Dependency Structures
for
Statistical Machine Translation

Nguyen Bach

CMU-LTI-12-001

Language Technologies Institute
School of Computer Science
Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:

Alex Waibel
Stephan Vogel
Ying Zhang
Colin Cherry

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
In Language and Information Technologies

© 2012, Nguyen Bach






Abstract

Dependency structures represent a sentence as a set ofldepgmelations. Normally

the dependency structures from a tree connect all the wardssentence. One of the
most defining characters of dependency structures is thigydbibring long distance de-

pendency between words to local dependency structuresth@nthe main attraction of

dependency structures has been its close correspondemaatong. This thesis focuses
on integrating dependency structures into machine traoslaomponents including de-
coder algorithm, reordering models, confidence measudesantence simplification.

First, we develop four novetohesive soft constraintsor a phrase-based decoder
namely exhaustive interruption check, interruption co@xtaustive interruption count,
and rich interruption constraints. To ensure the robustaesl effectiveness of the pro-
posed constraints, we conduct experiments on four diffderguage pairs, including
English{Iraqi, Spanish and {Arabic, Chines¢-English. The improvements are in be-
tween0.4 and 1.8 BLEU points. These experiments also cover a wide range ofitigh
corpus sizes, ranging from 500K sentence pairs up to 10amiientence pairs. Further-
more, to show the effectiveness of our proposed methods plg #Eem to systems using
a 2.7 billion words 5-gram LM, different reordering modefsladependency parsers.

Second, to go beyond cohesive soft constraints, we inagstigfficient algorithms
for learning and decoding witeource-side dependency tree reordering modelsWe
propose a novel source-tree reordering model that explejpendency subtrdaside/
outsidemovements and cohesive soft constraints. These movemmehteastraints enable
us to efficiently capture the subtree-to-subtree transtiabserved both in the source of
word-aligned training data and in the decoding time. Represg subtree movements
as features allows MERT to train the corresponding weightsHese features relative to
others in the model. Moreover, experimental results oniBhgliraqi, Spanish show that
we obtain improvements0.8 BLEU and-1.4 TER on English-Spanish aneD.8 BLEU
and-2.3TER on English-Iraqi.

Third, we developGoodnessa novel framework to predict word and sentence level



of machine translation confidencewith dependency structures. The framework allows
MT systems to inform users which words are likely translatedectly and how confident

it is about the whole sentence. Experimental results shavttie MT error prediction
accuracy is increased frof9.1to 72.2in F-score. The Pearson correlation between the
proposed confidence measure and the human-targeted tiamsidit rate (HTER) i9.6.
Improvements betwedh4and0.9 TER reduction are obtained with the n-best list rerank-
ing task using the proposed confidence measure. Also, wengrasvisualization proto-
type of MT errors at the word and sentence levels with theatibveto improve post-editor
productivity.

Finally, inspired by study in summarization we propdses, a novel framework to
simplify source sentences before translating them. Wellastatistical sentence simpli-
fication system with log-linear models. In contrast to state-ofdhtemethods that drive
sentence simplification process by hand-written lingaisties, our method used a margin-
based discriminative learning algorithm operates on aifeaet. The feature set is defined
on statistics of dependency structures as well as surfaoe dad syntactic structures of
sentences. A stack decoding algorithm is developed in dadefficiently generate and
search simplification hypotheses. Experimental resultsvghat the simplified text pro-
duced by the proposed system redut&$-lesch-Kincaid grade level when compared with
the original text. We show that a comparison of a state-efétt rule-based system to the
proposed system demonstrates an improveme@t2)0.6, and4.5 points in ROUGE-2,
ROUGE-4, anddveF}q, respectively. We present subjective evaluations of thpkiied
translation quality for an English-German MT system.
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Chapter 1

Introduction

1.1 Motivation

Statistical Machine Translation (SMT) have been evolviagidly during the last two
decades of research and development. SMT paradigms havgeshfeom word-based
translation (Brown et al., 1993) to phrase-based trasigoehn et al., 2003) and syntax-
based translation (Galley et al., 2004; Quirk et al., 2005;dt al., 2006; Chiang, 2005;
Shen et al., 2008). In addition to standalone machine @#nsl systems which are al-
ready being used in everyday life, SMT also plays a vital nolether applications such as
speech translation, cross-lingual information retrigsataction, distillation systems and
virtual world communication (Bach et al., 2007; Shima et 2008; Sudo et al., 2004;
Zhang and Bach, 2009).

Considerable improvements have been made and high-qoaithine translation can
be obtained for language pairs, such as Spanish-Englisk@mth-English, which have
overlaps in linguistic properties and phenomena such asbrdary, cognate, and gram-
mar . However, we still see unsatisfactory translationsmtinanslating from languages
which have complicated structures such as from German,eShjrand Japanese to En-
glish, or from English to rich morphological languages sastArabic, Farsi, and Pashto.
According to Vilar et al. (2006), incorrect translationscac mainly due to the following

1



reasons:

e \Word order: Word order errors occur when the translated svard in an incorrect

order. This problem produces grammatically ill-formedtsenes that might be hard
to understand or even misleading.

e Missing words: Content words are omitted during the traisigprocess and as a
result machine translation output will lose key informatio

e Incorrect words: Single words can have different sensesrliipg on the context
in which they are used. Those words are often translatedusinncorrect word
sense.

Others
2%

extra words long range

9% 16%
Word Order

local range
6%

content words
29% 29%

incorrect form
7%

Incorrect
words

sense

Missing words

filler words
2%

Figure 1.1: Error analysis for 311 sentences of the GALE Ehiese-English evalua-
tion.

To get a better view of these types of errors, we performedriaor analysis on the
translation output of our system used for the GALE P3.5 GfeAenglish evaluation. Our
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error classification criteria is trying to minimize the nuenlof human edits to correct ma-
chine translation output such that it matches to the orlgimeaning. Figure 1.1 shows
that 21.6% of the errors come from the word order category,%®IXrom missing words,
45.3% from incorrect words and 1.4% from other errors. Thialgsis suggest that cor-
recting word order may be helpful to alleviate the other ésslbecause it helps the target
language model to make better predictions.

Source sentence| 7EEXARSZEN AR H 2 B MIME B 1 FE AL T — IR AR KB XS

B KHVERE -
Machine translaj lenovo to achieve change , liu chuanzhi also completed amisk
tion output vestors from entrepreneurs to change .

Reference trans- when lenovo was carrying out changes, liu chuanzhi alsoggtin
lation his role from an entrepreneur to a venture investor .

Table 1.1: Example of errors

In addition, state-of-the-art SMT systems have made saamfiprogress towards pro-
ducing user-acceptable translation output. The examplalre 1.1 contains a Chinese
source sentence, a machine translation output and an Emgfexence. Without transla-
tion references, there is still no efficient way for MT sysgeiminform users which words
are likely translated correctly and how confident it is alitbetwhole sentence. Key words
and phrases, such akefhovd, “liu chuanzhi and “entrepreneur are correctly trans-
lated, however, there are incorrect words for exampnturé-“ risk” and "carries out-
“to achievé. Also incorrect word forms can be seen withritrepreneul-* entrepreneurs
and ‘investors-“ investors.

Furthermore, complicated sentences impose difficultiesrémslation. In the NIST
evaluation, translation systems typically have to deahw#ntences with average length
ranging from 27 to 36 words varying on different test setshesv in Table 1.2. There
are cases when the test sentence has up to 268 words. Sooldwer NLP tasks, such as

3



parsing and semantic role labeling, the source sentengéléas a lot of impact on SMT
performance. Translating long sentences is often harder short sentences because of
several reasons. First, the hypothesis search space fpstniences is much larger than
short sentences, and as a result, good translations arerharceach. Second, it takes
more time to translate long sentences. Third, long sensewiten contain complex syntax
and long range dependency structures, therefore, it isasyt ®r translation models to
capture these phenomena.

Testsets Average Length Maximum length

mt02 29 81
mt03 28.42 86
mt04 31.76 111
mt05 31.51 101
mt06 27.68 205
mt08-nw 31.92 150
mt08-wb 36.22 268

Table 1.2: Sentence length statistics on NIST MT Arabicsets

In many translation applications, such as speech-to-sgemuslation, the fluency may
not be very important. For example, in speech-to-speectslaion when the user says
"well well well my name you know is is Johnt’'is almost acceptable if the machine can
output to the target language keywotrdsy name John” On the other hand, complicated
sentences impose difficulties not only on translation bsi @n reading comprehension.
For instance, a person in 5th grade can comprehend a comicdasdy but will struggle
to understand New York Times articles which require at |42¢h grade average reading
level (Flesch, 1981).

Dependency structures can be used to tackle these probl2ependency structures
represent sentence as a set of dependency relations viaddgwy grammar, a type of
grammar formalism. Normally the dependency relations feotmree connect all the words

4



drinkable water drinkable

partmod partmod/
contaminated contaminated
neV ney
not not
advmod advmod advmod advmod
advmod advmod
as long as as long as
(a) Long distance dependency (b) Semantic relations

Figure 1.2: Example of long distance dependency and sec@aatdition between words
properties for sentencevater as long as not contaminated is drinkable

in a sentence. Dependency structures have been used ingemantic structure the-
ories, for example in theories of semantic relations/d#sets roles (arguments have de-
fined semantic relations to the head/predicate) or in theigaee calculus (arguments de-
pend on the predicate).

One of the most appealing characteristics of dependenagtstes is the ability to rep-
resent long distance dependency between words with lacatstes. Figure 1.2(a) shows
the distance between wordwater’ and “is” in the surface form is 5 words, however, in
dependency structure it becomes local. The other maincttraof traditional depen-
dency structures has been its close correspondence tomgedfigure 1.2(b) shows the
relations between wordsater’ and “is” is a subject relation whilei$” and “drinkabl€e’
is a predicate relation. The adoption of dependency strestuould facilitate the machine
translation system to reveal deep structures to be leaotedddeling translation process.

A dependency-based approach to the problem of word and eoheasdering miti-
gates the need for long distance relations which become ilmckependency tree struc-
tures. This property is attractive when machine transhatieeds to deal with languages
with very different word orders, such as between subjedi-abject (SVO) and subject-

5



object-verb (SOV) languages; long distance reorderingines one of the key points.
Dependency structures directly target lexical items which out to be simpler in form
than phrase-structure trees since there are no constitiets. Dependencies are usually
meaningful - i.e. they usually carry semantic relations arelmore abstract than surface
order. Moreover, dependency relations between wordsttjinemdel the semantic struc-
ture of a sentence. As such, dependency trees are a degir@bol@odel for the process of
preserving semantic structures from source to target Egguia translation. Dependency
structures have been shown to be a promising direction f@raecomponents of SMT
such as word alignment (Ma et al., 2008), translation moghen et al., 2009; Xu et al.,
2009; Carreras and Collins, 2009; Mi and Liu, 2010) and laggumodels (Zhang, 2009;
Shen et al., 2009).

1.2 Thesis Statement

This thesis work provides statistical models that incoap®idependency structures into
MT systems. Source-side dependency structures are maaelamhesive soft constraints
in a beam-search phrase-based decoder. A source-sided@@ggriree reordering is pro-
posed to exploits dependency subtree movements and datstrBhese movements and
constraints enable SMT models to efficiently capture thersekto-subtree transitions
observed both in the source of word-aligned training dathianlecoding time. When in-
tegrated into a machine translation system, both cohesiteanstraints and source-side
dependency tree reordering models clearly improve thslation quality. In terms of con-
fidence measure, this thesis provides a novel method toghnedrd-level and sentence-
level MT errors with dependency structures features. Thpgsed confidence scores not
only can help MT systems to select better translations lsot@dn be visualized to improve
usability. Finally, a novel statistical sentence simpéifion framework is proposed to sim-
plify the source sentences before translating them. Thraéwork reduces the education
level required to understand a text.



1.3 Thesis Summary

We develop various algorithms to statistically incorperdépendency structures into MT
components including the decoder, reordering models, demfe measure, and sentence
simplification. We achieve improved BLEU and TER scoresreased MT translation
quality prediction accuracy, and reduced the hardnesswtesentences. We adopt the
phrase-based MT system as our baseline. With differentireses and different problems
to solve, we first expand the baseline system in the followiags:

e Decoder: Given the source dependency tree we want to ertfega@mhesive decod-
ing strategy. We proposed four novel cohesive soft comggaiamely exhaustive
interruption check, interruption count, exhaustive iniption count, and rich in-
terruption count. The cohesive-enhanced decoder perfstatistically significant
better than the standard phrase-based decoder on EnglistisB. Improvements
in betweent+0.4and+1.8 BLEU points are also obtained on English-Iraqi, Arabic-
English, and Chinese-English systems.

e Reordering Models: To go beyond cohesive soft constraivesnvestigate efficient
algorithms for learning and decoding with source-side depacy tree reordering
models. The phrase movements can be viewed as the movemtrg etibtree
inside or outside a source subtree when the decoder is leaving from the previou
source state to the current source state. The notions ofngovkide andoutside
a subtree can be interpreted as tracking facts about theestiioi-subtree transi-
tions observed in the source side of word-aligned trainatg dWith extra guidance
on subtree movements, the source-tree reordering modlsghedecoder make
smarter distortion decisions. We observe improvements0o8 BLEU and-1.4
TER on English-Spanish ant).8 BLEU and-2.3 TER on English-Iraqi.

For confidence measure, we proposedodness, a method to predict confidence
scores for machine translated words and sentences baseteatuee-rich classifier us-
ing structure features. We develop three novel featuretsetapture different aspects of
translation quality which have never been considered duha decoding time, including:
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e Source and target dependency structure features thateethabtlassifier to utilize
deep structures to predict translation errors.

e Source POS and phrase features which capture the surfawe seord context.

e Alignment context features that use both source and target @ollocation for judg-
ing translation quality.

Experimental results show that by combining the dependstrogture, source side
information, and alignment context features with word past probability and target
POS context the MT error prediction accuracy is increasewoh$9.1to 72.2in F-score.
Our framework is able to predict error types, namely insartsubstitution and shift. The
Pearson correlation with human judgment increases @ds@to 0.6. Furthermore, we
show thatzoodness can help the MT system to select better translations, and esudt,
improvements betweel4 and0.9 TER reduction are obtained. We develop a visualiza-
tion prototype using different font sizes and colors to kdte attention of post-editors
whenever translation errors are likely to appear.

Finally, we develogl'riS, a statistical sentence simplification system with logdin
models, to simplify source sentence before translatingithe contrast to state-of-the-art
methods that drive sentence simplification process by maitten linguistic rules, our
method used a margin-based discriminative learning algarthat operates on a feature
set. We decompose the original dependency tree into codégdndency structures and
incorporate them as feature functions in the proposed mddha other feature functions
are defined on statistics of the surface form as well as th&asija structures of sen-
tences. A stack decoding algorithm is developed to allowousfficiently generate and
search simplification hypotheses. The simplified text poediby the proposed system re-
ducesl.7 Flesch-Kincaid education level when compared with theinaktext. We show
that a comparison of a state-of-the-art rule-based systahetproposed system demon-
strates an improvement 6f2, 0.6, and4.5 points in ROUGE-2, ROUGE-4, andlve Fi,
respectively. Subjective translation evaluations shoat @#3% sentences witimanual
simplification translations are better than the originahglation. Meanwhile, when ap-
plying automatic simplification translation20% sentences are better than the original
translation.



1.4 Thesis Contribution

This thesis work advances the research on machine tramslatthe following ways:

e We designed a set of four novel cohesive soft constraintstwéinaracterize vio-
lations differently and allow penalties to persist as losg/@lations remain unre-
solved (Bach et al., 2009b).

e We developed a source-side dependency tree reorderingl mitleinside and
outside subtree movements that provide more structure evidencthédecoder
to arrange target words in better orders (Bach et al., 2009a)

e The effectiveness robustness of the above models havelmsdieg in multiple lan-
guage pairs and different scales. We successfully appljréneework in English-
Iragi, English-Spanish, Arabic-English, and Chinesellshg These experiments
also cover a wide range of training corpus sizes, ranging f600 thousand sen-
tence pairs up to 10 million sentence pairs. Furthermom effectiveness of our
proposed models was shown when we applied them to systents aid.7 billion
word 5-gram LM, different reordering models and dependgrargers (Bach et al.,
2009a).

e We developed-oodness, a method for measuring machine translation confidence
with source-target dependency structure features. Ourades$ able to predict error
types namely insertion, substitution and shift. Based artiethod, the MT error
prediction accuracy is increased fr@f.1to 72.2in F-score. We show that using
Goodness for reranking n-best lists improves the translation gyalfurthermore,
we propose a method to visualize translation errors usin§agnce scores in order
to improve the translation usability (Bach et al., 2011b).

e We developed'riS, a statistical sentence simplifier with log-linear modetsi a
margin-based discriminative training. This frameworloai MT systems to per-
form factual-based simplification for source sentencesredfanslating themil’riS
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successfully reduces the education level required to uadext and improves the
ROUGE score over a strong baseline simplification systerol{gal., 2011a).

1.5 Thesis Structure

The rest of this thesis is structured as following:

In Chapter 2, we review the literature on machine transta@gspecially using depen-
dency structures in MT.

In Chapter 3, we introduce cohesive soft constraints anddstrate performance of
translation systems with a cohesive-enhanced decodenguiagye pairs.

In Chapter 4, we present source-side dependency tree rewyaeodels with subtree
movements and constraints. This reordering model, cordbivith cohesive soft con-
straints in the decoder, demonstrates improvement on madttzsinslation quality.

In Chapter 5, we focus on the confidence estimation problempkpose&-oodness,
a method for measuring machine translation confidence. \& slow machine transla-
tion systems can benefit frooodness through n-best list reranking and visualization
prototype.

In Chapter 6, we descriliériS, a statistical sentence simplifier with log-linear models
and margin-based discriminative training. We evaluatés on a simplification task and
a subjective machine translation evaluation.

Finally we conclude this thesis work with some conclusioms discussions.
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Chapter 2
Literature Review

This chapter gives the overview of SMT, reviews conceptsepiethdency grammar, pars-
ing and its applications to other fields and finally analya@sent work of using depen-
dency structures in SMT. Section 2.1 gives a representatimeey of SMT approaches,
including phrase-based and syntax-based methods. Secfareviews the concepts of
dependency grammar, parsing and applications which foarb#sis of our work. Sec-
tion 2.3 will analyze recent work in machine translationngsdependency structures.
These include hierarchical dependency translation andsred phrase-based decoding.
This chapter also serves as background material for theofdkis thesis on how SMT
can be improved with cohesive soft constraints, source-d&pendency tree reordering
models, confidence scores, and sentence simplification.

2.1 Statistical Machine Translation

Statistical machine translation systems are based on thinear model which tries to
provide a parameterized form of the probability of trarisias sentencé;’ to ¢!, subject
to

é{ = argmax P(el|f{) (2.2)
{ef}
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P(el|f{) can be modeled as a log-linear model with componkpts) and scaling factors
Am:

é{ = argmax P(el|f{) (2.2)
{ef}
M

= argmax exp[z Al (€1, f7)]
{el} 1

This model can be derived from a word-aligned bitext. Theestavo ways to learn
a word alignment matrix, namely 1) a generative approackdas the well-known so-
called IBM word alignment models (Brown et al., 1993) withppdar implementations
such as GIZA++ (Och and Ney, 2003), MGIZA and PGIZA (Gao andélp2008); 2)
a discriminative approach based on recent work of Liang .e28l06b); Blunsom and
Cohn (2006); Niehues and Vogel (2008). Componénté) are feature functions which
can be learnt from phrase pairs or synchronous grammarsedver, scaling factors,,
are trained to directly optimize automatic evaluation mestlike BLEU (Papineni et al.,
2002), TER (Snover et al., 2006) and METEOR (Agarwal and €a2008) using discrim-
inative training algorithms such as minimum error ratenireg (MERT), margin-infused
relax algorithm (MIRA), and pairwise ranking optimizati@RO) (Och, 2003; Watanabe
et al., 2007; Hopkins and May, 2011).

2.1.1 Phrase-based Machine Translation

Phrase-based machine translation (PBMT) is driven by asphteanslation model, which
relates phrases (contiguous segments of words) in thestmphrases in the target (Och
and Ney, 2004). A generative story of PBMT systems is

1) segment source sentence into phrases;

2) translate each phrase based on phrase tables;

3) permute translated phrases into their final order.
Phrases are extracted from a word alignment matrix (Koehal.e2003; Vogel, 2005).
DeNero and Klein (2008) prove that finding an optimal phrdggeent over the combi-
natorial space of bijective phrase alignments is an NP-pastllem. A common feature

12



set in a PBMT system (Koehn et al., 2007) includes languagaetmarobability P(e!),
reordering model cost, phrase translation probabifity;|e!), reverse phrase translation
probability P(el|f{), lexical weighting in both directions, phrase penalty, anénown
word penalty.

In PBMT, theargmaz of Equation 2.2 is the search problem that we have to maximize
over all possible! and over all possible phrase segmentations. Itis infeatil@numerate
all e, In fact, if one allows unrestricted changes in word orderirdutranslation, that
alone is sufficient to show it to be NP complete, by analogyht Traveling Salesman
Problem (Knight, 1999). The search in phrase-based mattainglation is based on beam
search with heuristic scoring functions. It is a kind4f search even though there is no
guarantee that scoring functions are admissible.

A beam search phrase-based decoder (Vogel, 2003; Koehn 20@r) uses a two-
stage process that first builds a translation lattice and Hearches for the best path
through the lattice. The translation lattice is built byngsall available translation pairs
from the translation models for the given source sentendeireserting them into a lat-
tice. These translation pairs consist of words or phraseheisource side that cover a
part of the source sentence. The decoder inserts an addigdge for each phrase pair
and attaches the target side of the translation pair andl&t@ons scores to the edge. The
translation lattice will now contain a large number of pbtspaths that cover each source
word exactly once (a combination of partial translationgofds or phrases). These trans-
lation hypotheses will greatly vary in quality and the demogises the different knowledge
sources and scores to find the best path possible transhatpmihesis. This step also al-
lows for limited reordering within the found translationgotheses. To guide the search,
each state in the translation lattice is associated withctvets which are current and future
translation costs. The future cost is an estimation fordlieting the remaining words in
the source sentence. The current cost is the total cost aépsthat have been translated
so far in the current partial hypothesis, that is the sum aifufiees’ costs.

Despite the importance of word ordering, the popular phlesed translation paradigm
(Koehn et al., 2003) devotes surprisingly little modeliragacity to the issue. A very sim-
ple reordering model is to base on the cost for word movemelyttbe distance in the
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source sentence between the previous and the current wgoldrase during the trans-
lation process. More recently, data-driven models, whighdition the probability of
phrase-to-phrase transitions on the words involved, haee proposed to address this is-
sue (Tillman, 2004; Koehn et al., 2005; Al-Onaizan and Papiirl2006; Kuhn et al., 2006;
Galley and Manning, 2008). Alternatively, one can emplogtay in the modeling of
movement. By viewing language in terms of its hierarchit@iure, one can more easily
expose regularities in the sorts of movement that occunduranslation. Each of these
approaches requires a parser-like decoder and represeefsagure from phrase-based
decoding.

Phrasal decoding can be augmented easily, either by sigpaetprocessing or through
search-space constraints. Pre-processing approacisesipaisource sentence and use the
tree to apply rules which re-order the source into a moreetdige structure before the
translation begins. These rules can be learned (Xia and ki;2004; Rottmann and Vo-
gel, 2007; Tromble and Eisner, 2009) or designed manualli(G et al., 2005; Wang
et al., 2007; Xu et al., 2009). The pre-processing approactefits from its simplicity
and modularity, but it suffers from providing at most a orestoguess at syntactic move-
ment. Search-space constraints limit the phrasal decttarislation search using syn-
tactic intuitions. Zens et al. (2004) demonstrated how tmiporate formally syntactic
binary-bracketing constraints into phrase-based degodRecently, it has been shown
that syntactic cohesion, the notion that syntactic phraséise source sentence tend to
remain contiguous in the target (Fox, 2002), can be incaedrinto phrasal decoding as
well, by following the simple intuition that any source std# that has begun translation,
must be completed before translating another part of the(ttherry, 2008; Yamamoto
et al., 2008; Chang et al., 2009).

2.1.2 Syntax-based Machine Translation

The idea of modeling syntactic information in machine ttatign is an old idea. A syn-
tactic translation framework has been proposed by YngvBgL@&ho viewed translation
as a 3-stage process namely
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1) analyze source sentence as phrase structure represesitat

2) transfer them into equivalent target phrase structures;

3) apply target grammar rules to generate output translatio
The research community observes strong improvements fyataxs-based machine trans-
lation systems (SBMT) in recent years. The break-through@scombination of syntax
with statistics and very large training data, along with@dyonous grammar formalisms.

Synchronous grammar formalisms often start from phrasetstre grammars which
are based on phrase-structure rules, for example-NPET JJ NN. The idea of phrase
structure comes from the observation that words are growtédncreasing hierarchical
orders in trees and labeled with phrase labels such as vesbeVP), noun phrase (NP),
prepositional phrase (PP) and sentence (S). Leaf hodesoarealy labeled by part-of-
speech tags. The Chomsky Hierarchy (Chomsky, 1956) candxktosclassify phrase-
structure grammars according to the form of their produnstio

The first class of SBMT tries to explicitly model the tranglat process via syn-
chronous phrase-structure grammars (SPSG) which can Wedias a string-to-tree ap-
proach. SPSGs create two trees at the same time, one of ttoe semtence and one of the
target sentence of a machine translation application. ¥amele, a French noun phrase
un chat Siamois blanwith English translatiom white Siamese catill have synchronous
rules as

NP — DET) NNy NN3 JJy | DET, JJy NN3 NN,
NP — un chat Siamoig J; | aJJ; Siamese cat
NP — un chat Siamois blanca white Siamese cat

Each rule will associate with a set of features and typidaklyude features from PBMT.
A translation hypothesis is scored as a product of all deamaules associated with lan-
guage models. Wu (1997) proposes bilingual bracketing gramwvhich uses only binary
rules and works well in many cases of word alignments and dsw/ord reordering con-
straints in decoding algorithms. Chiang (2005, 2007) prisskeierarchical phrase models
(Hiero) which combine the ideas of phrase-based modelsraedstructure and proposes
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an efficient decoding method based on chart parsing. Higrasimar does not build on
any syntactic annotation and has only one nonterminal nod&gXmann and Venugopal
(2006) add syntactic categories to target-side nontedsindliero which leads to syntax-
augmented MT models. DeNeefe et al. (2007) develop ruleetidn algorithms which
not only learn syntactic translation but also help to imgroeverage.

The second class of approaches is tree-to-tree and tr&teig-models which use syn-
chronous tree-substitution grammars (STSG). The SPSGafamis extended to include
not only nonterminal and terminal symbols but also treesherright hand side of rules.
The trees have either nonterminal or terminal symbols at libegfs. All nonterminal sym-
bols on the right hand side are mapped one-to-one betwedwthianguages. For the
example of a French noun phrasechat Siamois blanand an English translatiawhite
Siamese cat STSG rule could be

NP JJ NP NN,

DET NN; NN DET JJ NN,

un chat a

STSGs allow the generation of non-isomorphic trees andcovee the child node
reordering restriction of flat context-free grammars (Eis2003). STSG rules are applied
the same way as SPSG rules, except that additional struistunéroduced. If we do
not care about this additional structure, SPSG rules carbtaned by flattening STSG
rules. Galley et al. (2004, 2006) present the GHKM rule etioa which is similar to
phrase-based extraction in that it extracts rules comgistéh given word alignments.
However, a primary difference is the use of syntax trees entdéinget side, rather than
sequences of words. Since STSGs conventionally only cendicbest tree, therefore,
they are vulnerable to parsing error and rule coverage asutsemodels lose a larger
amount of linguistically unmotivated mappings. Liu et &009) propose a solution by
replacing the 1-best tree with a packed forest. Related sviorks this area are Liu et al.
(2006); Cowan et al. (2006); Zhang et al. (2008); Nesson €@08); DeNeefe and Knight
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(2009); Carreras and Collins (2009).

To find the best derivation in SBMT models, cubic time probstic bottom-up chart
parsing algorithms, such as CKY or Earley, are often applige left hand side of both
SPSG and STSG rules contains only one nonterminal node valimhis to employ effi-
cient dynamic programming decoding algorithms with recoration and pruning strate-
gies (Huang and Chiang, 2007; Koehn, 2010). Probabilisk¥ /Earley decoding style
often has to deal with binary-branching grammar to redueentimber of extracted rules,
the number of chart entries and the number of stack combma{Huang et al., 2009).
Furthermore, incorporating ngram language models in dagddcreases the computa-
tional complexity significantly. Venugopal et al. (2007ppose to do a first pass transla-
tion without the language model, and then score the prurediséyper graph in a second
pass with the language model. Zollmann et al. (2008) pressystematic comparison be-
tween PBMT and SBMT systems in different language pairs astem scales. They
show that for language pairs which have sufficiently non-atonic linguistic properties,
SBMT approaches can yield substantial benefits.

2.2 Dependency Grammar, Parsing and Applications

We reviewed the background of the fundamental translatiaméwork in the previous
sections. In this section we are going to review dependenashigpar, parsing and its
applications.

2.2.1 Dependency Grammar

In modern linguistic theories, dependency grammars (DG teeen introduced by the
French linguist Lucien Tesniére in the bo&kements de Syntaxe Structurgleblished

in 1959. The key idea is all words depend on other words in éeser. There is a
special word calledoot that does not depend on any other. Dependencies are mdtivate
by grammatical function, i.e. both syntactically and setitaly. A word depends on
another either if it is a complement or a modifier of the latbermost formulations of DG
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for example

nsubj dobj

John loves Mary

functional heads or governors (e.g. verbs) subcategarizinéir complements. The tran-
sitive verb likeloverequires two complements (dependents), one noun with Hramgat-
ical function subject and one with the function object, leerecgrammatical function can
be defined akve(John, Mary)

Dependency structures Phrase structures

head-dependent relations (directed arcsphrases (nonterminal nodes)
functional categories (arc labels) structural categories (nonterminal labels)
possibly some structural categoriepossibly some functional categories
(parts-of-speech) (grammatical functions)

Table 2.1: A comparison between representations of depegdsructures and phrase-
structures

After Lucien Tesniere, Hays (1964) and Gaifman (1965) ytmathematical proper-
ties of DGs. They show that theoretically it is straightfard to convert a constituency
tree to an unlabeled dependency tree. A prerequisite i®teay constituent has a unique
head child. Robinson (1967) presents two methods to coayantase-structure grammar
to a DG and reverse. Later on, Robinson (1970) formulates dgioms to govern the
well-formedness of dependency structures. Magerman (1995 head percolation ta-
bles to identify head child in a constituency representatidead percolation tables were
first implemented in Collins’ parser (Collins, 1999). Thepdrdency tree is obtained by
recursively applying head child and non-head child heigggiXia and Palmer, 2001). Ta-
ble 2.1 shows a comparison between representations of depenstructures and phrase
structures.
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2.2.2 Dependency Parsing

Dependency Parsing

—

Transition-based Graph-based
Stack/List Classifier- Pseudo- Arc- B%:?d
-based based based factored
factored

Shift-Reduce style parsing; Limited to projective Maximum spanning tree
dependency graphs; simple extensions can handle a formulation; Projective and non-
subset of non-projective. Time complexity is O(n) projective inference with Chu-Liu-
for single-pass parsers, O(n?) for iterative parsers. Edmonds algorithm; Time

complexity O(|L|n?); Projective
parsing can use chart parsing
algorithms where each chart item
represents the weight of the best
tree rooted at word h spanning all
the words from i toj.

Deterministic parsing requires an oracle given by a
classifier which can be trained using treebank with
SVM, MBL or MaxEnt. Approximate a function from |¢
feature vectors to transitions, given a training set of
transition sequences.

For the non-projective case,

Technique for non-projective dependency parsing increasing scope of weights makes
with a data-driven projective parser. Projectivize parsing intractable. Can
dependency graphs in training data, train the ] approximate the non-projective
parser, then deprojectivize output a projective case using the exact projective
parser by heuristic transformations guided by algorithms plus a post-process
augmented arc labels. optimization

Figure 2.1: Taxonomy of supervised dependency parsingaghnes.
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From the view of graph theory, Kubler et al. (2009) define pathelency structure for
sentenceS = woyw;...w, With relation setR as a directed grapty(V, A) whereV is a
set V of vertices) C [wy, w1, ..., w,] , A is a set of directed edged, C VxRxV and if
(wy, r,wy) € Athen(w;, ', w;) ¢ Aforvr’ #r.

The task of dependency parsing is to analyze a sentencems t#ra set of directed
links (dependencies) expressing the relationships wrocm the basis of the predicate
argument structure such as head-modifier and head-compilefeojective dependency
trees have the subtree, rooted at each word, which covergigaous substring of the sen-
tence. In other words projective dependency trees are omeevedges do not cross (when
drawn on one side). English is mostly projective and othexrsieyuably less projective, es-
pecially Czech, Dutch and German. Projective dependensyrigameans searching only
for projective trees. Projective dependency grammarsrgeneontext-free languages,
while non-projective dependency grammars can generatexiesensitive languages.

However, dependency parsing can be seen in a broader sehsding any approach
to parsing that makes use of word-to-word dependencie$, asidexicalized statistical
parsers (Collins, 1999) or parsers based on lexicalizedma formalisms (LFG, HPSG,
CCG, LTAG, ...). Figure 2.1 is a taxonomy of supervised dele@ey parsing approaches
Besides, unsupervised dependency parsing receives aleaaislie attention and obtains
promising results (Cohen et al., 2008; Headden Il et aD0

2.2.3 Applications

Since dependency structures annotate relationship betergédies, therefore, it is desir-
able to extract relations based on dependency structusdatiéh extraction methods are
useful in discovering protein-protein interactions, amaerbinding conditions (Goertzel
et al., 2006). Patterns like “Protein X binds with Protein &€ often found in biomedi-

cal texts, such as MedLine database, where the protein namestities which are held
together by the “bind” relation. Such protein-protein naietions are useful for applica-
tions like drug discovery etc. Other relations of interast, @ protein’s location inside

! Those who are interested in details of algorithms should Kagbler et al. (2009).
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an organism. Such ternary relationships are extractedjlisiear kernels computed over
features (Liu et al., 2007). Cancer researchers can usentes like “Gene X with mu-
tation Y leads to malignancy Z” in order to isolate cancergases. These information
patterns can be pieced together by extracting ternaryioelbetween genes, mutations
and malignancy conditions in a large corpus of biotext (Felrd al., 2007; Erkan et al.,
2007).

Applications are not only in bio-text mining but also in rien extraction for textual
entailment and question answering. If a query to a searcmeng “When was Gandhi
born ?”, then the expected answer would be “Gandhi was bo8@9”. The template
of the answer iskPERSON> born-in<YEAR> which is nothing but the relational triple
born-in(PERSON, YEAR) where PERSON and YEAR are the estiti€ extract the
relational triples, a large database (ex: web) can be qliasg a small initial question-
answer set (ex: “Gandhi 1869”). The best matching (or mostident) patterns are then
used to extract answer templates which in turn can be usedracenew entities from the
database(Wu et al., 2009; Mehdad and Magnini, 2009).

2.3 Dependency Structures and Machine Translation

We reviewed the background of the machine translation apdrm¥ency structures in the
previous sections. In this section we are going to study hepeddency structures have
been applied to SMT.

The first class of approaches tries to explicitly model deeesy structures in MT
via tree-to-tree translation. Lin (2004b) propose a tratish framework which assembles
linear path through a source-side dependency tree. Thergaalgorithm extracts a set
of paths on the source dependency trees and determinesriespmnding translations
of the paths using word alignments. The outcome of trainfng set of transfer rules
that given a certain path in the source, provide the equitatanslation fragment in the
target. Ding and Palmer (2005) develop a similar tree-¢e-ttystem based on synchronous
dependency insertion grammars (SDIG). The basic units dGS@re elementary trees
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which are dependency subtrees containing one or more leettaes. The assumption
during decoding is tree transformation is isomorphic attiess-lingual level and any non-
isomorphism is encapsulated within the elementary treesueder, both Lin (2004b) and
Ding and Palmer (2005) did not incorporate a language mad#soriminative reordering

models which led to disappointing performances in termsldEB scores.

The dependency treelet translation model proposed by @uigk (2005) is another
class of approaches. A treelet is defined as an arbitraryembed subtree of a dependency
tree. The treelet system parses the source side of thenigadlaita, projects these depen-
dency tree onto the target side using word alignments, theaas dependency treelet
pairs. The decoder applies the bottom-up decoding strategythe source dependency
tree with treelet pairs. Translation hypotheses are sdoyesl log-linear model incorpo-
rating typical features such as language models, word kg and reordering models.
Chang and Toutanova (2007) present a discriminative sylveiged order model that ranks
n-best outputs of the treelet system using local featuratscidpture head-relative move-
ments and global features that capture the word movemenséntence. Menezes and
Quirk (2007) introduce dependency order templates whieluatexicalized transduction
rules mapping dependency tree containing only POS to wdbzed target trees. Depen-
dency order templates try to avoid the combinatorial explosf reordering treelets in
Quirk et al. (2005).

The third class of approaches is string-to-dependency lmo@en et al. (2008) de-
velop a string-to-dependency translation framework (Blear) which constructs the target
side from well-formed dependency structures. Their sysgesimilar to the hierarchi-
cal phrase translation model of Chiang (2005, 2007) withféHewing differences 1) the
target side of the synchronous rule contains well-formgueddency structures; 2) it op-
erates on dependency structures; 3) a dependency languaigt on the target side. Shen
et al. (2009) strengthen their 2008 HierDec system withuistic and contextual features
such as non-terminal labels, non-terminal length distiaoy context language model and
source dependency language model.

Other recent works also cover quasi-synchronous depepgeammar (DG) proposed
by Smith and Eisner (2006) and later on Gimpel and Smith (Rd@9elop lattice pars-
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ing with quasi-synchronous DG. Owczarzak et al. (2007) aatdrket al. (2008) develop
automatic methods to evaluate machine translation ougm&don dependency structures.
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Chapter 3

Cohesive Soft Constraints in A Beam
Search Phrase-based Decoder

In this chapter, we explore the cohesive phrasal decodipgoaph, focusing on empiri-
cal issues left unexplored by previous investigations. righ@008) proposed the notion
of a soft cohesion constraint, where detected violatioasaiowed during decoding, but
incur a penalty. The cohesion-enhanced decoder enforedsltbwing constraint. once
the decoder begins translating any part of a source subtremyst cover all the words
under that subtree before it can translate anything outsfidle The flexibility of a soft
penalty is appealing, given that cohesion does not peyfeh#dracterize translation move-
ment (Fox, 2002). But while cohesive decoding is well-dafif@ a hard constraint, soft
constraints leave room for several design decisions. 8hpemhalties persist as long as
violations remain unresolved? Are some violations worse tbthers? Do cohesive soft
constraints also improve systems that already benefit fesgellanguage models or lexi-
cal re-ordering models? We investigate these questiomsaniumber of variant cohesive
soft constraints. Furthermore, experimental results saviar been reported for English,
French and Japanese only. We add to this body of work subEtgnby experimenting
with Spanish, Chinese, Iragi and Arabic. Finally, we inigeste the impact of the choice
of parser and parse quality on cohesive decoding.
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3.1 Cohesive Soft Constraints

In phrase-based machine translation, decoding the soerderse takes the form of a
beam search through the translation space, with interrteesliates corresponding to par-
tial translations. The decoding process advances by exigadstate with the translation
of a source phrase, until each source word has been trathsbedetly once. Re-ordering
occurs when the source phrase to be translated does not iatetgdollow the previously
translated phrase. This is penalized with a discrimingtitr@ined distortion penalty. In
order to calculate the current translation score, each stat be represented by a triple:

e A coverage vecto€' indicates which source words have already been translated.
e A spanf indicates the last source phrase translated to createtaités s

e A target word sequence stores context needed by the targpidge model.

As cohesion concerns only movement in the source sentereceaw completely ignore
the language model context in our description of the diffeo®hesion constraints, i.e. we
will show the decoder state only ag A C) tuple.

To enforce cohesion during the state expansion processsiv@phrasal decoding has
been proposed in (Cherry, 2008; Yamamoto et al., 2008). dhesion-enhanced decoder
enforces the following constraint: once the decoder begamslating any part of a source
subtree, it must cover all the words under that subtree bafatan translate anything
outside of it. This notion can be applied to any projectieetstructure, but we follow
Cherry (2008) and use dependency trees, which have beemsbalemonstrate greater
cross-lingual cohesion than other structures (Fox, 2002 use a tree data structure
to store the dependency tree. Each node in the tree contaifags word form, word
position, parent position, dependency type and POS tag.xAmple of the dependency
tree data structure is shown in Figure 3.1. We Ui'st stand for our dependency tree,
andT'(n) to stand for the subtree rooted at nodeEach subtred’(n) covers a span of
contiguous source words; for subsp@novered byl'(n), we sayf € T(n).
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ROOT

TROOT-S

begins VBZ/8

/;J \OBJ

election NN/3 tomorrow NN/9

/I\'/IODTNMOD NMOD

the DT/1 presidential JJ/2 | states NNS/7]

/I\'/IODI%MOD NMOD

of IN/4 the DT/5 united VBN/6

Figure 3.1: Example of an English source-side dependereystructure for the sentence
“the presidential election of the united states begins toovg'.

Cohesion is checked as we extend a st#teC),) with the translation off;,, 1, creating

a new state f;, ., C,+1). Algorithm 1 presents the cohesion check described by €herr
(2008). Line 3 selects focal points, based on the last ta#éediphrase. Line 5 climbs
from each focal point to find the largest subtree that needsetoompleted before the
translation process can move elsewhere in the tree. Lineéksheach such subtree for
completion. Since there are a constant number of focal pdaitvays 2) and the tree
climb and completion checks are both linear in the size okthece, the entire check can
be shown to take linear time.

The selection of only two focal points is motivated byvadlation free” assumption.
If one assumes that the translation representedhy”;,) contains no cohesion violations,
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Algorithm 1 Interruption Check (Cohl) (Cherry, 2008)
Input: Source tred’, previous phrasé,, current phrasg;, .., coverage vectat),

Interruption < False

Chi1 = ChU{jlf; € frs}

F + the left and right-most tokens gf,

for each off € F' do
Climb the dependency tree froghuntil you reach the highest nodesuch that
fo1 & T(n).

if n exists andl’(n) is not covered irC), . then

Interruption < True
end if
end for

© © N 2

10: Returninterruption

then checking only the end-points ff is sufficient to maintain cohesion. However, once
a soft cohesion constraint has been implemented, this ggsummo longer holds.

3.1.1 Exhaustive Interruption Check

Because of the “violation free” assumption, Algorithm 1 iempents the design decision
to only suffer a violation penalty once, when cohesion igally broken. However, this is

not necessarily the best approach, as the decoder doexanerany further incentive to
return to the partially translated subtree and complete it.

For example, Figure 3.2 illustrates a translation candid&the English sentence “the
presidential election of the united states begins tomdrint French. We considef,
= “begins”, f5 = “tomorrow”. The decoder already translated “the presidéelection”
making the coverage vectdr; =“1 110000 1 1". Algorithm 1 tells the decoder
that no violation has been made by translating “tomorrowilevthe decoder should be
informed that there exists an outstanding violation. Aldpon 1 found the violation when
the decoder previously jumped from “presidential” to “begji and will not find another
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/\/A\/\

the presidential election of the united states begins tomorrow

-l o027 g6 >3 s 4 4 ¢+ 5T ¢0——6——

la élection présidentielle commence demain des Etats Unis
(the) (election) (presidential) (begins) (tomorrow) (United States)

Figure 3.2: A candidate translation where Algorithm 1 doetsfine

Algorithm 2 Exhaustive Interruption Check (Coh2)

Input: Source tred’, previous phrasé),, current phrase¢), . ;, coverage vectat’,

Interruption < False
Chir = ChU{jlfj € fasr}
F—{fICu(f) =1}

for each off € F' do

far1 & T(n).
if n exists andl’(n) is not covered ir(;, ., then
Interruption < True
end if
end for
10: Returninterruption

Climb the dependency tree froghuntil you reach the highest nodesuch that



violation when it jumps from “begins” to “tomorrow”.

Algorithm 2 is a modification of Algorithm 1, changing onlyné 3. The resulting
system checks all previously covered tokens, instead gftbelleft and right-most tokens
of f,, therefore, makes no violation-free assumption. In thevgta above, Algorithm 2
will inform the decoder that translating “tomorrow” alsccurs a violation. Becausé”|
is no longer constant, the time complexity of Coh2 is worssmt@ohl. However, we can
speed up the interruption check algorithm by hashing conegiecks, so we only need to
run Algorithm 2 once peffi.1, Chi1) .

3.1.2 Interruption Count and Exhaustive Interruption Count

Algorithm 3 Interruption Count (Coh3)
Input: Source tred’, previous phrasé,, current phrasg;, .1, coverage vectat),

: ICount <0

1
2: Chp1 = Ch U{jlfj € frsr}

3: F' + the left and right-most tokens gf,
4

5

. for eachoff € F do
Climb the dependency tree froghuntil you reach the highest nodesuch that

fri1 & T(n).

6: if n existsthen

7 for each ofe € T'(n) andCj,;1(e) = 0 do
8: ICount = ICount + 1

9 end for

10: end if

11: end for

12: Return/Count

Algorithm 1 and 2 described above interpret an interruptisra binary event. As
it is possible to leave several words untranslated with glsijump, some interruptions
may be worse than others. To implement this observationnt@nruption count is used
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Algorithm 4 Exhaustive Interruption Count (Coh4)
Input: Source tred’, previous phrasé),, current phraseg), . ;, coverage vectat’,

1. ICount < 0

2: Cpyr = CLU{j|fj € fass}

3 F «{fICh(f) =1}

4: for eachoff € F do

5. Climb the dependency tree froghuntil you reach the highest nodesuch that

Frt ¢ T(n).
6: if n existsthen
7: for each ofe € T'(n) andC),;1(e) = 0 do
8 ICount = ICount + 1
9 end for
10: endif
11: end for

12: ReturnICount

to assign a penalty to cohesion violations, based on the aunfbwords left uncovered
in the interrupted subtree. For the example in Section 3Aldorithm 4 will return 4
for ICount (“of”; “the”; “united”; “states”). The modification of Algoithm 1 and 2
lead to Interruption Count (Coh3) and Exhaustive IntelimrpCount (Coh4) algorithms,
respectively. The changes only happen in lines 1, 6 and 7.3&@n additional bit vector
to make sure that if a node has been reached once, it is notetbagain during the same
interruption check.

3.1.3 Rich Interruption Constraints

The cohesion constraints in Sections 3.1.1 and 3.1.2 dewetdge node information
in the dependency tree structures. We propose the richruptigsn constraints (Cohb)
algorithm to combine four constraints which are Interrapfilnterruption Count, Verb
Count and Noun Count. The first two constraints are identicavhat was described
above. Verb and Noun count constraints are enforcing tHewalg rule: a cohesion
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Algorithm 5 Rich Interruption Constraints (Coh5)
Input: Source tred’, previous phrasg,, current phrasg;, 1, coverage vecto€,

1: Interruption < False

2: ICount + 0

3: VerbCount < 0

4: NounCount < 0

5: Chyr = Cp U{jlf; € fara}

6: F' <« the left and right-most tokens gf,

7: for each off € F' do

8: Climb the dependency tree froghuntil you reach the highest nodesuch that

fo1 ¢ T(n).

9: if n existsthen

10: for each ofe € T'(n) andCj,;1(e) = 0 do
11 Interruption <— True

12: ICount = ICount + 1

13: if POS ofeis “VB” then

14: VerbCount < VerbCount + 1
15: else if POS ofe is “NN” then

16: NounCount < NounCount + 1
17: end if

18: end for

19: endif
20: end for

21: Returninterruption, ICount, VerbCount, NounCount
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violation will be penalized more in terms of the number of & words that have not
been covered. For example, we want to translate the Engisteisce “the presidential
election of the united states begins tomorrow” to Frencln it dependency structure as
in Figure 3.1. We considef, = “the united states”f,,,; = “begins”. The coverage bit
vectorC,1is“00001 11 10" Algorithm 5 will return true fofnterruption, 4 for
ICount (“the”; “presidential”; “election”; “of”), 0 for VerbCount and 1 forNounCount
(“election”).

3.2 Experiments

We built baseline systems using GIZA++ IBM Model 4 (Och and/N2003), Moses’
phrase extraction with the grow-diag-final-end heuristioghn et al., 2007), a standard
phrase-based decoder (Vogel, 2003), the SRI LM toolkitl¢Bey 2002), a suffix-array
language model (Zhang and Vogel, 2005), a distance-baseti n@ordering model with
a window of 3, and the maximum number of target phrases céstrito 10. Results are
reported using lowercase BLEU (Papineni et al., 2002) ard {&hover et al., 2006). All
model weights were trained on development sets via miniretorrate training (MERT)
(Venugopal and Vogel, 2005) with 200 unique n-best lists @piiimizing toward BLEU.
To shorten the training time, a multi-threaded GIZA++ verswas used to utilize multi-
processor servers (Gao and Vogel, 2008). We used the MALSepé@Nivre et al., 2006)
to obtain source English dependency trees and the Stardwsdfor Arabic and Chinese
(Marneffe et al., 2006). In order to decide whether the tegioa output of one MT engine
is significantly better than another one, we used the bagusirethod (Zhang et al., 2004)
with 1000 samplesp( < 0.05). We performed experiments on English-lraqi, English-
Spanish, Arabic-English and Chinese-English. Detaileghues statistics are shown in
Table 4.3. Table 3.2 shows results in lowercase BLEU and TER.

The first step in validating the proposed approach was tokclat works for the
other language pairs. Our English-lragi data come from tARPA TransTac program.

1 We would like to thank Johan Hall and Joakim Nirve for helpgufjgestions on training and using the
English dependency model
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English-Iraqi English-Spanish|| Arabic-English Chinese-English
English| Iraqgi || English| Spanish|| Arabic | English| Chinese| English
sentence pairs 654,556 1,310,127 5,359,543 10,964,230
unique sent. pairs 510,314 1,287,016 5,111,961 9,041,423
avg. sentence length 8.4 5.9 27.4 28.6 25.7 29.7 24.9 28.1
# words 55M | 38M | 358M | 37.4M | 138M | 159 M | 272.5M| 308.2 M
vocabulary 34K | 109K | 117K | 173K || 690K | 364K 14 M 845K

Table 3.1: Corpus statistics of English-Iraqi, EnglishaBigh, Arabic-English and Chinese-English systems
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English-lraqi || English-Spanish Arabic-English Chinese-English
june08 nct07 mt08-nw mt08-wb dev07-nw dev07-wb

BLEU | TER || BLEU | TER || BLEU | TER | BLEU | TER || BLEU | TER | BLEU | TER
Baseline| 23.58 | 61.03|| 32.04 | 49.97 || 48.53 | 45.03| 33.77 | 56.30|| 25.14 | 62.32| 23.65 | 61.66
+Cohl | 24.45|58.89| 32.72 | 49.18 || 48.78 | 44.92| 34.15 | 56.01|| 26.46 | 61.04| 23.95 | 61.05
+Coh2 | 24.73 | 58.75| 32.81 | 49.02 || 48.47 | 45.23| 34.20 | 56.42|| 26.92 | 61.24| 23.92 | 61.45
+Coh3 | 24.19 | 59.25|| 32.87 | 48.88 || 48.70 | 44.84| 33.91 | 56.29| 26.3 | 61.46| 24.19 | 61.51
+Coh4 | 24.66 | 58.68| 33.20 | 48.42 || 48.85 | 44.73| 33.86 | 56.38| 26.73 | 60.94| 24.03 | 61.42
+Coh5 | 24.42 | 59.05| 33.27 | 48.09 || 48.57 | 45.07| 34.10 | 56.37|| 26.05| 61.69| 23.76 | 61.52

Table 3.2: Scores on held-out evaluation sets of baselidealmesion-enhanced systems for English-Iraqi, English-
Spanish, Arabic-English and Chinese-English languags pBold type is used to indicate highest scores. An italic
text indicates the score is statistical significant bettantthe baseline



The target domain is force protection which includes cheaks and house searches, and
extends to civil affairs, medical, and training dialogs.

We used TransTac T2T July 2007 (july07) as the developmérrsbTransTac T2T
June 2008 (june08) as the held-out evaluation set. Eackalsas 4 reference translations.
We applied the suffix-array LM up to 6-gram with Good-Turimgaothing. In Table 3.2,
cohesive soft constraints produced improvements rangitwderD.5and1.2BLEU point
on the held-out evaluation set.

We have shown that the proposed cohesion-enhanced deadggerformed the base-
line English-Iragi systems. This system used a small ingisize and came from force
protection domain. The English-Iragi pair also differs@cling to the language family.
Englishis an Indo-European language while Iraqgi is a Seratiguage of the Afro-Asiatic
language family. The next step in validating the proposqut@gch was to test on a lan-
guage pair which comes from the same Indo-European langaagl/ with a medium
training size, different domain and written style.

We used the Europarl and News-Commentary parallel corporariglish-Spanish as
provided in the ACL-WMT 2008 shared task evaluation. Detailed corpus statistics are
given in Table 4.3. We built the baseline system using thalfghicorpus with maximum
sentence length of 100 words for word alignment and a 4-grRinL™M with modified
Kneyser-Ney smoothing. We used nc-devtest2007(ncd0 Headdvelopment set and nc-
test2007 (nct07) as the held-out evaluation set. Each ¢esias 1 translation reference.
Table 3.2 shows that we obtained improvements ranging leetv@andl1.2BLEU points.

All cohesive soft constraints performsthtistical significant better than the baseline on
the held-out evaluation set.

The previous results indicate that cohesive soft conggaiontribute to the improve-
ments of translation systems from English to other langsiagdowever, many of to-
day’s high-profile translation tasks are concerned withdiaion into English. We exper-
imented with the GALE data to test this other direction, améxamine cohesion’s effect
on state of the art systems, which include other powerfuldweprdering features, such
as large language models.

2 http://www.statmt.org/wmt08
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To validate these questions we present experimental sdsulthe large-scale Arabic-
English and Chinese-English systems. Our Arabic-Englisth @hinese-English data
comes from the DARPA GALE prograhand belongs to the newswire and broadcast news
domain. Detailed corpus statistics are shown in Table 4.3-gkam SRI LM was trained
from the English Gigaword Corpus V3, which contains seveealspapers for the years
between 1994 and 2006. We also included the English sideedfitingual training data,
resulting in a total of 2.7 billion running words after tokeation. For the Arabic-English
system we used NIST MT-06 as the development set and NIST 8/NW (mt08-nw) and
WB (mt08-whb) as held-out evaluation sets. For the Chinasgligh system we used NIST
MT-05 as the development set and Dev07Blind NW (devO7-nwi)\Ai8 (devO7-wbj as
held-out evaluation sets. Each test set has 4 referencddtiams. Table 3.2 shows re-
sults in BLEU and TER. The best improvements in BLEU we oladiare0.3on MT-08
NW and0.4 on MT-08 WB for Arabic-English. We obtainetl8 BLEU on Dev07Blind
NW and0.50n Dev07Blind WB for Chinese-English over the baseline. Zparformed
statistically significant better than the baseline system on DevO7Blind NW.

3.3 Discussion and Analysis

Experimental results of cohesive soft constraints on dfie language pairs have been
described in Section 4.2, in this section we vary the ordecapability of the baseline
system, and perform other forms of error analysis.

3.3.1 Interactions with reordering models

We first investigate the interactions of cohesive contgaivith lexicalized reordering mod-
els on the performance of the translation system. The aquregté are trying to answer is
whether the improvements of cohesive soft constraintswyswsned by a strong reorder-
ing model. Koehn et al. (2005) proposed the lexicalizeddeong model which condi-
tions reordering probabilities on the word of each phrase pae lexicalized reordering

3 This training data was used in GALE P3 EvaluatiofA This test set is distributed by the GALE Rosetta
team
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model has shown substantial improvements over the distaa®ed reordering model.

dev07-nw dev07-wb
BLEU TER BLEU TER

Baseline 25.14 62.32 23.65 61.66

+Lex 26.07 6156 23.68 61.71
+Lex+Cohl 26.52 62.00 24.47 61.69
+Lex+Coh2 26.62 60.71 24.95 60.33
+Lex+Coh3 26.53 61.62 25.04 61.06
+Lex+Coh4 26.53 60.86 24.79 60.69
+Lex+Coh5 26.35 60.74 24.88 60.44

Table 3.3: Performances of the GALE Chinese-English systéimlexicalized reordering
models compared to cohesion-enhanced systems

Table 3.3 shows the performance of the Chinese-Englislesysh the held-out eval-
uation set when we include lexicalized reordering modets@hesive soft constraints in
the baseline system with a distance-based reordering mod@ikee system with the lex-
icalized reordering modetlex gained over the baseline system by 0.9 BLEU points on
dev07-nw set and performed similar on dev07-wb set. Howdlemperformance oflex
is still weaker than most cohesive soft constraints in T8 Furthermore, when cohe-
sive soft constraints are added on top of the lexicalizeddexong model we observed a
gain by0.5BLEU point on dev07-nw and a substantial gainloy BLEU on dev07-wb
set. Coh2 model obtained the best scores in most cases.

After having empirical evidence for the improvements ofesikie soft constraints over
systems with lexicalized reordering models, we inveséighe impact of the reordering
window. Table 3.4 demonstrates the translation performantsystems with different re-
ordering limits and reordering models. The baseline sysiesa a distance-based reorder-
ing model with reordering window of 3. Meanwhilelex and+lex+w5 used lexicalized

5 Note that we ran MERT separately for each system
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dev07-nw dev07-wb
BLEU TER BLEU TER

Baseline 25.14 6232 23.65 61.66
+Lex 26.07 6156 23.68 61.71
+Lex+w5S 26.21 61.06 24.87 60.84

+Lex+w5+Cohl 26.92 60.30 25.27 60.81
+Lex+w5+Coh2 27.13 60.21 25.12 60.95
+Lex+w5+Coh3 27.09 60.76 25.10 60.79
+Lex+w5+Coh4 26.79 60.50 25.37 60.48
+Lex+w5+Coh5 26.87 61.04 25.06 61.03

Table 3.4: Performances of the GALE Chinese-English systgimlexicalized reordering
models and reordering window 5 compared to cohesion-eassystems

reordering models with reordering windows of 3 and 5, reipely. +lex+w5 gained over
the+lex system by 0.1 BLEU point on devO7-nw and 1.1 BLEU on devO7-Mdwever,
+lex+w5 is still weaker thantlex+Coh2 system in Table 3.3. We add cohesive soft con-
straints on top ofrlex+w5. Cohesion-enhanced systems performed better-thetw5

by 0.9BLEU on dev07-nw an@®.5BLEU point on dev07-wb.

3.3.2 The decoder behaviors

The cohesive soft constraints essentially act as filtershergenerated hypotheses. As
longer phrases can induce more cohesion violations, itteyesting to see how big an
effect the different cohesive soft constraints have on #lection of phrases used in the
final first best translation. The average length of phrased imsthe translations is shown
in Table 3.5. We see that indeed the cohesion constrairg$dwaard using shorter phrases.

We also analyzed how often a cohesion violation actuallyuccander the different
versions. Triple(f,, fr+1, Chi1) can either trigger a cohesion violation or signal no vio-
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june-08 nc-test2007 mt08-NW mt08-WB

Baseline 2.3 2.01 1.88 1.54
+Cohl 2.26 1.89 1.81 1.50
+Coh2 2.24 1.92 1.89 1.56
+Coh3 2.26 1.97 1.88 1.54
+Coh4 2.13 2.01 1.87 1.53
+Coh5 2.16 1.89 1.82 1.52

Table 3.5: The average length of phrases used in the traomsdat

june-08 nc-test2007 mt0O8-NW mt08-WB

+Cohl 0.3896 0.4001 0.4786 0.4412
+Coh2 0.4305 0.4547 0.5198 0.4789
+Coh3 0.3887 0.3974 04777 0.4404
+Coh4 0.4304 0.4546 0.5198 0.4790
+Coh5 0.3916 0.4003 0.4852 0.4469

Table 3.6: Ratios between the number of times the intewaptheck fires and the total
number of interruptions check in the different variants
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lation independent of the actual translation generatedrdfare, we count the number of
different triples and how many of them led to a cohesion ¥iota Results are summa-
rized in Table 3.6. As expected, since Coh 2 and 4 performuestha interruption checks
they have higher ratio than the others. The ratios of Coh hd®aare close but not exactly
the same because of hypothesis recombination and prunimgdbe decoding process.
This is also true for the Coh 2 and 4.

3.3.3 The role of dependency parser

We analyze the influence of the dependency parser on therpenice of the translation
system. We experimented with the MALT parser and the Stdnparser with default

parameters on the English-lragi system described in Sedtid. Performances on the
unseen test set are shown in Table 3.7. Experimental resubis that 1) either using
MALT or Stanford parser the proposed approaches still atdpa the baseline; 2) the
MALT parser has a tendency to give better BLEU scores thastaeford parser whereas
the Stanford parser is faster than the MALT parser in our expatal setup.

MALT Parser Stanford Parser
BLEU TER BLEU TER

Baseline 23.58 61.03 23.58 61.03

+Cohl 24.45 5889 24.17 58.79
+Coh2 24.73 58.75 24.12 58.83
+Coh3 24.19 59.25 2437 58381
+Coh4 24.66 58.68 24.44 58.71
+Coh5 2442 59.05 23.99 59.55

Table 3.7: Comparison between using MALT parser and Stdrdarser on English-Iraqi
system

A general question of what quality of parser is required faresive soft constraints to
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ROOT

ROOT %OO”IN\IMOD ROOT

no DT/1 my JJ/2 friend NN/3 the DT/7
ADV
iFW/4
COORD [COORD COORD
completely RB/5 understand VBP/6 situation NN/8

(1) no my friend i completely understand the situation

(a) M1

ROOT

ROOT

friend NN/3

NMOD NMOD \NMOD

no DT/1 my JJ/2 i FW/4
PMOD
situation NN/8
NMOD NMOD NMOD
completely RB/5 understand VBP/6 the DT/7

(1) no my friend i completely understand the situation

(b) M2

Figure 3.3: Dependency trees produced by M1 and M2.
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work is important (Quirk and Corston-Oliver, 2006). To aesuhis question, we trained
two MALT parser models, M1 and M2, on different sizes of Pemeebank V3 data. The
performances in term of unlabeled attachment score on tiNLG®7 dependency test
set are 19.41% and 86.21% for M1 and M2, respectively. FigBellustrates difference
dependency tree structures produced by M1 and M2 modelde Bab shows the com-
parison of using M1 and M2 for English-Iraqgi and English-8igh systems. The results
show that when applying these models to English-Iraqi, Migpes better than M2 in
most cases except Coh4. However, when the models are appligthlish-Spanish then
M2 is better than M1 in most cases except Coh2. The reasoati$th and M2 models
were only trained on Penn Treebank which belongs to newsianeain. M2’s high per-
formance on the newswire data has a positive effect on thei§ipgest set, which is also
drawn from the newswire domain. Meanwhile, the Iraqi de¢etext, which is quite dif-
ferent from newswire, seems to have no stable correlatitim (newswire) parse quality,
with M1 helping in some versions of the cohesion constrainti M2 helping in others.

English-lragi  English-Spanish
M1 M2 M1 M2

Baseline 23.58 23.58 32.04 32.04

+Cohl 2416 23.86 31.92 32.29
+Coh2 2432 2430 3240 32.30
+Coh3 2423 24.06 31.89 32.60
+Coh4 23.86 24.54 3243 32.81
+Coh5 2426 24.22 32.53 33.00

Table 3.8: The impact of parser quality on the performanderaflish-Iragi and English-
Spanish systems in BLEU score. The performances in termlabaled attachment score
on the CoNLL-07 dependency test set are 19.41% and 86.21%Xaxnd M2, respec-

tively.
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3.4 Summary

In this chapter, we explored cohesive phrasal decodingisiag on variants of cohesive
soft constraints. We proposed four novel cohesive softtcaimss namely exhaustive in-
terruption check (Coh2), interruption count (Coh3), exdtae interruption count (Coh4)
and rich interruption constraints (Coh5). Our experimergaults show that with cohe-
sive soft constraints the system generates better treoredain comparison with strong
baselines. To ensure the robustness and effectiveness pfdhosed approaches, we con-
ducted experiments on 4 different language pairs, namegjlign{Iraqi, Spanish and
{Arabic, Chinesé-English. These experiments also covered a wide rangeinirtgacor-
pus sizes, ranging from 500K sentence pairs up to 10 milkeoesice pairs. Furthermore,
the effectiveness of our proposed methods was shown whempmied them to systems
using a 2.7 billion words 5-gram LM, different reordering dets and dependency parsers.
All five approaches give positive results. While the impnmests are not statistically sig-
nificant at the 95% level in most cases, there is nonethelesssstent pattern indicating
that the observed improvements are stable. The most relggdgroach seems to be Coh2,
a solution which does not make the violation free assumption
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Chapter 4

Source-side Dependency Tree
Reordering Models with Subtree
Movements and Constraints

In this chapter, to go beyond cohesive soft constraints,ntreduce a novel reordering
model for phrase-based systems which exploits dependeitses movements and con-
straints. In order to do, we must first consider several guest Should subtree move-
ments be conditioned on source dependency structures? Blowe estimate reliable
probability distributions from training data? How do we @mporate the reordering model
with dependency structures and cohesive soft constraittsiphrase-based decoder? We
investigate these questions by presenting the model,jngaand decoding procedure in
Section 4.1. Furthermore, we present experimental resal&nglish-Iragi and English-
Spanish systems in Section 4.2. Finally, we investigaténipact of the proposed models
in Section 4.3 .
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4.1 Source-tree Reordering Models

Nowadays most statistical machine translation systemsased on log-linear model
which tries to provide a parameterized form of the probgbiif translating a sentence
f{ toel. Acommon feature set includes reordering models whichigeothe decoder the
capability to determine the orientation sequence of plstasbe beam search strategy is
used during decoding, in which the intermediate statesespond to partial translations.
The decoding process advances by extending a state wittatisation of a source phrase
and the final state is reached when each source word has beslated exactly once.

Reordering occurs when the source phrase to be translagsdndd immediately fol-
low the previously translated phrase. The reordering egirgited into the target function
by using discriminatively-trained distortion penaltiesch as the widely used lexicalized
reordering model (Tillman, 2004; Koehn et al., 2005). It baparameterized as follows:

n

p(Ole, f) = [ [ p(oiléi, fu,. ai-1. a:) (4.1)
i=1
wheref is the input sentencee = (€y,...,¢,) is the target language phrases;=
(ay,...,a,) is phrase alignmentsf,, is a source phrase which has a translated phrase
¢; defined by an alignment;. O is the orientation sequence of phrase where eatlas
a value over three possible orientatiorid) (monotone, $ swap with previous phrase, or
(D) discontinuousO={M, S, D} and is defined as follows:

M if a; — Qj—1 = 1
0; = S if a; — Q-1 = —1 (42)
D if |ai - CI,Z'_1| 7& 1

4.1.1 Models

A lexicalized reordering model is defined in terms of transis between phrases - two
phrases in sequenge;cvious andnext, have a specific relationship to each other, such as
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monotone, swap Or discontinuous. Statistics on those relationships make up the model.

Lexicalized reordering models are well-defined for flat weudface structures. How-
ever, the models do not leverage source-side syntactictstas which are always avail-
able during the decoding time. Previous studies, such as{C{#008), show improve-
ments when using source-side dependency structures asivmbeft constraints. Cohe-
sion constraints tell the decoder which cohesive movenartavailable, but the decoder
has no opinion on the likelihood of these moves.

In a source-tree reordering model, we would condition mimigolally and syntactically
phrase movements on the source dependency tree. A soeecesbrdering model con-
siders in terms of previous source dependency structumes.cén think about the phrase
movements as the movement of the subiregde or outside a source subtree when the
decoder is leaving from tharevioussource state to the current source state. The notions of
movinginside (1) andoutside (O) a subtree can be interpreted as tracking facts about the
subtree-to-subtree transitions observed in the soureedigvord-aligned training data.
With extra guidance on subtree movements, our expectatitirat source-tree reordering
models will help the decoder make smarter distortion densi

An example of the source-tree reordering movements isiidtesd in Figure 4.1 that
contains a word/phrase alignment matrix of a English-Sgfasentence pair, source de-
pendency tree and reordering movements. The lexicalizieshtation sequence D,

S, D, M} while the subtree movement sequencglisO, I, I}. The lexicalized reorder-
ing model assignef) for phrase ask you because the previous extracted phraseduld
thereforé was not continuous withdsk you. At the same time, the source-tree movement
assigned since ‘ask you is moving inside the subtree rooted atould’. In addition,
“once moréreceivedO from the source-tree reordering model since iudsip with “ask
you’ and movingoutside the subtree rooted ab$sK'.

Let 7" denote the source dependency tree @itd) stands for the subtree rooted at
noden. A spanf indicates the last source phrase translated to create trentstate and
eachf has a dependency structusg A subtreel’(n) covers a span of contiguous source
words is constructed by dependency structufe$or subspary covered byl'(n), we say
f € T(n). We define a subtree that has begun translation but not yepletenanopen
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O’
¥ e @ N
NP M (U ) & & e & N
T E ST e T S

N P &
16 [ @ | neerlandés
15 [ ] canal
14 [ ) Un
13 también
12 Monotone ," ) ver
11 L 7 [ N ] podamos
l| Discontinuous
10 = = A L] que
9 V4 ° de
8 1 [} encargue
7 l m se
6 1| 7% que
5 [ ] A. 1 nuevamente
4 e o Pedirle
3 [ ] / quisiera
[ . .
2 ® .~ Discontinuous tanto
1 [ ] lo
o e Por

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) Alignment matrix with lexicalized orientation events

therefore

\ £
\ more ensure get

A _——
\ m = | you to that we

‘. N \
m a Dutch well

(b) Inside/Outside subtree movements on the source depeynttee

Figure 4.1: Source-tree reordering extraction exampleghi® English-Spanish sentence
pair “l would therefore once more ask you to ensure that we get allitannel as weit
“Por lo tanto quisiera pedirle nuevamente que se encarguaidgpgdamos ver tambin un
canal neerland

48



Figure 4.2: Examples ofside (1) andoutside (O) movements

subtree. On the other hand, when all words under a node haretkanslated then we
call acompletedsubtree. A phras¢ is movinginside (1) a7'(n) if f helpsT(n) to be
completed, in other wordg;(n) covers more contiguous words. A phragés moving
outside (O) aT'(n) if f leavesT'(n) to be open, in other word#(n) contains some words
which have not been covered yeét.side andoutside are the two subtree movements we
are going to model and Figure 4.2 shows example movementfenett cases.

Mathematically speaking, a source-tree reordering madgdfined as follows:

n

p(D|e>.f):Hp(di|éi>faiaa'i>si—lasi) (43)
i=1
wheres; ands;_; are dependency structures of source phrsendf,, , respectivelyD
is a random variable which represents the sequence of sipatguhrase movements over
the source dependency tree; edgctakes a value eithénside(l) or outside(O). p(Dle, f)
is the probability of the subtree movement likelihood over source phrase sequence and
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their target movements. Since the model essentially caingsrphrase movements on the
source dependency tree however it does not explicitly piewarientations for a phrase-
based decoder. Therefore, we combine our model with thedézed reordering model, as
aresult, a set of events contaib's= o;,_d; = {M_l, S.I, D_I, M_O, SO, D_O}. The source
dependency tree is used here to refine the reordering eventil@d by a lexicalized
reordering model. Finally, the source-tree reordering ehaxderived as follows:

n

p(Dle, f) = HP((O—dM@, Jair @ic1, ai, 801, 84) (4.4)

i=1

4.1.2 Training

To train the model, the system needs to extract; events for phrase pairs. First, the
source side dependency trees of the bilingual training deggprovided by using a de-
pendency parser. Given a sentence pair and source depgridescwhen performing
the phrase-extract algorithm (Och and Ney, 2004) we als@aeixthe source dependency
structure of each phrase pair. The values,odire obtained by lexicalized reordering mod-
els. To determine whether the current source phrase is @oviide or outside a subtree
T'(n) with respect to previously extracted phrases we apply tiawstive interruption
check algorithm (Bach et al., 2009b). This algorithm esa#ptwvalks through the depen-
dency subtrees of previously extracted phrases and chdudther the subtree is open or
completed. The value af; is I when the exhaustive interruption check algorithm returns
false andO otherwise. Table 4.1 is a snapshot of the output of the reimiglextraction
procedure. The third column shows source-tree reordeeatyfes.

After having all extracted phrase pairs with dependenctufes, we need to estimate
parameters of source-tree reordering models for a paatiqdir p((0;_dy);|é;, fa,). An
event, such all_|, can be interpreted by three possibilities. Fikét| is a joint probability
of monotone andinside given a phrase pair. Secorid, | can be a conditional probability
of monotone given a phrase pair and itisside. Finally, M_l can be a conditional prob-
ability of inside given a phrase pair and itisonotone. The parametes((o;_dy.):|é;, fa,)
is estimated by the maximum likelihood estimation critevith a smoothing factot as
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Phrase pairs Lexicalized Source-tree

ask you # pedirle dis swap Dx
ask you # pedirle mono mono M
ask you # pedirle mono mono 110}
once more # nuevamente swapdis _OS
once more # nuevamente dis swap D
once more # nuevamente que  swap dis 0sS

Table 4.1: Extracted reordering eventandicates events extracted from the example in
Figure 4.1

L B count(oy_d;) + v
p((oj-dr)iléi; fais 05, di) = S, Ej(count((jk—dj) +7) o)

if it is a joint probability of subtree movements and lexizat orientationsO) or

o _ count(op-d;) +
p((0j-d)ilei, fa, di) = >_x(count(oy-d;) + ) o

if it is conditioned on subtree movemenB@D) or

count(og-d;) +

p((0;-di)i|€;, fars0) = Zj(count(Ok—dj) +7)

4.7)

if it is conditioned on lexicalized orientation®QO0).

Table 4.2 displays source-tree reordering estimated pitlitiies for a phrase pairdisk
you-“ pedirle’. Each probability was put under one of the three parametgmation
methods.
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M_I S bg MO SO DO

DO 0.691 0.003 0.142 0.119 0.009 0.038
DOD 0.827 0.003 0.170 0.719 0.053 0.228
DOO 0.854 0.250 0.790 0.146 0.750 0.210

Table 4.2:inside andoutside probabilities for phrasedsk you- “ pedirle’ according to
three parameter estimation methods

4.1.3 Decoding

The beam search strategy is unchanged from the phrase-bgstin. Our proposed
source-tree reordering models concern mono-linguallysgnthctically movements in the
source sentence. However, computing source-tree rengderddel scores can be done in
two scenarios 1) not using and 2) using cohesive soft cantgraCohesive soft constraints
can be enforced by the interruption check algorithm (Chez08; Bach et al., 2009b).
One can consider the first scenario as the decoder does reoahgvnformation about the
source dependency tree during decoding time, therefora]lowe the decoder to consider
both eventsnside andoutside. The decision of selecting a preferable feature is made by
the tuning procedure. On the other hand, when the sourcendepey tree is available,
subtree movements are informed to the decoder via cohesiivemstraints, as a result,
we are able to allow the decoder to make a harder choice tadmnasitherinside or

outside.

More specifically, if the decoder chooses to decode withobesive soft constraints
then after detecting the orientation of the current phrisegxampleswap, the decoder
will trigger two subtree movement featur84 andS.O and sum up both features in the
log-linear combination. In other words, the decoder cagrsidhoth events that the current
phrase is movingnside andoutside a subtre€l'(n) given it is swap orientation on flat
word structures.

In the second scenario, the decoder uses cohesive softaiatsafter detecting the
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orientation of the current phrase, for exampteap. The decoder only considers one
source-tree reordering feature. The choice of featurertipen the output of the inter-
ruption check algorithm on the current phrase. If the retsiinside thenS.1 will be used
otherwiseS O.

4.2 Experimental Results

We built baseline systems using GIZA++ Och and Ney (2003)sé40phrase extraction
with the grow-diag-final-and heuristic Koehn et al. (200&)standard phrase-based de-
coder Vogel (2003), the SRI LM toolkit Stolcke (2002), thdfisuarray language model
Zhang and Vogel (2005), a lexicalized reordering model witieordering window of 3,
and the maximum number of target phrases restricted to 5ulilemre reported using
lowercase BLEU Papineni et al. (2002) and TER Snover et @DgR All model weights
were trained on development sets via minimum-error rateitrg (MERT) Venugopal and
Vogel (2005) with an unique 200-best list and optimizing aosvBLEU. To shorten the
training time, a multi-threaded GIZA++ version was usedttlime multi-processor servers
Gao and Vogel (2008). We used the MALT parser Nivre et al. @Q0 get English de-
pendency trees. We perform experiments on EnghSipanish and Englishlraqi tasks.
Detailed corpus statistics are shown in Table 4.3.

English—Spanish  EnglishsIraqi
English Spanish English Iraqi

sent. pairs 1,310,127 654,556
uniqg. pairs 1,287,016 510,314
avg. sent. length  27.4 28.6 8.4 5.9
# words 358M 374M 55M 38M
vocabulary 117K 173K 34K 109K

Table 4.3: Corpus statistics of EnglistSpanish and Englishliraqi systems
We experiment systems in different configurations of thes®iree reordering model
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such as DO, DOD and DOO means parameters estimation usiredi&4.5, 4.6 and 4.7
respectively. Moreover, Coh means the decoder triggerssiad constraints for source-
tree reordering models Cherry (2008). Bold type is useddaate highest scores.

Ouir first step in validating the proposed approach is to chgitkthe English-Spanish
system. We used the Europarl and News-Commentary paraflgba for English+Spanish
as provided in the ACL-WMT 2008shared task evaluation. We built the baseline system
using the parallel corpus restricting sentence length @nldrds for word alignment and a
4-gram SRI LM with modified Kneyser-Ney smoothing. We usedlaetest2007(ncd07)
as the development set; nc-test2007 (nct07) as in-domaimawstest2008 (net08) as
out-domain held-out evaluation sets. Each test set hasdlataon reference. Table 4.4
shows that the best obtained improvementst&@& BLEU point and-1.4 TER score on
the held-out evaluation sets. Moreover, the proposed nisthiso obtained improvements
on the out-domain test set (net08).

nct07 net08
BLEU TER BLEU TER
Baseline 32.89 65.25 20.11 83.09

Coh 33.33 64.72 19.80 82.84
DO 3299 65.05 20.27 82.65
DO+Coh 33.28 64.77 20.61 82.35
DOD 33.17 6454 20.33 82.12
DOD+Coh 33.46 64.41 20.58 82.05
DOO 33.10 64.51 20.51 82.12

DOO+Coh 33.67 64.03 20.71 81.70

Table 4.4: Scores of baseline and improved baseline systéimsource-tree reordering
models on English>Spanish

We also validated the proposed approach on Englishgi. However, we have a
smaller training corpus which comes from force protectiomdins and is spoken lan-

1 http://www.statmt.org/wmt08
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june08 nov08
BLEU TER BLEU TER
Baseline 25.18 56.70 18.40 62.91

Coh 2534 57.30 18.01 61.52
DO 2531 57.30 18.43 60.98
DO+Coh 25.53 57.20 19.13 61.45
DOD 25.34 57.53 1890 61.81
DOD+Coh 25.50 56.29 19.15 60.93
DOO 25.25 56.76 18.40 60.64

DOO+Coh 25.58 56.37 1859 61.45

Table 4.5: Scores of baseline and improved baseline systéimsource-tree reordering
models on Englisk»Iraqi

guage style. This data is used in the DARPA TransTac progiidra.English-Iraqi pair
also differs according to the language family. English isrado-European language while
Iragi is a Semitic language of the Afro-Asiatic language ifgm

We used 429 sentences of TransTac T2T July 2007 (julyO7)eaddlielopment set;
656 sentences of TransTac T2T June 2008 (june08) and 6l&hsestof November 2008
(nov08) as the held-out evaluation sets. Each test set ledsr4ince translations. We used
a suffix-array LM up to 6-gram with Good-Turing smoothing. Table 4.5, source-tree
reordering models produced the best improvements008 BLEU point and-2.3 TER
score on the held-out evaluation sets.

4.3 Discussion and Analysis

In this section we perform detail error analysis from wheaffetent scenarios emerge and
questions arise for our assumptions.
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En-Ir En-Es
jun08 nov08 nc07 nt08
System BLEU TER BLEU TER |BLEU TER BLEU TER
tail  29.45 76.50 24.41 87.6P23.36 92.93 24.41 134.04
Baseline | mid 38.61 53.60 35.89 61.0731.08 66.75 22.61 86.32
head 61.38 25.80 60.90 28.1644.58 47.45 35.34 59.54
tail  +0.56 +1.35 +1.29 +5.2Y +0.67 +1.80 +0.07 +1.27
Coh mid +0.14 -0.91 +0.48 +1.08 +0.22 +0.07 -0.02 -0.19
head +0.37 -1.69 -3.11 -4.68 -0.17 -0.73 -0.48 +1.27
tail  +0.28 +0.66 +1.91 +7.08 +0.49 +1.94 +0.87 +2.32
DO mid +0.07 -1.15 +0.58 +1.44| +0.24 +0.45 +0.12 +0.28
head -0.28 -2.48 -1.31 -3.07 -0.28 -0.71 -0.11 -0.77
tail  +1.07 +1.95 +1.72 +5.19+0.66 +1.78 +0.52 +1.60
DO+Coh | mid +0.80 -0.85 +0.92 +1.32| +0.19 +0.21 +0.13 +0.25
head -0.37 -241 -159 -3.62 -0.25 -0.75 -0.01 -1.11
tail  +0.46 +0.06 +1.96 +4.84 +0.35 +1.91 +0.75 +2.84
DOD mid +0.53 -1.35 +0.43 +0.29] +0.01 -0.15 +0.05 +0.41
head +0.27 -1.03 -0.61 -2.33 -0.79 -1.33 -0.37 -1.37
tail  +1.19 +2.70 +2.10 +5.89 +0.49 +0.43 +0.27 +1.30
DOD+Coh| mid +0.44 -0.37 +0.42 +1.16| +0.01 -0.85 +0.12 +0.99
head +0.32 -1.25 -0.66 -2.02/ -0.37 -1.35 -0.26 -2.05
tail  +1.18 +2.41 +2.37 +7.36+0.35 +1.92 +0.59 +0.39
DOO mid +0.13 -0.62 +0.28 +1.83| +0.01 -0.15 +0.06 -0.38
head -0.50 -2.13 -0.58 -2.63 -0.79 -1.34 -047 -1.52
tail  +1.28 +2.70 +2.03 +5.88 +0.65 +1.61 +0.69 +1.10
DOO+Coh| mid +0.74 -0.52 +0.19 +0.82| +0.18 -0.02 +0.12 -0.05
head +0.22 -1.02 -1.61 -4.16] -0.40 -1.07 -0.22 -1.00
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Table 4.6: Distribution of improvements over different fpans of the test sets, where for TER the sign is reversed
So that positive numbers means improve in TER, i.e., lowdR Eore. The improvements are marked by bold text.



4.3.1 Breakdown improvement analysis

As we can see from the results, there are improvements dmeadlifferent test sets. How-
ever, one could expect that the methods may work for a podidne data but not others.
We divide the test sets into three portions based on sentemekeTER of the baseline
system. Lef, ando be the mean and standard deviation of the sentence-levebT Efe
whole test set. We define three subdetsd, tail andmid as the sentence whose TER
score is lower thap — %a, higher than + %0 and the rest, respectively. We then fix the
division of the three subsets, and calculate the BLEU and $&dRes on them for every
system. From Table 4.6, the proposed methods tend to ougter FER and BLEU for
thetail subsets, the improvements on thé/ subsets are smaller, and loss can be observed
on thehead subsets. The splitting of different sets also reflects orethgth of sentences,
as shown in Table 4.7, the tail parts are generally long seete The breakdown analysis
suggests a more subtle model taking into account the sentengths could bring in more
improvements, especially, on theil set in which the baseline model loses.

jun08 nov08 nc07 nt08
head 7.92 6.27 20.39 13.07
mid 12.31 11.09 28.07 22.78
tail 13.91 14.08 35.29 25.33

Table 4.7: Average reference lengths

4.3.2 Interactions of reordering models

To further investigate the impact of the proposed modelsp&réorm several analyses to
examine whether there are significant differences in 1) vleeage phrase length that the
decoder outputs; 2) the total number of reorderings ocdurr¢he hypothesis and 3) the
average reordering distance for all the reordering evefdble 4.8 shows the statistics
on the four aspects for all the test sets. For the averageseleagth, we can observe a
smaller value when applying the proposed models on En@smish tasks. However, on
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Number of Reorderings Frequency of Reordering Average Phrase Length | Average Reordering Distance
En-Es En-Ir En-Es En-Ir En-Es En-Ir En-Es En-Ir
ncO7 nt08 jun08 nov0g ncO7 nt08 jun08 nov08 ncO7 nt08 jun08 nov08 ncO7 nt08 jun08 nov08

Baseline 1507 1684 39 24 16.3 16.4 119 164| 2.02 180 220 2.34| 261 244 279 2.17

Coh 2045 2903 46 21 10.0 128 99 178 | 190 1.71 225 2.48| 267 258 281 2.50
DO 2189 2113 97 58 | 11.6 134 47 64 | 195 176 225 247|257 246 288 3.05
DO+Coh | 1929 1900 155 88 | 13.6 153 30 44 | 189 171 217 237 247 233 274 288
DOD 1735 2592 123 60 | 149 10.7 38 65 | 192 188 217 2.36] 2.73 257 279 2]%3
DOD+Coh | 2070 2021 148 90 12.8 145 32 43 | 1.88 1.70 218 237 250 239 264 281
DOO 1735 1785 164 49 | 149 16.1 30 79 | 192 173 210 237|273 260 272 298

DOO+Coh| 1818 1959 247 66 141 146 19 59 | 1.93 174 215 237|253 242 264 2.88

Table 4.8: Statistics on four aspects of the final hypothess different systems; 1. the number of reorderings, 2.
the number of words in the hypotheses divided by the numbegartiering, i.e. a larger number means more sparse
observation of reorderings, 3. the average phrase lengthamhe average reordering distance



English-Iraqi the picture is contradicting when on one ketphrase length is generally
longer and on the other set both longer and shorter statistic be observed in different
systems. Generally, there is no evidence to support a clafrtlte proposed models have
consistent impact on the length of phrases chosen by theldecbhe observation is not

surprising since the proposed reordering models are mkedy lto affect the decoder’s

behavior on reorderings.

When analyzing the average reordering distance, a moréstentspicture can be dis-
covered. The average reordering distance is larger thandiresponding systems with
only inside/outside subtree movements. Whereas we catsetee similar phenomenon
comparing the system with only cohesive constraints and#seline, which indicates
that the cohesive constraints actually have the effect sifioting long distance reorder
generated by the inside/outside subtree movements. Theimesesting observation is
thenumber of reordering® the hypothesis. To make it easier to think about how sparse
the reordering events are, we present the occurrence regeralerings, i.e. the number of
words divided by the number of reorderings, as listed in ta@ptheses inside Table 4.8.
An interesting phenomenon is that in English-Iraqi tadks dutput is generally monotone
in the baseline, and the number of reorderings increasesadically by applying the in-
side/outside subtree movements. However, solely applyaigsive constraints does not
increase the number of reorderings. In English-Spanidtstadthough all the features
generate more reordering events than the baseline, agpyily the cohesion constraints
also increases the number of reorderings dramatically.

When combining the statistics of Table 4.8 the most sigmfiedfect the source-tree
reordering models contribute is the number of reorderingstead of constraining the
reordering, the models enable more reorderings to be gexerAs shown in Table 4.10,
in the training data there are generally more reorderinge the observed in the decod-
ing results. It indicates the baseline reordering modelossubtle enough to encode
accurately information in a more generalized way, so thatermeorderings can be gen-
erated without losing performance. The source-tree remglenodels provide a more
discriminative mechanism to estimate reordering events.ekample, in Table 4.10 the
probability mass of monotone and discontinuous eventsifiezaht given that the phrase
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is encoded with inside or outside subtree movements. Meretive reordering issue is
more language-specific than general translation modetsthanconditions for a reorder-
ing event to happen vary among languages. Providing moterésathat are conditioned
on different information, such as include inside/outsidbteee movements and cohesive
constraints, could benefit the system performance by emaMERT to choose the most
prominent ones from a larger basis.

4.3.3 The effect of inside/outside events

All the analysis above inspired us to carry out a more direefyssis of the decoder be-
haviors. As the main motivation of the proposed approach imédel the behavior of
insideloutside subtree events, natural assumptions could be that

o different target languages should have different proltadsl of generating a se-
guence that has outside subtree events on the same sowuadamnd

e whether the model could change the behavior of generatitgjdasusubtree events.

e Furthermore, comparing to baseline system, do the changeggnerating more or
less outside subtree events than baseline, bring impravsrteethose sentences?

From Table 4.9, the number of sentences having outsidesutents has not changed
much when decoding with subtree movement features in Er@jEnish tasks, while this
number generally increases in English-lragi tasks. Mogeowhen decoding with both
subtree movements and cohesive constraints, we obsettbelmaimber of sentences hav-
ing outside subtree events sharply decreases, whereasatages in English-lragi. This
result shows an interesting correlation with the perforceammprovements in Table 4.4
and 4.5, where the systems with cohesive constraints ggneusperform those without.

If we consider the cohesive constraints as hard constrain@s the outside subtree events
are considered as violations, however in English-Iradigahe performance becomes bet-
ter with more “violations”. The observation further condakes our suggestion that subtle
models should be preferred for future developments, beddesfeatures may encode the
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En-Es En-Ir
ncO7 nt0O8 jun08 nov08
Baseline 29.35 3852 9.30 9.39

Coh 20.23 29.40 8.23 8.90

DO 30.34 3257 12.35 11.65
DO+Coh  12.26 13.07 15.40 13.11
DOD 3239 37.64 12.65 11.00
DOD+Coh 15.94 2399 11.89 11.97
DOO 28.75 32.08 12.35 11.65

DOO+Coh 18.44 25.50 16.77 10.68

Table 4.9: The percentage of sentences hawirngide subtree events

information that the violation of constraints is actuallgferred, no matter whether it is
because of the nature of the particular language or the atyte source (spoken, written,
etc.).

Ml SI DI MO SO DO
En-Es 0.38 0.01 0.14 0.3 0.01 0.15
En-Ir 0.62 0.01 0.13 0.16 0.01 0.07

Table 4.10: Distributions of the six source-tree reordgerents estimated from English-
Spanish and English-Iraqi training data

Table 4.10 displays the overall event distributions of setiree reordering models.
It appears clearly that occurrences%fl and.S_O are too sparsely seen in the training
data which assigns nearly 98% of its probability mass toroghients. The table strongly
suggests that from training data the source-tree reomglerodels observeaonotone and
inside movements more often than other categories. Finally, itvshibat the proposed
reordering model provides a more fine-grained reorderimgesvfor phrase-based MT in
comparison with the lexicalized reordering model.
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4.4 Summary

In this chapter, our major contribution is a novel soureztreordering model that exploits
dependency subtree movements and constraints. These motgeamd constraints enable
us to efficiently capture the subtree-to-subtree transtimbserved both in the source of
word-aligned training data and in decoding time. Represgrgubtree movements as
features allows MERT to train the corresponding weightstfase features relative to
others in the model. We show that this model provides imprams for four held-out
evaluation sets and for two language pairs.
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Chapter 5

Measuring Machine Translation
Confidence with Source-Target
Dependency Structures

Past research mainly focused on incorporating dependdnastiges into decoder and
reordering models. We have made significant progress teyamtiucing user-acceptable
translation output in some language pairs. However, trgeséll no efficient way for MT
systems to inform users which words are likely translatedectly and how confident it is
about the whole sentence. In this chapter, we propose a fravatwork to predict word-
level and sentence-level MT errors with a large humber oehteatures. Experimental
results show that the MT error prediction accuracy is ineeeafrom69.1to 72.2in F-
score. The Pearson correlation between the proposed cocdideeasure and the human-
targeted translation edit rate (HTER) @s6. Improvements betweed.4 and 0.9 TER
reduction are obtained with the n-best list reranking tasikgithe proposed confidence
measure. Also, we present a visualization prototype of Mdrsrat the word and sentence
levels with the objective to improve post-editor produityiv
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5.1 Motivation

State-of-the-art Machine Translation (MT) systems areingafrogress to generate more
usable translation outputs. In particular, statisticathiae translation systems (Koehn
etal., 2007; Bach et al., 2007; Shen et al., 2008) have addtna state that the translation
quality for certain language pairs (e.g. Spanish-Enghksanch-English, Iragi-English) in
certain domains (e.g. broadcasting news, force-protectiavel) is acceptable to users.

However, a remaining open question is how to predict confidestores for machine
translated words and sentences. An MT system typicallymstthe best translation can-
didate from its search space, but still has no reliable wanftrm users which word is
likely to be correctly translated and how confident it is altbe whole sentence. Such in-
formation is vital to realize the utility of machine trantstan in many areas. For example, a
post-editor would like to quickly identify which sentenaegyht be incorrectly translated
and in need of correction. Other areas, such as cross-liggestion-answering, infor-
mation extraction and retrieval, can also benefit from thdidence scores of MT output.
Finally, even MT systems can leverage such information to-test list reranking, dis-
criminative phrase table and rule filtering, and constrd@ttoding (Hildebrand and Vogel,
2008).

Numerous attempts have been made to tackle the confidemzatsh problem. The
work of Blatz et al. (2004) is perhaps the best known studyeotence and word level
features and their impact on translation error predictidlong this line of research, im-
provements can be obtained by incorporating more featwseshawn in (Quirk, 2004;
Sanchis et al., 2007; Raybaud et al., 2009; Specia et al9)20B8oricut and Echihabi
(2010) developed regression models which are used to ptbéiexpected BLEU score
of a given translation hypothesis. Improvement also canhbaiimed by using target part-
of-speech and null dependency link in a MaxEnt classifiep(giet al., 2010). Ueffing
and Ney (2007) introduced word posterior probabilities @Y Reatures and applied them
in the n-best list reranking. From the usability point ofwjéack-translation is a tool
to help users to assess the accuracy level of MT output (Baah,&007). Literally, it
translates backward the MT output into the source languageée whether the output of
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backward translation matches the original source sentence

However, previous studies had a few shortcomings. Firstrcgeside features were
not extensively investigated. Blatz et al. (2004) only stigated source n-gram frequency
statistics and source language model features, while atbede mainly focused on target
side features. Second, previous work attempted to incatpanore features but faced
scalability issues, i.e., to train many features we needyntaining examples and to
train discriminatively we need to search through all pdssitanslations of each training
example. Another issue of previous work was that they argated with BLEU/TER
score computing against the translation references whidifferent from predicting the
human-targeted translation edit rate (HTER) which is @lici post-editing applications
(Snover et al., 2006; Papineni et al., 2002). Finally, thekktsanslation approach faces a
serious issue when forward and backward translation madelsymmetric. In this case,
back-translation will not be very informative to indicateivard translation quality.

In this chapter, we predict error types of each word in the Mipat with a confidence
score, extend it to the sentence level, then apply it to ndlstseranking task to improve
MT quality, and finally design a visualization prototype. W& to answer the following
questions:

e Can we use structure and context feature such as dependearmtuies, source-side
information, and alignment context to improve error prédit performance?

e Can we predict more translation error types i.e substityiiosertion, deletion and
shift?

e How good do our prediction methods correlate with humanemion?
e Do confidence measures help the MT system to select a bethestation?

e How confidence score can be presented to improve end-usmpien?

In Section 5.2, we describe the models and training methothéoclassifier. We de-
scribe novel features including dependency structurescseside, and alignment context
in Section 5.3. Experimental results and analysis are teg@an Section 5.4. Section 5.5
and 5.6 present applications of confidence scores.
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5.2 Confidence Measure Model

5.2.1 Problem setting

Confidence estimation can be viewed as a sequential labelskgn which the word se-
quence is MT output and word labels canBed / Good or Insertion | Substitution /
Shift ! Good. We first estimate each individual word confidence and exténdhe whole
sentence. Arabic text is fed into an Arabic-English SMT egstind the English transla-
tion outputs are corrected by humans in two phases. In phaseaobilingual speaker
corrects the MT system translation output. In phase twothandilingual speaker does
quality checking for the correction done in phase one. Ifd@dections were spotted, they
correct them again. In this chapter we use the final cornectaia from phase two as the
reference thus HTER can be used as an evaluation metric. Vge/bahousand sentences
with 2.4 million words in total from the human correction pess described above.

We obtain training labels for each word by performing TERjahent between MT
output and the phase-two human correction. From TER aligitsivee observed that out of
total errors are 48% substitution, 28% deletion, 13% saiifti 11% insertion errors. Based
on the alignment, each word produced by the MT system hasedk lgod, insertion,
substitution and shift. Since a deletion error occurs whenly appears in the reference
translation, not in the MT output, our model will not predd#letion errors in the MT
output.

5.2.2 Word-level model

In our problem, a training instance is a word from MT outpuig éts label when the MT
sentence is aligned with the human correction. Given aitrgiimstancer, y is the true
label of z; f stands for its feature vectgfx, y); andw is feature weight vector. We define
a feature-rich classifiefcore(z, y) as follow

score(z,y) = w.f(x,y) (5.1)
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To obtain the label, we choose the class with the highesesothe predicted label for that
data instance. To learn optimized weights, we use the Manflised Relaxed Algorithm
or MIRA (Crammer and Singer, 2003; McDonald et al., 2005)chkhs an online learner
closely related to both the support vector machine and paxe learning framework.
MIRA has been shown to provide state-of-the-art perforredacsequential labeling task
(Rozenfeld et al., 2006), and is also able to provide an efficmechanism to train and
optimize MT systems with lots of features (Watanabe et 80,72 Chiang et al., 2009). In
general, weights are updated at each step tiaeeording to the following rule:

Wiyt = argming, , ||[weer — wyl|
(5.2)
s.t. score(x,y) > score(z,y') + L(y,y)

where L(y, y') is a measure of the loss of usigginstead of the true labe). In this
problemL(y,y’) is 0-1 loss function. More specifically, for each instamgén the training
data at a time we find the label with the highest score:

y' = argmax score(x;, y) (5.3)
y

the weight vector is updated as follow

weer = we + 7(f (i, y) — f(@3,9)) (5.4)

7 can be interpreted as a step size; whas a large number we want to update our
weights aggressively, otherwise weights are updated ceetseely.

7 = max(0, «)

' ) (5.5)
a=minl C L(y,y') — (score(x;,y) — score(x;,y'))
’ 1 (i y) — f s y)13

whereC' is a positive constant used to cap the maximum possible wdlueln practice,
a cut-off threshold: is the parameter which decides the number of features kepigdev
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occurrence is at least) during training. Note that MIRA is sensitive to constdntthe
cut-off feature threshold, and the number of iterations. The final weight is typicalby-n
malized by the number of training iterations and the numlbé&ramning instances. These
parameters are tuned on a development set.

5.2.3 Sentence-level model

Given the feature sets and optimized weights, we use thebVagorithm to find the best
label sequence. To estimate the confidence of a sentemee rely on the information
from the forward-backward inference. One approach is teatly use the conditional
probabilities of the whole sequence. However, this quargithe confidence measure for
the label sequence predicted by the classifier and it doegprsent the goodness of the
whole MT output. Another more appropriated method is to iigenharginal probability
of Good label which can be defined as follow:

a(yilS)B(wilS)

pyi = Good|S) = >, a(y;]9)B(y;19)

(5.6)

p(y; = Good|S) is the marginal probability of lab&lood at position: given the MT
output sentenct. a(y;|S) andj3(y;|S) are forward and backward values. Our confidence
estimation for a sentenceof k£ words is defined as follow:

¥ plyi = Good|S)

Goodness(S) = ?

(5.7)

Goodness(S) is ranging between 0 and 1, where 0 is equivalent to an aledplutong
translation and 1 is a perfect translation. Essentiélbndness(S) is the arithmetic mean
which represents the goodness of translation per word iwtitde sentence.
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5.3 Confidence Measure Features

Features are generated from feature types: abstract teysfilam which specific features
are instantiated. Features sets are often parameterizdiaus ways. In this section, we
describe three new feature sets introduced on top of oulibastassifier which has WPP
and target POS features (Ueffing and Ney, 2007; Xiong et@LQp

5.3.1 Source and target dependency structure features

Dependency structures have been extensively used in gatianslation systems (Shen
et al., 2008; Ma et al., 2008; Bach et al., 2009a). The adopifalependency structures
might enable the classifier to utilize deep structures tdiptaéranslation errors. Source
and target structures are unlikely to be isomorphic as showigure 5.1(a). However, we
expect some high-level linguistic structures are likelyramsfer across certain language
pairs. For example, prepositional phrases (PP) in Arakbddarglish are similar in a sense
that PPs generally appear at the end of the sentence (dftaealerbal arguments) and
to a lesser extent at its beginning (Habash and Hu, 2009). s&¢he Stanford parser to
obtain dependency trees and POS tags (Marneffe et al., 2006)

Child-Father agreement: The motivation is to take advantage of the long distancenlepe
dency relations between source and target words. Givenigmnaint between a source
word s; and a target word;. A child-father agreement exists whep is aligned tot,,
wheres,;, andt; are father ofs; andt; in source and target dependency trees, respectively.
Figure 5.1(b) illustrates thatshyr’ and “refers’ have a child-father agreement. To verify
our intuition, we analysed 243K words of manual aligned AgdEnglish bitext. We ob-
served 29.2% words having child-father agreements. In tdrstructure types, we found
27.2% of copula verb and 30.2% prepositional structuresyting object of a preposition,
prepositional modifier, and prepositional complementhangng child-father agreements.

Children agreement: In the child-father agreement feature we look up in the ddpeay
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H w WTER b

wydyf an hdhh alamlyt ayda tshyr aly adm qdrt almtaddt aljnsyt alqwat albhryt

dds that thls process also refers to the inability of the multinational naval forces
tﬂi H@k ﬁ DT NN Hrl E‘T JJ f Hfs

(a) Source-Target dependency

wydyf hdhh alamlyt ayda aly adm qdrt almtaddt aljnsyt algwat albhryt

He adds this process also to the inability of the multinational naval forces

(b) Child-Father agreement

N

wydyf an hdhh alamlyt adm qdrt almtaddt aljnsyt alqwat albhryt
/ /

He adds that this process e inability of the multinational naval forces

L L

(c) Children agreement

Figure 5.1: Dependency structures features.
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tree, however, we also can look down to the dependency tréeangimilar motivation.
Essentially, given an alignment between a source wpethd a target word,, how many
children ofs; andt; are aligned together? For examplesHyr’ and “refers’ have 2 aligned
children which are dyda-alsé and “aly-to” as shown in Figure 5.1(c).

5.3.2 Source-side features

VBP IN DT DTNN RB VBP IN NN NN DTJJ DTJJ DTNNS DTJJ

wydyf an QELUREIETNIE ayda tshyr aly adm qdrt almtaddt aljnsyt algwat albhryt

He adds that this{sJ{J<:tX-0 also refers to the inability of the multinational naval forces

(a) Source phrase

VBP IN Eoimmm iR RB VBP IN NN NN DTJJ DTJJ DTNNS DTJJ

wydyf an LQELLEEIETGIA ayda tshyr aly adm qdrt almtaddt aljnsyt algwat albhryt

He adds that thisgJd£sy also refers to the inability of the multinational naval forces

(b) Source POS

VBP IN 2l IN NN NN DTJJ DTJJ DTNNS DTJJ

wydyf an llldEIElIY%d (1) aly adm qdrt almtaddt aljnsyt algwat albhryt

He adds that this @It also refers to the inability of the multinational naval forces

(c) Source POS and phrase in right context

Figure 5.2: Source-side features.

71



From MT decoder log, we can track which source phrases gertarget phrases. Fur-
thermore, one can infer the alignment between source agettanords within the phrase
pair using simple aligners such as IBM Model-1 alignment.

Source phrase featuresThese features are designed to capture the likelihood thiats
phrase and target word co-occur with a given error label. ifhetion behind them is
that if a large percentage of the source phrase and targetdften been seen together
with the same label, then the produced target word should tias label in the future.
Figure 5.2(a) illustrates this feature template where ttst line is source POS tags, the
second line is the Buckwalter romanized source Arabic sexpieand the third line is MT
output. The source phrase feature is defined as follow

1 if source-phrasedfdhh alamlyt
0 otherwise

fioz2(process) = {

Source POS:Source phrase features might be susceptible to sparsessess. We can
generalize source phrases based on their POS tags to réstunerhber of parameters.
For example, the example in Figure 5.2(a) is generalized &gure 5.2(b) and we have
the following feature:

1 if source-POS=DT DTNN"
0 otherwise

f1o3(process) = {

Source POS and phrase context featuresThis feature set allows us to look at the sur-
rounding context of the source phrase. For example, in Eigu2(c) we havetdhh
alamlyt’ generates process. We also have other information such as on the right hand
side the next two phrases am@y/tld and “tshyr” or the sequence of source target POS on
the right hand side isRB VBP. An example of this type of feature is

1 if source-POS-context=RB VBP”
0 otherwise

f1oa(process) = {
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5.3.3 Alignment context features

DTNN RB  VBP IN NN NN DTNN RB VBP IN NN NN

alamlyt tshyr aly adm qdrt alamlyt ayda tshyr adm qdrt

process also (AL to the inability  process also to the inability
NN RB VBZ TO DT NN NN RB VBZ TO DT NN
(a) Left source (b) Right source

DTNN RB  VBP IN NN NN DTNN RB s IN- NN NN

alamlyt ayda aly adm qdrt alamlyt ayda tshyr\aly adm qdrt

also refers to the inability —process also refers i}l the inability
NN RB VBZ TO DT NN NN RB  VBZ TO DT NN

(c) Left target (d) Source POS & right target

Figure 5.3: Alignment context features.

The IBM Model-1 feature performed relatively well in comgan with the WPP fea-
ture as shown by Blatz et al. (2004). In our work, we incorporet only the IBM Model-1
feature but also the surrounding alignment context. Theikeytion is that collocation
is a reliable indicator for judging if a target word is gertethby a particular source word
(Huang, 2009). Moreover, the IBM Model-1 feature was alyeased in several steps of a
translation system such as word alignment, phrase exireatid scoring. Also the impact
of this feature alone might fade away when the MT system ikeda#.

We obtain word-to-word alignments by applying IBM Modeld bilingual phrase
pairs that generated the MT output. The IBM Model-1 assumestarget word can only
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be aligned to one source word. Therefore, given a target waraan always identify
which source word it is aligned to.

Source alignment context feature:We anchor the target word and derive context fea-
tures surrounding its source word. For example, in Figuséad.and 5.3(b) we have an
alignment betweentShyr’ and “refers’ The source contextdShyr” with a window of one
word are ‘aydd to the left and ‘aly” to the right.

Target alignment context feature: Similar to source alignment context features, we an-
chor the source word and derive context features surrognhe aligned target word.
Figure 5.3(c) shows a left target context feature of waeders. Our features are derived
from a window of four words.

Combining alignment context with POS tags:Instead of using lexical context we have
features to look at source and target POS alignment confextinstance, the feature in
Figure 5.3(d) is
1 if source-POS =VBP’
fiai(refers) = and target-context =t¢”
0 otherwise

5.4 Experiments

5.4.1 Arabic-English translation system

The SMT engine is a phrase-based system similar to the gésarin (Tillmann, 2006),
where various features are combined within a log-lineam&aork. These features in-
clude source-to-target phrase translation score, sdartarget and target-to-source word-
to-word translation scores, language model score, digtomodel scores and word count.
The training data for these features are 7M Arabic-Engkstience pairs, mostly newswire
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and UN corpora released by LDC. The parallel sentences hake alignment automati-
cally generated with HMM and MaxEnt word aligner (Ge, 20a4;dheriah and Roukos,
2005). Bilingual phrase translations are extracted froes¢hword-aligned parallel cor-
pora. The language model is a 5-gram model trained on roB3&llgillion English words.

Our training data contains 72k sentences Arabic-Englisthing translation with hu-
man corrections which include of 2.2M words in newswire arebleg domains. We
have a development set of 2,707 sentences, 80K words (deuyseen test set of 2,707
sentences, 79K words (test). Feature selection and paatoeting has been done on
the development set in which we experimented valueS'of and iterations in range of
[0.5:10], [1:5], and [50:200] respectively. The final MIRAassifier was trained by us-
ing pocket crf toolkit with 100 iterations, hyper-paramet€rwas 5 and cut-off feature
thresholdn was 1.

We use precisionk), recall (R) and F-scoreKk) to evaluate the classifier performance
and they are computed as follow:
the number of correctly tagged labels

i the number of tagged labels

R the number of correctly tagged labels (5.8)
the number of reference labels

F o= 2P*R

PR
5.4.2 Contribution of feature sets

We designed our experiments to show the impact of each teatyrarately as well as their
cumulative impact. We trained two types of classifiers tadfmtethe error type of each
word in MT output, namelyG'ood / Bad with a binary classifier androod | Insertion

| Substitution | Shift with a 4-class classifier. Each classifier is trained witlfiedént
feature sets as follow:

e WPP: we reimplemented WPP calculation based on n-besastescribed in Ueff-
ing and Ney (2007).

! http://pocket-crf-1.sourceforge.net/
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WPP + target POS: only WPP and target POS features are useslisEhsimilar
feature set used by Xiong et al. (2010).

Our features: the classifier has source side, alignmenexhrénd dependency
structure features; WPP and target POS features are exrclude

WPP + our features: adding our features on top of WPP.

WPP + target POS + our features: using all features.

binary 4-class
dev test dev test

WPP 69.3 68.7 64.4 63.7

+ dependency structures 69.9 69.5 64.9 64.3
+ source side 72.171.6 66.2 65.7

+ alignment context 71.4 709 65.7 65.3
WPP+ target POS 69.6 69.1 644 639
+ dependency structures 70.4 70 65.1 64.4
+ source side 72.371.8 66.3 65.8

+ alignment context 719 712 66 65.6

Table 5.1: Contribution of different feature sets measnre-score.

To evaluate the effectiveness of each feature set, we apghy dbn two different base-
line systems: using WPP and WPP+target POS, respectivayallyment each baseline
with our feature sets separately. Table 5.1 shows the tomitsn in F-score of our pro-
posed feature sets. Improvements are consistently obtaihen combining the proposed
features with baseline features. Experimental resultsialdicate that source-side infor-
mation, alignment context and dependency structures haigei@ and effective levers to
improve the classifier performance. Among the three prapésature sets, we observe
the source side information contributes the most gain, wisidollowed by the alignment
context and dependency structure features.
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5.4.3 Performance of classifiers

We trained several classifiers with our proposed featueaetvell as baseline features.
We compare their performances, including a naive basellR&dod classifier, in which
all words in the MT output are labeled as good translatioriguré 6.6 shows the per-
formance of different classifiers trained with differenafigre sets on development and
unseen test sets. On the unseen test set our proposed $eaitperform WPP and target
POS features by 2.8 and 2.4 absolute F-score respectiveprolvements of our features
are consistent in development and unseen sets as well asarylaind 4-class classifiers.
We reach the best performance by combining our proposedrésawith WPP and tar-
get POS features. Experiments indicate that the gaps imfe-fetween our best system
with the naive All-Good system is 12.9 and 6.8 in binary andaks cases, respectively.
Table 5.2 presents precision, recall, and F-score of iddadiclass of the best binary and
4-class classifiers. It shows th@bod label is better predicted than other labels, mean-
while, Substitution is generally easier to predict thdnsertion andShift.

Label P R F
. Good 74.7 80.6 775
Binary
Bad 68 60.1 63.8
Good 70.8 87 78.1
Insertion 375 169 23.3
4-class

Substitution 57.8 449 50.5
Shift 35.2 141 20.1

Table 5.2: Detailed performance in precision, recall angcére of binary and 4-class
classifiers with WPP+target POS+Our features on the unssesedt.
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Figure 5.4: Performance of binary and 4-class classifiamsdd with different feature sets

on the development and unseen test sets.
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Figure 5.5: Correlation between Goodness and HTER.

5.4.4 Correlation between Goodness and HTER

We estimate sentence level confidence score based on BygGatioFigure 5.5 illustrates
the correlation between our propos€dodness sentence level confidence score and the
human-targeted translation edit rate (HTER). The Pearsoelation betweel/oodness

and HTER is 0.6, while the correlation of WPP and HTER is O'H#is experiment shows
thatGoodness has a large correlation with HTER. The black bar is the lirregression
line. Blue and red bars are thresholds used to visualize gaddad sentences respec-
tively. We also experimente@oodness computation in Equation 5.7 using geometric
mean and harmonic mean; their Pearson correlation valedgsaiand 0.35 respectively.

5.5 Improving MT quality with N-best list reranking

Experiments reporting in Section 5.4 indicate that the psal confidence measure has a
high correlation with HTER. However, it is not very clearhitcore MT system can benefit
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Dev Test
TER BLEU TER BLEU

Baseline 499 31.0 50.2 30.6

2-best 495 314 499 30.8
5-best 49.2 314 496 30.8
10-best 49.2 31.2 495 30.8
20-best 49.1 31.0 493 30.7
30-best 49.0 31.0 493 306
40-best 49.0 31.0 494 305
50-best 49.1 309 494 305
100-best 49.0 309 493 305

Table 5.3: Reranking performance witlvodness score.

from confidence measure by providing better translationgnVestigate this question we
present experimental results for the n-best list rerantasy. The MT system generates
top n hypotheses and for each hypothesis we compute senteredestevfidence scores.
The best candidate is the hypothesis with highest confidecmes. Table 5.3 shows the
performance of reranking systems usi{igodness scores from our best classifier in vari-
ous n-best sizes. We obtained 0.7 TER reduction and 0.4 BLdtt fmprovement on the
development set with a 5-best list. On the unseen test, veermat 0.6 TER reduction and
0.2 BLEU point improvement. Although, the improvement offBLL score is not obvious,
TER reductions are consistent in both development and arsss.

Figure 5.6 shows the improvement of reranking withodness score. Besides, the
figure illustrates the upper and lower bound performancés WER metric in which the
lower bound is our baseline system and the upper bound ise$tenlgpothesis in a given
n-best list. Oracle scores of each n-best list are compugechbosing the translation
candidate with lowest TER score.
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Figure 5.6: A comparison between reranking and oracle sasith different n-best size
in TER metric on the development set.

5.6 Visualizing translation errors

Besides the application of confidence score in the n-bdselianking task, we propose a
method to visualize translation error using confidenceeszo®ur purpose is to visualize
word and sentence-level confidence scores with the follgwhjectives 1) easy for spot-
ting translations errors; 2) simple and intuitive; and 3phd for post-editing productivity.
We define three categories of translation quality (goodtbezkent) on both word and sen-
tence level. On word level, the marginal probability of gdatel is used to visualize
translation errors as follow:

good  if p(y; = Good|S) > 0.8
L; =< bad if p(y; = Good|S) < 0.45
decent otherwise
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On sentence level, th@oodness score is used as follow:

good  if Goodness(S) > 0.7
Lsg =< bad if Goodness(S) < 0.5
decent otherwise

Choices Intention

big bad
Fontsize small good
medium  decent

red bad
Colors black good
orange  decent

Table 5.4: Choices of layout

Different font sizes and colors are used to catch the attermti post-editors whenever
translation errors are likely to appear as shown in Table Galors are applied on word
level, while font size is applied on both word and sentengelleThe idea of using font
size and colour to visualize translation confidence is sinid the idea of using tag/word
cloud to describe the content of websftedhe reason we are using big font size and
red color is to attract post-editors’ attention and helprttiend translation errors quickly.
Figure 5.7 shows an example of visualizing confidence sdoydent size and colors. It
shows that hot to deprive yourself displayed in big font and red color, is likely to be
bad translations. Meanwhile, other words, suchyasi", “ different, “ from”, and “assim-
ilation”, displayed in small font and black color, are likely to beogdranslation. Medium
font and orange color words are decent translations.

2 http://en.wikipedia.org/wiki/Tagloud
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MT output  you totally different from zaid amr , and not to deprive yourself in a basement of imitation
and assimilation .

We predict  you different from not to deprive yourself
and visualize assimilation .
Human you are quite different from zaid and amr, so do not cram yourself in the tunnel of

correction simulation , imitation and assimilation .

Source

MT output

We predict

and visualize

Human
correction

@)
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the poll also showed that most of the participants in the developing countries are ready

to introduce qualitative changes in the pattern of their lives for the sake of reducing the
effects of climate change.

the poll also that most of the participants in the developing countries ready

to qual itative changes i the of their the sake of

reducing the of climate change.

the survey also showed that most of the participants in developing countries are ready
to introduce changes to the quality of their lifestyle in order to reduce the effects of
climate change .

(b)

Figure 5.7: MT errors visualization based on confidenceescor
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5.7 Summary

In this chapter we proposed a method to predict confidenceesdor machine trans-
lated words and sentences based on a feature-rich classigy linguistic and context
features. Our major contributions are three novel featetgiacluding dependency struc-
tures, source side information, and alignment context.eEirpental results show that by
combining the source side information, alignment contant] dependency structure fea-
tures with word posterior probability and target POS confeeffing & Ney 2007; Xiong
et al., 2010), the MT error prediction accuracy is incredseoh 69.1to 72.2in F-score.
Our framework is able to predict error types namely insartgubstitution and shift. The
Pearson correlation with human judgment increases Od@to 0.6. Furthermore, we
show that the proposed confidence scores can help the MTnsystselect better trans-
lations and as a result improvements betw8ehand 0.9 TER reduction are obtained.
Finally, we demonstrate a prototype to visualize transtaérrors.
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Chapter 6

A Statistical Sentence Simplification
Model and Its Application in Machine
Translation

In the NIST MT evaluations, translation systems typicalgvé to deal with sentences
with average length ranging from 27 to 36 words varying offiedént test sets as shown
in Table 6.1. There are cases when the test sentence has 6@ wogds. Similar to other
NLP tasks, such as parsing and semantic role labeling, thessentence length has a
lot of impact on SMT performance. Translating long senterniseften harder than short
sentences because of several reasons. First, hypothasels space for long sentences is
much larger than short sentences, as a result, good tianslate harder to reach. Second,
it takes more time to translate long sentences. Third, lentences often contain complex
syntax and long distance dependency structures, therefasenot easy for translation
models to capture these phenomena. In many translatiorcapphs, such as speech-to-
speech translation, the fluency might not be very import&ot. example, in speech-to-
speech translation when the user saysll well well my name you know is is Johiit’is
almost acceptable if the machine can output to the targgukge keyword8my name
John”.
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Testsets Average Length Maximum length

mt02 29 81
mt03 28.42 86
mt04 31.76 111
mt05 31.51 101
mt06 27.68 205
mt08-nw 31.92 150
mt08-wb 36.22 268

Table 6.1: Sentence length statistics on NIST MT Arabicsets

Moreover, complicated sentences impose difficulties odirgacomprehension. For
instance, a person in 5th grade can comprehend a comic beik leat will struggle to
understand New York Times articles which require at leash IRade average reading
level (Flesch, 1981). Complicated sentences also challeagural language processing
applications including, but not limited to, text summatiaa, question answering, infor-
mation extraction, and machine translation (Chandrasekat., 1996). An example of
this is syntactic parsing in which long and complicated seoés will generate a large
number of hypotheses and usually fail in disambiguatingthechments.

Therefore, it is desirable to pre-process complicatedesesis and generate simpler
counter parts. There are direct applications of sentemaplgication. Daelemans et al.
(2004) applied sentence simplification so that the autaralliyigenerated closed caption
can fit into limited display area. The Facilita system getesraccessible content from
Brazilian Portuguese web pages for low literacy readensgubbth summarization and
simplification technologies (Watanabe et al., 2009).

This chapter tackles sentence-level factual simplifica(8LFS). The objective of
SLFS is twofold. First, SLFS will process the syntacticalymplicated sentences. Sec-
ond, while preserving the content meaning, SLFS outputgjaesee of simple sentences.
SLFS is an instance of the broader spectrum of text-to-texéation problems, which in-
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cludes summarization, sentence compression, paraprasid sentence fusion. Compar-
ing to sentence compression, sentence simplificationmregjthe conversion to be lossless
in sense of semantics. It is also different from paraphmasirthat it generates multiple
sentences instead of one sentence with different congtnsct

There are certain specific characteristics that compliaasentence, which include
length, syntactic structure, syntactic and lexical amitygand an abundance of complex
words. As suggested by its objective, sentence simplifinadutputs “simple sentences”.
Intuitively, a simple sentence is easy to read and undetstard arguably easily processed
by computers. A more fine-tuned definition on a simple se@énsuggested in Klebanov
et al. (2004), and is termed Easy Access Sentences (EAS)irERSglish is defined as

e EAS is a grammatical sentence;
e EAS has one finite verb;
e EAS does not make any claims that were not present, exglaitimplicitly;

e An EAS should contain as many named entities as possible.

While the last two requirements are difficult to quantifye tiirst two provide a practical

guideline for sentence simplification. We treat the sergesimplification process as a
process of statistical machine translation. Given thetimp@a syntactically complicated

sentence, we translate it into a set of EAS that preservesiab mformation as possible
from the original sentence. We develop the algorithm thatgenerate a set of EAS from
the original sentence and a model to incorporate featursindicate the merit of the

simplified candidates. The model is discriminatively tedron a data set of manually
simplified sentences.

We briefly review related work in the area of text-to-text getion in Section 6.1.
The proposed model for statistical sentence simplificasgresented in Section 6.2. In
Section 6.3 we introduce the decoding algorithm. Sectidna®d 6.5 describe the dis-
criminative training method we use and the feature funstidixperiments and analysis
are presentin Section 6.6, followed by Section 6.7 with fh@iaation of sentence simpli-
fication in a English-German MT system. Finally, we concltlde work in Section 6.8.
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6.1 Related Work

Given the problematic nature of text-to-text generatiat thkes a sentence or a document
as the input and optimizes the output toward a certain dbgaowe briefly review state-
of-art approaches of text-to-text generation methods.

Early approaches in summarization focus on extraction austhvhich try to isolate
and then summarize the most significant sentences or ppregaod the text. However,
this has been found to be insufficient because it usuallyrgéggincoherent summaries.
Barzilay and McKeown (2005) proposed sentence fusion fdtirdacument summariza-
tion, which produces a sentence that conveys common infamaf multiple sentences
based upon dependency tree structures and lexical sityilari

Sentence compression generates a summary of a single semtgh minimal infor-
mation loss, which can also be treated as sentence-levehatimation. This approach
applies word deletion, in which non informative words wid kemoved from the original
sentence. A variety of models were developed based on thsp@eive, ranging from
generative models (Knight and Marcu, 2002; Turner and Gakyr2005) to discrimina-
tive models (McDonald, 2006) and Integer Linear Prograngni@arke, 2008). Another
line of research treats sentence compression as machinstatian, in which tree-based
translation models have been developed (Galley and McKe2@07; Cohn and Lapata,
2008; Zhu et al., 2010). Woodsend and Lapata (2011) propa$eanework to combine
tree-based simplification with ILP.

In contrast to sentence compression, sentence simplficgeénerates multiple sen-
tences from one input sentence and tries to preserve themgezfrthe original sentence.
The major objective is to transform sentences in completateuctures to a set of easy-
to-read sentences, which will be easier for human to congoméhand hopefully easier for
computers to deal with.

Numerous attempts have been made to tackle the sentenddisatipn problem. One
line of research has explored simplification with linguistilles. Jonnalagadda (2006)
developed a rule-based system that take into account tieeuwlse information. This
method is applied on simplification of biomedical text (Jalmgadda et al., 2009) and
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protein-protein information extraction (Jonnalagadda @onzalez, 2010). Chandrasekar
and Srinivas (1997) automatically induced simplificatioles based on dependency trees.
Additionally, Klebanov et al. (2004) develop a set of rulesttgenerate a set of EAS from
syntactically complicated sentences. Heilman and Smh@2proposed an algorithm for
extracting simplified declarative sentences from syntafl{i complex sentences.

The rule-based systems performs well on English. Howewegrdler to develop a
moregeneric framework for other languages, a statistical framework is preferdbléhis
work, we follow this direction to treat the whole process atagistical machine translation
task with an online large-margin learning framework. Thehod is generalizable to other
languages given labeled data. To ensure the informatioresepved, we build a table of
EAS for each object, and use stack decoding to search foptita@ combination of EAS.
A feature vector is assigned to each combination and we usad@uto-end discriminative
training framework to tune the parameters given a set ohitigidata. Our method is
different from Klebanov et al. (2004) in the way that we apgl|statistical model to rank
the generated sentences. The difference between our matftbéieilman and Smith
(2010) is that we integrate linguistic rules into the deogdorocess as soft constraints in
order to explore a much larger search space.

6.2 Statistical Sentence Simplification Models

Assume that we are given an English sentenaghich is to be simplified into a s&t of

k simple sentence§sy, ..., s;, ..., g }. Among all possible simplified sets, we will select
the set with the highest probabilitj(¢) = arg max,s Pr(S|e). As the true probability
distribution of Pr(S|e) is unknown, we have to approximater(S|e) by developing a
log-linear modelp(S|e). In contrast to noisy-channel models (Knight and Marcu,200
Turner and Charniak, 2005) we directly compute simplifmatprobability by a condi-
tional exponential model as follow:

ep[Y ot Win S (S, €)]
s op[Y s Wi f(S' )]
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p(Sle) =



wheref,,.(S,e),m = 1, ..., M are feature functions on each sentence; there exists a model
parametetv,, are feature weights to be learned.

In this framework, we need to solve decoding, learning, andeting problems. The
decoding problemalso known as the search problem, is denoted bythenax opera-
tion which finds the optimab that maximize model probabilities. Thearning problem
amounts to obtaining suitable parameter valug¢ssubject to a loss function on training
samples. Finally, thenodeling problenamounts to developing suitable feature functions
that capture the relevant properties of the sentence diogtion task. Our sentence sim-
plification model can be viewed as English-to-English logpar translation models. The
defining characteristic that makes the problem difficultisttwe need to translate from
one syntactically complicated sentencé: teimple sentences, ards not predetermined.

6.3 Decoding

This section presents a solution to thecoding problemThe solution is based on a stack
decoding algorithm that finds the b&given an English sentenee Our decoding algo-
rithm is inspired by the decoding algorithms in speech ragam and machine translation
(Jelinek, 1998; Koehn et al., 2007). For example, with aeseeee “ John comes from Eng-
land, works for IMF, and is an active hiKerthe stack decoding algorithm tries to fity
which is a set of three sentencegohn comes from Englaid‘ John works for IMF and
“John is an active hikér Note thatS is a set ofc simple sentenceS = {s, ..., s;, ..., S }-
We can assume the itemsare drawn from a finite se§ of grammatical sentences that
can be derived from. Therefore, the first step is to construct theSet

6.3.1 Constructing simple sentences

We define a simple English sentence as a sentence with SV€wstuwhich has one
subject, one verb and one object. Our definition is similahtodefinition of EAS, men-
tioned in section 1. However, we only focus on the SVO stmectéund other constraints are
relaxed. We assume both subjects (S) and objects (O) areptwases (NP) in the parse
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John comes from  England , works for IMF , and: is an active hiker

NP VP NP VP NP VP NP
John comes from England
England works for IMF
IMF is an active hiker
an active hiker
Subject Verb Object

Figure 6.1: Constructing simple sentences

tree. For a given English sentengewe extract a listSy» of NPs and a listSy, of verbs.
Syp has an additional empty NP in order to handle intransitivbseA straightforward
way to construct simple sentences is to enumerate all dessgéimtences based 6 p
andSy. That results inSyp|?|Sy| simple sentences.

Figure 6.1 illustrates the constructions fdohn comes from England, works for IMF,
and is an active hikér The system extracts a noun phrase fist- {John, England, IMF,
an active hike} and a verb listSy, {comes from, works for, js Our model constructs
simple sentences such alhn comes from Englaihgd“ John comes from IMFand “John
comes from an active hikerThe total number of simple sentencés), is 48.

6.3.2 Decoding algorithm

Given a list of simple sentenc&s a number of possible combinations could be applied.
The decoder’s objective is to construct and find the bestlgiogiion candidateS C S
which conveys the closest meaning with the original serelée callS a hypothesisn

the context of the decoder. Simple sentences are constrbeferehand and associated
with a feature vector. We employs a stack decoding algoriffime rationale is to construct

a hypothesis thatovers all noun phrases and verb phrases of the original sesce

The decoding task is to find the optimal solution over all flmescombinations of
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simple sentences, given the feature values and learnegrdeaeights. Depending on
the number of simple sentences per hypothesithe search space grows exponentially.
Since each simple sentence contains an object, we can dreugahdidate sentences by
its object. An object is a noun phrase of the original sergevtuich is extracted by using a
noun phrase chunker. Each object has an order depending position of the last word.
For instancejIMF” is object number two anthn active hiker” is an object number three
in Figure 6.1. Any noun phrase can serve as an object exceNPhat the beginning of
a sentence. Therefof@ohn” will not be a potential object. The decoder will use object
order as a feature in order to control the order of simplifiedtsnces in a hypothesis.
For example, given 2 hypothesidohn come from England; John works for IMF; John
is an active hiker’and”John is an active hiker; John come from England; John works
for IMF” . The decoder will prefer the first hypothesis since its disjece in the same
sequence with the original sentence.

John comes from England , works for IMF , and is an active hiker

John comes from England
John comes from IMF
John comes from an active hiker

John comes from England
John comes from IMF
IMF comes from an active hiker

John comes from England
John comes from IMF

John comes from England

’ John comes from England John works for IME

John comes from England
an active hiker is IMF
John works for an active hiker

John comes from England

’ IMF comes from England
an active hiker is IMF

IMF comes from England
John comes from IMF

an active hiker is England
an active hiker is IMF
John comes from an active hiker

an active hiker is England

an active hiker is England
an active hiker is IMF

N7 7NN

AMA LN

Figure 6.2: Decoding by objects
Figure 6.2 demonstrates the idea of decoding via objectshaie three potential ob-
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jects ‘England, “ IMF” and “an active hiket. The algorithm first finds potential simple
sentences which havd&hgland as object. After finishing “England”, the algorithm ex-
pands to TIMF” and “an active hiket. Based on model scores, the decoder will choose a
k-best hypothesis.

Algorithm 6 : K-Best Stack Decoding
1: Initialize an empty hypothesis listypList

2: Initialize HYPSis a stack of 1-simple-sentence hypotheses
3: fori =0to|Sy|do
4: Initialize stackexpand,,
while HYPSis not emptydo
poph fromHYPS
expandy, < Expand-Hypothesi]
end while
expandy, < Prune-Hypothesis{pand,,, stack-sizg
10:  HYPS«+ expand,,
11:  Store hypotheses efrpand, into HypList
12: end for
13: SortedHypList— Sort-HypothesiddypLisi)
14: Return K-best hypotheses 8ortedHypList

Algorithm 6 is a version of stack decoding for sentence sificption. The decoding
process advances by extending a state that is equivalerdtézla of hypotheses. Line 1
and 2 initializeHYPSstack andHypList A HYPSstack maintains a current search state,
meanwhileHypList stores potential hypotheses after each stetéPSis initialized with
hypotheses containing one simple sentence. Line 3 staotgpeover states. The number
of maximum states is equal to the size%f plus one. Lines 4-8 represent the hypothesis
expansion.

Figure 6.3(a) illustrates the pop-expand proceds\dP Sstack with 1-simple-sentence
hypotheses. The expansion in this situation expands toimf@essentence hypotheses-
stackexpand;,. The size ofexpand, will exponentially increase according to the size of
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Hypothesis
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simple sentence

(a) Pop and Expand
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HYPS with 2

simple sentences

(b) Hypothesis pruning

Figure 6.3: A visualization for stack decoding
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Sy and Syp. Therefore, we prefer to maintabxpand; within a limit number gtack-
sizg of hypotheses. Line 9 helps the decoder to control the dizeyand, by applying
different pruning strategies: word coverage, model scotmth. Figure 6.3(b) illustrates
the pruning process oerpand; with 2-simple-sentence hypotheses. Line 10 replaces
the current state with a new state of the expanded hypoth&sdere moving to a new
state,HypListis used to preserve potential hypotheses of the curremt dtate 13 sorts
hypotheses idypListaccording to their model scores and a K-best list is retumdide

14.

6.4 Learning

Since defining a log-linear sentence simplification moddl@coding algorithm has been
completed, this section describes a discriminative |egralgorithm for théearning prob-
lem We learn optimized weight vectar by using the Margin Infused Relaxed Algorithm
or MIRA (Crammer and Singer, 2003), which is an online leaciesely related to both
the support vector machine and perceptron learning framewa general, weights are
updated at each step timaccording to:

Wip1 = argming, ., |[wis1 — wil|
(6.2)
s.t. score(S,e) > score(S',e) + L(S,S’)
whereL(S, S’) is a measure of the loss of usigginstead of the simplification reference
S; score() is a cost function oé andS and in this case is the decoder score.

Algorithm 7 is a version of MIRA for training the weights of ngentence simplifi-
cation model. On each iteration, MIRA considers a singl¢éaimse from the training set
(S, e;) and updates the weights so that the score of the correctifizapbn ¢, is greater
than the score of all other simplifications by a margin préipaal to their loss. However,
given a sentence there are an exponential amount of possibfgification candidates.
Therefore, the optimizer has to deal with an exponentiaigé number of constraints.
To tackle this, we only considek -best hypotheses and choaseoracle hypotheses to
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Algorithm 7 : MIRA training for Sentence Simplifier
training setr = {f;,e;}_, has T original English sentences with the feature vegtor

of e;.
¢ is the simplification reference set.
m-oracle seO = {}.
The current weight vectar.
1: i=0
2: for j =1toQdo
3: fort=1toTdo
4: H + getK_Best(S; ; w?)

5: O « getm_Oracle( ; &)
m K
6: v=20 > aleo en; et)(fe, — fer)
_ o=1 hz.l
7: w = w' +
8: 1 =1+ 1
9: end for
10: end for
*T 4
EzQ—l w'

11: ReturnW
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support the weight update decision. This idea is similahéoway MIRA has been used in
dependency parsing and machine translation (McDonald,e2@05; Liang et al., 2006a;
Watanabe et al., 2007).

On each update, MIRA attempts to keep the new weight vectoloae as possible to
the old weight vector. Subject to margin constraints keepsttore of the correct output
above the score of the guessed output by updating an amaeentlgy the loss of the incor-
rect output. In line 6¢ can be interpreted as an update step size; whisra large number
we want to update our weights aggressively, otherwise viege updated conservatively.
« is computed as follow:

a = max(0,0)

6.3
Le,, en; ) — [score(e,) — score(ey)] } (6.3)

0 =ming C,
{ 1., — 12

where(C' is a positive constant used to cap the maximum possible wdlue score() is
the decoder score; arlde,, ey,; ;) is the loss function.

L(e,, en; £;) measures the difference between oragland hypothesis;, according to
the gold reference;. L is crucial to guide the optimizer to learn optimized weightge
definedL(e,, e;; ¢;) as follow

L(e,, en; 1) = AveFn(e,,e1) — AveFy(ep, &) (6.4)

where AveFy(e,, ;) and AveFy(ep, g;) is the average n-gram (n=[2:N]) cooccurrence
F-score of(e,, £;) and(ey, €;), respectively.

In this case, we optimize the weights directly against4lheF’y metric over the train-
ing data.Ave Fy can be substituted by other evaluation metrics such as théGEfam-
ily metric (Lin, 2004a). Similar to the perceptron methduk fictual weight vector during
decoding is averaged across the number of iterations aimihiganstances; and it is com-
puted in line 11.
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6.5 Modeling

We now turn to thenodeling problem Our fundamental question is: given the model in
Equation 6.1 with\/ feature functions, what linguistic features can be levedag capture
semantic information of the original sentence? We addlessjtiestion in this section by
describing features that cover different levels of lingaistructures. Our model incorpo-
rates 177 features based on information from the origingliEm sentence which con-
tains chunks, syntactic and dependency parse trees (Raraskdviarcus, 1995; Marneffe
et al., 2006).

6.5.1 Simple sentence level features

A simplification hypothesis containsk simple sentences. Therefore, it is crucial that
our model chooses reasonable simple sentences to form ahlegp For each simple
sentence; we incorporated the following feature functions:

from
pobjtl\ prepI
England for
pobjT
IMF

Figure 6.4: Dependency structure distance
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Dependency Structures It is possible that the decoder constructs semantically in-
correct simple sentences, in which S, V, and O do not haveemgstic connection. One
way to possibly reduce this kind of mistake is analyze theeddpncy chain between S, V,
and O on the original dependency treee0Dur dependency structure features include the
minimum and maximum distances of (S:0), (S:V), and (V:O)Fig 6.4, the minimum
and maximum distances betweelohri’ and “an active hiket are 2 and 3, respectively.

Word Count  These features count the number word in subject (S), verkagd)
object (O), also counting the number of proper nouns in S hedtimber of proper nouns
in O.

Distance between NPs and Verbs These features focus on the number of NPs and
VPs in between S, V, and O. This feature group includes thebenwf NPs between S and
V, the number of NPs between V and O, the number of VPs betwesnl &, the number
of VPs between V and O.

Syntactic Structures Another source of information is the syntactic parse tree of

e, which can be used to extract syntactic features. The sesgdidre boundary feature
considers the path from S to O along the syntactic parse &rsed¢ whether it crosses
the sentence-like boundary (e.g. relative clauses). Famele in the original sentence
“John comes from England and works for IMF which stands faerimdtional Monetary
Funds, the simple sentencdMF stands for International Monetary Funtisas sentence-
like boundary feature is triggered since the path frdMF” to “International Monetary
Funds on the syntactic tree of the original sentence containsBé&FSnode.

Another feature is the PP attachment feature. This chec¢hke D contains a preposi-
tional phrase attachment or not. Moreover, the single prorieature will check if S and
O are single pronoun or not. The last feature is the VO comnmmestor, which looks
at the syntactic tree to see whether or not V and O share the ¥&hag as a common
ancestor.
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6.5.2 Interactive simple sentence features

A collection of grammatically sound simplified sentenceggsloot necessarily make a
good hypothesis. Dropping words, unnecessary repetiioayen wrong order can make
the hypothesis unreadable. Therefore, our model needsequipped with features that
are capable to measure the interactiveness across sinmiénses and are also able to
represent in the best possible manner. We incorporated the followaajures into our
model:

England for is an active

IMF

Figure 6.5: Typed dependency structure binary feature

Typed Dependency At simple sentence level we examine dependency chains of S,
V and O, while at the hypothesis level we analyze the type@dégncy between words.
In Fig 6.5, consideringfohri and “England the typed features, such as b@sject,
hasSubject, and haBrep, will be fired with true values since the dependency tiak
tween ‘Johri and “England contains these types. Meanwhile, other typed dependency
structure feature, such as h@sp and hadet, will has false values. Our model has 46
typed dependencies which are represented by the 92 couantdsdor the 1st and 2nd
simple sentence.
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Sentence Count This group of features consider the number of sentencesein th
hypothesis. It consists of an integral feature of sentencatsci = |S|, and a group of
binary featuresch, = 6(|S|) = k wherek € [1, 6] is the number of sentence.

NP and Verb Coverage The decoder’s objective is to improve the chance of gen-
erating hypotheses that cover all NP and verbs of the oligeraence:. These features
count the number of NPs and verbs that have been covered thypo¢hesis, by the 1st
and 2nd simple sentences. Similarly, these features alsat toe number of missing NPs
and verbs.

S and O cross sentences These features count how many times S of the 1st simple
sentence is repeated as S of the 2nd simple sentence in énbgEotThey also count the
number of times O of the 1st sentence is the S of 2nd sentence.

Readability  This group of features computes statistics related to tabiya It
includes Flesch, Gunning-Fog, SMOG, Flesch-Kincaid, enatiic readability index, and
average all scores (Flesch, 1948; Gunning, 1968; McLanghfi69; Kincaid et al., 1975).
Also, we compute the edit-distance of hypothesis agairesbtiginal sentence, and the
average word per simple sentence.

6.6 Experiments and Analysis

6.6.1 Data

To enable the study of sentence simplification with our stiatll models, we search for
parallel corpora, in which the sources are original English senteaoel the target is its
simplification reference. For example, the sourcd.is s married to Lian Hsiang , who is
also a vajra master , and is referred as Grand Madam’L@rhe simplification reference
contains 3 simple sentences which ake ‘is married to Lian Hsian{ “ Lian Hsiang is
also a vajra mastert “ Lu is referred as Grand Madam LuTo the best of our knowledge,
there is no such publicly available corpora under theseitiond'.

1 We are aware of data sets from (Cohn and Lapata, 2008; Zhy 204D), however, they are more suitable
in sentence compression task than in our task.
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Our first attempt is to collect data automatically from amigli English and Simple
English Wikipedia, based on the suggestions of Napoles aedZe (2010). However,
we found that the collected corpus is unsuitable for our rhdel® example, consider the
original sentenceMawking was the Lucasian Professor of Mathematics at thevéisity
of Cambridge for thirty years, taking up the post in 1979 agiiting on 1 October 2009
The Simple Wikipedia readsHawking was a professor of mathematics at the University
of Cambridge (a position that Isaac Newton once liad)d “He retired on October 1st
2009. The problems with this are tha{d position that Isaac Newton once had)d not
appear in the original text, and the pronoute" requires our model to perform anaphora
resolution which is out of scope of this work.

We finally decided to collect a set of sentences for which wiiokd one manual
simplification per sentence. The corpus contains 854 seesemmong which 25% sen-
tences are from the New York Times and 75% sentences are frérpatlia. The average
sentence length is 30.5 words. We reserved 100 sentenc®efanseen test set and the
rest is for the development set and training data. The atorstaere given instructions
that explained the task and defined sentence simplificatitimtiae aid of examples. They
were encouraged not to introduce new words and try to sisnplifrestructuring the origi-
nal sentence. They were asked to simplify while preservinigh@ortant information and
ensuring the simplification sentences remained gramniigticarrecf. Some examples
from our corpus are given below:

Original: “His name literally means Peach Taro ; as Taro is a common Japairboy ’s
name , it is often translated as Peach Bby .

Simplification: *His name literally means Peach Tang* Taro is a common Japanese boy
's namé ; “ Taro is often translated as Peach Boy

Original: “These rankings are likely to change thanks to one player jdNokhich has
seen its market share shrink in the United States .
Simplification: “These rankings are likely to change thanks to one player igllpkNokia

2 Our corpus will be made publicly available for other resbars.
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has seen its market share shrink in the United States

6.6.2 Evaluation methods

Evaluating sentence simplification is a difficult problermeJpossible way to overcome
this is to use readability tests. There have been readatabts such as Flesch, Gunning-
Fog, SMOG, Flesch-Kincaid, etc. (Flesch, 1948; Gunning81 % cLaughlin, 1969; Kin-
caid et al., 1975). In this work, we will use Flesch-Kincaicde level which can be
interpret as the number of years of education generallyiredjto understand a text.

Furthermore, automatic evaluation of summaries has akso &eplored recently. The
work of Lin (2004a) on the ROUGE family metric is perhaps thestoknown study of
automatic summarization evaluation. Other methods hage peoposed such as Pyramid
(Nenkova et al., 2007). Recently, Aluisio et al. (2010) megd readability assessment for
sentence simplification.

Our models are optimized towatdle F', which is the average F-score afgram
concurrence between hypothesis and reference in whiefrom 2 to 10. BesidedveFi,
we will report automatic evaluation scores on the unsedrsetsn Flesch-Kincaid grade
level, ROUGE-2 and ROUGE-4. When we evaluate on a test setra will be reported
as the average score per sentence.

6.6.3 Model behaviors

How well does our system learn from the labeled corpus? Twanthis question we
investigate the interactions of model and decoder hyperpeters over the training data.
We performed controlled experiments stack-sizeK-best, C, and m-oracle parameters.
For each parameter, all other model and decoder values & faxd the only change
is with the parameter’s value of interest. Figure 6.6 illatds these experiments with
parameters over the training data during 15 MIRA trainiegations withAve F;, metric.
The weight vectotw is initialized randomly.

In Figure 6.6(a), we experimented with 5 different valuesrfrL00 to 500 hypotheses
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Figure 6.6: Performance of the sentence simplifier on tngidiata over 15 iterations when
optimized towardAve F;, metric and under various conditions.
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per stack. The expected outcome is when we use a |lstgek-sizehe decoder may
has more chance to find better hypotheses. However, a |staek-sizewill obviously
cost more memory and run time is slower. Therefore, we walfintba stack-sizehat
compromises conditions. These experiments show that veitiick-sizef 200, our model
performed reasonably well in comparison with 300 and 500stack-sizeof 100 is no
better than 200, while stack-sizeof 50 is much worse than 200.

In Figure 6.6(b), we experimented with 5 different valueebest list with K from
100 to 500. We observed a K-best list of 300 hypotheses seeperform well compare
to other values. In terms of stability, the curve of 300-lisstppears less fluctuation than
other curves over 15 iterations.

C is the hyper-parameter which is used in Equation 6.3 foghtaipdating in MIRA.
Figure 6.6(c) shows experiments with different constarif C.is a large number, it means
our model prefers an aggressive weight updating schemervage, our model updates
weights conservatively. When C is 0.3 or 0.2 the performasaeeorse than 0.1 or 0.07
and 0.04.

The last controlled experiments are shown in Figure 6.@duhich we test different
values ofm ranging from 1 to 5. These experiments show that using 2 @tagbotheses
consistently leads to better performances in comparistimather values.

6.6.4 Performance on the unseen test set

After exploring different model configurations we traindx final model withstack-size

= 200; K-best = 300; C = 0.04; and m-oracle =4£ue 7, score of the final system on the
training set is 50.69 which is about odee F, point better than any system in Figure 6.6.
We use the final system to evaluate on the unseen test set. widdscompare our system

with the rule-based system (henceforth H&S) proposed bintéai and Smith (2013).

3 We thank Michael Heilman for providing us his code. We coutineach the authors of (Zhu et al., 2010)
in order to obtain outputs. Kristian Woodsend kindly praddispartial outputs of (Woodsend and Lapata,

2011), therefore we did not include their outputs in thigisec
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Original Reference H&S Our system
9.6 8.2 8.3 7.9

Table 6.2: Flesch-Kincaid grade level of original, referenH&S, and our proposed sim-
plification on the unseen test set.

We first compare our system with H&S in the Flesch-Kincaiddgreevel, which indi-
cates comprehension difficulty when reading an English t€lke higher the number the
more difficult the text. Table 6.2 shows the original textuiegs a reader of grade level
9 or 10. Both H&S and us provided simplification candidatebiclv are easier to read
compared to the original text. Our model generated simplpotheses than the reference,
while H&S outputs were slightly more difficult to read thartteference.

System  AveF;; ROUGE-2 ROUGE-4

H&S 51.0 82.2 72.3
Our system  55.5 82.4 72.9

Table 6.3: Results on the unseen test set wWith 7, ROUGE-2 and ROUGE-4 scores.
Our system outperforms the rule-based system proposedibydteand Smith (2010).

Next, we compare our system with H&S in ngram-based metuch fsAveF,
ROUGE-2 and ROUGE-4 as shown in Table 6.3. Our results aterliéan H&S by 0.2
and 0.6 point in ROUGE-2 and ROUGE-4, respectively. Morergtingly, our system
outperformed H&S by 4.5 points iAve Fo, Which is a metric considering both precision
and recall up to 10-gram. Over 100 sentences of the unsetesetesl&S outperforms us
in 43 sentences, but is worse than our system in 51 sentences.

Table 6.4 shows examples of our system on the unseen te$¥/sgiresent examples
in cases where the proposed model works well and does not weltk In the case of
negative examples, a reason that our model can not genkeatetrect hypothesis is the
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number of simple sentences per hypothesis. The majoritsaofihg examples has 2 or 3
simple sentences per hypothesis, and very few exampleainonbre than 3. As a result,
when the model is discriminatively trained it has a stromglescy to generate hypothesis
with 2 or 3 simple sentences.

Positive examples

O In 2011, IBM gained worldwide attention for its artificiadtelligence program
Watson , which was exhibited on Jeopardy against game shampmlbns Ken
Jennings and Brad Rutter .

S  Watson was exhibited on Jeopardy against game show chasripem Jennings
and Brad Rutter .
In 2011 , IBM gained worldwide attention for its artificialtglligence program
Watson .

R In 2011, IBM gained worldwide attention for its artificialtelligence program
Watson .
Watson was exhibited on Jeopardy against game show chasig@nJennings
and Brad Rutter .

O He told Radiozurnal that he was halting the campaign foisBhas and would
restart it in the new year .

S Hetold Radiozurnal .
He was halting the campaign for Christmas .
He would restart it in the new year .

He told Radiozurnal .
R  He was halting the campaign for Christmas .
He would restart it in the new year .

Negative examples

O He drives a 10-year-old Opel Corsa , but lives in a pleasamh thouse in the
sleepy capital, Maseru, with wireless Internet and a hoeesgér who comes
twice a week .
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S Hedrives a 10-year-old Opel Corsa .
He lives in a pleasant town house in the sleepy capital, Miaseith wireless
Internet and a housekeeper who .

He drives a 10-year-old Opel Corsa .

R  He lives in a pleasant town house in the sleepy capital, Masdth wireless
Internet and a housekeeper .
a housekeeper comes twice a week .

O Anelderly Georgian woman was scavenging for copper tasedcrap when she
accidentally sliced through an underground cable and ¢umt&rnet services to
all of neighbouring Armenia , it emerged on Wednesday .

S  An elderly Georgian woman was scavenging for copper ta sell
scrap cut off Internet services to all of neighbouring Arimaen

An elderly Georgian woman was scavenging for copper to sedcaap .
R  she accidentally sliced through an underground cable .

she cut off Internet services to all of neighbouring Armenia

it emerged on Wednesday .

Table 6.4: We show the original sentence (O), our simplibica{S), and simplification
reference (R). Positive examples are cases when our sicapilins closely match with the
reference. Meanwhile, negative examples show cases whemadel can not produce
good simplifications.

6.7 Application to Machine Translation

Experiments reporting in previous sections demonstraettectiveness of the proposed
sentence simplification model on different evaluation mstrHowever, it is not very clear
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if a machine translation system can benefit from sentencplidication. In this section,
we try to answer the following questions:

e Does manual simplification help the MT system to generatiebiainslations?

e To what extend automatic simplification will be helpful foaghine translation?

6.7.1 Experiment setup

To investigate the above questions we present experimessialts on a English-German
translation system. The SMT engine is a Moses phrase-bgsths(Koehn et al., 2007)
which was built follow the guidelines of the 2011 machinengfation workshoh The
translation model was trained on 1.5M sentence pairs. Thanbdanguage model was
trained on 49M words of Europarl and News Commentary corpora

We present a human evaluation designed to determine whedliee speakers prefer
manual simplification translation output. First, we drawsé&htences with the average
sentence length 31 from the news-2008, news-2009, and P@dS&test sets. We manually
simplify 70 sentences. Some examples from our manual dicgilon (MS) are given in
Table 6.6.

We use the baseline English-German to generate two setarddtion output. The
first set comes with the input as original source Englishesesds . The other set is gen-
erated by translating manual simplification sentences.egoh sentence, we provide two
human annotators a set of translation reference (Refjpatiganslation (Orig), and man-
ual simplification translation (Man). The annotators aleeddo indicate which of the two
system translations Orig or Man they prefer. Some compaisiteria we suggest for the
annotators to consider are

¢ Information: compare to the reference the Man is better thanOrig because it
contains more information.

e Grammaticality: the Orig is better than the Man becausemase grammatically
correct.

4 http://www.statmt.org/iwmt11/baseline.html
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e Readability: the Man is better because it is easier to redcdcamprehend.

6.7.2 Experimental results

Annotator #2
Man | Orig | sum(#1)
Man 32 9 41

Annotator #1

Orig 12 17 29
sum(#2) 44 26

Table 6.5: Confusion matrix from human evaluation for masiraplification translation

The aggregate results of our human evaluation are showr indtiom row and right-
most column of Table 6.5. The inter-annotator reliabilgy0i.37 which indicates a fair
agreement between annotators. The annotators prefer hnamgification translation
in over 63% of the test sentences, while prefer the original in less 8 of the test
sentences. There are a few more off-diagonal points thamagiet expect, but it is clear
that the two annotators are in agreement with respect to atamaplification translation
improvements.

Positive examples

Src but it is about a long term advantage , with a certain gegféendetermination
, because the team can be eliminated first of change , and itcaddith this
action the players fulfill a sanction game and go to the secyokk of cards ,
in which the suspension by card accumulation takes pladeoni¢ less than in
the first cycle .

MS but it is about a long term advantage , with a certain degre@eletermination .
because the team can be eliminated first of change .
and in addition with this action the players fulfill a sanctgame .
the players go to the second cycle of cards .
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in which the suspension by card accumulation takes pladeonié less than in
the first cycle .

Orig

aber , weil die mannschaft kann zuerst behoben werden auserdem mit
dieser aktion , die akteure erfillen eine sanktion spiel werden in den
zweiten zyklus der karten , in dem die aussetzung von katé@wfong mit
einer weniger als in der ersten runde .

Man

aber es geht um eine langfristige vorteile , mit einem gesviggad an indeter-
mination .

denn die mannschaft abgebaut werden kann erstens der ldimaizv.

und auserdem mit dieser aktion , die akteure erfuliea ganktion spiel .

die akteure auf den zweiten zyklus der karten .

in dem die aussetzung von karte anhaufung mit einer weaigan der ersten
runde .

Ref

aber es handelt sich um einen langfristigen , bis zu eibestimmten grad
ungewissen vorteil , da das team irgendwann auch aussché&iente |,
auserdem erhalten die spieler mit dieser vorgehenswéige sanktion und
gehen in den zweiten kartenzyklus Uber , in dem sie wegeerhkanhaufung
mit einer karte weniger als im ersten zyklus ausscheiden .

Src

though berdych is charged in this case as well , he isgtiting for the verdict
in the first instance .

MS

though berdych is charged in this case as well .
he is still waiting for the verdict in the first instance .

Orig

wenn aufgeladen ist auch in diesem fall ist er immer nidefauf warten , dass
das urteil in der ersten instanz .

Man

wenn aufgeladen ist auch in diesem fall .
er ist noch immer darauf warten , dass das urteil in der eisstanz .

Ref

berdych selbstist in dieser sache zwar auch angeklagh,steht ihm zunachst
das erstinstanzliche urteil bevor .
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Negative examples

Src

when the oil prices went down , around 1980 , the idea oloékpy marine
energy was put aside , but now the appeals by the environtisstand the
new increases in oil prices have given impetus to the sector .

MS

when the oil prices went down , around 1980 .

the idea of exploiting marine energy was put aside .

but now the appeals by the environmentalists and the newases in oil prices
have given impetus to the sector .

Orig

wenn die Olpreise ging , um 1980 , die vorstellung vonrdgzung der energie
beiseite lassen , aber jetzt die appelle der umweltschiitwkder neuen anstieg
der Olpreise haben impulse fur den sektor .

Man

wenn die Olpreise ging , um 1980 .

die idee der nutzung der energie beiseite .

aber jetzt die appelle der umweltschiitzer und der neuetiegrder Olpreise
vorschub geleistet haben , in der sich der sektor .

Ref

als der preis des 0ls um 1980 einbrach vergas man dieletemeeresenergie
, jetzt aber drangen die umweltorganisationen und deleggste oOlpreis auf
neue impulse in diesem sektor .

Src

when a patient is admitted to the hospital , one of the thisigs done is to
check for the presence of mrsa, but hospitals are still yvahle to infection .

MS

when a patient is admitted to the hospital .
one of the first things done is to check for the presence of mrsa
but hospitals are still vulnerable to infection .

Orig

wenn ein patientist, die an das krankenhaus , einegsteinghemen zu prufen
, fur die prasenz von mrsa , aber die krankenhauser sinteimmoch anfallig
fur infektionen .

Man

wenn ein patient ist , die an das krankenhaus .
eine der ersten dinge , die zu prifen , fur die prasenz vaam
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aber die krankenhauser sind immer noch anfallig furkiéemen .

Ref bei ihrer einlieferung ins krankenhaus werden die psgie zwar auf mrsa un-
tersucht, eine infektion kann dennoch nicht immer vernmederden .

Table 6.6: Manual simplification and original translatio@mmples for English-German.

Table 6.6 shows examples of manual simplification trarmtatiVe present examplesin
cases where the proposed model works and does not work wekhdiv the English orig-
inal source sentence (Src), manual simplification (MShdiaion of the original English
(Orig), manual simplification translation (Man), and triti®n reference (Ref). Positive
examples are cases when our annotators agree that Mands theit Orig. Meanwhile,
negative examples show cases manual simplification doegravide better translations
than original text.

Annotator #2
Man | Orig | sum(#1)
Man 9 10 19

Annotator #1

Orig 7 44 51
sum(#2) 16 54

Table 6.7: Confusion matrix from human evaluation for autimsimplification transla-
tion

We further investigate the question to see if automatic Bfiogtion will be helpful
for machine translation. In stead of translating manuabpéiiation, we translation the
automatic simplification generated by our proposed septsimeplification. We repeat the
same human evaluation experiment as performed with mamagliBcation. The inter-
annotator reliability is 0.35 which indicates a fair agreginbetween annotators. The
annotators prefer original simplification translation wreo80% of the test sentences, and
prefer the automatic simplification translation in lesgitB8% of the test sentences.
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6.8 Summary

In this chapter we proposed a novel method for sentence igicagibn based on log-linear
models. Our major contributions are the stack decodingrilgo, the discriminative
training algorithm, and the 177 feature functions withia thodel. We have presented in-
sight the analyses of our model in controlled settings tovdihe impact of different model
hyper parameters. We demonstrated that the proposed maigelrforms a state-of-the-
art rule-based system on ROUGE-2, ROUGE-4, dndF', by 0.2, 0.6, and4.5 points,
respectively. Subjective translation evaluations shoat @#3% sentences witlmanual
simplification translations are better than the originahglation. Meanwhile, when ap-
plying automatic simplification translation20% sentences are better than the original
translation.
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Chapter 7
Conclusions

In this chapter we conclude the dissertation by summaritiaghesis work and proposing
several directions for future research.

7.1 Summary

We develop various algorithms to statistically incorperdépendency structures into MT
components including the decoder, reordering models, demfe measure, and sentence
simplification. We achieve improved BLEU and TER scoresreased MT translation
quality prediction accuracy, and reduced the hardnesswtesentences. We adopt the
phrase-based MT system as our baseline. With differentireses and different problems
to solve, we first expand the baseline system in the followiags:

e Decoder: Given the source dependency tree we want to ertfea@mhesive decod-
ing strategy. We proposed four novel cohesive soft comggaiamely exhaustive
interruption check, interruption count, exhaustive iniption count, and rich in-
terruption count. The cohesive-enhanced decoder perfstatistically significant
better than the standard phrase-based decoder on EnglistisB. Improvements
in betweent+0.4and+1.8 BLEU points are also obtained on English-lraqi, Arabic-
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English and Chinese-English systems.

e Reordering Models: To go beyond cohesive soft constravesnvestigate efficient
algorithms for learning and decoding with source-side ddpacy tree reordering
models. The phrase movements can be viewed as the movemtm stibtree
inside or outside a source subtree when the decoder is leaving from the previou
source state to the current source state. The notions ofrgovkide andoutside
a subtree can be interpreted as tracking facts about theesuiot-subtree transi-
tions observed in the source side of word-aligned trainaig dwith extra guidance
on subtree movements, the source-tree reordering modgdhesdecoder make
smarter distortion decisions. We observe improvements0o8 BLEU and-1.4
TER on English-Spanish an).8 BLEU and-2.3 TER on English-Iraqi.

For confidence measure, we proposédodness, a method to predict confidence
scores for machine translated words and sentences baseteatuee-rich classifier us-
ing structure features. We develop three novel featuretsetapture different aspects of
translation quality which have never been considered duha decoding time, including:

e Source and target dependency structure features thateethabtlassifier to utilize
deep structures to predict translation errors.

e Source POS and phrase features which capture the surface seoard context.

e Alignment context features that use both source and target @ollocation for judg-
ing translation quality.

Experimental results show that by combining the dependstrogture, source side
information, and alignment context features with word past probability and target
POS context the MT error prediction accuracy is increasewch$9.1to 72.2in F-score.
Our framework is able to predict error types namely insartgubstitution and shift. The
Pearson correlation with human judgment increases Dds@to 0.6. Furthermore, we
show thatGoodness can help the MT system to select better translations and asuét r
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improvements betweet4 and0.9 TER reduction are obtained. We develop a visualiza-
tion prototype using different font sizes and colors to kate attention of post-editors
whenever translation errors are likely to appear.

Finally, we develofl'riS, a statistical sentence simplification system with login
models, to simplify source sentence before translatingithe contrast to state-of-the-art
methods that drive sentence simplification process by haitten linguistic rules, our
method used a margin-based discriminative learning algoroperates on a feature set.
We decompose the original dependency tree into contextndigpey structures and in-
corporate them as feature functions in the proposed modw®. other feature functions
are defined on statistics of surface form as well as syntattice sentences. A stack de-
coding algorithm is developed to allow us to efficiently gexte and search simplification
hypotheses. The simplified text produced by the proposemsyseduced.7 Flesch-
Kincaid education level when compared with the originak.téx/e show that a compar-
ison of a state-of-the-art rule-based system to the prapsgstem demonstrates an im-
provement 00.2, 0.6, and4.5 points in ROUGE-2, ROUGE-4, andlve o, respectively.
Subjective translation evaluations show tB&%6 sentences witlmanual simplification
translations are better than the original translation. idale, when applyin@qutomatic
simplification translation20% sentences are better than the original translation.

7.2 Conclusion

Dependency structures are important linguistic resoutttatsbring long distance depen-
dency between words to local and represent the semantioretzetween words. In this
thesis work, we mainly focus on modeling and incorporatiegehdency structures into
statistical machine translation systems. We draw thewotig conclusions from our thesis
work:

1. Cohesive soft constraints can benefit machine transktidhis claim is supported
by experiments that cover a wide range of training corpusssimnging from 500K
sentence pairs up to 10 million sentence pairs. Furtherntbeeeffectiveness of
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our proposed methods was shown when we applied them to systeimg a 2.7
billion word 5-gram LM, different reordering models and degdency parsers. All
five cohesive constraints give positive results. We obskeveonsistent pattern
indicating that the observed improvements are stable atess sets.

2. Effectively exploiting dependency subtree movemendscamesive constraints, source-
tree reordering models substantially improve translagjoality. These movements
and constraints enable us to efficiently capture the sulbtrsebtree transitions ob-
served both in the source of word-aligned training data andkcoding time. Pro-
viding more features that are conditioned on differentiimfation, such as include
insideloutside subtree movements and cohesive constraints, benefit ttesrsper-
formance Moreover, further improvement can be obtainedriabkng MERT to
choose the most prominent ones from a larger basis.

3. The proposed confidence estimation method is capabletlgpthe quality of ma-
chine translated words and sentences based on a feathrelagsifier using de-
pendency structures and context features. It is also alpeettict translation error
types namely insertion, substitution, and shift. The pegabconfidence estimation
method correlates well with the human judgment. The core MJiree can benefit
from the proposed method in the n-best list reranking task.

4. For sentence simplification, a log-linear model equippét a stack decoding al-
gorithm, a discriminative training algorithm, and 177 degency structure and syn-
tactic feature functions is capable to produce better sfioglion candidates than a
rule-based system. When applying to machine translatidsestive evaluation re-
sults suggest that machine translation quality is beneiih fmanual and automatic
simplifications.

7.3 Discussion and Future Research Directions

Although we have developed a series of approaches to stalligimodel and incorporate
dependency structures into machine translation systémssptoblem has not been fully
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solved. There remain many intriguing research problemghvban be further explored.
Here we propose some possible directions for future rekearc

7.3.1 Improve Reordering Models

The cohesive soft constraints and the source-side depeyde® reordering model are
implemented around the interruption check in order to erageifinishing a subtree before
translating something else. It is very effective for phrhased decoding which searches
over an entire space within the distortion limit in order ttvance a hypothesis. However,
it is not straightforward to apply the models and constgtota bottom-up chart-based
decoding algorithm since the hierarchical model alreadydoets principled reordering
search with synchronous rules. One may combine our mod#iske hierarchical phrase
reordering model (Galley and Manning, 2008) by extendirggghrameterization of our
models to explicitly represent source-side subtree mowsrauring the decoding time.
Moreover, one can take advantage from our analysis andrdesigel dependency con-
straints. An example of this line is the work done by Gao ef2011). We believe such
extensions will generalize more subtle reordering eventsource dependency trees.

7.3.2 Improve Confidence Estimation

Confidence estimation is emerging as a vital component osticcess of commercialized
machine translation when there is no availability of theerefce translations. Our work
on Goodness can be expanded in several directions. First, one can appliyjdence es-
timation to perform a second-pass constraint decodingerAlfte first pass decoding, our
confidence estimation model can label which word is likelpéacorrectly translated. The
second-pass decoding utilizes the confidence informaticanstrain the search space and
hopefully can find a better hypothesis than in the first pabkss ilea is very similar to the
multi-pass decoding strategy employed by speech recogratigines or the coarse-to-fine
strategy in parsing.

Another idea is to test different visualization stratedgaesee if it truly benefits the cus-
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tomers. One may perform a user study on our visualizatiotopype to see if it increases
the productivity of post-editors. In addition, our work bdson a large manually collected
training data which is system-dependent and not alwaysadnkaiin other language pairs.
One can work on the problem of building the confidence estonah a cheaper way.

There are some work following in these directions recentlyeéxample Popovic et al.

(2011) and Specia et al. (2011).

7.3.3 Improve Automatic Sentence Simplification

Our work shares the same line of research with Klebanov €@04); Heilman and Smith
(2010) in which we all focus on sentence-level factual sifigaition. However, a major
focus of our work is on log-linear models which offer a newgpactive for sentence sim-
plification on decoding, training, and modeling problems c@ntrast, consider rule-based
systems Klebanov et al. (2004); Daelemans et al. (2004)Haidhan (2006); Heilman
and Smith (2010), in which sentence simplification processe driven by hand-written
linguistic rules. The linguistic rules represent priordarthation about how each word and
phrase can be restructured. In our model, each linguideasiencoded as a feature func-
tion and we allow the model to learn the optimized featuregives based on the nature of
training data. A potential issue is the proposed model nmighdusceptible to the sparse-
ness issue. We alleviated this issue by using structuré g count feature functions
which are lexically independent.

There are some directions to expand in this area. Our modejjeaerate repeatedly
noun phrases repeatedly in multiple simple sentences, @yeaungment the proposed
model to cope with anaphora resolution. Lexical simplifmais another direction since
we focus on structure simplification. To address the datasgpassue, one may use
crowd-sourcing such as Amazon Mechanical Turk to colleatenti@ining data.

Related to application for machine translation, we thing thost important issue is
to know which sentences should be simplified before traingiahem. An approach one
may try it to build a high-precision binary classifier to ddg a source sentence with
labels of simplify/not-simplify. We evaluated the impaésentence simplification on ma-
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chine translation using subjective human evaluation. Hewaet is not necessary the best
suitable way. One may consider an evaluation strategy whictore information-oriented
and efficient-oriented. For example, employ a questioenairthe target translation out-
put and based on answers, one can measure the time and thermfrebrrect answers.
We believe such extensions will bring more value of the se#asimplification to machine
translation.
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