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Abstract

Dependency structures represent a sentence as a set of dependency relations. Normally
the dependency structures from a tree connect all the words in a sentence. One of the
most defining characters of dependency structures is the ability to bring long distance de-
pendency between words to local dependency structures. Another the main attraction of
dependency structures has been its close correspondence tomeaning. This thesis focuses
on integrating dependency structures into machine translation components including de-
coder algorithm, reordering models, confidence measure, and sentence simplification.

First, we develop four novelcohesive soft constraintsfor a phrase-based decoder
namely exhaustive interruption check, interruption count, exhaustive interruption count,
and rich interruption constraints. To ensure the robustness and effectiveness of the pro-
posed constraints, we conduct experiments on four different language pairs, including
English-{Iraqi, Spanish} and{Arabic, Chinese}-English. The improvements are in be-
tween0.4 and1.8 BLEU points. These experiments also cover a wide range of training
corpus sizes, ranging from 500K sentence pairs up to 10 million sentence pairs. Further-
more, to show the effectiveness of our proposed methods we apply them to systems using
a 2.7 billion words 5-gram LM, different reordering models and dependency parsers.

Second, to go beyond cohesive soft constraints, we investigate efficient algorithms
for learning and decoding withsource-side dependency tree reordering models. We
propose a novel source-tree reordering model that exploitsdependency subtreeinside /
outsidemovements and cohesive soft constraints. These movements and constraints enable
us to efficiently capture the subtree-to-subtree transitions observed both in the source of
word-aligned training data and in the decoding time. Representing subtree movements
as features allows MERT to train the corresponding weights for these features relative to
others in the model. Moreover, experimental results on English-{Iraqi, Spanish} show that
we obtain improvements+0.8 BLEU and-1.4 TER on English-Spanish and+0.8 BLEU
and-2.3TER on English-Iraqi.

Third, we developGoodness, a novel framework to predict word and sentence level

iii



of machine translation confidencewith dependency structures. The framework allows
MT systems to inform users which words are likely translatedcorrectly and how confident
it is about the whole sentence. Experimental results show that the MT error prediction
accuracy is increased from69.1 to 72.2 in F-score. The Pearson correlation between the
proposed confidence measure and the human-targeted translation edit rate (HTER) is0.6.
Improvements between0.4and0.9TER reduction are obtained with the n-best list rerank-
ing task using the proposed confidence measure. Also, we present a visualization proto-
type of MT errors at the word and sentence levels with the objective to improve post-editor
productivity.

Finally, inspired by study in summarization we proposeTriS, a novel framework to
simplify source sentences before translating them. We build astatistical sentence simpli-
fication system with log-linear models. In contrast to state-of-the-art methods that drive
sentence simplification process by hand-written linguistic rules, our method used a margin-
based discriminative learning algorithm operates on a feature set. The feature set is defined
on statistics of dependency structures as well as surface form and syntactic structures of
sentences. A stack decoding algorithm is developed in orderto efficiently generate and
search simplification hypotheses. Experimental results show that the simplified text pro-
duced by the proposed system reduces1.7Flesch-Kincaid grade level when compared with
the original text. We show that a comparison of a state-of-the-art rule-based system to the
proposed system demonstrates an improvement of0.2, 0.6, and4.5 points in ROUGE-2,
ROUGE-4, andAveF10, respectively. We present subjective evaluations of the simplified
translation quality for an English-German MT system.
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Chapter 1

Introduction

1.1 Motivation

Statistical Machine Translation (SMT) have been evolving rapidly during the last two

decades of research and development. SMT paradigms have emerged from word-based

translation (Brown et al., 1993) to phrase-based translation (Koehn et al., 2003) and syntax-

based translation (Galley et al., 2004; Quirk et al., 2005; Liu et al., 2006; Chiang, 2005;

Shen et al., 2008). In addition to standalone machine translation systems which are al-

ready being used in everyday life, SMT also plays a vital rolein other applications such as

speech translation, cross-lingual information retrieval/extraction, distillation systems and

virtual world communication (Bach et al., 2007; Shima et al., 2008; Sudo et al., 2004;

Zhang and Bach, 2009).

Considerable improvements have been made and high-qualitymachine translation can

be obtained for language pairs, such as Spanish-English andFrench-English, which have

overlaps in linguistic properties and phenomena such as vocabulary, cognate, and gram-

mar . However, we still see unsatisfactory translations when translating from languages

which have complicated structures such as from German, Chinese, and Japanese to En-

glish, or from English to rich morphological languages suchas Arabic, Farsi, and Pashto.

According to Vilar et al. (2006), incorrect translations occur mainly due to the following

1



reasons:

• Word order: Word order errors occur when the translated words are in an incorrect

order. This problem produces grammatically ill-formed sentences that might be hard

to understand or even misleading.

• Missing words: Content words are omitted during the translation process and as a

result machine translation output will lose key information.

• Incorrect words: Single words can have different senses depending on the context

in which they are used. Those words are often translated using an incorrect word

sense.

Figure 1.1: Error analysis for 311 sentences of the GALE P3.5Chinese-English evalua-

tion.

To get a better view of these types of errors, we performed an error analysis on the

translation output of our system used for the GALE P3.5 Chinese-English evaluation. Our
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error classification criteria is trying to minimize the number of human edits to correct ma-

chine translation output such that it matches to the original meaning. Figure 1.1 shows

that 21.6% of the errors come from the word order category, 31.7% from missing words,

45.3% from incorrect words and 1.4% from other errors. This analysis suggest that cor-

recting word order may be helpful to alleviate the other issues because it helps the target

language model to make better predictions.

Source sentence óÉ."�#À��,����qÄê�',è��tZ�

=ý�{Ý#�

Machine transla-

tion output

lenovo to achieve change , liu chuanzhi also completed a riskin-

vestors from entrepreneurs to change .

Reference trans-

lation

when lenovo was carrying out changes , liu chuanzhi also changed

his role from an entrepreneur to a venture investor .

Table 1.1: Example of errors

In addition, state-of-the-art SMT systems have made significant progress towards pro-

ducing user-acceptable translation output. The example inTable 1.1 contains a Chinese

source sentence, a machine translation output and an English reference. Without transla-

tion references, there is still no efficient way for MT systems to inform users which words

are likely translated correctly and how confident it is aboutthe whole sentence. Key words

and phrases, such as “lenovo”, “ liu chuanzhi” and “entrepreneurs”, are correctly trans-

lated, however, there are incorrect words for example “venture”-“ risk” and ”carries out”-

“ to achieve”. Also incorrect word forms can be seen with “entrepreneur”-“ entrepreneurs”

and “investors”-“ investors”.

Furthermore, complicated sentences impose difficulties for translation. In the NIST

evaluation, translation systems typically have to deal with sentences with average length

ranging from 27 to 36 words varying on different test sets as shown in Table 1.2. There

are cases when the test sentence has up to 268 words. Similar to other NLP tasks, such as
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parsing and semantic role labeling, the source sentence length has a lot of impact on SMT

performance. Translating long sentences is often harder than short sentences because of

several reasons. First, the hypothesis search space for long sentences is much larger than

short sentences, and as a result, good translations are harder to reach. Second, it takes

more time to translate long sentences. Third, long sentences often contain complex syntax

and long range dependency structures, therefore, it is not easy for translation models to

capture these phenomena.

Test sets Average Length Maximum length

mt02 29 81

mt03 28.42 86

mt04 31.76 111

mt05 31.51 101

mt06 27.68 205

mt08-nw 31.92 150

mt08-wb 36.22 268

Table 1.2: Sentence length statistics on NIST MT Arabic testsets

In many translation applications, such as speech-to-speech translation, the fluency may

not be very important. For example, in speech-to-speech translation when the user says

”well well well my name you know is is John”it is almost acceptable if the machine can

output to the target language keywords”my name John”. On the other hand, complicated

sentences impose difficulties not only on translation but also on reading comprehension.

For instance, a person in 5th grade can comprehend a comic book easily but will struggle

to understand New York Times articles which require at least12th grade average reading

level (Flesch, 1981).

Dependency structures can be used to tackle these problems.Dependency structures

represent sentence as a set of dependency relations via dependency grammar, a type of

grammar formalism. Normally the dependency relations froma tree connect all the words
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(a) Long distance dependency (b) Semantic relations

Figure 1.2: Example of long distance dependency and semantic relation between words

properties for sentence “water as long as not contaminated is drinkable”

in a sentence. Dependency structures have been used in various semantic structure the-

ories, for example in theories of semantic relations/cases/theta roles (arguments have de-

fined semantic relations to the head/predicate) or in the predicate calculus (arguments de-

pend on the predicate).

One of the most appealing characteristics of dependency structures is the ability to rep-

resent long distance dependency between words with local structures. Figure 1.2(a) shows

the distance between words “water” and “is” in the surface form is 5 words, however, in

dependency structure it becomes local. The other main attraction of traditional depen-

dency structures has been its close correspondence to meaning. Figure 1.2(b) shows the

relations between words “water” and “is” is a subject relation while “is” and “drinkable”

is a predicate relation. The adoption of dependency structures would facilitate the machine

translation system to reveal deep structures to be learned for modeling translation process.

A dependency-based approach to the problem of word and phrase reordering miti-

gates the need for long distance relations which become local in dependency tree struc-

tures. This property is attractive when machine translation needs to deal with languages

with very different word orders, such as between subject-verb-object (SVO) and subject-
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object-verb (SOV) languages; long distance reordering becomes one of the key points.

Dependency structures directly target lexical items whichturn out to be simpler in form

than phrase-structure trees since there are no constituentlabels. Dependencies are usually

meaningful - i.e. they usually carry semantic relations andare more abstract than surface

order. Moreover, dependency relations between words directly model the semantic struc-

ture of a sentence. As such, dependency trees are a desirableprior model for the process of

preserving semantic structures from source to target language via translation. Dependency

structures have been shown to be a promising direction for several components of SMT

such as word alignment (Ma et al., 2008), translation models(Shen et al., 2009; Xu et al.,

2009; Carreras and Collins, 2009; Mi and Liu, 2010) and language models (Zhang, 2009;

Shen et al., 2009).

1.2 Thesis Statement

This thesis work provides statistical models that incorporate dependency structures into

MT systems. Source-side dependency structures are modeledas cohesive soft constraints

in a beam-search phrase-based decoder. A source-side dependency tree reordering is pro-

posed to exploits dependency subtree movements and constraints. These movements and

constraints enable SMT models to efficiently capture the subtree-to-subtree transitions

observed both in the source of word-aligned training data and in decoding time. When in-

tegrated into a machine translation system, both cohesive soft constraints and source-side

dependency tree reordering models clearly improve the translation quality. In terms of con-

fidence measure, this thesis provides a novel method to predict word-level and sentence-

level MT errors with dependency structures features. The proposed confidence scores not

only can help MT systems to select better translations but also can be visualized to improve

usability. Finally, a novel statistical sentence simplification framework is proposed to sim-

plify the source sentences before translating them. This framework reduces the education

level required to understand a text.
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1.3 Thesis Summary

We develop various algorithms to statistically incorporate dependency structures into MT

components including the decoder, reordering models, confidence measure, and sentence

simplification. We achieve improved BLEU and TER scores, increased MT translation

quality prediction accuracy, and reduced the hardness of source sentences. We adopt the

phrase-based MT system as our baseline. With different resources and different problems

to solve, we first expand the baseline system in the followingways:

• Decoder: Given the source dependency tree we want to enforcethe cohesive decod-

ing strategy. We proposed four novel cohesive soft constraints namely exhaustive

interruption check, interruption count, exhaustive interruption count, and rich in-

terruption count. The cohesive-enhanced decoder performsstatistically significant

better than the standard phrase-based decoder on English-Spanish. Improvements

in between+0.4and+1.8BLEU points are also obtained on English-Iraqi, Arabic-

English, and Chinese-English systems.

• Reordering Models: To go beyond cohesive soft constraints,we investigate efficient

algorithms for learning and decoding with source-side dependency tree reordering

models. The phrase movements can be viewed as the movement ofthe subtree

inside or outside a source subtree when the decoder is leaving from the previous

source state to the current source state. The notions of moving inside andoutside

a subtree can be interpreted as tracking facts about the subtree-to-subtree transi-

tions observed in the source side of word-aligned training data. With extra guidance

on subtree movements, the source-tree reordering models help the decoder make

smarter distortion decisions. We observe improvements of+0.8 BLEU and -1.4

TER on English-Spanish and+0.8BLEU and-2.3TER on English-Iraqi.

For confidence measure, we proposedGoodness, a method to predict confidence

scores for machine translated words and sentences based on afeature-rich classifier us-

ing structure features. We develop three novel feature setsto capture different aspects of

translation quality which have never been considered during the decoding time, including:
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• Source and target dependency structure features that enable the classifier to utilize

deep structures to predict translation errors.

• Source POS and phrase features which capture the surface source word context.

• Alignment context features that use both source and target word collocation for judg-

ing translation quality.

Experimental results show that by combining the dependencystructure, source side

information, and alignment context features with word posterior probability and target

POS context the MT error prediction accuracy is increased from 69.1 to 72.2 in F-score.

Our framework is able to predict error types, namely insertion, substitution and shift. The

Pearson correlation with human judgment increases from0.52 to 0.6. Furthermore, we

show thatGoodness can help the MT system to select better translations, and as aresult,

improvements between0.4 and0.9 TER reduction are obtained. We develop a visualiza-

tion prototype using different font sizes and colors to catch the attention of post-editors

whenever translation errors are likely to appear.

Finally, we developTriS, a statistical sentence simplification system with log-linear

models, to simplify source sentence before translating them. In contrast to state-of-the-art

methods that drive sentence simplification process by hand-written linguistic rules, our

method used a margin-based discriminative learning algorithm that operates on a feature

set. We decompose the original dependency tree into contextdependency structures and

incorporate them as feature functions in the proposed model. The other feature functions

are defined on statistics of the surface form as well as the syntactic structures of sen-

tences. A stack decoding algorithm is developed to allow us to efficiently generate and

search simplification hypotheses. The simplified text produced by the proposed system re-

duces1.7Flesch-Kincaid education level when compared with the original text. We show

that a comparison of a state-of-the-art rule-based system to the proposed system demon-

strates an improvement of0.2, 0.6, and4.5points in ROUGE-2, ROUGE-4, andAveF10,

respectively. Subjective translation evaluations show that 63% sentences withmanual

simplification translations are better than the original translation. Meanwhile, when ap-

plying automatic simplification translations20% sentences are better than the original

translation.
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1.4 Thesis Contribution

This thesis work advances the research on machine translation in the following ways:

• We designed a set of four novel cohesive soft constraints which characterize vio-

lations differently and allow penalties to persist as long as violations remain unre-

solved (Bach et al., 2009b).

• We developed a source-side dependency tree reordering model with inside and

outside subtree movements that provide more structure evidence forthe decoder

to arrange target words in better orders (Bach et al., 2009a).

• The effectiveness robustness of the above models have been justified in multiple lan-

guage pairs and different scales. We successfully apply theframework in English-

Iraqi, English-Spanish, Arabic-English, and Chinese-English. These experiments

also cover a wide range of training corpus sizes, ranging from 500 thousand sen-

tence pairs up to 10 million sentence pairs. Furthermore, the effectiveness of our

proposed models was shown when we applied them to systems using a 2.7 billion

word 5-gram LM, different reordering models and dependencyparsers (Bach et al.,

2009a).

• We developedGoodness, a method for measuring machine translation confidence

with source-target dependency structure features. Our method is able to predict error

types namely insertion, substitution and shift. Based on this method, the MT error

prediction accuracy is increased from69.1 to 72.2 in F-score. We show that using

Goodness for reranking n-best lists improves the translation quality. Furthermore,

we propose a method to visualize translation errors using confidence scores in order

to improve the translation usability (Bach et al., 2011b).

• We developedTriS, a statistical sentence simplifier with log-linear models and

margin-based discriminative training. This framework allows MT systems to per-

form factual-based simplification for source sentences before translating them.TriS
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successfully reduces the education level required to undera text and improves the

ROUGE score over a strong baseline simplification system (Bach et al., 2011a).

1.5 Thesis Structure

The rest of this thesis is structured as following:

In Chapter 2, we review the literature on machine translation, especially using depen-

dency structures in MT.

In Chapter 3, we introduce cohesive soft constraints and demonstrate performance of

translation systems with a cohesive-enhanced decoder in language pairs.

In Chapter 4, we present source-side dependency tree reordering models with subtree

movements and constraints. This reordering model, combined with cohesive soft con-

straints in the decoder, demonstrates improvement on machine translation quality.

In Chapter 5, we focus on the confidence estimation problem. We proposeGoodness,

a method for measuring machine translation confidence. We show how machine transla-

tion systems can benefit fromGoodness through n-best list reranking and visualization

prototype.

In Chapter 6, we describeTriS, a statistical sentence simplifier with log-linear models

and margin-based discriminative training. We evaluateTriS on a simplification task and

a subjective machine translation evaluation.

Finally we conclude this thesis work with some conclusions and discussions.
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Chapter 2

Literature Review

This chapter gives the overview of SMT, reviews concepts of dependency grammar, pars-

ing and its applications to other fields and finally analyzes current work of using depen-

dency structures in SMT. Section 2.1 gives a representativesurvey of SMT approaches,

including phrase-based and syntax-based methods. Section2.2 reviews the concepts of

dependency grammar, parsing and applications which form the basis of our work. Sec-

tion 2.3 will analyze recent work in machine translation using dependency structures.

These include hierarchical dependency translation and cohesive phrase-based decoding.

This chapter also serves as background material for the restof this thesis on how SMT

can be improved with cohesive soft constraints, source-side dependency tree reordering

models, confidence scores, and sentence simplification.

2.1 Statistical Machine Translation

Statistical machine translation systems are based on the log-linear model which tries to

provide a parameterized form of the probability of translating a sentencefJ
1 to eI1, subject

to

êÎ1 = argmax
{eI

1
}

P (eI1|f
J
1 ) (2.1)
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P (eI1|f
J
1 ) can be modeled as a log-linear model with componentshm(.) and scaling factors

λm:

êÎ1 = argmax
{eI

1
}

P (eI1|f
J
1 ) (2.2)

= argmax
{eI

1
}

exp[

M
∑

1

λmhm(e
I
1, f

J
1 )]

This model can be derived from a word-aligned bitext. There are two ways to learn

a word alignment matrix, namely 1) a generative approach based on the well-known so-

called IBM word alignment models (Brown et al., 1993) with popular implementations

such as GIZA++ (Och and Ney, 2003), MGIZA and PGIZA (Gao and Vogel, 2008); 2)

a discriminative approach based on recent work of Liang et al. (2006b); Blunsom and

Cohn (2006); Niehues and Vogel (2008). Componentshm(.) are feature functions which

can be learnt from phrase pairs or synchronous grammars. Moreover, scaling factorsλm

are trained to directly optimize automatic evaluation metrics like BLEU (Papineni et al.,

2002), TER (Snover et al., 2006) and METEOR (Agarwal and Lavie, 2008) using discrim-

inative training algorithms such as minimum error rate training (MERT), margin-infused

relax algorithm (MIRA), and pairwise ranking optimization(PRO) (Och, 2003; Watanabe

et al., 2007; Hopkins and May, 2011).

2.1.1 Phrase-based Machine Translation

Phrase-based machine translation (PBMT) is driven by a phrasal translation model, which

relates phrases (contiguous segments of words) in the source to phrases in the target (Och

and Ney, 2004). A generative story of PBMT systems is

1) segment source sentence into phrases;

2) translate each phrase based on phrase tables;

3) permute translated phrases into their final order.

Phrases are extracted from a word alignment matrix (Koehn etal., 2003; Vogel, 2005).

DeNero and Klein (2008) prove that finding an optimal phrase alignment over the combi-

natorial space of bijective phrase alignments is an NP-hardproblem. A common feature
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set in a PBMT system (Koehn et al., 2007) includes language model probabilityP (eI1),

reordering model cost, phrase translation probabilityP (fJ
1 |e

I
1), reverse phrase translation

probabilityP (eI1|f
J
1 ), lexical weighting in both directions, phrase penalty, andunknown

word penalty.

In PBMT, theargmax of Equation 2.2 is the search problem that we have to maximize

over all possibleeI1 and over all possible phrase segmentations. It is infeasible to enumerate

all eI1. In fact, if one allows unrestricted changes in word order during translation, that

alone is sufficient to show it to be NP complete, by analogy to the Traveling Salesman

Problem (Knight, 1999). The search in phrase-based machinetranslation is based on beam

search with heuristic scoring functions. It is a kind ofA⋆ search even though there is no

guarantee that scoring functions are admissible.

A beam search phrase-based decoder (Vogel, 2003; Koehn et al., 2007) uses a two-

stage process that first builds a translation lattice and then searches for the best path

through the lattice. The translation lattice is built by using all available translation pairs

from the translation models for the given source sentence and inserting them into a lat-

tice. These translation pairs consist of words or phrases onthe source side that cover a

part of the source sentence. The decoder inserts an additional edge for each phrase pair

and attaches the target side of the translation pair and translations scores to the edge. The

translation lattice will now contain a large number of possible paths that cover each source

word exactly once (a combination of partial translations ofwords or phrases). These trans-

lation hypotheses will greatly vary in quality and the decoder uses the different knowledge

sources and scores to find the best path possible translationhypothesis. This step also al-

lows for limited reordering within the found translation hypotheses. To guide the search,

each state in the translation lattice is associated with twocosts which are current and future

translation costs. The future cost is an estimation for translating the remaining words in

the source sentence. The current cost is the total cost of phrases that have been translated

so far in the current partial hypothesis, that is the sum of features’ costs.

Despite the importance of word ordering, the popular phrase-based translation paradigm

(Koehn et al., 2003) devotes surprisingly little modeling capacity to the issue. A very sim-

ple reordering model is to base on the cost for word movement only the distance in the
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source sentence between the previous and the current word orphrase during the trans-

lation process. More recently, data-driven models, which condition the probability of

phrase-to-phrase transitions on the words involved, have been proposed to address this is-

sue (Tillman, 2004; Koehn et al., 2005; Al-Onaizan and Papineni, 2006; Kuhn et al., 2006;

Galley and Manning, 2008). Alternatively, one can employ syntax in the modeling of

movement. By viewing language in terms of its hierarchical structure, one can more easily

expose regularities in the sorts of movement that occur during translation. Each of these

approaches requires a parser-like decoder and represents adeparture from phrase-based

decoding.

Phrasal decoding can be augmented easily, either by syntactic pre-processing or through

search-space constraints. Pre-processing approaches parse the source sentence and use the

tree to apply rules which re-order the source into a more target-like structure before the

translation begins. These rules can be learned (Xia and McCord, 2004; Rottmann and Vo-

gel, 2007; Tromble and Eisner, 2009) or designed manually (Collins et al., 2005; Wang

et al., 2007; Xu et al., 2009). The pre-processing approach benefits from its simplicity

and modularity, but it suffers from providing at most a one-best guess at syntactic move-

ment. Search-space constraints limit the phrasal decoder’s translation search using syn-

tactic intuitions. Zens et al. (2004) demonstrated how to incorporate formally syntactic

binary-bracketing constraints into phrase-based decoding. Recently, it has been shown

that syntactic cohesion, the notion that syntactic phrasesin the source sentence tend to

remain contiguous in the target (Fox, 2002), can be incorporated into phrasal decoding as

well, by following the simple intuition that any source subtree that has begun translation,

must be completed before translating another part of the tree (Cherry, 2008; Yamamoto

et al., 2008; Chang et al., 2009).

2.1.2 Syntax-based Machine Translation

The idea of modeling syntactic information in machine translation is an old idea. A syn-

tactic translation framework has been proposed by Yngve (1958) who viewed translation

as a 3-stage process namely

14



1) analyze source sentence as phrase structure representations;

2) transfer them into equivalent target phrase structures;

3) apply target grammar rules to generate output translation.

The research community observes strong improvements from syntax-based machine trans-

lation systems (SBMT) in recent years. The break-through isthe combination of syntax

with statistics and very large training data, along with synchronous grammar formalisms.

Synchronous grammar formalisms often start from phrase-structure grammars which

are based on phrase-structure rules, for example NP→ DET JJ NN. The idea of phrase

structure comes from the observation that words are groupedwith increasing hierarchical

orders in trees and labeled with phrase labels such as verb phrase (VP), noun phrase (NP),

prepositional phrase (PP) and sentence (S). Leaf nodes are normally labeled by part-of-

speech tags. The Chomsky Hierarchy (Chomsky, 1956) can be used to classify phrase-

structure grammars according to the form of their productions.

The first class of SBMT tries to explicitly model the translation process via syn-

chronous phrase-structure grammars (SPSG) which can be viewed as a string-to-tree ap-

proach. SPSGs create two trees at the same time, one of the source sentence and one of the

target sentence of a machine translation application. For example, a French noun phrase

un chat Siamois blancwith English translationa white Siamese catwill have synchronous

rules as

NP→ DET1 NN2 NN3 JJ4 | DET1 JJ4 NN3 NN2

NP→ un chat SiamoisJJ1 | aJJ1 Siamese cat

NP→ un chat Siamois blanc| a white Siamese cat

Each rule will associate with a set of features and typicallyinclude features from PBMT.

A translation hypothesis is scored as a product of all derivation rules associated with lan-

guage models. Wu (1997) proposes bilingual bracketing grammar which uses only binary

rules and works well in many cases of word alignments and as well as word reordering con-

straints in decoding algorithms. Chiang (2005, 2007) presents hierarchical phrase models

(Hiero) which combine the ideas of phrase-based models and tree structure and proposes

15



an efficient decoding method based on chart parsing. Hiero’sgrammar does not build on

any syntactic annotation and has only one nonterminal node X. Zollmann and Venugopal

(2006) add syntactic categories to target-side nonterminals in Hiero which leads to syntax-

augmented MT models. DeNeefe et al. (2007) develop rule extraction algorithms which

not only learn syntactic translation but also help to improve coverage.

The second class of approaches is tree-to-tree and tree-to-string models which use syn-

chronous tree-substitution grammars (STSG). The SPSG formalism is extended to include

not only nonterminal and terminal symbols but also trees on the right hand side of rules.

The trees have either nonterminal or terminal symbols at their leafs. All nonterminal sym-

bols on the right hand side are mapped one-to-one between thetwo languages. For the

example of a French noun phraseun chat Siamois blancand an English translationa white

Siamese cat, a STSG rule could be

NP →

NP

DET

un

NN1

chat

NN2

. . .

JJ

. . .

NP

DET

a

JJ

. . .

NN2

. . .

NN1

cat

STSGs allow the generation of non-isomorphic trees and overcome the child node

reordering restriction of flat context-free grammars (Eisner, 2003). STSG rules are applied

the same way as SPSG rules, except that additional structureis introduced. If we do

not care about this additional structure, SPSG rules can be obtained by flattening STSG

rules. Galley et al. (2004, 2006) present the GHKM rule extraction which is similar to

phrase-based extraction in that it extracts rules consistent with given word alignments.

However, a primary difference is the use of syntax trees on the target side, rather than

sequences of words. Since STSGs conventionally only consider 1-best tree, therefore,

they are vulnerable to parsing error and rule coverage as a results models lose a larger

amount of linguistically unmotivated mappings. Liu et al. (2009) propose a solution by

replacing the 1-best tree with a packed forest. Related works in is this area are Liu et al.

(2006); Cowan et al. (2006); Zhang et al. (2008); Nesson et al. (2008); DeNeefe and Knight
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(2009); Carreras and Collins (2009).

To find the best derivation in SBMT models, cubic time probabilistic bottom-up chart

parsing algorithms, such as CKY or Earley, are often applied. The left hand side of both

SPSG and STSG rules contains only one nonterminal node whichallows to employ effi-

cient dynamic programming decoding algorithms with recombination and pruning strate-

gies (Huang and Chiang, 2007; Koehn, 2010). Probabilistic CKY/Earley decoding style

often has to deal with binary-branching grammar to reduce the number of extracted rules,

the number of chart entries and the number of stack combinations (Huang et al., 2009).

Furthermore, incorporating ngram language models in decoding increases the computa-

tional complexity significantly. Venugopal et al. (2007) propose to do a first pass transla-

tion without the language model, and then score the pruned search hyper graph in a second

pass with the language model. Zollmann et al. (2008) presenta systematic comparison be-

tween PBMT and SBMT systems in different language pairs and system scales. They

show that for language pairs which have sufficiently non-monotonic linguistic properties,

SBMT approaches can yield substantial benefits.

2.2 Dependency Grammar, Parsing and Applications

We reviewed the background of the fundamental translation framework in the previous

sections. In this section we are going to review dependency grammar, parsing and its

applications.

2.2.1 Dependency Grammar

In modern linguistic theories, dependency grammars (DG) have been introduced by the

French linguist Lucien Tesnière in the bookÉléments de Syntaxe Structuralepublished

in 1959. The key idea is all words depend on other words in a sentence. There is a

special word calledroot that does not depend on any other. Dependencies are motivated

by grammatical function, i.e. both syntactically and semantically. A word depends on

another either if it is a complement or a modifier of the latter. In most formulations of DG
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for example

John loves Mary

nsubj dobj

functional heads or governors (e.g. verbs) subcategorize for their complements. The tran-

sitive verb likeloverequires two complements (dependents), one noun with the grammat-

ical function subject and one with the function object, hence, a grammatical function can

be defined aslove(John, Mary).

Dependency structures Phrase structures

head-dependent relations (directed arcs)phrases (nonterminal nodes)

functional categories (arc labels) structural categories (nonterminal labels)

possibly some structural categories

(parts-of-speech)

possibly some functional categories

(grammatical functions)

Table 2.1: A comparison between representations of dependency structures and phrase-

structures

After Lucien Tesnière, Hays (1964) and Gaifman (1965) study mathematical proper-

ties of DGs. They show that theoretically it is straightforward to convert a constituency

tree to an unlabeled dependency tree. A prerequisite is thatevery constituent has a unique

head child. Robinson (1967) presents two methods to converta phrase-structure grammar

to a DG and reverse. Later on, Robinson (1970) formulates four axioms to govern the

well-formedness of dependency structures. Magerman (1995) uses head percolation ta-

bles to identify head child in a constituency representation. Head percolation tables were

first implemented in Collins’ parser (Collins, 1999). The dependency tree is obtained by

recursively applying head child and non-head child heuristics (Xia and Palmer, 2001). Ta-

ble 2.1 shows a comparison between representations of dependency structures and phrase

structures.

18



2.2.2 Dependency Parsing

Dependency Parsing

Transition-based Graph-based

Stack/List

-based

Classifier-

based

Pseudo-

based

Arc-

factored

Beyond 

Arc-

factored

Shift-Reduce style parsing; Limited to projective

dependency graphs; simple extensions can handle a

subset of non-projective. Time complexity is O(n)

for single-pass parsers, O(n2) for iterative parsers.

Deterministic parsing requires an oracle given by a

classifier which can be trained using treebank with

SVM, MBL or MaxEnt. Approximate a function from

feature vectors to transitions, given a training set of

transition sequences.

Technique for non-projective dependency parsing

with a data-driven projective parser. Projectivize

dependency graphs in training data, train the

parser, then deprojectivize output a projective

parser by heuristic transformations guided by

augmented arc labels.

Maximum spanning tree 

formulation; Projective and non-

projective inference with Chu-Liu-

Edmonds algorithm; Time 

complexity O(|L|n2) ; Projective 

parsing can use chart parsing 

algorithms where each chart item 

represents the weight of the best 

tree rooted at word h spanning all 

the words from i to j.

For the non-projective case, 

increasing scope of weights makes 

parsing intractable. Can 

approximate the non-projective 

case using the exact projective 

algorithms plus a post-process 

optimization

Figure 2.1: Taxonomy of supervised dependency parsing aprroaches.
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From the view of graph theory, Kübler et al. (2009) define a dependency structure for

sentenceS = w0w1...wn with relation setR as a directed graphG(V,A) whereV is a

set V of vertices,V ⊆ [w0, w1, ..., wn] , A is a set of directed edges,A ⊆ V xRxV and if

(wi, r, wj) ∈ A then(wi, r
′, wj) /∈ A for ∀r′ 6= r.

The task of dependency parsing is to analyze a sentence in terms of a set of directed

links (dependencies) expressing the relationships which form the basis of the predicate

argument structure such as head-modifier and head-complement. Projective dependency

trees have the subtree, rooted at each word, which covers a contiguous substring of the sen-

tence. In other words projective dependency trees are ones where edges do not cross (when

drawn on one side). English is mostly projective and others are arguably less projective, es-

pecially Czech, Dutch and German. Projective dependency parsing means searching only

for projective trees. Projective dependency grammars generate context-free languages,

while non-projective dependency grammars can generate context-sensitive languages.

However, dependency parsing can be seen in a broader sense including any approach

to parsing that makes use of word-to-word dependencies, such as lexicalized statistical

parsers (Collins, 1999) or parsers based on lexicalized grammar formalisms (LFG, HPSG,

CCG, LTAG, ...). Figure 2.1 is a taxonomy of supervised dependency parsing approaches1.

Besides, unsupervised dependency parsing receives a considerable attention and obtains

promising results (Cohen et al., 2008; Headden III et al., 2009).

2.2.3 Applications

Since dependency structures annotate relationship between entities, therefore, it is desir-

able to extract relations based on dependency structures. Relation extraction methods are

useful in discovering protein-protein interactions, and gene-binding conditions (Goertzel

et al., 2006). Patterns like “Protein X binds with Protein Y”are often found in biomedi-

cal texts, such as MedLine database, where the protein namesare entities which are held

together by the “bind” relation. Such protein-protein interactions are useful for applica-

tions like drug discovery etc. Other relations of interest are, a protein’s location inside

1 Those who are interested in details of algorithms should read Kübler et al. (2009).
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an organism. Such ternary relationships are extracted using linear kernels computed over

features (Liu et al., 2007). Cancer researchers can use inferences like “Gene X with mu-

tation Y leads to malignancy Z” in order to isolate cancerousgenes. These information

patterns can be pieced together by extracting ternary relations between genes, mutations

and malignancy conditions in a large corpus of biotext (Fundel et al., 2007; Erkan et al.,

2007).

Applications are not only in bio-text mining but also in relation extraction for textual

entailment and question answering. If a query to a search engine is “When was Gandhi

born ?”, then the expected answer would be “Gandhi was born in1869”. The template

of the answer is<PERSON> born-in<YEAR> which is nothing but the relational triple

born-in(PERSON, YEAR) where PERSON and YEAR are the entities. To extract the

relational triples, a large database (ex: web) can be queried using a small initial question-

answer set (ex: “Gandhi 1869”). The best matching (or most confident) patterns are then

used to extract answer templates which in turn can be used to extract new entities from the

database(Wu et al., 2009; Mehdad and Magnini, 2009).

2.3 Dependency Structures and Machine Translation

We reviewed the background of the machine translation and dependency structures in the

previous sections. In this section we are going to study how dependency structures have

been applied to SMT.

The first class of approaches tries to explicitly model dependency structures in MT

via tree-to-tree translation. Lin (2004b) propose a translation framework which assembles

linear path through a source-side dependency tree. The training algorithm extracts a set

of paths on the source dependency trees and determines the corresponding translations

of the paths using word alignments. The outcome of training is a set of transfer rules

that given a certain path in the source, provide the equivalent translation fragment in the

target. Ding and Palmer (2005) develop a similar tree-to-tree system based on synchronous

dependency insertion grammars (SDIG). The basic units of SDIGs are elementary trees
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which are dependency subtrees containing one or more lexical entries. The assumption

during decoding is tree transformation is isomorphic at thecross-lingual level and any non-

isomorphism is encapsulated within the elementary trees. However, both Lin (2004b) and

Ding and Palmer (2005) did not incorporate a language model or discriminative reordering

models which led to disappointing performances in terms of BLEU scores.

The dependency treelet translation model proposed by Quirket al. (2005) is another

class of approaches. A treelet is defined as an arbitrary connected subtree of a dependency

tree. The treelet system parses the source side of the training data, projects these depen-

dency tree onto the target side using word alignments, then extracts dependency treelet

pairs. The decoder applies the bottom-up decoding strategyover the source dependency

tree with treelet pairs. Translation hypotheses are scoredby a log-linear model incorpo-

rating typical features such as language models, word alignment and reordering models.

Chang and Toutanova (2007) present a discriminative syntax-based order model that ranks

n-best outputs of the treelet system using local features that capture head-relative move-

ments and global features that capture the word movement in asentence. Menezes and

Quirk (2007) introduce dependency order templates which are unlexicalized transduction

rules mapping dependency tree containing only POS to unlexicalized target trees. Depen-

dency order templates try to avoid the combinatorial explosion of reordering treelets in

Quirk et al. (2005).

The third class of approaches is string-to-dependency models. Shen et al. (2008) de-

velop a string-to-dependency translation framework (HierDec) which constructs the target

side from well-formed dependency structures. Their systemis similar to the hierarchi-

cal phrase translation model of Chiang (2005, 2007) with thefollowing differences 1) the

target side of the synchronous rule contains well-formed dependency structures; 2) it op-

erates on dependency structures; 3) a dependency language model on the target side. Shen

et al. (2009) strengthen their 2008 HierDec system with linguistic and contextual features

such as non-terminal labels, non-terminal length distribution, context language model and

source dependency language model.

Other recent works also cover quasi-synchronous dependency grammar (DG) proposed

by Smith and Eisner (2006) and later on Gimpel and Smith (2009) develop lattice pars-
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ing with quasi-synchronous DG. Owczarzak et al. (2007) and Kahn et al. (2008) develop

automatic methods to evaluate machine translation output based on dependency structures.
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Chapter 3

Cohesive Soft Constraints in A Beam

Search Phrase-based Decoder

In this chapter, we explore the cohesive phrasal decoding approach, focusing on empiri-

cal issues left unexplored by previous investigations. Cherry (2008) proposed the notion

of a soft cohesion constraint, where detected violations are allowed during decoding, but

incur a penalty. The cohesion-enhanced decoder enforces the following constraint: once

the decoder begins translating any part of a source subtree,it must cover all the words

under that subtree before it can translate anything outsideof it. The flexibility of a soft

penalty is appealing, given that cohesion does not perfectly characterize translation move-

ment (Fox, 2002). But while cohesive decoding is well-defined for a hard constraint, soft

constraints leave room for several design decisions. Should penalties persist as long as

violations remain unresolved? Are some violations worse than others? Do cohesive soft

constraints also improve systems that already benefit from large language models or lexi-

cal re-ordering models? We investigate these questions with a number of variant cohesive

soft constraints. Furthermore, experimental results haveso far been reported for English,

French and Japanese only. We add to this body of work substantially, by experimenting

with Spanish, Chinese, Iraqi and Arabic. Finally, we investigate the impact of the choice

of parser and parse quality on cohesive decoding.
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3.1 Cohesive Soft Constraints

In phrase-based machine translation, decoding the source sentence takes the form of a

beam search through the translation space, with intermediate states corresponding to par-

tial translations. The decoding process advances by extending a state with the translation

of a source phrase, until each source word has been translated exactly once. Re-ordering

occurs when the source phrase to be translated does not immediately follow the previously

translated phrase. This is penalized with a discriminatively-trained distortion penalty. In

order to calculate the current translation score, each state can be represented by a triple:

• A coverage vectorC indicates which source words have already been translated.

• A spanf̄ indicates the last source phrase translated to create this state.

• A target word sequence stores context needed by the target language model.

As cohesion concerns only movement in the source sentence, we can completely ignore

the language model context in our description of the different cohesion constraints, i.e. we

will show the decoder state only as a(f̄ , C) tuple.

To enforce cohesion during the state expansion process, cohesive phrasal decoding has

been proposed in (Cherry, 2008; Yamamoto et al., 2008). The cohesion-enhanced decoder

enforces the following constraint: once the decoder beginstranslating any part of a source

subtree, it must cover all the words under that subtree before it can translate anything

outside of it. This notion can be applied to any projective tree structure, but we follow

Cherry (2008) and use dependency trees, which have been shown to demonstrate greater

cross-lingual cohesion than other structures (Fox, 2002).We use a tree data structure

to store the dependency tree. Each node in the tree contains surface word form, word

position, parent position, dependency type and POS tag. An example of the dependency

tree data structure is shown in Figure 3.1. We useT to stand for our dependency tree,

andT (n) to stand for the subtree rooted at noden. Each subtreeT (n) covers a span of

contiguous source words; for subspanf̄ covered byT (n), we sayf̄ ∈ T (n).
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ROOT

the DT/1

election NN/3

NMOD

begins VBZ/8

SBJ

presidential JJ/2

NMOD

ROOT-S

of IN/4

states NNS/7

PMOD

NMOD

the DT/5

NMOD

united VBN/6

NMOD

tomorrow NN/9

OBJ

Figure 3.1: Example of an English source-side dependency tree structure for the sentence

“the presidential election of the united states begins tomorrow”.

Cohesion is checked as we extend a state(f̄h, Ch) with the translation of̄fh+1, creating

a new state(f̄h+1, Ch+1). Algorithm 1 presents the cohesion check described by Cherry

(2008). Line 3 selects focal points, based on the last translated phrase. Line 5 climbs

from each focal point to find the largest subtree that needs tobe completed before the

translation process can move elsewhere in the tree. Line 6 checks each such subtree for

completion. Since there are a constant number of focal points (always 2) and the tree

climb and completion checks are both linear in the size of thesource, the entire check can

be shown to take linear time.

The selection of only two focal points is motivated by a “violation free” assumption.

If one assumes that the translation represented by(f̄h, Ch) contains no cohesion violations,
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Algorithm 1 Interruption Check (Coh1) (Cherry, 2008)

Input: Source treeT , previous phrasēfh, current phrasēfh+1, coverage vectorCh

1: Interruption← False

2: Ch+1 = Ch ∪ {j|fj ∈ f̄h+1}

3: F ← the left and right-most tokens of̄fh
4: for each off ∈ F do

5: Climb the dependency tree fromf until you reach the highest noden such that

f̄h+1 /∈ T (n).

6: if n exists andT (n) is not covered inCh+1 then

7: Interruption← True

8: end if

9: end for

10: ReturnInterruption

then checking only the end-points off̄h is sufficient to maintain cohesion. However, once

a soft cohesion constraint has been implemented, this assumption no longer holds.

3.1.1 Exhaustive Interruption Check

Because of the “violation free” assumption, Algorithm 1 implements the design decision

to only suffer a violation penalty once, when cohesion is initially broken. However, this is

not necessarily the best approach, as the decoder does not receive any further incentive to

return to the partially translated subtree and complete it.

For example, Figure 3.2 illustrates a translation candidate of the English sentence “the

presidential election of the united states begins tomorrow” into French. We consider̄f4
= “begins”, f̄5 = “tomorrow”. The decoder already translated “the presidential election”

making the coverage vectorC5 = “1 1 1 0 0 0 0 1 1”. Algorithm 1 tells the decoder

that no violation has been made by translating “tomorrow” while the decoder should be

informed that there exists an outstanding violation. Algorithm 1 found the violation when

the decoder previously jumped from “presidential” to “begins”, and will not find another
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the    presidential    election    of the united states   begins   tomorrow 

(the) (election) (presidential)  (begins)    (tomorrow)   (United States)  

la     élection   présidentielle    commence    demain   des États Unis
1 32 4 5 6

Figure 3.2: A candidate translation where Algorithm 1 does not fire

Algorithm 2 Exhaustive Interruption Check (Coh2)
Input: Source treeT , previous phrasefh, current phrasefh+1, coverage vectorCh

1: Interruption← False

2: Ch+1 = Ch ∪ {j|fj ∈ f̄h+1}

3: F ← {f |Ch(f) = 1}

4: for each off ∈ F do

5: Climb the dependency tree fromf until you reach the highest noden such that

f̄h+1 /∈ T (n).

6: if n exists andT (n) is not covered inCh+1 then

7: Interruption← True

8: end if

9: end for

10: ReturnInterruption
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violation when it jumps from “begins” to “tomorrow”.

Algorithm 2 is a modification of Algorithm 1, changing only line 3. The resulting

system checks all previously covered tokens, instead of only the left and right-most tokens

of f̄h, therefore, makes no violation-free assumption. In the example above, Algorithm 2

will inform the decoder that translating “tomorrow” also incurs a violation. Because|F |

is no longer constant, the time complexity of Coh2 is worse than Coh1. However, we can

speed up the interruption check algorithm by hashing cohesion checks, so we only need to

run Algorithm 2 once per(f̄h+1, Ch+1) .

3.1.2 Interruption Count and Exhaustive Interruption Coun t

Algorithm 3 Interruption Count (Coh3)

Input: Source treeT , previous phrasēfh, current phrasēfh+1, coverage vectorCh

1: ICount← 0

2: Ch+1 = Ch ∪ {j|fj ∈ f̄h+1}

3: F ← the left and right-most tokens of̄fh
4: for each off ∈ F do

5: Climb the dependency tree fromf until you reach the highest noden such that

f̄h+1 /∈ T (n).

6: if n existsthen

7: for each ofe ∈ T (n) andCh+1(e) = 0 do

8: ICount = ICount+ 1

9: end for

10: end if

11: end for

12: ReturnICount

Algorithm 1 and 2 described above interpret an interruptionas a binary event. As

it is possible to leave several words untranslated with a single jump, some interruptions

may be worse than others. To implement this observation, an interruption count is used
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Algorithm 4 Exhaustive Interruption Count (Coh4)
Input: Source treeT , previous phrasefh, current phrasefh+1, coverage vectorCh

1: ICount← 0

2: Ch+1 = Ch ∪ {j|fj ∈ f̄h+1}

3: F ← {f |Ch(f) = 1}

4: for each off ∈ F do

5: Climb the dependency tree fromf until you reach the highest noden such that

f̄h+1 /∈ T (n).

6: if n existsthen

7: for each ofe ∈ T (n) andCh+1(e) = 0 do

8: ICount = ICount+ 1

9: end for

10: end if

11: end for

12: ReturnICount

to assign a penalty to cohesion violations, based on the number of words left uncovered

in the interrupted subtree. For the example in Section 3.1.1, Algorithm 4 will return 4

for ICount (“of”; “the”; “united”; “states”). The modification of Algorithm 1 and 2

lead to Interruption Count (Coh3) and Exhaustive Interruption Count (Coh4) algorithms,

respectively. The changes only happen in lines 1, 6 and 7. We use an additional bit vector

to make sure that if a node has been reached once, it is not counted again during the same

interruption check.

3.1.3 Rich Interruption Constraints

The cohesion constraints in Sections 3.1.1 and 3.1.2 do not leverage node information

in the dependency tree structures. We propose the rich interruption constraints (Coh5)

algorithm to combine four constraints which are Interruption, Interruption Count, Verb

Count and Noun Count. The first two constraints are identicalto what was described

above. Verb and Noun count constraints are enforcing the following rule: a cohesion
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Algorithm 5 Rich Interruption Constraints (Coh5)

Input: Source treeT , previous phrasēfh, current phrasēfh+1, coverage vectorCh

1: Interruption← False

2: ICount← 0

3: V erbCount← 0

4: NounCount← 0

5: Ch+1 = Ch ∪ {j|fj ∈ f̄h+1}

6: F ← the left and right-most tokens of̄fh
7: for each off ∈ F do

8: Climb the dependency tree fromf until you reach the highest noden such that

f̄h+1 /∈ T (n).

9: if n existsthen

10: for each ofe ∈ T (n) andCh+1(e) = 0 do

11: Interruption← True

12: ICount = ICount+ 1

13: if POS ofe is “VB” then

14: V erbCount← V erbCount+ 1

15: else if POS ofe is “NN” then

16: NounCount← NounCount+ 1

17: end if

18: end for

19: end if

20: end for

21: ReturnInterruption, ICount, V erbCount, NounCount
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violation will be penalized more in terms of the number of content words that have not

been covered. For example, we want to translate the English sentence “the presidential

election of the united states begins tomorrow” to French with the dependency structure as

in Figure 3.1. We consider̄fh = “the united states”,̄fh+1 = “begins”. The coverage bit

vectorCh+1 is “0 0 0 0 1 1 1 1 0”. Algorithm 5 will return true forInterruption, 4 for

ICount (“the”; “presidential”; “election”; “of”), 0 forV erbCount and 1 forNounCount

(“election”).

3.2 Experiments

We built baseline systems using GIZA++ IBM Model 4 (Och and Ney, 2003), Moses’

phrase extraction with the grow-diag-final-end heuristic (Koehn et al., 2007), a standard

phrase-based decoder (Vogel, 2003), the SRI LM toolkit (Stolcke, 2002), a suffix-array

language model (Zhang and Vogel, 2005), a distance-based word reordering model with

a window of 3, and the maximum number of target phrases restricted to 10. Results are

reported using lowercase BLEU (Papineni et al., 2002) and TER (Snover et al., 2006). All

model weights were trained on development sets via minimum-error rate training (MERT)

(Venugopal and Vogel, 2005) with 200 unique n-best lists andoptimizing toward BLEU.

To shorten the training time, a multi-threaded GIZA++ version was used to utilize multi-

processor servers (Gao and Vogel, 2008). We used the MALT parser (Nivre et al., 2006)1

to obtain source English dependency trees and the Stanford parser for Arabic and Chinese

(Marneffe et al., 2006). In order to decide whether the translation output of one MT engine

is significantly better than another one, we used the bootstrap method (Zhang et al., 2004)

with 1000 samples (p < 0.05). We performed experiments on English-Iraqi, English-

Spanish, Arabic-English and Chinese-English. Detailed corpus statistics are shown in

Table 4.3. Table 3.2 shows results in lowercase BLEU and TER.

The first step in validating the proposed approach was to check if it works for the

other language pairs. Our English-Iraqi data come from the DARPA TransTac program.

1 We would like to thank Johan Hall and Joakim Nirve for helpfulsuggestions on training and using the
English dependency model
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English-Iraqi English-Spanish Arabic-English Chinese-English

English Iraqi English Spanish Arabic English Chinese English

sentence pairs 654,556 1,310,127 5,359,543 10,964,230

unique sent. pairs 510,314 1,287,016 5,111,961 9,041,423

avg. sentence length 8.4 5.9 27.4 28.6 25.7 29.7 24.9 28.1

# words 5.5 M 3.8 M 35.8 M 37.4 M 138 M 159 M 272.5 M 308.2 M

vocabulary 34 K 109 K 117 K 173 K 690 K 364K 1.4 M 845 K

Table 3.1: Corpus statistics of English-Iraqi, English-Spanish, Arabic-English and Chinese-English systems
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English-Iraqi English-Spanish Arabic-English Chinese-English

june08 nct07 mt08-nw mt08-wb dev07-nw dev07-wb

BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Baseline 23.58 61.03 32.04 49.97 48.53 45.03 33.77 56.30 25.14 62.32 23.65 61.66

+Coh1 24.45 58.89 32.72 49.18 48.78 44.92 34.15 56.01 26.46 61.04 23.95 61.05

+Coh2 24.73 58.75 32.81 49.02 48.47 45.23 34.20 56.42 26.92 61.24 23.92 61.45

+Coh3 24.19 59.25 32.87 48.88 48.70 44.84 33.91 56.29 26.3 61.46 24.19 61.51

+Coh4 24.66 58.68 33.20 48.42 48.85 44.73 33.86 56.38 26.73 60.94 24.03 61.42

+Coh5 24.42 59.05 33.27 48.09 48.57 45.07 34.10 56.37 26.05 61.69 23.76 61.52

Table 3.2: Scores on held-out evaluation sets of baseline and cohesion-enhanced systems for English-Iraqi, English-

Spanish, Arabic-English and Chinese-English language pairs. Bold type is used to indicate highest scores. An italic

text indicates the score is statistical significant better than the baseline
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The target domain is force protection which includes checkpoints and house searches, and

extends to civil affairs, medical, and training dialogs.

We used TransTac T2T July 2007 (july07) as the development set and TransTac T2T

June 2008 (june08) as the held-out evaluation set. Each testset has 4 reference translations.

We applied the suffix-array LM up to 6-gram with Good-Turing smoothing. In Table 3.2,

cohesive soft constraints produced improvements ranging between0.5and1.2BLEU point

on the held-out evaluation set.

We have shown that the proposed cohesion-enhanced decoder outperformed the base-

line English-Iraqi systems. This system used a small training size and came from force

protection domain. The English-Iraqi pair also differs according to the language family.

English is an Indo-European language while Iraqi is a Semitic language of the Afro-Asiatic

language family. The next step in validating the proposed approach was to test on a lan-

guage pair which comes from the same Indo-European languagefamily with a medium

training size, different domain and written style.

We used the Europarl and News-Commentary parallel corpora for English-Spanish as

provided in the ACL-WMT 20082 shared task evaluation. Detailed corpus statistics are

given in Table 4.3. We built the baseline system using the parallel corpus with maximum

sentence length of 100 words for word alignment and a 4-gram SRI LM with modified

Kneyser-Ney smoothing. We used nc-devtest2007(ncd07) as the development set and nc-

test2007 (nct07) as the held-out evaluation set. Each test set has 1 translation reference.

Table 3.2 shows that we obtained improvements ranging between0.7and1.2BLEU points.

All cohesive soft constraints performedstatistical significant better than the baseline on

the held-out evaluation set.

The previous results indicate that cohesive soft constraints contribute to the improve-

ments of translation systems from English to other languages. However, many of to-

day’s high-profile translation tasks are concerned with translation into English. We exper-

imented with the GALE data to test this other direction, and to examine cohesion’s effect

on state of the art systems, which include other powerful word reordering features, such

as large language models.

2 http://www.statmt.org/wmt08
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To validate these questions we present experimental results for the large-scale Arabic-

English and Chinese-English systems. Our Arabic-English and Chinese-English data

comes from the DARPA GALE program3 and belongs to the newswire and broadcast news

domain. Detailed corpus statistics are shown in Table 4.3. A5-gram SRI LM was trained

from the English Gigaword Corpus V3, which contains severalnewspapers for the years

between 1994 and 2006. We also included the English side of the bilingual training data,

resulting in a total of 2.7 billion running words after tokenization. For the Arabic-English

system we used NIST MT-06 as the development set and NIST MT-08 NW (mt08-nw) and

WB (mt08-wb) as held-out evaluation sets. For the Chinese-English system we used NIST

MT-05 as the development set and Dev07Blind NW (dev07-nw) and WB (dev07-wb)4 as

held-out evaluation sets. Each test set has 4 reference translations. Table 3.2 shows re-

sults in BLEU and TER. The best improvements in BLEU we obtained are0.3on MT-08

NW and0.4 on MT-08 WB for Arabic-English. We obtained1.8 BLEU on Dev07Blind

NW and0.5on Dev07Blind WB for Chinese-English over the baseline. Coh2 performed

statistically significant better than the baseline system on Dev07Blind NW.

3.3 Discussion and Analysis

Experimental results of cohesive soft constraints on different language pairs have been

described in Section 4.2, in this section we vary the ordering capability of the baseline

system, and perform other forms of error analysis.

3.3.1 Interactions with reordering models

We first investigate the interactions of cohesive contraints with lexicalized reordering mod-

els on the performance of the translation system. The question we are trying to answer is

whether the improvements of cohesive soft constraints are subsumed by a strong reorder-

ing model. Koehn et al. (2005) proposed the lexicalized reordering model which condi-

tions reordering probabilities on the word of each phrase pair. The lexicalized reordering

3 This training data was used in GALE P3 Evaluation4 This test set is distributed by the GALE Rosetta

team
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model has shown substantial improvements over the distance-based reordering model.

dev07-nw dev07-wb

BLEU TER BLEU TER

Baseline 25.14 62.32 23.65 61.66

+Lex 26.07 61.56 23.68 61.71

+Lex+Coh1 26.52 62.00 24.47 61.69

+Lex+Coh2 26.62 60.71 24.95 60.33

+Lex+Coh3 26.53 61.62 25.04 61.06

+Lex+Coh4 26.53 60.86 24.79 60.69

+Lex+Coh5 26.35 60.74 24.88 60.44

Table 3.3: Performances of the GALE Chinese-English systemwith lexicalized reordering

models compared to cohesion-enhanced systems

Table 3.3 shows the performance of the Chinese-English system on the held-out eval-

uation set when we include lexicalized reordering models and cohesive soft constraints in

the baseline system with a distance-based reordering model5. The system with the lex-

icalized reordering model+lex gained over the baseline system by 0.9 BLEU points on

dev07-nw set and performed similar on dev07-wb set. However, the performance of+lex

is still weaker than most cohesive soft constraints in Table3.2. Furthermore, when cohe-

sive soft constraints are added on top of the lexicalized reordering model we observed a

gain by0.5 BLEU point on dev07-nw and a substantial gain by1.4 BLEU on dev07-wb

set. Coh2 model obtained the best scores in most cases.

After having empirical evidence for the improvements of cohesive soft constraints over

systems with lexicalized reordering models, we investigate the impact of the reordering

window. Table 3.4 demonstrates the translation performances of systems with different re-

ordering limits and reordering models. The baseline systemused a distance-based reorder-

ing model with reordering window of 3. Meanwhile,+lex and+lex+w5 used lexicalized

5 Note that we ran MERT separately for each system
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dev07-nw dev07-wb

BLEU TER BLEU TER

Baseline 25.14 62.32 23.65 61.66

+Lex 26.07 61.56 23.68 61.71

+Lex+w5 26.21 61.06 24.87 60.84

+Lex+w5+Coh1 26.92 60.30 25.27 60.81

+Lex+w5+Coh2 27.13 60.21 25.12 60.95

+Lex+w5+Coh3 27.09 60.76 25.10 60.79

+Lex+w5+Coh4 26.79 60.50 25.37 60.48

+Lex+w5+Coh5 26.87 61.04 25.06 61.03

Table 3.4: Performances of the GALE Chinese-English systemwith lexicalized reordering

models and reordering window 5 compared to cohesion-enhanced systems

reordering models with reordering windows of 3 and 5, respectively. +lex+w5 gained over

the+lex system by 0.1 BLEU point on dev07-nw and 1.1 BLEU on dev07-wb.However,

+lex+w5 is still weaker than+lex+Coh2 system in Table 3.3. We add cohesive soft con-

straints on top of+lex+w5. Cohesion-enhanced systems performed better than+lex+w5

by 0.9BLEU on dev07-nw and0.5BLEU point on dev07-wb.

3.3.2 The decoder behaviors

The cohesive soft constraints essentially act as filters on the generated hypotheses. As

longer phrases can induce more cohesion violations, it is interesting to see how big an

effect the different cohesive soft constraints have on the selection of phrases used in the

final first best translation. The average length of phrases used in the translations is shown

in Table 3.5. We see that indeed the cohesion constraints bias toward using shorter phrases.

We also analyzed how often a cohesion violation actually occurs under the different

versions. Triple(f̄h, f̄h+1, Ch+1) can either trigger a cohesion violation or signal no vio-
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june-08 nc-test2007 mt08-NW mt08-WB

Baseline 2.3 2.01 1.88 1.54

+Coh1 2.26 1.89 1.81 1.50

+Coh2 2.24 1.92 1.89 1.56

+Coh3 2.26 1.97 1.88 1.54

+Coh4 2.13 2.01 1.87 1.53

+Coh5 2.16 1.89 1.82 1.52

Table 3.5: The average length of phrases used in the translations

june-08 nc-test2007 mt08-NW mt08-WB

+Coh1 0.3896 0.4001 0.4786 0.4412

+Coh2 0.4305 0.4547 0.5198 0.4789

+Coh3 0.3887 0.3974 0.4777 0.4404

+Coh4 0.4304 0.4546 0.5198 0.4790

+Coh5 0.3916 0.4003 0.4852 0.4469

Table 3.6: Ratios between the number of times the interruption check fires and the total

number of interruptions check in the different variants
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lation independent of the actual translation generated. Therefore, we count the number of

different triples and how many of them led to a cohesion violation. Results are summa-

rized in Table 3.6. As expected, since Coh 2 and 4 perform exhaustive interruption checks

they have higher ratio than the others. The ratios of Coh 1, 3 and 5 are close but not exactly

the same because of hypothesis recombination and pruning during the decoding process.

This is also true for the Coh 2 and 4.

3.3.3 The role of dependency parser

We analyze the influence of the dependency parser on the performance of the translation

system. We experimented with the MALT parser and the Stanford parser with default

parameters on the English-Iraqi system described in Section 4.2. Performances on the

unseen test set are shown in Table 3.7. Experimental resultsshow that 1) either using

MALT or Stanford parser the proposed approaches still outperform the baseline; 2) the

MALT parser has a tendency to give better BLEU scores than theStanford parser whereas

the Stanford parser is faster than the MALT parser in our experimental setup.

MALT Parser Stanford Parser

BLEU TER BLEU TER

Baseline 23.58 61.03 23.58 61.03

+ Coh1 24.45 58.89 24.17 58.79

+ Coh2 24.73 58.75 24.12 58.83

+ Coh3 24.19 59.25 24.37 58.81

+ Coh4 24.66 58.68 24.44 58.71

+ Coh5 24.42 59.05 23.99 59.55

Table 3.7: Comparison between using MALT parser and Stanford parser on English-Iraqi

system

A general question of what quality of parser is required for cohesive soft constraints to
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(1) no my friend i completely understand the situation 

ROOT

no DT/1

ROOT

my JJ/2

ROOT

friend NN/3

NMOD

i FW/4

ADV

completely RB/5

COORD

understand VBP/6

COORD

the DT/7

ROOT

situation NN/8

COORD

(a) M1

(1) no my friend i completely understand the situation 

ROOT

no DT/1

friend NN/3

NMOD

ROOT

my JJ/2

NMOD

i FW/4

NMOD

completely RB/5

situation NN/8

NMOD

PMOD

understand VBP/6

NMOD

the DT/7

NMOD

(b) M2

Figure 3.3: Dependency trees produced by M1 and M2.
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work is important (Quirk and Corston-Oliver, 2006). To answer this question, we trained

two MALT parser models, M1 and M2, on different sizes of Penn Treebank V3 data. The

performances in term of unlabeled attachment score on the CoNLL-07 dependency test

set are 19.41% and 86.21% for M1 and M2, respectively. Figure3.3 illustrates difference

dependency tree structures produced by M1 and M2 models. Table 3.8 shows the com-

parison of using M1 and M2 for English-Iraqi and English-Spanish systems. The results

show that when applying these models to English-Iraqi, M1 performs better than M2 in

most cases except Coh4. However, when the models are appliedto English-Spanish then

M2 is better than M1 in most cases except Coh2. The reason is that M1 and M2 models

were only trained on Penn Treebank which belongs to newswiredomain. M2’s high per-

formance on the newswire data has a positive effect on the Spanish test set, which is also

drawn from the newswire domain. Meanwhile, the Iraqi defense text, which is quite dif-

ferent from newswire, seems to have no stable correlation with (newswire) parse quality,

with M1 helping in some versions of the cohesion constraint,and M2 helping in others.

English-Iraqi English-Spanish

M1 M2 M1 M2

Baseline 23.58 23.58 32.04 32.04

+ Coh1 24.16 23.86 31.92 32.29

+ Coh2 24.32 24.30 32.40 32.30

+ Coh3 24.23 24.06 31.89 32.60

+ Coh4 23.86 24.54 32.43 32.81

+ Coh5 24.26 24.22 32.53 33.00

Table 3.8: The impact of parser quality on the performance ofEnglish-Iraqi and English-

Spanish systems in BLEU score. The performances in term of unlabeled attachment score

on the CoNLL-07 dependency test set are 19.41% and 86.21% forM1 and M2, respec-

tively.
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3.4 Summary

In this chapter, we explored cohesive phrasal decoding, focusing on variants of cohesive

soft constraints. We proposed four novel cohesive soft constraints namely exhaustive in-

terruption check (Coh2), interruption count (Coh3), exhaustive interruption count (Coh4)

and rich interruption constraints (Coh5). Our experimental results show that with cohe-

sive soft constraints the system generates better translations in comparison with strong

baselines. To ensure the robustness and effectiveness of the proposed approaches, we con-

ducted experiments on 4 different language pairs, namely English-{Iraqi, Spanish} and

{Arabic, Chinese}-English. These experiments also covered a wide range of training cor-

pus sizes, ranging from 500K sentence pairs up to 10 million sentence pairs. Furthermore,

the effectiveness of our proposed methods was shown when we applied them to systems

using a 2.7 billion words 5-gram LM, different reordering models and dependency parsers.

All five approaches give positive results. While the improvements are not statistically sig-

nificant at the 95% level in most cases, there is nonetheless aconsistent pattern indicating

that the observed improvements are stable. The most reliable approach seems to be Coh2,

a solution which does not make the violation free assumption.
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Chapter 4

Source-side Dependency Tree

Reordering Models with Subtree

Movements and Constraints

In this chapter, to go beyond cohesive soft constraints, we introduce a novel reordering

model for phrase-based systems which exploits dependency subtree movements and con-

straints. In order to do, we must first consider several questions. Should subtree move-

ments be conditioned on source dependency structures? How can we estimate reliable

probability distributions from training data? How do we incorporate the reordering model

with dependency structures and cohesive soft constraints into a phrase-based decoder? We

investigate these questions by presenting the model, training and decoding procedure in

Section 4.1. Furthermore, we present experimental resultson English-Iraqi and English-

Spanish systems in Section 4.2. Finally, we investigate theimpact of the proposed models

in Section 4.3 .
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4.1 Source-tree Reordering Models

Nowadays most statistical machine translation systems arebased on log-linear model

which tries to provide a parameterized form of the probability of translating a sentence

fJ
1 to eI1. A common feature set includes reordering models which provide the decoder the

capability to determine the orientation sequence of phrases. The beam search strategy is

used during decoding, in which the intermediate states correspond to partial translations.

The decoding process advances by extending a state with the translation of a source phrase

and the final state is reached when each source word has been translated exactly once.

Reordering occurs when the source phrase to be translated does not immediately fol-

low the previously translated phrase. The reordering is integrated into the target function

by using discriminatively-trained distortion penalties,such as the widely used lexicalized

reordering model (Tillman, 2004; Koehn et al., 2005). It canbe parameterized as follows:

p(O|e, f) =

n
∏

i=1

p(oi|ēi, f̄ai , ai−1, ai) (4.1)

where f is the input sentence;e = (ē1, . . . , ēn) is the target language phrases;a =

(a1, . . . , an) is phrase alignments;̄fai is a source phrase which has a translated phrase

ēi defined by an alignmentai. O is the orientation sequence of phrase where eachoi has

a value over three possible orientations, (M) monotone, (S) swap with previous phrase, or

(D) discontinuous.O={M,S,D} and is defined as follows:

oi =











M if ai − ai−1 = 1

S if ai − ai−1 = −1

D if |ai − ai−1| 6= 1

(4.2)

4.1.1 Models

A lexicalized reordering model is defined in terms of transitions between phrases - two

phrases in sequence,previous andnext, have a specific relationship to each other, such as
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monotone, swap or discontinuous. Statistics on those relationships make up the model.

Lexicalized reordering models are well-defined for flat wordsurface structures. How-

ever, the models do not leverage source-side syntactic structures which are always avail-

able during the decoding time. Previous studies, such as Cherry (2008), show improve-

ments when using source-side dependency structures as cohesive soft constraints. Cohe-

sion constraints tell the decoder which cohesive movementsare available, but the decoder

has no opinion on the likelihood of these moves.

In a source-tree reordering model, we would condition monolingually and syntactically

phrase movements on the source dependency tree. A source-tree reordering model con-

siders in terms of previous source dependency structures. One can think about the phrase

movements as the movement of the subtreeinside or outside a source subtree when the

decoder is leaving from theprevioussource state to the current source state. The notions of

movinginside (I ) andoutside (O) a subtree can be interpreted as tracking facts about the

subtree-to-subtree transitions observed in the source side of word-aligned training data.

With extra guidance on subtree movements, our expectation is that source-tree reordering

models will help the decoder make smarter distortion decisions.

An example of the source-tree reordering movements is illustrated in Figure 4.1 that

contains a word/phrase alignment matrix of a English-Spanish sentence pair, source de-

pendency tree and reordering movements. The lexicalized orientation sequence is{D,

S, D, M} while the subtree movement sequence is{I, O, I, I}. The lexicalized reorder-

ing model assignedD for phrase “ask you” because the previous extracted phrase “I would

therefore” was not continuous with “ask you”. At the same time, the source-tree movement

assignedI since “ask you” is moving inside the subtree rooted at “would”. In addition,

“once more” receivedO from the source-tree reordering model since it isswap with “ask

you” and movingoutside the subtree rooted at “ask”.

Let T denote the source dependency tree andT (n) stands for the subtree rooted at

noden. A spanf̄ indicates the last source phrase translated to create the current state and

eachf̄ has a dependency structuresh. A subtreeT (n) covers a span of contiguous source

words is constructed by dependency structuressh; for subspan̄f covered byT (n), we say

f̄ ∈ T (n). We define a subtree that has begun translation but not yet complete, anopen
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16 neerlandés 

15 canal 

14 Un

13 también 

12 ver 

11 podamos 

10 que 

9 de 

8 encargue 

7 se 

6 que

5 nuevamente

4 Pedirle

3 quisiera 

2 tanto 

1 lo 

0 Por

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Discontinuous

Swap

Discontinuous

Monotone

(a) Alignment matrix with lexicalized orientation events

ask

more

once

would

get

channel

that we

thereforeI

ensure

you to

as

Dutcha well

ask

you

Inside

more

once

Outside that

ensure

to

would

thereforeI

get

channel

we

as

Dutcha wellInside

Inside

(b) Inside/Outside subtree movements on the source dependency tree

Figure 4.1: Source-tree reordering extraction examples for the English-Spanish sentence

pair “I would therefore once more ask you to ensure that we get a Dutch channel as well”-

“Por lo tanto quisiera pedirle nuevamente que se encargue de que podamos ver tambin un

canal neerland”
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d
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b
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d

e f

b

c

d

e f

Outside

Figure 4.2: Examples ofinside (I) andoutside (O) movements

subtree. On the other hand, when all words under a node have been translated then we

call a completedsubtree. A phrasēf is movinginside (I) a T (n) if f̄ helpsT (n) to be

completed, in other words,T (n) covers more contiguous words. A phrasef̄ is moving

outside (O) aT (n) if f̄ leavesT (n) to be open, in other words,T (n) contains some words

which have not been covered yet.inside andoutside are the two subtree movements we

are going to model and Figure 4.2 shows example movements in different cases.

Mathematically speaking, a source-tree reordering model is defined as follows:

p(D|e, f) =

n
∏

i=1

p(di|ēi, f̄ai, ai, si−1, si) (4.3)

wheresi andsi−1 are dependency structures of source phrasesf̄ai andf̄ai−1
respectively;D

is a random variable which represents the sequence of syntactical phrase movements over

the source dependency tree; eachdi takes a value eitherinside(I ) or outside(O). p(D|e, f)

is the probability of the subtree movement likelihood over the source phrase sequence and
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their target movements. Since the model essentially constraints phrase movements on the

source dependency tree however it does not explicitly provide orientations for a phrase-

based decoder. Therefore, we combine our model with the lexicalized reordering model, as

a result, a set of events containsD = ok dj = {M I, S I, D I, M O, SO, D O}. The source

dependency tree is used here to refine the reordering events provided by a lexicalized

reordering model. Finally, the source-tree reordering model is derived as follows:

p(D|e, f) =

n
∏

i=1

p((o d)i|ēi, f̄ai , ai−1, ai, si−1, si) (4.4)

4.1.2 Training

To train the model, the system needs to extractok dj events for phrase pairs. First, the

source side dependency trees of the bilingual training dataare provided by using a de-

pendency parser. Given a sentence pair and source dependency tree, when performing

the phrase-extract algorithm (Och and Ney, 2004) we also extract the source dependency

structure of each phrase pair. The values ofok are obtained by lexicalized reordering mod-

els. To determine whether the current source phrase is moving inside or outside a subtree

T (n) with respect to previously extracted phrases we apply the exhaustive interruption

check algorithm (Bach et al., 2009b). This algorithm essentially walks through the depen-

dency subtrees of previously extracted phrases and checks whether the subtree is open or

completed. The value ofdj is I when the exhaustive interruption check algorithm returns

false andO otherwise. Table 4.1 is a snapshot of the output of the reordering extraction

procedure. The third column shows source-tree reordering features.

After having all extracted phrase pairs with dependency features, we need to estimate

parameters of source-tree reordering models for a particular pairp((oj dk)i|ēi, f̄ai). An

event, such asM I, can be interpreted by three possibilities. First,M I is a joint probability

of monotone andinside given a phrase pair. Second,M I can be a conditional probability

of monotone given a phrase pair and it isinside. Finally, M I can be a conditional prob-

ability of inside given a phrase pair and it ismonotone. The parameterp((oj dk)i|ēi, f̄ai)

is estimated by the maximum likelihood estimation criteriawith a smoothing factorγ as
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Phrase pairs Lexicalized Source-tree

...

ask you # pedirle dis swap DI ∗

ask you # pedirle mono mono MI

ask you # pedirle mono mono MO

once more # nuevamente swap dis SO ∗

once more # nuevamente dis swap DO

once more # nuevamente que swap dis SO

...

Table 4.1: Extracted reordering events;∗ indicates events extracted from the example in

Figure 4.1

p((oj dk)i|ēi, f̄ai, oj, dk) =
count(ok dj) + γ

∑

k

∑

j(count(ok dj) + γ)
(4.5)

if it is a joint probability of subtree movements and lexicalized orientations (DO) or

p((oj dk)i|ēi, f̄ai , dk) =
count(ok dj) + γ

∑

k(count(ok dj) + γ)
(4.6)

if it is conditioned on subtree movements (DOD) or

p((oj dk)i|ēi, f̄ai , oj) =
count(ok dj) + γ

∑

j(count(ok dj) + γ)
(4.7)

if it is conditioned on lexicalized orientations (DOO).

Table 4.2 displays source-tree reordering estimated probabilities for a phrase pair “ask

you”-“ pedirle”. Each probability was put under one of the three parameter estimation

methods.
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M I S I D I M O SO D O

DO 0.691 0.003 0.142 0.119 0.009 0.038

DOD 0.827 0.003 0.170 0.719 0.053 0.228

DOO 0.854 0.250 0.790 0.146 0.750 0.210

Table 4.2:inside andoutside probabilities for phrase “ask you”- “ pedirle” according to

three parameter estimation methods

4.1.3 Decoding

The beam search strategy is unchanged from the phrase-basedsystem. Our proposed

source-tree reordering models concern mono-lingually andsyntactically movements in the

source sentence. However, computing source-tree reordering model scores can be done in

two scenarios 1) not using and 2) using cohesive soft constraints. Cohesive soft constraints

can be enforced by the interruption check algorithm (Cherry, 2008; Bach et al., 2009b).

One can consider the first scenario as the decoder does not have any information about the

source dependency tree during decoding time, therefore, weallow the decoder to consider

both eventsinside andoutside. The decision of selecting a preferable feature is made by

the tuning procedure. On the other hand, when the source dependency tree is available,

subtree movements are informed to the decoder via cohesive soft constraints, as a result,

we are able to allow the decoder to make a harder choice to consider eitherinside or

outside.

More specifically, if the decoder chooses to decode without cohesive soft constraints

then after detecting the orientation of the current phrase,for exampleswap, the decoder

will trigger two subtree movement featuresS I andS O and sum up both features in the

log-linear combination. In other words, the decoder considers both events that the current

phrase is movinginside andoutside a subtreeT (n) given it isswap orientation on flat

word structures.

In the second scenario, the decoder uses cohesive soft constraints after detecting the
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orientation of the current phrase, for exampleswap. The decoder only considers one

source-tree reordering feature. The choice of feature depends on the output of the inter-

ruption check algorithm on the current phrase. If the returnis inside thenS I will be used

otherwiseS O.

4.2 Experimental Results

We built baseline systems using GIZA++ Och and Ney (2003), Moses’ phrase extraction

with the grow-diag-final-and heuristic Koehn et al. (2007),a standard phrase-based de-

coder Vogel (2003), the SRI LM toolkit Stolcke (2002), the suffix-array language model

Zhang and Vogel (2005), a lexicalized reordering model witha reordering window of 3,

and the maximum number of target phrases restricted to 5. Results are reported using

lowercase BLEU Papineni et al. (2002) and TER Snover et al. (2006). All model weights

were trained on development sets via minimum-error rate training (MERT) Venugopal and

Vogel (2005) with an unique 200-best list and optimizing toward BLEU. To shorten the

training time, a multi-threaded GIZA++ version was used to utilize multi-processor servers

Gao and Vogel (2008). We used the MALT parser Nivre et al. (2006) to get English de-

pendency trees. We perform experiments on English→Spanish and English→Iraqi tasks.

Detailed corpus statistics are shown in Table 4.3.

English→Spanish English→Iraqi

English Spanish English Iraqi

sent. pairs 1,310,127 654,556

uniq. pairs 1,287,016 510,314

avg. sent. length 27.4 28.6 8.4 5.9

# words 35.8 M 37.4 M 5.5 M 3.8 M

vocabulary 117 K 173 K 34 K 109 K

Table 4.3: Corpus statistics of English→Spanish and English→Iraqi systems

We experiment systems in different configurations of the source-tree reordering model
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such as DO, DOD and DOO means parameters estimation using Equation 4.5, 4.6 and 4.7

respectively. Moreover, Coh means the decoder triggers cohesive constraints for source-

tree reordering models Cherry (2008). Bold type is used to indicate highest scores.

Our first step in validating the proposed approach is to checkwith the English→Spanish

system. We used the Europarl and News-Commentary parallel corpora for English→Spanish

as provided in the ACL-WMT 20081 shared task evaluation. We built the baseline system

using the parallel corpus restricting sentence length to 100 words for word alignment and a

4-gram SRI LM with modified Kneyser-Ney smoothing. We used nc-devtest2007(ncd07)

as the development set; nc-test2007 (nct07) as in-domain and newstest2008 (net08) as

out-domain held-out evaluation sets. Each test set has 1 translation reference. Table 4.4

shows that the best obtained improvements are+0.8BLEU point and-1.4 TER score on

the held-out evaluation sets. Moreover, the proposed methods also obtained improvements

on the out-domain test set (net08).

nct07 net08

BLEU TER BLEU TER

Baseline 32.89 65.25 20.11 83.09

Coh 33.33 64.72 19.80 82.84

DO 32.99 65.05 20.27 82.65

DO+Coh 33.28 64.77 20.61 82.35

DOD 33.17 64.54 20.33 82.12

DOD+Coh 33.46 64.41 20.58 82.05

DOO 33.10 64.51 20.51 82.12

DOO+Coh 33.67 64.03 20.71 81.70

Table 4.4: Scores of baseline and improved baseline systemswith source-tree reordering

models on English→Spanish

We also validated the proposed approach on English→Iraqi. However, we have a

smaller training corpus which comes from force protection domains and is spoken lan-

1 http://www.statmt.org/wmt08
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june08 nov08

BLEU TER BLEU TER

Baseline 25.18 56.70 18.40 62.91

Coh 25.34 57.30 18.01 61.52

DO 25.31 57.30 18.43 60.98

DO+Coh 25.53 57.20 19.13 61.45

DOD 25.34 57.53 18.90 61.81

DOD+Coh 25.50 56.29 19.15 60.93

DOO 25.25 56.76 18.40 60.64

DOO+Coh 25.58 56.37 18.59 61.45

Table 4.5: Scores of baseline and improved baseline systemswith source-tree reordering

models on English→Iraqi

guage style. This data is used in the DARPA TransTac program.The English→Iraqi pair

also differs according to the language family. English is anIndo-European language while

Iraqi is a Semitic language of the Afro-Asiatic language family.

We used 429 sentences of TransTac T2T July 2007 (july07) as the development set;

656 sentences of TransTac T2T June 2008 (june08) and 618 sentences of November 2008

(nov08) as the held-out evaluation sets. Each test set has 4 reference translations. We used

a suffix-array LM up to 6-gram with Good-Turing smoothing. InTable 4.5, source-tree

reordering models produced the best improvements of+0.8 BLEU point and-2.3 TER

score on the held-out evaluation sets.

4.3 Discussion and Analysis

In this section we perform detail error analysis from where different scenarios emerge and

questions arise for our assumptions.
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En-Ir En-Es

jun08 nov08 nc07 nt08

System BLEU TER BLEU TER BLEU TER BLEU TER

tail 29.45 76.50 24.41 87.69 23.36 92.93 24.41 134.04

Baseline mid 38.61 53.60 35.89 61.07 31.08 66.75 22.61 86.32

head 61.38 25.80 60.90 28.16 44.58 47.45 35.34 59.54

tail +0.56 +1.35 +1.29 +5.27 +0.67 +1.80 +0.07 +1.27

Coh mid +0.14 -0.91 +0.48 +1.08 +0.22 +0.07 -0.02 -0.19

head +0.37 -1.69 -3.11 -4.68 -0.17 -0.73 -0.48 +1.27

tail +0.28 +0.66 +1.91 +7.03 +0.49 +1.94 +0.87 +2.32

DO mid +0.07 -1.15 +0.58 +1.44 +0.24 +0.45 +0.12 +0.28

head -0.28 -2.48 -1.31 -3.07 -0.28 -0.71 -0.11 -0.77

tail +1.07 +1.95 +1.72 +5.19 +0.66 +1.78 +0.52 +1.60

DO+Coh mid +0.80 -0.85 +0.92 +1.32 +0.19 +0.21 +0.13 +0.25

head -0.37 -2.41 -1.59 -3.62 -0.25 -0.75 -0.01 -1.11

tail +0.46 +0.06 +1.96 +4.84 +0.35 +1.91 +0.75 +2.84

DOD mid +0.53 -1.35 +0.43 +0.29 +0.01 -0.15 +0.05 +0.41

head +0.27 -1.03 -0.61 -2.33 -0.79 -1.33 -0.37 -1.37

tail +1.19 +2.70 +2.10 +5.89 +0.49 +0.43 +0.27 +1.30

DOD+Coh mid +0.44 -0.37 +0.42 +1.16 +0.01 -0.85 +0.12 +0.99

head +0.32 -1.25 -0.66 -2.02 -0.37 -1.35 -0.26 -2.05

tail +1.18 +2.41 +2.37 +7.36 +0.35 +1.92 +0.59 +0.39

DOO mid +0.13 -0.62 +0.28 +1.83 +0.01 -0.15 +0.06 -0.38

head -0.50 -2.13 -0.58 -2.63 -0.79 -1.34 -0.47 -1.52

tail +1.28 +2.70 +2.03 +5.88 +0.65 +1.61 +0.69 +1.10

DOO+Coh mid +0.74 -0.52 +0.19 +0.82 +0.18 -0.02 +0.12 -0.05

head +0.22 -1.02 -1.61 -4.16 -0.40 -1.07 -0.22 -1.00

Table 4.6: Distribution of improvements over different portions of the test sets, where for TER the sign is reversed

so that positive numbers means improve in TER, i.e., lower TER score. The improvements are marked by bold text.
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4.3.1 Breakdown improvement analysis

As we can see from the results, there are improvements on all the different test sets. How-

ever, one could expect that the methods may work for a portionof the data but not others.

We divide the test sets into three portions based on sentence-level TER of the baseline

system. Letµ andσ be the mean and standard deviation of the sentence-level TERof the

whole test set. We define three subsetshead, tail andmid as the sentence whose TER

score is lower thanµ − 1

2
σ, higher thanµ + 1

2
σ and the rest, respectively. We then fix the

division of the three subsets, and calculate the BLEU and TERscores on them for every

system. From Table 4.6, the proposed methods tend to output better TER and BLEU for

thetail subsets, the improvements on themid subsets are smaller, and loss can be observed

on thehead subsets. The splitting of different sets also reflects on thelength of sentences,

as shown in Table 4.7, the tail parts are generally long sentences. The breakdown analysis

suggests a more subtle model taking into account the sentence lengths could bring in more

improvements, especially, on thetail set in which the baseline model loses.

jun08 nov08 nc07 nt08

head 7.92 6.27 20.39 13.07

mid 12.31 11.09 28.07 22.78

tail 13.91 14.08 35.29 25.33

Table 4.7: Average reference lengths

4.3.2 Interactions of reordering models

To further investigate the impact of the proposed models, weperform several analyses to

examine whether there are significant differences in 1) the average phrase length that the

decoder outputs; 2) the total number of reorderings occurred in the hypothesis and 3) the

average reordering distance for all the reordering events.Table 4.8 shows the statistics

on the four aspects for all the test sets. For the average phrase length, we can observe a

smaller value when applying the proposed models on English-Spanish tasks. However, on

57



Number of Reorderings Frequency of Reordering Average Phrase Length Average Reordering Distance

En-Es En-Ir En-Es En-Ir En-Es En-Ir En-Es En-Ir

nc07 nt08 jun08 nov08 nc07 nt08 jun08 nov08 nc07 nt08 jun08 nov08 nc07 nt08 jun08 nov08

Baseline 1507 1684 39 24 16.3 16.4 119 164 2.02 1.80 2.20 2.34 2.61 2.44 2.79 2.17

Coh 2045 2903 46 21 10.0 12.8 99 178 1.90 1.71 2.25 2.48 2.67 2.58 2.81 2.50

DO 2189 2113 97 58 11.6 13.4 47 64 1.95 1.76 2.25 2.47 2.57 2.46 2.88 3.05

DO+Coh 1929 1900 155 88 13.6 15.3 30 44 1.89 1.71 2.17 2.37 2.47 2.33 2.74 2.88

DOD 1735 2592 123 60 14.9 10.7 38 65 1.92 1.88 2.17 2.36 2.73 2.57 2.79 2.93

DOD+Coh 2070 2021 148 90 12.8 14.5 32 43 1.88 1.70 2.18 2.37 2.50 2.39 2.64 2.81

DOO 1735 1785 164 49 14.9 16.1 30 79 1.92 1.73 2.10 2.37 2.73 2.60 2.72 2.98

DOO+Coh 1818 1959 247 66 14.1 14.6 19 59 1.93 1.74 2.15 2.37 2.53 2.42 2.64 2.88

Table 4.8: Statistics on four aspects of the final hypothesisover different systems; 1. the number of reorderings, 2.

the number of words in the hypotheses divided by the number ofreordering, i.e. a larger number means more sparse

observation of reorderings, 3. the average phrase length and, 4. the average reordering distance

5
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English-Iraqi the picture is contradicting when on one set the phrase length is generally

longer and on the other set both longer and shorter statistics can be observed in different

systems. Generally, there is no evidence to support a claim that the proposed models have

consistent impact on the length of phrases chosen by the decoder. The observation is not

surprising since the proposed reordering models are more likely to affect the decoder’s

behavior on reorderings.

When analyzing the average reordering distance, a more consistent picture can be dis-

covered. The average reordering distance is larger than thecorresponding systems with

only inside/outside subtree movements. Whereas we cannot observe similar phenomenon

comparing the system with only cohesive constraints and thebaseline, which indicates

that the cohesive constraints actually have the effect of restricting long distance reorder

generated by the inside/outside subtree movements. The most interesting observation is

thenumber of reorderingsin the hypothesis. To make it easier to think about how sparse

the reordering events are, we present the occurrence rate ofreorderings, i.e. the number of

words divided by the number of reorderings, as listed in the parentheses inside Table 4.8.

An interesting phenomenon is that in English-Iraqi tasks, the output is generally monotone

in the baseline, and the number of reorderings increases dramatically by applying the in-

side/outside subtree movements. However, solely applyingcohesive constraints does not

increase the number of reorderings. In English-Spanish tasks, although all the features

generate more reordering events than the baseline, applying only the cohesion constraints

also increases the number of reorderings dramatically.

When combining the statistics of Table 4.8 the most significant effect the source-tree

reordering models contribute is the number of reorderings.Instead of constraining the

reordering, the models enable more reorderings to be generated. As shown in Table 4.10,

in the training data there are generally more reorderings than we observed in the decod-

ing results. It indicates the baseline reordering model is not subtle enough to encode

accurately information in a more generalized way, so that more reorderings can be gen-

erated without losing performance. The source-tree reordering models provide a more

discriminative mechanism to estimate reordering events. For example, in Table 4.10 the

probability mass of monotone and discontinuous events are different given that the phrase
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is encoded with inside or outside subtree movements. Moreover, the reordering issue is

more language-specific than general translation models, and the conditions for a reorder-

ing event to happen vary among languages. Providing more features that are conditioned

on different information, such as include inside/outside subtree movements and cohesive

constraints, could benefit the system performance by enabling MERT to choose the most

prominent ones from a larger basis.

4.3.3 The effect of inside/outside events

All the analysis above inspired us to carry out a more direct analysis of the decoder be-

haviors. As the main motivation of the proposed approach is to model the behavior of

inside/outside subtree events, natural assumptions could be that

• different target languages should have different probabilities of generating a se-

quence that has outside subtree events on the same source language and

• whether the model could change the behavior of generating outside subtree events.

• Furthermore, comparing to baseline system, do the changes,i.e. generating more or

less outside subtree events than baseline, bring improvements to those sentences?

From Table 4.9, the number of sentences having outside subtree events has not changed

much when decoding with subtree movement features in English-Spanish tasks, while this

number generally increases in English-Iraqi tasks. Moreover, when decoding with both

subtree movements and cohesive constraints, we observe that the number of sentences hav-

ing outside subtree events sharply decreases, whereas it increases in English-Iraqi. This

result shows an interesting correlation with the performance improvements in Table 4.4

and 4.5, where the systems with cohesive constraints generally outperform those without.

If we consider the cohesive constraints as hard constraints, then the outside subtree events

are considered as violations, however in English-Iraqi tasks, the performance becomes bet-

ter with more “violations”. The observation further consolidates our suggestion that subtle

models should be preferred for future developments, because the features may encode the
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En-Es En-Ir

nc07 nt08 jun08 nov08

Baseline 29.35 38.52 9.30 9.39

Coh 20.23 29.40 8.23 8.90

DO 30.34 32.57 12.35 11.65

DO+Coh 12.26 13.07 15.40 13.11

DOD 32.39 37.64 12.65 11.00

DOD+Coh 15.94 23.99 11.89 11.97

DOO 28.75 32.08 12.35 11.65

DOO+Coh 18.44 25.50 16.77 10.68

Table 4.9: The percentage of sentences havingoutside subtree events

information that the violation of constraints is actually preferred, no matter whether it is

because of the nature of the particular language or the styleof the source (spoken, written,

etc.).

M I S I D I M O S O D O

En-Es 0.38 0.01 0.14 0.3 0.01 0.15

En-Ir 0.62 0.01 0.13 0.16 0.01 0.07

Table 4.10: Distributions of the six source-tree reordering events estimated from English-

Spanish and English-Iraqi training data

Table 4.10 displays the overall event distributions of source-tree reordering models.

It appears clearly that occurrences ofS I andS O are too sparsely seen in the training

data which assigns nearly 98% of its probability mass to other events. The table strongly

suggests that from training data the source-tree reordering models observedmonotone and

inside movements more often than other categories. Finally, it shows that the proposed

reordering model provides a more fine-grained reordering events for phrase-based MT in

comparison with the lexicalized reordering model.
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4.4 Summary

In this chapter, our major contribution is a novel source-tree reordering model that exploits

dependency subtree movements and constraints. These movements and constraints enable

us to efficiently capture the subtree-to-subtree transitions observed both in the source of

word-aligned training data and in decoding time. Representing subtree movements as

features allows MERT to train the corresponding weights forthese features relative to

others in the model. We show that this model provides improvements for four held-out

evaluation sets and for two language pairs.
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Chapter 5

Measuring Machine Translation

Confidence with Source-Target

Dependency Structures

Past research mainly focused on incorporating dependency structures into decoder and

reordering models. We have made significant progress towards producing user-acceptable

translation output in some language pairs. However, there is still no efficient way for MT

systems to inform users which words are likely translated correctly and how confident it is

about the whole sentence. In this chapter, we propose a novelframework to predict word-

level and sentence-level MT errors with a large number of novel features. Experimental

results show that the MT error prediction accuracy is increased from69.1 to 72.2 in F-

score. The Pearson correlation between the proposed confidence measure and the human-

targeted translation edit rate (HTER) is0.6. Improvements between0.4 and 0.9 TER

reduction are obtained with the n-best list reranking task using the proposed confidence

measure. Also, we present a visualization prototype of MT errors at the word and sentence

levels with the objective to improve post-editor productivity.
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5.1 Motivation

State-of-the-art Machine Translation (MT) systems are making progress to generate more

usable translation outputs. In particular, statistical machine translation systems (Koehn

et al., 2007; Bach et al., 2007; Shen et al., 2008) have advanced to a state that the translation

quality for certain language pairs (e.g. Spanish-English,French-English, Iraqi-English) in

certain domains (e.g. broadcasting news, force-protection, travel) is acceptable to users.

However, a remaining open question is how to predict confidence scores for machine

translated words and sentences. An MT system typically returns the best translation can-

didate from its search space, but still has no reliable way toinform users which word is

likely to be correctly translated and how confident it is about the whole sentence. Such in-

formation is vital to realize the utility of machine translation in many areas. For example, a

post-editor would like to quickly identify which sentencesmight be incorrectly translated

and in need of correction. Other areas, such as cross-lingual question-answering, infor-

mation extraction and retrieval, can also benefit from the confidence scores of MT output.

Finally, even MT systems can leverage such information to don-best list reranking, dis-

criminative phrase table and rule filtering, and constraintdecoding (Hildebrand and Vogel,

2008).

Numerous attempts have been made to tackle the confidence estimation problem. The

work of Blatz et al. (2004) is perhaps the best known study of sentence and word level

features and their impact on translation error prediction.Along this line of research, im-

provements can be obtained by incorporating more features as shown in (Quirk, 2004;

Sanchis et al., 2007; Raybaud et al., 2009; Specia et al., 2009). Soricut and Echihabi

(2010) developed regression models which are used to predict the expected BLEU score

of a given translation hypothesis. Improvement also can be obtained by using target part-

of-speech and null dependency link in a MaxEnt classifier (Xiong et al., 2010). Ueffing

and Ney (2007) introduced word posterior probabilities (WPP) features and applied them

in the n-best list reranking. From the usability point of view, back-translation is a tool

to help users to assess the accuracy level of MT output (Bach et al., 2007). Literally, it

translates backward the MT output into the source language to see whether the output of
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backward translation matches the original source sentence.

However, previous studies had a few shortcomings. First, source-side features were

not extensively investigated. Blatz et al. (2004) only investigated source n-gram frequency

statistics and source language model features, while otherwork mainly focused on target

side features. Second, previous work attempted to incorporate more features but faced

scalability issues, i.e., to train many features we need many training examples and to

train discriminatively we need to search through all possible translations of each training

example. Another issue of previous work was that they are alltrained with BLEU/TER

score computing against the translation references which is different from predicting the

human-targeted translation edit rate (HTER) which is crucial in post-editing applications

(Snover et al., 2006; Papineni et al., 2002). Finally, the back-translation approach faces a

serious issue when forward and backward translation modelsare symmetric. In this case,

back-translation will not be very informative to indicate forward translation quality.

In this chapter, we predict error types of each word in the MT output with a confidence

score, extend it to the sentence level, then apply it to n-best list reranking task to improve

MT quality, and finally design a visualization prototype. Wetry to answer the following

questions:

• Can we use structure and context feature such as dependency structures, source-side

information, and alignment context to improve error prediction performance?

• Can we predict more translation error types i.e substitution, insertion, deletion and

shift?

• How good do our prediction methods correlate with human correction?

• Do confidence measures help the MT system to select a better translation?

• How confidence score can be presented to improve end-user perception?

In Section 5.2, we describe the models and training method for the classifier. We de-

scribe novel features including dependency structures, source-side, and alignment context

in Section 5.3. Experimental results and analysis are reported in Section 5.4. Section 5.5

and 5.6 present applications of confidence scores.
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5.2 Confidence Measure Model

5.2.1 Problem setting

Confidence estimation can be viewed as a sequential labelingtask in which the word se-

quence is MT output and word labels can beBad / Good or Insertion / Substitution /

Shift /Good. We first estimate each individual word confidence and extendit to the whole

sentence. Arabic text is fed into an Arabic-English SMT system and the English transla-

tion outputs are corrected by humans in two phases. In phase one, a bilingual speaker

corrects the MT system translation output. In phase two, another bilingual speaker does

quality checking for the correction done in phase one. If badcorrections were spotted, they

correct them again. In this chapter we use the final correction data from phase two as the

reference thus HTER can be used as an evaluation metric. We have 75 thousand sentences

with 2.4 million words in total from the human correction process described above.

We obtain training labels for each word by performing TER alignment between MT

output and the phase-two human correction. From TER alignments we observed that out of

total errors are 48% substitution, 28% deletion, 13% shift,and 11% insertion errors. Based

on the alignment, each word produced by the MT system has a label: good, insertion,

substitution and shift. Since a deletion error occurs when it only appears in the reference

translation, not in the MT output, our model will not predictdeletion errors in the MT

output.

5.2.2 Word-level model

In our problem, a training instance is a word from MT output, and its label when the MT

sentence is aligned with the human correction. Given a training instancex, y is the true

label ofx; f stands for its feature vectorf(x, y); andw is feature weight vector. We define

a feature-rich classifierscore(x, y) as follow

score(x, y) = w.f(x, y) (5.1)
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To obtain the label, we choose the class with the highest score as the predicted label for that

data instance. To learn optimized weights, we use the MarginInfused Relaxed Algorithm

or MIRA (Crammer and Singer, 2003; McDonald et al., 2005) which is an online learner

closely related to both the support vector machine and perceptron learning framework.

MIRA has been shown to provide state-of-the-art performance for sequential labeling task

(Rozenfeld et al., 2006), and is also able to provide an efficient mechanism to train and

optimize MT systems with lots of features (Watanabe et al., 2007; Chiang et al., 2009). In

general, weights are updated at each step timet according to the following rule:

wt+1 = argminwt+1
||wt+1 − wt||

s.t. score(x, y) ≥ score(x, y′) + L(y, y′)

(5.2)

whereL(y, y′) is a measure of the loss of usingy′ instead of the true labely. In this

problemL(y, y′) is 0-1 loss function. More specifically, for each instancexi in the training

data at a timet we find the label with the highest score:

y′ = argmax
y

score(xi, y) (5.3)

the weight vector is updated as follow

wt+1 = wt + τ(f(xi, y)− f(xi, y
′)) (5.4)

τ can be interpreted as a step size; whenτ is a large number we want to update our

weights aggressively, otherwise weights are updated conservatively.

τ = max(0, α)

α = min

{

C,
L(y, y′)− (score(xi, y)− score(xi, y

′))

||f(xi, y)− f(xi, y′)||22

} (5.5)

whereC is a positive constant used to cap the maximum possible valueof τ . In practice,

a cut-off thresholdn is the parameter which decides the number of features kept (whose
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occurrence is at leastn) during training. Note that MIRA is sensitive to constantC, the

cut-off feature thresholdn, and the number of iterations. The final weight is typically nor-

malized by the number of training iterations and the number of training instances. These

parameters are tuned on a development set.

5.2.3 Sentence-level model

Given the feature sets and optimized weights, we use the Viterbi algorithm to find the best

label sequence. To estimate the confidence of a sentenceS we rely on the information

from the forward-backward inference. One approach is to directly use the conditional

probabilities of the whole sequence. However, this quantity is the confidence measure for

the label sequence predicted by the classifier and it does notrepresent the goodness of the

whole MT output. Another more appropriated method is to use the marginal probability

of Good label which can be defined as follow:

p(yi = Good|S) =
α(yi|S)β(yi|S)

∑

j α(yj|S)β(yj|S)
(5.6)

p(yi = Good|S) is the marginal probability of labelGood at positioni given the MT

output sentenceS. α(yi|S) andβ(yi|S) are forward and backward values. Our confidence

estimation for a sentenceS of k words is defined as follow:

Goodness(S) =

∑k

i=1
p(yi = Good|S)

k
(5.7)

Goodness(S) is ranging between 0 and 1, where 0 is equivalent to an absolutely wrong

translation and 1 is a perfect translation. Essentially,Goodness(S) is the arithmetic mean

which represents the goodness of translation per word in thewhole sentence.
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5.3 Confidence Measure Features

Features are generated from feature types: abstract templates from which specific features

are instantiated. Features sets are often parameterized invarious ways. In this section, we

describe three new feature sets introduced on top of our baseline classifier which has WPP

and target POS features (Ueffing and Ney, 2007; Xiong et al., 2010).

5.3.1 Source and target dependency structure features

Dependency structures have been extensively used in various translation systems (Shen

et al., 2008; Ma et al., 2008; Bach et al., 2009a). The adoption of dependency structures

might enable the classifier to utilize deep structures to predict translation errors. Source

and target structures are unlikely to be isomorphic as shownin Figure 5.1(a). However, we

expect some high-level linguistic structures are likely totransfer across certain language

pairs. For example, prepositional phrases (PP) in Arabic and English are similar in a sense

that PPs generally appear at the end of the sentence (after all the verbal arguments) and

to a lesser extent at its beginning (Habash and Hu, 2009). We use the Stanford parser to

obtain dependency trees and POS tags (Marneffe et al., 2006).

Child-Father agreement: The motivation is to take advantage of the long distance depen-

dency relations between source and target words. Given an alignment between a source

word si and a target wordtj . A child-father agreement exists whensk is aligned totl,

wheresk andtl are father ofsi andtj in source and target dependency trees, respectively.

Figure 5.1(b) illustrates that “tshyr” and “refers” have a child-father agreement. To verify

our intuition, we analysed 243K words of manual aligned Arabic-English bitext. We ob-

served 29.2% words having child-father agreements. In termof structure types, we found

27.2% of copula verb and 30.2% prepositional structures, including object of a preposition,

prepositional modifier, and prepositional complement, arehaving child-father agreements.

Children agreement: In the child-father agreement feature we look up in the dependency
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Structures

PRP  VBZ       IN     DT          NN         RB      VBZ     TO DT    NN         IN     DT           JJ                  JJ NNS

wydyf an   hdhh alamlyt ayda tshyr aly adm qdrt almtaddt aljnsyt alqwat albhryt

He  adds  that  this   process   also  refers   to  the  inability   of   the  multinational  naval  forces

VBP     IN        DT    DTNN         RB      VBP      IN     NN NN DTJJ         DTJJ DTNNS     DTJJ

null

(a) Source-Target dependency

(b) Child-Father agreement

(c) Children agreement

Figure 5.1: Dependency structures features.
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tree, however, we also can look down to the dependency tree with a similar motivation.

Essentially, given an alignment between a source wordsi and a target wordtj, how many

children ofsi andtj are aligned together? For example, “tshyr” and “refers” have 2 aligned

children which are “ayda-also” and “aly-to” as shown in Figure 5.1(c).

5.3.2 Source-side features

VBP   IN     DT     DTNN     RB    VBP   IN   NN    NN DTJJ      DTJJ DTNNS    DTJJ

MT output

Source POS

Source

He   adds   that  this process also  refers  to  the  inability  of  the  multinational  naval  forces

wydyf an   hdhh alamlyt ayda tshyr aly adm qdrt almtaddt aljnsyt alqwat albhryt

(a) Source phrase

MT output

Source POS

Source wydyf an   hdhh alamlyt ayda tshyr aly adm qdrt almtaddt aljnsyt alqwat albhryt

He   adds   that  this process also  refers  to  the  inability  of  the  multinational  naval  forces

VBP   IN     DT     DTNN RB    VBP   IN   NN    NN DTJJ      DTJJ DTNNS    DTJJ

(b) Source POS

MT output

Source POS

Source

He  adds  that this   process also    refers  to  the  inability  of  the  multinational  naval  forces

VBP   IN     DT     DTNN RB      VBP IN   NN    NN DTJJ      DTJJ DTNNS    DTJJ

wydyf an   hdhh alamlyt ayda tshyr aly adm qdrt almtaddt aljnsyt alqwat albhryt

(c) Source POS and phrase in right context

Figure 5.2: Source-side features.
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From MT decoder log, we can track which source phrases generate target phrases. Fur-

thermore, one can infer the alignment between source and target words within the phrase

pair using simple aligners such as IBM Model-1 alignment.

Source phrase features:These features are designed to capture the likelihood that source

phrase and target word co-occur with a given error label. Theintuition behind them is

that if a large percentage of the source phrase and target have often been seen together

with the same label, then the produced target word should have this label in the future.

Figure 5.2(a) illustrates this feature template where the first line is source POS tags, the

second line is the Buckwalter romanized source Arabic sequence, and the third line is MT

output. The source phrase feature is defined as follow

f102(process) =

{

1 if source-phrase=“hdhh alamlyt”

0 otherwise

Source POS:Source phrase features might be susceptible to sparseness issues. We can

generalize source phrases based on their POS tags to reduce the number of parameters.

For example, the example in Figure 5.2(a) is generalized as in Figure 5.2(b) and we have

the following feature:

f103(process) =

{

1 if source-POS=“DT DTNN”

0 otherwise

Source POS and phrase context features:This feature set allows us to look at the sur-

rounding context of the source phrase. For example, in Figure 5.2(c) we have “hdhh

alamlyt” generates “process”. We also have other information such as on the right hand

side the next two phrases are “ayda” and “tshyr” or the sequence of source target POS on

the right hand side is “RB VBP”. An example of this type of feature is

f104(process) =

{

1 if source-POS-context=“RB VBP”

0 otherwise
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5.3.3 Alignment context features

PRP  VBZ       IN     DT          NN         RB      VBZ   TO DT    NN            IN     DT           J

VBP     IN     DT       DTNN         RB      VBP      IN     NN NN DTJJ         DTJJ DTNNS     DTJJ

wydyf an hdhh alamlyt ayda tshyr aly adm qdrt almtaddt aljnsyt alqwat albhryt

He  adds  that  this   process   also  refers to  the  inability    of   the  multinational  nava

(a) Left source

PRP  VBZ       IN     DT          NN         RB      VBZ     TO DT    NN           IN     DT           

VBP     IN        DT      DTNN      RB       VBP      IN     NN NN DTJJ         DTJJ DTNNS     DTJJ

wydyf an   hdhh alamlyt ayda tshyr aly adm qdrt almtaddt aljnsyt alqwat albhryt

He  adds  that  this    process also   refers to  the  inability   of   the  multinational  naval

(b) Right source

PRP  VBZ       IN    DT          NN           RB      VBZ      TO   DT     NN            IN     DT    

VBP     IN     DT       DTNN         RB      VBP       IN     NN     NN DTJJ         DTJJ DTNNS     DTJJ

wydyf an hdhh alamlyt ayda tshyr aly adm qdrt almtaddt aljnsyt alqwat albhryt

He  adds  that this    process also  refers   to  the  inability   of   the  multi

(c) Left target

PRP  VBZ       IN     DT          NN         RB      VBZ     TO DT    NN            IN     DT          

wydyf an  hdhh alamlyt ayda tshyr aly adm qdrt almtaddt aljnsyt alqwat albhryt

He  adds  that  this   process   also  refers to the  inability   of   the  multinational  naval  fo

VBP     IN       DT     DTNN         RB     VBP IN      NN     NN DTJJ         DTJJ DTNNS     DTJJ

(d) Source POS & right target

Figure 5.3: Alignment context features.

The IBM Model-1 feature performed relatively well in comparison with the WPP fea-

ture as shown by Blatz et al. (2004). In our work, we incorporate not only the IBM Model-1

feature but also the surrounding alignment context. The keyintuition is that collocation

is a reliable indicator for judging if a target word is generated by a particular source word

(Huang, 2009). Moreover, the IBM Model-1 feature was already used in several steps of a

translation system such as word alignment, phrase extraction and scoring. Also the impact

of this feature alone might fade away when the MT system is scaled up.

We obtain word-to-word alignments by applying IBM Model-1 to bilingual phrase

pairs that generated the MT output. The IBM Model-1 assumes one target word can only
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be aligned to one source word. Therefore, given a target wordwe can always identify

which source word it is aligned to.

Source alignment context feature:We anchor the target word and derive context fea-

tures surrounding its source word. For example, in Figure 5.3(a) and 5.3(b) we have an

alignment between “tshyr” and “refers” The source contexts “tshyr” with a window of one

word are “ayda” to the left and “aly” to the right.

Target alignment context feature: Similar to source alignment context features, we an-

chor the source word and derive context features surrounding the aligned target word.

Figure 5.3(c) shows a left target context feature of word “refers”. Our features are derived

from a window of four words.

Combining alignment context with POS tags:Instead of using lexical context we have

features to look at source and target POS alignment context.For instance, the feature in

Figure 5.3(d) is

f141(refers) =











1 if source-POS = “VBP”

and target-context = “to”

0 otherwise

5.4 Experiments

5.4.1 Arabic-English translation system

The SMT engine is a phrase-based system similar to the description in (Tillmann, 2006),

where various features are combined within a log-linear framework. These features in-

clude source-to-target phrase translation score, source-to-target and target-to-source word-

to-word translation scores, language model score, distortion model scores and word count.

The training data for these features are 7M Arabic-English sentence pairs, mostly newswire
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and UN corpora released by LDC. The parallel sentences have word alignment automati-

cally generated with HMM and MaxEnt word aligner (Ge, 2004; Ittycheriah and Roukos,

2005). Bilingual phrase translations are extracted from these word-aligned parallel cor-

pora. The language model is a 5-gram model trained on roughly3.5 billion English words.

Our training data contains 72k sentences Arabic-English machine translation with hu-

man corrections which include of 2.2M words in newswire and weblog domains. We

have a development set of 2,707 sentences, 80K words (dev); an unseen test set of 2,707

sentences, 79K words (test). Feature selection and parameter tuning has been done on

the development set in which we experimented values ofC, n and iterations in range of

[0.5:10], [1:5], and [50:200] respectively. The final MIRA classifier was trained by us-

ing pocket crf toolkit1 with 100 iterations, hyper-parameterC was 5 and cut-off feature

thresholdn was 1.

We use precision (P ), recall (R) and F-score (F ) to evaluate the classifier performance

and they are computed as follow:

P =
the number of correctly tagged labels

the number of tagged labels

R =
the number of correctly tagged labels

the number of reference labels

F = 2*P*R
P+R

(5.8)

5.4.2 Contribution of feature sets

We designed our experiments to show the impact of each feature separately as well as their

cumulative impact. We trained two types of classifiers to predict the error type of each

word in MT output, namelyGood / Bad with a binary classifier andGood / Insertion

/ Substitution / Shift with a 4-class classifier. Each classifier is trained with different

feature sets as follow:

• WPP: we reimplemented WPP calculation based on n-best listsas described in Ueff-

ing and Ney (2007).

1 http://pocket-crf-1.sourceforge.net/
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• WPP + target POS: only WPP and target POS features are used. This is a similar

feature set used by Xiong et al. (2010).

• Our features: the classifier has source side, alignment context, and dependency

structure features; WPP and target POS features are excluded.

• WPP + our features: adding our features on top of WPP.

• WPP + target POS + our features: using all features.

binary 4-class

dev test dev test

WPP 69.3 68.7 64.4 63.7

+ dependency structures 69.9 69.5 64.9 64.3

+ source side 72.1 71.6 66.2 65.7

+ alignment context 71.4 70.9 65.7 65.3

WPP+ target POS 69.6 69.1 64.4 63.9

+ dependency structures 70.4 70 65.1 64.4

+ source side 72.3 71.8 66.3 65.8

+ alignment context 71.9 71.2 66 65.6

Table 5.1: Contribution of different feature sets measure in F-score.

To evaluate the effectiveness of each feature set, we apply them on two different base-

line systems: using WPP and WPP+target POS, respectively. We augment each baseline

with our feature sets separately. Table 5.1 shows the contribution in F-score of our pro-

posed feature sets. Improvements are consistently obtained when combining the proposed

features with baseline features. Experimental results also indicate that source-side infor-

mation, alignment context and dependency structures have unique and effective levers to

improve the classifier performance. Among the three proposed feature sets, we observe

the source side information contributes the most gain, which is followed by the alignment

context and dependency structure features.
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5.4.3 Performance of classifiers

We trained several classifiers with our proposed feature sets as well as baseline features.

We compare their performances, including a naive baseline All-Good classifier, in which

all words in the MT output are labeled as good translations. Figure 6.6 shows the per-

formance of different classifiers trained with different feature sets on development and

unseen test sets. On the unseen test set our proposed features outperform WPP and target

POS features by 2.8 and 2.4 absolute F-score respectively. Improvements of our features

are consistent in development and unseen sets as well as in binary and 4-class classifiers.

We reach the best performance by combining our proposed features with WPP and tar-

get POS features. Experiments indicate that the gaps in F-score between our best system

with the naive All-Good system is 12.9 and 6.8 in binary and 4-class cases, respectively.

Table 5.2 presents precision, recall, and F-score of individual class of the best binary and

4-class classifiers. It shows thatGood label is better predicted than other labels, mean-

while,Substitution is generally easier to predict thanInsertion andShift.

Label P R F

Binary
Good 74.7 80.6 77.5

Bad 68 60.1 63.8

4-class

Good 70.8 87 78.1

Insertion 37.5 16.9 23.3

Substitution 57.8 44.9 50.5

Shift 35.2 14.1 20.1

Table 5.2: Detailed performance in precision, recall and F-score of binary and 4-class

classifiers with WPP+target POS+Our features on the unseen test set.
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Figure 5.4: Performance of binary and 4-class classifiers trained with different feature sets

on the development and unseen test sets.
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Figure 5.5: Correlation between Goodness and HTER.

5.4.4 Correlation between Goodness and HTER

We estimate sentence level confidence score based on Equation 5.7. Figure 5.5 illustrates

the correlation between our proposedGoodness sentence level confidence score and the

human-targeted translation edit rate (HTER). The Pearson correlation betweenGoodness

and HTER is 0.6, while the correlation of WPP and HTER is 0.52.This experiment shows

thatGoodness has a large correlation with HTER. The black bar is the linearregression

line. Blue and red bars are thresholds used to visualize goodand bad sentences respec-

tively. We also experimentedGoodness computation in Equation 5.7 using geometric

mean and harmonic mean; their Pearson correlation values are 0.5 and 0.35 respectively.

5.5 Improving MT quality with N-best list reranking

Experiments reporting in Section 5.4 indicate that the proposed confidence measure has a

high correlation with HTER. However, it is not very clear if the core MT system can benefit
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Dev Test

TER BLEU TER BLEU

Baseline 49.9 31.0 50.2 30.6

2-best 49.5 31.4 49.9 30.8

5-best 49.2 31.4 49.6 30.8

10-best 49.2 31.2 49.5 30.8

20-best 49.1 31.0 49.3 30.7

30-best 49.0 31.0 49.3 30.6

40-best 49.0 31.0 49.4 30.5

50-best 49.1 30.9 49.4 30.5

100-best 49.0 30.9 49.3 30.5

Table 5.3: Reranking performance withGoodness score.

from confidence measure by providing better translations. To investigate this question we

present experimental results for the n-best list rerankingtask. The MT system generates

top n hypotheses and for each hypothesis we compute sentence-level confidence scores.

The best candidate is the hypothesis with highest confidencescore. Table 5.3 shows the

performance of reranking systems usingGoodness scores from our best classifier in vari-

ous n-best sizes. We obtained 0.7 TER reduction and 0.4 BLEU point improvement on the

development set with a 5-best list. On the unseen test, we obtained 0.6 TER reduction and

0.2 BLEU point improvement. Although, the improvement of BLEU score is not obvious,

TER reductions are consistent in both development and unseen sets.

Figure 5.6 shows the improvement of reranking withGoodness score. Besides, the

figure illustrates the upper and lower bound performances with TER metric in which the

lower bound is our baseline system and the upper bound is the best hypothesis in a given

n-best list. Oracle scores of each n-best list are computed by choosing the translation

candidate with lowest TER score.
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in TER metric on the development set.

5.6 Visualizing translation errors

Besides the application of confidence score in the n-best list reranking task, we propose a

method to visualize translation error using confidence scores. Our purpose is to visualize

word and sentence-level confidence scores with the following objectives 1) easy for spot-

ting translations errors; 2) simple and intuitive; and 3) helpful for post-editing productivity.

We define three categories of translation quality (good/bad/decent) on both word and sen-

tence level. On word level, the marginal probability of goodlabel is used to visualize

translation errors as follow:

Li =











good if p(yi = Good|S) ≥ 0.8

bad if p(yi = Good|S) ≤ 0.45

decent otherwise
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On sentence level, theGoodness score is used as follow:

LS =











good if Goodness(S) ≥ 0.7

bad if Goodness(S) ≤ 0.5

decent otherwise

Choices Intention

Font size

big bad

small good

medium decent

Colors

red bad

black good

orange decent

Table 5.4: Choices of layout

Different font sizes and colors are used to catch the attention of post-editors whenever

translation errors are likely to appear as shown in Table 5.4. Colors are applied on word

level, while font size is applied on both word and sentence level. The idea of using font

size and colour to visualize translation confidence is similar to the idea of using tag/word

cloud to describe the content of websites2. The reason we are using big font size and

red color is to attract post-editors’ attention and help them find translation errors quickly.

Figure 5.7 shows an example of visualizing confidence scoresby font size and colors. It

shows that “not to deprive yourself”, displayed in big font and red color, is likely to be

bad translations. Meanwhile, other words, such as “you”, “ different”, “ from”, and “assim-

ilation”, displayed in small font and black color, are likely to be good translation. Medium

font and orange color words are decent translations.

2 http://en.wikipedia.org/wiki/Tagcloud
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you totally different from zaid amr , and not to deprive yourself in a basement of imitation 

and assimilation . 
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MT output

Source

you totally different from zaid amr , and not to deprive yourself in 

a basement of imitation and assimilation .

We predict

and visualize

Human 

correction

you are quite different from zaid and amr , so do not cram yourself in the tunnel of 

simulation , imitation and assimilation . 

(a)

the poll also showed that most of the participants in the developing countries are ready 

to introduce qualitative changes in the pattern of their lives for the sake of reducing the 

effects of climate change. 
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MT output

Source

the poll also showed that most of the participants in the developing countries are ready 

to introduce qualitative changes in the pattern of their lives for the sake of 

reducing the effects of climate change. 

We predict

and visualize

the survey also showed that most of the participants in developing countries are ready 

to introduce changes to the quality of their lifestyle in order to reduce the effects of 

climate change . 

Human 

correction

(b)

Figure 5.7: MT errors visualization based on confidence scores.
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5.7 Summary

In this chapter we proposed a method to predict confidence scores for machine trans-

lated words and sentences based on a feature-rich classifierusing linguistic and context

features. Our major contributions are three novel feature sets including dependency struc-

tures, source side information, and alignment context. Experimental results show that by

combining the source side information, alignment context,and dependency structure fea-

tures with word posterior probability and target POS context (Ueffing & Ney 2007; Xiong

et al., 2010), the MT error prediction accuracy is increasedfrom 69.1 to 72.2 in F-score.

Our framework is able to predict error types namely insertion, substitution and shift. The

Pearson correlation with human judgment increases from0.52 to 0.6. Furthermore, we

show that the proposed confidence scores can help the MT system to select better trans-

lations and as a result improvements between0.4 and0.9 TER reduction are obtained.

Finally, we demonstrate a prototype to visualize translation errors.

84



Chapter 6

A Statistical Sentence Simplification

Model and Its Application in Machine

Translation

In the NIST MT evaluations, translation systems typically have to deal with sentences

with average length ranging from 27 to 36 words varying on different test sets as shown

in Table 6.1. There are cases when the test sentence has up to 268 words. Similar to other

NLP tasks, such as parsing and semantic role labeling, the source sentence length has a

lot of impact on SMT performance. Translating long sentences is often harder than short

sentences because of several reasons. First, hypotheses search space for long sentences is

much larger than short sentences, as a result, good translations are harder to reach. Second,

it takes more time to translate long sentences. Third, long sentences often contain complex

syntax and long distance dependency structures, therefore, it is not easy for translation

models to capture these phenomena. In many translation applications, such as speech-to-

speech translation, the fluency might not be very important.For example, in speech-to-

speech translation when the user says”well well well my name you know is is John”it is

almost acceptable if the machine can output to the target language keywords”my name

John”.
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Test sets Average Length Maximum length

mt02 29 81

mt03 28.42 86

mt04 31.76 111

mt05 31.51 101

mt06 27.68 205

mt08-nw 31.92 150

mt08-wb 36.22 268

Table 6.1: Sentence length statistics on NIST MT Arabic testsets

Moreover, complicated sentences impose difficulties on reading comprehension. For

instance, a person in 5th grade can comprehend a comic book easily but will struggle to

understand New York Times articles which require at least 12th grade average reading

level (Flesch, 1981). Complicated sentences also challenge natural language processing

applications including, but not limited to, text summarization, question answering, infor-

mation extraction, and machine translation (Chandrasekaret al., 1996). An example of

this is syntactic parsing in which long and complicated sentences will generate a large

number of hypotheses and usually fail in disambiguating theattachments.

Therefore, it is desirable to pre-process complicated sentences and generate simpler

counter parts. There are direct applications of sentence simplification. Daelemans et al.

(2004) applied sentence simplification so that the automatically generated closed caption

can fit into limited display area. The Facilita system generates accessible content from

Brazilian Portuguese web pages for low literacy readers using both summarization and

simplification technologies (Watanabe et al., 2009).

This chapter tackles sentence-level factual simplification (SLFS). The objective of

SLFS is twofold. First, SLFS will process the syntacticallycomplicated sentences. Sec-

ond, while preserving the content meaning, SLFS outputs a sequence of simple sentences.

SLFS is an instance of the broader spectrum of text-to-text generation problems, which in-
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cludes summarization, sentence compression, paraphrasing, and sentence fusion. Compar-

ing to sentence compression, sentence simplification requires the conversion to be lossless

in sense of semantics. It is also different from paraphrasing in that it generates multiple

sentences instead of one sentence with different constructions.

There are certain specific characteristics that complicatea sentence, which include

length, syntactic structure, syntactic and lexical ambiguity, and an abundance of complex

words. As suggested by its objective, sentence simplification outputs “simple sentences”.

Intuitively, a simple sentence is easy to read and understand, and arguably easily processed

by computers. A more fine-tuned definition on a simple sentence is suggested in Klebanov

et al. (2004), and is termed Easy Access Sentences (EAS). EASin English is defined as

• EAS is a grammatical sentence;

• EAS has one finite verb;

• EAS does not make any claims that were not present, explicitly or implicitly;

• An EAS should contain as many named entities as possible.

While the last two requirements are difficult to quantify, the first two provide a practical

guideline for sentence simplification. We treat the sentence simplification process as a

process of statistical machine translation. Given the input of a syntactically complicated

sentence, we translate it into a set of EAS that preserves as much information as possible

from the original sentence. We develop the algorithm that can generate a set of EAS from

the original sentence and a model to incorporate features that indicate the merit of the

simplified candidates. The model is discriminatively trained on a data set of manually

simplified sentences.

We briefly review related work in the area of text-to-text generation in Section 6.1.

The proposed model for statistical sentence simplificationis presented in Section 6.2. In

Section 6.3 we introduce the decoding algorithm. Section 6.4 and 6.5 describe the dis-

criminative training method we use and the feature functions. Experiments and analysis

are present in Section 6.6, followed by Section 6.7 with the application of sentence simpli-

fication in a English-German MT system. Finally, we concludethis work in Section 6.8.
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6.1 Related Work

Given the problematic nature of text-to-text generation that takes a sentence or a document

as the input and optimizes the output toward a certain objective, we briefly review state-

of-art approaches of text-to-text generation methods.

Early approaches in summarization focus on extraction methods which try to isolate

and then summarize the most significant sentences or paragraphs of the text. However,

this has been found to be insufficient because it usually generates incoherent summaries.

Barzilay and McKeown (2005) proposed sentence fusion for multi-document summariza-

tion, which produces a sentence that conveys common information of multiple sentences

based upon dependency tree structures and lexical similarity.

Sentence compression generates a summary of a single sentence with minimal infor-

mation loss, which can also be treated as sentence-level summarization. This approach

applies word deletion, in which non informative words will be removed from the original

sentence. A variety of models were developed based on this perspective, ranging from

generative models (Knight and Marcu, 2002; Turner and Charniak, 2005) to discrimina-

tive models (McDonald, 2006) and Integer Linear Programming (Clarke, 2008). Another

line of research treats sentence compression as machine translation, in which tree-based

translation models have been developed (Galley and McKeown, 2007; Cohn and Lapata,

2008; Zhu et al., 2010). Woodsend and Lapata (2011) proposeda framework to combine

tree-based simplification with ILP.

In contrast to sentence compression, sentence simplification generates multiple sen-

tences from one input sentence and tries to preserve the meaning of the original sentence.

The major objective is to transform sentences in complicated structures to a set of easy-

to-read sentences, which will be easier for human to comprehend, and hopefully easier for

computers to deal with.

Numerous attempts have been made to tackle the sentence simplification problem. One

line of research has explored simplification with linguistic rules. Jonnalagadda (2006)

developed a rule-based system that take into account the discourse information. This

method is applied on simplification of biomedical text (Jonnalagadda et al., 2009) and
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protein-protein information extraction (Jonnalagadda and Gonzalez, 2010). Chandrasekar

and Srinivas (1997) automatically induced simplification rules based on dependency trees.

Additionally, Klebanov et al. (2004) develop a set of rules that generate a set of EAS from

syntactically complicated sentences. Heilman and Smith (2010) proposed an algorithm for

extracting simplified declarative sentences from syntactically complex sentences.

The rule-based systems performs well on English. However, in order to develop a

moregeneric framework for other languages, a statistical framework is preferable. In this

work, we follow this direction to treat the whole process as astatistical machine translation

task with an online large-margin learning framework. The method is generalizable to other

languages given labeled data. To ensure the information is preserved, we build a table of

EAS for each object, and use stack decoding to search for the optimal combination of EAS.

A feature vector is assigned to each combination and we use anend-to-end discriminative

training framework to tune the parameters given a set of training data. Our method is

different from Klebanov et al. (2004) in the way that we applied statistical model to rank

the generated sentences. The difference between our methodand Heilman and Smith

(2010) is that we integrate linguistic rules into the decoding process as soft constraints in

order to explore a much larger search space.

6.2 Statistical Sentence Simplification Models

Assume that we are given an English sentencee, which is to be simplified into a setS of

k simple sentences{s1, ..., si, ..., sk}. Among all possible simplified sets, we will select

the set with the highest probabilitŷS(e) = argmax∀S Pr(S|e). As the true probability

distribution ofPr(S|e) is unknown, we have to approximatePr(S|e) by developing a

log-linear modelp(S|e). In contrast to noisy-channel models (Knight and Marcu, 2002;

Turner and Charniak, 2005) we directly compute simplification probability by a condi-

tional exponential model as follow:

p(S|e) =
exp[

∑M

m=1
wmfm(S, e)]

∑

S′ exp[
∑M

m=1
wmfm(S ′, e)]

(6.1)
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wherefm(S, e), m = 1, ...,M are feature functions on each sentence; there exists a model

parameterwm are feature weights to be learned.

In this framework, we need to solve decoding, learning, and modeling problems. The

decoding problem, also known as the search problem, is denoted by theargmax opera-

tion which finds the optimalS that maximize model probabilities. Thelearning problem

amounts to obtaining suitable parameter valueswM
1 subject to a loss function on training

samples. Finally, themodeling problemamounts to developing suitable feature functions

that capture the relevant properties of the sentence simplification task. Our sentence sim-

plification model can be viewed as English-to-English log-linear translation models. The

defining characteristic that makes the problem difficult is that we need to translate from

one syntactically complicated sentence tok simple sentences, andk is not predetermined.

6.3 Decoding

This section presents a solution to thedecoding problem. The solution is based on a stack

decoding algorithm that finds the bestS given an English sentencee. Our decoding algo-

rithm is inspired by the decoding algorithms in speech recognition and machine translation

(Jelinek, 1998; Koehn et al., 2007). For example, with a sentencee “John comes from Eng-

land, works for IMF, and is an active hiker”, the stack decoding algorithm tries to findS,

which is a set of three sentences: “John comes from England”, “ John works for IMF” and

“John is an active hiker”. Note thatS is a set ofk simple sentencesS = {s1, ..., si, ..., sk}.

We can assume the itemssi are drawn from a finite setS of grammatical sentences that

can be derived frome. Therefore, the first step is to construct the setS.

6.3.1 Constructing simple sentences

We define a simple English sentence as a sentence with SVO structure, which has one

subject, one verb and one object. Our definition is similar tothe definition of EAS, men-

tioned in section 1. However, we only focus on the SVO structure and other constraints are

relaxed. We assume both subjects (S) and objects (O) are nounphrases (NP) in the parse
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John       comes from      England     ,    works  for        IMF      ,  and    is       an active hiker     .John       comes from      England     ,    works  for        IMF      ,  and    is       an active hiker     .

NP 

John       comes from      England     ,    works  for        IMF      ,  and    is       an active hiker     .

NP 

John       comes from      England     ,    works  for        IMF      ,  and    is       an active hiker     .

NP 

John       comes from      England     ,    works  for        IMF      ,  and    is       an active hiker     .

NP 

John       comes from      England     ,    works  for        IMF      ,  and    is       an active hiker     .

VP 

John       comes from      England     ,    works  for        IMF      ,  and    is       an active hiker     .

VP 

John       comes from      England     ,    works  for        IMF      ,  and    is       an active hiker     .

VP 

England 

John 

IMF 

an active hiker 

Subject 

England 

IMF 

an active hiker 

Object 

comes from 

works for 

is 

Verb 

Figure 6.1: Constructing simple sentences

tree. For a given English sentencee, we extract a listSNP of NPs and a listSV of verbs.

SNP has an additional empty NP in order to handle intransitive verbs. A straightforward

way to construct simple sentences is to enumerate all possible sentences based onSNP

andSV . That results in|SNP |
2|SV | simple sentences.

Figure 6.1 illustrates the constructions for “John comes from England, works for IMF,

and is an active hiker”. The system extracts a noun phrase listSNP {John, England, IMF,

an active hiker} and a verb listSV {comes from, works for, is}. Our model constructs

simple sentences such as “John comes from England” , “ John comes from IMF” and “John

comes from an active hiker”. The total number of simple sentences,|S|, is 48.

6.3.2 Decoding algorithm

Given a list of simple sentencesS, a number of possible combinations could be applied.

The decoder’s objective is to construct and find the best simplification candidateS ⊂ S

which conveys the closest meaning with the original sentence. We callS a hypothesisin

the context of the decoder. Simple sentences are constructed beforehand and associated

with a feature vector. We employs a stack decoding algorithm. The rationale is to construct

a hypothesis thatcovers all noun phrases and verb phrases of the original sentence.

The decoding task is to find the optimal solution over all possible combinations of
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simple sentences, given the feature values and learned feature weights. Depending on

the number of simple sentences per hypothesis, the search space grows exponentially.

Since each simple sentence contains an object, we can group the candidate sentences by

its object. An object is a noun phrase of the original sentence which is extracted by using a

noun phrase chunker. Each object has an order depending on the position of the last word.

For instance,“IMF” is object number two and“an active hiker” is an object number three

in Figure 6.1. Any noun phrase can serve as an object except the NP at the beginning of

a sentence. Therefore“John” will not be a potential object. The decoder will use object

order as a feature in order to control the order of simplified sentences in a hypothesis.

For example, given 2 hypothesis”John come from England; John works for IMF; John

is an active hiker”and”John is an active hiker; John come from England; John works

for IMF” . The decoder will prefer the first hypothesis since its objects are in the same

sequence with the original sentence.

John  comes from                    ,   works  for                   ,   and   is                                   . John  comes from                    ,   works  for                   ,   and   is                                   .England 

… 

IMF comes from England  

an active hiker is England  

John comes from England  

… 

IMF comes from England  

John comes from IMF 

John comes from England  

John comes from IMF 

John comes from England  

John works for IMF 

John comes from England  

an active hiker is IMF 

… 

an active hiker is England  

an active hiker is IMF 

John  comes from                    ,   works  for                   ,   and   is                                   .an active hiker John  comes from                    ,   works  for                   ,   and   is                                   .IMF 

John comes from England  

John comes from IMF 

John comes from an active hiker 

John comes from England  

John comes from IMF 

IMF comes from an active hiker 

John comes from England  

an active hiker is IMF 

John works for an active hiker 

… 

an active hiker is England  
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Figure 6.2: Decoding by objects

Figure 6.2 demonstrates the idea of decoding via objects. Wehave three potential ob-
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jects “England”, “ IMF” and “an active hiker”. The algorithm first finds potential simple

sentences which have “England” as object. After finishing “England”, the algorithm ex-

pands to “IMF” and “an active hiker”. Based on model scores, the decoder will choose a

k-best hypothesis.

Algorithm 6 : K-Best Stack Decoding
1: Initialize an empty hypothesis listHypList

2: Initialize HYPSis a stack of 1-simple-sentence hypotheses

3: for i = 0 to |SV | do

4: Initialize stackexpandh
5: while HYPSis not emptydo

6: poph from HYPS

7: expandh ← Expand-Hypothesis(h)

8: end while

9: expandh← Prune-Hypothesis(expandh, stack-size)

10: HYPS← expandh

11: Store hypotheses ofexpandd into HypList

12: end for

13: SortedHypList← Sort-Hypothesis(HypList)

14: Return K-best hypotheses inSortedHypList

Algorithm 6 is a version of stack decoding for sentence simplification. The decoding

process advances by extending a state that is equivalent to astack of hypotheses. Line 1

and 2 initializeHYPSstack andHypList. A HYPSstack maintains a current search state,

meanwhileHypListstores potential hypotheses after each state.HYPSis initialized with

hypotheses containing one simple sentence. Line 3 starts a loop over states. The number

of maximum states is equal to the size ofSV plus one. Lines 4-8 represent the hypothesis

expansion.

Figure 6.3(a) illustrates the pop-expand process ofHYPSstack with 1-simple-sentence

hypotheses. The expansion in this situation expands to a 2-simple-sentence hypotheses-

stackexpandh. The size ofexpandh will exponentially increase according to the size of
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Figure 6.3: A visualization for stack decoding
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SV andSNP . Therefore, we prefer to maintainexpandh within a limit number (stack-

size) of hypotheses. Line 9 helps the decoder to control the size of expandh by applying

different pruning strategies: word coverage, model score or both. Figure 6.3(b) illustrates

the pruning process onexpandh with 2-simple-sentence hypotheses. Line 10 replaces

the current state with a new state of the expanded hypotheses. Before moving to a new

state,HypList is used to preserve potential hypotheses of the current state. Line 13 sorts

hypotheses inHypListaccording to their model scores and a K-best list is returnedin line

14.

6.4 Learning

Since defining a log-linear sentence simplification model and decoding algorithm has been

completed, this section describes a discriminative learning algorithm for thelearning prob-

lem. We learn optimized weight vectorw by using the Margin Infused Relaxed Algorithm

or MIRA (Crammer and Singer, 2003), which is an online learner closely related to both

the support vector machine and perceptron learning framework. In general, weights are

updated at each step timei according to:

wi+1 = argminwi+1
||wi+1 − wi||

s.t. score(S, e) ≥ score(S ′, e) + L(S,S ′)

(6.2)

whereL(S,S ′) is a measure of the loss of usingS ′ instead of the simplification reference

S; score() is a cost function ofe andS and in this case is the decoder score.

Algorithm 7 is a version of MIRA for training the weights of our sentence simplifi-

cation model. On each iteration, MIRA considers a single instance from the training set

(St, et) and updates the weights so that the score of the correct simplificationεt is greater

than the score of all other simplifications by a margin proportional to their loss. However,

given a sentence there are an exponential amount of possiblesimplification candidates.

Therefore, the optimizer has to deal with an exponentially large number of constraints.

To tackle this, we only considerK-best hypotheses and choosem-oracle hypotheses to
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Algorithm 7 : MIRA training for Sentence Simplifier

training setτ = {ft, et}
T
t=1 has T original English sentences with the feature vectorft

of et.

ε is the simplification reference set.

m-oracle setO = {}.

The current weight vectorwi.

1: i=0

2: for j = 1 to Q do

3: for t = 1 to T do

4: H ← get K Best(St ; wi)

5: O← get m Oracle(H ; εt)

6: γ =
m
∑

o=1

K
∑

h=1

α(eo, eh; εt)(feo − feh)

7: wi+1 = wi + γ

8: i = i+ 1

9: end for

10: end for

11: Return

∑Q∗T
i=1 wi

Q∗T

96



support the weight update decision. This idea is similar to the way MIRA has been used in

dependency parsing and machine translation (McDonald et al., 2005; Liang et al., 2006a;

Watanabe et al., 2007).

On each update, MIRA attempts to keep the new weight vector asclose as possible to

the old weight vector. Subject to margin constraints keep the score of the correct output

above the score of the guessed output by updating an amount given by the loss of the incor-

rect output. In line 6,α can be interpreted as an update step size; whenα is a large number

we want to update our weights aggressively, otherwise weights are updated conservatively.

α is computed as follow:

α = max(0, δ)

δ = min

{

C,
L(eo, eh; εt)− [score(eo)− score(eh)]

||Seo − feh||
2
2

} (6.3)

whereC is a positive constant used to cap the maximum possible valueof α; score() is

the decoder score; andL(eo, eh; εt) is the loss function.

L(eo, eh; εt) measures the difference between oracleeo and hypothesiseh according to

the gold referenceεt. L is crucial to guide the optimizer to learn optimized weights. We

definedL(eo, eh; εt) as follow

L(eo, eh; εt) = AveFN(eo, εt)−AveFN (eh, εt) (6.4)

whereAveFN(eo, εt) andAveFN (eh, εt) is the average n-gram (n=[2:N]) cooccurrence

F-score of(eo, εt) and(eh, εt), respectively.

In this case, we optimize the weights directly against theAveFN metric over the train-

ing data.AveFN can be substituted by other evaluation metrics such as the ROUGE fam-

ily metric (Lin, 2004a). Similar to the perceptron method, the actual weight vector during

decoding is averaged across the number of iterations and training instances; and it is com-

puted in line 11.
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6.5 Modeling

We now turn to themodeling problem. Our fundamental question is: given the model in

Equation 6.1 withM feature functions, what linguistic features can be leveraged to capture

semantic information of the original sentence? We address the question in this section by

describing features that cover different levels of linguistic structures. Our model incorpo-

rates 177 features based on information from the original English sentencee which con-

tains chunks, syntactic and dependency parse trees (Ramshaw and Marcus, 1995; Marneffe

et al., 2006).

6.5.1 Simple sentence level features

A simplification hypothesiss containsk simple sentences. Therefore, it is crucial that

our model chooses reasonable simple sentences to form a hypothesis. For each simple

sentencesi we incorporated the following feature functions:

Figure 6.4: Dependency structure distance
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Dependency Structures It is possible that the decoder constructs semantically in-

correct simple sentences, in which S, V, and O do not have any semantic connection. One

way to possibly reduce this kind of mistake is analyze the dependency chain between S, V,

and O on the original dependency tree ofe. Our dependency structure features include the

minimum and maximum distances of (S:O), (S:V), and (V:O). InFig 6.4, the minimum

and maximum distances between “John” and “an active hiker” are 2 and 3, respectively.

Word Count These features count the number word in subject (S), verb (V)and

object (O), also counting the number of proper nouns in S and the number of proper nouns

in O.

Distance between NPs and Verbs These features focus on the number of NPs and

VPs in between S, V, and O. This feature group includes the number of NPs between S and

V, the number of NPs between V and O, the number of VPs between Sand V, the number

of VPs between V and O.

Syntactic Structures Another source of information is the syntactic parse tree of

e, which can be used to extract syntactic features. The sentence-like boundary feature

considers the path from S to O along the syntactic parse tree to see whether it crosses

the sentence-like boundary (e.g. relative clauses). For example in the original sentence

“John comes from England and works for IMF which stands for International Monetary

Funds”, the simple sentence “IMF stands for International Monetary Funds” has sentence-

like boundary feature is triggered since the path from “IMF” to “ International Monetary

Funds” on the syntactic tree of the original sentence contains an SBAR node.

Another feature is the PP attachment feature. This checks ifthe O contains a preposi-

tional phrase attachment or not. Moreover, the single pronoun feature will check if S and

O are single pronoun or not. The last feature is the VO common ancestor, which looks

at the syntactic tree to see whether or not V and O share the same VP tag as a common

ancestor.
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6.5.2 Interactive simple sentence features

A collection of grammatically sound simplified sentences does not necessarily make a

good hypothesis. Dropping words, unnecessary repetition,or even wrong order can make

the hypothesis unreadable. Therefore, our model needs to beequipped with features that

are capable to measure the interactiveness across simple sentences and are also able to

represents in the best possible manner. We incorporated the following features into our

model:

Figure 6.5: Typed dependency structure binary feature

Typed Dependency At simple sentence level we examine dependency chains of S,

V and O, while at the hypothesis level we analyze the typed dependency between words.

In Fig 6.5, considering“John” and “England” the typed features, such as hasObject,

hasSubject, and hasPrep, will be fired with true values since the dependency linkbe-

tween “John” and “England” contains these types. Meanwhile, other typed dependency

structure feature, such as hasCop and hasDet, will has false values. Our model has 46

typed dependencies which are represented by the 92 count features for the 1st and 2nd

simple sentence.
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Sentence Count This group of features consider the number of sentences in the

hypothesis. It consists of an integral feature of sentence countsci = |S|, and a group of

binary featuresscbk = δ(|S|) = k wherek ∈ [1, 6] is the number of sentence.

NP and Verb Coverage The decoder’s objective is to improve the chance of gen-

erating hypotheses that cover all NP and verbs of the original sentencee. These features

count the number of NPs and verbs that have been covered by thehypothesis, by the 1st

and 2nd simple sentences. Similarly, these features also count the number of missing NPs

and verbs.

S and O cross sentences These features count how many times S of the 1st simple

sentence is repeated as S of the 2nd simple sentence in a hypothesis. They also count the

number of times O of the 1st sentence is the S of 2nd sentence.

Readability This group of features computes statistics related to readability. It

includes Flesch, Gunning-Fog, SMOG, Flesch-Kincaid, automatic readability index, and

average all scores (Flesch, 1948; Gunning, 1968; McLaughlin, 1969; Kincaid et al., 1975).

Also, we compute the edit-distance of hypothesis against the original sentence, and the

average word per simple sentence.

6.6 Experiments and Analysis

6.6.1 Data

To enable the study of sentence simplification with our statistical models, we search for

parallel corpora, in which the sources are original English sentences and the target is its

simplification reference. For example, the source is “Lu is married to Lian Hsiang , who is

also a vajra master , and is referred as Grand Madam Lu”. The simplification reference

contains 3 simple sentences which are “Lu is married to Lian Hsiang”; “ Lian Hsiang is

also a vajra master”; “ Lu is referred as Grand Madam Lu”. To the best of our knowledge,

there is no such publicly available corpora under these conditions1.
1 We are aware of data sets from (Cohn and Lapata, 2008; Zhu et al., 2010), however, they are more suitable
in sentence compression task than in our task.
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Our first attempt is to collect data automatically from original English and Simple

English Wikipedia, based on the suggestions of Napoles and Dredze (2010). However,

we found that the collected corpus is unsuitable for our model. For example, consider the

original sentence “Hawking was the Lucasian Professor of Mathematics at the University

of Cambridge for thirty years, taking up the post in 1979 and retiring on 1 October 2009”.

The Simple Wikipedia reads “Hawking was a professor of mathematics at the University

of Cambridge (a position that Isaac Newton once had)” and “He retired on October 1st

2009”. The problems with this are that “(a position that Isaac Newton once had)” did not

appear in the original text, and the pronoun “He” requires our model to perform anaphora

resolution which is out of scope of this work.

We finally decided to collect a set of sentences for which we obtained one manual

simplification per sentence. The corpus contains 854 sentences, among which 25% sen-

tences are from the New York Times and 75% sentences are from Wikipedia. The average

sentence length is 30.5 words. We reserved 100 sentences forthe unseen test set and the

rest is for the development set and training data. The annotators were given instructions

that explained the task and defined sentence simplification with the aid of examples. They

were encouraged not to introduce new words and try to simplify by restructuring the origi-

nal sentence. They were asked to simplify while preserving all important information and

ensuring the simplification sentences remained grammatically correct2. Some examples

from our corpus are given below:

Original: “His name literally means Peach Taro ; as Taro is a common Japanese boy ’s

name , it is often translated as Peach Boy .”

Simplification: “His name literally means Peach Taro” ; “ Taro is a common Japanese boy

’s name” ; “ Taro is often translated as Peach Boy”

Original: “These rankings are likely to change thanks to one player , Nokia , which has

seen its market share shrink in the United States .”

Simplification: “These rankings are likely to change thanks to one player , Nokia” ; “ Nokia

2 Our corpus will be made publicly available for other researchers.
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has seen its market share shrink in the United States”

6.6.2 Evaluation methods

Evaluating sentence simplification is a difficult problem. One possible way to overcome

this is to use readability tests. There have been readability tests such as Flesch, Gunning-

Fog, SMOG, Flesch-Kincaid, etc. (Flesch, 1948; Gunning, 1968; McLaughlin, 1969; Kin-

caid et al., 1975). In this work, we will use Flesch-Kincaid grade level which can be

interpret as the number of years of education generally required to understand a text.

Furthermore, automatic evaluation of summaries has also been explored recently. The

work of Lin (2004a) on the ROUGE family metric is perhaps the best known study of

automatic summarization evaluation. Other methods have been proposed such as Pyramid

(Nenkova et al., 2007). Recently, Aluisio et al. (2010) proposed readability assessment for

sentence simplification.

Our models are optimized towardAveF10, which is the average F-score ofn-gram

concurrence between hypothesis and reference in whichn is from 2 to 10. BesidesAveF10,

we will report automatic evaluation scores on the unseen test set in Flesch-Kincaid grade

level, ROUGE-2 and ROUGE-4. When we evaluate on a test set, a score will be reported

as the average score per sentence.

6.6.3 Model behaviors

How well does our system learn from the labeled corpus? To answer this question we

investigate the interactions of model and decoder hyper parameters over the training data.

We performed controlled experiments onstack-size, K-best, C, and m-oracle parameters.

For each parameter, all other model and decoder values are fixed, and the only change

is with the parameter’s value of interest. Figure 6.6 illustrates these experiments with

parameters over the training data during 15 MIRA training iterations withAveF10 metric.

The weight vectorw is initialized randomly.

In Figure 6.6(a), we experimented with 5 different values from 100 to 500 hypotheses
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Figure 6.6: Performance of the sentence simplifier on training data over 15 iterations when

optimized towardAveF10 metric and under various conditions.
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per stack. The expected outcome is when we use a largerstack-sizethe decoder may

has more chance to find better hypotheses. However, a largerstack-sizewill obviously

cost more memory and run time is slower. Therefore, we want tofind a stack-sizethat

compromises conditions. These experiments show that with astack-sizeof 200, our model

performed reasonably well in comparison with 300 and 500. Astack-sizeof 100 is no

better than 200, while astack-sizeof 50 is much worse than 200.

In Figure 6.6(b), we experimented with 5 different values ofK-best list with K from

100 to 500. We observed a K-best list of 300 hypotheses seems to perform well compare

to other values. In terms of stability, the curve of 300-bestlist appears less fluctuation than

other curves over 15 iterations.

C is the hyper-parameter which is used in Equation 6.3 for weight updating in MIRA.

Figure 6.6(c) shows experiments with different constant C.If C is a large number, it means

our model prefers an aggressive weight updating scheme, otherwise, our model updates

weights conservatively. When C is 0.3 or 0.2 the performanceis worse than 0.1 or 0.07

and 0.04.

The last controlled experiments are shown in Figure 6.6(d),in which we test different

values ofm ranging from 1 to 5. These experiments show that using 2 oracle hypotheses

consistently leads to better performances in comparison with other values.

6.6.4 Performance on the unseen test set

After exploring different model configurations we trained the final model withstack-size

= 200; K-best = 300; C = 0.04; and m-oracle = 2.AveF10 score of the final system on the

training set is 50.69 which is about oneAveF10 point better than any system in Figure 6.6.

We use the final system to evaluate on the unseen test set. Also, we compare our system

with the rule-based system (henceforth H&S) proposed by Heilman and Smith (2010).3

3 We thank Michael Heilman for providing us his code. We could not reach the authors of (Zhu et al., 2010)
in order to obtain outputs. Kristian Woodsend kindly provided uspartial outputs of (Woodsend and Lapata,
2011), therefore we did not include their outputs in this section.
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Original Reference H&S Our system

9.6 8.2 8.3 7.9

Table 6.2: Flesch-Kincaid grade level of original, reference, H&S, and our proposed sim-

plification on the unseen test set.

We first compare our system with H&S in the Flesch-Kincaid grade level, which indi-

cates comprehension difficulty when reading an English text. The higher the number the

more difficult the text. Table 6.2 shows the original text requires a reader of grade level

9 or 10. Both H&S and us provided simplification candidates, which are easier to read

compared to the original text. Our model generated simpler hypotheses than the reference,

while H&S outputs were slightly more difficult to read than the reference.

System AveF10 ROUGE-2 ROUGE-4

H&S 51.0 82.2 72.3

Our system 55.5 82.4 72.9

Table 6.3: Results on the unseen test set withAveF10, ROUGE-2 and ROUGE-4 scores.

Our system outperforms the rule-based system proposed by Heilman and Smith (2010).

Next, we compare our system with H&S in ngram-based metrics such asAveF10,

ROUGE-2 and ROUGE-4 as shown in Table 6.3. Our results are better than H&S by 0.2

and 0.6 point in ROUGE-2 and ROUGE-4, respectively. More interestingly, our system

outperformed H&S by 4.5 points inAveF10, which is a metric considering both precision

and recall up to 10-gram. Over 100 sentences of the unseen test set, H&S outperforms us

in 43 sentences, but is worse than our system in 51 sentences.

Table 6.4 shows examples of our system on the unseen test set.We present examples

in cases where the proposed model works well and does not workwell. In the case of

negative examples, a reason that our model can not generate the correct hypothesis is the
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number of simple sentences per hypothesis. The majority of training examples has 2 or 3

simple sentences per hypothesis, and very few examples contain more than 3. As a result,

when the model is discriminatively trained it has a strong tendency to generate hypothesis

with 2 or 3 simple sentences.

Positive examples

O In 2011 , IBM gained worldwide attention for its artificial intelligence program

Watson , which was exhibited on Jeopardy against game show champions Ken

Jennings and Brad Rutter .

S Watson was exhibited on Jeopardy against game show champions Ken Jennings

and Brad Rutter .

In 2011 , IBM gained worldwide attention for its artificial intelligence program

Watson .

R In 2011 , IBM gained worldwide attention for its artificial intelligence program

Watson .

Watson was exhibited on Jeopardy against game show champions Ken Jennings

and Brad Rutter .

O He told Radiozurnal that he was halting the campaign for Christmas and would

restart it in the new year .

S He told Radiozurnal .

He was halting the campaign for Christmas .

He would restart it in the new year .

He told Radiozurnal .

R He was halting the campaign for Christmas .

He would restart it in the new year .

Negative examples

O He drives a 10-year-old Opel Corsa , but lives in a pleasant town house in the

sleepy capital, Maseru, with wireless Internet and a housekeeper who comes

twice a week .
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S He drives a 10-year-old Opel Corsa .

He lives in a pleasant town house in the sleepy capital, Maseru, with wireless

Internet and a housekeeper who .

He drives a 10-year-old Opel Corsa .

R He lives in a pleasant town house in the sleepy capital, Maseru, with wireless

Internet and a housekeeper .

a housekeeper comes twice a week .

O An elderly Georgian woman was scavenging for copper to sellas scrap when she

accidentally sliced through an underground cable and cut off Internet services to

all of neighbouring Armenia , it emerged on Wednesday .

S An elderly Georgian woman was scavenging for copper to sell.

scrap cut off Internet services to all of neighbouring Armenia .

An elderly Georgian woman was scavenging for copper to sell as scrap .

R she accidentally sliced through an underground cable .

she cut off Internet services to all of neighbouring Armenia.

it emerged on Wednesday .

Table 6.4: We show the original sentence (O), our simplification (S), and simplification

reference (R). Positive examples are cases when our simplifications closely match with the

reference. Meanwhile, negative examples show cases when our model can not produce

good simplifications.

6.7 Application to Machine Translation

Experiments reporting in previous sections demonstrate the effectiveness of the proposed

sentence simplification model on different evaluation metrics. However, it is not very clear
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if a machine translation system can benefit from sentence simplification. In this section,

we try to answer the following questions:

• Does manual simplification help the MT system to generate better translations?

• To what extend automatic simplification will be helpful for machine translation?

6.7.1 Experiment setup

To investigate the above questions we present experimentalresults on a English-German

translation system. The SMT engine is a Moses phrase-based system (Koehn et al., 2007)

which was built follow the guidelines of the 2011 machine translation workshop4. The

translation model was trained on 1.5M sentence pairs. The 5gram language model was

trained on 49M words of Europarl and News Commentary corpora.

We present a human evaluation designed to determine whethernative speakers prefer

manual simplification translation output. First, we draw 70sentences with the average

sentence length 31 from the news-2008, news-2009, and news-2009 test sets. We manually

simplify 70 sentences. Some examples from our manual simplification (MS) are given in

Table 6.6.

We use the baseline English-German to generate two sets of translation output. The

first set comes with the input as original source English sentences . The other set is gen-

erated by translating manual simplification sentences. Foreach sentence, we provide two

human annotators a set of translation reference (Ref), original translation (Orig), and man-

ual simplification translation (Man). The annotators are asked to indicate which of the two

system translations Orig or Man they prefer. Some comparison criteria we suggest for the

annotators to consider are

• Information: compare to the reference the Man is better thanthe Orig because it

contains more information.

• Grammaticality: the Orig is better than the Man because it ismore grammatically

correct.
4 http://www.statmt.org/wmt11/baseline.html
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• Readability: the Man is better because it is easier to read and comprehend.

6.7.2 Experimental results

Annotator #2

Man Orig sum(#1)

Annotator #1
Man 32 9 41

Orig 12 17 29

sum(#2) 44 26

Table 6.5: Confusion matrix from human evaluation for manual simplification translation

The aggregate results of our human evaluation are shown in the bottom row and right-

most column of Table 6.5. The inter-annotator reliability is 0.37 which indicates a fair

agreement between annotators. The annotators prefer manual simplification translation

in over 63% of the test sentences, while prefer the original in less than37% of the test

sentences. There are a few more off-diagonal points than onemight expect, but it is clear

that the two annotators are in agreement with respect to manual simplification translation

improvements.

Positive examples

Src but it is about a long term advantage , with a certain degree of indetermination

, because the team can be eliminated first of change , and in addition with this

action the players fulfill a sanction game and go to the secondcycle of cards ,

in which the suspension by card accumulation takes place with one less than in

the first cycle .

MS but it is about a long term advantage , with a certain degreeof indetermination .

because the team can be eliminated first of change .

and in addition with this action the players fulfill a sanction game .

the players go to the second cycle of cards .
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in which the suspension by card accumulation takes place with one less than in

the first cycle .

Orig aber , weil die mannschaft kann zuerst behoben werden , und aus̈erdem mit

dieser aktion , die akteure erfüllen eine sanktion spiel und werden in den

zweiten zyklus der karten , in dem die aussetzung von karte anhäufung mit

einer weniger als in der ersten runde .

aber es geht um eine langfristige vorteile , mit einem gewissen grad an indeter-

mination .

denn die mannschaft abgebaut werden kann erstens der klimawandel .

Man und aus̈erdem mit dieser aktion , die akteure erfüllen eine sanktion spiel .

die akteure auf den zweiten zyklus der karten .

in dem die aussetzung von karte anhäufung mit einer wenigerals in der ersten

runde .

Ref aber es handelt sich um einen langfristigen , bis zu einembestimmten grad

ungewissen vorteil , da das team irgendwann auch ausscheiden könnte ,

aus̈erdem erhalten die spieler mit dieser vorgehensweise eine sanktion und

gehen in den zweiten kartenzyklus über , in dem sie wegen kartenanhäufung

mit einer karte weniger als im ersten zyklus ausscheiden .

Src though berdych is charged in this case as well , he is stillwaiting for the verdict

in the first instance .

MS though berdych is charged in this case as well .

he is still waiting for the verdict in the first instance .

Orig wenn aufgeladen ist auch in diesem fall ist er immer nochdarauf warten , dass

das urteil in der ersten instanz .

Man wenn aufgeladen ist auch in diesem fall .

er ist noch immer darauf warten , dass das urteil in der ersteninstanz .

Ref berdych selbst ist in dieser sache zwar auch angeklagt , doch steht ihm zunächst

das erstinstanzliche urteil bevor .
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Negative examples

Src when the oil prices went down , around 1980 , the idea of exploiting marine

energy was put aside , but now the appeals by the environmentalists and the

new increases in oil prices have given impetus to the sector .

MS when the oil prices went down , around 1980 .

the idea of exploiting marine energy was put aside .

but now the appeals by the environmentalists and the new increases in oil prices

have given impetus to the sector .

Orig wenn die ölpreise ging , um 1980 , die vorstellung von der nutzung der energie

beiseite lassen , aber jetzt die appelle der umweltschützer und der neuen anstieg

der ölpreise haben impulse für den sektor .

wenn die ölpreise ging , um 1980 .

Man die idee der nutzung der energie beiseite .

aber jetzt die appelle der umweltschützer und der neuen anstieg der ölpreise

vorschub geleistet haben , in der sich der sektor .

Ref als der preis des öls um 1980 einbrach vergas man die ideeder meeresenergie

, jetzt aber drängen die umweltorganisationen und der gestiegene ölpreis auf

neue impulse in diesem sektor .

Src when a patient is admitted to the hospital , one of the firstthings done is to

check for the presence of mrsa , but hospitals are still vulnerable to infection .

MS when a patient is admitted to the hospital .

one of the first things done is to check for the presence of mrsa.

but hospitals are still vulnerable to infection .

Orig wenn ein patient ist , die an das krankenhaus , eines der ersten themen zu prüfen

, für die präsenz von mrsa , aber die krankenhäuser sind immer noch anfällig

für infektionen .

Man wenn ein patient ist , die an das krankenhaus .

eine der ersten dinge , die zu prüfen , für die präsenz von mrsa .
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aber die krankenhäuser sind immer noch anfällig für infektionen .

Ref bei ihrer einlieferung ins krankenhaus werden die patienten zwar auf mrsa un-

tersucht , eine infektion kann dennoch nicht immer vermieden werden .

Table 6.6: Manual simplification and original translation examples for English-German.

Table 6.6 shows examples of manual simplification translation. We present examples in

cases where the proposed model works and does not work well. We show the English orig-

inal source sentence (Src), manual simplification (MS), translation of the original English

(Orig), manual simplification translation (Man), and translation reference (Ref). Positive

examples are cases when our annotators agree that Man is better than Orig. Meanwhile,

negative examples show cases manual simplification does notprovide better translations

than original text.

Annotator #2

Man Orig sum(#1)

Annotator #1
Man 9 10 19

Orig 7 44 51

sum(#2) 16 54

Table 6.7: Confusion matrix from human evaluation for automatic simplification transla-

tion

We further investigate the question to see if automatic simplification will be helpful

for machine translation. In stead of translating manual simplification, we translation the

automatic simplification generated by our proposed sentence simplification. We repeat the

same human evaluation experiment as performed with manual simplification. The inter-

annotator reliability is 0.35 which indicates a fair agreement between annotators. The

annotators prefer original simplification translation in over80% of the test sentences, and

prefer the automatic simplification translation in less than 20% of the test sentences.
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6.8 Summary

In this chapter we proposed a novel method for sentence simplification based on log-linear

models. Our major contributions are the stack decoding algorithm, the discriminative

training algorithm, and the 177 feature functions within the model. We have presented in-

sight the analyses of our model in controlled settings to show the impact of different model

hyper parameters. We demonstrated that the proposed model outperforms a state-of-the-

art rule-based system on ROUGE-2, ROUGE-4, andAveF10 by 0.2, 0.6, and4.5 points,

respectively. Subjective translation evaluations show that 63% sentences withmanual

simplification translations are better than the original translation. Meanwhile, when ap-

plying automatic simplification translations20% sentences are better than the original

translation.
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Chapter 7

Conclusions

In this chapter we conclude the dissertation by summarizingthe thesis work and proposing

several directions for future research.

7.1 Summary

We develop various algorithms to statistically incorporate dependency structures into MT

components including the decoder, reordering models, confidence measure, and sentence

simplification. We achieve improved BLEU and TER scores, increased MT translation

quality prediction accuracy, and reduced the hardness of source sentences. We adopt the

phrase-based MT system as our baseline. With different resources and different problems

to solve, we first expand the baseline system in the followingways:

• Decoder: Given the source dependency tree we want to enforcethe cohesive decod-

ing strategy. We proposed four novel cohesive soft constraints namely exhaustive

interruption check, interruption count, exhaustive interruption count, and rich in-

terruption count. The cohesive-enhanced decoder performsstatistically significant

better than the standard phrase-based decoder on English-Spanish. Improvements

in between+0.4and+1.8BLEU points are also obtained on English-Iraqi, Arabic-
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English and Chinese-English systems.

• Reordering Models: To go beyond cohesive soft constraints,we investigate efficient

algorithms for learning and decoding with source-side dependency tree reordering

models. The phrase movements can be viewed as the movement ofthe subtree

inside or outside a source subtree when the decoder is leaving from the previous

source state to the current source state. The notions of moving inside andoutside

a subtree can be interpreted as tracking facts about the subtree-to-subtree transi-

tions observed in the source side of word-aligned training data. With extra guidance

on subtree movements, the source-tree reordering models help the decoder make

smarter distortion decisions. We observe improvements of+0.8 BLEU and -1.4

TER on English-Spanish and+0.8BLEU and-2.3TER on English-Iraqi.

For confidence measure, we proposedGoodness, a method to predict confidence

scores for machine translated words and sentences based on afeature-rich classifier us-

ing structure features. We develop three novel feature setsto capture different aspects of

translation quality which have never been considered during the decoding time, including:

• Source and target dependency structure features that enable the classifier to utilize

deep structures to predict translation errors.

• Source POS and phrase features which capture the surface source word context.

• Alignment context features that use both source and target word collocation for judg-

ing translation quality.

Experimental results show that by combining the dependencystructure, source side

information, and alignment context features with word posterior probability and target

POS context the MT error prediction accuracy is increased from 69.1 to 72.2 in F-score.

Our framework is able to predict error types namely insertion, substitution and shift. The

Pearson correlation with human judgment increases from0.52 to 0.6. Furthermore, we

show thatGoodness can help the MT system to select better translations and as a result
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improvements between0.4 and0.9 TER reduction are obtained. We develop a visualiza-

tion prototype using different font sizes and colors to catch the attention of post-editors

whenever translation errors are likely to appear.

Finally, we developTriS, a statistical sentence simplification system with log-linear

models, to simplify source sentence before translating them. In contrast to state-of-the-art

methods that drive sentence simplification process by hand-written linguistic rules, our

method used a margin-based discriminative learning algorithm operates on a feature set.

We decompose the original dependency tree into context dependency structures and in-

corporate them as feature functions in the proposed model. The other feature functions

are defined on statistics of surface form as well as syntacticof the sentences. A stack de-

coding algorithm is developed to allow us to efficiently generate and search simplification

hypotheses. The simplified text produced by the proposed system reduces1.7 Flesch-

Kincaid education level when compared with the original text. We show that a compar-

ison of a state-of-the-art rule-based system to the proposed system demonstrates an im-

provement of0.2, 0.6, and4.5points in ROUGE-2, ROUGE-4, andAveF10, respectively.

Subjective translation evaluations show that63% sentences withmanual simplification

translations are better than the original translation. Meanwhile, when applyingautomatic

simplification translations20% sentences are better than the original translation.

7.2 Conclusion

Dependency structures are important linguistic resourcesthat bring long distance depen-

dency between words to local and represent the semantic relation between words. In this

thesis work, we mainly focus on modeling and incorporating dependency structures into

statistical machine translation systems. We draw the following conclusions from our thesis

work:

1. Cohesive soft constraints can benefit machine translations. This claim is supported

by experiments that cover a wide range of training corpus sizes, ranging from 500K

sentence pairs up to 10 million sentence pairs. Furthermore, the effectiveness of
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our proposed methods was shown when we applied them to systems using a 2.7

billion word 5-gram LM, different reordering models and dependency parsers. All

five cohesive constraints give positive results. We observed a consistent pattern

indicating that the observed improvements are stable across test sets.

2. Effectively exploiting dependency subtree movements and cohesive constraints, source-

tree reordering models substantially improve translationquality. These movements

and constraints enable us to efficiently capture the subtree-to-subtree transitions ob-

served both in the source of word-aligned training data and in decoding time. Pro-

viding more features that are conditioned on different information, such as include

inside/outside subtree movements and cohesive constraints, benefit the system per-

formance Moreover, further improvement can be obtained by enabling MERT to

choose the most prominent ones from a larger basis.

3. The proposed confidence estimation method is capable to predict the quality of ma-

chine translated words and sentences based on a feature-rich classifier using de-

pendency structures and context features. It is also able topredict translation error

types namely insertion, substitution, and shift. The proposed confidence estimation

method correlates well with the human judgment. The core MT engine can benefit

from the proposed method in the n-best list reranking task.

4. For sentence simplification, a log-linear model equippedwith a stack decoding al-

gorithm, a discriminative training algorithm, and 177 dependency structure and syn-

tactic feature functions is capable to produce better simplification candidates than a

rule-based system. When applying to machine translation, subjective evaluation re-

sults suggest that machine translation quality is benefit from manual and automatic

simplifications.

7.3 Discussion and Future Research Directions

Although we have developed a series of approaches to statistically model and incorporate

dependency structures into machine translation systems, this problem has not been fully
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solved. There remain many intriguing research problems which can be further explored.

Here we propose some possible directions for future research:

7.3.1 Improve Reordering Models

The cohesive soft constraints and the source-side dependency tree reordering model are

implemented around the interruption check in order to encourage finishing a subtree before

translating something else. It is very effective for phrase-based decoding which searches

over an entire space within the distortion limit in order to advance a hypothesis. However,

it is not straightforward to apply the models and constraints to a bottom-up chart-based

decoding algorithm since the hierarchical model already conducts principled reordering

search with synchronous rules. One may combine our models with the hierarchical phrase

reordering model (Galley and Manning, 2008) by extending the parameterization of our

models to explicitly represent source-side subtree movements during the decoding time.

Moreover, one can take advantage from our analysis and design novel dependency con-

straints. An example of this line is the work done by Gao et al.(2011). We believe such

extensions will generalize more subtle reordering events on source dependency trees.

7.3.2 Improve Confidence Estimation

Confidence estimation is emerging as a vital component for the success of commercialized

machine translation when there is no availability of the reference translations. Our work

onGoodness can be expanded in several directions. First, one can apply confidence es-

timation to perform a second-pass constraint decoding. After the first pass decoding, our

confidence estimation model can label which word is likely tobe correctly translated. The

second-pass decoding utilizes the confidence information to constrain the search space and

hopefully can find a better hypothesis than in the first pass. This idea is very similar to the

multi-pass decoding strategy employed by speech recognition engines or the coarse-to-fine

strategy in parsing.

Another idea is to test different visualization strategiesto see if it truly benefits the cus-
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tomers. One may perform a user study on our visualization prototype to see if it increases

the productivity of post-editors. In addition, our work based on a large manually collected

training data which is system-dependent and not always available in other language pairs.

One can work on the problem of building the confidence estimation in a cheaper way.

There are some work following in these directions recently for example Popović et al.

(2011) and Specia et al. (2011).

7.3.3 Improve Automatic Sentence Simplification

Our work shares the same line of research with Klebanov et al.(2004); Heilman and Smith

(2010) in which we all focus on sentence-level factual simplification. However, a major

focus of our work is on log-linear models which offer a new perspective for sentence sim-

plification on decoding, training, and modeling problems. To contrast, consider rule-based

systems Klebanov et al. (2004); Daelemans et al. (2004); Siddharthan (2006); Heilman

and Smith (2010), in which sentence simplification processes are driven by hand-written

linguistic rules. The linguistic rules represent prior information about how each word and

phrase can be restructured. In our model, each linguistic rule is encoded as a feature func-

tion and we allow the model to learn the optimized feature weights based on the nature of

training data. A potential issue is the proposed model mightbe susceptible to the sparse-

ness issue. We alleviated this issue by using structure level and count feature functions

which are lexically independent.

There are some directions to expand in this area. Our model can generate repeatedly

noun phrases repeatedly in multiple simple sentences, one may augment the proposed

model to cope with anaphora resolution. Lexical simplification is another direction since

we focus on structure simplification. To address the data sparsity issue, one may use

crowd-sourcing such as Amazon Mechanical Turk to collect more training data.

Related to application for machine translation, we think the most important issue is

to know which sentences should be simplified before translating them. An approach one

may try it to build a high-precision binary classifier to classify a source sentence with

labels of simplify/not-simplify. We evaluated the impact of sentence simplification on ma-
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chine translation using subjective human evaluation. However, it is not necessary the best

suitable way. One may consider an evaluation strategy whichis more information-oriented

and efficient-oriented. For example, employ a questionnaire on the target translation out-

put and based on answers, one can measure the time and the number of correct answers.

We believe such extensions will bring more value of the sentence simplification to machine

translation.
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Brooke Cowan, Ivona Kuc̆erová, and Michael Collins. A discriminative model for tree-

to-tree translation. InProceedings of the 2006 Conference on Empirical Methods in

Natural Language Processing, pages 232–241, Sydney, Australia, July 2006. Associa-

tion for Computational Linguistics.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multiclass

problems.Journal of Machine Learning Research, 3:951–991, 2003. ISSN 1532-4435.
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