several ways to measure speech recognition accuracy. Let us assume a data set
composed of sN spoken utterances that have been transcribed into sN sentences con-

sisting of wN words. Processing the utterances with a speech recognizer produces sN

recognition hypotheses. Each hypothesis sentence can be aligned with the corresponding
reference (transcribed) sentence so as to maximize the number of matching words. For
instance, the reference sentence “Please zoom out five times” and the hypothesis sentence
“Zoom in fifty five times” would be aligned as follows:

REF: PLEASE zoom OUT ***** five times
HYP: ****** zoom IN FIFTY five times

There are 3 correctly recognized words (in lowercase) and 3 errors (in uppercase). The
first error is a deletion (the word “please” was omitted from the reference sentence), the
second is a substitution (the reference word “out” was replaced by “in”), and the third is
an insertion (the word “fifty” was not in the reference sentence).

The sentence accuracy over the data set is the fraction of hypothesis sentences that
match the corresponding reference sentences perfectly:

s

s

N

n
SA=

where sn is the number of correctly recognized sentences.

The word correct rate is the fraction of words that are counted as correct when hy-
pothesis and reference sentences are aligned:

w

w

N

n
WR=

where wn is the number of matched words in the aligned sentences.

12

The word error rate is the number of word errors divided by the total word count:

w

subinsdel

N

nnn
WE

++
=

where deln , insn , and subn count the deletions, insertions, and substitutions, respectively.

The word accuracy is the complement of the word error rate:

w

subinsdelw

N

nnnN
WEWA

−−−
=−= 1

Typically the word accuracy is lower than the word correct rate because of the inser-
tion errors (it is easy to see that each reference word is either correct, deleted, or
substituted, hence wsubdelw Nnnn =++).

Word accuracy is usually considered the best measure of recognition performance.

2.1.5 Speech Understanding

The speech recognition process simply maps speech sounds to words. This is sufficient
for automatic dictation applications; however, speech-enabled applications normally have
to extract some kind of meaning from the words, i.e., to discover the concepts that the
words represent. In other words, the goal is to build machines that can understand
speech.

Gorin et al. [Gorin91] propose a formalization of the concept of understanding in
terms of an operational definition. For any particular task, the goal is to map input
messages into meaningful action. The set of all possible input messages we call language,
and the mapping we call understanding. Research literature on speech understanding
basically describes the various means that have been devised to implement this mapping.

For measuring speech understanding performance, it is more appropriate to use con-
cept accuracy rather than word or sentence accuracy. This means comparing the output of
the mapping implemented by the speech understanding system against a reference
answer. Interestingly enough, Boros et al. [Boros96] observed a nearly linear relationship
between word accuracy and concept accuracy.

Chapter 3 of this dissertation describes a semantic model that extends the notion of
understanding to cover multimodal input messages which may include speech and other
modalities; therefore, a survey of speech understand techniques is highly relevant. Some
materials in the following discussion are from [Waibel90], [Gorin91], and [Gorin94].

Wordspotting

One way of extracting information from a spoken utterance is to detect the presence
of certain keywords, either by examining the text output of a normal speech recognizer or

13

by running a special recognizer—called a wordspotter—that attempts to classify only the
words in its vocabulary, skipping over out-of-vocabulary speech.

Many research papers on wordspotting concentrate on the algorithms for detecting
and locating keywords in speech rather than on the application to speech understanding
[Myers80][Higgins85][Wilpon90][Zeppenfeld93]. A speech understanding system based
on wordspotting was proposed in [Newell71] but not actually constructed. More recent
efforts are reported in [Rose91][Rohlicek92][Tsuboi92].

A variant of wordspotting is key-phrase spotting [Kawahara97]. A related approach is
described in [Nagai94] where a concept represented by several phrases is a unit of
semantic interpretation, and a spontaneously spoken sentence is regarded as a sequence
of concepts. This bears some resemblance to the action frame and parameter slot model
of multimodal semantic interpretation described in Chapter 3.

Syntactic/Semantic Parsing

The traditional approach to natural language understanding involves parsing text in-
put using a grammar. Because spontaneous speech may contain ungrammatical fragments
and speech recognition errors can only exacerbate this problem, much research has
focused on developing robust parsing techniques that can skip over out-of-language
fragments [Hayes81][Carbonell84][Ward91][Lavie93] or correct errors during parsing by
transforming the input string [Wagner83].

Natural language parsers can use finite-state grammars [Lowerre80], context-free
grammars [Brown94], recursive transition networks [Ward91], or augmented transition
networks [Woods83]. Purely syntactic parsers build parse trees using phrase structure
rules and thus require semantic interpretation rules that map syntactic non-terminals to
semantic concepts for understanding [Thompson63]. Other approaches integrate syntactic
and semantic constraints into a single grammar [Burton76][Brown94][Stahl96].

Learning the Mapping from Language to Meaning

Instead of writing grammars manually, it is possible to learn the mapping from lan-
guage to meaning. Some systems do this by constructing grammar rules or transition
networks [Anderson77][Vidal89]. Other systems train connectionist networks to imple-
ment the mapping [McClelland89][Gorin91]. [Tishby94] describes a method that exploit
a statistical-algebraic dual structure to learn associations using very few examples.

Speech Understanding Systems

Some early speech understanding systems include Carnegie Mellon’s Hearsay
[Reddy73][Erman80] and Harpy [Lowerre80] as well as BBN’s HWIM (“Hear What I
Mean”) [Woods83]. These were the products of the ARPA Speech Understanding Project
initiated by the Defense Advanced Research Projects Agency. The Air Travel Informa-
tion Service (ATIS) project resulted in a number of speech understanding systems for the
airline reservation task, including Carnegie Mellon’s ATIS system based on the Phoenix

14

grammar and robust parser [Ward91]. MIT’s Voyager system is a speech understanding
system for a tourist’s city guide task [Zue90]. SRI’s GEMINI system [Dowding93] is one
of the natural language understanding components of the Open Agent Architecture (see
section 2.4.4).

Strictly speaking, the JANUS speech translation system [Waibel91][Waibel96b] is
not exactly a speech understanding system. However, JANUS translates between lan-
guages by converting sentences in the source language to an intermediate semantic
representation called interlingua before generating sentences in the output language. The
mapping from input sentences to their interlingua representations makes use of speech
understanding techniques.

2.1.6 Speech Recognition APIs and Toolkits

Several Application Programming Interfaces (APIs) have been proposed to standardize
the integration of speech recognition capabilities into application programs. These
include Microsoft’s Speech API [Rozak97], Sun’s Java Speech API [Sun97], and SRAPI
[SRAPI97] developed jointly by Novell, Dragon Systems, IBM, and other partners. The
SpeechRecorder and SpeechRecognizer interfaces described in Chapter 4 do not represent
an attempt to propose another speech API; rather, they are simplified interfaces that
include only enough functionality to allow the proposed multimodal application frame-
work to make use of speech recording and recognition capabilities. Implementations of
the SpeechRecorder and SpeechRecognizer interfaces could rely on one of the established
speech APIs, although this is not the case in the current version of the framework.

A number of research projects have focused on developing speech recognition tool-
kits which contain components that can be customized to construct a speech recognizer
for a given application. This approach is more flexible than building a monolithic recog-
nizer that may not satisfy the requirements of all speech applications. The same
philosophy is behind the development of the multimodal application framework de-
scribed in Chapter 4. Cambridge University’s Hidden Markov Model Toolkit (HTK) is a
library of components for building HMM-based systems [Young92]. The Oregon Gradu-
ate Institute developed the CSLU Speech Toolkit [Schalkwyk98] as well as a visual
application builder that facilitates the rapid construction of telephone dialog applications
using a visual programming paradigm. Carnegie Mellon’s JANUS Recognition Toolkit
(JRTk) [Finke97] implements powerful object-oriented speech recognition components
within a flexible scripting shell.

2.2 Gesture and Handwriting Recognition

Handwriting recognition is another research topic that has received much attention in the
last few decades. There are two ways to present data to a handwriting recognizer: in off-
line systems, the written words are captured as static images; on the other hand, on-line
systems capture dynamic information as the handwritten strokes are being traced by a
digitizing device such as a tablet or a touch-sensitive screen. On-line recognition is more

15

relevant to this dissertation because the data streams from digitizing devices are usually
available to multimodal applications supporting handwriting input.

The input to digitizing devices may represent more than simple handwritten words;
the strokes can form shapes or symbols that carry significance beyond the letters of the
alphabet. These shapes may represent symbolic/iconic gestures that convey meaning in an
intuitive way (e.g., crossing out something to remove it) or as part of a specialized
language (e.g., proofreader’s symbols for editing a manuscript). They may also be used
as deictic gestures that serve to indicate objects or regions of interest. Because the
digitizing devices that capture hand-drawn strokes usually feature a stylus (although a
fingertip works as well on some touch-sensitive screens), handwriting and gestures
acquired this way are grouped under the designation of pen-based inputs.

2.2.1 Handwriting Recognition

Handwriting recognition features many difficulties similar to speech recognition. There
are many different writing styles: block printing vs. cursive, isolated characters vs.
continuous writing, etc., with continuous cursive writing recognition being the hardest
problem because of segmentation difficulties and coarticulation effects, just as for
continuous speech recognition. Writer dependence presents other difficulties parallel to
speaker dependence. Vocabulary size may also significantly affect recognition perform-
ance.

[Govindaraju97] presents an overview of several paradigms that have been developed
to recognize handwriting. [Tappert90] focuses on on-line recognition. Some materials
from the following discussion are from [Govindaraju97] and [Rubine91].

Holistic vs. Analytical Recognition

These two broad paradigms parallel the two psychological theories of visual recogni-
tion of words. According to the holistic theory, words are identified directly from their
global shapes; the analytical theory claims the opposing point of view that words are
recognized by the identification of the constituent characters.

Holistic approaches to handwriting recognition usually extract global features from
the word image and match them against features of words in a lexicon [Madhvanath96].
Features that have been studied include word length, number and direction of strokes,
ascenders/descenders and holes, endpoints and crosspoints, etc. Lecolinet and Crettez
[Lecolinet91] describe an interesting recognition method based on graphemes, which are
“significant” visual structures in a word image. Simon and Baret’s approach [Simon89]
involves decomposing a cursive word into a pseudo-periodic (regular) signal modulated
by non-periodic (irregular) signals.

Analytical approaches represent characters explicitly in terms of relationships among
features. Some recognition algorithms perform segmentation and character recognition
first, then use a lexicon to single out the best match by simple text string matching

16

[Favata92]. Other approaches use the lexicon to drive the segmentation and character
recognition process [Schenkel94][Manke95][Govindaraju97].

Segmentation and Recognition Algorithms

Analytical recognition systems typically divide the whole recognition process into
two distinct stages: the segmentation stage which locates character boundaries, and the
character recognition stage which attempts to recognize each segmented character. An
integrated approach is also possible where segmentation and character recognition are
interwoven, typically using a dynamic time warping algorithm similar to speech recogni-
tion [Schenkel94][Manke95].

Many segmentation algorithms have been studied. [Eastwood97] describes a neural
network based approach. [Lecolinet91] presents a method based on graphemes. Ke Han
and Sethi [KeHan95] suggest a set of heuristic rules based on associations between
certain geometric/topologic features and the English language characters.

Diverse recognition algorithms are available as well. [Guyon91] and [Manke95] de-
scribe neural network approaches based on the Time Delay Neural Network (TDNN) and
the Multi-State Time Delay Neural Network (MS-TDNN), respectively. [Schenkel94]
presents a method based on Hidden Markov Models (HMMs). [Gader94] considers
applications of fuzzy set theory to handwriting recognition. A genetic algorithm that
evolves an optimum match is described in [Menier94]. Other approaches include tem-
plate matching [Kolzay71], statistical matching [Arakawa78], linguistic matching [Fu81],
alignment of letter prototypes [Edelman90], contour analysis [Yamada96], and chain
code [Kim97].

2.2.2 Pen-Based Gesture Recognition

Pen-based gesture recognition is very similar to handwriting recognition, except the
gesture alphabet may be arbitrary rather than restricted to an alphabet of characters.
[Rubine91] contains an excellent overview of gesture recognition methods, from which
some materials in the following discussion were adapted.

Taxonomy of Gestures

[Milota95] presents a taxonomy of gestures (not necessarily pen-based gestures only)
for use in multimodal interfaces.

Gestures are classified into one of three different types:

• Arbitrary gestures cannot be interpreted without being learned. They can be
referential (referring to actions, objects, circumstances, etc.) or modalizing
(referring more specifically to the individual’s opinion).

• Mimetic (imitative) gestures are iconic in nature, so that an observer can de-
duce their meaning. They can be analogical (expressing the relationship

17

between the gesture and its referent) or connotative (using one of the secon-
dary features of a referent to represent the whole).

• Deitic (pointing) gestures cannot be used without the referent being present in
the situation in which the gesture occurs. They can be specific (pointing to a
specific object), generic (pointing to a whole class of objects by pointing to an
object in that class), or mimetic deictic (pointing with an additional motion
that selects among objects, e.g., following a line to distinguish that line from
other objects).

Some gestures can be considered illustrative gestures, which may be deictic, spatiog-
raphic (outlining the spatial configuration of the referent), kinemimic (outlining the
action), or pictomimic (outlining the properties, e.g., big or small).

For the purpose of interacting with a computer interface, gestures can be classified
according to semantic categories, namely

• Manipulate (re-orient)

• Change (correct, modify, replace by, undo)

• Create or destroy

• Establish relationship

• Retrieve/store

• Name

• Confirm

Gestures may also refer to attributes of objects, including

• Intensity

• Direction

• Velocity

• Accuracy

• Size

• Orientation

• Location

Recognition Algorithms

Template matching algorithms compare a given input template to one or more proto-
typical templates of each expected gesture type. [Lipscomb91] presents an interesting
variation on template matching based on multiple templates at different resolutions.

18

The approach in [Newman79] uses dictionary lookup of zoning features, derived by
dividing space into zones and representing input strokes by the zones they traverse.

A discrimination net (or decision tree) classifies inputs represented as feature vectors
by testing features one by one using conditions at each node in a tree until a leaf node is
reached. Coleman used a hand-crafted discrimination net [Coleman69] whereas Berthod
and Maroy trained theirs from examples [Berthod79].

Statistical matching approaches derive classifiers from statistics such as average fea-
ture vector per class or per-class variances/correlations of the individual features.
Examples can be found in [Hand82] and [Rubine91].

Linguistic matching is an application of automata and formal language theory to pat-
tern recognition. An input gesture is represented by pattern primitives and composition
operators expressing the relation between the primitives. This linguistic representation is
then parsed using a grammar for each pattern class. [Fu81] describes a hybrid approach
where statistical recognition is used to classify path segments and linguistic recognition is
used to classify the pattern based on the relationships between the path segments.
[Shaw70] presents an approach based on a picture description language (PDL).

Other gesture recognition approaches include neural networks [Hollan88] and
Learning Vector Quantization (LVQ) [Shankar93].

Gesture-Based Systems

[Coleman69] describes a text editor that employs proofreader’s symbols for editing
commands. Buxton’s musical score editor [Buxton85] supports simple gestures to
indicate note duration and scoping operations. Margaret Minsky’s Button Box
[Minsky84] is a complete Logo programming environment that uses gestures for selec-
tion, movement, and path specification. [Rhyne86] presents a gesture-based spreadsheet
program. [Murase88] describes a flowchart editor that recognizes hand-drawn flowchart
symbols. Gesture-based drawing editors are described in [Kurtenbach91] and [Rubine91].

The above are applications that use only some form of pen-based gestures for input
(possibly in addition to keyboard and mouse). Systems that support voice input as well
are surveyed in section 2.4.3. It is interesting to note that from their descriptions, there
appears to be no inherent difficulty in building the equivalents of these applications using
the framework presented in this dissertation, as they all belong to the class of supported
applications described in section 1.2.

2.2.3 Gesture-Enabled User Interface Toolkits

There is a plethora of user interface toolkits that facilitate the construction of graphical
user interfaces (GUIs); however, the majority of these toolkits focus on the assemblage of
widgets (interface components) and usually support a very restricted event handling
model that does not have any provision for alternative input mechanisms other than

19

keyboard and mouse. To remedy this deficiency, several toolkits have been developed to
incorporate gesture input as an integral part of the user interface.

Some examples of systems used to construct gesture-based interfaces are HITS from
MCC [Hollan88] and Artkit from the University of Arizona [Henry90]. Dean Rubine
built the GRANDMA (“Gesture Recognizers Automated in a Novel Direct Manipulation
Architecture”) toolkit as part of his Ph.D. thesis [Rubine91]. Bohm et al. [Bohm92]
developed the GIVEN (“Gesture-driven Interactions in Virtual ENvironments”) toolkit
for 3D virtual interaction. Carnegie Mellon’s Garnet system [Myers90] did not incorpo-
rate gestures from the start; however, its “interactor” mechanism was general enough to
permit easy integration of gesture input [Landay93]. Amulet [Myers97], the successor to
Garnet, retains this functionality.

2.3 Other Input Modalities

Besides speech and pen, several other input modalities have been studied in research
literature. The following have been classified in section 1.2.1 as supported, if not as
strongly supported as speech and pen, by the work presented in this dissertation.

Lip-reading is a method to improve speech recognition by analyzing lip movement, a
visual information source tightly and synchronously coupled to the acoustic speech act.
Lip movement during a spoken utterance consists of visemes [Jackson88], the counterpart
of phonemes in acoustic speech. Acoustically confusable speech units are usually easily
distinguishable visually, hence the usefulness of lip-reading. [Bregler93] describes an
integrated acoustic/visual continuous speech recognition system based on the MS-TDNN.
[Waibel96a] contains a survey of some other systems.

3-dimensional gestures are more general than 2-dimensional, pen-based gestures but
much more difficult to process. [Fels90] describes a system that uses a Data Glove to
control a speech synthesizer. [Sturman94] contains a survey of glove-based systems. 3D
gestures can also be captured using hand modeling techniques [Rehg93][Kuch95].

Eye movement is another useful source of information because it usually serves to
identify the focus of attention while a user is performing a task. [Jacob91] outlines some
eye movement based interaction techniques. [Baluja94] describes a neural-network-based
gaze tracker that does not require bulky, intrusive headgear. EagleEyes [Olivieri95] is a
system that allows the user to control a multimedia interface by eye and head movements.

Lip-reading and gaze tracking algorithms may require a stable, constant-sized image
of the user’s face. Face tracking [Yang95] is a way to accomplish this. The face tracker
described in [Yang95] isolates a face from the background of a video image using skin
color distribution as well as shape and movement models. Face tracking also has applica-
tions in video conferencing. In addition, gaze direction information can be extracted from
the face image using a face model [Rainer97].

20

2.4 Multimodal Human-Computer Interaction

This section surveys existing research on the combination of multiple input modalities in
user interfaces. Most of the systems described here support speech input, some kind of
gesture input, and possibly eye movement input.

2.4.1 General Discussions and Simulation Studies

The Wizard-of-Oz paradigm [Salber93] has become familiar in user studies of multimo-
dal interaction. Using this approach, participants in a study are allowed to interact with a
simulated multimodal system, and a hidden operator (the “Wizard”) carries out the
desired operations. This type of simulation study is very useful when a working system is
not yet available and researchers want to obtain data about users’ interaction patterns in
order to build the actual system. The myriad multimodal simulation studies conducted
over the years have yielded a great store of important knowledge about multimodal
human-computer interaction. The results of many of these studies can be interpreted as
providing favorable support for the paradigms underlying the multimodal framework at
the core of this dissertation, as will be noted throughout this section.

Appeal of Multimodality

Many researchers have reported on the utility of combining input modalities.

Hauptmann [Hauptmann89] devised a simulation study for the combination of speech
and gestures in a direct manipulation interface and found that most people strongly prefer
combined inputs over speech or gestures alone.

Cohen et al. [Cohen89] discussed the benefits of the synergistic use of direct ma-
nipulation and natural language, pointing out that the combination overcomes limitations
of each modality when used separately. Natural language excels at specifying objects and
actions by description, whereas direct manipulation enables users to learn which objects
and actions are available in the system. In addition, graphical rendering and manipulation
of context yield a partial solution to the difficult problem of natural language anaphora.

Nakagawa et al. [Nakagawa94] evaluated a multimodal robot control simulation sys-
tem and found that the combination of speech and touch screen input helped cover up the
deficiencies of unimodal input, reduce the number of operational errors, and permit more
kind of useful operations.

Nishimoto et al. [Nishimoto94] designed a multimodal drawing tool supporting
speech, mouse, and keyboard, based on the principles of less physical movement, easi-
ness to learn, and transparency of the system. They reported that in an evaluation with
inexperienced users, the addition of speech input reduced average operation time to 71%,
the number of commands to 77%, and the amount of mouse pointer movement to 53%
compared to a keyboard-and-mouse only interface.

21

Oviatt et al. [Oviatt97b] identified performance difficulties with speech-only interac-
tion in a map task and reported a strong user preference to interact multimodally.

Chu et al.’s study [Chu97] was not strictly a simulation because the participants were
simply interviewed concerning the effectiveness of different interaction mechanisms;
however, the results also indicated that most people would prefer to combine voice
command, hand motion/gesture, and eye motion in a virtual reality based computer aided
design system.

Based on the above studies, the work reported in this dissertation rests on the as-
sumption that multimodal human-computer interaction is useful, and concentrates on the
mechanisms of multimodal interface construction.

Media Integration Issues

Bellik [Bellik97] examined the technical problems encountered when designing mul-
timodal interfaces and found that it would be necessary to take into account the temporal
relationship of events, including the response time of input devices. The same sequence
of speech and pointing events may result in entirely different interpretations depending
on how they are grouped, and the paper contends that temporal proximity may indicate a
high probability of co-references which would require merging input data from different
devices. Temporal proximity is the default input grouping mechanism in the MMApp
framework described in Chapter 4.

Oviatt et al. [Oviatt97a] reported that data collected in user studies contained enough
information to extract temporal distribution parameters that could be used to fine-tune a
temporal proximity model for input synchronization. Moreover, the results of the study
revealed many insights into what kind of multimodal combinations are likely to be found
in practice.

The authors of the study found that knowledge of the command type provided con-
siderable predictive information about its likelihood of being expressed multimodally; in
particular, spatial location commands were very likely to be composed multimodally
because pen input excels in conveying location information and graphic rendering. At a
semantic level, the spoken and written modes consistently contributed different and
complementary (rather than redundant) information. In addition, the study also showed
that 59% of all multimodal constructions did not contain any spoken deictic, only 25%
contained a spoken deictic and a corresponding pen input that overlapped in time, and
only 17% involved a simple point-to-speak pattern (drawn graphics and signs/symbols
accounted for 76% of all pen input). The authors concluded that interpretation of spoken
deictics via synchronous pointing (à la Put-That-There [Bolt80]) is unlikely to play a
large role in handling the type of multimodal combinations found in practice. This result
indicates that more flexible multimodal semantic models, such as the integration model
described later in Chapter 3, are needed to reap the benefits of multimodality.

[Loken-Kim94], [Oviatt94a], [Oviatt94b], [Robbe96], and [Oviatt97a] all report that
factors such as input modality, availability of different input means, task presentation

22

format, and user training have a significant influence over people’s language and dis-
course patterns. These considerations may play an important role in the design of
multimodal interfaces; however, the incorporation of these factors into multimodal
designs is beyond the scope of this dissertation.

Taxonomy of Multimodal Interaction

Milota and Blattner’s gesture taxonomy [Milota95] outlined in section 2.2.2 is actu-
ally presented in the context of multimodal interaction with gestures and voice. In
addition to gesture categories, the taxonomy also classifies ways in which speech and
gestures are combined:

• Parallel speech and gesture input

• For economy of utterance

• To illustrate spatial or visual attributes

• To disambiguate an utterance

• To provide redundancy

• For emphasis

• For organization

• For confirmation

• Alternating speech and gesture input

• To supply nonverbal equivalents

• Because a needed word may be unknown

• Because a time delay may have occurred

In addition, abstract relationships may be indicated by speech with examples given by
gestures:

• Relation of attributes (e.g., bigger or smaller)

• Order (including hierarchies)

• Conditionals

• Categorization or abstraction (e.g., vehicle and car)

• Selection of a set of objects

• Aggregate operations (e.g., find the maximum)

Martin et al. [Martin97] proposed a theoretical framework for studying and designing
multimodal interfaces around a definition of “multimodality” as “the cooperation be-
tween several modalities in order to improve the interaction.” There are six basic “types
of cooperation” between modalities:

23

• Complementarity: different chunks of information from the same command
are transmitted over more than one modality;

• Redundancy: the same chunk of information is transmitted using more than
one modality;

• Equivalence: a chunk of information may be transmitted using more than one
modality;

• Specialization: a specific chunk of information is always transmitted using the
same modality;

• Concurrency: independent chunks of information are transmitted using differ-
ent modalities and overlap in time;

• Transfer: a chunk of information produced by one modality is analyzed by
another modality.

Complementarity and redundancy are grouped together as “fusion.” The cooperation
types may be involved in several “goals of cooperation,” comprising

• Adaptation to users;

• Adaptation to environment;

• Intuitiveness or faster learning;

• Fast interaction;

• Recognition and understanding.

Coutaz et al. [Coutaz95] proposed similar criteria for characterizing and assessing
aspects of multimodal interaction under the umbrella of the CARE properties: comple-
mentarity, assignment, redundancy, and equivalence.

USE OF MODALITIES

Sequential Parallel

Combined ALTERNATE SYNERGISTIC

F
U

S
IO

N

Independent EXCLUSIVE CONCURRENT

Meaning
No meaning

Meaning
No meaning

LEVELS OF ABSTRACTION

Figure 1. Nigay and Coutaz’s Multimodal Design Space

Nigay and Coutaz [Nigay93] suggested a design space for multimodal systems in
terms of concurrent processing and data fusion (see Figure 1). In this design space,

24

systems are classified along three dimensions: Levels of Abstraction (Meaning or No
meaning), Use of Modalities (Sequential or Parallel), and Fusion (Combined or Inde-
pendent).

A multimodal system can be described by a set of features (e.g., the commands its
support) which are located in the design space and assigned a weight (e.g., frequency of
use). The position of the whole system in the design space is the center of gravity of its
features. The multimodal framework described in this dissertation strongly supports
systems in the “Synergistic” category; however, the other three categories are also
supported with suitable implementations of input grouping and interpretation policies.

Error Repair Strategies

In real-world situations, nothing works perfectly all the time. There are usually many
possible causes when a multimodal application fails to do the right thing: recognition
errors, interpretation errors, human errors, out-of-vocabulary words, or a combination of
the above. Logically, there are three possible strategies when a failure occurs: ignore the
error completely, let the user repeat or rephrase the failed command, or allow the user to
correct the error. The first alternative is of course untenable in any practical applications.
The second alternative is reasonable and easy to implement. The third alternative, allow-
ing error repair, is more difficult to implement but also more easily acceptable to users.

McNair and Waibel [McNair94] described an ingenious method to let the user correct
a speech recognition error by highlighting the erroneous words on the hypothesis display
and respeaking only that part. The system dynamically adjusts the recognizer’s language
model according to the context of the repaired words and recomputes the N-best list of
hypotheses.

Suhm [Suhm97] took a multimodal approach to error repair and developed an inter-
face that allows users to correct errors using speech, spelling, editing gestures (e.g., cross
to delete, caret to set insertion point, etc.), and handwriting. The combination of these
modalities is quite powerful because strengths of one modality can compensate for
weaknesses of another modality. For instance, easily confusable words may cause
frequent speech recognition errors, but those words are usually distinguishable by spell-
ing or handwriting.

2.4.2 Multimodal Integration Approaches

Early multimodal systems [Bolt80][Neal91][Koons93] were speech-driven in the sense of
using speech as the main source of semantic contributions and limiting the other modali-
ties (usually gestures or gaze) to simple deictics that disambiguate the speech input
(although [Koons93] also describes a system that allows fully symbolic/iconic gestures
instead of simple pointing).

To exploit the full potential of multimodal interaction, systems that support multiple
input channels must be fully multimodal in that all elements of a command can be in any

25

modality capable of expressing them. This is supported by all the systems listed below as
well as the semantic integration algorithm described in Chapter 3.

The Multimodal Definite Clause Grammar (MM-DCG) [Shimazu95] integrates mul-
timodal inputs by allowing grammar rules to retrieve input symbols from any number of
modalities. Data fusion requires unification of Prolog variables using Prolog predicates
embedded inside grammar rules. The embedded predicates also play the role of semantic
interpretation rules that map grammatical structures to application-specific semantics.

The semantic model proposed in this dissertation also leads to the development of a
grammar language for multimodal input modeling. However, in contrast to the MM-DCG
approach, grammars written in this modeling language does not govern the parsing of
multimodal inputs according to grammar rules. Rather, the input interpretation algorithm
is based on a connectionist network that can be trained from data, and a grammar-based
input model serves only as a starting point to instantiate such a network.

The “melting-pot” fusion mechanism in PAC-Amodeus [Nigay95] is based on map-
ping each input event to a time-stamped set of “structural parts” or semantic slots, and
fusing these melting-pot representations in a domain-independent way. The fusion of
semantic information occurs at a higher level of representation than in the semantic
integration approach described in Chapter 3, since individual input events are partially
interpreted before the fusion.

[Vo96] describes a frame-merging approach that represents a much extended, do-
main-independent version of the approach outlined in [Vo93a]. Input from each modality
is parsed and transformed into a semantic frame containing slots that specify command
parameters. The information in these partial frames may be incomplete or ambiguous if
not all elements of the command were expressed in a single modality. A domain-
independent frame-merging algorithm combines the partial frames into a complete frame
by selecting slot values from the partial frames to maximize a combined score. This is
similar in some ways to the melting-pot algorithm described above.

[Johnston97] proposes a unification-based approach for multimodal integration. Mul-
timodal inputs are transformed into typed feature structures that represent the semantic
contributions of different modalities. A unification operation then combines these typed
feature structures into a single typed feature structure that represents the interpretation.

The input integration approach proposed in this dissertation is similar to the above
algorithms in the sense that there is a general and domain-independent data fusion
mechanism underlying the input integration process; domain-dependent aspects come
into play only in the manipulation of application-specific data types.

One important difference that distinguishes the algorithm described in Chapter 3 from
the surveyed integration approaches is trainability. The connectionist network underlying
the multimodal integration algorithm proposed herein can automatically learn the map-
ping from input messages to output actions given correctly classified input examples.

26

Furthermore, the network is capable of learning incrementally and improving its inter-
pretation accuracy during actual use.

2.4.3 Actual Systems

No survey of multimodal systems would be complete without mentioning Bolt’s classic
Put-That-There system [Bolt80]. Bolt’s paper demonstrated the utility and feasibility of
incorporating pointing to disambiguate deictic references in spoken commands. However,
since then many researchers have pointed out that multimodal interaction needs more
flexibility to be successful. In particular, Oviatt et al. [Oviatt97a] described a corpus of
user study data that would not benefit greatly from disambiguating spoken deictics via
synchronous pointing.

CUBRICON [Neal91] is another system that uses pointing and natural language ref-
erences to disambiguate one another when appropriate. It is more flexible than Put-That-
There, being able to infer the intended referent of a point gesture that is inconsistent with
the accompanying natural language input.

Koons et al. [Koons93] developed a multimodal interface that integrates simultaneous
input from speech, gaze, and hand gestures (via a Data Glove). The system employs an
interesting frame-based approach to perform data fusion. Data from each input stream is
transformed into a set of time-stamped, interconnected frames that describe the structure
of the incoming data. During evaluation of the frames, missing or ambiguous information
triggers subgoals that attempts to find additional information from other modalities or to
ask the user for it. The association of information from different modalities depends on
temporal proximity determined by the time-stamps.

TAPAGE [Faure93] is a document editing system supporting voice and gesture.
Voice input serves to specify states and actions as well as objects by description. Gesture
input is used for drawing, writing, pointing out objects and positions, and producing
gesture commands that trigger selection tools. The gesture recognizer is capable of
recognizing horizontal and vertical strokes that compose a sketch of a table, and trans-
forming the sketch into a perfectly regular table.

MultiksDial [Matsu’ura94] is a multimodal, keyword-based, spoken dialogue system
equipped with multiple input channels including spontaneous speech and designation by
touch, multiple output channels of graphics and voice responses, and sensors to detect the
user’s actions and plan interactive strategies. The system is the basis of a real-world
application in a directory or map information guidance task.

HearingAid [Stoehr95] uses speech input to help resolve ambiguities and enhance its
programming-by-demonstration paradigm.

MATIS (Multimodal Airline Travel Information System) [Nigay95] is a multimodal
front-end for the ATIS task, supporting both individual and synergistic use of speech,

27

direct manipulation, keyboard, and mouse. The system is implemented in the PAC-
Amodeus software architecture described below.

AlFresco [Stock93] is a multimodal interface to an image database of Fourteenth
Century Italian frescoes and monuments. Users may refer to items by combining pointing
with linguistic demonstratives.

The Olga dialogue system [Beskow96] integrates interactive spoken dialogue, 3D
animated facial expressions, gestures, lip-synchronized audio-visual speech synthesis,
and a graphical direct manipulation interface.

JEANIE [Vo96] is a multimodal appointment scheduler built on top of a previous
version of the multimodal framework described herein. Users can employ spoken com-
mands, symbolic gestures (e.g. arrow to move a meeting), handwriting (for names and
meeting topics), or combinations thereof to schedule, cancel, and modify meetings on a
computerized calendar. Inputs from multiple modalities can supply redundant informa-
tion (e.g., cross out a meeting and say “Cancel this for me”) or complementary
information (e.g., draw a rectangle to specify the time and duration visually and say
“Schedule a meeting with John about the budget”). Multimodal integration is based on a
frame-merging approach (see 2.4.2 above).

MVIEWS [Cheyer97] is a system for annotating, indexing, extracting, and dissemi-
nating information from video streams for surveillance and intelligence applications.
Users can speak and draw to add annotations, generate reports, collaborate with remote
participants, and specify commands for object tracking, image processing, and setting
alerts. The system is implemented within the Open Agent Architecture described below.

An interesting and unique application of multimodal interaction to the visual pro-
gramming paradigm is Leopold et al.’s keyboardless visual programming interface
[Leopold97]. The system supports voice, handwriting, and gesture inputs for entering and
modifying expressions in Formulate, a form-based visual language.

2.4.4 Frameworks and Toolkits

Early multimodal systems were mostly ad hoc implementations, but in the last few years
the idea of creating a reusable framework for multimodal applications has spread.

Kamio et al. [Kamio94] developed a rapid prototype system in the form of a user in-
terface (UI) design support tool. Using the tool, developers design a multimodal UI
visually by putting UI objects on a panel and establishing links between them to specify
panel transitions that describe plan-goal scenarios (what to do when a certain event
appears). The UI design support tool then generates a script that drives the MultiksDial
multimodal interface (see section 2.4.3 above).

The toolkit described in Chapter 4 does not contain a visual interface builder. How-
ever, there is a visual grammar designer that allows application developers to construct a

28

model of the multimodal inputs an application expects, from which model customized
software modules can be generated to instantiate a multimodal application.

The Multimodal Definite Clause Grammar (MM-DCG) [Shimazu95] is the first re-
ported grammatical framework for multimodal interfaces. The major features of MM-
DCG include the capability to handle an arbitrary number of modalities as well as tempo-
ral information in grammar rules. The authors contend that temporal information, such as
input arriving time and the interval between two inputs, plays an important role in
interpreting multimodal inputs; therefore, temporal information is tightly integrated into
the grammar formulation in the form of time variables and time-out specifications. The
data fusion mechanism of MM-DCG was discussed in 2.4.2. MM-DCG rules can be
translated into Prolog predicates that parse multimodal inputs according to the grammar.

The application framework proposed in this dissertation does not rely on a grammar
to parse multimodal inputs. Rather, the underlying semantic framework is a semantic
model of multimodal integration by joint segmentation and alignment of parallel input
streams. A multimodal grammar can be constructed using the provided toolkit but its
purpose is to provide an analysis of input messages rather than to drive the semantic
interpretation process (see section 3.1).

VisualMan [Wang95] is a device- and application-independent model of selection and
manipulation using eye-gaze, voice, and manual response. The paper also describes a
prototype user interface with eye-tracker, 3D controller, voice-key detector, and keyboard
implemented using the VisualMan model to allow users to select and manipulate cubes in
2D and 3D spaces.

The PAC-Amodeus software architecture model and the generic “melting-pot” fusion
mechanism [Nigay95] form a reusable global platform applicable to the software design
and implementation of multimodal interactive systems. PAC-Amodeus defines the levels
of abstraction appropriate for performing engineering tradeoffs such as setting the
boundaries between the levels of abstraction. The core component—the Dialog Control-
ler—is a set of cooperating agents that capture parallelism and information processing at
multiple levels of abstraction. The melting-pot fusion mechanism was discussed in
section 2.4.2.

The application framework proposed in Chapter 4 also specifies a system architecture
for multimodal applications. The purpose of this system architecture is to capture a
common application infrastructure that ties together many reusable components. As such,
the proposed system architecture is probably more restrictive than PAC-Amodeus or the
Open Agent Architecture described below; however, it is well integrated with the seman-
tic model proposed in Chapter 3 and provides explicit interface specifications for the
processing of speech and pen input modalities.

SRI’s Open Agent Architecture (OAA) [Moran97] provides access to agent-based
applications through intelligent, cooperative, distributed, and multimodal agent-based
user interfaces. The system supports the creation of applications from agents that were
not designed to work together, thereby facilitating wider reuse. The supported modalities

29

include handwriting, gesture, and spoken language in addition to the traditional graphical
user interface modalities.

A rich set of multimodal interactions in the OAA is implemented by the Modality
Coordination (MC) agent. It is responsible for combining the inputs in different modali-
ties by resolving references, filling in missing information for an incoming request, and
resolving ambiguities using context, equivalence, or redundancy. The MC agent is
equivalent to a combination of input coordinator and semantic integrator in the MMApp
framework of Chapter 4.

The architectures surveyed above represent quite general multimodal frameworks that
have been successfully employed to construct several multimodal applications. However,
the framework and toolkit proposed in this dissertation still have their raison d’être. One
distinguishing feature is the multimodal semantic model that serves as a unifying theme
tying together all the components and providing uniform support for all input modalities
alike. Another feature that seems to be lacking in software architectures such as PAC-
Amodeus and OAA is the rapid prototyping of multimodal applications, which the design
process and supporting toolkit in Chapter 5 address in detail.

30

CChhaapptteerr 33
SEMANTIC INTEGRATION OF

MULTIMODAL INPUTS

This chapter describes a semantic model for a broad class of multimodal applications.
This model is based on the alignment and joint segmentation of input streams from
multiple modalities. Combining this model with a context-free grammar formulation
gives rise to the Multimodal Grammar Language (MMGL), an approach to modeling
multimodal inputs for the purpose of prototyping an application. From the semantic
model, a connectionist network based on mutual information has been developed to
produce an input alignment/segmentation that maximizes an a posteriori probability
score.

3.1 Input Modeling and Interpretation

In the absence of extensive input data collected for a given task domain, an application
developer may have to construct a model of what the user might say, write, draw, etc. in
order to implement a prototype of the application. Even if data is available (e.g., to train
the speech recognizer), the application developer may want to create a semantic model
that describes how the application would respond to each set of multimodal stimuli drawn
from the collected data. When the application is implemented and deployed, it has to
interpret user inputs, i.e., map the inputs to appropriate responses. Thus, the application
developer is faced with two distinct but related tasks: input modeling and input interpre-
tation. Let us define these two concepts more precisely.

Given the set of all possible input messages for a particular task and the desired re-
sponses, we define input interpretation as the mapping from input messages to
corresponding responses. This is modeled after the operational definition of understand-
ing in [Gorin91]. The desired response for a particular input message is its semantic
value.

A input model is a set of couples <I,S> where I is an input message and S is its se-
mantic value. The purpose of such a model is usually to describe the set of input
messages that the application is most likely to encounter in practice, so not all possible
input messages may be included. It is also possible to associate the input model with a
probability distribution function that specifies the likelihood of encountering a particular
input message.

An interpretation algorithm is a function that maps input messages to semantic val-
ues. The accuracy of such an algorithm over a set of input messages is the fraction of
semantic value assignments that match the predefined correct mapping.

31

 Typical speech-enabled applications employ a grammar-based approach that inter-
mixes input modeling and interpretation. The input model is a grammar that describes the
syntax of spoken inputs, plus a mapping that assigns semantic tags to the syntactic
elements of the grammar. The interpretation algorithm is a parser that matches each input
utterance against grammar rules to break it down into components and map them to
semantic tags, which are assembled to form the semantic value of the input utterance.
Because the interpretation algorithm is driven by the input model (i.e., the grammar), it
cannot generalize beyond the set of input messages described by the input model. The
grammar must therefore be written to maximize coverage, i.e., to parse correctly all the
input messages that the application may encounter. The more accurate and flexible the
grammar, the larger and unwieldy the input model becomes.

The limitations of the grammar language (e.g., the context-free nature of some gram-
mars) may also drive the flexibility of the grammar and the accuracy of the input model
in opposite directions. Consider the following (admittedly contrived) example:

ACTION ::= VERB OBJECT
VERB ::= buy | sell | call
OBJECT ::= coat | sofa | boss

(The ::= symbol indicates a grammar production rule that expands the left hand
side to one of the alternatives—separated by the | symbol—on the right hand
side. Non-terminal symbols are in uppercase; terminal symbols are in lowercase.)

This grammar is very flexible in the sense that you can add coverage for other verbs
and objects simply by adding words to the appropriate lines, without changing anything
in the parsing algorithm. The phrases that the user might say to the application, such as
“buy coat,” “sell sofa,” “call boss,” etc. can all be parsed. However, if used as an input
model, the grammar would also admit phrases like “buy boss,” “call coat,” etc. which are
extremely unlikely to occur in practice. If one purpose of the input model is the genera-
tion of example input messages to evaluate an application prototype, the flexibility of the
grammar is detrimental to the accuracy of the evaluation.

It follows from the above discussion that some separation between modeling and in-
terpreting user input is beneficial. The interpretation algorithm may use the input model
as a data source and a starting point for parsing input messages, but should not rely on the
input model as the only data source. In other words, the interpretation algorithm should
be able to generalize from the input model and produce reasonably accurate interpretation
even for input messages not explicitly coded into the input model. It is also clear that we
need to generalize the notion of grammar-based input modeling to encompass more than
just the speech modality.

Section 3.2 below describes a semantic model for multimodal interpretation. A
grammar-based approach to modeling multimodal input derived from this semantic
model is presented in section 3.3. A multimodal interpretation algorithm based on an
information-theoretic connectionist network is described later in section 3.4.

32

3.2 A Multimodal Semantic Model

The previous section defines input interpretation as the mapping between input messages
and their semantic values—desired responses from the application. This section refines
this notion and extends it to cover multimodal inputs by answering two questions:

1) What constitutes an input message in a multimodal application?

2) What is the semantic value of a multimodal input message?

3.2.1 Combination of Multimodal Input Signals

As mentioned in section 1.2.1, most of the conceivable input modalities used in human
communication can be interpreted as information streams. The use of the word “stream”
implies a sequence of data packets or tokens, which may be words and phrases in spoken
or written modalities, shapes in gestures, or eye fixations and saccades in gaze, etc.
Representing input data as a stream reduces 2- or 3-dimensional inputs (e.g., pen-based or
3D gestures) to a single temporal dimension. Each input stream is one-dimensional but
the combination of multiple streams gives rise to multidimensionality.

Let us consider the notion of information stream more formally. The tokens in a
stream are delivered sequentially by an information source in the classical sense of
information theory. That is, the token sequence carries information contents both within
the input channel and with respect to the output space of all possible semantic values.

The within-channel information content can be characterized by several measures. If
the value nv of the token at time n is regarded as drawn from a random variable, the

information content of that one token is the number of bits carried by the token, given by

)(log)(2 nn vPvi −=

Given a token with value nv at time n, the probability distribution of the next token

(represented by the random variable 1+nV) may be influence by nv . The information about

the distribution of 1+nV given nv can be measured by

∑
+∈

+ =
1

)(

)|(
log)|(),(21

nVv

n
nnn vP

vvP
vvPVvJ

shown in [Blachman68] to be the unique non-negative measure of how much information
a value of one random variable provides about a second one.

If two consecutive tokens are grouped into a fragment (also called a segment), we can
measure the mutual information of the tokens in the fragment:

)(

)|(
log),(

1

1
21

+

+
+ =

n

nn
nn vP

vvP
vvI

33

We can also treat fragments as “macro tokens” and compute their information content
measures as we did for simple tokens.

If input messages composed of tokens are assigned output semantic values, the in-
formation about the output provided by a single input token is

∑
∈

=
Ss

n
nn sP

vsP
vsPSvJ

)(

)|(
log)|(),(2

where S is the random variable representing the output semantic value. We can also
measure the information provided by fragments composed of multiple tokens.

When multiple input channels are involved, we can group tokens from different mo-
dalities into cross-channel fragments and compute their information contents with respect
to the output space. This leads to the notion of input alignment and joint segmentation
that will be explored further in section 3.2.2.

In summary, the token streams delivered by the input sources carry information that
contributes to the selection of an appropriate semantic value to assign to the input, hence
they are termed information streams.

Unimodal and Multimodal Input Events

The token sequence in each unimodal input stream is partitioned into input events
possibly separated by periods of inactivity (i.e., absence of meaningful data). What
constitutes an input event in the unimodal stream is application and modality dependent.
Consider speech as an example. Data coming over the speech channel may be divided
into utterances based on periods of silence or prosody information such as a drop in pitch
at the end of a sentence. In some applications it suffices to consider each utterance a
speech input event. In other applications, one or more consecutive utterances may form a
speech act that is assigned a meaning; in that case input events are complete speech acts.

We can now define a multimodal input event as a group of one or more unimodal in-
put events that are jointly interpreted, i.e., assigned a single semantic value. Thus what
we called input messages in section 3.1 are termed multimodal input events in multimo-
dal applications. They are the elements in the domain of the mapping we call multimodal
input interpretation.

Input Event Partitioning and Grouping Policies

As previously discussed, acceptable policies of how a unimodal input stream is parti-
tioned into input events depend on the application and the modality. In addition, the
above definition of multimodal input event leaves unspecified the policy that determines
when to group unimodal input events into a combined multimodal input event. We can
select particular policies on a per-application basis, but it is also possible to employ
reasonable application-independent policies.

34

In the applications presented in my previous works [Vo93a][Vo95][Vo96], speech
and pen input events start when the user begins speaking or drawing, and end when no
input signal is detected within a predefined time-out interval† (this is similar to turn-
taking in dialogs). Input events from different modalities are grouped if they occur close
together in time; i.e., if they overlap or if one event starts within a time-out interval after
another event ends (see Figure 2). Oviatt et al. [Oviatt97a] show that it is possible to
estimate typical time lags between sequential input events that should be jointly inter-
preted, based on data collected in user studies. It should also be possible to estimate turn-
taking pauses similarly, although I know of no published research on that topic. The time-
out parameters can thus be determined empirically.

time-out i n

X eve n X eve n

Y eve n Y eve n

X eve n

Y eve n

Modalit y

Modalit y

Multimodal inp u

Figure 2. Input Grouping by Temporal Proximity

In some applications, an entirely different input grouping policy may be more suit-
able. For instance, in certain domains it may be feasible to perform a preliminary
semantic analysis of the input data, determine whether pieces of information from
different modalities fit together, and group input events accordingly. In some situations it
may be preferable to let the user decide when the application should start interpreting all
the inputs accumulated so far (e.g., by pressing a “Go” button after speaking or drawing).

Among the input grouping policies outlined above, the temporal proximity model is
fairly application independent. Furthermore, experience with previously implemented
multimodal applications suggests that this model is easily accepted by users because it
feels quite intuitive. Accordingly, the temporal proximity model is the default input
grouping policy in the application framework of Chapter 4, although application develop-
ers are of course free to substitute different policies depending on the target applications.

† The motivation for this scheme originated from observations made during the demonstrations of early
systems. When a handwriting recognizer was demonstrated, visitors who tried the system were asked to
press a “Recognize” button after writing a word, but most of the time they would stop writing and then
invariably waited for the system to do something. The same thing happened during the demonstration of a
speech translation system.

35

Different Levels of Input Fusion

In deriving a semantic value for a multimodal input event, the input data from differ-
ent modalities must be combined in some way. This input fusion may happen at different
levels:

1) Fusion of raw signals. This is the lowest level of fusion because a semantic
value is derived from the combination of unprocessed signals such as speech
sounds and pen coordinates. This is difficult at best and does not present any
obvious way of describing semantic mappings in a general and domain-
independent manner; hence it will not be explored further in this dissertation.

2) Fusion of partial interpretations. This is the highest level of fusion because
each modality is interpreted separately to produce a (possibly incomplete) se-
mantic value, and these partial results are then merged to yield the complete
interpretation. [Vo96] describes an approach that employs semantic frames to
represents partial interpretations that are combined using a frame-merging al-
gorithm. This semantic representation was in fact the inspiration for the
semantic model described in this chapter. Beyond that, high-level fusion is not
covered in this dissertation.

3) Fusion of intermediate symbolic representations. This is an intermediate level
because the raw signals are converted to a more convenient representation
(such as a text string for speech input or a sequence of gesture shapes for pen
input) before being combined and interpreted together. Thus the total inter-
pretation process is split into a unimodal recognition stage (e.g., speech and
handwriting recognition) and a semantic assignment stage. The multimodal
interpretation algorithm described later in section 3.4 works at this level of in-
put fusion.

4) Hybrid multi-level fusion. Speech and pen recognition systems usually exploit
within-channel information content to improve accuracy by predicting subse-
quent symbols based on previous symbols in the data sequence (one example
is the bigram/trigram language models described in section 2.1.3). Given two
input channels, say speech and pen, one can imagine that knowing what the
user said may constrain the kind of pen gestures one expects, and vice versa;
i.e., there is cross-channel information content as well. The interdependence
between the channels suggests that a joint language model of some kind
should improve recognition accuracy beyond single-channel language models.
This joint language model must obviously be governed by the semantics of the
multimodal inputs, hence input fusion is distributed between the low level of
raw signals and the intermediate or high level of semantic assignment. How
this can be accomplished is an open question left to future research.

36

3.2.2 Meaning of Multimodal Input Events

Section 3.1 defines input interpretation as the mapping between input messages and
desired responses from the application. As discussed in section 1.2.2, the applications
targeted by the research presented in this dissertation are those that interpret user inputs
as commands or actions to perform. The user is trying to accomplish a task, and if the
application carries out the right action then we are justified in saying that it has success-
fully interpreted whatever the user said, wrote, drew, etc. The available actions should
also accept parameters that could cause actions with the same name to have different
effects. For instance, a Delete action in a word processor would not be meaningful unless
we specify what to delete by supplying some kind of parameters.

Accordingly, we define multimodal input interpretation as the mapping from multi-
modal input events (defined in section 3.2.1 above) to corresponding parameterized
actions that the application should perform in response to the input events; i.e., the
semantic values of multimodal input events are parameterized actions.

Action Frames and Parameter Slots

As previously discussed, the input from each modality can be represented as an in-
formation stream consisting of a sequence of tokens which may contribute information
towards determining the output action and its parameters. A multimodal input event can
be regarded as a set of parallel streams that can be aligned and jointly segmented such
that each part of the segmented input influences part of the interpretation (see Figure 3).
The overall semantic value is called an action frame because it specifies the action to be
carried out in response to the input. Each part of the segmented input is a parameter slot
that specifies one action parameter. The input segments in each parameter slot should
contain enough information to determine the value of the corresponding parameter.

Another way to view the alignment and joint segmentation process is to regard the
combination of input segments in each parameter slot as a cross-channel fragment in the
information streams, as briefly mentioned in section 3.2.1. The information content of the
cross-channel fragment with respect to the output space of semantic values determines
what parameter slot is the best label for the fragment.

Modality 1

Modality 2

Modality 3

PSlot 1 PSlot 2 PSlot 3

Figure 3. Alignment and Joint Segmentation of Multimodal Inputs

Consider the following illustrative example. Suppose we have a map navigation sys-
tem that allows the user to ask for information by speaking and drawing on the screen.

37

The user might say “How far is it from here to there?” while drawing an arrow between
two points on the displayed map. The speech input stream consists of the words in the
utterance whereas the pen input stream contains a pair of arrow_start and arrow_end
tokens. The interpretation of this input combination is a QueryDistance action frame
containing a QueryDistanceSource parameter slot followed by a QueryDistanceDestina-
tion parameter slot. The input streams are segmented and aligned as follows:

Speech: how far is it from here to there

Pen: arrow_start arrow_end

QueryDistanceSource QueryDistanceDestination

If the destination point is somewhere outside the displayed area, the user might say
“How far is it from here to Philadelphia?” and circle the starting point instead. In this
case the input segmentation becomes

Speech: how far is it from here to philadelphia

Pen: circle

QueryDistanceSource QueryDistanceDestination

For the utterance “How far is it from Pittsburgh to Philadelphia?” the parameter slots
would consist of speech segments only.

It should be noted that the parameter slots in Figure 3 do not have to be all distinct. It
is obvious that adjacent parameter slots in a sequence (PSlot1 and PSlot2, or PSlot2 and
PSlot3 in Figure 3) must be different, but PSlot1 and PSlot3 may be the same for instance.
This accommodates the fact that pieces of information about the same parameter may be
separated by data relevant to another parameter.

Selection of Parameter Slots

Another way to formulate the input segmentation in the above example is

Action: how far is it

Source: from <somewhere>

Destination: to <somewhere>

The advantage of this formulation is the orthogonal partitioning of the parameter
space. Any number of different questions that involve a pair of source and destination
points on the map (“how long does it take to drive,” “how many gas stations on the way,”
“are there any road blocks along the way,” to name a few) result in the same general
segmentation, where only the Action slot is different for each question.

The above is a perfectly valid parameter selection strategy. However, in the applica-
tions I developed using the design process presented in this dissertation, I have tended to
follow the pattern of the QueryDistance example above. In this scheme, the action and its
parameters are more tightly bound, such that the sequence of parameter slots implicitly

38

determines the action (e.g., QueryDistanceSource + QueryDistanceDestination = Query-
Distance). A different question involving a pair of source and destination points, e.g.,
“how long does it take to drive,” would necessitate a different parameter slot sequence
such as QueryTimeSource + QueryTimeDestination = QueryTime. The structure of the
two questions are very similar, hence the same input segment may have to be classified
under QueryTimeSource in one input event and under QueryDistanceSource in another
input event, depending on the context. This is not a problem because input tokens such as
“how far” and “how long” carry enough information content to distinguish the two cases,
and once the source (or destination) segment is correctly classified, the information
content of this classification helps constrain the value of the other segment.

The reason for this parameter selection method concerns the accuracy of the multi-
modal interpretation algorithm described later in section 3.4. In my experiments, the
orthogonal parameter selection method resulted in much lower interpretation accuracy. I
believe that orthogonal parameter selection, although theoretically elegant, can create
input-output associations that are too complex and subtle for my interpretation algorithm
to learn. This cannot be seen clearly in the above example because it is too simple, and
from a human point of view there is no obvious reason why it would be difficult to learn
mappings such as “how far is it” Æ Action and “from <somewhere>” Æ Source. How-
ever, in practice, the great variety of phrasing and word order frequently causes important
keywords to be associated with too many different contexts so that the interpretation
algorithm cannot learn the salient associations. The tighter action/parameters binding in
effect “cheats” to overcome this limitation of the interpretation algorithm by providing
more information and imposing more constraints to increase accuracy.

In summary, the semantic model presented here supports all parameter selection
strategies, but the design process based on the algorithm in section 3.4 more strongly
supports the strategy illustrated in the QueryDistance example, with tightly bound actions
and parameters.

Semantic vs. Temporal Alignment

Note that the alignment and segmentation process described above makes no mention
of any temporal constraints. (Even if the temporal proximity policy is used, it only
affects the partitioning and grouping of input events; the semantic alignment and seg-
mentation process is applied to multimodal input events after they have been partitioned
and grouped according to any policy.) The various parts of the input streams are aligned
purely based on their semantic contents. This way there is no time-alignment constraints
on the way the user interacts with the system.

It is possible to force some kind of temporal alignment based on time-stamps as-
signed to input tokens. However, if this is done without regards to semantics, we may end
up with cross-modal combinations that do not make sense, or we may have to impose
constraints on the way the user interacts with the system (e.g., a gesture must be drawn
right at the time certain words are spoken). This would severely compromise the flexibil-
ity of the user interface and undermine the justification for multimodal support.

39

Some multimodal systems [Bolt80][Koons93] rely on time-stamps to align co-
referents from different modalities (e.g., spoken deictics and pointing gestures). How-
ever, user studies such as the one reported in [Oviatt97a] have shown that when users are
free to interact multimodally with computers in any way they want, most of the time
temporal alignment will fail because of missing spoken deictics or lack of time overlap
between co-referents.

If temporal alignment is used at all, it should be used only to constrain the semantic
alignment by imposing restrictions on the possible locations of alignment boundaries
according to time-stamps†. This would be properly part of the interpretation process and
thus irrelevant in the semantic modeling stage.

3.3 Multimodal Input Modeling

As defined in section 3.1, an input model is a set of couples <I,S> specifying a set of
input messages and their associated semantic values. Usually it is not feasible to list
explicitly all the input messages covered by the model; rather, the set of input messages is
often defined implicitly by a set of rules, e.g., using a grammar.

3.3.1 Traditional Grammar Formulations

The most popular type of grammar is the context-free grammar (CFG). A CFG consists
of a set of grammar production rules that expand a non-terminal symbol to a sequence of
other symbols. Terminal symbols are not expanded further. Several rules may expand the
same symbol to different alternatives. An input sentence (i.e., a sequence of input tokens)
matches a grammar symbol if the sentence can be produced from the symbol by applying
a series of grammar production rules. The grammar is termed context-free because the
expansion of a symbol does not depend on its context (i.e., where the symbol occurs in a
sequence or what its relationship is to surrounding symbols).

A formulation equivalent to the CFG is the recursive transition network (RTN). An
RTN consists of nodes connected by labeled arcs. The arc labels may be terminal sym-
bols or names of other RTNs. Traversing an arc labeled with the name of an RTN is
similar to calling a subroutine in a programming language in that the new RTN is trav-
ersed in turn before traversal resumes in the calling RTN. An input sentence is covered
by an RTN if it can be produced by traversing the RTN from a start node to a stop node
and outputting terminal labels along the way.

† It should be possible to learn the constraint parameters by amassing statistics from user data in a way
similar to how Oviatt et al. estimated temporal proximity parameters [Oviatt97a].

40

3.3.2 The Multimodal Grammar Language

There are three deficiencies in the CFG and RTN formulations that preclude their use for
multimodal input modeling, at least without modifications:

• There is no explicit modeling of input symbols from different modalities and
how they are combined in each input message.

• There is no explicit modeling of semantic value assignment. Sometimes the
non-terminal symbols represent a mixture of syntactic and semantic catego-
ries. Often a separate mapping must be added to convert syntactic parse trees
generated by the grammar to semantic values.

• There is no probabilistic model that specifies the relative likelihood of input
messages covered by the grammar. This deficiency is easily remedied by as-
signing probabilities to alternative expansions in grammar production rules (or
alternative arcs emanating from the same RTN node).

The deficiencies of the CFG and RTN in modeling multimodal inputs can be over-
come by embedding the CFG formulation into the multimodal semantic model described
in section 3.2 above. By introducing action frames and parameter slots into the grammar
and modeling multimodal input combinations at the parameter slot level (as illustrated in
Figure 3 on page 36), we achieve two goals at once: introducing the notion of multimo-
dality and specifying the semantics of the input messages.

The result of embedding the CFG inside the multimodal semantic model is the Mul-
timodal Grammar Language (MMGL).

Multimodal Grammar Structure

An MMGL model is a grammar structure consisting of nodes and sequences. A node
plays the same role as a terminal or non-terminal symbol in the CFG. A sequence is an
ordered set of zero or more nodes. Each sequence is also labeled with a positive weight.

There are six types of nodes:

• A Toplevel represents an entire input model and contains one or more se-
quences, each of which contains exactly one AFrame;

• An AFrame represents an action frame and contains one or more sequences,
each of which consists of one or more PSlots;

• A PSlot represents a parameter slot and contains one or more UnimodalNodes
(at most one for each input modality);

• A UnimodalNode specifies a sub-grammar for a single input modality and has
the same structure as a NonTerm, with the addition of a label specifying the
modality;

• A NonTerm is a non-terminal node consisting of one or more sequences, each
of which contains zero or more NonTerms or Literals;

41

• A Literal is a terminal node containing a text string representing one or more
input tokens.

Figure 4 on page 42 shows grammar excerpts (from the design example of the
QUICKTOUR map application in Chapter 6) that illustrate all the basic building blocks.
Section 5.2 describes how the MMGL grammar structure can be implemented using an
object-oriented programming language such as Java.

It is easy to see that the NonTerm and Literal nodes compose a structure equivalent to a
CFG. Grammar production rules are represented by the expansion of NonTerms into their
constituent sequences of sub-nodes.

Multimodal semantic values are modeled by the AFrame and PSlot nodes. Defining a
PSlot as a set of UnimodalNodes for distinct input modalities models the alignment and
joint segmentation of multimodal inputs into parameter slots (see section 3.2.2). Different
PSlot nodes may represent the same parameter slot in the context of different input
messages; in this case they are assigned the same name with different numeric tags (e.g.,
ZoomInCenter(0) and ZoomInCenter(1) in Figure 4) to distinguish the instances of the
parameter slots.

The sequence weights define a probability distribution that specifies the relative like-
lihood of multimodal input combinations modeled by an MMGL grammar. The
probability that a node is expanded to one of its constituent sequences is the weight of
that sequence divided by the total weight of all the sequences that constitute the node.

42

a) Toplevel “MapNavigat b) AFrame “ZoomI n

c) PSlots “ZoomInAmount” and “ZoomInCen t

d) UnimodalNodes in “ZoomIn” PSlo t

e) NonTerms and Liter a

Figure 4. Multimodal Grammar Structure

43

3.4 Multimodal Input Integration

Given the semantic model described above, the first step in interpreting a multimodal
input event is to find an alignment and joint segmentation of the input streams. This input
integration process produces input segments labeled as parameter slots, which can be
postprocessed to extract the actual action parameters. The parameter-extraction postproc-
essing is necessarily domain-dependent, but it is possible to devise domain-independent
algorithms to integrate multimodal input streams. This section describes such an algo-
rithm based on a connectionist network.

3.4.1 Basic Mutual Information Network

Suppose we have a sequence of input tokens ,1, Mmtm �= that is to be associated with

one of several output classes Nncn �1, = . It is reasonable to select the maximum a

posteriori (MAP) hypothesis, or the output class having the greatest a posteriori prob-
ability given the input:

)(

)()|(
argmax

)|(argmax

21

21

c

21
c

n

n

M

nnM

MnMAP

tttP

cPctttP

tttcPc

�

�

�

=

=

(1)

The second line follows from Bayes’ theorem. If we make the simplifying assumption
that the input tokens are independent as well as conditionally independent given the
target output, i.e.

∏

∏

=

=

=

=

M

m
nmnM

M

m
mM

ctPctttP

tPtttP

1
21

1
21

)|()|(

)()(

�

�

then it follows from Equation (1) that

∏
=

=
M

m m

nm
nMAP tP

ctP
cPc

1c)(

)|(
)(argmax

n

(2)

This is a Bayesian classifier [Mitchell97] applied to a “bag of words” model, meaning
that the input is considered an unordered collection of independent words. Since the
logarithm function is monotonically increasing,)(xf and)(log2 xf reach their respec-
tive maximum values at the same x value for all)(xf ; thus






 +=







+=

∑

∑

=

=

M

m
nmn

M

m m

nm
nMAP

ctIcP

tP

ctP
cPc

1
2

c

1
22

c

),()(logargmax

)(

)|(
log)(logargmax

n

n

(3)

44

where])()|([log),(2 mnmnm tPctPctI = is the mutual information of input token mt and

output class nc .

The right hand side of Equation (3) can be implemented by a connectionist network.

A connectionist network is a computational structure that relies on massively con-
nected simple processors to perform complex computations. The network architecture
presented here consists of a number of input units connected to many output units. Each
unit (input or output) has an activation level. The activation of output unit nc is a

weighted sum of input unit activation levels, where an input unit mt has activation 1 if the

token mt is present in the input sequence, and 0 otherwise. The connection weight from

input mt to output nc is),(nmmn ctIw = . There is also a bias connection with weight

)(log2 nn cPw = . The output activation is thus given by the expression in Equation (3),

hence the output with the highest activation is selected as the most probable hypothesis
given the input sequence. This network architecture was first proposed by Gorin et al.
[Gorin91].

Although the simplifying independence assumption does not usually hold in practice,
this mutual information network has been shown to learn input-output associations quite
successfully [Gorin91][Miller93][Sankar93].

The input independence assumption implies that classification does not depend on the
order of the input tokens. To take into account the fact that adjacent input tokens some-
times form phrases or sentence fragments having significant information contents, we can
introduce higher-order input units which are activated when particular token sequences
occur. With the addition of units representing pairs of adjacent tokens, the mutual infor-
mation network becomes equivalent to a MAP decision rule in a first-order Markovian
setting (in which the probability distribution of each token depends only on the immedi-
ately preceding token) [Gorin91]. Input units representing fragments of three or more
consecutive tokens model longer-range dependencies in the input channel.

Connection weights of high-order input units representing fragments are computed
via excess mutual information; i.e., the connection weight from a unit representing the
fragment ml tt to the output unit nc is given by

),(),(),(nmnlnmllmn ctIctIcttIw −−=

The mutual information network architecture is depicted in Figure 5 on page 45.
Some of the connections (e.g., from 1t to 3c , from 2t to 2c and 3c , etc.) are omitted for

clarity. Input unit 23t represents the two-token fragment 32tt , while input unit 234t repre-

sents the three-token fragment 432 ttt .

Two important differences distinguish the network architecture in Figure 5 from tra-
ditional neural networks (e.g., backpropagation networks). First, the network topology is
dynamic and data-driven: input units (and their associated connections) are created only

45

when the corresponding tokens or fragments are detected in some input sequence. Sec-
ond, the high-order input units in layers 2 and above are not hidden units; the connections
from lower-order units to higher-order units simply represent the fact that a fragment
becomes active only if its constituent tokens are active in the correct order in an input
sequence.

 t234

 t23

Output Layer

Input Layer 3

Input Layer 2

Input Layer 1

 t1 t2 t3 t4

 w43 = I(t4,c3)

 c1 c2 c3

Figure 5. Mutual Information Network Architecture

Because the number of high-order input units can explode quite rapidly, we prune
away units that are not useful for classification. This can be done using a measure called
salience which is indicative of input relevancy with respect to classification [Gorin95].
The salience of a fragment f with respect to the output classes Nncn �1, = , is defined as

∑
=

=
N

n
nn cfIfcPfS

1

),()|()((4)

The above quantity is precisely the information that f provides about the random vari-
able representing the output classes, as discussed in section 3.2.1 in connection with the
notion of information streams. High-order input units representing fragments are pruned
based on their salience and the internal mutual information between the tokens in each
fragment.

While the mathematical model underlying the mutual information network is not new,
its reformulation into this network architecture is convenient for a number of reasons. A
network formulation makes explicit the conditional independence assumptions in the
model by showing separate connections from different input units to the same output unit.
The connections could be labeled with)|(nm ctP (the way Bayesian networks are

normally formulated); however, this labeling suffers from several deficiencies: there is no
scaling or normalization, input combination is multiplicative, and the associations meas-
ured by the weights can only have values between 0 and 1. Labeling the connections with

])()|(log[nnm cPctP provides a normalization factor in the form of)(ncP , results in

additive input combination, and produces weights that can be positive to indicate excita-

46

tory associations, negative to indicate inhibitory associations, or zero when there is no
association. Furthermore, Tishby and Gorin showed that this network architecture exhib-
its a dual structure (statistical and algebraic) that can be exploited to learn associations
with high confidence from very few examples [Tishby94].

3.4.2 The Multi-State Mutual Information Network

The basic mutual information network described above assigns a single label to each
input sequence. As the goal of input integration is to produce a sequence of labels (i.e.,
parameter slots) by segmenting the input, we need to extend the network to handle this
case.

As shown in the previous section, with suitable independence assumptions, the output
activation levels in the basic mutual information network can be regarded as estimates of

2log of the a posteriori probabilities)|(21 mn tttcP � . We want to develop a similar

score for input segmentations and label assignments.

Assume we have an input segmentation ksss �21 where each is is a group of adja-

cent input tokens (in the general case the group may consist of subgroups from different
modalities). We want to label each segment is with the name of an output class repre-

senting a parameter slot. Consider a possible label assignment kccc �21 , where the labels

are drawn from the list of output classes that represent all the available parameter slots.
The “goodness” of this label assignment can be evaluated using the a posteriori prob-
ability)|(2121 kk ssscccP �� . We need a method to estimate this probability.

By the definition of conditional probability,

)|()|()|(21121121212121 kkkkkkk ssscccPcccssscPssscccP ������ −−∧= (5)

We can now estimate the two factors in the above product separately and combine the
result to arrive at an estimate for)|(2121 kk ssscccP �� .

The value)|(12121 −∧ kkk cccssscP �� represents the dependence of the kth label as-

signment on both the input data and the past history of the first 1−k label assignments.
We now make the bold step of integrating syntactic and semantic probabilities in one
expression by replacing the first 1−k input segments with their respective labels to get
the equivalent input sequence kk sccc 121 −� , and stating that

)|()|(12112121 kkkkkk sccccPcccssscP −− ≈∧ ��� (6)

 The a posteriori probability expression)|(121 kkk sccccP −� turns the semantic la-

bels ic into syntactic elements in the input. This is a way of exploiting history by using

past information in new estimates. The advantage of this transformation is that

47

)|(121 kkk sccccP −� can be estimated by feeding the transformed input sequence

kk sccc 121 −� to a mutual information network.

To estimate the second factor in Equation (5), we make the simplifying assumption
that the partial output sequence 121 −kccc � depends only on the input tokens in the first

1−k segments; thus

)|()|(12112121121 −−− = kkkk ssscccPssscccP ���� (7)

Combining Equations (5), (6) and (7) yields

)|()|()|(1211211212121 −−−≈ kkkkkkk ssscccPsccccPssscccP ����� (8)

Let)|(
~

2121 kk ssscccP �� denote an estimate of)|(2121 kk ssscccP �� that satis-

fies the above recurrence relation exactly. We can use recursive decomposition to obtain

�

����

�����

=
=

=

−−−−−−

−−−

)|(
~

)|()|(

)|(
~

)|()|(
~

2121121111

11111111

kkkkkkkk

kkkkkkk

ssccPscccPscccP

ssccPscccPssccP

)|()|()|()|(
~

1112111111 scPscccPscccPssccP kkkkkkkk ����� −−−−= (9)

This is a novel way of combining between-channel information (associations between
input tokens and output classes) and within-channel information (associations among
output classes). Taking the logarithm of both sides yields

)|(log)|(log

)|(log)|(log)|(
~

log

11232132

2122112112

kkk

kk

scccPscccP

sccPscPssccP

−++
++=

��

��

(10)

Each term in the above sum is estimated by an output activation in the mutual infor-
mation network, hence the sum can be interpreted as the score of a path that goes through
the segment labels kccc �21 in order, as illustrated in Figure 6.

c3

c2

c1
log2P(c1|s1)

log2P(c2|c1s2)

log2P(c3|c1c2s3)

s1 s2 s3

Figure 6. Path Score of Input Segmentation and Labeling

Using a dynamic programming algorithm similar to the Viterbi search [Viterbi67] or
Dynamic Time Warping (DTW) [Sakoe71][Rabiner78] in speech recognizers, we can
find an input segmentation and a corresponding label assignment that together maximize

48

the path score. Multiple input modalities are accommodated by implementing the path
score maximization algorithm over more than one input dimension, where each dimen-
sion extends along one input stream. Figure 7 shows a path over two input dimensions.

arrow_end

arrow_start

how far is it from here to there

Query
Distance

Dst

Query
Distance

Src

SPEECH
PEN

Figure 7. Output Path Over Multidimensional Inputs

The above path score maximization procedure effectively adds an extra layer on top
of the basic mutual information network (see Figure 8 on page 49). Each output unit of
the mutual information network represents an output state, and the top layer produces the
best sequence of states that fits the input, in a manner reminiscent of the Multi-State Time
Delay Neural Network (MS-TDNN) [Haffner92]. The MS-TDNN uses a Time Delay
Neural Network (TDNN) [Waibel89a] to assign classification scores to inputs in a time
sequence, then employs dynamic programming to determine the best sequence of output
states with respect to the input sequence, thus combining input segmentation and classifi-
cation in a single step. The MS-TDNN has been applied to a variety of classification
problems that involve alignment and segmentation, including continuous speech recogni-
tion [Haffner92], word-spotting [Zeppenfeld93], lip-reading [Bregler93], and handwriting
recognition [Manke95].

Because of the similarity between the way the MS-TDNN augments the TDNN and
the way the network architecture in Figure 8 augments the mutual information network,
this new network architecture is called the Multi-State Mutual Information Network, or
MS-MIN.

The current implementation of the MS-MIN produces a parameter slot sequence in
only one action frame for each multimodal input event. However, it would be straight-
forward to modify the dynamic programming algorithm in the state layer to produce a
path through more than one action frame. Such an enhanced network would be able to
parse a multimodal input event that maps to a sequence of two or more actions. This
could accommodate input sentences such as “Cancel the meeting with Fred and schedule
a meeting with John” in an appointment scheduler that supports CancelMeeting and
ScheduleMeeting actions.

49

 t234

 t23

Output Layer

Input Layer 3

Input Layer 2

Input Layer 1

 t1 t2 t3 t4

 w43 = I(t4,c3)

 c1 c2 c3

 c1

 c2

 c3

State Layer

Figure 8. Multi-State Mutual Information Network Architecture

3.4.3 Training the MS-MIN

In backpropagation neural networks, the connection weights are incrementally adjusted
during training by a gradient descent algorithm to minimize a classification error function
[Rumelhart86]. In contrast, the weights in a mutual information network can be computed
directly from input-output occurrence probabilities observed in the training data, inde-
pendent of the order in which the training examples are presented, as shown in Equation
(3). These probabilities can be estimated by a simple counting procedure [Gorin91].
Section 5.6.2 describes how the weights can be automatically generated from a grammar-
based input model. Thus this network architecture enjoys a definite advantage over
backpropagation networks because the training time is drastically reduced or eliminated
altogether.

In principle, the mutual information network is capable of learning incrementally
during actual use, as demonstrated by Gorin and others [Gorin91][Miller93][Sankar93].
The MS-MIN inherits this capability; however, more experiments are needed to deter-
mine to what degree this is true in practice, when the task domains are complex and a
great amount of training data must be used to achieve adequate coverage. Section 7.2.1
outlines some test results that suggest the MS-MIN can indeed learn incrementally from
examples presented to it.

50

CChhaapptteerr 44
MULTIMODAL APPLICATION FRAMEWORK

ARCHITECTURE

There are many system components needed in the construction of a multimodal applica-
tion. Although the application details may vary from domain to domain, it is possible to
abstract the common elements into a domain-independent infrastructure. This chapter
describes the Multimodal Application Framework (MMApp), a collection of software
components and a system architecture that constitute such an infrastructure.

The software components of MMApp are implemented using three programming lan-
guages. User interface components are written in Java [Arnold96], an object-oriented
language featuring platform independence and easy network deployment over the World
Wide Web. Computation-intensive components are written in C [Kernighan88] and C++
[Stroustrup91] to take advantage of the speed offered by those languages. Some C/C++
components supply a shell based on the Tool Command Language (Tcl) [Ousterhout94],
an embeddable language that provides scripting capabilities on top of a C/C++ core.

Some of the technologies underlying the components of MMApp have been targets of
extensive research. Recognition engines for speech, gestures, and handwriting fall under
this category. Rather than duplicating the efforts already made in these fields, it is more
advantageous to harness the power of existing systems in the development of MMApp.
The contribution of this work with respect to the incorporation of existing components
consists of developing a uniform and reusable Application Programming Interface (API)
for these components, allowing MMApp to make use of their services in a generic way.
This approach enhances the modularity of the framework and enables transparent com-
ponent replacement.

4.1 Object-Oriented Concepts and Design Patterns

The design of the software components in the MMApp framework and the MMTk
workbench in the next chapter is founded upon object-oriented techniques. This section
presents a brief overview of the object-oriented concepts behind the design.

Objects and Classes

Every concept in an object-oriented system is represented by an object. Each object
has a type represented by a class which encapsulates data and operations on that data. The
data describes the state of the object and the operations (called methods) describe its the
behavior. An object is an instance of its class, hence object creation or construction is
also called instantiation.

51

A basic tenet of object-oriented design is data hiding: the data or state of an object
should only be accessed or modified via the object’s methods. Data hiding ensures that
changing the implementation of a class will not break any code that uses the class, as
long as the methods of the class and their behavior do not change.

Inheritance and Polymorphism

A class can be declared a subclass of another class (called a superclass or base class).
A subclass is said to extend (or be derived from) its superclass, because it inherits all the
data and behavior of the superclass and may add data and behavior of its own. A collec-
tion of classes related by the superclass-subclass relationship forms a class hierarchy.

A subclass may override a method inherited from its superclass by defining a method
of the same name and parameter types (which together form the signature of the method).
Because the subclass inherits the behavior of the superclass, an instance of the subclass
may be referenced as if it belonged to the superclass; in that case, a call to an overridden
method through the superclass reference must be resolved to either the superclass or the
subclass version of the method. If the method resolution takes into account only the type
of the object reference (i.e., the superclass version of the method will be called), it is
termed static binding and may be performed at compile-time. If the method resolution
occurs at runtime and looks up the correct method based on the actual type of the object
(i.e., the subclass version of the method will be called), it is termed dynamic binding.
Dynamically bound methods are sometimes called virtual methods.

If a superclass declares a virtual method that is overridden in subclasses, a call to the
method may resolve to different methods at runtime depending on the actual object type.
This behavior is called polymorphism. It is useful when some program code must perform
different operations for different object types, but the actual type of an object is not
known at compile-time.

Abstract Interface

If several classes support the same kind of operations, but each class implements the
operations differently, the classes can be declared subclasses of a common superclass.
The superclass declares methods for the operations, and the subclasses override the
methods to supply their own implementations. The sole purpose of the superclass is to
serve as a placeholder for the method declarations; no instance of the superclass will ever
be constructed. This type of superclass is called an abstract class, and the methods it
declares (for the sole purpose of letting subclasses override them) are abstract methods.

An abstract class and its abstract methods form an abstract interface. The subclasses
that override the abstract methods are concrete implementations of the interface.

Design Patterns

The influential work of Gamma et al. [Gamma95] has been instrumental in promoting
the use of design patterns as a way of facilitating object-oriented design. Design patterns

52

capture design experience in a form that people can use effectively, making it easier to
reuse successful designs and architectures.

The design of the software components described in this dissertation relies heavily on
several design patterns described in [Gamma95]:

• The Abstract Factory pattern provides an interface for creating objects with-
out specifying their concrete classes;

• The Adapter pattern converts the interface of a class into another interface cli-
ents expect;

• The Factory Method pattern defines an interface for creating an object, but
lets subclasses decide which class to instantiate;

• The Observer pattern defines a one-to-many dependency between objects so
that state changes are automatically broadcast to the dependents;

• The Template Method pattern defines a skeleton of an algorithm, deferring
some steps to subclasses;

• The Visitor pattern represents an operation to be performed on the elements of
an object structure.

Appendix C describes the above design patterns in more detail.

Unified Modeling Language

The easiest way to describe an object-oriented design is to use a graphical notation.
The Unified Modeling Language (UML) [Fowler97] offers such a notation. UML is an
emerging standard for describing software systems in terms of an object-oriented design.
This dissertation only makes use of the UML graphical notation for class diagrams;
however, UML actually encompasses much more than the class diagram notation.

Class diagrams describe classes, methods, inheritance, interfaces, and object associa-
tions. Appendix B contains a summary of the UML class diagram notation. This notation
is used throughout Chapter 4 and Chapter 5 as well as for the description of design
patterns in Appendix C.

4.2 Overall System Design

The main design goal for the MMApp framework was to construct an infrastructure that
is modular, distributed, and customizable.

MMApp Is Modular

MMApp includes a library of software components that can be assembled to create a
multimodal application. This library contains speech and pen input recorders and recog-
nizers, multimodal event handlers, interprocess communication facilities, and a user

53

interface in the form of a Java applet. The user interface includes ready-made objects that
handle input capture and synchronization, communicate with speech and pen input
recognizers, and direct the control flow of the multimodal interpretation process.

This modularity permits multimodal application developers to customize each system
component separately or even replace certain modules if the need arises. For example, a
different audio capture engine for speech recording or another speech recognizer more
suitable for the target platform could be substituted for the default components without
affecting the rest of the framework.

MMApp Is Distributed

The distributed nature of the framework serves to spread the computational load
among multiple machines, improve the responsiveness of the system, and allow resource
sharing using a client/server architecture.

Each major component of the system runs as a separate process which could be
hosted on a different machine if necessary. Computation-intensive components such as
the speech/gesture recognizers and the multimodal semantic integrator are configured as
backend servers that normally run on powerful workstations and serve multiple user
interface clients. Interface client components, which handle input capture and output
presentation and thus do not need as much computational power, are part of Java applets
that can run inside Web browsers on any machine, including PCs and network computers.

MMApp includes a communication layer that presents an abstract interface for inter-
process communication, hiding all the details of network protocols and synchronization.

MMApp Is Customizable

A major philosophy that permeates the design of MMApp is to provide defaults that
are immediately useful in application development, but always allow the developer to
override the default behavior or substitute alternate implementations to suit the require-
ments of a particular application.

The basic components of the framework can be easily adapted to different task do-
mains. To construct the user interface of a new multimodal application, it is only
necessary to derive a subclass from the supplied multimodal applet and customize the
domain-dependent parts; all the basic multimodal input handling capabilities are auto-
matically inherited.

Using the design process and the toolkit described in Chapter 5, application develop-
ers can construct a multimodal input model that serves as the starting point for the
instantiation and customization of the application. The tools used in the design process
can automatically generate a statistical language model to adapt the speech recognizer to
the target domain, as well as multimodal interpretation modules for the application.

54

Other possible customizations include the modification of gesture templates to change
the gesture vocabulary, and the substitution of a different transport protocol in the com-
munication layer for the default text-based scheme.

4.2.1 System Architecture

Figure 9 shows a block diagram of the overall system architecture.

Speech Recog n Pen Recogni Multimodal Int e

Communication L

Pen Recor dSpeech Reco r

Multimodal A p

Input Coord i

Figure 9. Multimodal Application Framework Architecture

The multimodal applet is the user interface; the applet window presents a view onto a
domain-dependent representation of application data and state in the form of objects to be
manipulated. The speech and pen recorders are responsible for capturing audio and pen
inputs and requesting the services of the speech and pen recognizers to convert the inputs
to text and gesture shapes. The input coordinator groups input events into combined
multimodal events and sends the aggregate inputs to the multimodal interpreter for
semantic integration. The communication layer provides the foundation for all interproc-
ess communication.

The current implementation of MMApp strongly supports only the speech and pen
modalities; however, other input modalities are still supported by the framework, requir-
ing only the addition of appropriate recorders and recognizers.

The major components of the MMApp framework are described in sections 4.4 to 4.7.

55

4.2.2 Component Interface and Implementation

The modular design of the MMApp framework is founded upon a clean separation
between component interface and implementation. Each system component depicted in
Figure 9 is an object that exposes a well-defined interface. Other objects communicate
with the component only through this abstract interface and do not rely on any particular
concrete implementation of the component. An entirely different implementation can be
easily inserted, provided the interface remains the same.

When existing software components (see section 4.3) are incorporated into MMApp,
their native APIs must be adapted to fit the component interfaces specified by MMApp.
Each component is wrapped inside a software layer that exposes the right interface and
internally calls the component’s native API to do the work. These “wrappers” are in-
stances of the Adapter design pattern (see Appendix C.2). In these cases, the contribution
of the present work consists of the specifications of the wrapper APIs—the component
interfaces—that make it possible to integrate diverse implementations of the same
software subsystem into MMApp in a modular and generic way. Examples of wrapper
APIs are presented in sections 4.4 and 4.5.

4.2.3 Input Processing Issues

One important appeal of multimodal systems is the promise of a flexible and natural style
of human-computer interaction made possible by the interplay among multiple modali-
ties. Because MMApp relies on speech and pen recognition subsystems to convert raw
input data into intermediate symbolic representations (words, shapes, etc.), the properties
of these subsystems have a significant impact on the perceived interactive characteristics
of the whole system. The components that compose the relevant subsystems have to be
selected with care to suit application-specific needs. The default choices in MMApp
reflect the domain-independent goal of maximizing flexibility by minimizing the number
of constraints on the users’ interaction with the system.

Speech Recognizer Selection

As explained in section 2.1, there are many types of speech recognizers. This vari-
ability does not matter greatly from the perspective of interfacing the speech recognizer
with the rest of the MMApp framework, as the main function of the speech recognizer
remains the same: converting audio data to text. However, the choice of speech recog-
nizer does affect the flexibility and generality of the interaction with the users. Discrete-
word recognizers achieve high accuracy but require the speaker to pause between words,
resulting in an unnatural style of interaction. Multimodal human-computer interaction is
attractive precisely because of the flexibility and naturalness it offers; therefore, it is
desirable to configure the speech recognizer such that there is as little constraint on the
speaking style as possible. A large-vocabulary, continuous speech recognizer would be
the most suitable for this purpose.

56

There are two large-vocabulary, continuous speech recognition systems available at
Carnegie Mellon University, namely JANUS (see section 4.3.1) and SPHINX (see
section 4.3.2). Either one of them, as well as myriad other systems available from re-
search institutions or on the market, could be installed as the speech subsystem in
MMApp. As a demonstration of the modular architecture of the MMApp framework,
wrappers for both JANUS and SPHINX are provided to implement the SpeechRecognizer
API described in section 4.4.3. It is possible to wrap this API around any other equivalent
speech recognizers.

Handwriting Recognizer Selection

The same criteria that influence the speech recognizer selection mandate the choice of
a handwriting recognizer flexible enough to let the user write in a variety of styles. This
eliminates systems that can handle only block letters or require the user to print charac-
ters in separate boxes. There exist handwriting recognition systems that can process
continuous cursive scripts [Schenkel94][Menier94][Manke95]. MMApp includes support
for the NPen++ system described in section 4.3.3. The modular design of the MMApp
framework allows the use of any other equivalent handwriting recognizer, provided that
the API is appropriately adapted.

Gesture Recognition Model

Each pen input event delivers a series of strokes—sequences of points between pen-
down/pen-up occurrences—that together make up a gesture. Much of the current research
on gesture recognition surveyed in section 2.2.2 focuses on mapping each gesture to a
single shape designation (one exception is [Kurtenbach91] which does mention “com-
pound gestures”). Unfortunately, there are many things that seem very intuitive but
cannot be expressed as a single gesture shape. For instance, the user might elect to circle
a group of objects, then immediately follow that with a symbolic gesture that specifies an
operation on the designated objects (e.g., a cross to delete the objects). With the single-
label approach, the user is forced to do this in two separate steps as two distinct pen input
events.

The MMApp framework assumes a more general gesture recognition model that sub-
sumes the single-label approach. A gesture is interpreted as a sequence of one or more
components, each of which is labeled with a shape designation. With this gesture recog-
nition model, a limited gesture vocabulary or alphabet can have great expressive power.
MMApp includes a template-based gesture recognizer that supports this model.

Integrating Gesture and Handwriting Recognition

The above gesture recognition model can be extended to incorporate handwriting rec-
ognition by classifying handwritten words as a gesture component type in addition to
existing shape types. In this model, a pen input event maps to a sequence of ges-
ture/handwriting components; gesture components are labeled with shape designations
whereas handwriting components have the label handwriting and carry an attached data

57

packet containing the recognized handwritten text. Figure 10 shows an example of a
handwritten word followed by an arrow gesture.

handwriting [“budg e arro w

Figure 10. Gesture/Handwriting Combination

The combined gesture/handwriting model is very flexible and intuitive from a usabil-
ity point of view, but its implementation reveals many difficulties. One major hurdle is
the need to distinguish handwritten words from gesture strokes. A heuristic that works
reasonably well in many cases is to invoke the handwriting recognizer on strokes that do
not closely match any shape in the gesture vocabulary. This heuristic is effective if the
handwriting is cursive and continuous as in Figure 10, but often confuses block letters
with gesture shapes. Experiments are needed in future research to evaluate the effective-
ness of this and other gesture/handwriting combination heuristics in variable settings.

4.3 Existing Software Components

This section briefly presents some existing software components that provide services
exploited by MMApp. The wrapper APIs around these components are described later.

4.3.1 The JANUS Speech Recognizer

JANUS was first conceived in 1990 as the recognition backend of a speech-to-speech
translation system [Waibel91]. Version 2 (1994) added the capability of recognizing
spontaneous speech containing hesitations, false starts, and other non-speech noises.
Version 3 (1996) restructured the recognition system as a toolkit of powerful and flexible
modules built on top of a Tcl scripting shell. This is the version supported by MMApp.
All speech recognition accuracy figures reported in Chapter 7 were obtained with JANUS
as the speech recognition subsystem.

The JANUS Recognition Toolkit (JRTk) is a flexible architecture for experimenting
with language specific phenomena [Finke97]. Raw speech data is preprocessed to extract
one or more streams of input features derived from Mel-scale, cepstral, or Perceptual
Linear Predictive (PLP) filters processed using Linear Discriminant Analysis (LDA). The
context-dependent acoustic units are modeled via continuous density Hidden Markov
Models (HMMs). The system includes explicit noise models to cope with breathing, lip-
smack, and other noises inherent in spontaneous speech. Many recent improvements have
been introduced, such as speaker normalization, polyphonic modeling, dictionary learn-
ing, morpheme-based, phrase-based and class-based language models, etc.

58

The recognition performance of JANUS has been reported in many research papers
[Lavie97][Zeppenfeld97][Woszczyna98]. On an appointment negotiation task (spontane-
ous speech), a word accuracy of 88% (German) and 77% (English) was achieved using a
5,000-word vocabulary. The accuracy is 93% for the 65,000-word North American
Business News task (speaker independent read speech). On Switchboard and Call Home,
two extremely difficult speech recognition tasks involving multi-topic spontaneous
human-human speech over the telephone line, JANUS was among the group of top
systems in 1996 and 1997 evaluations organized by NIST, with a word error rate of as
low as 26% (SWB 96 test set).

4.3.2 The SPHINX Speech Recognizer

The SPHINX speech recognition system was the product of speech recognition research
at Carnegie Mellon University in the 1980’s and 90’s. It forms the front-end of the CMU
Air Travel Information Service (ATIS) system described in [Ward95]. The version
supported by MMApp, SPHINX-II, is deployed in projects ranging from large-
vocabulary dictation systems [Alleva92] to wearable computers [Smailagic96].

The SPHINX-II system [Huang93] is based on HMMs with multiple codebooks.
Features extracted from speech data include dynamic features (LPC cepstrum coeffi-
cients, differenced LPC cepstrum coefficients, power, and differenced power) and neural-
network-based speaker-normalized features. Acoustic models include semi-continuous
HMMs, senone, and tree-based allophonic models. The search module employs multiple
threshold pruning and a hybrid search strategy that uses Viterbi search for the model state
graph and Viterbi beam search for the word level model graph. Language modeling
incorporates some experimental techniques such as long distance bigrams and modified
back-off language models.

SPHINX-II achieves 97% accuracy on the 1,000-word DARPA Resource Manage-
ment task [Huang93] and 84% on the 20,000-word Wall Street Journal task as of 1994
[Rosenfeld94]. The latter performance figure was obtained using a system similar to that
employed in MMApp, but since then much improvement has resulted from more recent
advances, including the development of SPHINX-III.

4.3.3 The NPen++ Handwriting Recognizer

The NPen++ on-line handwriting recognition system [Manke95][Manke98], developed
by Stefan Manke at University of Karlsruhe, is writer independent and can handle any
common writing style—cursive, hand-printed, or a mixture of both. High recognition
performance can be achieved even with dictionary sizes up to 100,000 words, without
training or adaptation for a particular writer. This is achieved by exploiting dynamic
writing information (i.e., the temporal sequence of data points recorded on pen input
devices).

NPen++ employs robust preprocessing techniques to transform the sequence of data
points into a sequence of N-dimensional feature vectors. The original sequence is first

59

resampled using equidistant points and smoothed in order to remove sampling noise. The
words are then rotated and scaled using baseline and centerline information derived by
regression. Finally, feature vectors are extracted from the normalized coordinate se-
quence. The features include relative x-y movements, curvature, writing direction, and
context-bitmaps representing low-resolution, bitmap-like descriptions of each coordi-
nate’s proximity. The context-bitmaps are local in space but global in time and serve to
encode temporal long-range context dependencies that cannot be modeled by the other
features which are strictly local.

The recognition component integrates recognition and segmentation of words into a
single neural network architecture originally proposed for continuous speech recognition.
This Multi-State Time Delay Neural Network (MS-TDNN) combines a high-accuracy
pattern recognition network with a non-linear time alignment algorithm for finding
strokes and character boundaries in isolated handwritten words.

NPen++ has been tested on writer independent recognition of isolated words with
dictionary sizes from 1,000 to 100,000 words. Word recognition rates range from 98.0%
for the 1,000-word dictionary to 91.4% on a 20,000-word dictionary and 82.9% for the
100,000-word dictionary without using any language model.

4.3.4 The NetscapeSRec Speech Recorder Plug-In

The Netscape Navigator browser supports dynamically loaded modules that extend the
capabilities of the base software. These so-called plug-ins can be accessed by Java
applets running inside the browser. Unlike Java applets, the plug-in modules are free
from security restrictions because they employ native C code, making it possible for
plug-ins to access low-level system services that are hidden from applets.

NetscapeSRec is a Netscape plug-in written by Xing Jing (with collaboration from
Weiyi Yang for the Windows 95/ NT version) at the CMU Interactive Systems Lab to
provide speech recording capabilities directly accessible by Java applets [Jing97]. When
the browser loads a Hypertext Markup Language (HTML) page containing an <embed>
tag that references the NetscapeSRec plug-in, the browser instantiates a Java object that
represents a handle on the plug-in. Applets instantiated on the same HTML page can now
record speech by invoking the plug-in object’s native methods, which in turn transfer
control to native C code in the plug-in module.

The NetscapeSRec plug-in does not require a separate process to be started and
maintained as is the case with the SRecServer program described in section 4.4.1 below.
Recording functionality automatically becomes available once the browser loads the
appropriate HTML document. However, access to this functionality is restricted to clients
written in the Java language to run as applets inside the browser.

60

4.4 Speech Components

The speech subsystem of MMApp consists of the SpeechRecorder and the SpeechRecog-
nizer components. The SpeechRecorder provides audio capture and playback capabilities,
while the SpeechRecognizer is responsible for mapping spoken inputs to text strings. Both
the SpeechRecorder and SpeechRecognizer are abstract interfaces represented by abstract
base classes. Concrete implementations of SpeechRecorder and SpeechRecognizer are
subclasses that extend the abstract base classes using object-oriented inheritance. Differ-
ent audio capture and recognition engines can be plugged into the system in a modular
fashion without changing a single line of application code because clients of the speech
subsystem see only the abstract interfaces. MMApp includes SRecServer—a program
that exports speech recording services over the network—as well as support for the
NetscapeSRec plug-in described in section 4.3.4. Wrappers are included to support both
the JANUS and SPHINX speech recognizers.

4.4.1 The SRecServer Speech Recorder

SRecServer is a stand-alone program that exports speech recording services. It was
developed for early multimodal applications at the CMU Interactive Systems Lab and
later integrated into MMApp. Client applications that need to record speech input can
send requests to SRecServer over the network. Client/server connections use Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) sockets. Service requests are simple text
strings, hence client programs can be implemented in any language. SRecServer is also
capable of playing back previously recorded speech.

The actual data transfer between the audio hardware and the computer memory is
normally controlled by a low-level platform-dependent audio driver. SRecServer supports
several types of audio drivers and hides their differences behind a high-level interface.
Client programs need not know what audio platform is being used for speech recording.

SRecServer has the disadvantage of requiring an extra computer process to be started
and maintained, unlike the plug-in described in section 4.3.4 above. However, there is no
language-dependent requirement on the part of client applications, and a single SRec-
Server instance can service multiple clients.

There exist versions of SRecServer for Sun SparcStations running Solaris, Hewlett-
Packard workstations running HP-UX, DEC ALPHA workstations running Digital Unix,
and Intel PCs running Linux.

4.4.2 The SpeechRecorder Interface

Figure 11 on page 61 is a class diagram that shows the SpeechRecorder interface in UML
notation (see Appendix B).

61

SpeechRecorder is an abstract base class that exposes an interface for speech recording
and playback. The two concrete subclasses, SocketSpeechRecorder and PluginSpeechRecor-
der, are wrappers around the previously described speech recording programs.

SocketSRecPropEditor PluginSRecPropEditor

return new SocketSRecPropE d return new PluginSRecPropE d

SpeechRecorder

recordStart()
recordStop()
recordAbort()
getRecordStatu s
getUtterance()
playStart()
playStop()
getPropertyEdi t

SocketSpeechRecorder

getPropertyEditor()

PluginSpeechRecorder

getPropertyEditor()

SRecPropEditor

setSampleRate(
setRecordGain(
setPlayGain()
setSilenceThre s
setSilenceTime o

Figure 11. SpeechRecorder Interface

The SpeechRecorder API consists of methods to control speech recording/playback
and adjust recording parameters. Calling recordStart() puts the SpeechRecorder in listening
mode; speech data is not actually saved until the signal level exceeds a silence-detection
threshold†. Recording ends when recordStop() is called or when the signal level falls
below the threshold for longer than a preset time-out, indicating that the user has stopped
speaking. Listening and recording state transitions are reported by getRecordStatus().
getUtterance() retrieves the recorded speech data. playStart() and playStop() controls the
playback of previously recorded speech. getPropertyEditor() returns an object that knows

† Setting the threshold to zero results in immediate recording mode.

62

how to change the recording parameters of the SpeechRecorder; the exact type of the
returned SRecPropEditor object is left for SpeechRecorder subclasses to specify using the
Factory Method design pattern (see Appendix C.3).

SocketSpeechRecorder adapts the SpeechRecorder API to the service interface exported
by SRecServer (see section 4.4.1). Calls to SpeechRecorder methods are converted to
SRecServer requests and sent to the server program via TCP/IP sockets. SocketSpeechRe-
corder creates a SRecPropEditor subclass that knows how to set recording parameters by
sending SRecServer requests.

Similarly, PluginSpeechRecorder adapts the SpeechRecorder API to the NetscapeSRec
interface (see section 4.3.4) by routing API method calls to the plug-in. The SRecPropE-
ditor subclass created by PluginSpeechRecorder also uses the plug-in API to adjust
recording parameters.

4.4.3 The SpeechRecognizer Interface

The class diagram in Figure 12 shows the SpeechRecognizer interface.

JanusSpeechRecognizer

SpeechRecognizer

start()
processData()
endOfData()
abort()
getCurrentHypo()
getFinalHypo()

SphinxSpeechRecognizer

Figure 12. SpeechRecognizer Interface

SpeechRecognizer is an abstract base class that exposes an interface for speech recog-
nition. The two concrete subclasses, JanusSpeechRecognizer and SphinxSpeechRecognizer,
are wrappers around the speech recognition systems described in section 4.3.

A recognition job begins when start() is called. processData() should then be repeatedly
invoked to transfer speech data to the recognizer, followed by a call to endOfData() at the
end of the speech data stream. getCurrentHypo() can be called at any time to retrieve the
best recognition hypothesis given the input data up to that point. After the completion of
data transfer, getFinalHypo() retrieves the best recognition hypothesis for the entire input
utterance.

JanusSpeechRecognizer adapts the SpeechRecognizer API to the JANUS API, and
SphinxSpeechRecognizer does the same for SPHINX. Both JANUS and SPHINX require
the raw speech data to be preprocessed using digital signal processing (DSP) algorithms

63

to compress each frame (block) of speech data down to a few feature values. The two
speech recognition systems support different feature sets and data transfer protocols, but
the adapted APIs handle the differences in a manner transparent to clients of the
SpeechRecognizer API.

4.5 Pen Components

The pen subsystem of MMApp consists of a PenRecorder which captures pen strokes and
a PenRecognizer which maps pen input to a sequence of gesture/handwriting components.
As with SpeechRecorder and SpeechRecognizer, PenRecorder and PenRecognizer are
abstract base classes that are extended by concrete implementation subclasses for differ-
ent pen input capture and recognition engines. MMApp includes two pen recorders, one
implemented in Java and the other configured to export pen recording services over the
network for X Windows applications. The TmplGRec gesture recognizer provides
gesture recognition services. A wrapper is included to support the NPen++ handwriting
recognizer.

4.5.1 The XPRecServer Pen Recorder

The XPRecServer program complements SRecServer (see section 4.4.1) in that it exports
pen recording services from a stand-alone server process in much the same way SRec-
Server exports speech recording services. The program currently runs only in the X
Windows graphical environment.

XPRecServer supports several low-level pen device drivers. The default driver allows
the mouse to be used for pen input. Using the mouse as a pen input device is a universal
hardware-independent solution because touch-sensitive screens and digitizing tablets
normally come with drivers to simulate mouse input. XPRecServer also provides direct
support for some digitizing tablets and touch-sensitive screens for which mouse-
simulation drivers are not available.

Application windows requiring pen input capabilities must be registered with
XPRecServer. The program uses the registered window handles in two ways:

• If the mouse is used for pen input, XPRecServer intercepts mouse events on
the target windows using X Windows pointer grabbing functions;

• As pen strokes are being recorded, XPRecServer tracks the mouse movements
and draws “electronic ink” traces on the target windows to provide visual
feedback of the pen recording process.

Using XPRecServer for pen recording involves the same tradeoffs as those listed for
SRecServer in section 4.4.1: an extra computer process must be started and maintained,
but a single XPRecServer instance can service multiple clients, and there are no special
requirements for the client applications except that they must run on X Windows. The
last point can be eliminated if XPRecServer is ported to other windowing environments

64

such as MacOS or Windows 95/Windows NT. The techniques used in XPRecServer
should be applicable in any windowing environments that allow mouse event interception
and drawing operations given a window handle.

4.5.2 The TmplGRec Gesture Recognizer

The gesture recognizer integrated into MMApp is an experimental system described
briefly as part of the JEANIE multimodal calendar application presented in [Vo96]. It
uses template matching to recognize individual gesture components and dynamic pro-
gramming to produce the best gesture sequence. As is the case with the speech
recognition subsystem, the modular design of the MMApp framework permits the use of
other gesture recognizers as long as their APIs are appropriately adapted.

Template-Based Gesture Recognition

Given one or more pen strokes, each consisting of a sequence of coordinates, the
gesture recognizer attempts to classify the stroke combination as one of many possible
shapes. Each shape class in the gesture vocabulary is represented by one or more tem-
plates, which are simply prototypical gestures of that shape. The input gesture is
compared to each template by first applying a transformation that deforms the gesture to
match the template as closely as possible, then computing the residual difference using a
mean-squared-error (MSE) measure. Allowable transformations are combinations of
translation, rotation, and linear scaling along each coordinate axis. The template that
produces the lowest residual difference below a set threshold is considered the best
match. The input gesture is labeled as “unknown” if all the residual difference scores are
greater than the threshold.

Stroke Preprocessing

In order to reduce the number of template comparisons and make it easier to imple-
ment the deformation algorithm, the gesture strokes are preprocessed using a vertex
reduction algorithm as illustrated in Figure 13. Each stroke is first resampled so that
adjacent points are uniformly spaced. “Sharp corners” are identified by analyzing the rate
of change of the curvature at each point of the stroke. The portions of the stroke between
consecutive corners are further reduced to a few sample points; in effect the curves are
approximated by straight segments. The number of segments are selected based on
curvature, and their endpoints are chosen to minimize the mean squared error between the
original curve and the approximating segment sequence.

The preprocessing step reduces each gesture stroke to a few straight segments. The
segment counts of the strokes in the input gesture constitute a signature of the gesture.
Only templates with matching signatures are compared to the input, eliminating unneeded
computation.

65

resample

detect
corners

piecewise
linearize

Figure 13. Preprocessing of Gesture Strokes

Template-Matching Deformation

To be compared to a template, a preprocessed gesture is deformed using a combina-
tion of translation, rotation, and scaling transformations. As scaling and rotation do not
change the centroid, the gesture is first translated so that its centroid coincides with the
centroid of the target template. Suppose the translated gesture consists of the points

),(11 yx …),(nn yx , or in matrix form:

[] 







==








=

i

i
in

n

n

y

x
vvvv

yyy

xxx
V where21

21

21
�

�

�

Scaling by a factor of xs along the x-axis and a factor of ys along the y-axis is

equivalent to multiplying the coordinate matrix by the scaling matrix









=

y

x

s

s
S

0

0

while rotating by an angle θ is equivalent to multiplying by the rotation matrix








 −
=

θθ
θθ

cossin

sincos
R

The transformed gesture is thus

[] TVSRVuuuU n === �21 (11)

where the combined transformation matrix is








 −
==

θθ
θθ

cossin

sincos

yy

xx

ss

ss
SRT (12)

66

and









+
−

==
θθ
θθ

cossin

sincos

yiyi

xixi

ii sysx

sysx
Tvu (13)

The residual difference between the transformed gesture and the target template

[]n
n

n uuu
yyy

xxx
U ~~~

~~~

~~~~
21

21

21
�

�

�

=







=

is the mean squared error

∑

∑

=

=

−++−−=

−=

n

i
iyiyiixixi

n

i
ii

ysysxxsysx

uuE

1

22

1

2

])~cossin()~sincos[(
2

1

~
2

1

θθθθ
(14)

This is a function of 3 variables (xs , ys , and θ) that can be minimized using gradient

descent. The minimum value of the mean squared error E is the match score for the
corresponding template.

Gesture Sequence Segmentation

The above algorithm finds the best match for a series of one or more strokes. Given a
sequences of strokes in a pen input event, we must find the best sequence of templates
that match the input. To this end, groups of consecutive strokes are extracted from the
input gesture and the best match is found for each group. A segmentation of the input
gesture into successive groups of strokes is assigned a score computed by summing the
match errors of the stroke groups. To induce a preference for stroke combinations over
individual strokes, a transition penalty is added to the score whenever a new stroke group
is started in the gesture segmentation. A dynamic programming algorithm finds the
segmentation with the lowest score.

As an illustrative example, consider the preprocessed gesture shown in Figure 14 on
page 67. No group of 3 or more consecutive strokes has a close match. The match scores
for stroke groups of length 1 or 2 are organized in a score matrix as shown. The dynamic
programming algorithm finds the lowest-scored path through the matrix. The final result
is the label sequence cross–arrow with a recognition score of 0.7.

The above segmentation algorithm assumes that gesture components are cleanly sepa-
rated at stroke boundaries. It is possible to extend the algorithm to detect mid-stroke
component transitions, at the cost of added complexity and increased computation time.

67

Stroke 1Stroke 2Stroke 3Stroke 4
line 0.00 0.00 0.00
cross 0.14
triangle 0.23
arrow 0.31

Transition penalty = 0.25
Best path score = 0.14 + 0.25 + 0.31 = 0.7

Figure 14. Gesture Recognition Example

Basic Gesture Vocabulary

The default set of templates in the gesture recognizer includes the shapes listed in
Table 2.

Name Examples

Point

Circle

Rectangle

Triangle

Line

Arc

Arrow

Cross

Table 2. Basic Gesture Vocabulary

This gesture repertoire is small but surprisingly expressive in an intuitive way. A
pointing gesture can indicate a single object or screen location. Circling one or more
objects is a natural way of grouping or calling attention to them as a whole. A rectangle
can be used to delineate an approximate area of the screen. A line or an arrow serves to
join two objects or locations. An arrow can also indicate a direction or movement. A
cross can designate a screen position in an X-marks-the-spot fashion. Crossing something
out to indicate removal is quite intuitive as well.

68

Combinations of basic shapes extend their semantics in useful ways. One example is
a circle around a group of objects, followed by a cross or an arrow; the cross indicates
that all the circled objects should be deleted, whereas the arrow signifies that the objects
should be moved as a group in the indicated direction. Another example is an arrow to
signify a move operation, followed by a cross to indicate the precise destination point.

It should be noted from the previous examples that a gesture by itself may be am-
biguous; however, additional information from other modalities—speech for instance—
may serve to disambiguate and select the correct meaning of the gesture. This is one
important aspect of the appeal of multimodal interaction.

Gesture Recognition Accuracy

TmplGRec was tested on 500 gestures drawn by 5 people. Each person drew 20 sam-
ples of each of 5 shapes: arrow, circle, cross, rectangle, and triangle. Table 3 lists the
recognition accuracy for each gesture shape.

Shape Accuracy (%)

Arrow 74

Circle 80

Cross 49

Rectangle 69

Triangle 93

Overall 73

Table 3. Gesture Recognition Accuracy for 5 Shapes

An analysis of the confusion matrix (which tabulates how many times an example of
gesture A is mistakenly recognized as gesture B) reveals that 39% of cross gestures were
classified as two separate lines, and 25% of the rectangles were classified as circles. Most
of the errors on crosses can be easily eliminated by adding templates and tweaking
transition penalties. However, the errors on rectangles indicate an inherent weakness in
the template-matching algorithm: reducing each pen stroke to a small number of line
segments effectively blurs the distinctions between rectangles and circles!

TmplGRec was developed to satisfy the requirement of recognizing shape sequences
instead of single shapes. In hindsight, it seems perfectly feasible to implement the dy-
namic programming segmentation algorithm on top of a proven single-shape recognizer
such as Dean Rubine’s [Rubine91] instead of the simplistic template matcher. However,
the TmplGRec gesture recognizer did serve as a concept demonstration of gesture inte-
gration into the multimodal application framework.

69

4.5.3 The PenRecorder Interface

Figure 15 shows a class diagram for the PenRecorder interface.

JPanelPRecPropEditor

JavaPanelPenRecorder

getPropertyEditor()

XWinPRecPropEditor

XWindowsPenRecorder

getPropertyEditor()

return new JPanelPRecPropE d return new XWinPRecPropEdi t

PenRecorder

recordStart()
recordStop()
recordAbort()
getRecordStatu s
getSketch()
playStart()
playStop()
getPropertyEdi t

PRecPropEditor

setSampleRate()
setPenUpTimeou t
setLineWidth()
setInkColor()

Figure 15. PenRecorder Interface

As in the SpeechRecorder class hierarchy, PenRecorder is an abstract base class that
defines the relevant interface implemented by concrete subclasses. It requires an input
device capable of delivering a stream of pen position coordinates as well as indications of
pen-up/pen-down states (pen strokes are traced only during pen-down periods). Calling
recordStart() enables the PenRecorder to retrieve data from the input device, but actual
recording does not start until the first pen-down event occurs. Point coordinates and pen-
up/pen-down notifications received from the input device are accumulated as pen strokes
until either recordStop() is called or the pen remains up for longer than a preset-timeout,
indicating that the user has finished drawing or writing. While pen strokes are being
recorded, visual feedback is provided in the form of “electronic ink” traces that simulates
the experience of scribbling on paper with a real pen. getSketch() retrieves the recorded

70

pen data after recording stops. Recorded pen strokes can be played back on the screen
using playStart() and playStop(). The PRecPropEditor object returned by getPropertyEditor()
can change recording parameters and appearance properties of the electronic ink feed-
back.

Since the default user interface is written in Java and employs the Java Abstract Win-
dow Toolkit (AWT), the easiest way to incorporate PenRecorder functionality is to build
upon the AWT as well. JavaPanelPenRecorder is implemented as an AWT Panel container
that captures mouse clicks and drags as pen input data and draws pen stroke traces on top
of every widget (interface components) contained in the Panel. Because any AWT widget
can be placed inside the Panel container, pen-input capture capabilities can be trivially
added to any part of the user interface. As explained in section 4.5.1, using the mouse as
a pen input device automatically provides support for all other pen input devices that can
simulate mouse input with appropriate drivers.

XWindowsPenRecorder is a wrapper around XPRecServer (see section 4.5.1). It con-
verts PenRecorder method calls to appropriate service requests transmitted to the server
program via TCP/IP sockets. This PenRecorder implementation is useful for X Windows
applications that do not use the default Java applet user interface.

4.5.4 The PenRecognizer Interface

The class diagram for the PenRecognizer interface is depicted in Figure 16. The PenRec-
ognizer API is parallel to the SpeechRecognizer API.

TemplateGestureRecognizer

PenRecognizer

start()
processData()
endOfData()
abort()
getCurrentHypo()
getFinalHypo()

NPen++HandwritingRecognizer

HandwritingRecognizer

start()
processData()
endOfData()
abort()
getCurrentHypo()
getFinalHypo()

Figure 16. PenRecognizer Interface

TemplateGestureRecognizer is a concrete subclass that adapts the PenRecognizer API to
the TmplGRec system described in section 4.5.2. API method calls are converted to
service requests and sent via TCP/IP sockets because TmplGRec is installed as a server.
The gesture recognizer can be configured to detect potential handwriting strokes and
forward them to the NPen++ handwriting recognizer (described in section 4.3.3) through
the NPen++HandwritingRecognizer wrapper. Recognition results are sequences of ges-
ture/handwriting components.

71

4.6 Communication Layer

The distributed modules in MMApp communicate with each other over a communication
layer that hides most of the networking details. Inter-module communication follows a
client/server model that allows location-transparent access to services. API invocations
on distributed components are forwarded across the network as remote service requests.

The communication API is implemented in a Java class library. The functionality of
the communication layer is similar to that supported by Java Remote Method Invocation
(RMI) or Common Object Request Broker Architecture (CORBA). MMApp incorporates
its own communication API instead of relying on RMI or CORBA for the following
reasons:

• At the time the first version of MMApp was written, Java RMI had still not
been released, and CORBA was not in widespread use;

• RMI supports communication among Java processes only, whereas some
components of MMApp are written in C/C++ and Tcl;

• CORBA does support multiple languages but is fairly complicated to use and
contains far more capabilities (which carry associated overhead) than MMApp
requires.

However, isolating interprocess communication into a separate layer means that fu-
ture versions of MMApp could be implemented on top of CORBA (or equivalent
distributed object models) with little difficulty.

4.6.1 Client/Server Model

In MMApp, access to services such as speech and pen recording and recognition is
regulated by objects that implement the Server interface, and components that make use
of such services are represented by objects that implement the Client interface. A Client
can invoke a Server method to send a request for a particular service and receive a result
object in return. A service request can be synchronous, meaning that the method call
blocks until the result is received, or asynchronous, in which case the method calls
immediately returns a handle that can be used to access the result when it becomes
available.

Sophisticated systems for remote method invocation usually include automatic mar-
shalling/unmarshalling facilities which pack and unpack arbitrary method arguments and
return values as needed for data transfer. The MMApp communication layer does not
handle this automatically; if arguments are required for a particular service request, they
have to be packaged as a single request object by the application code.

72

4.6.2 Remote Service Request

If the actual server program is running in a separate process, Server method calls are
forwarded as remote services requests. This is done transparently from the perspective of
the Client, which simply invokes Server methods as usual. Underneath, the requests may
be serviced by a local object or relayed to another process via an interprocess pipe (if the
other process is on the same machine) or a TCP/IP socket (if the other process is on
another machine across the network).

Client and Server Proxies

Transparent remote service requests are implemented by Proxy objects that represent a
remote Server or Client. A server Proxy implements the Server interface by forwarding
requests over a data stream connected to the remote process; a client Proxy does the same
for results from those service requests. Proxy is actually an abstract base class; concrete
subclasses implement different types of data stream depending on the communication
channel (interprocess pipe or TCP/IP socket). The way request and result objects are
encoded in the data streams depends on the transport protocol, which can be specified
when the Proxy is created.

Transport Protocols

A transport protocol is a specification of how requests and results are encoded to be
transmitted over the communication channel. This is represented by a Transport abstract
base class, the interface of which includes methods to send and receive Request and Result
objects. Different transport protocols are implement as concrete subclasses of Transport.
Following the Abstract Factory design pattern (see Appendix C.1), MMApp objects make
use of a TransportFactory class which delegates to its subclasses the instantiation of the
right Transport subclass. Changing the transport protocol is as simple as specifying a
different TransportFactory object during initialization.

Because MMApp includes components implemented in several different program-
ming languages, the default transport protocol is text-based so that Java, Tcl, and C/C++
components can communicate with one another easily. Service requests are simple text
strings that specify commands to be executed. This simple scheme suffices for all the
applications that have been built so far using MMApp; however, application developers
are free to implement other transport protocols if the need arises. For instance, for com-
munication among Java-only modules, a Transport subclass that uses the object
serialization mechanism built into Java would be able to transmit and receive arbitrary
Java objects instead of just text strings.

4.6.3 Switchboard-Based Communication

The default user interface in MMApp is implemented as an applet (see section 4.7). This
creates a small obstacle to distributing components across the network. Due to Java
security restrictions in current Web browsers, an applet can only communicate with its

73

Web server machine. Because distributed MMApp modules may reside on arbitrary
machines depending on available resources, the user interface module may not be able to
communicate directly with the servers it needs.

To work around this problem, the communication layer includes a central router pro-
gram called the Switchboard, which acts as a naming directory service and a request
router. Server processes can register themselves with the Switchboard; client requests are
sent to the Switchboard and relayed to the appropriate registered servers identified by
their registered names. Running the Switchboard process on the Web server solves the
applet security problem because the user interface module in the applet can communicate
with the Switchboard, and through it, with all the registered servers.

The API to communicate with the Switchboard is implemented in both Java and Tcl
so that every component in MMApp can make use of it, not just the Java components.
The Switchboard program itself is written in Java and utilizes multithreading to support
multiple clients and servers at the same time.

4.7 Graphical User Interface

MMApp includes a group of components that can be assembled into a customizable
graphical user interface. The visual interface components are implemented in Java to take
advantage of platform independence, object-oriented code reuse by inheritance, and
World Wide Web deployment capability. The default user interface is a Java applet that
can be subclassed to add application-specific functionality. Implementing the user
interface as an applet has many advantages:

• Such an applet can be widely deployed over the World Wide Web to take ad-
vantage of the distributed architecture of the MMApp framework;

• The plug-in mechanism in modern Web browsers greatly facilitates platform-
specific installation procedures such as those needed to install drivers for
speech recording;

• The object-oriented nature of Java makes it very easy to customize the user
interface for different applications and still inherit basic multimodal input
handling capabilities.

Figure 17 on page 74 shows a screen capture of the multimodal applet interface in a
map navigation application. Except for the map displayed in the largest part of the
window, everything is inherited from the MultimodalApplet base class in the MMApp
library. The sketch underneath the picture depicts the layout of various components in the
interface.

The next several subsections describe the components that constitute the user inter-
face. Although MMApp includes a default user interface in the form of an applet, the
components are fully reusable individually. If required, application developers are free to

74

create an entirely different user interface and still make use of the components offered by
the framework to shorten development time.

SpeechPanel

Undo buttonStatus line

PenPanel

Figure 17. Multimodal Applet User Interface

75

4.7.1 SpeechPanel

The SpeechPanel is a visual interface component that streamlines access to speech re-
cording/recognition capabilities. It occupies the bottom of the applet window in Figure 17
and consists of a SpeechButton on the left of a hypothesis display. The SpeechPanel is
configured with a SpeechRecorder at object construction time and thereafter performs
speech recording operations through the SpeechRecorder abstract interface, no matter
what concrete implementation of SpeechRecorder is actually used.

The speech recording/recognition process cycles through four states: inactive, listen-
ing, recording, and waiting for result (see Table 4). The current state is reflected by the
icon on the SpeechButton, which provides a visual indicator of the progress of speech
input processing. Clicking the SpeechButton normally puts the speech subsystem in
listening mode, waiting for the user to speak. The speech subsystem enters recording
mode when the audio signal level indicates the user has started speaking, and stops the
recording when a silence of a certain length is detected, as described in section 4.4.2. At
this time the SpeechRecognizer is still working on the recorded data, so waiting mode lasts
until the final recognition hypothesis is produced. During the recording and waiting
periods, partial hypotheses reported by the SpeechRecognizer are displayed in the text
field beside the SpeechButton, as is the final hypothesis produced at the end.

Icon State Description

inactive Speech recording is disabled.

listening
The SpeechRecorder is activated and waiting for the user
to speak.

blink
recording

The user has started speaking and speech data is being
recorded for recognition.

waiting for result
The user has stopped speaking and the SpeechRecogn i
is working to produce the final hypothesis.

Table 4. Speech Recording/Recognition States

The default behavior described above can be changed by configuring threshold and
silence time-out parameters. For convenience, the SpeechButton includes an Auto-stop
property that enables the default behavior when set. If Auto-stop is not set, the
SpeechButton manipulates SpeechRecorder parameters internally such that pushing the
button immediately starts recording mode which lasts until the button is pushed again,
regardless of the audio signal level. Another SpeechButton property, Auto-reactivate,
enables continuous operation of the speech recording/recognition functionality by auto-
matically reactivating listening mode after the previous utterance has been recognized,
instead of going back to the inactive state and waiting for the button to be pushed again.

76

Clicking on the SpeechButton using the right mouse button pops up a visual property
editor that allows the user to configure the Auto-stop and Auto-reactivate properties as
well as SpeechRecorder properties (via an implementation-specific SRecPropEditor object
as described in section 4.4.2).

SpeechEvent and InputEventCallback

Each time recording mode starts, the SpeechPanel generates a SpeechEvent, a subclass
of InputEvent. An InputEvent is an abstraction of the data produced by a period of activity
in an input channel. Once an InputEvent is generated, it goes through a recording state
during which data from the input channel is retrieved and processed, and a waiting for
result state during which the input channel has become inactive but the recorded data is
still being processed. Objects holding a reference to the InputEvent can examine its state or
retrieve the data processing result. The result of a SpeechEvent is a SpeechResult object
containing the text of the final recognition hypothesis.

InputEventCallback is an abstract notification interface that binds the SpeechPanel (and
the PenPanel described below) to the rest of the application. Client objects requiring
access to the speech recording/recognition facility simply call a SpeechPanel method to
register an InputEventCallback to be invoked whenever a SpeechEvent is generated. This is
done by the InputCoordinator described in section 4.7.3.

4.7.2 PenPanel

The PenPanel class implements the functionality of JavaPanelPenRecorder (see section
4.5.3) in a subclass of the standard Java Panel container class. Figure 17 on page 74
shows a circling gesture on the PenPanel that contains the map display.

The pen recording/recognition process cycles through four states that parallel the
speech processing states: inactive, waiting for input, recording, waiting for result. When
active, the PenPanel intercepts mouse events and interprets them as pen input data. The
first mouse button press in the waiting for input state triggers recording mode; thereafter
button-press events indicate “pen down,” button-release events indicate “pen up,” and
mouse drags are recorded as pen strokes. If the pen-up state lasts for longer than a preset
interval, the pen gesture is considered complete and the PenPanel stays in waiting for
result mode until the PenRecognizer finishes processing the gesture. In normal operation,
the PenPanel is configured to accept input continuously by going back to waiting for input
after the final recognition hypothesis has been received.

As a full-fledged container, the PenPanel can hold any Java AWT components,
thereby endowing them with pen input capabilities. During recording mode, the pen
strokes being recorded are drawn on the PenPanel, tracking the mouse movements.
Simply drawing on the PenPanel window itself would not work because a child window
occupying an area inside a parent window would obscure that area and hide any graphics
painted on that part of the parent window. The pen strokes are made visible on top of
everything inside the PenPanel by the expedient of recursively drawing them on all the

77

child components as well as the parent container. Partial recognition hypotheses are also
shown by drawing appropriate shapes in a different color from the “electronic ink” color
used to track pen strokes. For instance, if a sequence of pen strokes is recognized as a
rectangle, the hypothesis is shown as a rectangle superimposed on the corresponding
strokes. Both the input strokes and the hypotheses are erased after recognition completes.

PenEvent

Similar to the way the SpeechPanel produces SpeechEvents, the PenPanel generates a
PenEvent whenever recording mode starts. PenEvent is a subclass of InputEvent that
produces a PenResult after the input data has been processed by the PenRecognizer. The
result of the recognition process is a sequence of GestureComponent objects, each of
which carries a shape label (e.g., circle or rectangle), a list of coordinates that specify the
geometry of the shape, and some optional data (e.g., the text of the handwriting recogni-
tion hypothesis if applicable).

Client objects requiring access to the pen recording/recognition facility have to reg-
ister an InputEventCallback to be invoked whenever a PenEvent is generated. This is
normally handled by the InputCoordinator described below.

4.7.3 InputCoordinator

The InputCoordinator is a non-visual component responsible for implementing a policy of
grouping input events from different modalities (see section 3.2.1). The default policy is
the temporal proximity model shown in Figure 2 on page 34.

The InputCoordinator interface includes methods to announce new InputEvents and re-
trieve combined multimodal input events. The InputCoordinator normally receives
notification of newly generated InputEvents via the InputEventCallback interface. If several
InputEvents satisfy the criteria for grouping (e.g., if they overlap or occur close together in
time, assuming the default InputCoordinator policy is in effect), a combined multimodal
event—an array containing the grouped InputEvents—is created and placed on an output
queue. Clients of the InputCoordinator retrieve multimodal input events from this queue.

4.7.4 MultimodalApplet

The MultimodalApplet class extends the Java Applet class and provides a structure that binds
the previously described components together in a default graphical user interface. The
easiest way to construct a graphical user interface for a new multimodal application is to
create a subclass of MultimodalApplet and insert application-specific components into it.
However, application developers can also assemble the components offered by MMApp
into a custom user interface if the default implementation does not suit their needs.

78

User Interface Layout

The MultimodalApplet has the general layout shown in Figure 17 on page 74. The applet
window consists of a SpeechPanel along the bottom edge, a status line and an “Undo”
button just above the SpeechPanel, and a PenPanel that occupies the top area of the
window. The only application-specific component in the depicted application is the map
display inside the PenPanel. Applications constructed using the MultimodalApplet template
will have essentially the same layout, with pen-enabled application-specific components
nested inside the PenPanel. The insertion of application-specific components should be
done in the init() method of the applet.

Interpretation of Multimodal Inputs

For most applications, the process of interpreting user input conforms to the follow-
ing general outline:

1) Record input events from each of the available modalities;

2) Decide which input events should be grouped to form a combined multimodal
input event;

3) Determine the parameterized action that best matches the multimodal input
event;

4) Perform the action or report an error if no good match can be found;

5) Undo the effects of the action if the user indicates that it was incorrect.

Although the sequence of steps remains the same across applications, each of the
above steps may have to be customized for each application. This situation is ideal for
applying the Template Method design pattern (see Appendix C.5). The MultimodalApplet
implements the sequence of steps and declares abstract methods for the customizable
steps. A MultimodalApplet subclass in a particular application must override the following
abstract methods to supply application-specific implementations:

• getInterpretation() accepts a combined multimodal input event (in the form of an
array of InputEvents) and return an Object representing the action to perform;

• executeCommand() interprets the Object returned by getInterpretation() as an ac-
tion command in an application-specific way and carries out the action;

• undoCommand() reverses the effects of a previously executed action.

The customization of input retrieval and grouping policies is delegated to the input
recorders/recognizers and the InputCoordinator.

The normal control flow is as follows (see Figure 18 on page 79):

1) The user speaks and/or draws on the screen;

2) The SpeechPanel and/or the PenPanel generate InputEvents;

79

3) The InputCoordinator groups one or more InputEvents into a multimodal input
event (an array of InputEvents);

4) The multimodal input event is passed to getInterpretation(), and the result is re-
layed to executeCommand();

5) undoCommand() is called if the user clicks on the “Undo” button; otherwise the
application is ready to process the next multimodal input event.

speak

draw/write

Command

MultimodalEvent
PenEvent

SpeechEventSpeechPanel

PenPanel

InputCoordinator

MultimodalApplet
getInterpretation()

MultimodalApplet
executeCommand()

MultimodalApplet
undoCommand()

click Undo

Figure 18. Control Flow for Multimodal Input Interpretation

Any of the above steps may raise an exception if an error occurs, in which case an
error message is displayed on the status line and the application is again ready to process
the next multimodal input event.

An implementation of getInterpretation() may use the interpretation components de-
scribed in section 5.6 to preprocess the input data (section 5.6.1), send them to a
multimodal semantic integrator (section 5.6.2), and postprocess the result (section 5.6.3)
to produce the output action and its parameters. Application developers are also free to
introduce other multimodal interpretation schemes.

Customizable Component Instantiation

The MultimodalApplet needs to instantiate several subordinate objects, among them a
SpeechRecorder/SpeechRecognizer pair, a PenRecorder/PenRecognizer pair, and an InputCo-
ordinator. Because application developers may decide to use different concrete
implementations of these abstract interfaces, the code that instantiates these objects must
not be hardwired into the framework. Instead, the actual instantiations are delegated to

80

MultimodalApplet subclasses using the Factory Method design pattern (see Appendix C.3).
For instance, a subclass may override the createSpeechRecorder() method to substitute a
different SpeechRecorder implementation for the default PluginSpeechRecorder.

Wizard-of-Oz Support

The Wizard-of-Oz user study technique [Salber93] is widely used to collect user data
when a user interface prototype is available for an application but the complete system is
not yet functional. In a typical Wizard-of-Oz experiment, a user is asked to perform some
tasks using the interface prototype, but the actual operations are controlled by a hidden
human operator.

The MultimodalApplet contains logic to connect a controlling applet to the target applet,
relay multimodal input events from the target applet to the controlling applet (so that the
wizard operator can see what the user draws and hear what the user says), and send
operator commands to the target applet to simulate system operations. Because the
control flow remains the same but the implementation details vary from application to
application, the Wizard-of-Oz support is implemented using the Template Method design
pattern (see Appendix C.5). The skeleton algorithm invokes abstract methods that are
overridden in MultimodalApplet subclasses to provide application-specific implementations.

81

CChhaapptteerr 55
MULTIMODAL DESIGN AND

RAPID PROTOTYPING

The software components described in Chapter 4 can be instantiated and interconnected
to create a multimodal application instance. To complete the construction of the applica-
tion, a multimodal interpreter must be instantiated for the target domain so that the
application can determine the correct action to perform in response to an input event.

This chapter describes a design process that can be followed to create a working mul-
timodal application within the MMApp framework (see Chapter 4), and the Multimodal
Toolkit (MMTk), a collection of tools that automate many steps in the proposed design
process. For the most part, the tools in the MMTk workbench are implemented in the
Java language to maximize platform independence and to make it possible to deploy
them on the World Wide Web as applets running inside Web browsers.

The MMTk tools require an MMGL user input model for the target application (see
Chapter 3); thus, we need a multimodal grammar implementation that would allow
MMGL input models to be created, modified, and stored, as well as an editing tool to
design such models. If real data is scarce, it would be useful to be able to generate
random samples from the input model following the probability distribution built into it.
A tool capable of generating a statistical language model for speech recognition would
abate the need to collect enormous amounts of training data in the application prototyping
stage. Finally, the components needed to instantiate the multimodal interpretation algo-
rithm based on the MS-MIN are also good candidates for automatic generation.

There are many examples of grammar tools in the literature [Firth91][Erbach92]
[Brown94][Shimazu95]. However, several characteristics distinguish MMTk: the inte-
grated handling of multiple input modalities (this is also supported by the MM-DCG
translator in [Shimazu95]), the exploitation of the multimodal semantic model built into
the foundation of the tools, and the systematic use of the tools in the application design
process.

5.1 Design Process

A working application constructed within the MMApp framework has to

• Partition the multimodal input streams into unimodal input events and group
them into combined multimodal input events;

• Convert raw signals in individual input events to more convenient symbolic
representations (e.g., using speech, gesture, and handwriting recognition);

82

• Align and jointly segment the token streams in each multimodal input event to
construct an action frame composed of parameter slots;

• Extract parameter values from the input tokens inside the parameter slots and
construct the complete parameterized action to perform in response to the
multimodal input event.

These requirements suggest the following steps to design the application:

1) Determine the set of commands to be supported by the application and derive
a set of action frames and their associated parameter slots;

2) Create a multimodal grammar that serves as an MMGL input model for the
application;

3) Use the MMGL input model to generate language models for recognizers in
relevant modalities (e.g., a trigram language model for speech recognition);

4) Train an MS-MIN to perform multimodal semantic integration in the task do-
main of the application;

5) Implement a postprocessor to extract parameter values from the result of the
multimodal semantic integration process;

Each step in this design process is explored in more detail below.

5.1.1 Selecting Action Frames and Parameter Slots

The set of relevant action frames and their associated parameter slots depends on the set
of commands that the application must support. This must be ascertained in the require-
ment analysis stage of the application design. The parameters needed to execute each
command must also be explicitly specified.

Given a command structure for the application, the most straightforward way to pro-
ceed is to create one action frame for each supported command. Each parameter of the
command then corresponds to a parameter slot in the action frame. It is usually advanta-
geous to combine very closely related operations (e.g., differing in only one parameter)
into a single command; however, for the sake of improved interpretation accuracy, it may
be necessary to use separate action frames for such operations so that the action frames
and their parameter slots are more tightly bound. This was discussed in section 3.2.2, and
an example of this will be seen in the map application design presented in Chapter 6.

5.1.2 Designing the Input Model

Given the set of action frames produced in the previous step, a skeleton MMGL model
can be created with a Toplevel node containing one sequence per action frames and a
single AFrame node in each sequence. The weights of the sequences should be the relative
frequencies of the actions represented by the corresponding AFrames. This can be esti-
mated from real user data if available (e.g., from simulation studies); otherwise the

83

application developer must make guesses or keep the default uniform distribution until
more data is available.

The next step is to fill the AFrame nodes. The easiest way to proceed is to construct
examples of multimodal input events, manually segment and align corresponding parts of
the input streams according to the semantics of the application commands, create PSlots
and UnimodalNodes from the input segmentation, and generalize the input fragments using
a context-free grammar (CFG). PSlot nodes representing instances of the same parameter
slot that result from different input messages should be given the same name (the name of
the parameter slot) but distinguished by different tags.

This process is best illustrated by an example. Suppose we are building a map appli-
cation that supports a “zoom in” command among others. The command requires at least
one of the following two parameters: a center point for the zoom, and a zoom factor.
Accordingly, we create a ZoomIn action frame with two parameter slots, ZoomInCenter
and ZoomInAmount. The action frame is represented by a ZoomIn AFrame node.

An example of a (speech-only) input message that should be mapped to ZoomIn is
“Zoom in on Carnegie Mellon University by a factor of two.” The input segmentation is

zoom in on carnegie mellon university by a factor of two

ZoomInCenter ZoomInAmount

We create a sequence in the ZoomIn AFrame and insert two PSlots into it: ZoomIn-
Center(0) and ZoomInAmount(0). The “(0)” tags indicate that this is the first instance of
each parameter slot that we have created. Inside ZoomInCenter(0) we can now place a
UnimodalNode named ZoomInCenter_Prefix(SPEECH); likewise, ZoomInAmount(0)
contains a ZoomInAmount_Suffix(SPEECH) UnimodalNode.

The sentence fragments in the above example can be generalized by generating syno-
nyms or alternative phrasings. For instance, “zoom in on Carnegie Mellon University”
suggests the following CFG:

ZoomInCenter_Prefix(SPEECH) ::= ZoomInVerb Preposition Place
ZoomInVerb ::= “zoom in” | “magnify” | “enlarge”
Preposition ::= “on” | “at” | “around”
Place ::= “carnegie mellon university” |
 “university of pittsburgh” |
 “duquesne university”

Non-terminal symbols (ZoomInVerb , Preposition , and Place) become NonTerm
nodes, while the terminal text strings become Literal nodes in the MMGL model. Alterna-
tive sequences in NonTerms should be assigned weights proportional to the relative
frequencies (estimated from data or simply guessed) of the sequences. For instance, if

84

“zoom in” is twice as likely to occur as the other two synonyms, it can be assigned a
weight of 0.5 while “magnify” and “enlarge” have 0.25 weights†.

An additional example of speech and pen combination is a spoken utterance “Zoom
in on this by a factor of two” accompanied by a circling gesture around the icon for
Carnegie Mellon University on the map. The segmentation is

Speech: zoom in on this by a factor of two

Pen: circle(carnegie mellon university)

ZoomInCenter ZoomInAmount

This prompts us to create a new PSlot node, ZoomInCenter(1), containing two Unimo-
dalNodes: ZoomInCenter_Deictic_Prefix(SPEECH) and ZoomInCenter(PEN). The
ZoomInAmount(0) PSlot is reused in a new sequence in the ZoomIn AFrame, together with
the new ZoomInCenter(1) PSlot.

The same generalizing process described previously can be used to derive CFGs for
the new UnimodalNodes. We can reuse the NonTerms and Literals already created. For
instance, a CFG for the speech fragment in the above example might be

ZoomInCenter_Deictic_Prefix(SPEECH) ::=
 ZoomInVerb Preposition Deictic
Deictic ::= “this” | “that” | “here” | “there”

The existing ZoomInVerb and Preposition are reused here.

For pen input, the circling gesture is a deictic expression that has other equivalents,
e.g. a pointing gesture or a cross. This could serve as a basis for generalization in a CFG
that may look like this:

ZoomInCenter(PEN) ::= Pen_Deictic
Pen_Deictic ::= Pen_CircleDeictic | Pen_PointDeictic |
 Pen_CrossDeictic
Pen_CircleDeictic ::= “circle(<ObjectID>)”
Pen_PointDeictic ::= “point(<ObjectID>)”
Pen_CrossDeictic ::= “cross(<ObjectID>)”

The encoding of pen gestures together with their spatial contexts (e.g. <ObjectID>
in the above example) is application-specific and must be selected on a per-application
basis with the input model in mind, so that relevant parameters can be extracted later.

† Actually the weights do not have to sum to 1; they will be automatically normalized in all probability
calculations. Thus a weight of 2 for “zoom in” and 1 for the other synonyms will do as well.

85

5.1.3 Generating Unimodal Language Models

Because an MMGL grammar is a multimodal input model, it also implicitly defines
unimodal language models that cover input messages from each modality. The MMApp
framework strongly supports speech and pen modalities. However, pen gesture input is
too application-specific and difficult to generalize, while speech language models are
better understood. For this reason, the MMTk workbench strongly supports only the
automatic generation of N-gram statistical language models for speech recognition,
although in theory all unimodal language models are supported by the MMGL formula-
tion.

As discussed in section 2.1.3, an N-gram statistical language model helps guide the
search for the correct speech-to-text mapping by predicting the likelihood of encounter-
ing a word based on preceding words. A bigram model uses a single preceding word
whereas a trigram model uses two preceding words.

N-gram probabilities are normally computed by counting word combinations in a
training corpus of input sentences. If real sentences collected from users are not available,
we can generate random sentences from an MMGL input model as described in section
5.4. However, this can be avoided by extracting the required probabilistic information
directly from the input model.

An MMGL model specifies how non-terminal nodes are expanded and what the prob-
ability of each alternative expansion is; therefore, the model also implicitly determines
bigram/trigram probabilities for the speech tokens. The Language Model Generator
described in section 5.5 computes these bigram/trigram probabilities from an MMGL
model, avoiding the need to collect a large amount of real user data or generate an
equivalent amount of artificial data to calculate a language model for speech recognition.

It should also be possible to generate a finite-state-grammar language model instead
of a statistical one, if such a language model is more suitable for an application. How-
ever, the current version of MMTk does not include any tool for this purpose.

5.1.4 Instantiating the Multimodal Semantic Integrator

The multimodal semantic integrator is responsible for aligning and jointly segmenting the
token streams in a multimodal input event to produce an action frame—a sequence of
parameter slots—as specified in the semantic model (see section 3.2.2).

A domain-independent semantic integration algorithm based on the MS-MIN was de-
scribed in section 3.4. The MS-MIN can be trained from examples of multimodal input
events presented together with their joint segmentation into parameter slots. One obvious
way to do this (if real data is lacking) is to generate random input samples from an
MMGL model following the probability distribution built into it, then use these samples
to train the MS-MIN. It is very convenient (and intentionally so) that MMGL models
have built-in semantic information in exactly the form required by MS-MIN training: the

86

joint segmentation of input streams into parameter slots in an action frame, as modeled
by PSlot and AFrame grammar nodes. The Random Sample Generator described in section
5.4 can be used to produce training data for the MS-MIN semantic integrator.

A better way to produce an MS-MIN semantic integrator from an MMGL input
model entails computing the connection weights in the MS-MIN from occurrence prob-
abilities of input tokens and output classes (parameter slots). These probabilities are
implicitly defined by the probability distribution in an MMGL input model, in the same
way that N-gram language model probabilities are. It is thus possible to compute the
connection weights directly from the MMGL model without having to generate random
samples.

Because the MS-MIN is able to learn incrementally during actual use, an MS-MIN
semantic integrator generated from an input model can be further trained using real input
data when available.

Input Preprocessing

The input integration process produces a labeled segmentation of multimodal input
streams that breaks the input into a sequence of parameter slots. Actual parameter values
still have to be extracted from the parameter slots in a postprocessing step as discussed in
the next section. This postprocessing could be much simplified if the most basic concepts
in the input domain were represented by equivalent classes rather than simple words. For
instance, if a parameter slot may contain a number that must be extracted, all the input
phrases that represent a number (“one”, “two”, “twenty three” etc.) could be preprocessed
and converted to a single Number token with an attached data packet containing the
actual number phrase. The advantages of this preprocessing are twofold:

• The MS-MIN semantic integrator can achieve higher accuracy because it only
has to learn associations for the Number token instead of all the possible num-
ber phrases;

• The parameter extraction postprocessing can readily identify which parts of
the segmented input contain relevant, extractable information.

The degree of preprocessing may vary depending on the task domain, but there is a
tradeoff between complexity and flexibility. If the preprocessing identifies high-level
concepts, the complexity of the input space is reduced at the detriment of flexibility
because many input/output associations have to be covered by the preprocessor instead of
being learned by the MS-MIN. One way to increase flexibility in this case is to base the
preprocessor itself on an trainable approach. For instance, Gorin [Gorin96] describes a
method to learn salient grammar fragments from data. The current implementation of
MMTk does not include a flexible, trainable preprocessor.

MMTk does include a simple state-machine-based preprocessor that can parse input
fragments using a context-free grammar (see section 5.6.1). This approach was chosen
because it is easy to implement and meshes well with the CFG foundation of MMGL. As
this preprocessor can only parse fragments that match the grammar exactly, it should be

87

used to parse only the most basic concepts of the task domain needed for parameter
extraction, e.g., DayOfTheWeek in an appointment scheduling task or CityName in a map
navigation task. The job of matching higher-level constructs in a flexible manner should
be left to the MS-MIN semantic integrator which can be trained from actual user input.

The above discussion pertains mostly to speech input. The encoding of gesture data is
too application-specific for a generic treatment. However, the underlying principle still
applies: the gesture input streams should contain tokens marked as relevant for parameter
extraction. The design example presented in Chapter 6 offers some cogent examples.

Collectively, the input tokens (from any modality) representing combinations of input
data (e.g., sentence fragments or groups of gesture symbols) that are relevant to the
parameter extraction process are termed macro concept tokens.

5.1.5 Implementing the Parameter Extraction Postprocessing

The multimodal semantic integrator only segments and labels the input to identify the
action frame and parameter slots. The actual parameter values still have to be extracted in
a postprocessing phase to complete the multimodal interpretation process. Some part of
this postprocessing must necessarily be domain-dependent, but the rest usually consists of
repetitive code that branches based on the names of action frames, parameter slots, or
preprocessed macro concept tokens.

Consider an illustrative example. Suppose the design of a multimodal appointment
scheduler specifies a MoveMeeting action frame with two parameter slots, MoveTarget
and MoveDestination. The utterance “Move this to Friday at ten o’clock” and the accom-
panying circling gesture around a meeting displayed on the calendar interface are
semantically integrated as follows:

Speech: move this to friday at ten o’clock

Pen: circle(meetingXYZ)

MoveTarget MoveDestination

Assume that the preprocessed macro concepts in this application include the tokens
Pen_CircleDeictic (indicating that a circling gesture is drawn around an object on the
calendar interface), DayOfWeek (representing the phrases “Monday” through “Sunday”),
and Time (representing phrases such as “ten o’clock,” “noon,” “four in the afternoon,”
and so on). The actual output of the semantic integrator is

Speech: move this to DayOfWeek at Time

Pen: Pen_CircleDeictic

MoveTarget MoveDestination

The postprocessor can now traverse this output and produce actual parameter values.
Inside the MoveTarget parameter slot, the postprocessor expects macro concept tokens

88

that identify attributes of a meeting; it checks for those and, upon encountering
Pen_CircleDeictic, branches to the code that extracts the meeting ID “meetingXYZ ”
from the data attached to the macro concept token. Inside the MoveDestination parameter
slot, the postprocessor again checks for expected macro concept tokens that identify the
date and time of the move destination. The presence of DayOfWeek and Time invokes the
appropriate code that extracts “friday ” and “ten o’clock ” which are transformed to
internal date and time representations.

Given an MMGL input model, the list of macro concept tokens to expect inside each
parameter slot can be determined. Based on this information, it is possible to generate a
code skeleton that traverses the output from the semantic integrator, examines macro
concept tokens, and branches to appropriate subroutines that actually compute parameter
values. Only the lowest level of processing that depends on application-specific data
representations (e.g., meeting ID, date, time, etc.) must be customized.

The process of generating the code skeleton is automated by the Postprocessor Gen-
erator described in section 5.6.3.

5.2 Multimodal Grammar Implementation

The multimodal grammar structure described in section 3.3 is object-oriented in nature
and therefore can be easily implemented using an object-oriented programming language
such as Java. Figure 19 shows the resulting class hierarchy (see Appendix B for a sum-
mary of the UML symbols in the class diagram). The concrete classes Toplevel, AFrame,
PSlot, UnimodalNode, NonTerm, Literal, and Sequence directly implement the corresponding
grammar components defined in section 3.3.

GObject

Node

NamedNode

NonTermBase

Sequence

Literal

PSlot

Toplevel AFrame UnimodalNode NonTerm

Figure 19. Class Hierarchy for Multimodal Grammar Components

The abstract base classes (indicated by italicized names) introduced into the class hi-
erarchy permit a large amount of common code to be factored out and reused. The

89

common functionality of all node types is factored out and put into a common root class,
GObject, which presents a uniform interface to all external entities that have to manipulate
grammar objects. Toplevel, AFrame, UnimodalNode, and NonTerm are the only nodes that
contain sequences; accordingly, the shared code for manipulating sequences is inherited
from the abstract base class NonTermBase. The Sequence class manipulates Node objects
without having to know their exact types; the correct code is selected at runtime via
polymorphism.

A user input model is a grammar created by instantiating the nodes and sequences
comprising it. The result is a graph of object instances connected by references repre-
senting contains and is-part-of relationships; for instance, in a map navigation
application, a ZoomInAmount PSlot may be part of a Sequence contained in a ZoomIn
AFrame. The expansion of a grammar object into its constituents corresponds to a gram-
mar production rule. The grammar can be written to mass storage by serializing its object
graph, i.e., by traversing the graph and writing out the content of each object encountered
during the traversal.

Optional and Repeating Elements

There exist syntactic descriptions of context-free grammars that include notations for
optional or repeating elements. These are only “syntactic sugar” notations that are
convenient but not necessary, as they can be expressed using only the basic notations. For
example, a node in the multimodal grammar formulation can be made optional by re-
placing it with a NonTerm containing an empty sequence and a second sequence that
includes the original node. Similarly, a repeating node is equivalent to a NonTerm that
recursively references itself. The current implementation of the multimodal grammar
structure does not include shortcut notations; instead, the grammar writer must explicitly
use the equivalent constructs shown in Figure 20.

N1

N

N2
N2N

N

N
{optional}

N
{repeat}

Figure 20. Implementing Optional and Repeating Grammar Nodes

Grammar Traversal

Most of the grammar-based tools described in later sections do their work by trav-
ersing the grammar graph and performing some operation on each component. If this

90

were implemented as a polymorphic recursive method† on the GObject class as shown in
Figure 21, it would be necessary to add one method for each supported operation.

public class GObject {
// ...
public abstract void doOperation();

}
public class Sequence extends GObject {

// ...
public void doOperation() {

// perform operation on this sequence
// ...
for (int i=0; i<getNodeCnt(); i++) {

// traverse each node in this sequence
getNodeAt(i).doOperation();

}
}

}
public class Node extends GObject {

// ...
}
public class NonTermBase extends Node {

// ...
public void doOperation() {

// perform operation on this node
// ...
for (int i=0; i<getSequenceCnt(); i++) {

// traverse each sequence in this node
getSequenceAt(i).doOperation();

}
}

}
// ...

Figure 21. Grammar Traversal with Polymorphic Recursive Method

A better alternative is to apply the Visitor design pattern (see Appendix C.6), which is
ideal for this situation because the number of grammar object types is fixed whereas the
number of possible operations is unlimited. The list of operations that need to be sup-
ported includes loading and saving grammar objects as well as generating various types
of information from a grammar: language models, random samples, preprocessors,
integration networks, etc.

In the Visitor pattern, the only necessary modification to the target object hierarchy
(GObject and its subclasses in this case) is a polymorphic method that accepts an instance
of an abstract Visitor class. Using a well-know object-oriented technique called double-
dispatch, the same method invocation ends up calling different functions depending on

† Polymorphic means that the method is declared at the top of the class hierarchy and overridden in
subclasses, so that the same call may invoke different methods depending on the actual object type.
Recursive means that the method calls itself on the constituents of an object to traverse the object graph.

91

the actual types of two objects: the target of the visit and the Visitor instance. Different
operations are implemented by different subclasses of the Visitor base class. The Visitor
pattern forms the basis for the implementation of many algorithms that work on multi-
modal grammars, without requiring ad hoc modifications of the GObject class hierarchy.

public abstract class GObject {
// ...
public abstract void accept(Visitor v);

}
public class Sequence extends GObject {

// ...
public void accept(Visitor v) {

v.visitSequence(this);
}

}
public class NonTerm extends NonTermBase {

// ...
public void accept(Visitor v) {

v.visitNonTerm(this);
}

}
// ...
public abstract class Visitor {

public abstract void visitSequence(Sequence s);
public abstract void visitNonTerm(NonTerm n);
// ...

}
public class Operator extends Visitor {

public void visitSequence(Sequence s) {
// perform operation on this sequence
// ...
for (int i=0; i<s.getNodeCnt(); i++) {

// traverse each node in this sequence
s.getNodeAt(i).accept(this);

}
}
public void visitNonTerm(NonTerm n) {

// perform operation on this node
// ...
for (int i=0; i<n.getSequenceCnt(); i++) {

// traverse each sequence in this node
n.getSequenceAt(i).accept(this);

}
}
// ...

}

Figure 22. Grammar Traversal with Visitor

Figure 22 shows a Visitor implementation that performs the same operation as the
code in Figure 21. The difference is, to implement a second operation using the approach
in Figure 21, we would have to declare another abstract method in GObject and implement
the method in GObject subclasses; with the Visitor approach, it would only be necessary

92

to create another Visitor implementation without changing the GObject hierarchy at all. The
same thing applies if a different traversal algorithm is required, e.g., one that traverses
sub-objects first before performing the operation on the containing object.

5.3 Visual Grammar Designer

Traditional grammars are usually represented textually in some descriptive language such
as Backus Normal Form (BNF) or Phoenix [Ward91]. It is rather difficult to follow these
textual descriptions at a glance and keep track of grammar production rules, especially as
the size of the grammar increases. A graphical display that represents the grammar
components visually as in Figure 4 on page 42 makes it much easier to understand the
grammar by visual examination. Furthermore, creating or editing a large grammar in
textual form usually requires the skills of a computer programmer; in contrast, designing
a grammar visually by dragging and dropping graphical components is much more
intuitive and requires less training. This section describes an object-oriented, drag-and-
drop grammar editor that employs exactly this visual construction paradigm.

5.3.1 Graphical Display of Grammar Components

Following a well-established design rule, the graphical user interface (GUI) elements are
cleanly separated from the underlying grammar representation using the Observer design
pattern (see Appendix C.4), similar to the model-view approach in the Smalltalk pro-
gramming environment. Each GObject is an “observable” or “model” having one or more
associated “observers” or “views”, represented by subclasses of a GObjectView root class
(Figure 4 on page 42 shows some views captured from a computer display). The views
know how to update themselves whenever the “observable” or “model” object broadcasts
a change in its data. External entities do not need to know about views; when they
manipulate the underlying grammar structure the screen will be automatically updated.

The views for Node objects can be expanded to show the internal structure or col-
lapsed to display only the node labels. This way the overall grammar structure can be
grasped instantly while still allowing for detailed examination of any section, down to the
level of Literals. When connected nodes are expanded, phrases modeled by the grammar
can be easily read off the display as in part d) and e) of Figure 4.

5.3.2 Drag-and-Drop Editing

The view objects provide convenient handles to manipulate grammar entities visually. It
is relatively easy to implement a drag-and-drop GUI in which the handles may be moved
around by moving the mouse while holding down a button (“dragging”), and inserted into
other objects by letting go of the mouse button when the cursor is over the desired
location (“dropping”). This kind of direct manipulation is ubiquitous in modern GUIs and
familiar to most computer users. It permits the rapid construction of a grammar with
convenient, continuous visualization of various grammar parts and their relationships.

93

The Multimodal Grammar Designer program supports exactly this kind of grammar
construction and editing. Figure 23 is a screen capture of the Designer interface.

Figure 23. Multimodal Grammar Designer

The main window shows a graphical grammar display. Views of different node types
are color coded so that the type of any grammar entity can be grasped instantly. Ex-
panded and collapsed states of grammar nodes are also distinguishable visually. Double-
clicking on any node expands the node or collapses it if the node is already expanded.
Clicking with the right mouse button displays a context-sensitive popup menu tailored to
the object beneath the cursor. Certain menu items are common across all objects, such as
a “Properties” menu item that pops up a dialog allowing the user to modify object attrib-
utes (the Properties dialog for a PSlot is shown in the center of Figure 23).

On the right side of the Designer window is a palette of grammar object “prototypes”
that can be used to construct a grammar visually. The prototypes are also color coded and
grouped by object types. The prototypes at the top of each group allow the creation of
new objects, while the other prototypes correspond to existing objects and permit their
reuse in difference places. The prototypes can be “grasped” and dragged with the mouse.
The cursor changes shape when a dragged prototype passes over potential drop sites to

94

indicate whether a drop at that location will be allowed. For example, AFrame can only be
dropped into Toplevel, PSlot can only be dropped in AFrame, and so on. The object-
oriented nature of the program makes it easy to enforce this kind of behavior with very
simply code. Visual feedback in the form of a dashed line indicates where the new object
(or reference to an existing object) would be inserted in the drop target. When a newly
created object is dropped, a Properties dialog pops up to allow the user to change object
attributes from the default values. After the object has been successfully added to the
grammar, this dialog (see Figure 23) can be accessed again at any moment by clicking
with the right mouse button and choosing “Properties” from the context menu, as previ-
ously described.

5.4 Random Sample Generator

Components of multimodal applications usually need to be validated by computing
certain evaluation functions over a set of test input data. If little or no actual data is
available, as may be the case during the construction of an application prototype, it is still
possible to obtain a set of artificial data that reflects a user input model constructed by the
application developer. This kind of model is precisely what MMGL grammars are
supposed to encode. Using the probability distribution represented by sequence weights,
we can generate random input samples that follow such a distribution.

The sample generator is a Visitor subclass (see section 5.2) that traverses the grammar
graph of an MMGL input model and selects sequences at random. For each non-terminal
node, the weight of each sequence is divided by the total weights of all sequences in the
node to produce the selection probability. The literal tokens from selected sequences are
concatenated to form a token stream for each modality. The output is encoded in a format
that retains the parameter slot segmentation information in case this may be useful to the
evaluation procedures that process the generated data.

5.5 N-gram Language Model Generator

As mentioned in section 2.1.3, a large vocabulary, continuous speech recognizer is
usually customized for a particular task domain using a statistical language model,
normally an N-gram model with N=2 (bigram) or N=3 (trigram). This section concerns
the generation of trigram language models, which subsume bigram models.

Trigram language models are normally generated by counting trigrams† (sequences of
3 words) in a training corpus and computing bigram/trigram probabilities from the
trigram count table. Generating the language model directly from an MMGL input model
means performing the equivalent of generating a very large number of random samples
from the input model to form the training corpus. Because generating random samples

† Counting trigrams automatically gives unigram and bigram counts as well.

95

involves traversing the grammar structure, we can also count the trigrams during the
traversal and avoid the need to store any sample.

If we imagined generating an enormous number of random samples and dividing the
number of times a certain trigram occurs by the number of samples, the limit of this ratio
as the corpus size tends to infinity is called the trigram weight. Using the sequence
weight distribution built into the grammar, we can compute an exact trigram weight for
each trigram permitted by the grammar without having to generate any random samples.
The N-gram probabilities can be computed directly from the trigram weights instead of
trigram counts because we are basically scaling the counts by the number of samples.

5.5.1 Basic N-gram Counting Algorithm

For each object (node or sequence) in an MMGL grammar, we want to compute the
weights of all the trigrams that can occur if we were to generate random samples from the
grammar object. The list of all trigrams for the grammar object and their associated
trigram weights forms a trigram weight table.

It is possible to compute a trigram weight table for each grammar object by recur-
sively combining the trigram weight tables of its sub-objects. Because each node is
composed of weighted alternative sequences, and each sequence is a series of nodes,
three basic operations on trigram weight tables can be defined:

1) Scaling. This operation multiplies all trigram weights in a table by a scaling
factor representing the probability that a certain sequence in a node would be
randomly selected if we were to generate random samples from the grammar.
This probability is simply the weight of the sequence divided by the total
weight of all sequences in the containing node.

2) Merge. This operation takes the trigram weight tables for two sequences in a
node and combines them to form a new trigram weight table that contains all
the trigrams in the original tables. Weights for trigrams that occur in both
component tables are added because if we were to generate random samples
from the grammar, the trigram counts for samples that contain either of the
two alternative sequences would accumulate additively.

3) Concatenation. This operation produces the trigram weight table for two
nodes in a series by concatenating trigrams from the two nodes to form new
trigrams. Two trigrams can be concatenated if one occurs at the end of the
first node and the other occurs at the beginning of the second node. The
weights of the concatenated trigrams are multiplied together. To see why this
is the case, let us assume 1N samples are generated from the first table, so that

a trigram with weight 1w can be expected to occur 11wN times. Similarly, a

trigram with weight 2w can be expected to occur 22wN times in 2N samples.

The concatenation produces))((2211 wNwN occurrences of the resulting tri-

gram in 21NN samples, hence the trigram weight in the new table is 21ww .

96

The language model generator is a Visitor subclass (see section 5.2) that does the fol-
lowing for each grammar object it visits:

• If the object is a Literal, count the trigrams that occur in the Literal’s text;

• If the object is a PSlot, visit the UnimodalNode for the designated modality
(usually speech);

• If the object is any other non-terminal node, visit each sequence of the node
in turn and merge the resulting trigram weight tables;

• If the object is a Sequence, visit each node in the Sequence and concatenate the
resulting trigram weight tables, then scale the result by the normalized weight
of the Sequence.

Nodes can be reused in different parts of the grammar; therefore, the trigram weight
table for each node is computed only once, then cached and reused it if the node is
visited again.

5.5.2 Handling Recursive Grammar References

The above algorithm works if the grammar is finite-state (i.e., any grammar traversal will
terminate in a finite number of steps), but goes into an infinite loop as soon as there is a
recursive reference to a node. The only practical way of avoiding this infinite loop is to
stop the recursion at some depth. In that case the computed trigram weights are no longer
exact, but if the recursion were allowed to go deep enough, the multiplicative effects of
scaling would reduce the probabilities to such small values that the depth-limited com-
putation could produce results with any desired accuracy.

Consider the following grammar node:

 p

1−p

N

N b

c

a

This node represents sentences of the form ancb n for all integers 0≥n . The possible
trigrams are: <s><s>a , <s><s>c , <s>aa , <s>ac , aaa , aac , acb , cbb , bbb , cb</s> ,
bb</s> , and <s>c</s> , where <s> and </s> denote the beginning- and end-of-
sentence markers. (Imagining that each sentence starts with two beginning markers and
ends with one end marker makes trigram counting more regular.) It is easy to see that the
trigram weight for <s><s>a must be p and the weight for <s><s>c must be p−1 , for
example, but the trigram weight for aaa is distributed across all sentences ancb n for

3≥n . For a specific n the trigram aaa occurs 2−n times in the sentence, and the
sentence has an occurrence probability of)1(ppn − , hence the exact trigram weight is

97

the sum of the infinite series

p

p
ppnw

n

n

−
=−−= ∑

∞

= 1
)1()2(

3

3

(15)†

If we stop the recursive expansion at depth maxn , we get the partial sum for

max3 nn �= . One more level of expansion would add)1()1(1
max

max ppn n −− + to the

partial sum. We can stop if this new contribution divided by the new partial sum is
smaller than an accuracy threshold, say 610− .

In general recursive references can be arbitrarily complex (e.g., more than one object
can recursively reference each other, or one object can contain multiple recursive refer-
ences), hence it is not possible to reduce all cases to compact formulas such as the one in
Equation (15). To derive a general stopping heuristic, we observe that the summation in
Equation (15) simply accumulates sentence probabilities. In the general case the sentence
probabilities is not as simple as)1(ppn − ; however, we can keep track of the traversal
path and compute the sentence probabilities using a running product of normalized
sequence weights. In the above example we first traverse a sequence of weight p−1
before encountering n times a sequence of weight p , hence the running product is

)1(ppn − . Using the sentence probabilities to estimate the contribution of a recursive
expansion to the trigram weights, we can stop the recursion when the relative contribu-
tion becomes smaller than the accuracy threshold.

The above heuristic will not break the infinite loop if the recursion does not “bottom
out” (e.g., if the above grammar example has no c but only the single sequence aNb with
unit probability). In this case the trigram weights are not well defined anyway, so it is
reasonable to supplement the stopping heuristic by imposing an absolute maximum
recursion depth and raising an exception if the recursion unwinds completely without
producing any trigrams.

† The sum of this infinite series is derived from the series
2

1)1(p

p
np

n

n

−
=∑

∞

=
, which is derived in turn from

the geometric series
p

p
n

n

−
=∑

∞

= 1

1

0

 for 10 << p .

98

5.5.3 Computing N-gram Probabilities

A trigram language model contains unigram, bigram, and trigram penalties, which are

10log− of probabilities. Given a trigram count table, the various N-gram probabilities can

be computed as follows:

∑

∑

∑

=

=

=

i
inm

pnm
pnmtrigram

i
im

nm
nmbigram

i
i

n
nunigram

aaacount

aaacount
aaaP

aacount

aacount
aaP

acount

acount
aP

)(

)(
)(

)(

)(
)(

)(

)(
)(

Because the N-gram weights computed by traversing the grammar are equivalent to
the ratios of N-gram counts to the training corpus size, the weights can be directly
substituted for the counts in the above equations (the effect of this substitution is simply
to divide both the numerator and the denominator by the same factor, the corpus size).

Each unigram also has a back-off value used to estimate the probabilities of bigrams
that did not occur in the training corpus. Similarly unknown trigram probabilities are
estimated from bigram back-off values. This back-off scheme smoothes out the N-gram
distributions and lets the speech recognizer accept slight variations of sentences permitted
by the grammar. The back-off values are computed using an absolute discount scheme in
which a fixed discount (0.5 in the current implementation) is subtracted from each N-
gram count to form a count for the unseen N-grams. Because this operation requires an
actual count, we have to supply an equivalent corpus size which is then multiplied with
the N-gram weights to produce the equivalent counts. A reasonable equivalent corpus
size can be automatically computed to give the smallest trigram weight an equivalent
count of 1, i.e., to produce an equivalent training corpus in which each trigram allowed
by the grammar appears at least once.

5.6 Interpretation Engine Builders

The design process described in section 5.1 outlines a three-step process to interpret a
multimodal event. Speech and pen recognition results are first preprocessed to reduce the
complexity of the input space. A semantic integrator segments and aligns the preproc-
essed streams to produce parameter slots. A postprocessing step extracts actual parameter
values from the parameter slots and constructs the action to be performed by the applica-
tion interface. The three steps in the multimodal interpretation process require
application-specific instantiations of the components described below. Given an MMGL
input model for the target application, these instantiations can be largely automated,
although some amount of domain-dependent manual customization is unavoidable.

99

5.6.1 Input Preprocessor Generator

The input preprocessor’s responsibility is to identify input fragments that should be
converted to macro concept tokens (see section 5.1.4). MMTk includes an input preproc-
essor implementation based on a simple state-machine parser that identifies particular
word groups in the target input stream (this is usually the speech stream but the same
algorithm works for any modality that needs preprocessing in this manner). Figure 24
shows a state machine that accepts either “zoom in” or “zoom out” optionally preceded
by “please.”

in

out

zoom

please

START END

Figure 24. Example of State Machine for Input Preprocessing

To generate a preprocessor from an MMGL input model, NonTerm nodes corre-
sponding to macro concept tokens must be marked as “parseable.” The Input
Preprocessor Generator is a Visitor subclass (see section 5.2) that traverses the MMGL
grammar structure to generate a state-machine-based matcher for each “parseable” node.
The resulting collection of state machines can be used to match fragments of the input
stream and convert them to macro concept tokens.

The input preprocessor generates a parse tree for each macro concept token it finds.
Figure 25 shows an example of a parse tree for a Number macro concept, generated from
the fragment “nineteen ninety eight.” The parse tree is encoded within the macro concept
token to facilitate the extraction of the parameter value in the postprocessing phase.

Number

TwoDigitNumber

Teen Tens Digit

nineteen

TwoDigitNumber

ninety eight

Figure 25. Preprocessed Parse Tree for a Macro Concept

5.6.2 Integration Network Generator

The Multi-State Mutual Information Network described in section 3.4.2 has connection
weights that can be computed from input-output occurrence probabilities in a training
corpus. The input-output occurrence probabilities are estimated by counting occurrences

100

of input tokens or fragments and output classes in the training corpus. The similarity with
trigram counting immediately suggests a grammar traversal algorithm that computes the
probabilities directly without generating any random samples, as with the N-gram Lan-
guage Model Generator in section 5.5.

The limit of the ratio between an occurrence count and the number of samples, as the
number of samples tends to infinity, is an occurrence weight. For each grammar object in
the MMGL input model, we define an occurrence weight table similar to the trigram
weight table for language model generation. The occurrence weight table for a grammar
object can be recursively computed from the weight tables of its sub-objects, using an
algorithm very similar to the N-gram counting algorithm in section 5.5.1. One major
difference is we do not have to descend inside NonTerm nodes marked as “parseable”
because each of these nodes corresponds to a macro concept that will appear in the input
stream as a single token. A second difference is the treatment of PSlot nodes: because the
parameter slots correspond to the output classes in the MS-MIN, input-output co-
occurrences must be counted at the PSlot level.

The above algorithm is implemented in a Visitor subclass (see section 5.2) that travers-
es the MMGL grammar structure and recursively computes the occurrence weight tables,
then generates an MS-MIN by calculating the connection weights from the occurrence
weight tables.

In one experiment, this network generator took 2 minutes to produce a network which
would have required the equivalent of 6 million training examples and more than 11
hours of training time to cover all possible input combinations.

5.6.3 Postprocessor Generator

As explained in section 5.1.5, the postprocessor is responsible for extracting parameter
values from the output of the semantic integrator. A skeleton of the postprocessing
algorithm can be automatically generated from the MMGL grammar structure. Another
Visitor subclass (see section 5.2) accomplishes this by traversing the grammar and writing
out template code customized by the grammar context at each node.

The output of the Postprocessor Generator is a Java class that contains methods to
identify the interpretation context (e.g., the current action frame and parameter slot) and
branch to the appropriate postprocessing code. The application developer only has to fill
in the domain-dependent parts of the postprocessing template (the parts that handle
application-specific data representations). To avoid losing the modifications if the
template code is regenerated, the class produced by the Postprocessor Generator should
be retained unchanged and the modifications should be put in a subclass by overriding the
appropriate methods.

Figure 26 on page 101 shows a code excerpt from a generated postprocessor class.
The code comes from the QUICKTOUR application described in Chapter 6.

101

public abstract class StreetMapInterpBase
extends MMInterp
{
 protected void interpretAction(String action, ParsedPSlot[] psSeq,
 MMFrameSet fs)
 throws MMInterpException
 {
 if (action.equals("Find"))
 actionFind(psSeq, fs);
 else if (action.equals("FindAll"))
 actionFindAll(psSeq, fs);
 //...
 }
 protected void actionFind(ParsedPSlot[] psSeq,
 MMFrameSet fs)
 throws MMInterpException
 {
 for (int i=0; i<psSeq.length; i++)
 {
 String psName = psSeq[i].getName();
 if (psName.equals("FindSpec"))
 psFind_FindSpec(psSeq, i, fs);
 //...
 }
 }
 protected void psFind_FindSpec(ParsedPSlot[] psSeq, int index,
 MMFrameSet fs)
 throws MMInterpException
 {
 Modality[] modList = psSeq[index].getModalityList();
 for (int i=0; i<modList.length; i++) {
 if (modList[i].equals("SPEECH")) {
 for (j=0; j<psSeq[index].getChildrenCnt(modList[i]); j++) {
 ParsedNonTerm nt = psSeq[index].getChildAt(modList[i], j);
 String ntName = nt.getName();
 if (ntName.equals("PlaceName"))
 paramFindSpec_PlaceName(nt, fs);
 //...
 }
 } else if (modList[i].equals("PEN")) {
 //...
 }
 }
 }
 protected void paramFindSpec_PlaceName(ParsedNonTerm nt,
 MMFrameSet fs)
 {
 // application-specific code to be filled in by subclass
 }
 //...
}

Figure 26. Postprocessor Skeleton for Parameter Extraction

102

CChhaapptteerr 66
DESIGN EXAMPLE: A MAP SYSTEM

This chapter describes the design and implementation of a multimodal application using
the MMApp framework and the MMTk workbench. The construction of this application
revealed many insights into the requirements of multimodal applications and helped
document many design choices that had not been made explicit during the implementa-
tion of MMApp and MMTk. The target application, QUICKTOUR, is a map navigation
system that allows the user to manipulate a map display and issue multimodal queries.

The QUICKTOUR application described here has been deployed in user observation
sessions in which participants interacted with the program to carry out assigned tasks by
speaking and drawing. These sessions demonstrated that an application designed and
implemented with MMApp and MMTk does indeed work as expected, letting real users
accomplish useful tasks using multimodal interaction. Detailed evaluation results are
reported in the next chapter.

6.1 Requirement Analysis

QUICKTOUR should display a map of a certain geographical area and allow the user to
perform the following operations using speech and/or pen input:

1) Adjust the map view. The map display should support the two fundamental
map manipulation operations:

• Zoom — change the magnification factor of the map view. It should be
possible to zoom in (increase the magnification) or zoom out (decrease the
magnification) by a given factor. The user can optionally specify a point
on the map as the zoom center, i.e., the point that will be displayed at the
center of the map view after the zoom operation. The change in magnifi-
cation factor can be alternatively specified as a rectangular area of a
certain size surrounding the zoom center.

• Pan — shift the map view while retaining the same magnification factor.
The user should be able to pan the map along the basic compass directions
(north, east, northeast, etc.) by an amount given in units of distance (miles
or kilometers) or as a percentage of the screen†.

† Precise zoom and pan parameters may seem out of place in a tourist map application. However, this
application was based on a military map application in a previous project. The ability to zoom and pan by
precise amounts was required for that project and the requirement was transferred to this project even
though the application domain now concerns travel information for tourists.

103

2) Search for places on the map. The possible search criteria include street ad-
dresses, place names, establishment types (bank, restaurant, theater, etc.), and
other attributes (price range, quality of food, etc.). The search may be re-
stricted to a given rectangular area on the map. The user can specify that all
matching locations should be found or only the one closest to the current po-
sition marker. The map program should display the matching locations and
adjust the map view if necessary to bring those locations into view.

3) Find the best route from one place to another. For this application the best
route is defined to be the shortest path along the street segments between the
two places. The user can also ask for the length of this path or the time needed
to traverse the path.

Places on the map can be specified verbally by name or visually by pointing or cir-
cling (if they are visible in the current view). Zoom target areas as well as areas used to
restrict search operations can be visually delimited by drawing a contour on the screen. A
line or an arrow joining two places indicates a request for the best route, optionally
accompanied by a verbal qualifier asking for the distance or the travel time. Handwriting
support is not required.

Map is a popular choice of application domain for multimodal systems, being studied
in [Neal91], [Matsu’ura94], [Cheyer95], [Oviatt96], [Martin97], and possibly many other
research projects. The most important motivating factor is the strong visual component
inherent in map manipulation. Oviatt et al. [Oviatt97a] showed that in a map task the
commands most likely to involve more than one modality are spatial location commands
which require specifying a spatial location description. [Oviatt97b] identifies perform-
ance difficulties with speech-only interaction in a map task and reports a strong user
preference to interact multimodally for this task.

The map application domain is strongly supported by MMApp and MMTk according
to the criteria outlined in section 1.2 because the speech and pen modalities are strongly
supported and the map state can be manipulated by parameterized actions.

The following are some examples of multimodal commands for QUICKTOUR (pen
input elements are in italics surrounded by square brackets):

Please locate Carnegie Mellon University for me.

Can you show me the fastest route from here [point at a
place] to University of Pittsburgh?

Where are the Chinese restaurants in this area [rectangle] ?

How long does it take to go from here to here [arrow from
one place to another] ?

Zoom in five times [circle the center of the zoom] .

104

6.2 Design

The system architecture of QUICKTOUR follows the default MMApp architecture
(Figure 9 on page 54) without any significant changes.

Step-by-step application of the design process in section 5.1 is outlined below.

Selecting Action Frames and Parameter Slots

The action frames and parameter slots follow directly from the supported commands
listed in the above requirement analysis. The resulting list is summarized in Table 5.

Action Frame Parameter Slot Description

ZoomInCenter Center point of the zoom
ZoomIn

ZoomInAmount Whole-number zoom factor

ZoomOutCenter Center point of the zoom
ZoomOut

ZoomOutAmount Whole-number zoom factor

ZoomBoxCenter Center point of the zoom

ZoomBoxAmount Size of square zoom areaZoomBox

ZoomBoxArea Contour of zoom area

PanDirection Direction of the map shift
Pan

PanAmount Distance of the map shift

Find FindSpec Search criteria

FindAllSpec Search criteria
FindAll

FindAllArea Contour of the search area

FindPathSrc Path starting point
FindPath

FindPathDst Path end point

FindPathLenSrc Path starting point
FindPathLen

FindPathLenDst Path end point

FindPathTimeSrc Path starting point
FindPathTime

FindPathTimeDst Path end point

Table 5. Action Frames and Parameter Slots for QUICKTOUR

It is possible to combine FindPath, FindPathLen, and FindPathTime into a single ac-
tion frame with an additional parameter slot specifying the required path information
(distance or travel time). However, as pointed out in section 3.2.2, experience has shown

105

that the MS-MIN-based semantic integrator can achieve higher accuracy if separate
action frames are used so that the action frames and their parameter slots are more tightly
bound. This is reflected in the above table.

Designing the Input Model

The MMGL input model is constructed using the Multimodal Grammar Editor de-
scribed in section 5.3.

It is straightforward to create one AFrame node per action frame listed in Table 5. For
each AFrame, the procedure to design the PSlots is as follows:

• Construct speech-only commands for the given action, segment them into pa-
rameter slots, abstract the segments into context-free grammars, and create
corresponding PSlots each containing one Speech UnimodalNode;

• Do the same for pen-only commands to obtain PSlots each containing one Pen
UnimodalNode;

• Do the same for speech-and-pen combinations to obtain PSlots each contain-
ing Speech and/or Pen UnimodalNodes.

As an example, consider the ZoomIn action frame. Typical speech-only commands
for this action follow a few main patterns:

(a) Zoom in (magnify, enlarge) around (at, on) <place>
<number> times (by a factor of <number>).

(b) Zoom in (magnify, enlarge) <number> times (by a factor of
<number>) around (at, on) <place>.

(c) Show (display) <place> <number> times more detailed.

(Synonyms and alternative phrasings are in parentheses.)

The above three patterns translate into three PSlot sequences:

(a) ZoomInCenter(0) — ZoomInAmount(0)

(b) ZoomInAmount(1) — ZoomInCenter(1)

(c) ZoomInCenter(2) — ZoomInAmount(2)

The numerical tags in parentheses distinguish PSlot nodes for the same parameter slot.
It is straightforward to create context-free grammars for the contents of the PSlots.

Either the zoom center or the zoom factor may be omitted, in which case default val-
ues will be used. Thus we have two more PSlot sequences consisting of only
ZoomInCenter(0) or ZoomInAmount(1). Examples of utterances for these sequences are
“Zoom in around Carnegie Mellon University” and “Magnify two times.”

106

There are no pen-only commands for ZoomIn. Combined speech and pen commands
use a deictic gesture instead of a verbal specification to indicate the zoom center. Thus
pattern (a) above becomes

(a') Zoom in (magnify, enlarge) around (at, on) here
[pen deictic] <number> times (by a factor of <number>).

The phrase “around here” may be omitted. The corresponding PSlot sequence is

(a') ZoomInCenter(3) — ZoomInAmount(0)

ZoomInCenter(3) contains both Speech and Pen UnimodalNodes. Note that it makes
sense to reuse ZoomInAmount(0) here because the second part of the spoken utterance
remains the same. A significant part of the Speech UnimodalNode in ZoomInCenter(0) can
also be reused in ZoomInCenter(3).

Pen deictics can be a point, a circle, a rectangle, or a cross. The Pen UnimodalNode in
ZoomInCenter(3) is filled in accordingly.

At this point is becomes important to decide on an encoding for pen input. Besides
the gesture shape, the spatial context of a gesture plays an important role in its semantics.
In this application, it is important to know whether the gesture refers to a map object (an
icon for a place displayed on the map); therefore, a point gesture is encoded as point if it
falls on an empty spot of the map and as point_object if it falls on an object. Each en-
coded gesture also carries an attach data packet; for point this packet specifies the
coordinates of the point and for point_object the packet specifies the object ID. Gesture
shapes such as arrow and line carry significant information in their start and end points,
hence they are encoded as sequences of the form arrow_start followed by arrow_end. An
_object suffix is appended if the start or end point falls on an object.

The design of other PSlot sequences proceeds in the same fashion.

The resulting MMGL input model contains 9 AFrames, 84 PSlots, 59 UnimodalNodes,
207 NonTerms, 435 Literals, and 451 distinct words.

Generating Unimodal Language Models

This step is straightforward once the input model has been created. Running the N-
gram Language Model Generator (see section 5.5) on the input model produces a trigram
language model file suitable for loading into JANUS or SPHINX. The language model
contains 454 unigrams, 36,322 bigrams, and 2,118,083 trigrams.

Instantiating the Multimodal Semantic Integrator

This step requires the identification of macro concepts for input preprocessing (see
section 5.6.1). The macro concepts should be significant in the extraction of action
parameters.

107

For the speech modality, we need to extract six types of parameters:

• Zoom factor (for ZoomIn and ZoomOut)

• Zoom box size (for ZoomBox)

• Pan direction (for Pan)

• Pan amount (for Pan)

• Map location (for ZoomIn/Out/BoxCenter and FindPath commands)

• Search criteria (for Find and FindAll)

The zoom factor, the zoom box size, and the pan amount are whole numbers, hence
we need to parse number phrases. For the zoom box size and the pan amount we also
need to specify a unit of distance, either mile or kilometer. The pan direction requires
specifying compass directions. Verbal specification of map locations should indicate
street addresses and/or place names. Search criteria include object types and attributes in
addition to addresses and names.

From the above considerations it is obvious that the macro concepts for this applica-
tion should include the following:

• Number: This should include all number phrases that are likely to occur for
this application. Zoom factors and pan amounts are small numbers, but street
numbers in addresses may have up to 4 or 5 digits, hence the grammar for the
Number macro concept should cover all phrases from “one” to “ninety nine
thousand nine hundred and ninety nine.” Alternatives such as “nineteen ninety
eight,” “nineteen hundred and ninety eight,” and “one thousand nine hundred
ninety eight” should be included.

• DistanceUnit: This should cover “mile(s)” and “kilometer(s).”

• Direction: This should include all eight compass directions (“north,” “south,”
“east,” “west,” as well as “northeast,” “southwest,” etc.) plus “left,” “right,”
“up,” and “down.”

• Street: This should include all the street names of interest. The grammar for
this can take advantage of the fact that a street name may have up to three
parts: a direction (“North,” “South,” etc.), a name, and a type (“Avenue,”
“Boulevard,” etc.). Only the name is required.

• PlaceName: This should list the names of all the places of interest. Examples
include “Carnegie Mellon University,” “Pittsburgh Zoo,” etc.

• Type concepts: The type of an object consists of a mandatory ObjectClass and
an optional ObjectSubtype. For instance, the class “Restaurant” can have sub-
types such “McDonald’s” or “Burger King.”

• Attribute concepts: These include Nationality such as “Chinese” or “French,”
Quality such as “good” or “excellent,” and Price such as “inexpensive.”

108

For the pen modality, it is important to be able to extract coordinates or object IDs
from the pen tokens. The simplest solution is to represent each gesture token as a macro
concept. For instance, a gesture encoded as point becomes the macro concept P_Point
while point_object becomes the macro concept P_PointObject†. Unlike for speech, the
pen macro concepts are not parsed from the input stream but must be constructed explic-
itly by the program. In the MMGL input model we can use placeholders for data that will
be filled in by the program; for instance, P_Point contains the Literal “?x ?y” which
indicates that x-y coordinates will be filled in at runtime.

Macro concepts must be marked in the MMGL input model as “parseable” NonTerm.
The Grammar Designer includes “Parseable” in the Properties dialog for NonTerms,
accessible via the context-sensitive menu that pops up when a node is clicked with the
right mouse button (see section 5.3).

Once macro concept nodes are properly marked, appropriate MMTk tools generate an
input preprocessor that parses the speech stream and an MS-MIN integrator (see sections
5.6.1 and 5.6.2).

Implementing the Parameter Extraction Postprocessing

Running the Postprocessor Generator (see section 5.6.3) on the MMGL input model
creates a MapInterpBase Java class containing a skeleton algorithm to traverse the output
of the semantic integrator and construct the output action and its parameters. Domain-
specific parts of the algorithm must be implemented in a MapInterp class that extends
MapInterpBase and overrides appropriate methods. The implementation of MapInterp is
described in the next section.

6.3 Implementation

The user interface is a MapApplet class that extends MMTk’s MultimodalApplet. MapApplet
uses the same layout as MultimodalApplet, hence the only graphical element that needs to
be added is a MapView object that displays the map inside the applet’s PenPanel.

 MapView is implemented as an Observer for a Map object (see the Observer design
pattern in Appendix C). The map is represented as a graph; the vertices are the street
intersections and the edges are the street segments. This graph representation facilitates
the computation of shortest paths using Dijkstra’s algorithm [Knuth73]. The Map object
also contains a list of places with attributes such as name, address, icon image, type, and
so forth. MapView can display these places as icons; in addition, MapView has methods to
adjust the view by zooming and panning. The current state of MapView can be captured in
a snapshot and restored later; this is the mechanism for undoing actions.

† Naming pen nodes with a P_ prefix avoids potential conflicts with the names of speech nodes.

109

MapApplet overrides three abstract methods in MultimodalApplet as specified in section
4.7.4. The executeCommand() and undoCommand() methods work on a MapCommand object
that encapsulates a command action and associated parameters. MapCommand is an
abstract base class that declares execute() and undo() methods to be defined by subclasses.
There is a MapCommand subclass for each action frame or group of related action frames:

• ZoomCommand implements the ZoomIn and ZoomOut actions;

• ZoomBoxCommand implements the ZoomBox action;

• PanCommand implements the Pan action;

• FindCommand implements the Find action;

• FindAllCommand implements the FindAll action;

• FindPathCommand implements FindPath, FindPathLen, and FindPathTime.

The remaining abstract method, getInterpretation(), receives a group of InputEvents and
returns a MapCommand object. Internally, getInterpretation() transforms the InputEvents to a
form suitable for semantic integration and invokes a method on a MapIntegrator object to
perform the integration (the request is transparently forwarded to a remote server process
via the Switchboard as described in section 4.6.3). Speech InputEvents are parsed using
the generated input preprocessor to produce a sequence of tokens, each of which may be
a simple word or a macro concept. Pen InputEvents are encoded and transformed into a
sequence of macro concept tokens as described in section 6.2 above.

The output of the semantic integrator is postprocessed by MapInterp, which extends
the MapInterpBase postprocessing skeleton generated from the input model. The generated
code in MapInterpBase branches to appropriate methods based on the names of the AFrame
and PSlot nodes encountered during a traversal of the integrator output. MapInterp cus-
tomizes those methods to extract the action name and parameter values needed to
instantiate a subclass of MapCommand. There are also helper methods to convert the text
in macro concepts to values of the appropriate types; for instance, a getNumber() method
receives a NonTerm representing the Number macro concept and computes an integer
value from the words in the parse tree of the NonTerm.

Besides the MapApplet user interface which runs in a Web browser, QUICKTOUR
includes a JANUS speech recognition server, a TmplGRec gesture recognition server,
and an MS-MIN semantic integration server. The servers can be distributed on fast
workstations and accessed via the central Switchboard running on the Web server ma-
chine. Services are accessed through the interfaces defined in MMApp, hence any
compatible implementations of the servers can be transparently substituted for the default
versions.

Figure 27 on page 110 shows the QUICKTOUR user interface with gesture and
speech input events in progress.

110

Figure 27. Multimodal Map Application

111

CChhaapptteerr 77
EVALUATION

This chapter offers some validation of the work presented in this dissertation by examin-
ing the application of the proposed framework and design process to real systems. The
first section describes a validation of the development procedure (i.e., the process of
using MMApp and MMTk in application development) in terms of development effort
and portability across different task domains. The second section focuses on one multi-
modal system constructed using the development procedure, namely the QUICKTOUR
application described in the previous chapter, and demonstrates that the resulting system
is a working application that enables real users to perform useful tasks in a multimodal
interaction style.

7.1 Evaluation of the Development Procedure

This section describes two other applications that demonstrate the portability of the
framework to different task domains and presents an assessment of the development
effort for the QUICKTOUR design example in Chapter 6 to illustrate the benefits of
developing the application using the MMApp framework and the MMTk workbench.

7.1.1 Portability

This dissertation presents a multimodal semantic model, an application framework, and a
tool-assisted design process to facilitate the construction of a broad class of multimodal
applications. Chapter 6 described how a complete application was constructed using the
above development framework. This section demonstrates the applicability of the frame-
work to more than one domain by presenting two other multimodal applications that have
been developed using MMApp and MMTk.

JEANIE-II — A Multimodal Appointment Scheduler

[Vo96] describes a multimodal calendar application called JEANIE. Its successor,
JEANIE-II, is a complete re-implementation using MMApp and MMTk.

Figure 28 on page 112 shows the JEANIE-II user interface. The layout inherited from
MultimodalApplet is essentially the same as that of QUICKTOUR (see Figure 27 on page
110), except that a calendar display replaces the map display inside the PenPanel.

A user can schedule new meetings, cancel existing meetings, or changing them in
various ways by speaking, drawing gestures, writing words, or using any combination
thereof. In Figure 28, an arrow accompanied by spoken words moves the indicated
meeting to the location at the tip of the arrow. This is a case of redundant information

112

from two modalities because the start of the arrow indicates the same meeting specified
by speech. Other ways to specify the same operation include

• Using the arrow gesture alone without speaking;

• Circling or pointing to the board meeting and saying “Move this to Wednes-
day at 1 PM;”

• Drawing a rectangle covering the 1PM-2PM time slot on Wednesday and
saying “Move the board meeting here.”

Figure 28. Multimodal Appointment Scheduler Application

JEANIE-II also supports handwriting in addition to speech and gestures. Attendee
names and meeting topics can be spoken or written. Writing is useful if the speech
recognizer has difficulty with certain words, especially proper names.

113

QUARTERBACK — A Multimodal Football Simulation

QUARTERBACK is an application written by Gregory Cortis Clark using MMApp
and MMTk. The user interface depicted in Figure 29 shows a representation of a football
field populated by football players in formation.

A user can draw gestures on the rectangle on the right hand side to describe a play.
Circles indicate player positions and arrows specify their movements. Saying “Ball
carrier” while drawing a play assigns the ball to the indicated player. Crossing out
previously assigned players removes them from the play description. Stored plays can
also be recalled verbally by speaking the play number and name, e.g. “620 Belly Coun-
ter.” Once a play description has been completed, saying “Execute play” animates the
player icons on the field to simulate the play.

Figure 29. Multimodal Football Application

The implementations of JEANIE-II and QUARTERBACK both accept the default
options in MMApp to minimize the amount of required customizations.

114

7.1.2 Ease of Development

It is quite difficult to quantify the benefits of using MMApp and MMTk for application
development without any point of reference for comparison. A thorough quantitative
analysis would require something equivalent to implementing the same application with
and without MMApp/MMTk support and comparing the development efforts in the two
implementations.

This section approaches the matter from a more subjective point of view with the in-
tention of showing that an application implementation reused a large amount of code
compared to the amount of application-specific customization, thereby benefiting from
the framework by implication. Another consideration that demonstrates quantifiable
benefits is the performance improvements measured against the incremental efforts to
achieve those improvements after testing the application on real users.

Code Reuse in Application Development

Subsystem Lines of code Public classes Public methods

Networking 1834 23 121

Speech 2190 12 114

Pen 1163 8 88

Multimodal coordination 297 5 31

User interface 770 1 20

Miscellaneous 891 8 86

M
M

A
pp

Subtotal 7145 57 460

Grammar 2534 30 208

Designer 5356 41 388

Generator tools 7669 28 294

Miscellaneous 2353 17 104

M
M

T
k

Subtotal 17912 116 994

SRecServer 8277 N/A N/A

TmplGRec 2214 N/A N/A

MS-MIN 4219 N/A N/AS
er

ve
rs

Subtotal 176520 N/A N/A

Total 315394 173 1454

Table 6. Size of Software Component Libraries

115

Table 6 on page 114 lists the software subsystems used for multimodal application
development. The size of each subsystem is measured by three variables: the total num-
ber of lines of code (excluding comment lines), the number of publicly accessible classes
(i.e., classes that application developers can use), and the number of publicly accessible
methods (i.e., methods that application code can call) in those classes†. The number of
code lines (the shaded column in Table 6) is the main measurement for the size of the
system, while the number of public classes and methods represents the size of the API
that application developers must learn.

Table 7 quantifies the development effort for the QUICKTOUR application described
in Chapter 6. The application program code is divided into three parts:

• Map display. This consists of classes that encapsulate the map data, display a
map view on the screen, and implement map operations such as zooming,
panning, searching for and displaying places on the map, etc. The size of this
part of the program represents the application-specific development effort that
is independent of the multimodal infrastructure.

• Interpretation. This consists of classes that employ MMApp facilities to cap-
ture, coordinate, and interpret multimodal inputs for QUICKTOUR. This part
of the program represents application-specific customizations of MMApp fa-
cilities.

• Generated. This is the postprocessor skeleton generated by MMTk.

In addition to the number of code lines, classes, and methods, the table lists the num-
ber of man-hours spent on the development of each part of the program and on the
MMGL input model for the application.

Subsystem Lines of code Public classes Public methods Man-hrs

Map display 2958 13 132 250

Interpretation 4193 43 258 360

Generated 2738 1 1 N/A

Input model N/A N/A N/A 160

Total 9889 57 391 770

Table 7. QUICKTOUR Application Development Effort

The figures in Table 7 show that 30% of the program code and 32% of the time spent
belong to the implementation of the map functions, which have nothing to do with
handling multimodal inputs. About 42% of the code and 47% of the time can be attrib-
uted to hand-coded customizations of the MMApp components used in input
interpretation. Automatically generated code accounts for 28% of the program. 21% of

† The class and method information is only available for Java-based modules.

116

the time went into the creation of the MMGL input model. The whole project took about
3 man-month (assuming 8 hours of work per day, or 1 man-month of continuous 24-hour
work days) to complete.

The 4,193 lines of code† for handling multimodal interpretation represent 19% of the
total size of MMApp and the associated servers (MMTk components are intended for
input model work and thus are not directly incorporated into the application program).
Thus we can infer that reusable components from the framework account for more than
80% of the code for capturing and interpreting multimodal inputs.

The MMGL input model was partly based on a (speech-only) context-free grammar
written for another map project. Without this head-start, it would have taken a larger
fraction of the development time to create the input model. The 21% of development time
spent on the input model paid off handsomely in the form of the automatic generation of
28% of the program code, the language model for speech recognition, and the MS-MIN
for semantic integration.

Development Effort Coupled with Learning the Framework

Table 8 summarizes the development effort that Gregory Cortis Clark spent on the
QUARTERBACK application. This data is interesting because in this case the applica-
tion developer did not have any prior experience with MMApp and MMTk.

Subsystem Lines of code Public classes Public methods Man-hrs

Football 852 13 134 121

Interpretation 333 4 27 100

Input model N/A N/A N/A 8

Total 1185 17 161 229

Table 8. QUARTERBACK Application Development Effort

72% of the program code and 53% of the development time went into the implemen-
tation of the football simulation. Multimodal interpretation accounts for only 28% of the
code, but nearly 44% of the time. The extra time was needed to learn how to use the
framework and customize the components.

Little time was spent on input modeling because the input model for this application
is very simple (compared to the QUICKTOUR model) and handles only speech. Pen
gestures in QUARTERBACK are specialized commands for play description, hence it

† Most of this code (3347 lines, or 80%) is for extracting parameter values and implementing the MapCom-
mands for the actions. The complexity comes from handling a large number of parameter-carrying token
types and decoding them from textual form to the appropriate data types.

117

was easier to handle them separately in custom code rather than using MS-MIN semantic
integration.

The application developer, G. Cortis Clark, had the following comments about his
experience in using MMApp and MMTk for multimodal application development:

• The largest obstacle to learning the framework is the lack of documentation.
This dissertation would have significantly remedied this deficiency; unfortu-
nately it was still a work in progress at the time the QUARTERBACK
application was written. Cortis had to spend a significant amount of time
reading part of the MMApp source code and consulting me. Work on a com-
plete set of documentation for the APIs and the design process is currently in
progress with input from Cortis.

• Some aspects of MMApp, especially the user interface, are still not very flexi-
ble. It is harder than necessary (perhaps partly due to the lack of
documentation) to make small customizations if the default options are
slightly inappropriate. A visual interface builder would be a welcome im-
provement.

• Knowledge of the multimodal semantic model and MMGL formulation is
necessary to the effective use of MMTk tools, including the Grammar De-
signer. Cortis had to spend 4 hours in consultation with me for a tutorial on
input modeling and parsing, as a consequence of the lack of documentation.

• Once enough experience is gained during the course of development, it is
rather easy to apply the framework and design process to other applications.
Cortis is currently offering his newfound expertise for consultation in a proj-
ect involving fitting an existing application into the MMApp framework.

7.1.3 Incremental Improvement

The design process outlined in section 5.1 enables the rapid prototyping of an application
even if little or no data on user input patterns for the application domain is available.
However, once a working prototype of the application is deployed, it becomes feasible to
collect user data by letting real users interact with the system. The collected data could
serve as a basis for improving the performance of the application.

A set of user data was collected for the QUICKTOUR application during user obser-
vation sessions, as described in section 7.2.2 below. The data was manually labeled and
used to test the interpretation accuracy of the MS-MIN semantic integrator. (The tests in
this section used transcribed speech and gestures to eliminate the effects of recognition
errors on the interpretation accuracy.) The question is, given this data, how much effort
would be needed to discover and implement modifications that would result in perform-
ance improvement. Two modifications documented in Table 9 illustrate an answer to this
question.

118

It should be noted that the results reported in Table 9 only serve to illustrate the ease
with which certain flaws in the application can be discovered and corrected. The im-
proved performance figures were measured on the same data set used to achieve the
improvements, hence it is very likely that the figures include some optimistic estimation
bias, similar to the way performance measured on the training set is almost always higher
than that measured on an independent test set. Even so, the flaw-correction process
described below illustrates how easy it is to adapt an application prototype to fit real user
data and quickly obtain better interpretation accuracy.

The MS-MIN can produce several hypotheses ranked by score. In Table 9 the top
three hypotheses are considered for each input sample.

Interpretation accuracy (%)
Modification Man-hrs

Top 1 Top 2 Top 3

(Initial system) N/A 80.2 89.5 90.1

Adjust sequence weights 0.25 81.6 89.8 90.9

Add synonyms & alternatives 0.75 83.0 92.8 93.4

Table 9. Incremental Improvement in QUICKTOUR

The MMTk workbench includes a program that tests an MS-MIN on a set of labeled
data. The output of the tester program contains a confusion matrix which tabulates the
number of times an action A is incorrectly classified as another action B. Upon examina-
tion of this confusion matrix, it was apparent that many Find actions were classified as
Zoom actions.

Further analysis of the hypotheses generated by the MS-MIN revealed that the errors
were mostly caused by spoken utterances of the form “Show/display <something>.” One
look at the MMGL input model for QUICKTOUR showed that the Zoom commands also
included “show/display” phrases, as in “Show the area around CMU with more detail.”
This resulted in strong associations that favored the Zoom commands in the output.

The above discovery revealed a flaw in the QUICKTOUR input model. The “show
with more detail” phrases were intended as a supplement for the “main” phrases such as
“zoom in,” but the two alternatives were given equal weights. One obvious remedy is to
reduce the weight of the “show” phrases relative to the “zoom” phrases to give less
emphasis on the “show” phrases in the context of the Zoom commands. The “show”
phrases will then favor the Find commands instead. This modification should not ad-
versely affect performance on the Zoom commands because the “more detail” part of the
phrases is still strongly associated with Zoom.

Minor weight adjustments similar to the above were necessary in a few other parts of
the input model. After the weight adjustments, the interpretation accuracy increased from
80.2% to 81.6% (the second data row of Table 9). It is interesting to note that the accu-

119

racy based on the top 2 or 3 hypotheses did not increase as much, indicating that the
correct Find commands had been in the top 2 or 3 choices even though the Zoom com-
mands took the top slots. The effect of the weight adjustments is to change the scores
enough so that the correct output rose 1 or 2 notches in the ranking.

It took only 15 minutes to discover and implement the weight adjustments.

Running the tester program again after adjusting the weights produced another confu-
sion matrix. This time a number of misclassified ZoomBox commands yielded two
discoveries:

• The input model included many synonyms referring to a square area on the
map (“square,” “rectangle,” “box,” “window,” etc.) but it turned out that the
participants also used other terms such as “radius,” “perimeter,” “region,” etc.;

• The input model covered constructs of the form “a two-mile area” but quite a
few participants used variants of “an area two miles on each side” instead.

A few other synonyms or equivalent terms were missing from other parts of the input
model (e.g., “expand” was not on the list of “zoom in” verbs).

It took 45 minutes to go through the erroneous hypotheses, extract the missing syno-
nyms and alternative phrasings, and add them to the input model (after generalizing from
them in the context-free grammar formulation of MMGL). The result was an increase in
interpretation accuracy from 81.6% to 83% (the third data row of Table 9). This time
there was a corresponding improvement in the accuracy based on the top 2 or 3 hypothe-
ses because the missing terms that were added had been very important to the
classification of the affected commands. Without those terms the correct commands
received scores too low to put them in the top 3 choices.

The data in Table 9 shows that one additional hour of development time was enough
to improve the interpretation performance by almost 3%. As noted above, this perform-
ance increase is probably optimistically biased because it was measured on the “training
set” for the improvements.

It should be possible to increase the interpretation accuracy on the collected data set
by incrementally training the MS-MIN on the data. However, there is no guarantee that
such performance improvements would generalize well to unseen data. The modifications
described above are more general because they cover patterns extracted from the col-
lected data rather than just the samples in the data set. The only way to confirm the above
conjecture is to measure the performance on an additional independent test set; however,
no experiment along that line has been performed because of a lack of data.

7.2 Evaluation of the Product

This section describes experimental results that provide an assessment of how well the
QUICKTOUR application works in practice. The first subsection describes some tests

120

that demonstrate the feasibility of using the MS-MIN for multimodal interpretation. The
next subsection presents results obtained from real data collected during user observation
sessions.

7.2.1 Performance of the MS-MIN

Ideally, we should collect a large amount of user data using a Wizard-of-Oz study
[Salber93], manually label each multimodal input event in the data set with the correct
action and parameters, use a portion of the labeled data to train an MS-MIN, then test the
network on the rest of the labeled data. Doing this properly requires a large scale, very
time-consuming effort. However, it is possible to use an MMGL input model instead of
real data in the tests. This is what application developers should do in the application
prototyping stage when real data is scarce.

The input model constructed for QUICKTOUR is a non-trivial model that covers a
wide range of input variations; therefore, using data generated from the model to measure
the interpretation accuracy of the MS-MIN will at least provide a useful indication of
whether the semantic integration algorithm works at all.

Interpretation Accuracy

In the first test, 11,000 labeled multimodal input events were generated from the
MMGL input model for the QUICKTOUR application, using the Random Sample
Generator described in section 5.4. An MS-MIN was trained on 10,000 of the samples by
presenting each sample in turn together with the correct segmentation into parameter slots
as specified by the MMGL model (the Sample Generator retains this information as it
constructs the samples).

The trained network was tested on both the training set and a test set composed of the
remaining 1,000 samples. For each sample to be tested, the input data was segmented into
parameter slots by the MS-MIN, then an action and its parameters are extracted from the
network output. These are compared to the action and parameters specified by the correct
semantic labeling from the MMGL model, and the interpretation is deemed correct if the
action and all the parameters match perfectly. The network can produce several hypothe-
ses ranked by score, and the top three hypotheses are considered for each input sample.

To demonstrate the usefulness of the Integration Network Generator described in
section 5.6.2, another MS-MIN was generated directly from the MMGL model and tested
using the same 11,000 samples.

Table 10 on page 121 summarizes the test results. The MS-MIN trained on 10,000
samples achieves an interpretation accuracy of over 90% on the training set. As expected,
the performance on the test set is slightly lower, but still not far behind at almost 88%.
About 95-96% of the time the correct interpretation is within the top two or three hy-
potheses.

121

Trained network Generated network

Top 1 Top 2 Top 3 Top 1 Top 2 Top 3

Training set (%) 90.4 95.8 96.6 92.0 96.2 96.8

Test set (%) 87.9 95.0 96.1 91.3 96.1 96.3

Table 10. MS-MIN Interpretation Accuracy on Artificial Data

As the test input samples were drawn randomly and independently according to the
implicit probability distribution in the MMGL input model, the error rate measured on the
test set is a random variable that follows a binomial distribution. We can approximate this
distribution with a normal distribution and derive a confidence interval for the interpreta-
tion accuracy figures reported in Table 10 [Mitchell97]. For an observed error rate e on a
test set of size n (i.e., the interpretation algorithm makes en mistakes), the N% confidence
interval for the true error rate is given in [Mitchell97] as

n

ee
ze N

)1(−± (16)

where Nz is given in Table 11 and 1000=n for this experiment.

Confidence interval N% 50% 68% 80% 90% 95% 98% 99%

Constant Nz 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Table 11. Values of Nz for Two-Sided %N Confidence Intervals

Thus, the 95% confidence intervals for the interpretation accuracy of the trained and
generated networks are %0.29.87 ± and %7.13.91 ± , respectively.

Because the connection weights in the generated network were computed from the
true probability distribution built into the MMGL input model, it is as if the network were
trained from an infinitely large number of samples generated from the input model. As
such, it is reasonable to expect that the generated network would be able to generalize
much better than the network trained on just 10,000 samples. Indeed, Table 10 shows that
the generated network achieves higher interpretation accuracy on both data sets.

The above test results, although obtained on artificially generated data, clearly indi-
cate that the MS-MIN can be trained to perform semantic integration of multimodal
inputs according to the action frame/parameter slot semantic model described in Chapter
3. The network exhibits strong generalization power as attested by the performance on an
independent test set. The network generated directly from the input model outperforms
the network trained on 10,000 input samples, demonstrating the advantage of network
generation over time-consuming training.

122

Incremental Learning

As explained in section 3.4.3, the MS-MIN is capable of learning incrementally; i.e.,
it can improve its performance gradually as it is presented with more and more examples.
To demonstrate this fact, an MS-MIN was incrementally trained on data generated from
the MMGL input model for QUICKTOUR (see above) using the following procedure:

The network initially contains no input units and no connections. For each input sam-
ple, the new sample is first interpreted by the network, then the correct parameter slot
segmentation is presented to train the network, and finally the sample is interpreted again
after the network connections have been updated by the single training step. The cumula-
tive number of correct interpretations divided by the number of samples presented up to
that point is the interpretation accuracy. The before-training evaluations approximate the
performance measured on an independent test set because at evaluation time the samples
had never been seen before. The after-training evaluations correspond to the “training
set” performance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Training samples

In
te

rp
re

ta
tio

n
ac

cu
ra

cy Training set (top 2)

Test set (top 2)

Training set (top 1)

Test set (top 1)

Figure 30. MS-MIN Incremental Learning

Figure 30 summarizes the test results. The “training set” curve indicates that about
90% of the time the MS-MIN was able to learn the interpretation of an input sample after
a single presentation of the example. This ability was sustained at more or less the same
level even when a large number of examples had been presented and the network had
grown considerably. Furthermore, the network was also able to generalize from the
examples and steadily improved its performance on new input samples, as attested by the
“test set” curve. After 10,000 examples, the interpretation accuracy on new inputs has

123

risen above 86%. If the top two hypotheses are considered, the rate of correct interpreta-
tion increases to 96% on the training set and almost 94% on the test set. Note that these
results closely parallel the batch-training results reported in Table 10.

As examples are presented, the network incorporates the input tokens in the training
samples into its vocabulary. The MMGL input model for QUICKTOUR contains 451
unique words; however, only 161 unique tokens are visible in the input streams the
network receives, because certain groups of words (e.g., street names) are folded into
macro concept nodes by the preprocessor (see section 5.1.4). All these 161 tokens are
present in the first 2,000 samples. Figure 31 shows the rate of vocabulary acquisition.

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Training samples

V
oc

ab
ul

ar
y

si
ze

Figure 31. Vocabulary Acquisition During MS-MIN Training

After 10,000 samples, the network contains 8,215 input units and 139,655 connec-
tions. Among the input units, 161 are single-token units that make up the acquired
vocabulary, and the remaining 8,054 are fragment units corresponding to combinations or
two or more input tokens. The gradual growth of the network as training samples are
presented is documented in Figure 32 on page 124.

124

0

20000

40000

60000

80000

100000

120000

140000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Training samples

C
on

ne
ct

io
ns

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

In
pu

t u
ni

ts

Connections

Input units

Figure 32. Network Growth During MS-MIN Training

7.2.2 User Observation Results

A number of user observation sessions were conducted to provide some real data for
performance assessment of the QUICKTOUR application. The test results described
below demonstrate that QUICKTOUR, a multimodal application constructed using the
framework, toolkit, and design process described in this dissertation, does work in
practice and enables real users to accomplish useful tasks using multimodal commands.

Protocol

Ten paid participants (4 males and 6 females, comprising mostly students and office
workers at a pharmacy school) were asked to use QUICKTOUR to perform a series of 12
tasks involving most of the operations supported by the map (see Chapter 6). The partici-
pants were encouraged to speak naturally as they would to an intelligent assistant who
would manipulate the map display according to their wishes, and to draw on the screen as
well if they thought it would be easier to express certain ideas that way. A participant
could go to the next task only after successfully completing the current task or giving up
because the system made too many mistakes. The speech and pen data were recorded
together with the responses from the application. At the end of each session, the partici-
pants filled out a simple questionnaire aimed to find out whether they liked the system or
not. Each participant was also asked to read a set of 100 sentences (generated from the
MMGL input model) to provide data for speech recognition improvement later.

125

A detailed description of the user observation protocol, including the list of tasks and
the questionnaire, can be found in Appendix D.

User Preference

The first three questions on the questionnaire (page 171) aim to find out whether the
participants liked the multimodal interaction style in QUICKTOUR. 7 out of 10 partici-
pants indicated that they liked being able to speak and draw to communicate with the
computer very much; 2 people said they liked it quite well; the remaining 1 person said
she liked it somewhat. None of the participants indicated that they did not like it at all.
Unsurprisingly, in all 10 cases the ratings for the combination of speaking and drawing
equaled or exceeded the corresponding individual ratings for speaking and for drawing.

When asked what they found the most annoying about the program, whether it was
too slow or did not understand them well enough, or because of some other deficiencies,
7 out of 10 participants agreed that the program needed improvements to make it under-
stand them better. However, perhaps surprisingly, the other 3 people stated that they did
not find the program’s failures annoying at all because they understood it was still
experimental and they really enjoyed interacting with the program. Still, these results
suggest that the first order of priority in a schedule of improvements for the application
should be to increase the speech and gesture recognition performance as well as the
interpretation accuracy.

Data Collection

A total of 430 multimodal input events were collected. Among these, 65 were not in-
terpretable even for a human because of various reasons (see Table 12 on page 126).
These reasons include:

• All-noise speech. The speech/silence detection algorithm was fooled by a
noise (e.g., coughing, clearing the throat, or adjusting the headset, etc.) and
stopped recording without getting any real speech.

• Cut-off speech. The participant spoke too softly or hesitated too long in the
middle of a sentence, causing the speech recorder to stop recording prema-
turely, thereby cutting off the last few words.

• Noisy speech. This was caused by a sound driver bug that crashed the system
a few times when it unaccountably ran out of buffer memory. Some record-
ings made just before the crashes turned out to be fragmented and noisy.

• Accidental pen touch. The participant inadvertently touched the screen, caus-
ing the system to process a false gesture.

• Ambiguous or meaningless gesture. A rectangle or a deictic gesture without
disambiguating speech may have no discernable meaning or more than one
possible meaning. This usually happened when a participant drew something
and waited too long before speaking, causing the system to start processing
the gesture prematurely.

126

• Aborted input. In the middle of a sentence, the participant became aware of a
mistake and floundered or started to laugh.

• Incomplete or incorrect input. Either the input did not contain enough infor-
mation for even a human to decide what it meant, or certain information was
erroneous. For example, one participant said “University of Pennsylvania” in-
stead of “University of Pittsburgh.”

Reason Number discarded

All-noise speech 10

Cut-off speech 13

Noisy speech (driver bug) 12

Accidental pen touch 5

Ambiguous or meaningless gesture 11

Aborted input 8

Incomplete or incorrect input 6

Total 65

Table 12. Discarded Input Events in User Data

The 65 non-interpretable inputs events were discarded, leaving a total of 365 multi-
modal input events. This is still 3 times the minimum number of input events required by
the tasks (10 users × 12 tasks = 120 needed input events) because of several factors.
Sometimes a participant had to redo a task several times before the application succeeded
in producing the correct interpretation. In a number of cases, the application correctly
interpreted the input; however, the result was still incorrect because the participant asked
the wrong question or left out certain required information specified by the task†. Three
participants had to start over from the beginning because of system crashes involving an
obscure sound driver bug in the operating system; the data collected during their first
(partial) sessions remained valid.

The recorded utterances and gestures were manually transcribed. Based on the tran-
scriptions, the combined multimodal input events were manually labeled with semantic
information, enough to produce the desired action and parameters. This semantic labeling
serves as a reference against which to judge the correctness of the interpretations gener-
ated by the network.

† The most frequently occurring example was the failure to ask for the distance or travel time when this
was required in conjunction with the shortest path between two places.

127

Among the 365 collected input events, 280 involve only speech, 84 are composed of
both speech and pen inputs, and 1 consists of pen input only. Figure 33 depicts this
modality distribution.

Speech
76.7%

Pen
0.3%

Both
23.0%

Figure 33. Modality Distribution in User Data

The modality distribution is not uniform across the 12 tasks. According to Figure 34,
some tasks were exclusively performed verbally by all participants (tasks 1, 3, 4, 6, 10,
and 12); others were carried out multimodally in all cases (tasks 5 and 9); the remaining
tasks involved both unimodal and multimodal commands in different proportions. This
uneven distribution stems in part from certain biases in the input space of the application
domain: some pieces of information (e.g., addresses, place names, zoom/pan amounts,
etc.) are most easily expressed verbally, while others (e.g., a rectangular area on the map)
can only be specified via gestures.

0

10

20

30

40

50

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Tasks

In
pu

t e
ve

nt
s

Combo

Pen

Speech

Figure 34. Modality Distribution for Each Task

Speech Recognition Accuracy

The collected utterances exhibit many characteristics of spontaneous speech: false
starts, hesitations, variable speaking rates (especially when the speaker is also drawing on
the screen, as people have a tendency to stretch their sentences to match the drawing

128

movements), sloppy articulations, etc. In addition, the utterances do not perfectly match
the language model generated from the MMGL grammar. As a result, the speech recog-
nition accuracy is rather low, as shown in Table 13. There exists many known techniques
to improve speech recognition accuracy in the presence of spontaneous speech phenom-
ena, but no attempt was made to incorporate these techniques in this experiment.

Spontaneous speech Read speech

Sentence accuracy (%) 21.2 39.4

Word correct rate (%) 66.6 85.3

Word accuracy (%) 61.4 83.6

Table 13. Speech Recognition Accuracy

As noted above, each participants also recorded 100 read sentences. For reference, the
recognition performance on this data set is reported in the “Read speech” column above.
The table reports 3 performance measures: sentence accuracy, which is the fraction of
correct sentences; word correct rate, which is the percentage of correctly recognized
words; and word accuracy, which takes into account the number of substitution, insertion,
and deletion errors (see section 2.1.4 for detail). Word accuracy is typically the best
measure of speech recognition performance.

The speech recognizer was originally based on a JANUS recognizer for the Wall
Street Journal task. Using the recorded read sentences, the recognizer was adapted to the
map task by running one pass of acoustic adaptation which adjusted the acoustic models
to match the acoustics of the experimental settings better. In addition, certain recognition
parameters (language model weight and search beam width among others) were adjusted
to maximize the recognition accuracy on the set of read sentences. Table 14 shows the
improved accuracy after these adaptation procedures.

Spontaneous speech Read speech

Sentence accuracy (%) 20.9 47.6

Word correct rate (%) 76.5 90.5

Word accuracy (%) 68.0 87.9

Table 14. Speech Recognition Accuracy After Adaptation

The speech recognition accuracy is actually much lower than what could be expected
for this task. Given a vocabulary in the order of 500 words and a read-speech corpus that
conforms perfectly to the language model, the speech recognizer should be able to
achieve a word accuracy in the high 90% for read speech and much higher than 68% for
the kind of spontaneous speech encountered in the collected data. There are several
possible reasons for the mediocre performance:

129

• The acoustic models come from a rather old recognizer for the Wall Street
Journal task and do not incorporate recent advances which have dramatically
improved the performance of JANUS on spontaneous speech;

• The audio input system (a sound card on a PC) produces speech of lower
quality than that normally used in speech recognizer evaluation†;

• The language model generated by MMTk does not incorporate noise models
that improve performance on spontaneous speech.

Gesture Recognition Accuracy

Because the gesture recognition model in MMApp employs sequences of gesture
shapes rather than single shapes, in the same way spoken utterances are considered
sequences of words, the same transcription/hypothesis alignment procedure used for
speech was applied to the assessment of gesture recognition performance. In Table 15,
“sentence” refers to “sequence of gesture shapes” and “word” refers to a single shape
within the sequence.

Before adjustment After adjustment

Sentence accuracy (%) 49.0 60.2

Word correct rate (%) 52.4 63.1

Word accuracy (%) 35.0 48.5

Table 15. Gesture Recognition Accuracy

The gesture recognizer used in the user observation sessions was configured with a
basic set of templates that cover, among other gestures, various ways of drawing a
rectangle. Upon examining the collected data, it became apparent that quite a few recog-
nition errors were due to other rectangle configurations that had been overlooked (in the
mistaken belief that nobody would use these “strange” ways of drawing a rectangle).
Gesture recognition was attempted again after the addition of these templates, and the
improved recognition performance is reported in the “After adjustment” column above.

The majority of the collected gestures are single-shape gestures. All the exceptions
are instances of pointing at or circling two separate objects in the same multimodal input
event. The low word accuracy is mostly due to misrecognition of a single shape as two or
more separate shapes (e.g., separate lines and arcs that were supposed to form a rectan-
gle), resulting in insertion error rates in the order of 15%.

Because single-shape gestures seem to be predominant in this application, sentence
accuracy is a better performance measure than word accuracy.

† In fact, a low background hum is discernable in most of the recordings.

130

It appears that gesture recognition accuracy is not very high because most of the ges-
tures in the test data are rectangles, which the TmplGRec gesture recognizer tends to
label as circles. The test data is thus precisely biased towards one of the weakest areas of
the recognizer (see Table 3 on page 68).

However, in practice the participants did not notice the low gesture recognition accu-
racy because most of the rectangles served to delimit an area on the map (e.g., to
accompany utterances such as “Show me the Chinese restaurants in this area”). Even
when the rectangles were misrecognized as circles, the program seemed to respond
correctly because circles also serve to delimit map areas, and it was not possible for the
participants to detect the slight discrepancy in the exact area selected. In other words,
although technically the program did not derive the exact action parameters, pragmati-
cally speaking it correctly deduced the user’s intention.

Interpretation Accuracy

An MS-MIN generated from the map MMGL input model (the same network that
was used for multimodal interpretation during the user observation sessions) was tested
on the collected data in three stages. In the first stage, the actual recognition hypotheses
generated during the user observation sessions were used in the input events. The speech
and gesture recognizers were improved using the methods described above, and newly
generated hypotheses were then substituted into the input events. Next, the hypotheses
were replaced by the manual transcriptions to simulate perfect recognition.

Table 16 summarizes the recognition accuracy for each modality and the overall in-
terpretation accuracy. The performance measure is word accuracy (WA) for speech and
“sentence” (or sequence) accuracy (SA) for gesture.

Interpretation (%)Speech
(% WA)

Gesture
(% SA) Top 1 Top 2 Top 3

Initial recognition 61.4 49.0 35.8 41.3 41.9

Improved recognition 68.0 60.2 46.8 53.1 54.2

Transcription N/A N/A 80.2 89.5 90.1

Table 16. MS-MIN Interpretation Accuracy on Real Data

The last row indicates that the MS-MIN-based semantic integration algorithm per-
forms respectably even on real data, provided all the words and gestures are recognized
correctly. This is also an indication that the MMGL input model (from which the network
was generated) achieves a pretty good coverage of real user inputs. Unfortunately,
mediocre speech and gesture recognition performance significantly degrades interpreta-
tion accuracy.

To put the performance figures in Table 16 in perspective, recall from Table 13 and
Table 14 that the sentence accuracy for speech is only in the order of 20%, yet the

131

interpretation accuracy is 35% to 47% and seems to increase rapidly with improved word
accuracy. This means that in many cases, the MS-MIN is capable of deriving the correct
interpretation even if some of the less important words (not keywords like street names
etc.) are misrecognized. The recognized sentences do not even have to be grammatical, as
long as it contains enough words and fragments that, as the network has learned, are
strongly associated with certain output classes.

As shown in Figure 33 on page 127, more than three quarters of the input events in-
volve only speech, and most of the rest contain speech/pen combinations. Table 17 shows
how the interpretation accuracy differs across these two groups of input events. Pen-only
results are not shown because a single pen-only input event was available.

Interpretation accuracy (%)

Top 1 Top 2 Top 3

Initial recognition 34.5 41.6 42.8

Improved recognition 32.1 40.4 41.6

S
pe

ec
h

on
ly

Transcription 72.6 86.9 88.0

Initial recognition 36.4 41.4 41.7

Improved recognition 51.0 56.7 57.8

B
im

od
al

co
m

bo

Transcription 82.5 90.3 90.7

Table 17. Interpretation Accuracy for Each Input Type

It is important to note that the comparison between speech-only and speech-pen bi-
modal input events may be misleading because the two input groups cover different tasks
(see Figure 34 on page 127).

To assess the impact of recognition errors in a single modality, the network was
tested again with transcribed speech and recognized gestures, and vice versa. The new
tests use the improved recognizers. Table 18 summarizes the results.

Interpretation accuracy (%)Source of
recognition errors Top 1 Top 2 Top 3

None (transcriptions) 80.2 89.5 90.1

Gesture errors only 75.0 84.1 84.3

Speech errors only 48.7 56.4 57.5

Speech & gesture errors 46.8 53.1 54.2

Table 18. Effect of Recognition Errors on Interpretation Accuracy

132

As indicated in the table, gesture recognition errors (100−60.2=39.8%) cause only a
5% decrease in interpretation accuracy, whereas speech recognition errors (100−68=32%)
are responsible for a performance degradation of over 30%. The impact of gesture
recognition errors is much less than that of speech recognition errors because only 23%
of the input events include gestures, whereas 99.9% involve speech (see Figure 33 on
page 127).

If a multimodal input event contains some information redundantly specified in both
modalities, it is possible that the multimodal interpreter will produce the correct output
despite recognition errors in either or both modalities. However, it turns out that the
incidence of redundancy is rather low in the collected data. In contrast, 77 out of 84 input
events that involved both speech and gestures exhibited contrastive functionality; i.e., the
two modalities provided complementary rather than redundant information, such that it
became impossible for the multimodal interpreter to overcome recognition errors by
exploiting cross-modal synergy. Although the collected data represents too small a
sample for statistically significant results, the data appears to confirm the observation
made by Oviatt et al. [Oviatt97a] that contrastive functionality is much more prevalent
than redundancy in certain types of multimodal interaction.

Error Sensitivity Analysis

It is important to discover what factors influence the interpretation accuracy. For this
purpose it is necessary to consider only the accuracy measured on the transcribed data to
eliminate the effects of recognition errors.

Although the collected data samples were not, strictly speaking, drawn independently
according to a fixed probability distribution, it is still useful to apply Equation (16) on
page 121 to estimate how much confidence we should put in the accuracy figures re-
ported in Table 16. Using 365=n and 95=N , the 95% confidence interval for the
interpretation accuracy on transcribed data turns out to be %1.42.80 ± . Thus the true
accuracy could be anywhere from 76% to 84%.

The interpretation accuracy on data generated from the input model was %7.13.91 ± .
This can be viewed as the level of performance that can be attained when the data fits the
input model extremely well. The performance for the collected data is about 10% below
this level, indicating that the collected data does not fit the input model perfectly.

Table 19 on page 133 breaks down the interpretation accuracy for each of the 10 par-
ticipants.

As shown in the third column of Table 19, the overall interpretation accuracy is 80.2,
but the accuracy for individual participants ranges from 71.4 to 89.2, indicating that the
interpretation algorithm works much better for some users than for others. For two
participants the accuracy approaches the level attained on artificially generated data. An
analysis of the input transcriptions reveals that, not surprisingly, the algorithm achieves
higher accuracy when a participant’s verbal and gestural expressions match the input
model more closely. This observation underlines the importance of anticipating all likely

133

input variations during the construction of the input model and collecting real user data to
refine the input model appropriately.

Interpretation accuracy (%)
Participant Samples

Top 1 Top 2 Top 3

f.4 35 71.4 88.5 88.5

m.1 47 74.4 87.2 89.3

m.2 43 76.7 86.0 86.0

m.4 37 78.3 86.4 86.4

f.5 35 80.0 97.1 97.1

f.6 34 82.3 94.1 94.1

f.3 43 83.7 88.3 88.3

m.3 31 83.8 87.0 90.3

f.1 32 87.5 87.5 87.5

f.7 28 89.2 96.4 96.4

Overall 365 80.2 89.5 90.1

Table 19. Interpretation Accuracy for Each Participant

The fourth column of Table 19 reveals an interesting fact. For some participants, most
notably f.5 and f.6, the best hypothesis is correct only 80-82% of the time, but the top two
hypotheses contain the right answer 94-97% of the time. In fact, among the cases where
the best hypothesis is incorrect but the second best hypothesis is correct, in almost half of
them the scores of the top two hypothesis are very close and the correct hypothesis
receives a lower score only because of a slight discrepancy compared to the input model.
In these cases, a slight adjustment to the input model (e.g., adding a synonym or an
alternative phrasing, as described in section 7.1.3) is enough to add some strong associa-
tions that increase the score of the correct hypothesis, moving it from the second best to
the best position.

The causes of the interpretation errors can be classified into the following categories:

• Missing keywords or salient fragments. The input event contains words or
fragments that must be very important for classification, but the input model
does not cover these salient tokens for the action frame in question. For exam-
ple, the grammar for ZoomIn is missing a few synonyms for “zoom in,” such
as “expand.”

• Unanticipated phrasings. The input event does not include any really impor-
tant keywords or fragments that are missing from the input model; however,
the words are arranged somewhat differently compared to the input model, in

134

enough to weaken certain associations and lower the score of the correct out-
put. For example, the input model covers “Display CMU using a two-mile
square” but not “Display two miles on each side of CMU.”

• Cross-associations. The input event contains words or fragments that are as-
sociated with more than one output classes, and the sequence weights in the
input model do not fit the actual input distribution, so that an incorrect output
receives stronger associations than the correct output. For example, the word
“show” and its synonyms should be mainly associated with Find and FindAll;
however, ZoomIn also has a “show” phrase that receives too high a weight in
the input model, causing many Find commands to be misclassified as Zoom.

• False salient fragments. The input event contains words or fragments that
happen to occur in only certain parameter slots in the input model, although
from a common sense point of view those words or fragments should not have
such biased associations. For example, “Zoom out ten times” is easily recog-
nized as a ZoomOut command, but “Zoom out the map ten times” is always
misclassified! It turns out that in the input model “the map” occurs in ZoomIn
and ZoomBox but never in ZoomOut. This oversight causes “the map” to be-
come a false salient fragment that significantly reduces the score of ZoomOut.

• Non-monotonic dependency. The mathematical foundation of the MS-MIN in-
cludes an assumption that the label of a segment depends only on past and
present segments, not on subsequent segments. A few input events in the col-
lected data are incorrectly classified because of a violation of this assumption.
For example, “Show the route from CMU to University of Pittsburgh and the
distance” is supposed to be segmented as FindPathLenSrc–FindPathLenDst;
however, at the time “Show the route from CMU” is assigned a label, the
keyword “distance” has not yet been seen, causing FindPathLenSrc to receive
a much lower score than FindPathSrc. As a result, the whole input event is
classified as FindPath instead of FindPathLen, and the executed action does
not display the distance information for the path.

• Bad gesture encoding. A few input events revealed errors in the code that
converts gesture recognition results to pen input tokens. For example, a small
line or arc on top of a map object should have the same effect as a simple
pointing action (the user simply moved the finger a little by accident while
pointing). Instead, the encoded input stream contains two tokens that refer to
the same object, causing the object to appear in two different parameter slots.
Such programming errors are easily repaired once they have been identified.

• Unknown causes. The input event appears to conform to the input model but
the result is still incorrect. This is not really surprising because the interpreta-
tion accuracy is not 100% even with data generated from the input model.

Figure 35 on page 135 shows the distribution of the 19.8% error rate among the listed
causes.

135

6.1%

4.7%

5.2%

1.7%

1.1%

0.5%

0.5%

Missing salient fragments

Unanticipated phrasings

Cross-associations

False salient fragments

Non-monotonicity

Bad gesture encoding

Unknown causes

Figure 35. Distribution of Interpretation Error Categories

More than four fifths of the errors (16% out of a total of 19.8%) belong to the first
three categories. The errors in the first two categories, as well as errors due to false
salient fragments, can be reduced or eliminated by adding synonyms and alternative
phrasings to the input model. Eliminating cross-association errors requires adjusting the
probabilities in the input model. If the incorrect associations are obvious upon inspection,
they can sometimes be fixed by manual adjustment of the weights; otherwise a large
amount of real data may be necessary for probability estimation.

Non-monotonic dependencies, which violate an assumption in the derivation of the
MS-MIN, are actually rather rare, occurring in only 1.1% of the collect data. Moreover,
all the observed instances resulted from self-repairs by the participants. For example, a
participant began a command with “Show me the route from CMU to University of
Pittsburgh,” then suddenly remembered that the task called for requesting the travel
distance and thus added “and the distance” after a short pause.

Impact of Interpretation Errors on Task Completion

Measuring performance by calculating the interpretation accuracy does not provide a
complete picture of how interpretation errors impact the successful completion of the
tasks. One way to remedy this is to determine how many times the participants had to
repeat or rephrase their requests before the application successfully interpreted their
intentions. Figure 36 on page 136 shows the distribution of this measure.

The charts in Figure 36 were compiled using 344 out of the 365 collected input
events. 21 input events were excluded because their manually labeled semantics did not
correspond to the action and parameters required to accomplish the corresponding tasks.
In these cases the participants either asked the wrong question or failed to supply all the
information needed to complete the tasks, hence the application could not be expected to
produce the desired response. The excluded input events cause a discrepancy between the

136

previously reported interpretation accuracy (35.8%) and the relative frequency of task
completion with one single request (42.1%).

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11

Number of repetitions

R
el

at
iv

e
fr

eq
ue

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

Number of repetitions

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Figure 36. Number of Multimodal Commands to Complete a Task

According to the charts, more than 40% of the time the application responded cor-
rectly the first time. Over 60% of the tasks are completed within two requests, and the
first three requests cover 80% of the tasks. The average number of repetitions is 2.4, and
the median is 1.5. In two extreme cases, it took the participants up to 8 and 11 requests,
respectively, to complete the tasks.

Reducing the number of times the users are forced to correct the system is crucial to
achieving user acceptance. The improved speech and gesture recognition rates after
adaptation raised the interpretation accuracy by 11%; thus we can expect the single-

137

request task completion rate to increase above 50% with the new recognizers. With
perfect recognition, the users could be expected to complete each task with a single
request more than 80% of the time.

Incremental Learning

The incremental learning test described in section 7.2.1 was repeated with real data in
place of the artificially generated data. Starting with an empty network, each input
sample (using transcribed inputs to simulate perfect recognition) is evaluated before and
after the network is incrementally trained on that sample. The samples from each partici-
pant were presented to the network in the order they were collected to simulate what
would have happened if the users had taught the network the correct response after each
multimodal command.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350

Training samples

In
te

rp
re

ta
tio

n
ac

cu
ra

cy Training set (top 2)

Test set (top 2)

Training set (top 1)

Test set (top 1)

Figure 37. Incremental Learning with Real Data

Figure 37 shows the result of incremental training. Compared to the graph in Figure
30 on page 122 (obtained from artificially generated data), Figure 37 indicates a much
higher learning rate: the network needed only about 300 examples, not thousands, to
reach 85% accuracy. This is because the collected data represents only a small subset of
the output action space, namely the subset containing the 12 tasks in the user observation
protocol.

At any rate, the network exhibited much the same behavior with real data as with arti-
ficially generated data. Over 95% of the examples were immediately learned after their
presentation to the network. The “test set” curves show steadily increasing performance
on new data, indicating good generalization.

138

Figure 38 documents the vocabulary acquisition rate during training. The network
growth in terms of input units and connections is depicted in Figure 39.

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350

Training samples

V
oc

ab
ul

ar
y

si
ze

Figure 38. Vocabulary Acquisition with Real Data

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300 350

Training samples

C
on

ne
ct

io
ns

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

In
pu

t u
ni

ts

Connections

Input units

Figure 39. Network Growth with Real Data

139

Instead of starting from an empty network, we could generate a network from an
MMGL input model and incrementally train it further with real user data for the applica-
tion. Figure 40 charts the incremental learning progress of a generated network on the
previously described set of collected input events.

65%

70%

75%

80%

85%

90%

95%

100%

0 50 100 150 200 250 300 350

Training samples

In
te

rp
re

ta
tio

n
ac

cu
ra

cy

Training set (top 2)

Test set (top 2)

Training set (top 1)

Test set (top 1)

Figure 40. Additional Incremental Training of Generated Network

The graph shows that the interpretation performance dropped sharply at first as the
network encountered input events not covered by the MMGL input model, but very
quickly rose again to a more or less stable level through the rest of the data set as the
network assimilated the new data patterns. At the end of the training session, the “test
set” interpretation accuracy is 82.5%, slightly higher than the 80.2% accuracy obtained
before incremental training (see Table 16 on page 130). The “training set” accuracy is
87.4%. These results show that it is feasible to bootstrap the system using an MMGL
input model, then incrementally train the semantic integration network as user data
becomes available.

140

CChhaapptteerr 88
CONCLUSION AND FUTURE DIRECTIONS

This chapter summarizes the contributions of this dissertation and explores some direc-
tions for future research.

8.1 Contributions

The work in this dissertation was motivated by three challenges in constructing multimo-
dal applications:

• The development of a domain-independent algorithm to interpret multimodal
inputs;

• The design of a common infrastructure that supports a broad class of multi-
modal applications to avoid unnecessary development effort;

• The rapid prototyping of a multimodal application by instantiating the appli-
cation structure and multimodal interpretation algorithm for a specific domain.

Accordingly, this dissertation makes contributions in three main areas:

• Theory of multimodal interaction;

• Software architecture and reusable framework for the construction of multi-
modal applications;

• Design process and supporting tools for the construction of multimodal appli-
cations.

The contributions in all three areas are intimately related to each other through the
unifying theme of a multimodal semantic model that supports a broad class of applica-
tions, namely those that accept input data from multiple information streams and allow
their states to be modified by parameterized actions.

The three areas of contributions are discussed in turn below.

8.1.1 Theory of Multimodal Interaction

The foundation of all the contributions in this dissertation is the model of multimodal
interpretation based on the semantic integration of multiple information streams.

Chapter 3 defines multimodal interpretation as the mapping from multimodal input
events to their semantic values. For the applications targeted by this work, the semantic
values are the parameterized actions that should be performed in response to the input

141

events. Inputs from all modalities are considered information streams, or sequences of
tokens that give information about the likely output actions.

The proposed multimodal semantic model requires a segmentation of each input
stream and an alignment of cross-modal segments to form parameter slots in an action
frame. Each parameter slot contains information that constrains the value of a single
parameter of the action represented by the action frame.

Data fusion, or integration of information from multiple modalities, happens at the
parameter slot level. The cross-modal alignment of segments to form parameter slots is
based on semantic rather than temporal constraints. Timing and synchronization of inputs
from different channels are relegated to the lower level of grouping unimodal input
events into combined multimodal input events, outside the scope of the semantic model.
The semantic model can therefore work with any input grouping policy.

An algorithm for multimodal semantic integration using the above model was devel-
oped based on a connectionist network architecture, the Multi-State Mutual Information
Network (MS-MIN). The MS-MIN represents associations between input tokens and
output parameter slots by connection weights that measure input-output mutual informa-
tion. Based on these associations, the network computes an input segmentation and a
corresponding label assignment to produce the most likely parameter slot sequence given
the input.

The MS-MIN can be trained from examples much faster than traditional backpropa-
gation neural networks. Given an input model that describes the distribution of input
messages and their associated semantic values, it is possible to compute the connection
weights directly, avoiding time-consuming training altogether. Furthermore, the MS-MIN
can learn incrementally, thus improving its performance during actual use.

8.1.2 Software Architecture and Reusable Framework

A significant amount of work in the development of multimodal applications concerns
the mechanics of assembling system components that remain the same across applica-
tions. Accordingly, the second area of contributions in this dissertation is the creation of a
reusable infrastructure for multimodal application development.

Chapter 4 describes the Multimodal Application Framework (MMApp), a collection
of reusable components and a system architecture that together form a modular, distrib-
uted, customizable infrastructure for multimodal applications.

The design of MMApp follows established principles of object-oriented software en-
gineering and exploits design patterns to achieve a high degree of modularization. The
major system components are structured as interfaces that expose a well-defined set of
operations. Depending on the needs of a particular application, the application developers
can select any suitable implementations of the interfaces without affecting other parts of
the system. In other words, the modules are plug-replaceable; i.e., any module can be

142

replaced by an equivalent module that implements the same interface. MMApp defines
interfaces for recording and recognizing speech and pen inputs as well as synchronizing
and coordinating multimodal input events.

The modularity of MMApp allows system components to be distributed among mul-
tiple computers and processes. Computation-intensive components can run as servers on
high-end workstations and export their services to user interface components running in
Web browsers anywhere on the network. MMApp components communicate with one
another via a communication layer that supports location-transparent access to services.

A philosophy that pervades the design of MMApp is to provide reasonable default
implementations for everything and at the same time allow application developers to
customize all aspects of the system to suit particular needs. Hiding components behind
well-defined interfaces plays an important role in accomplishing this. Other techniques to
promote customizability include class inheritance, object factories, and template methods
to specify algorithm skeletons.

8.1.3 Design Process and Supporting Tools

The MMApp framework handles the assembly of reusable components within a system
architecture; however, without a module that interprets multimodal inputs in the target
application domain, the resulting application shell would be like a computer without an
operating system, or a body without a brain. The third area of contributions in this
dissertation is a design process backed by a set of tools to instantiate a multimodal
application for a particular domain.

Chapter 5 describes the design process supported by the Multimodal Toolkit (MMTk)
for rapid prototyping of multimodal applications. The basis of the design process is the
creation of an input model based on the Multimodal Grammar Language (MMGL) to
specify a set of multimodal input messages, their probability distribution, and their
associated semantic values according to the action frame/parameter slot semantic model.

MMTk contains a visual grammar editor that allows application developers to create
and modify MMGL input models using a drag-and-drop visual construction paradigm.
This approach frees grammar writers from the complexity of language syntax and lets
them concentrate on the contents of the grammar specification.

From an input model, the tools in MMTk can generate a speech recognition language
model and instantiate a multimodal interpreter for the application. The multimodal
interpreter consists of a preprocessor to parse macro concepts from the input streams, a
semantic integrator based on the MS-MIN, and the skeleton of a postprocessor to extract
parameter values. Application developers only have to customize domain-specific parts
of the postprocessor to obtain a complete multimodal interpreter for the application.

143

8.2 Future Directions

This section discusses remedies to the deficiencies of the current work as well as exten-
sions that will make good subjects for future research.

The semantic integration approach requires input streams to be partitioned into uni-
modal input events which are combined into multimodal input events before
interpretation takes place. This scheme is flexible in that the input partitioning and
grouping policies are completely unspecified and the selection of these policies has no
impact on the semantic integration stage. However, as integrated segmentation and
recognition has been shown to improve speech and handwriting recognition performance
significantly [Haffner92][Manke95], future research should explore approaches that can
determine the boundaries of multimodal input events and derive their semantic values at
the same time. One possible avenue of exploration is the addition of a dynamic pro-
gramming stage on top of a semantic integrator to compute the best path through the
input space, similar to the state layer in the MS-MIN but possibly with different scoring
criteria.

Semantic integration with action frames and parameter slots occurs at an intermediate
symbolic representation level, after recognizers have transformed the raw input signal
into a more convenient symbolic representation but before any semantic interpretation
has been assigned to the unimodal input. [Nigay95], [Vo96], and [Johnston97] describe
multimodal integration approaches at a high level of representation, after input from each
modality has been parsed and assigned a (possibly incomplete) semantic interpretation. It
is possible to handle unimodal recognition errors in integration at the symbolic or partial
interpretation levels by generating multiple recognition hypotheses ranked by confidence.
However, future research should also explored two other data fusion strategies:

• Fusion of low-level input signals to arrive directly at a semantic value without
intermediate symbolic representations such as words or gesture shapes;

• Hybrid multi-level fusion that integrates recognition and semantic interpreta-
tion using a joint multimodal language model, such that the recognition and
semantic interpretation of one modality can influence the recognition and se-
mantic interpretation of another modality.

The work presented in this dissertation can accommodate many input modalities, but
the current implementation of the framework strongly supports only speech and pen
modalities. Future versions should define interfaces and provide implementations of
components that strongly support other modalities, including lip-reading, 3D gestures,
gaze tracking, face tracking, etc.

The MMApp framework contains components that can be assembled to construct a
multimodal application. The MultimodalApplet component is a customizable user interface
that integrates the MMApp components for speech, pen, and multimodal coordination.
However, if the layout or the structure of this default user interface is not appropriate for
an application, or if additional modalities must be accommodated, application developers

144

will have to construct a different user interface using basic MMApp components. This
process would be much more convenient with the addition of a visual interface builder.

The MultimodalApplet employs a simple undo scheme that allows the cancellation of
the last executed command. However, in many applications, some commands may be
very costly or impossible to undo. In these cases, it would be better to replace undoing
with a scheme that lets the user confirm the interpretation of a command before executing
it. It is also possible to implement implicit confirmation by treating the issuance of the
next command as silent confirmation of an uncorrected previous command.

Error recovery and repair techniques, especially multimodal approaches that allow
cross-modal error repairs as in [Suhm97], would be a valuable addition to the MMApp
framework.

The template-based gesture recognizer in the current implementation of MMApp was
intended only as a concept demonstration. The recognition algorithm suffers from inher-
ent weaknesses that prevent it from achieving high accuracy. Future implementations
should include a better gesture recognizer. Furthermore, algorithms for distinguishing
gestures from handwritten words in pen input should be explored to improve the integra-
tion of gesture and handwriting recognition.

The Grammar Designer in MMTk is functionally complete; i.e., any MMGL grammar
can be created and modified in the Designer. However, there is still room for improve-
ment in the Designer user interface to render some common operations faster and more
convenient. Useful improvements include shortcut notations for optional and repeating
grammar nodes, the ability to move or copy elements from one part of a grammar to
another by dragging and dropping (the current version allows only prototypes to be
dragged and dropped), the ability to edit multiple grammars at the same time and copy
data among them, and a library of reusable MMGL nodes that can be incorporated into
the input models of many applications.

The N-gram Language Model Generator could be extended to produce more compact
class-based language models. The current version keeps all trigram weight tables in
memory and thus cannot accommodate very large MMGL input models; this could be
remedied with a disk-based caching scheme. A Finite-State-Grammar Language Model
Generator would also be a good addition to the toolkit.

145

AAppppeennddiixx AA
GLOSSARY

Action frame. Sequence of parameter slots specifying a parameterized action.

Alignment. One-to-one correspondence between elements of two or more groups. The
multimodal semantic model in Chapter 3 aligns segments from different input modalities
to form parameter slots.

Applet. Program that is downloaded via the network and runs inside a Web browser.

Application. Computer program.

Application framework. A system architecture and a collection of reusable components that
facilitate the construction of certain types of applications.

Application Programming Interface (API). Specification of how to access the functional-
ity of a system (usually in terms of function calls that the system supports).

Backpropagation. Neural network training algorithm which performs gradient descent by
computing errors at the output and proceeding backward through the network to calculate
weight updates.

Bigram model. N-gram model with N=2.

Clicking/dragging. Ways of using the mouse in a graphical user interface. Pressing then
releasing a mouse button is called clicking; moving the mouse while holding down a
button is called dragging.

Client/server. Architecture for distributed computing based on a request-response paradigm.
A client accesses the functionality of a server by sending it a request and processing the
corresponding response from the server.

Connectionist network or Neural network. Structure that relies on massively intercon-
nected simple processors (liken to neurons in the brain) to perform complex
computations.

Data fusion. See Input integration .

Deictic. Pointing or referring to something. Examples: “this,” “that,” etc. in speech; pointing
with a finger or pen tip.

Design patterns. Object-oriented design solutions encapsulated in a general, reusable form.

146

Distributed processing. Style of computing that divides a computation into many parts, each
running on a different machine.

Drag-and-drop. Style of interaction in a graphical user interface, consisting of clicking on a
screen object and dragging the mouse (while holding down a button) to the target loca-
tion, then releasing the mouse button to drop the object at the new location.

Dynamic programming. Programming technique to compute certain recursive functions by
eliminating the recursion and recording intermediate values in a table. It is widely used in
optimization problems such as optimal alignment, in which the path followed to reach the
optimal value is as important as the value.

Dynamic Time Warping (DTW). Dynamic programming algorithm to align a temporal
sequence with a series of labels. It is used in speech recognition to produce the best
sequence of phonemes or other speech units given the acoustic evidence.

Face tracking. Technique of making a camera automatically follow the movement of a
person’s face and deliver a constant-sized image of the face.

Fragment. Group of tokens in an information stream.

Gaze tracking. Technique of automatically following a person’s eye movements and
determining the gaze direction.

Gesture. A pen-based gesture represents pointing, signs, symbols, picture sketches, etc.
obtained from the pen modality; a 3D gesture conveys information with a movement of
the hand.

Gradient descent. Minimization technique that improves the target function by moving
along the direction of steepest decrease indicated by the gradient of the function.

Graphical user interface (GUI). User interface that presents information using a visual
metaphor.

Grammar. Set of rules that encode a set of admissible sentences.

Implementation. (In application design) Code that performs the operations specified in an
interface.

Incremental learning. Process of improving performance by additional training on new data
without having to retrain on previously learned data.

Information streams. Sequence of tokens that carry information influencing the selection of
an output value.

Inheritance. Object-oriented reuse mechanism in which a subclass that inherits from a
superclass automatically possesses all the data and behavior of the superclass.

147

Input integration or Data fusion. Process of combining information from multiple input
sources to arrive at an interpretation.

Input model. Encoding of a set of input messages together with their semantic values, used
to characterize what kind of input messages an application can expect from the users.

Input synchronization/coordination. Process of determining the boundaries and combina-
tions of multimodal input events.

Instantiation. Creation; construction from a template, a specification, or a model.

Interface. (In application design) Specification of operations supported by a system, without
committing to any particular implementation of those operations.

Interpretation or Understanding. Mapping from an input message to a semantic value.

Language model. Encoded knowledge that guides the recognition process using the
relationships between linguistic elements.

Lip-reading. Technique of recognizing speech by analyzing lip movements.

Multimedia. Supporting multiple channels of information.

Multimodal. Supporting multiple input modalities.

Multimodal input event. Group of unimodal input events that are interpreted together.

Multithreading. The use of multiple threads in a program for parallel processing.

Modality or Mode. Input channel.

Neural network. See Connectionist network.

N-gram model. Language model that predicts the likelihood of encountering a word based
on N previous words in the sequence.

Object-orientation. Design and programming paradigm based on the use of objects and
classes to represent entities with state and behavior in a design.

Parameter slot. Cross-modal segment of a multimodal input event, specifying a parameter in
an action frame.

Parsing. Process of analyzing a sentence and labeling its constituents using a grammar.

Pen. Input modality in which information is conveyed by inputs from a digitizing device.

Polymorphism. Dynamic binding of methods that enables the same method call to resolve to
different methods depending on the actual type of the target object at runtime.

148

Process. Computer program running in an independent address space.

Recognition. Process of mapping input signals to a symbolic representation.

Recording. Process of capturing input signals in a form the computer can manipulate.

Segmentation. Division of a sequence into contiguous segments based on some criteria. The
multimodal semantic model in Chapter 3 segments the input streams and aligns them to
form parameter slots.

Semantic model. Encoding of knowledge about interpretation. The multimodal semantic
model in Chapter 3 assigns semantic values to multimodal input events using an action
frame/parameter slot specification.

Semantic value. Output value assigned to an input message by the interpretation mapping.

Socket. Channel used to send data between processes.

Speech. Input modality in which information is conveyed by spoken utterances.

Temporal proximity. Input synchronization/coordination model based on how close in time
the input event occurrences are.

Thread. Independent, parallel execution of program code within the same address space.

Token. Information-carrying unit in an information stream.

Toolkit or Workbench. Collection of software components that work together to assist
programmers in some task.

Trigram model. N-gram model with N=3.

Understanding. See Interpretation .

Unimodal. Referring to a single input modality.

Unimodal input event. Contiguous segment from a single input stream.

Web browser. Program that presents information downloaded from the World Wide Web.

Wizard of Oz. Simulation paradigm in which a hidden operator controls the operations of
the system under study.

Workbench. See Toolkit .

World Wide Web. Part of the Internet that relies on the Hypertext Transfer Protocol (HTTP)
to transfer multimedia information.

149

AAppppeennddiixx BB
SUMMARY OF THE

UNIFIED MODELING LANGUAGE

The Unified Modeling Language (UML) [Fowler97] is a standard system of notation for
specifying, visualizing, and constructing the artifacts of software systems. It unifies the
methods of Booch [Booch93], Rumbaugh [Rumbaugh91], and Jacobson [Jacobson92] for
object-oriented analysis and design.

UML notation is used in all the class diagrams in Chapter 4 and Chapter 5, as well as
in the description of design patterns in Appendix C. The following is a summary of UML
notation regarding class diagrams only; UML covers a much wider range of topics, from
use cases to behavior and implementation diagrams.

For brevity, the {abstract} property indicator for abstract classes is omitted from the
class diagrams in this dissertation; instead, italicized class names are used to indicate
abstract classes. Likewise, the names of abstract operations are also shown in italics.

rol e

role

1

depende n

Abstract Class
{abst r

useful text (e.g. p

Class Name

Class Name

attribute: data_type=init _

operation(arg_list): result_t y

Supertype

Subtype 1 Subtype 2

Implementing
Class

«interface»
Type

Client Class

Class

Generalization

Interface

Note

Association

Class A Class B

Class exactly one

Class composit i

Navigability

Source Target
role n a

Multiplicity

*
Class many (0 or mor e

0.
Class optional (0 or

m..
Class numerically sp e

Class aggregat i

150

AAppppeennddiixx CC
SUMMARY OF DESIGN PATTERNS

Object-oriented design patterns, as defined in [Gamma95], are “descriptions of commu-
nicating objects and classes that are customized to solve a general design problem in a
particular context.” The software components in the MMApp (see Chapter 4) and MMTk
(see Chapter 5) libraries contain applications of several design patterns summarized
below. The materials presented in this appendix, including the class diagrams, are largely
adapted from [Gamma95].

C.1 Abstract Factory

The Abstract Factory pattern provides an interface for creating objects without specifying
their concrete classes. This pattern is useful when a system should be independent of how
its products are created, composed, and represented. Only the interfaces of the products
are revealed, not their implementations. Systems using the Abstract Factory pattern can
be configured with one of multiple families of products, and the way the products in a
family are used together is enforced by the structure of the pattern.

AbstractProductA

AbstractProductB

ProductA2 ProductA1

ProductB2 ProductB1

ClientAbstractFactory

CreateProductA
CreateProductB

ConcreteFactory1

CreateProductA
CreateProductB

ConcreteFactory2

CreateProductA
CreateProductB

Figure 41. The Abstract Factory Design Pattern

In Figure 41, AbstractFactory declares an interface for operations that create Ab-
stractProduct objects. Each AbstractProduct class declares an interface for a type of product
objects which are implemented in Product classes. Each ConcreteFactory is an implemen-
tation of AbstractFactory that produces a different family of Products. The Client uses only
interfaces declared by AbstractFactory and AbstractProduct, and never has to concern itself
with the actual object types.

151

The Abstract Factory pattern is used in many user interface toolkits, including the
Java Abstract Window Toolkit (AWT), to achieve portability across different window
systems by using the same interface to produce different families of interface components
(widgets). MMApp applies the Abstract Factory pattern to hide the implementation of the
transport protocol used in interprocess communication (see section 4.6.2).

C.2 Adapter

The Adapter (also known as Wrapper) pattern converts the interface of a class into
another interface clients expect. It is useful when an existing class to be reused does not
have an interface compatible with a required interface. The pattern presented here is the
object adapter version which relies on object composition; there is also a class adapter
version which uses multiple inheritance to adapt one interface to another.

Client

Adapter

Request(adaptee->SpecificRe q

adaptee

Target

Request(

Adaptee

SpecificReq u

Figure 42. The Adapter Design Pattern

In Figure 42, Target is the (domain-specific) interface that Client uses, and Adaptee de-
fines an existing interface that needs adapting. Adapter adapts the interface of Adaptee to
the Target interface by calling on Adaptee methods to implement Target methods.

MMApp uses the Adapter pattern for wrappers around existing software components
such as the SRecServer and NetscapeSRec speech recorders (section 4.4.2), the JANUS
and SPHINX speech recognizers (section 4.4.3), the XPRecServer pen recorder (section
4.5.3), and the TmplGRec gesture recognizer (section 4.5.4).

C.3 Factory Method

The Factory Method pattern defines an interface for creating an object, but lets subclasses
decide which class to instantiate for the object. It is applicable when a class cannot
anticipate the class of objects it must create, and therefore must delegate this decision to
its subclasses.

152

Product
product = FactoryMetho d

return new ConcreteProd u

ConcreteProduct ConcreteCreator

FactoryMethod()

Creator

FactoryMethod()
AnOperation()

Figure 43. The Factory Method Design Pattern

In Figure 43, Product defines the interface of objects to be created, which are imple-
mented by ConcreteProduct. Creator delegates the creation of Product objects to its
FactoryMethod(), which is overridden in the ConcreteCreator subclass to instantiate the
correct ConcreteProduct.

MMApp employs the Factory Method pattern in the MultimodalApplet class to permit
customizable instantiation of SpeechRecorder, SpeechRecognizer, PenRecognizer, and other
subordinate objects (see section 4.7.4).

C.4 Observer

The Observer pattern defines a one-to-many dependency between objects so that all the
dependents of an object are automatically notified and updated when the object changes
state. This approach avoids tight object coupling, so that the changed object does not
have to know how many dependents need to be update or make any assumptions about
what the dependents are.

*

for all o in o b
 o->Update()
}

return subjectSt a

ConcreteSubject

GetState()
SetState()

subjectState

ConcreteObserver

Update()

subject
observerState

observerState =
 subject->Get S

Subject

Attach(Obse r
Detach(Obse r
Notify()

observers

1

Observer

Update()

Figure 44. The Observer Design Pattern

153

In Figure 44, Subject (also called Observable) provides an interface for attaching and
detaching Observer objects, which define an updating interface to receive notifications of
state changes in Subject. ConcreteObserver implements the Observer updating interface and
maintains a reference to a ConcreteSubject object so that its state can be retrieved.

The Model/View/Controller (MVC) user interface framework in Smalltalk is the best-
known example of the Observer pattern. Other user interface toolkits such as InterViews,
the Andrew Toolkit, and Unidraw, also employ this pattern. The standard Java class
library defines an Observable class and an Observer interface. In MMTk, the Observer
pattern helps decouple grammar objects from their screen representations in the Visual
Grammar Designer (see section 5.3.1).

C.5 Template Method

The Template Method pattern defines the skeleton of an algorithm and defers some steps
to subclasses so that these steps can be customized without changing the structure of the
algorithm. The invariant parts of an algorithm are implemented once; only the parts that
can vary have to be customized as needed. The Template Method controls the way
subclasses can supply extensions; only “hook” operations at specific points can be
extended.

…
PrimitiveOperat i
…
PrimitiveOperat i
…

ConcreteClass

PrimitiveOperat i
PrimitiveOperat i

AbstractClass

TemplateMethod()
PrimitiveOperat i
PrimitiveOperat i

Figure 45. The Template Method Design Pattern

In Figure 45, AbstractClass defines primitive operations that concrete subclasses must
define to implement steps of an algorithm. TemplateMethod() defines the skeleton of
algorithm that makes use of primitive operations. ConcreteClass then implements the
primitive operations to carry out subclass-specific steps of the algorithm.

The MultimodalApplet class in MMApp defines a template method for multimodal in-
terpretation; subclasses only have to override three abstract methods (i.e., primitive
operations) to implement application-specific behaviors (see section 4.7.4).

154

C.6 Visitor

The Visitor pattern represents an operation to be performed on the elements of an object
structure, in such a way that new operations can be defined without changing the classes
of those elements. It is applicable when the target object structure contains many classes
of objects with differing interface, and the operations depend on their concrete classes.
The Visitor pattern is useful when the classes defining the object structure rarely change,
but there are many operations to be performed on the objects in the structure.

Client

v->VisitConcreteElem ev->VisitConcreteElem e

ObjectStructure Element

Accept(Vis i

Visitor

VisitConcreteElementA(ConcreteEleme
VisitConcreteElementB(ConcreteEleme

ConcreteVisitor1

VisitConcreteElementA(ConcreteEleme
VisitConcreteElementB(ConcreteEleme

ConcreteVisitor2

VisitConcreteElementA(ConcreteEleme
VisitConcreteElementB(ConcreteEleme

ConcreteElementA

Accept(Visitor v)
OperationA()

ConcreteElementB

Accept(Visitor v)
OperationB()

*

Figure 46. The Visitor Design Pattern

In Figure 46, Visitor declares a Visit operation for each class of ConcreteElement in the
ObjectStructure. ConcreteVisitor implements each operation declared by Visitor to provide a
fragment of the algorithm that traverses the object structure. Each ConcreteElement
implements the Accept() operation declared by Element to call the appropriate Visit method
in Visitor using a technique known as double-dispatch (which selects the right method to
call based on the actual types of two objects, the Visitor and the Element).

The Visitor pattern forms the basis for all grammar traversal algorithms in MMTk.
Operations defined as Visitors on MMGL input models include the automatic generation
of random samples, N-gram language models, input preprocessors, semantic integration
networks, and postprocessors for parameter extraction (see sections 5.4 to 5.6).

155

AAppppeennddiixx DD
USER OBSERVATION PROTOCOL FOR THE

MAP APPLICATION

This appendix describes the protocol for the user observation sessions reported in 7.2.2.

The participants were asked to read and sign an informed consent form. A sample of
the form can be found on the next page.

Each participant was given two pages of instructions describing the session format
and the kind of input one can expect the computer to understand. After reading the
instructions, the participant sat down in front of a workstation, donned a Sennheiser
headset with close-talking microphone, and proceeded down a list of twelve tasks item-
ized in an instruction packet.

The participants issued multimodal commands by speaking into the microphone
and/or drawing gestures with a finger on the touch-sensitive screen. Speech input was
configured for a “Click to talk” mode, so that the participants had to press a speech
button before speaking.

The description of each task briefly states the goal of the task and gives an image of
what the map display should look like after successful completion of the task. The
participants were instructed to try to complete a task successfully before proceeding to
the next task, and to press an “Undo” button and try again if the application responded
incorrectly. The experimenter was always available for questions and clarifications.

After each session, the participant filled out a questionnaire about their subjective im-
pression of the system.

The instructions, the task list, and the questionnaire are included in this appendix for
reference.

[Gomoll90] and [Dillman78] were the main sources of consultation for the protocol
and questionnaire design, with additional input from Bonnie John.

156

CARNEGIE MELLON UNIVERSITY

CONSENT FORM

Project Title: Multimodal Human-Computer Interaction
Conducted By: Minh Tue Vo

I agree to participate in the observational research conducted by Professor Alex Wai b
staff under the supervision of Professor Waibel. I understand that the proposed res e
by the University's Institutional Review Board and that to the best of their ability
the observations involve no invasion of my rights of privacy, nor do they incorporat e
requirements which may be found morally or ethically objectionable. If, however, at
terminate my participation in this study I have the right to do so without penalty.

If you have any questions about this study, you should feel free to ask them now or a
study by contacting:

Professor Alex Waibel
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone:(412) 268-7676
E-mail: ahw+@cs.cmu.edu

You may report any objections to the study, either orally or in writing to:

Susan Burkett
Associate Provost
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone:(412) 268-8746

Purpose of the Study: I understand I will be using a computer program to perform a l i
either finding information about places on a map or scheduling appointments on a cal e
commands and/or gestures drawn on the computer screen. I know that the researchers a
people would interact with computers using speech and gestures, in order to improve t
program supports this kind of interaction. I am aware that what I say and draw on t h
experiment will be recorded so that the researchers can later analyze the data and u s
mistakes and improve the performance of their computer program. I also realize that
out a questionnaire about my subjective assessment of the program.

I understand that the following procedure will be used to maintain my anonymity in a n
publication/presentation of any results. Each participant will be assigned a number ,
recorded. The researchers will save the data and answers to the questionnaire by pa rnot
by name. The speech and gesture data as well as the completed questionnaires w ill b e
by Professor Waibel and his student, Minh Tue Vo. No other researchers will have ac c

I understand that in signing this consent form, I give Professor Waibel and his asso c
present this work in written and oral form, without further permission from me.

__
Name (please print) Signature

__
Telephone Date

157

INSTRUCTIONS

<RX�ZLOO�VLW�LQ�IURQW�RI�D�FRPSXWHU�VFUHHQ�GLVSOD\LQJ�D�VWUHHW�PDS�RI�3LWWVEXUJK��3$��<RX�ZLOO
ZHDU�D�KHDGVHW�WKDW�DOORZV�\RX�WR�VSHDN�WR�WKH�FRPSXWHU��<RX�FDQ�DOVR�GUDZ�GLUHFWO\�RQ�WKH
FRPSXWHU�VFUHHQ�XVLQJ�\RXU�ILQJHUWLS��7KH�FRPSXWHU�ZLOO�KHOS�\RX�FDUU\�RXW�D�OLVW�RI�WDVNV
WKDW�WKH�H[SHULPHQWHU�ZLOO�JLYH�WR�\RX��<RX�FDQ�WKLQN�RI�WKLV�FRPSXWHU�DV�DQ�LQWHOOLJHQW
DVVLVWDQW�WR�ZKRP�\RX�JLYH�YHUEDO�LQVWUXFWLRQV��SRVVLEO\�DFFRPSDQLHG�E\�VFULEEOHV�RQ�WKH
PDS�LI�\RX�ILQG�LW�HDVLHU�WR�H[SUHVV�FHUWDLQ�WKLQJV�WKDW�ZD\���7KH�DVVLVWDQW�FDQ�DGMXVW�WKH�PDS
GLVSOD\�IRU�\RX�E\

•]RRPLQJ�LQ�WR�PDJQLI\�FHUWDLQ�DUHDV�DQG�VKRZ�PRUH�GHWDLOV��\RX�FDQ�VSHFLI\

• D�PDJQLILFDWLRQ�IDFWRU

• D�FHQWHU�SRLQW�DQG�D�VTXDUH�DUHD�RI�D�FHUWDLQ�VL]H�DURXQG�LW
• DQ�DUELWUDU\�DUHD�\RX�VSHFLI\�YLVXDOO\�RQ�WKH�PDS

•]RRPLQJ�RXW�E\�D�FHUWDLQ�IDFWRU�WR�VKRZ�D�ZLGHU�YLHZ�ZLWK�OHVV�GHWDLOV

• SDQQLQJ�WR�VKLIW�WKH�YLHZ�LQ�DQ\�RI���GLUHFWLRQV��QRUWK�XS��VRXWK�GRZQ��HDVW�ULJKW�
ZHVW�OHIW��QRUWKHDVW��VRXWKHDVW��QRUWKZHVW��VRXWKZHVW��E\�D�FHUWDLQ�SHUFHQWDJH�RI�WKH
VFUHHQ�RU�D�FHUWDLQ�GLVWDQFH

7KH�PDS�DVVLVWDQW�FDQ�ORFDWH�SODFHV�RQ�WKH�PDS�E\�DGGUHVV��QDPH��RU�FHUWDLQ�FKDUDFWHULVWLFV�
DQG�WHOO�WKH�PDS�WR�GLVSOD\�WKRVH�SODFHV�DV�LFRQV��VPDOO�SLFWXUHV�ZLWK�ODEHOV���7KH�DVVLVWDQW�FDQ
DOVR�ILQG�WKH�EHVW�ZD\��WKH�VKRUWHVW�DQG�IDVWHVW�URXWH��WR�JR�IURP�RQH�SODFH�WR�DQRWKHU��KRZ
IDU�DSDUW�WKRVH�SODFHV�DUH��DQG�KRZ�ORQJ�LW�ZRXOG�WDNH�WR�WUDYHUVH�WKH�EHVW�URXWH�

7KH�FRPSXWHU�FDQ�XQGHUVWDQG�D�OLPLWHG�UHSHUWRLUH�RI�YHUEDO�DQG�YLVXDO�FXHV��7KH�SXUSRVH�RI
WKLV�VWXG\�LV�WR�ILQG�ZD\V�WR�LPSURYH�WKH�SURJUDP��VR�SOHDVH�EH�SDWLHQW�LI�LW�GRHV�QRW�XQGHU�
VWDQG�HYHU\WKLQJ�SHUIHFWO\�\HW��5HPHPEHU��ZH�DUH�WHVWLQJ�WKH�FRPSXWHU�SURJUDP��ZH�DUH�QRW
WHVWLQJ�\RX��(YHQ�ZKHQ�WKH�SURJUDP�IDLOV�WR�GR�ZKDW�\RX�ZDQW��WKH�UHFRUGHG�GDWD�LV�YDOXDEOH
WR�XV�

)RU�HDFK�RI�WKH�DVVLJQHG�WDVNV��VWXG\�WKH�LQVWUXFWLRQV�WR�PDNH�VXUH�\RX�NQRZ�ZKDW�WKH
LQWHQGHG�UHVXOW�VKRXOG�EH��:KHQ�\RX�DUH�UHDG\��SUHVV�WKH�VTXDUH�EXWWRQ�ZLWK�D�PLFURSKRQH
LFRQ�DW�WKH�ERWWRP�OHIW�FRUQHU�WR�WHOO�WKH�FRPSXWHU�WR�OLVWHQ�WR�\RX��WKHQ�VSHDN�DQG�RU�GUDZ
RQ�WKH�VFUHHQ��7KH�FRPSXWHU�ZLOO�DXWRPDWLFDOO\�VWRS�OLVWHQLQJ�ZKHQ�\RX�ILQLVK�VSHDNLQJ��7XUQ
WR�WKH�QH[W�WDVN�RQ�WKH�OLVW�RQO\�LI�WKH�UHVXOW�LV�FRUUHFW�DFFRUGLQJ�WR�WKH�LQVWUXFWLRQV��,I�QRW��SUHVV�WKH
´8QGRµ�EXWWRQ�DW�WKH�ERWWRP�ULJKW�FRUQHU�RI�WKH�GLVSOD\�DQG�WU\�DJDLQ�XQWLO�WKH�FRPSXWHU
JHWV�LW�ULJKW�

7KDQN�\RX�IRU�\RXU�SDUWLFLSDWLRQ�

158

WHAT THE COMPUTER CAN UNDERSTAND

<RX�FDQ�DVN�D�TXHVWLRQ�RU�WHOO�WKH�SURJUDP�WR�GR�VRPHWKLQJ��)RU�H[DPSOH��ERWK�´:KHUH�LV�WKH
2ULHQWDO�.LWFKHQ"µ�DQG�´)LQG�WKH�2ULHQWDO�.LWFKHQµ�DUH�2.���7KH�SURJUDP�XVXDOO\�XQGHUVWDQGV
VHYHUDO�V\QRQ\PV��VR�´ILQG�µ�´ORFDWH�µ�´VKRZ�PH�µ�´GLVSOD\�µ�HWF��DUH�DOO�HTXLYDOHQW��<RX�FDQ
DOVR�XVH�QDWXUDO��FRQYHUVDWLRQDO�VHQWHQFHV�DV�LI�\RX�ZHUH�VSHDNLQJ�WR�D�SHUVRQ�LQVWHDG�RI
LVVXLQJ�FRPSXWHU�FRPPDQGV��´3OHDVH��FDQ�\RX�WHOO�PH�ZKHUH�8QLYHUVLW\�RI�3LWWVEXUJK�LV"µ�VKRXOG
ZRUN�DV�ZHOO�DV�´)LQG�8QLYHUVLW\�RI�3LWWVEXUJK�µ

,I�D�SODFH�LV�GLVSOD\HG�RQ�WKH�PDS��\RX�FDQ�UHIHU�WR�LW�E\�QDPH�RU�SRLQW�LW�RXW�YLVXDOO\�E\
WRXFKLQJ�LW�RU�FLUFOLQJ�LW�RQ�WKH�PDS�GLVSOD\��´+RZ�WR�,�JR�WR������)RUEHV�$YHQXH�IURP�KHUH"µ��
SRLQWLQJ�DW�RU�FLUFOLQJ�'XTXHVQH�8QLYHUVLW\�RQ�WKH�PDS�LV�DQRWKHU�ZD\�RI�H[SUHVVLQJ�´+RZ�GR�,�JR
IURP������)RUEHV�$YHQXH�WR�'XTXHVQH�8QLYHUVLW\"µ�,I�\RXU�TXHVWLRQ�FRPPDQG�LV�DERXW�WKH
IDVWHVW�URXWH�RU�WKH�GLVWDQFH�EHWZHHQ�WZR�SODFHV��ERWK�GLVSOD\HG�RQ�WKH�PDS���\RX�FDQ�DOVR
GUDZ�D�OLQH�RU�DQ�DUURZ�IURP�RQH�SODFH�WR�WKH�RWKHU�RQ�WKH�PDS�LQ�FRQMXQFWLRQ�ZLWK�\RXU
VSRNHQ�ZRUGV��VRPHWKLQJ�OLNH�´+RZ�IDU�LV�LW�IURP�KHUH�WR�WKHUH"µ���OLQH�DUURZ�EHWZHHQ�WKH�WZR�SODFHV�

:KHQ�\RX�QHHG�WR�VSHFLI\�D�UHFWDQJXODU�DUHD�RQ�WKH�PDS��GR�LW�YLVXDOO\�E\�FLUFOLQJ�RU�GUDZLQJ
D�ER[�DURXQG�WKH�GHVLUHG�DUHD��$Q�DSSUR[LPDWLRQ�LV�ILQH��\RX�GRQ·W�KDYH�WR�JHW�LW�ULJKW�GRZQ
WR�ZLWKLQ�PLOOLPHWHUV�RU�DQ\WKLQJ�OLNH�WKDW�

7R�LQFUHDVH�WKH�PDJQLILFDWLRQ��L�H���H[SDQG�D�VPDOO�DUHD�WR�ILOO�WKH�ZKROH�GLVSOD\��\RX�FDQ�XVH
ZRUGV�OLNH�´]RRP�LQ�µ�´PDJQLI\�µ�´HQODUJH�µ�´H[SDQG�µ�´PRUH�GHWDLO�µ�HWF��7R�VSHFLI\�D
FHQWHU�SRLQW�IRU�WKH�]RRP��DGG�VRPHWKLQJ�OLNH�´DURXQG��RU�DW�RQ�«���SODFHQDPH!�µ�RU
UHIHU�WR�LW�YLVXDOO\�DV�GHVFULEHG�DERYH��7R�VSHFLI\�D�PDJQLILFDWLRQ�IDFWRU��H�J�������VD\�VRPH�
WKLQJ�OLNH�´��WLPHVµ�RU�´E\�D�IDFWRU�RI���µ�HWF��7R�VSHFLI\�DQ�DUHD�RI�D�VSHFLILF�VL]H��H�J����
PLOHV�RQ�HDFK�VLGH���DGG�VRPHWKLQJ�OLNH�´D���PLOH�DUHD��RU�VTXDUH�ER[�«��µ�3KUDVH�WKH
ZKROH�WKLQJ�LQ�DQ\�ZD\�WKDW�VHHPV�QDWXUDO�WR�\RX�

7R�GHFUHDVH�WKH�PDJQLILFDWLRQ��L�H���ILW�D�ODUJHU�DUHD�LQWR�WKH�GLVSOD\��\RX�FDQ�XVH�ZRUGV�OLNH
´]RRP�RXW�µ�´VKULQN�µ�´OHVV�GHWDLO�µ�HWF��$GGLWLRQDO�LQIRUPDWLRQ�FDQ�EH�VSHFLI\�LQ�D�VLPLODU
PDQQHU�WR�WKH�´]RRP�LQµ�RSHUDWLRQ�GHVFULEHG�DERYH�

7R�VKRZ�DQ�DUHD�QRUWK�VRXWK�HDVW�ZHVW�HWF��RI�WKH�FXUUHQWO\�GLVSOD\HG�DUHD��\RX�FDQ�XVH
ZRUGV�OLNH�´SDQ�µ�´VKLIW�µ�´PRYH�µ�HWF��WRJHWKHU�ZLWK�WKH�GHVLUHG�GLUHFWLRQ
�OHIW�ULJKW�XS�GRZQ�VKRXOG�DOVR�ZRUN���<RX�FDQ�DOVR�VSHFLI\�D�GLVWDQFH�IRU�WKH�VKLIW��HLWKHU
LQ�PLOHV�NLORPHWHUV�RU�DV�D�SHUFHQWDJH�RI�WKH�VFUHHQ�

6RPHWLPHV�WKH�FRPSXWHU�GRHV�QRW�UHFRJQL]H�DOO�RI�WKH�ZRUGV�FRUUHFWO\��EXW�LW�JHWV�HQRXJK
LQIRUPDWLRQ�VR�WKDW�LW�GRHV�H[DFWO\�WKH�ULJKW�WKLQJ��$V�ORQJ�DV�WKH�UHVXOW�LV�ZKDW�\RX�LQWHQGHG�
\RX�FDQ�PRYH�RQ�WR�WKH�QH[W�WDVN�

159

7$6.�/,67

<RX�VWDUW�ZLWK�D�PDS�WKDW�GLVSOD\V�WKH�VWUHHWV�RI�3LWWVEXUJK�

�� *RDO��*HW�WKH�PDS�WR�ORFDWH�&DUQHJLH�0HOORQ�8QLYHUVLW\�DQG�GLVSOD\�LW�DV�DQ�LFRQ�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

160

�� *RDO��*HW�WKH�PDS�WR�GLVSOD\�WKH�ZD\�IURP�&DUQHJLH�0HOORQ�8QLYHUVLW\�WR�8QLYHUVLW\�RI
3LWWVEXUJK�DQG�WKH�GLVWDQFH�\RX�ZRXOG�KDYH�WR�WUDYHUVH�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

161

�� *RDO��*HW�WKH�PDS�WR�GLVSOD\�DOO�WKH�UHVWDXUDQWV�LW�NQRZV�DERXW�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

162

�� *RDO��*HW�WKH�PDS�WR�GLVSOD\�DOO�WKH�&KLQHVH�UHVWDXUDQWV�LW�NQRZV�DERXW�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

163

�� *RDO��*HW�WKH�PDS�WR�GLVSOD\�DOO�WKH�&KLQHVH�UHVWDXUDQWV�DSSUR[LPDWHO\�ZLWKLQ�WKH�DUHD
LQGLFDWHG�E\�WKH�GDVKHG�ER[�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

164

�� *RDO��*HW�WKH�PDS�WR�GLVSOD\�8QLYHUVLW\�RI�3LWWVEXUJK�LQ�DQ�DUHD�WKDW�PHDVXUHV���PLOHV
RQ�HDFK�VLGH�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

165

�� *RDO��*HW�WKH�PDS�WR�GLVSOD\�WKH�IDVWHVW�URXWH�EHWZHHQ�WKH���SODFHV�FLUFOHG�EHORZ�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

166

�� *RDO��*HW�WKH�PDS�WR�GLVSOD\�WKH�ZD\�WR�WKH�QHDUHVW�PRYLH�WKHDWHU�IURP�ZKHUH�\RX�DUH
�WKH�2ULHQWDO�.LWFKHQ��DQG�WKH�WLPH�LW�ZRXOG�WDNH�\RX�WR�JHW�WKHUH�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

167

�� *RDO��*HW�WKH�PDS�WR�H[SDQG��PDJQLI\��WKH�DUHD�DSSUR[LPDWHO\�LQGLFDWHG�E\�WKH�GDVKHG
ER[�VR�WKDW�LW�ILOOV�WKH�ZKROH�GLVSOD\�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

168

��� *RDO��*HW�WKH�PDS�WR�ORFDWH�DQG�GLVSOD\������)LIWK�$YHQXH�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

169

��� *RDO��*HW�WKH�PDS�WR�]RRP�RXW��VKULQN�WKH�YLHZ��WR�GLVSOD\�DQ�DUHD����WLPHV�WKH�FXU�
UHQWO\�GLVSOD\HG�DUHD�

5HVXOW��$IWHU�\RX�DUH�GRQH��WKH�PDS�GLVSOD\�VKRXOG�ORRN�OLNH�WKLV�

170

��� 7KH�PDS�LV�FXUUHQWO\�GLVSOD\LQJ�WKLV�

*RDO��*HW�WKH�PDS�WR�GLVSOD\�WKLV³��PLOHV�WR�WKH�OHIW��ZHVW��RI�ZKHUH�\RX�ZHUH�

THE END

171

48(67,211$,5(

8VHU�,'��BBBBBBBBBB

7KH�ILUVW�WKUHH�TXHVWLRQV�UHIHU�WR�WKH�ZD\�LQ�ZKLFK�\RX�FRXOG�LQWHUDFW�ZLWK�WKH�FRPSXWHU
V\VWHP�

�� <RX�FRXOG�VSHDN�WR�WHOO�WKH�FRPSXWHU�ZKDW�\RX�ZDQWHG��+RZ�PXFK�GLG�\RX�OLNH�WKLV�VW\OH
RI�LQWHUDFWLRQ�ZLWK�WKH�FRPSXWHU"

BBBBB�QRW�DW�DOO
BBBBB�VRPHZKDW
BBBBB�TXLWH�ZHOO
BBBBB�YHU\�PXFK
BBBBB�GRQ·W�NQRZ��,�GLGQ·W�XVH�LW�

�� <RX�FRXOG�GUDZ�RQ�WKH�VFUHHQ�WR�WHOO�WKH�FRPSXWHU�ZKDW�\RX�ZDQWHG��+RZ�PXFK�GLG�\RX
OLNH�WKLV�VW\OH�RI�LQWHUDFWLRQ�ZLWK�WKH�FRPSXWHU"

BBBBB�QRW�DW�DOO
BBBBB�VRPHZKDW
BBBBB�TXLWH�ZHOO
BBBBB�YHU\�PXFK
BBBBB�GRQ·W�NQRZ��,�GLGQ·W�XVH�LW�

�� <RX�FRXOG�%27+�VSHDN�$1'�GUDZ�RQ�WKH�VFUHHQ�WR�WHOO�WKH�FRPSXWHU�ZKDW�\RX
ZDQWHG��+RZ�PXFK�GLG�\RX�OLNH�WKLV�VW\OH�RI�LQWHUDFWLRQ�ZLWK�WKH�FRPSXWHU"

BBBBB�QRW�DW�DOO
BBBBB�VRPHZKDW
BBBBB�TXLWH�ZHOO
BBBBB�YHU\�PXFK
BBBBB�GRQ·W�NQRZ��,�GLGQ·W�XVH�WKHVH�WZR�PRGHV�LQ�FRPELQDWLRQ�

�� :KDW�GLG�\RX�ILQG�WKH�PRVW�DQQR\LQJ�DERXW�WKH�FRPSXWHU�SURJUDP��HYHQ�LI�\RX�OLNHG�LW
LQ�JHQHUDO�"

BBBBB�QRWKLQJ��,�ZDV�QRW�DQQR\HG�DW�DOO�
BBBBB�LW�ZDV�WRR�VORZ
BBBBB�LW�GLG�QRW�XQGHUVWDQG�PH�ZHOO�HQRXJK
BBBBB�RWKHUV��SOHDVH�VSHFLI\�

172

BIBLIOGRAPHY

[Alleva92] Alleva, F., Hon, H., Huang, X., Hwang, M., Rosenfeld, R., and Weide, R.
Applying SPHINX-II to the DARPA Wall Street Journal CSR Task.
In DARPA Speech and Language Workshop. Morgan Kaufmann (San Mateo,
CA), 1992.

[Anderson77] Anderson, J.R.
Induction of Augmented Transition Networks.
Cognitive Science 1:125-157, 1977.

[Ando94] Ando, H., Kitahara, Y., and Hataoka, N.
Evaluation of Multimodal Interface Using Spoken Language and Pointing
Gesture On Interior Design System.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’94), Vol. 2, 567-570. (Yokohama, Japan) September 1994.

[Arakawa78] Arakawa, H., Okada, K., and Masuda, J.
On-line Recognition of Handwritten Characters: Alphanumerics, Hiragana,
Katakana, Kanji.
In Proceedings of International Joint Conference on Pattern Recognition,
810-812, 1978.

[Arnold96] Arnold, K. and Gosling, J.
The Java Programming Language.
Addison-Wesley (Reading, MA), 1996.

[Bahl89] Bahl, L.R., Brown, P.F., de Souze, P.V., and Mercer, R.L.
A Tree-Based Statistical Language Model for Natural Language Speech
Recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing
ASSP-37(7):1001-1008, July 1989.

[Baluja94] Baluja, S. and Pomerleau, D.
Non-intrusive Gaze Tracking Using Artificial Neural Networks.
In Advances in Neural Information Processing Systems (NIPS 6). Morgan
Kaufmann (San Mateo, CA), 1994.

[Bellik97] Bellik, Y.
Media Integration in Multimodal Interfaces.
In Proceedings of First Signal Processing Society Workshop on Multimedia
Signal Processing, 31-36. (Princeton, NJ) June 1997.

[Berthod79] Berthod, M. and Maroy, J.P.
Learning in Syntactic Recognition of Symbols Drawn on a Graphic Tablet.
Computer Graphics Image Processing 9:166-182, 1979.

[Beskow96] Beskow, J., Elenius, K., and McGlashan, S.
Olga — A Dialogue System with an Animated Talking Agent.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’96), Vol. 3, 1651-1654. (Philadelphia, PA) October 1996.

[Blachman68] Blachman, N.M.
The Amount of Information that Y Gives About X.
IEEE Transactions on Information Theory 14(1):27-31, 1968.

173

[Blattner96] Blattner, M.M. and Glinert, E.P.
Multimodal Integration.
IEEE Multimedia 3(4):14-24, 1996.

[Bohm92] Bohm, K., Hubner, W., and Vaananen, K.
GIVEN: Gesture Driven Interactions in Virtual Environments — A Toolkit
Approach to 3D Interactions.
In Proceedings of International Conference on Interface to Real and Virtual
Worlds (Informatique’92). (Montpellier, France) March 1992.

[Bolt80] Bolt, R.A.
Put-That-There: Voice and Gesture at the Graphics Interface.
ACM Computer Graphics 14(3):262-270, 1980.

[Bonafonte96] Bonafonte, A., Marino, J.B., and Nogueiras, A.
Sethos: The UPC Speech Understanding System.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’96), Vol. 4, 2151-2154. (Philadelphia, PA) October 1996.

[Booch93] Booch, G.
Object-Oriented Analysis and Design with Applications, 2nd edition.
Benjamin/Cummings (Redwood City, CA), 1993.

[Boros96] Boros, M., Eckert, W., Gallwitz, F., Gorz, G., Hanrieder, G., Niemann, H.
Towards Understanding Spontaneous Speech: Word Accuracy vs. Concept
Accuracy.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’96), Vol. 2, 1009-1012. (Philadelphia, PA) October 1996.

[Bourlard88] Bourlard, H. and Wellekens, C.J.
Links Between Markov Models and Multilayer Perceptrons.
Technical Report Manuscript M-263, Phillips Research Laboratory (Brussels,
Belgium), 1988.

[Bregler93] Bregler, C., Hild, H., Manke, S., and Waibel, A.
Improving Connected Letter Recognition by Lipreading.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’93). (Minneapolis, MN) April 1993.

[Brown94] Brown, M.K. and Buntschuh, B.M.
A Context-Free Grammar Compiler for Speech Understanding Systems.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’94), Vol. 1, 21-24. (Yokohama, Japan) September 1994.

[Burr88] Burr, D.J.
Experiments on Neural Net Recognition of Spoken and Written Text.
IEEE Transactions on Acoustics, Speech, and Signal Processing 36:1162-1168,
1988.

[Burton76] Burton, R.R.
Semantic Grammar: An Engineering Technique for Constructing Natural
Language Understanding Systems.
BBN Report 3453, Bolt Beranek & Newman Inc., December 1976.

[Buxton85] Buxton, W.A.S., Sniderman, R., Reeves, W., Patel, S., and Baecker, R.
The Evolution of the SSSP Score-Editing Tools.
In Foundations of Computer Music, Roads, C. and Strawn, J. (Eds.), 387-392.
MIT Press (Cambridge, MA), 1985.

174

[Carbonell84] Carbonell, J.G. and Hayes, P.J.
Recovery Strategies for Parsing Extra-grammatical Language.
Technical Report CMU-CS-84-107, Carnegie Mellon University (Pittsburgh,
PA), February 1984.

[Chen96] Chen, S., Kazi, Z., Beitler, M., Salganicoff, M., Chester, D., and Foulds, R.
Gesture-Speech Based HMI for a Rehabilitation Robot.
In Proceedings of South East Conference, 29-36. (Tampa, FL) 1996.

[Cheyer95] Cheyer, A. and Julia, L.
Multimodal Maps: An Agent-Based Approach.
In Proceedings of International Conference on Cooperative Multimodal
Communication (CMC’95). (Eindhoven, Netherlands) May 1995.

[Cheyer97] Cheyer, A., and Julia, L.
MVIEWS: Multimodal Tools for the Video Analyst.
In Proceedings of International Conference on Intelligent User Interfaces, 55-62.
(San Francisco, CA) 1997.

[Chu97] Chu, C-C.P., Dani, T.H., and Gadh, R.
Multimodal Interface for a Virtual Reality Based Computer Aided Design
System.
In Proceedings of IEEE International Conference on Robotics and Automation,
Vol. 2, 1329-1334. (Albuquerque, NM) April 1997.

[Cohen89] Cohen, P.R., Dalrymple, M., Moran, D.B., Periera, F.C.N., Sullivan, J.W.,
Gargan, R.A., Jr., Schlossberg, J.L., and Tyler, S.W.
Synergistic Use of Direct Manipulation and Natural Language.
In Proceedings of ACM Conference on Human Factors in Computing Systems
(CHI’89), 227-234. (Austin, TX) April 1989.

[Cohen92] Cohen, P.R.
The Role of Natural Language in a Multimodal Interface.
In Proceedings of Symposium on User Interface Software and Technology
(UIST’92), 143-149. (Monterey, CA) November 1992.

[Coleman69] Coleman, M.L.
Text Editing on a Graphic Display Device Using Hand-Drawn Proofreader’s
Symbols.
In Pertinent Concepts in Computer Graphics, Proceedings of University of
Illinois Conference on Computer Graphics, Faiman, M. and Nievergelt, J. (Eds.),
283-290. 1969.

[Coutaz95] Coutaz, J., Nigay, L., Salber, D., Blanford, A., May, J., and Young, R.
Four Easy Pieces for Assessing the Usability of Multimodal Interaction: The
CARE Properties.
In Proceedings of International Conference on Human-Computer Interaction
(INTERACT’95), 115-20. (Lillehammer, Norway) June 1995.

[Dillman78] Dillman, D.A.
Mail and Telephone Surveys: The Total Design Method.
John Wiley & Sons (New York), 1978.

[Dowding93] Dowding, J., Gawron, J.M., Appelt, D., Bear, J., Cherny, L., Moore, R., and
Moran, D.
GEMINI: A Natural Language System for Spoken Language Understanding.
In Proceedings of Annual Meeting of the Association for Computational
Linguistics, 54-61. (Columbus, OH) June 1993.

175

[Eastwood97] Eastwood, B., Jennings, A., and Harvey, A.
Neural Network Based Segmentation of Handwritten Words.
In Proceedings of International Conference on Image Processing and its
Applications, Vol. 2, 750-755. (Dublin, Ireland) July 1997.

[Edelman90] Edelman, S., Flash, T., and Ullman, S.
Reading Cursive Handwriting by Alignment of Letter Prototypes.
International Journal of Computer Vision 5(3):303-331, 1990.

[Eglowstein90] Eglowstein, H.
Reach Out and Touch Your Data.
Byte 15(7):283-290, July 1990.

[Erbach92] Erbach, G.
Tools for Grammar Engineering.
In Proceedings of 3rd Conference on Applied Natural Language Processing,
243-244. (Trento, Italy) March 1992.

[Erman80] Erman, L.D. and Lesser, V.R.
The Hearsay-II Speech Understanding System: A Tutorial.
In Trends in Speech Recognition, 361-381. Speech Science Publications (Apple
Valley, MN), 1980.

[Faure93] Faure, C. and Julia, L.
Interaction Homme-Machine par la Parole et le Geste pour l’Edition de
Documents: TAPAGE.
(Speech and Gesture for Man-Machine Interaction Applied to Document Editing:
TAPAGE.)
In Proceedings of International Conference on Interface to Real and Virtual
Worlds (Informatique’93), 171-180. (Montpellier, France) March 1993.

[Favata92] Favata, J.T. and Srihari, S.N.
Off-line Recognition of Handwritten Cursive Words.
In Proceedings of SPIE/IS&T Symposium on Electronic Imaging Science and
Technology, 224-234. (San Jose, CA) February 1992.

[Fels90] Fels, S.S. and Hinton, G.E.
Building Adaptive Interfaces with Neural Networks: The Glove-Talk Pilot Study.
Technical Report CRG-TR-90-1, University of Toronto (Toronto, Canada), 1990.

[Finke97] Finke, M., Geutner, P., Hild, H., Kemp, T., Ries, K., and Westphal, M.
The Karlsruhe-Verbmobil Speech Recognition Engine.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’97). (Munich, Germany) 1997.

[Firth91] Firth, C. and Thomas, R.C.
The Use of Command Language Grammar in Design Tool.
International Journal of Man-Machine Studies 34(4):479-496, April 1991.

[Fowler97] Fowler, M. and Scott, K.
UML Distilled: Applying the Standard Object Modeling Language.
Addison-Wesley (Reading, MA), 1997.

[Fu81] Fu, K.S.
Syntactic Pattern Recognition and Applications.
Prentice Hall, 1981.

176

[Gader94] Gader, P.D. and Keller, J.M.
Applications of Fuzzy Sets Theory to Handwriting Recognition.
In Proceedings of IEEE International Fuzzy Systems Conference, Vol. 2,
910-917. (Orlando, FL) June 1994.

[Gamma95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[Gomoll90] Gomoll, K.
Some Techniques for Observing Users.
In The Art of Human-Computer Interface Design, Laurel, B. (Ed.), 85-90.
Addison-Wesley (Reading, MA), 1990.

[Gorin91] Gorin, A.L., Levinson, S., Gertner, A., and Goldman, E.
Adaptive Acquisition of Language.
Computer Speech and Language 5(2):101-132, April 1991.

[Gorin94] Gorin, A.L., Levinson, S.E., and Sankar, A.
An Experiment in Spoken Language Acquisition.
IEEE Transactions on Speech and Audio Processing 2(1)(Part II):224-240,
January 1994.

[Gorin95] Gorin, A.L.
On Automated Language Acquisition.
Journal of the Acoustics Society of America 97(6):3441-3461, June 1995.

[Gorin96] Gorin, A.L.
Processing of Semantic Information in Fluently Spoken Language.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’96). (Philadelphia, PA) October 1996.

[Govindaraju97] Govindaraju, V., Kim, G., Srihari, S.N.
Paradigms in Handwriting Recognition.
In Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics (ICSMC’97), 1498-1503. (Orlando, FL) October 1997.

[Gray84] Gray, R.M.
Vector Quantization.
IEEE ASSP Magazine 1(2):4-29, April 1984.

[Guyon91] Guyon, I., Albrecht, P., Le Cun, Y., Denker, W., and Hubbard, W.
Design of a Neural Network Character Recognizer for a Touch Terminal.
Pattern Recognition 24(2):105-119, 1991.

[Haffner92] Haffner, P. and Waibel, A.
Multi-State Time Delay Neural Networks for Continuous Speech Recognition.
In Advances in Neural Network Information Processing Systems (NIPS 4),
135-142. Morgan Kaufmann (San Mateo, CA), 1992.

[Hand82] Hand, D.J.
Kernel Discriminant Analysis.
Research Studies Press (A Division of John Wiley and Sons, New York), 1982.

[Hauptmann89] Hauptmann, A.
Speech and Gestures for Graphic Image Manipulation.
In Proceedings of ACM Conference on Human Factors in Computing Systems
(CHI’89), 241-245. (Austin, TX) April 1989.

177

[Hayes81] Hayes, P.J. and Mouradian, G.V.
Flexible Parsing.
American Journal of Computational Linguistics 7.4:232-242, 1981.

[Hemphill89] Hemphill, C. and Picone, J.
Robust Speech Recognition in a Unification Grammar Framework.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’89). May 1989.

[Henry90] Henry, T.R., Hudson, S.E., and Newell, G.L.
Integrating Gesture and Snapping into a User Interface Toolkit.
In Proceedings of Symposium on User Interface Software and Technology
(UIST’90), 112-122. October 1990.

[Higgins85] Higgins, A.L. and Wohlford, R.E.
Keyword Recognition Using Template Concatenation.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’85), 1233-1236. 1985.

[Hollan88] Hollan, J., Rich, E., Hill, W., Wroblewski, D., Wilner, W., Wittenberg, K.,
Grudin, J., and Members of the Human Interface Laboratory.
An Introduction to HITS: Human Interface Tool Suite.
Technical Report ACA-HI-406-88, Microelectronics and Computer Technology
Corporation (Austin, TX), 1988.

[Huang88] Huang, W.M. and Lippmann, R.P.
Neural Net and Traditional Classifier.
In Neural Information Processing Systems, Anderson, D. (Ed.), 387-396. Morgan
Kaufmann (San Mateo, CA) 1988.

[Huang93] Huang, X., Alleva, F., Hon, H.W., Hwang, M.Y, Lee, K., and Rosenfeld, R.
The SPHINX-II Speech Recognition System: An Overview.
Computer Speech and Language 2:137-148, 1993.

[Jackson88] Jackson, P.L.
The Theoretical Minimal Unit for Visual Speech Perception: Visemes and
Coarticulation.
The Volta Review 90(5):99-115, 1988.

[Jacob91] Jacob, R.J.K.
The Use of Eye Movements in Human-Computer Interaction Techniques: What
You Look At Is What You Get.
ACM Transactions on Information Systems 9(3):152-169, April 1991.

[Jacobson92] Jacobson, I.
Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley (Reading, MA), 1992.

[Jelinek90] Jelinek, F.
Self-Organized Language Modeling for Speech Recognition.
1990. Reprinted in Readings in Speech Recognition, Waibel, A. and Lee, K.F.
(Eds.), Morgan Kaufmann (San Mateo, CA), 1990.

[Jelinek98] Jelinek, F.
Statistical Methods for Speech Recognition.
MIT Press (Cambridge, MA), January 1998.

178

[Jing97] Jing, X., Yang, J., Vo, M.T., and Waibel, A.
Java Frontend for Web-Based Multimodal Human-Computer Interaction.
In Proceedings of Workshop on Perceptual User Interface, 78-81. (Banff,
Canada) 1997.

[Johnston97] Johnston, M., Cohen, P.R., McGee, D., Oviatt, S.L., Pittman, J.A., and Smith, I.
Unification-based Multimodal Integration.
In Proceedings of 35th Annual Meeting of the Association for Computational
Linguistics and 8th Conference of the European Chapter of the Association for
Computational Linguistics, 281-288. 1997.

[Julia95] Julia, L. and Faure, C.
Pattern Recognition and Beautification for a Pen Based Interface.
In Proceedings of International Conference on Document Analysis and
Recognition (ICDAR’95), 58-63. (Montreal, Canada) August 1995.

[Kamio94] Kamio, H., Koorita, M., Matsu’ura, H., Tamura, M., and Nitta, T.
A UI Design Support Tool for Multimodal Spoken Dialogue System.
In Proceedings of International Conference of Spoken Language Processing
(ICSLP’94), Vol. 3, 1283-1286. (Yokohama, Japan) September 1994.

[Kawahara97] Kawahara, T., Chin-Hui Lee, and Biing-Hwang Juang.
Combining Key-phrase Detection and Subword-Based Verification for Flexible
Speech Understanding.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’97), Vol. 2, 1159-1162. (Munich, Germany) April
1997.

[KeHan95] Ke Han and Sethi, I.K.
Off-line Cursive Handwriting Segmentation.
In Proceedings of International Conference on Document Analysis and
Recognition (ICDAR’95), Vol. 2, 894-897. (Montreal, Canada) August 1995.

[Kernighan88] Kernighan, B. and Ritchie, D.
The C Programming Language.
Prentice Hall (Englewood Cliffs, NJ), 1988.

[Kim97] Kim, G. and Govindaraju, V.
A Lexicon Driven Approach to Handwritten Word Recognition for Real-time
Applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4):366-379,
April 1997.

[Knuth73] Knuth, D.
The Art of Computer Programming: Fundamental Algorithms, Vol. 1.
Addison Wesley (Reading, MA), 1973.

[Kohonen88] Kohonen, T., Barna, G., and Chrisley, R.
Statistical Pattern Recognition with Neural Networks: Benchmarking Studies.
In Proceedings of International Conference on Neural Networks (ICNN’88),
Vol. I, 61-68. (San Diego, CA) July 1988.

[Kolzay71] Kolzay, D.
Feature Extraction in an Optical Character Recognition Machine.
IEEE Transactions on Computers 20:1063-1067, 1971.

179

[Koons93] Koons, D.B., Sparrell, C.J., and Thorisson, K.R.
Integrating Simultaneous Input From Speech, Gaze, and Hand Gestures.
In Intelligent Multimedia Interfaces, Maybury, M.T. (Ed.), 257-276. MIT Press
(Cambridge, MA), 1993.

[Kuch95] Kuch, J.J. and Huang, T.S.
Vision Based Hand Modeling and Tracking.
In Proceedings of International Conference on Computer Vision. (Cambridge,
MA) June 1995.

[Kullberg95] Kullberg, R.L.
Mark Your Calendar! Learning Personalized Annotation from Integrated Sketch
and Speech.
In Proceedings of ACM Conference on Human Factors in Computing Systems
(CHI’95), 302-303. (Denver, CO) May 1995.

[Kurtenbach91] Kurtenbach, G. and Buxton, W.A.S.
GEdit: A Test Bed for Editing by Continuous Gestures.
SIGCHI Bulletin, 22-26, 1991.

[Landay93] Landay, J.A. and Myers, B.A.
Extending an Existing User Interface Toolkit to Support Gesture Recognition
In Adjunct Proceedings of INTERCHI’93, 91-92. (Amsterdam, Netherlands)
April 1993.

[Lavie93] Lavie, A. and Tomita, M.
GLR* — An Efficient Noise Skipping Parsing Algorithm for Context Free
Grammars.
In Proceedings of International Workshop on Parsing Technologies (IWPT’93).
(Tilburg, Netherlands) August 1993.

[Lavie97] Lavie, A., Waibel, A., Levin, L., Finke, M., Gates, D., Gavalda, M., Zeppenfeld,
T., and Zhan, P.
JANUS-III: Speech-to-Speech Translation in Multiple Languages.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’97). (Munich, Germany) 1997.

[Lecolinet91] Lecolinet, E. and Crettez, J.
A Grapheme-Based Segmentation Technique for Cursive Script Recognition.
In Proceedings of International Conference on Document Analysis and
Recognition (ICDAR’91), 740-748. (Saint-Malo, France) September 1991.

[Lee90] Lee, J. and Zeevat, H.
Integrating Natural Language and Graphics in Dialogue.
In Proceedings of International Conference on Human-Computer Interaction
(INTERACT’90), short papers, 479-484. 1990.

[Leopold97] Leopold, J.L. and Ambler, A.L.
Keyboardless Visual Programming Using Voice, Handwriting, and Gesture.
In Proceedings of IEEE Symposium on Visual Languages, 28-35. (Isle of Capri,
Italy) September 1997.

[Lippmann87] Lippmann, R.P. and Gold, B.
Neural Classifiers Useful for Speech Recognition.
In Proceedings of International Conference on Neural Networks (ICNN’87),
IV-417. 1987.

180

[Lipscomb91] Lipscomb, J.S.
A Trainable Gesture Recognizer.
Pattern Recognition, 1991.

[Loken-Kim94] Loken-Kim, K., Yato, F., Fais, L., Morimoto, T., and Kurematsu, A.
Linguistic and Paralinguistic Differences Between Multimodal and Telephone-
Only Dialogues.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’94), 571-574. (Yokohama, Japan) September 1994.

[Lowerre80] Lowerre, B.T. and Reddy, D.R.
The HARPY Speech Understanding System.
In Trends in Speech Recognition. Speech Science Publications (Apple Valley,
MN), 1980.

[Madhvanath96] Madhvanath, S.
The Holistic Paradigm in Handwritten Word Recognition and Its Application to
Large and Dynamic Lexicon Scenarios.
PhD Thesis, Dept. of Computer Science, State University of New York at
Buffalo (Buffalo, NY), 1996.

[Manke95] Manke, S., Finke, M., and Waibel, A.
NPen++: A Writer Independent, Large Vocabulary On-line Cursive Handwriting
Recognition System.
In Proceedings of International Conference on Document Analysis and
Recognition (ICDAR’95). (Montreal, Canada) August 1995.

[Manke98] Manke, S.
On-line Erkennung kursiver Handschrift bei großen Vokabularen.
(On-line Large Vocabulary Cursive Handwriting Recognition.)
Ph.D. Thesis, Computer Science Department, University of Karlsruhe
(Karlsruhe, Germany), February 1998.

[Markel76] Markel, J.D., Gray, A.H.
Linear Prediction of Speech.
Springer-Verlag (Berlin, Germany), 1976.

[Martin97] Martin, J-C.
Toward “Intelligent” Cooperation Between Modalities: The Example of a System
Enabling Multimodal Interaction with a Map.
In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI’97) Workshop on “Intelligent Multimodal Systems.” (Nagoya, Japan)
August 1997.

[Matsu’ura94] Matsu’ura, H., Masai, Y., Iwasaki, J., Tanaka, S., Kamio, H., and Nitta, T.
A Multimodal, Keyword-Based Spoken Dialogue System — MultiksDial.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’94), Vol. 2, 33-36. (Adelaide, Australia) April 1994.

[McClelland89] McClelland, J.L., St. John, M., and Taraban, R.
Sentence Comprehension: A Parallel Distributed Processing Approach.
Language and Cognitive Processes 314:287-335, 1989.

[McNair94] McNair, A. and Waibel, A.
Improving Recognizer Acceptance Through Robust, Natural Speech Repair.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’94), 1299-1302. (Yokohama, Japan) September 1994.

181

[Medress78] Medress, M.F. et al.
An Automatic Word Spotting System for Conversational Speech.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’78), 712-713. 1978.

[Menier94] Menier, G., Lorette, G., and Gentric, P.
A Genetic Algorithm for On-line Cursive Handwriting Recognition.
In Proceedings of International Conference on Pattern Recognition, Vol. 2,
522-525. (Jerusalem, Israel) October 1994.

[Miller93] Miller, L.G. and Gorin, A.L.
Structured Networks for Adaptive Language Acquisition.
International Journal of Pattern Recognition and Artificial Intelligence
7(4):873-898, 1993.

[Milota95] Milota, A.D. and Blattner, M.M.
Multimodal Interfaces with Voice and Gesture Input.
In Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics (ICSMC’95), Vol. 3, 2760-2765. (Vancouver, Canada) October
1995.

[Minsky84] Minsky, M.R.
Manipulating Simulated Objects with Real-World Gestures Using a Force and
Position Sensitive Screen.
Computer Graphics 18(3):195-203, July 1984.

[Mitchell97] Mitchell, T.M.
Machine Learning.
WCB/McGraw-Hill, 1997.

[Moran97] Moran, D.B., Cheyer, A.J., Julia, L.E., Martin, D.L, and Park, S.
Multimodal User Interfaces in the Open Agent Architecture.
In Proceedings of International Conference on Intelligent User Interfaces
(IUI’97) , 61-68. (Orlando, FL) January 1997.

[Murase88] Murase, H. and Wakahara, T.
Online Hand-Sketched Figure Recognition.
Pattern Recognition 19(2):147-160, 1988.

[Myers80] Myers, C.S., Rabiner, L.R., and Rosenberg, A.E.
An Investigation of the Use of Dynamic Time Warping for Word Spotting and
Connected Word Recognition.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’80), 173-177. (Denver, CO) April 1980.

[Myers90] Myers, B.A., Giuse, D.A., Dannenberg, R.B., Zanden, B.V., Kosbie, D.S.,
Pervin, E., Mickish, A., and Marchal, P.
Garnet: Comprehensive Support for Graphical, Highly Interactive User
Interfaces.
Computer 23(11):71-85, 1990.

[Myers97] Myers, B.A., McDaniel, R.G., Miller, R.C., Ferrency, A.S., Faulring, A., Kyle,
B.D., Mickish, A., Klimovitski, A., and Doane, P.
The Amulet Environment: New Models for Effective User Interface Software
Development.
IEEE Transactions on Software Engineering 23(6):347-365, June 1997.

182

[Nagai94] Nagai, A., Ishikawa, Y., and Nakajima, K.
A Semantic Interpretation Based on Detecting Concepts for Spontaneous Speech
Understanding.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’94), Vol. 1, 95-98. (Yokohama, Japan) September 1994.

[Nakagawa94] Nakagawa, S. and Zhang, J.X.
An Input Interface with Speech and Touch Screen.
Transactions of the Institute of Electrical Engineers of Japan
114-C(10):1009-1017, October 1994.

[Neal91] Neal, J.G. and Shapiro, S.C.
Intelligent Multimedia Interface Technology.
In Intelligent User Interfaces, Sullivan, J.R. and Tyler, S.W. (Eds.), 12-67. ACM
Press/Addison-Wesley (Reading, MA), 1991.

[Newell71] Newell, A. et al.
Speech-Understanding Systems: Final Report of a Study Group.
Computer Science Department, Carnegie Mellon University (Pittsburgh, PA),
May 1971.

[Newman79] Newman, W.M. and Sproull, R.F.
Principles of Interactive Computer Graphics.
McGraw-Hill, 1979.

[Ney84] Ney, H.
The Use of a One-Stage Dynamic Programming Algorithm for Connected Word
Recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing 32(2):263-271,
1984.

[Ney87] Ney, H.
Dynamic Programming Speech Recognition Using a Context-Free Grammar.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’87), 3.2.1-3.2.4. April 1987.

[Nigay93] Nigay, L. and Coutaz, J.
A Design Space for Multimodal Systems: Concurrent Processing and Data
Fusion.
In Proceedings of INTERCHI’93, 172-178. (Amsterdam, Netherlands) April
1993.

[Nigay95] Nigay, L. and Coutaz, J.
A Generic Platform for Addressing the Multimodal Challenge.
In Proceedings of ACM Conference on Human Factors in Computing Systems
(CHI’95), 98-105. (Denver, CO) May 1995.

[Nishimoto94] Nishimoto, T., Shida, N., Kobayashi, T., and Shirai, K.
Multimodal Drawing Tool Using Speech, Mouse and Keyboard.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’94), Vol. 3, 1287-1290. (Yokohama, Japan) September 1994.

[Olivieri95] Olivieri, P., Gips, J., and McHugh, J.
EagleEyes: Eye Controlled Multimedia.
In Proceedings of ACM Multimedia’95, 537-538. (San Francisco, CA) 1995.

[Ousterhout94] Ousterhout, J.
Tcl and the Tk Toolkit.
Addison-Wesley (Reading, MA), 1994.

183

[Oviatt91] Oviatt, S.L., and Cohen, P.R.
The Contributing Influence of Speech and Interaction on Human Discourse
Patterns.
In Intelligent User Interfaces, Sullivan, J.R. and Tyler, S.W. (Eds.), 69-83. ACM
Press/Addison-Wesley (Reading, MA), 1991.

[Oviatt92] Oviatt, S.L., Cohen, P.R., Fong, M., and Frank, M.
A Rapid Semi-Automatic Simulation Technique for Investigating Interactive
Speech and Handwriting.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’92), Vol. 2, 1351-1354. 1992.

[Oviatt94a] Oviatt, S.L. and Olsen, E.
Integration Themes in Multimodal Human-Computer Interaction.
In Proceedings of International Conference on Spoken Language Processing
(ICSLP’94), Vol. 2, 551-554. (Yokohama, Japan) September 1994.

[Oviatt94b] Oviatt, S.L., Cohen, P.R., and Wang, M.
Toward Interface Design for Human Language Technology: Modality and
Structure as Determinants of Linguistic Complexity.
Speech Communication (Netherlands) 15(3-4):283-300, December 1994.

[Oviatt96] Oviatt, S.L.
Multimodal Interfaces for Dynamic Interactive Maps.
In Proceedings of ACM Conference on Human Factors in Computing Systems
(CHI’96), 95-102, 1996.

[Oviatt97a] Oviatt, S.L., DeAngeli, A., and Kuhn, K.
Integration and Synchronization of Input Modes During Multimodal Human-
Computer Interaction.
In Proceedings of ACM Conference on Human Factors in Computing Systems
(CHI’97), 415-422. (Atlanta, GA) March 1997.

[Oviatt97b] Oviatt, S.L.
Multimodal Interactive Maps: Designing for Human Performance.
Human-Computer Interaction 12(1-2):93-129, 1997.

[Rabiner78] Rabiner, L.R., Rosenberg, A.E., and Levinson, S.E.
Considerations in Dynamic Time-Warping Algorithms for Discrete Word
Recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-26,
October 1978.

[Rabiner89] Rabiner, L.R.
A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition.
In Proceedings of the IEEE, 1989.

[Rainer97] Rainer, S., Yang, J., and Waibel, A.
A Model-Based Gaze-Tracking System.
International Journal of Artificial Intelligence 6(2):193-209, 1997.

[Reddy73] Reddy, D.R., Erman, L.D., Fennell, R.D., and Neely, R.B.
The Hearsay Speech Understanding System: An Example of the Recognition
Process.
In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI’73), 185-193. (Stanford, CA) 1973.

184

[Rehg93] Regh, J.M. and Kanade, T.
Digiteyes: Vision-Based Human Hand Tracking.
Technical Report CMU-CS-93-220, Carnegie Mellon University (Pittsburgh, PA)
1993.

[Rhyne86] Rhyne, J.R., and Wolf, C.G.
Gestural Interfaces for Information Processing Applications.
Technical Report RC12179, IBM T.J. Watson Research Center, IBM
Corporation (Yorktown Heights, NY), September 1986.

[Robbe96] Robbe, S., Carbonell, N., and Valot, C.
Toward Usable Multimodal Command Languages: Definition and Ergonomic
Assessment of Constraints on Users’ Spontaneous Speech and Gestures.
In Proceedings of International Conference of Spoken Language Processing
(ICSLP’96), Vol. 3, 1655-1658. (Philadelphia, PA) October 1996.

[Rohlicek92] Rohlicek, J.R. et al.
Gisting Conversational Speech.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’92), Vol. II, 113-116. March 1992.

[Rose91] Rose, R.C.
Techniques for Information Retrieval from Voice Messages.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’91), 317-320. May 1991.

[Rosenfeld94] Rosenfeld, R., Thayer, E., Mosur, R., Chase, L., Weide, R., Hwang, M., Huang,
X., and Alleva, F.
Improved Acoustic and Adaptive Language Models for Continuous Speech
Recognition.
In Proceedings of ARPA Spoken Language Technology Workshop (SLT’94), 106-
109. March 1994.

[Rozak97] Rozak, M.
An Overview of the Microsoft Speech API.
Microsoft Corporation (Redmond, WA), 1997.
http://www.microsoft.com/directx/pavilion/dsound/overviewapi.htm

[Rubine91] Rubine, D.H.
The Automatic Recognition of Gestures.
PhD Thesis CMU-CS-91-202, Carnegie Mellon University (Pittsburgh, PA),
December 1991.

[Rudnicky90] Rudnicky, A.I., Sakamoto, M., and Polifroni, J.H.
Spoken Language Interaction in a Goal-Directed Task.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’90), 45-48. 1990.

[Rumbaugh91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W.
Object-Oriented Modeling and Design.
Prentice Hall (Englewood Cliffs, NJ), 1991.

[Rumelhart86] Rumelhart, D.E. and McClelland, J.L.
Parallel Distributed Processing: Exploration in the Microstructure of Cognition
(Vols. 1&2).
MIT Press (Cambridge, MA), 1986.

185

[Sakoe71] Sakoe, H. and Chiba, S.
A Dynamic Programming Approach to Continuous Speech Recognition.
In Proceedings of International Congress on Acoustics, Paper 20 C-13.
(Budapest, Hungary) 1971.

[Sakoe87] Sakoe, H. and Iso, K.
Dynamic Neural Networks — A New Speech Recognition Model Based on
Dynamic Programming and Neural Network.
IEICE Technical Report 87, NEC Corporation.

[Salber93] Salber, D. and Coutaz, J.
Applying the Wizard of Oz Technique to the Study of Multimodal Systems.
In Proceedings of EWHCI’93, 219-230. (Moscow, Russia) August 1993.

[Salisbury90] Salisbury, M.W., Hendrickson, J.H. Lammers, T.L., and Fu, C.
Talk and Draw: Bundling Speech and Graphics.
Computer 23(8):59-65, 1990.

[Sankar93] Sankar, A. and Gorin, A.L.
Adaptive Language Acquisition in a Multisensory Device.
In Artificial Neural Networks for Speech and Vision, Mammone, R. (Ed.),
324-356. Chapman and Hall (London, UK), 1993.

[Schafer75] Schafer, R.W. and Rabiner, L.R.
Digital Representations of Speech Signals.
In Proceedings of the IEEE 63(4):662-667, April 1975.

[Schalkwyk98] Schalkwyk, J., Colton, D., and Fanty, M.
The CSLUsh Toolkit for Automatic Speech Recognition.
Center for Spoken Language Understanding, Oregon Graduate Institute of
Science and Technology, March 1998.
http://www.cse.ogi.edu/CSLU/toolkit/

[Schenkel94] Schenkel, M., Guyon, I., and Henderson, D.
On-line Cursive Script Recognition Using Time Delay Neural Networks and
Hidden Markov Models.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’94), (Adelaide, Australia) April 1994.

[Shankar93] Shankar, R.V. and Krishnaswamy, D.
Classification of Pen Gestures Using Learning Vector Quantization.
In Proceedings of Neural and Stochastic Methods in Image and Signal
Processing II, Vol. 2032, 138-143. (San Diego, CA) July 1993.

[Sharma96] Sharma, R., Huang, T.S., and Pavlovi’c, V.I.
A Multimodal Framework for Interacting with Virtual Environment.
In Proceedings of Human Interaction with Complex Systems: Conceptual
Principles and Design Practice, 53-71. 1996.

[Shaw70] Shaw, A.C.
Parsing of Graph-Representable Pictures.
JACM 17(3):453, 1970.

[Shimazu95] Shimazu, H. and Takashima, Y.
Multimodal Definite Clause Grammar.
Systems and Computers in Japan 26(3):93-102, March 1995.

186

[Simon89] Simon, J. and Baret, O.
Formes Régulières et Singulières: Application à la Reconnaisance de l’Ecriture
Manuscrite.
(Regular and Singular Forms: Application to Handwriting Recognition.)
C.R. Acad. Scr. Paris 309(II):1901-1906, 1989.

[Smailagic96] Smailagic, A. and Siewiorek, D.P.
Modalities of Interaction with CMU Wearable Computers.
IEEE Personal Communications 3(1):14-25, 1996.

[SRAPI97] SRAPI Committee.
SRAPI Programmers Guide.
SRAPI Committee (Utah), 1997.
http://www.srapi.com/

[Stahl96] Stahl, H., Muller, J., and Lang, M.
An Efficient Top-down Parsing Algorithm for Understanding Speech by Using
Stochastic, Syntactic, and Semantic Models.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’96), Vol. 1, 397-400. (Atlanta, GA) May 1996.

[Stock93] Stock, O.
The AlFresco Interactive System.
In Proceedings of INTERCHI’93, 523. (Amsterdam, Netherlands) April 1993.

[Stoehr95] Stoehr, E. and Lieberman, H.
HearingAid: Adding Verbal Hints to a Learning Interface.
In Proceedings of ACM Multimedia’95, 223-230. (San Francisco, CA) 1995.

[Stroustrup91] Stroustrup, B.
The C++ Programming Language.
Addison-Wesley (Reading, MA), 1991.

[Sturman94] Sturman, D.J. and Zeltzer, D.
A Survey of Glove-Based Input.
IEEE Computer Graphics and Applications 14(1):30-39, January 1994.

[Suhm97] Suhm, B.
Empirical Evaluation of Interactive Multimodal Error Recovery.
In Proceedings of IEEE Workshop on Speech Recognition and Understanding
(ASRU’97). (Santa Barbara, CA) December 1997.

[Sun97] Sun Microsystems, Inc.
Java Speech API White Paper.
Sun Microsystems, Inc. (Palo Alto, CA), 1997.
http://java.sun.com/products/java-media/speech/

[Tappert90] Tappert, C., Suen, C., and Wakahara, T.
The State of the Art in On-line Handwriting Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence 12(8), 1990.

[Tebelskis90] Tebelskis, J. and Waibel, A.
Large Vocabulary Recognition Using Linked Predictive Neural Networks.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’90). April 1990.

187

[Thompson63] Thompson, F.B.
The Semantic Interface in Man-Machine Communication.
Technical Report RM 63TMP-35, General Electric Co. (Santa Barbara),
September 1963.

[Tishby94] Tishby, N.Z. and Gorin, A.L.
Algebraic Learning of Statistical Associations.
Computer Speech and Language 8(1):51-78, 1994.

[Tsuboi92] Tsuboi, H. and Takebayashi, Y.
A Real-time Task-Oriented Speech Understanding System Using Keyword-
Spotting.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’92), Vol. I, 197-200. (San Francisco, CA) March
1992.

[Tsuboi97] Tsuboi, H., Takebayashi, Y., and Hashimoto, H.
Spontaneous Speech Understanding Method Based on LR Parsing of Keyword
Lattice.
Transactions of the Information Processing Society of Japan 38(2):260-269,
February 1997.

[Vidal89] Vidal, E., Garcia, P., and Segarra, E.
Inductive Learning of Finite-State Transducers.
In Structural Pattern Analysis, Mohr, R., Pavlidis, T, and Sanfelin, A. (Eds.),
17-35. World Scientific (River Edge, NJ), 1989.

[Viterbi67] Viterbi, A.J.
Error Bounds for Convolutional Codes and an Asymptotically Optimal Decoding
Algorithm.
IEEE Transactions on Information Theory IT-13:260-269, April 1967.

[Vo93a] Vo, M.T. and Waibel, A.
A Multimodal Human-Computer Interface: Combination of Speech and Gesture
Recognition.
In Adjunct Proceedings of INTERCHI’93. (Amsterdam, Netherlands) April 1993.

[Vo93b] Vo, M.T. and Waibel, A.
Multimodal Human-Computer Interaction.
In Proceedings of ISSD’93. (Waseda, Japan) 1993.

[Vo95] Vo, M.T., Houghton, R., Yang, J., Bub, U., Meier, U., Waibel, A., and
Duchnowski, P.
Multimodal Learning Interfaces.
In Proceedings of ARPA Speech Language Technology Workshop (SLT’95).
(Austin, TX) 1995.

[Vo96] Vo, M.T. and Wood, C.
Building an Application Framework for Speech and Pen Input Integration in
Multimodal Learning Interfaces.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’96), Vol. 6, 3545-3548. (Atlanta, GA), May 1996.

[Vo97] Vo, M.T. and Waibel, A.
Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach.
Technical Report CMU-CS-97-192, Carnegie Mellon University (Pittsburgh,
PA), December 1997.

188

[Wagner83] Wagner, R.W.
Formal-Language Error Correction.
In Time Warps, String Edits and Macromolecules: The Theory and Practice of
Sequence Comparison, Sankoff, D. and Kruskal, J.B. (Eds.), Chapter 13.
Addison-Wesley (Reading, MA), 1983.

[Wahlster91] Wahlster, W.
User Discourse Models for Multimodal Communication.
In Intelligent User Interfaces, Sullivan, J.R. and Tyler, S.W. (Eds.), 45-68. ACM
Press/Addison-Wesley (Reading, MA), 1991.

[Waibel89a] Waibel, A., Hanazawa, T., Hinton, G., Shiano, K., and Lang, K.
Phoneme Recognition Using Time-Delay Neural Networks.
IEEE Transactions on Acoustics, Speech, and Signal Processing 37(3):328-339,
March 1989.

[Waibel89b] Waibel, A., Sawai, H., and Shikano, K.
Consonant Recognition by Modular Construction of Large Phonemic Time-
Delay Neural Networks.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’89), Vol. 1, 112-115. (Glasgow, UK) May 1989.

[Waibel89c] Waibel, A., Sawai, H., and Shikano, K.
Modularity and Scaling in Large Phonemic Neural Networks.
IEEE Transactions on Acoustics, Speech, and Signal Processing,
37(12):1888-1898, December 1989.

[Waibel90] Waibel, A. and Lee, K.F. (Eds.)
Readings in Speech Recognition
Morgan Kaufmann (San Mateo, CA), 1990.

[Waibel91] Waibel, A., Jain, A., McNair, A., Saito, H., Hauptmann, A., and Tebelskis, J.
JANUS: A Speech-to-Speech Translation System Using Connectionist and
Symbolic Processing Strategies.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’91), Vol. 1, 365-367. (Toronto, Canada) 1991.

[Waibel96a] Waibel, A., Vo, M.T., Duchnowski, P., and Manke, S.
Multimodal Interfaces.
Artificial Intelligence Review, Special Volume on Integration of Natural
Language and Vision Processing, McKevitt, P. (Ed.), 10(3-4):299-319, August
1996.

[Waibel96b] Waibel, A.
Translation of Spoken Dialogs.
IEEE Computer, 1996.

[Waibel97] Waibel, A., Suhm, B., Vo, M.T., and Yang, J.
Multimodal Interfaces for Multimedia Information Agents.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’97). 1997.

[Wang95] Wang, J.
Integration of Eye-gaze, Voice and Manual Response in Multimodal User
Interface.
In Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics (ICSMC’95), 3938-3942. (Vancouver, Canada) October 1995.

189

[Ward91] Ward, W.
Understanding Spontaneous Speech: the Phoenix System.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’91), Vol. 1, 365-367. (Toronto, Canada) May 1991.

[Ward95] Ward, W. and Issar, S.
The CMU ATIS System.
In Proceedings of ARPA Spoken Language Technology Workshop (SLT’95),
249-251. (Austin, TX) January 1995.

[Wilpon90] Wilpon, J.G., Rabiner, L.R., Lee, C.H., and Goldman, E.R.
Automatic Recognition of Keywords in Unconstrained Speech Using HMMs.
IEEE Transactions on Acoustics, Speech, and Signal Processing
ASSP-38:1870-1878, November 1990.

[Woods83] Woods, W.A.
Language Processing for Speech Understanding.
1983. Reprinted in Readings in Speech Recognition, Waibel, A. and Lee, K.F.
(Eds.), Morgan Kaufmann (San Mateo, CA), 1990.

[Woszczyna98] Woszczyna, M.
Fast Speaker Independent Large Vocabulary Continuous Speech Recognition.
Ph.D. Thesis, Computer Science Department, University of Karlsruhe
(Karlsruhe, Germany), February 1998.

[Yamada96] Yamada, H. and Nakano, Y.
Cursive Handwritten Word Recognition Using Multiple Segmentation
Determined by Contour Analysis.
IEICE Transactions on Information and Systems E79-D(5):464-470, May 1996.

[Yang95] Yang, J. and Waibel, A.
Tracking Human Faces in Real-time.
Technical Report CMU-CS-95-210, Carnegie Mellon University (Pittsburgh,
PA), 1995.

[Young92] Young, S.J.
Hidden Markov Model Toolkit v1.3 Reference Manual.
Cambridge University Engineering Speech Group, February 1992.

[Zeppenfeld93] Zeppenfeld, T., Houghton, R., and Waibel, A.
Improving the MS-TDNN for Word Spotting.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’93), Vol. 2, 475-478. (Minneapolis, MN) April 1993.

[Zeppenfeld97] Zeppenfeld, T., Finke, M., Ries, K., Westphal, M., and Waibel, A.
Recognition of Conversational Telephone Speech Using the JANUS Speech
Engine.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’97). (Munich, Germany) 1997.

[Zue90] Zue, V., Glass, J., Goodine, D., Leung, H., Phillips, M., Polifroni, J., Seneff, S.
The VOYAGER Speech Understanding System: Preliminary Development and
Evaluation.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’90), Vol. 1, 73-76. (Albuquerque, NM) April 1990.

190

INDEX

application framework...5, 8, 14, 34, 68, 111

design process ... 1, 2, 3, 4, 5, 6, 37, 38, 53, 81, 82, 98, 104, 111, 117, 124, 142

face tracking ..143

gaze tracking ...3, 19, 20, 143, 146

gesture
3D ...19, 32, 143, 146
pen-based ..3, 16, 18, 19, 146

JANUS .. 14, 56, 57, 58, 60, 62, 106, 109, 128, 151, 188, 189

JEANIE ...27, 64, 111

lip-reading ...19, 48, 143

multimodal
input event...........33, 35, 36, 38, 43, 48, 77, 78, 79, 80, 81, 82, 83, 85, 120, 126, 129, 140, 141, 142, 143,

147, 148
input model ...6, 40, 53, 85
integration 5, 6, 25, 54, 82, 85, 109, 116, 117, 120, 121, 130, 139, 140, 141, 143, 154
interaction ... 5, 20, 22, 23, 24, 26, 27, 29, 68, 102, 111, 125, 140
interpretation................................1, 4, 5, 6, 31, 33, 35, 36, 38, 53, 79, 81, 87, 98, 116, 120, 130, 140, 153
semantic model ... 1, 5, 21, 40, 81, 111, 117, 140, 141, 145, 148

NetscapeSRec..59, 60, 62, 151

NPen++ ...56, 58, 59, 63, 70, 180

QUARTERBACK...113, 116, 117

QUICKTOUR6, 41, 100, 102, 103, 104, 109, 111, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125

rapid prototyping...5, 27, 117, 140, 142

recognition
gesture... 2, 16, 18, 56, 63, 109, 125, 129, 130, 132, 136
handwriting ... 15, 16, 35, 48, 56, 58, 77, 81, 143, 144
speech3, 8, 9, 11, 12, 13, 14, 15, 16, 19, 24, 48, 55, 56, 57, 58, 59, 62, 63, 64, 81, 82, 85, 109, 116,

124, 128, 132, 142, 146

SPHINX ..56, 58, 60, 62, 106, 151

SRecServer..59, 60, 62, 63, 114, 151

TmplGRec ...63, 64, 68, 70, 109, 114, 130, 151

XPRecServer ...63, 70, 151

