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Abstract

Recent advances in machine translation have yielded considerable improve-

ments and promoted extensive development of various applications. Ma-

chine translation for speech input, or spoken language translation, is one of

the rapidly improving fields. With spoken language translation techniques,

users’ utterance is automatically transcribed and translated into a different

language. The promising nature of the task has already encouraged initial

development of spoken language translation systems for certain scenarios,

such as university lecture translation or telephone conversation translation

systems.

When applied to spontaneous speech, however, machine translation and

natural language processing techniques often show degraded performance.

This is primarily due to distinctive characteristics of spontaneous speech

compared to written text, which is the main training data for the techniques

traditionally.

The distinctive characteristics of spontaneous speech include speech disflu-

encies, ungrammatical sentence structures and lack of punctuation marks,

which severely degrade the performance of machine translation systems.

Automatically generated speech transcripts often contain recognition errors

due to such characteristics, which lead to further degraded performance of

the applications. The great importance of processing spontaneous speech for

machine translation systems promoted various techniques to be developed.

A promising approach to avoid this issue is transforming the spontaneous

speech transcripts into written-style texts.

This thesis is devoted to the machine translation of spontaneous speech. In

this thesis, novel techniques that bridge the gap between spoken language



and written language are presented. Various models which modify spon-

taneous speech through the insertion of punctuation marks and removal of

disfluencies are developed and optimized. The performance of the devel-

oped techniques is evaluated by measuring impact on machine translation

output, in addition to performance on intrinsic measurements.

In order to insert reliable punctuation and segmentation into speech tran-

scripts, an efficient machine translation-based model is developed. Speech

disfluencies are modeled using conditional random fields with semantically-

driven features. This model is integrated into a statistical machine transla-

tion system in order to achieve a more reliable disfluency decision process.

In this thesis, it is also shown that the two issues can be successfully modeled

jointly. Using a combined model of conditional random fields and neural

networks, we show the improvement of machine translation for speech tran-

scripts. Also, the initial effort on reconstructing spoken language-styled

utterances into written-style ones is discussed in this thesis.

In order to model spontaneous speech in varying scenarios, two genres of

data are chosen and used to test the models. Recordings of university lec-

tures and multi-party meetings contain different degrees of spontaneousness

and characteristics of spoken language. From the manual annotation and

the following analysis on the two corpora, we aim to gain deeper insights

on the types and frequencies of speech disfluencies.

Experiments on the two data sets using the proposed techniques show that

inserting punctuation marks and segmentation as well as removing speech

disfluencies can greatly improve both the quality of the machine transla-

tion and the readability of spontaneous speech. In addition, the developed

techniques yielded an outstanding performance in evaluation campaigns,

applied to different test data in varied scenarios.



Zusammenfassung

Jüngste Fortschritte im Bereich der maschinellen Übersetzung haben die

Entwicklung unterschiedlichster Anwendungen ermöglicht. Dadurch hat die

Bedeutung maschineller Übersetzung von gesprochener Sprache drastisch

zugenommen.

Jedoch birgt das Gebiet der maschinellen Übersetzung und der Verarbeitung

natürlicher Sprache noch viele Herausforderungen. Angewandt auf spontane

Sprache werden zum Beispiel deutlich schlechtere Ergebnisse erzielt, da die

Systeme hauptsächlich auf geschriebenen Texten trainiert werden.

Spontane Sprache charakterisiert sich unter anderem durch ein hohes Maß

an Unflüssigkeit, ungrammatische Satzstrukturen und das Fehlen jeglicher

Satzzeichen. All diese Eigenschaften bewirken auch, dass automatisch er-

stellte Transkripte häufig Erkennungsfehler aufweisen, welche sich dann neg-

ativ auf nachfolgende Anwendungen auswirken und somit auch die Leistung

maschineller Übersetzungssysteme deutlich reduzieren. Da die Verarbeitung

spontaner Sprache für die Anwendung maschineller Übersetzung somit von

großer Bedeutung ist, wurden verschiedene Methoden entwickelt, die diese

Eigenschaften modellieren. Ein vielversprechender Ansatz ist das Umwan-

deln spontansprachlicher Transkripte in formelle, der Schriftsprache ähn-

liche Texte.

Diese Arbeit widmet sich der maschinellen Übersetzung spontaner Sprache.

Es werden neuartige Verfahren vorgestellt, die eine Brücke zwischen gesproch-

ener und geschriebener Sprache schlagen. Es werden verschiedene Mod-

elle entwickelt und optimiert, welche spontane Sprache durch das Einfügen

von Satzzeichen und das Entfernen von Unflüssigkeiten modifizieren. Die

Leistungen dieser Verfahren werden anhand von Vergleichen mit manuellen



Transkripten sowie der Auswirkungen auf die maschinellen Übersetzungen

ermittelt.

Für das Einfügen von Satzzeichen wird ein effizientes Modell entwickelt,

welches sich an Modellen im Bereich der maschinellen Übersetzung ori-

entiert. Ein weiteres Modell wird für die Markierung von sprachlichen

Unflüssigkeiten entwickelt, welche unter Zuhilfenahme von “conditional ran-

dom fields” mit semantischen Merkmalen modelliert werden. Letzteres

Modell ist in ein statistisches maschinelles Übersetzungssystem integriert,

um Unflüssigkeiten noch zuverlässiger erkennen zu können. In dieser Ar-

beit wird auch gezeigt, dass beide Problemstellungen erfolgreich gemeinsam

modelliert werden können. Mit einem Modell, welches “conditional random

fields” mit neuronalen Netzwerken kombiniert, zeigen wir die Verbesserun-

gen maschineller Übersetzungen von Transkripten. Zusätzlich werden in

dieser Arbeit die ersten Bestrebungen diskutiert, gesprochene Äußerungen

in eine der Schriftsprache ähnliche Form zu überführen.

Um die Modelle zu testen, werden Daten aus zwei unterschiedlichen Bere-

ichen herangezogen, um spontane Sprache in wechselnden Situationen ab-

bilden zu können. Aufnahmen von Universitätsvorlesungen und Besprechun-

gen mit mehreren Teilnehmern zeigen einen unterschiedlichen Grad an Spon-

tanität und weisen allgemein unterschiedliche Eigenschaften gesprochener

Sprache auf. Durch die manuelle Annotation und darauf folgende Analyse

der beiden Korpora erhoffen wir uns, ein tiefergreifendes Verständnis der

unterschiedlichen Typen und Häufigkeiten sprachlicher Unflüssigkeiten zu

erlangen.

Experimente mit beiden Datensätzen unter den vorgeschlagenen Vorgehens-

weisen zeigen, dass durch das Segmentieren und Einfügen von Satzzeichen

sowie durch das Entfernen von Unflüssigkeiten, die Qualität der maschinellen

Übersetzung und die Lesbarkeit spontaner Sprache drastisch verbessert wer-

den können. Die hier entwickelten Methoden erzielten außerdem hervorra-

gende Leistungen in Evaluierungskampagnen, wo sie auf unterschiedliche

Testdaten und Szenarien angewandt wurden.
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Stüker, Yury Titov, Joshua Winebarger, and Liang Guo Zhang. My special

thanks goes to Kevin, who believed in me more than I did.

I would like to also thank my other colleagues at the Interactive Systems

Labs, who always made working on projects more enjoyable: Silke Dan-

nemaier, Sarah Fünfer, Klaus Joas, Bastian Krüger, Patricia Lichtblau,
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Introduction

A: “I mean you could imagine more things like uh how you do uhm
how you correlate the different uh features over time. In the best of
all possible- yeah we might need to get another memory- uhm some
more memory for it that could be the problem.”
B: “Uhm maybe. I mean I can send it out to some of the orga- to
some of the orga- group leaders.”

- Excerpt from multi-party meeting corpus (Cho et al., 2014c)

Analogue to recent development of natural language processing, its related applications’

performance has been greatly improved. Machine translation systems, for example,

have been widely used to translate one natural written language into another one in

the past years. Translating spontaneous utterance such as an excerpt shown above into

another human language, however, still remains as a very challenging task. Not only the

translation performance is affected, but also the readability of spontaneous utterance

is highly affected due to the abundance of disfluencies. Lack of detailed punctuation

marks is another reason of bad readability.

The most common sources for the parallel data required to train conventional ma-

chine translation systems are well-formed texts, such as news corpora or European

parliament proceedings. These systems, therefore, perform relatively well on well-

written input sentences. When applied to the transcripts of spontaneous speech, their

performance is however drastically degraded. As well as degrading the performance of
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1. INTRODUCTION

machine translation systems, spontaneous speech is also much harder to read. Reduc-

ing the difference between spontaneous speech and well-formed text would therefore

improve both the readability of the transcripts as well as the performance of the ma-

chine translation system. The readability of the aforementioned excerpt, for example,

is greatly improved when its speech disfluencies are cleaned up:

A: “You could imagine more things, such as, how you correlate
the different features over time. We might need to get some more
memory for it, that could be the problem.”
B: “Maybe. I can send it out to some of the group leaders.”

As this utterance now has a format which resembles written text closer than its

original form, it will match better with translation models trained on well-written

sentences, yielding better performance.

The key motivation of the research led to this thesis is that the cleaned-up, well-

punctuated speech transcripts will improve the machine translation performance as well

as the human readability. While an extensive amount of previous works are devoted to

address the issue of speech disfluencies (Fitzgerald, 2009; Shriberg, 1994) and imperfect

punctuation marks (Ostendorf et al., 2008) in speech transcripts, there are remains to

be done for the development of dedicated models focused on the improvement of the

machine translation performance. Thus, this thesis aims to adress the issue based on a

deeper analysis on the relationship between the characteristics of spoken language and

its machine translation.

In this thesis, we emphasize the importance of modeling the characteristics of spon-

taneous speech for the improved MT. We build various models devoted to each char-

acteristic of spontaneous speech and report their effectiveness in improving machine

translation performance. The techniques developed in this thesis are also combined

jointly and integrated into an SMT model in order to further investigate their poten-

tials.

1.1 Characteristics of Spoken Language

Spoken language has distinctive characteristics compared to the written language. Writ-

ten language generally consists of well-formed, grammatically correct sentences. Spoken

language, on the other hand, contains speech disfluencies due to its spontaneousness.
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A sheer volume of early work discussed speech disfluencies and further underlying

phenomena of spontaneous speech from a psycholinguistic point of view (Levelt, 1983;

Shriberg and Lickley, 1993). The syntactics and detailed description of ungrammatical,

spontaneous speech were also discussed in Hindle (1983). Based on their work, in this

section we give a brief description on speech disfluencies that we focus on in this thesis.

Speech disfluency can be classified into different categories. They include filler

words, such as “uh” or “uhm”, and discourse markers, such as “you know” and “I

mean”. They can also include the exact repetitions as well as rough ones, such as in a

sentence “There is, there was a girl”. Another reason for speech disfluency is correc-

tion. In spontaneous speech, speakers sometimes change their words and introduce a

new topic. For example, in the sentence “I would are you okay?”, the part “I would” is

aborted and a new topic is introduced. Especially in multi-party conversations, such as

meetings, where multiple speakers are involved, the language used by the participants

contains even more spontaneousness due to their active interactions and the interrup-

tions between them. For example, a speech segment “I don’t know what, uh, how far”

is found in the meeting data, followed by another speaker’s utterance “I will check for

that”. While the first segment already includes a correction of “what” and a filler word

“uh”, its last part “how far” is also interrupted by the followed speaker.

In addition to the speech disfluencies, spoken language varies greatly from written

language in its style and form. The usage of colloquial expressions and ungrammatical

sentence structures are further differences compared to written texts.

The lack of punctuation marks and sentence segmentation in the speech transcripts

causes another difficulty when processing spoken language. Unfortunately, many auto-

matic speech recognition systems insert either no or only unreliable punctuation marks

into the speech transcripts that they produce.

One promising strategy to handle this issue is to transform spoken language into

a format that closely resembles written text before translation. In this method, con-

ventional large-scale machine translation systems can be used without any additional

changes. This approach has the additional advantage that the readability of speech

transcripts can be improved.

In this work, different techniques to transform the transcripts of spontaneous speech

into well-formed texts are shown and compared to each other. Two different genres of
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data, university lecture and multi-party meeting, are chosen to represent different level

of spontaneousness of a spoken language.

Lectures are a source of spoken language, which often exhibits many characteristics

of spontaneous speech. Besides its spontaneousness and the following interest in it,

the increased necessity of translating lectures for international audiences (Fügen et al.,

2007) has recently promoted extensive research using university lecture data. In order

to support further research on lecture translation, we have annotated speech disfluencies

in the German lecture data collected at KIT (Stüker et al., 2012b).

In our globalized world, teams of different parts of the world are increasingly working

together. Internal team meetings held in one language need to be translated into

another language in order to make the discussions available to all involved parties.

Since human translation is time-consuming and costly, machine translation can be a

supportive tool to overcome this problem. For the two-party speech, there have been

research efforts investigating speech phenomena in telephone calls, such as SWBD data

(Godfrey et al., 1992). Multi-party meeting corpus has been also established (McCowan

et al., 2005), where the speech disfluencies are annotated manually in the follow-up work

(Besser and Alexandersson, 2007). However, the modeling of multi-speaker speech for

improved machine translation remain yet underexplored. In order to support further

research in this genre and develop useful models to capture speech phenomena, we

choose multi-party meeting corpus as our second speech source and annotated speech

disfluencies in it.

In order to evaluate the techniques developed in this work, not only is their accuracy

measured but also their impact on the quality of the subsequent translation.

This work demonstrates that inserting proper punctuation marks and sentence seg-

mentation is crucial for translating spontaneous speech. A novel approach to detect and

remove speech disfluencies using semantic features is presented. The improvement on

the translation quality when integrating the disfluency detection model into a statistical

machine translation system is analyzed. In this work, segmentation and punctuation

insertion are jointly modeled together with speech disfluency detection, combining two

techniques with different strengths. Designed to exploit the synergistic effects between

the techniques, this approach results in improvements both in translation quality and

readability of spoken language.
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1.2 Contribution of this Work

In this work, processing of spontaneous speech before machine translation is tackled

from two perspectives. As many automatic speech recognition system generate either no

or only unreliable punctuation marks, the impact of punctuation marks and sentence

boundaries in speech transcripts is analyzed. Speech disfluencies and their negative

impact on the quality of a subsequent machine translation are also investigated, along

with new techniques to model them.

First, the importance of punctuation marks and segmentation on machine trans-

lation quality is established. In this oracle experiment, human-generated punctuation

marks are inserted into the transcripts generated by an automatic speech recognition

system, based on word-edit distance. In addition, punctuation marks generated by

an automatic speech recognition system are inserted into the manual transcripts, in

order to evaluate how unreliable they are and how much the performance of a machine

translation system can be degraded. A monolingual translation system is developed

for this challenge. It is a translation system, which translates a non-punctuated and

non-segmented transcript into punctuated and segmented ones. By using the machine

translation system, it is possible to utilize most of the available data that already

contains reliable punctuation marks and segmentation. This monolingual translation

system is successfully deployed to insert punctuation marks and segmentation into the

in-house test data as well as test data of official evaluation campaigns, and improves

the translation quality in all instances.

In the following part of this work, the modeling of speech disfluencies using semantic

features is investigated. Certain types of speech disfluencies such as repetitions with

synonyms and corrections can be detected by observing repetitive or discontinuous

semantics. In this work, recurrent neural networks are used to represent each word as

a continuous vector. The continuous vector learned from the recurrent neural networks

can encode meaningful syntactic and semantic regularities of each word. In order to use

the vectors as features efficiently, words are grouped into different clusters based on the

word representations. In addition to the word clusters, a translation model is utilized.

By examining the potential translation of them, the semantic closeness of adjacent

words or phrases can be taken into consideration. Experiments on German lecture

data showed that when a conditional random field-based model with semantic features
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is applied to the disfluency detection task, it improves the translation performance by

9.8% compared to translating the text with disfluencies. Also, an upper bound of this

task is established by translating a clean version of test data where all disfluencies are

removed. This scheme is later extended so that it can be integrated into a statistical

machine translation system. A conventional approach to remove speech disfluencies for

machine translation of spontaneous speech is to process them in a separate preceding

step. One potential drawback of this approach is, however, that once an incorrect to

remove a disfluency decision has been made, it is hard to recover from it. This can pose

a severe problem for machine translation if a removed word should have been kept and

conveys an important meaning. In this new scheme, the decision on whether or not

a word is a disfluency is passed on to the statistical machine translation system using

word lattices. The MT reordering lattices are augmented to include the disfluency

probability of each token and expanded to have extra paths which skip over disfluent

words. This method improved the translation performance both on manual transcripts

and automatically generated transcripts.

Finally, a joint model of punctuation and disfluency for multi-party conversations is

devised. In this work, two modeling techniques with different strengths are combined to

exploit the synergies between the models. Conditional random fields are used success-

fully in sequence labeling tasks due to their ability to model first order dependencies,

while neural networks are very useful at classification tasks. In this scheme, both mod-

els generate two output labels or layers, where one is devoted to detecting punctuation

marks and the other one is concerned with predicting disfluencies. The predictions of

the models are extracted in probabilities and used as features in a log-linear combi-

nation. The results demonstrate that the combined model not only outperforms the

individual models in all metrics but also noticeably increases the readability.

The main contribution of this thesis is to develop segmentation and punctuation

insertion techniques and disfluency removal methodologies for spontaneous speech, and

establish their impact on machine translation performance. In order to analyze varying

degrees of spontaneousness and its impact on the task, we used two spontaneous speech

data sets from different scenarios.
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1.3 Overview

This section gives an overview of the contents of the individual chapters of this thesis.

Chapter 1 gives an introduction to the topic of this thesis.

Chapter 2 shows the challenges of spoken language translation. The characteristics of

spoken language compared to written language are given, emphasizing a special

processing is required for translation of spoken language.

Chapter 3 describes the fundamental theory applied in this work. Automatic speech

recognition is introduced and fundamentals of machine translation system are

given. Machine learning algorithms used throughout this work, such as condi-

tional random fields and neural networks are described. Also, the evaluation

metrics we used to measure the performance of the models built in this work are

introduced.

Chapter 4 presents previous work on this topic and compares the contribution of this

work to other previous works.

Chapter 5 introduces the two spontaneous data sets that we used throughout this

thesis along with the English ASR system we used. The machine translation

systems between multiple language pairs and the data sets we use to build the

systems are also described.

Chapter 6 shows the impact of segmentation and punctuation on machine translation

performance from the oracle experiments. Then the monolingual translation sys-

tem, which translates a non-punctuated text into punctuated text, is introduced.

We translate punctuated German lecture data into English and show the impact

of monolingual translation system on the translation performance. Later on, the

effectiveness of the monolingual translation system is compared with other sys-

tems in international evaluation campaigns. Also, we show how the input stack

of the monolingual translation system is modified so that it can be used in the

real-time spoken language translation system. We show that the latency can be

efficiently decreased while maintaining the similar performance.
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Chapter 7 presents a conditional random fields-based disfluency detection scheme.

We devise semantically driven features, in order to capture more disfluencies. Se-

mantic features include word clusters learned from recurrent neural networks and

phrase table features. Later this model is integrated into a statistical machine

translation model, using word lattices. Each word lattice encodes the disfluency

probability learned from the conditional random fields-based model. For poten-

tially disfluent words we introduce a new edge over the word, providing another

path to skip over the disfluent word. In this way we can achieve better translation

performance of spontaneous speech.

Chapter 8 describes two different ways of punctuation prediction and disfluency re-

moval for multi-party meeting data. In the cascaded model, we first detect speech

disfluencies using the conditional random field model. Three punctuation and

segmentation schemes are them applied to the meeting data and their perfor-

mance is compared. In the joint model, we use conditional random fields and

neural networks for the joint detection of speech disfluency and punctuation.

The two models with complementary advantages are then combined log-linearly.

Our experiments show that the joint model not only improves the translation

performance of the meeting data, but also the readability.

Chapter 9 shows how the fluent data after disfluency removal can reconstructed in

order to fit better to the machine translation systems. Deletion of words and

phrases is modeled using maximum entropy models while replacement of expres-

sions is performed by building up an artificial data.

Chapter 10 gives an overview of the results shown in this thesis.

Chapter 11 summarizes the contribution of this work and draws conclusions.
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Challenges of Speech Translation

With increased performance in the area of ASR, a large number of applications arise,

which use the output of ASR systems as input. Many of other applications, machine

translation systems are also trained on well-constructed text. It is therefore critical

for the systems to have a similarly clean, well-constructed input. Spoken language,

however, has very distinctive characteristics compared to written language. In this

chapter, we discuss the characteristics and related challenges in machine translation of

spoken language.

2.1 Lack of Sentence Boundaries and Punctuation

Currently many of automatic speech recognition systems generate either no or only

unreliable punctuation marks in their hypotheses. This poses a technical challenge for

the subsequent applications. Machine translation systems, for example, are generally

trained on text with well-defined sentence boundaries and human-generated punctu-

ation marks. This difference will naturally cause performance drop on translation

of spoken language without any punctuation marks. The quality of segmentation and

punctuation will also directly affect the translation quality, since translation models are

built on such well-defined sentences. As an ASR transcript without any punctuation

marks is merely a stream of words, lacking punctuation marks affects user readability

negatively as well.

One way to achieve better translation quality by matching the translation models

is to punctuate the ASR transcript prior to the translation process. This way has an

9
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additional advantage that we can use the conventional setup of MT system without

any further change (Peitz et al., 2011).

Performance of punctuation prediction on the ASR transcript often suffers from

the spontaneousness of the speech. Since a large amount of spontaneous utterance

is less grammatical compared to written texts and there are fewer sentence-like units

(Rao et al., 2007b), the conventional approach based on language model (LM) shows

degraded performance. Moreover, the presence of disfluencies in casual and spontaneous

speech increases the difficulty of this task.

Inserting punctuation and segmentation into ASR transcripts brings another chal-

lenge, due to its required amount of context information and the system latency. In

the following section, we will discuss this thoroughly.

2.1.1 Context and Latency

A real-time spoken language translation (SLT) system has to, among many other chal-

lenges, deal with the problem of latency. The latency of a real-time spoken language

translation system is the time between when a word is spoken and when its transcrip-

tion and translation are displayed to the user (Cho et al., 2013a). If the latency is

more than a few seconds then the whole translation system becomes unusable and frus-

trating for the user. Each component adds to the latency, due to computation time,

communication time and required future context.

Communication time can be kept to a minimum by having a fast connection and

low overhead between the individual components. Computation time may be reduced

by running the components on fast servers with multiple cores and by parallelizing

those parts of the individual components that can be. It may also require sacrificing

accuracy by using smaller, faster models.

In order to reduce the apparent latency the speech recognition component can be

configured to output its current best hypothesis about once a second. The displayed

output is then often updated by a newer, possibly better, hypothesis. This type of

setup has a much higher user acceptance than the alternative setup where the speech

recognition component waits until it has a stable hypothesis before outputting it which

can sometimes result in 8 or more words appearing at once.

The MT component is even more dependent on context than the speech recognition

component and often has to wait for the whole sentence to be recognized before it

10
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can be properly translated. A fast enough MT system can re-translate the sentence

each time the ASR system recognizes a new word and change the output displayed to

the user. For this to work, however, the MT system requires the ASR output to be

segmented into proper sentences.

These design decisions for both the ASR component, the MT component and the

real-time spoken language translation system as a whole pose some significant challenges

for the punctuation prediction component that converts the text output stream of the

ASR component into proper sentences required for the MT system. A major side

affect of the ASR component constantly updating its current hypothesis is that the

punctuation prediction component has to deal with possibly changing inputs. It also

has to have a fast computation time because the ASR system is sending updates very

frequently. As the MT component requires sentence boundary information as soon as

possible in order to function properly the punctuation prediction component has to

function well with only very little future context.

2.2 Disfluency in Spoken Language

Spoken language largely differs from written language. It contains self-repairs and dis-

fluencies. It sometimes includes ungrammatical parts, incomplete sentences or phrases.

Due to context, intonation, situation, and experience, humans are nevertheless able

to understand such non-fluent spoken language almost instantaneously (Lickley, 1994).

For machines, however, it is much more difficult to handle spontaneous speech.

The above mentioned characteristics hinder language processing and cause a major

performance drop. One reason for this is the mismatch between the well-structured

training data of the machine translation system and the actual test data, showing all

the signs of spontaneous speech - training data for machine translation usually does

not contain any disfluencies.

In the process of analyzing the output of automatic speech recognition and ma-

chine translation of spontaneous speech, we realized that our performance occasionally

suffers not only from less predictable spoken tokens, which are hard to process for the

automatic speech recognition systems, but also from disfluencies and pauses that hinder

correct n-gram matches. Moreover, disfluencies obstruct correct reordering and phrase-

pair matches in machine translation. Incorrect grammar, repetitions and corrections

11
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also make translation difficult. These characteristics of spoken language impede all the

different automatic language processing subsystems from automatic speech recognition

to machine translation and therefore have a negative effect on the understandability of

the output.

2.2.1 Speech Disfluency Types

In this section, we investigate detailed types of disfluencies, such as filler words, repe-

titions and corrections, false starts, abortions of words or sentences, hesitations, incor-

rectly used or pronounced words, as well as an imperfect grammar.

Filler words are a common disfluency in spontaneous speech. Filler words or

sounds are words or sounds that a speaker utters while thinking about what she is

going to say next or how she is going to finish a sentence. Some people insert them

constantly in their speech. Obvious filler words or sounds such as “uh” or “uhm” in

English, or “äh”, “ähm” or “hmm” in German are relatively easy to detect. Discourse

markers (e.g. “you know”, “well” in English) and editing terms (e.g. “I mean” in

English) are considered filler words as well (Shriberg, 1994; Zufferey and Popescu-Belis,

2004). Discourse markers, however, can be occasionally more difficult to distinguish as

it depends on the context whether they are considered filler words or not. Examples

are “like”, “well” or “and” in English, or “ja”, “und” or “nun” in German.

Another common disfluency is repetition, where speakers repeat their words. This

is often called as reparanda by Shriberg (1994) and Johnson and Charniak (2004). In

their work, an edit region is largely grouped into reparandum, interregnum, and repair.

A reparandum is defined to be classified either repetition, revision, or restart fragment.

Repetitions of words or phrases as well as the correction are another characteristic

of spoken language. The speaker copies exactly what he/she said before or utters a

rough copy, only changing a part of a word or a phrase. There are various reasons for

this: stuttering, bridging a gap that occurs while thinking, or simply the correction of

a word or a phrase.

Simplified examples of such repetitions from our disfluency annotated lecture data

with English gloss translation are shown in Table 2.1, in which an example of a identical

repetition is on the upper part, and an example of a rough repetition is on the lower

part. The details of this lecture data will be given in the next section.
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Source Das sind die Vorteile, die Sie die Sie haben.

English gloss These are the advantages, that you that you have.

Source Da gibt es da gab es nur eins.

English gloss There is there was only one.

Table 2.1: Repetitions in spontaneous speech

In the first excerpt, we see the case where the repair phrase is identical to the

reparandum. In the second excerpt, on the other hand, what the speaker said is revised,

so that the previously stated comment is corrected or expanded.

Another recurrent part of spontaneous speech are false starts, or restart fragments,

where speakers begin a sentence but change their plan of what they want to say and

continue differently. This type of disfluency occurs when words or sentences are aborted.

In extreme cases of false starts, a new context is introduced, putting an abrupt end

to the previously discussed idea. As demonstrated in Table 2.2, the speaker starts

a new way of forming the sentence after aborting the first several utterances. While

the example sentences shown in Table 2.1 contain approximately repetitive words or

phrases, this example contains aborted fragments without any repetition. The example

shown in this table depicts a case where the context is still kept in the following new

utterances. However, in spontaneous speech we occasionally confront other cases where

the previous context is abandoned and a new topic is discussed.

Source
Das ist alles, was Sie das haben Sie

alles gelernt, und jetzt können Sie...

English gloss
That is all, what you you have

learned all of this, and now can you...

Table 2.2: Restart fragment in spontaneous speech

There are several notable differences in notations of disfluency type between this

thesis and the representative previous work (Shriberg, 1994), where the author deployed

an annotation method where an edit region consists of reparandum, interregnum, and

repair. A reparandum can be either repetition, revision, or restart fragment. This

may be followed by interregnum, which includes filler words. Afterwards, they also

annotated repair, which is the actual utterance that the speaker wished to convey. This
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work showed deep insights in disfluency phenomena in speech, comparing and analyzing

different disfluency categories. In this thesis, on the other hand, we categorized different

types of reparandum and annotated them separately. Our disfluency type includes

interregnum as filler words and discourse markers. The repair is annotated explicitely.

This difference is motivated by our main goal of annotation, which is to model different

disfluency types separately and remove them for better machine translation quality.

Spontaneous speech includes a much wider variety of disfluencies. For example, due

to hesitations speakers often generate partial words or incomplete sentences/phrases.

Partial words are then sometimes incorrectly recognized, due to the non-matching

vocabulary and n-grams of ASR systems. Additional characteristics of spontaneous

speech include unclear pronunciation, lots of which can also lead to recognition errors,

and grammatically incorrect sentences.

The degree of speech disfluency is greatly increased when there are multiple speak-

ers involved. It occurs not only from speakers’ hesitation or stuttering, but from their

interaction with the other speakers. Such disfluencies are not always viewed as a psy-

cholinguistic phenomenon, but we consider it essential to first attempt to model them

together with other psycholinguistic disfluencies as they both are affecting the perfor-

mance of subsequent applications negatively, showing similar properties such as incom-

plete sentence patterns or ungrammatical phrases.
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3

Basic Speech Translation System

In this chapter, we review the fundamental components of spoken language translation

systems, covering both automatic speech recognition system and statistical machine

translation system. Whilst a complete speech to speech translation is possible and

deployed in many applications, in this thesis we are going to limit our discussion to

speech to text translation.

Afterwards, we describe the two machine learning (ML) algorithms that we use for

modeling speech phenomena throughout this thesis. In this thesis, conditional random

fields and neural networks are used to detect speech disfluency as well as to augment

punctuation marks.

Evaluation metrics we used in this thesis are also introduced in this chapter. The

performance of the automatic models built within the scope of this thesis is measured

intrinsically in F-scores or extrinsically in BLEU (Papineni et al., 2002).

3.1 Automatic Speech Recognition

Automatic speech recognition systems are designed to automatically recognize speech

in an audio signal or file and extract a sequence of words. Given the input sequence

of feature vectors X, an ASR system finds the most probable sequence of recognized

words W as:

Ŵ = arg max
W

P (W |X) (3.1)
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From the Bayes’ rule the Equation 3.1 can be rewritten into as followings.

Ŵ = arg max
W

P (W |X) (3.2)

= arg max
W

p(X|W )P (W )

p(X)
(3.3)

= arg max
W

P (X|W )P (W ) (3.4)

Once an acoustic speech input is represented as a sequence of feature vectors X,

the probability density p(X|W ) is estimated using the acoustic model. The conditional

probability p(X|W ) represents the probability that the feature vectors X are observed

given the word sequence W = w0w1w2 . . . wn−1wn.

P (W ) is the prior probability of the sequence, calculated by the language model.

The language model is derived from the likelihood of a sequence of words. n-gram

language models is a commonly used technique. In this model, the probability of a

word depends on the preceding n− 1 words is defined as following,

P (W ) ≈
N∏
i=0

P (ωi|ωi−1, ωi−2, . . . , ωi−(n−1)) (3.5)

where N denotes the number of words in the sequence and w0 is the start of sequence

symbol. As shown in this equation, the probability of a word can be calculated given

the sequence of last n− 1 words.

Based on the language and acoustic model, decoder decides the most probable

sequence of words for a given sequence of input features.

3.2 Machine Translation

Machine translation systems are designed to translate one natural language into an-

other. Statistical machine translation systems were first suggested in 90s (Brown et al.,

1990, 1993) and have shown a good performance. In this thesis, we used phrase-based

statistical machine translation systems for different language pairs to translate each

test sets with augmented punctuation marks and/on removed speech disfluencies.

The best translation Ê for a given input sentence F is defined as

Ê = arg max
E

p(E|F ) (3.6)
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The first step of the training process is preprocessing. In this step, sentences in the

parallel data that have a big length mismatch will be filtered out. Special symbols are

normalized. Depending on the language, additional preprocessing steps are applied.

For example, compound words in German are split into smaller words, in order to deal

with the out of vocabulary (OOV) issue.

In a phrase-based SMT system, the phrase table stores the map between source

words or phrase and their aligned target ones. The first step to build the phrase table

is to extract phrase pairs from the parallel data. For this, we use the word alignment

information. As long as a phrase pair is not violating the word alignment, it is extracted.

Once the phrase pairs are extracted from the parallel corpus, the quality of each

phrase pair is measured based on the relative frequency of the phrase pair given the

source phrase and the inverse relative frequency of it given the target phrase. In order

to estimate the quality of the rarely occurring phrase pairs better, smoothing is applied

on the frequencies (Foster et al., 2006). Lexical probabilities are often used to given an

additional information.

The language model is built on the target side of the data as described in Section

3.1. Modified Kneser-Ney smoothing (Chen and Goodman, 1996; Kneser and Ney,

1995) is applied to the probabilities.

A commonly used method for reordering is pre-reordering of source sentences prior

to the translation. In this method, the rules on how to reorder source sentences ac-

cording to the word order of target sentences are learned (Rottmann and Vogel, 2007).

Different models described earlier are combined log-linearly, where the weights are

optimized on the development data. As described more apparently for MT in Koehn

(2009), log-linear models for n feature functions can be expressed in the following form,

p(x) =
1

Z
exp

n∑
i=1

λihi(x) (3.7)

where λ is the weight for each feature and Z the normalization factor. hi(x) represents

each feature function for input variable x.

As shown in Och and Ney (2002), combining different translation models and lan-

guage models log-linearly has shown a great improvement on the translation quality. In

this scheme, the individual models are encoded as separate features and weighted using

interpolation coefficients optimized on a development set. Since the log-linear model
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in this scheme defines the target sentence probability for the given source sentence, the

previous function in 3.7 can be rewritten as

p(E|F ) =
1

Z
exp

 ∑
i∈features

λih(E,F )

 (3.8)

where E denotes the target sentence, F the source sentence and Z the normalization

factor. Same as before, h denotes each feature to be combined. The log-linear model

scores the hypotheses, on which the decoder performs the search for a best translation.

3.3 Conditional Random Fields

Introduced by Lafferty et al. (2001), conditional random fields are a framework ded-

icated to labeling sequence data. Thus, given the observed sequence, a conditional

random field (CRF) models a hidden label sequence. Figure 3.1 illustrates a CRF

which predicts the output sequence

Y = {. . . , yt−1, yt, yt+1, . . .}

given the input sequence

X = {. . . , xt−1, xt, xt+1, . . .}

as an undirected graphical model.

Figure 3.1: Simplified illustration of a conditional random field.

The conditional probability of a CRF model is defined as

p(Y |X) =
1

Zλ(X)
exp

(∑
i

λihi(X,Y )

)
(3.9)

where Z is a normalization factor devised for well-formed probability distribution. For

each feature hi its weight is λi.
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CRFs have been applied extensively in diverse tasks of NLP, such as sentence seg-

mentation (Liu et al., 2005), part-of-speech (POS) tagging (Lafferty et al., 2001) and

shallow parsing (Sha and Pereira, 2003).

In this thesis, we use the linear chain CRF modeling technique to detect speech

disfluencies as well as to augment punctuation marks. Therefore, the input sequence

X in Figure 3.1 corresponds to a word sequence and the extracted features on each

time step. The globally conditioned hidden variable Y is output labels, which tell us

whether the word at the time step is a disfluency or not or whether a punctuation mark

should be followed by the time step.

Throughout this thesis, we used two toolkits of CRFs, GRMM package (Sutton,

2006) and CRF++ (Kudoh, 2007), depending on our research purpose. GRMM package

supports two-layer CRF modeling. Therefore it is suitable to model disfluency and

punctuation together. To model this, we adopt one linear chain over disfluency labels,

one over punctuation labels, and another one in-between edges. CRF++ is used for

one-layer modeling due to its fast training and less memory usage.

3.4 Neural Networks

In last decades, neural networks (NNs) have been used extensively in various genres

of tasks, such as character recognition (Hinton and Salakhutdinov, 2006). Many other

NLP problems like language modeling (Schwenk, 2007), phoneme recognition (Waibel

et al., 1989) and speech recognition (Hinton et al., 2012; Kilgour, 2015; Maas et al.,

2014; Sainath et al., 2013) have been also successfully addressed using NN due to their

good classification ability.

As its name suggests, a neural network consists of neurons, which are connected

to each other. Output of each neuron is decided by all inputs to the neuron and their

weights along with an activation function. Initial works in neural networks (Rosenblatt,

1957) suggested the step function as an activation function.

ϕstep(x) =

{
1 if x > 0
0 if x ≤ 0

(3.10)

However, a drawback of the step function is that its derivative is almost always 0.

Instead, the sigmoid activation function defined as

ϕsigmoid(x) =
1

1 + e−x
(3.11)
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offers a smoothed version of it. A common activation function for classification tasks,

though, is the softmax activation function, which is defined as

ϕsoftmax(neti) =
eneti∑
k e

netk
(3.12)

where i denotes each neuron and k is a group of neurons. As shown in this equation,

the softmax activation function generalizes the output to form a discrete probability

distribution.

The neurons often are build up to multiple layers, formulating multilayer neural

networks. An input layer consists of input neurons with their values given. Output

neurons serve as the output of the neural network. The other layers between the two

layers are called hidden layers.

When neural networks have multiple hidden layers, then are referred to as deep

neural networks (DNN) (Hinton et al., 2006). One of the properties of DNN is pre-

training. Pre-training is designed to make use of the data to intelligently initialize the

weights, instead of randomizing them prior to training with backpropagation (Dahl

et al., 2012; Kilgour, 2015; Le, 2013; Seide et al., 2011). Typically pre-training is done

unsupervised, using an un-annnotated data.

Two broad categories of neural networks are used for sequence modeling, recurrent

neural networks (RNN) (Mikolov et al., 2010; Sundermeyer et al., 2012) where a hidden

layer depends on the previous token’s hidden layer and the feature of the current token

to predict its label and feed forward neural networks (Bengio et al., 2006; Morin and

Bengio, 2005) which have a fixed input context.

In any feed forward neural network topology, backpropagation algorithm is used to

update weights for the network based on the back-propagated errors in the examples

sent through the network.

Using softmax, a sigmoid neuron can saturate at its extremes. Since saturated

neurons update very slowly, it is not optimal for output neurons. Because of this

reason, a different error function has been tried. For error functions, mean square error

and cross entropy error functions are used frequently (Bishop, 1995).

In this thesis, we use a feed-forward neural network due to its fast processing time.

The neural networks are built using the Theano (Bergstra et al., 2010). Details on

topology will be given in the relevant chapters.
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3.5 Evaluation Metrics

In order to evaluate performance of models built for punctuation insertion and speech

disfluency detection tasks, we used two evaluation metrics in this thesis. In this section,

a brief description on them is given.

As an intrinsic evaluation metric, we used the F-score, or F-measure, which is

defined as a weighted average of precision and recall. Precision, in classification tasks,

is defined as

precision =
tp

tp+ fp
(3.13)

where tp denotes true positive and fp false positive. true positive represents correctly

predicted condition positive, while false positive covers erroneous prediction on condi-

tion negative. Recall is defined as followings.

recall =
tp

tp+ fn
(3.14)

In this notation, fn denotes false negative, which represents erroneous prediction on

condition positive.

F-score is then defined as following.

F = 2× precision · recall
precision+ recall

(3.15)

Therefore it represents how accurately the model performs on a given task. For

punctuation insertion task, we measure how exactly each punctuation class is inserted.

For disfluency detection task, we evaluate whether a token is correctly detected as a

disfluency or not, regardless different sub-classes of the disfluency.

As an extrinsic evaluation metrics, we used the bilingual evaluation understudy

(BLEU) (Papineni et al., 2002). Showing a relatively good correlation with human

evaluation scores, BLEU is a widely-used metric in SMT tasks. The BLEU score is

calculated by matching individual substrings within a string to a reference or multiple

ones. Therefore, n-gram overlaps in translation output and reference translation are

compared. Typically up to 4-grams are matched for the calculation. In order to avoid

too short output, the penalty is applied to reduce the score.

The punctuation inserted and/or disfluency removed test data is translated into

another language in order to demonstrate the impact of the two tasks on the machine

translation performance. The MT performance in this case is measured in BLEU.
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In this thesis, the metric BLEU is also used to calculate the similarity of texts after

applying sentence reconstruction techniques. Favoring locally fluent outputs, BLEU

can be a useful metric for this task.
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Related Work

The importance of reformulating spontaneous speech has been emphasized throughout

recent publications. In this chapter, we mainly focus on previous research on two

major fields of this thesis. First, we will review previous research on segmentation

and punctuation insertion for speech transcripts. The study on speech disfluency and

sentence reconstruction, including its impact on the performance of machine translation

will be given. Afterwards other research on spoken language translation tackling further

issues will be reviewed.

4.1 Sentence Segmentation and Punctuation Insertion for

Speech

The necessity of resegmentation of the ASR output was investigated in Rao et al.

(2007b). In this work, the authors trained a sentence segmenter based on pause dura-

tion and language model probabilities. From the experiments, they emphasized that

it is important to have commas in addition to periods within a sentence boundary,

since commas can define independently translatable regions and eventually improve

translation performance.

Ostendorf et al. (2008) gave a thorough analysis on speech segmentation and its

impact on further downstream processes. Pointing out that it is impossible to process

speech without some sort of segmentation, the authors reviewed types of segmentation

in spoken language, traditional and recent models for modeling it, and the commonly

used features in the models. It was also addressed that the definition of a sentence
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boundary in spontaneous speech is less clearer than written text, due to its character-

istics such as incomplete utterances and backchannel responses.

In previous work, the punctuation prediction problem was addressed to improve

the readability as well as a subsequent step in the natural language processing (Huang

and Zweig, 2002). In order to annotate ASR output with punctuation marks, they

developed a maximum entropy (ME) based approach. In this approach the insertion of

punctuation marks was considered a tagging task. An ME tagger using both lexical and

prosodic features was applied and the model was used to combine the different features.

Their work showed that it is hard to distinguish between commas and default tags, and

periods and question marks, since there is little prosodic information (similarly short or

similarly long pause durations) and the features can cover a span longer than bigrams.

They achieved a good F-measure for both reference transcripts and transcripts produced

by a speech recognition system.

The importance of sentence segmentation and punctuation was emphasized for

users’ readability again in Jones et al. (2005). They confirmed that sentence boundaries

are essential for aiding human readability.

Lu and Ng (2010) presented a sentence boundary and punctuation prediction sys-

tem using a sequential tagging tool. Their experiments were applied to transcribed

conversational speech without relying on prosodic cues, on Chinese and English. From

the experiments, it was shown that dynamic conditional random fields can outperform

an approach based on linear-chain conditional random fields or a widely used appraoch

based on a hidden event language model.

Segmentation within each sentence has been considered for better machine trans-

lation performance. In Wang and Waibel (1998), the authors improved the machine

translation quality of spoken language by segmenting sentences into phrasal structures.

This work made a contribution to emphasize the importance of defining separated zones

for translation, in order to improve the translation quality.

Segmentation and punctuation issues are addressed together from an MT-driven

perspective in Paulik et al. (2008). The authors modified phrase tables so that the

target side contains commas, but the source side does not contain any. Thus, when

this modified phrase table was applied during translation, it recovered commas on the

target side. For the segmentation and periods after each new line, they used a sentence
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segmenter based on a decision tree on the source side. They applied this method to

three language pairs and achieved a significantly improved translation performance.

In Peitz et al. (2011) the authors made an extensive analysis on how to predict

punctuation using a machine translation system. In this work, it was assumed that the

ASR output already has the proper segmentation, which is sentence-like units. They

investigated three different approaches to restore punctuation marks; prediction in the

source language, implicit prediction, and prediction in the target language. Using a

translation system to translate from unpunctuated to punctuated text, they showed

significant improvements on the IWSLT evaluation campaign 2011.

The authors then extended this work using a hierarchical phrase-based translation

system in Peitz et al. (2014). They show that long-range dependencies between words

and punctuation marks can be captured robustly by the hierarchical phrase-based sys-

tem. In addition, their monolingual translation system is tuned on F2 rather than

BLEU, which improved the accuracy and the following translation quality.

Recurrent neural networks are applied to the ASR output for punctuating it prior

to translation in Kazi et al. (2015). The authors found that presenting each word in

word vectors as well as having the recurrent state for the current word improved their

punctuation prediction performance.

While the work mentioned above focused on enhancing punctuation accuracy or

the machine translation performance when using the punctuated ASR output, some

works are dedicated to research on MT performance for a given segment length, or la-

tency. The empirical study on how utterance chunking influences machine translation

performance is given in Fügen and Kolss (2007). In this work, machine translation per-

formance is compared for each given segment length. From their experiments both on

ASR hypotheses and reference transcripts, the authors show that even though chunking

at the sentence boundaries is a good method, it is often not applicable for MT due to

their length.

The authors in Sridhar et al. (2013) made an extensive study on different segmen-

tation strategies and latency. They inserted segments based on various techniques into

ASR output for real-time translation experiments. It was shown that a good perfor-

mance can be achieved when they use the conjunction-based segmentation strategy

along with a comma-based segmentation.
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More algorithms to optimize segmentation strategies for simultaneous speech trans-

lation were proposed and compared in Oda et al. (2014). It was shown that the two

methods based on greedy search and dynamic programming can effectively separate the

source sentence into smaller segments, without harming the translation performance.

This work is later further extended by Shavarani et al. (2015), where the authors present

their investigation on segmentation in order to find the trade-off between latency and

quality of spoken language translation. In order to address an issue of the previously

suggested algorithm, Greedy-DP, where larger segments that can result in worse la-

tency are preferred, the authors in this work suggested Pareto-optimality approach.

In this approach they considered latency as an optimization parameter and achieved

better/similar translation quality maintaining low latency.

Among different motivations for the sentence segmentation, Xu et al. (2005) split

long sentence pairs in the bilingual training corpora to make full use of training data

and improved model estimation for SMT. For the splitting they used the lexicon in-

formation to find splitting points. They showed that splitting sentences improved

the performance for Chinese-English translation task. Similarly, to improve the perfor-

mance of Example-based machine translation (EBMT) systems, Doi and Sumita (2004)

suggested a method to split sentences using sentence similarity based on edit-distance.

4.2 Speech Disfluency Detection and Sentence Reconstruc-

tion

An early work in the automatic detection of speech disfluencies is based on statisti-

cal language model (Heeman and Allen, 1999). In their work, the speech recognition

problem is redefined in a way that it includes the identification of POS tags, discourse

markers, speech repairs, and intonational phrases.

Another early work (Levin et al., 1998) suggested to use an interlingua represen-

tation. Despite of a good performance in handling spontaneous speech, this approach

was limited to only domain-specific dialogs.

The disfluency detection problem has been addressed using a noisy channel approach

(Honal and Schultz, 2003). In this work it is assumed that fluent text, free of any

disfluencies passed a noisy channel which adds disfluencies to the clean string. The

authors use language model scores and five different models to retrieve the string,
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where the two factors are controlled by weights. An in-depth analysis on disfluency

removal using this system and its effect are provided in Rao et al. (2007a). They find

that for the given news test set, an 8% improvement in BLEU is achieved when the

disfluencies are removed.

In another noisy channel approach (Maskey et al., 2006), the disfluency detec-

tion problem is reformulated as a phrase-level statistical machine translation problem.

Trained on 142K words of data, the translation system translates noisy tokens with dis-

fluencies into clean tokens. The clean data contains new tags of classes such as repair,

repeat, and filled pauses. Using this translation model based technique, they achieve

their highest F-score of 97.6 for filled pauses and lowest F-score of 40.1 for repairs.

The noisy channel approach is combined with a tree-adjoining grammar to model

speech repairs in Johnson and Charniak (2004). A syntactic parser is used for building

a language model to improve the accuracy of repair detection. Same or similar words

in roughly the same order, defined rough copy, are modeled using crossed word depen-

dencies. Trained on the annotated Switchboard corpus, they achieve an F-score up to

79.7.

The automatic annotation generated in Johnson and Charniak (2004) is one of the

features used for modeling disfluencies in Fitzgerald et al. (2009a), where they train a

CRF model to detect speech disfluencies. In addition to the automatic identification by

Johnson and Charniak (2004), they use lexical, language model, and parser information

as features. The CRF model is trained, optimized and tested on around 150K words

of annotated data, where disfluencies are to be classified into three different classes.

Following this work, the authors offer an insightful analysis on syntactics and semantics

of manually reconstructed spontaneous speech (Fitzgerald et al., 2009b).

In Liu et al. (2006), the authors explored different modeling techniques (i.e., the

HMM, ME, and CRF approaches) on sentence unit and disfluency detection separately.

It was shown that discriminative models are generally superior to the generative models

for the given task, incorporating various features. The performance was measured in

WER.

Though most of the progress has been focused on enhancing the performance of

speech recognition via disfluency detection, authors of the work Wang et al. (2010)

employ disfluency detection to achieve improved machine translation. They train

three different systems. The first system combines hidden-event language models and
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knowledge-based rules. The second system is a CRF model, which combines lexical

features and shallow syntactic features. The final system is a rule-based filler-detecting

system. Five classes are used in this task. The test sets for testing MT performance

are generated by manually pulling out sentences with disfluencies from all sentences

available. Thus, only the sentences containing disfluencies are selected and evaluated.

There are two test sets built in this way, which contain 339 sentences and 242 sentences

out of 1,134 sentences and 937 sentences respectively. Absolute improvements of 0.8

and 0.7 BLEU points are gained on the two selected test sets.

Sentence boundaries and speech disfluencies are studied together in other previous

works. Combining prosodic and lexical information to detect sentence boundaries and

disfluencies was demonstrated in the work of Stolcke et al. (1998), where decision trees

are used to model prosodic cues and n-grams for the language model. The authors

suggested that having large amounts of recognizer output as training data for the

models can improve the prediction task as it lowers the mismatch between training

data and test set.

In Wang et al. (2014) the authors presented an extensive study on various methods

of combining punctuation prediction and disfluency removal. They applied their work

to telephone speech data and evaluate it using F-score. Their models for punctuation

prediction and disfluency removal are combined using either a cascade approach or a

joint approach. Their results demonstrate clearly that both problems influence each

other. The soft cascade system, where the decision label of the first prediction is

embedded as a feature of the second step, outperforms the hard cascade approach

where the second step is only performed on the output of the first step.

The impact of segmentation and disfluency removal on translation of conversational

speech is investigated in Hassan et al. (2014). They separated the process into several

steps. First they use a CRF model to detect sentence units. Based on these units

they detect speech disfluencies, which are divided into two categories. After the simple

disfluency is modeled using a CRF model, they use another CRF classifier to insert

punctuation marks followed by a knowledge-based parser in order to remove more

complicated disfluencies.

An in-depth analysis on automatic punctuation and disfluency detection in multi-

part meetings has been made in Shriberg et al. (2001). In this work, the authors

investigated the issue using prosodic cues, including duration, pitch features. Later

28



4.2 Speech Disfluency Detection and Sentence Reconstruction

this work is extended to include and compare lexical clues (Baron et al., 2002). For

lexical cues they also considered n-gram language models. They show that prosodic

features can bring more robust performance, especially when recognition errors are

considered.

The authors in Hough and Purver (2014) investigated on speech repair and edit term

detection with minimal latency. In this work, they used information-theoretic measures

from n-gram models as a principal decision features in order to detect different stages

of repairs.

Speech reconstruction from a perspective of building grammatically correct sen-

tences is discussed in Fitzgerald and Jelinek (2008). On the Fisher data (Cieri et al.,

2004), they annotated 6K sentences in detail, in order to achieve more coherent and

grammatical sentences.

Authors in Xu et al. (2012) showed how paraphrasing can be applied to change the

style of a text. In this work, they paraphrased modern English into Shakespeare-styled

English, and vice versa. Since they found out that BLEU tends to give an incomplete

picture of system performance, the authors built and compared three different auto-

matic metrics to measure the performance of paraphrasing. Based on cosine similarity,

language models, and logistic regression, each of the three automatic metrics showed

an improved correlation with human judgments. For the paraphrasing task itself, they

used 31k aligned sentences to build the monolingual system to translate one to another.

This issue was discussed for speech in Neubig et al. (2012). In this work, a monotonic

SMT-based model is used for creating clean transcripts from ASR transcripts based on

in-depth analysis of the types of corrections. Implemented using weighted finite state

transducers, their model could succesfully transform ASR transcripts into clean ones.

The proposed method was able to perform deletions of redundant words, insertion of

punctuation and omitted words, and correction of colloquial expressions.

Paraphrasing using a monolingual translation system (Quirk et al., 2004), within

the noisy channel model in Brown et al. (1993), has shown its effectiveness. Trained

on 139k sentences of large monolingual parallel data, the translation system showed a

good performance to generate monolingual paraphrases.
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4.3 Other Works on Spoken Language Translation

Apart from the two major points that this thesis tackles, many other works have shown

further research related with spoken language translation.

The issue of quality of a translation of spoken language has been discussed ex-

tensively in previous research Kumar et al. (2014). Testing the SLT performance on

the translation task of Spanish Fisher corpus (Post et al., 2013) (LDC2010S01 and

LDC2010T04) to English, the authors showed that the ASR performance is negatively

affected when recognizing conversational telephone speech. The inspiration from this

work let the authors investigate the optimal coupling of ASR and SMT components

later on in Kumar et al. (2015). In this work, authors compared different criteria to

choose ASR hypothesis to translate for the Spanish-English Fisher translation task.

Among other approaches, the authors could achieve the best performance when choos-

ing the path which brings the best performance when it is translated monotone.

Tsvetkov et al. (2014) showed yet another approach to improve SLT. In this ap-

proach, they simulate likely mis-recognition errors and include them into the phrase

table of a standard MT system. Their results demonstrated that using this technique

brought a consistent improvement on several language pairs from English.

Inspired by simultaneous interpretation, authors in He et al. (2015) proposed to

rewrite the reference translation. In order to support good translations while producing

them promptly, they made an additional reference translation which is more monotone.

By applying the rules that they generate upon linguistic knowledge, the word order of

the newly created reference is closer to the source language. On Japanese to English

translation, where there is a substantially big difference in word order, they could

achieve better and faster translation.

There was another approach to learn from simultaneous interpretation (Shimizu

et al., 2013). In their work, simultaneous interpretation data is collected, analyzed

and incorporated into the learning process of the machine translation system. Re-

sults showed that this approach helped them to have a translation similar to that of

experienced interpreters.
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4.4 Comparison of this Work to Previous Works

There are notable differences between the techniques devised in this thesis and the

previous works. First, the punctuation insertion system advised in Peitz et al. (2011)

was limited to only punctuation marks within a given sentence boundary. As discussed

earlier, the assumption in their work is that reliable sentence boundaries are already

available. In this thesis, the monolingual translation system is used to predict sentence

boundaries additionally. Thus, our model supports the actual end-to-end SLT scenario

more closely, where sentence-like units are not offered by the ASR engine.

We extended the disfluency detection model shown in Fitzgerald et al. (2009a);

Liu et al. (2006) further by using the novel features. The word representations from

RNN and phrase table information for given source words and phrases are designed to

capture deeper semantics.

While the performance of many of the previous works in punctuation insertion and

disfluency detection is measured only in the domain of automatic speech recognition,

namely in accuracy, in this thesis we measure the performance in terms of machine

translation, in order to investigate the issues’ significance and the developed models’

impact in the further processes in NLP.

One of the most notable differences is that we integrated the disfluency detection

scheme into SMT. Most of other works in this field leave the task as a separate, addi-

tional step, even if the output is used as an input of MT. By integrating the disfluency

detection scheme into SMT, it is possible to choose clean words to translate based on

weights of disfluency probability and MT components.

While the work in Hassan et al. (2014) showed an analysis on speech disfluency and

punctuation issues in telephone speech of two speakers, this thesis addresses those in

multi-party meeting in detail. Not only the multi-party meeting speech has an extensive

amount of disfluency, but interactions between the multiple participants creates another

challenge to build correct segment-like units. Also, in this thesis we show a novel

scheme where two machine learning techniques are combined in order to detect speech

disfluencies and augment sentence boundaries at the same time.
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5

Spontaneous Data and

Experimental Setup

Two different genres of in-house speech data, university lecture (Cho et al., 2014a) and

multi-party meeting, are chosen to represent different degree of spontaneousness. In

this chapter, details on the disfluency annotation, its categories and data statistics are

described.

In the next part, we describe the automatic speech recognition we used in this work.

The system is used to generate hypotheses for English. Also, the phrase-based machine

translation systems for different language pairs that we used throughout in this thesis

are also discussed in this chapter.

5.1 Spontaneous Speech Data

As discussed in Chapter 2, many issues arise when processing spontaneous speech due

to its distinctive characteristics. The conventional method of modeling such linguistic

phenomena is a supervised training, which requires annotated data.

There are several available spontaneous speech resources, such as Switchboard

(SWBD) (Godfrey et al., 1992) and Fisher (Cieri et al., 2004). SWBD consists of

telephone speech between two participants. Fisher data lacks detailed annotation on

exact repair region, making it less efficient for our task, modeling speaker-generated

errors. While this data is very well-resourced and already became a standard for the

evaluation of automatic speech recognition and simple disfluency detection tasks, the
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given prompts for speakers require a higher speaker cognitive load compared to other

spontaneous speech corpora (Fitzgerald, 2009). Even though SWBD offers disfluency

annotation, the spontaneousness we can model using this data is limited to English tele-

phone speech between only two people. The AMI Meeting Corpus (McCowan et al.,

2005) includes 135 sessions of multi-party interaction data, from both scenario-driven

and real, spontaneous meetings, in which selected 28 sessions are annotated with dis-

fluency (Germesin et al., 2008).

In order to model different degrees of spontaneous speech, we take two different

genres of speech data. The university lecture data consists of German lectures given

at the Karlsruhe Institute of Technology, which are transcribed and translated into

English. The lecture data covers a broad range of topics in computer science. Another

data set contains multi-party meetings held in English. Unlike the university lecture

data, where there is usually a single speaker per each lecture, our multi-party meeting

corpus involves 5 to 12 people in each meeting session. The interaction between the

participants adds yet another degree of spontaneousness in the data.

In this section, we introduce these two data sets. Their characteristics as well as

data statistics are also presented.

5.1.1 University Lectures

Most people who hold lectures tend to speak freely and do not read from a script.

Compared to other styles of manuscript speech, such as political speeches or TED talks,

which contain only very limited amounts of spontaneousness of the forms described in

Section 5.3.1, university lectures express both more instances as well as varieties of

spontaneousness.

The manual transcripts of the lecture data contain all the words, partial words,

sounds and utterances of the speaker, including disfluencies. The disfluency annota-

tion has been performed manually and on lectures that were previously recorded and

transcribed. In this section, we describe how we annotated the disfluencies in the data

and provide detailed statistics on the size of the corpus and the speakers. A special

process applied to the English reference translation is also described.

34



5.1 Spontaneous Speech Data

5.1.1.1 Annotation

Prior to the annotation of the lecture corpus, we carefully examined the manual tran-

scripts and explicitly chose lecture sets with a relatively high amount of disfluencies. In

some rare cases, lectures showed characteristics of manuscript speech and thus had to

be filtered out. The utterances of such lecturers were relatively clean and either lacked

repetitions, corrections, filler words and so on, or showed very little of those.

Then, human annotators were asked to work on the data. Their first task was to read

the transcripts in order to understand and follow the train of thought of the speaker.

Afterwards, they marked disfluencies and characteristics of spontaneous speech by using

the tags presented in the following section.

We aim to annotate starting and ending points of disfluent parts, so that removing

the parts between the two points will generate cleaner and more readable sentences.

5.1.1.2 Disfluency Classes

The annotators distinguished several categories of disfluencies, namely repetitions and

corrections, filler words and sounds, false starts, aborted sentences, and unfinished

words.

Filler words and sounds often occur when a speaker hesitates. In our transcripts,

we had a variety of filler words, for example “uh”, or “uhm” and also “ähm” and “äh”.

In order to enhance the performance of the automatic processing, these various versions

of fillers were unified into “uh”, or “uhm” respectively in our work. Words that only in

some contexts are considered filler words remained unchanged. This class also includes

discourse markers such as “nun” (“now”, “well”, in English) or “ja” (“yes”, “right” in

English) in German.

Original transcript äh das eine ist die ähm ist die Position, ja.

Disfluency annotation <uh> das eine +/ist die/+ <uhm> ist die Position, <ja>.

English gloss <uh> the one +/is the/+ <uhm> is the position <yeah>.

Reference The one is the position.

Table 5.1: An example sentence of the filler and rough copy class in the lecture corpus.

Filler words are unified.

Table 5.1 shows the unification of certain types of filler words along disfluency
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tagging of another filler word and repetition. Since we observed mixed forms of the

simple filler throughout our corpus, we changed “ähm” and “äh” into “uhm” and “uh”.

Another filler word “ja” at the end of the sentence was also marked.

In spontaneous speech, repetitions and corrections occur when a speaker repeats her

words. Repetitions can either be identical to the first utterance, or slightly different,

because a certain part of a sentence is corrected. Such disfluencies are grouped together

as rough copy in our work. Partial words can also occur in this class. An example of

a repetition and a partial word is shown in Table 5.2, along with the literal translation

and reference translation of the sentence. In this example, the verb and an additional

word next to it “werden da” (engl. “will be here”) are forming an identical repetition.

In the same sentence, a partial word “Ka” is also annotated as a rough copy, as it is a

partial, but repetitive fragment of its next word “Kapitel” (engl. “Chapter”).

Disfluency annotation
... solche Dinge, die +/werden da/+ werden da

vorgestellt, was ein ganz neues +/Ka=/+ Kapitel ist ...

English gloss
... such things, which +/will be here/+ will be here in-

troduced, which a totally new +/cha=/+ chapter is ...

Reference
... things like that will be introduced there, which is a totally

new chapter ...

Table 5.2: An example sentence of the rough copy class in the lecture corpus

Another class that we use in our work is non-copy, which is reserved for false starts

or aborted sentences. This tag covers the case when a speech fragment is dropped and

a new fragment is introduced, which is often observed at the start of a sentence. An

example of this class is shown in Table 5.3. Here, we can observe that a different

topic is introduced after the previous topic is dropped. The last token of the non-copy

disfluency is tagged as a partial word as it is one from the full word “rechteste” (engl.

“furthest to the right”).

Disfluency annotation -/Mit dem recht=/- er würde wieder zurückgehen.

English gloss -/With the right=/- it would again go back.

Reference It would go back again.

Table 5.3: An example sentence of the non-copy class in the lecture corpus
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As shown in the examples, our goal in this German lecture data annotation is to

generate correct speech output. In our corpus, all disfluent parts that annotators believe

to be deleted are marked as a disfluency in order to obtain clean, readable utterances.

Partial sentences or phrases whose contents have been dropped by the speaker are also

marked to be removed.

5.1.1.3 Sentence Reconstruction

From our manual analysis on the sentences where disfluency annotation was applied,

we found out that even after disfluent words and filler sounds are removed, many of

the spoken fragments are still grammatically imperfect. Many of them also include

colloquial expressions that in general would rarely occur in written language. Some

conjunctions, for example, are superfluous - they are not necessarily considered as a

disfluency but can be removed in order to obtain a more formal-style sentence. As these

properties affect user readability negatively, we desired another version of annotation

offering a grammatically correct utterance.

So after the first version of disfluency annotation was done, the annotators corrected

the sentences. They deleted repetitions, corrections and filler words and formed correct

sentences. They were allowed to, if necessary, reorder words, and if there were no other

possibilities to form a correct sentence, they could even leave out parts and change or

add words. By doing so, we hope to get a grammatically correct version that is easier

to understand and more fluent, while still preserving the content of the original, thus

making it more suitable for use in subsequent automatic processes such as machine

translation.

Similar attempts have been made for English conversational telephone speech. In

Fitzgerald and Jelinek (2008), the authors published a small corpus consists of 6K

sentence-like units chosen from the Fisher data (Cieri et al., 2004). In this corpus,

each sentence is annotated in detail, how the sentence can be reconstructed in order to

achieve better grammaticality.

These sentence reconstruction corpora are valuable resources to offer deeper insights

into the structure of spontaneous speech. Despite its extreme difficulty, we believe

this level of disfluency detection and correction will be potentially the future goal of

the research in this area. This second version of annotation is therefore inevitable.

As a result, we hence get two German versions: an unchanged one augmented with
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disfluency tags, and another one considered to be a grammatically and linguistically

correct German reproduction of the original sentence.

Manual transcript

Wenn Sie natürlich in der Vorlesung sitzen und der Vor-

lesung folgen, dann ist Sprache, die gesprochene Sprache,

ein Problem.

English gloss
When you of course in the lecture sit and the lecture follow,

then is speech the spoken speech a problem.

Disfluency annotation

Wenn Sie natürlich in der Vorlesung sitzen und der Vor-

lesung folgen, dann ist +/Sprache/+ die gesprochene

Sprache ein Problem.

English gloss
When you of course in the lecture sit and the lecture follow,

then is +/speech/+ the spoken speech a problem.

Disfluency annotation Wenn Sie natürlich in der Vorlesung sitzen und ihr folgen,

with reconstruction dann ist die gesprochene Sprache ein Problem.

English gloss
When you of course in the lecture sit and it follow, then is

the spoken speech a problem.

Reference
Obviously, when you are sitting in the lecture and are fol-

lowing it, then spoken speech is a problem.

Table 5.4: An example sentence from the disfluency-annotated lecture corpus

Table 5.4 displays an excerpt of our annotated corpus, which shows the sentence

reconstruction process described in this section as well as a reference translation. Words

considered to be or causing disfluency are in bold letters. The first two rows show the

original manual transcript of a German sentence along with its literal, gloss translation

in English. It contains a repetition of the word “Sprache” (engl. “speech”). Therefore,

in the next two rows representing the first annotated version, the word is marked with

a repetition tag. Moreover, the fluency of this sentence can be clearly improved by

replacing the words “der Vorlesung” (engl. “the lecture”) with a pronoun, as the noun

is already used in the first part of the sentence. Finally, the last line offers a correct

English reference translation, generated by human translators.
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5.1.1.4 Reference Translation

The transcripts had been manually translated into English as described in Stüker et al.

(2012b), prior to the disfluency annotation. Annotators, however, were also asked to

check the English translation against the German source text, thereby completing their

task. Although repetitions and other characteristics of spontaneous spoken language

in the source sentence were not supposed to have been taken into account for the

translation, and moreover are not needed for a readable reference translation, we found

that sometimes the English translations still contained filler words or sounds, repetitions

and corrections or unfinished or aborted sentences and words. In this case, we asked

our annotators to also tag them, in order to make the reference more fluent.

No additional reference is created for the reconstructed sentences. The reference

translation is based on the first version of the annotation. Therefore, it is possible that

reference sentence does not exactly match the reconstructed sentences.

5.1.1.5 Corpus Details and Statistics

In this section, we will provide a detailed analysis of the disfluencies occurring in the

lecture data. Relevant statistics on disfluencies will be given, including the amount of

each sort of disfluency present in the corpus. Moreover, the proportions of different

categories of disfluencies used by different speakers will be compared and discussed.

Table 5.5 shows the data statistics on disfluency classes for each speaker. Talk

duration for each speaker is also shown, as well as the number of tokens of different

disfluency classes and their proportions in each talk. Tokens include all words as well

as punctuation marks. Therefore, one word or a punctuation mark is considered as one

token.

Most of the talks are from computer science lectures held at our university. We

have annotated 23 lectures from 17 speakers. Some of the talks are merged lectures

from one speaker while some talks are only short excerpts from a lecture. Each talk

has a different length, therefore we have largely varying numbers of tokens gathered.

Statistics shows that the usage of certain types of disfluencies highly depends on the

speaker.

Looking at the summed number, we have annotated around 130K tokens including

punctuation marks, which correspond to 5,429 parallel sentences in German and En-

39



5
.

S
P

O
N

T
A

N
E

O
U

S
D

A
T

A
A

N
D

E
X

P
E

R
IM

E
N

T
A

L
S

E
T

U
P

Speaker ID Filler words Rough copy Non-copy Non-disfluency All tokens (hh:mm:ss)

Speaker 1 4,782 11.50% 1,568 3.77% 458 1.10% 34,773 83.63% 41,581 04:05:46

Speaker 2 633 2.88% 504 2.29% 413 1.88% 20,465 92.96% 22,015 02:21:26

Speaker 3 550 3.97% 320 2.31% 97 0.70% 12,870 93.01% 13,837 01:27:04

Speaker 4 1,339 10.55% 789 6.22% 295 2.33% 10,264 80.90% 12,687 01:07:08

Speaker 5 607 6.14% 490 4.96% 76 0.77% 8,715 88.14% 9,888 00:59:29

Speaker 6 601 6.66% 308 3.41% 79 0.88% 8,040 89.06% 9,028 01:25:47

Speaker 7 126 2.28% 192 3.47% 64 1.16% 5,145 93.09% 5,527 00:46:53

Speaker 8 229 5.43% 33 0.78% 17 0.40% 3,938 93.38% 4,217 00:35:09

Speaker 9 418 12.67% 287 8.70% 83 2.52% 2,510 76.11% 3,298 01:13:52

Speaker 10 74 4.66% 34 2.14% 26 1.64% 1,455 91.57% 1,589 00:12:47

Speaker 12 41 4.27% 43 4.48% 7 0.73% 869 90.52% 960 00:05:19

Speaker 13 56 6.50% 71 8.25% 24 2.79% 710 82.46% 861 00:06:18

Speaker 14 15 1.82% 11 1.34% 14 1.70% 782 95.13% 822 00:05:47

Speaker 15 43 6.22% 8 1.16% 1 0.14% 639 92.47% 691 00:04:33

Speaker 16 26 4.01% 17 2.62% 2 0.31% 603 93.06% 648 00:04:56

Speaker 17 41 6.65% 48 7.78% 37 6.00% 491 79.58% 617 00:05:21

SUM 9,581 7.47% 4,713 3.67% 1,693 1.32% 112,269 87.53% 128,266 16:47:35

Table 5.5: Data statistics of lecture corpus, including classes of disfluency for each speaker
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glish. The English reference consists of 113K tokens. The most common disfluencies are

filler words and discourse markers, which represent around 7.5% of all tokens. Rough

copy tokens correspond to 3.7% of all tokens. Non-copy disfluencies come to 1.3% of

the whole corpus. More than 87.5% of the corpus are tokens without disfluencies.

5.1.2 Multi-party Meeting

In the previous section, we introduced our disfluency-annotated German lecture corpus,

which is designed for modeling spontaneous speech phenomena of monologue speech.

NLP of multi-speaker speech presents unique research challenges. Various types of

speech disfluencies have to be removed, while punctuation marks and sentence bound-

aries need to be inserted depending on the context or the speaker change. Similar

to other spontaneous speech, multi-speaker speech contains a large number of disfluen-

cies, including hesitations as well as repetitions, either exactly or vaguely the same, and

speech fragments. In addition to these disfluencies, however, this genre of speech also

includes interruptions between each other. Due to such interruptions, aborted speech

fragments occur very often in multi-speaker speech.

A promising approach to use conventional state-of-the-art MT systems for translat-

ing multi-speaker speech is to transform it prior to the translation, so that the speech

transcript from multiple speakers is closer in style to the training data of the MT sys-

tems. One of the difficulties of modeling spontaneous speech, however, is data sparsity,

since it is usually modeled using manually annotated data.

For our second speech resource, we chose multi-party meeting data in order to

support further research on speech phenomena of this genre. Compared to the previ-

ously introduced lecture data, this data will also stand as a different genre representing

another degree of spontaneousness with its own distinctive characteristics.

In this section, our multi-party meeting corpus and its characteristics are described.

Our corpus consists of project meetings between project participants on various topics.

We use eight sessions, where each meeting session involves 5 to 12 different speakers.

All meetings are held in English. As in real meeting scenarios, the meeting participants

consist of native and non-native English speakers. The eight meeting sessions are tran-

scribed and then disfluencies are manually annotated. In order to be able to evaluate

our automatic models in a translation task, a certain portion of the data is chosen as

test data and manually translated into French.
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5.1.2.1 Annotation Process

The overall annotation process is applied in the same way as for the university lecture

data. Once the disfluencies are annotated, the sentences are reconstructed as shown

in Section 5.1.1.3. The reference translation in French, however, is generated only for

selected parts of meetings due to time and cost constraints.

5.1.2.2 Speech Disfluencies

Disfluencies in the meeting data are annotated manually by human annotators. The

same disfluency categories are used as in previous works on disfluencies (Fitzgerald

et al., 2009a; Johnson and Charniak, 2004) and as the disfluency categorization for our

German lecture data described in Section 5.1.1.

The class filler contains filler words as well as discourse markers, such as “uh”,

“you know”, and “well”. As the class name suggests, (rough)copy includes an exact

or rough repetition of words or phrases. In spontaneous speech, speakers may repeat

what has already been spoken, as a stutter or a correction. For example, the sentence

“There is, there was an advantage” has a (rough)copy tag on the phrase “there is”.

Another class, non-copy, includes the cases where the speaker aborts previously spoken

segments and starts a new segment. It can be rather moderate, so that the newly

started fragment still has the same theme as the previously spoken segment. In a more

extreme case, however, the speaker may introduce an entirely different topic in the new

fragment. For example, in the following sentence from our meeting data the part before

the comma is annotated as non-copy.

“I don’t think it’s the, the crucial thing is that we can compile with...”

After looking into the data, we decided that the disfluency annotations for the mul-

tispeaker speech task has to include an additional category, interruption. While the

other three categories of disfluency can be used for other tasks such as monologue, the

interruption class is devised for this new task. In multi-speaker speech, generally there

are more than two speakers involved. Therefore, there are many parts of utterances

which are interrupted by other speakers. Those segments which are interrupted and

therefore could not be finished were classified as interruption.
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Example Table 5.6 shows an excerpt from the meeting data. Filler tokens are marked

with <>, and (rough)copy tokens are marked with +//+. non-copy tokens are tagged

with −//−, and finally interruption are marked with #//#.

In this excerpt, the first speaker tried to start a new fragment (starting “what”),

then a filler word is occurred (“uh”), and then the fragment is aborted, then yet another

fragment is started (“how far”). But this last fragment is interrupted by the next

speaker. We can also observe repetition.

A: I haven’t heard anything, so I don’t know -/what/-

<uh> #/how far/#

B: I will check for that.

C: Why is the API so hard?

We’re waiting for a month now for this.

D: I don’t know +/the last/+ the last meeting outcome <uh>

he said he could give us API at the end of the month.

C: Okay.

Table 5.6: Meeting data example with disfluency annotation

5.1.2.3 Corpus Details and Statistics

The number of tokens of each class of disfluencies and its proportion are shown in Table

5.7. Out of eight meeting sessions, five of them are taken as training data and three of

them as testing data. The numbers do not include punctuation marks, but only words.

Class Training Testing

filler 2,666 6.9% 999 6.7%

(rough)copy 2,232 5.8% 1,017 6.8%

non-copy 802 2.1% 331 2.2%

interruption 1,350 3.5% 864 5.8%

clean 31,507 81.7% 11,660 78.4%

SUM 38,557 100% 14,871 100%

Table 5.7: Meeting data statistics

Both the training and test data have a disfluency rate of around 20%, which is much
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higher than the rate reported in Section 5.1.1, where lecture data has a disfluency rate of

roughly 10%. Around 7% of the word tokens in the meeting data are simple disfluencies,

or filler words, while the other 11 to 15% are more complicated disfluencies.

Analysis on Segment Length The training data shown in Table 5.7 consists of

4.6k sentences, while the test data has around 2.1k sentences. We found that the

multi-party meeting data has the characteristic that each segment is rather short. On

average, for all the meeting data we have, there are around 8 words per segment. This

is quite short compared to, for example, the lecture data, which has around 15 words

per segment. We also compared the number of segments to the training data of our

MT system, which consists of mainly parliamentary proceedings and news text. This

data has around 24 words per segment.
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Figure 5.1: Statistics on number of words in segment

Figure 5.1 depicts the distribution of the segment length for every corpus. In the

meeting data short segments are the majority, especially one word segments. There are

many segments which only consist of a single word, such as “yes” or “okay”. Although

some of them are discourse markers and therefore annotated with the filler disfluency,

some of them are also left intact when those tokens are actually used to convey meaning.
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This results in another challenge when detecting disfluencies in meeting data. Another

cause of the short segments is that there are also many short segments which are

interrupted by other speakers and are therefore aborted. The lecture data, which also

consists of spoken language, also has a higher frequency of shorter segments, compared

to the conventional MT training data which has more segments whose length is longer

than 15 words.

5.1.3 Summary

In this thesis, we aim to model two different degrees of spontaneousness by using both

university lecture and multi-party meeting data. In this section, we introduced the

disfluency-annotated KIT lecture corpus and the multi-party meeting corpus designed

for spoken language processing and translation. The goal of building the corpora is to

give insights of spoken language phenomena in different genres. These corpora were

used to model and test our models built in this thesis in terms of performance of

subsequent applications, such as machine translation systems.

The largest part of our lecture corpus covers diverse topics related to computer

science, and contains various speaking styles from 17 different speakers. The multi-

party meeting data consists of project meetings between 5 to 12 participants. The

speech disfluencies and the characteristics of the two data sets were discussed in this

section.

5.2 English Automatic Speech Recognition System

In this section, we discuss the ASR system we use throughout this work. The English

audio data is decoded using our ASR system.

The speech recognition is performed using the Janus decoder (Soltau et al., 2001) in

an online setup. Using a framesize of 32ms and a frameshift of 10ms the audio stream

is converted in a stream of 40 dimensional lMel feature vectors.

The hybrid DNN/HMM acoustic model uses a context dependent quinphone setup

with three states per phoneme, and a left-to-right HMM topology without skip states.

The neural network has an input window of ±6 frames leading to an input layer size of

520 neurons, this is followed by 4 layers of 2k neurons and a finial classification output

layer containing just over 8k neurons.
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The neural network is pretrained layerwise using denoising autoencoders with a

20 million mini batches. After pretraining the final layer is added, with the output

layer using the softmax activation function. The full DNN is then fine-tuned using the

newbob learning rate schedule (Senior et al., 2013). All training is performed using

Theano (Bergstra et al., 2010) on the TED (Cettolo et al., 2013) and Quaero data

(Stüker et al., 2012a).

For the language model training texts from various sources such as webdumps,

scraped newspapers and transcripts are used. The 120k vocabulary is selected by

building a Witten-Bell smoothed unigram language model using the union of all the text

sources’ vocabulary as the language models’ vocabulary (global vocabulary). With the

help of the maximum likelihood count estimation method described in Venkataraman

and Wang (2003) we found the best mixture weights for representing the tuning set’s

vocabulary as a weighted mixture of the sources’ word counts thereby giving us a

ranking of all the words in the global model by their relevance to the tuning set.

Using this vocabulary, language models are built from each of the sources and

interpolated using the SRILM toolkit (Stolcke) so as to maximally reduce the perplexity

of the tuning set.

5.3 Machine Translation Systems

This section aims to give the reader a brief review on SMT systems we used in this

thesis. The detailed description on data sets used for building the translation models

is also given.

In order to build the phrase table, we use the Moses package (Koehn et al., 2007).

Unless it is stated separately, the alignment is obtained from the IBM-4 model using

GIZA++ (Gao and Vogel, 2008; Och and Ney, 2003). We used the SRILM Toolkit

(Stolcke) for building the LMs.

Word reordering variants are encoded in our lattice. This lattice, afterwards, then

is used as input to the decoder. The different criteria on word reorderings for each

language pair will be given in the following sections.

In all our SMT systems, our models are optimized using the minimum error rate

training (MERT) (Och, 2003) implemented in Venugopal et al. (2005) so that we can
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reach the best BLEU score. This process is repeated for several iterations. The opti-

mized weights are applied to translate the test data. Our translations are generated by

our in-house phrase-based decoder (Vogel, 2003).

5.3.1 Training Data

Most of the conventional MT systems are built using manuscript-style data as their

main training data. Manuscript-style data has well-defined sentence boundaries and

few speech disfluencies. While our MT components are also utilizing the manuscript-

style data for training, we use some parts of data from speech as in-domain data, in

order to adapt our models into speech translation. In this section, we briefly introduce

different sources and styles of data.

In this thesis, we use two different test sets for our experiments of translating spon-

taneous speech. University lecture data is in German, and we evaluate our techniques

by translating it into English. On the other hand, multi-party meeting data is in En-

glish and the performance is measured by translating it into French. Details of the two

spontaneous data sets are given in Chapter 2.

One large parallel corpus available for building a large-scale SMT system is the

European parliament proceedings parallel corpus (EPPS) (Koehn, 2005), which consists

of proceedings from the European parliament. It is available for many language pairs

in European Union. We use the German-English and English-French parallel corpus

for training data of SMT systems.

Another corpus used for training translation models is the News commentary cor-

pus (NC). This data contains mainly opinions and commentaries about politics and

economics and is translated into different languages.

For our MT systems, we use some part of the openly-available spoken-style data as

our in-domain data.

TED TED1 is a online platform, where talks in various topics are shared. The pre-

sentations are given by invited speakers, and translated into different languages by

volunteers. Since the TED data consists of audio, manual transcript and translation of

each talk, it has been a valuable resource for many different NLP tasks.

1http://www.ted.com
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Although TED data is stemmed from speech, the talks are scripted compared to

other spoken-style data, such as lectures or meetings. Therefore, TED talks in general

contain rather limited spontaneousness in the speech. The characteristics of sponta-

neous speech, such as stutters or repetitions, are observed much less frequently in TED

talks.

5.3.2 German to English System

The translation system is trained on 1.76 million sentences of German-English paral-

lel data including the European Parliament data and the News Commentary corpus.

We also use the parallel TED data as in-domain data to adapt our models to the lec-

ture domain. Preprocessing which consists of text normalization, tokenization, and

smartcasing is applied before the training. For the German side, compound splitting

(Koehn and Knight, 2003) and conversion of words written according to the old spelling

conventions into the new form of spelling are applied additionally.

As development data, manual transcripts of lecture data collected internally at our

university are used. The talks are 14K parallel sentences from university classes and

events.

A 4-gram language model is trained on 462 million words from the English side

of the data using the SRILM toolkit Stolcke. A bilingual language model (BiLM)

(Niehues et al., 2011) is used to extend source word context. In order to address the

different word orders between German and English, the POS-based reordering model

as described in Rottmann and Vogel (2007) is applied. The POS information for this

reordering is learned from Schmid (1994). The reordering model is further extended as

described in Niehues and Kolss (2009) to cover long-range reorderings.

5.3.3 German to English Lecture Translation System

We build yet another German to English MT system in addition to the system discussed

in Section 5.3.2. In order to make use of the lecture data described in Section 5.1.1, we

train another SMT system whose in-domain data is the lecture data. Therefore, when

only the partial lecture data is needed for testing and the whole lecture data is not

required for modeling of other tasks beforehand, we use this system to translate test

sets.
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We use the parallel TED data and manual transcripts of lecture data containing

63k sentences as indomain data and adapt our models at the domain. To better cope

with domain-specific terminologies in university lectures, Wikipedia1 title information

is used as presented in Niehues and Waibel (2011).

The translation system is trained on 1.8 million sentences of German-English paral-

lel data including the European Parliament data and News Commentary corpus. Before

the training, the data is preprocessed and compound splitting for the German side is

applied. Preprocessing consists of text normalization, tokenization, smartcasing, con-

version of German words written according to the old spelling conventions into the new

form of spelling.

The 4-gram language model is trained on the 425 million words. The BiLM and

reordering models are applied in the same as in Section 5.3.2.

5.3.4 English to French System

The English-to-French translation system is built on 2.3 million parallel sentences. The

training data includes the European Parliament data and the News Corpus data. The

noise-cleaned common crawl data is also utilized. The system also includes a small

amount of spoken-style data such as TED, which is used as in-domain data on which

the models are adapted. Manual transcripts of some of the TED data are used as

development data for the translation system.

We use a 4-gram language model built as well as a BiLM (Niehues et al., 2011).

The POS-based reordering model is using only short-range-based reorderings.

5.3.5 English to German Online System

In order to evaluate our online punctuation insertion schemes, we translate the test sets

with different segmentation and punctuation marks into German. For the translation,

we use our online English to German phrase-based translation system. The system

is trained on the parallel corpus of Europarl, News commentary, TED, and the noise-

filtered common crawl data. For the monolingual data we take the News Shuffle corpus.

Detailed statistics on corpus can be found in Slawik et al. (2014).

1http://www.wikipedia.org

49



5. SPONTANEOUS DATA AND EXPERIMENTAL SETUP

We build a 4-gram language model on the German side of TED data which is used as

an in-domain language model. In addition to this language model, we used a BiLM on

all available parallel data as described in Niehues et al. (2011). Also, we used a 4-gram

language model on a data that is sampled based on cross entropy with the development

data. For the in-domain TED data, we applied the cluster algorithm (Och, 1999). Once

the TED data is clustered into 1, 000 classes, we build a 9-gram language model and

used it as an additional model.

In order to address the word order difference between English and German, we

use the POS-based reordering (Rottmann and Vogel, 2007) along with the tree-based

(Herrmann et al., 2013) and lexicalized reordering rules.

For evaluating differently segmented test sets, we use the Levenshtein minimum

edit distance algorithm (Matusov et al., 2005) in order to align hypothesis against the

reference translation.
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6

Segmentation and Punctuation

Insertion

In spoken language translation, finding proper segmentation and reconstructing punc-

tuation marks are not only significant but also challenging tasks. Previous research

on segmentation and punctuation insertion (Paulik et al., 2008) emphasized the im-

portance of the task in order to improve the MT performance. In this chapter, we

discuss different techniques to insert segmentation and punctuation marks into speech

transcripts and measure their performance from the perspective of MT quality.

Oracle experiments and their scores show how important it is to have proper punc-

tuation marks on ASR transcripts as well as manual transcripts. Also, the oracle

experiments show the upper bound of this task, establishing up to which point we can

improve the translation quality by inserting punctuation marks. The description on

which the experiments are conducted and which system is taken for evaluating the

impact of segmentation and punctuation will be given.

Machine translation-based approach (Peitz et al., 2011) to insert punctuation marks

within each sentence boundary showed good potential for MT of speech transcripts.

Inspired by this, we extended this approach so that proper sentence boundaries can be

predicted using a monolingual translation system (Cho et al., 2012). Thus, a technique

to insert punctuation marks and sentence boundaries using a monolingual translation

system is described in the following section. The technique is applied to our German

lecture data and the performance is measured by translating it into English.

Another crucial aspect of segmentation and punctuation on speech transcripts is the
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latency issue. While a longer context can boost the accuracy of inserted punctuation

marks, it drastically increases the delay in the spoken language translation system. In

the following section, we will study punctuation insertion system from the perspective of

latency (Cho et al., 2015b). We investigate the impact of shorter context in punctuation

insertion task on simultaneous speech translation system.

An empirical study (Fügen and Kolss, 2007) showed how the machine translation

performance is affected by choosing different segment lengths. In Sridhar et al. (2013),

the authors tried a grammar-oriented segmentation. On the other hand, greedy search

and dynamic programming (Oda et al., 2014; Shavarani et al., 2015) have shown a good

performance to maintain MT performance while decreasing the latency.

In this thesis, we suggest a new scheme within stream decoding where the time

delay consumed on punctuation prediction is avoided. The scheme is built and tested

for English TED talks. The performance of the punctuation insertion system is mea-

sured in terms of MT quality by translating it into German using our online system.

Our evaluations show that our suggested scheme can be used as an efficient method to

punctuate recognized streams in real-time scenarios. While outperforming a conven-

tional language model and prosody based punctuation prediction system, our model

maintains performance comparable to systems that require longer contexts.

6.1 Oracle Experiments

In order to investigate the impact of segmentation and punctuation marks on the trans-

lation quality, we conduct two experiments.

In the first experiment, we apply human-transcribed segments and punctuation

marks to the output of the speech recognition system. Thus, words are still from

an ASR system, but the segments and punctuation marks are reused from a human-

generated transcript. In the second experiment, the segments in the output of the

speech recognition system are applied to the human-generated transcripts. In this

case, words are transcribed by human transcribers, but segmentation and punctuation

are from an ASR system.

From these experiments we can observe how much impact the better segmentation

and punctuation have for the performance of ASR output translation. We can also find

how the segmentation according to an ASR system affects manual transcripts.
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6.1.1 Genre and System

For the oracle experiments, we choose parts of the German lecture data for development

and testing introduced in Section 5.1.1. As removing simple filler words such as uh and

uhm is trivial and the existence of them differs greatly from the training data of the

models, we simply removed the filler words from the lecture data.

For development and testing, we use the lecture data from different speakers. These

are also collected internally from university classes and events. They consist of talks of

30 to 45 minutes and the topic varies from one talk to the other. For the development set

we use manual transcripts of lectures, while for testing we use the transcripts generated

by an ASR system. The development set consists of 14K parallel sentences, with 30K

words on the source side and 33K words on the target side including punctuation marks.

Detailed information on the source side of the test set, including the word error rate

(WER) of the recognition output, can be found in Table 6.1.

ASR output

Sentences 2,393

Words without punctuation marks 27,173

WER 20.79%

Manual Transcript

Sentences 1,241

Words 29,795

Words without punctuation marks 26,718

Periods 1,186

Commas 1,834

Question marks 55

Table 6.1: Information on the preprocessed source side of the test set

For translating different test sets, we use the MT system described in Section 5.3.3.

6.1.2 Oracle 1: Insertion of Manual Segments and Punctuation Marks

into ASR Output

Applying manual segments to the output of an ASR system requires the time stamp

information for each utterance. We use this information from manual transcripts and

segment the output stream generated by the ASR system according to it. The align-

ment information between the ASR test sets and their manual transcripts is learned in
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order to insert punctuation marks. As punctuation marks, we consider period, comma,

question mark, and exclamation mark. Punctuation marks such as period, question

mark, and exclamation mark are usually followed by a new segment in manual tran-

scripts, and commas are useful to define independently translatable regions (Rao et al.,

2007b).

Depending on which punctuation marks are inserted, three hypotheses are consid-

ered in this experiment.

• MTSegment: correct segments from a manual transcript are applied to the ASR

test set.

• MTSegmentFullStop: correct segments and “.?!” from a manual transcript are

applied to the ASR test set.

• MTSegmentAllPunct: correct segments and “.,?!” from a manual transcript,

including commas, are applied to the ASR test set.

Therefore, the results in the hypothesis MTSegment show the upper bound of per-

formance improvement when the proper segmentation is given, while the hypothesis

MTSegmentAllPunct shows the scenario when we also have good punctuation marks

additionally. With the hypothesis MTSegmentFullStop, we intend to investigate how

helpful it is for the translation quality to have commas or not.

To show the impact of the different segmentations according to the ASR system

and according to the hypothesis MTSegmentAllPunct, several consecutive segments

are extracted from our test set. The original ASR output for this excerpt with its

simple language model based segmentation and reference translation of the segments

are given in Table 6.2. The manual transcript for this excerpt is also given together.

The ASR system generated no word errors for this excerpt, but the sentence boundary

of the manually created transcript differs greatly from the automatically inserted ones.

The translations of the ASR output with different segmentations are presented in

Table 6.3. The two source texts contain the same recognized words from the ASR

system, but different segmentation and punctuation are applied. We can observe that

when the text uses the manual transcripts’ segmentation, the translated text conveys

the meaning of the sentence substantially better. It also provides improved readability

enormously. For example, the German participle “gesprochen”, which was translated
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Manual Transcript

wir sehen hier ein Beispiel aus dem Europäischen Parlament.

Europäischen Parlament werden zwanzig Sprachen gesprochen, und

man versucht durch Hilfe menschlicher Übersetzer, Simultanüberset-

zer die Reden der Sprecher jeweils in andere Sprachen hinein zu

übersetzen.

ist es möglich, Computer zu bauen die ähnliche Übersetzungsdienste

leisten?

ASR Output

wir sehen hier ein Beispiel aus dem Europäischen Parlament Eu-

ropäischen Parlament werden zwanzig Sprachen

gesprochen und man versucht durch Hilfe menschlicher Übersetzer

Simultanübersetzer die

Reden der Sprecher jeweils in andere Sprachen hinein zu übersetzen

ist es möglich Computer zu bauen

die ähnliche Übersetzungsdienste leisten

Reference

Here we see an example from the European Parliament.

There are twenty languages spoken in the European Parliament, and

people have tried to translate the talks of the speakers to the other

languages respectively, by means of human translators, simultaneous

interpreters.

Is it possible to build computers that perform similar services?

Table 6.2: ASR output and reference translation of the excerpts

into “spoken” using MTSegmenatAllPunct, is lost in the first segment in the ASR

system and segmented into the next line. This leads to the loss of the information

about this participle during the translation. An article and its following noun, “die

Reden”, are also split using the original segmentation of the ASR system. It becomes

the reason why the more suitable word “(the) speeches” in this context is not chosen,

but “Talk”.

6.1.3 Oracle 2: Insertion of ASR output segments into manual tran-

scripts

In addition to the insertion of proper segmentation and punctuation into the output of

the ASR system, we perform another experiment where the segmentation in the output

of the ASR system is applied to manual transcripts.

Although the segmentation from ASR output is obtained by incorporating language
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Segmentation Translation

ASR

We see here is an example from the European Parliament, the Euro-

pean Parliament 20 languages

And you try simultaneously by help human translator translators the

Talk to each of the speaker in other languages to translate it is pos-

sible to build computers

The similar to provide translation services

MTSegment-

AllPunct

We see here is an example from the European Parliament.

The European Parliament 20 languages are spoken, and you try by

help human translator to translate simultaneously translators the

speeches of the speaker in each case in other languages.

It is possible to build computers that are similar to provide translation

services?

Table 6.3: Translation using different segmentation according to ASR output and MT-

SegmentAllPunct hypothesis

model probability and prosodic information such as pause duration, it is often not the

best segmentation especially for spontaneous speech. One explanation is that defining a

sentence boundary is less clearer in spontaneous speech than in written text (Ostendorf

et al., 2008), due to distinctive phenomena of spontaneous speech. Also, while conver-

sation speech may contain unique information different from other sources, historically

models and most research concern broadcast news as a main data source, which is a

fairly clean and closely resembles written documents (Ostendorf et al., 2008).

6.1.3.1 Language Model and Prosody Based Segmentation

In this section, we briefly describe our language model and prosody based segmentation

model. The language model and prosody based segmenter employs a 4-gram language

model trained on punctuated text. In order to predict punctuation marks a context

of four words, two prior and two after the possible punctuation mark, is taken into

consideration.

The language model is used to calculate three scores. The first one is the score

without an inserted punctuation mark as

P (wi−1, wi, wi+1, wi+2) (6.1)
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while the second one is the score with a comma.

P (wi−1, wi, @COMMA, wi+1, wi+2) (6.2)

The last one is calculated by followings.

P (wi−1, wi, @STOP, wi+1, wi+2) (6.3)

The similar approach has been applied for speech disfluency processing in Stolcke

and Shriberg (1996). The authors suggested a hidden-events language model to predict

disfluencies probabilistically. Their language model, though, is developed to be used

for speech decoding, lowering perplexity, while our language model-based segmentation

is applied to our 1-best hypothesis.

A dynamic scaling factor is applied to the punctuation mark scores in order to

prevent both very short sentences and very long sentences. In parallel to the lan-

guage model a prosody component searches for pauses over tθ seconds and then force

terminates any sentences.

ASR

output

wir haben somit also auch ein drittes Standbein in Asien in

in chinesischen Raum in Hongkong

Reference
wir haben somit also auch ein drittes Standbein in Asien, im chine-

sischen Raum, in Hongkong.

Table 6.4: Disfluency and its affect on the automatic segmentation (Reference translation:

Thus we consequently also have a third foot hold in Asia, in the Chinese region, in Hong

Kong.)

Table 6.4 depicts an example of incorrect automatic segmentation caused by disflu-

encies. As the speaker stutters, the automatic segmenter of the ASR system based on

pause duration and a language model trained on clean texts inserts a new line.

6.1.3.2 Experimental Setup

In this experiment, we analyze the following three scenarios.

• ASRSegment: a manual transcript was segmented according to the segmentation

of the ASR output.
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• ASRSegmentComma: a manual transcript was segmented according to the seg-

mentation of the ASR output, and commas are removed.

• ASRSegmentAllPunct: a manual transcript was segmented according to the seg-

mentation of the ASR output, and all four punctuation marks are removed.

The four punctuation marks correspond to “.,?!” as in the first oracle experiment.

To segment a manual transcript as in the ASR output, we use an algorithm which

is commonly used for evaluating machine translation output with automatic sentence

segmentation (Matusov et al., 2005). This method is based on the Levenshtein edit

distance algorithm (Levenshtein, 1966). By backtracing the decisions of the Levenshtein

edit distance algorithm, we can find the Levenshtein alignment between the reference

words and the words in the ASR output.

In this work, the ASR output plays the role of a reference and using this algorithm

we are able to find a resegmentation of the human reference transcript based on the

original segmentation of the ASR output.

6.1.4 Results

Table 6.5 depicts the results of the two oracle experiments in numbers. The scores

are reported as case-insensitive BLEU scores, without considering punctuation marks.

This aims at analyzing the impact of the segmentation and punctuation solely on the

translation quality.

System BLEU

ASR 20.70

Oracle 1

MTSegment 21.42

MTSegmentFullStop 22.18

MTSegmentAllPunct 22.48

Transcripts 27.99

Oracle 2

ASRSegment 26.38

ASRSegmentComma 26.36

ASRSegmentAllPunct 25.54

Table 6.5: Influence of oracle segmentation and punctuation on the speech translation

quality
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For the hypotheses MTSegment, ASRSegmentAllPunct and tests on the ASR out-

put, we create phrase tables removing punctuation marks on the source side in order

to make a better match between the test set and the phrase table. To evaluate the

translation hypotheses of ASR output and the ASRSegmentation experiments, we re-

segmented our translation hypotheses to have the same number of segments as the

reference as shown in Matusov et al. (2005).

From this table we observe that having the correct segmentation and punctuation

improves the translation quality significantly. When the human-transcribed segmenta-

tion and punctuation are available, an improvement of 1.78 BLEU is observable on the

test set.

Another interesting point is when we compare MTSegmentAllPunct to MTSeg-

mentFullStop, we see the steady improvement of 0.3 BLEU in translation from having

commas on the source side. This is congruent with the findings in Rao et al. (2007b),

that inserting commas in addition to periods improves translation quality. In our case,

the scores are evaluated ignoring punctuation marks. Thus, the improvement on BLEU

means that by having proper punctuation marks the translation quality itself can be

improved.

On the other hand, we can observe from Table 6.5 that by simply changing the

segmentation of the transcripts we lose 1.6 BLEU scores in translation performance.

As shown in Table 6.1, there are almost twice as many segments in the ASR output

compared to the manual transcript. This can be one reason for the drastic drop in

translation quality. We also observed from this translation that incorrect reordering of

words occasionally happens within a segment, when the segment is not a sentence-like

unit but a part of a sentence.

Removing commas from ASRSegment does not result in a big performance drop in

ASRSegmentComma. Often, the segments from the ASR system do not match with

the phrase boundaries learned in the text translation system, which results in having

fewer independently translatable regions separated by commas. In addition to this,

losing all punctuation information leads to a further performance drop of 0.84 BLEU

scores.
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6.2 Monolingual Translation System

The first approach to be described is a monolingual translation system. It is an MT

system, which translates a non-punctuated text into a punctuated and properly seg-

mented text. We build a monolingual translation system from German to German

implementing segmentation and punctuation prediction as a machine translation task.

When using the monolingual translation system to punctuate the German lecture data

before translating it into English, we get an improvement of 1.53 BLEU points on the

lecture test set. This is a comparable performance to the upper bound drawn by the

oracle experiments.

6.2.1 Model

Inspired by Peitz et al. (2011), we build a monolingual translation system to predict

segmentation and punctuation marks in the translation process. This monolingual

translation system translates non-punctuated German into punctuated German. Using

this system we predict punctuation marks as well as segmentation before the actual

translation of the test sets. The output of this system becomes the input to our regular

text translation system which is trained using training data with punctuation marks.

When translating the output of the monolingual translation system, no preprocess-

ing is applied as the test set is already preprocessed before going through the monolin-

gual translation system. The monolingual translation system neither alters any words

nor reorders them, but it is used solely for changing segments and inserting punctuation

marks.

In order to build this system, we first process the training data to make the source

side not contain any punctuation marks, while the target side contain all punctuation

marks. The training data statistics on the target side is shown in Table 6.6.

Words 46.32M

Periods 1.76M

Commas 2.88M

Question marks 0.10M

Exclamation marks 0.07M

Table 6.6: Information on the preprocessed punctuated German side of the training data
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For a language model, we use 4-gram and it is trained on the punctuated German

data. Also, no reordering model is used as we use the monotone alignment.

The difference of our monolingual translation system to the work in Peitz et al.

(2011) is that in our work the monolingual translation system is used to predict sentence

segmentation additionally. In their work, it was assumed that the segmentation of the

speech recognition output was given and corresponded to at least sentence-like units.

Therefore, their monolingual translation system was used to reconstruct punctuation

marks only with using three different strategies.

It was shown in Section 6.1 that the segmentation generated from an ASR system

using a language model and prosody is not necessarily the best segmentation, especially

when the recognized text is spontaneous speech with less grammatical sentences and

more disfluencies. In this work, we aim at improving segmentation in addition to

inserting punctuation marks using this monolingual translation system. Performing

this requires a modification to the training data as well as development and test sets.

6.2.1.1 Data Preparation

Usually training data for conventional text translation systems is segmented by human

transcribers so that it has punctuation such as a full stop, a question mark, or an excla-

mation mark at the end of each line. Therefore, if we use this training data to translate

the ASR test sets, translation models would more likely insert a punctuation mark at

the end of every line of the ASR test set during translation. From this observation,

we resegment training corpora randomly so that every segment is not necessarily one

proper sentence-like unit. The development set is modified in the same way.

The test sets for this monolingual translation system are also prepared differently,

using the idea of a sliding window. Exemplary sentences from our test set are shown

in Table 6.7. In this table, each line contains 8 words. The first line starts with a word

“der”, and in the second line, we have the next starting word “bildet”, which was the

second word in the first line. At the same time, we encounter a new word “gesehen” at

the end of the line.

When the length of a sliding window is l, each line consists of l-1 words from the

previous line and 1 new word. Thus, the nth line contains the nth to n+l-1 th word

of a test set. The test set prepared in this way has the same length as the number of

words in the original test set. In this way we can have up to l spaces between words.
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For those spaces we want to investigate how probable it is to have a punctuation mark

in that word space. In this experiment, we constrain the length of sliding window l to

10.

This differently formatted test set enters the monolingual translation process in a

normal way, line by line. The translation of the test set shown in Table 6.7 using our

monolingual translation system is illustrated in Table 6.8. We see that words such as

“Normalform” and “gesehen” are followed by certain punctuation marks.

der bildet die sogenannte konjunktive Normalform

bildet die sogenannte konjunktive Normalform wir

die sogenannte konjunktive Normalform wir haben

sogenannte konjunktive Normalform wir haben gesehen

konjunktive Normalform wir haben gesehen dass

Normalform wir haben gesehen dass wir
...

...
...

...
...

...

Table 6.7: Test data preparation for the monolingual translation system. The excerpt

corresponds to in English: it forms the so-called conjunctive normal form we have seen

that we.

der bildet die sogenannte konjunktive Normalform.

bildet die sogenannte konjunktive Normalform. Wir

die sogenannte konjunktive Normalform. Wir haben

sogenannte konjunktive Normalform. Wir haben gesehen,

konjunktive Normalform. Wir haben gesehen, dass

Normalform. Wir haben gesehen, dass wir
...

...
...

...
...

...

Table 6.8: Test data punctuated using the monolingual translation system

6.2.1.2 Punctuation Prediction Criteria

A punctuation mark is chosen if the same punctuation mark is found same or more

often than a given threshold. If more than one punctuation mark appears more than

the threshold in the same word space, the most frequent one is chosen. For example,
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we can observe that the word Normalform is followed by a full stop in multiple lines,

as shown in Table 6.8. At the same time, gesehen is often followed by a comma. We

examine how often a certain punctuation mark is following which word, and apply a

threshold to decide whether we should extract this punctuation mark. There are some

cases where we have the same frequency for multiple punctuation marks; in this case

we put a different priority on punctuation marks. For example, in this experiment we

put higher priority for a period over a comma.

In this experiment, we evaluate the translation quality over a varying threshold,

from 1 to 9. We exempt the case when the threshold is 10, the length of the sliding

window. In this case, one punctuation mark has to appear all the 10 word spaces

after a word in order to be inserted. This condition is so restrictive that only few full

stops are generated, which causes unaffordable computational time consumption for

the translation procedure.

In the same way as in the oracle experiment, we consider four punctuation marks

here: period, comma, question mark, and exclamation mark. A new segment is intro-

duced when either a period, question mark, or exclamation mark is predicted, in order

to have congruence with the manual transcripts.

In order to make the hypotheses comparable with the oracle experiments shown in

Section 6.1, we considered three different hypotheses of reconstructing segmentation

and punctuation.

• MonoTrans-Segment: monolingual translation system is used for segmentation

prediction only.

• MonoTrans-FullStop: monolingual translation system is used for segmentation

and full stop prediction.

• MonoTrans-AllPunct: monolingual translation system is used for segmentation

and all punctuation marks prediction.

6.2.2 Experiments and Results

For consistency, we applied the techniques to the data and system described in Section

6.1.1.
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6. SEGMENTATION AND PUNCTUATION INSERTION

In order to analyze the effect of the varying threshold for the monolingual translation

system, first we use the same threshold value for all punctuation marks. The number

of punctuation marks predicted using the same threshold are shown in Table 6.9. As

shown in the table we could predict periods and commas, but we could not generate

question marks or exclamation marks. A reason might be that question mark and

exclamation mark are already rare in the manual transcript. In addition, we do not

have many of them appearing in the training corpora, compared to the frequency of the

other punctuation marks. The number of periods in Table 6.9, therefore, is the same

as the number of segments predicted.

Figure 6.1 presents the translation performance of the three hypotheses in BLEU

over different threshold values. In this experiment as well, the same threshold value is

used for all the different punctuation marks. Even though we obtain more segments the

lower we set the threshold value, each hypothesis still outperforms the translation of

ASR output (20.70 in BLEU). The threshold value can go down to 1 without any signif-

icant loss in BLEU. As shown by the curve of MonoTrans-FullStop, the performance is

already good when having segments from periods only. When we compare MonoTrans-

AllPunct and MonoTrans-FullStop, the performance of MonoTrans-AllPunct fluctuates

relatively more while that of MonoTrans-FullStop stays more stagnant. From this ob-

servation we notice the necessity of another experiment where different threshold values

for period and commas are used, as the performance can be improved with fewer com-

mas when there are more segments.

Table ?? presents how close we can get toward the oracle experiments shown in 6.1

when using the segmentation and punctuation predicted output from the monolingual

translation system. The numbers from an oracle experiment and ASR output are also

shown for comparison. The condition Test1 represents the results where the threshold

6 was used for both period and comma.

As depicted in this table, all three hypotheses of our monolingual translation system

beat the translation quality using the ASR output with a significant difference. When

both segmentation and punctuation are predicted using our monolingual translation

system, we gain 1.53 BLEU points on our test set, which is only 0.25 BLEU points less

than a result from the oracle experiment.

In order to maintain a similar number of segments to the manual transcript, but

still have the “helpful” number of commas for translation, we separate the threshold
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Figure 6.1: Translation performance with varying threshold values
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Threshold 1 2 3 4 5 6 7 8 9 Manual Transcript

Periods 1,273 970 881 861 851 841 817 736 464 1,186

Commas 2,741 2,190 1,973 1,915 1,904 1,889 1,857 1,773 1,486 1,834

Table 6.9: The impact of threshold on punctuation marks. The number of punctuation marks predicted using the monolingual

translation system with a different threshold are shown. The number of punctuation marks in the manual transcript is also given

as a comparison.



6.3 Punctuation Insertion for Real-time Spoken Language Translation

value for period and comma. Test2 in Table ?? depicts the translation performance

when we use the threshold value 1 for period and 6 for comma. Thus, a comma is

chosen when it is found more than 5 times at the space between words. Compared

to the case where the same threshold value of 6 for both punctuation marks is used,

we obtain more than 150% of the original number of segments. However, we can still

maintain a similar translation performance, showing only a drop of 0.06 BLEU points

in the hypothesis MonoTrans-AllPunct.

Predicting a new line only after a period performs well for the translation. However,

the numbers shown in Table 6.1 indicate that inserting a new line only after a period

provides half of the number of segments that our ASR system produced for the test

set. Therefore, to compare the performance of the ASR segmenter in a fair condition,

we conduct another experiment where a new line is inserted whenever a punctuation

mark, including comma, is predicted. For this experiment we use the same threshold

8 for all punctuation marks, so that we can have similar number of segments as in

the ASR output. By doing so we could obtain 2,509 segments, which is nearly 200

segments more than the ASR output. From this we gained 21.67 BLEU points for the

MonoTrans-AllPunct hypothesis. Although the score of the hypothesis MonoTrans-

AllPunct is 0.5 BLEU points lower than previous two tests, the score is still around 1

BLEU point higher than the translation quality of raw ASR output.

6.3 Punctuation Insertion for Real-time Spoken Language

Translation

The importance of inserting reliable punctuation marks and sentence segmentation into

automatically recognized transcripts was emphasized in previous sections. Since many

of the conventional ASR systems generate either no or only unreliable punctuation

marks, many techniques have been applied for punctuation insertion task.

One indisputably crucial aspect to consider when inserting punctuation marks for

real-time speech translation is the time delay. A longer context is preferred for better

prediction performance but it causes more delay. The impact of longer contexts to the

punctuation prediction performance is studied and shown in Appendix A. Since speed

is important when presenting results by text (Mieno et al., 2015), we need to punctuate
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incoming recognitions quickly for display and further processes as well, such as machine

translation.

One of the commonly used real-time methods for inserting punctuation marks into

the ASR output is the LM and prosody based scheme discussed in Cho et al. (2013a). It

has the advantage that it incorporates acoustic features keeping the process relatively

fast.

As shown in Section 6.2, a monolingual translation systems can be very effective at

improving the performance of MT systems when they are applied to the ASR output.

The conventional monolingual translation system suggested in Section 6.2 uses overlap-

ping window for input. Since it uses a comparatively long context, a great performance

improvement on the MT for ASR outputs can be achieved using this technique. Over-

lapping windows, however, make the system difficult to be used in real-time scenarios

without long latencies.

Although the monolingual translation system in Section 6.2 shows a good perfor-

mance in the subsequent application, adopting this system for the real-time speech

translation system causes an unacceptable amount of latency due to its long shifting

window of 10 words. This component alone would introduce more latency into the

whole system than the desired total average latency.

In this section, we suggest an efficient punctuation insertion scheme for real-time

SLT systems, using the monolingual translation system. Our punctuation insertion and

sentence segmentation system is designed to take the output of a stream decoding ASR

system. The input to the monolingual translation system is modified so that latency

can be decreased while maintaining a similar translation performance. We performed

experiments both on audio streams as well as manual transcripts, in order to give an in-

depth analysis on the impact of different lengths of context in the punctuation insertion

scheme.

6.3.1 Model

In order to decrease the delay in the real-time speech translation system, we use a

streaming input scheme instead of the overlapping window, along with the resending

ASR. In this section, we describe how the streaming input scheme works in detail.
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6.3.1.1 Resending of ASR

As discussed in Section 2.1.1, one approach to reduce the apparent latency of the

speech to speech translation system is to use the ASR with a resending function. In

this method, the ASR components continually outputs its current best hypothesis, e.g.,

once a second. The hypothesis can be updated by newer, possibly better ones when

more contexts are available. This approach has an advantage that it can offer higher

user acceptance, since users can see the hypothesis right away.

An example excerpt shows how the resending of ASR works.

in this planet you would have to prove . . .
in this planet you would have to provide 36 million translation . . .

The current best hypotheses of the ASR component contains an ASR error at the

verb prove, which is updated into provide based on the further recognized context.

6.3.1.2 Streaming Input

Our in-house stream decoding ASR system stores its recognition in two separate stacks.

In one stack it saves its final 1-best list for words w = {wl, . . . , wm}. Their following

words are stored in another stack v = {vm+1, . . . , vn}, which is not the final recognition

yet. Since this stack v is flexible depending on the upcoming context, it is updated

based on the context and whenever it is updated, the changes are shown to users.

In the following example, we are showing recognized words are updated using the

flexible stack for a segment “. . . would not exist in one hundred years why because they

look at the curve and say if the population keeps growing at this rate”. The flexible

stack v is marked in a red box.

. . . would not exist in one hundred years one

. . . hundred years why because they look at the curb its

. . . why because they look at the curve and say if

. . . the curve and say if the population keeps growing at these

. . . keeps growing at this rate

For this given stream of words, we can observe that occasionally words in the flexible

stack v are updated when more contexts are available. In our punctuation insertion

setup, we introduce another stack for recognized words before w, in order to consider
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more context. The history stack h is defined as:

h = {hl−c, . . . , hl−1} (6.4)

The context c is chosen as four throughout this work. When there are fewer previous

words available in the initial part of the recognition, only up to the available context is

used. Thus, after the history stack h we have the finalized words w, which is followed

by an updating stack v.

The newly punctuated string is then obtained by

w′ = m(h+ w + v) (6.5)

where m denotes the monolingual translation system. Its scheme is basically same

as described in Section 6.2.1. Therefore, we can obtain longer contexts by using the

history stack h and the future stack v. Even though the future stack v is still unstable,

it can give us an advantage that it offers more, approximately correct contexts.

Parts of the generated output are used as the final string.

s = {w′l−c, . . . , w′m−4} (6.6)

At the same time the history stack is updated.

h = {w′m−3, . . . , w′m} (6.7)

This results in us inputing punctuated text into the monolingual translation system

and repunctuating it. Although this leads to a slight mismatch between the training

and test data, using this approach we can guarantee that punctuation can be predicted

using the longest context available.

For the non-final ASR recognition stack v, we generate the possible output string

and show it to users.

The example segment in this punctuation scheme is depicted in Table 6.10. The

history stack is in a yellow box, while the flexible stack is in a red box. The punctuated

string to be sent to the MT module is marked in a blue box. For the first input line, we

can observe that no word in the blue box is punctuated but a word in the flexible stack

is. This punctuation is also shown to the users until the flexible stack is updated. For

the second line, however, the punctuation module inserted a final period and a question

mark around why.
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Input city of New York would not exist in one hundred years one

Output city of New York would not exist in one hundred years. One

Input not exist in one hundred years why because they look at the curb its

Output not exist in one hundred years. Why? Because they look at the curb its

Table 6.10: Punctuation module using the streaming input

An advantage of this model is that while longer history is utilized, the decision

on punctuation insertion on the current window can be made instantly, minimizing

the time delay consumed on sentence segmentation. Also, by supporting the stream

decoding, users can see the updated recognition as well as its most probable punctuation

marks fast.

Using the overlapping input, it is required to observe the long context till its 9th

next word in order to predict a potential punctuation mark after a word. This causes

a structural latency in the speech to speech translation system. On the other hand,

using the streaming input it is possible to use relatively longer contexts while removing

the structural latency.

6.3.1.3 Phrase Table Preparation

For online translation systems, it is impossible to generate a perfectly fitting phrase

table for all possible each inputs. Therefore, we build a phrase table for English to

German translation, based on the vocabulary in the training data. In order to decrease

the size of the model for online scenario, we first filtered out words which occurred in

the corpus less than four times. Phrases that are longer than 4-grams are filtered out

as well.

6.3.2 Experiments and Results

In order to measure the impact of different segmentation methods and models on MT,

we experiment on the official test set of IWSLT evaluation campaign 2013. The English

manual transcript of this test data has 993 sentences, or 17.8K tokens. The audio is 2h

and 16m long.

The proposed streaming punctuating prediction (StreamingInput) system is com-

pared to both a low latency baseline language model and prosody based punctuation
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prediction (LM, Prosody) system as well the high latency but highly accurate monolin-

gual translation (OverlappingInput) system using a 10 word moving window. For the

LM and prosody based model we used the same segmenter described in Section 6.1.3.1.

Table 6.11 presents these systems’ translation performance of the test data. Not only

the ASR outputs, but also the manual transcript of the corresponding talks are tested

in order to give better insights of the impact from the ASR errors. All numbers are

reported using case-sensitive BLEU.

Punctuation ASR Output Manual Transcript

LM, Prosody 9.74 -

OverlappingInput 11.18 19.57

StreamingInput 11.55 19.41

Table 6.11: Results of the punctuation scheme using streaming input. Translation per-

formance of the proposed system is shown, compared to a fast LM, prosody based model

as well as a high latency, but highly performant monolingual system using an overlapping

window.

In the first row, we first show the translation performance when using the simple

LM and prosody based segmentation, available only for the ASR output, as the manual

transcript has no pause information. In the OverlappingInput system, both ASR output

and manual transcript are punctuated using the conventional monolingual translation

system, using overlapping windows, as suggested in Section 6.2. The shift window is

applied so that each word is translated ten times. When using the OverlappingInput

system, the phrase table is also generated upon the knowledge of the each test data as

it is not for online scenario.

We can see that when we use the suggested punctuation insertion scheme, we achieve

11.55 BLEU points in the ASR test data, beating the conventional LM and prosody

based model by 1.8 BLEU points. Even though this system is using relatively shorter

context and the less-fitting phrase table than the traditional monolingual translation

system, the translation performance is comparable with the one of the monolingual

translation system with the long overlapping window.

Table 6.12 presents several segments from the ASR output, punctuated using the

LM and prosody model and the suggested streaming input system. We can observe
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LM, Prosody

I also ask myself does not really work can they really store all.

This information about us and every time I use my mobile phone.

So I ask my phone company Deutsche Telekom which was at that

time the largest phone company.

In Germany and they ask them please send me all the information

you have started.

About me.

And there is some one thousand against and I got no real. . .

. . . the city of New York would.

Not exist in one hundred years.

Why because they look at the curve and say if the population

keeps growing at.

This rate to move the population of New York year round they

would have needed.

StreamingInput

I also ask myself, does not really work?

Can they really store.

All this information about us.

And every time I use my mobile phone.

So I ask my phone company, Deutsche Telekom, which was at that

time the largest phone company in Germany, and they ask them,

please send me all the information you have started about me.

And there is some one thousand against, and I got no real, . . .

The city of New York would not exist in one hundred years.

Why?

Because they look at the curve, and say, if the population keeps

growing at this rate to move the population of New York year

round.

They would have needed . . .

Table 6.12: Segmentation improvement using the streaming input. Differences in punc-

tuation and segmentation are shown, when using LM and prosody based model and the

monolingual translation system with the streaming input.
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that not only the following MT performance was improved, but the readability was

greatly improved when we are using the punctuation model with the streaming input.

Due to the small model footprint and the use of an efficient MT decoder the stream-

based punctuation prediction setup incurs only minimal computational cost, compara-

ble to the punctuation model based on LM and prosody without having much future

context requirements. This fast system also allows for updated punctuation when new

data is received. As this component does not add further communication overhead,

the total latency of the real-time speech translation system is not negatively impacted.

Recent development in our framework allows outputting current best hypothesis at any

time. With this, users can always access to the hypothesis with very low latency.

6.4 Summary

In this chapter, we first presented the impact of segmentation and punctuation on the

output of speech recognition systems by implementing oracle experiments. Experiments

have shown that we can gain up to 1.78 BLEU points of improvement on the translation

quality if we apply the manual segmentation and punctuation to the ASR output. On

the other hand, when we apply the segmentation and punctuation of speech recognition

output to the manual transcripts, we have an overall loss of 2.45 BLEU points on the

translation quality. Therefore we show that the segmentation produced by ASR systems

may not assure the best translation performance, and that a separate process to segment

the ASR stream before the translation can help the translation performance.

In the second part of the chapter, the monolingual translation system is used to

predict segmentation and punctuation in ASR output. In order to implement this

system, we change the format of the training corpora as well as the development and

test set. By using the monolingual translation system, we gain more than 1.5 BLEU

points on the ASR test set.

It is followed by a new punctuation insertion scheme for real-time spoken language

translation system. Taking streamed input from an ASR decoder, the suggested scheme

can improve the output of the speech translation without negatively impacting the

speech translation system’s latency. The experiments show that our low-latency real-

time punctuation insertion system can achieve a comparable performance to an offline

system requiring a large context window.
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Speech Disfluency Detection

In speech, speakers occasionally talk with disfluencies such as repetitions, stuttering,

or filler words. These speech disfluencies inhibit proper processing other subsequent

applications, such as MT systems.

MT systems are generally trained using well-structured, cleanly written texts. The

mismatch between this training data and the actual test data, in this case spontaneous

speech, causes a performance drop. A system which reconstructs the non-fluent output

from an ASR system into the proper form for subsequent applications will increase the

performance of the application (Rao et al., 2007a).

A considerable number of works on this task such as Johnson and Charniak (2004)

and Fitzgerald et al. (2009a) focus on English, from the point of view of the ASR

systems. One of our goals is to extend this work to German, and also apply it to the

MT task, in order to analyze the effect of speech disfluencies on MT and be able to

make it applicable for lecture translator system of KIT.

In this chapter, we discuss an approach for speech disfluency detection based on

conditional random fields (Cho et al., 2013b), which is a sequential modeling technique

used broadly for various tasks in NLP. Later we show how this approach can be inte-

grated into our SMT system, in order to achieve better performance in MT (Cho et al.,

2014b).
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7.1 Conditional Random Fields-based Approach

This section presents our disfluency detection system developed on German to improve

spoken language translation performance.

Inspired by previous works Fitzgerald et al. (2009a); Liu et al. (2006), we used

conditional random fields with extended features engineered for this task. In order to

detect speech disfluencies considering syntactics and semantics of speech utterances,

we extended this CRF-based approach using information learned from the word repre-

sentation and the phrase table used for machine translation. The word representation

is gained using recurrent neural networks and projected words are clustered using the

k-means algorithm. The details will be given in the following sections.

Using the output from the model trained with the word representations and phrase

table information, we achieve an improvement of 1.96 BLEU points on the lecture

test set. By keeping or removing human-annotated disfluencies, we show an upper

bound and lower bound on translation quality. In an oracle experiment we gain 3.16

BLEU points of improvement on the lecture test set, compared to the same set with

all disfluencies.

7.1.1 Semantics and Disfluency Detection

Detecting obvious filler words and simple repetitions can be more feasible than other

sorts of disfluencies for automatic modeling techniques, using lexical patterns such as

typical filler word tokens and repetitive POS tokens as in previous work Fitzgerald et al.

(2009a); Wang et al. (2010). In the Table 2.1, for example, we discussed different copy

patterns in the spontaneous speech. The repetition pattern of the first sentence can be

captured by analyzing the word tokens. On the other hand, the second sentence does

not exhibit the exact copy pattern on their word tokens. Instead, we can detect such

disfluencies easily by examining the POS patterns. Such disfluencies can be relatively

less problematic to detect.

Although it is the case for obvious disfluencies (i.e. “uh”, “uhm”, same repetitive

tokens, and so on) as well as limited types of disfluencies, we are confronted with many

other cases where it is hard to recognize or decide whether the token is a disfluency

or not via automatic means. This issue can be consistent even when the disfluency is

filler words or repetitive tokens. Table 7.1 contains a sentence from the annotated data,
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which exemplifies this issue for repetition. In the German source sentence, the word

üblicherweise, meaning ‘customarily’ is annotated as a disfluency, as it was the speaker’s

intention to change the utterance into the next word traditionell, which means ‘tradi-

tionally’. Such disfluencies are more difficult to capture than other simple repetitions,

as they do not show any repetitive pattern on their surface level.

Source

Die Kommunikation zwischen Mensch

und Maschine, die wir so üblicherweise

traditionell immer sehen, ist die...

Engl. gloss

The communication between man

and machine, which we customarily

traditionally always see, is the...

Table 7.1: Difficulty in detecting repetitions

Discourse markers can be hard to capture, as they occasionally convey meaning in

a sentence. In the same way as it is with English discourse markers such as “I mean”,

“actually”, and “like”, for example, German discourse markers, as shown in Table 7.2,

can sometimes be used as a discourse marker and sometimes as normal tokens. In this

table it is shown that a German word nun means ‘now’ as shown in the upper part, but

occasionally is used as a discourse marker like in the lower part and does not need to

be translated. In the lower row, the word nun appears with another discourse marker

ja, which can also mean ‘yes’ in English, depending on the context.

Source
Sie sehen hier unseren Simultanübersetzer,

der nun meinen Vortrag transkribiert.

Reference
Here you see our simultaneous translator,

which now transcribes my presentation.

Source
An einer Universität haben wir ja nun

viele Vorlesungen.

Reference In a university, we have many lectures.

Table 7.2: Difficulty in detecting discourse markers

These examples suggest that disfluency detection requires an analysis of syntactics

as well as semantics. Detecting restarted fragments especially requires semantic label-
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ing, as in some cases the restarted new fragment does not contain the same content as

the aborted utterances.

In this thesis we aim to analyze and improve the machine translation performance

by detecting and removing the disfluencies in a preprocessing step before translation.

For this we adopt a CRF-based approach, in which the characteristics of disfluencies can

be modeled using various features. In order to consider the issues discussed previously,

we devised features learned from word representations and phrase tables used for the

MT process in addition to lexical and language model features. The MT performance of

CRF-detected output is evaluated and compared to the result of an oracle experiment,

where the test data without all annotated disfluencies is translated.

7.1.2 Model

We used the GRMM package (Sutton, 2006) implementation of the CRF model. We

used bi-gram features, in order to model first-order dependencies between words with

a disfluency. The CRF model was trained using L-BFGS, with the default parameters

of the toolkit.

7.1.2.1 Training

For training and testing our CRF disfluency detection model, we use parts of the in-

house German lecture data from different speakers, which is transcribed, annotated,

and translated into English as introduced in Section 5.1.1.

Disfluencies are annotated manually on a word or phrase level. There are subcat-

egories of annotation such as filler words, repetitions, deletions, partial words, and so

on. These subcategories are very fine-grained, so we later re-classify them for the CRF

tagging task according to our aims. Inspired by the classes defined in previous works

(Fitzgerald et al., 2009a; Johnson and Charniak, 2004), we classified these annotations

into three categories; filler, (rough)copy, and non-copy.

The disfluency classification is consistent as shown in the Section 5.1.1. Therefore,

the class filler includes simple disfluencies such as uhm, uh, like, you know in English.

If source words are discourse words or do not necessarily convey meaning and are

not required for correct grammar, they are also classified as filler words. Words or

phrases are grouped into (rough)copy when the same or similar tokens reoccur. Words

are tagged as non-copy when the speaker changes their mind about how or what to

78



7.1 Conditional Random Fields-based Approach

say. Contrary to previous work shown by Fitzgerald et al. (2009a), extreme cases of

non-copy, in which the restarted fragments are considered to have new contexts after

aborted utterances, are not excluded from the modeling target but are also taken into

account.

Table 7.3 shows the detailed statistics of the annotated data used in this task, which

is now a part of the data described in Section 5.1.1.

Tokens Percentage in the corpus

Filler 3,304 5.35%

(rough)Copy 1,518 2.46%

Non-copy 620 1.00%

Non-disfluency 56,264 91.18%

Table 7.3: Disfluency annotated data for CRF-based detection model

In order to make use of all annotated data and to enable cross validation, we divided

the 61K words of annotated data as well as its translation in English into three parts,

such that each part has around 20K words in the German source. For testing one

corpus part out of three, the other two parts, which are around 40K words, are used

as training data for the CRF model.

7.1.2.2 Features

The CRF-based modeling utilizes lexical, language model, word representation, and

phrase table information features. Word representation and phrase table information

features are devised in order to capture more syntactic and semantic characteristics of

speech disfluencies.

The features are structured as followings.

• Previous and next two word/POS tokens

• Previous word/POS token with a current word/POS token1

• Distance to the next equal word/POS token

• Whether current word is a partial word

1expanded upto with previous two tokens or next two tokens
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• Distance to the next word which contains the same initial letters

• Normalized word position in a sentence

• Word/POS token distance pattern

• Language model scores1

• RNN cluster code and pattern

• Phrase table information

Our lexical and language model features are based on the ones described in Fitzger-

ald et al. (2009a). We extend the language model features on words and POS tags

up to 4-grams. Parser information and JC-04 Edit results as shown in Johnson and

Charniak (2004) are not available in German, and therefore not used in this thesis.

Furthermore, we add two new pattern features at the lexical level.

In Table 7.4, several selected features are shown for the rough repetition sentence

from Table 2.1. The sentence Da gibt es da gab es in uh gab es nur eins. suffers from

repetitions as well as using a filler word.

The ‘Word/POS-Dist’ feature means the distance of a token to its next appearance.

Therefore, a low ‘Word/POS-Dist’ number indicates that this token occurs again shortly

thereafter. If two or more neighboring tokens have the same ‘Word/POS-Dist’, the

‘Word/POS-Patt’ feature of the corresponding tokens is set to 1. For example, the first

three tokens have the same ‘POS-Dist’ number, therefore their ‘POS-Patt’ has a value

of 1. This feature enables us to efficiently detect such blocks of repetition, where the

same or roughly the same words are repeated. We use a 1 of k encoding for features.

Since binary features are supported better for the toolkit, we quantize the numeric

features. For example, language model scores are quantized using the equal-sized bins

in the log space. The POS tags are automatically generated using Schmid (1994).

With the mentioned features, we can find syntactic clues for disfluency detec-

tion. For example, POS tokens and their patterns can help to figure out repetitive

(rough)copy occurrences. However, as discussed earlier, in the annotated data we ob-

serve that in many cases it is required to include a semantic level information as well.

In addition to the mentioned features, we devised a new strategy of including word

embedding features derived from an RNN and phrase table information.

1unigram, 4-gram, and devision of them
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Source Da gibt es da gab es in uh gab es nur eins .

Engl. gloss. There is there was in uh there was only one .

Word Da gibt es da gab es in uh gab es nur eins .

POS ADV VVFIN PPER ADV VVFIN PPER APPR ITJ VVFIN PPER ADV PIS $.

Word-Dist 3 365 3 47 4 4 259 9 218 821 115 933 27

POS-Dist 3 3 3 7 4 4 12 9 6 80 3 21 27

Word-Patt 0 0 0 0 1 1 0 0 0 0 0 0 0

POS-Patt 1 1 1 0 1 1 0 0 0 0 0 0 0

Annotation - RC RC RC RC RC RC FL - - - - -

Table 7.4: Sample features on the lexical level
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7.1.2.3 Word Representation using RNN

Word representations have gained a great deal of attention for various NLP tasks.

Especially word representation using RNNs have been proved to be able to capture

meaningful syntactic and semantic regularities efficiently (Mikolov et al., 2013b). RNNs

are similar to feed-forward neural networks, but an RNN has a backwards directed loop,

where the output of hidden layers becomes additional input. This allows the network to

effectively capture longer history compared to other feed-forward-based n-gram models.

Word embedding is a distributed word representation, where words are represented

as multi-dimensional vectors. The word vectors syntactically and semantically relating

to each other will be close to each other in that representation space. Thus, words

within certain semantic and syntactic relations have similar vector values. Convention-

ally, word embeddings of a textual corpus are obtained using certain types of neural

networks.

In the hope that word representation can offer insights on semantics and syntactis,

in this work we use word embedding features learned from an RNN for the CRF model.

We use RNNLM (Mikolov et al., 2010) with 100 dimensions for word representations. In

order to ensure an appropriate coverage of the representation, we use the preprocessed

training data of the MT system, which contains various domains such as news and

lectures. This data consists of 462 million tokens with 150K unique tokens.

Word Projection and Cosine Distance Figure 7.1 depicts the 2-dimensional word

projection from the 100-dimensional real-valued vectors representations using the RNN,

where we can observe word clusters being formed. This visualization is obtained using

t-Distributed Stochastic Neighbor Embedding (Van der Maaten and Hinton, 2008).

Due to memory consumption, only the most frequent 10K words are projected.

Analyzing the details of this projection, we observe that words with the same syntac-

tic role are projected closely to each other. For example, possessive cases corresponding

to ‘my’, ‘his’, and ‘our’ in English are projected closely to each other as shown in Figure

7.2. We can observe that in the top left corner the possessive cases such as meinen

and deinen are gathered together. In the figure we can also find welchem, which means

‘whose’. The figure also depicts that some of the prepositions such as im, zum, am, for

example, are gathered in one spot.
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Figure 7.1: Word projection of training data, with word representation obtained with

an RNN

Figure 7.2: Syntactic information encoded in the word representation

Throughout the figure, the cluster seems to be able to express morphological in-

flections as well. While the possessive accusative masculine cases (with en ending) are

clustered together, all prepositions seem to have the dative ending (represented with

(e)m ending). This is consistent with other grammatical components of a sentence,

such as personal pronouns or relative pronouns. We observe clusters for dates, months

and times.

Figure 7.3: Semantic information encoded in the word representation

The projection seems to convey semantic relations to some extent. Figure 7.3

presents the semantic information encoded by using the RNNs. We can see that the
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verbs wirken, reagieren, and greifen are projected closely. These verbs have a com-

mon meaning of ‘to act/function/be effective’. In the upper part of the figure several

adjectives are depicted. legislative means ‘legislative’, whereas richtig means ‘right’

or ‘correct’. When it comes to adjectives, we often observed that they are projected

according to their stem and occasionally also their meanings. Verbs are clustered with

other verbs with the same tense or stem.

In order to compare the closeness of words numerically, we calculate their cosine

similarity. Cosine similarity for two words is calculated by

similarity = cos(θ) =
A ·B
‖A‖‖B‖

(7.1)

where A and B are vectors of them.

Word in German Meaning in English Cosine Distance

schnell fast, quick 1

rasch quick, rapid 0.8394

bald soon, shortly 0.6245

effektiv effective 0.6092

zügig efficient, speedy 0.6088

wahrscheinlich probable 1

vermutlich probably 0.9066

möglicherweise maybe, possibly 0.8938

sicherlich certainly 0.8937

vielleicht maybe, possibly 0.8827

Table 7.5: Cosine similarity of words in word representations

Table 7.5 depicts a couple of examples. For each bold-lettered word, the four words

with the highest cosine similarity are presented. Evidently, these four words are sharing

a high semantic closeness with each given word, which will provide a quality feature for

the task of disfluency detection. From this analysis, we conclude that RNNs can offer

syntactic and semantic clues for disfluency detection.

Word Clustering In order to use the word representation vectors as features in

the CRF model more efficiently, we cluster the word representations with the k-means

algorithm. From preliminary experiments, the number of clusters k is chosen to be 100.
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Every word of the RNN training data falls into the 100 clusters. For every word

in the test data, our preprocessing system checks whether this word has been observed

in the word representations. If it has been observed, the word is assigned with the

corresponding cluster code as a binary feature. If it has not been observed, the cluster

code 0 is assigned. Also, the distance to the next identical cluster code and the repetitive

pattern of it are also used as CRF model features, as shown in Table 7.4 for word and

POS tokens.

7.1.2.4 Phrase Table Information

One of the common effects of disfluencies on the MT process is that often the translation

contains repetitive words or phrases. When identical tokens in the source sentence are

the reason for this, the original source sentence can be corrected using lexical features.

However, often we observe other cases where two words, which are different on the

lexical level, generate two identical translated words. Table 7.6 depicts one example of

this from our data.

Source
Diese Vorlesungen sind natürlich jetzt inzwischen alle abgespe-

ichert, die liegen auf unserem Server.

Engl. gloss
These lectures are of course now meantime all stored, they lie on

our server.

MT output
This lecture series are, of course, now now all stored, which lie on

our server.

Reference
These lectures have of course all been saved in the meantime, they

are on our server.

Table 7.6: Necessity of using phrase table information for disfluency detection

In this example, the German word jetzt (Engl. gloss. ‘now’) is annotated as a

disfluency, followed by a word inzwischen (Engl. gloss. ‘meantime’, ‘now’). Translating

this source sentence as it is generates the translation containing two identical tokens

in a row in English. We expect to solve this problem by examining the meaning of

the source words in a phrase table. Thus, the target words for given source words in a

phrase table are examined.

An advantage from using phrase table information is that we can detect semantic

closeness of words or phrases in a source sentence independent from their syntactic roles.
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As shown in Table 7.5, word representation tends to group those words together which

are syntactically and semantically closely related. However, using the phrase table

information, words which are only semantically related, but not necessarily syntactically

related, can also be grouped together. Considering that many of the repetitions also

have different POS tags in a sentence, this phrase table feature is expected to capture

such disfluencies.

In order to derive this feature, we examine the bilingual language model (Niehues

et al., 2011) tokens in the phrase table. The bilingual language model tokens consist

of target words and their aligned source words. Using this information, we count how

often a given source word is aligned to a certain target word and list the three most

frequently used target words. For example, for a German word normalerweise, its fre-

quently aligned target words are normally, usually, typically, ordinarily and generally.

For another German word üblicherweise, English target words such as traditionally,

typically, usually, and normally are frequently aligned to it. Therefore, by comparing

the frequently aligned words in the target language, we can extract semantic relations

between the two words that are far in the surface form. If the same target word(s)

appears in both lists, the current word is given a phrase table feature.

An equivalent feature is introduced for the phrase level, so that we can cover the

case where multiple words are translated into one or multiple word(s). As an example,

we can consider consecutive source words f1, f2, and f3 in one phrase. This phrase is

aligned to a target token e1. If the next source token f4 is also aligned to the target

token e1, the first three tokens, namely f1, f2, and f3, are given the phrase level phrase

table feature. The coverage of the phrase level feature can be expanded up to three

consecutive words as a single phrase on the source side. Thus, the source tokens f1,

f2, and f3 are examined as one phrase, and this can be also narrowed down to f1 and

f2 only. The target token(s) aligned to the source phrase, consists of upto f1, f2, and

f3, is compared to the target token(s) aligned to the potential repetitive phrase, which

can consist of also up to next three tokens f4, f5, and f6. The German source words

with split compounds are also considered in this way.

In our phrase table the word inzwischen in Table 7.6 is aligned to ‘now’ most

frequently, followed by ‘meantime’ and ‘meanwhile’. The most frequently appeared

translation for the next appearing word jetzt is ‘now’, followed by ‘currently’, and
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‘just’. Thus, by using the phrase table features, it will be indicated that the first word

jetzt is aligned to a same target word with its next appearing word.

7.1.3 Experiments and Results

To investigate the impact of disfluencies in speech translation quality, we conduct four

experiments.

In the first experiment, the whole data, including annotated disfluencies, is passed

through our SMT system. Throughout these experiments, we used the German to

English SMT system described in Section 5.3.2.

For the second experiment, we remove the obvious filler words uh and uhm manually

in order to study the impact of the filler words which can be captured systematically.

Although there are a great number of other filler words, many of these filler words are

not removed in this experiment, since they are not always disfluencies.

In the third experiment, we use the output from the CRF model without the features

from words representations and phrase table information, which will be noted as CRF-

Baseline. The one trained with features from word representations and phrase table

information will be noted as CRF-Extended. If the CRF models detect a token as either

of the three classes, filler, (rough)copy, or non-copy, the word token is assumed

to be a disfluency and is removed. The three classes are trained in the same model

together. As mentioned previously, training and testing the CRF model is done with

three-fold cross-validation. Thus, both of the CRF models are trained on around 40K

annotated words, and tested on around 20K annotated words. The performance is

evaluated on the joined three sub-test sets.

In the last experiment, all disfluency-annotated words are removed manually. As

all annotation marks are generated manually, this experiment shows as an oracle ex-

periment the maximum possible improvement we could achieve.

All experiments are conducted on manually transcribed texts, in order to disam-

biguate the effects from errors of an ASR system. The experiments considers all avail-

able data, which is 61K words, or 3K sentences.

7.1.3.1 Results

Table 7.7 depicts the results of our experiments. The scores are reported as case-

sensitive BLEU scores, including punctuation marks.
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System BLEU

Baseline 19.98

+ no uh 21.28

CRF-Baseline 21.92

CRF-Extended 21.94

Oracle 23.14

Table 7.7: Impact of disfluency removal using the CRF-based model, prior to translation.

We can observe the influence of disfluency in speech translation.

The result of the first experiment is presented as the Baseline system, where all

disfluencies are kept in the source text. When we remove all uhs and uhms in the

source text manually, we gain 1.3 BLEU points.

Apart from this, we use the output of the CRF-Extended as an input to our machine

translation system. Words tagged as disfluencies are all removed. The translation score

using the CRF-Extended is almost 2 BLEU points better than translating the text with

all disfluencies. Compared to the second experiment where we remove uh and uhm, the

performance is improved by around 0.7 BLEU points. The improvement by using the

extended features in the CRF model was not captured by the BLEU, yielding only a

minimal difference. An in-depth analysis of the impact of the two systems will be given

in the following chapter.

7.1.3.2 Analysis

The detection results for all models are given in Table 7.8. In total, there are 5,432

speech disfluencies annotated by human annotators, and among them, 3,012 speech

disfluencies are detected by CRF-Extended.

Compared to the case where the obvious filler words are removed, 1,025 more speech

disfluencies are detected and removed. Compared to CRF-Baseline, where the features

obtained from the word representations and phrase table information are not used,

103 more disfluencies are detected using CRF-Extended, while also a higher number of

tokens are falsely detected.

In order to analyze the difference between the translations produced by CRF-

Baseline and CRF-Extended, we score the two test sets resulted from each of the
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System Correct Wrong

Baseline 0 0

+ no uh 1,987 0

CRF-Baseline 2,909 489

CRF-Extended 3,012 552

Oracle 5,432 0

Table 7.8: Performance of disfluency detection in accuracy

CRF model sentence by sentence and rank them according to their difference in BLEU

scores. Differences appear in 223 sentences.

One notable difference is that the CRF-Extended system detects a higher number

of repetitions. Table 7.9 shows a sentence from the test set, where a longer phrase

of repetition is captured using CRF-Extended. Words which represent a disfluency

are marked in bold letters. Both systems can catch the obvious filler word uh and

the simple repetition als als. In addition to this detection, the CRF-Extended system

captures the whole disfluency region, in spite of the considerably complicated sentence

structure and repetitive patterns. In this sentence the repeated words appear with

varying frequencies and with a different distance to the next identical token. In order

to detect such disfluencies, the correct phrase boundary needs to be recognized. As a

result of this detection, the MT output using the CRF-Extended system is much more

fluent than the one using the CRF-Baseline system.

Table 7.10 shows a sentence from the test set, where the CRF-Extended system does

not perform better than the CRF-Baseline system for the given reference. The only

disfluency shown in the original sentence der, marked with bold letters, is removed using

both techniques. The CRF-Extended system additionally detects einen Umschwung as

a disfluency. However, this deletion harms neither the structure nor meaning of the

sentence, as einen Umschwung means ‘a turnaround’, or ‘a change’, which conveys

practically the same meaning as the next following tokens.

It is an interesting point that using the semantic features we could detect that einen

Umschwung is semantically closely related with eine veränderte, despite their distance

in tokens and different syntactic roles in the sentence. This is an example that even

though the CRF-Extended output does not match the human-generated annotation in

this case, the CRF-Extended still provides a good criteria to detect semantically related
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Source
Man kann das natürlich sowohl als Links- als auch als als Links-

als auch als Rechtshänder uh verwenden.

Engl. gloss
You can this of course both as left- as also as as left- as also as

right-handed uh use.

CRF-Baseline
Man kann das natürlich sowohl als Links- als auch als Links- als

auch als Rechtshänder verwenden.

MT output
You can use this, of course, both as a left- as well as on the left- as

well as a right-handed.

CRF-Extended
Man kann das natürlich sowohl als Links- als auch als Rechtshänder

verwenden.

MT output You can use this, of course, both as a left- as well as a right-handed.

Reference
You can of course use this as left- as well as also as a right-handed

person.

Table 7.9: Disfluency detected using the CRF-based model with semantic features.

Syntactically complicated, long phrase with a disfluency is captured using CRF-Extended.

words.

The CRF-Extended system also performs better with regard to distinguishing be-

tween discourse markers and the normal usages of the words. 59% of difference in

correctly classified disfluencies between the CRF-Baseline and CRF-Extended stems

from filler words. The rest is achieved from detecting a higher number of correct repe-

titions.
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Source
Die Ausrufung des totalen Kriegs markierte eigentlich einen Um-

schwung, der eine veränderte Form der Politik.

Engl. gloss
The proclamation of total war marked actually a turnaround, of a

change form of politics.

CRF-Baseline
Die Ausrufung des totalen Kriegs markierte eigentlich einen Um-

schwung, eine veränderte Form der Politik.

MT output
The proclamation of the total war was collared actually a turnaround,

a changed form of politics.

CRF-Extended
Die Ausrufung des totalen Kriegs markierte eigentlich eine veränderte

Form der Politik.

MT output
The proclamation of the total war was collared actually a changed

form of politics.

Reference
The call for total war in fact marked a turnaround, and a changed

form of politics.

Table 7.10: Semantically related words detected using the CRF-based model with se-

mantic features (CRF-Extended)

7.2 Integration into an SMT System

In previous section, we discussed how speech disfluencies can be detected using a sequen-

tial tagging model. Such disfluency detection systems deploy a hard decision, which

can have a negative influence on subsequent applications such as machine translation.

In this section we show a novel approach in which disfluency detection is integrated

into the translation process.

We train a CRF model to obtain a disfluency probability for each word. The SMT

decoder will then skip the potentially disfluent word based on its disfluency probability.

Using the suggested scheme, the translation score of both the manual transcript and

ASR output is improved by around 0.35 BLEU points compared to the CRF hard

decision system.

7.2.1 Motivation

One of the advantages of detecting and removing speech disfluencies is to increase the

accuracy of recognition and sequentially read the readability. Previous works shown

by Johnson and Charniak (2004) and Fitzgerald et al. (2009a) focus on this aspect, for

example. Other works, such as Wang et al. (2010) and Cho et al. (2013b), extend the
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point of view and aim to improve the following application systems, such as machine

translation.

The approaches suggested by the previous works have a potential drawback, that

the decision whether a token is a disfluency or not is a hard decision. For an MT

system, especially, this can pose a severe problem if the removed token was not in fact

a disfluency and should have been kept for the correct translation. Therefore, we pass

the decision whether a word is part of a disfluency or not on to the translation system,

so that we can use the additional knowledge available in the translation system to make

a more reliable decision. In order to limit the complexity, the search space is pruned

prior to decoding and represented in a word lattice.

In this section, we show a novel scheme where the disfluency removal process is

integrated into an MT system. Unlike previous works, our work is not limited to the

preprocessing step of MT, instead we use the translation model to detect and remove

disfluencies. Contrary to other systems where detection is limited on manual transcripts

only, our system shows translation performance improvements on the ASR output as

well.

7.2.1.1 Word Lattices in NLP

While ASR systems use lattices to encode hypotheses, lattices have been used for MT

systems with various purposes. Rottmann and Vogel (2007) constructed a lattice, which

contains all word reorderings according to the reordering rules learned from the POS.

This is later extended to cover long-range reorderings in Niehues and Kolss (2009), as

well as to include tree-based word reordering in Herrmann et al. (2013). Lattices have

also been used as a segmentation tactic for compound words (Dyer, 2009), where the

segmentation is encoded as input in the lattice. The authors use a maximum entropy

model for the segmentation and encode it in the lattice as input into an MT system.

7.2.2 Tight Integration using Lattices

In this section, we explain how the disfluency removal is integrated into the MT process.

7.2.2.1 Model

The conventional translation of texts from spontaneous speech can be formulated as
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ê = arg max
e
p(e| arg max

fc
p(fc|f)) (7.2)

with

p(fc|f) =

I∏
i=1

p(ci|fi) (7.3)

where fc denotes the clean string

fc = {fi | ci = clean} (7.4)

for the disfluency decision class c ∈ {clean, disfluent} of each token. fi is ordered

according to the word occurrence in the sentence. Thus, using the conventional models,

disfluency removal is applied to the original, potentially noisy string in order to obtain

the cleaned string first. This clean string is then translated.

The potential drawback of a conventional speech translation system is caused by the

rough estimation in Equation 7.2, as disfluency removal is not depending on maximizing

the translation quality itself. For example, we can consider an exemplary sentence Use

what you build, build what you use. Due to its repetitive pattern in words and structure,

often the first clause is detected as a disfluency using automatic means. To deal with

the issue, we can change the scheme how the clean string is chosen as following,

ê = arg max
e

(p(e|fc) · p(fc|f)) (7.5)

This way a clean string which maximizes the translation quality is chosen. Thus, in

this scheme no instant decision is made whether a token is a disfluency or not. The

disfluency probability of the token, however, will be taken into the process of MT, by

taking the log linear combination of the probabilities as shown in Equation 7.5.

For this task as well, we use a CRF (Lafferty et al., 2001) model to obtain the

disfluency probability of each token.

Since there are two possible classes for each token, the number of possible clean

sentences is exponential with regard to the sentence length. Thus, we restrict the

search space by representing only the most probable clean source sentences in a word

lattice.
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7.2.2.2 CRF Model Training

In order to build the CRF model, we used the open source toolkit CRF++ (Kudoh,

2007). The unigram features for CRF modeling are same as the ones used in Section

7.1.2.2. The disfluency classes are also following the ones in Section 7.1.2.1.

For training and testing the CRF model, we use 61k annotated words of parts of

the manual transcripts of university lectures in German as shown in Section 7.3. Thus,

this scheme is directly comparable to the baseline model shown in Section 7.1. For

developing and testing the MT system, the same data is used along with its English

reference translation. In the same way in the Section 7.1, we split the data into three

parts and perform three-fold cross validation. Therefore, the train/development data

consists of around 40k words, or 2k sentences, while the test data consists of around

20k words, or 1k sentences.

7.2.2.3 Lattice Implementation

We construct a word lattice which encodes long-range reordering variants (Niehues

and Kolss, 2009; Rottmann and Vogel, 2007). For translation we extend this so that

potentially disfluent words can be skipped.

Let us consider an example sentence.

Das sind die Vorteile, die sie uh die sie haben.

(En.gls: These are the advantages, that you uh that you have.)

This sentence experiences repetition die sie as well as filler word uh. Its reordering

lattice is shown in Figure 7.4, where words representing a disfluency are marked in bold

letters. In this sentence, the part die sie uh was manually annotated as a disfluency,

due to repetition and usage of a filler word.
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Figure 7.4: Original lattice before adding alternative clean paths for a given sentence
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Figure 7.5: Extended lattice with alternative clean paths for an exemplary sentence
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The disfluency probability Pd of each token is calculated as the sum of probabilities

of each class.

Pd = PFL + PRC + PNC (7.6)

Table 7.11 shows the disfluency probability Pd obtained from the CRF model for each

token. As expected, the words die sie uh obtain a high Pd from the CRF model.

das 0.000732 sie 0.953126

sind 0.004445 uh 0.999579

die 0.013451 die 0.029010

Vorteile 0.008183 sie 0.001426

, 0.035408 haben 0.000108

die 0.651642 . 0.000033

Table 7.11: Disfluency probability of each word

In order to provide an option to avoid translating a disfluent word, a new edge

which skips the word is introduced into the lattice when the word has a higher Pd

than a threshold θ. During decoding the importance of this newly introduced edge is

optimized by weights based on the disfluency probability and transition probability.

The extended lattice for the given sentence with θ = 0.5 is shown in Figure 7.5,

with alternative paths marked by a dotted line. We can observe that compared to the

original lattice, the new lattice contains a lot of edges. The previously discussed word

with a disfluency sie now has an edge skipping over it, connecting node 0 and 5. From

node 22 to 28, now we have an option of taking the edge die, instead of going over the

node 25, which would have generated the path uh die.

Search Space On selecting the candidate words to jump over, we conduct experi-

ments with the altered search space by changing θ. The optimal value of θ was manually

tuned on the development set. Apart from the search space, we also set restrictions in

order to avoid memory and time consumption. For example, when Pd is smaller than

0.2, the corresponding word does not get an edge jumping over it. Also, when the next

word of the current skipping word has Pd higher than 0.9, the expansion covers directly

the second next edge.

For the testing, we choose the scaling factor from the best performing optimization.
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Weights of Edge Each edge of a lattice has a probability. Every edge of an original

lattice has the weight. When a new edge is introduced, the weight on this new edge

is obtained by getting product of the weight of two edges. For example, in Figure 7.5,

the weight on the edge between the node 0 and 5 is obtained by multiplying the weight

on the edge between the node 0 and 2 and the edge between the node 2 and 5.

In addition to this weight that each edge originally has, we use another weight to

encode the probability of keeping the corresponding word. The weight on this new edge

is product of the weight of the edge between 0 and 2 and the next edge between 2 and

6. Therefore, this second weight of the edge between the node 0 and 5 in Figure 7.5 is

obtained by multiplying Pd of the word sie and Pk of the word das.

7.2.3 Experiments

In order to compare the effect of the tight integration with other disfluency removal

strategies, we conduct different experiments on manual transcripts as well as on the

ASR output. All translations are generated using the system introduced in Section

5.3.2. While the system uses same translation and language models, it is re-optimized

using our three-fold training data scheme as discussed in Section 7.2.2.2.

7.2.3.1 Manual Transcripts

As a baseline for manual transcripts, we use the whole uncleaned data for development

and test. For “No uh”, we remove the obvious filler words uh and uhm manually.

In the CRF-hard experiment, the token is removed if the label output of the CRF

model is a disfluency class. This scheme is based on the CRF-based model described

in Section 7.1. The fourth experiment uses the tight integration scheme, where new

source paths which jump over the potentially noisy words are inserted based on the

disfluency probabilities assigned by the CRF model. In the next experiments, this

method is combined with other aforementioned approaches. First, we apply the tight

integration scheme after we remove all obvious filler words. In the next experiment,

we first remove all words whose Pd is higher than 0.9 as early pruning and then apply

the tight integration scheme. In a final experiment, we conduct an oracle experiment,

where all words annotated as a disfluency are removed.
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7.2.3.2 ASR Output

The same experiments are applied to the ASR output. Since the ASR output does

not contain reliable punctuation marks, there is a mismatch between the training data

of the CRF model, which is manual transcripts with all punctuation marks, and the

test data. Thus, we insert punctuation marks and augment sentence boundaries in the

ASR output using the monolingual translation system as introduced in Chapter 6. As

the sentence boundaries differ from the reference translation, we use the Levenshtein

minimum edit distance algorithm (Matusov et al., 2005) to align hypothesis for evalu-

ation. No optimization is conducted, but the scaling factors obtained when using the

corresponding setup of manual transcripts are used for testing.

7.2.3.3 Results and Analysis

Table 7.12 shows the results of our experiments. The scores are reported in case-

sensitive BLEU.

System Dev Text ASR

Baseline 23.45 22.70 14.50

No uh 25.09 24.04 15.10

CRF-hard 25.32 24.50 15.15

Tight int. 25.30 24.59 15.19

No uh + Tight int. 25.41 24.68 15.33

Pruning + Tight int. 25.38 24.84 15.51

Oracle 25.57 24.87 -

Table 7.12: Results of the tight integration of a disfluency detection model into SMT.

Translation results for the investigated disfluency removal strategies are presented.

Compared to the baseline where all disfluencies are kept, the translation quality is

improved by 1.34 BLEU points for manual transcripts by simply removing all obvious

filler words. When we take the output of the CRF as a hard decision, the performance is

further improved by 0.46 BLEU points. This system and CRF-Extendend in Table 7.7

are in the same condition, using the same method. The score difference is from using

different development data, due to three-fold system using this integration scheme.
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When using the tight integration scheme, we improve the translation quality around

0.1 BLEU points compared to the CRF-hard decision. The performance is further im-

proved by removing uh and uhm before applying the tight integration scheme. Finally

the best score is achieved by using the early pruning coupled with the tight integration

scheme. The translation score is 0.34 BLEU points higher than the CRF-hard decision.

This score is only 0.03 BLEU points less than the oracle case, without all disfluencies.

One explanation for this improvement can be that the removing of the words with

a high probability simplifies the task of selecting the remaining disfluent words and

therefore the log-linear model.

Experiments on the ASR output also showed a considerable improvement despite

word errors and consequently decreased accuracy of the CRF detection. Compared to

using only the CRF-hard decision, using the coupled approach improved the perfor-

mance by 0.36 BLEU points, which is 1.0 BLEU point higher than the baseline.

System Precision Recall

CRF-hard 0.898 0.544

Pruning + Tight int. 0.937 0.521

Table 7.13: Detection performance comparison

Table 7.13 shows a comparison of the disfluency detection performance on word

tokens. While recall is slightly worse for the coupled approach, precision is improved

by 4% over the hard decision, indicating that the tight integration scheme decides more

accurately. Since deletions made by a hard decision can not be recovered and losing

a meaningful word on the source side can be very critical, we believe that precision is

more important for this task. Consequently we retain more words on the source side

with the tight integration scheme, but the numbers of word tokens on the translated

target side are similar. The translation model is able to leave out unnecessary words

during translation.

7.3 Summary

In this chapter, we presented a CRF-based disfluency detection technique with extended

features from word representations and a phrase table. These features are designed to
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capture deeper semantic aspects of the tokens. Using the predicted results from the

CRF model, we gain around 2 BLEU points on manual transcripts of lectures. From the

detailed analysis, we show that usage of the extended features provides a good means

to detect semantically related disfluencies. The oracle experiment suggests that the

machine translation of spontaneous speech can be improved significantly by detecting

more disfluencies correctly.

Later on we presented a novel scheme to integrate this disfluency removal system

based on CRF model into the MT process. Using this scheme, it is possible to consider

disfluency probabilities during decoding and therefore to choose words which can lead

to better translation performance. The disfluency probability of each token is obtained

from a CRF model, and is encoded in the word lattice. Additional edges are added in

the word lattice, to bypass the words potentially representing speech disfluencies.

We achieve the best performance using the tight integration method coupled with

early pruning. This method yields an improvement of 2.1 BLEU points for manual

transcripts and 1.0 BLEU point improvement over the baseline for ASR output.

Although the translation of ASR output is improved using the suggested scheme,

there is still room to improve.
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8

Modeling Punctuation and

Disfluency for Multi-Party

Meeting Data

Multi-party meeting data is a speech resource where another degree of spontaneousness

can be observed compared to previously discussed university lecture data. Meetings

involve multiple participants, which increase speech disfluencies such as interruptions

drastically. Translating such meetings, therefore, presents a big challenge.

Previous research to deal with disfluency and lack of punctuation in multi-party

meetings was focused on using prosody (Baron et al., 2002; Shriberg et al., 2001).

Another approach was using multi-stage classifiers to detect disfluencies (Mieskes and

Strube, 2008).

In this chapter, we investigate the importance of transforming speech transcripts of

multi-part meetings into well-written input, prior to the translation process. Therefore,

our first goal is to improve machine translation performance of it. For this transforma-

tion, we modeled punctuation prediction and speech disfluencies.

As shown in previous chapters, both tasks are essential to improve machine trans-

lation quality of speech. In this chapter, we explore two different ways of modeling the

two tasks, cascaded model (Cho et al., 2014c) and the joint model (Cho et al., 2015a),

motivated by their different advantages. In the cascaded model, where two tasks are

applied sequentially, we can fully use all available data for the punctuation prediction.

In the joint model, on the other hand, there is an advantage that the two tasks can be
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handled in a single process.

8.1 Cascaded Model based on Conditional Random Fields

In the cascaded model, disfluency removal and punctuation prediction are trained sep-

arately and applied to the test data one by one. This scheme is motivated by the

amount of data available for each model. Speech disfluencies are normally modeled

based on human-generated annotation on the speech data. This process is therefore

very expensive and time consuming. The data resource for modeling punctuation and

segmentation, however, is more abundant. Monolingual data with proper punctuation

marks can be a useful data for this task. In order to make use of the big data resource

for punctuation modeling, we investigate the performance of the cascaded system.

In the cascaded model, different schemes of punctuation insertion model are applied

to the test set after its disfluencies are detected by the CRF-based disfluency removal

system as described in Section 7.1. Disfluencies are removed by a CRF model trained

on in-domain and out-of-domain data. By doing so, we are going to explore the genre-

portability of this task. Sentence segmentation and punctuation are performed in three

different ways and their performance is compared. The first method is based on a

language model. As described in Section 6.3, this method is one of the most frequently

used methods for real-time segmentation due to its fast processing speed. The second

criterion is based on turn information and the third one is the monolingual translation

system as described in Section 6.2.

For comparison, we build a joint CRF model for punctuation insertion and disflu-

ency removal. By applying these models, multi-party meetings are transformed into

fluent input for machine translation.

We evaluate the models with regard to translation performance and are able to

achieve an improvement of 2.1 to 4.9 BLEU points depending on the availability of

turn information.

8.1.1 System Architecture

In this work, we chose a work scheme where the output stream from an ASR system

passes first through an automatic disfluency detection system. Based on this cleaned-

up stream, punctuation and segmentation insertion is performed. Once the disfluencies

102



8.1 Cascaded Model based on Conditional Random Fields

in the ASR output are removed and punctuation marks are inserted, the cleaned,

punctuated data goes through the MT system like normal input data.

For the disfluency removal model, we use data of two different domains: multi-party

meeting and lecture. The multi-party meeting data is split into train and test data as

shown in Table 5.7. For training, we use five meeting sessions, which sum up to 38.6k

annotated words. In order to model the case where we have no in-domain data, we

train the second model using lecture data. We use web-based seminar lecture data

given in English as well as parts of the annotated English reference translation of the

German lecture data shown in Section 5.1.1. The 41.8k tokens of web-based seminar

lecture data is obtained within the project EU-BRIDGE internally. The lecture data

contains altogether 104k annotated words, and shows a moderate level of disfluency.

Once the models are built, they are applied to the remaining three meeting sessions.

The test data consists of 2.1k segments with 14.9k English words and 11.4k French

words. After cleaning up the disfluencies manually, the source side contains 11.7k

English words.

8.1.1.1 Turn Information

For MT of multi-party meetings, turn information can play a big role, since knowing

who spoke when can provide basic segmentation. However, turn information is not

always available. For example, a good diarization system can be missing in small group

meeting sessions.

In order to compare and study the impact of turn information on our models, we

assume two scenarios: in the first scenario turn information is available while in the

second one it is not available. With the turn information, basic segment information

according to speaker changes is available. Even though this may not be the exact sen-

tence segmentation, it can offer a reasonable baseline for segmentation and punctuation

insertion. It can also offer additional features for disfluency detection. As it is possible

to know which segment is started by which speaker, we can obtain a cue that the pre-

vious segments’ last tokens could have been interrupted by the new speaker, given the

fact that meetings contain a lot of interruptions.

When the turn information is not available, there is no basic segmentation. There-

fore it is required to chunk the stream of ASR output into segments. Different tactics

on segmentation and punctuation insertion will be described in Section 8.1.3.
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8.1.2 Disfluency Detection

Speech disfluencies in the multi-party meeting data is modeled as a sequence labeling

task. For the task, we use the conditional random fields-based model as introduced in

Section 7.1. Same as for the lecture data, we used the GRMM package (Sutton, 2006).

Disfluency classes follow the meeting data description in Section 5.1.2.2.

8.1.2.1 In-domain vs. Out-of-domain Data

In the ideal case, disfluency annotated in-domain data is available for training the CRF

model. However, the annotation of speech for different domains can be very time-

consuming. As in-house disfluency annotated lecture data is available, we use this data

as our out-of-domain training data for the CRF model. As in-domain training data we

use the in-house English meeting data. This will show whether the disfluency removal

model is portable across different domains.

Compared to the meeting data, lecture data has different characteristics. Although

it still provides general speech disfluencies such as repetitions or filler words, lecture

data in general contains a moderate level of speech disfluencies compared to the quite

noisy meeting data. Especially, unlike meeting data, lecture data does not contain

interruptions by other speakers. Therefore, for testing the CRF model using lecture

data, we mapped interruption onto the non-copy class.

8.1.2.2 Features

In order to capture speech disfluencies, we use the features introduced in Section 7.1.2.2.

Word vectors for each word is obtained using Mikolov et al. (2013a), due to its efficiency

in training.

As mentioned earlier, we assumed two scenarios about turn information availability.

In the scenario where the turn information is available, we extracted the word position

within the turn. We expect that disfluencies can be more prominent in the initial part

of each turn, because many stutters as well as corrections occur within the first several

words. In addition, as interruptions between speakers occur at end of each turn, we

encoded whether the current token is one of the first or final 5 words of the turn in

order to incorporate this information for the training.
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The CRF model is trained with a bigram feature, so that first-order dependencies

between words with a disfluency can be modeled.

8.1.3 Segmentation and Punctuation Insertion

After removing disfluencies, the main difference between written text and the disfluency-

removed speech is the lack of punctuation marks. In recent work Peitz et al. (2011), it

has been shown that a promising approach to translate unpunctuated text is to auto-

matically insert punctuation marks and segmentation prior to translation. Therefore,

we analyzed three different methods to segment and punctuate the multi-party meeting

data: simple LM-based segmentation, turn segmentation, and monolingual translation

system.

8.1.3.1 Simple LM-based Segmentation

Assuming there is no information about different speakers and their turns available,

ASR of such a talk would generate a stream of words. For translation, it is necessary

to segment the stream of words. As a baseline system, we segmented based on a hard

threshold of word-based LM scores. First we concatenated the test data into a single

line without any punctuation marks, in order to mimic the ASR output. We use a 4-

gram LM trained on the punctuated English side of the MT training corpus in Section

5.3.4 and measure the probability of a final period given the previous words. When the

probability exceeded an empirically chosen threshold, we inserted a final period and

started a new segment. The output of this baseline system consists of segments where

each segment ends with a final period.

8.1.3.2 Turn Segmentation

If we have access to turn information, we can exploit this information in order to obtain

a better baseline segmentation. We inserted a final period and began a new segment

whenever the speaker changed. Each segment of this system may contain more than

one actual sentence, with no further punctuation marks within the segment.
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8.1.3.3 Monolingual Translation System

In Chapter 6, we showed that a monolingual translation system can be used successfully

for inserting punctuation marks into non-punctuated German lecture data. Following

this approach, we built a monolingual translation system from non-punctuated English

to punctuated English. While the previous two methods insert only final periods, this

system can insert all punctuation marks appeared in the training data. As training

data we used the English side of the MT training corpus. This MT training corpus is

ideally segmented and contains all punctuation marks, including a final period at the

end of each sentence. In order to learn where segment breaks should be inserted, we

throw away the segmentation and randomly cut the English side of the data. Aiming

to generate data that is similar to the test data, we limit the length of segments to 22

words. The test data goes through the monolingual translation system with a sliding

window of 10 words.

For the scenario where turn information is available, we build an additional, slightly

different monolingual translation system. When we have the turn information, several

segments uttered by a speaker are concatenated. Therefore, in order to make the

training data similar to the test data, we concatenated one to three sentences randomly

into one sentence. Punctuation marks between sentences are removed, and only a final

period is added at the end of each line of the source side data. The target side contains

all punctuation marks.

8.1.4 Experiments

In this section, the results of the oracle experiments are given, followed by results of

different punctuation insertion and disfluency detection techniques.

In the oracle experiments, human-generated segmentation and punctuation is in-

serted into the test data. Also, disfluencies are removed according to the manual

annotation. The oracle experiments, therefore, will give us an insight on the upper

bound of this experiment. As described earlier, for all experiments we are applying two

different scenarios, depending on whether the turn information is available.

In the following section, we present the impact of the different segmentation and

punctuation approaches in machine translation. For these experiments, we control the

disfluency condition into two cases. In the first case, all disfluencies are kept and in
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the another case all manually annotated disfluencies are removed. By doing so, we

can evaluate the impact of the segmentation and punctuation approaches distinguished

from the disfluencies.

After that, the results of disfluency removal are analyzed. Here, by building the

models using either in-domain or out-of-domain data only, we investigate the genre

portability of the disfluency modeling task. For the disfluency models, we use two

segmentation and punctuation schemes, the monolingual translation system and the

oracle punctuation.

Finally, the overview of our system is given in the end. The performance of each

technique is measured by translating the multi-party meeting data into French. All

translations are generated by using the En-Fr system described in Section 5.3.4.

8.1.4.1 Oracle Experiments

Table 8.1 shows the translation performance for oracle punctuation marks and oracle

disfluency removal on the multi-party meeting data.

System No turns Turns

Baseline 9.53 12.93

Oracle segmentation 13.96

Oracle punctuation 15.64

Oracle disfluency 12.21 15.72

Oracle all 20.93

Table 8.1: Translation performance of oracle experiments for multi-party meeting data.

Punctuation and speech disfluency are conditioned separately and also jointly.

In the first system, all disfluencies are kept and baseline segmentations are used. As

the baseline segments, we use two different segmentation methods. When there is no

turn information available, segmentation and final periods are inserted using the simple

LM-based method as described in Section 8.1.3.1. On the other hand, when we have

access to the turn information, a new segment and a final period are inserted whenever

the speaker changes as described in Section 8.1.3.2. We can observe that using the turn

information is very helpful in achieving better performance.
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Then we insert oracle segmentation and a final period at the end of segment. When

we also inserted all other punctuation marks from the reference transcript, the trans-

lation performance is improved up to 15.64 BLEU points even though it still contains

all disfluencies. We can observe that nearly 1.7 BLEU points are achieved by inserting

all other punctuation marks, on top of we have the ideal reference segmentation and a

final period.

In the next experiment, we keep the punctuation and segmentation the same as in

the baseline system, but remove all of the manually annotated disfluencies. By doing

so, translation performance is improved by around 3 BLEU points compared to the

baseline system. Finally, we achieved a BLEU score of 20.93 when we have the oracle

for both punctuation and disfluency. This is the upper bound of the performance we

can get for this test set when we have both perfect segmentation/punctuation and

disfluency removal.

As shown by these numbers, the performance can be improved by more than 10

BLEU points if the ideal punctuation and disfluency detection are applied. Therefore,

modeling these two problems in a translation system of multi-speaker speech is essential

to reach a good translation quality.

8.1.4.2 Segmentation and Punctuation Insertion

In this section, we look into the performance of the segmentation and punctuation in

a realistic approach (all disfluencies kept) and perfect conditions (remove all disfluen-

cies using the manual annotation). The experiments are conducted for the two cases,

depending on the turn-information availability.

System Keep disfluency Oracle disfluency

Baseline 9.53 12.21

Monolingual translation system 12.44 16.34

Oracle punctuation 15.64 20.93

Table 8.2: The impact of segmentation and punctuation on translation performance

when no turn information is available

Table 8.2 shows the results under the assumption that no turn information is avail-

able. The baseline system has punctuation and segmentation inserted using the sim-
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ple LM-based method. When punctuation marks are inserted using the monolingual

translation system, we achieved an improvement of 3 to 4 BLEU points for both disflu-

ency conditions. This improvement reaches almost half of the difference between the

baseline systems and oracle scores. We can also observe that when segmentation and

punctuation are improved, the impact of disfluencies increases. There is bigger room

of improvement which can be achieved by removing correct disfluencies, when we have

better segmentation and punctuation. The same phenomena can be observed in the

experiments with turn information, as shown in Table 8.3.

System Keep disfluency Oracle disfluency

Baseline 12.93 15.72

Monolingual translation system 13.25 17.71

Oracle punctuation 15.64 20.93

Table 8.3: The impact of segmentation and punctuation on translation performance

when turn information is available

We can observe that the baseline scores in this case have already improved a lot over

the experiments without turn information. Since the baseline segmentation is already

better, the improvements are smaller, but there are still consistent improvements when

inserting punctuation marks using the monolingual translation system. It is shown that

when a better disfluency modeling technique is available, our segmentation modeling

technique can also show a better performance, emphasizing the importance of the

accuracy of the disfluency detection model.

8.1.4.3 Disfluency Removal

This section presents translation performance when we apply the disfluency removal

models trained either on in-domain or out-of-domain data. Punctuation and segmenta-

tion are inserted not only by the monolingual translation system for the realistic case,

but also oracle punctuation is used for comparison.

Table 8.4 shows the scores under the assumption that there is no turn information

available. In the first experiment, we keep all disfluencies. Then we show the scores

when we use the disfluency removal model trained only on the in-domain data, multi-

party meeting data. These scores are compared with the scores when we use the
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System Monolingual translation system Oracle punctuation

Keep disfluency 12.44 15.64

CRF in-domain 14.41 17.26

CRF out-of-domain 14.24 16.95

Oracle disfluency 16.34 20.93

Table 8.4: The impact of disfluency removal on translation performance when no turn

information is available

model trained only on the out-of-domain data, which is lecture data. Finally, we

show the scores removing all disfluencies annotated. An interesting point is that using

lecture data for training the CRF model yields similar performance to training using

the meeting data. Even though using the lecture data is slightly worse than using the

meeting data, the difference is minimal.

Our preliminary experiments showed that when we use the in-domain data for train-

ing the disfluency removal model, we have around 8 points better F-scores, compared to

the case when we train the model using out-of-domain data. However, such differences

are not pronounced in terms of BLEU. It shows that the disfluency modeling technique

shown in this work can be transfered into a new domain without causing a big loss of

performance in MT.

System Monolingual translation system Oracle punctuation

Keep disfluency 13.25 15.64

CRF in-domain 15.01 17.10

CRF out-of-domain 14.90 17.03

Oracle disfluency 16.34 20.93

Table 8.5: The impact of disfluency removal on translation performance when turn

information is available

This result is also observable when the models are trained with turn information,

as shown in Table 8.5. The disfluency removal model trained on meeting data performs

only slightly better than the lecture data. In all listed conditions, it is shown that we

can improve the translation quality by 1.5 to 2 BLEU points by removing disfluencies.
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8.1.4.4 Combined Modeling of Punctuation Insertion and Disfluency Re-

moval

As an additional experiment, we model punctuation marks and disfluencies in one

model. This way of modeling has an advantage that it is not necessary for ASR output

to pass through two different steps. We also hope that this experiment can provide the

first insight on MT performance when modeling these two in one model for the given

task. In this scheme, both the punctuation marks as well as disfluencies are predicted

given the potentially disfluent, and unpunctuated ASR output. For modeling we use

the same features as for the disfluency removal as in Section 8.1.2.2.

Punctuation and disfluencies are trained using the data with speech disfluencies.

For the modeling, we use the same CRF tool, but with two decision labels: one with

disfluency classes and another one with punctuation marks.

System No turn Turn

Baseline 9.53 12.93

Combined CRF in-domain 13.92 14.45

CRF in-domain + Monolingual translation system 14.41 15.01

Combined CRF out-of-domain 13.99 14.58

CRF out-of-domain + Monolingual translation system 14.24 14.90

Oracle all 20.93

Table 8.6: Punctuation insertion and disfluency removal in one CRF model

Table 8.6 presents translation performance when using one CRF model for both

punctuation and disfluency. The CRF model is built again under the two genre-

matching conditions: in-domain and out-of-domain. For comparison, we also give the

number when punctuation and disfluency are modeled separately using the monolin-

gual translation system and a CRF model respectively. In all experiments, we apply

two baseline segmentation conditions depending on the turn information availability.

When modeling punctuation marks and disfluency removal together in one model,

it still provides a big improvement over the baseline, where all disfluencies are kept.

Same as in the previous experiments, training the models on in-domain or out-of-

domain data does not cause a big performance difference in MT. Comparing the scores

of training the models separately for disfluencies and punctuation marks, however, the
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scores are generally around 0.3 to 0.5 BLEU points worse. The F-score of disfluency

removal does not get affected significantly even when we are modeling it along with

punctuation marks. However, as the monolingual translation system is trained using

much more data, the performance of segmentation and punctuation insertion is affected

and therefore degrades the overall performance.

8.1.4.5 Overview

Finally, Table 8.7 shows the best scores achieved in this work.

System No turn Turn

Baseline 9.53 12.93

Best system 14.41 15.01

Oracle 20.93

Table 8.7: Overview of the translation performance improvement when using the cas-

caded approach

The baseline system corresponds to the same systems in Table 8.1, where no punctu-

ation or disfluency schemes are applied. In our best system we first remove disfluencies

using a CRF model trained on the in-domain data, and then insert proper segmen-

tation and punctuation marks using the monolingual translation system. When there

is no turn information, we achieve around 4.9 BLEU points of improvement. With

turn information, we improve the system by around 2.1 BLEU points. In the oracle

condition, we have 20.93 BLEU points, showing a considerable difference from the best

performance we could achieve.

One explanation of this difference can trace back to the exceptionally high rate of

speech disfluencies in the multi-party meeting data. Comparing Table 5.7 and Table

5.5, we can observe that the overall disfluency rate of the multi-party meeting data is

significantly higher than the one of the lecture data. In the multi-party meeting data,

the disfluency rate is around 19.2%, while the one of the lecture data is around 12.5%.
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8.2 Joint Model based on the Combination of Conditional

Random Fields and Neural Networks

As shown in the previous section, inserting proper punctuation marks and deleting

speech disfluencies can improve the following machine translation performance greatly.

This challenging task has prompted extensive research using various techniques, such

as conditional random fields. Neural networks, however, are relatively under-explored

for this task.

Combining different modeling techniques with different advantages has the potential

to lead to improvements. In this chapter, we first establish the performance of joint

modeling of punctuation prediction and disfluency detection using neural networks.

We then combine a conditional random fields based model and a neural networks based

model log-linearly, and show that the combined approach outperforms both individual

models, by 2.7% and 3.5% in F-score for speech disfluency and punctuation detection,

respectively. When used as a preprocessing step to machine translation this also results

in an improved translation quality of 2.5 BLEU points compared to the baseline and

of 0.6 BLEU points compared to the non-combined model.

8.2.1 Motivation

Modeling punctuation marks and speech disfluency together can result in positive syn-

ergistic effects. Punctuation prediction, for example, can heavily depend on the ex-

istence of a speech disfluency, since disfluencies are good predictors for punctuation

marks. Also, information regarding sentence boundaries can be beneficial for disflu-

ency detection.

CRF and NN have been used extensively for various NLP tasks, showing different

advantages. CRFs are successfully used in sequence labeling tasks, detection task, due

to their ability to model first order dependencies. For example, in Chapter 7, we showed

that speech disfluencies can be modeled effectively using the CRFs. They were applied

to the same task of multi-party meeting data in the cascaded model in Section 8.1. They

were devoted to model punctuation marks for the international evaluation campaign,

which will be described in Section 10.2.4.3. Even though the model is built on much

smaller data, it offered a comparable performance to the monolingual translation model
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which is built on all available data. NNs have proven themselves to be very useful at

classification tasks and are therefore a sound choice for NLP tasks of this nature.

The different strengths and weaknesses of both CRF models and NN models sug-

gest that they can complement each other when jointly applied to task of detecting

punctuation and disfluencies in spontaneous speech. Despite the potential advantages

they can offer when applied together, combining the two modeling techniques for punc-

tuation and disfluency detection has not been investigated yet. Although RNNs can

offer the context information that feed-forward neural networks (FFNN) can not easily

provide, training RNNs bears a disadvantage of an expensive computation. In this

work, therefore, we aim to explore the potential of using FFNNs combined with other

ML frameworks for their synergistic effects.

In this chapter, we present a punctuation and disfluency detection scheme using

a combination of both CRF and NN models. We propose a multi-tasking learning

NN, which is designed to exploit the above mentioned synergistic effects by jointly

modeling both punctuation and disfluencies in a single network with multiple parallel

output layers. One output layer is devoted to detecting speech disfluencies while the

other output layer is concerned with predicting punctuation marks. The CRF also

models punctuation and disfluency detection using two output labels, where the first

label covers disfluency and the second one punctuation marks. The predictions of the

models are extracted in probabilities and used as features in a log-linear combination.

8.2.2 Model

In this section we describe the two modeling techniques for generating probabilities of

punctuation and disfluency as well as the features they use.

Our features for the models include lexical and language model features, as well as

word cluster and phrase table features as introduced in Section 7.1.2.2. The same set

of features is used for both CRF and NN training in order to make them comparable.

Disfluency classes are following the study in Section 5.1.2.2. The class FL covers

filler words and discourse markers, while identical and rough copies in the class RC.

Restart fragments and aborted sentences are categorized in the class NC. Finally, the

interrupted segments are grouped in the class IR. The tokens without any disfluency

are given the class clean.
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Punctuation marks are grouped into four classes. As their names suggest, Comma

takes commas and QuMark covers question marks. Due to its rare occurrence, exclama-

tion marks are gathered together with final periods and grouped into Period. Words

that are not followed by any punctuation marks are assigned with none.

8.2.2.1 Conditional Random Fields

In this work, the GRMM package (Sutton, 2006) is used for the linear chain CRF

model. As there are two output labels for each token, one for disfluency and another

for punctuation, we use one linear chain edge across disfluency labels, another one

across punctuation labels, and another for the in-between edges. The model is trained

using L-BFGS, with default parameters.

8.2.2.2 Neural Networks

Due to its shorter training time we use a five layer FFNN in this work. It is trained to

jointly predict both the punctuation and disfluency labels. As can be seen in Figure 8.1

the input consists of a 907 dimensional feature vector encoding the features described

in Section 8.2.2, followed by three hidden layers containing 500 neurons each, and

two parallel output layers. The hidden layers use the sigmoid activation function and

the output layers use the softmax activation function. The parallel output layers are

devised for the joint detection of disfluency and punctuation marks. Each output layer

is considered to be a separate softmax group which results in the network generating a

separate probability distribution for punctuation and disfluency labels.

The network is pretrained layer-wise using denoising auto-encoders (Vincent et al.,

2010) which enable us to also make use of the 400K unannotated examples as well

as the 140k labeled examples. After pretraining the network is fine-tuned using mini-

batch gradient decent. The learning rate is updated according to the newbob schedule,

where it remains constant until improvements between epochs on the a cross-validation

set drop below a threshold, after which the learning rate is decreased exponentially.

Training is terminated when improvements between epochs on the a cross-validation

set drop below a threshold again. Pretraining and fine-tuning were implemented using

Theano (Bergstra et al., 2010).
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Figure 8.1: Proposed joint punctuation and disfluency prediction neural network.

Unlike CRFs, feed-forward NN only base their label predictions on the provided

features which can lead to predictions that contradict each other. This problem can be

overcome by integrating the NN with an LM into a decoder.

8.2.3 Log-linear Combination

In MT, combining different translation models and LMs log-linearly in a decoder can

greatly improve the translation quality (Och and Ney, 2002). The individual models

are encoded as separate features and weighted using interpolation coefficients optimized

on a validation set. Inspired by this, we combine our CRF based punctuation and

disfluency prediction with our NN based one log-linearly using a label LM. For this

task, we perform the search for the best label sequence as well as the optimization of

the log-linear weights using an MT decoder (Vogel, 2003). The models are optimized

on BLEU.

For a given word sequence w = w1 . . . wn we wish to find the best sequence of

punctuation and disfluency labels (p, d) = (p1, d1) . . . (pn, dn):

argmax
(p,d)

m∑
i=1

λi · fi(w, p, d) (8.1)
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where m is the number of features and

pi ∈ {Period, Comma, QuMark, none}

di ∈ {filler, rough-copy, non-copy, interruption, clean}.

following the classes described in Section 5.1.2.

We define input features from the two models (M ∈ {CRF,NN}) for each of the

punctuation labels by:

fMp̂ =

n∑
j=1

δp̂,pj · logPM (pj |w) (8.2)

and for each of the disfluency labels by:

fM
d̂

=

n∑
j=1

δd̂,dj · logPM (dj |w) (8.3)

The final input feature is derived from a 9-gram LM trained on the output labels

of the training data. The LM is built using the SRILM Toolkit (Stolcke).

This formulation of the problem not only allows us to find the optimal label se-

quence, it can also be easily extended to incorporate further models.

8.2.4 Experiments and Results

In this section we present the results using F-score and BLEU for translation of the

test data into French.

8.2.4.1 Results

Our first experiment measures the quality of disfluency detection and punctuation

insertion using precision, recall and the standard F-score metric. The scores presented

in Table 8.8 measure whether a word was labeled as one of the disfluency classes or not.

The results of the individual CRF and NN models, which are found in the first two

rows of the table, show that the CRF model detects more disfluencies and therefore

has a better recall performance. On the other hand, the NN model outperforms it on

precision leading to fewer false detections. Their log-linear combination improves the

F-score by 2.7% and seems to strike a balance between precision and recall.
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System F-score Precision Recall

CRF 53.90 68.83 44.29

NN 49.31 81.08 35.43

Log-linear combination 56.56 72.77 46.26

Table 8.8: Results of the disfluency detection. Performance is measured in F-score for

all systems.

Similarly, the evaluation of our models’ punctuation prediction capabilities show

that while the NN model is the most precise at detecting punctuation marks, it is more

conservative, and therefore has as a lower recall, than the CRF model. As can be

seen in Table 8.9, we achieve our best performance on both F-score and recall when

the models are combined. Both metrics are noticeably improved by the combination,

F-score by 3.5% and recall by 5.5%.

System F-score Precision Recall

CRF 58.22 60.23 56.34

NN 52.82 65.31 44.35

Log-linear combination 61.76 61.64 61.87

Table 8.9: Results of the punctuation prediction. Performance of the CRF, NN and

combined systems for punctuation prediction are measured in F-score.

As an additional experiment, we measured the effect of multi-task (disfluency and

punctuation) learning. In this experiment, we build two separate CRF models and two

NN models. For each technique, one model is dedicated for disfluency and another

for punctuation. In this way, we can measure the impact of modeling two speech

phenomena jointly. Shown in Table 8.10, the results show that the multi-task learning

does not bring a great difference to the detection accuracy itself.

System Joint-disf Joint-punc Sep-disf Sep-punc

CRF 53.90 58.22 53.12 57.06

NN 49.31 52.82 50.45 52.16

Log-linear combination 56.56 61.76 56.34 62.05

Table 8.10: Evaluation of the multi-task learning.

The purpose of using LM in this architecture is to provide more context information
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that the NN model might miss. From our preliminary experiment, it was shown that

the disfluency detection using NN, as a single-task learning, benefits from the extra

context information. For this task, the NN model for disfluency detection achieved

50.45 F-score, as shown in Table 8.10. Adding an LM on this configuration improved

the F-score up to 55.33. We applied the same experiment for the joint detection for

disfluency and punctuation using the NN model. The result is shown in Table 8.11. The

numbers prove that using an additional LM can provide the missing context information

of the NN model.

System F-score-disf F-score-punc

NN 49.31 52.82

+ LM 53.68 56.78

Table 8.11: Effectiveness of using an LM for the FFNN model

In order to evaluate not only the raw detection accuracy, but also its impact on an

MT system, we use the punctuation-predicted, disfluency-removed test data as input

data for the MT system described in Section 5.3.4. The MT system translates the test

data into French. It is then evaluated against a human translation of the oracle text

where all annotated disfluent words were removed and reference punctuation marks are

inserted.

Table 8.12 shows a comparison of translation quality using the various punctuation

and disfluency prediction methods presented in this work. In order to ensure a fair

comparison, we use consistent segments for translation and evaluation in all tests; they

span all tokens between speaker changes. In the baseline system, all disfluent words are

kept and only just prior to the speaker change is a single sentence ending period inserted.

The test data generated by our systems and the reference may also contain punctuation

marks within these segments. A trivial rule-based disfluency removal system that only

removes simple filler words such as uh or uhm is also listed in order to demonstrate the

additional capabilities of our models.

Removing disfluent words and inserting punctuation marks using only the CRF

model improves the translation quality of the baseline system by 1.90 BLEU points.

With a BLEU score of 16.32 this approach also compares favorably to our trivial system,

beating it by around 1.38 BLEU points. The NN model achieves a BLEU score of 16.18,
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System BLEU

Baseline 14.42

+ No uh 14.94

CRF 16.32

NN 16.18

Log-linear combination 16.93

Oracle 22.76

Table 8.12: Translation performance using the combined model. Translation scores after

disfluency removal and punctuation insertion using various systems are shown in BLEU.

which still outperforms the trivial rule-based system by 1.24 BLEU points. Using both

models in a decoder results in our best score of 16.93 BLEU. The oracle score shows

the upper bound of this experiment.

8.2.5 Analysis

In this section, in-depth analysis on disfluency and punctuation detection performance

is given, comparing the individual models and the combined model. The performance

comparison is given for each class of disfluency and punctuation depending on the

technique used. Analysis shows that the improvement in punctuation and disfluency

detection has a positive impact on readability.

8.2.5.1 Readability

Two segments from our test data, showing the synergistic effect of the log-linear com-

bination, are presented in Table 8.13. The raw input contains a repetition, marked in

bold letters, and is missing proper punctuation marks. In the manually cleaned ver-

sion of this excerpt, the repeated part is removed and punctuation marks are inserted,

which makes it notably easier to understand. The CRF model was able to successfully

detect the repetition in the first segment. In the second segment however, it deletes too

much, leading to the ungrammatical sentence “for what are these recordings for”. This

false labeling of disfluencies is probably due to the repetitive nature of that segment.

The CRF also fails to insert any sentence boundaries. Although the NN based model

was unable to remove the repetitive part in the first segment, it correctly detected the

sentence boundary after the first segment.
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Raw input
do you use do you have digits as a class

what are these for what are these recordings for

Manually cleaned
Do you have digits as a class?

What are these for? What are these recordings for?

CRF
do you have digits as a class

for what are these recordings for

NN
do you use do you have digits as a class.

What are these for what these recordings for

Log-linear combination
do you have digits as a class?

What are these for? What are these recordings for

Table 8.13: Synergistic effect of the combined model. Excerpt from the test data showing

that the CRF and NN models can complement themselves is presented.

Using the combined model we were able to remove the speech disfluency detected by

the CRF model while at the same time inserting the correct sentence boundaries. This

sequence generated using the combined model shows that even when the two separated

models perform imperfectly, we can benefit from their synergistic effects. It is also

notable that while the location of the sentence boundaries was correctly predicted by

the NN it predicted the wrong punctuation class. In the model combination though

both the location of the sentence boundaries and the fact that they were question marks

and not periods were correct. These effects are observable throughout the test data.

It suggests that combining the models provides an opportunity to optimize on relative

importance of the features.

Another impressive outcome of the combined model is that it can improve readabil-

ity even in cases where it does not match the human annotation. An example segment

that demonstrates this point is given in Table 8.14, where a very disfluent segment is

cleaned and punctuated using different techniques. Speech disfluencies according to

the annotators are marked in bold letters. Although the result of the combined model

does not match disfluency and punctuation marks of the annotation, thereby lowering

the F-score, its readability is comparable to the annotated sentence.

8.2.5.2 Synergistic Effect

As shown in Table 8.8 and 8.9, using the combined model we can achieve improved

F-scores both on disfluency and punctuation detection.
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Raw input
yeah you you mean this okay right right good

yeah it’s an at sign

Manually cleaned
Yeah. You mean this. Okay. Good. It’s an at

sign.

CRF
yeah, this okay right, right good yeah, it’s an

at sign.

NN
yeah, you mean this okay, right, right good,

yeah, it’s an at sign.

Log-linear combination
yeah, this okay, right? Good, yeah, it’s an at

sign.

Table 8.14: Improved readability using the combined model. Excerpt demonstrating the

improved readability of the combined model despite a prediction that is very dissimilar to

manually cleaned text.

Speech Disfluency Detection Detailed performance in detecting different disflu-

ency classes using the CRF model is given in Table 8.15. For simplicity, we are going

to notate filler class as FL, rough-copy as RC, non-copy as NC, and interruption as

IR in this section. It is clearly observable, that detecting disfluency classes as NC and

IR is a much harder task compared to detecting other classes. While the model can

classify 60.1% and 48.7% of filler words and (rough) repetitions into their exact class

correctly, detecting other classes is possible less than 10%. The disfluency removal rate

can be further higher, as even when a word is categorized into a different disfluency

class, the word is removed from the transcript. Thus, in this test set 63.4% of filler

words and 53.8% of (rough) repetitions are removed.

Hyp

Ref
FL RC NC IR clean

FL 600 14 16 37 190

RC 14 495 50 19 253

NC 8 22 16 14 63

IR 11 16 2 86 137

clean 366 470 246 704 11,006

Table 8.15: Disfluency detection performance using CRF for different classes

This phenomenon is observed more strongly in the experiments using only NNs.
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Table 8.16 demonstrates that disfluency detection based on neural networks is more

conservative compared to the one based on CRFs, which also fits with our findings in

the previous section. While it can detect slightly more filler words into the correct

class, the number of overall detection ratio itself is much lower than the CRF model.

Especially the rare occurrence of non-copy and interruption tokens in the training data,

which is less than 1.8% and 0.9% respectively, becomes the driving source that the NN

based model maintains the high precision.

Hyp

Ref
FL RC NC IR clean

FL 621 13 13 35 159

RC 5 415 20 14 106

NC 0 0 0 0 0

IR 0 0 0 0 0

clean 373 589 297 811 11,384

Table 8.16: Disfluency detection performance using NN for different classes

Table 8.17 shows the synergistic effects achieved when combining the two models.

Compared to the two individual models, the combined model can detect a notably

higher number of FL and RC disfluencies. While the CRF based model falsely detected

and removed 200 clean tokens into disfluency class NC and IR, this model makes the

false detection into the two classes only on 26 tokens.

Hyp

Ref
FL RC NC IR clean

FL 674 25 23 53 266

RC 8 568 52 43 263

NC 0 1 0 0 0

IR 0 2 1 33 26

clean 317 421 254 731 11,094

Table 8.17: Disfluency detection performance using the combined model for different

classes

The comparison on number of speech disfluencies detected and missed is given

in Table 8.18. When a word is classified as one of the disfluencies and this word
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is in fact annotated as one of the speech disfluency classes, it is counted as Deleted

disfluency. A large portion of them is actually classified into the exact disfluency class,

which is counted in Deleted disfluency (correct). In the criterion Missing disfluency

the disfluency tokens which are classified as clean tokens are concerned, in which the

disfluencies are removed correctly. In all three criteria the combined model outperforms

other two individual models, which proves the synergistic effects.

Deleted disf. Deleted disf. (corr) Missing disf.

CRF 1,420 1,197 1,786

NN 1,136 1,036 2,070

Log-linear Combination 1,483 1,275 1,723

Table 8.18: Performance comparison of different techniques for disfluency detection. The

comparison on number of speech disfluencies detected and missed using different techniques

is given.

Punctuation and Segmentation Insertion The detailed performance of punctu-

ation and segmentation insertion using the CRF model only is given in Table 8.19.

Among 1,811 sentence boundaries in the reference, we could detect 1,048 correctly. For

other 283 sentence boundaries, commas are inserted instead. The detection rate for

commas is slightly lower, down to 31.5%. Out of 963 commas in the references, 93 of

them are inserted as sentence boundaries. While it misses 1,047 punctuation marks to

detect, the model inserted 576 of false punctuation marks.

Hyp

Ref
PC CM null

PC 1,048 93 239

CM 283 303 277

null 480 567 11,565

Table 8.19: Punctuation prediction performance for each class using CRF. Detailed

punctuation and segmentation insertion performance is given for each class using the CRF

model.

Same as for speech disfluencies, the detection using the neural network based model

is more conservative and it inserted fewer number of punctuation marks. In Table 8.20,
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it can be observed that the detection rate for final period and comma is down to 45.9%

and 27.3% respectively. At the same time, however, the number of false punctuation

marks is also decreased to 274 tokens.

Hyp

Ref
PC CM null

PC 831 9 117

CM 298 263 157

null 682 691 11,807

Table 8.20: Punctuation prediction performance for each class using NN. Detailed punc-

tuation and segmentation insertion performance is given for each class using the NN model.

By using the combined model, 66.5% of sentence boundaries are detected correctly

as shown in Table 8.21. The summary of punctuation and segmentation detection using

different detection techniques is given in Table 8.22. Being able to insert the highest

number of correct punctuation marks and minimize the missing punctuation marks,

the combined model shows its sound performance.

Hyp

Ref
PC CM null

PC 1,204 149 324

CM 246 268 197

null 361 546 11,560

Table 8.21: Punctuation prediction performance for each class using the combined model.

Detailed punctuation and segmentation insertion performance is given for each class using

the combined model.

Correct punctuation Missing punctuation

CRF 1,351 1,047

NN 1,094 1,373

Log-linear Combination 1,472 907

Table 8.22: Performance comparison of different techniques for punctuation prediction.

The comparison on number of punctuation marks correctly inserted and missed using

different techniques is given.
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We also investigated the number of commas, sentence boundaries and kept word

tokens of each test set, shown in Table 8.23. Note that the number of segments may

differ from the number of sentence segmentations inserted by the model. The numbers

reported in Table 8.21 are the number of punctuation marks detected using the model.

It is often the case, however, that such punctuation marks surround a word that is

classified into a disfluency using the same model. In this case, we remove the word that

is classified into a disfluency and its following punctuation mark.

System SB Comma Word

Baseline 1,255 0 14,855

+ No uh 1,158 0 14,445

CRF 1,083 827 12,792

NN 828 684 13,454

Log-linear combination 1,340 691 12,860

Oracle 1,236 772 11,832

Table 8.23: Test data statistics before/after the prediction process

In Table 8.23, both the baseline system and the trivial rule based system do not

contain any commas, and only whenever the speaker changes do they contain a period.

Over 400 simple filler words are removed, by applying the trivial rule based system.

Compared to the NN system, the CRF system inserts more punctuation marks as well

as deleting more words for disfluency.

8.3 Summary

In this chapter, we showed how machine translation performance is affected when dif-

ferent techniques for segmentation, punctuation insertion and disfluency removal are

applied to multi-speaker speech. The characteristics and differences of multi-speaker

speech compared to other data were described.

Punctuation insertion and disfluency removal are modeled in two approaches: cas-

caded modeling and the joint modeling. In the cascaded model, first the disfluency

removal is applied and then punctuation and segmentation are inserted. For the disflu-

encies, we built two separate disfluency removal systems using in-domain and out-of-

domain data and their performances are compared in terms of translation quality. We
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showed that our disfluency removal technique presented in this work can be transfered

to a new domain. Depending on the availability of turn information, two scenarios are

modeled for the segmentation and punctuation.

The best system of disfluency removal and punctuation detection models achieves a

gain of 4.9 BLEU points when there is no turn information and 2.1 BLEU points when

turn information is available over the baseline. As an additional experiment, a sequence

tagging model which models both segmentation, punctuation insertion and disfluency

removal is built and the performance is compared to our best automatic systems.

In the joint modeling, we build a combined model which detects speech disfluen-

cies and predicts punctuation marks jointly. We showed that multiple models with

complementary advantages can be combined in order to improve the performance of

joint disfluency and punctuation labeling. We present both conditional random fields

based and neural networks based models and explain how they can be combined in

a log-linear decoder, in order to achieve better performance. Both models and their

combination are tested on conventional meeting data and intrinsically evaluated with

F-score as well as extrinsically by using them as a precursory step to an MT system.

The results demonstrate that our combination outperforms the two individual mod-

els on both F-score and BLEU. Compared to the best single model it boosts the dis-

fluency detection F-score by 2.7% and the punctuation prediction F-score by 3.5%.

While both the CRF and NN models improve the translation quality of the baseline

system by 1.90 and 1.76 BLEU points respectively, the combined approach gives us an

improvement of 2.51 BLEU points.

An analysis of our proposed model indicates that these improvements stem from

synergies between the models. We go on to show that it can also noticeably increase

the readability of the spoken language input even when the model’s output does not

conform to the human annotation.
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9

Reconstruction of Spoken-style

Sentences

In previous chapters, we discussed the two big differences between spoken language

and written language and showed how the lack of proper punctuation marks and the

existence of speech disfluencies can be remedied by using different techniques to achieve

better quality of machine translation.

Apart from those two challenges, spoken language also contains colloquial expres-

sions and ungrammatical phrases. The necessity of building more coherent and gram-

matical sentences is emphasized in Fitzgerald and Jelinek (2008), while paraphrasing

or changing the styles of the text has been discussed in Neubig et al. (2012); Quirk

et al. (2004); Xu et al. (2012).

Inspired by this, we analyze the difference between spoken and written language

in its structure and word usage. Based on the analysis, we transform the spoken-style

sentences into more formal sentences. Several previous approaches (Quirk et al., 2004;

Xu et al., 2012) relied on using a machine translation system. Using this technique,

however, reasonable performance can be achieved when we have a considerable amount

of parallel data. While Neubig et al. (2012) investigated this problem using weighted

finite state tranducers on a large quantity of data. In this task, we investigate sentence

reconstruction of German lecture data. In order to overcome the data sparsity, our

strategy is automatically model the differences between formal language and speech-

style sentences separately step by step.
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9.1 Motivation

Altering a sentences’ style into a different one has attracted the attention of several re-

searches due to the various applications. In Lee and Seneff (2006), a stylistic correction

was deployed in order to check the grammar of non-native English speakers. The trans-

formation of certain dialects into a standard language (Al-Gaphari and Al-Yadoumi,

2012) has been also investigated from this perspective. In this work, we explore sentence

reconstruction as a stylistic correction for spontaneous speech. We aim to give helpful

insights for developing further applications related to natural language understanding

and paragraphsing, by providing an automatic means of reconstruction.

In spontaneous speech, it is often the case that sentences still contain flaws even

after oracle disfluency removal. The sentences suffer from less grammatical structure,

or the usage of colloquial words. As these are not necessarily disfluencies, they are not

annotated as such and are not removed using techniques introduced in the previous

chapters. Such differences, however, still can pose an issue when applying subsequent

NLP applications built using a well-written text data. Since the well-written, formal

sentences are often preferred in certain domains, such as news or politics, we hope that

the analysis and the models developed in this work can be valuable for further research.

As described in section 5.1.1.3, two steps of annotation were applied to the data.

In the first step, all disfluencies are removed. In the following second step, further

corrections were made. For a more formal format, unnecessary or colloquial expressions

are removed. New words are introduced when they can improve the fluency. Word

reordering is also allowed and some expressions are replaced with formal ones.

One German example sentence from our lecture data is shown in Table 9.1. The

sentence’s gloss translation in English and its proper reference translation are also given.

In this example, a sentence is depicted, where both the modal verb kann and the

reflexive verb sich ändern are in wrong positions. In German, the modal verb (kann)

and the reflexive pronoun (sich) must be located in the second position in the main

clause. Afterwards the verb itself (ändern) should be located at the end of the main

clause. In the reconstructed version, we can observe that this part is corrected.

Sentence reconstruction is not limited to reordering, but can be also expanded

to word/phrase replacement. Table 9.2 shows another sentence excerpted from our

German lecture data. In this sentence, four words, that are used colloquially, are
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Disfluency

removed

Im Gegensatz dazu, bei dem Mealy-Automaten, die Ausgabe kann

sich ändern bei einer Zustandsänderung, . . .

English gloss
In contrary, with the Mealy-automaton, the output can itself vary

with a status change, . . .

Reconstructed
Im Gegensatz dazu kann sich bei dem Mealy-Automaten, die Aus-

gabe bei einer Zustandsänderung ändern, ...

English gloss
In contray, can itself with the Mealy-automaton, the output with a

status change vary, . . .

Reference
In contrary, the output can vary when a status changes with the

Mealy-automaton, . . .

Table 9.1: Example of a sentence requiring verb reordering

replaced with different words. mal is replaced by einmal, was is replaced once with

etwas and one with das. This gives us another insight; replacements are not always

homogeneous. There is also reordering involved in this sentence. A phrase auf den

Seiten is reordered to be located in front of ’rum, which is again replaced with herum.
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Disfluency

removed

Surfen sie mal ein bisschen ’rum auf den Seiten, die ich Ihnen

gegeben habe, vielleicht fällt Ihnen was auf, was sie gerne machen

wollen.

English gloss

Search you once a little aruond on the websites, that I you given

have, maybe like you something on, something you gladly do

would like to.

Reconstructed

Surfen sie einmal ein bisschen auf den Seiten herum, die ich Ihnen

gegeben habe, vielleicht fällt Ihnen etwas auf, das sie gerne machen

wollen.

English gloss

Search you once a little on the websites around, that I you given

have, maybe like you something on, that you gladly do would like

to.

Reference
Search the websites I gave you a little, maybe you will find something

which you would like to do.

Table 9.2: Example of a sentence requiring word replacement

9.2 System Architecture

In this thesis, we suggest the initial approach to build the written styled, formal-speech

styled sentences from a given set of spontaneous German lecture data.

In this work, we restrict the scope of the problem to deletion and replacement

of words and phrases. We notice that sometimes words, which are not necessarily

speech disfluencies, and are therefore not removed by the annotators in the first step

of annotation, are deleted in the reconstruction annotation. The words which are most

frequently removed by the human annotators are modeled using a binary maximum

entropy classifier. The second step is replacement. In this step, words or phrases that

can be replaced with more formal expression are handled. Since we have a problem of

sparse features and small data, we build an artificial data out of the big EPPS data.

The patterns of replacements in the annotated data are learned and applied back to

the EPPS data according to their frequency.

9.2.1 Deletion

In order to obtain the statistics, we align the disfluency-removed data to the manually

reconstructed data using GIZA++ (Och and Ney, 2003). The manually annotated
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5,4k sentences are split into 4k training sentences and 1,4k test sentences. Based on

the alignment, we get statistics on the deletion, in both train and test data as shown

in Table 9.3. The numbers in this table are given in tokens.

We can observe that a relatively few number of words are deleted from train and test

data. Only 1.45% and 1.34% of all words occur in the train and test data are deleted

by the annotators, respectively. Based on this, we get a list of the most frequently

deleted words. The most frequently deleted words are as followings: “,”, “die”, “das”,

“dann”, “wir”, “ist”, “da”, “und”, “der”, “so”, ..., where most of them are articles

and conjunctions.

Train Test

Number of words 79,032 32,747

Number of deleted words 1,148 438

Number of deleted unique words 285 181

Table 9.3: Statistics in annotation of deletion

9.2.1.1 Maximum Entropy-based Model

ME modeling has been used extensively in different classifying tasks in NLP, including

punctuation detection tasks as in Huang and Zweig (2002). In this work, we model

the n frequently deleted words using the binary ME model1. Therefore, each word is

assigned its own ME model.

We start by creating a list of frequently deleted words in the training data as in

Section 9.2.1. For each word in the list, we observe training data and whenever there

is the word of the list we extract relevant features. For features we used followings:

• Current word w0 and its POS

• Adjacent words (w−3, ..., w3) and their POS

• Whether there is a phrase boundary where reordering occurs

For part-of-speech, we used both Tree Tagger, introduced in Schmid (1994), and

RF Tagger, described in Schmid and Laws (2008), in order to model more fine-grained

1http://www.umiacs.umd.edu/∼hal/megam/
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information. We choose the window size of seven. The word and its six adjacent words

are considered as feature. In addition to the features from words and their POSs, we

also used the information whether there is a reordering occurred around the word.

Experiments and Results For the deletion task, we choose 10 for the number of

words considered. Table 9.4 shows the accuracy of deletion detection based on ME

model in F-score.

Precision Recall F-score

35.25 28.10 31.27

Table 9.4: Performance of deletion detection using ME model (in F-score)

The score reported considers all n words. We extract the decision label from each

ME model and apply to the test data sequentially. Thus, if a word is one of the n-

most frequently deleted words in the training data and labeled as one to be deleted, we

extracted this label and removed the word from the test data. The test data is then

measured in BLEU against the second step of the annotation, which already includes all

reconstructions, such as rephrase, reordering, deletions and insertions. By measuring

the performance in BLEU, we aim to evaluate the similarity between the automatically

deleted test data and the manually reconstructed one. Table 9.5 shows the result.

System BLEU

Baseline 80.92

Deletion by ME model 81.26

Table 9.5: Performance of deletion detection using ME model (in BLEU). The score is

obtained by evaluating the test data against the human-generated reconstruction.

The baseline is the test set without deletion detection applied, but its all disfluen-

cies are removed according to the annotation. When removing the words to be deleted

by the ME model, we achieve a 0.34 BLEU point increase against the manually recon-

structed test data.
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9.2.2 Replacement

As presented in table 9.2, annotators often replace certain words with other ones, in

order to avoid colloquial expressions or build more formal sentence structures. In this

section, we aim to model the replacement of words using ME models.

Similar to the deletion step, most frequently replaced words are assigned with ME

models. When the same replacement is applied more than θ times for a certain word

throughout the training data, the word is assigned with an ME model. The threshold

θ is empirically chosen.

When there is more than one possible replacements for a word, a multi-class ME

model is trained for the word. Otherwise a binary ME model is trained. As features,

we use the adjacent words and POSs as described in Section 9.2.1.1. In addition, we use

the parser features extracted from Rafferty and Manning (2008). The parser features

are:

• Whether this word is the head of the sentence

• The head word of the sentence

• POS of the head word of the sentence

For training, we take the same part of the annotated data used in the previous step.

Assuming the oracle condition, all manually annotated deletion words are removed from

the training data. For testing, we use the output data automatically generated from

the deletion detection step.

9.2.2.1 Data Sparsity

A challenge in this task is data sparsity. Not only is the annotated training data

itself very limited (4,000 sentences), the annotation itself is not always consistent. For

example, the word was in the training data is replaced with das for 18 times, while it

is replaced with etwas 32 times. The word remains unaltered for 367 times. Another

word, Mal is replaced with einmal for 23.6% of the occurrence.

The negative impact of this data sparsity issue can be observed in Table 9.6, where

the results of the experiments using only the annotated data are shown. The perfor-

mance is measured in the same way as in the previous section, by measuring the BLEU

between the automatically generated test set and the manually reconstructed test data.
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BLEU 81.30

Correct decisions 7,101/7,745

Correct keeping decisions 7,074/7,088

Correct changing decisions 27/657

No. replacements 47

Precision 57.45

Recall 4.12

F-score 7.69

Table 9.6: Results of replacement step using the annotated data only

Throughout the replacement experiments, we choose 5 for the threshold θ based

on preliminary experiments. An operation of replacement is added to the ME models

when it occurred more than five times in the annotated training data. Altogether, we

see that there are 7,745 decisions to make based on this threshold, either to keep the

word or to change it into one of its candidates.

Although the model did not change many words that were already correct, we can

observe that many of the words that should have been replaced were not changed.

The relatively high precision and very low recall rate indicate that the sparse features

negatively affected the detection performance.

9.2.2.2 Maximum Entropy-based Modeling with Artificial Data

In order to solve the data sparsity issue discussed in the previous section, we try to

build artificial data. From the annotated data, we learn the possible candidates of

replacement for each word and create the artificial data based on these observations.

For example, as discussed in Section 9.2.2.1, the word was can be replaced with

etwas or das, depending on the context. In order to generate the artificially spontaneous

corpus, we observe the well-written corpus. Whenever we spot a word etwas and das,

we replace it with was.

The modeling technique introduced in Section 9.2.2.1 is then applied to this arti-

ficially built spontaneous data. For the well-formed, written-style data, we take 1.5M

sentences of the EPPS corpus introduced in Section 5.3.1.

The results of this method are shown in Table 9.7. It is shown that the artificial data

harms the performance, by letting the model observe examples much more frequently
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BLEU 74.25

Correct decisions 5,723/7,745

Correct keeping decisions 5,579/7,088

Correct changing decisions 144/657

No. replacements 1485

Precision 9.70

Recall 23.41

F-score 13.72

Table 9.7: Results of replacement step using the artificial data

than it is in the annotated data. By replacing words too often, the precision is largely

dropped.

In order to avoid this issue, we apply the same frequency of the replacement oper-

ation in the annotated data when building the artificial data. For example, we already

observed the frequency of replacement for the word was in the annotated data. For

7.48% of chance it is replaced with etwas, and for 4.21% of chance it is replaced with

das. Therefore, instead of changing the word was into etwas all the time when building

the artificial data, only 7.48% of occurance of the word was is replaced with etwas

in the EPPS data. The artificial data is then merged with the annotated data. The

results of using this data are presented in Table 9.8.

BLEU 81.38

Correct decisions 7,111/7,745

Correct keeping decisions 7,040/7,088

Correct changing decisions 71/657

No. replacements 134

Precision 53.80

Recall 10.81

F-score 17.96

Table 9.8: Results of replacement step using the artificial data sampled according to the

statistics

The results show that the artificial data sampled according to the frequency of the

annotation not only increases the overall F-score, but also the BLEU score. By using
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this technique, we can improve the BLEU score by 0.12 points, compared to the test

data after the deletion detection step.

9.3 Summary

In this chapter, we show the initial efforts on sentence reconstruction, where casual

styled German lectures are reconstructed into a formal speech. We defined the prob-

lem scope into two challenges: deletion and replacement of words. The performance is

measured in BLEU between the automatically reconstructed sentences and the manu-

ally reconstructed ones in order to see their similarity.

The deletion is performed on the ten most frequently deleted source words in the

annotated data. For each word we build a maximum entropy model. This method

alone brought the improvement of 0.3 BLEU.

On this deletion-performed data we applied the replacement process. An artifi-

cial data is utilized for this task, where we inserted artifical noise on the source side

according to the patterns we learned from the annotated data.

From these two steps, we achieved 81.38 BLEU points, which is around 0.5 BLEU

points better than the sentences before the reconstruction.
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Evaluation in End-to-end

Systems

In previous chapters we introduced different techniques to transform speech transcripts

into a format which approaches that of written text. By doing so we aim to achieve

improved translation performance for spoken language.

In this chapter, we will give a detailed overview of each technique and its effect on

the overall translation performance. We will first briefly review the spontaneous data

sets from two genres, to which the techniques developed in this thesis are applied.

Not only did the punctuation and segmentation insertion technique using a mono-

lingual translation system show a decent performance on those two data sets, it also

performed outstanding in international evaluation campaigns. After the presenting

its performance on the in-house spontaneous data briefly, we show the impact of the

suggested model by applying it to several language pairs in the evaluation campaigns.

Afterwards we recap the performance improvement in machine translation of spon-

taneous speech by applying disfluency removal techniques additionally. The perfor-

mance of the CRF-based disfluency detection model is summarized. This model later

is integrated into the SMT system.

Finally, we review the joint modeling of punctuation and disfluency. Two different

modeling techniques, NNs and CRFs, are combined log-linearly for this task.
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10.1 Genres

As described in Section 5.1, we use an in-house spontaneous speech corpora in order

to evaluate the techniques developed in this thesis. In order to address the problem

of modeling spontaneousness more thoroughly, we chose two corpora with different

characteristics and degrees of spontnaoues speech.

The first one is the university lecture corpus in German. Compared to other

manuscript talks such as TED or political speech, lecture data contains much more

disfluency. Not only does the spontaneousness affect the grammaticality and readabil-

ity of utterances, it also poses a difficulty in defining proper sentence-like units. As

our second spontaneous speech data source, we used the multi-party meeting corpus in

English. While each lecture in the university lecture data is held by a single speaker,

each meeting session in this data set has 5 to 12 participants. The interactions between

the participants cause more partial sentences and interrupted phrases, which negatively

affects the MT performance.

Detailed categories of disfluency and punctuation marks are annotated in the two

corpora. All lecture data is translated into English, while only selected portion of the

multi-party meeting data has a reference translation in French.

10.2 Monolingual Translation System for Segmentation

and Punctuation Insertion

This thesis introduced a monolingual translation system as an effective means of insert-

ing punctuation marks and segmentation prior to the translation of speech transcripts.

The monolingual translation system translates from a non-punctuated source language

into a punctuated source language, and has shown a great performance to improve the

subsequent translation quality.

In this section, we summarize its impact in diferent tasks, for language pairs, and

in different scenarios.

10.2.1 Results on German Lecture Test Data

In Chapter 6.2.2, the monolingual translation system is applied to the German lecture

data and improved the following MT performance greatly. The resummarized numbers
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are given in Table 10.1.

System BLEU

ASR output 20.70

+ Punctuations from monolingual translation system 22.23

Oracle 22.48

Table 10.1: Performance of monolingual translation system as a punctuation model on

the lecture data. The monolingual translation system is used to punctuate the German

lecture data. The performance is measured by translating the punctuated test data into

English.

An ASR output of a subset of German lecture data described in Section 5.1 is

translated into English, and we achieve 20.70 BLEU points. Keeping the potential

word errors in this test data, we insert punctuation marks into it using the monolin-

gual translation system. Using this system, we achieved around 1.63 BLEU points of

improvement. This score is impressively only 0.25 points worse than the result of the

oracle experiment, where the manually created segmentation and punctuation marks

are inserted, based on the word edit distance between the ASR output and its manual

transcript.

10.2.2 Results on English Multi-party Meeting Data

The monolingual translation system is also applied to English multi-party meeting

data, for different disfluency conditions. In Table 10.2, we are comparing the three

punctuation methods to punctuate English multi-party meeting data. All numbers

are compared in two conditions, either the test data contains all disfluencies or no

disfluencies based on the human annotation. Each test set is then translated into

French, and its quality is measured in BLEU.

We can see that inserting punctuation marks using the monolingual translation

system outperforms the conventional LM-based method by around three to four BLEU

points, depending on whether we keep all disfluencies or not.
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System With disfluency No disfluency

LM based segmentation 9.53 12.21

Punctuation from monolingual translation system 12.44 16.34

Oracle punctuation 15.64 20.93

Table 10.2: Performance of monolingual translation system as a punctuation model on

the meeting data. The monolingual translation system is used to punctuate the English

multi-party meeting data, under two different disfluency conditions. The performance is

measured by translating the punctuated test data into French.

10.2.3 Streaming Input System for Latency

Since the original input format of the monolingual translation system is based on sliding

window of 10 words, it is likely that this will cause a latency issue in a real-time spoken

language translation scenario. While maintaining this format for our off-line systems,

we modified the input format for the on-line system.

For this system, we design a punctuation module which takes the output from the

resending ASR, that constantly outputs its current best hypothesis. In this punctuation

module, we use the streaming input rather than the overlapping window. Utilizing a

history stack of the ASR system output, we aim to remove the structural delay that

the overlapping window induces.

Punctuation ASR Output Manual Transcript

LM, Prosody 9.74 -

Punctuation using overlapping input 11.18 19.57

Punctuation using streamingInput 11.55 19.41

Table 10.3: Performance when using the streaming input. Streaming input for monolin-

gual translation system can generate a comparable performance, decreasing the structural

latency.

Table 10.3 demonstrates that the streaming input method can maintain a compara-

ble performance to the overlapping window approach. By removing the required future

contexts in the overlapping window, the streaming input scheme effectively decreases

structural latency.
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10.2.4 Results from IWSLT Evaluation Campaign

As shown in Section 6.2.2, the monolingual translation system demonstrated a good

performance on inserting punctuation marks and segmentation. Encouraged by this,

we also applied this technique to test data provided for SLT track of the official IWSLT

Evaluation Campaigns.

For the 2013 and 2014 IWSLT Evaluation Campaign, the test sets for SLT track

were distributed in a way where sentence boundaries, according to the manual tran-

script, are given but without punctuation marks. It is necessary to modify the system

introduced in Section 6.2, so that it does not insert sentence boundaries but only punc-

tuation marks instead. For the 2015 IWSLT Evaluation Campaign, on the other hand,

no sentence boundaries are given. Instead, only a very simple language model based

segmentation was provided. Taking this as our baseline, we applied the monolingual

translation system in the original design to augment the source text with proper sen-

tence boundaries as well as other punctuation marks. A detailed description is given

in the following section.

10.2.4.1 IWSLT Evaluation Campaign 2013

As previously mentioned, in this evaluation campaign the gold-standard sentence bound-

aries based on manual transcript are present in the test sets. Therefore, the monolin-

gual translation system is used only for predicting commas, instead of all punctuation

marks. In addition to predicting commas, we also predict the casing of words using the

monolingual translation system.

Instead of randomly cutting the training data in order to detect sentence boundaries,

we use the training data as is. For the source side of the training data of the monolingual

translation system, we take the punctuation-removed preprocessed data. At the end

of each sentence on the source side, we inserted a period. For the target side, we keep

all commas and all sentence-final punctuation marks such as “!”, “?”, “.” are replaced

by a period. The only difference between the source and the target side corpus is the

inserted commas on the target side.

In this evaluation campaign, we use the monolingual translation system for two

source languages, English and German. For the English system we use the true-cased
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corpus for the source and the target side. As the test set often contains only lower-

cased letters, we take this already lower-cased, preprocessed automatic transcript for

translation. In order to match this input during decoding, the source side of a phrase

table is lower-cased.

As the case information contains more information for German, the German mono-

lingual translation system is built using lower-cased German source and true-cased tar-

get side. All words in the preprocessed German automatic transcript are lowercased,

but are translated into true-cased text using the monolingual translation system. In this

system, therefore, we are translating a lower-cased source language into a true-cased

text with commas when needed.

Once the punctuation marks are inserted, the English test set is translated into

German, French and Chinese. The German test set is translated into English and the

performance is measured in BLEU. A detailed system description of the monolingual

translation system and SMT systems for different language pairs used in the IWSLT

2013 is given in Ha et al. (2013). A description and comparison to other participants’

systems can be found in the official report (Cettolo et al., 2013).

Results of German-English Table 10.4 demonstrates how much the monolingual

translation system can improve translation quality of speech data. When using the

MT system without adapting it to the SLT task for translating the test data, we get

18.33 BLEU points. As the test data does not have any reliable case or punctuation

information, we remove these from the phrase table. Using this system, we improve the

translation quality by 0.8 BLEU points. The performance is further improved when

using the test set punctuated by the monolingual translation system, reaching 20.10

BLEU points.

System Test

Baseline 18.33

Phrase Table 19.09

MonoTrans Input 20.10

Table 10.4: Experiments using monolingual translation system for German→English

(SLT)
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This system also greatly outperforms the other participants in the evaluation cam-

paign as shown in Table 10.5. The numbers are reported a case-sensitive BLEU and

TER. The difference between the two systems is around 4.4 BLEU points. As a compar-

ison, the performance of the MT systems of the participants can be found in Appendix

B.1.

System BLEU TER

KIT 19.34 62.27

UEDIN 14.92 68.12

Table 10.5: IWSLT 13’ official translation results for SLT German-English (SLTDeEn)

Results of English-German Table 10.6 shows an overview of the speech translation

system for English to German. The baseline is a strong phrase-based system whose

performance is boosted using a POS-based language model, a cluster-based language

model using MKCLS and a DWL with source context. The baseline system achieves

17.60 BLEU points on the test data. When we replace the input with the test set which

went through the monolingual translation system, we achieve around 1.3 BLEU points

of improvement. This system is used to generate the translation of the official test set.

System Test

Baseline 17.60

MonoTrans Input 18.92

Table 10.6: Experiments using monolingual translation system for English→German

(SLT)

The results on the official test set against other participants is shown in Table

10.7. As can be seen in the table, the system from KIT, which uses the monolingual

translation system for inserting punctuation marks into the test set outperforms the

system from RWTH by 0.8 BLEU points. Again the MT systems of all participants,

which are often used as a baseline for the SLT tasks, are compared in Appendix B.2.
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System BLEU TER

KIT 18.05 64.46

RWTH 17.27 66.33

Table 10.7: IWSLT 13’ official translation results for SLT English-German (SLTEnDe)

Results of English-French The punctuation-added English test set is also trans-

lated into French. In this translation direction, we tried two distinct methods. As well

as the monolingual translation system, we also build a system using translation models

from modified GIZA alignments dedicated for ASR data. In order to match the ASR

data, we removed the case and punctuation marks for modifying the alignments. This

system is referred to as ASR-Dedicated. Table 10.8 shows the results.

System Test

Baseline 20.75

MonoTrans Input 23.69

ASR-Dedicated 22.90

Table 10.8: Experiments using monolingual translation system for English→French

(SLT)

A big improvement of around 3 BLEU points is reached when using the monolingual

translation system. The ASR-Dedicated system showed its effectiveness as well by

improving the baseline system by over 2 BLEU points. For the official test set, we use

the monolingual translation system. Its result is displayed in Table 10.9.

System BLEU TER

KIT 26.81 55.08

RWTH 25.62 57.21

UEDIN 22.45 61.34

MSR-FBK 22.42 63.69

Table 10.9: IWSLT 13’ official translation results for SLT English-French (SLTEnFr)

Here KIT’s system exhibits a performance difference of 1.2 BLEU points compared

to RWTH. As shown in Appendix B.3, when both systems are used to the official MT

146



10.2 Monolingual Translation System for Segmentation and Punctuation
Insertion

task the KIT is only 1 BLEU point better than RWTH. Details of the systems can be

found in Cettolo et al. (2013). This underlines the importance of proper punctuation

marks prior to translation of speech transcripts.

Results of English-Chinese Inspired by the success of the monolingual translation

system on other language pairs, we also use the punctuated test set for the English

to Chinese SLT task as a sole participant. It achieved 17.28 BLEU points for our test

data, and 16.91 points for the official test set. The details can be found in Cettolo et al.

(2013); Ha et al. (2013).

10.2.4.2 IWSLT Evaluation Campaign 2014

The monolingual translation system we used in the IWSLT Evaluation Campaign 2014

is similar to the one described in Section 10.2.4.1. The difference comes from casing.

Whereas the casing was handled only in the German system, now the casing is also

handled in the English system. There is no additional effort necessary to prepare

the lower-cased phrase table. A detailed description of the systems can be found in

Slawik et al. (2014). A performance comparison of our system to the other participants’

systems in the official evaluation campaign can be found in Cettolo et al. (2014).

Results of English-German The results of using the monolingual translation for

the English to German SLT task is shown in Table 10.10. When we replace the input

with the one punctuated using the monolingual translation system, the performance

is improved by 1.3 BLEU points. The system is further improved by using different

language models and rescoring techniques on the punctuated test data and used to

submit the final system for the official task. Table 10.11 shows how the KIT system

outperforms the other participants’ submission in the SLT task for English→German.

The results of the MT task of the other participants’ are given in Appendix B.4, for

comparison.

Results of English-French For English→French SLT task, we take the monolingual

translation system as baseline system of our MT system and punctuate the official test

set using it. The results of the official evaluation campaign is shown in Table 10.12.

Among seven participants, KIT achieved the best performance in BLEU. Compared
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System Dev Test

Baseline 27.3 17.57

MonoTrans Input - 18.83

Rescoring - 18.91

RBMLM - 19.02

RBMTM - 18.96

RBMLM+TM - 19.01

Table 10.10: Experiments using monolingual translation system for English→German

(SLT)

System BLEU TER

KIT 17.05 68.01

RWTH 17.00 68.36

USFD 14.75 70.15

KLE 13.00 71.70

Table 10.11: IWSLT 14’ official translation results for SLT English-German (SLTEnDe)

to the performance in the MT task, shown in Appendix B.5, the difference between

KIT and the other participants is increased by a large amount. This suggests that the

adaptation that we are using for the speech transcripts is effective.

System BLEU TER

KIT 27.45 57.80

RWTH 26.94 57.29

LIUM 26.82 59.03

UEDIN 25.50 57.23

FBK 25.39 59.53

LIMSI 25.18 60.79

USFD 23.45 59.94

Table 10.12: IWSLT 14’ official translation results for SLT English-French (SLTEnFr)

Results of German-English Table 10.13 shows different approaches to handle the

ASR transcript for MT and their impact. The baseline system uses the best MT system
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we have for the evaluation campaign. Using the ASR transcript as it is gives us 16.86

BLEU points as baseline. Nearly 2 BLEU points are gained when we simply insert a

final period at the end of each segment. This proves again that punctuation marks

greatly influence the translation quality.

When we apply the monolingual translation system to the test data in order to have

more detailed punctuation marks in it, we achieve 3.7 BLEU points over the baseline.

Another 0.2 BLEU points are gained by reoptimizing the system using the development

data also punctuated by the monolingual translation system for the consistency.

System Dev Test

Baseline 39.03 16.86

+ Final period - 18.79

MonoTrans Input - 20.59

+ MonoTrans Dev 35.79 20.79

Table 10.13: Experiments using monolingual translation system for German→English

(SLT)

The resulting final submission and its performance is compared to the other par-

ticipants in Table 10.14. The joint submission of KIT, UEDIN and RWTH, named

EU-Bridge as described in Freitag et al. (2014), achieved the best performance. As an

individual submission KIT was again the best system, with a difference of 0.7 BLEU

points from the other participants. The MT task performance, compared to the other

participants, are given in Appendix B.6.

System BLEU TER

EU-Bridge 19.09 63.80

KIT 18.34 63.91

UEDIN 17.67 66.04

RWTH 17.24 65.04

KLE 9.95 74.05

Table 10.14: IWSLT 14’ official translation results for SLT German-English (SLTDeEn)
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10.2.4.3 IWSLT Evaluation Campaign 2015

Unlike the previous years’ evaluation campaigns, no correct sentence boundaries are

given for the SLT track in IWSLT 2015. This means that not only punctuation marks

within a segment, but also the segment boundaries themselves need to be augmented.

As shown in Section 10.2.4.2, modeling casing information in addition to punctuation

marks boosts the subsequent translation performance even further. The systems built

in IWSLT 2015 also jointly model punctuation marks and casing information.

For the punctuation insertion scheme, we built three different models for English

and two models for German and compared their performance. The monolingual trans-

lation system showed the best performance among them and is used for generating our

submission to IWSLT 2015 (Ha et al., 2015).

Monolingual Translation System We build a monolingual translation system for

two source languages, English and German. The monolingual translation system for

punctuating English and German data are trained on the European Parliament data,

News Commentary, TED, and the common crawl corpus of each language. Altogether

the training data consists of 106.9 million words for English and 85.1 million words for

German.

As a preprocessing step, the noisy part of the common crawl data is filtered out

using the SVM model described in Mediani et al. (2011). After preprocessing is applied,

the normalized training data is resegmented randomly so that punctuation marks can

be observed in all possible locations in each line.

For the source side of the training, we removed final periods, commas, question

marks, and exclamation marks. Double quotation marks are also removed as they are

relatively frequent in TED talks. In addition to processing the punctuation marks, we

also lowercased every single word on the source side. Following the previous evaluations’

successes, we aim to restore the case information together with the punctuation marks

using this single system.

The translation models and language models for the two languages are designed

in the same way. The Moses package (Koehn et al., 2007) is used to build the phrase

table. We build a 4-gram language model on the entire punctuated target side using the

SRILM Toolkit (Stolcke). Word alignment is learned automatically using the GIZA++

Toolkit (Och and Ney, 2003). A bilingual language model (Niehues et al., 2011) is
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used along with a 9-gram part-of-speech-based language model. The POS is learned

from TreeTagger (Schmid, 1994). We train a 1, 000 class cluster (Och, 1999) for the

target language and use the cluster codes for the additional 9-gram language model.

The models were optimized on the official test set of the IWSLT evaluation campaign

in 2012.

CRF based Model As described in Section 3.3, a conditional random field is a

sequence labeling framework, which has been used extensively for various natural lan-

guage processing tasks. We build a CRF-based model for predicting punctuation marks

given observed sequence in the English data. In this work, we use the linear chain CRF

modeling technique implemented in GRMM package Sutton (2006).

Trained with the default parameters, the model is trained on two output labels

for each token: one for punctuation marks and the other for casing information. For

punctuation marks, we use four classes: final period, comma, question mark, and

exclamation mark. For casing, we use binary training. When a word token is labeled

to be cased, we take the most frequently casing form of the word in the training data.

We use the 3.4 million tokens of TED data, which is a genre- and style-matching

data to the test data, as our training data. Lexical features, such as word, POS, and

their pattern within a window of seven tokens, are used for the modeling. The pattern

feature aims to capture repetitions and therefore the surrounding punctuation marks.

NN based Model Punctuation has been modeled as a tagging task in previous re-

search (Huang and Zweig, 2002). Inspired by this, we designed a punctuation prediction

model for German and English using neural networks, which have proven themselves

to be very useful at classification tasks.

As training data, we used all available parallel data, the EPPS, News, and TED

corpora, which sum up to 54.3 million tokens. We choose a five layer feed-forward NN

for our punctuation insertion and casing system. The description of the scheme with

two output layers and topology are given in detail in Section 8.2.2.2. For pretraining

and fine-tuning we used Theano (Bergstra et al., 2010).

The input layer of the English system has 1,745 dimensional feature vector, which

consists of the same lexical features as the CRF model and uses the same window length

of 7. For German we used 1,759 dimensional feature vector. Each word is represented

151



10. EVALUATION IN END-TO-END SYSTEMS

by a 100 dimensional vector as described in Mikolov et al. (2013a). For POS, we used

1-of-n encoding.

Same as in the CRF model, there are four punctuation classes, final period, comma,

question mark, and exclamation mark, as well as a binary class for the casing informa-

tion. We use the pre-generated map for the casing, so that the most frequently used

casing form of the word can be used when the word is to be cased.

Performance Comparison Table 10.15 displays a comparison of the performance

of the three different systems for English. They are applied to the official test set of the

MT track of IWSLT 2013. The test data is a manual transcript of the TED talks. For

this experiment, we removed all punctuation marks in the test data and lower-cased

it. We can compare the systems’ performance without any influence of word errors

encountered from an ASR system.

System BLEU Fpunc Ppunc Rpunc Fcase Pcase Rcase

MonoTrans 83.20 60.79 59.46 62.19 94.25 97.49 91.23

CRF 79.00 55.31 56.33 54.32 79.54 90.86 70.74

NN 78.57 43.43 54.43 36.13 86.51 87.82 85.23

Table 10.15: Punctuation prediction for English using different techniques. Comparison

on punctuation and case detection performance for monolingual translation system, CRF,

and NN is given. Tested on manual transcript of the English TED official test data of

IWSLT 13’.

The BLEU score is generated by evaluating the test data with system-generated

punctuation and case-information against the test data with human-generated punc-

tuation and casing. This number represents how similar the newly punctuated, case

test set is to the human-generated one. We also measured the precision, recall, and

F-score of both punctuation marks and casing information. The precision is denoted

as P, recall as R and F-score as F. The two labels are represented as punc and disf for

punctuation and disfluency respectively in the table. The score suggests that when we

use the monolingual translation system we can achieve the best score in all measures.

Especially the NN-based model seems more conservative than the other techniques

when predicting punctuation marks, lowering its F-score.
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We use the three systems also for punctuating the official test set of the SLT track

of IWSLT 2014. The scores are shown in Table 10.16.

System BLEU

MonoTrans 60.38

CRF 59.30

NN 57.19

Table 10.16: Performance of punctuation and case information systems for the English

ASR test data

Due to word errors, we did not measure the F-scores but only the BLEU score

against the manual transcript. The result shows the similar tendency. We achieved the

best score by using the monolingual translation system.

The comparison between monolingual translation system and neural networks was

made for the German test data and is shown in Table 10.17. In order to measure the

performance difference between the two techniques without any word errors, we take

the official test data of MT track from the IWSLT 2014.

System BLEU Fpunc Ppunc Rpunc Fcase Pcase Rcase

MonoTrans 79.84 61.98 63.47 60.56 93.84 92.52 95.19

NN 75.79 54.41 67.11 45.76 91.42 90.71 92.15

Table 10.17: Punctuation prediction for German using different techniques. Comparison

on punctuation and case detection performance for monolingual translation system and

NN is given. Tested on manual transcript of the German TEDx official test data of IWSLT

13’.

Similar to the results for English, the monolingual translation system shows the

better performance. The same result can be found for the ASR test set in Table 10.18.

System BLEU

MonoTrans 53.47

NN 50.90

Table 10.18: Performance of punctuation and case information systems for the German

ASR test data
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Results of German-English After the successful use of the monolingual transla-

tion system in the previous years’ evaluation campaigns, we used the output of the

monolingual translation system as a baseline of our SLT systems directly.

Table 10.19 demonstrates the official SLT results of IWSLT 15’. Among the two

participants, KIT showed a better performance by 0.85 case sensitive BLEU points.

As can be found in Appendix B.7, KIT’s MT system is 0.42 BLEU worse than the one

of RWTH. This emphasizes once again that the performance of monolingual transla-

tion system as a punctuation prediction module is outstanding. We can overcome the

performance difference of the MT systems by inserting better punctuation marks.

System BLEU TER

KIT 19.64 62.22

RWTH 18.79 65.18

Table 10.19: IWSLT 15’ official translation results for SLT German-English (SLTDeEn)

Results of English-German We also participated the English to German SLT track

as a sole participant. Using the input punctuated using our monolingual translation

system, we achieved 16.18 case sensitive BLEU points. Details of the evaluation cam-

paign along with a description of each task and system can be found in Cettolo et al.

(2015).

10.3 Integration of the Disfluency Detection Model into

SMT

The CRF-based disfluency detection model, inspired by previous works (Fitzgerald

et al., 2009a; Liu et al., 2006), is extended in this thesis using a semantically inspired

features. We utilized RNNs in order to represent each word into vectors, which are

then grouped into different clusters using a k-means algorithm. The word clusters as

well as their patterns are used as features in our CRF model. Additionally, we use the

phrase table information. For each word or phrase, we check its potential translation

in the phrase table.
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System BLEU

Baseline 19.98

+ no uh 21.28

CRF 21.94

Oracle 23.14

Table 10.20: Performance of the CRF-based disfluency detection model

By detecting disfluencies using this model, we could improve the translation per-

formance for the German lecture data by around 2 BLEU points, as shown in Table

10.20. In the baseline system, we translated the test data with all disfluencies kept.

We provided another baseline system, where the simple disfluencies are removed man-

ually. Compared to this system, we could achieve 0.7 BLEU points of improvement by

removing disfluencies detected using our CRF model.

Applying the disfluency detection in a preprocessing step, as shown above, is a

conventional approach to translate speech transcripts. However, this has the drawback

that choosing which string to translate and determining which string is a disfluency is

not dependent on whether or not it will imporve the translation quality. In order to

be able to choose a string that is helpful for translation, we integrate the disfluency

detection module into the SMT system.

From the CRF model, we extract the disfluency probability for each word, and

embed this information on the word reordering lattices. A new path is introduced when

the disfluency probability exceeds an empirically obtained threshold. The importance

of the newly introduced paths is encoded on the optimized weights.

System Dev Text ASR

Baseline 23.45 22.70 14.50

No uh 25.09 24.04 15.10

CRF-hard 25.32 24.50 15.15

Pruning + Tight integration 25.38 24.84 15.51

Oracle 25.57 24.87 -

Table 10.21: Impact of the disfluency removal integrated into the SMT in BLEU

Table 10.21 shows the results. In the baseline system, all disfluencies are kept

and translated. We also provided another baseline system, where all obvious, trivial

155



10. EVALUATION IN END-TO-END SYSTEMS

disfluencies such as uh or uhm are removed. Here we also offer the performance of the

CRF model, using its output label directly. Compared to the trivial baseline system,

we achieved an improvement of 0.5 BLEU points on the manual transcript. When we

integrate the disfluency detection into an SMT system using word lattices, however, the

translation performance is improved by 0.8 BLEU points for the manual transcript and

0.3 for the ASR output. The best performance was achieved when we use the integration

scheme with pruning, where the words with a very high disfluency probability are

pruned out before generating the lattices.

10.4 Joint Detection of Punctuation and Disfluency

In Chapter 8 we studied the performance of machine translation for multi-party meet-

ing data where disfluency and punctuation are modeled together. First we show the

cascaded model, where disfluencies are detected and then the punctuation is predicted.

This scheme is motivated by the available training data for the two models. While

disfluencies are trained on the human-annotated, a relatively limited amount of data,

punctuation can be trained on all monolingual data containing punctuation marks.

Since the monolingual data does not contain any disfluencies, we choose the scheme

where the punctuation prediction step is applied once the disfluencies are removed from

the data.

In order to give insights into different scenarios, we conduct all experiments un-

der two conditions, depending on the turn information availability. Also, the genre-

portability of the CRF-based disfluency detection model is investigated, by building

the model using only in-domain or out-of-domain data. The results are summarized in

Table 10.22.

System No turn Turn

Baseline 9.53 12.93

Cascaded model 14.41 15.01

Oracle 20.93

Table 10.22: Cascaded approach for punctuation and disfluency in multi-party meeting

data

The disfluencies in the multi-party meeting data are detected by the CRF-based
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model described in section 7.1. The monolingual translation system, as described in

section 6.2, is applied to the test data. When using the cascaded approach, we could

improve by 2 BLEU points on the translation, when the availability of the turn informa-

tion is assumed. When it is not assumed, we could achieve an even bigger improvement

of 4.9 BLEU points.

In the following part of the thesis, disfluency and punctuation are modeled jointly

in one process. For this task, we use two machine learning techniques with different

advantages, CRFs and NNs. Each technique then models punctuation and disfluency

jointly. However, instead of taking the output labels, we extracted the disfluency and

punctuation probability for each token. The probabilities from two models are features

that we combine in the log-linear model. For the combination, we used a language

model built on the labels.

System BLEU

Baseline 14.42

+ No uh 14.94

CRF 16.32

NN 16.18

Log-linear combination 16.93

Oracle 22.76

Table 10.23: Combined model for punctuation and disfluency in multi-party meeting

data. Translation scores after disfluency removal and punctuation insertion using various

systems are measured in BLEU.

The results can be found in Table 10.23. It is shown that when we use the combined

model of the two techniques, we achieve the BLEU score of 16.93 points for the multi-

party meeting data, outperforming the individual models. This score is also around 2

BLEU points better than translating the test data without simple disfluencies.

10.5 Sentence Reconstruction

In this thesis, we conducted initial experiments on reconstructing spoken-style sen-

tences into a formal, written-style text. The problem scope is defined into two major
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issues: deletion and replacement of words. The results of sentence reconstruction are

summarized in Table 10.24.

System BLEU

Baseline 80.92

+ Deletion 81.26

+ Replacement 81.38

Table 10.24: The impact of sentence reconstruction on translation performance. The

performance is measured in BLEU.

All scores are evaluated by measuring the text similarity by BLEU, against the

manually reconstructed text. The baseline shows the score of the test data where no

sentence reconstruction is applied. For the deletion process, we consider the ten most

frequently deleted source words in the annotated German lecture data and an ME

model is built for each of them. The replacement task is applied on this deletion-

performed data. In order to recover from the data sparsity issue, we build an artificial

data where we inserted artificial noise learned from the limited size of annotated data.

From the two steps of sentence reconstruction, we achieved around 0.5 BLEU points of

improvement over the baseline.
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Conclusion

The processing of spontaneous language poses a great number of challenges for natural

language processing tasks, due to its distinctive characteristics compared to written

language. While written language generally consists of well-formed, grammatically

correct sentences, spontaneous speech very often contains disfluencies. Also, unlike

text written by humans, conventional automatic speech recognition systems do not

provide reliable sentence boundaries and proper punctuation marks in their outputs.

These differences can negatively impact the performance of subsequent applications,

such as machine translation systems, which are in most cases trained using written

texts. When we deploy machine translation systems for spoken language, there is a

mismatch between the training data and the output of the automatic speech recognition

system which recognize the spontaneous speech. As well as degrading the translation

quality both, speech disfluencies and the lack of proper punctuation marks, greatly

reduce the readability when presenting the recognition of spontaneous speech to users.

From this thesis we learned that a dedicated model for punctuation prediction prior

to machine translation can greatly improve its performance. Based on our investigation

on specific characteristics of spontaneous speech, we observed that it is possible to

model them using different machine learning techniques. By tightly integrating the

disfluency detection model into an SMT model, we saw its promising potential to

be successfully used in MT. We gained a deeper comprehension of the two challenging

issues of spontaneous speech and addressed them by jointly modeling both punctuation

prediction and disfluency detection as well as exploiting the synergistic effects of two

different ML techniques.
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11. CONCLUSION

11.1 Summary

In this thesis, we motivated the importance of a proper segmentation and disfluency

removal process for the machine translation of spoken language. Describing the chal-

lenges in natural language processing of spoken language, we illustrated different types

of speech disfluencies. In order to represent different degrees of spontaneousness, we

annotated disfluencies in two speech corpora; university lectures and multi-party meet-

ing. We have discussed the creation of the corpora and gave an in-depth analysis on

each corpus. The two corpora have been used for training, evaluation, and analysis of

automatic segmentation insertion and speech disfluency removal models suggested in

this thesis.

After beginning with a discussion on the importance of segmentation and punc-

tuation marks in speech transcripts, this thesis introduced a monolingual translation

system that improved the quality of a subsequent machine translation. The monolin-

gual translation system, an MT-driven system that translates non-punctuated speech

transcripts into punctuated ones, has been applied to test data in different genres

and languages and yielded very good results. This technique is further extended and

adapted to a real-time spoken language translation scenario. While decreasing the re-

quired context length, and thereby the system latency, we showed that this adaptation

can nevertheless maintain the translation performance for spoken language.

In the next part of the work, a conditional random field-based disfluency detection

model was presented. Using several features from recurrent neural networks and trans-

lation models based on semantics, the model successfully removes speech disfluencies.

Later this model is integrated into a statistical machine translation model using word

lattices. By optimizing the disfluency path in the translation model, the translation of

spontaneous lecture speech is further improved.

This thesis also surveyed the issue of punctuation insertion and disfluency detec-

tion as a joint task on the multi-party meeting data. In the first approach we built

a conditional random fields-based cascade system which first detects the disfluencies

and then augments sentence boundaries and punctuation marks. We demonstrated the

advantage of modeling punctuation separately, using commonly available monolingual

data. In second approach, punctuation marks and disfluencies are modeled jointly by
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11.2 Future Work

combining two techniques with different strengths. In this approach, conditional ran-

dom fields and neural networks are combined log-linearly and the combination showed

synergistic effects improving both the detection accuracy and translation quality of the

multi-party meeting data.

Finally, we conducted an analysis on sentence reconstruction, which aimed to give

first insights on how sentences that have had their disfluencies removed but are still

in a spoken language-style can be reconstructed. Given this analysis, we classified the

problem of sentence construction into three parts. In the first part, we aim to delete un-

necessary words. Colloquial expressions are then replaced into a form of formal speech.

In the last step, words are reordered and the words required to formulate written-style

texts are inserted. On our annotated German lecture data, we demonstrated that the

suggested sequential model was promising for building well-formed sentences out of

spoken-style ones.

From all these experiments, we demonstrated that it is crucial to transform the out-

put from an automatic speech recognition system into a text with well-defined sentence

boundaries without speech disfluencies, in order to achieve substantially better trans-

lation performance. Our techniques were applied to two source languages, German and

English, and two spontaneous speech genres, lectures and multi-party meeting, showing

the effectiveness in all conditions.

11.2 Future Work

In the future we hope researchers will apply the insights and techniques presented in

this thesis to more languages, diverse genres and scenarios. Since the annotated data

for modeling spontaneous speech is expensive, an interesting and practical research

direction will be unsupervised training of speech phenomena. Even though prosodic

features except for pause duration did not yield significant improvement over the con-

ventional methods for punctuation insertion (Rao et al., 2007b), it would be interesting

to confirm the potential gain of using them in future work. We also believe that further

topologies of different neural networks on the speech disfluency detection task can be

investigated in order to bring more improvements. Another promising research direc-

tion would be speech disfluency detection and punctuation insertion for spontaneous

speech with code-switching. Combined with language identification, such a system will
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11. CONCLUSION

be essential to support machine translation systems for multilingual meetings, for ex-

ample. In addition, although a problem analysis and initial experiments on sentence

reconstruction conducted in this thesis provide first insights, there are remains a lot

to be done to address the issue extensively. The capability of neural network-based

models to represent semantics in a limited data condition is a promising tool to model

sentence reformulation allowing versatile reordering, insertion, or replacement of source

words or phrases successfully.
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Appendix A

The Impact of Context Length

for Punctuation Insertion

In a related project, we investigate into the relationship between the length of the

context and the performance of punctuation prediction models. For a punctuaion pre-

diction model, we explore two methods: the monolingual translation system introduced

in Chapter 6 and CRFs. The punctuation prediction models are built on 3 million of

English words from TED corpus. For test data, we used 27.1k words of TED talk.

In each model, we fix the length of the past context to four. In order to measure

the impact of future context, which has a negative impact on the latency, we control

the length of the future context from 0 to 4. The results of these experiments are

summarized in Table A.1.

Future context length 0 1 2 3 4

CRF 27.9 50.8 56.2 58.1 57.9

Monolingual translation system 25.7 45.1 48.9 48.9 49.2

Table A.1: Impact of future context lenght on punctuation prediction performance. Per-

formance is given in F-score.

Note that the monolingual translation system is developed with mininal models,

unlike the systems used throughout this thesis. They are extended using further trans-

lation models in order to enhance the performance. The purpose of this experiment is

to observe the punctuation prediction performance for different future context length.

165



A. THE IMPACT OF CONTEXT LENGTH FOR PUNCTUATION
INSERTION

For both modeling techniques, the longer future context the better punctuation

prediction performance is achieved. The improvement given by a longer future con-

text, however, tends to saturate after a certain point. This suggests that an optimum

future context length can be defined where a similar performance can be yielded while

maintaining a shorter latency.
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Appendix B

Evaluation Campaigns

B.1 IWSLT 2013

System BLEU TER

KIT 26.48 57.52

EU-Bridge 26.33 56.70

NTT-NAIST 25.69 60.96

UEDIN 25.54 59.99

RWTH 25.32 59.67

HDU 22.91 59.65

POSTECH 21.26 67.61

BASELINE 19.25 65.03

Table B.1: IWSLT 13’ official translation results for MT German-English, case-sensitive

(MTDeEn)

167



B. EVALUATION CAMPAIGNS

System BLEU TER

KIT 25.71 54.46

RWTH 24.74 55.52

NTT-NAIST 24.60 54.86

UEDIN 24.00 55.94

POSTECH 22.43 57.57

BASELINE 19.58 59.81

Table B.2: IWSLT 13’ official translation results for MT English-German, case-sensitive

(MTEnDe)

System BLEU TER

EU-Bridge 38.86 42.96

KIT 38.63 43.20

UEDIN 38.45 43.96

FBK 37.69 44.13

RWTH 37.67 44.00

PRKE-IOIT 37.59 45.07

MITLL-AFRL 37.05 45.36

BASELINE 31.94 48.59

Table B.3: IWSLT 13’ official translation results for MT English-French, case-sensitive

(MTEnFr)
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B.2 IWSLT 2014

B.2 IWSLT 2014

System BLEU TER

Eu-Bridge 23.25 57.27

KIT 22.66 57.70

UEDIN 22.61 58.95

NTT-NAIST 22.09 57.60

KLE 19.26 61.36

BASELINE 18.44 61.89

Table B.4: IWSLT 14’ official translation results for MT English-German, case-sensitive

(MTEnDe)

System BLEU TER

EU-Bridge 36.99 45.20

KIT 36.22 45.18

UEDIN 35.91 45.78

RWTH 35.72 44.54

MITLL-AFRL 35.48 45.69

FBK 34.24 46.75

BASELINE 30.55 49.66

MIRACL 25.86 54.16

SFAX 16.09 62.89

Table B.5: IWSLT 14’ official translation results for MT English-French, case-sensitive

(MTEnFr)
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B. EVALUATION CAMPAIGNS

System BLEU TER

EU-Bridge 25.77 54.61

RWTH 25.04 55.49

KIT 24.62 55.62

NTT-NAIST 23.77 56.43

UEDIN 23.32 57.50

FBK 20.52 63.37

KLE 19.31 63.88

BASELINE 17.50 65.56

Table B.6: IWSLT 14’ official translation results for MT German-English, case-sensitive

(MTDeEn)

B.3 IWSLT 2015

System BLEU TER

RWTH 31.50 47.11

KIT 31.08 47.24

PJAIT 26.08 52.34

BASELINE 21.78 55.45

Table B.7: IWSLT 15’ official translation results for MT German-English, case-sensitive

(MTDeEn)
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