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Abstract

In open-domain language exploitation applications, a wideety of topics with swift
topic shifts has to be captured. Consequently, it is crucahpidly adapt all language
components of a spoken language system. This thesis addm@ssupervised topic adap-
tation in both monolingual and crosslingual settings. Rdomatic speech recognition we
rapidly adapt a language model on a source language. F@tist@tmachine translation,
we adapt a language model of a target language, a translakmon and a phrase table
using a source text.

For monolingual adaptation, we propose latent Dirichleg€Tallocation for Bayesian
latent semantic analysis. Our model enables rapid increahlkemguage model adaptation
via caching the fractional topic counts of word hypothesssodied from previous speech
utterances. Latent Dirichlet-Tree allocation models ¢ogarrelation in a tree-based hi-
erarchy and thus addresses the model initialization is3oeaddress the “bag-of-word”
assumption in latent semantic analysis, we extend our apprm N-gram latent Dirichlet-
Tree allocation. We investigate a fractional Kneser-Neyasthing approach to handle
fractional counts for topic models. The algorithm produaasore compact model com-
pared to the Witten-Bell smoothing. Using multi-stage laage model adaptation via
N-gram latent Dirichlet-Tree allocation, we achieve sfgaint reduction in speech recog-
nition errors using our large-scale GALE systems on twoedéht languages: Mandarin
and Arabic. For end-to-end translation on speech inputslyap topic adaptation on
automatic speech recognition is beneficial to translatenfiopmance.

For crosslingual adaptation, we propose bilingual latemantic analysis for statisti-
cal machine translation. A key feature of bilingual latezrt&ntic analysis is a one-to-one
topic correspondence between models of a source and a targptage. Since topical
information is language independent, our model enablestea of a topic distribution
inferred from a source text to a target language for crogshadaptation. Our approach
has two advantages: first, it can be applied before translatind thus has immediate im-
pact on translation. Secondly, it does not rely on an traiesiautput for adaptation, and



therefore does not suffer from translation errors. Togetién N-gram latent Dirichlet-
Tree allocation on a target language, we achieve significaptovement in translation
performance using our large-scale GALE systems for texisledion.

A limitation of bilingual latent semantic analysis is thejugrement of parallel corpora
that are relative expensive to collect. We propose a sepessised approach to incorpo-
rate non-parallel documents into model training. We adahiayprovement in crosslingual
language model adaptation performance, especially whiegbal resources are deficient.
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Chapter 1

Introduction

1.1 Motivation

Statistical language modeling (LM) is a crucial researdadhat has wide applications,
including automatic speech recognition (ASR) and stastnachine translation (SMT).
In speech translation, an input speech utterakicis first recognized into a text’ of a
source language. The tektis then translated into a teXt of another language. These
processes can be summarized by the following Bayes dedaisiest

~

F = argmax p(F|X)=argmax p(X|F) - p(F) (1.1)
F F N—— —~—~
acoustic modelsource language model
E = argmax p(E|F) = argmax p(F|E) : p(E) (1.2)
E E N——— —~—~—

translation modetarget language model

where equation 1.1 and equation 1.2 are the decision ruteutomatic speech recogni-
tion and statistical machine translation respectivelyeadly, statistical language models
p(F') andp(F) play an important role in guiding decoding processes viaimgiunlikely
word hypotheses.

An effective representation of a statistical language rhp@e; w,...w;) is an N-gram
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language model that makes a Markov assumption due to datsesiess:

I I
p(w{) = Hp(wi|wi—1---w1> %Hp(wi‘wi—l---wi—NH) (1.3)

=1 1=1

Usually, a 4-gram language model and a 5-gram (sometimes@gtam) language model
are common for automatic speech recognition and statistieahine translation respec-
tively depending on the amount of training text. While theytdim language model cap-
tures a local context well, it cannot capture a long-distacantext due to the Markov
assumption in equation 1.3. However, a long-distance &bgiontext is useful for word
prediction. For instance, if an input utterance is aboubftgd, the probability of an on-
topic term (e.g. “basketball”) is increased while the proibty of an off-topic term (e.g.
“economy”) is de-emphasized. In broadcast news, topicgbange from one story to an-
other story. Therefore, a dynamic language model is prbferthat adapts to the current
word context rapidly.

1.2 Proposed Research

In this thesis, we propose a unified unsupervised topic atiaptframework that can be

applied in monolingual and crosslingual fashions, suchutsmatic speech recognition
and statistical machine translation. Our framework fesguapid topic adaptation in the
sense of using few unsupervised adaptation data. Not oslyréimework adapts a lan-

guage model in automatic speech recognition monolingualilyit also adapts a language
model and a translation model in statistical machine tegii crosslingually using an

input text from another language. Both monolingual andsllogual adaptation are per-
formed via a combination of unigram and N-gram latent semamtalysis.

Figure 1.1 shows our unified topic adaptation framework foeexh translation that
consists of three main components from left to right: autiecrepeech recognition, bilin-
gual latent semantic analysis, and statistical machimska#ion. First a language model is
adapted monolingually in automatic speech recognitioagdpcing a word hypothesis of
a source language. Bilingual latent semantic analysigbadhe gap between automatic
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Source N-gram L
N\~ | P(F)

E—— adapt

i
Source audio |
|
|

Target N-gram LM
PE)

1 translated hypc

.
h

Translation lexicon
P(E|F) or P(F|E)

Source N-gram LSA i

Source documents parallel/topic-comparable corpora Target documents

Figure 1.1: A unified topic adaptation framework for speaemslation.

speech recognition and statistical machine translatiarpuedicting and transferring the
topic distribution of the word hypothesis from one language another language so that
a target language model and a translation model are adagaddyr before translation.

1.2.1 Monolingual Adaptation

First, a speech recognizer decodes an input audio intoiitaliword hypothesis, which is
used to adapt a language model. Then the adapted languagéimapplied to re-decode
the input audio to produce a final word hypothesis. There lea® la significant amount
of work on unsupervised language model adaptation for aaticnspeech recognition.
Cache-based language model (Kuhn and Mori, 1990; ClarksofRabinson, 1997) takes
advantage of a long-distance context to track the frequehogcently occurred words in
an exponentially decaying N-gram cache. Word triggeringrapch uses words from a
past context to trigger the probability of future words i@ tmaximum entropy language
modeling (Rosenfeld, 1994; Chen et al., 1998; Wu and Khudiarg®02). Information
retrieval technique (Mahajan et al., 1999) retrieves @h¢wlocuments from background
training corpora to build an in-domain N-gram language nhode

Closely related research to this thesis include latent séimanalysis based language
model adaptation, such as singular value decompositioer{izster et al., 1990; Bel-
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legarda, 2000; Kim, 2004; Bellegarda, 2005), and probstiglilatent semantic analy-
sis (Gildea and Hofmann, 1999; Mrva and Woodland, 2004;a\&itd Kawahara, 2004).
Our first language modeling work is based on latent Diricldibcation (Blei et al.,
2003), which is a Bayesian approach for latent semanticyaisal First, we draw con-
nections between latent Dirichlet allocation and the cawdmed language model as topic
caching (Tam and Schultz, 2005). Instead of caching theuéeqy of the recently oc-
curred words, we cache the frequency of the recently ocduopics. Related works on
latent Dirichlet allocation for language model adaptati@ve been investigated by other
researchers based on hidden Markov model (Hsu and Glass),20®ther topic inference
algorithm (Heidel et al., 2007), linear transformation {@hand Chueh, 2008) and name
entity (Liu and Liu, 2008).

The in-domain unigram language model generated from |aemantic analysis can
be integrated into a background language model via lingarpolation or marginal adap-
tation (Kneser et al., 1997). To make the marginal adaptat@mmputationally less ex-
pensive, we investigate an incremental LSA-marginal aatapt for lattice rescoring that
avoids manipulating a large background N-gram languagesinod

In the machine learning community, modeling topic corielat(Blei and Lafferty,
2005; Li and McCallum, 2006) has shown better performanceord perplexity com-
pared to latent Dirichlet allocation that makes the topidependence assumption. We
propose latent Dirichlet-Tree allocation (Tam and Schl®@@07b), a tree-based latent se-
mantic model to capture topic correlation. Our model gelies latent Dirichlet allo-
cation using a tree-based probabilistic prior with complraomplexity of the training
algorithm driven by a variational Expectation-Maximizatiprocedure.

Latent semantic analysis makes the “bag-of-word” asswmgtiat ignores the word
ordering in a document. To relax this assumption, we propbgeam latent Dirichlet-Tree
allocation to model the word ordering and the topical infation simultaneously (Tam
and Schultz, 2008). For rapid model training, we bootstragréim latent semantic anal-
ysis using a well-trained latent semantic analysis thabased on unigrams. For better
smoothing, we investigate a fractional Kneser-Ney smaogthigorithm that handles frac-
tional counts and generalizes the original formulationelolagn integral counts (Kneser



and Ney, 1995). The sentence-level topic mixtures (lyer@saténdorf, 1999) is another
approach that is based on a mixture of topic-dependent M-taaguage models but with
a different modeling assumption from N-gram latent sentaanialysis.

1.2.2 Crosslingual Adaptation

The idea of crosslingual adaptation is to exploit inforroatin one language to adapt
models in another language. For instance, crosslingualnmdtion retrieval first uses

a decoded word hypothesis as an input query to retrieveartedocuments on another
language (Eck et al., 2004; Zhao et al., 2004). The foreigrereed documents are trans-
formed back to the original language to train an in-domaiigam language model. The
transformation approaches includes statistical machamstation, crosslingual word trig-

gers, and crosslingual latent semantic analysis usingiEngalue decomposition (Kim,

2004). The in-domain unigram language model is applied fwave the performance of

automatic speech recognition and statistical machinskation via language model adap-
tation for a resource-deficient language. In a co-operatiuttilingual speech translation

where a human translator is involved, (Paulik et al., 20G&5hploys statistical machine
translation to translate an initial word hypothesis of aesfedecoder into a target lan-
guage to improve the recognition performance of the tameggliage via language model
adaptation.

The second component in Figure 1.1 is the proposed bilinigiht semantic anal-
ysis to facilitate crosslingual adaptation for statidticeachine translation. Since topical
information are language independent, the topic distidioubf a parallel document pair
is assumed identical. Therefore, bilingual latent sencaamialysis is trained so that a
one-to-one topic correspondence between a source ancealemguage is enforced using
parallel document corpora. During adaptation, the topsgtritiution of an input docu-
ment is inferred using latent semantic analysis of a sowanguage. Then the inferred
topic distribution is transferred to a target language sb &m in-domain unigram/N-gram
language model is generated via linearly interpolatingad@ependent unigram/N-gram
language models of the target language. The proposed ajpphhaa two advantages: first,
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it can be applied before translation, and thus has immedafgiact on the translation out-
put. Secondly, it does not rely on an initial translationputfor adaptation, and therefore
does not suffer from translation errors. In other wordstistiaal machine translation is
not required for crosslingual adaptation.

It is motivated from an observation that a source word carrdrestated into different
target words depending on a topical context. One populanglais the word “bank” that
can be related to either a “financial bank” or a “river bank’ilijyual Topic Admixture
Model for word alignment has been proposed to address thiigia explicit modeling
of topic-dependent translation lexicons (Zhao and Xin@&0We address the same issue
via an adaptation approach so that probabilities in a backgt translation word lexicon
are adapted towards an input document without explicit fiiog®f the topic-dependent
translation lexicons. The scores of phrase pairs in a phedse are rescored using the
adapted translation lexicons so that the scores are sensitithe topical context of the
input document.

After the target language model, translation lexicon andhpd table are adapted to-
wards an input document, the sentences of the input docuaneitanslated.

One limitation of bilingual latent semantic analysis is teguirement of parallel docu-
ments for model training. Collecting parallel documentsratatively expensive compared
to monolingual non-parallel documents. In addition, mamgal non-parallel documents
have better topic and vocabulary coverage than paralleldeats, especially in a resource
deficient scenario where parallel resources are scarcaefine, it is attractive to incor-
porate non-parallel documents into bilingual latent seimaamalysis. Previous research
includes an extension of bilingual singular value decontmyswhere a monolingual doc-
ument is treated as a pseudo-parallel document by fillingsz@to the missing entries of a
bilingual document vector (Kim, 2004). We employ a semiesujsed approach to incor-
porate monolingual non-parallel documents via a notionavéjpel clusters formed from
the non-parallel documents. The parallel clusters areesag constraints for optimization
in bilingual latent semantic analysis.



1.3 Thesis Organization

In Chapter 2, we cover the background materials relevariteaéevelopment of the thesis
starting with variational Bayes, a useful variational nefiece technique for graphical mod-
els including latent Dirichlet allocation. We review difént approaches for latent seman-
tic analysis from the traditional vector-space approacthéomodern Bayesian approach
that enables an integration of prior knowledge into the nhodé introduce higher-order
models for latent semantic analysis and topic modelindyrtiepies for language model
smoothing, and unsupervised language model adaptation.

In Chapter 3, we describe our baseline Mandarin and Arabitsgription systems and
our Chinese-English statistical machine translationesyst of different implementation
scales.

In Chapter 4, we present our topic adaptation framework fomatic speech recog-
nition via N-gram latent semantic analysis. Our approadhekide topic caching for
decoding, incremental marginal adaptation for latticeoeisig, latent Dirichlet-Tree allo-
cation for tree-based latent semantic analysis, and N-¢agent Dirichlet-Tree allocation
to relax the “bag-of-word” assumption. We evaluate our apphes on large-scale GALE
evaluations on two languages: Mandarin and Arabic.

In Chapter 5, we extend our topic adaptation framework tggliogual adaptation for
statistical machine translation via bilingual latent sefimanalysis. We adapt a target
language model, translation lexicon and a phrase tableywsinnput source document.
In addition, we apply N-gram latent semantic analysis onrgetdanguage. We evaluate
our approaches on text translation and end-to-end spestsidtion using state-of-the-art
statistical machine translation systems. To tackle thedimon of bilingual latent semantic
analysis, we employ a semi-supervised approach to inegnanolingual non-parallel
documents for model training. We evaluate this approachsmalated scenario where
parallel resources are deficient.

In Chapter 6, we summarize our contributions and propossiplesfuture extensions.

In Appendix A, we describe an alternative approach for trggriatent Dirichlet allo-
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cation and bigram topic model using the Gibbs sampling.

In Appendix B, we include a complete mathematical derivafiar latent Dirichlet-
Tree allocation.



Chapter 2
Background

This chapter covers the basics and related works of thestieduding variational Bayes,
approaches for latent semantic analysis, language modstiimg and language model
adaptation.

2.1 \Variational Bayes

Variational Bayes (Jordan et al., 1999; Bishop et al., 2003 powerful technique for

approximate inference in a directed graphical model. Thigr@ach has been applied to
different applications such as latent Dirichlet allocatiavhich is a graphical model for

Bayesian latent semantic analysis. The solution of a vanat posterior distribution has

a generic form for any directed graphical model that make&tianal Bayes attractive

and useful.

Given a joint probability distributiop(X, Z; A) over latent variableg = {z;} and
observed variableX = {xz;} parametrized by\, the Expectation-Maximization algo-
rithm can be employed to maximize the lower-bound of the lkgjihood L(X; A) on the
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observation using the Jensen’s inequality as follows:

, e p(X,Z; )
L(X;A) = logEZ:p(Z|X7A(t 1))‘p(Z|X;A<t—1>) (2.1)
X, Z:A)
> Z NG p(X, Z; .
B p(X,Z;N) A=)

where the expectation is taken using the exact posterititaiion computed from\ (¢—1)
from the ¢-1) iteration. Computing the exact posterior distributimrer the latent vari-
ables can be non-trivial and sometimes intractable. UdiegBayes rule, the posterior
distribution over the latent variablgs can be computed as follows:

p(X, Z; At7Y)
> p(X, Z At-D)

p(Z|X; A7) (2.4)
where the intractable part is the normalization term inumdvall possible assignments of
the latent variables Z.

In variational Bayes, instead of computing the exact pastelistribution overZ di-
rectly, a variational posterior distributiof{Z| X ; I') is introduced to approximate the true
posterior distribution. A convenient factorizable dibtrtion is employed so that the latent
variables are independent given an observalion

a(21%:0) = JTatx:0) = [ ats) (2.5)

The independence assumption is a trade off between sitypdicd accuracy of the poste-
rior inference over the latent variables. After replacir | X; A\*~Y) with ¢(Z|X;T') in
equation 2.3, the auxiliary function using variational Bayhas the following form:

P A
Quw(X;AT) = E,llog %] (2.6)
= E,[logp(X,Z;N)] ZE [log q(z;)] (2.7)
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where the variational parametdrsare determined via iterative E-steps over each latent
variable. By computing the partial derivative of the auiyi function with respect to each
q(#;), the generic E-steps can be derived:

anb (X7 A, F) .
T o) Eyllogp(X, Z; M) z\-; — logq(z;) + constant= 0 (2.8)
= Q(Z]) 0.8 €Eq [Ing(X7Z;A)}Z\Zj (29)

where the expectation is taken over all other latent vaembt;} excluding the current
variablez;. Instead of considering the full joint distribution for eeqiation in equation 2.9,
only a subset of conditional distributions involviagand its Markov blankets (i.e. parent
nodes, child nodes and their co-parents) are needed whitgthier;(z;) are kept fixed. For

a hidden Markov model withk; andz; being the hidden state and the observation at time
t respectively, the variational E-steps fgr,) can be derived easily using equation 2.9:

q(s)) o eLallogp(st|st—1)l\s, +Eqllog p(xt|st)l\s, +Eqllog p(se+1lst)\s, /¢ (2.10)

x  exid(si—1=0)logp(st|si—1=i)+log p(wt|st)+3; a(se+1=0) log p(ser1=ilst) vy (2.11)

where the Markov blankets 6f ares;_; ands; .

The variational E-steps actually minimize the Kullbackiler divergence< L(q||p|X)
between the variational posteriors and the true postesiore the difference between the
log likelihood and the auxiliary log likelihood is:

PX.Z)) p(X, Z)
logp(X) — Byllog 73] = ZZ:CI(Z|X) log p(X) = Eyllog © 73] (2.12)
- p(X)
= Sazes(a21X) 055 ) @13
_ 9(Z]X)
- ;%ZIX)logp(Zm (2.14)
= KL(q|lp|X) (2.15)

This implies that maximizing the auxiliary function usingnational Bayes leads to min-
imizing the KL divergence. After the E-steps, the M-step ssially straightforward via
a weighted maximum likelihood estimate of the model paramsetising the variational
posteriors to re-weight the observations.
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2.2 Latent Semantic Analysis

Latent semantic analysis (LSA) is an unsupervised tecleniquind a set of patterns to
describe a data set. Different approaches based on a veette snodel or a probabilistic
model have been developed and applied to various areaslinglimage and text model-

ing.

2.2.1 Latent Semantic Indexing

Latent semantic indexing (LSI) (Deerwester et al., 199@Q) isseful technique for docu-
ment indexing for semantic information retrieval. As a \w@&pace model, latent semantic
indexing searches for a set of basis vectors for document¢septation. Each basis vec-
tor represents a “semantic” dimension. To determine theshastors, a term-document
matrix Wy, is formed by packing each training document as a column veatd’y ,,,
where M is the number of training documents. Each component in ardeat vector
corresponds to a term frequency or other variants such gsojnaglar TF.IDF, which is the
multiplication of a term frequency with an inverse docunmieauency. Singular value de-
composition is applied to decompdsg, ,; into three matricestVy y; = Uy i+ Sk e+ Vil -
The matrixU containsk basis vectors spanning the latent semantic sp&cea diagonal
matrix containing the corresponding eigenvalue of eaclishastor. Each column df ©
represents the “coordinate” of a training document in thdikkensional latent semantic
space.

Latent semantic indexing does not provide a natural way topde the probability of
a document. Moreover, there is a question about the valaditgtent semantic indexing
since singular value decomposition minimizes the leagasgerror of training documents
assuming that the document vectors are normally distrcbutédowever, each document
vector has non-negative word counts violating the Gausssanomption.

Latent semantic indexing can be applied for language mathgbtation (Bellegarda,
2000). To obtain the probability of a word given a “bag-of-word” history:, a unigram
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Figure 2.1: Graphical representation of probabilistietdtsemantic analysis.

language model can be generated from latent semantic imglesifollows:

sim(w, h)?
Yo STm(w’, b)Y

wherey is a tuning factors> 1 andsim(w, h) defines the cosine similarity betweerand
h in the latent semantic space.

(2.16)

pisi(wlh)

2.2.2 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (pLSA) (Gildea &ledmann, 1999) is a significant
step towards probabilistic models from the vector spaceahiodatent semantic indexing.
The graphical model structure is shown in Figure 2.1 withuhshaded circles denoting
the latent variables: a document indéxand topic labels:. Each training document
is associated with a document-level topic distributigh|d). The document generation
procedure is defined as follows:

1. Sample a document indéxo retrieve a document-level topic distributip(¥|d).
2. For each wordy; in a documento!?,

e Sample a latent topic index from p(k|d).

e Samplew; from p(w|z;) (denoted ag,,,).
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The generative procedure defines the joint distributioh w1 ,z1 ) over the document
index d, topic assignment,"® and the document’¥?. With M training documents, the
marginal likelihood can be obtained by marginalizing dlatndzfvd:

pplm({w1 13 Z HZ (wilz; = k) - p(z; = k|d) (2.17)
d=1 =1 k=1

The model parameters include the document-specific toitillition p(k|d) and the
topic-dependent unigram language mogelb|k) denoted ag’,,. Since the number of
model parameters fagi(k|d) grows proportional to the number of document, overfitting
is reported and therefore an annealed E-step is requireckt@ipt overfitting (Gildea and
Hofmann, 1999). The E-steps and the M-step are given as®sllo

E-step
P (= kld) o p®(wi|z = k) - p(k|d) (2.18)

where the word-level topic posteriop$z; = k|d) are re-estimated.

M-step:
P (k| d) Zpt-i-l = k|d) (2.19)
M Ng
P (wk) o Z Zp(t+1)<zi = k|d) - 6(w, w;|d) (2.20)

d=1 1=1

where the document-level topic posterigc|d) and the topic-dependent unigram lan-
guage model®(w|k) are re-estimated.NV,; denotes the number of word tokens in the
document.

The document generation procedure for a test document iwelbtefined since the
document-level topic posterior of a test document is unkmsimce it is not indexed by
the latent variablel. But in practice, a folding-in procedure can be performednto
clude the test document. In other words, the document-legt posteriorp(k|d) of
the test document can be re-estimated via the ExpectatexirMzation algorithm. For

14



L@

0 z w

M

Figure 2.2: Graphical representation of latent Dirichl&ication.

language model adaptation (Gildea and Hofmann, 1999; Mrda®oodland, 2004; Akita
and Kawahara, 2004), a unigram language model can be codhgaténear interpolation:

Posa(w|h) = > p(w|k) - p(k|h) (2.21)

k=1

whereh denotes a “bag-of-word” history that is treated as a “doauthep(k|h) is the
result of the EM iterations until convergence is reachedhwito|k) kept fixed. This ap-
proach avoids the expensive normalization step requiredumation 2.16 in latent semantic
indexing.

2.2.3 Latent Dirichlet Allocation

To remedy the deficiency of document generation in proksthiliatent semantic analysis,
latent Dirichlet allocation (Blei et al., 2003) has beenpgwsed. Instead of sampling a
document index to retrieve the corresponding topic diatidn p(k|d) in Figure 2.1, a
Dirichlet prior over a topic distributiodl is employed so that the topic distribution of a test
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document can be sampled from a prior Dirichlet distribution

K
. 1
Dirichlet(: {oy,}) = YT H@Ztk—l — X io1(ar—1)logx—log A(a) (2.22)
(@)
K
I F /
whereA(a) = M (2.23)
I k1 ow)
andl'(z) = / t*te~tdt (2.24)
0

In equation 2.22, the Dirichlet distribution is rewrittanan exponential family since com-
puting the expectation of the sufficient statist{&log 6,]} is required in the variational
E-steps later. Figure 2.2 illustrates the graphical regoretion of latent Dirichlet allo-
cation with the topic distributio® drawn from a Dirichlet prior parametrized by},
which denotes the “pseudo-count” of togienformally. Therefore, the model parameters
A are{a;} and{p(w|k)} denoted ag3,:}. The document generation of latent Dirichlet
allocation is described as follows:

1. Sample from Dirichlet(d; «) (different from pLSA)
2. For each wordy; in a documentv?,

e Sample a latent topic index from 6.

e Samplew; from p(w|z;) (denoted ag,,.,).

Variational EM (Blei et al., 2003) can be employed for modgtiration. Appendix A
provides an alternative approach based on collapsed Gadrhgplsg for model estima-
tion (Griffiths and Steyvers, 2004; Porteous et al., 2008). iz other hand, the E-step
formulae can be seen directly using the generic form of tianal EM introduced in Sec-
tion 2.1. From the graphical representation, the Markowké of the latent variable$
andz; are{z...zy } and{6, w,} respectively. Using the generic form of variational EM in
equation 2.9, the variational E-steps involving the latertablesf andz; are shown as
follows:
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E-steps

g(0) o eXir Eallogs]+Eqllogp(6))\s (2.25)
X zf_l q(zi=k) log O +log p(0) (2.26)
x H eq%:’f) (2.27)
k=11=1
K N
x Heak T o= (2.28)
= k=11=1
o He,j“zil”(zi:’f"l (2.29)
— Dirichlet(d; {;}) . (2.30)
N
wherey, = o+ qlzi=k), (2.31)
q(zi = k) oc eFallosdultlogp(wilzi) (2.32)
whereE,[log ;] = W(y)— ¥ ), (2.33)
logT
and¥(v,) = 9log (k) (2.34)
Mk

Since the Dirichlet prior can be expressed as an expondatmly, the expected sufficient
statistics Elog 6,] can be computed as the first derivative of the log partitionction

log A(«r) with respect tay, giving the result in equation 2.33. Equation 2.31 and equa-
tion 2.32 are executed iteratively until convergence ishea by measuring the relative
change of norm of~, } between successive iterations. Equation 2.31 can be unddrs
intuitively by the fact that Dirichlet prior and multinomidistribution are a conjugate pair.
Thus, the variational posterior distributiq(¥; {~+}) is also a Dirichlet distribution where
the posterior counts, of topic k is re-estimated by accumulating the word-level topic
posteriorsy(z; = k) of a document plus the prior pseudo-count

M-step:

M Ny

plwlk) o< >3 " q(zi = kld) - 6(w;, w]d) (2.35)

d=1 =1
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Parameters of a Dirichlet pridia. } can be re-estimated using gradient ascent indhe
space of «; } to ensure that the final values are larger than zero. We firfbipe param-
eter transformation usinlpg(.): a, = log ax. Then we rewrite the auxiliary function as
Q(ay) and perform the gradient ascent as follows:

GID g0 +p<t>_ag?o<zo‘) (2.36)
k
- IQ(a) ODay,
— a® 4,0, i 2.37
A +p 80% Bdk ( )
= a,ﬁt>+p<t>-—a§;a) al) (2.38)
k

where p® denotes the learning rate at iteratian After the gradient ascent procedure
finishes, we exponentiatg, to obtain the finaky,. Latent Dirichlet allocation makes an
independence assumption over the topics due to the Ditiphila. In Chapter 4, we will
describe latent Dirichlet-Tree allocation so that topicrelation is captured.

2.2.4 Correlated Topic Model

Correlated topic model (Blei and Lafferty, 2005) is an exien of the latent Dirichlet
allocation to model topic correlation. Their approach aggls a Dirichlet prior with a
logistic-normal prior. The document generation procedsishown as follows:

1. Sample; from a multivariate Normal distributioiV (1, 32) of dimension K.
2. For each wordy; in a documentv?,
e Sample a latent topic index from a Multinomial(f(;)).

e Samplew; from p(w|z;).

where f) is a logistic normal distribution normalized between 0 and

enk
K
D w1 €
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Topic 1 Topic 2 Topic 3 Topic 4 Topic

Figure 2.3: Pachinko allocation employs a directed acygiaph of Dirichlet nodes as a
topic prior.

The logistic normal distribution assumes theis normally distributed and then mapped
to a topic distribution. Topic correlations are thus modellerough the covariance ma-
trix of the Normal distribution. Correlated topic model &hes modeling pair-wise topic
correlation. However, the non-conjugate logistic nornrapposes complication on vari-
ational EM due to the computation of the expected log prditpluif a topic assignment
E,[log f(n)] that does not have a closed-form solution. Taylor expansiemployed to
approximate this term for variational inference.

2.2.5 Pachinko Allocation

Pachinko allocation (Li and McCallum, 2006) is another agten of latent Dirichlet al-
location for modeling topic correlation. Their approacipleees a Dirichlet prior with a
direct-acyclic Dirichlet graph where each node in the grespinodeled as a Dirichlet dis-
tribution over the outgoing links which connects to othedes in a top-down and fully
connected fashion as shown in Figure 2.3. There are K nodée dtottom layer of the
model to denote the topics. Therefore, probability of adgpt|d) is computed as product
of branching probabilities from a root node to a leaf nodd@gaus to a popular Japanese
Pachinko game where a ball follows a random path from theddpée bottom. Pachinko
allocation can be interpreted as generalization of latantilet-Tree allocation that we
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Latent topics

Figure 2.4: Graphical representation of bigram LSA. Adjagosords in a document are
linked together to form a Markov chain from left to right.

have proposed independently on different applicationswéer, Pachinko allocation is
more expensive in nature since the structure of the Dirtairi&ph is undefined. Moreover,
the model requires the Gibbs sampling procedure for modighason while we present a
variational Bayes approach for efficient model estimation.

2.2.6 Bigram Latent Semantic Analysis

Latent semantic analysis makes a “bag-of-word” assumptianword ordering is ignored.
For document classification, word ordering may not be imgoart But from the language
modeling perspective, word ordering is crucial since arémg language model usually
outperforms a unigram language model for word prediction rélax the “bag-of-word”
assumption, bigram LSA has been proposed (Wallach, 2006 model modifies the
graphical structure of latent Dirichlet allocation by ceeting adjacent words together to
form a Markov chain. Figure 2.4 shows the graphical repriegem of bigram LSA where
the top node represents a prior distribution over topicritiistions and the middle layer
represents topic labels associated with each word. Thendexcugeneration procedure of
bigram LSA is similar to that of latent Dirichlet allocati@xcept that a previous word is
taken into consideration for generating a current word:

1. Samplg from a Dirichlet priorp(6).
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Figure 2.5: Graphical representation of the sentencd-lgeam topic mixture model.

2. For each wordy; at thei-th position of a document:

(&) Sample a topic labek; ~ Multinomial(®).

(b) Samplew; givenw;_; and the topic labet;: w; ~ p(-|w;_1, 2;).

In (Wallach, 2006), the Gibbs sampling procedure is apgbediodel training, which can
be very slow since it requires drawing a significant numbesarhples for convergence.
Usually 500 Gibbs iterations are common in practice for latent Diri¢cld#ocation (Por-
teous et al., 2008). Therefore, this approach is difficukdale up to large training data.
Moreover, simple Laplace smoothing is employed which cae goor model smoothing.
We address these issues using model bootstrapping andag@mgwdel smoothing in this
thesis, and show the effectiveness for topic adaptatiomtomaatic speech recognition in
Chapter 4 and statistical machine translation in Chapter 5.

2.2.7 Sentence-Level Topic Mixtures

Sentence-level topic mixture (lyer and Ostendorf, 1998)nslar in spirit to bigram LSA
that the latent topics can be modeled via a mixture of N-gmgliage models. However,
their model structures are different. They assume thataitia/in a sentence are assigned
with the same topic label, which differs from bigram LSA thesich word is assigned
with an independent topic label. Moreover, each sentenassamed to be independent
within a document while bigram LSA captures the sentencexégncy via a probabilistic
prior. Figure 2.5 illustrates the graphical model repréagon of the sentence-level topic
mixture. Specifically, the probability of a word sequeng® using a bigram topic mixture
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is given as follows:

N K
= T]>_ M plwilwii, k) (2.40)

i=1 k=1
A “hard” document/sentence clustering is employed to tthi cluster-specific N-gram
language models for model initialization. For instanceshedocument/sentence can be
represented as a vector with each component representddlBsTterm frequency mul-
tiplied by inverse document frequency). Then the K-meagsrdghm can be performed to
form the clusters. This follows an Expectation-Maximipatprocedure to re-estimate the
model parameters as follows:

E-steps
Pz = klw*) o p(wi k) - AY (2.41)

M-step:
i (wlu, k) oc O (u,0) (2.42)
A o ST pO (2 = kfwl) (2.43)
WhereC,gt)(u,v) = ZC,gt)(u,Ms) (2.44)
andC\ (u,v]s) = C(t (u,v|s) - pO (2 = k|w*) (2.45)

wheres denotes the sentence indéx;ubda, denotes the topic mixture weightsyu, v|s)
denotes the bigram count of senter@ndC}(u, v|s) denotes the fractional bigram count
assigned to topié in sentences. To avoid a zero probability for an unseen bigram, the
bigram model is linearly interpolated with a unigram modhehicontext dependent fashion
as follows:

p(vlu, k) = (1 — dur) - prr(|u, k) + dur - prarr(v|k) (2.46)

whereg,, = Nk(u]\-[;f’(;*l(u 3 (2.47)

andNy(u, ) = %((5’5)) = > p(klu,v) (2.48)
v:(u,v) ’ v:(u,v)

22



whereg,,;, is estimated using an analogous version of Witten-Bell ghiag for fractional
counts. Ny (u, -) denotes the fractional number of “unique” words followingng v for
topic £ which falls back to the integral definition when the mixturedel has only one
topic. In Chapter 4, we will describe fractional Kneser-Nsgioothing which supports
fractional counts for bigram LSA.

2.3 Bilingual Latent Semantic Analysis

The interest of extending latent semantic analysis fromatiogual to crosslingual man-
ner comes from the advantage of exploiting information frome language and applying
them to another language. This notion applies naturallyatssical machine translation.

2.3.1 Bilingual Latent Semantic Indexing

Bilingual latent semantic indexing (Kim and Khudanpur, 2DBas been proposed to cap-
ture a joint latent semantic space of a source and targetdgeyvia singular value de-
composition. In their approach, each of a parallel docurpaitare concatenated into a
super-document vector for singular value decompositidmeifTapproach creates a LSA-
based translation word lexicon described as follows:

sim(f,e)”

Zf’ Sim(f/7 6)7

pisi(fle) = (2.49)

where~y >> 1 as suggested in (Coccaro and Jurafsky, 1998). Incorparafionono-
lingual documents for bilingual latent semantic indexisgdone by filling in zeros for
the unknown components of a pseudo-bilingual documenbovdmfore singular value
decomposition. However, this approach may undermine tkes va@ctors because of the
unjustified zero co-occurrence counts between source aget taords that may mislead
the result of singular value decomposition.
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2.3.2 Bilingual Topic Admixture Model

Bilingual Topic Admixture Model (Zhao and Xing, 2006) (Bi) has been proposed
to incorporate latent topics into word alignment via todependent translation lexicons.
HM-BIiTAM (Zhao and Xing, 2007) incorporates a hidden Markawdel into BiTAM for
word alignment. Among the three proposed variants in BiITAVI,AM-3 has yielded the
best word alignment accuracy. The generative procedureseftence pair is described as
follows:

1. Sample topic mixture weightsfrom a Dirichlet prior.

2. For each word; in a source sentencf/,

e Sample a latent topic index from Multinomial(®).

e Sample an alignment variable < [0, /] to index a worde,, in a target sen-
tencee) wheree, denotes a NULL word.

e Samplef; from a topic-dependent translation lexico(y;|e,,, z;).

BiTAM can be trained using variational EM. Better resulte abtained using the IBM-4
translation lexicon as an initial model. The graphical mMadpresentation of BiTAM is
illustrated in Figure 2.6. Using the generic form of varetal EM in equation 2.9, one can
identify the Markov blanket of the latent variablgsz;, anda; to be{z:...z;}, {0, f;, eq, }
and{z;, f;, eq, } respectively. Therefore, the variational E-steps and &fp-$br a sentence
pair can be shown as below:
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E-steps:

J
W o= ar+ Y qlz =k) (2.50)

j=1
Q(Zj _ /{2) x eEq[logG;’yk]-i-Eq[logp(fj\eaj,Zj)]\zj (2'51)
Q(aj — 7,) 610gp(aj)+Eq[10g;D(fj\eaj,zj)]\aj (252)

q(a; =1) -logp(fjlei, z; = k) (2.53)

M-

whereE,[log p(filea;: zj)\s; =

=0

]~

anqu[logp(fj|eaj, zj)]\aj = q(z; = k) -logp(file;, zj = k) (2.54)

e
I

1

andE,[log ] = W(y) — U ) (2.55)

M-step:

J 1
p(flek) o DN 6(fi f)-dleie) -alz = k) - qla; = i) (2.56)
j=1 i=0
whereq(0; {~}), q(a;) andq(z;) are the variational posterior distributions for the topic
mixture weights, word alignment index and topic index focleaentence paife!, f/}.
Although improvement in BLEU has been reported, the mo@eéhiing is computationally
expensive. In Chapter 5, we will present a marginal adaptadipproach so that latent
topics can be incorporated into a background translatiam Wwexicon without the explicit
modeling of topic-dependent lexicons.

2.4 Language Model Smoothing

Language model smoothing is essential to avoid assigning @®babilities to unseen
events. The state-of-the-art smoothing is based on thegfisy approach (Kneser and
Ney, 1995). Witten-Bell smoothing (Witten and Bell, 1994 aicompetitive approach and
generalizes to fractional counts (lyer and Ostendorf, 2999
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Figure 2.6: Graphical representation of bilingual topicedure model.S and M denote
the number of parallel sentences and the number of docunmepésallel corpora respec-
tively. / andJ denote the number of words in a target sentence and a sourtEnee
respectivelyq is the word alignment variable fof.

2.4.1 Kneser-Ney Smoothing

The state-of-the-art smoothing for a backoff N-gram lamgguanodel is based on Kneser-
Ney smoothing (Kneser and Ney, 1995). The belief of its ss€o@mes from the preser-
vation of a marginal distribution. The interpolated formedbigram language model using
the absolute discounting can be expressed as follows:

prn(vu) = max{C(g,(Z)) — D0} + Auw) - prn(v) (2.57)

where D is a discounting factor betweénand1. The lower-order distributiop y(v)
is treated as unknown parameters, which can be estimatad tis¢ preservation of a
marginal distribution:

pl) = > prn(vlu) - plu) (2.58)

wherep(v) is the marginal distribution estimated from backgroundhirey data such that

p(v) = zf(é)iw- After substitution and manipulation of equations, we\errat the fol-
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lowing solution for the lower-order distribution:

o N(',U)
prn(v) = SN0 (2.59)

whereN (-, v) denotes the number of unique words preceding

2.4.2 Witten-Bell Smoothing

Witten-Bell smoothing (Witten and Bell, 1991) is motivatedm the Good-Turing esti-
mate which states that for any event that oceutisnes, we should pretend that it occurs
r* times according to the following relationship:

r*en, = (r+1)-n.4, (2.60)

wheren, represents the number of events that oectimes. With this notion, the total
mass of unseen bigrams, v) is equal taw; corresponding to the number of bigrams which
occur once. Therefore, the total predicted mass of seenresebn bigrams is estimated as
Ni(u,-)+ C(u,-) whereN; (u, -) denotes the number of word types followingnd occur
once, and’(u, -) denotes the unigram count of woud For a backoff language model, the
probability mass reserved for the unigram distributiondgexted to b% Since
there may be a chance th#t(u, -) is equal to zero)Vy, (u, -), which denotes the number
of word types following word., is used instead to avoid zero probabilities. In summary, a

bigram language model with Witten-Bell smoothing can beresged as follows:

pwa(vlu) = NH(UC‘()U;)C(U _)pML(v\u)+ N (gl_*)(i"c)(u _)pWB(u) (2.61)
where
 C(u,v)
pyvr(vju) = Tl (2.62)

For comparison, Witten-Bell smoothing employs a maximukellhood estimate for
the bigram distribution while Kneser-Ney smoothing empglagliscounteanaximum like-
lihood estimate. Moreover, Kneser-Ney smoothing is graahoh the marginal preserva-
tion principle while Witten-Bell smoothing is motivated lblye Good-Turing scheme. In
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Chapter 4, we will generalize the Kneser-Ney smoothing fébtional counts for N-gram
latent semantic analysis.

2.5 Unsupervised Language Model Adaptation

Language model adaptation is essential because of the meisrbhatween the training
and the test domains. Besides LSA-based approaches, tteegifferent approaches
such as cache-based language model (Kuhn and Mori, 199€ksGtaand Robinson,
1997), marginal adaptation (Kneser et al., 1997) and wogdiéring via maximum en-
tropy model (Rosenfeld, 1994), to name just a few.

2.5.1 Word Caching

Word caching (Kuhn and Mori, 1990; Clarkson and Robinso9,7}9s an interesting ap-
proach for language model adaptation. The hypothesistisitbaecently used words have
a higher chance to occur again in the future. A cache-baseuitege model can be imple-
mented by tracking the frequency of recently occurred wards) exponentially decaying
N-gram cache, serving as a self-triggering model. This aggn is effective for super-
vised adaptation such as a dictation task where a user carcteect speech recognition
errors. However, this approach can be harmful for unsupedradaptation since it boosts
the probability of mis-recognized words by increasing theord frequencies.

In Chapter 4, we show that language model adaptation viatlaemantic analysis
can be interpreted as a cache-based language model. ladteaching the frequency of
words, the LSA approach caches the frequency of the recpitistand thus is more robust
against speech recognition errors for unsupervised atiapta
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2.5.2 Word Triggering

Word triggering has been proposed to capture a long-distaglationship between words (Rosen-
feld, 1994; Chen et al., 1998; Wu and Khudanpur, 2002) comeigary to an N-gram
language model. In this approach, all possible word paitkiwia context window are
considered and filtered to produce a list of potential woighers. Then the average mu-

tual information for each word trigger is computed and thagd high average mutual
information are selected as final word triggers. Finallg, sielected word triggers serve as
constraints for maximum entropy language modeling or thieyliaearly interpolated with

a background language model.

Word triggering can be extended to crosslingual settings(&nd Khudanpur, 2004)
where the word pairs between a source and a target languag&taeacted from document-
aligned parallel corpora. Similarly, average mutual infiation /( f, e) are employed to
select the crosslingual word triggers. The word-triggeshability of a source wordf
given a target word is computed as follows:

I(f.e)
p(fle) = S 170 (2.63)
where [(f,e) is set to zero whenevelf, e) is not a trigger pair. Around 1% relative
reduction in character error rate was reported for crogsi@th language model adaptation
on a Mandarin ASR system for broadcast news with the baspén@rmance of 28.8%
in character error rates (Kim, 2004). For unsuperviseduagg model adaptation, word
triggering may be sensitive to speech recognition errarslar to word caching because

incorrectly recognized words may also trigger other ivalg words.

2.5.3 Marginal Adaptation

While linear interpolation is a convenient technique fandaage model adaptation, in-
terpolating an N-gram language model with a unigram languagdel may destroy the
“syntactic” structure of the N-gram language model esplcfar function words that
are usually position sensitive, e.g. “I am”, “You are” etc.otWated by information the-
ory, marginal adaptation (Kneser et al., 1997) finds an @dhisinguage model, (w|h)
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such that the Kullback-Leibler divergence betwegfw|h) and the background language
modelp,,(w|h) is minimized subject to marginal constraints. The objexfnction to
minimize is as in equation 2.64,

Minimize S, pu(h) - 5L (po |1 s 1))
such that Vw : >, pa(h) - po(w|h) = plw) (2.64)
Vh:) pa(wlh) = 1

wherep(w) is some unigram distribution relevant to the test domaine ©an write the
Lagrangian of the objective function, take the derivativehwespect tg,(w|h) and set it
to zero (equation 2.65-2.66).

D@a(1)) = Sypalh) - X, palw]h) -log 2242

= 2w Aw (224 Pa(h) - pa(w|h) — p(w)) (2.65)
= 2on tn (2o Palw|h) — 1)

oD(. .
Wﬂ(ﬁ)h) = pa(h)-(1+log ;’:]((w\lf;l))) — A pa(h) = pn =0
= pa(wlh) o pyy(w|h) - et (2.66)

o< pog(w|h) - e 2 fi(hw)

where

filhow) = {1 Tw= (2.67)

0 otherwise

f;(h,w) is a unigram feature function independent.ofSince the solution of the adapted
language model is in an exponential form, the optimizatimbfem is similar to the max-
imum entropy settings (Rosenfeld, 1994). Therefarecan be solved using the general-
ized iterative scaling (GIS) (Darroch and Ratcliff, 197®).the literature, only one GIS
iteration can be applied singg (/) is unknown for computing feature expectation using
a given model. However, it can be approximated with a baakgidanodelp,, (k) at the
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first iteration as in equation 2.68-2.70,
E[f;(h, w)]

NN
Vit AT = +lOgE[fj(h,w)] (2.68)
— O Zh,wp(w>h)‘fj(haw) 5 69
s S P8 (w]R)pS” ()« (B, w) (269
log () (2.70)
pbg(w)

wherepl” (w|h) = pyy(w]h), p” (h) = py(h) andA'” = 0.
In summary, the form of the adapted model is a rescaled versdithe background lan-
guage model:
R
whereZ(h) is a normalization factor to guarantee that probabilitia® $o unity. o (w) is
a scaling factor that is commonly approximated as follows:
_ pw) \*

a(w) = (pbg (w)) (2.72)
wheree is a tuning factor between 0 and 1 to compensate for the appation due to
the limitation of one GIS iteration. In general, marginaapthtion is very expensive due
to the computation of the normalization facté(h). However, an efficient normalization
is available for a backoff N-gram language model (Knesen.etl997). The idea is to
further impose a constraint that the total probability of hhserved transitiofv:, w) in
background training corpora is conserved after languageeiredaptation:

Z Pa(wlh) = Z Pog(wlh) = Mass(h) (2.73)

w:(h,w)eT w:(h,w)eT

(2.71)

where the summation is takemly on the observed history and the current wohdw)

in training corporal’. Given that the background language model has a standakdfbac
structure plus the above constraint, the adapted languadelras the following recursive
backoff formula:

zo(h)

Pa(wlh) = - .
bo(h) - po(w|h) otherwise

{ olw)prgwlh) g (h w) € T (2.74)
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where

1 Mass(h) 2
Zo(h) Ew:(h,w)ET Oé(’w) ’ pbg(w|h) ( 75)

and
1 — Mass(h)
1—- Zw;(h,w)gpa(wm)

bo(h) denotes the backoff weight of the word histdryto ensure thap,(w|h) sums to
unity. The backoff weights need to be updated accordindér afl the/N-gram probability
entries are adaptedh denotes the reduced word history faf The intuition behind the
factor zy(h) is to perform “normalization” similar to equation 2.71, biie summation
involves only a subset of words observed/invith the same word historj.

bo(h) = (2.76)

Whenw is a stopword such as auxiliary verbs, articles, conjumgtjeentence bound-
ary markers and punctuations, we do not adapt thegram probabilities because pre-
dicting stopwords mostly relies on syntactic context buttopical context. We can easily
model this effect by inserting a new branch in equation 2oréhtlicate thap, (w|h) =
Dog(w]h) whenw is a stopword. Hence, the computationidtiss(h) andzy(h) needs to
be modified with stopwords being excluded from summationguagion 2.73 and equa-
tion 2.75, respectively.

In Chapter 4 we will show that using the LSA marginals fgt) are effective for
unsupervised marginal adaptation. We will describe a caatfmnally inexpensive version
of marginal adaptation for incremental lattice rescoring.

2.6 Summary

We have covered background materials relevant to the tivedigding variational Bayes,
approaches for latent semantic analysis for high-orderatspthnguage model smoothing,
and language model adaptation techniques. In the followhapters, we will present
our unified unsupervised topic adaptation framework for olimgual and crosslingual
adaptation. In Chapter 4, we will describe monolingual laage model adaptation for
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automatic speech recognition based on N-gram latent se&raardlysis. In Chapter 5, we
will extend our framework to crosslingual adaptation foattical machine translation
based on bilingual N-gram latent semantic analysis.
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Chapter 3

Baseline Transcription and Translation
Systems

We describe the baseline transcription and translatiotesys used for our topic adap-
tation experiments in this thesis. The systems are builhindor large-scale evaluation
including Mandarin transcription, Arabic transcriptiondaChinese-to-English statistical
machine translation.

3.1 Background

Our research effort centers on the GALE (Global Autonomoasduage Exploitation)
program!. The goal is to recognize, translate and extract usefurinéion on broadcast
news and broadcast conversation audio in multiple langaia@er research effort in this
thesis focuses on transcription and translation partsso&®ALE program. In the following
sections, we describe our baseline transcription systemddndarin Chinese and Arabic
as the source languages, and the Chinese-to-Englishdtimssystems, which translate
an input Chinese text into English.

http://www.darpa.mil/ipto/programs/gale/gale.aspt lzonsulted: 23 June 2009
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Figure 3.1: Block diagram of automatic speech recognition.

3.2 Mandarin Transcription

Our first Mandarin transcription system was implementedtf@ RT04 evaluation (Yu
et al.,, 2004). Our recent GALE Mandarin transcription sgsie(Hsiao et al., 2008)
have been implemented based on the RT04 system with sigrtifieaformance improve-
ment due to the increased amount of training data from the EBAtogram, improved
speech segmentation and clustering (Section 3.2.2),idlis@tive training on acoustic
models (Section 3.2.3), cross adaptation (Section 3.23@)system combination. All
systems were based on hidden Markov models (HMM) (Rabir@&9)limplemented us-
ing JRTK (Finke et al., 1997). Speech recognition was imgleted using the IBIS de-
coder (Soltau et al., 2001).

The architecture of our transcription system is illustdateFigure 3.1. An input audio
is first segmented into speech utterances followed by autorsgeaker clustering. Then
a speech recognizer decodes an input speech utteaint® a word hypothesisl’ using
an acoustic model( X |W) and a language modg{1V') using the Bayes decision rule:

A

W = argmax p(W|X)=argmax p(X|W) - p(W) (3.1)
w W ——— N——
acoustic modelanguage model
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Table 3.1: Demi-syllables for Initial-Final modeling foravidarin Chinese.
Initial bcchdfghjklmnpqgrsshtwxyzzh
Final aaianangaoeeienengeriiaianiangiao ieining iorgong ou
U ua uai uan uang ue ui un uo i te ng

3.2.1 Chinese-Specific Issues

Chinese text is not segmented at the word level. In other syadsentence is simply a
sequence of characters, with no spaces in between. It isiviat to segment Chinese text
into words. To make matters worse, since the distinctiombenh words and phrases is
weak, a sentence can have several acceptable segmentdahidhevsame meaning. For
language modeling purposes, it is important to have a goad Vist and to segment the
training data properly. While the number of words can bemaitéd, there are only about
6.7K characters in simplified Chinese. A Chinese charasteranounced as a syllable,
hence Chinese is a mono-syllabic language. A syllable cae fize different tones: flat,
rising, dipping, falling, and neutral. There are about 180@jue tonal syllables, or 408
unique syllables disregarding tones. Studies have shoatrtlle realization of tones is
context sensitive, an effect known as tone sandhi. For elgmnen a word comprises
two third-tone characters, the first character will be radiin a second tone.

The out-of-vocabulary issue can be alleviated by addingsecl set of Chinese char-
acters into the search vocabulary of a speech decoder sd @natew word is spoken,
there is still a chance that the speech decoder may recotirezedividual characters of
the word.

Pinyin is the official romanization system for Mandarin G#se. While most European
languages are transcribed at the phone level, Pinyin i;mgabg a demi-syllable level
representation, also known as initial-final: an initialypitally a consonant; a final can
be either a monophthong, a diphthong or a triphthong. Thexr@3a initials and 35 finals
in Mandarin as shown in Table 3.1. Since the Pinyin repredgimt is standard, it is easy
to find pronunciation lexicons in this format. Alternatiyegb using pinyin, one can use a
phonetic representation for pronunciations. The LDC 19%hdarin CallHome lexicon
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(LDC96L15) contains phonetic transcriptions for about 44détds, using a phone set of 38
phones. While phonemes are well studied and understoog atieenot the most natural
representation for Chinese. It also remains unclear whetleze is a widely accepted
phonetic transcription standard for Chinese.

In Mandarin Chinese, some words can have the same pinyincarelttanscription
but with different meanings. For example, “Shu4-Mu4” canamétree” or “number”
depending on a context. Therefore, it is very useful to upé&ctd information from the
context for word disambiguation.

3.2.2 Audio Segmentation and Speaker Clustering

Audio segmentation in our system (Yu et al., 2004) is impleted via an HMM seg-
menter with four classes: Speech, Noise, Silence, and MuEie speech features are
13-dimension MFCC plus their first and second derivativeghclass is represented by a
Gaussian mixture model with 64 Gaussians. The system igetladn 3 hours of manually
annotated HUB4 shows.

The resulting speech segments (the Noise, Silence, andcMegiments are ignored)
are then grouped into several clusters, each of which igealirespond to an individ-
ual speaker. A hierarchical, agglomerative clusteringntégue with Bayesian Informa-
tion Criterion (BIC) is applied (Jin and Schultz, 2004). A&diGaussian mixture model
(TGMM) is built on the whole set of speech segments, serveig Aackground model.
A Gaussian mixture model for each cluster is trained via tatagn of the background
TGMM. Each segment is considered as a cluster at an iniggl 3/e define the distance
between two clusters by the Generalized Likelihood RatibR{

p(X10)

(X1]01) p(X2|02)
where X1, X;, and X are feature vectors in cluste€s,Cy, and the merged cluster of
C; and (', respectively. 0, 65, andf are statistical models built oy, X5, and X,
respectively.

D(Cy,C) = —logp (3.2)

We can see from equation 3.2 that the smaller the distanee]diser the two clusters

38



Table 3.2: Acoustic model training data for Mandarin traison.

Mandarin systems Hour Source
RTO4/GALE-P1-dryrun  96hr HUB4m (LDC98S73), TDT4 subseb@2005S11)
GALE-P1 558hr + GALE-Y1 data (LDC2007E99)
GALE-P2/GALE-P3 1300hr + GALE-Y2 data (LDC2008E38)

are to each other. At each step, the two closest clusters argech and the model of a

new cluster is re-estimated. Clustering terminates wherBii€ stopping threshold is ex-

ceeded. Setting the threshold is an art that highly dependsenature of an input audio.

In the GALE-P2 and GALE-P3 evaluations, a snippet show, wii@ piece of story on a

consistent topic, is relatively shorter (1-2 minutes) cangal to the GALE-P1 evaluation.

In addition, an input audio file can contain multiple snippledws. We therefore perform

clustering across snippets on the same show, which meanalitspeech segments from
different snippets of the same show are pooled togethefdstaring and a unique speaker
label is shared across different snippets. We apply twefit BIC thresholds depending
on the number of snippets per show to reduce the chance ofestaeating the number of

speakers in a multiple-snippet show. Underestimating tiaber of speakers will affect

the performance of acoustic model adaptation since spesghents from an irrelevant

speaker may be used undesirably for adaptation.

3.2.3 Acoustic Modeling

Table 3.2 shows the audio data for acoustic model traininghi® RT04 and GALE tran-
scription systems. We benefit from an increased amount ointttl®main training data
from the GALE progrant so that we can afford more codebook and Gaussian parameters.

For feature extraction, we use 13 Mel-Frequency Cepstraffficeents (MFCC) per
frame. Cepstral mean and variance normalization is peddron a speaker/cluster basis.

2http://projects.ldc.upenn.edu/gale/data/DataMaitirl, last consulted 30 Mar 2009
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Dynamic features are extracted by concatenating 15 adjdi@@nes (current frame-7
adjacent frames), then using linear discriminant anal¢Bisda et al., 2001) to produce
an output feature vector with 42 dimensions. Vocal tracgteBmormalization (VTLN) is
performed on a speaker/cluster basis (Zhan and Westptt) 18s described before, the
acoustic modeling units can be either Initial-Finals (leFphones. In both cases, context-
dependent models are built and then clustered using a dedrgie with a set of phonet-
ically motivated questions. Each Initial and Final demiiadyles employ a 3-state and
5-state hidden Markov model while each phone has 3 statesithla strict left-to-right
topology. We find that both systems give comparable perfaoeawith the initial-final
system slightly better than the phone-based system. Weathkentage of cross-adapting
among the syllable-based and the phone-based systemsravirthe recognition accu-
racy.

Model Training

Since the manual transcripts of the GALE training audio asnually segmented with
speaker labels, speech segmentation and clustering arevobted in the GALE train-
ing audio. The model training can be performed by bootsirgpp context-independent
model using a legacy model. Then the context-independedehis used to estimate a
context-dependent model, which is further refined to a spegkiependent and a speaker-
adaptive model for multi-pass decoding.

Given our legacy RT04 system, we perform initial forced afigent on the GALE
training utterances to obtain the state alignment. Thenseemaximum likelihood estima-
tion to train the acoustic models. For context-independerdels, we apply the following
steps:

1. Perform linear discriminant analysis (Duda et al., 20filproject a window of
MFCC feature vectors into a 42-dimension feature vector.

2. Extract feature samples for each HMM state accordingdcstate alignment of the
training utterances.
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3. Perform the K-means clustering to obtain an initial Gausmixture model with a

fixed number of Gaussians.

4. Run eight iterations of label training (i.e. with a fixedtst alignment) to refine the

5.

acoustic model. Viterbi or Baum-Welch training can also pplied at the expense
of increased computation.

Refine the state alignment using the updated model andtrépe above steps as
needed.

We initialize an unclustered context-dependent model thighcontext independent model
via sharing the Gaussian parameters but with unique Gaussidure weights per unclus-
tered model. Then we train a speaker independent (SI) mod#ié first-pass decoding:

1.

Perform one iteration of Viterbi training to obtain thexture weights of each un-
clustered context-dependent model.

. Perform top-down state clustering based on the Gaussistiune weights of the

unclustered model using the decision tree approach thainmzes the information
gain after each node is split (Rogina, 1997). A phoneticailytivated question
set is applied, producing tied quinphone states (or senwiik)a fixed number of
codebooks.

Perform linear discriminant analysis to project a windaWIFCC feature vectors
into a 42-dimension feature vector.

Extract feature samples for each HMM state accordingdctate alignment of the
context-independent system.

Perform the merge and split training to grow the Gaussiatures incrementally
depending on the minimum occupancy count of a Gaussian amdaiximum num-
ber of Gaussians allowed (which is set to 100 per codeboak&GALE Mandarin
systems).

Perform global semi-tied covariance (STC) training €3afl999).
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Below are the procedures for speaker-adaptive training:

1. Determine the warping factors for vocal tract length nalization (Zhan and West-
phal, 1997) for each training speaker.

2. Perform linear discriminant analysis using the warpedd@Reatures as inputs.
3. Extract feature samples for each HMM state.

4. Perform the merge and split training for each HMM statdéofeéd by semi-tied
covariance training.

5. Perform speaker-adaptive training (SAT) using a singégure space transform per
speaker (Gales, 1997), known as the feature space adapfasa\) or the feature-
space maximum likelihood linear regression (fMLLR).

With the syllable-to-phone mapping, we can bootstrap amlmphone model easily.
The phone-based systems follow the same training procedisiag a phone-based word
lexicon. In addition, we attempt to maximize the differebetween the phone-based and
the syllable-based system via the genre-dependent mgdelive incorporate a binary
guestion to ask whether a phonetic context is from broadeasts (BN) or broadcast
conversation (BC). Then the state clustering proceduredstiermine if this question is
applied for node splitting.

Discriminative Training

Since the hidden Markov model is not a correct model for spediscriminative train-
ing is an essential technique to correct the modeling assampand thus giving signif-
icant improvement in recognition accuracy. Maximum mutudibrmation estimation
(MMIE) (Valtchev et al., 1997) and boosted MMIE (BMMIE) (Pey et al., 2008) are
common techniques for discriminative training and havenbaeplied in our GALE-P3
Mandarin transcription system (Hsiao et al., 2008). Readuincement in discriminative
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training includes better smoothing via controlling the egof improvement of condi-
tional likelihood on the model space (Hsiao et al., 2009) thiedfeature space (Hsiao and
Schultz, 2009).

Starting with the syllable-based speaker-adaptive modiglgumaximum likelihood
estimation, we decode the GALE training utterances to gead¢he word lattices to rep-
resent a compact set of competing hypotheses for eachnttera

MMIE aims at maximizing the posterior probability of a reface compared to the
competing hypotheses in a word lattice. The objective fonadf MMIE is:

pA X |Ms ) ( 7‘)
Faraer (2 Zl S o A1) - p(5) (33)

where\ represents the acoustic model parameters to be optimkzed;ther-th training
utterances, is the reference andl/, represents the corresponding HMM state sequence of

sentence. Maximizing ;. 7()\) improves the posterior probability of the reference in
a lattice. This function can be optimized using the exterBlaadm-Welch algorithm. The
update equations of Gaussian means and covariances, Witleogmoothing parts, are:

num den
T — 28" + D,y
i, = 3.4
K fy;wum ,y?t}en DT ( )

. SQnum. _ Sden + D (E +M M/)
Zr _ r r r r rr)o ATA/ 35
,y;mm _ ’Yﬁlen + DT Hor . ( )

wherez, and S, are the weighted sum of featuresandx,xz; for the r-th Gaussian, re-
spectively;y, represents the occupancy coub; is a constant to control the learning rate
and to ensuré, is positive definite. The superscriptsm andden specify the statistics
belonging to the numerator or denominatoraf,,;(\). For MMIE, the numerator statis-
tics are the same as that of maximum likelihood estimatidrilexdenominator statistics
are collected from the word lattices.

Intuitively, some paths may contain more error than othghgan a word lattice.
Boosted MMIE boosts the importance of competitors that makge error. The objec-
tive function is shown as follows:

PAX M, ) - p(sy)
Fearar (A Zlo S o )’\( L) - p(s) - e—bAGn) (3.6)
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Table 3.3: Acoustic model configurations of the GALE Mandaranscription systems. *
denotes that (boosted) MMIE and genre-dependent modeleng applied to the GALE-
P2 and P3 systems only.

Model 1st-pass  2nd-pass 3rd-pass
Unit I-F phone I-F
Model Sl SAT-FSA SAT-FSA
Training ML ML (B)MMIE*
# Codebook 10K 10K 10K

# Gaussian 805K 825K 784K
Genre-dependent no yes* no
Algorithms - STC&VTLN STC&VTLN

where A(s, s,) is the raw phone accuracy of sentenc@Povey, 2003)p is the boosting
factor larger than zero. Hence, the likelihood of the contpes with higher error are
boosted. The update equation of BMMIE is the same as MMIE theitdenominator
statistics are altered when we compute the forward-baakwaores on the lattices. In
other words, the likelihood score of each word arc in a laticsubtracted by - A(s, s,.).

In our system, the boosting factor is setot6. We apply I-smoothing withr = 100 for
both MMIE and BMMIE training. The maximum likelihood modslused as a backoff in
I-smoothing. Finally, the discriminatively trained moaeused for the third-pass decoding
in our GALE system.

Table 3.3 summarizes the acoustic model configuration®i®GALE Mandarin tran-
scription systems.

3.2.4 Language Modeling, Text Data, Normalization

We use several corpora for our language model developmettiddRT04 and the GALE
systems: Mandarin Chinese News Text, §22]3,4}, Mandarin Gigaword corpora v1-2,
the HUB4 1997 acoustic training transcript, the CALLHOME mdiarin transcript, the
GALE acoustic training and web transcripts, and the web dataed among the com-
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Table 3.4: Language model training data for Mandarin trapsgon.

Mandarin systems Word token Source

RTO4-small 13M Xinhua News 2002 (LDC2003T09)

RTO4-full/GALE-P1-dryrun 300M Mandarin Chinese News Text
(LDC95T13), TDT2 (LDC2001T57),
TDT3 (LDC2001T58), TDT4
(LDC2005T16), Mandarin Gigaword cor-
pora vl (LDC2003T09), the HUB4 1997
acoustic training transcript (LDC98S73),
the CALLHOME Mandarin transcript

(LDC96T16)

GALE-P1 800M + GALE-Y1 transcripts (LDC2007E100)
+ Mandarin Gigaword corpora V2
(LDC2005T14)

GALE-P2 1.0B + GALE-Y2 transcripts (LDC2008E39)
and web data

GALE-P3 1.5B + GALE-Y3 transcripts (LDC2008E39)

and shared web data

peting teams of the GALE program. We divide the training data subsets based on
their sources, including the acoustic training transerifor broadcast news and broad-
cast conversation as separate sources. These give us bésawluding BBC, CCTV,
NTDTV, RFA, Central News Agency, China Radio, People’s Raslina News, Xinhua
News, Zaobao News, Phoenix TV, broadcast news, broadcasgtisation and others. Ta-
ble 3.4 summarizes the text data for language modeling ferdiit Mandarin systems.
The RT04-small and RT04-full systems are employed for sisdle topic-adaptation ex-
periments while the GALE systems are used for large-scalkiation. Any text that falls
into the excluded time frame (specified in the evaluatiorcéjgation) are removed from
the training corpora.
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Before training a statistical language model, we first pssdfie Chinese text data to
normalize for ASCII numbers, ASCII strings and punctuasiowe devise heuristic rules
in combination with a Maximum Entropy classifier to normalizumbers. The classifier
classifies whether an input number is a digit string (e.geiebne number) or a number
guantity based on the surrounding word context. We map Engliords to a special to-
ken +english+, human noises (such as breath and cough) toarhooise+. Non-human
(environmental) noises are removed from the training tdps Since punctuations pro-
vide word boundary information useful for word segmentatithey are removed only
after word segmentation. Word segmentation is based on @nmahgubstring matching
approach that locates the longest possible word segmeathtobaracter position. Since
proper names are often incorrectly segmented, we later drtleel LDC Named-Entity
(NE) list (LDC2005T34) into a wordlist provided from the afifal LDC segmentet. The
NE list contains different semantic categories, such aaromgtion, company, person and
location names. Having them in the wordlist greatly impsosegmentation quality, which
translates to more accurate predictions in an N-gram laggoaodel. After word segmen-
tation, we choose the vocabulary to be the top-K most frequerds. The commonly used
Chinese character$.(k) are then added into the vocabulary, giving t¥: vocabulary
for the RT04 system. For cross-site collaboration betwa&dh, IJHU and CMU-InterACT
for the GALE evaluation, we merge our word lists plus someuiently occurring English
words, giving a fixed 08% vocabulary for the GALE systems.

Unless specified, a background 4-gram language model isettavith the modified
Kneser-Ney smoothing using the SRI language model to@kai¢ke, 2002) in this thesis.
Each of the source-dependent language models are lineéelpolated with the interpo-
lation weights estimated using a heldout set.

3.2.5 Pronunciation Lexicon

Our pronunciation lexicon is based on the LDC CallHome Maimdaxicon, which con-
tains aboutd4k words. Pronunciations for words not covered by the LDC leriare

Shttp://projects.ldc.upenn.edu/Chinese/segmenterddan.fre, last consulted 27 March 2009
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generated using a maximal matching method. The idea isaitalour word segmenta-
tion algorithm. We first compile a list of all possible chaercsegments for each covered
vocabulary word. For each uncovered word, the algorithneaggdly searches for the
longest matching character segment from the beginningateial of the word, producing
a sequence of character segments. Pronunciations of thgseats are then concatenated
to produce the pronunciation for a new word. There are 2&isitand 35 finals, and 38
phonemes defined by the CallHome lexicon. Eight additiohahgmes are used to model
human noises, environmental noises and silence. We useethesyllable-to-phoneme
mappings provided by the Call[Home lexicon to convert a dsyllable lexicon into a
phone-based lexicon.

3.2.6 Decoding Strategy

We employ a three-pass decoding strategy for the GALE etialuaGiven the manual
segmentation of the test audio, automatic speaker clagt&iperformed. Then we use
the speaker-independent model to decode the test uttsrtmobtain the initial word hy-
potheses for acoustic model adaptation using vocal tragthenormalization (Zhan and
Westphal, 1997), feature-space adaptation (Gales, 19@/nhadel-space maximum like-
lihood linear regression (Leggetter and Woodland, 1998 wimaximum of 256 classes
in a binary regression tree. The word confidence is also egpt weight the importance
of each frame during adaptation. Then we use the adaptedeghased system for the
second-pass decoding. Similarly, the word hypotheses fh@nsecond-pass decoding are
used to adapt the speaker-adaptive syllable-based systeahefthird-pass decoding.

Cross-Adaptation with IBM

For the GALE evaluation, we perform cross-adaptation betwaur system and the IBM
system via exchanging the word hypotheses from the finalaskdpted systems. In other
words, each system first goes through a multi-pass decodougg@ure on test utterances.
Then the word hypotheses from the IBM system are treatedasdription references for
acoustic model adaptation on our system. Similarly, the I8Mtem is adapted using the

47



Table 3.5: Size of the acoustic model (AM) and language m{dd) training corpora
and the size of vocabulary for the Arabic transcription egstn terms of number of hours

and word tokens.
Arabic AM LM Vocab.

GALE-P3 1500hr 962M 737k (OO¥1.0%)

word hypotheses from our system. To facilitate the crosgptation procedure, we use a
common search vocabulary and a speaker clustering datéiradecoding.

3.3 Arabic Transcription

Besides Mandarin, we also evaluate our language model @&dapiapproach on Ara-
bic transcription. Our Arabic transcription system adaptmilar training procedure as
our Mandarin transcription system described in Section33.Rlore details can be found
in (Noamany et al., 2007). The training corpora for acoustid language model training
for the GALE-P3 evaluation are shown in Table 3.5.

3.3.1 Arabic-Specific Issues

Two Arabic-specific issues are worth mentioning. Firstvilmgten Modern Standard Ara-
bic (MSA) lacks short vowels in between two consonants. \fa&#&on is required to
restore the vowels for accurate acoustic modeling trainf@iyen all possible configura-
tion of vowelization of a transcribed utterance, forcedjament can be applied to select
the most likely configuration. However, it is challengingvowelize the text data with
high accuracy for language modeling. Therefore, it is galhepreferred to allow the
speech decoder to choose the best vowelized model durirglohec Therefore, our Ara-
bic language model is trained on unvowelized text.

Secondly, Arabic has rich morphology. A new word can be fairbg attaching pre-
fixes and suffices to a word stem. As a result, the vocabulaegyisi Arabic (over 700Kk)
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is much larger than that in Mandarin (108k). This makes tlta dparseness issue more
critical for language modeling. Large vocabulary is regdito maintain an acceptable
out-of-vocabulary rate within 1% on a development set. Infeliminary experiment,
we reduce the vocabulary size via stemming to alleviate #ta sparseness issue. How-
ever, this is not effective to improve the lattice rescorpggformance since most of the
word transitions in a lattice become identical after stengrand thus losing the discrimi-
native power. Therefore, we do not apply word stemming inexyoeriments.

3.3.2 Decoding Strategy

Similar to our Mandarin transcription system, the Arabenscription system employs a
three-pass decoding strategy. The first-pass decodingogsiph unvowelized speaker-
independent model in which a vowel between consonants iestiired. The second-pass
decoding employs an unvowelized speaker-adaptive model#es the word hypotheses
from the first-pass decoding for acoustic model adaptatsamgvocal tract length normal-
ization, feature-space adaptation and model-space maxilikalihood linear regression.
In the third-pass decoding, we employ a vowelized model irclvthe vowel is restored in
the pronunciation lexicon. Interleaving the use of unvarezl and vowelized models may
maximize the system difference in terms of different erratt@rns so that the adaptation
performance may be enhanced.

3.3.3 Performance Metrics

Performance metrics are the word perplexity and the char&atord) error rate defined as
follows:

Perplexity = ¢ Zimi logp(wilwiswizwiy) (3.7)
I+D+S
Word error rate = % (3.8)

where N denotes the number of word tokens in a reference. A word fyissaisually rep-
resented as a trigram histony_sw;_-w,_1. I, D, andS denote the insertion, deletion and
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Table 3.6: Statistics of the Mandarin RT04 test set.

RTO04 Duration Genre

CCTV 0.33hr BN

NTDTV  0.33hr BN

RFA 0.33hr BN plus phone interview

Table 3.7: Statistics of the development and test sets éoG#LE evaluations from phase
2 (P2) to phase 3 (P3). “EvalO7u” and “Eval07r” stand for upssstered and re-test
portions of Eval07 respectively.

Mandarin Chinese Arabic
P2 P3 P3
Genre Eval06 Dev07 Dev08 EvalO7u EvalO7r DevO7 Dev08 EvalO7u
BN  0.59hr 1.07hr| 0.49hr 0.63hr - 1.71hr - 2.05hr
BC  0.45hr 1.38hn 0.48hr  0.52hr - 0.87hr - 2.03hr
ALL 1.04hr 2.53hr| 0.98hr 1.15hr  1.64hr| 2.58hr 3.04hr  4.08hr

substitution error after aligning the recognized word sawe with the reference using dy-
namic programming. For fair comparisons between diffeegaroaches, an optimal word
error rate is reported after tuning an optimal word insergpenalty (Ip) and a language
model weight (I1z) that are usually combined in the followmgnner:

Score(X,W) = logp(X|W) + 1z - log p(W) — Ip (3.9)

whereX andW denote a speech utterance and a word sequence respectively.

3.3.4 Evaluation Sets

We have the RT04 eval set and the GALE development/testaésnichmark the recog-
nition performance as shown in Table 3.6 and Table 3.7 réispdc The Mandarin RT04
eval set are mainly broadcast news while the GALE developheshsets are a mixture of
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Table 3.8: Sources of the GALE Mandarin development/tdst se

Set Source

Evalo6 CCTV4, NTDTV, PHOENIX

Dev07 CCTV1, CCTV4, CCTVNEWS, NTDTV, PHOENIX

Dev08 BEIJING, CCTV1l, CCTV2, CCTV4, CCTV7, CCTVNEWS,
NTDTV, PHOENIX, VOA

Eval07u ANHUI, CCTV1, CCTV2, CCTV4, CCTV7, CCTVNEWS, NT-
DTV, PHOENIX

Evalo7r CCTV1, CCTV4, CCTV7, CCTVNEWS, NTDTV, PHOENIX

Table 3.9: Sources of the GALE Arabic development/test sets

Set Source

DevO07 ABUDHABI ALAM ALJZ ARABIYA DUBAISCO IRAQIYAH
KUWAITTV LBC SCOLA SYRIANTV

Dev08 ALAM ALHIWAR ALHURRA ALJZ ALMANAR ALURDUNYA
ARABIYA DUBAISCO IRAQIYAH KUWAITTV LBC OMANTV
SAUDITV SCOLA SYRIANTV

EvalO7u ABUDHABI ALAM ALJZ ARABIYA DUBAISCO IRAQIYAH
KUWAITTV LBC OMANTV SCOLA SYRIANTV
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broadcast news and broadcast conversation. Since braadcegrsation is more sponta-
neous in speaking style, speech recognition becomes maleging on broadcast con-
versation than broadcast news. Table 3.8 shows the sourttes@ALE development and

test sets. Originally, Eval07 is designed for the GALE-Paleation. Because of system
retesting, known as the GALE-P2.5 evaluation, Eval07 isdéi into the unsequestered
portion (EvalO7u) and the retest portion (Eval07r). Eval@treated as an internal devel-
opment/test set while the retest portion is part of the affitest set for the GALE-P2.5

evaluation.

Aligning word hypotheses with the reference transcriptiming hubscr07.pt pro-
duces a SGML (Standard Generalized Markup Language) file faseline system and an
alternative system. Then the Matched Pairs Sentence-S$gdhwed Error (MAPSSWE)
approach (Gillick and Cox, 1989) is performed for significartesting using the NIST
scoring tool (sclite) (Pallett et al., 1990) with the follmg command:

cat baseline.sgml alternative.sgpdc stats -p -t mapsswe -v -u -n result.txt

3.4 Statistical Machine Translation

Our baseline statistical machine translation system iadthusing parallel training sen-
tences. We first introduce different components of statistinachine translation and de-
scribe our baseline systems.

3.4.1 Basic Components

Statistical machine translation (SMT) usually consistghoée components: a translation
modelp(F|E), alanguage model £') and a distortion model( F', E') whereF' is an input
sentence of a source language @ an output sentence of a target language. From the
Bayes point of view, the decision rule for statistical maehiranslation is identical to that

Ahttp://www.itl.nist.gav/iad/mig/tests/rt/2003-spring/tools/hubscr07. pétleonsulted 9 April 2009
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for automatic speech recognition:

E = argmax p(E|F) = argmax p(F|E) : p(E) (3.10)
I E —— —~—~
translation modetarget language model
The translation model is analogous to an acoustic modelevehianguage model is re-
quired on both tasks. However, statistical machine traiogslaequires a distortion model
to help re-order output words/phrases on the target largulgthis thesis, topic adapta-
tion applies to the translation model and the language mafdak target language.

3.4.2 Word Alignment

Parallel sentences are required to obtain a word transldgixiconp(f|e) in statistical
machine translation. Therefore, we need to know how a somotd f; at position; of a
source sentenck = f/ aligns to a target word; at position: of a target sentencké = ¢..
Prevalent word alignment models include the IBM Model 1-%o(i et al., 1994), the
HMM model (Mogel et al., 1996) and Model 6 (Och and Ney, 2008)atent alignment
variablea; of a source word; is a position index of a target worg, in a target sentence
E. Below is a generative procedure for a parallel sentenaeusaig the IBM Model 1:

For each position of a source sentencg/,

e Sample an alignment variabtg < [0, I] uniformly to pick a worde,, in a
target sentencel wheree, denotes a NULL word, meaning th#t does not
align to any target word.

e Samplef; from a word translation lexicop( f|e, ).

The generative procedure defines the joint likelihood ofgberce sentencg’ and the
word alignment sequencg given the target senteneg:

J
p(fi . aflel) o Hp(aju)-p(mea,.) (3.11)
"~ 1 J J
< (117) [T#5k) (3.12
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The IBM Model 1 samples each alignment variabjéndependently and uniformly. IBM
Model 2 replaces the uniform distribution with a distritartip(a;|7). The HMM model
introduces the first-order dependence of the alignmentabbes viap(a;|a;_1, ). 1BM
Model 3-5 further improves the word alignment via the notidrfiertility and the inverted
alignment set3;. With fertility, a target worde; can generate multiple source words, with
B; containing a set of positions of the source words. Model 3gnakzero-order distortion
model overB; usingp(B;|e;) while Model 4-5 employ a first-order modg(B;|B;_1, ;)
which depends on the previous inverted alignment/et. The generative procedure of
the IBM Model 4 forp(F'|E) is described as follows:

e For each position of a target sentence, sample a fertility factor; for e; of how
many source wordg are generated (which can be zero).

e Sample a fertility factorp, for the NULL word ¢, from a binomial distribution

Binomial(¢| 37, ¢;).

e For each position of ¢/, sample the source words givenup to the fertility count
using the word translation lexicon, thatfig ~ p(f|e;) Vk = 1...¢;.

e For each position of e!, sample the inverted word alignment g&t To start with,
the position of the first source worf, is determined by sampling the jump dis-
tanceA; using the probability distributiop_; (A|class f;1), clasge;)) relative to
the center position of the previous non-empty;, denoted as,;). In other words,
By = % + A;. The word classes of the source and target words can be deter-
mined using a word clustering algorithm (Brown et al., 1992he use of word
classes is to reduce the number of model parameters andvegire model gener-
alization. The jump distances,, for other remaining source words, (with & > 1)
are sampled using another probability distribution (A |class f;x)) monolingually.

In other words B;;, = Bij—1 + Ay.

e The inverted alignment positions,, corresponding to the NULL word, is sam-
pled with a uniform distributio%, assuming that each permutation is equally
likely.
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The generative procedure of IBM Model 4 corresponds to thre jielihood of the source
sentence; and the word alignment sequencggiven the target senteneg:

p(f . ailes) = p(fi, Bylep) (3.13)
I
= p(cboIZcbi)H (dile:) - HHp firles)
N i=1 =1 z 0 k=1
fertilit;model translatlon model

I
szl(Bz-l — B.wclasg f,1), clasge;))
=1

-

distortion model for the first source position

I ¢
H Hp>1(Bik — Bij_1|class fir))

1=1 k=2
A

J/

distortion model for thevremaining source positions
1

ol

_ o~
distortion model forB,

(3.14)

Model 3-4 is said to be deficient because both models ignoethein a source word has
been chosen while samplinfg;. In addition, probability mass is reserved for source po-
sitions outside a sentence boundary. Therefore, the pild@atstribution does not sum
to unity. Model 5 addresses this deficiency by excluding thece positions which have
been already sampled. Model 6 is a log-linear combinatioMoélel 4 and the HMM
model.

Given the word alignment of parallel sentences, estimaingrd translation lexicon
can be performed via the word alignment coutity, ¢) of how many times a source word
f is aligned to a target worein training corpora:

C(f.e)
p(fle) = S, 00U (3.15)
A backward translation lexicop(e| f) can be estimated in a similar fashion. Expectation-
Maximization or Viterbi training is involved to refine the wibalignment and then re-
estimate the translation lexicons iteratively until comence.
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3.4.3 Phrase Extraction

Word alignment is an essential step towards state-of-thpkaase-based statistical ma-
chine translation (Koehn et al., 2003; Vogel et al., 2003)e ddvantage of using phrase
translations is that local word re-ordering can be captuvithin a phrase paix f,é >,
which can be extracted from the word alignment between allphsntence pair. The
aligned phrase pairs that are consistent with the word alegt are collected: The words
in a legal phrase pair are only aligned to each other, andonabtds outside (Och et al.,
1999).

Similar to estimating a word translation lexicon, we can aggrase alignment count

C(f, é) to estimate the phrase translation probability known agptirase score:

.~ C(f,e
p(fle) = =8 (3.16)
Zf’ C(f 76)
Alternatively, the translation probability can be complitesing the best word alignment
of a phrase pair, known as the lexical weighting, as follows:

pu(fe) ~ maxp(flé,a) (3.17)

S 2 vk (3.18)

bl Y(i,j)€a

- mf"‘rjh{z‘:(

wherea is some word alignment configuration of a phrase pair obseiwell parallel
sentence pairs. Typically, phrase extraction createsasphable with four scores for each
phrase pair: the phrase scores and the lexical weightinigstimtranslation directions.

3.4.4 Minimum Error Rate Training

Motivated from the maximum entropy modeling, a direct mauglapproach (Och and
Ney, 2002) is prevalent to model the posterior probabiity!|f/) via a set of feature
functionsh,, (¢!, f{):

e m=1 Amhm (€], 7))

Z(f1)

pleflfi) = (3.19)
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where each feature functidn,(-) takes a sentence pair as an input and produces a real
number as an output. For instance, feature functions irecladguage model, distortion
model, word count, phrase count, phrase translation s@rddexical weightings. For
instance, the feature function for a language model takesaiyet sentence (and ignore
the source sentence) and returns the total language mamtel atthe target sentenes.
Minimum error rate training (Och, 2003) is applied to optmithe feature weights\,, }

with an optimization criterion such as BLEU, which will besdussed in Section 3.4.6.
Given the N-best translation candidates of each of the ispatences in a development
set, the feature weights are adjusted iteratively to ré-tha N-best lists such that the cost
function is optimized.

3.4.5 Language Modeling

Similar to automatic speech recognition, an N-gram languagdel is usually employed
for statistical machine translation. The language modéiaimed only on text from the
target language. Since our baseline system translates@lanese to English, our target
language model is trained on English text from monolingwed-parallel corpora and the
English side of bilingual parallel training corpora. ThelSR toolkit (Stolcke, 2002)
is used for language model training using the modified Kndsgr smoothing. Similar
to language modeling for automatic speech recognition Eihglish text are partitioned
according to sources so that a source-dependent languadgd imdrained. The language
models are linearly interpolated with the interpolationgtes estimated using a heldout
set.

3.4.6 Performance Metrics

Bilingual Evaluation Understudy (BLEU) (Papineni et al002) measures the quality of
translation based on the statistical closeness of traatstantencegs; } to reference trans-
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lations{r;} with I sentence pairs in a test set. The BLEU metric is defined assl|

BLEU = BP.¢Xa- xloer (3.20)
1
= - .. count(n-gram)
wherep, = ZI 120 gram.. (3.21)
2 i=1 2_n-grames, COUNty;(n-gram)
LTE
and BP — ¢ "OriiD (3.22)

where count(n-gram) is the n-gram co-occurrence in a te@dlsentence and a corre-
sponding reference translation. coypin-gram) is the n-gram count in the translated
sentence only.p, is the modified n-gram precision. BP is the brevity factor enal-
ize shorter translation than the reference translationrevhg. ; and L,,; denote the total
length of the reference and the system translation on theétsespectively. Usuallyy

is set to 4, known as the 4-gram BLEU score.

The NIST metric (Doddington, 2002) attempts to weight thgram co-occurrence
based on information since some n-gram may be more infove#tian the others. The
formulation is defined as follows:

N > ) ) info(n-gram
all n-grams that co-occdif
NIST = § BP. S : (3.23)
1 n-grants,
. count(n-1)gra
info(n-gram = log, couE]((n-g)?a ”?n) (3.24)
1 Lsys
Bp — (P10 My (3.25)

where counin-gram is the count of occurrences @f; ws ... w,) and counf(n-1)gram

is the count of occurrences ¢6f; ws ... w,_1) in all reference translations.is chosen
to make the brevity penalty (BP) equal @& when the number of words in the system
output is 2/3rds of the average number of words in the referéranslation.

3.4.7 Chinese-To-English Translation System

Our baseline systems include a small-scale RT04 system €faah, 2007a), medium-
scale GALE development system, and large-scale GALE-PRID §ystem (Hildebrand
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Table 3.10: Size of the language model training corpora hadgarallel training corpora
for phrase extraction in terms of number of words.

LM training /[ training corpora
SMT System English Source Chinese English
RTO4 80M Donga, Xinhua 2004 35M 43M
GALE-dev 500M Xinhua (1995-2006) 59M 67M
GALE-P2.5 2.7B  Gigaword V3 (LDC2007T07) 232M  260M

et al., 2008) translating from Chinese to English. The palr&aining corpora for system
development are shown in Table 3.10. Part of the Chinesdigbnigilingual corpora for
the GALE system are available from the LDC

The RT04 system employs online phrase extraction using B®&APapproach (phrase
pair extraction as sentence splitting) (Vogel, 2005). Taolifate the efficiency of online
phrase extraction, parallel training sentences are indlgiea suffix array (Manber and
Myers, 1993; Zhang and Vogel, 2006) and pre-loaded into ngimefore decoding. The
IBM Model-1 lexicon is used for scoring the phrase pairs dgidecoding.

For the medium-scale and large-scale GALE systems, the IBddeé4 is used for
word alignment using a parallel version of GIZA++ toolkit¢and Ney, 2003). Phrase
extraction and scoring are performed using the Moses to@{kiehn et al., 2007)

4-gram English language models are employed for the RTO4tledSALE devel-
opment systems while a 5-gram language model is trainech®GALE-P2.5 system.
The text pre-processing steps include tokenization on tighigh side and on the Chinese
side: automatic word segmentation using a revised verditimeoStanford Chinese word
segmenter (Tseng et al., 2005), replacement of traditiGhalese characters by their sim-
plified equivalent and 2byte to 1byte ASCII character noreagion. Sentence pairs with
unbalanced sentence length are removed from the trainingpran

Shttp://projects.ldc.upenn.edu/gale/data/catalod, lisrst consulted 2 April 2009
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Table 3.11: Statistics of the development sets and thedtsta statistical machine trans-
lation containing newsgroup (NG), newswire (NW) and br@sicews (BN). EvalO7u.BN

stands for the unsequestered BN portion of Eval07 for spaaclslation. Confusion net-

work (CN) is used to represent multiple translation optiohs target phrase in Eval07
test set.

Set Sentence Document/Show Reference Genre

RTO04-dev 272 4 1 BN

RTO04-eval 522 3 1 BN, BC

MTO3 (dev) 919 100 4 NW

MTO6 (test) 1664 79 4 NG, NW, BN

EvalO7u.BN (ASR test) 314 32 CN BN
Decoding

Decoding is performed by constructing a translation lattihich contains all possible
matched bilingual phrase pairs of an input source sentelicéhe GALE-P2.5 system,
part-of-speech based word re-ordering (Rottmann and V&§€l7) is performed on an
input sentence to produce an input source lattice beforelibgithe translation lattice.
Search is then performed on this lattice using our STTK beaarch decoder (Vogel
et al., 2003). The word re-ordering window is setitand3 for the RT04 system and the
medium-scale system respectively while monotonic de@pdrapplied for the GALE-

P2.5 system since word re-ordering is already applied irsthece lattices. An optimal
path is returned with a maximum translation score congjstina log-linear combination
of feature functions including a language model probabitiistortion penalty, word-count
penalty, phrase count and phrase-alignment scores.

Development/Evaluation Set

Table 3.11 shows the development sets and the evaluatisn Beé RT04 sets are used
to tune and evaluate the RT04 system while MT0O3 and MTO06 setsised to tune and
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Table 3.12: Configurations of the baseline statistical nrectranslation systems.

RTO4 GALE-dev GALE-P2.5
Scale small medium large
Translation model phrase-based (online) phrase-based asgitrased
Word alignment - IBM Model 4 IBM Model 4
Target language model 4-gram 4-gram 5-gram
Distortion model distance-based distance-based papeéch
Input format sentence sentence word lattice
# feature functions 10 8 9

evaluate the GALE systems respectively. The Mandarin REfglare originally designed
for the RT04 broadcast news evaluation for automatic speeocbgnition. MTO03 con-
tains newswire documents while MTO6 comprises other genoh s newsgroup and
broadcast news. The development sets are used to tune tgbtsvef the feature func-
tions via minimum error rate training. For end-to-end spe&anslation, we use the
unsequestered broadcast news portion of Mandarin EvalO@viduation. The English
translation reference of Eval07 employs a confusion-ndivige representation to en-
capsulate multiple translation options of an English paraSor instance, the following
sentence Over 50 car models with domestic brands have reduced thétegprat the
same time//collectively//all].encapsulates different translation options compactingis
a confusion network.

We perform significance testing using a bootstrapping aggrqZhang and Vogel,
2004) that repeatedly draws random subsets of translateelrszs from a baseline system
so that the score of a performance metric is computed for saatom subset. As a result,
an empirical distribution over the scores is formed and a @#fidence interval with
respect to the baseline system is constructed. We repadtital significance when the
score of an alternative approach exceeds the baseline ennédnterval.

Table 3.12 shows the summary of the baseline RT04, GALE dpwe¢nt and GALE-
P2.5 systems.
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3.5 Summary

We have described our baseline Mandarin and Arabic trgotsani systems and the base-
line Chinese-to-English statistical machine translaggstems. Our systems employ the
current state-of-the-art techniques for training and dew. In the following chapters, we
describe our unified topic adaptation framework for the basdranscription and transla-
tion systems.
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Chapter 4

Monolingual N-gram LSA Based
Language Model Adaptation

We present unsupervised language model adaptation baskdeah semantic analysis.
Firstly, we propose a topic caching approach that cacheas tmunts of a word context
in contrast to traditional word caching that caches wordnteuWe introduce incremen-
tal marginal adaptation for lattice rescoring that is agalgs to full marginal adaptation
on a background language model. We propose latent Diridivks# allocation for model-

ing topic correlation to generalize latent Dirichlet alidion for latent semantic analysis.
Lastly, we extend latent Dirichlet-Tree allocation to itsgkam version to relax the “bag-
of-word” assumption and address the model training and gmogissues. We evaluate
our approaches for unsupervised language model adaptatitarge scale GALE evalua-
tions on Mandarin and Arabic.

4.1 Topic Caching

Cache-based language model (Kuhn and Mori, 1990; ClarksdrRabinson, 1997) en-
ables rapid language model adaptation by capturing thendipseof natural languages via
caching the frequency of the recently occurred words. Th@@ach is computationally
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efficient since only word counts are needed to store and mktgonline. It offers sig-
nificant improvement in word perplexity for supervised laage model adaptation. How-
ever, caching the word counts from speech recognition thgs#s is not appropriate for
unsupervisedanguage model adaptation since the probability of a nesgaized word
is increased after word caching. We present a topic cactppgoach via latent Dirich-
let allocation (Tam and Schultz, 2005) that employs a Dleatprior. The Dirichlet prior
can be interpreted as a dynamic cache to store the fractiop& counts in the E-steps
described in Section 2.2.3:

E-steps:
Ye = QO + Z q(zi = ]C) (41)
q(zi = k) eFallog O] - p(w;|k) (4.2)

whereq;, denotes the prior pseudo-count for togiandq(z; = k) is the fractional topic
count of thei-th word in the context. Equation 4.1 means caching the fractional topic
counts from a word context. After topic caching, we geneaatadapted unigram language
model via linear interpolation as follows:

pasult) = [ S plulk) - p(k16) - (6l (1)) 4.3)
"k 1

_ me\k). / 61 - q(01h: (1)) (4.4)

— Zp w|k) - E,[0,|h] (4.5)

where E,[0:]h] = B! E=1.K 4.6

ere Bfilh] = st (k=1..K) (4.6)

q(0]h; {+}) denotes a variational Dirichlet posterior over the topiximie weights with
K topics. Given the word hypotheses decoded from past spetrhnces, unsupervised
language model adaptation can be performed as follows:

1. Cache the fractional topic counts.
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2. Re-compute an adapted unigram model.

3. Update the topic cache table, } in the Dirichlet prior as:

Qp )\'@k—FZCi'Q(Zi:k) (4.7)

i€h
where\ € [0, 1] is a scaling factor of the history which can be tuned on a heldo
set, and:; denotes the confidence score of the i-th word from the corviatér /.

4. Perform (log) linear interpolation with a backgrounddaage model and then de-
code the next utterance.

5. If a topic boundary (e.g. at the end of an audio show) isrgiwtear the context
buffer and reset the cache table to the backgroung-.

Discounting the prior counts with in equation 4.7 is desirable since an audio show, such
as in broadcast news, can contain multiple independengestand the information from
the past utterances crossing an unknown topic boundaryralevant to the current topic.

For example, the following sentences extracted from CCTdi@anews are marked
with topic boundaries at the sentence level using latentblat allocation:

okay let 's break in to a piece of news that we just received
<TOPIC BOUNDARY>

according to a report by south korean ytn cable tv two traiagging flammable materi-
als collided and exploded at the ryongchon train station yopg - an - buk - do in
north korea at 1 pm on the 22 nd local time which was 2 pm betjmg

the explosion might have killed several thousands of peaudenjured 3000 others
<TOPIC BOUNDARY>

okay let 's continue our focus on financial news

Moreover, the automatic topic assignments can vary wittsargence:
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Table 4.1: Sample latent topics extracted from latent Digtallocation.

Latent topic Top words (translated from Chinese)
“economy” development, economy, country, society, wogldbe
“sport” competition, candidate, rank, sport, result, cipaon
“health” disease, therapy, AIDS, hospital, health, pdtipaople
“technology”  company, information, network, system, tegclogy
“education” hong kong, education, mainland, student, gxpe

<topic 1> okay let 's continue our focus orc/topic 1> <topic 2> financial </topic
2><topic 3> news </topic 3>

The computational complexity of the E-steps is O(TMK) wh&reenotes the number
of iterations in the E-steps ant! denotes the number of words in the context buffer.
Log-linear interpolation is computationally efficient ¢y decoding since the scores are
usually expressed in logarithm and thus the computatioy iomblves few floating point
operations.

4.1.1 EXxperiment

We compared topic caching with word caching for incrementaupervised language
model adaptation on different language model training ages from scarce data (1M
words) to large data (300M words) drawn from the Chinese Bayd corpora V1. The
word cache-based language model was a unigram language timaictynamically adapted
to the past decoded hypotheses using the decaying words;@unat was then interpolated
with the background trigram language model. We trained &dpacind trigram language
model and latent Dirichlet allocation using the same amofidata on each test scenario.
The training corpora for latent Dirichlet allocation werganized into documents where
each document was roughly a piece of news story annotatdeindrpora. We did not
remove function words from training otherwise the unigramigability of function words
would be under-estimated. Table 4.1 shows examples oftlagpits in latent Dirichlet
allocation sorted by the unigram probabiljtyw|k). The number of latent topic&” was

66



800 19
trigram ;

g trigram
trigram + word caching ---&.- N trigram + word caching ---&.-
trigram + topic caching (LDA) ---E}- i trigram + topic caching (LDA) ---E}-

700 -

600

or rate (%)

ity

500 | .

Perplex

Char:
.
]

400 [

. \D""r,
300 | 14}

A

200 L 13 L
1M(2002) 13M(2002) 300M 1M(2002) 13M(2002) 300M
# of training words # of training words

Figure 4.1: Perplexity (Left) and the character error r&ight) for topic and word caching
on CCTV of the RT04 test set.

set to50 motivated by (Blei et al., 2003).

We used the official Mandarin RT04 development set for patamening such as the
interpolation weight between the background language irenatd the dynamic unigram
language model generated from latent Dirichlet allocatéor the history scaling factor
Optimal weight for the trigram language model was betw@&nr-0.9 and the word history
scaling factor\ was between.3 — 0.4 based on word perplexity of the RT04 development
set. We employed our Mandarin RT04 transcription systenetmde the CCTV show of
the RTO4 test set. Since the topic boundary was not givereinet set, the word history
buffer was cleared only at the end of the audio file.

4.1.2 Results

Figure 4.1 shows the language model adaptation performamperplexity and character
error rate with different sizes of the training corpora. ldtigh the word caching approach
was more effective in reducing perplexity compared to tagiching, degradation in char-
acter error rate was obtained in Figure 4.1 (Right) , whiclresponded to the results
reported in (Clarkson and Robinson, 1998). On the other hapit caching reduced the
recognition error rate on different training scenarios. eflthe language model training
data are scarce, the recognition performance degradeshandard hypotheses contain
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LM (300M) CCTV NTDTV RFA ALL Rel. A
background 13.1% 17.5 35.7 215 -
50 topic 13.1 17.6 35.2 214 0.5
100 topic 13.2 17.3 34.6 21.1* 1.9
200 topic 12.7 17.1 349 21.00 2.3
300 topic 13.2 17.0 34.7 21.1% 1.9
400 topic 12.9 17.3 34.7 21.1* 1.9
500 topic 13.1 17.2 344 21.0~ 2.3

Table 4.2: Character error rate (%) on the RT04 test set witbrdnt number of topics

in latent Dirichlet allocation using the GALE-P1-dryrun RN@arin transcription system.
Overall relative reduction (RelA) compared to the unadapted baseline is reported. *
denotes that the approach is statistically significart &% significance level compared
to the unadapted baseline.

more recognition errors. However, topic caching still @seid improvement in the recog-
nition performance compared to the unadapted baseline. obkervation suggests that
topic caching is more robust against speech recognitiamsthan word caching, making
it suitable for unsupervised language model adaptation.

4.1.3 Optimal Number of Topics

The next question is the optimal number of topics for latemichlet allocation. Empir-
ically, we varied the number of topics for LSA training froho to 500 and performed
unsupervised language model adaptation using the GALBFAL Mandarin transcrip-
tion system. All models were trained on the same trainingpa@ with 300M Chinese
words. We compared the recognition performance on the flARtest set having three
audio shows: CCTV, NTDTV and RFA.

Table 4.2 shows the character error rate with different nemdf topics for topic
caching. Better recognition performance was achieved txgasing the number of topics.
The optimal number of topics wa$0 in terms of optimal recognition performance and
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minimal model size. The error reduction was statisticalgngicant at a< 5% signifi-
cance level compared to the unadapted baseline. The seftiig= 200 is employed for
the rest of the experiments.

4.2 Latent Dirichlet-Tree Allocation

One assumption in latent Dirichlet allocation is the use Biirgchlet prior, which asserts

that the topics are independent. In other words, knowingpttogortion of one topic

does not provide any information about the proportion oftheotopic. In reality, the

assumption may not be true since topics may be correlatedinbtance, news articles
in a newspaper website are usually organized into the nogiic-tind sub-topic hierarchy.
Intuitively, it would be advantageous to model the topicretation, which motivates the
extension of latent Dirichlet allocation into latent Diniet-Tree allocation (LDTA) (Tam

and Schultz, 2007b). Latent Dirichlet-Tree allocation tcags the topic correlation via
a structural Dirichlet-Tree prior (Minka, 1999; Ill, 1991)n fact, a Dirichlet prior is a

special case of a Dirichlet-Tree prior since a Dirichlettidlgition can be visualized as
a flat tree with depth one. Sampling from a Dirichlet disttibn becomes labeling the
branches under a node with probability values summing ttyuin general, a Dirichlet-

Tree can have different depth and structure. Figure 4.2tites a depth-two Dirichlet-
Tree where the root node is a Dirichlet distribution with méman two branches while the
Dirichlet nodes at the bottom only allow binary branches.

Given a Dirichlet-Tree of a fixed structure parametrized Bgtof Dirichlet parameters
{a;.}, adocumentyl is generated as follows:

1. Sample a vector of branch probabilities ~ Dirichlet(-;{«;.}) for each node
j = 1...J where{a,.} denotes the parameter of a Dirichlet distribution at ngde
that is, the pseudo-counts of the outgoing branahnodej.

2. Compute the topic distribution as in equation 4.8,

o = J[v5" (4.8)
jc
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Figure 4.2: Left: Dirichlet-Tree prior of depth 2: Each imal node is represented by a
Dirichlet distribution over the branches. Right: Variatal E-step as bottom-up propaga-
tion and summation of fractional topic counts.

whered;.(k) is an indicator function which sets to unity when thth branch of the
j-th node leads to the leaf node of togiand zero otherwise. Theth topic weight
0. is computed as the product of sampled branch probabilittes the root node to
the leaf node corresponding to togic

3. For each wordy; in a documentv?,

e Sample a latent topic index from Multinomial(®)

e Samplew; from p(w|z;).

The joint distribution of the latent variables (that is, thpic sequence} and the Dirich-
let nodes over their child branchég and an observed documenf’ can be written as
equation 4.9,

N
pwy, 2, b)) = p(bfl{ajc})l—[p<wilzi)-9zi (4.9)
=1
where
J
p({[{ae}) = []Dirichlet(bs; {aze}) oc [ o5 (4.10)
j=1 jc
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Similar to training latent Dirichlet allocation, we applanational Bayes to optimize the
lower bound of the marginalized document likelihood usimg densen’s inequality (equa-
tion 4.11):

N _N 1J.
N, _ J . (wlazlvblaA)
log p(w; A) = log/bllz AR BNy (4.11)
Zl
N NbJ'A)
> b T - (w1 %15 015 4.12
. /Zq e (@12

= Qwl;AT) (4.13)

where

N N J.A
Q(wl; A, T) = Eq[logp(wl 2N b))

] (4.14)

Q(Zl >b{7F)
B o w1 p(=1'[)) pv3{a,})
= Byllogpwl|21)] + Byllog = ] + Byllog i ths ) (4.15)

q(zN b)) =TIV, a(z) - HJ L q(b;) is a factorizable variational posterior distribution
over the latent variables parametrizedIbwhich are determined in the E-stepsare the
model parameters for the Dirichlet trée;;.} and the topic-dependent unigram language
model {p(w|k)}. The Dirichlet-Tree posterior has the same form as the DleicTree
prior given the topic sequencé’ since

p(bilz") oc p(af [0]) - p(b]s {ase}) (4.16)
x (HHbﬁ(ZZ> Hba”_l (4.17)
i=1 jc
. Hbja“Jer o) (4.18)
= HDirichlet(bj;{vg-c}) (4.19)

Therefore, the conjugate property suggests that the posbeanch county;. can be com-
puted by accumulating the expected branch counts from tirerduobservations. Due to
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the same graphical structure, the E-steps of latent Datehitee allocation is similar to
latent Dirichlet allocation:

E-steps:
Vie = et ¥ Eqldje(2)] (4.20)
N K
= Q.+ Z Z ik - 0jc(k) (4.21)
i=1 k=1
Gir o< plwlk) - ePalloedri{el] (4.22)
where
E,logh,] = Z 8;0(k)E,[log bje] (4.23)

— Z5jc(l<:)< ("Vje) — Z%c> (4.24)

whereg;, denotes;(z; = k|w)') meaning the variational topic posterior of wargl Equa-
tion 4.20 and equation 4.22 are executed iteratively untivergence is reached. Equa-
tion 4.20 can be implemented as propagation and summatioaadional topic counts;,
from the leaf nodes to the root node in a bottom-up fashiomegs in Figure 4.2 (Right).

M-step:

plwlk) Zqzk §(w;, w) o< Ci(w) (4.25)

The re-estimation formula fofp(w|k)} is the weighted relative word frequency in equa-
tion 4.25 wherej(w;, w) denotes a Kronecker Delta function. The;.} parameters can
be re-estimated with iterative methods such as Newton-&aplr simple gradient as-
cent procedure. Appendix B provides a full derivation baged/ariational Expectation-
Maximization algorithm.
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Table 4.3: Sample contiguous fragment of latent topicsaex#d from latent Dirichlet-
Tree allocation.

Latent topic index Top words (translated from Chinese)
“topic-61” education, student, school, teacher, learning
“topic-62” university, expert, high-level, education, training
“topic-63” employment, expert, labor, work, career
“topic-64”" research, china, science, technology, scientist
“topic-65" gene, human, clone, research, biology
“topic-66" research, discover, cell, gene, treatment
“topic-67" transplant, surgery, patient, liver, hospital
“topic-68” information, network, service, web, client
“topic-69” system, computer, technology, computer, chip, software

4.2.1 Experiment

We compared latent Dirichlet-Tree allocation with latenti€éhlet allocation via unsuper-
vised marginal adaptation. For rapid benchmarking, we &mployed the small-scale
Mandarin RT04 transcription system for experiments fokoMby a large-scale evalua-
tion using the Mandarin GALE-P1 transcription system. TI8ALmarginals were com-
puted separately for each approach at the show level on tBd EEt set. Then the LSA
marginals were employed for marginal adaptation. For kigrichlet-Tree allocation, a
balanced binary tree was employed.

Table 4.3 shows the correlated topics extracted via latentHlet-Tree allocation.
We observe contiguous fragments of correlated topics spaeding to the leaf nodes
of the tree from a left to right fashion. Topics 61-63 are elgselated to a general
topic “education” and topics 68—69 are closely related tceaegal topic “information
technology”. The results suggest that the tree structui@ess proximity constraint over
the topics.
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Figure 4.3: Training log-likelihood of latent Dirichlet latation (LDA) and latent
Dirichlet-Tree allocation (LDTA) using the Xinhua News ZD6orpora (13M words).

4.2.2 Training Convergence

Figure 4.3 shows the training convergence of latent Digthllocation and latent Dirichlet-
Tree allocation in terms of the training log likelihood ugin00 and 400 topics. Both
training approaches started with the same model k) that were initialized with uniform
distributions while their prior distributions were initiaed randomly. Latent Dirichlet-
Tree allocation converged significantly faster than lat@imichlet allocation in terms of
the number of training iterations. This effect was more sigant when the number of
topics increased td00. The rapid convergence is attributed to the structuredcbieit-
Tree prior that restricts the model space compared to theuatsred Dirichlet prior. In
other words, an observed topic triggers its correlatedc®pia the tree structure while the
topic independence assumption in the Dirichlet prior labkseffect. We conclude that la-
tent Dirichlet-Tree allocation is useful because it doessodfer from model initialization
issue.

74



-1.14e+08

-1.16e+08 -

-1.18e+08 -

-1.2e+08 |-

-1.22e+08 - |/
-1.24e+08 - ','

-1.26e+08 |- [ij

Training log-likelihood

-1.28e+08 |- ji/

-1.3e+08 i’ T - -
-1.32e+08 |t T -

-1.34e+08 L7 1 :
o 10 20 30 40 50 60 70 80 90 100
# of training iterations
| branch=2 branch=4 s branch=20 -------- |
branch=3 -------- branch=10 ----—- branch=200 (LDA) ------ -

Figure 4.4: Training log-likelihood of latent Dirichletr@e allocation with different num-
ber of branches in a Dirichlet node using the Xinhua News 2@f#@ora (13M words).

4.2.3 Effect of Dirichlet-Tree Structure

Figure 4.4 illustrates the effect of the tree structure i of the training likelihood by

varying the number of branches in a Dirichlet node. Resuitssthat the training con-

vergence is optimal when a balanced binary tree is emplofedhe number of branches
increases, the independence assumption among topics bscironger and thus slow-
ing down the training convergence. In an extreme case imti@e&ichlet allocation, the

training convergence is the slowest.

4.2.4 Results

Table 4.4 shows the word perplexity and the character eaterafter LSA marginal adap-
tation using a small-scale Mandarin RT04 transcriptiorteaystrained on the 13M cor-
pora. Latent Dirichlet-Tree allocation reduces the ougraltplexity and character error
rate relatively by 7-12% and 2% respectively compared enkaDirichlet allocation, and
by 10%-17.5% and 4.0% compared to the unadapted 4-gramdgaguodel. Latent
Dirichlet-Tree allocation performs better than latentiChiet allocation and the unadapted
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Table 4.4: Marginal adaptation results on character emite (word perplexity) on the
RTO4 test set using the small-scale Mandarin RT04 ASR sy&t@&M). Latent Dirichlet
allocation (LDA) and latent Dirichlet-Tree allocation (OB) were compared. Overall

relative reduction (Rel.A) compared to the unadapted baseline is reported. * denotes

that the approach is statistically significant<at5% significance level compared to the
unadapted baseline.
LM (13M) CCTV NTDTV RFA ALL Rel. A
background 15.6% (748) 22.1(1718) 40.0(3655) 25.3 -
+LDA (100 iter) 15.1 (695) 21.7(1669) 39.6(3451) 24.8* 290
+LDTA (100 iter) 14.4(629) 21.5(1547) 38.9(3015) 24.3* 410.5)

baseline at a 5% significance level.

Table 4.5 shows the adaptation performance for a large svaluation using the Man-
darin GALE-P1 transcription system trained on the 800M ooap Due to the limita-
tion of computation resources, we performed o2lyand50 training iterations for latent
Dirichlet-Tree allocation and latent Dirichlet allocaticespectively. Due to the slow train-
ing convergence, latent Dirichlet allocation required entyaining iterations before yield-
ing an acceptable adaptation performance. Latent Dirichiee allocation yielded 5%
relative perplexity reduction compared to latent Dirichddlocation with no degradation
in the overall character error rate. Compared to the unadiipaseline, latent Dirichlet-
Tree allocation reduced the relative perplexity and theadttar error rate by 8.9%-14.5%
and 2.5% respectively, which were statistically signifityaat a < 5% significance level.
Therefore, we use latent Dirichlet-Tree allocation for test of our experiments due to its
stable performance in terms of training convergence angliage model adaptation.

4.3 Incremental Marginal Adaptation

Marginal adaptation is useful for integrating an in-domlanowledge via latent semantic
marginals (Federico, 2002; Tam and Schultz, 2006). Incréahenarginal adaptation for
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Table 4.5: Marginal adaptation results on character eates (word perplexity) on the
RTO4 test set using the Mandarin GALE-P1 ASR system (800Mieit Dirichlet alloca-
tion (LDA) and latent Dirichlet-Tree allocation (LDTA) wercompared. Overall relative
reduction (Rel. A) compared to the unadapted baseline is reported. * denloseghe
approach is statistically significant &t5% significance level compared to the unadapted

baseline.
LM (800M) CCTV NTDTV RFA ALL Rel. A

background 8.3% (359) 14.4(868) 26.3(778) 15.9 -
+LDA (50 iter)  8.1(332) 14.0(834) 25.6(703) 15.5%* 2.5(9.6)
+LDTA (20iter) 8.3(313) 14.2(791) 25.3(665) 15.5% 2.5 @)

decoding is computationally expensive due to the compartaif the normalization factor
for all N-gram entries in a background language model. Tioeee marginal adaptation is
usually applied for domain adaptation where the backgrdanduage model is adapted
offline. We propose an incremental marginal adaptation @gagr for lattice rescoring.
The cost of marginal adaptation for lattice rescoring is patationally inexpensive since
only a few outgoing word links actually emerge from a conteatle in a lattice. Thus,
computing the normalization factor can be done efficientlye adapted language model
scores for each word link, j) is analogous to equation 2.71 for full marginal adaptation:

awiz) - Iy (i, §)

Ima(i,j) = — - Mass(i) (4.26)
Ej’EOut(i) a(wijr) -l (4, J')
where Mass(i) = Z Impy (i, 5') = Z Imy(i,7") (4.27)
j'€Out(7) j'€O0ut(7)
plda<wij)>e
and a(w;;) = (4.28)
(i) (pbg(wij)

wherew;; is the word label associated to the lik j). Out(i) denotes a set of links
from nodei. Mass(i) is introduced to ensure that the total probability mass fraode
i is conserved after adaptation, which is similar in spiritfast marginal adaptation in
equation 2.73.
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Dev07 Eval06
BN BC ALL Rel. A| BN BC ALL Rel. A
background 75% 18.8 13.9 -] 151 268 204 -
+LSA decode 7.4 18.6* 13.8* 1.4 14.7* 26.5* 20.0* 2.0
+LSA decode & rescore 7.3* 18.1* 13.4* 43 | 14.4* 26.2* 19.7* 3.4

Table 4.6: Character error rate (%) after applying LSA focaling (denoted as LSA
decode) using the GALE-P2 Mandarin transcription systettoi@d by incremental

marginal adaptation (rescore) for lattice rescoring aftess-adapting with the IBM Man-
darin transcription system on Dev07 and Eval06 test seterdlivelative reduction (Rel.
A) compared to the unadapted baseline is reported. * derfsdezpproach is significantly
better than the unadapted baselinec&®so level of significance.

4.3.1 Experiment

The language model adaptation experiment was performadgltire GALE-P2 evalua-
tion for Mandarin. Firstly, we cross-adapted the GALE-P2ndarin transcription system
using the word hypotheses from the IBM Mandarin transasipsystem. Then we applied
topic caching via latent Dirichlet-Tree allocation duridgcoding to generate word lattices
followed by incremental LSA-marginal adaptation.

4.3.2 Results

Table 4.6 shows the recognition performance after appliopic caching (LSA decode)

followed by incremental marginal adaptation (LSA rescor&pic caching reduced the
character error rate relatively by 1.4% and 2.0% on DevO7Ewval06 respectively com-

pared to the unadapted baseline. Incremental marginatatt@pfurther reduced the char-
acter error rate relatively by 2.0% and 1.5% on Dev07 and @etspectively compared
to topic caching. The total relative reductions after apmiyboth techniques were 4.3%
and 3.4% compared to the unadapted baseline. All reductiens statistically significant

at a< 5% significance level.
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Figure 4.5: Graphical model representation of a trigram LSA

4.4 N-gram Latent Dirichlet-Tree Allocation

One issue in latent semantic analysis is the “bag-of-wosguanption that ignores word
ordering. For document classification, word ordering mayb®important. But for lan-
guage modeling, word ordering is crucial since a trigranglaage model usually outper-
forms a unigram language model for word prediction. In Ceagt we describe a bigram
topic model to relax this assumption by connecting adjagends in a document to-
gether to form a Markov chain in latent Dirichlet allocatioffe present the N-gram latent
Dirichlet-Tree allocation (Tam and Schultz, 2008) basedhenbigram topic model (Wal-
lach, 2006) and latent Dirichlet-Tree allocation (Tam art8tz, 2007b). The graphical
model representation of a trigram LSA is shown in Figure 4.5.

The original formulation of the bigram topic model does ndtligess two important
issues: efficient model training and smoothing. We proposefficient training algorithm
for the N-gram latent Dirichlet-Tree allocation via var@tal Expectation-Maximization
algorithm and model bootstrapping which are scalable gel@lata sets in Section 4.4.1.
We formulate the fractional Kneser-Ney smoothinfpr model smoothing. Our formu-
lation generalizes the original Kneser-Ney formulatiom@ser and Ney, 1995) which
supports only integral counts in Section 4.4.2. We applyNkgram latent Dirichlet-Tree

1This method was briefly mentioned in (Xu et al., 2003) withdetail in a different context. (Bisani
and Ney, 2008) formulated this method independently in plygane-to-phoneme setting.
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allocation for the large-scale GALE evaluation for autoimapeech recognition in this
chapter, and in statistical machine translation in Chapter

4.4.1 Model Training

Gibbs sampling is employed in the original bigram topic mod®@espite its simplicity,
it can be slow and inefficient since it usually requires headgrof sampling iterations for
convergence. We present a variational Bayes approach fdehti@ining. For simplicity,
we only show the formulation for bigram LSA, but it is stratégrward to generalize to
N-gram LSA. The joint likelihood of a document), the latent topic sequence” andf
using bigram LSA can be written as follows:

N
plwy’, 21',0) = p()- HP(ZHQ) - p(wilwi-1, %) (4.29)

By introducing a factorizable variational posterior distition (2, 0; T') = q(0)-T].", ¢(z)
over the latent variables and applying the Jensen’s inggugte lower bound of the
marginalized document likelihood can be derived as foltows

p(wd, 2V, 0; A
logp(w); A, I) = log/Z (z),0,T) - <(lz 19 F))
Z1...2N 1>
(w1,21,9A>
= /;N”’” A, ;1)
zz|9
log +Z e —i—ZE [log p(w;|w;—1, 2;)]
= Q(wu/\’lﬂ)

where the expectation is taken using the variational pimstef-.", ). For the E-steps, we
compute the partial derivative of the auxiliary functi@q-) with respect tg;(z;) and the
parametery;. in the Dirichlet-Tree posteriay(¢). Setting the derivatives to zero yields:
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E-steps:

q(zi=Fk) o plwilwi_y, k) - ePalleetsitiicl for k = 1. K (4.30)

Tje = ajc+ZEq[5jC(zi)] (4.31)
N K
= e+ Y Y qlzi=k)- (k) (4.32)
i=1 k=1
whereE,[log ;] = Zajc E,[log b;] (4.33)

— Zajc(k)< (V) — Z%c> (4.34)

where equation 4.31 is motivated from the conjugate prgp&et the Dirichlet-Tree pos-
terior given the topic sequence’ has the same form as the Dirichlet-Tree prior, which
has been introduced in Section 4.2. Equation 4.30 and enudtB1 are applied itera-
tively until convergence is reached. For the M-step, we caiephe partial derivative of
the auxiliary functionQ(-) over all training documentsg with respect to a topic bigram
probability p(v|u, k) and set it to zero:

M-step (unsmoothed):

p(v|u, k) o ZZ = k|d) - 0(w;_1,u)d(w;, v) (4.35)
d i=1
_ Zd Cd(“a U|k> (4 36)
Zd 21‘;:1 Ca(u, v'|k) '
Clu,vlk) (4.37)

> o1 Clu,v'|k)

where V; denote the number of words in documenandd(w;, v) is a0 — 1 Kronecker
Delta function to test if the-th word in document is vocabularyw. Cy(u,v|k) denotes
the fractional counts of a bigrarfu, v) belonging to topick in documentd. Intuitively,
equation 4.37 simply computes the relative frequency obigeam (u, v). However, this
solution is not practical since the model assigns a zerogimtiby to an unseen bigram.
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Therefore, bigram LSA should be smoothed properly. One &rapproach is to use the
Laplace smoothing by adding a small coudrtb all the bigrams (Wallach, 2006). How-
ever, this approach can lead to worse performance sincd ibvias the bigram probability
towards a uniform distribution when the vocabulary sizgets large. Our approach is to
represenp(v|u, k) as a standard backoff language model smoothed by fractiomeder-
Ney smoothing as described in Section 4.4.2.

Model initialization is crucial for variational EM. We enp/ a bootstrapping approach
using a well-trained LSA as an initial model for bigram LSA 8@t p(w;|w;_1, k) is
approximated by (w;|k) in equation 4.30. It saves computation and avoids keepiag th
full bigram LSA in memory during the Expectation-Maximiiat training. To make the
training procedure more practical, we apply bigram prurdngng statistics accumulation
in the M-step when the bigram count in a document is less thhreahold, say).1. This
heuristic is reasonable since only a small portion of topies“active” to a bigram. With
the sparsity, there is no need to stdfecopies of accumulators for each bigram and thus
reducing the memory requirement significantly. For simpfiche pruned bigram counts
are re-assigned to the most likely topic of the current dosninso that the counts are
conserved. For practical implementation, accumulat@saved into a disk in batches for
count merging using the SRILM toolkit. In the final step, eambic-dependent language
model is smoothed individually using the merged count file.

4.4.2 Fractional Kneser-Ney Smoothing

The state-of-the-art smoothing for a backoff language rhisdeased on the Kneser-Ney
smoothing (Kneser and Ney, 1995). The belief of its succeshie to the preservation
of marginal distributions. However, the original formutat is defined only on integral

counts, which is not suitable for bigram LSA using fractiboaunts. We investigate the
fractional Kneser-Ney smoothing as a generalization obtiganal formulation.

The interpolated form using absolute discounting can bessged as follows:

prn(vlu) = max{C(gj(Z)) 0.0 + A(u) - pr(v) (4.38)
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where D is a discounting factor. In the original formulation) lies betweer) and 1.
But in our formulation,D can be any positive number. Intuitivelf), controls the degree
of smoothing. IfD is set to zero, the model is unsmoothed;ifis too big, bigram
counts smaller tha are pruned from the language modg(x) ensures that the bigram
probability sums to unity. After summing over all possiblen both sides of equation 4.38
and re-arranging terms,(u) becomes:

XD mar{C %’(Z)) —D0 4 ) (4.39)

— A\u) = 1- Z m“f”{c(g’(z)) - 0.0} (4.40)
O~ Socunn Clu+D Secwnsnl 44
et c<u,é»zu+)DZv:o<u,v>>D1 (.43

_ Cep(u,) 2 (Zﬁ N-p(u, ) (4.44)

where C<p(u, ) denotes the sum of bigram counts followingand smaller tharD.
N-p(u,-) denotes the number of word types followingvith the bigram counts bigger
thanD.

In the Kneser-Ney smoothing, the lower-order distributigay (v) is treated as an
unknown parameter that can be estimated using the pregemadtmarginal distributions:

pv) = Y prn(vfu) - plu) (4.45)

wherep(v) is the marginal distribution estimated from backgroundhirey data so that
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p(v) = ch( . Therefore, we substitute equation 4.38 into equation:4.45

Clw) - Z <max{C(U,v) — D, 0} + () 'pKN(U)) .Clu) (4.46)

d Cla)
= (Zmax{C(u,’U) — D,O}) +pKN ZC (4 47)
— prn(v) = C(v) = >, maz{C(u,v) — D, 0} (4.48)

>, Clu) - Aw)
_ C<U)_C>D<'7v)+D'N>D('7v>
- >, Clu) - A(W) (449
_ _Cop(v)+ D-Nop(v)
— S Cop(e ) =D Nop(, ) (using equation 4.44)  (4.50)

Cen(,0) +D-Nop(v) __C'(0)
S Cen( o) + D Nop(t)) — £, C7(0)

(4.51)

Equation 4.51 generalizes the Kneser-Ney smoothing toibtegral and fractional counts.

In the original formulationC<p(u, -) equals to zero since each observed bigram count
must be at least one by definition wiih less than one. As a result, te term cancels
out yielding the original formulation that counts the numbé& word type preceding

and thus recovering the original formulation. Intuitivelige numerator in equation 4.51
measures the total discounts of the observed bigrams emding In other words, the
fractional Kneser-Ney smoothing estimates the lower4opdebability distribution using
the relative frequency ovetiscountsinstead of word counts. With this approach, each
topic-dependent language model in bigram LSA can be smdatki@g our formulation.

In general, the fractional Kneser-Ney smoothing can beiapgpd a higher-order back-
off language model including a factored language model xap@gating the discounts to
the lower-order distribution for estimation. Figure 4.&dtrates that discounts are propa-
gated from a trigram language model to a bigram language hnaale then from a bigram
language model to a unigram language model for model estmat a recursive manner.
In this case, the modified bigram and unigram counts, anddhesponding models are
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C(u,v,w) Q
Csp,(u,v,w) — Dy Clp,(v,w)
prn(w

p(wlv, u) prn(wlv)

Figure 4.6: Fractional Kneser-Ney smoothing via propagatif discounts from a trigram
language model to a lower-order bigram and a unigram languaadel.

computed as follows:

C'(v,w) = Cepy(-,v,w)+ D3 Nop(-,v,w) (4.52)
C"(w) = Clp,(w)+ Do Nip, (- w) (4.53)
and
prn(wlv) = W (4.54)
prn(w) = Z,,%) (4.55)

where D; denotes the discounting constant at each language modal ofg a sanity
check, asD; goes to infinity, trigram LSA should fall back to bigram LSA this case,
one can tune on the discounting constants so that trigramw&#Ad perform at least as
well as bigram LSA.

4.4.3 Two-stage Unsupervised Language Model Adaptation

Unsupervised language model adaptation is performed hyififsrring a topic distri-
bution using word hypotheses from the first-pass decodiagvariational inference in
equation 4.30—4.31. Relative frequency over the branctegos countsy,. is applied on
each Dirichlet nodg. The maximum a posteriori topic mixture weightnd the adapted
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unigram, bigram and trigram LSA models are computed asvaio

850 (k)
Ve o
x H(Z %c) fork =1..K (4.56)
pa(w) = Zp(wlk)-ék (4.57)
k]:(l A
pa(wlv) = Y plwlv, k) - Oy (4.58)
k}:{l A
pa(wlu,0) = " p(wlu,v,k) - by (4.59)

The LSA marginals are integrated into a background N-grarguage model,, (w|h) via
marginal adaptation as follows:

pM(w|h) o (M) - Pog(w]h) (4.60)
Pog(w)
Marginal adaptation has a close connection to maximum pytrmdeling since the marginal
constraints can be encoded as unigram features. Intyitivglram LSA would be inte-
grated in the same fashion by introducing bigram marginastaints. However, we found
that integrating bigram features via marginal adaptatidmat offer further improvement
compared to only integrating unigram features. Marginadtion corresponds to only
one iteration of generalized iterative scaling (GIS). Daantillions of bigram features,
one GIS iteration may not be sufficient for convergence. @natther hand, simple linear
interpolation is effective in our experiment. The final lailage model adaptation formula
is provided using equation 4.57— 4.60 as a two-stage process

pf) (wlh) = X\ -pfll)(w\h) + Ao - po(w|v) + A3 - pa(w|u,v) (4.61)
whereh; + o + X3 = 1 (4.62)
and\; > 0 Vi (4.63)

where{\;} are tuned to optimize the performance on a development set.
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4.4.4 Experiment

As motivated from the previous experiments, the number tehlatopics were set t200

for LSA, bigram LSA and trigram LSA unless specified. The disating factorD for the
fractional Kneser-Ney smoothing was setOtd for bigram LSA while the higher-order
discounting factor for trigram LSA was set20! to maintain a reasonably compact model.
We did a sanity check that trigram LSA fell back to bigram LSAen the higher-order
discounting factor was large.

For rapid benchmarking, we first evaluated N-gram LSA usheygmall-scale Man-
darin RTO4 transcription system with unsupervised maightptation at a show level
similar to the experiments on latent Dirichlet-Tree allooa in Section 4.2.1. However,
re-decoding was applied after language model adaptatgiead of lattice rescoring.

Then, we evaluated the adaptation approach on Mandarin eafticNanguages using
the GALE-P3 transcription systems. Topic caching was apldlor decoding on the Man-
darin system but not on the Arabic system. The word hypoth&sen the final decoding
passes of a discriminatively trained Initial-Final Mandasystem and a vowelized Ara-
bic system were taken for incremental LSA-marginal adamteaind N-gram LSA lattice
rescoring as described in Section 4.4.3. Dev08 and Dev0& wmployed as the devel-
opment set for the Mandarin and Arabic respectively. Sta#iksignificance tests were
applied to compare the LSA and the N-gram LSA performance.

4.4.5 RT04 Mandarin Results

Table 4.7 shows the correlated bigram topics sorted by theljggram probabilityp(v|u, k)-
p(u|k). Most of the top bigrams appear either as phrases or worashestl with a stopword
such asg?J(’s in English).

Table 4.8 shows the language model adaptation results ithpeyplexity and character
error rate. Applying both LSA and bigram LSA yielded coneigtimprovement over LSA
in the range of 6.4%—8.5% relative reduction in perplexitg &.5% relative reduction
in the overall character error rate. The reduction in chi@maerror rate was statistically
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Table 4.7: Correlated bigram topics extracted from bigraBALusing the Xinhua news
2002 corpora (13M).

Latent topic Top bigrams sorted by p(u, v|k)
“topic-61"  [I+2E4 (s student) +#F ('s education) Z &+ (education ’s)
2R+ (school 's), /D 4E+3E (youth class) Z il +#1 & (quality of education)
“topic-62” AT +1%FE(expert cultivation) ;X 2% +#% K (university chancellor)
& +44 (famous) T+ (high-school) fJ+224E (s student)
“topic-63"  Fl+ft 2 fREE(and social security}i)+5flk (‘s employment),
Folk+ A 51 (unemployed officer)gt i+ {3 (employment position)
“topic-64" [+ 57 ('s research)® K+ (expert people):& +4iii (etc area)
H)+H K (biological technology)iff 57 +A{ 5 (research result)
“topic-65"  AZE+IE[EZH(Human DNA sequenceli+%: K ('s DNA)
HW)+50K (biological technology)if i +T-41 /it (embryo stem cell)

significant at a 0.1% significance level. We compared fraetidKneser-Ney smoothing
with Witten-Bell smoothing which also supports fractiomalunts. The results showed
that Kneser-Ney smoothing performed slightly better thatiéi-Bell smoothing in word
perplexity and character error rate. Increasing the nunabeopics from30 to 200 in
bigram LSA helped despite model sparsity. We applied extfatErations initialized with
the bootstrapped bigram LSA but no further performance owement was observed.

446 GALE-P3 Results
Mandarin Results

The upper section of Table 4.9 shows the overall LM adaptagsults on Mandarin before
cross adaptation with the IBM Mandarin system. To illugiidte effect of LSA during de-
coding, the first background setting was compared to thengblsackground setting which
enabled topic caching for decoding similar to the experitm@mSection 4.1.1. Both set-
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Table 4.8: Character error rate (word perplexity) on the e RT04 test set. Bigram
LSA (biLSA) was applied in addition to LSA. Unless specififte LSA and bigram LSA
models employ 200 topics. Overall relative reduction (Rel.compared to the unadapted
baseline is reported. * denotes that bigram LSA is signifiyametter than LSA at 0.1%
significance level in terms of overall character error rate.

LM (13M) CCTV NTDTV RFA ALL Rel. A
background 15.3% (748) 21.8(1718) 39.5(3655) 24.9 -
+LSA 14.4 (629) 21.5(1547) 38.9(3015) 24.3 2.4
+biLSA (Kneser, K=30) 14.5(604) 20.7(1502) 39.0(2736) 24.1 3.2
+biLSA (Witten) 14.1(594) 20.9 (1452) 38.3(2628) 23.8 4.4
+biLSA (Kneser) 14.0 (587) 20.8(1448) 38.2(2586) 23.7* 4.8

tings were then followed by lattice rescoring using LSA niaad) adaptation, and linear
interpolation of bigram LSA (biLSA) and trigram LSA (triLSAwith the LSA-adapted
language model. Applying LSA for decoding helped on all t&tt compared to the un-
adapted baseline. The reduction in character error rateaddisive to those obtained from
lattice rescoring. Moreover, applying LSA for lattice resiag yielded further reduction
in character error rate. Bigram-LSA lattice rescoring gied additional reduction in char-
acter error rate compared to LSA rescoring which was steaiy significant at a<5%
significance level in all test cases. Compared to the unaddgseline, the relative reduc-
tion in character error rate after LSA and bigram LSA adaptet were between 5%—6.9%
which were statistically significant at a 0.1% significaneeel in all test cases. Replacing
bigram-LSA with trigram LSA yielded similar recognition germance. By combining
bigram-LSA and trigram-LSA together via simple score agerg, we achieved slight re-
duction in character error rate on EvalO7r without degrgdire performance on the other
sets. The final relative reduction in character rate rateval®'r was 7.6% after applying
all adaptations. We did not attempt 4-gram LSA rescoringesithe additive reduction
from trigram LSA was marginal. The results after cross adtph followed a similar
trend with 3.3%—6.7% relative reduction in character erabe compared to the unadapted
baseline which were statistically significant ak&% significance level.
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Table 4.9: Lattice rescoring results in character erroe tading the Mandarin GALE P3
system. Overall relative reduction (Rel\) compared to the unadapted baseline (back-
ground) is reported. * denotes that bigram LSA (biLSA) arigram LSA (triLSA) are
significantly better than LSA at5% level of significance.

Mandarin Dev08 Rel. A | Eval0o7u Rel. A | EvalO7r Rel. A
background 11.6% - 14.0 - 11.8 -
+LSA 11.4 1.7 13.9 0.7 11.6 1.7
+biLSA (Kneser) 11.00 5.2 13.6* 2.9 11.1* 5.9
background (LSA) 115 0.9 13.8 1.4 11.7 0.8
+LSA 11.2 3.4 13.7 2.1 115 2.5
+biLSA (Witten) 10.9* 6.0 13.3* 5.0 11.1* 5.9
+biLSA (Kneser) 10.8* 6.9 13.3* 5.0 11.0* 6.8
+triLSA (Kneser) 10.8* 6.9 13.3* 5.0 11.1* 5.9

+bi & triLSA (Kneser) 10.8* 6.9 13.3* 5.0 10.9* 7.6
Cross-adaptation with IBM

background 9.0 - 10.8 - 9.0 -

+LSA 8.9 11 10.6 1.9 8.7 3.3
+biLSA (Kneser) 8.6* 4.4 10.4 3.7 8.5* 5.6
background (LSA) 9.0 0.0 10.6 1.9 8.8 2.2
+LSA 8.8 2.2 10.5 2.8 8.6 4.4
+biLSA (Kneser) 8.7 3.3 10.3* 4.6 8.4* 6.7

Table 4.10: Lattice rescoring results in character errte tesing the word lattices from
the IBM P3 Mandarin system. Overall relative reduction (R&) compared to the IBM
system is reported.

Mandarin Dev08 Rel. A | Evalo7u Rel. A | Eval07r Rel. A
Rescoring the best single IBM system

IBM (neural LM) 6.7 - 8.3 - 6.6 -

+biLSA (Kneser) 6.7 0.0 8.1 2.4 6.5 15
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Table 4.11: Lattice rescoring results in word error ratangghe Arabic GALE P3 system.
Overall relative reduction (RelA) compared to the unadapted baseline (background) is
reported. * denotes that bigram LSA (biLSA) is significantigtter than LSA aK 5%
level of significance.

Arabic DevO07 Rel. A | Dev08 Rel. A | Evalo7u Rel. A
background 14.3% - 16.4 - 22.7 -
+LSA 14.2 0.7 16.4 0.0 22.7 0.0
+biLSA (Witten) 13.9 2.8 15.9* 3.0 22.4* 1.3
+biLSA (Kneser) 13.8* 3.5 15.9* 3.0 22.5 0.9
Cross-adaptation with IBM

background 11.8 - 13.9 - 20.3 -
+LSA 11.8 0.0 13.8 0.7 20.3 0.0
+biLSA (Kneser) 11.7 0.8 13.6* 2.2 20.1 1.0

During the GALE-P3 evaluation, we rescored the word latigenerated from the
best single IBM Mandarin system, which was rescored with @ralenetwork language
model (Bengio et al., 2003; Schwenk, 2007). The results laogvs in Table 4.10. Our
adaptation approach yielded further relative reductiocharacter error rate by 2.4% and
1.5% on EvalO7u and EvalO7r respectively compared to the l&igeline system. This
implies that neural network language model and bigram LSA ozgpture complimentary
information and thus combining two approaches yielded tamdil gain. Given a well-
tuned state-of-the-art IBM system, the gain from bigram LU8#coring is reasonable.

Arabic Results

The performance trend was similar on Arabic as shown in Tdhld. LSA rescoring
gave slight reduction in word error rate compared to the ap&etl baseline. Moreover,
bigram LSA achieved additional reduction in word error ratmpared to LSA on the
unseen Dev08 which was statistically significant at a 0.1gniBcance level. After cross
adaptation with the IBM Arabic system, bigram LSA yielde@%. relative reduction in
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Table 4.12: Lattice rescoring and system combination tesuiword error rate using the
word lattices from the IBM P3 systems. Overall relative retiin (Rel. A) compared to
the unadapted baseline is reported.

Arabic DevO7 Rel. A | DevO8 Rel. A | Eval07u Rel. A
The best single IBM system
U-BN 9.9% - 11.1 - 14.3 -
UBM 9.3 - 10.6 - 13.7 -
UBM+biLSA 9.1 2.2 10.6 0.0 13.6 0.7
IBM system combination

UBM + U-BN 9.1 - 10.3 - 134 -
UBM+biLSA + U-BN 8.9 2.2 10.3 0.0 134 0.0

word error rate compared to the unadapted baseline whichstedistically significant.
The reductions on Dev07 and Eval07u were not statisticailyificant.

Similar to the Mandarin evaluation, we rescored the wortides generated from the
best single IBM Arabic system as shown in Table 4.12. Agaur,approach achieved
further reduction in word error rate by 2.2% and 0.7% rekaton Dev07 and EvalO7u
compared to the IBM baseline system. Finally, lattice corabon? (Hsiao et al., 2008)
was applied on two IBM systems, named as UBM and U-BN, withWBM system
rescored with bigram LSA. With bigram LSA rescoring, the @d@rror rate was further
reduced by 2.2% relative on Dev07 after lattice combination

LM Smoothing

Not only fractional Kneser-Ney smoothing is comparable tit&d-Bell smoothing in
performance, but the model is also more compact. Table hd®'s the compressed
size of bigram LSA with different smoothing schemes. Fawdl Kneser-Ney smooth-
ing produced a more compact model than Witten-Bell smogthiith over 35% relative

2Results were obtained from lan Lane using the tool impleeahy Mark Fuhs.
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Table 4.13: Comparison of the size of bigram LSA languageehosing the Witten-Bell
and the fractional Kneser-Ney smoothing on Arabic and CGlene

Scheme  Arabic LM Chinese LM
Witten-Bell 3.7Gb 3.4Gb
Kneser-Ney 2.4Gb 2.1Gb

reduction in model size for Arabic and Chinese. The redactiiomodel size is due to
the absolute discounting scheme employed in fractionabKnRbley smoothing where the
bigram counts smaller than the discounting constamaire pruned.

4.4.7 Discussion

The performance breakdown in terms of broadcast news (Bl bamadcast conversation
(BC) genre are shown in Table 4.14 and Table 4.15 for MangarthArabic respectively.

Itis interesting that bigram LSA generally works better dd 8ian BC in terms of relative

reduction in character error rate although the recogniéiocuracy is much better on BN
than BC. One explanation is that BN is similar to the languagelel training text that

contains a large amount of newspaper text and only a limiteolust of audio transcript.

On the other hand, BC is more spontaneous in nature with nepetition and hesitation
which are rare events on newspaper text.

Figure 4.7 and Figure 4.10 show the recognition error raggspow on the Mandarin
and Arabic development sets respectively. Spikes withtpesinagnitude mean that bi-
gram LSA is effective or vice versa. Both figures show thatdmg LSA is effective across
the majority of the shows. The relative reduction fluctuéeshe “easy” shows with error
rates less than 6%. A small fraction of misrecognition casultein a big change in the
relative error rates which explains the fluctuation. On ttieeohand, there are more shows
with positive performance with error rates between 6% to Z8%med as “medium” dif-
ficulty). As the error rate of a show increases, the relatadriction decreases. In general,
the results suggest that bigram LSA is more effective on bmsvs with “medium” diffi-
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Table 4.14: Lattice rescoring results on broadcast news @n broadcast conversation
(BC) in character error rate using the CMU-InterACT Mandaranscription system for
the GALE Phase-3 evaluation. * denotes that bigram LSA (BiL&8nd trigram LSA
(triLSA) are significantly better than LSA at5% level of significance.

Mandarin Dev08 EvalO7u
BN Rel. A | BC Rel. A | BN Rel. A | BC Rel. A
background 54% - 17.8 - 56 - 248 -
+LSA 5.0 7.4 17.7 0.6 56 0.0 247 0.4
+biLSA (Kneser) 5.0 7.4 17.0* 4.5 54 3.6 243 2.0
background (LSA) 5.5 -ve 17.4 2.2 57 -ve 243 20
+LSA 5.2 3.7 17.1 3.9 55 1.8 242 24
+biLSA (Witten) 50 74 16.6* 6.7 5.2 7.1 239 3.6
+biLSA (Kneser) 4.9* 9.3 16.7 6.2 52 7.1 23.8* 4.0
+triLSA (Kneser) 51 56 16.3* 8.4 52 7.1 239 3.6
+bi&triLSA (Kneser) 5.0 7.4 16.5* 7.3 52 7.1 239 3.6
Cross-adaptation with IBM

background 4.2 - 13.7 - 41 - 196 -
+LSA 4.1 2.4 135 1.5 39 49 194 1.0
+biLSA 3.9 7.1 13.3 2.9 3.6% 12.2 193 15
background (LSA) 4.2 0.0 13.7 0.0 3.9 49 194 1.0
+LSA 4.1 2.4 13.6 0.7 38 73 19.2 2.0
+biLSA 3.8 95 135 15 3.5 14.6 19.1 2.6
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Table 4.15: Lattice rescoring results on broadcast news @ broadcast conversation
(BC) in word error rate using the CMU-InterACT Arabic tramgtion system for the
GALE Phase-3 evaluation. * denotes that bigram LSA (biLSAgignificantly better than
LSA at <5% level of significance.

Arabic Dev07 EvalO7u

BN Rel. A | BC Rel. A | BN Rel. A | BC Rel. A
background 116 - 194 - 208 - 24.7 -
+LSA 115 0.9 19.2 1.0 206 1.0 24.8 -ve

+biLSA (Witten) 11.0* 5.2 19.0 2.1 20.4* 1.9 246 04
+biLSA (Kneser) 11.0* 5.2 189 2.6 20.4* 1.9 24.7 0.0
Cross-adaptation with IBM
background 9.9 - 151 - 18.7 220 -
+LSA 9.8 1.0 155 -ve 186 05 219 0.5
+biLSA (Kneser) 9.8 1.0 15.2 -ve 18.2* 2.7 22.1 -ve
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Figure 4.7: Relative reduction in character error raterdfigram-LSA rescoring on the
Mandarin Dev08 development set.
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Figure 4.8: Relative reduction in character error raterdfigram-LSA rescoring on the
Mandarin Eval07u (unsequestered) test set.
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Figure 4.9: Relative reduction in character error raterdfigram-LSA rescoring on the
Mandarin EvalO7r (retest) test set.
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DevO7 (Arabic)
40

20 |

ol | ‘HI il | ol ‘

10 F

20 }

Relative reduction in word error rate (%)

-30 }

-40 1 1 1 1 1
0o 5 10 15 20 25 30
Baseline word error rate of the show

Figure 4.10: Relative reduction in word error rate afterbig-LSA rescoring on the Ara-
bic Dev07 development set.
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Figure 4.11: Relative reduction in word error rate afterrhaig-LSA rescoring on the Ara-
bic Dev08 set (unseen).
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EvalO7u (Arabic)
40

30 | -1

20 -

] }I\i | . L

-10 | ‘

20 : -

Relative reduction in word error rate (%)

-30 | ; -

-40 1 1 1 1 1 1

o 5 10 15 20 25 30 35 40 45
Baseline word error rate of the snippet

Figure 4.12: Relative reduction in word error rate afterbig-LSA rescoring on the Ara-
bic EvalO7u (unsequestered) test set.

culty than the “easy” shows. In addition, the results comfarith an observation that most
of the recognition errors on the “easy” shows are relatedibction words but not topical
words. Similar trend is observed on the test sets as showigimd-4.8 and Figure 4.9
for Mandarin, and Figure 4.11 for Arabic. One exception is Arabic EvalO7u test set
showing that adaptation is not effective, especially oradoast conversation. Broadcast
conversation is more disfluent and spontaneous in spealgitegcompared to broadcast
news. In addition, we lack sufficient training data for bettedeling. Therefore, part of
our future work is to have a better model for broadcast casatesn.

4.4.8 Practical Issues

Several points are worth mentioning to make bigram LSA waicpcally. First of all,
the size of bigram LSA can be too big to fit into memory for laggale evaluation. One
solution is to limit the size of vocabulary to a subset ocagrionly in word lattices. For
instance, the base vocabulary of our GALE-P3 Arabic trapton system isr37k while
the subset on Dev07 is onlyl k. Therefore, it is sufficient to load only the bigram entries
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Figure 4.13: Overall performance summary after applyireggroposed unsupervised lan-
guage model adaptation for the large-scale GALE-P3 evialuah Mandarin and Arabic.

covered by the subset of vocabulary.

Sentence boundaries do not exist in a word lattice. We emglsiynple approach to
detect sentence boundaries by mapping a silence tek&i L > into < s > when the
silence duration exceeds a threshold value, Gaysecond. This prevents bigram LSA
from looking up a bigram which results in a wrong backoff toraguam model.

For stopwords like auxiliary verbs, articles, conjuncgpeentence boundary markers
and punctuations, we do not adapt their N-gram probalsiiiecause predicting stopwords
mostly relies on the syntactic context but not the topicaitegt.

The amount of training data from audio transcripts and neypsptext are unbalanced.
Therefore, it is desirable to put a higher weight on the atridinscripts than the newspaper
text via reweighting the N-gram counts in the M-step of thgréam LSA training.
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4.5 Summary

We have investigated a Bayesian latent semantic approactngupervised language
model adaptation for automatic speech recognition via tkgrdyin latent Dirichlet-Tree
allocation. Topic caching is more robust against speecbgmition errors compared to
word caching for unsupervised language model adaptatiocremental marginal adap-
tation for lattice rescoring is computationally inexpesmsand has yielded improvement
in recognition performance. Latent Dirichlet-Tree allboa generalizes latent Dirichlet
allocation via modeling topic correlation in a tree-baségrdrchy, showing rapid train-
ing convergence and competitive language model adaptaédormance. N-gram latent
Dirichlet-Tree allocation has yielded additive gains olaent Dirichlet-Tree allocation
via relaxing the “bag-of-word” assumption. Efficient motelotstrapping and smoothing
have made this approach applicable for the large-scale&ah. Figure 4.13 summarizes
our contributions towards better recognition performauasig our GALE Mandarin and
Arabic systems. Empirical results have demonstrated tleetafeness of N-gram latent
Dirichlet-Tree allocation for unsupervised language madkaptation, achieving statisti-
cally significant reduction in recognition error rates orotdifferent languages.
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Chapter 5

Bilingual N-gram LSA Based
Adaptation

In Chapter 4, we have shown that monolingual N-gram LSA isai¥e for unsupervised
language model adaptation for automatic speech recognitiothis chapter, we extend
this idea to crosslingual adaptation for statistical maetranslation.

5.1 Bilingual Latent Semantic Analysis

The success of language model adaptation on automatictspemagnition has motivated
applying the same monolingual language model adaptatipnoaph on the target lan-
guage in statistical machine translation (SMT). Formermpéatton approach employs an
initial translation of an input text (Kim and Khudanpur, )®aulik et al., 2005a). How-
ever, this scheme may depend on the quality of the initiallietion. Moreover, it requires
two decoding passes.

We present a novel bilingual LSA framework (Tam et al., 20Q@ékperform language
model adaptation (Tam et al., 2007a) across languagedjrmmadaptation from one lan-
guage based on an adaptation text of another language igla decoding pass. Bilingual
LSA consists of two models based on latent Dirichlet-Trdecaltion: one for each lan-
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guage trained on parallel document corpora. The key featusdingual LSA is a one-to-
one topic correspondence between a source and target LSAlnkamt instance, say topic
10 of a source LSA model is about politics. Then topic 10 ofrgealL SA model also cor-
responds to politics and so forth. During language modeptdien, we first infer topic
mixture weights of a source text using the source LSA mode tNgn transfer the inferred
mixture weights into LSA (and N-gram LSA) on the target laage for language model
adaptation. Since bilingual LSA adapts the target languagdel beforetranslation, it
does not require the adaptation text to be pre-translatedrasnolingual adaptation. For
the same reason, propagation of translation errors candideaby using the source text
for adaptation. The challenge in bilingual LSA is to enfoacene-to-one topic correspon-
dence. Our proposal is to assume that the topic distribwtroong a parallel document
pair is identical. The assumption is reasonable for a pardcument pair that are faith-
ful translations. In the variational Expectation-Maxi@ion algorithm, this can be easily
achieved via sharing the variational topic posteriors leefva parallel document pair so
that a common latent topic space is enforced in an unsugehfashion. Since the topic
space is language independent, our approach supportstapsfer in multiple language
pairs in O() whered is the number of languages.

The bilingual LSA framework can also be extended to adapam@station lexicon via
marginal adaptation (Tam and Schultz, 2007a) so that teéhidod of a bilingual phrase is
sensitive to the topics of an input source text. Thus, a backgl phrase table is enhanced
with additional phrase scores computed using the ada@adlation lexicon. The weights
for the additional phrase and language model feature fonstare then optimized via the
minimum error rate training. Figure 5.1 illustrates thedd# topic transfer from a source
to target LSA followed by language model adaptation, tratnsh lexicon adaptation and
phrase table adaptation.

5.1.1 Bilingual LSA Training

Bilingual LSA training is based on sharing the documentlegpic posterior distribution
between a parallel document pair. It consists of two stalyethe first stage, we perform
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Figure 5.1: Bilingual LSA-based adaptation via transfetopic distribution from a source
language to a target language for speech translation.

monolingual LSA training using the variational Expectatidlaximization algorithm (see
equations 4.20-4.25 for latent Dirichlet-Tree allocafion source documents in parallel
corpora. We use the source LSA to compute the tefmz%! in equation 4.22 for each
source document. In the second stage, we apply the samefet#’! to bootstrapthe
target LSA, which is the key to enforce a one-to-one topicespondence. The hyper-
parameters of the variational Dirichlet posteriors of eadde in the Dirichlet-Tree are
now shared among the source and target models. Precisebpplg only equation 4.22
with fixed eFall8 %! in the E-step, and equation 4.25 in the M-step to estiniate|k)}
for the target LSA model. Figure 5.2 illustrates the idea mfioecing a one-to-one topic
correspondence of parallel document pairs during boqiging a target LSA model from
a source LSA model denoted@sS A ,..41). Since the topic posteriors are pre-computed,
the E-step is non-iterative resulting in rapid LSA trainirlg short, given a monolingual
LSA, we can rapidly bootstrap LSA models of new languagesgisarallel corpora. Since
the topic transfer can be bi-directional, we can performhihi@gual LSA training in a
reverse manner, that is, training a target LSA model folldwg bootstrapping a source
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Figure 5.2: LSA bootstrapping via sharing of variationglitoposteriors for parallel doc-
uments.

Table 5.1: Size of the parallel training corpora for bilirdiLSA training.

Language Words Documents
Chinese 41M 96k
English ~ 50M 96k

LSA model denoted aBLS Ay o). Bilingual LSA training procedure is general and
can be applied to different probabilistic models such asnfaDirichlet allocation and
probabilistic LSA. In our experiments, we employ latent ithitet-Tree allocation due
to its stable training convergence and competitive tedopmance for automatic speech
recognition in Chapter 4.

5.1.2 Experiment

Bilingual LSA was trained using the Chinese—English patalbcument corpora consist-
ing of the FBIS corpus, Xinhua News, Hong Kong News, Donga $\'eand Sinorama ar-
ticles. The combined corpora containgk parallel documents withl A/ Chinese words

http://{china,english.donga.com

104



and50M English words as shown in Table 5.1.

Bilingual LSA training did not take advantage of the largaradlel corpora used in
phrase extraction due to the loss of document boundaryrivdton. However, encourag-
ing results were still achieved. The number of latent togicfor bilingual LSA was set
to 200 based on our best knowledge of language model adaptatiaufomatic speech
recognition. A balanced binary Dirichlet-tree prior wagdsThe source and target vocab-
ulary in bilingual LSA were limited to words occurring in thpdrase table. The Stanford
Chinese word segmenter (Tseng et al., 2005) was appliedjtoese the Chinese side of
the parallel corpora. Monolingual LSA training was first &p@ on the Chinese side fol-
lowed by LSA bootstrapping on the English side. Prior engpirresults indicated that the
reverse bootstrapping direction resulted in similar penfance. For N-gram LSA training,
we used the English side of the bilingual LSA to bootstrapgiigeam LSA and the trigram
LSA as described in Section 4.4.1. Since this is a monolinjugram LSA training on
the English side, the background language model trainite\aare included.

5.1.3 Results

The proposed bilingual LSA training approach enforced a-torene topic correspon-
dence successfully and extracted parallel topics as showable 5.2. The Chinese and
English topical words in the table are strongly correlated many of them are translation
pairs, indicating that bilingual LSA works as crosslingwadrd triggers via topics. Fig-
ure 5.3 demonstrates that our proposed approach leadsitbtrajning convergence due
to sharing of the variational Dirichlet posteriors with t6@@inese LSA model compared
to the monolingual English LSA starting with the same flat mlo©®n the other hand, the
monolingual LSA training had a better training likelihoodh@&n more training iterations
were applied, which is reasonable since the bootstrapgipgach constrain the parame-
ter space so that a one-to-one topic correspondence ifiezhtighile the parameter space
of monolingual LSA training is unconstrained.
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Table 5.2: Parallel topics extracted bySAcu, gn). Top words on the Chinese side are
translated into English for illustration purposes.

Topic  Top words sorted by(w|k)

CH-40 “kfei ‘flying’, & fittqianting ‘submarine’, & Hlfeiji ‘air-
craft’, Z5 Hkongzhondin the air', & 1T Gifeixingyuanpi-
lot’, {55 renwu‘mission’

EN-40 air, sea, submarine, aircraft, flight, flying, shigstte

CH-41 Tl Eweixing ‘satellite’, fiii Khangtian‘space travel’, %
Hffashe ‘launch’, K Ztaikong ‘space’, # [Ezhongguo
‘china’, #Kjishu ‘technology’

EN-41 space, satellite, china, technology, satellitéaspee

CH-42 ¥ Biixiaofang ‘fire control’, #1 jichang ‘airport’, Ak
Zfuwu ‘services’, 'k Zhuojing ‘fire accident’, i}
Hchuanzhtship’, €% chengkepassengers’

EN-42 fire, airport, services, department, marine, aityiset pas-
sengers

5.2 Crosslingual Language Model Adaptation

Marginal language model adaptation in crosslingual sg$ticean be performed in almost
the same manner as in monolingual settings as describedctio®e.5.3 except that a
source text is used for adaptation in the crosslingual ckastly, we estimate the topic
weights of latent Dirichlet-Tree allocation on the souraeduage using equation 5.1.

6jc(k)
ACH Ve
9t H(Z/]%c') (5.1)

jc
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Figure 5.3: Training log likelihood of bootstrapped EnglIsSA from Chinese LSA com-
pared to flat monolingual English LSA.

Then we apply the source topic weights into the target LSAthedN-gram LSA to obtain
in-domain marginals as in equation 5.2.

pen(w) = S0, 07 pEN (wlk)

pen(wl) = ST 0 pEN (wlu, k) (5.2)
pen(wlu,v) = S0 - pEN (wlu, v, k)

Finally, we apply marginal adaptation to incorporate LSAoim background language
model as described in Section 2.5.3. The adapted bigramgoarm LSA are added as
additional language model feature functions to computetsterior probability of a target
sentence given a source sentence in statistical machimgdten (See Section 3.4.4 for
background information).
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Table 5.3: Target word perplexity on MT06 using 67M-word @®6word) parallel cor-
pora for phrase extraction and 500M-word (2.7B-word) Estglcorpora for language
model training. Vocabulary size of the target language rhisde3M (4.1M).

Language model Perplexity Reh
Baseline EN 4-gram (500M) 154 -
bilingual LSA-adapted 127 17.5%
mono LSA-adapted 125 18.8%
Baseline EN 5-gram (2.7B) 147 -
bilingual LSA-adapted 131 10.9%

5.2.1 Experiment

The marginal adaptation approach described in Sectio 2v&s applied to an English
background language model for each source test documentsvio the stopword lidt
plus punctuation were filtered out from language model atapt since the usage of
stopwords usually does not depend on topical context.

5.2.2 Results

Table 5.3 shows that the proposed approach effectivelycetithe English word per-
plexity by 17.5% and 10.9% relative for the 4-gram and 5-gtanguage models used in
the medium-scale system and the GALE system respectiveipaced to the unadapted
language model. Bilingual LSA adaptation still helped ewara huge 5-gram language
model trained on a large amount of text. We also performedaiogual language model
adaptation using the translated hypotheses from the decddes gave slightly better
performance than bilingual LSA adaptation but with a twegdecoding scheme.

2See http://www.dcs.gla.ac.uk/idomf@sources/linguistiaitils/stopwords, last consulted 22 October
2008
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5.3 Translation Lexicon Adaptation

Not only the bilingual LSA approach applies for language elaatiaptation, but it also
applies for translation lexicon adaptation. Translatexidon adaptation is motivated from
an observation that a source word can be translated interdiff target words depending
on a topical context. One popular example is the word “bankiclv can be related to
either a “financial bank” or a “river bank”. The adapted triation lexicon can be used to
score the phrase pairs depending on the topical contextinpahdocument. Motivated by
information theory, we formulate the problem as marginadtion under the bilingual
LSA framework. The goal is to minimize the Kullback-Leibléivergence between the
adapted lexicop,(c|e) and the background lexicgn,(c|e) such that the lexical marginals
computed from the adapted lexicon are equal to the in-doswince marginalg(c|d.)
that are estimated priori using the source documedy,. Thus the objective function to
minimize is as in equation 5.3,

Minimize __pa(e) - KL (pa(.|e)||pog(-]€))
suchthat Ve : 3, pa(e) - palcle) = plclden) (5.3)
Ve : Y .pa(cle) = 1

We write the Lagrangian of the objective function, take tlegivchtive with respect to
pa(cle) and set it to zero (equation 5.4-5.5):

D(pa(1)) = Sopale) - Sopalele) - log 25
_Zc)\c (Zepa( ) pa(c| ) (C|dch)) (54)
— D e He (oo palcle) — 1)

oD(.) B
Opa(cle) — (¢) - (14 log 2ea) — A - pale) — pe =0 5
= palcle) o prglcle) - e o pyg(cle) - eXs % fi(ee)
where
1 ife=y
N&e = 5.6
fie.e) { 0 otherwise (5.6)
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f;(c, e) is a unigram feature function independentofSince the solution of the adapted
lexicon is in an exponential form, the optimization problesimilar to the maximum en-
tropy settings. Therefore, we solve using the generalized iterative scaling (GIS) (Dar-
roch and Ratcliff, 1972) as in equation 5.7-5.11,

ey _ o, Bli(ee)] .
VRN S AT T o) &7
p(c,elden) - fi(c, e
_ )\Et) +10g Zc,?t];< ‘ h) f]( ) (58)
Dceba (cle) - pale) - filc €)
e eld.
— AO 1 log 2P0 = Fclde) (5.9)
2ePa’ (¢ = Jle) - pale)
— AQ 4 log —Pe=T1dw) (5.10)
2ePa’ (¢ = jle) - pale)
~ A 4 log —— M=l (5.11)

Ee Pa (C = j‘e> : pblsa(e|dch)

wheret denotes the GIS iteration index with” (c|e) = py,(cle) and\” = 0.

pa(€) is approximated by the English LSA marginals,(e|d.,) from the bilingual LSA.
Since the range of in (5.11) is limited to the number of possible translationrevpairs

(¢, e) in the lexicon, computing the denominator term is efficiefthaut evaluating all
possiblee. We estimate(c|d.;,) using the smoothed relative word frequency of the source
text with the Good-Turing discounting scheme. Since th&apation is convex, a global
optimal solution of the adapted lexicon is guaranteed. &the source marginajgc|d.,)

are accurately estimated using the source text, the adégptiedn is expected to outper-
form the background lexicon in terms of the conditional likeod p(C|E) whereC = ¢!
andE = e denote the translation pair of a Chinese and English seatespectively.

5.3.1 Phrase Table Adaptation

Ideally, an adapted translation lexicon can be appliedctyraluring phrase extraction.
But this involves an extra implementation work into a phrag&action algorithm. An
alternative approach is to take a background phrase tallleassume that good phrase
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pairs are already captured in the table. With the adaptedlation word lexicons, we can
score each phrase pait (¢f) in the background phrase table similar to the IBM Modell
(equation 5.12),

1 Ji
1 1

palcllel) = [ 5D palcley) (5.12)
i=1 """

where0 < J; < J denotes the effective number of target worglaligned to a source word
c; after pruning the unlikely lexical entry with probabilitgds thanl0~* in the adapted
translation word lexicon. The motivation is to have a “steat@verage of word probabil-

ity and thus making the phrase score more discriminative. NOLL modelp(c|NULL)

or the minimum ofp(¢c| NULL) is used as a backoff model to avoid a zero probability for
an unseen translatiop, (e7 |c!) can be defined in the same manner. For phrase table adap-
tation, these two bilingual LSA-adapted phrase scoresianglyg added to the background

phrase table for subsequent minimum error rate traininggd decoding.

5.3.2 Results

Marginal adaptation resulted in a sharper translatiorctaxiin which the uncertainty of a
word-to-word translation was reduced. With the word cohteccording to a report by
south korean ytn cable 'tvfor instance, the probability of translating the Englisiord
Koreainto the related (correct) Chinese translatiéiE hanguowas boosted frond.32
to 0.57 while the probability of unrelated (incorrect) translativj[7] fangwen'visit’ was
greatly de-emphasized from8 x 10~* to 8.7 x 10~ 7 after bilingual LSA adaptation.
Redistribution of probability mass from the unrelated wtd the related words occurs
during translation lexicon adaptation according to thedalcontext of a source text.

5.4 Text Translation Results

The upper section of Table 5.4 shows the translation pedoga in BLEU and NIST
on MTO6 using the medium-scale SMT system. 2% relative imgmeent in BLEU was
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Table 5.4: MTO06 evaluation results on BLEU and NIST using é&btd (260M-word)

parallel corpora for phrase extraction and 500M-word (2wd@d) English corpora for
language model training. Vocabulary size of the target lagg model is 1.3M (4.1M).
Four English references are used for scoring. English bigt&A (biLSA) and trigram

LSA (triLSA) are applied. * denotes that bilingual LSA adafpon is significantly better
than the unadapted baseline at 95% confidence interval.

Language model BLEU (%) RelA NIST Rel.A
Baseline EN 4-gram (500M) 28.06 - 8.71 -
bilingual LSA-adapted 28.62 2.0 880 1.0
bilingual LSA-adapted lexicon 28.59 1.9 8.92* 24
bilingual LSA-adapted + lexicon 28.91* 3.0 8.97* 3.0
mono LSA-adapted 28.41 1.2 881 1.1
mono LSA-adapted lexicon 28.72 2.4 8.96* 2.9
mono LSA-adapted + lexicon 28.97* 3.2 9.00* 3.3
bilingual LSA-adapted + biLSA 29.08* 3.6 8.99* 3.2
bilingual LSA-adapted + triLSA 29.42* 4.8 9.05* 3.9

bilingual LSA-adapted + bi & triLSA 29.42* 4.8 9.08* 4.2
bilingual LSA-adapted + lexicon + triLSA 29.38* 4.7 9.04* &.

Baseline EN 5-gram (2.7B) 31.49 - 9.23 -
bilingual LSA-adapted 31.94 1.4 931 0.9
bilingual LSA-adapted lexicon 32.03 1.7 934 1.2
bilingual LSA-adapted + lexicon 32.09 1.9 937 15
bilingual LSA-adapted + triLSA 32.13 2.0 937 15
bilingual LSA-adapted + lexicon + triLSA 32.28 2.5 9.38* 1.6
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achieved compared to the unadapted baseline after apfijingual LSA-based language
model adaptation and translation lexicon adaptation séglsr When both techniques
were applied simultaneously, the gain was additive givifg i2lative improvement in
BLEU compared to the unadapted baseline. The improvemenstasistically significant
at a 95% confidence interval [27.29%,28.84%] with respedheounadapted baseline.
The same performance trend in NIST was also observed withe3&iwe improvement
compared to the unadapted baseline. The improvement wiastistdly significant at a
95% confidence interval [8.61,8.85] with respect to the apded baseline.

The middle section of Table 5.4 shows that monolingual LSApdation using the
first-pass translated hypotheses achieved a similar peaioce compared to bilingual LSA
adaptation using a source text. In other words, the sourtaiel the initial MT hypothe-
ses were equally effective for LSA adaptation since LSA lsusi against translation er-
rors in the adaptation text. We conjecture that the quafityamslation of topical unigrams
should be acceptable in the initial translation. But in tewhcomputation, bilingual LSA
is more elegant and requires only a single decoding passa@upo monolingual LSA.

Table 5.5 shows some sample sentences demonstrating sgnee désemantic para-
phrasing with bilingual LSA, such gseople of DenmarkersusDanish peopleandtold
versussighed

We applied bigram and trigram LSA as the additional languagelel feature func-
tions. Table 5.4 shows that bigram LSA yielded additivetreéaimprovement by 1.6%
and 2.2% in BLEU and NIST respectively compared to bilingu&f. Replacing bigram
LSA with trigram LSA achieved further relative improvemdayt1.2% and 0.7% in BLEU
and NIST respectively compared to bigram LSA. Adding bigria8A and trigram LSA
together yielded slight gain in NIST but equal performancBLEU. This implies that tri-
gram LSA already covers most of the information from bigra®AL. Incorporating only
trigram LSA is sufficient for good performance and avoidshigram LSA training.

The lower section of Table 5.4 shows the translation peréoroe using the GALE-
P2.5 SMT system. The performance trend was similar to theunedcale system. Im-
provement in BLEU and NIST were observed after applyingniglial LSA-based lan-
guage model adaptation and translation lexicon adaptataiditive gain was obtained
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Table 5.5: Examples demonstrating some degree of semaaplprasing with bilingual
LSA.

Sample output 1

Baseline To achieve the extensive support from the interna-
tional community to save this problem, tigevern-
ment of Denmark, and Denmarkis very important.

Bilingual LSA To achieve the extensive support from the iinge
tional community to save this problem, tianish
government and people of Denmarkis very impor-
tant.

Reference It is extremely important to tB&nish government
and the Danish peopleto obtain the broad support
of the international community to pass through this

difficulty.

Sample output 2

Baseline In an interviewHoffman CBS news magazine “60
minutes” ...

Bilingual LSA Hoffman told the CBS news magazine “60 minutes”

Reference Hoffman sighed when doing an interview with
America’s CBS news magazine “60 minutes”
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after applying both techniques together, yielding 1.9%treé improvement in BLEU
compared to the unadapted baseline. Adding trigram LSAé&rrimproved the BLEU
score with 2.5% relative improvement compared to the uni@dbpaseline. The gain in
BLEU was reduced compared to the results on the medium-se#tieg, and it was not
statistically significant marginally at a 95% confidence.}&032.34] with respect to the
unadapted baseline. This may be explained by having a @irdmageline 5-gram language
model with an increased amount of training text and a bettedweordering strategy in
the GALE system. The overall improvement in NIST followedmitar trend with 1.6%
relative improvement compared to the unadapted baseline.géin was statistically sig-
nificant at a 95% confidence interval [9.147,9.378] with eztfio the unadapted baseline.

5.4.1 Human Evaluation

Human evaluation was carried out to compare the translagoformance of the bilingual
LSA-adapted GALE SMT system with the unadapted baselinecémparison purposes,
only the test sentences which had different translatiooms fthe SMT systems were con-
sidered. Due to limited resources, only a random subsetsbntences was used. The
test sentences were randomly divided into the core set anckthaining set. Each grader
worked on the same core set while the remaining set was sdediinto non-overlapping
sets for each grader. The core set and the grader-specifiosttined30 and 131 sen-
tences respectively. Each grader assigned two scores licseatence from two different
systems based on fluency and adequacy with respect to theslEmglerences ranging
from 1 (worst) to5 (best). Four graders were involved in the human evaluation.

Table 5.6 shows the human evaluation results in sentenaecfiiend adequacy. Con-
sistent improvement in fluency but slight degradation inca@ey were observed across
most graders on the bilingual LSA-adapted sentences. Qveiliangual LSA achieved
a better average score than the unadapted baseline alttfwaighin was not statistically
significant. Table 5.7 shows an example in which bilinguaAlgsves a better fluency than
the unadapted baseline.

It is surprising that slight degradation of adequacy wasoled in the human eval-
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Table 5.6: Human evaluation results on sentence fluency@emlacy on MTO06 using the
GALE Phase-2.5 SMT system compared with the bilingual LSAS/A). Worst score id

and the best score is

Fluency Adequacy Average

Grader ID baseline bLSA baseline bLSA baseline bLSA

1

2
3
4

3.15 3.29 3.76  3.70 3.46 3.50
3.34 3.38 3.28 3.26 331 3.32
288 3.03 297 295 293 2.99
3.96 4.00 3.92 3.79 3.94 3.90

Table 5.7: Example where bilingual LSA gives a better flueth@an the unadapted base-

line.

Sample output 3

Baseline

Bilingual LSA

Reference

It is necessary to cultivate the sense of innavatio
in the whole society, vigorously promotenovative
spirit, courage competition, strive to create a good
atmosphere of talent.

It is necessary to cultivate the sense of iratamn in
the whole society, vigorously promothe spirit of
innovation, and be bold enough to compete and
strive to create a good atmosphere of talent.

Anhui must foster innovative knowledge among the
entire society, greatly promotespirit of willingness
to innovate and compete, ancxert itself to build an
excellent atmosphere where human resources come
forth in large numbers.
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Table 5.8: MT06 evaluation results on the average recatigie GALE-P2.5 SMT sys-
tem.

Language model Recall (%) Reh
Baseline EN 5-gram (2.7B) 46.99 -
bilingual LSA-adapted 47.45 1.0
bilingual LSA-adapted lexicon 47.44 1.0
bilingual LSA-adapted + lexicon 47.74 1.6
bilingual LSA-adapted + triLSA 48.02 2.2
bilingual LSA-adapted + lexicon + triLSA 47.93 2.0

uation results. Perhaps the number of graders is not largeginto represent the actual
performance. Therefore, we employ recall to measure mganigservation as follows:

# of matched unigram
# of unigram in a reference

Recall = (5.13)

Before calculating the recall, stopwords and punctuatieee removed before the calcu-
lation. Since MTO06 has four English references, recall chaaference was computed and
the average value is shown in Table 5.8 using the translatedtheses from the GALE-
P2.5 system. Our approaches achieved better recall cothpmtbe unadapted baseline,
suggesting that bilingual LSA adaptation may preserve teammg of source text better.

5.4.2 Discussion

Table 5.9 and Table 5.10 shows the performance breakdowewsgroup (NG), newswire
(NW) and broadcast news (BN) in BLEU and NIST respectivelgaptation consistently
helped on the newswire documents using the medium-scalthar@@ALE-P2.5 SMT sys-
tem. This observation is reasonable since the trainingaatanostly from newswire. On
the other hand, adaptation performance on broadcast nelvsesavsgroup are inconsistent.
Figure 5.4 and Figure 5.5 shows the corresponding relatipgaovement in BLEU per doc-
ument using the medium-scale and the GALE-P2.5 SMT systepectively. The trends
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Figure 5.4: Relative BLEU improvement of LSA adaptation gamred to the unadapted
baseline per document on MTO06 using the medium-scale SMEsYEGEO0M).
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Table 5.9: MTO06 evaluation results on newsgroup (NG), neves{NW) and broadcast
news (BN) genre measured on BLEU using 67M-word (260M-wgpeathllel corpora for

phrase extraction and 500M-word (2.7B-word) English coador language model train-
ing. Vocabulary size of the target language model is 1.3MINY. Four English references

are used for scoring.

BLEU (%)

Language model NG ReA | NW RellA| BN Rel.A
Baseline EN 4-gram (500M) 23.62 - | 28.38 - 30.98 -

bilingual LSA-adapted 2393 1.3/2919 29 |3129 1.0
bilingual LSA-adapted lexicon 2422 2512881 15 |31.60 2.0
bilingual LSA-adapted + lexicon 2476 4.8/ 2938 35 3133 1.1
mono LSA-adapted 23.78 0.7/ 2895 20 |31.10 04
mono LSA-adapted lexicon 2430 292925 3.1 |31.24 0.8
mono LSA-adapted + lexicon 2479 502951 40 |3130 1.0
bilingual LSA-adapted + biLSA 2473 4712972 47 |31.39 13
bilingual LSA-adapted + triLSA 25.10 6.3]/30.22 6.5 (3142 14
bilingual LSA-adapted + bi & triLSA 2522 6.8 {3035 69 |31.22 0.8
bilingual LSA-adapted + lexicon + triLSA 25.14 6.4/ 30.09 6.0 | 31.50 1.7
Baseline EN 5-gram (2.7B) 27.71 -1 31.34 - 34.72 -

bilingual LSA-adapted 2797 093195 19 |3502 0.9
bilingual LSA-adapted lexicon 2773 0.1/318 16 | 3568 2.8
bilingual LSA-adapted + lexicon 27.70 -ve| 32.08 2.4 | 35.52 2.3
bilingual LSA-adapted + triLSA 2801 11 3210 24 |3541 20
bilingual LSA-adapted + triLSA + lexicon 27.75 0.1} 32.26 29 | 3584 3.2
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Table 5.10: MTO06 evaluation results on newsgroup (NG), maves(NW) and broadcast
news (BN) genre measured on NIST using 67M-word (260M-wpathllel corpora for

phrase extraction and 500M-word (2.7B-word) English cosdor language model train-
ing. Vocabulary size of the target language model is 1.3MINY. Four English references
are used for scoring.

NIST

Language model NG RelA | NW Rel.A | BN Rel. A
Baseline EN 4-gram (500M) 7.15 - 1851 - 8.32 -
bilingual LSA-adapted 7.25 14 8.61 12 {839 0.8
bilingual LSA-adapted lexicon 739 34/871 24 846 1.7
bilingual LSA-adapted + lexicon 745 4.2/877 3.1 (846 1.7
mono LSA-adapted 725 14/863 14 838 0.7
mono LSA-adapted lexicon 744 41878 32 (843 13
mono LSA-adapted + lexicon 750 49883 38 (845 16
bilingual LSA-adapted + biLSA 748 46,878 32 (849 20
bilingual LSA-adapted + triLSA 755 56(888 43 844 14

bilingual LSA-adapted + bi & triLSA 761 64 (894 51 |8.46 1.7
bilingual LSA-adapted + lexicon +triLSA 7.58 6.0/ 8.88 4.3 | 8.44 1.4

Baseline EN 5-gram (2.7B) 7.79 - | 8.96 - 8.73 -
bilingual LSA-adapted 783 05(9.08 13 |875 0.2
bilingual LSA-adapted lexicon 791 15/910 16 [878 0.6
bilingual LSA-adapted + lexicon 7.90 14/915 21 878 0.6
bilingual LSA-adapted + triLSA 787 10912 18 [884 13

bilingual LSA-adapted + triLSA + lexicon7.92 1.7 |9.13 19 (883 1.1
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Table 5.11: Translation results after crosslingual lamguanodel adaptation on the unse-
questered broadcast news portion of the Mandarin Eval@3ét$EvalO7u.BN) using the
GALE-P2.5 SMT system with different number of latent topi¢sn bilingual LSA.

Source input BLEU (%) RelA NIST Rel.A
Reference (OOV=0.075%) 17.37 - 553 -
K=100 17.69 1.8 558 0.9
K=200 17.74 2.1 559 1.1
K=300 17.51 0.8 556 0.5

on both graphs are different: Adaptation helps on documeitkshigh BLEU scores (say
>35%) using the medium-scale system while it is the oppositegthe GALE-P2.5 sys-
tem. On the other hand, adaptation generally helped on dewctsnwith BLEU scores
between 20%—-30% on both systems.

5.5 End-to-End Translation

For end-to-end speech translation, we evaluated the m#eeiss of topic adaptation using
different source inputs on our GALE-P2.5 Mandarin-EngligT system without part-

of-speech reordering feature. To investigate the effetbjpic adaptation on transcription
towards downstream translation, we translated word hygssh from unadapted and LSA-
adapted GALE-P3 Mandarin transcription systems with attaraerror rates 5.6% and
5.2% respectively on the unsequestered broadcast nevisrpofiEval07 test set. We also
translated manual transcription to serve as an upper-bparidrmance for comparison.

5.5.1 Optimal Number of Topics

Table 5.11 shows the performance of crosslingual languagpehadaptation with differ-
ent number of latent topics in bilingual LSA. With the numioétopics set to 200, bilin-
gual LSA yielded the best translation performance in terinBIcEU and NIST. Same
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result was found in monolingual language model adaptatomfitomatic speech recog-
nition in Section 4.1.3.

5.5.2 Results

Table 5.12 shows the development of Mandarin-English $peanslation using the GALE
transcription and translation systems. Translation or\tggam LSA-adapted word hy-
potheses with lower character error rate translated tebatinslation performance suc-
cessfully, yielding 0.9% relative improvement in both BLEdd NIST compared to the
background unadapted word hypotheses. Using manual tipiigi as inputs gave the
best translation performance with 5.9% and 4.7% relativprawement in BLEU and
NIST respectively compared to the background unadapted wgpotheses.

Although the Chinese side of the parallel corpora and thatsmywere segmented us-
ing the Stanford segmenter consistently, the out-of-volzal (OOV) rate on the manual
transcription was 1.7%, which was moderately high due toabidity of the Stanford
segmenter to hypothesize new vocabulary during segmentatinfortunately, the out-
of-vocabulary Chinese words cannot be translated becdube @ossible segmentation
mismatch with a phrase table. Therefore, we attempted toceethe mismatch via seg-
mentation refinement. First, we extracted the Chinese wioods the phrase table to form
a word list. Then, a maximal matching segmenter with thisdiat was applied on the
Chinese test inputs that were segmented with a Stanfordesgigm As a result, the OOV
terms were further segmented into smaller terms which mayorm better to the seg-
mentation of the phrase table. As shown in the second sue-thiable 5.12, the OOV
rate dropped significantly to less than 0.1%. In additiognsentation refinement trans-
lated to better translation performance, yielding 3% re¢aitmprovement in BLEU on the
manual transcription compared to the corresponding copatewith Stanford segmenta-
tion only. Similar results were obtained on the automaaascription with 2.8% relative
improvement in BLEU compared to the corresponding couatiesp In other words, the
benefit of using N-gram LSA-adapted word hypotheses wastaiagd after segmentation
refinement.
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Table 5.12: Speech translation results on the unsequddteoadcast news portion of
the Mandarin Eval07 test set (Eval07u.BN) on BLEU and NISihgishe GALE-P2.5
SMT system. Source inputs are word hypotheses from an utetibpckground GALE-
P3 Mandarin transcription system (CER=5.6%), an N-gram {z8apted (CER=5.2%),
and a manual reference (CER=0%). Confusion-network-likglish references are used
for scoring. Relative improvement in BLEU and NIST are raépdrwith respect to the
unadapted background word hypotheses before segmentefimement.

Source input BLEU (%) RelA NIST Rel.A
ASR hypo (background) 15.92 - 5.28 -
ASR hypo (N-gram LSA) 16.07 0.9 533 09
Reference (OOV=1.7%) 16.86 5.9 553 4.7
After Segmentation Refinement
ASR hypo (background) 16.36 2.8 5.28 0.0
ASR hypo (N-gram LSA) 16.52 3.8 534 1.1
Reference (OOV=0.075%) 17.37 9.1 553 4.7
After LM Adaptation
ASR hypo (background) 16.67 4.7 534 1.1
ASR hypo (N-gram LSA) 16.80 5.5 537 1.7
Reference (OOV=0.075%) 17.74 114 559 59
After Lexical Adaptation
ASR hypo (background) 16.52 3.8 532 0.8
ASR hypo (N-gram LSA) 16.90 6.2 540 2.3
Reference (OOV=0.075%) 17.72 11.3 558 5.7
After LM + Lexical Adaptation

ASR hypo (background) 16.88 6.0 537 1.7
ASR hypo (N-gram LSA) 17.18 7.9 543 2.8
Reference (OOV=0.075%) 17.99 13.0 563 6.6
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After segmentation refinement, we applied crosslinguaptateon on target language
models, translation lexicons and phrase tables increrhgatashown in Table 5.12. Simi-
lar to the results on text translation, language model adipt and translation model adap-
tation improved the translation performance individualhen both adapted models were
applied simultaneously, the gain was additive, yieldir2y-3.6% relative improvement in
BLEU and 1.7-1.8% relative improvement in NIST comparedctdorresponding coun-
terparts of the unadapted SMT systems. However, the imprenéwas not statistically
significant at a 95% confidence interval [15.12%,17.65%] ifieB and [5.100,5.459] in
NIST compared to the unadapted speech translation systararal it is beneficial to
apply topic adaptation to improve recognition accuracy tremslates to better translation
performance. In addition, the gain from better recogniicouracy and sharper translation
models after topic adaptation were additive, yielding 1% 1.1% relative improvement
in BLEU and NIST respectively compared to the backgroundlapéed word hypotheses.
Comparing with the translation results on manual transiomp there is still much room
for further improvement in speech translation. In otherd#mwe expect that improving
the upstream recognition accuracy will improve the dowaestn translation performance.

5.6 Non-Parallel Bilingual Latent Semantic Analysis

We have shown the effectiveness of bilingual latent seroaralysis for crosslingual
adaptation for statistical machine translation. The lati@n of bilingual latent semantic
analysis is the requirement of parallel corpora for mod&hing. Since parallel corpora
are more expensive to collect than monolingual non-pdredigpora, incorporating non-
parallel corpora into bilingual latent semantic analysiatiractive. Moreover, non-parallel
corpora generally cover a broader range of topics and vdagbthan parallel corpora.
The main issue is that blind incorporation of non-parall@pora may destroy a one-to-
one topic correspondence in bilingual latent semanticyaigsince the alignment between
a source and target monolingual document is unknown or egareristent.

To work around the issue of the unknown document alignmeatemploy a semi-
supervised learning approach where some parallel seedrdots are given. The smooth-
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Figure 5.6: Parallel clusters formed by monolingual docaotsgblack dots) using/
parallel seed documents.

ness assumption (Chapelle et al., 2006) says that if twotpoinand x, are close in a
high-density region, the corresponding output@ndy, should be close as well. In our
setting, each parallel source-target document pair igddeas an input-output point in
some spaces. With the smoothness assumption, we assoaiateodingual non-parallel
document to the closest parallel document via a documerlgsity measure and discard
those that are distant to all parallel documents. As a reaydartial alignment between a
source and target monolingual non-parallel documentevered at the document clus-
ter level. The parallel clusters then serve as constrammthé cluster-based bilingual LSA
training via the Lagrangian theory (Tam and Schultz, 2009).

5.6.1 Parallel Clusters

We propose a platform for integrating monolingual non-patalocuments via parallel
clusters. The concept of parallel clusters is depicted gufd 5.6. The idea is to use
parallel seed documents to form the initial clusters comtg only a single document.
Then a parallel cluster is populated by associating eachoimgual source and target
documents to the corresponding closest parallel docunesgdon a similarity measure.
We represent each documehas aKk'-dimensional topic posterior vectptk|d) inferred
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by monolingual LSA. The distance between two documentsngpedged as follows:

D(d,d.) = > \/p(k|d) - p(k|d.) (5.14)

whered, is a parallel seed document in cluster When the distance is equal to one,
the input documents are considered identical in the topisese Consequently, partial
document alignment between monolingual documents is ezedvat the cluster level.
Intuitively, monolingual documents within a cluster argegted to come from similar
topics. We prevent “noisy” monolingual documents from folglinto a cluster by setting
a threshold- so that any monolingual document with distance larger thimom all cluster
centroids is removed.

5.6.2 Cluster-based Bilingual LSA Training

The development of cluster-based bilingual LSA traininguamses that the average topic
distribution between a source and target cluster is idahtitn other words, a one-to-
one topic correspondence among a pair of parallel clustasssimed. Given a pair of
parallel clusteC' = {C), CU)} wherei and; represent the index of the source and target
language respectively, this assumption can be encoded@sgo

VE: EpO(KCP)] = EpP(kCD)] (5.15)
Daeco POEI)  Yacon PV (kld)
- co = 0] (5.16)

whered andk denote a document and a topic index respectively. For mogadl LSA
training using latent Dirichlet allocation (Blei et al., @B), the lower bound of the log
likelihood of a documentV,; = w;...wy,, denoted as QUy), is:

oz [ Wi 2.6) = 1o [ 56) T[p(210) - plo)

> Blos 2001+ 3 (Eylos 22+ B log )]

= Q(Wy)
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whereZ = z,...z)y, andf denote the latent topic sequence and the topic distribugotor
sampled from a Dirichlet prior respectively. The lower-bdwalue is achieved via the
Jensen’s inequality using a factorizable variational @ast distribution over the latent
variablesq(Z,0|d) = q(0) [1", ¢(z,). Therefore, the objective function for bilingual
LSA training with a pair of cluster is the sum of the lower-lmoulog likelihood of the
documents in the source and target cluster subject to the ¢oprespondence constraint
in equation 5.16. With the Lagrange multipliexs,, the objective function is shown as
follows:

QVIAT) = Y QUWHAD) + > QU(WgAT)

deC(@) deC' ()

2accw PV (Kld) Y aecw PV (kld)

A ec® P _ Zudec) P

- ; Ck( CO)| ICO)

Ny

n = k|d
wherep(k|d) =~ Enzlqg\i |)forlargeNd

d

To derive the E-steps, we compute the partial derivativ€)0f’; A, ") with respect to
¢ (z, = k|d) subject o>, ¢")(z, = k|d) = 1 which yields the following solution:

) ) Aok

whereugz is the Lagrange multiplier for probability normalizatiamg® (z,, = k|d). If we
assume that each document has the same number of words 3¢;tkatV, we can use
equation 5.17 to construct the estimagél|d) which are put back to the left hand side of
equation 5.16. After rearranging terms of the resultingagiqun, we obtain the following
result:

ACk

el = ERHCD) G (5.18)
m ZdGC(i) Zn p(l) (wdn|k)'eEq[log 91(;)]+ud2"
Elp(k|C)
~ E[[];;EkI\C(i);% = 1;/i(k|C) (5.19)

wherer;,;(k|C') is the topic ratio between the target and source clustér. iBubstituting
r;,:(k|C) into equation 5.17 and using the E-steps of latent Dirichllecation introduced
in Chapter 2, we arrive at the following variational E-stémsa source document ie'"):
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E-steps:

. ] (%)
¢ (2 = kld) o< p?(wgylk) - P50 x4 (k| C) (5.20)
N
T = o)+ q(z = kd) (5.21)
n=1

The E-steps resemble those in latent Dirichlet allocatiept that an extra termy /; (k)

is introduced to enforce a one-to-one topic correspondbateeerC® andC'¥) in equa-
tion 5.15. By symmetry, the E-steps for documents on thestdemguage can be pro-
ceeded in a similar fashion. After performing the E-stepslbmonolingual documents,
r;:(k|C) is updated using equation 5.19 which are then substitutekl tuathe E-steps
iteratively until convergence is reached. The M-step issidi@e as the derivation in latent
Dirichlet allocation.

5.6.3 Experiment

The bilingual LSA training employed parallel Chinese—Esiglcorpora from the Donga
news websites containing 28k parallel documents with 13Nh&de characters and 9M
English words. We applied latent Dirichlet-Tree allocativith 50 latent topics. We

employed a small-scale RT0O4 SMT system to evaluate the peafoce of crosslingual
language model adaptation.

To show the progress of incorporating the pseudo and themeablingual non-parallel
corpora into bilingual LSA, we randomly split the corporadnwo parts: 10% of the doc-
uments (2.8k) as parallel seed documents and the remaifiga8 pseudo-monolingual
documents (25k) where a one-to-one document correspoadeas omitted. We com-
pared different bilingual LSA training scenarios fromto /' as shown in Table 5.13.
ScenarioA used only 10% of the parallel corpora as a baseline. Scemamzorporated
the remaining 90% of pseudo-monolingual portion in additio scenaricA without con-
straint, i.e. the topic ratios, /. (k|C) in equation 5.20 were set to 1 meaning that parallel
clusters were not applied. Scenafibhad similar settings as scenatibexcept that the
parallel clusters were applied. Scenafioresembled scenari® except using the real
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Table 5.13: Bilingual LSA training scenarios with pseudormlingual (p-mono) Donga
news and real monolingual Xinhua news 2004 corpora.

Scenario # Chinese doc # English doc
A. 10% // (baseline) 2.8k 2.8k

B. + p-mono (blind) +14.5k +13.7k
C. + p-mono (// cluster) +14.5k +13.7k
D. + real mono (blind) +18.4k +19.2k
E. + real mono (// cluster) +18.4k +19.2k
F. 100% // (golden-line) 28k 28k

monolingual non-parallel corpora from the Chinese and EhgKinhua news 2004 cor-
pora. Scenaridr shared the same rationale as scenériout using the real monolingual
non-parallel corpora. Scenari® served as an ideal case where 100% parallel corpora
were available. We compared these scenarios for crosslingonguage model adapta-
tion at the story level using the manual transcription of ®¥D4 test set of the source
language comprising CCTV, NTDTV and RFA shows. Performamegrics were target
word perplexity and BLEU.

5.6.4 Results

Table 5.14 shows the toppwwords discovered by bilingual LSA from the pseudo-monalialy
corpora after filtering out words which were already coveiedhe parallel seed docu-
ments. The new words tended to be crosslingual word triggeggesting that our ap-
proach worked well in the pseudo-monolingual case. Taldg Shows the results in tar-
get word perplexity and BLEU after crosslingual languagelei@daptation via marginal
adaptation. The baseline bilingual LSA in scenadcshowed reduction in perplexity
compared to the unadapted language model which was suiglsislecent given the small
amount of parallel training data. Incorporating pseudaioimgual documents further re-
duced perplexity in scenari® compared to scenarid, and approached to the ideal case
in scenarioF’ using the full parallel corpora. Given that scenadaand F' set the over-
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Table 5.14: New topical words which are not covered by thalpelrcorpora are extracted
by bilingual LSA using pseudo-monolingual corpora. Wordslee Chinese side are trans-
lated into English for illustration purpose.

Topics Top new words sorted by p(w|k)

“CH (Art)” film reward, ballet, art festival ballet club,
edinburgh, orchestra, rock-n-rolpartacus

“EN (Art)” ballet, ballads,edinburgh, pianist,

hop, hip, boaspartacus wax, sf, swan, beast, oscar,
“CH (Economy)”  export rate, life condition, 2nd season

international oil durable, greenspan trade deficit,
“EN (Economy)”  dieselgreenspan durable, dived,

revalation, bottomed, recessions, nonferrous, iea
“CH (Electronics)” router, broadband service, album,

connector, bundled with, coupon, broadcast
“EN (Electronics)” 3g, bro, pixel, copying, piracy, sw,

fingerprint, telephony, cartoonists, sos

all upper-bound and lower-bound perplexity of 117 and 1Xpeetively, our approach
was reasonable with the overall perplexity of 113. On theepttand, folding in mono-
lingual corpora without parallel clusters as constraintsgéenarioB degraded perplexity
compared to scenarid. This indicates that using parallel clusters as conssain cru-
cial in incorporating monolingual non-parallel documemé& observed a similar trend in
perplexity performance when the real monolingual corpoeaeremployed, reducing per-
plexity in scenariaF, but deteriorating perplexity in scenario even further compared to
scenarioB. This implies that our approach becomes critical for incogbing real mono-
lingual documents. Regarding the translation performacoasistent improvement in
BLEU was indicated in scenari@ and E similar to their perplexity performance although
the gain was not significant. But since the difference in Bligtiveen the best scenario
and the baseline scenatibwas only 0.21%, the gain after incorporating monolingua co
pora using our approach was reasonable with 0.19% and 0.4f¥ovement in scenario
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Scenario CCTV NTDTV RFA OVERALL

BG EN 4-gram 16.12% (85) 14.04 (127) 8.83(189) 13.22(126)
A. 10% /I (baseline) 16.26 (78) 14.09 (115) 8.90(181) 131§
B. + p-mono (blind) 16.46 (81) 14.29(116) 8.68(189) 13.3B1(1
C. + p-mono (// cluster)  16.52(75) 14.31(109) 8.95(178) 13.47(113)
D. + real mono (blind) 15.66 (91) 14.28(135) 8.87(192) 1312)

E. + real mono (// cluster) 16.30(76) 14.40(114) 9.04(178) 13.44(115)
F. 100% // (golden line) 16.44 (74) 14.38(107) 9.06 (172) 493111)

Table 5.15: Crosslingual language model adaptation pedoce in BLEU (target per-
plexity) on different training scenarios for bilingual LSA

C' and E respectively using a single target reference for scoring.

5.7 Summary

We have proposed the bilingual N-gram LSA for crosslinguddation for statistical
machine translation. Our approach is based on bilingual W®#h enables latent topic
distribution to be efficiently transferred from a sourcedaage to a target language by
enforcing a one-to-one topic correspondence between tireesand target LSA. During
testing, crosslingual adaptation can be performed simatiasly on SMT models by in-
ferring the topic distribution of a source text and then gpm the inferred distribution
to the target language. Since adaptation is performed édfanslation, it does not re-
quire the adaptation text to be pre-translated as in mogoéhadaptation. Therefore, an
immediate impact on the translation output is achieved imgls decoding pass. Rapid
LSA bootstrapping for a new language can be performed fronel&ktvained LSA of an-
other language. Results show that our approach has redneedard perplexity of the
target language model significantly. When the adapted aggunodel or lexicon is ap-
plied separately, improvement in BLEU and NIST scores has lmbserved. When both
models are applied simultaneously, the gain is additivegrdm LSA has improved the
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Figure 5.7: Overall translation performance summary aftesslingual adaptation using
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translation performance further compared to LSA. On theiomaescale SMT system, the
improvement is statistically significant at a 95% confidemterval with respect to the
unadapted baseline. Effective language model adaptatiproves word reordering while
a better translation lexicon leads to a better phrase tabie.approach works well on a
large-scale evaluation with consistent improvement usimegGALE-P2.5 SMT system.
The improvement in the NIST score is statistically significat a 95% confidence inter-
val. For end-to-end translation, the gain from improvedmation accuracy and sharper
translation models after topic adaptation are additivgufé 5.7 and Figure 5.8 summarize
our contributions towards better translation performansi@ag our GALE-P2.5 system on
text translation and end-to-end translation.

The limitation of bilingual LSA training using parallel doments is relaxed via in-
corporating monolingual non-parallel documents usingraisipervised approach. We
have enforced a one-to-one topic correspondence betwegrathllel clusters populated
with monolingual non-parallel documents. The proposeimdilal LSA training is based
on variational Expectation-Maximization algorithm ane thagrangian theory. Our ap-
proach have incorporated monolingual corpora succegsunlil has yielded slightly better
crosslingual language model adaptation performance coadpa the baseline without the
monolingual non-parallel corpora. Incorporating monglial corpora without the paral-
lel clusters can lead to severe performance degradatigulying that a one-to-one topic
correspondence between the parallel clusters is crucibls dpproach has potential in
building a crosslingual word trigger model with enhancedalmulary coverage in a re-
source deficient scenario where only a small amount of @dticuments are available.

Language model adaptation, translation lexicon adaptatiol incorporating monolin-
gual non-parallel corpora address different aspects ticstal machine translation. In-
tuitively, language model adaptation improves fluency \attdy word reordering. Trans-
lation lexicon adaptation reduces ambiguity of word tratish options. Incorporating
monolingual non-parallel corpora potentially addressesdut-of-vocabulary issue. We
speculate that language model adaptation is more impdhanttranslation lexicon adap-
tation, which is in turn more important than incorporatingmolingual non-parallel cor-
pora. It is widely accepted that the average length of a ghmaetch between source text
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and a phrase table governs the quality of local word reonderand thus the quality of
translation. When the length of a matched source phrasdayges the number of trans-
lation options of the source phrase decreases. Theref@esftectiveness of translation
lexicon adaptation may be reduced. The impact of incorpggahonolingual non-parallel
corpora may be the least, especially when the bilingualness are rich since the out-of-
vocabulary issue is less severe. However, its potentidlUtore research is expected to be
the largest among language model adaptation and translakon adaptation.
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Chapter 6
Conclusions

Adaptation is an indispensable part of speech and naturgukge applications due to
mismatch between a background model and a test domain. Qfiecutopic adaptation
framework via latent semantic analysis reduces this mismaithin and across languages.

6.1 Contributions

We list out the contributions as follows:

e We have shown that latent Dirichlet allocation for Bayed@ient semantic anal-
ysis (LSA) can be applied for unsupervised language modaptation via topic
caching. Topic caching is more robust against speech réomgerrors compared
to word caching. As a cache model, adaptation can be pertbrapdly in terms of
a small amount of adaptation text. Our results have showmndugment in recogni-
tion performance (Section 4.1.2).

e We have proposed latent Dirichlet-Tree allocation to madpic correlation to gen-
eralize latent Dirichlet allocation. Our model can be temirusing an efficient vari-
ational Expectation-Maximization algorithm. Our approaddresses the model
initialization issue via a structured topic prior so that awdel training converges
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faster than latent Dirichlet allocation, which is cruciat training on a large volume
of data (Section 4.2.2).

We have proposed incremental marginal adaptation forcattescoring that has
yielded additive improvement after topic caching (Sectddh2).

We have employed N-gram LSA to relax the “bag-of-word” asption. Efficient
model training and smoothing are the major problems in Nvgit&A for large-scale
application. We have addressed the model training issua bi@otstrapping algo-
rithm and a variational Expectation-Maximization algbnit. We have investigated
a fractional Kneser-Ney approach to smooth N-gram LSA tihapleys fractional
counts. The smoothing algorithm generalizes the origioghtilation, generating
a more compact model compared to the Witten-Bell smoothingaddition, the
smoothing algorithm applies to other higher-order languangpdel, including a fac-
tored language model. Our results have shown that N-gram yi8lds significant
improvement in recognition performance compared to LSAldéoge-scale GALE
evaluations on two languages: Mandarin and Arabic (Se&idr®6).

We have extended our monolingual topic adaptation to aragsal adaptation via
bilingual LSA. Since bilingual LSA captures a one-to-onerespondence between
a source and target language, adaptation on the targetdgagian be performed
using information from the source language. As a conseagire-translation of
a source text is not required to adapt the target models fistital machine trans-
lation, giving immediate impact before translation. We éathown that adapting a
language model and translation lexicon together have gietdiditive improvement
in translation quality. Applying N-gram LSA on the targehfpuage as an additional
language model feature function further improves transtedjuality for text trans-
lation (Section 5.4). For end-to-end translation, we hdweng that the gain from
better recognition accuracy and sharper translation nsaafedr topic adaptation are
additive (Section 5.5).

We have relaxed the requirement of using parallel corparhifmgual LSA training
via incorporating monolingual non-parallel corpora in anssupervised fashion.
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Our approach improves the performance of crosslingualdagg model adaptation
compared to blind incorporation of monolingual non-paatiorpora. In addition,

our approach has a potential in building a crosslingual viagder with an enhanced
vocabulary coverage in a resource deficient scenario whenalel resources are
scarce (Section 5.6.4).

6.2 Summary of Results

Using our baseline systems trained on sufficiently largewarhof training data, we have
achieved the following results:

For automatic speech recognition, we have achieved signifielative reduction in
recognition error rates in the range of 5-7% and 3% respalgtion the Mandarin and
Arabic test sets after applying the proposed unsupervisegliage model adaptation for
the GALE-P3 evaluation. The reductions are statisticafipisicant at a 0.1% significance
level compared to an unadapted baseline that employsaftdlbe-art techniques such as
discriminative training and acoustic model adaptation.

For statistical machine translation, we have yielded sicgmt relative improvement
in BLEU and NIST by 4.8% and 4.2% respectively on MTO06 aftgri¢cadaptation using
the GALE Chinese-English development system (500M). Theavement is statistically
significant at a 95% confidence interval compared to an urtaddmseline. In addition,
we have achieved significant improvementin NIST using thé.542.5 Chinese-English
system compared to an unadapted baseline. For end-to-@amldtion, we have yielded
1.8% and 1.1% relative improvement in BLEU and NIST respetyi after end-to-end
topic adaptation compared to the unadapted baseline.

In summary, topic adaptation for language models encogriagtter recognition accu-
racy on topical words in automatic speech recognition. Esellts are important for ap-
plications such as spoken language understanding andauesiswering systems since
topical words usually carry the most important informatmfran utterance compared to
stopwords which contribute much less to the automatic wstdeding process.
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6.3 Future Challenges and Potentials

Although our topic adaptation approach is beneficial to aleecognition performance,
less gain is observed on broadcast conversation compareaolcast news. A major
challenge is the mismatch between our training corporaghkvlre mostly newspaper text
with relatively few audio transcript. In addition, broadt@onversation is spontaneous in
speaking style with much disfluency, including hesitatiod eepetition. The spontaneous
events in broadcast conversation are usually independ&sytio context. Thus we believe
that N-gram latent semantic analysis is not a good modelroadcast conversation. An
improved language modeling approach for broadcast coatiersdeserves much attention
for future research.

Statistical machine translation usually requires parat@tences so that a phrase table
can be built for translation. A major hurdle for this apprbas the inability to trans-
late out-of-vocabulary terms that are not covered in thaphitable. As a consequence,
the benefit of crosslingual language model adaptation magdheced since the N-gram
entries containing the out-of-vocabulary terms are nesedwuring decoding. This prob-
lem is severe on minority language pairs that parallel resesiare deficient, producing
significant amount of out-of-vocabulary terms. Therefdeseraging monolingual non-
parallel corpora is a research direction to discover paétranslation candidates for out-
of-vocabulary terms.

We envision that our approaches can be extended to a diffepgiication, such as
crosslingual semantic search. Semantic search is anstitegepplication where the goal
is to deliver information queried by a user rather than hgaruser sort through a list of
loosely related keyword results. Bilingual LSA lends ifseéll to the search application
since it can work as a crosslingual trigger between an inpet query and output objects
without machine translation or dictionary lookup. In adufit bilingual LSA can also be
extended to other multimedia such as images and videosnBianice, text annotation on
images has been shown feasible using latent Dirichletatiloe (Blei and Jordan, 2003).

Many objects in the Internet including images and videosnateannotated and in-
dexed. Without proper indexing, there seems no hope t@uetthese objects given a user
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guery. On the other hand, a user query and the clicked outgetts can be treated as
“parallel” data. Our semi-supervised approach for biliabluSA can be applied similarly
to this scenario via the notion of parallel clusters thabinporate unannotated objects into
the clusters of a target side. Since our approach has shotemt to discover novel
crosslingual word triggers that are not covered in paraltepora, we speculate that the
concept of crosslingual triggering may be applied to ciogsial semantic search to trigger
unannotated objects given an input query.
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Appendix A
Gibbs Sampling

Gibbs sampling is another useful approach for posteriararice based on Monte Carlo
methods. It has a nice property that the Gibbs sampler wilveme to the true distri-
bution with sufficiently large number of sampling iteratsorHowever, it is usually slow
compared to variational Bayes. Nevertheless, Gibbs sagplas been applied to latent
Dirichlet allocation as a convenient alternative to vaoiaal Bayes.

A.1 Latent Dirichlet Allocation

The basic principle of Gibbs sampling is to draw samples feoprobability distribution
conditioned on other variables with some fixed values. lenaDirichlet allocation, the
latent variables are the topic mixture weigliteind the topic index; for each word in
a documentyY. In principle, the conditional distributions to considee (6|2, wl)
andp(z;|z_;, 0, wl) wherez_; denotes the topic sequencewf excludingz;. However,
using the conjugate property between a Dirichlet and a matial distribution, we can
marginalize out) easily so that we only need to draw samplesAor This approach is
known as the collapsed Gibbs sampling (Griffiths and Stes\@004). Assume that the
topic-dependent unigram language mog€ho|k)} is an unknown variable, we can derive
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the conditional distribution fog; in document! as follows:

p(zi|wi, 2o, w_;) o pw;|2, 2—i, w—;) - (2] 2—i, W) (A1)
o p(wilz) - p(2i|z—) (A.2)
wherep(z;|z_;) = /ep 210) - p(0|z—;) dO (A.3)
= /6(921 p(60 (A.4)
= E[b,, ] (A.5)
ay + Cq(k)

= A.6
S+ Call) A0

C w, k —i
andp(w; = wlz; = k) = C'((k)’_z)—l— ‘;ri (A7)

whereC,(k)_; denotes the total integral counts of topgi@according to the current values
of other topic samples;.; in documentd, i.e. Cy(k)_; = Z#Z d(k, z;). Similarly,
C(w, k)_; denotes the total integral counts of wardassigned to topié in the corpus
except the count from word;. A small count is applied for simple Laplace smoothing to
avoid zero probability wher® denotes the size of vocabulary. Informally, Gibbs sampling
performs a leave-one-out maximum likelihood estimatiomhef probability distributions
by holding out the-th token in equation A.6 and equation A.7.

A.2 Bigram Topic Model

Similarly, the Gibbs sampling formula for bigram topic mb@é/allach, 2006) is as fol-
lows:

p(zilwi, 25, w—;) o p(wilwi-i, z) - p(zilz—i) (A.8)
x plw; =v|lwi_y =u,z; = k) - p(zi]2_) (A.9)
C(u,v,k)_; + & _ ar + Cy(k)_;
Clu k)i +V & S8 o + Ca(k)
whereC'(u, v, k)_; denotes the bigram count ¢f, v) assigned to topié excluding the
i-th word token.

(A.10)
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Appendix B

Latent Dirichlet-Tree Allocation

Similar to latent Dirichlet allocation, we apply variati@rexpectation-maximization algo-
rithm for model training. We define the following notatiorts the derivation:

a;. A Dirichlet parameter of thg-th node in a Dirichlet-Tree.

bj. A probability vector over the branches sampled from fkhé& node so
that) " b,;. = 1 wherec is a branch index.

d;c(k) A 0-1 indicator which sets to one when a path from a root nodéeo
k-th leaf node passes through théh branch of the-th Dirichlet node;
and zero otherwise.

{Bw} A shorthand forp(v|k) wherew is the vocabulary index ankl is the

topic index.
A The model parameters containifig;. } and{, }.
w A word sequence of an input document.
M The number of documents in the training corpora.

Onk A shorthand for variational multinomial posterigfz, = k) of then-th
word assigned to topik in a document.

The latent variables are the topic assignmght= 2, z,...zy and the branching vari-
ablesb{ = b1by...b; where.J denotes the number of nodes in the Dirichlet-Tree. Using
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variational Bayes, the auxiliary function to maximize is:

p(wi’, 2", b5 A)

QwY:AT) = E,|lo B.1
( 1 ) q[ g (J(Zl7b{7 ) ] ( )
p(z1'[b]) p(b7)
= E,llog p(w|2V)] + E,[log + FE,|log (B.2)
The first term in equation B.2 is computed as follows:
N N
E llogp(wy'|2))] = Egllog [ [ Bunz =D Eqllog Bu,=.] (B.3)
= n=1
N K
= D ) burlog Bun (B.4)
n=1 k=1
Using the following relation:
plzn = klb)) = Hbﬂ (B.5)
— log P(z, = k|b]) = Z(Sjc(k)-logbjc (B.6)
The second term in equation B.2 is computed as follows:
(=1 [b7) p zn\bl
B log="t ] = Bl (B.7)
Q[ q(Z{V) ] q };[1 Zn
N
= Y Byllogp(za|b))] — E,[log 4(=0) (8.8)
n=1
N K
= > b (E 8je(k) - Eq[logbsc] — log m) (B.9)
n=1 k=1

Using the following relation:

J
p(b]) H Dirichlet(b;; a;) = [ (H %e) -b;?‘gH) (B.10)

Jj=1 Jj=1



The third term in equation B.2 is computed as follows:

p(t), <

J

(log F(Z Qje) — Z log I'(aje) + Z(%’c — 1)(Eq[log bjc]))

- <1Og F(Z 7jc) - Z log F(7j0> + Z(’ch - 1)(EQ[log b]c]))

j=1

B.1 Variational Multinomials

We isolate terms of the auxiliary function in equation B.2iethdepends on,,,.. Then we
introduce Lagrange multipliers, for eachn-th position to ensure th@:,f:1 O = 1.

Q[¢nk] = ¢nk log 6wnk + ¢nk <Z 5gc<k> : Eq [1Og bjc] - log ¢nk> + )\nénk (Bll)
jc

By computing the partial derivative @f,, ,; with respect tap,,,,, we have:

0
Qo) _ 108 Buk + > Gje(k) - Eyllogbse] —log ¢ — 14 A, = 0 (B.12)
a¢nk jc
b 0 B - eSsebie(h) Ealloghye] (B.13)
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B.2 Variational Dirichlet

We isolate terms of the auxiliary function in equation B.2iethdepends on;.

Q['yjc] = <Z(ajc + Z ¢nk . 5]c(k) - Vjc) ’ (‘II('VJ'C) - \I](Z Vjc))>
nk c

[

—log (> " vje) +log T (v;c)

= \If/(’)/jc) : (Oéjc + Z Onk 5jc(k) - Vjc)
nk

WO i) D (e + > b+ Gie(k) — 75e)

=0
= Yje = Qjc + Z ¢nk : 6jc(k)
nk

B.3 Conditional Multinomials

We isolate terms of the auxiliary function in equation B.2iethonly depends of,.. By
considering all training documents indexeddgnd introducing Lagrange multipliers,
to enforce}""_, B, = 1 for all k, we get:

Ny

K K \%4
Qo = 3. DD Gank1og Bugi + > N> B — 1) (B.14)
d=1 n=1 k=1 k=1 =1

We take the derivative with respect tp, and set it to zero, we get:
M Ng
Bok X Z Z Gdnk * 5<wdm U) (B.15)

d=1 n=1
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B.4 Dirichlet Node in a Dirichlet-Tree

The terms which containa; of the j-th node in a Dirichlet-Tree are:

Qo) = <log PO aje) = > logT(aze) + > (aje — 1) - (T(yge) — ¥ ch))>

d=1 c

Taking the derivative with respect tg,. gives:

38%[:} - M. (\I/(ozjc) — \II(Z Oéjc)> + Z (‘I’(Vdjc) - ‘I’(Z Wﬁ))

Simple constrained gradient ascent can be applied to etisate,. > 0 via parameter
transformationiog(.): &;. = log a..

B.5 Alternative Proof

We can use the generic solution of the variational E-stegketive the formula for latent
Dirichlet-Tree allocation. Recall that the generic salathas the following form:

q<2j> o Pallogp(X,Z:M)\;; (B.16)
where the expectation is taken over all other latent vagimbt; } excludingz;. Instead
of considering the full joint distribution for expectatiamequation B.16, only a subset of
local conditional distributions involving; are actually involved, that is(z;|-) or p(-|- z;-).

The remaining conditional distributions which do not canta, are cancelled out due to
probability normalization.

In latent Dirichlet-Tree allocation, the observation is thord sequence’, and the la-
tent variables are the topic assignmerjtsand the branching probabilities of each node in
the Dirichlet treeb]. Using the relatiom(z|b{) = [] b and applying equation B.16,

je “jc
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the variational posterior of a Dirichlet nogas:

q<bj) x eEq[IOgP(bJ‘)}\bj'FZizilEq[l‘)gfl’(zﬂb{)]\bj (B]_?)

_ elogp(bj)+Zf-V:1 > Eqldje (k)] logbje |

er\Ll Z}I/;&jZcEq[éj’c(k)]Eq[IOgbj’Cl (818)
indeper]aent ob;

o p(bj)eziil 2 Eqldje (k)] logbje (Blg)

— Dirichlet(b Hbzz 1+ Baloge(k (B.20)

< 11w Hbzz el (B.21)

— HbO‘Jc'i'Zz 1Zk 14(zi=k)d;c(k)—1 (822)

= D|r|chlet({7jc}) (B.23)

wherey;. = ajo + S0 T8 (2 = k)d,.(k). Similarly, the variational posterior of a
topic assignment; for word w is:

q(z) o e Fallogp(zi[b] )]\ 2, +Eqllog p(wilzi)]\ 2, (B.24)
_ €ch 0jc(k)Eq[log bjc]+log p(w;|z;) (825)
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