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\The most beautiful thing we 
an experien
e is the mysterious. It is the sour
e of all

true art and s
ien
e. He to whom this emotion is a stranger, who 
an no longer

pause to wonder and stand wrapped in awe, is as good as dead"

Albert Einstein.





Abstra
t

This thesis presents a new, hierar
hi
al framework for 
onne
tionist a
ousti
 model-

ing in large vo
abulary statisti
al spee
h re
ognition systems. Based on the divide

and 
onquer paradigm, the task of estimating HMM state posteriors is de
omposed and

distributed in the form of a tree-stru
tured ar
hite
ture 
onsisting of thousands of

small neural networks. In 
ontrast to monolithi
 
onne
tionist models, our approa
h

s
ales to arbitrarily large state spa
es. Phoneti
 
ontext is represented simultaneously

at multiple resolutions whi
h allows for s
alable a
ousti
 modeling. We demonstrate

that the hierar
hi
al stru
ture allows for (1) a

elerated s
ore 
omputations through

dynami
 tree pruning, (2) e�e
tive speaker adaptation with limited amounts of adap-

tation data and (3) downsizing of the trained model for small memory footprints.

The viability of the proposed hierar
hi
al model is demonstrated in re
ognition exper-

iments on the Swit
hboard large vo
abulary 
onversational telephone spee
h 
orpus,


urrently 
onsidered the most diÆ
ult standardized spee
h re
ognition ben
hmark,

where it a
hieves state-of-the-art performan
e with less parameters and faster re
og-

nition times 
ompared to 
onventional mixture models.

The se
ond 
ontribution of this thesis is an algorithm that allows for domain-adaptive

spee
h re
ognition using the proposed hierar
hi
al a
ousti
 model. In 
ontrast to hu-

mans, automati
 spee
h re
ognition systems still su�er from a strong dependen
e on

the appli
ation domain they have been trained on. Typi
ally, a spee
h re
ognition

system has to be tailored to a spe
i�
 appli
ation domain to redu
e semanti
, syn-

ta
ti
 and a
ousti
 variability and thus in
rease re
ognition a

ura
y. Unfortunately,

this approa
h results in a la
k of portability as performan
e typi
ally deteriorates

una

eptably when moving to a new appli
ation domain.

We present Stru
tural Domain Adaptation (SDA), an algorithm for hierar
hi
ally

organized a
ousti
 models that exploits the s
alable spe
i�
ity of phoneti
 
ontext

modeling by modifying the tree stru
ture for optimal performan
e on previously

unseen appli
ation domains. We demonstrate the e�e
tiveness of the SDA approa
h

by adapting a large vo
abulary 
onversational telephone spee
h re
ognition system

to (1) a telephone di
tation task and (2) spontaneous s
heduling of meetings. SDA

together with domain-spe
i�
 di
tionaries and language models allows to mat
h the

performan
e of domain-spe
i�
 models with only 45-60 minutes of a
ousti
 adaptation

data.





Zusammenfassung

Die vorliegende Arbeit pr�asentiert einen neuen, hierar
his
hen Ansatz f�ur die kon-

nektionistis
he akustis
he Modellierung in statistis
hen Spra
herkennungssystemen

f�ur gro�e Worts
h�atze. Basierend auf dem Teile-und-Herrs
he Paradigma werden a-

posteriori Wahrs
heinli
hkeiten von HMM Zust�anden in einer verteilten, in Form eines

Baumes strukturierten Ar
hitektur mit Hilfe mehrerer Tausend kleiner neuronaler

Netze ges
h�atzt. Im Gegensatz zu monolithis
hen konnektionistis
hen Ar
hitekturen

skaliert der vorgestellte Ansatz auf beliebig gro�e Zustandsr�aume. Phonetis
he Kon-

texte werden dabei simultan in mehreren Au
�osungen repr�asentiert wodur
h skalier-

bare akustis
he Modellierung erm�ogli
ht wird. Es wird gezeigt, da� die hierar
his-


he Ar
hitektur (1) bes
hleunigte Evaluation mittels dynamis
hem Pruning, (2) ef-

fektive Spre
heradaptation mit nur geringen Mengen an Adaptionsdaten und (3)

na
htr�agli
he Verkleinerung eines trainierten Modells erlaubt.

Die Leistungsf�ahigkeit des vorges
hlagenen hierar
his
hen Modells wird anhand von

Erkennungsexperimenten mit dem Swit
hboard Korpus bestehend aus spontanspra
h-

li
hen Telefonkonversationen, dem derzeit s
hwierigsten standardisierten Spra
her-

kenner Be
hmark, demonstriert. Die vorges
hlagene Ar
hitektur erzielt dabei eine

Erkennungsleistung verglei
hbar zu den derzeit leistungsf�ahigsten Systemen, ben�otigt

dazu jedo
h deutli
h weniger Parameter und Re
henzeit.

Der zweite Beitrag dieser Arbeit ist ein Algorithmus der dom�anen-adaptive Spra
h-

erkennung mit der vorges
hlagenen hierar
his
hen Ar
hitektur erm�ogli
ht. Heutige

Spra
herkennungssysteme leiden immer no
h an einer starken Abh�angigkeit von der

Anwendungsdom�ane f�ur die sie trainiert wurden. Typis
herweise mu� ein Spra
herken-

nungssystem auf eine bestimmte Anwendungsdom�ane hin zuges
hnitten werden um

die semantis
he, syntaktis
he und akustis
he Variabilit�at so weit wie m�ogli
h ein-

zus
hr�anken und dadur
h die Erkennungsleistung zu verbessern. Ungl�u
kli
herweise

f�uhrt ein sol
her Ansatz zu einem Mangel an Portabilit�at, ersi
htli
h daran, da� die

Erkennungsleistung stark einbri
ht, wenn das System auf einer neuen, andersartigen

Dom�ane angewendet wird.

Wir pr�asentieren Strukturelle Dom�anenadaption (SDA), einen Algorithmus f�ur hier-

ar
his
h organisierte akustis
he Modelle, der die Skalierbarkeit der Spezi�zit�at der

Kontextmodellierung ausnutzt um die Baumstruktur des Modells an die Gegeben-

heiten in einer neuen Anwendungsdom�ane anzupassen, um die Erkennungsleistung zu

optimieren. Die E�ektivit�at des Algorithmus wird anhand zweier Adaptionsexperi-

mente demonstriert. Dabei wird ein auf der Swit
hboard Dom�ane trainiertes System

auf (1) eine Telefon-Diktierdom�ane und (2) eine spontanspra
hli
he Dialogdom�ane

portiert. SDA zusammen mit dom�anen-spezi�s
hen W�orterb�u
hern und Spra
hmod-

ellen erlaubt dabei eine Erkennungsleistung, die der Leistung dom�anen-spezi�s
her

Erkenner entspri
ht, dabei jedo
h nur 45-60 Minuten an Adaptationsdaten aus der

jeweiligen Zieldom�ane ben�otigt.
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Chapter 1

Introdu
tion

Over the past years, resear
h in spee
h re
ognition systems has improved the state-of-

the-art signi�
antly, su
h that a wide range of new, spee
h enabled appli
ations have

be
ome possible. Consequently, the market in spee
h te
hnology and appli
ations

develops rapidly. For instan
e, high quality, speaker-independent 
ontinuous-spee
h

di
tation systems, whi
h formerly have only been available in resear
h labs and for

spe
i�
 appli
ation domains, now are available for the general purpose mass market

and will soon be integrated into 
omputer operating systems. Another emerging

appli
ation of spee
h te
hnology is in Intera
tive Voi
e Response (IVR) enabled 
all


enters, where people now 
an 
all fully automated information systems and retrieve

sele
tive information by 
ommuni
ating with the system in a natural dialog instead

of by hitting the tou
h tone buttons of the telephone. A very interesting appli
ation

of spee
h te
hnology emerges in the �eld of multimedia information retrieval, where

spee
h re
ognition systems are in
reasingly being used to 
ategorize and trans
ribe

radio and TV broad
ast news for the purpose of indexing and 
ontent 
lassi�
ation.

Su
h te
hnology appears to be a major fa
tor in managing, a

essing and �ltering

the huge amounts of information spilled out by the mass media.

1.1 Motivation

Despite all these promising and ex
iting appli
ations, spee
h re
ognition te
hnology

still struggles with a lot of unresolved problems. For instan
e, spee
h re
ognition

systems have to be tailored to spe
i�
 appli
ation domains in order to at least ap-

proa
h performan
e 
omparable to humans. As a 
onsequen
e, performan
e drops

una

eptably when the system is applied to domains di�erent from the originally tar-

geted domain. Therefore, there 
urrently is no universal spee
h re
ognition system

available that, for any given language, would work in any environment, re
ognizing

an arbitrary vo
abulary in an arbitrary appli
ation domain. Rather, a typi
al spee
h

1
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re
ognition system requires that detailed operating 
onditions are met in order to

a
hieve optimal performan
e:

� Spe
i�
ation of the type of mi
rophone to be used

� Spe
i�
ation of re
ording 
onditions (e.g., quiet oÆ
e)

� Spe
i�
ation of a �nite re
ognition vo
abulary

� Spe
i�
ation of an appli
ation domain (e.g., di
tation of �nan
ial newspaper

arti
les, trans
ription of telephone 
onversations)

Due to the statisti
al nature of 
urrent spee
h re
ognition te
hnology based on Hid-

den Markov Models (HMM), whi
h implies that system parameters are learned from

a large but �nite set of training patterns, a restri
tion to a spe
i�
 appli
ation domain

appears to be absolutely ne
essary for a
hieving reasonable performan
e. The result-

ing la
k of robustness and universality in most of the 
omponents of su
h systems

has been identi�ed as a major weakness of today's spee
h re
ognition te
hnology.

While domain spe
i�
 vo
abularies, pronun
iation di
tionaries and language models


an typi
ally be obtained and ex
hanged easily in order to a

ommodate a swit
h to a

new domain, the ex
hange or adaptation of the a
ousti
 model of a spee
h re
ognizer

requires 
onsiderably more e�ort. The task of the a
ousti
 model is to estimate

the probability of a
ousti
 observations (suitably parameterized representation of an

a
ousti
 waveform) given a sequen
e of words. Typi
ally, an a
ousti
 model 
onsists

of a set of HMMs with asso
iated mixture density probability models. Mismat
hes

in the a
ousti
 model are not only 
aused by 
hanges in the re
ording 
onditions, the

type of mi
rophone or the speaker 
hara
teristi
s, as one might think at �rst glan
e.

Basi
 a
ousti
 units su
h as phones are modeled in various alternative realizations,

depending on their phoneti
 
ontext. This strategy has be
ome standard pra
ti
e in

large vo
abulary spee
h re
ognition and improves re
ognition a

ura
y 
onsiderably

but renders the a
ousti
 model highly dependent on domain spe
i�
 
omponents

su
h as the vo
abulary and the language model. As a result, we typi
ally observe a

mismat
h in the spe
i�
ity of 
ontext modeling in addition to an a
ousti
 mismat
h

in a new target domain. As the spe
i�
ity of 
ontext modeling 
an not be altered

easily in 
onventional a
ousti
 models be
ause of a la
k of stru
ture and s
alability,

the standard approa
h is to build and train a new domain-spe
i�
 a
ousti
 model to

repla
e the existing one as soon as the phoneti
 
hara
teristi
s of the target domain

di�er signi�
antly from those of the training domain. Unfortunately, this approa
h is

time-, labour- and 
ost-intensive as it requires large amounts of trans
ribed a
ousti


data.
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As an alternative to 
onventional a
ousti
 modeling based on mixture densities, sev-

eral resear
hers have independently developed a methodology for in
orporating 
on-

ne
tionist models (based on neural networks) into a statisti
al spee
h re
ognition

system. Su
h systems are often 
alled hybrid spee
h re
ognition systems sin
e they


ombine dis
riminatively trained 
onne
tionist a
ousti
 models with the standard

HMM framework. In the most simple setting, a single arti�
ial neural network is ap-

plied to the estimation of posterior phone or state probabilities. While o�ering better

dis
rimination, faster evaluation and a smaller number of parameters, monolithi
 
on-

ne
tionist a
ousti
 models are diÆ
ult to s
ale to 
ontext-dependent modeling and

have therefore been used primarily for monophone modeling. However, the fa
t that

state posteriors and state priors are both expli
itly available o�ers attra
tive potential

for adapting these models to domains di�erent from the training domain.

1.2 Approa
h

This thesis presents a new, hierar
hi
al framework for 
onne
tionist a
ousti
 modeling

that, among other bene�
ial properties, allows to dynami
ally adapt the spe
i�
ity of


ontext modeling to new, previously unseen appli
ation domains. The tree-stru
tured

model o�ers all the advantages of 
onventional 
onne
tionist a
ousti
 models while

o�ering a variety of bene�
ial new properties su
h as s
alability to any number of

HMM states and fast evaluation through dynami
 tree pruning. The model is demon-

strated to be e�e
tive in modeling up to 24000 states with 
onne
tionist estimators,

a
hieving performan
e 
omparable to standard mixture based a
ousti
 models while

being smaller in size and faster to de
ode.

We motivate, introdu
e and evaluate the proposed hierar
hi
al 
onne
tionist ar
hi-

te
ture as an alternative to standard mixture based modeling in large vo
abulary


onversational spee
h re
ognition. Experimental evaluation of ar
hite
tural aspe
ts

is performed on the Swit
hboard 
orpus, 
urrently a major fo
us in the spee
h resear
h


ommunity. Swit
hboard 
ontains more than 170 hours of telephone quality re
ord-

ings of human-to-human 
onversations over the publi
 telephone network. As su
h

it exhibits strong variations in re
ording quality and ba
kground noise. Even worse,

the 
onversational nature of the re
ordings implies a high proportion of dis
uen
ies

su
h as false starts, hesitations, interje
tions, et
. As one 
an imagine, Swit
hboard

is a 
omparably hard spee
h re
ognition domain. Today's state-of-the-art systems

yield performan
e in the range of 30-40% word errors.

The hierar
hi
al stru
ture of the proposed model together with its 
onne
tionist

framework for estimating both state posteriors and state priors leads to the se
-

ond major 
ontribution of this thesis: An algorithm for dynami
ally adapting the

stru
ture, the size and the predi
tors of a trained hierar
hi
al 
onne
tionist a
ousti
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model for eÆ
ient adaptation of a spee
h re
ognition system to a previously unseen

domain. In Stru
tural Domain Adaptation (SDA), as the algorithm is 
alled, a 
om-

parably small amount of trans
ribed data from the new domain is used to estimate

the prior distribution of the HMM states of the original model in the new domain.

Typi
ally, this distribution is quite di�erent from the one obtained on the original

training 
orpus, due to di�eren
es in vo
abulary and language model. Using an esti-

mate of the state prior distribution on the new domain, we adapt the priors in ea
h

node of the modeling tree by propagating the state priors through the tree stru
ture.

Typi
ally, 
ertain bran
hes of the modeling tree will be pruned as they lead to HMM

states with very low observation 
ounts. In addition, SDA allows to further prune

the resulting tree stru
ture a

ording to the observation 
ounts, for instan
e to down-

size the a
ousti
 model for small memory footprint and/or faster evaluation. Thus,

the hierar
hi
al ar
hite
ture together with the algorithm for stru
tural adaptation

represent a versatile tool for domain-adaptive a
ousti
 modeling.

We evaluate stru
tural domain adaptation of our hierar
hi
al model using two quite

di�erent appli
ation s
enarios. The baseline to both experiments is a model trained

on the Swit
hboard 
orpus. In the �rst s
enario, we adapt this model's stru
ture

to a domain 
onsisting of read newspaper arti
les, the Wall Street Journal (WSJ)

domain. In 
ontrast to the majority of this 
orpus, we sele
ted a subset 
onsisting

of telephone quality spee
h in order to keep a
ousti
 di�eren
es small. In the se
ond

s
enario, we port the Swit
hboard model to a domain 
alled English Spontaneous

S
heduling Task (ESST), 
onsisting of spontaneous human-to-human 
onversations.

This 
orpus is re
orded with high-quality mi
rophones and exhibits a 
omparably

small and restri
ted vo
abulary. Using the SDA algorithm, we demonstrate that the

Swit
hboard trained hierar
hi
al 
onne
tionist model 
an be adapted e�e
tively to

the unseen domains using only 45-60 minutes of a
ousti
 adaptation data. The result-

ing stru
turally adapted systems mat
h the performan
e of domain-spe
i�
 systems

trained on several hours of data.

1.3 Outline

On a global level, this thesis is divided into two major parts. Chapters 2 to 4 are of

introdu
tory nature, summarizing spe
i�
 aspe
ts about automati
 spee
h re
ogni-

tion that are of relevan
e to the remainder of the thesis. The following 
hapters 5 to

10 are then devoted to the original 
ontributions of this thesis.

Chapter 2 introdu
es the reader to the �eld of statisti
al spee
h re
ognition. Rather

than presenting all the bells and whistles of the state-of-the-art, this review of the

basi
 
on
epts in automati
 spee
h re
ognition is meant to provide the ne
essary

ba
kground for readers unfamiliar with this dis
ipline. Therefore, it only brie
y
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tou
hes 
ertain aspe
ts that are less relevant for the 
ontent of later 
hapters. Also,

this 
hapter is restri
ted to the presentation of standard te
hnology, namely the one

build around 
ontinuous density Hidden Markov Models. Phoneti
 
ontext model-

ing, a very important modeling te
hnique now found in any large vo
abulary spee
h

re
ognition system is reviewed. The fo
us here is to introdu
e the reader to the side

e�e
ts of 
ontext modeling: on the one hand, it signi�
antly improves performan
e;

on the other hand it introdu
es a strong dependen
e on the spe
i�
 training domain

whi
h 
an dramati
ally de
rease robustness towards unseen domains. As this thesis

presents a solution to this problem, this part might be regarded as both a review and

a motivation for later 
hapters.

Chapter 3 is devoted to 
onne
tionist a
ousti
 modeling and hybrid ar
hite
tures.

Here, it is shown how 
lassi�er neural networks 
an be integrated into the HMM

formalism in order to take advantage of properties su
h as better 
lass dis
rimination

and faster model evaluation. The 
hapter presents and dis
usses ar
hite
tures that

have been used for hybrid spee
h re
ognition in the past.

Chapter 4 is devoted to the Swit
hboard large vo
abulary 
onversational spee
h

re
ognition (LVCSR) 
orpus. This widely used 
orpus serves as a ben
hmark for

the ar
hite
tures and algorithms presented in this thesis.

Chapter 5 introdu
es hierar
hi
al 
onne
tionist a
ousti
 modeling as a 
on
eptual

framework for tree-stru
tured, s
alable a
ousti
 models. We theoreti
ally motivate

the derivation of this divide-and-
onquer based ar
hite
ture whi
h is grounded on sta-

tisti
al fa
toring of posterior state probabilities. We dis
uss properties of the resulting

tree based 
lassi�ers fo
using on design algorithms for indu
ing tree stru
tures. We

show how su
h a model 
an be integrated into the 
lassi
al HMM framework for the

purpose of a
ousti
 modeling. Furthermore, we analyze the viability of feed forward


lassi�er neural networks for the task of estimating 
onditional posterior probabilities

in tree nodes. The resulting hierar
hi
al a
ousti
 model, whi
h we 
all a Hierar
hy

of Neural Networks, is then integrated into a state-of-the-art spee
h re
ognizer and

evaluated on the Swit
hboard LVCSR 
orpus.

In Chapter 6, we experimentally analyze dynami
 posterior based pruning of the

model introdu
ed in 
hapter 5. This te
hnique is very eÆ
ient in avoiding to evaluate

posterior probabilities of unlikely states, thereby redu
ing the 
omputational load of

a
ousti
 model evaluation signi�
antly. We show how this simple te
hnique allows to

eÆ
iently trade-o� re
ognition a

ura
y against de
oding speed.

Chapter 7 presents an algorithm for optimally adapting a hierar
hi
al a
ousti
 model

to the a
ousti
 
hara
teristi
s of spe
i�
 speakers, an important prerequisite for many

appli
ations of spee
h re
ognition (e.g., di
tation). In 
ontrast to existing a
ousti


models su
h as those based on mixture densities, the proposed model does not require

additional model parameter tying me
hanisms su
h as regression 
lass trees to a
hieve

eÆ
ient speaker adaptation even with small amounts of data. We demonstrate how
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the hierar
hi
al stru
ture of the model itself 
an be exploited for speaker adaptation

and evaluate the resulting algorithm on Swit
hboard.

Building on the material from 
hapter 5 and 7, 
hapter 8 introdu
es Stru
tural Do-

main Adaptation (SDA), an algorithm for adapting a hierar
hi
al a
ousti
 model to

unseen domains. For that purpose it uses a 
ombination of tree pruning and node

adaptation whi
h also adjusts the size of the model to the new domain. We present

details of the SDA algorithm and evaluate it by porting a Swit
hboard trained model

to two unseen domains of quite di�erent nature, namely Wall Street Journal (WSJ)

data and English Spontaneous S
heduling Task (ESST) data. We demonstrate how

SDA applied to the hierar
hi
al Swit
hboard model allows to eÆ
iently and e�e
tively

adapt the re
ognizer to the new domains, requiring only 45-60 minutes of spee
h from

those domains.

Chapter 9 is devoted to a related hierar
hi
al ar
hite
ture that has been developed as

part of this thesis, so 
alled mixture trees. Here, the emphasis was on hierar
hi
ally

stru
turing the 
omponents of a standard, likelihood based a
ousti
 model, in order

to take advantage of the s
aling and adaptation properties found for tree stru
tured


onne
tionist a
ousti
 models. We derive an EM algorithm for estimating the param-

eters of su
h a model and evaluate it on the Swit
hboard 
orpus. Also, we 
ompare

it with the 
onne
tionist 
ounterpart presented in earlier 
hapters.

Chapter 10 presents strategies for stati
 and dynami
 
ombination of multiple, pos-

sibly heterogeneous a
ousti
 models in an attempt to improve re
ognition a

ura
y

over ea
h one of the 
ontributing models. In 
ontrast to existing frame-level 
ombi-

nation approa
hes, we present an approa
h that a
hieves a redu
tion in word error

rate through a dynami
 
ombination of a 
onventional likelihood based model and

the proposed hierar
hi
al 
onne
tionist model.

Finally, 
hapter 11 summarizes the main 
ontributions of this thesis and 
on
ludes

with a dis
ussion of possible future work.



Chapter 2

Statisti
al Spee
h Re
ognition

This 
hapter presents the main 
on
epts of the state-of-the-art in statisti
al spee
h

re
ognition. It introdu
es Hidden Markov Models (HMM) and their appli
ation to

automati
 spee
h re
ognition. Sin
e the fo
us of this thesis lies in a
ousti
 mod-

eling, we restri
t this presentation to aspe
ts relevant to later 
hapters su
h as


ontext-dependent modeling and the resulting domain dependen
e of a
ousti
 mod-

els, and only brie
y tou
h topi
s su
h as prepro
essing and language modeling. For

further details on spe
i�
 aspe
ts that 
ould not be in
luded in this 
hapter, the

author refers the reader to the ex
ellent reviews in [Rabiner '89, Huang et al. '90,

Rabiner & Juang '93, Young '96, Jelinek '97℄. Readers already familiar with the ba-

si
 statisti
al framework of automati
 spee
h re
ognition based on hidden Markov

models may want to skip this 
hapter.

2.1 Overview

The basi
 unit of interest in statisti
al spee
h re
ognition is the posterior probabil-

ity of word sequen
es W

1

; : : : ;W

N

given a sequen
e of a
ousti
 observation ve
tors

x

1

; : : : ;x

M

and a set of model parameters �

p(W

1

; : : : ;W

N

jx

1

; : : : ;x

M

;�):

The sequen
e of a
ousti
 observation ve
tors 
onsists of a 
ondensed and suitably

transformed and prepro
essed representation of the a
tual sampled spee
h waveform

whi
h 
ontains a lot of redundan
y. Fig. 2.1 depi
ts how uttered word sequen
e and

a
ousti
 realization are linked by this fundamental probability density.

On a rather high level of des
ription, a statisti
al spee
h re
ognition system 
onsists

of the following parts:

� A suitable framework for modeling the above probability.

7
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x ,...,x1 M

W ,...,W1 N

uttered word sequence

I will go

statistical model of speech

1 N 1 M Θ

speech waveform

preprocessing

sequence of acoustic
observation vectors

p(W ,...,W |x ,...,x  ,   )

Figure 2.1: Overview: statisti
al spee
h re
ognition

� A method for estimating the parameters of the model. This is 
alled the esti-

mation problem.

� A method for de
oding/sear
hing the most likely word sequen
e, given some

a
ousti
 observation. This is referred to as the re
ognition problem.

From the early beginnings of spee
h re
ognition resear
h, the single most important

modeling framework that has been applied to statisti
al spee
h re
ognition has been

the 
on
ept of a hidden Markov model (HMM). Today, this te
hnique for modeling

temporal sequen
es has evolved and been re�ned substantially in the 
ontext of spee
h

re
ognition. Consequently, HMM based spee
h re
ognition systems dominate the

�eld. Many alternative modeling frameworks have been shown to be just instan
es

or spe
ial 
ases of HMMs. We will dis
uss HMMs in detail in se
tion 2.3.1.

Training or estimation of su
h a model 
onsists of �nding model parameters � that

maximize the above posterior probability on a 
ertain amount of training data

^

� = argmax

�

T

Y

t=1

p(W

(t)

1

; : : : ;W

(t)

N(t)

jx

(t)

1

; : : : ;x

(t)

M(t)

;�):
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Here, the term training data refers to a 
olle
tion of T training senten
es, ea
h one


onsisting of the uttered word sequen
e and the 
orresponding sequen
e of a
ousti


observation ve
tors.

When applying a trained model to the problem of spee
h re
ognition, we seek to �nd

the sequen
e of words that maximizes the posterior probability for a given sequen
e

of a
ousti
 observation ve
tors and �xed model parameters �

^

W

1

; : : : ;

^

W

N

= argmax

W

1

;:::;W

N

p(W

1

; : : : ;W

N

jx

1

; : : : ;x

M

;�):

Bayes' rule allows to fa
tor the posterior probability of word sequen
es as follows:

p(W

1

; : : : ;W

N

jx

1

; : : : ;x

M

) =

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

) P (W

1

; : : : ;W

N

)

p(x

1

; : : : ;x

M

):

To avoid unne
essary 
onfusion, we have omitted the expli
it dependen
e on �. This

rule allows to separate the estimation pro
ess into the so 
alled a
ousti
 model (AM)


onsisting of terms that depend on the a
ousti
 observations x

1

; : : : ;x

M

and the

language model (LM) 
onsisting of terms that depend only on the sequen
e of words

W

1

; : : : ;W

N

. Sin
e the term in the denominator does not depend on the sequen
e of

words, it 
an be omitted in the sear
h for the most likely word sequen
e leading to

the following simpli�ed maximization problem

^

W

1

; : : : ;

^

W

N

= argmax

W

1

;:::;W

N

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

) P (W

1

; : : : ;W

N

):

In the remainder of this 
hapter, we will dis
uss some of the issues in statisti
al spee
h

re
ognition in more depth.

2.2 Prepro
essing

As the raw spee
h waveform 
ontains a lot of redundan
y, spee
h re
ognition systems

usually employ some form of prepro
essing to periodi
ally extra
t relevant informa-

tion about spee
h sounds in form of so 
alled a
ousti
 feature ve
tors from the spee
h

signal. Although there are many di�erent prepro
essing te
hniques, most of them are

based on short time spe
tral analysis or linear predi
tion [Rabiner & S
hafer '78℄.

Fig. 2.2 depi
ts the basi
 prin
iple in prepro
essing spee
h waveforms. Typi
ally, a

Hamming window,

h(t) = 0:54� 0:46 
os(

2�t

D

) for t 2 [0; D℄;

of durationD = 10 : : : 40 mse
 is used to extra
t a short segment of spee
h from whi
h

a representation su
h as the Fourier power spe
trum is 
omputed. The window is
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Waveform

t

Acoustic
Feature
Vectors

Sliding
Window

t

frame shift

Figure 2.2: Prepro
essing: short time spe
tral analysis

shifted in dis
rete steps of 5-20 mse
, thereby allowing to 
ompute short time power

spe
tra at a rate of 50-200 frames per se
ond.

Usually, the 
omputation of the power spe
trum is just the �rst step in a whole

series of transformations and normalizations. For instan
e, a very popular pre-

pro
essing strategy 
onsists of 
omputing Mel-s
ale Frequen
y Cepstral CoeÆ
ients

(MFCCs) [Hunt et al. '80, Davis & Mermelstein '80℄. In that 
ase, the power spe
-

tra are �rst transformed into the Mel-s
ale [Davis & Mermelstein '80℄, a per
eptually

motivated logarithmi
 frequen
y s
ale that emphasizes low frequen
y 
omponents.

Next, the 
osine transformation is applied to the Mel-s
ale spe
tra, resulting in so


alled 
epstra. MFCCs are often modi�ed to in
lude a non-linear warping of the

frequen
y axis in order to 
ompensate di�erent vo
al tra
t lengths a
ross di�er-

ent speakers [Cohen et al. '95℄. Furthermore, in order to in
rease the robustness

against di�erent mi
rophones and re
ording 
onditions the 
epstra are often normal-

ized for mean zero and unit varian
e whi
h is 
alled 
epstral mean 
ompensation

[Beattie & Young '92℄. The resulting feature ve
tors are sometimes further trans-

formed using prin
ipal 
omponent analysis (PCA) [Jolli�e '86℄ or linear dis
riminant

analysis (LDA) [Haeb-Umba
h & Ney '92℄ to redu
e the 
orrelation among 
oeÆ-
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ients, in
rease 
lass separability and/or to redu
e the �nal feature dimensionality.

No matter what spe
i�
 sequen
e of transformations is being used, all prepro
essing

te
hniques aim at extra
ting highly 
ondensed representations of spee
h from the

waveform to be re
ognized while preserving all the information ne
essary for dis
rim-

inating the di�erent spee
h sounds in later stages.

2.3 A
ousti
 Modeling

By applying Bayes' rule to fa
tor the estimation pro
ess into a
ousti
 model and

language model, we have separated the ve
tor of model parameters into parameter

subsets �

AM

and �

LM

, respe
tively. The task of a
ousti
 modeling in statisti
al

spee
h re
ognition is to estimate the subset�

AM

of a
ousti
 model parameters whi
h

maximize

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

;�

AM

):

Words W

i

are modeled as sequen
es (or graphs) of phone models. The mapping

from words to phone models is usually a

omplished by means of a pronun
iation

di
tionary. Phone models in turn are modeled by hidden Markov models in order to


apture their temporal and a
ousti
 variability.

2.3.1 Hidden Markov Models for Spee
h Re
ognition

A �rst-order hidden Markov model (HMM) is a probabilisti
 automaton

� = fS; �; A;B; V g


onsisting of the 
omponents

S, the set of HMM states, S = fs

1

; : : : ; s

n

g

�, the probability distribution over the states, where �

i

is the probability that state

s

i

is initial.

A, the matrix of transition probabilities, where a

ij

is the probability that state s

j

follows state s

i

.

B, the set of emission probability densities B = fb

1

; : : : ; b

n

g, where b

i

(x) models the


onditional probability of observing/emitting feature ve
tor x in state s

i

.
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V , the set of observed features whi
h 
an be dis
rete (dis
rete HMM) or 
ontinuous

(
ontinuous density HMM). In the 
ase of spee
h re
ognition, 
ontinuous den-

sity HMMs operate on a 
ontinuous multivariate representation of the spee
h

signal while dis
rete HMMs operate on a �nite set of dis
rete symbols that

are obtained from the 
ontinuous feature spa
e by means of a ve
tor quantizer

[Gersho & Gray '92℄. Continuous density HMMs typi
ally outperform dis
rete

HMMs in spee
h re
ognition due to a better resolution of the a
ousti
 feature

spa
e.

An HMM models a sto
hasti
 state-based pro
ess, starting at some initial state. At

ea
h time step, a new feature ve
tor is generated (emitted) a

ording to the 
urrent

state's emission probability density followed by a transition to a new state a

ording

to the 
urrent state's transition probability distribution. HMMs get their name from

the fa
t that the sequen
e of states generating the observable sequen
e of feature

ve
tors is hidden.

In the 
ontext of HMMs, there are 3 well known problems [Rabiner '89℄, all of whi
h

have solutions in form of eÆ
ient algorithms:

� Evaluation Problem: Given a sequen
e of observation ve
tors and an HMM,

what is the probability that the sequen
e has been generated by the HMM?

Using a dynami
 programming approa
h, it 
an be shown that this problem


an be eÆ
iently solved in time O(n

2

T ), where n is the number of states and

T is the length of the sequen
e. The 
orresponding algorithm is 
alled Forward

algorithm.

� De
oding Problem: Given a sequen
e of observation ve
tors and an HMM,

what is the most likely sequen
e of HMM states for generating the observed

sequen
e? Again, there is an eÆ
ient solution to this problem in time O(n

2

T )

via a dynami
 programming approa
h. In the 
ase of the de
oding problem,

the resulting algorithm is 
alled Viterbi algorithm.

� Optimization Problem: Given a sequen
e of observation ve
tors and an

HMM topology, estimate the parameters of the HMM so as to maximize the

likelihood of the sequen
e being generated by the HMM. There is no analyti
al

solution to this problem. However, there is an eÆ
ient iterative method, the

Expe
tation Maximization (EM) algorithm [Dempster et al. '77℄ whi
h 
an be

applied. In the 
ontext of spee
h re
ognition, the spe
i�
 form of this algorithm

is often 
alled Forward-Ba
kward or Baum-Wel
h algorithm.

For the purpose of spee
h re
ognition, a spe
i�
 form of HMMs, namely �rst-order

n-state left-right HMMs, are being applied to model basi
 spee
h units su
h as phones
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and/or syllables (see Fig. 2.3). The assumption here is that spee
h is a sequential

pro
ess exhibiting great variability in the realization and duration of spe
i�
 phones.

Furthermore, the asymptoti
 
omplexity of the Forward and Viterbi algorithms typi-


ally redu
es to O(nT ) in a left-right HMM as there is only a small 
onstant number

of valid lo
al transitions from ea
h state.

ss s2 3

p(s | s ) p(s | s )p(s | s )

p(s | s ) p(s | s ) p(s | s )

1 1 2 2 3 3

2 1 3 2 4 3

i i i

Observations

Transitions

1

2 3p(x |s ) p(x |s )1p(x |s )

Figure 2.3: First-order 3-state left-right HMM

Modeling the inventory of phones in a spe
i�
 language using the HMM model of

Fig. 2.3, we 
an identify the a
ousti
 model parameters of a spee
h re
ognizer to

be the 
olle
tion of all HMM parameters, � = �. Fig. 2.4 shows the pro
ess of


onverting a sequen
e of words into

1. a pronun
iation graph (
ontaining pronun
iation variants) and

2. an HMM state graph,

whi
h allows us to formulate the problem of re
ognizing words from spee
h via the

standard HMM framework. In this framework, where word sequen
es are represented

as dire
ted a
y
li
 graphs of HMM states, the likelihood of an a
ousti
 observation


an be rewritten as (omitting the dependen
e on W

1

; : : : ;W

N

of the right hand side

for simpli
ity)

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

) =

X

s

1

;:::;s

M

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) P (s

1

; : : : ; s

M

)

where the summation extends over all possible state sequen
es s

1

; : : : ; s

M

in the HMM

model for the word sequen
e W

1

; : : : ;W

N

. In the Viterbi approximation, the above

likelihood is approximated by the probability of the most likely state sequen
e
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I  WILL  GO

W
IH

L

AY

W IH L

G OW

L

AY

L

G OW

Figure 2.4: Typi
al hidden Markov model in spee
h re
ognition

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

) � max

s

1

;:::;s

M

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) P (s

1

; : : : ; s

M

)

Given a spe
i�
 state sequen
e, the likelihood of the a
ousti
 observations given that

sequen
e and the sequen
e prior probability 
an be fa
tored as follows

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) =

M

Y

i=1

p(x

i

jx

1

; : : : ;x

i�1

; s

1

; : : : ; s

M

)

P (s

1

; : : : ; s

M

) =

M

Y

i=1

P (s

i

js

1

; : : : ; s

i�1

)

When applying �rst-order hidden Markov models to the estimation of su
h likelihoods

one makes two simplifying assumptions:

� Independen
e of Observations:

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) =

M

Y

i=1

p(x

i

js

1

; : : : ; s

M

)
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� First-order Assumption (Observations depend only on the 
urrent state, tran-

sitions depend only on the previous state instead of on the whole history of

states):

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) =

M

Y

i=1

p(x

i

js

i

)

P (s

1

; : : : ; s

M

) =

M

Y

i=1

P (s

i

js

i�1

)

Clearly, these assumptions do not hold for spee
h where su

essive feature ve
tors

often exhibit high 
orrelation and 
o-arti
ulation e�e
ts 
an in
uen
e the realization

of phones over several 100 mse
s. Nevertheless, �rst-order hidden Markov models

are widely used to model spee
h units, mostly be
ause of the availability of eÆ
ient

estimation and de
oding algorithms. Also, many te
hniques have been developed

over time whi
h extenuate the e�e
ts resulting from the above assumptions.

2.3.2 Emission and Transition Modeling

Mainstream spee
h re
ognition systems follow the above approa
h by modeling emis-

sion probability distributions p(xjs

i

) and transition probabilities P (s

i

js

i�1

) separately

and independently. Emission probability distributions are usually modeled using mix-

ture densities from the exponential family, su
h as the mixture of Gaussians

p(xjs

i

) =

n

X

j=1




j

N

j

(xjs

i

)

N

j

(xjs

i

) =

1

q

(2�)

d

j�

ij

j

exp

n

�

1

2

(x� �

ij

)�

�1

ij

(x� �

ij

)

t

o

where the 


j

denote mixture 
oeÆ
ients and the N

j

Gaussian mixture 
omponent

densities in a d-dimensional spa
e with mean ve
tors �

ij

and 
ovarian
e matri
es

�

ij

. Often, full 
ovarian
e Gaussians (1) 
an not be estimated reliably due to data

sparsity, (2) in total require more than the available amount of memory, or (3) are

too expensive to evaluate. In su
h 
ases, one typi
ally assumes diagonal 
ovarian
e

Gaussians:

N

j

(xjs

i

) =

1

q

(2�)

d

Q

d

k=1

�

2

ijk

exp

n

�

1

2

d

X

k=1

(x

k

� �

ijk

)

2

�

2

ijk

o
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Transition probabilities on the other hand are modeled by simple multinomial prob-

abilities sin
e they are 
onditioned on a dis
rete variable only and not on the input

ve
tor

1

.

The advantage of this approa
h is a de
oupled estimation pro
ess that separates tem-

poral and a
ousti
 modeling. As su
h, it allows to easily vary HMM state topologies

after training in order to modify temporal behavior. For instan
e, minimum duration


onstraints in phone models 
an easily be enfor
ed by expanding the model from a

single to multiple states with tied observation probabilities [Robinson et al. '96℄.

However, the disadvantage of the above approa
h is a mismat
h in the dynami
 range

of emission and transition probabilities. The reason is that transition probabilities

are modeled separately as multinomial probabilities, 
onstrained by the requirement

to sum to one. This leads to a dominant role of emission probabilities with transition

probabilities hardly in
uen
ing overall system performan
e [Bengio '96℄.

2.4 Phoneti
 Context Modeling

So far we have assumed that only a single HMM is used to model ea
h monophone

(see Fig. 2.4). Sin
e the English language 
an be modeled by approximately 40-50

monophones, one might get the impression that only that number of HMM models

need to be trained.

2.4.1 From Monophones to Triphones to Polyphones

However in pra
ti
e, one observes an e�e
t 
alled 
o-arti
ulation that 
auses large

variations in the way spe
i�
 monophones a
tually sound, depending on their pho-

neti
 
ontext [Chow et al. '86℄. Usually, expli
it modeling of phones in phoneti



ontext yields substantial gains in re
ognition a

ura
y [Lee '88℄. However, it is not

immediately 
lear how to a
hieve robust 
ontext-dependent modeling. Consider, for

example, so 
alled triphone models. A triphone essentially represents the realiza-

tion of a spe
i�
 monophone in a spe
i�
 
ontext spanning one phone to the left

and right. For instan
e, in the HMM state graph of Fig. 2.4 the two o

urren
es

of monophone L 
orrespond to two di�erent triphone models, namely L(AY,G) and

L(IH,G)

2

. Assuming an inventory of 50 monophones, the number of (theoreti
ally)

possible triphones is 49 � 50 � 49 = 120050. Many of these triphones will o

ur rarely

or never in a
tual spee
h due to the linguisti
 
onstraints in the language. Separate

modeling of all triphones therefore does not make sense as it leads to poor gener-

1

It should be noted that it is possible to enhan
e the HMM formalism su
h that it allows to


ondition transition probability distributions on observation ve
tors.

2

Here, the �rst argument denotes the left and the se
ond argument the right neighboring phone.
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alization due to unreliable parameter estimates. The problem be
omes even more

evident when generalizing triphones to so 
alled polyphones by allowing dependen
e

on a wider 
ontext, and not just the immediate left and right neighboring phones. To

avoid this data sparsity problem, one 
an either apply smoothing te
hniques based

on interpolation of polyphone models with more robust ones, or introdu
e a me
ha-

nism for sharing parameters a
ross di�erent polyphones models. The latter approa
h

in 
onjun
tion with de
ision trees has be
ome the most popular 
ontext modeling

te
hnique and will be dis
ussed next.

2.4.2 Phoneti
 De
ision Trees

De
ision trees [Safavian & Landgrebe '91℄ 
an be applied to 
luster observed poly-

phones into generalized 
ontext 
lasses a

ording to a
ousti
 and phoneti
 similarity

[Bahl et al. '91℄. Typi
ally, a separate CART [Breiman et al. '84℄ like de
ision tree

is 
onstru
ted for ea
h HMM state of ea
h monophone by top-down 
lustering of

all observed polyphoni
 
ontexts of the respe
tive monophone state. Through the

use of 
ategori
al questions about spe
i�
 attributes at ea
h internal node, de
ision

trees allow to generalize to unseen 
lasses. This property is essential for modeling

polyphoni
 
ontexts in spee
h re
ognition where de
ision trees allow to generalize to

previously unseen polyphoni
 
ontexts that might o

ur during de
oding.

For phoneti
 
ontext modeling, a �nite and meaningful set of 
ategori
al questions

about phoneti
 
ontexts has to be de�ned. The most straight-forward questions

are those relating to a spe
i�
 neighboring monophone. For illustration, 
onsider

Table 2.1 
ontaining 6 words and their phoneti
 trans
ription. We examine 
ontext

modeling for the monophone AX whi
h is 
ontained in all 6 words. Note that the

trans
riptions in Table 2.1 have been arbitrarily aligned around the phone AX for

easy 
omparison of phoneti
 
ontexts. Even when restri
ting 
ontext modeling to

immediate neighboring phones, �ve of the six o

urren
es of the monophone AX in

Table 2.1 
orrespond to di�erent triphones

3

.

Categori
al questions for building a phoneti
 de
ision tree for monophone AX 
ould


ontain simple questions for spe
i�
 monophones. For instan
e, 
onsider the question

`Is monophone R at position +1 ?', in other words, `Is monophone R an immediate

right neighboring phone?'. This question indu
es two sets of AX-polyphones, namely

the ones that answer `yes' and the ones that answer `no'. While some other mono-

phone questions make sense in this example, there are others whi
h are useless (e.g.,

`Is monophone AX at position +1 ?') sin
e all polyphones would generate the same

answer.

In addition to questions about spe
i�
 monophones, questions about spe
i�
 pho-

neti
 
lasses su
h as vowels, 
onsonants, liquids, and fri
atives are frequently used.

3

Only `agglomerate' and `boomerang' share the same triphone at `AX'.
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Word Phoneti
 Trans
ription

advisory AE D V AY Z AX R IY

agglomerate AX G L AA M AX R EY T

boomerang B UW M AX R AE NG

brilliant B R IH L Y AX N T

devouring D IH V AW AX R IH NG

indi
ative IH N D IH K AX T IH V

Position -5 -4 -3 -2 -1 0 +1 +2 +3

Table 2.1: Word trans
riptions to illustrate phoneti
 
ontext modeling

Furthermore, 
ontext modeling may not be limited to within-word phoneti
 
ontext

but may in
lude 
ross-word 
ontext. In that 
ase, questions about the existen
e of

word boundaries are quite useful, if su
h information is available.

Fig. 2.5 shows a typi
al de
ision tree for 
lustering the polyphoni
 variations of a

parti
ular state of monophone model AX. During 
onstru
tion of a phoneti
 de
ision

tree for a spe
i�
 state of a spe
i�
 monophone, an obje
tive fun
tion is evaluated at

ea
h node for ea
h question to determine the question that yields the greatest gain

when 
ontext 
lasses are split a

ording to that question. Assuming that appropriate

statisti
al models (e.g., Gaussians) have been estimated for ea
h polyphone observed

in some training 
orpus, we 
an for instan
e take split likelihood gain as our obje
tive

fun
tion that s
ores the goodness of splits:

G(N;N

L

; N

R

) =

�

X

x2N

L

log p

L

(x) +

X

x2N

R

log p

R

(x)

�

�

X

x2N

log p(x)

where N is the node in question, N

L

and N

R

are the left and right 
hild nodes and p(),

p

L

() and p

R

() are the statisti
al models for the node and its left and right 
hild nodes.

Split likelihood gain measures how mu
h the likelihood of the data in a spe
i�
 node


an be in
reased by splitting the data in two sets a

ording to a phoneti
 question and

modeling the data in ea
h set separately. In 
ase of often used simple D-dimensional

diagonal 
ovarian
e Gaussian models, split likelihood gain simpli�es to

G(N;N

L

; N

R

) = n

D

X

k=1

log �

2

k

(N)

�

�

n

L

D

X

k=1

log �

2

k

(N

L

)

+ n

R

D

X

k=1

log �

2

k

(N

R

)

�

where n, n

L

and n

R

are the number of samples in node N , left 
hild N

L

, and right


hild N

R

, respe
tively. �

2

k

(N)

, �

2

k

(N

L

)

, and �

2

k

(N

R

)

are the k-th diagonal 
ovarian
e


oeÆ
ients of the Gaussians for node N , left 
hild N

L

and right 
hild N

R

, respe
-

tively. Using an obje
tive fun
tion su
h as split likelihood gain, de
ision trees 
an

be grown by iteratively splitting nodes until the gain falls below some predetermined
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+1=SONORANT?

Y

+2=VOICED?

+1=SIBILANT? -1=VOICED?+1=BILABIAL?

+1=LW?

+3=BACK-VOW? -1=LABIAL?AX-m(0) AX-m(1) AX-m(5)

AX-m(7)AX-m(6)AX-m(3)AX-m(2)

AX-m(4)

N Y

N

N N N

NN

NY

Y

YY

Y Y

AX-m(8)

Figure 2.5: Phoneti
 
ontext modeling using de
ision trees. Shown is a de
ision tree

modeling phoneti
 
ontexts of the middle state (3-state HMM) of monophone AX.

threshold. Alternatively, trees 
an be grown up to a predetermined number of leaf

nodes. Usually, the optimal number of leaf nodes is determined experimentally by

re
ognition runs on independent validation sets.

The 
olle
tion of leaf nodes of phoneti
 de
ision trees for all monophone states rep-

resents the re
ognizer's set of distin
tly modeled 
ontext-dependent sub-phoneti


units. Sin
e ea
h of these units models several a
tual HMM states, they are often


alled tied states. Typi
ally, a large vo
abulary 
ontinuous spee
h re
ognizer models

thousands (up to 20000 and more) of tied states via phoneti
 de
ision trees. See

Appendix B for a distribution of allophoni
 variation in a de
ision tree 
lustered

Swit
hboard model for 24000 tied states. Context-dependent phoneti
 modeling has

been reported to de
rease the word error rate of spee
h re
ognition systems by up

to 50% [S
hwartz et al. '85, Chow et al. '86℄. In our own experiments, we have ob-

served a 40% redu
tion in word error rate when going from 
ontext-independent to


ontext-dependent modeling.
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2.4.3 Domain Dependen
e of Context Models

Phoneti
 
ontext modeling using de
ision trees has emerged to a standard HMM

modeling te
hnique for large vo
abulary spee
h re
ognition that has been adopted by

almost all 
urrent state-of-the-art spee
h re
ognition systems. However, while 
ontext

modeling redu
es word error rates 
onsistently, it signi�
antly in
reases dependen
e

on the a
ousti
 
hara
teristi
s and the vo
abulary, phoneti
 di
tionary and language

model of the training domain. The a-priori distribution of within-word 
ontext-

dependent phone models depends on both the phoneti
 trans
ription of the words

in the training di
tionary and the relative frequen
y of these words in the training


orpus. Often, the words that 
onstitute the re
ognition di
tionary di�er vastly a
ross

domains. As a result, 
ontext models obtained from data in one domain di�er from

those obtained on some other domain and performan
e of spee
h re
ognition systems

in 
ross-domain appli
ations drops signi�
antly due to the mismat
h in 
overage of

phoneti
 
ontexts.

In addition, 
ross-word phoneti
 
ontext modeling, whi
h improves performan
e over

within-word 
ontext modeling, introdu
es yet another dependen
y on the training

domain. By allowing 
ontext models to span a
ross word boundaries, 
ross-word


ontext models additionally depend on the relative frequen
y of word pairs and word

triples (in 
ase of single phone words) in the training domain. Su
h statisti
s are


aptured by the language model of a spee
h re
ognizer (see next se
tion) and are

known to di�er signi�
antly a
ross domains.

As a 
onsequen
e of the above mentioned dependen
ies, 
ontext models are typi-


ally 
onstru
ted spe
i�
ally on data from a spe
i�
 target domain, sele
ting size

and stru
ture of phoneti
 de
ision trees for optimal re
ognition performan
e on data

from that target domain. By fo
using on a spe
i�
 target domain, improved per-

forman
e is a
hieved at the 
ost of redu
ed robustness and la
k of portability to

other domains. Often, 
ontext-dependent a
ousti
 models are rebuild from s
rat
h,

if it be
omes ne
essary to port a trained spee
h re
ognition system to some other,

previously unseen domain of signi�
antly di�erent a
ousti
, phoneti
 and linguisti



hara
teristi
s. While other domain dependent 
omponents of a spee
h re
ognition

system su
h as di
tionary and language model 
an be obtained relatively easily for

a new domain, the 
onstru
tion of 
ontext-dependent a
ousti
 models requires large

amounts of trans
ribed a
ousti
 data whi
h renders porting e�orts time-, labour- and


ost-intensive.

Through the appli
ation of a s
alable, hierar
hi
al ar
hite
ture, this thesis presents

a solution to the problem of domain-dependen
e of 
ontext modeling that does not

require expensive re
onstru
tion of the a
ousti
 model when swit
hing to a new do-

main.
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2.5 Language Modeling

The task of a language model in statisti
al spee
h re
ognition is to estimate the

probability of word sequen
es, P (W

1

; : : : ;W

N

), whi
h 
an be fa
tored as follows:

P (W

1

; : : : ;W

N

) = P (W

1

) P (W

2

jW

1

)

N

Y

i=3

P (W

i

jW

i�1

; : : : ;W

1

):

In statisti
al n-gram modeling, one simpli�es the above expression by redu
ing the


onditioning on the full history of words to the last n� 1 words. For instan
e, in 3-

gram (trigram)modeling, one approximates the language model probability a

ording

to

P (W

1

; : : : ;W

N

) � P (W

1

) P (W

2

jW

1

)

N

Y

i=3

P (W

i

jW

i�1

;W

i�2

):

Unfortunately, the usefulness of standard n-gram modeling is restri
ted to small val-

ues of n due to the exponential growth of the number of n-grams. Assuming a re
og-

nition vo
abulary ofM distin
t words, the total number of n-tuples that theoreti
ally

need to be modeled by an n-gram equals M

n

, a number that even for moderate sizes

of vo
abularies of a few thousand words qui
kly ex
eeds the storage and 
omputa-

tional resour
es of todays 
omputers. On the other hand, many of the M

n

n-tuples

never o

ur in any text 
orpus due to the grammati
al regularity of language. Es-

timation of n-gram probabilities therefore requires smoothing te
hniques, typi
ally

a 
ombination of dis
ounting and ba
king-o� (e.g., [Kneser & Ney '95℄) in order to

obtain robust probability estimates from raw n-tuple 
ounts. In the 
ase of trigram

modeling, dis
ounting means that the trigram 
ounts of the more frequently o

ur-

ring trigrams are redu
ed and the resulting ex
ess probability mass is redistributed

amongst the less frequently o

urring trigrams. Ba
king-o� is applied when there

are too few trigrams to form any estimate at all and involves repla
ing the trigram

probability by a s
aled bigram probability.

Despite of the restri
ted 
ontext width of 2-4 words, statisti
al n-gram language

models have proven to be quite e�e
tive. Furthermore, variable-length and 
ategory-

based n-gram models [Niesler & Woodland '95℄, 
a
he models [Jelinek et al. '91℄ and

trigger models [Lau et al. '93℄ allow to robustly in
rease the 
ontext width beyond 4

words. Although many other language modeling te
hniques have been proposed over

the years, n-gram models still dominate the �eld.

2.6 De
oding

The so 
alled de
oder represents the heart of any spee
h re
ognition system. Its task

is to �nd the most likely sequen
e of words for any given a
ousti
 input, where ea
h
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word is modeled by a sequen
e (sometimes a graph) of HMM states. As already

mentioned, the de
oding problem for HMMs possesses an eÆ
ient solution in form of

the Viterbi algorithm. However, when de
oding large vo
abulary 
ontinuous spee
h

with n-gram language models, an exa
t solution be
omes intra
table due to the very

large number of 
ompeting senten
e hypotheses.

The most popular solution is the appli
ation of a form of heuristi
 pruning to a time-

syn
hronous Viterbi de
oder whi
h is then 
alled Viterbi beam sear
h. At any time

step, partial hypotheses are extended by all possible su

essor states but are kept

for future 
onsideration only when their s
ore stays within a 
ertain threshold (the

beam) relative to the s
ore of the 
urrent best hypothesis. This way, only a very

small fra
tion of the a
tual sear
h spa
e has to be examined, leading to a manage-

able 
omputational 
omplexity. Unfortunately, su
h a sear
h pro
ess is no longer

guaranteed to �nd the most probable hypothesis. Sear
h errors are introdu
ed when

the globally best hypothesis gets pruned during de
oding be
ause of a temporarily

bad lo
al s
ore.

cu
m

m
ul

at
iv

e 
sc

or
e

time

pruning threshold

locally best score

globally best hypothesis

winning hypothesis

Figure 2.6: De
oding errors with Viterbi beam sear
h

This fa
t is illustrated by Fig. 2.6. Here, lower s
ores 
orrespond to more likely

hypotheses. The lowest 
urve indi
ates the s
ore of the lo
ally best hypotheses for

ea
h time step. Above this 
urve, there is the equidistant pruning threshold 
urve.

The s
ore tra
es of two hypotheses have been in
luded into the plot: (1) the 
urve

for the globally best (most probable) hypothesis and (2) the 
urve for the `winning'

hypothesis found by this parti
ular instan
e of a beam sear
h. Note that although
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the �nal s
ore of the globally best hypothesis is better than the �nal s
ore of the

winning hypothesis, the globally best hypothesis never rea
hes the end of the utter-

an
e. Instead, it gets pruned at the time mark indi
ated by a 
ir
le sin
e its partial

s
ore temporarily ex
eeds the pruning threshold. This sear
h error 
an be omitted

by in
reasing the pruning beam width su
h that the 
orre
t hypothesis stays below

the pruning threshold 
urve at all times.

Large vo
abulary spee
h re
ognition systems typi
ally operate at the two endpoints

of a 
ontinuous spe
trum of beam widths. Resear
h & evaluation systems have to

use very large beam widths in order to redu
e the probability of de
oding errors.

However, the in
rease in performan
e 
omes at the 
ost of high de
oding time (often

over one hundred times slower than real time). On the other hand, appli
ations su
h

as large vo
abulary di
tation require de
oding times of almost real time in order to

be usable. Among other te
hniques applied in this 
ase, de
oding beams have to

be tightened 
onsiderably. Of 
ourse, pruning errors be
ome more likely, resulting

in a loss of performan
e. The trade-o� between re
ognition a

ura
y and de
oding

speed is illustrated in Fig. 2.7 for various de
oding beam widths of a typi
al large

vo
abulary spee
h re
ognition system.
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Figure 2.7: E�e
t of varying de
oder pruning beam width

An alternative approa
h to the problem of sear
hing the most probable word hy-

pothesis in a spee
h re
ognition system is based on so 
alled best-�rst sta
k de-


oding [Paul '92, Renals & Ho
hberg '99℄ whi
h is related to the A

�

algorithm used

for heuristi
 sear
h in arti�
ial intelligen
e. These sear
h algorithms are time asyn-
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hronous { the best s
oring path or hypothesis, irrespe
tive of time, is 
hosen for

extension and this pro
ess is 
ontinued until a 
omplete hypothesis is determined.

The asyn
hrony of operation requires that a suitable heuristi
 is employed in 
om-

paring the s
ores of 
ompeting hypotheses. Sta
k de
oding has several potential

advantages over Viterbi de
oding: (1) The language model is de
oupled from the

a
ousti
 model and is not used to generate new re
ognition hypotheses, (2) It is easy

to in
orporate non-Markovian knowledge sour
es (e.g., long-span LMs) without mas-

sively expanding the state spa
e, and (3) The Viterbi assumption is not embedded in

the sear
h and thus a full maximum-likelihood sear
h 
riterion may be used with little

or no 
omputational overhead. Disadvantages of the approa
h in
lude sensitivity to

the 
hoi
e of heuristi
 and the possibility of repeated 
omputation.

It should be noted that today's de
oder te
hnology has be
ome quite 
omplex due to


ross-word 
ontext-dependent phoneti
 modeling, tree-stru
tured pronun
iation lex-

i
a, and look-ahead te
hniques. It is beyond the s
ope of this thesis to go into all these

details. The interested reader is referred to [Odell '95, Young '96, Ravishankar '96℄.



Chapter 3

Conne
tionist A
ousti
 Modeling

This 
hapter starts with a 
riti
al view on standard HMM based a
ousti
 modeling

in spee
h re
ognition. We reveal the major weaknesses of traditional HMM modeling

that, together with the reborn interest in 
onne
tionist models of 
ognitive pro
esses

in the eighties, led to the formulation of an alternative paradigm for a
ousti
 model-

ing. We motivate and introdu
e 
onne
tionist a
ousti
 modeling, giving a review on

the te
hniques and ar
hite
tures that have been investigated. We 
lose this 
hapter

with a dis
ussion of some short
omings of 
onne
tionist a
ousti
 modeling.

3.1 Drawba
ks of Standard Modeling

By standard modeling, we refer to the statisti
al framework based on Hidden Markov

Models presented in 
hapter 2. More spe
i�
ally, standard modeling refers to the ap-

pli
ation of Gaussian mixture models for HMM observation probability estimation.

Re
ognition systems based on su
h models o�er powerful learning and de
oding al-

gorithms along with 
exible modeling of temporal aspe
ts whi
h is why they have

attra
ted so mu
h interest in the spee
h re
ognition 
ommunity. Pra
ti
ally all exist-

ing spee
h re
ognition systems are build around this modeling paradigm. However,

in order to take advantage of the representational power of HMMs, algorithms must

expli
itly or impli
itly make simplifying assumptions about the time series being

modeled. Some of these assumptions are obviously unrealisti
 and violated when

modeling spee
h with HMMs. Nevertheless, this suboptimal model is generally a
-


epted be
ause it 
an be used more e�e
tively than any alternative. Given the strong

base of mathemati
al tools for statisti
al spee
h re
ognition with HMMs, modifying

only a few aspe
ts of the existing approa
h at a time seems more appropriate than

starting from s
rat
h. Following is a list of short
omings that have been identi�ed

with standard modeling:

25
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� Independen
e Assumption: Su

essive observation ve
tors are 
onsidered

independent and therefore un
orrelated. This is a poor mat
h to most kinds

of spee
h segments. Diphthongs (e.g., AY,EY,OY) and glides (e.g., W,Y), for

instan
e, exhibit strong non-stationary behavior.

� First-Order Assumption: Observation ve
tors depend only on the 
urrent

HMM state and transitions depend only on the previous HMM state instead of

on the whole history of states. In 
ontrast, spee
h is 
hara
terized by strong


o-arti
ulation e�e
ts, e.g., observation ve
tors are in
uen
ed by the previous

phoneti
 state(s).

� Poor Dis
rimination: HMM training algorithms are based on Maximum

Likelihood (ML) whi
h assumes 
orre
tness of the models. As we just argued,


orre
tness of the models must be questioned due to �rst-order and indepen-

den
e assumptions. More importantly, ML implies poor dis
rimination sin
e

ideally, minimization of the word error rate should be based on minimizing

a-posteriori word or senten
e probabilities.

� Distributional Assumptions: For pra
ti
al as well as 
omputational rea-

sons, observation probability distributions in large vo
abulary 
onversational

spee
h re
ognition systems are almost always modeled by mixtures of diagonal


ovarian
e Gaussians. The diagonal 
ovarian
e assumption negle
ts 
orrelations

between individual 
oeÆ
ients of observation ve
tors.

� Ar
hite
tural Stru
ture: Standard mixture based modeling of observation

probability distributions results in an independent and unstru
tured set of mod-

els. Missing stru
ture is not problemati
 in terms of performan
e or a

ura
y

of modeling. However, many algorithms in spee
h re
ognition su
h as speaker

adaptation and fast a
ousti
 mat
h require to stru
ture the a
ousti
 model

a

ording to some a
ousti
 similarity 
riterion. If su
h stru
ture were built

inherently into the model, the above mentioned algorithms 
ould be realized

mu
h easier. Also, the missing stru
ture prevents us from s
aling the model in

terms of the number of modeled HMM states.

Almost all of the above mentioned assumptions and short
omings have been ad-

dressed by resear
hers over the years. The �rst two assumptions are inherent to the

HMM model being used and 
an only be addressed by some sort of add-on 
orre
tion

me
hanism or by moving to an entirely di�erent model. However, the latter three

assumptions/short
omings 
an be addressed by repla
ing the set of mixture density

models that approximate the HMM state observation probabilities by a more suitable
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model. This approa
h allows the system to bene�t from the ex
ellent temporal mod-

eling properties of HMMs while investigating alternative forms of a
ousti
 modeling

of spee
h.

3.2 Dis
riminative Modeling

A detailed treatment of dis
riminative modeling requires to establish a globally dis-


riminant training 
riterion based on the posterior probability of sequen
es of words.

Globally dis
riminant approa
hes have been investigated (e.g., [Valt
hev '95℄) but

usually su�er from high 
omputational 
omplexity whi
h is why simplifying assump-

tions are often made in order to apply these approa
hes to large vo
abulary spee
h

re
ognition tasks.

To avoid the 
omputational pitfalls of globally dis
riminative modeling and still im-

prove dis
rimination, lo
ally dis
riminative modeling has been proposed by several

resear
hers (e.g., [Bourlard & Morgan '94℄. In lo
ally dis
riminative modeling, the

training 
riterion is based on the posterior probability distribution over the set of

a
ousti
 HMM states for a spe
i�
 a
ousti
 feature ve
tor. In other words, rather

than dis
riminating words in a senten
e, we aim at dis
riminating the basi
 spee
h

units in ea
h frame of spee
h data. Before dis
ussing the potential bene�ts and ad-

vantages of su
h modeling, we �rst have to elaborate on how lo
ally dis
riminative

modeling 
an be integrated into HMMs. After all, the HMM formalism requires to

model state likelihoods for ea
h frame of a
ousti
 data. Using Bayes' rule we 
an

satisfy this 
onstraint:

p(xjs

i

) =

p(s

i

jx)

p(s

i

)

p(x)

Instead of dire
tly estimating the state likelihoods p(xjs

i

) for ea
h state s

i

given an

input feature ve
tor x, we 
an take a detour that allows us to in
lude the state posteri-

ors p(s

i

jx). Estimators for the latter 
an be trained using the Maximum A Posteriori

(MAP) rather than the Maximum Likelihood (ML) training 
riterion. However, as

seen in the above expression, the integration of a MAP estimator requires to divide

the estimates of the posterior state probabilities by their prior probabilities and to

multiply the out
ome by the un
onditional probability of observing the feature ve
tor

x. Fortunately, there is no need to estimate p(x) when applying the above rule to

spee
h re
ognition. It merely adds an o�set to the a
ousti
 s
ores for ea
h a
ousti


frame that is independent of the HMM state and therefore does not in
uen
e the

out
ome of a Viterbi style sear
h for the most likely state/word sequen
e. There-

fore, lo
ally dis
riminative modeling in the HMM framework requires only to divide

estimates of the posterior state probabilities by their prior probabilities. The result-
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ing quantity p̂(xjs

i

) 
an dire
tly be used as HMM state emission probability and is

usually 
alled s
aled likelihood:

p̂(xjs

i

) =

p(s

i

jx)

p(s

i

)

The reader may ask: What is the point of going through this detour when we �nally

derive essentially the same probability as we would with a 
onventional Gaussian

mixture based estimator? There are at least the following potential advantages:

� Improved Dis
rimination: Estimators of the posterior probabilities are tr-

ained a

ording to MAP in 
ontrast to the ML based likelihood estimators. In

MAP based modeling, the emphasis is on modeling 
lass boundaries while in

ML modeling, the emphasis is on a

urately modeling ea
h 
lass' distribution.

ML based estimators are in danger of wasting a lot of their parameter resour
es

in modeling a distribution in regions where no other 
lasses 
ompete. MAP

estimators on the other hand fo
us their parameter resour
es at 
lass boundaries

in order to maximize dis
rimination between 
lasses.

x

1

x

a-posteriori-estimator
p(s|x)

likelihood-estimator
p(x|s)

Figure 3.1: Likelihood estimators vs. a-posteriori estimators

Fig. 3.1 illustrates this behavior for a two 
lass problem. The upper graph shows

relatively 
omplex 
lass distributions that the likelihood based estimators seek
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to 
apture as a

urately as possible. However, as 
an be seen in the lower

plot, dis
rimination between the two 
lasses 
an be a
hieved with a very simple

MAP estimator sin
e there is almost no overlap between the 
lasses (the MAP

estimator for the se
ond 
lass is simply 1 � p(sjx) and is not in
luded in the

plot).

� Smaller Number of Parameters: Fig. 3.1 also reveals another problem

with likelihood estimators. The waste of parameter resour
es in modeling the

distribution in regions where it would not be ne
essary typi
ally requires more

parameters and more 
omplex estimators than in the 
ase of dis
riminative a-

posteriori estimators.

It was shown [Bourlard & Morgan '94, Morgan & Bourlard '95℄, that lo
ally

dis
riminative a
ousti
 models 
an indeed a
hieve the same performan
e with

less parameters when 
ompared to standard HMM modeling.

� Expli
it Control over Class Priors: In 
ase of a mismat
h of 
lass priors

between training and test 
orpus, for instan
e 
aused by a signi�
antly di�erent

vo
abulary, lo
ally dis
riminant models 
an be adapted e�e
tively sin
e the


lass priors are expli
itly available.

In addition, depending on the type of estimator being used, lo
ally dis
riminant mod-

els o�er easy integration of additional knowledge sour
es and redu
ed assumptions

about the type of emission probability distribution. In the 
ase of neural network es-

timators, whi
h we will dis
uss next, the assumption of independen
e of observations


an be weakened 
onsiderably by taking a window of frames around the 
urrent time

frame as input to the estimator, instead of just the 
urrent time frame. This way,

important 
ontextual information 
an be in
orporated into the probability estimation

pro
ess.

3.3 Conne
tionist A
ousti
 Modeling

Relying on distributed internal representations for solving 
lassi�
ation and regres-

sion tasks, 
onne
tionist ar
hite
tures, also known as (arti�
ial) neural networks

[Rumelhart & M
Clelland '86, Bishop '95a, Ripley '96℄, 
reated 
onsiderable interest

in the spee
h re
ognition 
ommunity [Lippmann '89, Waibel & Lee '90, Waibel '91℄.

As neural networks were found to be ex
ellent tools for 
lassifying spee
h units su
h

as phones, they have primarily been applied to simple spee
h re
ognition problems

su
h as 
lassi�
ation of stati
 patterns. Neural networks for 
lassi�
ation of 
omplete

temporal sequen
es have not been su

essful for 
ontinuous spee
h re
ognition where

the number of possible word sequen
es are pra
ti
ally in�nite. However, within the
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HMM framework, 
onne
tionist ar
hite
tures have proven to be viable and some-

times superior alternatives as a
ousti
 models for the estimation of (s
aled) state

likelihoods.

A few years ba
k, it was shown (e.g., [Bridle '90℄) that the outputs of appropriately

trained 
lassi�er neural networks approximate 
lass posterior probabilities. A proof

of this property 
an be found in Appendix A. In fa
t, 
lassi�er neural networks were

found to be both eÆ
ient and versatile tools for approximating posterior probabili-

ties. Although there are other estimators for posterior probabilities su
h as polyno-

mial 
lassi�ers, neural networks have be
ome the single most important ar
hite
ture

for lo
ally dis
riminant a
ousti
 modeling. Neural network based lo
ally dis
rimi-

nant models are usually 
alled 
onne
tionist a
ousti
 models and spee
h re
ognition

systems based on these models are often termed hybrid NN/HMM systems.

A wide variety of neural network models has been investigated for the purpose of

estimating posterior state probabilities. Following is a list of the most popular ar
hi-

te
tures that have been applied to 
onne
tionist a
ousti
 modeling:

� Multi Layer Per
eptrons (MLP): MLPs arguably are the most frequently

applied neural network models for 
onne
tionist a
ousti
 modeling (e.g., [Mor-

gan & Bourlard '90, Bourlard & Morgan '94, Morgan & Bourlard '95, Tebelskis

'95℄) due to a simple topology and an eÆ
ient training algorithm based on

gradient des
ent (error ba
kpropagation). Sin
e MLPs were also applied exten-

sively in the ar
hite
ture proposed in this thesis, we will present this type of

neural network in more detail.

Fig. 3.2 depi
ts the stru
ture of a typi
al feed-forward 
lassi�er MLP for 
on-

ne
tionist a
ousti
 modeling 
onsisting of fully inter
onne
ted layers (ea
h unit

in the hidden and output layer re
eives a
tivation from all units in the previous

layer). Although MLPs 
an 
onsist of several hidden layers in addition to an

input and an output layer, those with a single hidden layer were found to be suf-

�
ient for su

essful 
lassi�
ation of spee
h units and are theoreti
ally 
apable

of modeling the same 
lass of fun
tions as networks with more hidden layers,

provided there are enough units in the hidden layer. Ea
h unit in the hidden

and output layer 
omputes a nonlinear fun
tion of its input ve
tor x 
onsisting

of a linear a
tivation fun
tion followed by a non-linear transfer fun
tion. While

all MLP units use the following proje
tive kernel

a

i

(x) =

N

X

k=1

w

ik

x

k

+ b

i

;

as a
tivation fun
tion, where the w

ik

are weights and the b

i

are the unit biases

1

,

transfer fun
tions are di�erent for di�erent layers of the network. Hidden units

1

Often, input ve
tors are impli
itly extended by a 
onstant 
oeÆ
ient of 1 whi
h allows to write
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Input Layer

Output Layer

Hidden Layer

Figure 3.2: Multi layer per
eptron (MLP)

are mostly equipped with the sigmoid transfer fun
tion, yielding the following

output fun
tion

y

i

(x) =

1

1 + exp(�a

i

(x))

=

1

1 + exp(�

P

N

k=1

w

ik

x

k

� b

i

)

Alternatively, the tanh fun
tion whi
h is just a symmetri
 version of the sigmoid

fun
tion is applied to hidden unit a
tivations. The type of transfer fun
tion

used for units in the output layer depends on the learning task and should not

be 
hosen arbitrarily. In the 
ase of 
onne
tionist a
ousti
 modeling, MLPs

are used for multi-way 
lassi�
ation of spee
h units su
h as monophone HMM

states. In statisti
al theory, multi-way soft 
lassi�
ation is modeled by a multi-

nomial probability density. It 
an be shown [Jordan & Ja
obs '94, Jordan '95℄,

that the mat
hing network transfer fun
tion (
anoni
al link) for this probability

model is the softmax [Bridle '90℄ fun
tion:

y

i

(x) =

exp(a

i

(x))

P

M

j=1

exp(a

j

(x))

=

exp(

P

N

k=1

w

ik

x

k

+ b

i

))

P

M

j=1

exp(

P

N

k=1

w

jk

x

k

+ b

j

))

where M is the number of output units, N is the number of hidden units and

x

k

is the output of the k-th hidden unit. The softmax fun
tion together with

the bias as part of the weight ve
tor w
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a 
ross-entropy error fun
tion (whi
h essentially is equivalent to the log of a

multinomial probability density) 
onstitute the optimal 
hoi
e for output units

of a 
lassi�er neural network with respe
t to statisti
al interpretation of network

outputs and eÆ
ien
y of parameter estimation. For these reasons, we adhere

to the above theory and use 
lassi�er MLPs with softmax outputs throughout

this thesis. Nevertheless, it should be noted that other transfer fun
tions 
an

and have been applied to MLP based 
lassi�
ation as well, parti
ularly when

statisti
al interpretability of network outputs is not required.

� Re
urrent Neural Networks (RNN): RNNs are 
omparable to MLPs ex-


ept that they 
ontain additional re
urrent 
onne
tions that feed a
tivations

from the outputs of a parti
ular layer ba
k to the inputs of that layer. Su
h

re
urrent 
onne
tions e�e
tively allow for improved modeling of temporal dy-

nami
s, whi
h was found to be advantageous in spee
h re
ognition [Robinson &

Fallside '91, Robinson '94℄, where there are 
onsiderable 
orrelations between

adja
ent feature ve
tors. The Abbot system [Ho
hberg et al. '95℄, arguably

the �rst 
onne
tionist spee
h re
ognition system that has a
hieved 
ompeti-

tive performan
e on large vo
abulary spee
h re
ognition tasks has been built

around a re
urrent neural network [Robinson et al. '96℄ and is regularly parti
-

ipating in the annual DARPA Broad
ast News evaluations [Cook et al. '97a,

Cook & Robinson '98, Cook et al. '99℄.

An interesting extension of RNNs that allows to simultaneously train and opti-

mally 
ombine re
urrent neural networks for forward and ba
kward time dire
-

tions, the bidire
tional re
urrent neural network [S
huster & Paliwal '97℄, has

also been applied su

essfully to the task of 
onne
tionist a
ousti
 modeling.

However, even though there is a generalization of ba
kpropagation 
alled Ba
k-

propagation Through Time (BPTT) available for re
urrent networks, training

of RNNs is 
onsiderably more expensive than training of MLPs and requires

presentation of training patterns in their 
orre
t sequential order. Furthermore,

by using a window of frames around the 
urrent training frame as input pattern

ve
tors, 
ontextual information 
an be in
orporated into MLPs to some extent

as well.

� Radial Basis Fun
tion Networks (RBF): In 
ontrast to the proje
tive

kernel used as a
tivation fun
tion in MLPs, RBFs make use of the following

radial kernel in hidden units

a

i

(x) =

N

X

k=1

(w

ik

� x

k

)

2

�

2

i
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with parameters w

ik

(
luster means) and �

2

i

(
luster varian
es). Also, an ex-

ponential transfer fun
tion is used in hidden units whi
h yields the following

output

y

i

(x) = exp(�a

i

(x)) = exp(�

N

X

k=1

(w

ik

� x

k

)

2

�

2

i

)

Usually, RBFs [Moody & Darken '89, Renals '89, Poggio & Girosi '90℄ 
onsist

of a single hidden layer and a linear output layer whi
h renders these models very

similar to Gaussian mixture densities. As su
h, RBFs 
an be initialized more ef-

�
iently than MLPs by applying unsupervised 
lustering algorithms for obtain-

ing the parameters of the hidden layer. Also, RBFs with linear output layer need

not be trained with iterative gradient des
ent optimization methods. Rather, a

more eÆ
ient two step pro
ess of (1) 
lustering hidden unit means and sele
t-

ing appropriate varian
es, and (2) estimating output weights analyti
ally using

minimum least squares pro
edures is typi
ally applied [Moody & Darken '89℄.

Although RBFs are primarily used with linear output layers for the purpose

of regression, they 
an also be applied to 
lassi�
ation tasks [Yee '92℄. How-

ever, due to their lo
alized a
tivations in the hidden layer, RBFs are better

suited to regression tasks and it is often found that networks with proje
tive

kernels su
h as MLPs outperform RBFs on 
lassi�
ation tasks. Due to their


lose relationship to mixture densities, RBFs have raised 
onsiderable interest in

the spee
h re
ognition 
ommunity (e.g., [Ney '91, Renals et al. '91℄) and even


lassi�er RBFs were applied su

essfully to the task of 
onne
tionist a
ousti


modeling in spee
h re
ognition systems [Frits
h '96℄.

In addition to the above 
onne
tionist ar
hite
tures, Time-Delay Neural Networks

(TDNN) [Waibel et al. '87, Waibel '89, Hild & Waibel '93℄, modular ensembles of

TDNNs [Waibel et al. '88, Waibel '88, Waibel '89℄, and Hierar
hi
al Mixtures of Ex-

perts (HME) [Jordan & Ja
obs '94℄ have been used to build state-of-the-art 
onne
-

tionist spee
h re
ognition systems [Frits
h '96, Frits
h et al. '96℄.

Initially, 
onne
tionist a
ousti
 modeling was applied to 
ontext-independent pho-

neti
 modeling, using a single, sometimes very large neural network with 40-60 out-

put units for jointly estimating posterior probabilities of typi
ally about 40-60 HMM

states representing the phones modeled by the system. In a number of studies, it

was shown that su
h monolithi
 
onne
tionist a
ousti
 models 
an outperform 
las-

si
al a
ousti
 models based on Gaussian mixture densities, provided they both use

the same number of parameters and the same input features. However, performan
e

of Gaussian mixture models 
an be improved over 
onne
tionist a
ousti
 models

by swit
hing to 
ontext-dependent phoneti
 modeling. In 
ontrast to 
onne
tionist



34 Chapter 3 Conne
tionist A
ousti
 Modeling

modeling, the in
reased number of HMM states in 
ontext-dependent systems pose

no 
on
eptual problem to traditional mixture modeling sin
e ea
h state's emission

probability distribution is modeled independently, using a separate mixture model

for ea
h state. Conne
tionist a
ousti
 models based on a monolithi
 neural network

la
k su
h s
alability and are not dire
tly suitable for 
ontext-dependent phoneti


modeling sin
e joint estimation of state posteriors requires the output layer of the

network to 
onsist of as many units as there are HMM states. Su

essful training of


lassi�er neural networks be
omes in
reasingly diÆ
ult if not impossible with larger

and larger output layers. Other ways of in
orporating 
ontext-dependen
y into the


onne
tionist a
ousti
 modeling framework therefore had to be found.

3.4 Conne
tionist Context Modeling

In 
ontext-dependent a
ousti
 modeling, we have to estimate HMM state likelihoods

p(xjs

l

) for 1 � l � N just as in the 
ontext-independent 
ase, ex
ept that the

total number of HMM states N is signi�
antly larger. Noteworthy, ea
h state s

l

does not only 
orrespond to a spe
i�
 phone and position in the underlying atomi


HMM model but also to a spe
i�
 
ontext 
lass (e.g., diphone, triphone). In 
lassi
al


ontext-dependent a
ousti
 modeling based on Gaussian mixture densities, knowledge

about underlying phone, position and 
ontext 
lass identities of individual states is

not required as ea
h state simply gets its own mixture density.

However, for 
onne
tionist a
ousti
 modeling, it is advantageous to rewrite the state

likelihoods by making the knowledge about underlying phone !

i

, 
ontext 
lass 


j

and,

in 
ase of multi-state HMM topologies, position �

k

in the atomi
 HMM of state s

l

expli
it:

p(xjs

l

) = p(xj!

i(s

l

)

; 


j(s

l

)

)

with i(s

l

) 2 f1; : : : ; Ig and j(s

l

) 2 f1; : : : ; Jg for single-state HMMs and

p(xjs

l

) = p(xj!

i(s

l

)

; 


j(s

l

)

; �

k(s

l

)

):

for K-state HMMs (k(s

l

) 2 f1; : : : ; Kg). In the lo
ally dis
riminant framework, we

apply Bayes' rule to express state likelihoods in terms of state posteriors and priors

as already des
ribed earlier. We �rst take a look at 
ontext-dependent modeling with

single-state HMM topologies. Bayes' rule yields

p(xj!

i

; 


j

) =

p(!

i

; 


j

jx) p(x)

P (!

i

; 


j

)

:

As usual, p(x) 
an be omitted, resulting in s
aled likelihoods
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p̂(xj!

i

; 


j

) =

p(!

i

; 


j

jx)

P (!

i

; 


j

)

:

Straight-forward appli
ation of a single network for estimating p(!

i

; 


j

jx) requires

I � J output nodes. However, 
ontext-dependent posteriors p(!

i

; 


j

jx) and priors

P (!

i

; 


j

) 
an be de
omposed into smaller, easier to solve subtasks that require only

networks with I and J output nodes using statisti
al fa
toring [Morgan & Bourlard

'92℄. A

ording to the de�nition of 
onditional probability, there are two di�erent

ways of fa
toring, yielding 
onsiderably di�erent 
ontext-dependent 
onne
tionist

ar
hite
tures:

1. Fa
toring Contexts:

p̂(xj!

i

; 


j

) =

p(!

i

; 


j

jx)

P (!

i

; 


j

)

=

p(


j

jx) p(!

i

j


j

;x)

P (


j

) P (!

i

j


j

)

2. Fa
toring Phones:

p̂(xj!

i

; 


j

) =

p(!

i

; 


j

jx)

P (!

i

; 


j

)

=

p(!

i

jx) p(


j

j!

i

;x)

P (!

i

) P (


j

j!

i

)

In both 
ases, the original posterior state probability p(!

i

; 


j

jx) has been de
om-

posed into a produ
t of an un
onstrained posterior probability and a 
onditional

posterior probability. The �rst one 
an be estimated with a neural network just like

in the 
ontext-independent 
ase. The se
ond, 
onditional posterior probability 
an

be estimated in various ways. Viewing a feed-forward 
lassi�er neural network as an

estimator of the left side of a 
onditional, given the right side as input, the input

layer of su
h a network 
an be extended by adding binary nodes that sparsely en
ode

the value of the dis
rete dependent variable.

Alternatively, 
onditional posterior probabilities 
an be estimated using a set of neural

networks, one for ea
h possible value of the dis
rete dependent variable. Ea
h one

of these networks has to be trained only on data 
orresponding to the spe
i�
 value

of the dis
rete dependent variable for whi
h it was build. Consider for instan
e the


ase of (1.) fa
toring 
ontexts. The un
onstrained posterior probability p(


j

jx) 
an

be estimated with a neural network with J output units, one for ea
h 
ontext 
lass.

The 
onditional posterior p(!

i

j


j

;x) 
an be estimated with a set of J neural networks

N

j

, one for ea
h 
ontext 
lass, estimating

p

j

(!

i

jx) = p(!

i

j


j

;x) 8j 2 f1; : : : ; Jg
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The 
onditional dependen
e of p

j

(!

i

jx) on 


j

is realized by training ea
h network only

on data 
orresponding to its 
ontext 
lass 


j

. While ea
h of these networks estimates

phone posteriors as in the 
ontext independent 
ase, they all do so for a di�erent

phoneti
 
ontext. Sin
e they represent spe
ialized versions of a network for 
ontext-

independent 
onne
tionist modeling, it is advantageous to initialize the parameters of

all the 
ontext-spe
i�
 networks with the parameters of a trained 
ontext-independent

network. This way, training of the networks is a

elerated and 
ontext-dependent

estimates are regularized whi
h avoids over�tting in 
ases of little available 
ontext-

spe
i�
 training data.

In the 
ase of (2.) fa
toring phones, the un
onstrained phone posterior p(!

i

jx) is

identi
al to the one estimated in the 
ontext-independent 
ase. In 
ontrast to the


ase of fa
toring 
ontexts, 
ontext-independent modeling is transparently embedded

into the 
ontext-dependent ar
hite
ture, allowing to easily swit
h between the two

modes of operation. Furthermore, fa
toring phones allows to apply phoneti
 de
ision

trees to indu
e a variable, robust and data-dependent number of generalized 
ontext


lasses for ea
h phone. The 
onditional posteriors p(


j

j!

i

;x) 
an be estimated by a

set of I phone-spe
i�
 neural networks N

i

su
h that

p

i

(


j

jx) = p(


j

j!

i

;x) 8i 2 f1; : : : ; Ig

Again, the 
onditional dependen
e on the phone !

i

is realized by restri
ting the

training set of ea
h phone-spe
i�
 network to data 
orresponding to the respe
tive

phone. The resulting 
ontext-dependent 
onne
tionist ar
hite
ture 
onsists of expert

networks for dis
riminating the 
ontext 
lasses separately for ea
h phone while the

ar
hite
ture resulting from fa
toring 
ontexts 
onsists of expert networks for dis
rim-

inating the phones separately for ea
h 
ontext 
lass. Both approa
hes have been

applied su

essfully, yielding improved performan
e over 
ontext-independent 
on-

ne
tionist a
ousti
 modeling [Fran
o et al. '94, Fran
o et al. '97, Frits
h et al. '97,

Kershaw et al. '95, Kershaw '97℄.

The fa
tored priors in the denominator of the expressions for s
aled likelihoods are

determined a

ording to relative frequen
ies in the training set. Conditional priors


an be obtained in a similar way as 
onditional posteriors by restri
ting the training

set on whi
h relative frequen
ies are 
omputed to data 
orresponding to the value of

the dis
rete dependent variable.

Finally, we note that state posteriors for multi-state HMM topologies 
an be de
om-

posed analogously to the single-state 
ase. The additional variable �

k

, indi
ating

position in the multi-state HMM, simply adds another degree of freedom in the order

of fa
toring. However, not all of the 6 possible ways of fa
toring the state posteriors

yield reasonable 
on�gurations as has been investigated in [Frits
h '96℄.
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3.5 Problems with Conne
tionist Modeling

Conne
tionist a
ousti
 models possess a wide range of properties (lo
ally dis
rimi-

nant, more 
ompa
t, faster evaluation, expli
it 
lass priors, et
.) that are missing

in traditional mixture density based models. Nevertheless, wide-spread use of stan-

dard 
onne
tionist a
ousti
 models in large vo
abulary spee
h re
ognition systems

has been hindered be
ause of the following problems:

� La
k of S
alability: As already mentioned, monolithi
 
onne
tionist a
ous-

ti
 models s
ale poorly with respe
t to the number of HMM states that are

modeled. A 
lassi�
ation task involving n 
lasses requires a 
lassi�er neural

network with n output nodes. Unfortunately, the number of output nodes in a

neural network 
an not be in
reased arbitrarily. In [Cohen et al. '92℄, the au-

thors report a de
rease in spee
h re
ognition performan
e when in
reasing the

number of output units in a monolithi
 network from 69 (
ontext-independent)

to 200 (
ontext-dependent). In fa
t, 
onne
tionist a
ousti
 models were ob-

served to perform best when applied to the level of spee
h monophones instead

of on the level of subphoneti
 HMM states. We have shown how the te
h-

nique of fa
toring 
ontext-dependent state posteriors allows for de
omposition

of an otherwise oversized 
lassi�
ation problem into a sequen
e of two or three


onsiderably smaller 
lassi�
ation problems. Although fa
toring posteriors has

opened the door to 
ontext-dependent 
onne
tionist modeling, some of the re-

sulting 
lassi�
ation tasks may still be too large for a

urate estimation of

posteriors, espe
ially when phoneti
 de
ision trees are used to indu
e variable

amounts of 
ontext 
lasses for ea
h phone.

� Non-Uniform Priors: It has been observed that 
lassi�er neural networks

generate poor estimates of posterior 
lass probabilities for infrequent 
lasses

that o

ur rarely in the training set. Estimates of posteriors for frequent 
lasses

tend to be overestimated by the network while estimates of posteriors for very

infrequent 
lasses often vanish [Lawren
e et al. '98℄.

For optimal results, the 
lasses to be dis
riminated by the network should be

distributed uniformly in the data used for training the neural network. Un-

fortunately, real-world 
lassi�
ation problems typi
ally exhibit quite irregular,

non-uniform prior distributions. For instan
e, the following plot (Fig. 3.3) de-

pi
ts the distribution of prior probabilities of English phones as estimated on

the Swit
hboard LVCSR 
orpus (see Chapter 4).

The least frequent phones (ZH,OY,EN) are about 20 times less probable than

the most frequent phones (S,T,N).
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Figure 3.3: Non-uniformity of phone prior distribution on Swit
hboard

� Computational Cost of Training: The amount of 
omputation required for

training the neural networks in a 
onne
tionist a
ousti
 model 
an be orders of

magnitude more than is required for 
lassi
al HMM training. This is a 
onse-

quen
e of lo
ally dis
riminant modeling, in whi
h all parameters are potentially

modi�ed for ea
h training pattern, irrespe
tive of the 
lass the pattern belongs

to. In traditional, non-dis
riminatively trained Gaussian mixture models, only

the parameters of a single mixture (out of several thousand) are a�e
ted by

any training pattern. Furthermore, maximum likelihood training of Gaussian

mixture based a
ousti
 models 
an easily be distributed among several 
omput-

ers, speeding up training times signi�
antly. In 
ontrast, 
onne
tionist a
ousti


models require on-line training of typi
ally very large neural networks whi
h


an not be distributed as easily. Rather, eÆ
ient training requires dedi
ated

hardware whi
h is not the 
ase for 
onventional models. Furthermore, even

when using dedi
ated parallel hardware for the training of neural networks, re-

sear
hers have reported training times of up to several weeks for their largest


onne
tionist a
ousti
 models.

We will present a new ar
hite
ture for 
onne
tionist a
ousti
 modeling in 
hapter

5 that, in addition to providing stru
tural bene�ts not found in traditional models,

avoids ea
h one of the above pitfalls that have prevented wide-spread appli
ation of


onne
tionist a
ousti
 models so far.



Chapter 4

The Swit
hboard Corpus

In order to assess and 
ompare the performan
e of spee
h re
ognition systems, a va-

riety of standardized spee
h re
ognition ben
hmarks and 
orpora have been 
olle
ted

over the years. Large stru
tured 
olle
tions of spee
h and asso
iated trans
riptions

are essential to progress in automati
 spee
h re
ognition. Due to the many approxi-

mations and heuristi
s, superiority or inferiority of algorithms and ar
hite
tures 
an

not only be justi�ed theoreti
ally but must be assessed on widely used ben
hmark


orpora. In the following, we present the Swit
hboard 
orpus [Godfrey et al. '92℄,

whi
h has been used for experimental evaluation of the ar
hite
ture and algorithms

proposed in this thesis.

4.1 Overview

Swit
hboard is a large multi-speaker 
orpus of 
onversational Ameri
an English tele-

phone spee
h and text 
olle
ted automati
ally over T1 lines at Texas Instruments

(TI). It in
ludes about 2500 
onversations by 500 di�erent speakers from every major

diale
t region in the United States. Originally designed for speaker identi�
ation and

topi
 spotting, it is now being used primarily for evaluating large vo
abulary 
on-

versational spee
h re
ognition (LVCSR) systems for band-limited (telephone quality)

spee
h.

Overall, the 
orpus 
ontains about 250 hours of spee
h and nearly 3 million words of

text. The 
onversations were re
orded as two separate but syn
hronized data streams

with 8kHz sampling rate and �-law en
oding, one for ea
h speaker. The isolation of

the two speakers is limited by the long distan
e telephone network's e
ho 
an
elling

performan
e, but is generally better than 20 de
ibel. However, some re
ordings

exhibit heavy 
ross-talk with both speakers audible on one re
ording side. Although

adaptive �lters 
an be used to redu
e su
h 
ross-talk, it is nevertheless regarded as a

potential problem for spee
h re
ognition algorithms.

39
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Parti
ipating subje
ts were asked to lead a natural 
onversation for about 5 minutes

whereby the automati
 
olle
tion system suggested one out of 70 topi
s su
h as `air

pollution', `
are of the elderly', `football', `musi
', `
hild 
are', `taxes', et
. Various

demographi
 information about the parti
ipating speakers was gathered and stored.

This in
ludes their age, sex, level of edu
ation and geographi
ally-de�ned diale
t area

where they grew up. A

ording to this information, about 54.9% of the speakers were

male, 45.1% female. About 90% of the speakers had an edu
ation of 
ollege level or

above. The following two tables give information about age and diale
t distribution

in the 
orpus:

Diale
t Region Per
entage

South Midland 29.4%

Western 16.1%

North Midland 14.6%

Northern 14.2%

Southern 10.6%

New York City 6.2%

Mixed 4.9%

New England 4.0%

Age Per
entage

20{29 26.4%

30{39 33.7%

40{49 21.1%

50{59 16.4%

60{69 2.4%

Table 4.1: Diale
t region and age distribution in Swit
hboard

The relatively high per
entage of speakers from the `South Midland' area is at-

tributable to the fa
t that a lot of Texas Instruments employees parti
ipated and

the 
ompany is lo
ated in this area. The spee
h in the Swit
hboard 
orpus is fully

trans
ribed, and the trans
ription 
onventions do
umented. Court reporters pro-

du
ed most of the verbatim trans
ripts, following a manual prepared spe
i�
ally for

the proje
t.

4.2 Chara
teristi
s

Swit
hboard is a spontaneous, 
onversational telephone spee
h 
orpus. As su
h, it

exhibits a variety of phenomena that render automati
 spee
h re
ognition a very

diÆ
ult problem:

� Speaking Style: dis
uen
ies, linguisti
 in
oheren
e, false starts, interruptions,

repetitions, emotions (mostly laughter), bad grammar
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� Pronun
iation E�e
ts: highly variable speaking rate, redu
ed pronun
iations

(going to ! gonna), 
o-arti
ulation, sloppy spee
h (what
ha gonna do `bout

it?)

� Telephone Channel: redu
ed bandwidth, signal degradation, high variation

in 
hannel quality, reverberations, e
hos, 
ross-talk, stati
 noise

� Ambient Noise: musi
, television, kids 
rying, 
ars passing by, kit
hen noise,

et
.

Furthermore, 
onversational spee
h exhibits an extremely non-uniform distribution

of words.
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Figure 4.1: Word 
overage { Swit
hboard 
orpus

The Swit
hboard 
orpus 
ontains about 28000 distin
t words. Fig. 4.1 shows 
orpus


overage with respe
t to most frequent words. A

ording to this analysis, the 100

most frequent words a

ount for roughly 65% of the 
orpus. The 1000 most frequent

words a

ount for 
a. 90% of the 
orpus. Among the most frequent words are `I',

`THE', `AND', `YOU', `THAT', `TO', `A', `OF' and `IT'. 90 of the 100 most frequent

words are 
omposed of only a single syllable. There is a large diversity of phoneti


pronun
iation of these short, frequent words. For instan
e, the word `AND' has been

found in 87 di�erent phoneti
 pronun
iations where the most 
ommon pronun
iation

represents just 16% of all o

urren
es. The high variation in phoneti
 realization
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Figure 4.2: Word frequen
ies { Swit
hboard 
orpus

renders the re
ognition of these words rather diÆ
ult. Even worse, sin
e these words

are very 
ommon, their mis-re
ognition in
uen
es overall performan
e severely.

Fig. 4.2 shows word frequen
ies for the Swit
hboard 
orpus. While the 100 most

frequent words have frequen
ies that would allow separate word models for ea
h one

of them, more than 20600 words (73.6%) o

ur less than 10 times in the 
orpus.

4.3 LVCSR Evaluations

The Defense Advan
ed Resear
h Proje
ts Agen
y (DARPA) together with the Na-

tional Institute for Standards and Te
hnology (NIST) performs annual oÆ
ial eval-

uations (denoted `Hub-5E') of large vo
abulary 
onversational spee
h re
ognition

(LVCSR) systems on the Swit
hboard and Callhome 
orpora. Among the sites that

have parti
ipated in su
h evaluations are BBN, Dragon Systems, SRI, Boston Uni-

versity, Cambridge University and Carnegie Mellon University. In 1997, the author

parti
ipated as a member of the Intera
tive Systems Labs, a group of resear
hers from

University of Karlsruhe and Carnegie Mellon University whi
h s
ored �rst on that

year's Swit
hboard test set [Finke et al. '97℄. The following table presents the best

results in terms of word error rate in re
ent years' evaluations. Unfortunately, results

are not dire
tly 
omparable sin
e NIST sele
ts a new test set of varying diÆ
ulty

ea
h year. Swit
hboard-I denotes the original 
orpus, while Swit
hboard-II denotes
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a relatively new, not yet fully trans
ribed additional 
orpus that has been used in

re
ent evaluations.

year test set word error rate

1995 Eval-95 from Swit
hboard-I 48.0%

1996 Eval-96 from Swit
hboard-I 38.8%

1997 Eval-97 from Swit
hboard-II 35.1%

1998 Eval-98 from Swit
hboard-II 36.7%

Table 4.2: Best performan
es in oÆ
ial Swit
hboard evaluations

While there has been a lot of progress in spee
h re
ognition te
hnology on the Swit
h-

board 
orpus, the word error rate still hovers in the thirties, falling far short of human


apabilities (4% word errors a

ording to [Lippmann '97℄) on this data.

4.4 Thesis Relevan
e

The Swit
hboard 
orpus o�ers unique features that make it attra
tive for evaluat-

ing the ar
hite
ture and algorithms proposed in this thesis. It is one of the largest

existing spee
h 
orpora and arguably the most diÆ
ult one for today's spee
h re
og-

nition te
hnology with lots of open questions and great potential for improvements

in modeling. With respe
t to thesis relevan
e, the Swit
hboard 
orpus

� is ideal for building a robust baseline re
ognizer for general Ameri
an English

and for domain adaptation experiments due to its a
ousti
 and linguisti
 vari-

ability.

� o�ers a high degree of phoneti
 variability whi
h requires detailed phoneti



ontext modeling to a
hieve 
ompetitive performan
e. On the one hand, this

allows to demonstrate the s
alability of the proposed hierar
hi
al 
onne
tionist

a
ousti
 model to arbitrarily large HMM state spa
es. On the other hand, this

leads to very spe
i�
 
ontext models ideally suited for stru
tural adaptation

experiments on domains with less variability in phoneti
 
ontext.

� represents a large vo
abulary 
orpus. With a phoneti
 di
tionary of about 30000

distin
t word forms from a large variety of topi
s, a Swit
hboard re
ognizer


overs most of the words of smaller domains.

While there are spee
h 
orpora with even larger vo
abularies su
h as the Wall Street

Journal (WSJ) and the Broad
ast News (BN) domains, Swit
hboard is rather unique

in its 
ombination of 
onversational speaking style, large vo
abulary and redu
ed

bandwidth a
ousti
 quality.
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Chapter 5

Hierar
hi
al Conne
tionist

A
ousti
 Modeling

This 
hapter presents a hierar
hi
ally organized 
onne
tionist ar
hite
ture for prob-

abilisti
 
lassi�
ation and its appli
ation to a
ousti
 modeling in automati
 spee
h

re
ognition [Frits
h '97, Frits
h & Finke '98a, Frits
h & Finke '98b℄. We introdu
e

hierar
hi
al soft 
lassi�ers and dis
uss their theoreti
al properties with respe
t to

statisti
al interpretation whi
h allows for integration into the HMM framework. In-

du
tion of suitable tree stru
tures is dis
ussed in detail, fo
using on 
lustering algo-

rithms and distan
e metri
s developed spe
i�
ally for a
ousti
 modeling. We present

Hierar
hies of Neural Networks { hierar
hi
al 
lassi�ers that rely on feed-forward

neural networks for lo
al 
onditional posterior probability estimation. Thousands of

neural networks have to be optimized when training su
h a model for 
onne
tionist

a
ousti
 modeling. We present eÆ
ient training te
hniques that allow to train hierar-


hi
al models mu
h faster than most existing 
onne
tionist a
ousti
 models. Finally,

we present experiments and re
ognition results using the proposed ar
hite
ture on

the Swit
hboard 
orpus.

5.1 Hierar
hi
al Classi�ers

Consider the task of 
lassifying patterns x as belonging to one of N 
lasses !

k

,

where N is assumed to be very large (N > 5000). Applying the prin
iple of divide

and 
onquer, the task of dis
riminating between thousands of 
lasses 
an be broken

down into a hierar
hi
al stru
ture of many 
onsiderably smaller 
lassi�
ation tasks.

This idea underlies the approa
hes to de
ision tree ar
hite
tures [Breiman et al. '84,

Quinlan '86, Safavian & Landgrebe '91℄. De
ision trees 
lassify input patterns by

asking 
ategori
al questions at ea
h internal node. Depending on the answer to these

questions a single path is followed to one of the 
hild nodes and the pro
ess repeats

45



46 Chapter 5 Hierar
hi
al Conne
tionist A
ousti
 Modeling

until a leaf node is rea
hed and a winner 
lass label is emitted. However, de
ision tree


lassi�ers are restri
ted to hard de
isions. No information about the 
onfusability of

a spe
i�
 input pattern is available. Rather, we are often interested in the posterior


lass probabilities p(!

k

jx) as a measure of the degree of 
lass membership. The opti-

mum 
hoi
e in the Bayes' sense then is to pi
k the 
lass with maximum a-posteriori

probability

1

. Furthermore, it is sometimes required to supply a measure of the degree

of membership for all potential 
lasses to a superordinate de
ision making pro
ess as,

for instan
e, in statisti
al spee
h re
ognition. Adhering to the divide and 
onquer

approa
h but generalizing the de
ision tree framework, the statisti
al method of fa
-

toring posteriors 
an be applied to de
ompose the 
lass posteriors hierar
hi
ally. We


all the resulting ar
hite
ture a soft 
lassi�
ation tree.

5.1.1 Hierar
hi
al De
omposition of Posteriors

For now, we assume, that optimal posterior probabilities are available. Let S be the

set of 
lasses !

k

to be dis
riminated. Consider we have a method at our disposition

whi
h gives us a partitioning of S intoM disjoint and non-empty subsets S

i

su
h that

members of S

i

are almost never 
onfused with members of S

j

(8j 6= i). A parti
ular


lass !

k

will now be a member of S and exa
tly one of the subsets S

i

. Therefore, we


an rewrite the posterior probability of 
lass !

k

as a joint probability of the 
lass and

the 
orresponding subset S

i

and fa
tor it a

ording to

p(!

k

jx) = p(!

k

; S

i

jx) with !

k

2 S

i

= p(S

i

jx) p(!

k

jS

i

;x):

Thus, the global task of dis
riminating between all the 
lasses in S has been 
onverted

into (1) dis
riminating between subsets S

i

and (2) independently dis
riminating be-

tween the 
lasses !

k

remaining within ea
h of the subsets S

i

. This two-stage pro
ess


an be interpreted as 
orresponding to a tree-stru
tured ar
hite
ture (see Fig. 5.1).

In this tree stru
ture, the root node (�rst level) performs 
oarse 
lassi�
ation between

the subsets S

i

, while the se
ond level nodes perform 
lassi�
ation among the 
lasses

!

k

within ea
h subset S

i

. Ea
h base 
lass !

k

is represented by a leaf node in the

tree. By subdividing subsets S

i

further and hierar
hi
ally repeating the pro
ess of

fa
toring 
onditional posteriors, we 
an build larger, deeper tree stru
tures.

In the limit, a N 
lass 
lassi�
ation problem 
an be de
omposed into a binary tree

stru
ture 
onsisting of N � 1 nodes, ea
h modeling a binary 
lassi�
ation problem

(see Fig. 5.2). Note however, that the bran
hing fa
tor does not have to be binary

1

Assuming that equal risks are assigned to all 
lasses.
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or 
onstant for all nodes in the 
lassi�
ation tree but that it might be subje
t to

optimization during the tree design phase.

In order to 
ompute the posterior probability for a spe
i�
 
lass, we have to follow

the path from root node to the leaf 
orresponding to the 
lass in question, taking

the produ
t of all the 
onditional posteriors along the way. Both the design of the

tree stru
ture (divide) and the estimation and multipli
ation (
onquer) of 
onditional

posteriors at ea
h node are important aspe
ts in this ar
hite
ture, that have to be


onsidered thoroughly be
ause in pra
ti
e, only approximations to the 
onditional

posteriors are available [S
h�urmann & Doster '84℄.

1

x

x

x

p(S  | S  ,x) p(S  | S  ,x)

p(S | x)

1j 2j 21

i

S11 S12 S13 S21 S22 S23

S1 2S

S

Figure 5.1: Hierar
hi
al de
omposition of posteriors

5.1.2 Properties

In addition to being appli
able to 
lassi�
ation tasks involving thousands of 
lasses,

hierar
hi
al soft 
lassi�ers possess a variety of other interesting properties that make

this kind of model parti
ularly interesting for 
onne
tionist a
ousti
 modeling.

� Mass Distribution: The presented ar
hite
ture 
an be interpreted as a prob-

ability mass distribution devi
e. At the root node, an initial probability mass
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of 1 is fed into the ar
hite
ture. At ea
h node, the in
oming probability mass is

multiplied by the respe
tive 
onditional posterior probabilities and fed into the


hild nodes. Eventually, the probability mass is distributed among all the leaves

(
lasses) rendering their posterior probabilities. In 
ontrast, de
ision trees rep-

resent hard-swit
hing devi
es, where only a single path from root node to one

of the leaves is 
onsidered.

x

1

C
on

di
ti

on
al

P
os

te
ri

or
s

Figure 5.2: Binary tree stru
ture for 
omputing 
lass posteriors

� Fault Toleran
e: If one of the nodes in a 
lassi�
ation tree, for example

the root node, fails to provide good estimates of 
onditional posteriors, a hard

de
ision tree will produ
e many 
lassi�
ation errors due to the greedy lo
al

de
isions. In 
ontrast, su
h short
omings will in
uen
e the de
ision pro
ess

less dramati
ally in a soft 
lassi�
ation tree as 
lassi�
ation de
isions are being

delayed until the tree is fully evaluated and the 
omplete posterior probability

distribution is available at the leaf nodes. More general, Fig.5.3 demonstrates

that greedy lo
al 
hoi
es as performed in a hard de
ision tree do not ne
es-

sarily lead to the maximum a-posteriori leaf node (the one 
hosen by a soft


lassi�
ation tree).
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winning class in soft
classification tree

winning class
in hard decision tree
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Figure 5.3: Di�eren
e between soft 
lassi�
ation tree and hard de
ision tree

� Cross Se
tioning: A very interesting and important aspe
t of soft 
lassi-

�
ation trees is the sum-to-unity property observable in any horizontal 
ross

se
tion at any level of the tree (see Fig. 5.4. For any 
ross se
tion, the partial

posteriors 
omputed down to the spe
i�
 tree level sum up to 1 and 
onstitute

a valid posterior probability distribution. Thus, a soft 
lassi�
ation tree 
an be


ut o� at any tree level and still be used to 
ompute posterior probabilities for

a redu
ed number of 
lasses. This is equivalent to merging the original 
lasses

a

ording to the tree topology up to the level of 
ross se
tioning. The resulting


lassi�
ation task will be less spe
i�
 and often easier to solve than the original

one.

� Pruning: Related to the sum-to-unity property of 
ross se
tions is the property

that partial posteriors 
omputed on a path from the root node to a leaf are

de
reasing monotoni
ally. This in turn allows to 
lose paths whenever the

partial posterior falls below a suitable threshold, thereby pruning whole subtrees

with 
lasses that would otherwise re
eive posteriors smaller than the threshold.

This property yields the possibility to smoothly trade-o� 
lassi�
ation a

ura
y

against 
omputational 
omplexity. In the limit, when only a single path with

highest 
onditional posterior probability is followed, the soft 
lassi�
ation tree

resembles a de
ision tree.

The above properties together with the fa
t that soft 
lassi�
ation trees are suitable

to any size of 
lassi�
ation task render this kind of model an optimal 
hoi
e for



50 Chapter 5 Hierar
hi
al Conne
tionist A
ousti
 Modeling
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Figure 5.4: Sum-to-unity property of 
ross se
tions

lo
ally dis
riminant a
ousti
 modeling. However, in order to be appli
able in a spee
h

re
ognition system, the following issues have to be addressed:

� Given a set of HMM states to be modeled, how 
an we 
onstru
t a suitable tree

stru
ture for hierar
hi
al a
ousti
 modeling?

� How 
an we estimate the lo
al 
onditional posterior probabilities required at

ea
h tree node?

� How 
an a hierar
hi
al a
ousti
 model be trained eÆ
iently, given the huge

amount of training data typi
ally required for spee
h re
ognition?

� How 
an a hierar
hi
al 
lassi�er be integrated into an HMM based spee
h re
og-

nition system?

The remainder of this 
hapter is therefore devoted to the analysis of the above issues

and to the spe
i�
 algorithmi
 and ar
hite
tural solutions that we have developed in

order to realize a spee
h re
ognition system based on a hierar
hi
al a
ousti
 model.

5.2 Tree Constru
tion

When it 
omes to the design of soft 
lassi�
ation trees, or equivalently to the design

of hierar
hi
al de
ompositions of 
lass posteriors, the 
hoi
e of algorithm depends
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mostly on the number of initial 
lasses. In our spe
i�
 
ase, we are seeking a tree

stru
ture on top of a set of HMM states, that results in an e�e
tive hierar
hi
al

de
omposition of the state posteriors. As the set of base 
lasses in this 
ase 
onsists

of the set of de
ision tree 
lustered HMM states, we might 
onsider to adopt the

stru
ture of the 
ontext 
lustering de
ision trees for the purpose of hierar
hi
ally

fa
toring the state posteriors. However, the set of de
ision trees typi
ally 
onstitutes

a bad 
hoi
e for hierar
hi
al a
ousti
 modeling for the following reasons:

� In the standard approa
h, phoneti
 de
ision trees are grown independently for

ea
h monophone. One of the motivations for this restri
tion is redu
ing the 
om-

putational 
omplexity of tree growing. However, there is 
onsiderable eviden
e

for a
ousti
 similarities between allophoni
 variants of di�erent monophones

whi
h suggest to not enfor
e any su
h 
onstraint when the tree stru
ture is to

be exploited for hierar
hi
al a
ousti
 modeling.

� Phoneti
 de
ision trees typi
ally exhibit a strong imbalan
e due to the 
ategor-

i
al questions used for splitting nodes. While the yes-bran
h of su
h questions


ontains only few examples, the no-bran
h 
ontains the majority of examples

and therefore is subje
t to ex
essive further splitting, 
ausing the imbalan
e.

In 
ontrast, a more balan
ed tree is desirable for hierar
hi
al soft 
lassi�
a-

tion of HMM states in order to exploit the divide-and-
onquer prin
iple most

e�e
tively.

Instead of adopting the most likely suboptimal phoneti
 de
ision tree stru
ture, we

will investigate approa
hes at 
onstru
ting alternative tree stru
tures spe
i�
ally for

the purpose of hierar
hi
al soft 
lassi�
ation of HMM states. To that end, we postu-

late the following design 
riteria for tree stru
tures that are to be used for hierar
hi
al

a
ousti
 modeling.

1. A
ousti
 similarity of 
hild nodes should be smallest for the root node and

should in
rease monotoni
ally towards the bottom of the tree. This is to ensure

that the 
omplexity of the lo
al 
lassi�
ation tasks in
reases from top to bottom.

As the quality of estimates of the lo
al 
onditional posterior probabilities at the

root node in
uen
es the a

ura
y of posterior probabilities of all leaf nodes, we

want to have a 
lassi�
ation task as easy as possible at the root node. Further

down the tree, the a

ura
y of estimates of the lo
al 
onditional posteriors

be
omes less and less 
riti
al.

2. Balan
ed trees should be favored, su
h that an approximately equal number of

nodes have to be traversed to evaluate any leaf node.
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3. The a-priori distribution of 
hild nodes should be 
lose to a uniform distribution

for any tree node to allow for the training of a

urate estimators of the lo
al


onditional posterior probabilities.

We will �rst dis
uss optimal tree stru
tures before we will turn to lo
ally optimal algo-

rithms required when dealing with the large number of 
lasses typi
ally en
ountered

in 
ontext-dependent a
ousti
 modeling.

5.2.1 Optimality

The optimal soft 
lassi�
ation tree for a given task and given type and stru
ture of

estimators for the 
onditional node posteriors is the one whi
h results in minimum


lassi�
ation error. If all the node 
lassi�ers would 
ompute the true 
onditional

posteriors, the tree stru
ture would have no in
uen
e on the 
lassi�er performan
e

be
ause any kind of fa
toring (through any kind of tree stru
ture) yields an a

urate

de
omposition of the 
lass posteriors. However, in pra
ti
e, approximation errors

of node 
lassi�ers render the 
hoi
e of tree stru
ture an important issue. For small

numbers of 
lasses, the optimal tree 
an in prin
iple be found by exhaustively training

and testing all possible partitionings for a parti
ular node (starting with the root

node) and 
hoosing the one that gives the highest re
ognition a

ura
y. However, even

if restri
ting the tree stru
ture to binary bran
hing nodes and balan
ed partitionings,

the number K of partitionings that have to be examined at the root node

K =

 

N

N=2

!

qui
kly brings this algorithm to its limits, even for a moderate number of 
lasses

N . Therefore, we have to 
onsider heuristi
s to derive potentially sub-optimal tree

stru
tures. For example, one valid possibility is to assume that the a
hievable a
-


ura
y of approximations to the true posteriors is related to the separability of the


orresponding sets of 
lasses.

5.2.2 Prior Knowledge

Following the above mentioned guideline, prior knowledge about the task in question


an often be applied to hierar
hi
ally partition the global set of 
lasses into reasonable

subsets. The goal is to partition the remaining set of 
lasses in a way that intuitively

maximizes the separability of the subsets. For example, given a set of phones in a

spee
h re
ognizer, a reasonable �rst partitioning would be to build subsets 
onsisting

of voi
ed and unvoi
ed phones. In larger spee
h re
ognition systems where we have

to distinguish among multiple 
ontext-dependent phone states, prior knowledge su
h
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as state and 
ontext identity 
an be used as splitting 
riterion (see Fig. 5.5). In tasks

su
h as speaker or writer identi�
ation, features su
h as gender or age are potential


andidates for splitting 
riteria.

monophones

context classes

HMM states

Figure 5.5: Three level tree stru
ture for 
ontext-dependent hierar
hi
al a
ousti


modeling 
onstru
ted based on prior phoneti
 knowledge

The advantage of su
h knowledge driven de
ompositions is a fast tree design phase

whi
h is a 
lear superiority of this approa
h when dealing with large numbers of


lasses. However, this method for the design of hierar
hi
al 
lassi�ers is subje
tive

and error prone. Two experts in a spe
i�
 �eld might disagree strongly on what 
on-

stitutes a reasonable hierar
hy. Furthermore, it is not always the 
ase that reasonable

partitionings yield good separability of subsets. Expert knowledge 
an be misleading.

5.2.3 Confusion Matri
es

In 
ase the number of 
lasses is small enough to allow the training of a single 
lassi�er,

the design of a soft 
lassi�
ation tree 
an be based on the 
onfusion matrix of the

trained monolithi
 
lassi�er. Indi
ating the 
onfusability of ea
h pair of 
lasses, the


onfusion matrix yields relatively good measures of the separability of pairs of 
lasses.

This information 
an be exploited for designing a tree stru
ture using a 
lustering

algorithm. For instan
e, we 
an de�ne the following (symmetri
) distan
e measure

between two disjun
t sets of 
lasses S

k

and S

l
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d(S

k

; S

l

) = �

X

!

i

2S

k

X

!

j

2S

l

C(!

i

; !

j

jT ) + C(!

j

; !

i

jT )

where C(!

i

; !

j

jT ) denotes the number of times 
lass !

i

is 
onfused with 
lass !

j

as

measured on a set of labeled patterns T . The distan
e d(S

k

; S

l

) 
an now be used

as a repla
ement for the usual Eu
lidean distan
e measure in a standard bottom-up


lustering algorithm. Unfortunately, on
e the number of 
lasses in
reases to several

thousand, training of a monolithi
 
lassi�er be
omes in
reasingly diÆ
ult.

5.2.4 Cluster Methods

Assuming that separability of 
lasses 
orrelates with approximation a

ura
y of es-

timators for the posterior 
lass probabilities, we 
an go further and assume that

separability of 
lasses 
an be measured by a suitable distan
e between a 
lass repre-

sentative or the 
lass 
onditional distributions in feature spa
e. Examples of distan
e

measures in
lude, for instan
e, the Eu
lidean distan
e between 
lass means or the

Mahalanobis distan
e between the 
lasses se
ond order statisti
s. Irrespe
tive of the


hosen distan
e measure, the goal always is to group the set of 
lasses in a way that

results in maximum inter- and minimum intra-group distan
es. Solutions to this

problem are known as 
lustering algorithms (e.g., [Duda & Hart '73℄). We will in-

vestigate this 
lass of algorithms in more detail in the following se
tion and develop

eÆ
ient solutions for designing soft 
lassi�
ation trees.

5.3 Bottom-Up vs. Top-Down Clustering

Considering the large amount of HMM states that we intend to model with hierar-


hi
al 
lassi�ers, eÆ
ien
y and pra
ti
ality of a tree growing algorithm is of foremost

importan
e. It is for this reason, that we are fo
using on 
luster methods for 
on-

stru
ting the proposed hierar
hi
ally organized a
ousti
 models. In the following, we

develop spe
i�
 solutions for 
lustering hierar
hi
al 
lassi�ers based on parametri


models (single Gaussians) for the HMM states and suitable distan
e measures be-

tween su
h densities, 
omparing the two major types of hierar
hi
al 
luster methods,

namely agglomerative (bottom-up) and divisive (top-down) algorithms. Agglomera-

tive pro
edures start with n singleton 
lusters as the leaf nodes and 
onstru
t a tree

stru
ture bottom-up by su

essively merging 
lusters. In 
ontrast, divisive pro
edures

start with all the samples in one 
luster (the root node) and 
onstru
t a tree stru
ture

top-down by su

essively splitting 
lusters. We will see that both approa
hes exhibit

pros and 
ons with respe
t to our appli
ation.
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5.3.1 Distan
e Measures

As already mentioned, we represent ea
h initial 
lass (HMM state) probabilisti
ally

using a single Gaussian density. In 
ontrast to more simple representations, for

instan
e 
onsisting of just a mean ve
tor, the additional se
ond order statisti
s allow

for more a

urate distan
e measures. Gaussian densities for ea
h HMM state 
an

easily be obtained from the training data using maximum likelihood estimation.

In our work, we have investigated two distan
e measures based on se
ond order

statisti
s for hierar
hi
al 
lustering, namely one based on information divergen
e and

one based on split likelihood gain.

� Symmetri
 Information Divergen
e:

Information divergen
e, also known as Kullba
k-Leibler (KL) divergen
e [Kull-

ba
k & Leibler '51℄, measures the amount of information that is lost, when

approximating a 
ontinuous probability density p

i

with some other 
ontinuous

density p

j

. In its basi
 form, it is de�ned as

KL(p

i

; p

j

) =

Z

x

p

i

(x) log

p

i

(x)

p

j

(x)

dx

It measures how 
losely p

j

resembles p

i

. For in
reasing similarity, the KL diver-

gen
e approa
hes zero, whi
h is obtained only in 
ase of p

i

= p

j

. Unfortunately,

the standard form of the KL divergen
e is not symmetri
 and hen
e 
an not be

used dire
tly as a distan
e measure. However, a symmetri
 version of the KL

distan
e 
an easily be derived:

d(p

i

; p

j

) = KL(p

i

; p

j

) +KL(p

j

; p

i

) =

Z

x

(p

i

(x)� p

j

(x)) log

p

i

(x)

p

j

(x)

dx

In our 
ase, the densities p

i

and p

j

model the distribution of a
ousti
 ve
tors

in HMM states s

i

and s

j

and are parameterized by normal densities. The

above KL divergen
e thus measures the amount of dissimilarity between HMM

states s

i

and s

j

. One 
an show (e.g., [Tou & Ganzales '74℄) that the symmetri


information divergen
e between two normal densities amounts to

d(N

i

; N

j

) =

1

2

trf(�

i

��

j

)(�

�1

j

��

�1

i

)g

+

1

2

trf(�

�1

i

+�

�1

j

)(�

i

� �

j

)(�

i

� �

j

)

t

g
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To redu
e the 
omputational load of a 
lustering algorithm that utilizes this

distan
e measure, we typi
ally restri
t the Gaussian 
ovarian
es to diagonal

matri
es, resulting in the following simpli�ed distan
e measure

d(N

i

; N

j

) =

1

2

D

X

k=1

�

2

ik

+ (�

ik

� �

jk

)

2

�

2

jk

+

�

2

jk

+ (�

ik

� �

jk

)

2

�

2

ik

� 2

� Split Likelihood Gain:

In 
ontrast to symmetri
 information divergen
e, split likelihood gain measures

the gain in likelihood obtained by splitting the data of a spe
i�
 
luster into two

halves and modeling ea
h half separately. Therefore, this measure is primarily

used for divisive 
lustering. We have already introdu
ed split likelihood gain

in our overview of phoneti
 
ontext modeling in 
hapter 2 where it served as

the optimization 
riterion in sele
ting phoneti
 questions for divisive growing

of phoneti
 de
ision trees. Assuming perfe
t models for the distribution of our

data ve
tors, there would be no gain from separately modeling parts of a given

density. However in pra
ti
e, we 
an only approximate the true distribution

of our data, for instan
e by means of se
ond order statisti
s. Consequently,


onsiderable gains in likelihood 
an be obtained by splitting the data as is

illustrated in Fig. 5.6.

p(x)

p  (x)
R

p  (x)
L

Gaussian model

True density

Figure 5.6: Split likelihood gain with Gaussian models

Split likelihood gain 
an also be 
onsidered a measure of the dissimilarity of the


lasses resulting from a split. In the limit of identi
al distributions for the data
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in ea
h 
lass, its value 
onverges to zero as there is no gain from modeling the


lasses separately. As already stated in 
hapter 2, split likelihood gain is de�ned

as the di�eren
e in log likelihood between the 
hild nodes and the parent node.

d(p; p

L

; p

R

) =

0

�

X

x2N

L

log p

L

(x) +

X

x2N

R

log p

R

(x)

1

A

�

X

x2N

log p(x)

Let N(x;�; �

2

) denote a diagonal 
ovarian
e Gaussian density modeling the

data distribution before the split and N

L

(x;�

L

; �

2

L

), N

R

(x;�

R

; �

2

R

) denote di-

agonal 
ovarian
e Gaussian densities modeling the data distribution after the

split. Hereby, split likelihood gain simpli�es to the following, 
omputationally

eÆ
ient expression:

d(N;N

L

; N

R

) = n

D

X

k=1

log �

2

k

�

 

n

L

D

X

k=1

log �

2

Lk

+ n

R

D

X

k=1

log �

2

Rk

!

where n, n

L

and n

R

denote the number of samples observed in the parent and


hild distributions, respe
tively.

5.3.2 Agglomerative Clustering

Our initial approa
h to hierar
hi
ally 
lustering HMM states for tree-stru
tured 
on-

ne
tionist a
ousti
 modeling is based on agglomerative 
lustering. Starting with a

set of leaf nodes representing the HMM states to be 
lustered, we su

essively 
re-

ate new tree nodes by merging existing ones a

ording to their a
ousti
 similarity,

thereby 
onstru
ting a binary tree stru
ture in a bottom-up fashion. We model the

data distribution at the initial leaf nodes by diagonal Gaussian densities and measure

their dissimilarity using the symmetri
 information divergen
e introdu
ed earlier.

In a straight-forward approa
h, we would merge the statisti
s of two 
hild nodes to

form a new, single Gaussian density for the parent node. However, as the available

amount of data in
reases exponentially towards the top of the tree, the 
omplexity

of the 
orresponding distribution will also in
rease 
onsiderably. A single, diagonal

Gaussian density must be 
onsidered a poor approximation of the distribution in the

upper region of the tree. In order to improve the modeling a

ura
y, we developed

an extension [Frits
h et al. '97℄ of standard agglomerative 
lustering whi
h forms

mixture densities as models of the data distribution in parent nodes by su

essively

merging the initial Gaussian densities, using the within-
luster a-priori probabilities

of the Gaussians as the mixture weights (see Fig. 5.7). This way, none of the initial

information is lost during 
lustering, given that we generalize the distan
e measure

to the information divergen
e between mixtures of Gaussians.
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Figure 5.7: Forming Gaussian mixtures for improved agglomerative 
lustering

A 
omputationally feasible approximation to the otherwise not analyti
ally solvable

integral expression for the KL divergen
e between Gaussian mixtures 
an be obtained

by assuming linearity of the symmetri
 information divergen
e d(S

k

; S

l

) between two


lusters S

k

and S

l

:
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l
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Here, p(s

i

jS

k

) and p(s

j

jS

l

) denote the within-
luster a-priori probabilities of the states

s

i

in the 
luster S

k

and the states s

j

in the 
luster S

l

. N

i

and N

j

denote the Gaussian

models for states s

i

and s

j

, respe
tively.

Finally, Fig. 5.8 details the agglomerative 
lustering algorithm as we have used it

for 
lustering tree stru
tures for a given set of HMM states. The 
omputational


omplexity of this algorithm is O(n

3

)

2

, where n is the number of HMM states. In

our initial experiments, we were applying this algorithm to 
onstru
t tree stru
tures

2

Under the assumption that we only have O(n) memory available. If we would have O(n

2

)

memory available, the 
omputational 
omplexity 
ould be redu
ed to O(n

2

) using a priority queue

for maintaining the distan
es between all pairs of states.
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for 
ontext-independent modeling, typi
ally involving less than 200 HMM states.

For illustration purposes, Fig. 5.9 shows a dendrogram of a typi
al agglomerative


lustering run on a relatively small set of only 56 HMM states 
orresponding to the

set of single-state monophone HMMs in a 
ontext-independent Swit
hboard system.

The model set 
onsists of 44 standard English phones along with 7 noise sounds

(marked with a plus), 4 phones modeling interje
tions (marked with an ampersand)

and silen
e (SIL).

Agglomerative Clustering Algorithm

1. Initialize algorithm with n 
lusters S

i

, ea
h 
ontaining

(1) a parametri
 model of the state-
onditional likelihood

for the 
orresponding state s

i

, e.g., a diagonal Gaussian

(2) a 
ount C

i

, indi
ating the frequen
y of state s

i

in the training set.

2. Compute within-
luster priors p(s

i

jS

k

) for ea
h 
luster S

k

based on the


ounts C

i

3. Compute the symmetri
 divergen
e measure d(S

k

; S

l

) between all pairs

of 
lusters S

k

and S

l

.

4. Find the pair of 
lusters with minimum divergen
e, S

�

k

and S

�

l

5. Create a new 
luster S = S

�

k

S

S

�

l


ontaining all states from S

�

k

and

S

�

l

plus their respe
tive 
ounts. The resulting parametri
 model is a

mixture of Gaussians where the mixture 
oeÆ
ients are the state priors

6. Delete 
lusters S

�

k

and S

�

l

7. While there are at least 2 
lusters remaining, 
ontinue with 2.

Figure 5.8: Agglomerative 
lustering algorithm based on information divergen
e

Interestingly, the agglomerative 
lustering algorithm identi�es 
lusters of phones

that 
orrespond roughly to well known linguisti
 
lasses, su
h as stop 
onsonants,

nasals and fri
atives. The top level split separates silen
e, breathing and noise

sounds (lower subtree) almost perfe
tly from spee
h sounds (upper subtree). Remark-

able phone 
lusters that emerge early on during 
lustering 
onsist of (IX,IH,IY,Y),

(JH,CH,SH,ZH), (Z,S,F), (ER,AXR,R), (T,D,P,K). After these initial experiments

with 
ontext-independent systems, we swit
hed to 
ontext-dependent models with

thousands of states as required for state-of-the-art performan
e in large, 
omplex

domains su
h as Swit
hboard. Fig. 5.10 shows a tiny part of the dendrogram for
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Figure 5.9: Agglomerative 
lustering of 
ontext-independent phones
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un
onstrained agglomerative 
lustering of 5000 
ontext-dependent HMM states.
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Figure 5.10: Agglomerative 
lustering of 
ontext-dependent HMM states

Note, that the algorithm groups together HMM states belonging to di�erent mono-

phones right from the start

3

. This observation 
on�rms our earlier 
laim that the

a
ousti
 similarity of HMM states 
an sometimes be larger between allophoni
 vari-

ants of di�erent monophones than between allophoni
 variants of the same mono-

phone.

The basi
 agglomerative 
lustering algorithm as presented so far exhibits 
ertain

weaknesses that be
ome most prominent when in
reasing the number of HMM states

to be 
lustered. First of all, the algorithm tends to produ
e very imbalan
ed trees.

The upper 
urve in Fig. 5.11 shows the average depth of leaf nodes for di�erent num-

bers of leaf nodes. For 
omparison, we have in
luded a 
urve that gives the depth of

leaf nodes in a balan
ed binary tree for the same number of leaf nodes

4

. For 5000

HMM states (leaf nodes), the average depth of leaf nodes of a tree 
onstru
ted by

agglomerative 
lustering already rea
hes 80 with a standard deviation of over 50. As

stated in the beginning of this se
tion, su
h imbalan
ed trees are problemati
 and

3

The state names 
onsist of an initial monophone name, followed by the identi�er for the position

in a three state left-right HMM (b,m,e), followed by an identi�er for the spe
i�
 allophoni
 variant

of that state (in bra
kets).

4

This 
urve 
onstitutes a lower bound for the average depth of leaf nodes in any binary tree
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Figure 5.11: Un
onstrained agglomerative 
lustering leads to imbalan
ed trees

undesirable for the task of hierar
hi
ally estimating HMM state posteriors. Thus,

we in
orporated an additional penalty term into the distan
e measure for 
luster-

ing whi
h enfor
es balan
ed trees by favoring a uniform distribution of the a-priori

probabilities of 
hild nodes. More spe
i�
ally, we 
hose the negative entropy of the

distribution fp; 1� pg of a-priori 
hild node probabilities

�H(p) = p log(p) + (1� p) log(1� p)

as the penalty term and in
orporated it additively into our distan
e measure using

an empiri
 weighting fa
tor � as follows:

d(S

k

; S

l

)

?

= d(S

k

; S

l

)� �H(p(S

k

))

As 
an be seen in Fig. 5.11 (� = 100), the additional penalty term allows to 
luster

balan
ed trees using the agglomerative algorithm. In Figs.5.12 and 5.13, we have

investigated the e�e
t of the additional penalty term in more detail.

For four di�erent systems with 5000, 1000, 500 and 200 de
ision tree 
lustered,


ontext-dependent HMM states, we have 
lustered soft 
lassi�
ation trees using the

agglomerative 
lustering algorithm with additional entropy penalty term. The e�e
t

of varying the weight � on the average depth of leaf nodes 
an be seen in Fig. 5.12.

For in
reasing �, we obtain more and more balan
ed trees, until for � � 50, this

pro
ess eventually saturates. Parti
ularly for systems with large numbers of HMM
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Figure 5.12: Average depth of leaf nodes when penalizing non-uniform priors during

agglomerative 
lustering of binary trees

states su
h as the 5000 state system, the additional penalty term greatly improves

tree balan
e.

However, balan
ing our agglomerative 
luster trees is only an indire
t e�e
t of the

additional entropy based penalty term. In fa
t, the original purpose of introdu
ing

this penalty term was to favor a uniform prior distribution of 
hild nodes at ea
h tree

node. With respe
t to the estimation of posterior probabilities of 
hild nodes, a highly

non-uniform prior distribution typi
ally leads to poor estimates for the infrequent


hild node, espe
ially when a neural network is trained to estimate these posteriors.

We will dis
uss this aspe
t in more detail in a later se
tion on aspe
ts of 
onne
tionist

estimators for 
onditional posterior probabilities in our ar
hite
ture. The e�e
t of the

additional penalty term on the prior distribution of 
hild nodes 
an be seen in Fig. 5.13

for the same state sets and 
luster runs already depi
ted in Fig. 5.12. This time,

however, we have plotted the average normalized entropy of the a-priori distribution

of 
hild nodes vs. varying values of �. The normalized entropy has a range of [0; 1℄,

with 0 
orresponding to one of the priors being zero and 1 
orresponding to a perfe
tly

uniform prior distribution. As expe
ted, the in
orporation of the additional penalty

term not only leads to more balan
ed trees but is also e�e
tive in in
reasing the

average normalized node entropy and thereby allows to 
ontrol the prior distribution

and to enfor
e uniform priors.

The se
ond disadvantage of the basi
 agglomerative 
lustering algorithm is the re-
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Figure 5.13: Average entropy of node prior distributions when penalizing non-uniform

priors during agglomerative 
lustering of binary trees

stri
tion to binary trees. A binary tree requires n�1 lo
al estimators, one for ea
h of

n�1 internal nodes, given n leaf nodes. In our appli
ation, detailed 
ontext-modeling


an easily lead to several thousand HMM states requiring the same number of lo
al

estimators for a binary hierar
hy. Trees with a larger bran
hing fa
tor would allow

to de
rease the number of lo
al estimators (at the 
ost of 
reating more 
omplex


lassi�
ation tasks) and to de
rease the average depth of the soft 
lassi�er tree. Ex-

tending the basi
 agglomerative 
lustering algorithm to allow for larger bran
hing

fa
tors b essentially in
reases the 
omputational 
omplexity exponentially a

ording

to O(n

b+1

), whi
h is unfeasible in pra
ti
e. However, we 
an 
onstru
t b-ary trees

from binary trees in a post-pro
essing step by applying the following greedy bottom-

up node merging algorithm:

1. Create a list P of tree nodes that initially 
onsists of all leaf nodes

2. Determine a list Q of tree nodes that 
onstitute root nodes of the largest sub-

trees 
ontaining 2 < n � b nodes from P .

3. For ea
h node q in Q: Find the set of nodes P

q

2 P in the 
orresponding subtree

and make them leaf nodes of a new node q

0

that repla
es q. Set P = (PnP

q

)[q

0

.

Throw away all other nodes in the subtree of q.

4. While P 
ontains more than 2 nodes, go to step 2.
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In addition to 
riteria su
h as tree balan
e, uniformity of priors and possible bran
hing

fa
tors, 
omputational 
omplexity and s
alability also are important aspe
ts of a

tree 
onstru
tion algorithm. The relatively high 
omputational 
omplexity of the

proposed agglomerative 
lustering algorithm diminishes its appli
ability to 
lustering

more than about 1000 HMM states. However, allowing for the following simpli�
ation

of the proposed algorithm, we 
an signi�
antly redu
e its 
omputational 
omplexity:

Consider only the distan
es between the 
luster with smallest 
ount and all other


lusters in step 3 of algorithm 5.8 (this redu
es the 
omplexity from O(n

3

) to O(n

2

)).

This way, low probability states are grouped together early in the 
lustering pro
ess,

in
reasing 
luster mass rapidly su
h that later de
isions will be based on reasonably

reliable 
luster models. Furthermore, this strategy naturally leads towards balan
ed

trees.

In summary, agglomerative 
lustering based on information divergen
e is a viable

strategy for 
onstru
ting hierar
hi
al soft 
lassi�ers for 
onne
tionist a
ousti
 mod-

eling. However, we had to modify and extend the basi
 algorithm in order to make

the algorithm more eÆ
ient, more 
exible and to enfor
e balan
ed trees and uniform

priors.

5.3.3 Divisive Clustering

As an alternative to agglomerative 
lustering, we have investigated divisive (top-

down) 
lustering. In divisive 
lustering, we start with a single 
luster 
ontaining all

the HMM states and su

essively split 
lusters until only 
lusters 
ontaining a single

HMM state remain. Top-down approa
hes have the advantage, that if most interest

is on the upper levels of the resulting tree stru
ture, they are more likely to produ
e

informative 
lusterings. In the binary 
ase, a divisive method has to 
onsider 2

n�1

�1

partitions of n states into two non-empty sets at the �rst step. In general, this is


omputationally unfeasible, so we have to apply reasonable heuristi
s su
h that we

only have to 
onsider a small proportion of these partitions. In our 
ase, we seek

a division into two 
lusters that maximizes their dissimilarity, measured by means

of the split likelihood gain distan
e measure introdu
ed earlier. There are various

heuristi
 approa
hes to �nd a division that yields a dissimilarity as 
lose as possible

to the maximum (e.g., variants of k-means 
lustering). As k-means is not dire
tly

appli
able to split likelihood gain, we developed an iterative method for divisive


lustering of HMM states (see Fig. 5.14).

Note, that this instan
e of a divisive algorithm allows to 
onstru
t trees with arbitrary

bran
hing fa
tor, not just binary trees as is the 
ase with the standard agglomerative


lustering algorithm. Furthermore, experimental evaluation of the above algorithm

revealed, that the 
ost of 
onstru
ting b-ary trees depends only linearly on b, even

though the theoreti
al number of possible legal partitionings grows exponentially with
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in
reasing b. Note also the similarity of the given divisive algorithm to the one that is

typi
ally used for growing phoneti
 de
ision trees for 
ontext modeling. However, a

�nite set of questions allows to limit the number of splits to be 
onsidered for growing

phoneti
 de
ision trees to a few hundred, whereas the algorithm in Fig. 5.14 relies on

a greedy optimization heuristi
.

Divisive Clustering Algorithm

1. Initialize algorithm with a single 
luster, 
ontaining

suÆ
ient Gaussian statisti
s (a

umulators) for ea
h

one of the HMM states s

i

to be modeled

2. Randomly sele
t b states from the 
urrent 
luster and use

their statisti
s as initial models for b new 
hild nodes

3. For all remaining states in the 
urrent 
luster:

Find the 
hild node for whi
h the split likelihood 
riterion

is maximized when adding the state's statisti
s and put

it into that node

4. Randomly sele
t a 
hild node and a state in that node:

Compute the di�eren
e in split likelihood gain when removing

the state from the sele
ted node and putting it into ea
h one

of the other 
hild nodes

5. If split likelihood gain 
an be in
reased, move the sele
ted

state from the sele
ted 
hild node into the 
hild node whi
h

gives maximum gain and go ba
k to step 4

6. For ea
h 
hild node:

If there are more than b states left, 
ontinue with step 2; otherwise


reate leaf nodes for the remaining states

Figure 5.14: Divisive 
lustering algorithm for 
onstru
ting b-ary trees based on split

likelihood gain

In addition to being 
omputationally more eÆ
ient than the agglomerative 
ounter-

part and allowing to dire
tly 
onstru
t trees with bran
hing fa
tors b � 2, the above

divisive 
luster algorithm o�ers yet another advantage in that it 
reates more bal-

an
ed trees. Fig. 5.15 shows how the average depth of leaf nodes in trees 
lustered

with the divisive algorithm de
reases with in
reasing bran
hing fa
tor. The 
urves

are given for di�erent numbers of leaf nodes (HMM states).
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Figure 5.15: Average tree depth vs. bran
hing fa
tor for divisive 
lustering

Note that even a binary tree 
lustered for as many as 20000 HMM states is almost

perfe
tly balan
ed without the use of any expli
it penalty term in the distan
e mea-

sure as was required for agglomerative 
lustering. This behavior 
an be attributed to

the fa
t that the split likelihood gain distan
e measure already favors uniform splits

to some extent as it is highly dependent on the distribution of model 
ounts.

In order to be able to visually 
ompare the shape and quality of 
lustered trees,

we next applied the divisive algorithm to a small set of 
ontext-independent HMM

states, similar to the one used in Fig. 5.9. Fig. 5.16 depi
ts the resulting dendro-

gram. Note, that the dendrogram is plotted on a log-s
ale sin
e split likelihood gain


orrelates with the amount of data being split (the model 
ounts) whi
h de
reases

exponentially due to the splits being applied during 
lustering. Clusters of phones

similar to the ones found in agglomerative 
lustering 
an be identi�ed in Fig. 5.16,

e.g., (JH,CH,SH,ZH), (Z,S,F) and (M,N,NG). However in divisive 
lustering, the spe-


i�
 value of the distan
e measure at whi
h a split o

urred is more indi
ative of the

amount of data (sum of 
ounts of the 
orresponding HMM states) in the 
luster than

of the a
ousti
 similarity. In 
ontrast, the agglomerative 
lustering algorithm allows

for better analysis and 
omparison of the a
ousti
 similarity of states and 
lusters

a
ross the tree sin
e the applied distan
e measure is independent of the amount of

data used to estimate the 
luster statisti
s.

Although the divisive 
lustering algorithm does not su�er from the tree imbalan
e

problem of standard agglomerative 
lustering, we still investigated the e�e
t of expli
-
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itly enfor
ing uniform priors at ea
h tree node during 
lustering. For that purpose,

we modi�ed the basi
 divisive algorithm in steps 3 and 4 by verifying that

b min

i=1;:::;b

p

i

� � � 2 [0; 1℄

is satis�ed before adding or relo
ating any state in any 
hild node (the p

i

's are the


hild node priors). A value of � = 0 
orresponds to the original divisive algorithm

where no restri
tions are imposed. Larger values of � slowly enfor
e a uniform a-

priori distribution until for � = 1, only a perfe
tly uniform prior distribution will be

allowed. Of 
ourse, � = 1 is not a reasonable value in pra
ti
e. The algorithm will

fail to enfor
e the 
onstraint as perfe
tly uniform prior distributions 
an normally

not be realized. Fig. 5.17 and 5.18 give results for 
lustering runs with the extended

divisive algorithm. As already observed in Fig. 5.15, the basi
 divisive algorithm

already 
reates reasonably balan
ed trees. Consequently, the additional 
onstraint

on the prior distributions hardly redu
es the average depth of leaf nodes as 
an be

seen in Fig. 5.17. Only the 
urve for 5000 states shows a signi�
ant de
rease in

average depth of leaf nodes for in
reasing prior penalty �.
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Figure 5.17: Average depth of leaf nodes when penalizing non-uniform priors during

divisive 
lustering of binary trees

However, there is a measurable e�e
t when examining the average node prior distri-

bution (see Fig. 5.18). The average normalized entropy of prior distributions 
an be

in
reased signi�
antly for � � 0:8. Not surprisingly, the average entropy de
reases
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Figure 5.18: Average entropy of node prior distributions when penalizing non-uniform

priors during divisive 
lustering of binary trees

again for larger values of � as it be
omes harder, if not impossible to enfor
e the

uniformity 
onstraint at some nodes. However, 
omparing Fig. 5.18 with Fig. 5.13,

we 
an see that enfor
ing uniform priors is not nearly as important in the divisive as

it is in the agglomerative algorithm.

5.3.4 Dis
ussion

In summary, divisive 
lustering is 
omputationally more eÆ
ient than agglomerative


lustering and o�ers the attra
tive advantage of being more 
exible in that it al-

lows to dire
tly 
onstru
t trees with arbitrary bran
hing fa
tors. In addition, the

trees resulting from divisive 
lustering are more balan
ed and the algorithm does

not ne
essarily require any intervention to enfor
e tree balan
e as is the 
ase with

agglomerative 
lustering. Table 5.1 
ompares the main features of the two 
lustering

algorithms presented in the previous two se
tions.

While these 
onsiderations lead us to a preferen
e towards the divisive algorithm, it

should be noted that this preferen
e results mainly from a 
omputational 
omplex-

ity point of view. In fa
t, agglomerative 
lustering often yields linguisti
ally more

meaningful tree stru
tures. In their extended versions, both algorithms are 
apable

of generating balan
ed tree stru
tures that hierar
hi
ally represent a
ousti
 similarity

of HMM states - a prerequisite for e�e
tive hierar
hi
al a
ousti
 modeling.
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Agglomerative Clustering Divisive Clustering

emphasis on lower levels emphasis on upper levels

better representation of more in
uen
ed by

a
ousti
 similarity prior probabilities

binary trees arbitrary b-ary trees

lo
ally optimal based on heuristi
s

expli
it balan
ing required yields balan
ed trees


omputationally expensive 
omparatively fast

Table 5.1: Comparison between agglomerative and divisive 
lustering algorithms

5.4 Lo
al Probability Estimation

On
e a suitable tree stru
ture has been 
onstru
ted using one of the methods pre-

sented in the previous se
tion, it remains to provide estimators for the lo
al 
on-

ditional a-posteriori probabilities at ea
h tree node. In this se
tion, we dis
uss the

various issues that have to be addressed in order to ensure that a

urate estimates

of the 
onditional posteriors 
an be obtained. In parti
ular, we address the following

issues:

� How to estimate 
onditional posteriors (5.4.1)

� What kind of 
onne
tionist model to apply (5.4.2)

� How to obtain suitable target ve
tors for training (5.4.4)

� How to determine the model 
omplexity (5.4.5)

� What kind of learning algorithms to apply (5.4.6)

5.4.1 Estimation of Conditional Posteriors

Fig. 5.19 shows the task of estimating lo
al 
onditional a-posteriori probabilities at

a spe
i�
 tree node. Given a 
ertain input feature ve
tor x, the lo
al estimator

has to provide a-posteriori probabilities p(S

i

jS;x) for ea
h one of the 
hild nodes

S

i

, 
onditioned on the 
urrent node S. Of 
ourse, the estimates of the 
onditional

a-posteriori probabilities have to satisfy

p(S

i

jS;x) � 0 8i and

X

i

p(S

i

jS;x) = 1

in order to represent a valid posterior probability distribution.
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Figure 5.19: Lo
al Probability Estimation

As already dis
ussed in 
hapter 3, 
lassi�er neural networks have proven to be ex-


ellent tools for estimating posterior 
lass probabilities, when trained appropriately.

A wide variety of monolithi
 network ar
hite
tures has been applied to the task

of dire
tly estimating HMM state posteriors, an approa
h that is 
ommonly 
alled


onne
tionist a
ousti
 modeling with the resulting spee
h re
ognition systems 
alled

hybrid NN/HMM systems. In the 
ase of our hierar
hi
al ar
hite
ture, we have

de
omposed the task of jointly estimating HMM state posteriors into a tree stru
-

tured, modular ensemble of smaller, lo
alized tasks, namely to estimate 
onditional

a-posteriori probabilities for 
hild nodes in the tree. In order to apply neural network

models to the estimation of these probabilities, we �rst have to solve the problem of

estimating 
onditional posteriors using a 
lassi�er neural network.

Ea
h of the modularized estimation tasks is asso
iated with a parti
ular tree node

and is furthermore independent of all others. As the posteriors to be estimated are


onditioned on the parti
ular tree node the task is asso
iated with, the 
onditional

dependen
e on this tree node 
an be realized by restri
ting the training set for the

lo
al neural network estimator to training patterns of HMM states that are lo
ated

within the subtree with the spe
i�
 tree node as root node. Fig. 5.20 illustrates this

te
hnique for a three layer, binary hierar
hy.

Asso
iated with ea
h leaf node (HMM state) is a parti
ular set of training patterns

5

,

labeled with the index of the 
orresponding leaf node. Asso
iated with ea
h internal

tree node is a neural network estimator for the 
onditional posterior probabilities

of all its 
hild nodes. The networks at the nodes in the lowest level of the tree are

trained on the patterns of all their dire
t 
hild nodes, whi
h are at the same time

5

Assuming, for now, that the underlying HMMs are trained a

ording to the Viterbi algorithm

that implies a one-to-one mapping between HMM states and training patterns.
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leaf nodes. The training set for the networks at the nodes one level above 
onsists

of the 
ombination of the training sets of the 
orresponding 
hild nodes, whi
h is

approximately twi
e as big in a binary hierar
hy. This pro
ess 
ontinues further up

the hierar
hy, with the nodes' training sets roughly doubling at ea
h tree layer, until

we rea
h the root node. The training set at the root node 
onsists of all patterns of

all leaf nodes, i.e. the 
omplete training set from all HMM states. By restri
ting the

training sets in the above des
ribed manner, we have set the basis for training the

lo
al neural networks to estimate the desired 
onditional posterior probabilities.

71 2 3 4 5 6 8

1 2 3 4 5 6 7 8

1 / 2 7 / 85 / 63 / 4

NN

NN NN

NNNNNNNN

1,2 / 3,4 5,6 / 7,8

1,2,3,4 / 5,6,7,8

Figure 5.20: Hierar
hi
al distribution of HMM state training data

It should be noted that there are other, non-
onne
tionist approa
hes to the task of es-

timating a-posteriori probabilities, for instan
e polynomial regression [S
h�urmann '96℄.

However, as we will shortly see, 
onne
tionist models have the distin
t advantage that

parti
ularly 
lassi�
ation models are well understood in terms of statisti
al interpreta-

tion [M
Cullagh & Nelder '89℄ and 
an be realized su
h that they intrinsi
ally adhere

to the 
onstraints of an a-posteriori probability distribution. Polynomial regression

models, in 
ontrast, require post-pro
essing in form of 
on�den
e mapping to a
hieve
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this property.

In the remainder of this thesis, we refer to a soft 
lassi�
ation tree equipped with neu-

ral networks at ea
h internal tree node for the estimation of the relevant 
onditional

a-posteriori probabilities as a Hierar
hy of Neural Networks (HNN) [Frits
h '97,

Frits
h & Waibel '98℄. When applied to the task of estimating posterior probabilities

of HMM states in a hybrid, lo
ally dis
riminative spee
h re
ognition system, we 
all

our ar
hite
ture a Hierar
hi
al Conne
tionist A
ousti
 Model. We �nally note that

the Neural Tree model proposed in [Stromberg et al. '91℄ is ar
hite
turally similar to

the Hierar
hy of Neural Networks. However, Neural Trees represent a spe
i�
 form of

standard de
ision trees in whi
h neural networks are used for making hard lo
al de-


isions. Instead of 
omputing a posterior probability distribution over HMM states,

Neural Trees make hard de
isions about the potentially 
orre
t HMM state (as do

most of the de
ision tree models) and are therefore only of limited use for a
ousti


modeling in large vo
abulary spee
h re
ognition.

5.4.2 Feed-Forward Classi�er Networks

We 
hose a simple feed-forward ar
hite
ture, the Multi-Layer Per
eptron (MLP) with

a single, non-linear hidden layer of problem-dependent size, a non-linear softmax out-

put layer and fully inter
onne
ted layers without short
uts as the sole 
onne
tionist

model for the estimation of lo
al 
onditional posterior probabilities in a Hierar
hy of

Neural Networks. Fig. 5.21 depi
ts the stru
ture of su
h a model, to be used in a

binary HNN.

The units in the hidden layer 
ompute the weighted sum of their inputs whi
h in-


ludes a bias unit with a 
onstant a
tivation of 1 and passes the result through a

tanh shaped squashing fun
tion, a symmetri
 version of the 
ommonly used sigmoid

a
tivation fun
tion (see also se
tion 3.3). The nodes in the output layer also 
om-

pute a weighted sum of their inputs whi
h 
onsist of the a
tivations in the hidden

layer. Again, an additive bias ve
tor is in
luded before the �nal network outputs

y

k

are 
omputed through a softmax a
tivation fun
tion. The softmax a
tivation

fun
tion has been 
hosen be
ause in the terminology of generalized linear mod-

els, it represents the (inverse) 
anoni
al link to a multinomial probability model

for a likelihood based obje
tive fun
tion (
ross-entropy) for multi-way 
lassi�
ation

[M
Cullagh & Nelder '89, Jordan & Ja
obs '94, Jordan '95℄. As we will shortly see,

the network has to be trained as a multi-way 
lassi�er

6

in order to approximate a-

6

In the 
ase of a binary HNN, the networks in the tree stru
ture have to be trained for binary


lassi�
ation whi
h, a

ording to the generalized linearmodel theory, involves a Bernoulli probability

model and a single sigmoid output node. However, one 
an show that softmax for two output nodes

is equivalent to a single node sigmoid. This allows to unify our approa
h and to represent both

binary and multi-way 
lassi�
ation using the same model.
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posteriori probabilities and 
hoosing the 
anoni
al link instead of an arbitrary squash-

ing fun
tion at the network's output layer together with the appropriate obje
tive

fun
tion allows for statisti
al interpretation and in addition simpli�es �rst-order train-

ing algorithms su
h as error ba
kpropagation [Rumelhart et al. '86℄, as parts of the

derivatives 
an
el out.

1

1

output layer
(softmax nodes)

Input
Layer

hidden layer
(tanh nodes)

Conditional Posteriors

weight matrix V

weight matrix W

bias vector a

bias vector b

bias node

bias node

Input Feature Vector

Figure 5.21: Multi layer per
eptron (MLP) with a single hidden layer for lo
al esti-

mation of 
onditional posteriors in a binary HNN

Overall, the network jointly 
omputes the following fun
tions y

k

(x) at its output units

whi
h will be interpreted as estimates of an a-posteriori probability distribution over

the feature spa
e, from whi
h x is taken:

y

k

(x) =

exp(z

k

(x))

P

l

exp(z

l

(x))

z

k

(x) =

X

j

w

kj

tanh

 

X

i

v

ji

x

i

+ a

j

!

+ b

k

where the v

ji

denote the weights from unit i in the input layer to unit j in the hidden

layer (subsumed in the weight matrix V ), a

j

denotes the bias weight for hidden unit

j (subsumed in the bias ve
tor a), the w

kj

denote the weights from unit j in the



76 Chapter 5 Hierar
hi
al Conne
tionist A
ousti
 Modeling

hidden layer to unit k in the output layer (subsumed in the weight matrix W ) and

b

k

denotes the bias weight for output unit k (subsumed in the bias ve
tor b).

Typi
ally, we in
lude the bias ve
tors a and b into the weight matri
es V and W ,

respe
tively, and extend the input and hidden layer a
tivation ve
tors by an additional


onstant of 1, whi
h allows to formulate the network fun
tion more 
ompa
t as

y = softmax(W tanh(V x))

The number of input units in this ar
hite
ture is �xed for all networks in the tree and

is given by the dimensionality of the input feature spa
e. The number of output units

is equal to the bran
hing fa
tor at the tree node for whi
h the network 
omputes a-

posteriori probabilities, i.e. the number of 
hild nodes. Ea
h unit in the output layer

represents a parti
ular 
hild node of the 
orresponding tree node. The size of the

hidden layer 
an be 
hosen arbitrarily and 
onstitutes the single degree of freedom in

terms of varying model 
omplexity. We prefer this standard MLP ar
hite
ture over

more 
omplex models for the following reasons:

� A

ording to the universal approximation theorem that goes ba
k to a theorem

by the Russian mathemati
ian Kolmogorov, any 
ontinuous n-variate fun
tion

(e.g., the posterior probabilities in our 
ase) 
an be approximated to an arbi-

trary degree of a

ura
y by an MLP with a single hidden layer of appropriate,

�nite size 
ontaining non-linear squashing fun
tions. A

ording to this, a sin-

gle non-linear hidden layer is suÆ
ient for general fun
tion approximation and

the 
orresponding MLP 
onstitutes the simplest ar
hite
ture that exhibits this

property.

� MLPs have been used extensively and su

essfully for the estimation of pos-

terior probabilities in the past, espe
ially in the �eld of 
onne
tionist a
ousti


modeling.

� The simpli
ity of the MLP and its layered ar
hite
ture allows for eÆ
ient on-

line training using the error ba
kpropagation algorithm. EÆ
ien
y of parameter

estimation is an important aspe
t of hierar
hi
al 
onne
tionist a
ousti
 models

as the tree stru
tures 
an 
ontain several thousand nodes, requiring to train

thousands of neural networks.

� The pro
ess of optimizing the network size in terms of generalization perfor-

man
e is simpli�ed by the fa
t that there is only a single parameter (the number

of hidden units) for 
ontrolling the model 
omplexity.
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5.4.3 Lo
al Training Targets

Estimation of a (
onditional) posterior probability density with the proposed type

of neural network requires, in addition to an appropriate non-linearity at the out-

put layer, that the network is trained as a pattern 
lassi�er, minimizing a suitable

obje
tive fun
tion for 1-out-of-N target ve
tors. In the 
ase of our hierar
hi
al 
on-

ne
tionist ar
hite
ture, su
h target ve
tors are obtained a

ording to Fig. 5.22.

1

1

0

0

1

0

x

x

x

Figure 5.22: Lo
al training targets for Viterbi based HMM training

Under the Viterbi assumption, an a

eptable simpli�
ation in training HMMs for

spee
h re
ognition, there is exa
tly one HMM state that is 
onsidered responsible

for generating ea
h pattern ve
tor. In our tree stru
ture, the Viterbi assumption

implies that only a single leaf node has to be 
onsidered for ea
h training pattern.

As a 
onsequen
e, only the networks at nodes on the path from the root node to the


urrently a
tive leaf node re
eive training information for the 
orresponding training

pattern. Lo
al training targets for the networks at the nodes along that path 
onsist

of ve
tors of 0s with a single 1 at the position that 
orresponds to the next 
hild

node on the path. Depending on the training mode, the parameters of the lo
al
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lassi�ers are either updated after ea
h training pattern (on-line training), after a


ertain number of patterns (bat
h training), or after all training patterns have been

presented to the ar
hite
ture (o�-line training).

5.4.4 Model Sele
tion

When applying 
onne
tionist models (or any other model) to the task of supervised

pattern 
lassi�
ation based on a �nite training set, it is well known that the 
omplex-

ity of the model, i.e. the number of parameters employed, must be 
hosen 
arefully

in order to avoid over�tting and a
hieve generalization to unseen data. Typi
ally,

there is a 
ertain operating point for a given number of training patterns, where 
las-

si�
ation performan
e on an independent validation set is optimal. While 
lassi�ers

with a smaller number of parameters are not 
apable of 
apturing the full 
omplexity

of the 
lassi�
ation task, those with a larger number of parameters over�t to the

training set and exhibit poor generalization to unseen data. This e�e
t is known as

the bias/varian
e-dilemma or -trade-o� [Geman et al. '92, Tibshirani '96℄.

Basi
ally, the predi
tion error of a learner 
an be de
omposed into a sum of a bias

(measuring how a

urate the learner predi
ts the training data) and a varian
e 
om-

ponent (measuring how mu
h the learners predi
tion errors vary over di�erent test

sets), plus an additional term that quanti�es the diÆ
ulty of the learning problem.

In
reasing the number of parameters redu
es the bias of the predi
tor but at the same

time in
reases the varian
e, while de
reasing the number of parameters de
reases the

varian
e but in
reases the bias. The problem of sele
ting the optimum model size is

usually addressed by one of the following approa
hes:

1. A-priori, knowledge based sele
tion of model size

2. Iterative sele
tion of model size (several trials)

3. Regularization [Girosi et al. '95℄

We �rst investigate a-priori sele
tion of the model size. Ideally, the 
omplexity of

lo
al node 
lassi�ers should be sele
ted so as to maximize generalization ability of

the 
omplete hierar
hy. Generalization, on the other hand, is in
uen
ed by three

fa
tors: (1) size and distribution of the training set, (2) model 
omplexity and (3)


lassi�
ation 
omplexity of the spe
i�
 task at hand. Obviously, we 
an not in
uen
e

the latter of these fa
tors. Furthermore, in the 
ontext of our ar
hite
ture, we assume

that the size of the training set for ea
h tree node is �xed by the tree topology, on
e

the hierar
hy has been designed. Therefore, we have to 
hoose the model 
omplexity

of the estimator at ea
h node based on available training data and diÆ
ulty of 
lassi-

�
ation task. The following Fig. 5.23 shows the amount of training data available on
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average at ea
h level in a typi
al binary hierar
hi
al 
onne
tionist a
ousti
 model for

6000 HMM states

7

. In a

ordan
e with the intuition already gained from Fig. 5.20,

the number of available training patterns in
reases exponentially from the bottom of

the tree to the top.
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Figure 5.23: Available training data in di�erent depths of HNN tree

The overall number of parameters in the type of neural network that we are using

depends linearly on the number of hidden units. A

ording to [Baum & Haussler '89℄

and with some approximations, a rule of thumb is to 
hoose the number of hidden

units M to satisfy

M < N �

where N denotes the number of available training patterns and � is the expe
ted error

rate on the test set. In our 
ase, the variation in the number of training patterns in the

di�erent nodes is expe
ted to dominate the above formula. Therefore, a reasonable

initial strategy is to set the number of hidden units proportional to b

�d

, where b is

the bran
hing fa
tor of the tree stru
ture and d is the depth of the node. As long as

the tree is approximately balan
ed in terms of the prior distribution of 
hild nodes,

this strategy leads to hidden layers with size proportional to the number of available

training patterns. However, as an exponential in
rease in the number of hidden units

7

The tree has been designed from the full Swit
hboard training set, using the agglomerative


lustering algorithm from se
tion 5.3.2, penalizing non-uniform priors.
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(when going from the bottom of the tree to the top) qui
kly leads to unfeasibly large

networks and the gains from making large networks even larger seem not to be worth

the additional 
omplexity, it is advisable to limit the number of hidden units to some

prede�ned maximum.

The se
ond approa
h to model sele
tion is more thorough but at the same time 
on-

siderably more expensive. In our 
ase it 
onsists of training a set of MLPs with

di�erent numbers of hidden units, e.g., 16, 32, 64, et
., for ea
h tree node and 
om-

paring their performan
e on a previously unseen validation set, �nally sele
ting the

network whi
h gives maximum a

ura
y and dis
arding all others. The disadvantage

of this approa
h, of 
ourse, is that a large number of networks will be trained in

vain and the overall training time in
reases signi�
antly. Nevertheless, we have in-

vestigated this approa
h for building a hierar
hi
al 
onne
tionist a
ousti
 model for

the Swit
hboard domain. We report results of these experiments in the evaluation

se
tion.

The e�e
tiveness of the third approa
h, regularization, has been demonstrated for

many other 
onne
tionist ar
hite
tures [Girosi et al. '95℄ but remains to be investi-

gated in the 
ontext of the proposed model in future work.

5.4.5 Optimization Algorithms

Even though the majority of individual networks in our tree stru
ture have to be

trained only on small proportions of the full training 
orpus, there are several hun-

dred if not thousand su
h 
lassi�
ation tasks to be pro
essed in order to obtain a


ompletely trained hierar
hy (see next se
tion). Therefore, we 
onsider only sto
has-

ti
 learning/optimization algorithms that 
ompute approximations to the gradients

and update the parameters of a network either after ea
h single training pattern or

after a small bat
h of pattern ve
tors instead of after presentation of the 
omplete

training set.

Another important issue with our tree stru
tured ar
hite
ture is memory require-

ments. A feasible optimization algorithm has to be 
onservative in its memory re-

quirements if we want to train all neural networks within a hierar
hy while passing

through the data. For instan
e, assuming that we have 256 MBytes available and

our hierar
hi
al a
ousti
 model 
onsists of about 4000 networks, an optimization al-

gorithm must not take more than 64 KBytes of memory per network. Assuming

furthermore that the lo
al networks in our hierar
hy typi
ally 
onsist of about 2000

weights, ea
h taking 4 Bytes, the available memory for an optimization algorithm

allows only to store the equivalen
e of about 8 times the ve
tor of weights. Thus,

we are limited to �rst-order optimization algorithms. A se
ond order algorithm su
h

as the Newton-Raphson method would require to store the Hessian of the obje
tive

fun
tion with respe
t to the ve
tor of weights, a 2000 x 2000 matrix, for ea
h network,
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summing up to a total of about 256 GBytes in the s
enario given above.

Consider a parti
ular network at a parti
ular node in an HNN tree. Let T denote

the training set available for estimating the parameters of the network. The training

set 
onsists of pairs of input and target ve
tors:

T = f(x

1

; t

1

); : : : ; (x

n

; t

n

)g

The 
ross-entropy error fun
tion simpli�es as follows under the assumption of 1-out-

of-N target ve
tors:

E = �

n

X

i=1

b

X

j=1

t

ij

log y

j

(x

i

)

= �

n

X

i=1

log y


(i)

(x

i

) for t

i
(i)

= 1 and t

ij

= 0 8j 6= 
(i)

where y

j

(x) represents the fun
tion 
omputed by the network at its j-th output

unit. The goal of training is to minimize the above error fun
tion with respe
t to

the weights in the neural network estimator. For the experiments presented in this

thesis, we have investigated the following two optimization algorithms for training

the networks in an HNN:

Sto
hasti
 Gradient Des
ent

In its standard formulation, gradient des
ent updates the ve
tor of weights w

t

at time

t a

ording to

w

t+1

= w

t

+�w

t

with �w

t

= ��

dE

dw

(w

t

)

with s
alar learning rate �. The on-line version of gradient des
ent, often 
alled

sto
hasti
 gradient des
ent 
omputes a sto
hasti
 estimate of the true gradient from

only a few training ve
tors in order to update the parameters of the network more

often than just after presentation of the whole training set. As mentioned before,

on-line operation of the optimization algorithm is 
ru
ial for a
hieving a

eptable

training times in spee
h re
ognition appli
ations. It has frequently been observed

that 
onvergen
e of gradient des
ent 
an be sped up signi�
antly by introdu
ing a

so-
alled momentum term:

�w

t

= ��

dE

dw

(w

t

) + ��w

t�1

using a s
alar momentum fa
tor �. Although simple gradient des
ent is surprisingly

e�e
tive in training neural networks, there is one noti
eable disadvantage with respe
t
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to our ar
hite
ture: The learning parameters (learning rate � and momentum fa
tor

�) have to be tuned separately for the training of ea
h network in a Hierar
hy of

Neural Networks as di�erent networks require di�erent parameter settings for optimal

learning. Due to the large number of networks in su
h a hierar
hy, we have to �nd

ways of automati
ally tuning these parameters in order to obtain a reasonable training

algorithm for the full HNN tree.

S
aled Conjugate Gradients

To avoid problems with learning parameters that have to be tuned spe
i�
ally for

ea
h network in an HNN, we have investigated a se
ond optimization algorithm that

allows to train a neural network without requiring any 
ru
ial learning parameter. We

adopted an algorithm 
alled S
aled Conjugate Gradients (SCG) [M�ller '93℄ whi
h is

a variant of the standard 
onjugate gradients algorithm that does not require a time


onsuming line sear
h. In fa
t, the SCG algorithm 
ontains no 
riti
al user dependent

parameters and enables a fully automati
 network training.

In the SCG algorithm, the ve
tor of weights w

t

at time t is updated a

ording to the

following iterative optimization rule:

w

t+1

= w

t

+�w

t

with �w

t

= �

t

p

t

with the s
alar �

t


omputed as follows

�

t

=

p

T

t

g

t

p

T

t

s

t

where g

t

denotes the negative gradient of E at time t with respe
t to the weights w:

g

t

= �E

0

(w

t

) = �

dE

dw

(w

t

)

and the 
onjugate gradients p

t


omputed re
ursively as follows

p

0

= g

0

p

t+1

= g

t+1

� �

t

p

t

with the s
alar �

t

a

ording to

�

t

=

jg

t+1

j

2

� g

T

t+1

g

t

p

T

t

g

t

:

The SCG algorithm di�ers from the standard 
onjugate gradients algorithm in the

expression for the ve
tor s

t

whi
h is approximated as follows to avoid 
omputing the

Hessian with respe
t to the weights:
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The 
onstant � is un
riti
al as long as it is kept small enough and the s
aling fa
-

tor �

t

is adjusted automati
ally by the SCG algorithm depending on the positive

de�niteness of the Hessian (see [M�ller '93℄ for further details).

Although the SCG algorithm theoreti
ally requires `true' gradients, i.e. o�-line mode

of operation, we have obtained satisfa
tory results with sto
hasti
 gradients 
om-

puted from about 100 training patterns whi
h again is 
ru
ial for our appli
ation.

It should be noted though, that the SCG algorithm routinely fails to 
onverge when

using 
onsiderably less than the above mentioned 100 pattern ve
tors for 
omputing

estimates of the gradients.

5.4.6 Approximation A

ura
y

While we have dis
ussed how we 
an a

urately estimate lo
al 
onditional posterior

probabilities in a hierar
hi
al 
lassi�er using small 
lassi�er neural networks, it is not

immediately 
lear whether the �nal estimates 
omputed at the leaf nodes a

urately

approximate the real a-posteriori probability distribution. Inevitably, the lo
al node


lassi�ers 
an only produ
e estimates of the true 
onditional posteriors. Final 
lass

posteriors at the leaf nodes are 
omputed by multiplying these lo
al estimates in a

spe
i�ed manner. How do lo
al approximation errors in
uen
e the global approxi-

mation error in a Hierar
hy of Neural Networks?

A 
ommon way to empiri
ally verify a 
lassi�ers ability to approximate posterior


lass probabilities is to 
ompute a histogram for the probability of a 
lassi�er output

y

i

(x) belonging to the 
orre
t target 
lass. Formally, we estimate P (i = 
jy

i

(x)),

where y

i

(x) is the output of the 
lassi�er for 
lass i, given an input feature ve
tor

x and 
 is the index of the target 
lass. The plot in Fig. 5.24 was 
omputed from

the outputs of a trained Hierar
hy of Neural Networks 
lassi�er for 8000 tied HMM

states (see se
tion 5.7.6 for details) fed with 500000 pattern ve
tors. A 
lassi�er

that produ
es perfe
t a-posteriori probabilities would yield a histogram 
urve that

follows the diagonal from (0; 0) to (1; 1). The 
loser a histogram 
urve follows that

diagonal in pra
ti
e, the more a

urate are the 
lassi�er's approximations to the true

posteriors.

As we 
an see from Fig. 5.24, our experiment yields an almost perfe
t diagonal,

demonstrating that a Hierar
hy of Neural Networks 
an indeed be trained to produ
e

a

urate estimates of posterior probabilities for a large number of 
lasses. It appears

that lo
al approximation errors (if present) do not amplify but 
an
el out during

the top-down 
omputation of state posteriors in a hierar
hi
al 
onne
tionist a
ousti


model.
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Figure 5.24: Empiri
 Validation of Posterior Approximation Property of Hierar
hi
al

Classi�er for 8000 HMM States

5.5 Global Training Te
hniques

The training of 
onne
tionist a
ousti
 models is typi
ally reported to be orders of

magnitude more expensive then training of 
omparable 
onventional a
ousti
 models

based on mixture densities. In the past, dedi
ated parallel pro
essing hardware has

often been ne
essary in order to train the sometimes very large 
onne
tionist a
ousti


models in reasonable times

8

. This is 
onsidered one of the major drawba
ks of the


onne
tionist approa
h to a
ousti
 modeling.

Although the individual networks in our hierar
hi
al 
onne
tionist model are 
om-

paratively small, training of the overall ar
hite
ture is also 
omputationally quite

expensive due to the very large number of networks that typi
ally 
onstitute su
h a

hierar
hy. However, in 
ontrast to monolithi
 
onne
tionist models, training of our

HNN model 
an still be realized eÆ
iently on standard hardware as ea
h network

in an HNN tree 
an be trained independently of all others. The set of tree nodes

with asso
iated networks 
an be distributed among several standard 
omputers and

trained independently.

We have developed two parallelizable training te
hniques for HNN trees whi
h will be

des
ribed in the following. The �rst one is based on jointly training all the networks

in an HNN tree while passing through the training data. In 
ontrast, the se
ond

8

Where `reasonable' quite often translates to `several days' !
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te
hnique is based on extra
ting separate training sets for ea
h one of the networks

in an HNN tree using a single pass through the training data and then independently

training all the networks in parallel on their respe
tive training set.

5.5.1 Joint Training

Consider the pro
ess of jointly training all the networks in a Hierar
hy of Neural Net-

works. We sequentially pro
ess the input training patterns and determine for ea
h

pattern the networks involved in estimating the posterior probability of the asso
i-

ated HMM state a

ording to a Viterbi alignment (see Fig. 5.22). These networks

are lo
ated on the path from root node to the spe
i�
 leaf node representing the

target HMM state. The asso
iated training pattern is presented to ea
h one of these

networks together with 1-out-of-N target ve
tors that are 
onstru
ted a

ording to

Fig. 5.22. At ea
h time step, di�erent networks will re
eive the respe
tive training

pattern depending on the target HMM state

9

. Whenever a network in the HNN tree

has a

umulated a 
ertain prede�ned amount of training patterns (the bat
h size), we

trigger a parameter update using one of the optimization algorithms presented in the

previous se
tion and start to a

umulate training patterns again, possibly keeping

lo
al state information for the optimization algorithm (su
h as the previous gradient

for 
omputing momentum terms in subsequent updates).

There is no 
ommuni
ation or syn
hronization required between the individual tree

nodes. Thus, the entire training s
heme 
an be parallelized and distributed easily

among several pro
essors. We simply keep the entire HNN tree stru
ture on ea
h

pro
essor but instantiate only disjun
t sets of nodes with networks. After training,

we merge the networks from ea
h training pro
ess into a single 
omplete HNN tree

stru
ture. As no 
ommuni
ation is required, the speed-up obtained from distributing

joint training s
ales almost linearly with the number of available 
omputers

10

.

In prin
iple, the individual nodes in an HNN tree 
an be distributed in any fashion.

However, we 
ertainly prefer 
on�gurations that result in suÆ
iently balan
ed 
om-

putational load during training. Fig. 5.25 presents a strategy that aims at optimal

load balan
e by grouping all nodes in every tree level and assigning a di�erent pro-


essor to ea
h su
h node 
luster. At ea
h time step during training, a single network

in ea
h 
luster re
eives the 
urrent training ve
tor a

ording to the path from root

node to the leaf node representing the 
urrent target HMM state. Assuming that all

networks in the HNN get updated after having re
eived a globally 
onstant amount

of training patterns, the presented strategy in fa
t a
hieves optimal load balan
e.

9

Of 
ourse, the network at the root node will re
eive all training patterns, irrespe
tive of the

target HMM states.

10

In pra
ti
e, disk I/O 
an be
ome a bottlene
k sin
e all parallel pro
esses have to a

ess the

spee
h waveform data (or the pre
omputed feature ve
tors) during training.
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In 
ase we apply sto
hasti
 gradient des
ent to the task of jointly training the indi-

vidual networks in an HNN, we have to tune the learning parameters spe
i�
ally for

ea
h network. This is important be
ause networks in di�erent levels of the HNN tree

re
eive vastly di�erent amounts of training data. For instan
e, the network at the

root node typi
ally requires a 
omparatively small learning rate as it re
eives several

million training patterns (in our appli
ation). In 
ontrast, the networks at the bot-

tom of the tree re
eive only a few thousand training patterns and therefore require


onsiderably larger learning rates to guarantee fast 
onvergen
e. Thus, we assign

individual learning rates to ea
h network in an HNN but keep a global momentum

fa
tor (typi
ally � = 0:9).

NN NN NN NN

NN

NN

NN

CPU1

CPU2

CPU3

Figure 5.25: Distributing joint training of HNN nodes on several CPUs

The lo
al learning rates �

i

are initialized with a single global learning rate �

G

. During

the pro
ess of training the hierar
hy, the lo
al learning rates are adapted individually

with the global learning rate fun
tioning as an upper bound for the lo
al learning

rates to avoid divergen
e of the optimization pro
ess due to ex
essively large lo
al

learning rates. Furthermore, the global learning rate �

G

is annealed a

ording to the

following rule to stabilize gradient des
ent towards the end of training:

�

(t+1)

G

= �

(t)

G

� �

G
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Typi
ally, we use an initial global learning rate �

(0)

G

between 0:001 and 0:01 and

a global annealing fa
tor �

G

of 0:999 : : : 0:9999 applied after ea
h 10000 training

patterns.

In order to a

ommodate the di�erent learning speeds of the node 
lassi�ers due to

the di�erent amounts of available training data, we 
ontrol individual learning rates

using the following measure of 
orrelation between su

essive gradient ve
tors g

(t�1)

and g

(t)

:




(t)

= ar

os

 

g

(t)

g

(t�1)

jg

(t)

j jg

(t�1)

j

!




(t)

measures the angle between the gradients g

(t�1)

and g

(t)

. Small angles indi-


ate high 
orrelation and therefore steady movement in weight spa
e. Therefore, we

in
rease the learning rate linearly up to the 
urrent maximum (as determined by

initial learning rate, annealing fa
tor and number of updates performed) whenever




(t)

< 90

Æ

for several updates. Large angles, on the other hand, indi
ate random

jumps in weight spa
e. We therefore de
rease the learning rate exponentially when-

ever 


(t)

> 90

Æ

for several 
onse
utive updates. In summary, we obtain the following

update rule for lo
al learning rate �

i

of network i:

�

(t+1)

i

= min

8

>

>

<

>

>

:

�

(t+1)

G

;

8

>

>

<

>

>

:

�

(t)

i

+ Æ

�

(t)

i

� �

�

(t)

i

9

>

>

=

>

>

;

9

>

>

=

>

>

;

if

8

>

>

<

>

>

:

1

M

�

P

M

k=0




(t�k)

�

< 90

Æ

� �

1

M

�

P

M

k=0




(t�k)

�

> 90

Æ

+ �

else

9

>

>

=

>

>

;

with linear in
rease Æ = 0:001 : : : 0:01 and exponential annealing fa
tor � = 0:5 : : :0:9.

The number of bat
h updates M 
ontrols smoothing of 
 whereas � 
ontrols the

in
uen
e of the global learning rate. For � ! 90

Æ

, lo
al learning rates are for
ed

to follow the global learning rate, whereas low values of � allow lo
al learning rates

to develop individually. Typi
al values that have been used in our experiments are

M = 10 and � = 20

Æ

. We �nally note that the above learning rate adaptation s
heme

is very similar in spirit to the delta-bar-delta learning rule proposed in [Ja
obs '88℄.

However, in 
ontrast to our s
heme the delta-bar-delta rule is based on the sign of

the produ
t instead of on the angle between su

essive gradient ve
tors

11

.

5.5.2 Independent Training and Sampling

In addition to the joint training te
hnique presented above, we have developed an

alternative training s
heme that, although requiring 
onsiderable amounts of tempo-

rary disk spa
e, allows for faster and more 
onvenient training of the lo
al neural

11

Furthermore, the delta-bar-delta rule assumes a separate learning rate for ea
h network weight.
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networks in an HNN. Furthermore, this approa
h allows us to apply more sophis-

ti
ated optimization algorithms of higher order sin
e the individual networks are

trained sequentially on ea
h pro
essor.

Independent training pro
eeds in three stages (see Fig. 5.26). In an initial step, we

pro
ess the 
omplete training database, determine the relevant nodes in the hierar-


hy for ea
h training pattern and store for ea
h one of these nodes the pattern ve
tor

together with the 
orresponding target ve
tor in a node-spe
i�
 training data set

for subsequent network training. Instead of storing all the pattern ve
tors relevant

to ea
h node, we sample only a subset of these patterns for the nodes in the upper

levels of the tree. This saves substantial amounts of storage spa
e and is 
onsidered

un
riti
al (in terms of the a

ura
y of the resulting estimators) sin
e there is a lot

of redundan
y in the 
orresponding training sets. In our experiments on the Swit
h-

board 
orpus, 
onsisting of roughly 60 million training patterns, we required about

3-5 GBytes of disk spa
e for storing the partially sub-sampled training sets for all the

tree nodes of a typi
al HNN.

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN NN NNNN

NN

Extract Training Data1. 2. Train Networks 3. Recombine HNN

Figure 5.26: Data sampling and independent training of HNNs

In a se
ond step, we sequentially train neural networks for ea
h one of the extra
ted

node-dependent training sets. All kinds of sophisti
ated, memory-intensive optimiza-

tion algorithms 
an be applied in this stage as we do not have to keep the 
omplete

hierar
hy in memory as in the 
ase of joint training. Furthermore, independent

training 
an easily be distributed among several pro
essors without requiring any


ode 
hanges, a
hieving linear speed-up and optimal load balan
ing without any ef-

fort. We simply partition the set of networks to be trained appropriately and let ea
h

pro
essor train a separate subset of networks.

In the �nal step of sequential training, we have to plug in the trained networks

into the 
orresponding nodes of the HNN tree in order to obtain the 
ompletely
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trained hierar
hi
al 
onne
tionist model. One of the big advantages of independent

training is that we 
an eÆ
iently experiment with di�erent network sizes or di�erent

optimization algorithms on
e the training sets have been extra
ted and stored on

disk. A potential disadvantage is the large amount of required temporary disk spa
e.

Using the independent training te
hnique, we were able to train medium sized HNNs


onsisting of around 1000 nodes on the full Swit
hboard 
orpus in less than 24 hours

using 8 Pentium-II/400Mhz CPU's. This is 
omparable to the training time re-

quired for a 
onventional non-
onne
tionist model using the same number of CPU's.

In summary, our hierar
hi
al 
onne
tionist a
ousti
 model does not su�er from the

ex
essively long training times typi
ally reported for monolithi
 
onne
tionist ar
hi-

te
tures.

5.6 Integration into HMM Framework

We now turn our attention to aspe
ts 
on
erning the integration of the presented

hierar
hi
al 
onne
tionist model into the standard HMM framework found in nearly

all of today's large vo
abulary 
ontinuous spee
h re
ognition systems.

5.6.1 Model Integration

We 
onsider the 
ase of integrating our hierar
hi
al 
onne
tionist a
ousti
 model into

a de
ision-tree 
lustered 
ontext-dependent HMM spee
h re
ognizer. Fig. 5.27 gives

an overview of the relevant parts of the resulting hybrid NN/HMM spee
h re
ogni-

tion system. A sequen
e of raw sub-phoneti
 HMM states, e.g., a triphone HMM,

is translated into a sequen
e of more robust tied HMM states by means of the ap-

propriate phoneti
 de
ision trees. This part of the re
ognizer is identi
al for both


onventional as well as 
onne
tionist a
ousti
 models. In 
onventional models, we

assign a separate Gaussian mixture model to ea
h leaf node in all phoneti
 de
ision

trees for estimating emission probabilities for the 
orresponding tied HMM state.

In 
ontrast, a hierar
hi
al 
onne
tionist a
ousti
 model estimates these HMM emis-

sion probabilities within a single tree stru
ture where there is a one-to-one mapping

between the leaf nodes of the HNN tree and the set of leaf nodes of all de
ision trees.

We distinguish the following three phases of building a 
ontext-dependent large vo-


abulary 
onne
tionist spee
h re
ognizer from initial state alignments of the training

data

12

:

� Tree Building: On
e the phoneti
 de
ision trees have been grown for a par-

ti
ular appli
ation domain, we 
onstru
t a Hierar
hy of Neural Networks model

12

These alignments might either be obtained by uniform segmentation or by running the Viterbi

algorithm on referen
e word trans
riptions using some other, previously trained a
ousti
 model
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for the set of leaf nodes of all de
ision trees. If the HNN is to be 
onstru
ted

using one of the 
luster algorithms presented in se
tion 5.3, we �rst have to

estimate the required Gaussian models for ea
h leaf node in ea
h de
ision tree

a

ording to the given initial state alignments.

phonetic
decision
tree

1
Hierarchy of
Neural Networks

x

Figure 5.27: Integration of a hierar
hi
al 
onne
tionist a
ousti
 model into a de
ision

tree 
lustered HMM re
ognizer

� Training: In Viterbi/label training, there is a one-to-one mapping between

target HMM state and feature ve
tor for ea
h time step. Using the appropriate

phoneti
 de
ision tree, we 
an determine the HNN leaf node that 
orresponds

to the target HMM state and assign the 
urrent feature ve
tor to the nodes on

the path from that leaf node to the HNN root node for subsequent training of
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the 
orresponding neural network estimators. In prin
iple, we 
ould also apply

forward-ba
kward HMM training but the 
omputational 
omplexity of training

the hierar
hi
al 
onne
tionist a
ousti
 model then in
reases several-fold with

hardly any gains in re
ognition performan
e.

� De
oding: Typi
ally, a frame syn
hronous Viterbi beam sear
h a

esses the

a
ousti
 model by requesting emission probabilities for a list of 
urrently a
tive

tied HMM states for ea
h time frame. This list translates into a list of HNN leaf

nodes, for whi
h we 
ompute posterior probabilities by top-down evaluation of

the relevant nodes in the tree.

5.6.2 In
orporating Priors

So far, we have been 
on
erned with the estimation of HMM state posteriors p(s

i

jx)

through a tree-stru
tured 
onne
tionist model. In the HMM framework however, we

are required to provide estimates of the HMM state emission probabilities p(xjs

i

)

also referred to as state likelihoods. Appli
ation of Bayes' rule yields an expression

for 
onverting state posteriors into state likelihoods:

p(xjs

i

) =

p(s

i

jx)

p(s

i

)

p(x)

The last term p(x) 
an be omitted in frame-syn
hronous de
oding as already men-

tioned in se
tion 3.2. A

ording to this, a s
aled likelihood 
an be 
omputed by

simply dividing the estimates of the state posteriors by the state priors:

p̂(xjs

i

) =

p(s

i

jx)

p(s

i

)

In our hierar
hi
al 
onne
tionist a
ousti
 model, we have de
omposed the state pos-

teriors into produ
ts of lo
al 
onditional node posteriors. The posterior probability

of a spe
i�
 HMM state is 
omputed by multiplying all the estimates of lo
al 
ondi-

tional posteriors on the path from root node to the leaf node representing the HMM

state (see Fig. 5.28).

Using the naming 
onventions from Fig. 5.28, a spe
i�
 HMM state posterior is


omputed a

ording to

p(s

i

jx) =

D(s

i

)�1

Y

k=0

p(N

i

(k + 1)jN

i

(k);x)

given a tree stru
ture and lo
al estimators for the 
onditional posterior probabilities

(D(s

i

) denotes the depth of the leaf node that represents the state s

i

). Now, the
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N (3) = ii S

N (2)i

N (0)

N (1)

i

i

Figure 5.28: Top-down 
omputation of state posteriors in a hierar
hi
al 
onne
tionist

a
ousti
 model

same tree stru
ture 
an be used to de
ompose the HMM state prior probabilities into

a produ
t of 
onditional prior probabilities:

p(s

i

) =

D(s

i

)�1

Y

k=0

p(N

i

(k + 1)jN

i

(k))

Thus, in addition to having a separate neural network based estimator for the 
ondi-

tional posterior probabilities at ea
h tree node, we need to estimate 
onditional prior

probabilities of 
hild nodes at ea
h tree node. This 
an simply be done by 
ounting

the o

uran
es of 
hild nodes for ea
h tree node and normalizing these 
ounts to

relative frequen
ies. Interestingly, de
omposing the priors as well as the posteriors

allows to rewrite the expression for the s
aled likelihood of HMM states su
h that we


an 
ompute it from lo
al s
aled likelihoods at ea
h node in the HNN tree:

p̂(xjs

i

) =

D(s

i

)�1

Y

k=0

p(N

i

(k + 1)jN

i

(k);x)

p(N

i

(k + 1)jN

i

(k))

Thus, as a byprodu
t of 
omputing s
aled likelihoods for an HMM state (represented

by a parti
ular leaf node), we also obtain s
aled likelihoods for the tree nodes along

the path down to that HMM state.
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p̂(xjN

i

(j)) =

j�1

Y

k=0

p(N

i

(k + 1)jN

i

(k);x)

p(N

i

(k + 1)jN

i

(k))

with 0 � j � D(s

i

)

Both the partial posterior and partial prior 
omputed down to a spe
i�
 tree node

represent valid probabilities. In fa
t, they model the posterior and prior probabilities

of the a
ousti
 unit emerging from the union of HMM states rea
hable from that node.

We gradually re�ne the estimates of the state posterior and prior probabilities on our

way from the root node down to a leaf node by in
reasing the a
ousti
 resolution from

broad phoneti
 
lasses down to single HMM states. This multi-s
ale representation

and 
omputation of the probabilities of a
ousti
 units is one of the main properties

and advantages of the hierar
hi
al approa
h presented in this thesis and will be

exploited for various purposes in later 
hapters.

Another interesting point to note is that the hierar
hi
al de
omposition of prior prob-

abilities a

ording to the tree stru
ture of an HNN and their expli
it utilization in

the modular 
omputation of s
aled likelihoods o�ers possibilities for soft stru
tural

modi�
ations absent in any 
onventional 
onne
tionist a
ousti
 model. By altering

the lo
al 
onditional priors at a spe
i�
 tree node, we 
an re-weight the 
ontribution

of the subtrees emerging from its 
hild nodes. We 
an even softly pin
h o� 
ertain

tree bran
hes 
ompletely without having to expli
itly remove these bran
hes. The

expli
it availability of state priors in 
onne
tionist a
ousti
 models is 
onsidered to be

advantageous sin
e it allows to adapt the model to di�eren
es in the prior distribu-

tions between training and test set. In monolithi
 
onne
tionist models however, the

modi�
ation of priors does not in
uen
e the stru
ture or behavior of the model itself.

In 
ontrast, the tree stru
ture of our hierar
hi
al 
onne
tionist a
ousti
 model repre-

sents just a hull of possible stru
tures that are shaped by the a
tual lo
al 
onditional

priors. This property of our model opens the door to stru
tural model adaptation

and modi�
ation of the spe
i�
ity of 
ontext modeling. We will detail this aspe
t of

the model and its appli
ation to domain-adaptive spee
h re
ognition in 
hapter 8. In

summary, it is most important to note that priors are an essential and powerful part

of our hierar
hi
al model that allow to dynami
ally 
ontrol its stru
ture, rather than

just an add-on 
orre
tion me
hanism required by the HMM formalism.

5.6.3 Embedded Training

It is possible to use so-
alled embedded Viterbi training to iteratively optimize both

the alignment of the training data, i.e. the segmentation into words, phones and HMM

states, and the parameters of a 
onne
tionist a
ousti
 model [Franzini et al. '90℄.

With respe
t to this te
hnique, our hierar
hi
al 
onne
tionist model does not di�er
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from 
onventional, monolithi
 
onne
tionist models and the same algorithm 
an be

applied:

1. Compute initial state labels for entire training set

2. Train HNN model on 
urrent state labels

3. Relabel training set using the 
urrent HNN model by performing Viterbi align-

ments

4. Unless some stopping 
riterion is ful�lled, go to step 2.

Of 
ourse, we need to provide reasonable initial state labels and we must have a


onsistent 
riterion for stopping the above iterative pro
ess. Provided that we start

from a

urate initial labels, e.g., Viterbi alignments with some other trained a
ousti


model, re
ognition a

ura
y typi
ally saturates qui
kly, requiring only 2-3 iterations

of embedded training.

5.7 Evaluation on Swit
hboard

The performan
e of hierar
hi
al 
onne
tionist a
ousti
 models in large vo
abulary

spee
h re
ognition systems has been evaluated in experiments on the Swit
hboard

telephone spee
h 
orpus. We detail the ar
hite
tures that we have 
onstru
ted and

trained and 
ompare their performan
e on this diÆ
ult but standard ben
hmark task.

5.7.1 General Setup

All of the experiments with hierar
hi
al 
onne
tionist a
ousti
 models were performed

in more or less the same general spee
h re
ognition setup whi
h is des
ribed in

the following. We were mostly using the Janus Re
ognition Toolkit (JanusRTk)

[Finke et al. '97, Zeppenfeld et al. '97℄, a state-of-the-art statisti
al spee
h re
ogni-

tion toolkit very well suited for resear
h and development due to its obje
t-oriented

modular stru
ture and its tight 
oupling with the T
l/Tk s
ripting language. For

some of the more re
ent experiments, we were using a new, 
ompletely rewritten

large vo
abulary spee
h re
ognition toolkit [Finke et al. '99℄ whi
h is parti
ularly

well suited for modeling 
onversational spee
h as, for instan
e, found in the Swit
h-

board 
orpus. Irrespe
tive of the re
ognition toolkit used, the basi
 re
ognizer 
om-

ponents (feature prepro
essing, phones set, phoneti
 di
tionary, language model, et
.)

were identi
al su
h that re
ognition results are dire
tly 
omparable. Following is an

itemized des
ription of the main 
omponents:
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� Prepro
essing: First, we applied a Hamming-windowed short-time spe
tral

analysis using a 256-point Fast Fourier Transformation (FFT) to the raw 8 kHz

audio data. The analysis window has a length of 160 samples and is shifted by 80

samples, resulting in a prepro
essing rate of 100 frames per se
ond. The power

spe
trum is then frequen
y warped using a pie
ewise linear transformation to


ompensate di�erent vo
al tra
t lengths. After transforming the power spe
tra

into a 30-dimensional log Mel-s
ale, 13-dimensional 
epstra are 
omputed by

applying a dis
rete 
osine transformation. The resulting Mel-Frequen
y Cep-

stral CoeÆ
ients (MFCC) are normalized by 
epstral mean subtra
tion for ea
h


onversation side. After adding the average log power of the analysis window,

42-dimensional ve
tors 
onsisting of the 14-dimensional stati
 features and their

�rst and se
ond order time derivatives were 
omputed. The �nal 32-dimensional

feature ve
tors were obtained by applying a trun
ated LDA transformation. We

also experimented with 39 dimensional feature ve
tors 
onsisting of 13 MFCCs

and their �rst and se
ond order time derivatives without applying the LDA and

obtained similar results.

Conventional 
ontext-independent 
onne
tionist a
ousti
 models are often built

on mu
h higher dimensional pattern ve
tors 
onsisting of a window of multiple

MFCC ve
tors extending several frames into the past and the future in order

to 
apture a higher amount of a
ousti
 
ontext and thereby improve modeling

a

ura
y. In 
ontrast to su
h impli
it in
orporation of a
ousti
 
ontext, our hi-

erar
hi
al model allows for more e�e
tive expli
it modeling of phoneti
 
ontext

whi
h is why standard prepro
essing appears to be suÆ
ient. Furthermore,

we are interested in 
ompa
t features as the number of parameters in our dis-

tributed and modular hierar
hi
al ar
hite
ture depends linearly on the feature

dimensionality.

� Phoneti
 Modeling: The set of monophones 
onsists of 1 silen
e model, 1

garbage mumble phone for modeling unknown words, 6 noise models (breathing,

human noise, non-human noise, lip sma
k, throat 
leaning and laughter) and

48 spee
h phones (
ontaining 4 spe
ial phones for modeling interje
tions). In

phoneti
 
ontext modeling, phoneti
 de
ision trees were grown only for the 48

spee
h phones and for 2 of the noises (laughter and mumble). Silen
e and all

other noises were modeled 
ontext-independently. For 
lustering pentaphone


ontext de
ision trees, a set of around 100 phoneti
 questions was asked in a

window of +/- 2 phones within words and +/- 1 phone a
ross words. Phones at

word boundaries and three di�erent stress levels are marked with spe
ial tags

whi
h 
an be queried in addition to the standard phoneti
 features.

� Pronun
iation Modeling: A

urately modeling pronun
iation variability in


onversational spee
h is an important 
omponent for automati
 spee
h re
ogni-
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tion. Pronun
iation modeling in our Swit
hboard system is based on the work

reported in [Finke '96, Finke & Waibel '97b℄. The pronun
iation di
tionary


ontains 15000 unique words with an average of 2 pronun
iation variants per

word, yielding a total of 30000 entries. 59% of the words are represented by just

a single pronun
iation variant. Some of the remaining words are represented by

up to 50 di�erent pronun
iation variants. The pronun
iation variants are gen-

erated from the baseform pronun
iations by a de
ision tree based approa
h and

asso
iated pronun
iation weights are learned from the training 
orpus. In ad-

dition, the phoneti
 di
tionary was enhan
ed by 1756 pronun
iation variants of

the 262 most frequently o

urring word-tuples (e.g., GOING-TO) and -triples

(e.g., A-LOT-OF), so-
alled multi-words. This allows to 
apture 
ross-word

pronun
iation e�e
ts mu
h better (e.g., GOING-TO ! GONNA). In a pro-


edure 
alled Flexible Trans
ription Alignment (FTA) [Finke & Waibel '97a℄,

the a
ousti
 training data is aligned against an arti�
ially enri
hed training

trans
ription represented as a dire
ted a
y
li
 graph. The graph models a va-

riety of 
onversational e�e
ts by allowing for multiple pronun
iations, optional

multi-words, optional �ller words, optional begin and end words et
. Using

the Viterbi algorithm, the best mat
hing sequen
e of words is extra
ted and

aligned for subsequent training of the a
ousti
 model. This way, FTA improves

the quality of trans
riptions whi
h was shown to yield signi�
ant gains in re
og-

nition a

ura
y.

� Language Modeling: For language modeling, we use a three-way non-linear

interpolation of Kneser-Ney [Kneser & Ney '95℄ ba
k-o� trigram models. The

three models were trained on the Swit
hboard (3M words), Callhome (200k

words) and Broad
ast News (130M words) 
orpora, respe
tively. Where noted,

we have used the Swit
hboard language model by itself in order to simplify and

speed up de
oding.

� De
oding: A state-of-the-art time-syn
hronous Viterbi beam sear
h de
oder

using a phoneti
 pre�x-tree organized lexi
on was used for generating word

latti
es and �rst best hypotheses with 
ontext-dependent a
ousti
 models. A

standardized interfa
e between the de
oder and potential a
ousti
 models allows

for easily swit
hing between 
onventional mixture based a
ousti
 models and

the hierar
hi
al 
onne
tionist a
ousti
 models presented in this thesis.

For further details on spe
i�
 aspe
ts of the spee
h re
ognition system used for our

experiments on the Swit
hboard domain, the reader is referred to [Finke et al. '97,

Zeppenfeld et al. '97℄. All re
ognition results were obtained on a subset of the oÆ
ial

1996 Swit
hboard evaluation test set 
onsisting of the �rst 30 se
onds of spee
h from
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all 40 speakers in that set, whi
h amounts to 4550 words 
ontained in a total of 20

minutes of spee
h.

5.7.2 Manually Constru
ted vs. Clustered HNNs

First, we 
ompare manually 
onstru
ted against automati
ally 
lustered Hierar
hies

of Neural Networks (HNN). An HNN for 10000 de
ision tree 
lustered tied HMM

states was manually 
onstru
ted using knowledge about phoneti
s and HMM topolo-

gies involved. Fig. 5.29 depi
ts the stru
ture of this model and the strategy applied

in de
omposing the task into a hierar
hi
al model.
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Figure 5.29: Manually 
onstru
ted HNN for 10000 HMM states

The root 
onsists of a binary node for dis
riminating between the silen
e phone and

all other phones. In the se
ond layer, another binary node is used to dis
riminate

between noise phones and spee
h phones. In the third layer, we use a 7-ary node

for dis
riminating the noise phones and a 48-ary node for dis
riminating the spee
h

monophones. In the fourth layer, we use 3-ary nodes for dis
riminating between the

begin-, middle- and end- states of the atomi
 3-state left-right HMM topologies used

for modeling spee
h and noise phones. In the �nal �fth layer, we dis
riminate between

the individual 
ontextual variations of ea
h sub-phoneti
 unit as provided by the


ontext-
lustering de
ision trees. The 
omplete tree 
ontains a total of 209 internal

nodes equipped with single hidden layer MLPs for estimating the lo
al 
onditional

posteriors. Note that the bran
hing fa
tor of the individual nodes varies 
onsiderably
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in the tree (Fig. 5.30). While the roughly 50 state nets perform 3-way 
lassi�
ation

tasks, some of the 
ontext nets perform 
lassi�
ation tasks involving more than 200


lasses.
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Figure 5.30: Bran
hing fa
tors of individual nodes in manually 
onstru
ted HNN

To make the distribution of bran
hing fa
tors more uniform, the monophone node


ould be de
omposed further a

ording to phoneti
 
lasses su
h as plosives, fri
atives,

vowels, et
. However, we would also have to de
ompose the 
ontext nodes in the �nal

layer of the HNN tree. Although this 
ould be a

omplished by 
loning the stru
ture

of the 
orresponding 
ontext de
ision trees, su
h pro
eeding would lead to a highly

imbalan
ed HNN tree whi
h is undesirable for the reasons stated in se
tion 5.2.

The manually 
onstru
ted HNN was 
ompared against a bottom-up 
lustered hier-

ar
hy for 6000 tied HMM states. We 
hose a system with 6k HMM states instead

of the above 10k HMM states in order to redu
e the number of parameters in the


lustered HNN to a value 
omparable to the manually 
onstru
ted HNN. As 
lustered

HNNs bene�t from more tree nodes, a 
omparison between 10k systems would not be

fair. In bottom-up 
lustering, we applied an additional penalty term to enfor
e tree

balan
e and avoid non-uniform priors. The resulting binary HNN was 
ompa
ti�ed

to a 10-ary HNN using the node merging algorithm presented in se
tion 5.3.2. After

experimenting with various tree bran
hing fa
tors, we found that values in the range

4-10 yield tree stru
tures that represent a good 
ompromise between resolution and


ompa
tness. Binary trees are disadvantageous be
ause they are expensive to eval-

uate and ine�e
tive in their use of parameters as they are 
omparatively deep and
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ontain the largest amount of internal tree nodes. HNN trees with bran
hing fa
tors


onsiderably larger than 10, on the other hand, are diÆ
ult to train as the 
omplexity

of the lo
al learning tasks in
reases with in
reasing bran
hing fa
tor.

depth # nodes = # hidden

# networks units/network

0 1 256

1 6 128

2 43 128

3 145 64

4 326 64

5 298 32

6 143 32

total 962

Table 5.2: Overview of bottom-up 
lustered 10-ary HNN for 6k HMM states

The �nal tree for modeling 6k HMM states has height 7 and 
onsists of 962 internal

tree nodes. A set of 962 single hidden layer MLPs was assigned to the tree nodes

and model 
omplexity was 
ontrolled by in
reasing the number of hidden units from

32 at the bottom of the tree to 256 at the top of the tree. The overall number of

parameters of this model amounts to 2.1 million, whi
h 
ompares to about 2 million

parameters 
ontained in the manually 
onstru
ted HNN. Table 5.2 gives details for

the 
lustered tree and Table 5.3 gives re
ognition results obtained with the manually


onstru
ted and the 
lustered HNN trees. Even though modeling 
onsiderably less

HMM states, the 
lustered HNN a
hieves a signi�
antly better re
ognition rate than

the manually 
onstru
ted HNN.

a
ousti
 model # states # params word error rate

manually 
onstru
ted HNN 10000 2.0 M 37.3 %

bottom-up 
lustered HNN 6000 2.1 M 35.8 %

Table 5.3: Performan
e of manually 
onstru
ted vs. 
lustered HNN

We attribute the di�eren
e in performan
e to the di�ering tree topologies. In 
ontrast

to the manually 
onstru
ted HNN tree, the bottom-up 
lustered HNN tree exhibits

small and 
omparatively uniform average bran
hing fa
tors that allow to robustly

train estimators of 
onditional posterior probabilities. Some of the lo
al 
lassi�
ation

tasks in the manually 
onstru
ted tree may not be performed a

urately due to an

ex
essively large number of 
lasses involved.
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5.7.3 S
alability

In order to demonstrate the s
alability of the hierar
hi
al 
onne
tionist modeling

framework with respe
t to the amount of phoneti
 
ontext modeling we give results

obtained with three di�erent 
lustered HNN models: (1) a tree similar to the one

in Fig. 5.9 for 3-state 
ontext-independent modeling of the 56 monophones, (2) the

tree for 6k de
ision tree 
lustered 
ontext-dependent HMM states from the previous

se
tion and (3) a tree for 24k de
ision tree 
lustered 
ontext-dependent HMM states.

To our knowledge, it has never before been attempted to 
onstru
t a 
onne
tionist

a
ousti
 model for su
h a high degree of 
ontext modeling and it would not make

mu
h sense to apply a monolithi
 ar
hite
ture to this task. However, the hierar
hi
al

de
omposition of posteriors used in our hierar
hi
al 
onne
tionist model allows to

apply this model even to as many as 24000 HMM states and bene�t from the in
reased

a
ousti
 and phoneti
 resolution.

During the 
onstru
tion phase for the 24k tree, we 
arefully experimented with di�er-

ent values for the non-uniform prior penalty in order to obtain an even more 
ompa
t

tree stru
ture than in the 
ase of 6k HMM states. The resulting tree stru
ture has

height 5 and 
ontains a total of 4046 internal tree nodes with a maximum bran
hing

fa
tor of 10. Again, we were assigning a set of 4046 single hidden layer MLPs as

estimators for the lo
al 
onditional posteriors to the tree nodes. Also, the number of

hidden units was in
reased from the bottom to the top of the tree, this time however

using values ranging from 16 to 128. The resulting hierar
hi
al 
onne
tionist a
ous-

ti
 model 
ontains a total of 3.1 million parameters distributed over the 4046 neural

networks (see Table 5.4).

depth # nodes = # hidden

# networks units/network

0 1 128

1 10 128

2 77 64

3 524 32

4 3434 16

total 4046

Table 5.4: Overview of bottom-up 
lustered 10-ary HNN for 24k HMM states

Table 5.5 gives re
ognition error rates obtained for all three HNN models. Obviously,


ontext-dependent modeling improves performan
e enormously 
ompared to 
ontext-

independent modeling. Furthermore, modeling 24000 instead of only 6000 
ontext-

dependent HMM states redu
es the word error rate by 2.5% absolute.



5.7 Evaluation on Swit
hboard 101

a
ousti
 model # states # params word error rate


ontext-independent HNN 154 0.8 M 56.4 %


ontext-dependent HNN 6000 2.1 M 35.8 %


ontext-dependent HNN 24000 3.1 M 33.3 %

Table 5.5: S
alability of hierar
hi
al 
onne
tionist a
ousti
 modeling framework

These results show that the hierar
hi
al 
onne
tionist modeling framework s
ales well

to ex
essive amounts of 
ontext modeling and that this property allows to signi�
antly

improve performan
e on Swit
hboard 
ompared to 
ontext independent modeling.

5.7.4 Joint Training

The HNN trees for 6k, 10k and 24k HMM states were trained on Viterbi state align-

ments from a mixture of Gaussians system using sto
hasti
 on-line gradient des
ent

and the joint training te
hnique presented in se
tion 5.5.1. A randomly sele
ted set

of 100 utteran
es was ex
luded from the training set and used as a validation set for

determining early stopping. The three plots in Fig. 5.31 show the evolution of various

performan
e measures on the validation set during training of the largest model built,

namely the HNN tree for 24k HMM states. Ea
h verti
al line 
orresponds to a full

pass through the available training data 
onsisting of 2500 
onversation sides with a

total of 87000 utteran
e segments.

From top to bottom, the plots show (1) the normalized log likelihood of the valida-

tion data a

ording to the given state alignments and the model trained so far, (2)

the average of the lo
al normalized log likelihood over all the 4046 
lassi�er neural

networks in the tree and (3) the average of the normalized mis-
lassi�
ation errors,

again averaged over all the 4046 tree nodes. All three 
urves level o� after about 3

passes through the training data, demonstrating that even su
h a large model 
an be

trained to 
onvergen
e in very few training iterations. Furthermore, the fa
t that the

normalized log likelihood levels o� on the validation set instead of starting to de
rease

again at some point, indi
ates that the hierar
hi
al model is very robust to over�tting

e�e
ts on the Swit
hboard domain. In 
ontrast to the training of monolithi
 
onne
-

tionist models on smaller tasks, expli
it regularization is not required in our 
ase.

Obviously, the large amount of training data

13

allows for ex
ellent generalization and

early stopping is not ne
essary. We attribute this behavior to the following aspe
ts:

� Training data 
an be 
onsidered very noisy, sin
e a large variety of di�erent

speakers and re
ording 
onditions have been 
onsidered during 
olle
tion of

13

The full Swit
hboard training 
orpus 
onsists of roughly 60 million patterns
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Figure 5.31: Monitoring performan
e on validation set during joint training of HNN

ar
hite
ture for 24k HMM states
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the 
orpus. Training with noisy data is similar to regularization and therefore

improves generalization [Bishop '95b℄.

� Some of the 3434 networks at the nodes in the lowest level of the 24k HNN tree

do not re
eive enough training samples to generalize well to unseen new data.

Although all of these networks together 
onstitute 85% of the total number of

networks in the tree, they 
ontribute just as one out of 5 (height of the tree)

networks to any parti
ular posterior probability. The networks in the upper

part of the hierar
hy have the largest in
uen
e on the posteriors 
omputed by

the tree. For those networks, the very large amount of available training data

guarantees that the validation set error approa
hes the training set error whi
h

is an indi
ator for good generalization performan
e.

5.7.5 Comparison to Conventional Models

We 
ompare the performan
e of our largest hierar
hi
al 
onne
tionist model to the

performan
e of a state-of-the-art system with a 
onventional, mixtures of Gaussians

based a
ousti
 model. For this purpose, we had available the best performing system

[Finke et al. '97℄ on the Swit
hboard part of the oÆ
ial 1997 DARPA Hub-5E eval-

uation. As the author was parti
ipating in the group of resear
hers that developed

that system, a dire
t 
omparison of the two modeling paradigms within the same

general system setup is possible. We report re
ognition error rates for two systems

that di�er only in the model for estimating HMM emission probabilities (Table 5.6).

a
ousti
 model # params word error de
oding

rate time

Hierar
hy of Neural Networks (HNN) 3.1 M 34.4% 90 xRT

Mixtures of Gaussians (CMU-ISL/Hub-5E 97) 6.6 M 31.5% 300 xRT

Table 5.6: Comparison between hierar
hi
al 
onne
tionist and 
onventional a
ousti


models on 1997 development test set

In 
ontrast to earlier experiments, these results were obtained with a single (Swit
h-

board) trigram language model. The underlying 
ontext 
lustering de
ision trees

were 
onstru
ted for the mixtures of Gaussians model and de�ne a set of 24000 tied

pentaphone HMM states. They were adopted without modi�
ations for hierar
hi
al


onne
tionist modeling. For de
oding, we have used large beams to minimize the

number of pruning errors 
aused by the heuristi
 sear
h strategy as the fo
us of this

experiment was on 
omparing the a
ousti
 models. Tightening the sear
h beam yields

faster de
oding times for both models but also in
reases the word error rate. Also, it
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should be noted that the HNN model has a slight disadvantage be
ause it was trained

only on state alignments generated with the mixtures of Gaussians model.

Considering that the mixtures of Gaussians model (a) 
ontains more than twi
e the

number of parameters, (b) went through several iterations of embedded Viterbi train-

ing and (
) was heavily optimized on the above test set during the development of

the evaluation system, the hierar
hi
al 
onne
tionist modeling framework yields per-

forman
e 
ompetitive to the best 
urrent state-of-the-art systems

14

while de
oding is

more than 3 times faster for de
oding beams that minimize the number of pruning

errors.

5.7.6 Lo
al Model Sele
tion

In another experiment, we were 
omparing a-priori determined model size against

automati
 lo
al model sele
tion. For that purpose, we 
onstru
ted a 4-ary HNN tree

for 8000 tied HMM states using the top-down divisive 
lustering algorithm. The

resulting model tree has height 9 and was equipped with single hidden layer MLPs

as shown in 
olumn 3 of Table 5.7 for the baseline model. In automati
 lo
al model

sele
tion, we used the same tree stru
ture but trained a set of MLPs with 4, 8, 16,

32, 64 and sometimes even 128 hidden units for ea
h tree node and sele
ted the one

whi
h gave minimum error on an independent validation set.

depth # nodes = # hidden units per network

# networks baseline model sele
tion

0 1 64 max 128

1 4 64 max 128

2 12 64 max 128

3 23 64 max 128

4 76 32 max 128

5 256 32 max 64

6 984 32 max 64

7 2188 16 max 64

8 330 16 max 64

total 3866

Table 5.7: Overview of top-down 
lustered 4-ary HNNs for 8k HMM states

In order to be able to easily train and test several di�erent MLPs for ea
h tree node,

we used the independent instead of the joint training te
hnique for HNN training. For

14

The oÆ
ial evaluation results on the 1997 Swit
hboard evaluation test set ranged from

35.1% (a
hieved by the CMU-ISL/Hub-5E 97 system used in the above 
omparison) to 42.9%

[Martin et al. '97℄. Note that the results in Table 5.6 were obtained on a di�erent test set.
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this purpose, we extra
ted and stored a predetermined number of feature ve
tors (up

to 150000) for ea
h node in the HNN tree in one pass through the available training

data. On
e the training data was extra
ted, neural networks for ea
h tree node were

trained sequentially on the 
orresponding training set. Fig. 5.32 shows the mean and

standard deviation of the optimal number of hidden units in ea
h tree level as found

by lo
al model sele
tion.
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Figure 5.32: Automati
 lo
al model sele
tion (see text)

As expe
ted, the average number of hidden units de
reases with in
reasing tree depth.

However, there are some nodes even in the upper levels of the tree where networks

with only 4 hidden units yield best performan
e. On the other hand, some nodes

at the bottom of the tree are equipped with networks with 64 hidden units by lo
al

model sele
tion.

a
ousti
 model # states # params word error rate

baseline HNN 8000 2.7 M 38.6 %

lo
al model sele
tion 8000 3.6 M 37.8 %

Table 5.8: E�e
t of lo
al model sele
tion on re
ognition performan
e

Finally, Table 5.8 gives re
ognition results for the baseline HNN and the HNN result-

ing from lo
al model sele
tion. Again, these results were obtained on our standard
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test set with a single (Swit
hboard) trigram language model. Lo
al model sele
tion

in
reases the number of parameters from 2.7 to 3.6 million and de
reases the word

error rate by 0.8% absolute.

5.7.7 Embedded Viterbi Training

In all the experiments reported so far, the hierar
hi
al 
onne
tionist models were

trained on state alignments that were generated with a 
onventional mixture of Gaus-

sians model. In this experiment, we investigated whether we 
an improve performan
e

by re-training on state alignments 
omputed with the hierar
hi
al 
onne
tionist model

itself. This pro
edure is 
ommonly 
alled iterative embedded Viterbi training. We

used the HNN model for 8k HMM states from the previous se
tion as our baseline

model. Table 5.9 gives word error rates for the baseline and one iteration of embedded

Viterbi training.

a
ousti
 model trained on state labels from word error rate

baseline HNN mixture of Gaussians system 38.6 %

embedded training baseline HNN 37.6 %

Table 5.9: Performan
e gain through embedded Viterbi training

Re-aligning the training data with the 
onne
tionist model followed by re-training

improved performan
e by 1.0% absolute. This results shows that state labels op-

timized with one parti
ular a
ousti
 model are not ne
essarily optimal for training

some other a
ousti
 model.
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Fast Model Evaluation

This 
hapter presents a te
hnique for eÆ
iently evaluating the hierar
hi
al 
onne
-

tionist a
ousti
 model presented in the previous 
hapter. Based on exploiting the

hierar
hi
al stru
ture by means of dynami
 tree pruning, it allows to a

elerate the

evaluation of posterior state probabilities in hierar
hies of neural networks 
onsider-

ably. While dynami
 tree pruning represents a te
hnique for trading-o� re
ognition

speed against a

ura
y, we present experimental results that indi
ate that the eval-

uation of a hierar
hi
al 
onne
tionist a
ousti
 model 
an be sped up by a fa
tor of

almost 10 with hardly any in
rease in word error rate. Furthermore, dynami
 tree

pruning 
an be realized by adding a single line of 
ode as the potential for fast evalua-

tion is inherent to the ar
hite
ture. In 
ontrast, 
onventional a
ousti
 models require

additional stru
tures for determining relevant subsets of HMM states to be evaluated

and do not provide 
omparably high speed-ups.

6.1 Real-Time Spee
h Re
ognition

Today, automati
 spee
h re
ognition te
hnology still is 
omparably demanding in

terms of memory and pro
essing speed requirements. For instan
e, state-of-the-

art resear
h systems for large vo
abulary 
onversational spee
h re
ognition on the

Swit
hboard domain were reported to require 200-300 MBytes of RAM and to run

in 100-300 times real-time (xRT)

1

on standard hardware [Martin et al. '97℄. More

re
ently, there have been substantial e�orts in speeding up resear
h systems whi
h

led to a new Spoke 
ondition in the Broad
ast News evaluation for systems that run

at about 10xRT and faster [DAR '98℄. For 
ommer
ial appli
ations, a spee
h re
og-

nition system often has to 
ope with limited resour
es and has to ful�ll real-time


onstraints in order to be useful.

1

100xRT means that it takes 100 se
onds to de
ode an utteran
e of 1 se
 duration.

107
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Regardless of the spe
i�
 type of a
ousti
 model being employed, the approa
hes to

speeding up a statisti
al spee
h re
ognition system always follow the same general

pattern. Fig. 6.1 illustrates this pro
ess in terms of the distribution of 
omputations

into two broad 
lasses: (1) evaluating the a
ousti
 model and (2) de
oding (where

de
oding 
ontains evaluating the language model).
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Figure 6.1: From resear
h to real-time systems: qualitative analysis of proportion of

time spent in a
ousti
 model evaluation vs. a
tual de
oding

As the qualitative analysis of Fig. 6.1 shows, the evaluation of the a
ousti
 model


onstitutes only a very small proportion of the overall 
omputations in a typi
al

resear
h system. Most of the time is spent in de
oding word hypotheses as pruning

beams are kept large to avoid sear
h errors. The �rst step in speeding up a Viterbi

beam sear
h based de
oder therefore always is to tighten the pruning beams whi
h

vastly redu
es overall 
omputations. Small in
reases in word error rate typi
ally

have to be tolerated in this step as sear
h errors are introdu
ed. The middle plot

in Fig. 6.1 shows the impli
ations of tight de
oding beams on the distribution of


omputations. While the time spent in a
tual de
oding has been redu
ed signi�
antly,

the proportion of time spent in evaluating a
ousti
 model s
ores all of a sudden

dominates the overall running time and 
an 
onsume even more than 80% of the

total amount of 
omputation in a spee
h re
ognition system. Applying some kind

of te
hnique for fast, approximative a
ousti
 model evaluation be
omes 
ru
ial for

a
hieving automati
 spee
h re
ognition in real-time with an approximately uniform

distribution of 
omputations among a
ousti
 model evaluation and a
tual de
oding.

Consequently, there has been a large body of work on te
hniques for speeding up the

evaluation of 
onventional mixture densities based a
ousti
 models (e.g., [Watanabe
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et. al. '94, Frits
h et. al. '95, Frits
h & Rogina '96, Knill et. al. '96, Ravishankar

'96℄). Some of these approa
hes are based on applying a tree stru
ture to qui
kly and

dynami
ally determine a signi�
antly redu
ed set of HMM states with potentially

high emission probabilities. Only the likelihoods of states in this redu
ed set are fully

evaluated, the likelihoods of all others are approximated. Speed-ups in the evaluation

of the a
ousti
 model on the order of a fa
tor of 3-5 with virtually no or only a modest

in
rease in word error rate have been reported using su
h te
hniques. However, the


omputation required to 
onstru
t the additional stru
tures for determining redu
ed

sets of HMM states and the additional memory required to store these stru
tures

sometimes limits the usefulness of these te
hniques in pra
ti
e.

Consider now the hierar
hi
al 
onne
tionist a
ousti
 model presented in the previous


hapter. This model already is organized in a tree stru
ture whi
h 
an be exploited

for fast, approximative evaluation without a need for additional stru
ture as we will

shortly see. In addition, improved lo
al dis
rimination of HMM states in the hier-

ar
hi
al 
onne
tionist model allows to speed-up model evaluation more aggressively

than in the 
ase of 
onventional models.

6.2 Dynami
 Tree Pruning

For any given time frame, the s
ores of HMM states with high posterior probabil-

ity of emitting the 
urrent feature ve
tor have to be evaluated with high a

ura
y

as they are most likely to in
uen
e the result hypothesis of a Viterbi beam sear
h.

However, the majority of HMM states exhibit 
omparably small posterior probabil-

ities of emitting the 
urrent feature ve
tor. It is suÆ
ient to eÆ
iently 
ompute

approximations of the s
ores of these states whi
h allows to save a large propor-

tion of overall 
omputations. The tree-stru
tured top-down 
omputation of posterior

probabilities in a hierar
hi
al 
onne
tionist a
ousti
 model allows to implement this

idea in form of dynami
 tree pruning [Frits
h & Finke '98a℄. A similar pruning te
h-

nique has been proposed by [Waterhouse & Robinson '95, Waterhouse '97℄ for fast

approximative evaluation of hierar
hi
al mixtures of experts [Jordan & Ja
obs '94℄.

The posterior probability of an HMM state in a Hierar
hy of Neural Networks is


omputed as the produ
t of the 
onditional node posteriors along the path from root

node to the spe
i�
 leaf node representing the HMM state (see Fig. 5.28):

p(s

i

jx) =

D(s

i

)�1

Y

k=0

p(N

i

(k + 1)jN

i

(k);x)

where D(s

i

) is the depth of the leaf node, x is the 
urrent feature ve
tor and the

N

i

(k); 8k = f1; : : : ; D(s

i

)g denote the tree nodes along the path from root to s

i

. As

ea
h of the 
onditional node posteriors in the above produ
t ful�lls the 
onstraint
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0 � p(N

i

(k + 1)jN

i

(k);x) � 1

the top-down 
omputation of p(s

i

jx) yields monotoni
ally de
reasing partial posterior

probabilities

p

?

j

(s

i

jx) =

j�1

Y

k=0

p(N

i

(k + 1)jN

i

(k);x) 8j 2 f1; : : : ; D(s

i

)g

p

?

j

(s

i

jx) � p

?

j�1

(s

i

jx)

with p(s

i

jx) = p

?

D(s

i

)

(s

i

jx). The monotoni
ity of partial posteriors implies that the

posterior probability of HMM states in a subtree 
an never be
ome larger than the

partial posterior 
omputed down to the root node of that subtree. This allows to eÆ-


iently identify subtrees that 
ontain HMM states with posterior probability less than

a given threshold �. As the s
ore of these dynami
ally determined low-probability

states does not have to be 
omputed with full a

ura
y, we 
an stop evaluating 
on-

ditional posteriors on our way down the tree a

ording to the following rule

if p

?

j

(s

i

jx) < �; stop top-down evaluation

Fig. 6.2 illustrates dynami
 tree pruning for the 
ase of a binary tree. For the spe
i�


feature ve
tor in this example, only the shaded nodes have to be evaluated. All others

lie on paths with partial probability smaller than �. The dashed boxes represent the

subtrees that are not evaluated. The posterior probabilities of all HMM states in su
h

a dashed box are tied and approximated by some fun
tion of the partial posterior at

the asso
iated root node.

Several strategies for assigning posteriors to HMM states in pruned subtrees have

been investigated in this thesis. Although the speed-up in evaluating the a
ousti


model stand-alone is identi
al for all these strategies (depending only on the pruning

threshold �), the e�e
t on senten
e de
oding in a 
omplete re
ognition system are

very di�erent. Consider the 
ase that the partial posterior p

?

j

(s

i

jx) < � for some

j < D(s

i

):

� Partial Posterior Pruning (PPP):

In partial posterior pruning, we assign the partial posterior 
omputed down to

the node where pruning o

urs to the HMM states in the 
orresponding subtree:

p(s

i

jx) = p

?

j

(s

i

jx)

This partial posterior is an upper bound on the posterior probabilities of the

HMM states in the subtree and therefore overestimates the true posteriors. For

that reason, PPP might even slow down de
oding and be 
ounterprodu
tive for

very small �.
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� Uniform Posterior Pruning (UPP):

In uniform posterior pruning, we s
ale the partial posterior by a fa
tor 
 = 1=N ,

where N is the number of HMM states in the pruned subtree:

p(s

i

jx) = 
 p

?

j

(s

i

jx)

This rule distributes the partial posterior uniformly among all HMM states

in the pruned subtree and thereby ensures that the hierar
hi
al 
onne
tionist

a
ousti
 model 
omputes a valid overall posterior probability distribution.
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Figure 6.2: Dynami
 tree pruning

� State Dea
tivation Pruning (SDP):

In state dea
tivation pruning, we e�e
tively dea
tivate the HMM states in the

pruned subtree by setting

p(s

i

jx) = 0

This strategy indire
tly speeds up de
oding signi�
antly as partial hypothe-

ses that end with one of the pruned states get pruned immediately as their

s
ore falls out of the de
oder's pruning beam. We have termed this te
hnique

state dea
tivation pruning as it is similar in spirit to phone dea
tivation prun-

ing [Renals '96℄. However, in 
ontrast to phone dea
tivation pruning whi
h
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was proposed in the 
ontext of a monolithi
 
onne
tionist model, SDP in a

hierar
hi
al a
ousti
 model additionally yields signi�
ant savings in s
ore 
om-

putation as only parts of the hierar
hy have to be evaluated. It should be noted

though, that phone dea
tivation pruning may also yield savings in s
ore 
om-

putation if the monolithi
, 
ontext-independent a
ousti
 model is augmented

with 
ontext-dependent modules as in [Kershaw et al. '95℄.

In the remainder, we present experiments and results of dynami
 tree pruning in

hierar
hi
al 
onne
tionist a
ousti
 models. We evaluate the above three strategies in

terms of their e�e
t on re
ognition speed and word error rate.

6.3 Experimental Evaluation

All of the experiments with dynami
 tree pruning have been 
arried out on the Swit
h-

board 
orpus, using a re
ognition setup identi
al to the one used for the experiments

in 
hapter 5. We �rst analyze the e�e
t of dynami
 tree pruning on the hierar
hi
al


onne
tionist ar
hite
ture in isolation and then take a look at the e�e
ts on de
od-

ing speed and word error rate in a 
omplete large vo
abulary 
onversational spee
h

re
ognition system.

6.3.1 Pruning Hierar
hies of Neural Networks

For the experiments reported here, we have sele
ted two of the HNN a
ousti
 models


onstru
ted in the previous 
hapter, one for 8000 tied HMM states, the other one for

24000 tied HMM states. We �rst take a look at the e�e
t of dynami
 tree pruning

on the average per
entage of tree nodes that have to be evaluated in the HNN.

Fig. 6.3 shows the impa
t of the pruning threshold � on the amount of 
omputations

required in the a
ousti
 model. The out
ome of this experiment is independent

of the pruning strategy as the a
ousti
 model was evaluated stand-alone (without

subsequent de
oding).

The baseline per
entage (no pruning) for these 
urves is 65% (not 100%) as this is

a typi
al average number of HMM states for whi
h the de
oder requests emission

probabilities for ea
h frame. The per
entage of nodes that have to be evaluated is

roughly halved for pruning thresholds of � � 10

�5:5

for the model with 8000 leaf

nodes and � � 10

�6:5

for the model with 24000 leaf nodes. A speed-up of about 10

in 
omputation of a
ousti
 s
ores 
an be a
hieved by setting � � 10

�3

for the 8k

model and � � 10

�4

for the 24k model.

Next, we take a look at the per
entage of HMM states for whi
h the posterior prob-

abilities are 
omputed with full a

ura
y, i.e. for whi
h the partial posteriors are


omputed 
ompletely down to the leaf nodes (see Fig. 6.4).
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Figure 6.3: E�e
t of dynami
 tree pruning on per
entage of evaluated tree nodes
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t of dynami
 tree pruning on per
entage of HMM states fully eval-

uated
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This time we 
onsider only those HMM states for whi
h an estimate of the emission

probability is requested by the de
oder, thus the baseline for no pruning is 100%.

Dynami
 tree pruning starts to redu
e the number of fully evaluated HMM states for

� � 10

�13

. The 
urves in Fig. 6.4 are very similar to those in Fig. 6.3, however one


an make an interesting observation. The e�e
t of pruning with a given threshold �

is stronger in 
ase of the 24k model 
ompared to the 8k model. As a 
onsequen
e,

speed-ups are larger for the 24k model than for the 8k model, given equal pruning

thresholds. Of 
ourse, speed-up by itself means nothing if not set in relation to the

e�e
t of pruning on the a

ura
y with whi
h posterior probabilities are estimated

in an HNN. The following Fig. 6.5 depi
ts how the average (negative logarithmi
)

posterior probability of the 
orre
t model (along Viterbi alignments of the validation

set) is in
uen
ed by the dynami
 tree pruning threshold �.
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Figure 6.5: E�e
t of dynami
 tree pruning on posteriors

Here, we have applied partial posterior pruning (PPP) to assign probabilities to

pruned HMM states. PPP was 
hosen be
ause pruning errors show up 
learly in

form of overestimation of posteriors with this pruning strategy. This allows to easily

�nd useful operating points for the threshold �. Up to a pruning threshold of about

� = 10

�4

, the posterior probabilities along the alignments of the 
orre
t hypotheses

are hardly in
uen
ed by dynami
 tree pruning. Above this however, pruning starts

to in
uen
e the probability of the 
orre
t HMM states. As already dis
ussed before,

PPP overestimates the true posterior probabilities whi
h is experimentally 
on�rmed

by the plots in Fig. 6.5. Still, for � = 10

�4

we 
an a
hieve speed-ups of a fa
tor of



6.3 Experimental Evaluation 115

10 and more in evaluating the state posteriors with almost no e�e
t on the s
ore of

the 
orre
t hypotheses.

6.3.2 Pruning during De
oding

We now investigate the e�e
t of dynami
 tree pruning on a 
omplete large vo
abulary


onversational spee
h re
ognition system. To this end, we use the HNN a
ousti


model for 24000 HMM tied states in the re
ognition system des
ribed in se
tion 5.7.

The baseline system with no pruning in the hierar
hi
al 
onne
tionist a
ousti
 model

and wide de
oding beams runs in 145 times real-time (xRT) on a 300 MHz Sun

UltraSpar
 and a
hieves a word error rate of 34.4% on a subset of 12 speakers taken

from the 1996 Swit
hboard evaluation test set.

As a �rst step, we tighten the de
oding beams until performan
e starts to de
rease

due to sear
h errors. Tighter de
oding beams allow us to speed-up the re
ognition

system to roughly 90xRT with a small in
rease in word error rate to 34.8%. For

even tighter beams the word error rate in
reases 
onsiderably. In 
ontrast to other

less diÆ
ult domains, the 
onversational style of speaking and the poor quality of

telephone 
hannels in the Swit
hboard domain leads to di�use a
ousti
 models and

a 
omparably high amount of 
onfusion during de
oding. That in turn limits the

re
ognition speed obtainable by tightening the de
oding beams su
h that real-time

operation without signi�
ant losses in re
ognition a

ura
y appear impossible on

today's standard hardware. However, we next show that applying dynami
 tree

pruning to the hierar
hi
al 
onne
tionist a
ousti
 model yields 
onsiderable savings

in both the evaluation of the a
ousti
 model and in de
oding.

Consider �rst the impa
t of dynami
 tree pruning on the de
oding time. Fig. 6.6

shows a plot of the real-time fa
tors obtained with dynami
 tree pruning for all three

pruning strategies introdu
ed earlier. As mentioned earlier, the baseline speed for no

pruning is a de
oding time of roughly 90 times real-time. As expe
ted, the required

de
oding time de
reases with in
reasing pruning threshold �

2

. Furthermore, SDP

yields the largest gains in re
ognition speed, followed by UPP. PPP on the other

hand yields 
omparably small gains in re
ognition speed espe
ially for high pruning

thresholds. Note that the di�erent gains in re
ognition speed obtained by these three

pruning strategies re
e
t the di�eren
es in their ability to indire
tly prune the sear
h

spa
e and thereby speed-up de
oding. The gains in evaluating the a
ousti
 model

itself are identi
al for all three methods.

Of 
ourse, the gains in re
ognition speed obtained by dynami
 tree pruning must

be 
ontrasted with the impa
t on the re
ognition error rate in order to determine

appropriate values for the pruning threshold � and to assess and 
ompare the quality

2

Again, note that higher pruning thresholds 
orrespond to smaller values on the x-axis in these

plots, due to the negative logarithmi
 transform applied
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of ea
h one of the above pruning strategies. Fig. 6.7 shows how di�erent pruning

thresholds a�e
t the re
ognizer's word error rate for all three pruning strategies.

This plot reveals that although SDP yields high gains in re
ognition speed, it also


auses signi�
ant in
reases in word error rate. In 
ontrast, PPP and UPP exhibit

a more gentle in
uen
e on re
ognition a

ura
y. In fa
t, for the range of pruning

thresholds shown in Fig. 6.7 the re
ognition a

ura
y is not a�e
ted adversely at all.

It is interesting to analyze the e�e
ts of dynami
 tree pruning by means of a 
ombined

plot of re
ognition speed and a

ura
y. Fig. 6.8 depi
ts the trade-o� between re
og-

nition speed and a

ura
y indu
ed by dynami
 tree pruning in a single graph. Here,

we have investigated a bigger range of pruning thresholds from 10

�9

� � � 10

�3

in

order to make the trade-o� more obvious.

34

36

38

40

42

44

46

10 20 30 40 50 60 70 80 90 100

w
or

d 
er

ro
r r

at
e 

[%
]

decoding time [xRT]

Word Error Rate vs. Decoding Time

SDP
UPP
PPP

Figure 6.8: Word error rate vs. de
oding time for varying pruning threshold in

dynami
 tree pruning

6.4 Dis
ussion

Based on the above experiments and results, the usefulness and appli
ability of the

proposed pruning strategies appear as follows:

� Partial Posterior Pruning (PPP):

PPP yields 
omparably small gains in re
ognition speed and furthermore slows
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down de
oding for high pruning thresholds su
h that the usefulness of this

te
hnique is rather restri
ted.

� Uniform Posterior Pruning (UPP):

UPP yields gains in overall re
ognition speed of up to a fa
tor of 6 over the

wide beam baseline system without negative e�e
ts on the re
ognition a

u-

ra
y. Be
ause of its moderate impa
t on re
ognition a

ura
y for high pruning

thresholds, UPP should be regarded as the standard pruning strategy for dy-

nami
 tree pruning.

� State Dea
tivation Pruning (SDP):

SDP yields 
onsiderably higher gains in re
ognition speed than those obtainable

by UPP (up to a fa
tor of 11). However, su
h high gains de
rease the re
ognition

a

ura
y noti
eably. Therefore SDP should only be applied with 
omparably

small pruning thresholds � or in 
ases where the speed-ups obtained by UPP

are not suÆ
ient for the parti
ular appli
ation.

The following table 6.1 summarizes our results for speeding up a large vo
abulary


onversational spee
h re
ognition resear
h system in terms of word error rate and

asso
iated de
oding times. The baseline word error rate of 34.4% 
an be maintained

while speeding up the system by a fa
tor of 6 using uniform posterior pruning (UPP).


ondition word error rate (%) de
oding time (xRT)

baseline 34.4 145

tight de
oding beams 34.8 91

moderate dynami
 tree pruning 34.6 24

aggressive dynami
 tree pruning 45.1 13

Table 6.1: Summary of results for fast model evaluation on Swit
hboard

Allowing a 30% relative in
rease in the word error rate, we 
an even speed-up the

system by a fa
tor of 13 using the more aggressive state dea
tivation pruning (SDP).

Note that these results have been obtained with a large and 
omplex evaluation sys-

tem using the largest and most a

urate hierar
hi
al 
onne
tionist a
ousti
 model

(24000 tied states) that we have build so far. The te
hniques presented in this 
hap-

ter allow us to redu
e the turn-around times during the development of evaluation

systems signi�
antly from 145 times real-time to 24 times real-time without a loss in

re
ognition a

ura
y.
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Speaker Adaptation

This 
hapter presents an algorithm for e�e
tively adapting the parameters of a

speaker-independent hierar
hi
al 
onne
tionist a
ousti
 model to the 
hara
teristi
s

of a spe
i�
 speaker. In 
ontrast to existing a
ousti
 models su
h as those based

on mixture densities, the proposed hierar
hi
al 
onne
tionist model does not require

additional model parameter tying me
hanisms su
h as regression 
lass trees for e�e
-

tive adaptation of the model to spe
i�
 speakers in the 
ase of limited amounts of

adaptation data. Rather, we bene�t from the multi-level tree-stru
tured representa-

tion of HMM states in our hierar
hi
al 
onne
tionist model whi
h inherently realizes

parameter tying a

ording to a
ousti
 similarity.

7.1 Introdu
tion

In some very rare 
ases, it is adequate to train the a
ousti
 model of a spee
h re
og-

nition system on data from a single speaker, yielding a so-
alled speaker-dependent

system. In most 
ases however, we are more interested in speaker-independent models

that do not require data from a potential user during training. The parameters of a

speaker-independent a
ousti
 model are trained on data from several hundred di�er-

ent speakers in order to a
hieve robustness to unseen speakers. Unfortunately, this

strategy not only in
reases robustness but also degrades overall system performan
e

be
ause of an in
rease in model varian
e. Fig. 7.1 illustrates this for two hypotheti


a
ousti
 models A and B. The in
orporation of distributions from several speakers

in
reases the varian
e of A and B 
ompared to a single speaker and thereby in
reases

their overlap whi
h makes it harder to distinguish the two 
lasses.

Generally, the error rate of a speaker-independent system is about twi
e as high as

that of a speaker-dependent system. To 
lose the gap in performan
e in 
ases where

speaker-independent modeling is unavoidable as for example in 
ommer
ial di
tation

systems, various methods for speaker adaptation have been proposed as a means for

119
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A
B

A

B

Figure 7.1: Speaker-dependent (left) vs. speaker-independent (right) models

improving the performan
e of su
h models on a spe
i�
 speaker. In any 
ase, speaker

adaptation requires some a
ousti
 data from the target speaker, so 
alled adaptation

data. We distinguish the following two prin
iple strategies for speaker adaptation:

� Feature based adaptation: The prepro
essed a
ousti
 data of the target

speaker is normalized by applying some kind of transformation su
h that the

performan
e of the a
ousti
 model improves on that data. A popular example

of this strategy is vo
al tra
t length normalization (VTLN) whi
h attempts

to normalize spee
h spe
tra for di�ering lengths of the vo
al tra
t. In other

approa
hes, spee
h 
epstra are transformed by a general linear or aÆne map

whi
h is obtained by maximum likelihood estimation on the adaptation data.

Feature based adaptation typi
ally yields only moderate gains in a

ura
y as

a single (linear) transformation of the input features does not allow to 
apture

the 
hara
teristi
s of di�erent speakers.

� Model based adaptation: Here, we follow the opposite strategy. Instead

of transforming the input features su
h that the probability that our model

has generated it is maximized, we transform the model to �t the data. At

�rst glan
e, we might 
laim that there is no real di�eren
e between these two

approa
hes. However, in model based adaptation, one typi
ally applies di�er-

ent transformations to di�erent HMM states or even to di�erent 
omponent

densities in a mixture model and thereby takes into 
onsideration the 
omplex

variation in the a
ousti
 realization of di�erent polyphones a
ross speakers. The

most popular example for this strategy is Maximum Likelihood Linear Regres-

sion (MLLR) [Leggetter & Woodland '94℄ whi
h applies linear (a
tually aÆne)

transformations to the means (and potentially also to the varian
es) of Gaus-

sians in a mixture densities based a
ousti
 model. In fa
t, MLLR has evolved
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to now being the standard te
hnique for speaker adaptation in mixture based

a
ousti
 modeling.

Interestingly, it has been found that the gains obtained from feature and model

based adaptation are nearly additive [Pye & Woodland '97℄, suggesting that both

approa
hes 
over di�erent aspe
ts of the variation among speakers. Depending on

whether referen
e trans
riptions are available with the a
ousti
 adaptation data or

not, we furthermore distinguish between supervised and unsupervised speaker adap-

tation:

� Supervised adaptation: For ea
h adaptation utteran
e both the a
ousti


data (e.g., 
epstra) and the referen
e word trans
ription are available (as is

the 
ase in training). Using the Viterbi algorithm, a state alignment 
an be

generated that assigns HMM states to a
ousti
 pattern ve
tors for ea
h time

frame. For instan
e, supervised adaptation is typi
ally in
orporated into a

di
tation system in form of an enrollment phase where the user has to read

adaptation senten
es that are provided by the system before he/she is allowed

to use the system.

� Unsupervised adaptation: Only the a
ousti
 data is available for ea
h adap-

tation utteran
e. In order to obtain the state alignments required for most adap-

tation algorithms, the adaptation utteran
e is �rst de
oded with the speaker-

independent a
ousti
 model, yielding a senten
e hypothesis. This senten
e hy-

pothesis (although probably 
ontaining erroneous words) is then aligned with

the adaptation data by applying the Viterbi algorithm

1

. If available, estimates

of word 
on�den
e 
an be used to mask portions of the senten
e that are 
on-

sidered unreliable by the re
ognizer. Unsupervised adaptation does not require

user 
ooperation in form of an enrollment phase but 
an be applied while the

re
ognizer is in use. However, unsupervised adaptation yields lower gains in

re
ognition a

ura
y than supervised adaptation.

The approa
h to speaker adaptation that we present in the remainder of this 
hapter

falls into the 
ategory of model based adaptation algorithms. We present and evaluate

it in the 
ontext of unsupervised speaker adaptation on the Swit
hboard domain but

it 
an just as well be applied to supervised adaptation as we will demonstrate in


hapter 8.

1

Often, a Viterbi de
oder already provides a state alignment of the senten
e hypothesis.
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7.2 Limited Amounts of Adaptation Data

An important aspe
t of speaker adaptation that has to be addressed by any adapta-

tion algorithm is data sparsity resulting from limited amounts of available adaptation

data. A typi
al state-of-the-art a
ousti
 model for large vo
abulary spee
h re
ogni-

tion models several thousand distin
t HMM states. For instan
e, 
onsider a mixture

density based a
ousti
 model for 8000 HMM states trained on the Swit
hboard 
or-

pus. Fig. 7.2 depi
ts the 
overage of this set of HMM states for various amounts of

adaptation data (assuming a prepro
essing rate of 100 frames per se
ond).
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Figure 7.2: Data sparsity problem in speaker adaptation

About 5 minutes of adaptation data yield at least a single pattern ve
tor (sample)

for half of the HMM states. In order to 
over 90% of all HMM states with at least

a single pattern ve
tor, over 35 minutes of adaptation data is required. However,

observing a single pattern ve
tor 
learly does not allow to estimate an MLLR adap-

tation transformation. If we demand that more than 100 pattern ve
tors (samples)

be observed per state, even a full hour of adaptation data only yields a 
overage of

6.5% of all HMM states.

In pra
ti
e, the amount of available adaptation data per speaker often is mu
h lower.

The Swit
hboard 
orpus, for instan
e, 
onsists of telephone 
onversations between

two speakers with an average duration of about 6 minutes and a maximum duration

of about 10 minutes. Fig. 7.3 depi
ts a histogram plot showing the distribution of the

amount of spee
h available per 
onversation side (speaker) in the 
orpus. There is a
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sharp peak at around 3 minutes of data per speaker. For that amount of data, almost

two thirds (65%) of the 8k HMM states in the above mentioned a
ousti
 model will

not be observed at all. Clearly, some kind of transformation tying must be introdu
ed

su
h that the large proportion of unobserved models 
an also bene�t from these small

amounts of adaptation data. Furthermore, tying is 
ru
ial for a

umulating enough

data for robust estimation of the parameters of an adaptation transformation.
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Figure 7.3: Histogram plot of amount of available data for 20000 Swit
hboard 
on-

versation sides

The standard approa
h to transformation tying uses a pre
omputed regression 
lass

tree for assigning a small, data dependent number of MLLR transformations (
or-

responding to the leaf nodes of the regression 
lass tree) to the set of 
omponent

densities of all mixtures. A regression 
lass tree is 
omputed by top-down 
lustering

the set of 
omponent densities a

ording to a
ousti
 similarity down to a 
ertain

number of leaf nodes that depends on the amount of available adaptation data (see

Fig. 7.4). The more adaptation data we have available, the deeper the regression


lass tree. At ea
h leaf node of the regression 
lass tree, a single MLLR adaptation

transformation is estimated from the joint data of all 
omponent densities tied to

that leaf node and then applied to transform the parameters of the tied 
omponent

densities.

This way, it is possible to adapt even the 
omponent densities in HMM states that

have not been observed in the adaptation data. However, su
h regression 
lass tree

based MLLR requires to 
ompute and store the additional tying stru
ture as the
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Figure 7.4: Transformation tying in regression tree based MLLR of 
onventional

a
ousti
 models


onventional a
ousti
 model itself exhibits no stru
ture at all. Interestingly, the

tying stru
ture that is missing in 
onventional a
ousti
 models is readily available

in a hierar
hi
al 
onne
tionist a
ousti
 model. Consequently, this kind of model

inherently supports e�e
tive adaptation with limited amounts of adaptation data and

the 
orresponding adaptation algorithm turns out to be mu
h simpler and requires

no additional stru
ture.

7.3 Adaptation Algorithm for HNN Models

In our implementation of a speaker adaptation algorithm for the hierar
hi
al 
onne
-

tionist a
ousti
 model presented in this thesis, we exploit the multi-level state tying

inherent to this tree stru
tured model. When presenting training or adaptation data

to the hierar
hy, the available amount of data at ea
h node in
reases from the bottom

to the top of the tree. The root node of an HNN tree re
eives all data presented to the

a
ousti
 model and its estimates of posterior and prior probabilities are 
ontributing

to all the HMM states. Thus, the root node realizes the highest level of parameter

sharing in this model and therefore is our primary 
andidate for model adaptation.

Depending on the amount of available adaptation data, we might also adapt the tree

nodes in the level below the root node and so on.

Following the above lines of thought, we 
an formulate a general method for speaker

adaptation in the hierar
hi
al a
ousti
 model (Fig. 7.5). It 
onsists of the three

steps 
ounting, node sele
tion and node adaptation. First, the available amount
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of adaptation data is 
omputed for ea
h tree node. The single free parameter in

the algorithm is the adaptation threshold C

min

whi
h de�nes how many samples are


onsidered to form 'enough data' for adapting the parameters of a node. Based on

this threshold, we sele
t tree nodes for adaptation in the se
ond step.

HNN Speaker Adaptation Algorithm

1. Counting:

(a) Compute state labels for the adaptation data using Viterbi alignments

of either the 
orre
t trans
ripts (supervised adaptation) or the word

hypotheses generated by the re
ognizer (unsupervised adaptation).

(b) For ea
h HMM state: 
ount the number of adaptation samples assigned

to that state a

ording to the state alignments.

(
) Assign these state 
ounts to the 
orresponding leaf nodes in the HNN

tree. Compute HNN node 
ounts C(N

i

) for all nodes N

i

in a bottom-up

fashion:

C(N

i

) =

X

N

j

2CHILDREN(N

i

)

C(N

j

)

2. Node Sele
tion:

(a) Determine a reasonable minimum number of adaptation samples re-

quired to adapt a HNN tree node, the adaptation threshold C

min

.

(b) Sele
t all HNN nodes N

i

for adaptation that satisfy C(N

i

) � C

min

.

3. Adaptation of Sele
ted Nodes:

(a) Adapt lo
al estimator of 
onditional a-posteriori probabilities

(b) Adapt estimates of the prior probabilities of 
hild nodes

Figure 7.5: Outline of speaker adaptation algorithm for hierar
hi
al 
onne
tionist

a
ousti
 model

Finally, we adapt the parameters of the sele
ted nodes based on the available adap-

tation data. It is very important to note that both the lo
al estimator of posterior

probabilities (a neural network in our 
ase) and the estimates of 
hild prior proba-

bilities need to be adapted in ea
h sele
ted node as we use the model to 
ompute

s
aled likelihoods. Nodes that re
eive less than C

min

samples of adaptation data are

not adapted by the algorithm. Although this might potentially lead to a mismat
h

between the adapted and the unadapted nodes in the tree stru
ture, the bene�t of
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(1) improved dis
rimination in the sele
ted and adapted tree nodes, and of (2) the

signi�
ant amount of sharing of these nodes among the HMM states is expe
ted to


ompensate su
h an e�e
t.

7.3.1 Node Sele
tion

For a given 
onstant adaptation threshold C

min

, di�erent numbers of tree nodes

will be sele
ted for di�erent speakers, depending on the amount of available adap-

tation data. This is exa
tly the behavior we desire in speaker adaptation: With

in
reasing amount of adaptation data the number of tree nodes subje
t to adapta-

tion in
reases until eventually all tree nodes are adapted to the 
hara
teristi
s of

a parti
ular speaker. In pra
ti
al appli
ations of speaker adaptation however, the

amount of available adaptation data typi
ally is very limited and allows to adapt

only a small proportion of all tree nodes. Figs. 7.6 and 7.7 depi
t the situation for

small and medium amounts of adaptation data.

NN NN NN NN

NNNN

NNse
le

ct
ed

Figure 7.6: Adaptive sele
tion of HNN nodes: small amount of adaptation data

For our investigation of speaker adaptation of hierar
hi
al 
onne
tionist a
ousti
 mod-

els on the Swit
hboard spee
h 
orpus, we 
hose the previously mentioned HNN model
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Figure 7.7: Adaptive sele
tion of HNN nodes: medium amount of adaptation data

for 8000 tied HMM states and a set of 20 representative speakers from the 1996 eval-

uation test set. The amount of available adaptation data for ea
h speaker varies

between 1 minute and 7 se
onds to 3 minutes and 16 se
onds. Fig. 7.8 depi
ts the

minimum, mean and maximum number of tree nodes sele
ted for adaptation on that

test set, depending on the value of the adaptation threshold C

min

.

Assuming for instan
e, that C

min

= 2000 yields enough data for robustly adapting

HNN tree nodes, our algorithm sele
ts between 2 and 7 tree nodes for adaptation.

7.3.2 Node Adaptation

Before we 
an answer the question of how to set the value of C

min

, we �rst dis
uss

methods for adapting the parameters of a parti
ular HNN tree node as the 
hoi
e of

adaptation method will determine the amount of adaptation data required. As men-

tioned above, adaptation of HNN tree nodes requires to adapt the neural network

that estimates lo
al 
onditional posterior probabilities and furthermore to adapt the

estimates of the prior probabilities of 
hild nodes. Severe mismat
hes between pos-

teriors and priors will lead to degraded performan
e if we only adapt one of the two

distributions in a 
onne
tionist a
ousti
 model.

Let's �rst 
onsider the task of adapting the neural network for estimating lo
al 
on-
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Figure 7.8: Min/mean/max number of HNN nodes subje
t to adaptation for di�erent

adaptation thresholds over 20 Swit
hboard test set speakers

ditional posterior probabilities at a spe
i�
 tree node. The estimates produ
ed by

the network re
e
t the posterior probability distribution on the training set. Given

a small set of adaptation samples from a spe
i�
 speaker, we want to take a

ount of

the fa
t that the posterior distribution for that speaker might di�er from the learned

speaker-independent distribution. Depending on the number of available adaptation

samples, we might 
onsider the following te
hniques for adapting a network's param-

eters. In all 
ases, we have to withhold a small proportion of the adaptation data to

be used as a validation set during network training. Otherwise, we will over�t the

relatively small amounts of adaptation data, resulting in poor generalization.

� Train new network: If we have available a 
omparably large amount of

adaptation data, we 
an train a new neural network with randomly initialized

weights to estimate the lo
al posterior probabilities on the adaptation data

and simply repla
e the existing network in the 
orresponding HNN tree node.

However, we must be aware of the fa
t that we will dis
ard all information

gained from speaker-independent training for the parti
ular node that is subje
t

to adaptation.

� Retrain old network: In this variant of adaptation, we 
ontinue to train the

existing speaker-independently trained neural network on the adaptation data

available at the 
orresponding HNN tree node. As we monitor the networks
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performan
e on a withheld validation set during training, we 
an guarantee

that the performan
e of the adapted network will be at least as good as the

performan
e of the speaker-independent network with whi
h we have started.

Thus, this te
hnique impli
itly regularizes the adaptation step and prevents

over�tting of small adaptation data sets.

� Train additional linear front-end layer: In 
ases where a HNN tree node

obtains very little adaptation data or where the 
orresponding neural network

is too large for retraining, we might want to keep the parameters of the network

�xed and add an additional layer in front of the network's input layer whi
h

linearly transforms the input pattern ve
tors. This way, only a relatively small

amount of parameters have to be estimated from the adaptation data whi
h in-


reases the robustness and generalization performan
e of the resulting adapted

network. Adding a linear front-end layer for adaptation purposes is best suited

to the relatively large networks used in traditional, monolithi
 
onne
tionist

a
ousti
 models where it has been applied su

essfully (e.g., [Neto et al. '95℄).

For smaller networks, it will not be as e�e
tive as network retraining sin
e a

linear front-end layer 
an not fully 
apture the typi
ally non-linear mapping

from speaker-independent to speaker-dependent feature spa
e.

Compared to traditional monolithi
 
onne
tionist a
ousti
 models, the networks used

in our hierar
hies of neural networks are mu
h smaller whi
h normally allows to apply

retraining of the relevant speaker-independent networks in order to a
hieve e�e
tive

speaker adaptation. Adaptation of lo
al prior probabilities 
an be a

omplished by

simply re-estimating them on the adaptation data. As the available adaptation data

at a parti
ular HNN node must be suÆ
ient for retraining the lo
al neural network,

it will be more than suÆ
ient for re-estimating the priors.

7.4 Adaptation Experiments

In the following, we present results of applying the proposed adaptation algorithm to

the task of unsupervised speaker adaptation of a hierar
hi
al 
onne
tionist a
ousti


model on 20 representative speakers from the 1996 Swit
hboard evaluation test set.

For that purpose, a speaker-independent Hierar
hy of Neural Networks a
ousti
 model

for 8000 
ontext-dependent tied HMM states has been trained on the full Swit
hboard

training 
orpus, 
onsisting of data from more than 500 di�erent speakers. As we

investigate unsupervised speaker adaptation, we �rst have to run the re
ognizer with

the speaker-independent a
ousti
 model and generate senten
e hypotheses and state

alignments for the a
ousti
 adaptation data. Fig. 7.9 shows the amount of adaptation

data available for ea
h of the 20 adaptation speakers.
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Figure 7.9: Available adaptation data for 20 Swit
hboard test set speakers

The baseline performan
e of the speaker-independent system on the set of these

20 adaptation speakers is 36.8% word error. Thus, on average every third word is

de
oded falsely, resulting in erroneous word and state alignments. We did not attempt

to mask the false segments by applying some kind of word 
on�den
e measure as has

be
ome popular now, but used all of the obtained state alignments for adaptation.

7.4.1 Node Sele
tion

For ea
h speaker, we 
ompute sample 
ounts for all HNN tree nodes from the state

alignments and sele
t nodes subje
t to adaptation based on a pre-determined adap-

tation threshold C

min

. We have experimented with

C

min

2 f500; 1000; 2000; 4000; 6000; 8000g:

The following table 7.1 gives an overview of the number of adaptation samples

(frames) available for ea
h speaker and the number of tree nodes sele
ted for adap-

tation based on the di�erent values of C

min

. Note how the di�ering global amounts

of available adaptation data lead to signi�
antly di�erent numbers of sele
ted tree

nodes for ea
h speaker. Furthermore, the value of C

min

must be 
arefully sele
ted

su
h that it does not ex
eed the available amount of adaptation data as in the 
ase

of C

min

= 8000 for speaker 'sw4338-A'. Otherwise, none of the tree nodes will be

sele
ted and the model 
an not be adapted.
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7.4.2 Neural Network Adaptation

Having sele
ted tree nodes for adaptation a

ording to the adaptation threshold, we

pro
eed with the adaptation of the lo
al neural networks. We opted for the method

of retraining the existing speaker-independent networks on the available adaptation

data. For ea
h sele
ted tree node, 10% of the 
orresponding adaptation data were

withheld as the validation set for monitoring performan
e. The remaining 90% were

used for gradient-des
ent based training. Training was stopped as soon as the per-

forman
e on the validation set 
eased to improve.

Speaker # adapt. # HNN nodes subje
t to adaptation

ID frames for various values of C

min

500 1000 2000 4000 6000 8000

sw3157-A 10933 18 8 5 2 2 2

sw3157-B 14164 24 9 7 2 2 2

sw3264-A 15719 25 10 7 2 2 2

sw3380-A 14182 24 9 7 2 2 2

sw3494-B 13044 23 8 6 2 2 2

sw3538-A 15881 24 11 7 2 2 2

sw3538-B 9348 17 7 4 2 2 2

sw3822-A 8433 9 7 3 2 2 1

sw3824-B 19658 25 16 7 4 2 2

sw3835-A 14950 25 9 7 2 2 2

sw3927-A 14715 25 9 7 2 2 2

sw3940-B 8782 10 8 2 2 2 1

sw4073-B 19546 26 12 7 4 2 2

sw4093-A 13990 23 9 7 2 2 2

sw4093-B 8247 12 7 3 2 2 1

sw4141-A 15525 25 10 7 2 2 2

sw4178-A 15341 25 9 7 2 2 2

sw4322-A 13510 23 8 6 2 2 2

sw4338-A 6726 10 6 2 2 1 0

sw4373-B 9524 15 8 4 2 2 1

Average: 13111 20.4 9.0 5.6 2.2 2.0 1.7

Table 7.1: Adaptation data and number of adapted nodes for 20 Swit
hboard test

set speakers

As an example, we take a 
loser look at the network at the root node of the HNN

tree. Fig. 7.10 shows for ea
h test speaker the 
lassi�
ation error rate of this network

on the speaker's validation data before and after adaptation. In all but 3 
ases,

the 
lassi�
ation error rate of the network at the root node 
ould be improved by

retraining it on the adaptation data. As 
an be seen from table 7.1, the adaptation
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algorithm typi
ally sele
ts more than just the root node for adaptation. Thus, even

if the performan
e of the root node 
ould not be improved by retraining on the

adaptation data, some other node further down the tree might be.
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Figure 7.10: Classi�
ation error of root node 
lassi�ers before and after adaptation

Let's now take a look at how the lo
al improvements in 
onditional posterior probabil-

ity estimation at the adapted nodes in
uen
e the estimation of HMM state posteriors

in the 
omplete hierar
hy. Fig. 7.11 shows the average negative log posterior prob-

ability of the HMM state assigned to an adaptation sample for di�erent numbers of

adapted tree nodes in the hierar
hi
al 
onne
tionist a
ousti
 model. The estimates

are averaged over all data of all 20 adaptation speakers. As expe
ted, the average

negative log posterior de
reases (the posterior probability in
reases) with in
reasing

number of adapted nodes. The plot in Fig. 7.11 suggests to adapt even more than

an average of 20 nodes in the HNN tree as the average posterior probability of the

adaptation data is expe
ted to rise even further. However, we must be 
areful and

not jump to 
on
lusions imprudently. The state alignments that we are s
oring were

obtained from erroneous senten
e hypotheses generated by the de
oder as we operate

in unsupervised adaptation mode. Thus, an in
rease in the number of adapted tree

nodes will only in
rease the probability of the falsely de
oded hypotheses - not the

probability of the unknown 
orre
t trans
ription that we really seek to in
rease. In

pra
ti
e, we have to measure the word error rate for di�erent values of C

min

in order

to �nd an optimal number of adapted tree nodes.
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Figure 7.11: Average negative log posterior probability of adaptation data for varying

number of adapted tree nodes

7.4.3 Prior Adaptation

As stated before, the estimates of 
hild prior probabilities at sele
ted tree nodes

are adapted by re-estimating these probabilities on the adaptation data. This is

a

omplished by simply normalizing the 
ounts for ea
h 
hild node to get relative

frequen
ies. To demonstrate that there really are di�eren
es in the distributions of

prior probabilities between the speaker-independent training set and adaptation sets

of di�erent speakers, we again take a 
loser look at the root node of the HNN tree.

The root node in our 8k HNN has four 
hild nodes. Fig. 7.12 plots the symmetri
 KL

distan
e (information divergen
e) between the speaker-independent prior distribution

and the speaker-adapted prior distributions for ea
h speaker.

Although 
omparably small, there are measurable di�eren
es between these prior dis-

tributions. As the KL-distan
es themselves are not easily interpretable, we also plot

the a
tual prior distributions for the speaker-independent baseline and the speakers

with the smallest (sw4141-A / #16) and largest (sw4338-A / #19) KL distan
es in

Fig. 7.13.

Primarily the prior probability of the �rst 
hild node seems to vary strongly between

di�erent speakers. In the 
ase of speaker sw4338-A, this prior has more than dou-

bled 
ompared to the speaker-independent estimates. This observation 
on�rms the

importan
e of prior re-estimation as an essential part of speaker adaptation in our
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Figure 7.12: KL-divergen
e of prior distributions at root node before and after adap-

tation
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hierar
hi
al 
onne
tionist a
ousti
 model.

7.4.4 Re
ognition Results

Finally, we present re
ognition results for using the speaker-adapted hierar
hi
al mod-

els for re-de
oding the 
orresponding speaker's data. Table 7.2 gives individual results

for all 20 test speakers and the di�erent adaptation thresholds investigated in this

study.

Speaker adapt. unadapted word error rates for various values of C

min

ID data baseline 500 1000 2000 4000 6000 8000

sw3157-A 1'49" 39.3% 38.6% 38.6% 38.6% 38.6% 38.6% 38.6%

sw3157-B 2'21" 43.3% 41.3% 42.3% 43.3% 44.2% 44.2% 44.2%

sw3264-A 2'37" 31.8% 29.4% 29.4% 31.2% 32.7% 32.7% 32.7%

sw3380-A 2'21" 25.0% 23.0% 23.0% 22.2% 24.4% 24.4% 24.4%

sw3494-B 2'10" 41.8% 34.9% 33.6% 34.9% 35.6% 35.6% 35.6%

sw3538-A 2'38" 27.6% 21.9% 25.7% 25.7% 21.9% 21.9% 21.9%

sw3538-B 1'33" 37.9% 36.5% 34.8% 40.0% 39.1% 38.3% 38.3%

sw3822-A 1'24" 47.2% 43.8% 44.9% 46.1% 46.1% 46.1% 46.1%

sw3824-B 3'16" 37.9% 36.8% 36.8% 38.5% 36.8% 36.8% 36.8%

sw3835-A 2'29" 37.5% 35.9% 36.7% 38.3% 35.9% 35.9% 35.9%

sw3927-A 2'27" 39.8% 31.2% 32.1% 32.1% 33.0% 33.0% 33.0%

sw3940-B 1'27" 53.8% 48.7% 47.4% 50.0% 50.0% 50.0% 51.3%

sw4073-B 3'15" 39.3% 36.1% 36.1% 35.2% 33.6% 34.4% 34.4%

sw4093-A 2'19" 34.8% 31.5% 29.3% 29.3% 29.3% 29.3% 29.3%

sw4093-B 1'22" 25.2% 24.4% 22.8% 23.6% 22.8% 22.8% 29.1%

sw4141-A 2'35" 22.8% 22.8% 21.3% 22.1% 22.1% 22.1% 22.1%

sw4178-A 2'33" 35.5% 30.1% 28.0% 28.0% 30.1% 30.1% 30.1%

sw4322-A 2'15" 37.7% 30.8% 31.5% 30.8% 33.1% 33.1% 33.1%

sw4338-A 1'07" 55.5% 51.8% 52.6% 51.1% 51.1% 55.5% 55.5%

sw4373-B 1'35" 31.8% 26.4% 27.1% 26.4% 26.4% 26.4% 34.1%

Total: { 36.8% 33.4% 33.3% 33.9% 33.9% 34.1% 35.0%

Table 7.2: Results of unsupervised speaker adaptation for 20 Swit
hboard test set

speakers

The last row gives word error rates for the unadapted baseline and all adapted systems

averaged over all 20 test speakers. As expe
ted, the overall performan
e improves

with in
reasing number of adapted tree nodes. However, there usually is a trade-o�

between in
reasing the number of adapted parameters and generalization performan
e

in unsupervised adaptation algorithms. With in
reasing number of parameters, per-

forman
e typi
ally �rst improves (as we have observed here too) but then starts to
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degrade again as we gradually allow the model to perfe
tly reprodu
e the erroneous

trans
riptions of the adaptation data. It appears that the algorithm for adapting

hierar
hi
al 
onne
tionist a
ousti
 models does not su�er from this over�tting e�e
t.

Performan
e of adapted models seems to level o� with in
reasing number of adapted

parameters. The di�eren
e between the results for C

min

= 1000 and C

min

= 500 are

not statisti
ally signi�
ant.

Con
erning this kind of behavior, the robustness of our adaptation algorithm 
an

be attributed to the fa
t that we are not seeking to optimize the likelihood of all

the available adaptation data, as for example is the 
ase in MLLR, but the pos-

terior probability over a smaller, withheld validation set as is 
ommon pra
ti
e for

avoiding over�tting in the training of neural networks. As we start training on the

adaptation data with the speaker-independent network parameters and do not allow

for a de
rease in the performan
e on the validation set during adaptation, the ef-

fe
tive number of adapted parameters is smaller than what we would assume from

the sele
ted number of tree nodes. In fa
t, with de
reasing C

min

, we only allow the

adaptation algorithm to adapt more networks in the HNN tree - we do not for
e it

to really adapt all the sele
ted networks. As a result the adaptation algorithm is less

dependent on �nding an optimum value for C

min

.

Finally, Fig. 7.3 summarizes the re
ognition results we have obtained with unsuper-

vised adaptation on Swit
hboard data. Here, we have in
luded both the adaptation

threshold used for sele
ting tree nodes for adaptation and the resulting average num-

ber of sele
ted tree nodes.

C

min

average

# sele
ted nodes word error rate

unadapted { 36.8%

8000 1.7 35.0%

6000 2.0 34.1%

4000 2.3 33.9%

2000 5.6 33.9%

1000 9.0 33.3%

500 20.4 33.4%

Table 7.3: Summary of results for unsupervised speaker adaptation

Compared to the unadapted baseline, unsupervised speaker adaptation on an average

of about 2 minutes of adaptation data yields an average relative redu
tion in word

error rate of 9.5%. While this is 
omparable to what has been reported for regres-

sion tree based MLLR adaptation of 
onventional a
ousti
 models, the hierar
hi
al

stru
ture of the 
onne
tionist model presented in this thesis allows for more natu-
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ral integration of speaker adaptation. No additional stru
tures su
h as regression


lass trees are required for dealing with small amounts of adaptation data as the tree

stru
tured model itself realizes the required parameter sharing.
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Chapter 8

Stru
tural Domain Adaptation

One of the most interesting appli
ations of hierar
hi
al 
onne
tionist a
ousti
 models

is in domain-adaptive spee
h re
ognition. We present Stru
tural Domain Adaptation

(SDA) [Frits
h et al. '98a, Frits
h et al. '98b℄, an approa
h for eÆ
iently and e�e
-

tively downsizing and adapting the stru
ture of a hierar
hi
al 
onne
tionist a
ousti


model for the purpose of porting a large vo
abulary 
onversational spee
h re
ogni-

tion system to a previously unseen appli
ation domain. We motivate why stru
tural

as well as a
ousti
 adaptation is bene�
ial in addition to the adaptation of the vo-


abulary and the language model of a spee
h re
ognition system. We demonstrate

how SDA allows to build domain-adaptive spee
h re
ognition systems that mat
h the

performan
e of domain-spe
i�
 systems with only moderate requirements regarding

the amount of a
ousti
 adaptation data.

8.1 Motivation

It is well known that statisti
al spee
h re
ognition systems are highly dependent on

the 
hara
teristi
s of the data they are trained on. To obtain reasonable performan
e,

one has to fo
us on a spe
i�
 appli
ation domain in order to restri
t the variability

of both the a
ousti
 and the linguisti
 training data. Typi
al aspe
ts of relevan
e are

� quality of a
ousti
 data (sampling rate, mi
rophone, AD 
onverters)

� re
ording 
onditions (indoor/outdoor/telephone, ba
kground noise)

� type of spee
h (read/spontaneous/
onversational, isolated/
ontinuous)

� vo
abulary and phoneti
 trans
ription of words

� a-priori probability of words and word sequen
es

139
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In addition to the large variability in a
ousti
 realization of elementary spee
h units,

the typi
ally �nite size of the re
ognition vo
abulary and the language model require

to restri
t the appli
ation domain of a spee
h re
ognition system. The resulting la
k

of universality stands in sharp 
ontrast to what we all experien
e in human spee
h

re
ognition. Following is a list of the most popular appli
ation domains for whi
h

spee
h re
ognition systems are 
urrently built:

� Personal spee
h-to-text (di
tation) systems

� Intera
tive Voi
e Response (IVR) systems for automated 
all 
enters

� Trans
ription of broad
ast news for building sear
hable multimedia databases

for information retrieval

� Command & 
ontrol systems

� Car navigation systems

As long as statisti
al spee
h re
ognition systems are being used in mat
hed 
onditions,

meaning that the appli
ation domain mat
hes the training domain, performan
e 
an

be expe
ted to be similar to what has been observed on a validation set during

training. However, if there are 
onsiderable a
ousti
 or linguisti
 mismat
hes 
aused

either by deploying a lab-trained system to the �eld or by applying a system to

an unseen, new appli
ation domain, performan
e often drops una

eptably (e.g.,

[Thomson '97℄).

In the following, we experimentally examine this problem by means of the Swit
h-

board domain (spontaneous 
onversational telephone spee
h) as the baseline training

domain and the following two rather di�erent target domains:

� Wall Street Journal (WSJ): This domain is representing a di
tation task

that 
onsists of read �nan
ial newspaper arti
les. For the purposes of this thesis,

we are using a less known subset of the WSJ 
orpus 
onsisting of telephone data

(from DARPA's 1993 WSJ Spoke 6 evaluation) in order to mat
h the re
ording


onditions between Swit
hboard and WSJ. Still, there are large di�eren
es in

type of spee
h, vo
abulary and language between these two 
orpora. The fo
us

in 
hoosing this parti
ular subset of the WSJ domain was on investigating the

problem of porting a 
onversational spee
h re
ognition system to a di
tation

domain.

� English Spontaneous S
heduling Task (ESST): This domain is 
onsisting

of high-quality (16 KHz) re
ordings of spontaneous 
onversations for s
heduling

meetings. Although the di�eren
es in type of spee
h are less serious between
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this 
orpus and the Swit
hboard 
orpus, there are signi�
ant di�eren
es in size

of vo
abulary, language model and quality of a
ousti
 data. The fo
us in 
hoos-

ing this domain was on investigating the problem of porting a 
onversational

spee
h re
ognition system to a domain of mu
h smaller and more spe
i�
 vo-


abulary.

Table 8.1 gives re
ognition results obtained in in-domain vs. out-of-domain 
onditions

on the above two 
orpora. These results impressively demonstrates the domain-

dependen
e of statisti
al spee
h re
ognition systems. The �rst row gives the word

error rate for a spee
h re
ognition system that was trained and optimized spe
i�
ally

for the WSJ domain and tested on data from the same domain. The se
ond row gives

the word error rate for another system, this time trained and optimized spe
i�
ally for

the ESST domain and tested again on in-domain data. In 
ontrast, the last row gives

word error rates for a system trained and optimized on the Swit
hboard domain

and tested without modi�
ations

1

on data from the WSJ and the ESST domains,

respe
tively.

re
ognizer word error rate word error rate

training domain on WSJ domain on ESST domain

WSJ 12.5% {

ESST { 19.5%

Swit
hboard 45.4% 55.3%

Table 8.1: In-domain vs. out-of-domain performan
e of spee
h re
ognition systems

In our s
enario the out-of-domain word error rate is roughly 3 times higher than what

is a
hievable with dedi
ated re
ognizers in mat
hed 
onditions. In addition, the out-

of-domain performan
e is way too poor in both 
ases to allow for any reasonable

appli
ation.

From the results above it is obvious that universal, domain-independent spee
h re
og-

nition is not available with today's te
hnology. However, it is possible to at least

adapt or ex
hange the relevant 
omponents of a re
ognizer using some data from

a new domain and thereby redu
e the mismat
h between training and appli
ation

domain. Whereas new domain-spe
i�
 vo
abularies and phoneti
 di
tionaries 
an

be obtained qui
kly and inexpensively [Geutner et al. '97℄, and new domain-spe
i�


language models require only that large amounts of text data are available, the adap-

tation of the a
ousti
 model is 
onsiderably more expensive and time- and labour-


onsuming as it also requires the availability of trans
ribed a
ousti
 data.

1

Ex
ept that 16 KHz data was downsampled to 8 KHz as required by the Swit
hboard prepro-


essing frontend.
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In addition, an analysis of state-of-the-art de
ision tree 
lustered 
ontext-dependent

a
ousti
 modeling reveals that there are two di�erent aspe
ts that 
ause a dependen
e

on the training domain:

� Estimators of HMM emission probabilities depend on the a
ousti
 
hara
teris-

ti
s of the training domain.

� Spe
i�
ity of 
ontext modeling as represented by number and identity of pho-

neti
 
ontext 
lasses depends on vo
abulary, phoneti
 di
tionary and language

model of the training domain.

It is important to note that the phoneti
 trans
ription of words and their a-priori

probabilities in the training 
orpus a�e
t the out
ome of word internal phoneti



ontext 
lustering. Additionally, 
ross-word phoneti
 
ontext modeling is a�e
ted by

the probabilities of word pairs (and word triples in the 
ase of single-phone words) in

the training 
orpus. Previous approa
hes to domain adaptation (e.g., [Siu et al. '99℄)

have only addressed the �rst of the above items by means of some sort of supervised

a
ousti
 adaptation. The se
ond item is mostly ignored, as size and spe
i�
ity of


onventional a
ousti
 models 
an not easily be modi�ed due to the 
at, independent

representation and evaluation of emission probabilities. This is quite disadvantageous

in terms of memory and 
omputational requirements in 
ases where a 
onsiderably

smaller amount of 
ontext modeling is suÆ
ient in the target domain.

Consider for instan
e the extreme 
ase of porting a large vo
abulary 
onversational

spee
h re
ognition (LVCSR) system (e.g., trained on the Swit
hboard 
orpus) to a

ten word vo
abulary digit re
ognition task. The very spe
i�
 a
ousti
 model of the

LVCSR system will typi
ally 
onsist of several thousand 
ontext-dependent HMM

states and require over 20 MBytes of RAM and 
onsiderable amounts of 
omputa-

tion during de
oding. Simple a
ousti
 adaptation might be e�e
tive in redu
ing the

word error rate to some extent but the model will still be too large and detailed to

be used for simple ten word digit re
ognition. Instead, a 
ompletely new a
ousti


model is typi
ally 
lustered and trained from s
rat
h, whi
h requires large amounts

of trans
ribed a
ousti
 data.

In the remainder of this 
hapter, we will present a te
hnique that, in addition to

a
ousti
 adaptation, allows us to adapt the size and stru
ture of hierar
hi
al 
onne
-

tionist a
ousti
 models to smaller requirements regarding the spe
i�
ity of phoneti



ontext modeling. In 
ontrast to a
ousti
 adaptation of 
onventional a
ousti
 mod-

els, our approa
h addresses both of the dis
ussed aspe
ts of domain dependen
e and

allows to adapt the size and re-use parts of a trained hierar
hi
al model for any new

domain, even in 
ases su
h as the ten digit task des
ribed above. We will show that

domain-spe
i�
 performan
e 
an be a
hieved with domain-spe
i�
 model size and

only small requirements regarding the amount of trans
ribed a
ousti
 adaptation

data.
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8.2 Quantifying Domain Mismat
hes

First however, we analyze and quantify the di�eren
es between appli
ation domains

that 
ause the large dis
repan
y in performan
e between in-domain and out-of-

domain appli
ation of spee
h re
ognition systems in more detail, using Swit
hboard

(SWB) as the baseline training domain and WSJ and ESST as the target appli
ation

domains.

8.2.1 Vo
abulary and Language Model

We 
ompare the vo
abulary and language model used in the SWB re
ognizer with

vo
abularies and language models built spe
i�
ally for the WSJ and ESST domains,

respe
tively. The vo
abulary used in the SWB domain 
onsists of 15000 unique

words. In 
ontrast, the vo
abulary used in the WSJ domain 
onsists of only 5000

unique words and the vo
abulary used in the ESST domain 
onsists of only 2850

unique words. Even though both of the target domains exhibit a mu
h smaller

vo
abulary, the vo
abulary of the SWB domain does not 
over all of the words in the

target domains (see Table 8.2).

domain out-of-vo
abulary rate

WSJ 7.4%

ESST 0.9%

Table 8.2: Out-of-vo
abulary rates of SWB vo
abulary on WSJ and ESST test sets

On the test sets used for our experiments the Out-Of-Vo
abulary (OOV) rate for the

SWB vo
abulary is 7.4% for WSJ and 0.9% for ESST. Parti
ularly in the 
ase of

WSJ, the OOV words are expressions and proper names spe
i�
 to the domain of

�nan
ial news. A general rule of thumb is that ea
h OOV word 
auses between 1 and

2 word errors. Thus, the mismat
h in vo
abulary explains a signi�
ant part of the

in
rease in word error rate of the SWB re
ognizer at least in the 
ase of WSJ data.

A mu
h larger 
ontribution to the mismat
h however is 
aused by di�eren
es in the

domain-spe
i�
 language models. Standard n-gram language models learn to predi
t


hara
teristi
 word sequen
es that are spe
i�
 to the training domain. They typi
ally

perform poorly on texts from a di�erent, previously unseen domain. We measure the

diÆ
ulty of a re
ognition task relative to a given statisti
al language model and a

test set 
onsisting of a sequen
e of words w

1

; : : : ; w

n

by the perplexity

PP =

^

P (w

1

; : : : ; w

n

)

(�

1

n

)
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where

^

P () denotes the probability of a word sequen
e as estimated by the language

model. The perplexity measures the average number of words between whi
h the

re
ognizer must de
ide when trans
ribing a word of spoken text, relative to the given

language model. The maximum in perplexity is given by the size of the vo
abulary.

All other things being equal, we are interested in a language model that minimizes

the perplexity. Table 8.3 gives perplexities 
omputed for di�erent domain-spe
i�


language models on the spe
i�
 test sets from WSJ, ESST and SWB that were used

for the experiments in this 
hapter. Obviously, there are great di�eren
es in perplexity

between in-domain and out-of-domain usage.

language model perplexity perplexity perplexity

training domain on WSJ on ESST on SWB

WSJ 68 251 148

ESST 1607 23 500

SWB 757 205 71

Table 8.3: In-domain vs. out-of-domain perplexity of various language models on

test sets used in this thesis

For the out-of-domain re
ognition results reported in Table 8.1, we have used the

SWB language model for re
ognizing spee
h from WSJ and ESST. In these two


ases, the perplexity on the test sets in
reased by a fa
tor of 11 from 68 to 757 on

WSJ and by a fa
tor of 9 from 23 to 205 on ESST!

To measure the e�e
t of mismat
hes in vo
abulary and language model on the word

error rate of a re
ognizer, we repeated the experiments from Table 8.1, this time

however with domain-spe
i�
 vo
abularies and language models. Table 8.4 gives

results for these experiments.

re
ognizer word error rate word error rate

training domain on WSJ domain on ESST domain

WSJ 12.5% {

ESST { 19.5%

SWB 17.2% 28.3%

Table 8.4: In-domain vs. out-of-domain performan
e of spee
h re
ognition systems

when using domain-spe
i�
 vo
abularies and language models

Interestingly, 62% (WSJ) and 49% (ESST) of the mismat
h in word error rate between

in-domain and out-of-domain spee
h re
ognition 
an be 
ompensated by swit
hing to
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domain-spe
i�
 vo
abularies and language models. It 
an be assumed, that obtaining

domain-spe
i�
 vo
abularies and di
tionaries requires relatively little e�ort. Further-

more, training domain-spe
i�
 language models is simpli�ed by an ever in
reasing

amount of available text material, for instan
e on the Internet.

However, there still is a signi�
ant di�eren
e in word error rate remaining whi
h is


aused primarily by mismat
hes in a
ousti
 modeling.

8.2.2 A
ousti
 Model

Mismat
hes in a
ousti
 modeling are mu
h harder to 
ompensate than mismat
hes

in vo
abularies and language models. In 
ontrast to the latter, repla
ing the original

model with a domain-spe
i�
 one is typi
ally impra
ti
able for a
ousti
 models as

it would require the very expensive re
ording and trans
ription of several hours of

spee
h data in order to obtain enough training material for robustly 
lustering and

training a 
ompletely new domain-spe
i�
 a
ousti
 model.

Before we dis
uss alternative, less expensive solutions to this problem, let's �rst

analyze whi
h fa
tors 
ontribute to a mismat
h in a
ousti
 modeling in out-of-domain

appli
ations of spee
h re
ognition systems. We have identi�ed the following three

types of mismat
hes that typi
ally o

ur jointly:

1. A
ousti
 mismat
h: An a
ousti
 mismat
h is 
aused by a wide variety

of fa
tors: di�erent mi
rophones, pre-ampli�ers and AD 
onverters, di�erent

sampling rates, di�erent re
ording 
onditions, existen
e/nonexisten
e of ba
k-

ground noise, di�erent diale
t, age or gender of speakers. All these fa
tors lead

to a di�eren
e in emission probability distributions for the basi
 spee
h units

modeled by the HMM states in an a
ousti
 model.

2. Context spe
i�
ity mismat
h: Di�erent appli
ation domains require dif-

ferent amounts of phoneti
 
ontext modeling, depending on diÆ
ulty, type of

spee
h (
onversational vs. read) and size of the domain vo
abulary. The spe
i-

�
ity of phoneti
 
ontext modeling is determined by the number of de
ision

tree 
lustered HMM states whi
h is typi
ally �xed a-priori for a given training

domain and 
an not be altered easily in 
onventional a
ousti
 models. In out-

of-domain s
enarios the a
ousti
 model 
an either turn out to be too general

(too small, not enough allophoni
 variation) or too spe
i�
 (too large, over�t-

ting, many unseen HMM states) for the target domain. Even if we manage to

eliminate over�tting e�e
ts in 
ases where the model is too large and detailed

by te
hniques su
h as parameter tying, we still have an oversized model that


onsumes too mu
h memory.
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3. Prior mismat
h: The distribution of a-priori probabilities of a set of 
ontext-

dependent HMM states that were 
lustered on some training domain varies

signi�
antly from domain to domain, mostly depending on the words in the

vo
abulary, their phoneti
 trans
riptions and their unigram probabilities. The

following Fig. 8.1 demonstrates this e�e
t by means of a de
ision tree 
lustered

model for 24k HMM states 
onstru
ted on the SWB 
orpus. The baseline a-
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Figure 8.1: KL-divergen
e of a-priori HMM state distributions between the train-

ing domain (SWB) and various appli
ation domains (SWB,WSJ,ESST) for di�erent

amounts of data

priori distribution of the 24k HMM states is estimated on the full SWB training


orpus. This distribution is then 
ompared against a-priori distributions esti-

mated from a variable amount of data from the SWB, WSJ and ESST 
orpora,

respe
tively. We use information divergen
e (KL-distan
e) to 
ompare two a-

priori distributions. The smaller the KL-distan
e, the more similar the a-priori

distributions. From left to right, the a-priori distributions be
ome more and

more stable as more data is being used for their estimation. As expe
ted, the

SWB 
urve approa
hes zero for an in
reasing amount of data, as the 
orre-

sponding prior distribution 
onverges against the prior distribution estimated

on the full training 
orpus. However, the 
urves for WSJ and ESST level o�

at some o�set distan
e 
onsiderably larger than zero after about one hour of

data. Obviously, the a-priori distributions of the SWB 
lustered HMM states

on WSJ and ESST will never 
onverge to that of the SWB 
orpus, no matter
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how mu
h data we use for estimating them.

In the standard approa
h, only the �rst type of mismat
hes is addressed by some

sort of supervised a
ousti
 model adaptation, for instan
e using regression tree based

MLLR with a mixture of Gaussians based a
ousti
 model. Mismat
hes in the spe
i-

�
ity of phoneti
 
ontext modeling and the prior distribution of HMM states are

ignored 
ompletely. These kind of mismat
hes are a result of the domain-dependen
e

of phoneti
 de
ision trees used for 
lustering basi
 spee
h units su
h as phones based

on their phoneti
 
ontext. Size and stru
ture of these trees are determined on the

training domain and therefore depend heavily on the spe
i�
 vo
abulary, phoneti


di
tionary, and language model of the training domain. Out-of-domain mismat
hes

in these 
omponents therefore 
ause mismat
hes in the phoneti
 de
ision trees that

in turn 
ause mismat
hes in the spe
i�
ity of 
ontext modeling and the prior distri-

bution of HMM states be
ause the leaf nodes of the phoneti
 de
ision trees de�ne the

set of distin
tly modeled HMM states.

To eliminate these mismat
hes, we would have to repla
e the set of phoneti
 de
ision

trees with a set of new ones 
onstru
ted spe
i�
ally for the target domain. Unfortu-

nately, su
h an approa
h implies that a 
ompletely new a
ousti
 model is trained on

the target domain whi
h is impra
ti
able for the reasons already stated above.

8.3 The SDA Algorithm

In 
ontrast to 
onventional models, the tree stru
ture of hierar
hi
al 
onne
tionist

a
ousti
 models together with their s
alability and multi-level representation of pho-

neti
 
ontexts allows for eÆ
ient and e�e
tive 
ompensation of all three kinds of

mismat
hes in a
ousti
 modeling (see previous se
tion) that o

ur in out-of-domain

appli
ations of spee
h re
ognition systems. To demonstrate this, we have devel-

oped an algorithm 
alled Stru
tural Domain Adaptation (SDA) [Frits
h et al. '98a,

Frits
h et al. '98b℄ that is based on the observation that it is always possible to redu
e

the spe
i�
ity of 
ontext modeling in a trained hierar
hi
al 
onne
tionist a
ousti


model by removing (pruning) irrelevant substru
tures from the modeling tree.

Consequently, the idea in stru
tural domain adaptation is to 
onstru
t a very detailed,

highly spe
i�
 hierar
hi
al 
onne
tionist a
ousti
 model using phoneti
 de
ision trees

that yield a large amount of 
ontext resolution su
h that almost all potentially signif-

i
ant 
ontexts of a parti
ular language are represented in the model tree. Of 
ourse,

this requires a training domain that exhibits a 
omparably large amount of phoneti


variability and a large vo
abulary. If there is no su
h training domain available, we


an use a meta-domain 
omposed of several di�erent sub-domains. Starting from

the resulting large and very detailed a
ousti
 model, stru
tural domain adaptation

then 
ompensates (1) a
ousti
 and (2) stru
tural mismat
hes in a spe
i�
 target
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domain in a two step pro
ess based on a moderate amount of trans
ribed a
ousti


adaptation data (typi
ally less than an hour). Additionally, it allows to arbitrarily

redu
e the overall size and spe
i�
ity of the a
ousti
 model to de
rease memory and


omputational requirements.

A
ousti
 mismat
hes are redu
ed by applying the adaptation algorithm presented in

the previous 
hapter in supervised mode. Based on the amount of available adapta-

tion data and an adaptation threshold C

min

, this step in the algorithm dynami
ally

determines a set of tree nodes in the hierar
hi
al 
onne
tionist a
ousti
 model that

re
eive enough adaptation samples for adapting the 
orresponding estimators of lo
al

posterior and prior probabilities. As these nodes are lo
ated in the upper layers of

the tree, their estimates are 
ontributing to a large number of HMM states and by

adapting these nodes, we e�e
tively and robustly adapt all HMM states through the

tree's tying me
hanism. The algorithm automati
ally adjusts the number of adapted

parameters to the amount of available adaptation data. Furthermore, the adaptation

step in SDA adjusts the lo
al prior probabilities of sele
ted nodes thereby 
ompen-

sating a large proportion of the mismat
h in the a-priori probability distribution

of HMM states between training and target domain. See 
hapter 7 for a detailed

analysis.

Stru
tural mismat
hes, i.e. di�ering lo
al requirements 
on
erning the spe
i�
ity of


ontext modeling, are 
ompensated by identifying and permanently deleting irrelevant

substru
tures in the hierar
hi
al model. Tree nodes are 
onsidered irrelevant if they

re
eive less or equal than a small, empiri
ally determined pruning threshold C

prune

of adaptation samples in the target domain (represented by the adaptation data). If

a parti
ular tree node is rarely used in the target domain (as indi
ated by a small

node 
ount), we 
an assume that the partitioning into more spe
i�
 
ontext 
lasses

performed by this tree node no longer makes sense and 
an not be performed robustly

in the target domain. Fortunately, the modular 
omposition of HMM state posteriors

in a hierar
hi
al 
onne
tionist a
ousti
 model allows to remove su
h nodes and thereby

redu
e the lo
al spe
i�
ity of 
ontext modeling without having to adjust a single

parameter. Due to the over-spe
i�
ity of the baseline model, 
ertain HMM states

will not be observed at all in the adaptation data available from the target domain.

Tree bran
hes leading to su
h 'dead' states are pruned impli
itly as a result of prior

adaptation but SDA will additionally remove obsolete nodes (nodes that lead only to

unobserved states), if existing in the model tree.

Sin
e we 
ount the number of adaptation samples for ea
h tree node as the �rst

step of a
ousti
 adaptation anyway, determining whether or not a node is subje
t to

pruning 
an take pla
e in 
onjun
tion with determining whether or not it is subje
t

to adaptation. Of 
ourse, the 
ount thresholds must satisfy C

prune

< C

min

sin
e

tree nodes 
an not be adapted and pruned at the same time. The following Fig. 8.2

illustrates stru
tural domain adaptation by means of a small balan
ed binary example
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Figure 8.2: Stru
tural domain adaptation of hierar
hi
al 
onne
tionist a
ousti
 mod-

els
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tree. Note however that the SDA algorithm imposes no restri
tions on the bran
hing

fa
tor and the balan
e of the adapted model's tree stru
ture.

Fig. 8.3 summarizes the SDA algorithm in 
ompa
t form. Optimal values for the two

parameters C

min

and C

prune

of the algorithm must be determined empiri
ally on the

available adaptation data. In
reasing C

prune

beyond the value that results in optimal

re
ognition performan
e on the target domain allows for 
ontrolled downsizing of the

hierar
hi
al 
onne
tionist a
ousti
 model, trading o� re
ognition a

ura
y against

memory and 
omputational requirements.

Stru
tural Domain Adaptation Algorithm

1. Counting: Compute state alignments of the adaptation data. For ea
h HMM

state (tree leaf node), 
ount the allotted number of adaptation samples and

propagate these 
ounts up through the tree stru
ture, thereby 
omputing pat-

tern 
ounts C

i

for ea
h tree node.

2. A
ousti
 Adaptation: Sele
t nodes subje
t to adaptation by 
he
king

whether C

i

� C

min

using a pre-de�ned adaptation threshold C

min

. Adapt

the lo
al estimators for 
onditional posterior and prior probabilities in the

sele
ted tree nodes.

3. Stru
tural Adaptation: Sele
t nodes subje
t to pruning by 
he
king

whether C

i

� C

prune

using a pre-de�ned pruning threshold C

prune

with

C

prune

< C

min

. Remove the sele
ted tree nodes and tie all dangling HMM

states in a pruned subtree to a newly 
reated leaf node that repla
es the root

of the pruned subtree.

Figure 8.3: Algorithm for stru
tural domain adaptation of hierar
hi
al 
onne
tionist

a
ousti
 models

8.4 Domain Adaptation Experiments

In the following, we experimentally evaluate the SDA algorithm by adapting a Swit
h-

board re
ognizer to the two previously mentioned target domains. In these exper-

iments, we fo
us on stru
tural domain adaptation of the hierar
hi
al 
onne
tionist

a
ousti
 model, assuming that domain-spe
i�
 vo
abularies and language models are

available.
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8.4.1 Baseline Swit
hboard Re
ognizer

Our baseline re
ognizer is built and trained on 170 hours of Swit
hboard 
onversa-

tional Ameri
an English telephone spee
h. This training 
orpus is 
overed by roughly

30000 distin
t words. The re
ognizer's training di
tionary 
ontains 64000 pronun
i-

ations for these 30000 words. Based on the training data and the pronun
iation

di
tionary, a 
ross-word 
ontext-dependent (pentaphone) hierar
hi
al 
onne
tionist

a
ousti
 model with a total of 24000 tied states distributed among 56 3-state left-

right phoneti
 HMMs was 
onstru
ted and trained. See Appendix B for details on

the distribution of tied states among phone models. The large number of 24000

tied HMM states was 
hosen in order to obtain a very detailed and over-spe
i�
 (in

terms of phoneti
 
ontext modeling) baseline model suitable for subsequent stru
tural

adaptation.

On a subset of the oÆ
ial Swit
hboard 1996 evaluation test set, the Swit
hboard

re
ognizer based on the 
onne
tionist 24k HNN a
ousti
 model a
hieves a word error

rate of 33.3%.

8.4.2 Sele
tion of Nodes for Adaptation and Pruning

In a �rst experiment, we quantify the e�e
ts of adaptation threshold C

min

and prun-

ing threshold C

prune

on the number of nodes sele
ted for adaptation and pruning,

respe
tively. For this purpose, we 
onsider an equal amount of adaptation data (45

min) from both target domains. For both target domains, we �rst 
ompute HMM

state 
ounts and HNN tree node 
ounts on Viterbi alignments of the available adap-

tation data. With respe
t to these 
ounts, we 
ompute the number of tree nodes

subje
t to adaptation for di�erent values of C

min

. Fig. 8.4 shows the resulting 
urves

on the WSJ and ESST domains (note the logarithmi
 s
ale on the abs
issa). For ex-

ample, approximately 100 tree nodes are sele
ted for adaptation when using a value

of C

min

= 1000 frames.

Fig. 8.5 shows for di�erent pruning thresholds C

prune

how many tree nodes are re-

moved in the pruning step of stru
tural domain adaptation. Interestingly, these 
urves

do not start at 0% for C

prune

= 0, indi
ating that there are signi�
ant amounts of

unobserved HMM states in both target domains for the given adaptation data. The


onsiderably larger amount of tree nodes pruned in the 
ase of ESST data 
an be

attributed to the smaller phoneti
 variety resulting from the smaller vo
abulary in

that domain. Furthermore, although an equal amount of adaptation data was used

for 
omputing the 
urves in Fig. 8.4 and Fig. 8.5, the WSJ data yields more nodes for

a
ousti
 adaptation and less nodes for pruning, indi
ating a more uniform distribution

of HMM states than in the 
ase of the ESST data.
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8.4.3 Adapting to WSJ Domain

We now take a 
loser look on stru
tural domain adaptation on the Wall Street Journal

(WSJ) target domain. In our experiments, we were using the WSJ'93 Spoke 6 subset,


onsisting of read Wall Street Journal arti
les that were re
orded through a telephone

headset. The domain spe
i�
 vo
abulary is three times smaller than the vo
abulary of

the baseline Swit
hboard re
ognizer and 
onsists of 5000 words. The WSJ'93 Spoke 6

subset de�nes separate adaptation and test sets that were adopted for our experiments

as they allow us to 
ompare our results with the oÆ
ial evaluation results. The

following Table 8.5 provides details about these adaptation and test sets. Note that

a maximum of 45 minutes of trans
ribed adaptation data is available for stru
tural

domain adaptation on the WSJ domain.

# adaptation speakers 10

amount of adaptation data 45.5 min

# adaptation frames 273500

# test set speakers 10

amount of test data 27 min

# words in test set 3865

Table 8.5: Adaptation and test sets for SDA on WSJ domain

The 
overage of the original 24000 tied HMM states on the 45 minutes of WSJ

adaptation data amounts to 93.3%. Using a domain spe
i�
 vo
abulary and language

model and after several iterations of (1) optimization of the speaker dependent VTLN

warping fa
tors based on the �rst hypothesis trans
ripts and (2) normalization of the

loudness of the input waveforms and (3) adjustment of the language model weight

and the word insertion penalty for optimal performan
e on a held out development

set 
onsisting of parts of the adaptation data, we a
hieve a baseline word error rate

of 14.4% on the WSJ test set with the otherwise unaltered a
ousti
 model trained

on the Swit
hboard 
orpus. Note that this tuning phase already yields a signi�
ant

improvement in the word error rate.

We then applied the SDA algorithm for three di�erent adaptation thresholds C

min

and varying pruning thresholds (C

prune

2 f0; 20; 40; 80; 160; : : :g). Fig. 8.6 shows the

resulting word error rates in relation to the remaining number of HNN leaf nodes

(equivalent to the number of unique HMM states). For ea
h of the three 
urves

(
orresponding to the three di�erent values of C

min

investigated) in Fig. 8.6, Table

8.6 gives details about the performan
e and size of the resulting stru
turally adapted

HNN tree for the pruning threshold that yields the optimal word error rate.

The best overall result of 12.0% word error rate is a
hieved for C

min

= 500 and
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C

prune

= 40. Although tree pruning yields only minor improvements in terms of the

word error rate

2

, it is very e�e
tive in redu
ing the size of the original model. For

the optimal settings, SDA prunes the original HNN tree to 65% of its original size

and improves performan
e by 16.7%. Using a larger value for the pruning threshold,

the size of the HNN tree 
an be further de
reased to only about 20% of its original

size (4585 leaf nodes) with only a slight in
rease in word error rate to 12.8%.
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Figure 8.6: Stru
tural domain adaptation on the WSJ domain

a
ousti
 # adapted # unique HNN tree word error relative

model nodes HMM states size rate gain

baseline { 24016 100% 14.4% {

SDA2000 72 16532 65% 12.7% 11.8%

SDA1000 101 20706 84% 12.2% 15.3%

SDA500 240 16532 65% 12.0% 16.7%

Table 8.6: Results for optimal stru
tural domain adaptation on WSJ

We 
ompare these results to the best oÆ
ial evaluation result of 12.5% word error

rate, a
hieved by a domain-spe
i�
 (trained on 62 hours of band-limited WSJ0 and

2

The rightmost point on the 
urves in Fig. 8.6 
orrespond to the absen
e of expli
it pruning with

C

prune

= 0. From there, the pruning threshold in
reases towards the left of the plot.
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WSJ1 data) and telephone-adapted re
ognizer on the same WSJ'93 Spoke 6 evalua-

tion test set [ARP '94℄. Clearly, the SDA approa
h allows to mat
h domain-spe
i�


performan
e with an out-of-domain hierar
hi
al 
onne
tionist a
ousti
 model and

only 45 minutes of a
ousti
 adaptation data. Table 8.7 summarizes all results dur-

ing the various phases from the original Swit
hboard system to the �nal stru
turally

adapted system for the WSJ domain.


ondition # HMM states word error rate

SWB re
ognizer 24016 45.4%

+ domain-spe
i�
 vo
ab/LM 24016 17.2%

+ tuning on development set 24016 14.4%

+ optimal performan
e SDA 16532 12.0%

+ minimum tree SDA 4585 12.8%

WSJ re
ognizer N/A 12.5%

Table 8.7: Summary of domain adaptation on WSJ

Most importantly, the SDA algorithm not only yields domain-spe
i�
 re
ognition

performan
e but furthermore allows for a signi�
ant de
rease in the spe
i�
ity of

phoneti
 
ontext modeling whi
h results in a 
onsiderably smaller a
ousti
 model.

8.4.4 Adapting to ESST Domain

In a se
ond set of experiments, we used the SDA algorithm to adapt the Swit
hboard

re
ognizer to the ESST domain. In 
ontrast to the WSJ'93 Spoke 6 data, the entire

ESST 
orpus is 
olle
ted in 16 kHz / 16 bit using high-quality Sennheiser mi
ro-

phones. We therefore had to downsample the data to 8 kHz before feeding it into the

Swit
hboard re
ognizer. Although ESST 
onsists of spontaneous human-to-human

dialogs, it is 
onsiderably di�erent from the Swit
hboard domain in many respe
ts.

The vo
abulary 
onsists of 2850 unique words whi
h is only 19% of the size of the

Swit
hboard vo
abulary. In 
ontrast to Swit
hboard, general arti
ulation is mu
h


learer and there are hardly any 
onversational phenomena su
h as false starts, inter-

je
tions and laughter. Finally, there is only a single topi
 in ESST (the s
heduling of

meetings) whi
h restri
ts linguisti
 and phoneti
 variability 
onsiderably. We there-

fore expe
t that the ESST domain requires signi�
antly less spe
i�
ity in phoneti



ontext modeling than is realized in our 24k states Swit
hboard re
ognizer.

For the following domain adaptation experiments, we have 
ompiled an adaptation

set of 62 minutes of spee
h and a test set of 18 minutes of spee
h. Table 8.8 gives an

overview of these two data sets. Using the trans
riptions available for the adaptation

data, we �rst 
omputed Viterbi state alignments with the original 24000 tied states
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HNN model. In these alignments, the 
overage of the 24000 states amounts to 74.9%.

In other words, one forth of all HMM states were not observed in the 62 minutes of

adaptation data.

# adaptation speakers 18

amount of adaptation data 62 min

# adaptation frames 372100

# testset speakers 14

amount of test data 18 min

# words in test set 3309

Table 8.8: Adaptation and test sets for SDA on ESST domain

In 
ontrast to the WSJ domain, there never was an oÆ
ial evaluation on the ESST

domain as it is an internal CMU-
olle
ted domain. However, for 
omparison we had

a re
ognizer available that was built and optimized spe
i�
ally for the ESST domain.

On the above test set, this domain-spe
i�
 mixtures of Gaussians based re
ognizer

a
hieves a word error rate of 19.5% and models only 1150 tied HMM states.

In 
omparison, using a domain spe
i�
 vo
abulary and language model and the same

kind of optimizations of a
ousti
 parameters and de
oding parameters already applied

in the 
ase of WSJ, we a
hieve a baseline word error rate of 25.5% on the ESST

test set with the unaltered 24k a
ousti
 model trained on Swit
hboard. Thus, the

performan
e of the raw Swit
hboard a
ousti
 model is 30% worse than that of a

domain-spe
i�
 one. In addition, the Swit
hboard model is over-sized and over-

spe
i�
 as it models 20 times more allophoni
 variations (HMM states).

We then used the ESST adaptation data to apply the stru
tural domain adapta-

tion algorithm to the Swit
hboard HNN tree. As in the 
ase of WSJ, we applied

three di�erent adaptation thresholds (C

min

2 f500; 1000; 2000g) and varying pruning

thresholds (C

prune

2 f0; 20; 40; 80; 160; : : :g). Fig. 8.7 shows the resulting word error

rates in relation to the remaining number of HNN leaf nodes.

Again, tree pruning in addition to a
ousti
 adaptation yields only minor improve-

ments in terms of the word error rate but is very e�e
tive in redu
ing the size of

the original model, as already observed on the WSJ domain. However, there are two

remarkable di�eren
es to the 
urves obtained on the WSJ domain. First, optimal

performan
e is obtained for the largest instead of for the smallest value of C

min

,

meaning that it is advantageous to adapt less tree nodes on ESST than on WSJ.

Se
ondly, the ESST domain allows for mu
h larger pruning thresholds and thereby

a 
onsiderably smaller size of the HNN tree. In fa
t, the hierar
hi
al 
onne
tionist

a
ousti
 model 
an be pruned to only about 13% of its original size before the word

error rate starts to in
rease noti
eably.
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Figure 8.7: Stru
tural domain adaptation on the ESST domain

For ea
h of the three 
urves in Fig. 8.7, Table 8.9 gives details about the performan
e

and size of the resulting stru
turally adapted HNN tree for the pruning threshold

that yields the optimal word error rate.

a
ousti
 # adapted # unique HNN tree word error relative

model nodes HMM states size rate gain

baseline { 24016 100% 25.5% {

SDA500 280 12210 49% 22.0% 13.7%

SDA1000 120 12210 49% 21.3% 16.5%

SDA2000 71 8411 34% 20.8% 18.4%

Table 8.9: Results for optimal stru
tural domain adaptation on ESST

The best overall result of 20.8% word error rate is a
hieved with C

min

= 2000 and

C

prune

= 160. For these settings, SDA prunes the original HNN tree to 34% of its

original size and improves performan
e by 18.4%. As mentioned before, the size of the

HNN tree 
an be further de
reased to only about 13% of its original size with only a

slight in
rease in word error rate to 21.3%. Table 8.10 summarizes all results during

the various phases from the original Swit
hboard system to the �nal stru
turally

adapted system for the ESST domain.

In 
omparison, the stru
turally adapted Swit
hboard system a
hieves performan
e
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ondition # HMM states word error rate

SWB re
ognizer 24016 55.3%

+ domain-spe
i�
 vo
ab/LM 24016 28.3%

+ tuning on development set 24016 25.5%

+ optimal performan
e SDA 8411 20.8%

+ minimum tree SDA 3051 21.3%

ESST re
ognizer 1150 19.5%

Table 8.10: Summary of domain adaptation on ESST


lose to a domain-spe
i�
 ESST system whi
h has been optimized extensively on the

given test set. While the adaptation step of SDA yields most of the gain in re
ogni-

tion a

ura
y, the pruning step in addition allows to prune substantial parts of the

original hierar
hi
al 
onne
tionist a
ousti
 model whi
h (a) improves generalization

by redu
ing the spe
i�
ity of 
ontext modeling through state tying and (b) yields

signi�
ant savings in memory requirements.

8.4.5 Comparison to Conventional A
ousti
 Adaptation

In a last series of experiments, we 
ompare stru
tural domain adaptation with 
on-

ventional regression tree based MLLR adaptation of a mixtures of Gaussians a
ousti


model. In 
ontrast to the SDA approa
h, regression tree based MLLR 
an only be

used to a
ousti
ally adapt the existing set of 
ontext models. It does not allow to

redu
e the spe
i�
ity of 
ontext modeling or the size of the a
ousti
 model to re
e
t

the di�ering requirements in a new target domain. By 
omparing the two adaptation

approa
hes, we seek to determine whether stru
tural adaptation in addition to a
ous-

ti
 adaptation as performed by the SDA algorithm is bene�
ial in terms of redu
tion

of the word error rate.

For the following experiments with supervised MLLR adaptation, we were using a

Swit
hboard-trained 
ontinuous-density mixtures of Gaussians a
ousti
 model for the

same 24000 tied HMM states used in the previous se
tions. The mixtures of Gaus-

sians based model was taken from the Intera
tive Systems Labs 1997 Swit
hboard

evaluation system (CMU-ISL) and a
hieves a baseline word error rate of 31.5% on

the Swit
hboard test set.

Using domain-spe
i�
 vo
abularies and language models and some tuning of the

de
oding parameters, we obtain baseline word error rates of 13.3% (WSJ) and 24.8%

(ESST) with the unadapted 
onventional a
ousti
 model. We then used alignments

of the available adaptation data to perform regression tree based MLLR adaptation

of the means of the approximately 100000 Gaussian densities in the system.
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To vary the number of adaptation transforms, we were experimenting with three dif-

ferent settings for C

min

(2000, 4000 and 8000). Table 8.11 gives results obtained with

the adapted models on the WSJ domain. The number of full rank linear adaptation

transforms applied to the Gaussian means ranges from 99 down to 31.

C

min

# transforms word error rate relative gain

baseline { 13.3% {

8000 31 11.6% 12.8%

4000 51 11.7% 12.0%

2000 99 12.0% 9.8%

Table 8.11: Results with regression tree based MLLR adaptation on WSJ

Optimal performan
e was a
hieved using C

min

= 8000 whi
h yields a relative redu
-

tion in word error rate of 12.8% 
ompared to the unadapted baseline. Table 8.12

gives results obtained for the same set of experiments on the ESST data.

C

min

# transforms word error rate relative gain

baseline { 24.8% {

8000 35 22.2% 10.5%

4000 63 22.0% 11.3%

2000 108 23.0% 7.3%

Table 8.12: Results with regression tree based MLLR adaptation on ESST

Again, three di�erent adaptation thresholds were investigated. As the ESST adap-

tation set is a little larger than that of the WSJ domain, the number of adaptation

transforms obtained in
reased slightly. The best result was a
hieved for C

min

= 4000

whi
h yields a relative redu
tion in word error rate of 11.3%.

The following Table 8.13 summarizes and 
ompares the performan
e improvements

obtained with the SDA and MLLR approa
hes. Our results show that MLLR based

adaptation yields smaller relative improvements in word error rate, parti
ularly in

the 
ase of adapting a Swit
hboard model to the ESST domain.

In 
ontrast to MLLR based adaptation of a 
onventional ar
hite
ture, the SDA ap-

proa
h not only 
ompensates for mismat
hes in a
ousti
 spa
e but furthermore adapts

to di�ering spe
i�
ity of phoneti
 
ontext in unseen domains by adapting node priors

and by pruning defe
tive parts in the modeling hierar
hy. This way, di�eren
es in the

a-priori probability of HMM states 
an be 
ompensated and the resolution of 
ontext

modeling 
an be adapted to the spe
i�
 requirements in the target domain. As an
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type of adaptation relative gain on

a
ousti
 model approa
h WSJ domain ESST domain

Hierar
hy of Neural Networks SDA 16.7% 18.4%

Mixtures of Gaussians MLLR 12.8% 11.3%

Table 8.13: Comparison of relative gains obtained with SDA vs. with MLLR

important side e�e
t, the SDA algorithm allows to downsize a hierar
hi
al 
onne
-

tionist a
ousti
 model and thereby redu
e the memory requirements and de
oding

time substantially.



Chapter 9

Mixture Trees

In previous 
hapters, we have seen how a large vo
abulary 
onversational spee
h

re
ognition system bene�ts from a hierar
hi
ally organized 
onne
tionist a
ousti


model. By adopting the 
onne
tionist framework of estimating state posteriors in-

stead of state likelihoods, we were able to apply hierar
hi
al fa
toring to obtain a

tree stru
tured estimator with advantageous s
aling properties. In this 
hapter, we

present mixture trees, a di�erent but related tree stru
tured ar
hite
ture for a
ousti


modeling. We demonstrate that most, but not all of the properties of a hierar
hi
al


onne
tionist a
ousti
 model 
an also be obtained with this likelihood based model.

9.1 Hierar
hi
ally Tied Mixture Densities

We 
onsider the task of estimating HMM state observation likelihoods for a set of N

de
ision tree 
lustered states s

i

using mixture densities. In a 
onventional 
ontinuous-

density HMM setting, we model ea
h state independently a

ording to

p

i

(x) = p(xjs

i

) =

K

i

�1

X

k=0




(k)

i

q

(k)

i

(x) 8i 2 f1; : : : ; Ng

where the 


(k)

i

are (aÆne) mixture weights satisfying

P

K

i

�1

k=0




(k)

i

= 1 and 


(k)

i

� 0,

and the q

(k)

i

(x) are mixture 
omponent densities in the spa
e of feature ve
tors x.

Mixture densities are usually preferred over simple densities be
ause of their universal

approximation property.

Mixture trees are motivated both by the observation that individual mixture densities

of 
ontext-dependent spee
h models overlap 
onsiderably in feature spa
e and by

the desire for a tree stru
tured a
ousti
 model with all the advantageous properties

that we have dis
ussed in previous 
hapters. Thus, instead of using separate sets

of 
omponent densities for ea
h mixture density, we share some of the 
omponent

161
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densities to allow for joint modeling of the overlapping parts of the distributions. For

instan
e, 
onsider the set of 4 mixture densities depi
ted in Fig. 9.1.

q  (x) q  (x) q  (x) q  (x)(2)

p  (x) p  (x) p  (x)(2) p  (x)

(2) (2) (2)

(2)(2)(2)

1 2 3

0 31 2

0

q  (x)

q  (x) q  (x) q  (x) q  (x)

q  (x)q  (x)q  (x)
0

0

1

1

2

2

3

3

(1)(1)(1)(1)

(0) (0) (0) (0)

Figure 9.1: Hierar
hi
ally tying mixture densities

Ea
h one of the densities 
onsists of 3 verti
ally organized 
omponent densities. In-

stead of assigning 3 
omponent densities ex
lusively to ea
h mixture, we share some

of them between adja
ent mixtures su
h that the bottom level 
omponents are used

ex
lusively, the 
enter level 
omponents are shared between two and the top level


omponents are shared between all four densities. However, hierar
hi
ally sharing


omponent densities by itself does not yet yield a truly hierar
hi
al model. We also

have to �nd a hierar
hi
al representation of the mixture weights that allows to rep-

resent and evaluate hierar
hi
ally tied mixture densities in a tree stru
ture. For that

purpose, we introdu
e (shared) mixture interpolation weights at ea
h verti
al ar
 that


onne
t 
omponent densities. We 
all the resulting tree stru
tured 
on�guration a

mixture tree [Frits
h '99b, Frits
h '99a℄ (Fig. 9.2).

Introdu
ing depth d and bran
hing fa
tor b of a mixture tree, we rewrite the state

observation likelihoods, now being estimated by the leaves of the mixture tree, as

p

i

(x) = p

(d)

i

(x) and re
ursively de�ne the mixture model as

p

(0)

0

(x) = q

(0)

0

(x)

p

(k)

i

(x) = �

(k)

i

q

(k)

i

(x) + (1� �

(k)

i

) p

(k�1)

bi=b


(x)

where the q

(k)

i

are (tied) 
omponent densities and the �

(k)

i

are lo
al interpolation

weights, satisfying 0 � �

(k)

i

� 1, su
h that the p

i

are valid probability densities. An
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(1)
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(2)
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Figure 9.2: Mixture tree (d = 2; b = 2)

individual mixture density represented in the tree is evaluated top-down, starting at

the root node. Pro
eeding down the tree towards the 
orresponding leaf node, we

in
rementally re�ne the 
urrent estimate by 
omputing aÆne interpolations between

the already a

umulated partial mixture probability and the 
urrent lo
al 
omponent

density using interpolation weights �

(k)

i

. For �

(k)

i

= 0, the lo
al 
omponent density

does not 
ontribute at all and the mixture likelihood up to that point is determined

by all prede
essors. In e�e
t, setting �

(k)

i

= 0 allows to skip a 
omponent density. In


ontrast, setting �

(k)

i

= 1 
orresponds to negle
ting the partial mixture probability

a

umulated through all the prede
essor nodes. Of 
ourse, su
h an extreme behavior

is not desired as it renders the tree stru
ture ine�e
tive and is not expe
ted to happen

unless there is absolutely no overlap between the modeled distributions.

Hierar
hi
ally tied mixture densities, as 
omputed re
ursively by a mixture tree, 
an

be interpreted as 
onventional mixture densities

p

i

(x) = p(xjs

i

) =

K

i

�1

X

k=0




(k)

i

q

(k)

i

(x) 8i 2 f1; : : : ; Ng

with tied 
omponents q

(k)

i

and 
omponent mixture weights 


(k)

i

that are 
omputed

from the aÆne interpolation weights a

ording to




(k)

i

= �

(k)

i

K

i

�1

Y

j=k+1

(1� �

(j)

i

) 8k 2 f0; : : : ; K

i

� 1g

where �

(0)

i

� 1 andK

i

is the number of 
omponent densities for mixture p

i

, equivalent

to the depth of the 
orresponding leaf node in the mixture tree. Thus, the re
ursive
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interpolation s
heme that we have proposed for mixture trees 
an be justi�ed by the


orresponden
e to a set of 
onstrained 
onventional mixture densities.

Also, an interesting and important aspe
t of mixture trees is that any node (not

just the leaf nodes) 
omputes a valid probability density whi
h depends only on

prede
essor nodes. This property allows to downsize the mixture tree without having

to re-estimate any of the parameters as is required with 
onventional a
ousti
 models

(e.g., [Hwang & Huang '98℄). In fa
t, the partial mixture probability 
omputed down

to a spe
i�
 node represents the probability of the feature ve
tor being generated by

any of the leaf nodes (states) in the 
orresponding subtree. This implies that the

root 
omponent density q

(0)

0

(x) models the un
onditional density p(x) of the data.

9.2 Parameter Estimation

Assuming a maximum likelihood framework, the parameters of a mixture model

have to be estimated iteratively using an Expe
tation-Maximization (EM) algo-

rithm [Dempster et al. '77, Redner & Walker '84, M
La
hlan & Krishnan '97℄. Fur-

thermore, if the Forward-Ba
kward algorithm is used for training the HMMs, we fa
e

two nested probabilisti
 models; (1) assigning HMM states to observations and (2)

assigning mixture 
omponent densities within state mixtures to observations.

In the following, we will derive an EM algorithm for estimating the parameters of

a mixture tree that is applied to the estimation of HMM state emission likelihoods

in a statisti
al spee
h re
ognition system. Without sa
ri�
ing universality, we �rst

present the EM algorithm for the 
ase of Gaussian 
omponent densities. The resulting

algorithm 
an easily be modi�ed for other types of 
omponent densities, even for 
om-

ponent densities that are mixtures themselves. We dis
uss both Forward-Ba
kward

and Viterbi based HMM training.

Irrespe
tive of the kind of HMM training algorithm 
hosen, the E-step (Expe
tation)

of the EM algorithm for mixture trees is identi
al and 
onsists of 
omputing posterior

probabilities of mixture tree nodes for ea
h input feature ve
tor x. For that purpose,

it is 
ru
ial to note that the interpolation weights �

(k)

i

represent the a-priori node

probabilities in the tree. Thus, for ea
h feature ve
tor x in the training set, we 
an


ompute the a-posteriori node probabilities h

(k)

i

(x) a

ording to

h

(k)

i

(x) =

�

(k)

i

q

(k)

i

(x)

�

(k)

i

q

(k)

i

(x) + (1� �

(k)

i

) p

(k�1)

bi=b


(x)

=

�

(k)

i

q

(k)

i

(x)

p

(k)

i

(x)

with the ex
eption of h

(0)

0

(x) = 1. The h

(k)

i

(x) measure the probability with whi
h

the respe
tive node's 
omponent density 
ontributes to the partial mixture that has

been a

umulated down to that node. Again, it is important to note that the node

posteriors in our model depend only on parent nodes, not on any of the 
hild nodes.
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For the M-step (Maximization) of the algorithm, we have to distinguish between

Forward-Ba
kward and Viterbi Training.

9.2.1 Forward-Ba
kward Training

In Forward-Ba
kward HMM training, we obtain HMM state o

upation probabilities




i

(x) for ea
h HMM state s

i

and ea
h feature ve
tor x. In our 
ase, state o

upation

probabilities translate to mixture tree leaf o

upation probabilities and represent the

a-priori probabilities of leaf nodes.

In the M-step, we update the mixture weights �

(k)

i

and the parameters of the 
om-

ponent densities q

(k)

i

based on the expe
tations for all training patterns gained in the

E-step su
h that the likelihood of the model given the data in
reases. We obtain the

following updates for the node parameters:
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where �

(k)

i

is the mean ve
tor and �

(k)

i

is the 
ovarian
e matrix of the Gaussian


omponent density q

(k)

i

. The node o

upation probabilities 


(k)

i

(x) 
an be 
omputed

in a bottom-up fashion from the state/leaf o

upation probabilities 


i

(x) a

ording

to




(d)

i

(x) = 


i

(x)
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That is, a node o

upation probability is 
omputed as the sum of all state o

upation

probabilities of all states (leaf nodes) in the 
orresponding subtree.

9.2.2 Viterbi Training

In the 
ase of Viterbi training, a state alignment implies a one-to-one mapping be-

tween HMM states and feature ve
tors. Thus, for any input feature ve
tor, there

is exa
tly one state with state o

upation probability 


i

(x) = 1, all other state o
-


upation probabilities vanish. In a mixture tree, the Viterbi assumption leads to a
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single path of non-zero node o

upation probabilities 


(k)

i

(x) = 1 from root to one of

the leaves for ea
h feature ve
tor. Therefore, node posteriors in the E-step have to

be evaluated only along the path through the mixture tree that 
orresponds to the


urrent pair of feature ve
tor and HMM state. The parameter update formulas in

the M-step simplify a

ordingly to
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where T

(k)

i

denotes the set of training patterns that 
orrespond to the respe
tive

tree node. In other words, T

(k)

i


onsists of the feature ve
tors with state labels


orresponding to one of the leaf nodes in the subtree starting at node N

(k)

i

.

9.2.3 Parameter Initialization

As with standard mixture densities, reasonable initialization of parameters is 
ru
ial

for rapid 
onvergen
e of the EM algorithm. In the 
ase of hierar
hi
ally tied mix-

ture densities with Gaussian 
omponent densities, we initialize lo
al mixture weights

a

ording to

�

(k)

i

=

1

k + 1

whi
h 
orresponds to a uniform 
omponent prior distribution for all mixtures in the

mixture tree as 
an be seen by substituting the above expression into the expression

for 
omputing mixture weights 
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i

from interpolation weights �

(k)

i

in a mixture tree:
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Individual Gaussian 
omponent densities are initialized using the ML estimates for

the Forward-Ba
kward weighted data observed at the 
orresponding tree node:
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In 
ase of Viterbi training, this simpli�es to the ML estimates for all data of all states

(leaf nodes) found in the subtree of the node to be initialized.

9.2.4 Mixtures as Component Densities

Mixture 
omponent densities q

(k)

i

in a mixture tree 
an themselves be mixture den-

sities, allowing for more a

urate modeling of node distributions. For instan
e, ea
h

node's 
omponent density may be modeled as a mixture of Gaussians:
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The easiest way to train a mixture tree with this kind of 
omponent densities is

to start with 
omponent densities that 
onsist of single Gaussians, train the mixture

tree until 
onvergen
e of the EM algorithm and then apply a te
hnique 
alled mixture

splitting [Young '94℄, that repla
es the single Gaussians with mixtures of M Gaus-

sians randomly positioned around the mean of the original Gaussian a

ording to its

varian
e. After in
reasing the number of 
omponents in the mixture densities of the

mixture tree using this te
hnique, we 
an 
ontinue to train the parameters a

ord-

ing to the EM algorithm, however now 
onsidering the fa
t that we fa
e two nested

probabilisti
 models whi
h requires to weight updates for the within-node 
omponent

densities with the node posteriors obtained in the E-step of the EM algorithm for

mixture trees.

9.3 Constru
ting Mixture Trees

As already mentioned, an important prerequisite for the su

essful appli
ation of

mixture trees is that state distributions overlap in feature spa
e, su
h that mixture
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density 
omponents 
an be tied for joint modeling of the overlapping parts. While

this is usually the 
ase for 
ontext-dependent HMM models, it is not immediately


lear how to group these models to form an optimal mixture tree stru
ture. Consid-

ering the large amount of HMM states and our experien
e gained with hierar
hi
al


onne
tionist a
ousti
 models, 
luster algorithms appear to be viable solutions to

the task of 
onstru
ting suitable mixture trees. Also, it is in prin
iple possible to

adopt the stru
ture of the phoneti
 
ontext modeling de
ision trees for mixture tree

modeling as already noted in se
tion 5.2. However, due to the 
ategori
al questions

asked, de
ision tree stru
tures are typi
ally highly imbalan
ed, a rather undesirable

property of mixture trees. In fa
t, the following issues are parti
ularly important

aspe
ts of mixture trees:

� Tree Balan
e: A mixture tree should be balan
ed to ensure that all embedded

mixture densities 
onsist of an approximately equal number of 
omponent den-

sities. Otherwise, we allow 
ertain HMM states to be modeled more a

urately

than others.

� Bran
hing Fa
tor: The number of 
omponent densities that 
onstitute the

mixture modeling a given state is determined by the depth of the 
orrespond-

ing tree leaf node. Assuming a balan
ed mixture tree, the average number of


omponents per mixture is determined solely by the tree bran
hing fa
tor

1

. A

binary tree maximizes this number. Furthermore, the bran
hing fa
tor 
ontrols

the degree of 
omponent sharing and might therefore be subje
t to data-driven

optimization.

Keeping the above 
onstraints in mind, the agglomerative and divisive 
lustering

algorithms that we have presented and dis
ussed in se
tion 5.3 are appli
able to the

task of mixture tree 
onstru
tion without modi�
ations.

9.4 Exploiting Tree Stru
ture

The hierar
hi
al stru
ture of mixture tree based a
ousti
 models o�ers almost the

same advantageous properties than those of hierar
hi
al 
onne
tionist a
ousti
 mod-

els. With the ex
eption of te
hniques that require estimates of (partial) posterior

probabilities su
h as fast evaluation by pruning against a �xed posterior threshold,

the algorithms that we have developed for the 
onne
tionist hierar
hi
al model are

appli
able to mixture trees as well:

1

Assuming that the number of leaf nodes/HMM states is �xed and given a-priori
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� Stru
tural Adaptation: A spee
h re
ognition system based on a very de-

tailed, highly spe
i�
 mixture tree 
an eÆ
iently and e�e
tively be ported to

a previously unseen domain. The di�ering vo
abulary and language model in

this domain typi
ally indu
e a strong mismat
h in the a-priori distribution of

HMM states and in the spe
i�
ity of 
ontext modeling required for optimal per-

forman
e as dis
ussed in 
hapter 8. Using a small amount of adaptation data

for estimating a-priori state distributions in the new domain, we 
an identify

low probability states that model phoneti
 
ontexts that are irrelevant to the

new domain and prune the 
orresponding bran
hes in the mixture tree. The

resulting tree is stru
turally adapted to the unseen domain and its lo
al esti-

mators 
an additionally be adapted to the di�ering a
ousti
 distributions by

means of adaptation algorithms su
h as maximum likelihood linear regression

(MLLR) [Leggetter & Woodland '94℄. However, in 
ontrast to the 
onne
tion-

ist 
ounterpart, bran
h priors that play an important role in adapting the tree

stru
ture are not expli
itly available in mixture trees. Therefore, stru
tural

adaptation of mixture trees is somewhat limited in 
omparison to the hierar-


hi
al 
onne
tionist model.

� Speaker Adaptation: As dis
ussed earlier, the stru
ture of mixture trees

represents exa
tly the kind of information needed for tying 
omponent densities

for MLLR based adaptation when only a limited amount of adaptation data is

available. As su
h, mixture trees 
an be interpreted as MLLR regression trees

that have to be 
onstru
ted additionally for 
onventional mixture models. As


omponent densities are already tied in a mixture tree, speaker adaptation with

a limited amount of adaptation data 
an be a

omplished by simply sele
ting

those tree nodes in the vi
inity of the root node for whi
h we observe more than

a prede�ned amount of data and applying the usual linear transformation to

the parameters of the 
orresponding 
omponent densities.

� Downsizing the Tree: In order to 
ompute the likelihood of a spe
i�
 state

by means of a mixture tree, we have to follow the path from the root node

to the leaf 
orresponding to that state, re�ning estimates of the likelihood at

ea
h node. Instead of traversing the tree all the way down to the leaves, we


an stop 
omputing re�ned likelihoods at any tree level and treat all states in

the remaining subtree as a new tied state. This way, the spe
i�
ity of 
ontext-

dependent modeling and the number of distin
tly modeled HMM states of a

trained mixture tree 
an be redu
ed arbitrarily, from full 
ontext-dependent

modeling all the way down to 
ontext-independent modeling and further. Thus,

pruning of mixture trees allows to easily adapt re
ognizers to available memory

and/or pro
essor speed without having to re-train or re-
luster the a
ousti


model.
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� Fast Model Evaluation: In 
ontrast to hierar
hi
al 
onne
tionist a
ousti


models, fast model evaluation 
an not be a
hieved by pruning partial s
ores

against a �xed absolute threshold as this requires estimates of the partial pos-

terior probabilities. However, fast evaluation of mixture trees 
an be a
hieved

by evaluating the tree stru
ture in a breadth �rst manner. This way, pruning


an be delayed until partial s
ores are available for all nodes in a spe
i�
 tree

layer. As pruning 
an not be based on an absolute threshold, we may identify

promising bran
hes by rank ordering and sele
ting the n best nodes in ea
h tree

layer for further evaluation.

9.5 Experiments on Swit
hboard

For our experiments with a mixture tree based a
ousti
 model on the Swit
hboard


orpus, we 
onstru
ted a 
ontext-dependent HMM system with a total of 8000 tied

states by building about 150 phoneti
 de
ision trees, one for ea
h state of 
ontext-

independent 3 state HMM phone models. Top-down de
ision tree 
lustering was

based on split likelihood gain using diagonal Gaussians to model state distributions.

9.5.1 Constru
tion and Evaluation of Mixture Trees

We applied divisive 
lustering to 
onstru
t a binary mixture tree for the 8000 states.

Non-uniform priors were penalized during tree 
onstru
tion in order to obtain a bal-

an
ed tree. The �nal mixture tree had a maximum depth of 18. Simple diagonal

Gaussians were 
hosen as 
omponent densities in ea
h node. After initialization a
-


ording to se
tion 9.2.3, we trained the mixture tree for 4 iterations using Viterbi

state alignments of 170 hours of Swit
hboard data from a 
onventional re
ognizer.

To improve modeling a

ura
y, we then repla
ed the Gaussian 
omponent densities

in ea
h tree node by mixtures of 8 Gaussians that were obtained from the original

Gaussian by mixing-up as explained earlier. The resulting mixture tree, 
ontaining a

total of 127992 Gaussians in 15999 nodes, was trained for another 6 iterations, until

training data likelihood 
onverged.

Fig. 9.3 depi
ts the initial as well as mean and standard deviation of the �nal in-

terpolation weights � in ea
h level of the trained mixture tree. For in
reasing tree

depth, interpolation weights get smaller 
onsistent with the initialization strategy

and eventually level o� at a mean of around 0:3. Their varian
e in
reases slightly

towards the bottom of the tree whi
h might indi
ate saturation of the spe
i�
ity of


ontext-modeling in some bran
hes of the tree.

Next, we evaluated the performan
e of the trained mixture tree in re
ognition exper-

iments. All re
ognition runs used a 15k vo
abulary and a standard trigram language
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Figure 9.3: Distribution of interpolation weights in mixture tree

model trained on the Swit
hboard 
orpus. The results reported here were obtained

on a test set 
onsisting of the �rst 30 se
onds from 12 representative speakers taken

from the 1997 development test set and 
ontained a total of 1340 words. Using the

full mixture tree with mixtures of 8 Gaussians as 
omponent densities in ea
h node,

we a
hieved an unadapted word error rate (WER) of 36.6% on this test set.

A
ousti
 Model # states # 
omponents # params WER

Mixture Densities 8000 16/mixture 10.1 M 36.1 %

Binary Mixture Tree 8000 8/tree node 10.0 M 36.6 %

Table 9.1: Mixture tree vs. mixture densities based a
ousti
 models

For 
omparison, a 
onventional model based on mixtures of Gaussians with an ap-

proximately equal number of parameters (using mixtures of 16 Gaussians for ea
h of

the 8000 states) a
hieves a 
omparable unadapted word error rate of 36.1% on the

above test set. Table 9.1 summarizes the results of this 
omparison.

9.5.2 Downsizing of Mixture Trees

In this experiment, we investigated the e�e
ts of downsizing the mixture tree, thereby

redu
ing the spe
i�
ity and amount of 
ontext modeling. The original tree of depth
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18 that models 8000 HMM states was su

essively redu
ed in size by removing the

lowest tree level. This way, we obtained mixture trees with depths ranging from

the original 18 down to 8. The smallest mixture tree with depth 8 lead to only 179

distin
tly modeled states, 
orresponding roughly to the number of states in a 
ontext-

independent system. We de
oded the above test set for ea
h pruned mixture tree,

using the exa
t same de
oder parameters as with the original mixture tree. Table

9.2 summarizes the results obtained with the original and the pruned trees regarding

size, overall de
oding speed and word error rate (WER) on the above test set.

pruning # tied # nodes tree size speed WER

depth states in tree [%℄ [xRT℄ [%℄

{ 8000 15999 100.0 48 36.6

17 7991 15983 99.8 48 36.6

16 7897 15795 98.7 48 36.6

15 7290 14581 91.1 45 36.7

14 5722 11445 71.5 39 37.2

13 3699 7399 46.2 31 39.4

12 2109 4219 26.3 24 40.6

11 1143 2287 14.2 19 43.8

10 619 1239 7.7 17 52.0

9 331 663 4.1 16 55.4

8 179 359 2.2 16 62.5

Table 9.2: Results with downsized mixture trees

While the speed-up in evaluating likelihoods (not shown in Table 9.2) that 
an be

a
hieved by pruning the mixture tree 
orresponds roughly to the redu
tion in tree

size, the speed-up for overall re
ognition time depends on the proportion of time

spent in a
tual de
oding whi
h 
an signi�
antly ex
eed the proportion of time spent

in evaluation of a
ousti
 likelihoods. The highest speed-ups 
an be expe
ted for 
lose

to real-time systems. In our 
ase, de
oding with the smallest tree was about three

times faster than de
oding with the full tree.

Fig. 9.4 depi
ts a plot of word error rate vs. mixture tree size for the results sum-

marized in Table 9.2. As expe
ted, the performan
e for the smallest tree, modeling

179 distin
t HMM states is 
omparable to what is typi
ally reported for 
ontext-

independent Swit
hboard systems. On the other hand, the mixture tree 
an be

downsized to about 25% of its original size at the 
ost of only moderate in
reases in

word error rate of about 4% absolute.
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Figure 9.4: Word error rate vs. size of pruned mixture tree

9.6 Dis
ussion

Mixture trees represent a likelihood-based alternative to hierar
hi
al 
onne
tionist

a
ousti
 models with very similar stru
tural properties, whi
h 
an be exploited for

a variety of tasks in spee
h re
ognition. As su
h, mixture trees o�er the same ad-

vantages 
ompared to 
onventional mixture models. However, although the two tree

stru
tured models share a lot of properties, they di�er in the following aspe
ts:

� Estimation Paradigm: While mixture trees dire
tly estimate state 
ondi-

tional likelihoods as required by the HMM formalism, its 
onne
tionist 
ounter-

part separately estimates state posteriors and priors, whi
h are then 
ombined

via Bayes' rule to form estimates of s
aled likelihoods. The latter approa
h of-

fers advantages with respe
t to the training 
riterion and the expli
it availability

of state priors and tree bran
h priors.

� Training Criterion: Mixture trees are trained a

ording to the maximum

likelihood (ML) 
riterion, using a variant of the EM algorithm. In 
ontrast, a

hierar
hi
al 
onne
tionist a
ousti
 model is trained a

ording to the maximum

a-posteriori (MAP) 
riterion whi
h leads to more dis
riminant models.

� Expli
it Priors: The expli
it availability of priors in all levels of the tree

stru
ture allowed us to develop an algorithm for soft stru
tural adaptation of
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hierar
hi
al 
onne
tionist a
ousti
 models to unseen domains. By modifying

the priors a

ording to empiri
 distributions gained on adaptation data in the

unseen domain, we were able to gradually pin
h o� 
ertain undesired bran
hes

of the tree stru
ture. As priors are not expli
itly available in a likelihood based

model, we 
an only de
ide upon keeping or removing su
h bran
hes in a mixture

tree model.

Thus, mixture trees represent an interesting tree-stru
tured ar
hite
ture for a
ousti


modeling with advantageous properties 
ompared to 
onventional mixture models and

a 
lose relationship to the hierar
hi
al 
onne
tionist model we have presented earlier.

While both models o�er s
alable phoneti
 
ontext modeling, the 
onne
tionist variant

exhibits unique properties that render it more suitable for stru
tural adaptation and

domain-adaptive spee
h re
ognition.



Chapter 10

A
ousti
 Model Combination

In this 
hapter, we dis
uss methods for improving spee
h re
ognition performan
e by


ombining several information sour
es. It is well known that pattern 
lassi�
ation

tasks bene�t from almost any kind of 
ombination approa
h as long as suÆ
iently

diverse representations or learners are involved. In the 
ase of an automati
 spee
h

re
ognition system, there are three potential levels where 
ombination may be in-

trodu
ed (see Fig. 10.1). First, we 
an 
ombine the probability estimates of several

a
ousti
 models before they are fed into the de
oder (referred to as a
ousti
 model


ombination). Se
ond, we 
an 
ombine the probability estimates of several language

models before they are fed into the de
oder (referred to as language model 
ombina-

tion) and third, we 
an run several 
omplete and independent re
ognizers in parallel

and 
ombine their output word hypotheses (referred to as hypothesis 
ombination).

Of 
ourse, 
ombination 
an o

ur simultaneously at several of these levels.

It is now 
ommon pra
ti
e in evaluation systems to 
ombine several language models

estimated on di�erent 
orpora by interpolating their probability estimates. Also,

it has re
ently be
ome popular to apply a word hypothesis 
ombination s
heme

based on voting to evaluation systems, see [Fis
us '97℄ for details. Combination at

the level of a
ousti
 models is less 
ommonly applied but appears to yield 
onsid-

erable gains for 
onne
tionist a
ousti
 models, for instan
e in the Meta-Pi frame-

work [Hampshire & Waibel '89℄ or when applying the mixtures of experts model

[Ja
obs '95℄ to homogeneous [Waterhouse & Cook '96, Cook et al. '97b℄ and hetero-

geneous [Frits
h & Finke '97℄ a
ousti
 models. Furthermore, a variant of boosting

[Cook & Robinson '96℄ appears to yield the greatest gains in 
ombining several 
on-

ne
tionist a
ousti
 models but is 
omputationally very demanding during training.

In our work, we have fo
used on the level of a
ousti
 modeling and developed meth-

ods for the 
ombination of heterogeneous a
ousti
 models [Frits
h & Finke '97℄, e.g.,


onventional Gaussian mixture models and lo
ally dis
riminative models su
h as the

hierar
hi
al 
onne
tionist a
ousti
 model presented earlier.

175
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Figure 10.1: A
ousti
 model, language model and word hypothesis 
ombination
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The di�eren
e in training paradigms underlying these two types of models leads to

signi�
antly di�erent probability estimates that exhibit less mutual dependen
e than

ensembles of homogeneous models. It 
an be expe
ted that heterogeneous mod-

els fo
us on di�erent parts of the spee
h signal, resulting in greater diversity and

thus greater potential gains in 
ombination. However, heterogeneous a
ousti
 mod-

els require some kind of normalization as they typi
ally estimate di�erent quantities

(likelihoods vs. s
aled likelihoods or posteriors).

10.1 Stati
 Combination

In stati
 
ombination approa
hes, one assumes that only a-priori information about

the a

ura
y of individual a
ousti
 models is available. As a 
onsequen
e, the models

are 
ombined using 
onstant weighting fa
tors. Consider m di�erent a
ousti
 models,

ea
h estimating HMM emission probabilities p(x

k

js

i

) for the same HMM states s

i

based on di�erent feature ve
tors x

k

. We 
an 
ompute 
ombined estimates of the

HMM emission probabilities by applying the produ
t rule

p(x

1

; : : : ;x

m

js

i

) =

m

Y

k=1

p(x

k

js

i

)




k

with 


k

� 0 and

m

X

k=1




k

= 1

where the 


k

are a-priori weights that allow to 
ontrol the relative 
ontribution of

ea
h a
ousti
 model to the 
ombined estimates. Typi
ally, the a-priori weights are

manually tuned for maximum performan
e on an independent validation set.

Alternatively, 
ombined estimates of the HMM emission probabilities 
an be 
om-

puted by aÆne interpolation, known as linear opinion pools in statisti
s [Ja
obs '95℄:

p(x

1

; : : : ;x

m

js

i

) =

m
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k=1




k
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k
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k=1




k

= 1

Note, that a linear opinion pool results from applying the logarithm to the produ
t

rule, whi
h is interesting sin
e spee
h re
ognition systems typi
ally operate in the log

domain.

Now 
onsider the 
ase of 
ombining two heterogeneous a
ousti
 models, one produ
-

ing estimates of the 
lass 
onditional likelihoods p(xjs

i

), the other produ
ing esti-

mates of s
aled likelihoods

p(xjs

i

)

p(x)

by means of a lo
ally dis
riminative 
onne
tionist

a
ousti
 model. In a theoreti
ally sound framework, we would either have to treat

these estimates as 'data' and apply a supra-Bayesian approa
h [Ja
obs '95℄ or apply

some transformation to normalize the estimates of ea
h model to a 
ommon domain,

suitable for 
ombination. Although su
h normalization be
omes 
ru
ial in more elab-

orate 
ombination te
hniques, it 
an be omitted in pra
ti
e for the simple 
ase of
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applying 
onstant s
alar weights to ea
h a
ousti
 model. Of 
ourse, the estimates

resulting from su
h disregardful 
ombination will not be interpretable as a probability

distribution but the 
ombination usually improves a

ura
y nevertheless.

We have been investigating stati
 weighted 
ombination based on the produ
t rule

using two heterogeneous a
ousti
 models trained on the Swit
hboard 
orpus. The

�rst one was the state-of-the-art 
onventional Gaussian mixture model for 24000

tied HMM states that was used in the best performing system in the 1997 Hub-5

evaluation [Finke et al. '97℄. The se
ond model was a Hierar
hy of Neural Networks

(HNN) 
onsisting of roughly 4000 networks, designed for the same set of 24000 HMM

states and trained on the same 
orpus. Fig. 10.2 depi
ts how the word error rate

of the 
ombined system varies for di�erent 
ombination weights, when de
oding a

subset of the 1996 evaluation set (all other 
omponents of the re
ognizer were kept

identi
al).
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Figure 10.2: Stati
 
ombination of (1) a mixtures of Gaussians model (MOG) and

(2) a hierar
hi
al 
onne
tionist a
ousti
 model (HNN)

Table 10.1 shows the word error rates of the two models used stand-alone (left and

right end of plot in Fig. 10.2) and in 
ombination. The optimal 
ombination weights

turned out to be 0:6 for the Gaussian mixture model and 0:4 for the HNN. and

resulted in a relative de
rease in word error rate of 3.4% and 11.6% 
ompared to

stand-alone use of the mixtures of Gaussians and HNN model, respe
tively.

Up to now, we have assumed that the a-priori weighting fa
tors are applied globally

to the 
ombination of estimates for all HMM states. Instead, one 
an generalize
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a
ousti
 model word error rate

Mixture of Gaussians (MOG) 31.5 %

Hierar
hy of Neural Networks (HNN) 34.4 %

MOG+HNN, produ
t rule (0.6/0.4) 30.4 %

Table 10.1: Best result for stati
, log-linear 
ombination of heterogeneous a
ousti


models

the above 
ombination rules to allow for state-dependent a-priori model weights, as

proposed in [Rogina & Waibel '94℄:
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In 
ontrast to the 
ase of global weights, the 
onsiderably larger number of state-

dependent weights 


k

(s

i

) 
an no longer be tuned manually but must be optimized on

some training set, for instan
e using gradient as
ent in log likelihood. This in turn

prevents us from dire
tly applying this rule to the 
ase of heterogeneous models and

requires to normalize the estimates of su
h models prior to 
ombination.

10.2 Normalizing Heterogeneous Models

When attempting to 
ombine likelihood estimates of 
onventional and posterior or

s
aled likelihood estimates of 
onne
tionist a
ousti
 models using state-dependent or

dynami
ally 
omputed weights, we have to transformation the estimates of one or

both types of models su
h that both provide properly normalized probability dis-

tributions, suitable for subsequent 
ombination. In the following, we present two

su
h normalization methods, one targeting a-posteriori probability distributions and

another, 
omputationally more eÆ
ient one based on empiri
 normalization of likeli-

hoods.

10.2.1 A-Posteriori Normalization

The prin
iple behind our �rst approa
h is to require that ea
h a
ousti
 model provides

an a-posteriori probability distribution for the set of HMM states and to 
ompute

su
h a distribution as a post-pro
essing step, if ne
essary. Conne
tionist a
ousti


models dire
tly estimate the desired probability distribution and thus 
an be plugged

into the model 
ombination step as is. Conventional mixture models on the other

hand provide estimates of the state 
onditioned HMM emission probabilities whi
h
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have to be 
onverted to an a-posteriori probability distribution in order to be fed

into the 
ombination step. The task of the 
ombination step then is to 
ompute an

aggregate a-posteriori distribution from all the in
oming a-posteriori distributions.

Just as with a single 
onne
tionist a
ousti
 model, the resulting 
ombined a-posteriori

distribution has to be 
onverted ba
k to s
aled likelihoods by dividing by state priors

in order to a

ommodate the HMM framework. Fig. 10.3 depi
ts the s
enario for the


ombination of one 
onventional and one 
onne
tionist a
ousti
 model.
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Figure 10.3: Model 
ombination based on normalizing to a-posteriori probabilities

It remains to dis
uss how we 
an 
ompute an a-posteriori probability distribution

from the state likelihoods estimated by a 
onventional a
ousti
 model. A

ording to

Bayes' rule, the a-posteriori probability of a state s

i

given some input feature ve
tor

x 
an be 
omputed a

ording to

p(s

i

jx) =

p(xjs

i

) p(s

i

)

p(x)

=

p(xjs

i

) p(s

i

)

P

j

p(xjs

j

) p(s

j

)

whi
h requires the states' prior probabilities p(s

j

) in addition to the state likelihoods

p(xjs

j

). For a 
onventional 
ontinuous density model with sometimes more than

20000 unique HMM states, 
omputation of the a-posteriori probability distribution

a

ording to the above formula turns out to be 
omputationally very expensive due

to the sum of likelihoods in the denominator. As pointed out in [Willett et al. '98℄,

there is an eÆ
ient way of 
omputing the a-posteriori distribution in the 
ase of

heavy mixture tying, i.e. in phoneti
ally-tied, semi-
ontinuous and dis
rete HMMs.

However, in the 
ase of a fully 
ontinuous density HMM system, the required amount

of 
omputations 
an be
ome prohibitive. A 
omputationally less expensive alterna-

tive is to dire
tly estimate p(x) in the above formula using a mixture density with a

suÆ
iently large number of 
omponent densities. New problems arise in that 
ase:
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how do we ensure that the resulting a-posteriori distribution is properly normalized

su
h that the probabilities sum up to one? How 
an we eÆ
iently 
ompute a mixture

density with the large number of 
omponent densities that are required for a

u-

rately estimating p(x)? Depending on the spe
i�
 
ase, we might still end up with a


omputationally very expensive pro
edure.

In summary, normalization to a-posteriori distributions appears to be attra
tive in


ases where we want to 
ombine only a single 
onventional model with one or many


onne
tionist models or in 
ases where the 
onventional models employ some kind of

mixture tying su
h that we 
an eÆ
iently 
ompute the required a-posteriori distri-

butions.

10.2.2 Empiri
 Normalization

We have developed an eÆ
ient te
hnique for normalizing estimates of heterogeneous

a
ousti
 models that does not even require that the models produ
e probability s
ores

at all [Frits
h & Finke '97℄. All that is required is that the emitted model s
ores are


ontinuous, bound to a �nite interval and that all a
ousti
 models adhere to the same

interpretation of s
ore ordering, for instan
e, that lower s
ores 
orrespond to better

a
ousti
 mat
hes.

Connectionist
Model

Mixtures of
Gaussians

x Dynamic
Combination likelihoods

transform
pmf

transform
pmf

Figure 10.4: Model 
ombination by normalizing based on empiri
 probability mass

fun
tions

Fig. 10.4 depi
ts the setup for empiri
 normalization. Here, the outputs of all a
ousti


models are normalized using a transformation based on the empiri
 probability mass

fun
tion (pmf) of the distribution of model s
ores. The resulting transformed esti-

mates are bound to the range [0; 1℄ and represent pseudo-probabilities, e.g., a value

of 0 
orresponds to the worst s
ore while a value of 1 
orresponds to the best s
ore

of the 
orresponding a
ousti
 model. This property is a
hieved 
onsistently for all

a
ousti
 models parti
ipating in the ensemble and thus enables dynami
ally weighted


ombinations.
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The normalization fun
tions for ea
h a
ousti
 model are estimated as follows. First,

we empiri
ally estimate the distribution of a
ousti
 s
ores for ea
h a
ousti
 model

based on some held-out training set. This is typi
ally done by estimating a dis
rete,

histogram-based probability distribution. For instan
e, 
onsider the earlier 
ase of (1)

a 
onventional Gaussian mixtures model and (2) a hierar
hi
al 
onne
tionist a
ousti


model. Fig. 10.5 shows empiri
 distributions of a
ousti
 s
ores for both models.

Here, the Gaussian mixture model emits the negative logarithm of likelihoods and

the 
onne
tionist model emits the negative logarithm of s
aled likelihoods.
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Figure 10.5: Distribution of likelihood s
ores for 
onne
tionist and Gaussian mixtures

a
ousti
 models

While the distribution of the Gaussian mixtures s
ores seems to smoothly follow

a Gaussian, the distribution of the hierar
hi
al 
onne
tionist model s
ores 
ontains

bumps and a very strong peak near zero. This peak is attributable to the very

frequent silen
e model and the MAP training pro
edure whi
h leads to good dis
rim-

ination of silen
e and spee
h models. Note also, that part of the distribution for the


onne
tionist model rea
hes into the area of negative s
ores due to the division by

priors applied to obtain s
aled likelihoods.

Let Y

k

= p

k

(xjs

i

) be the random variable representing s
ores 
omputed by the k-th

a
ousti
 model for all x and s

i

. A

ording to this notation, the histograms depi
ted

in Fig. 10.5 represent p(Y = Y

k

), the probability distribution of s
ores. We now intro-

du
e a s
ore normalization fun
tion q for ea
h a
ousti
 model that maps the original

model-dependent s
ores into the range [0; 1℄ by evaluating the empiri
 probability
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mass fun
tion (pmf):

q(Y

k

) := p(Y > Y

k

)

Fig. 10.6 depi
ts the probability mass fun
tions 
omputed from the histograms in

Fig. 10.5 for normalizing the 
orresponding two a
ousti
 models.
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Figure 10.6: Normalization fun
tions for 
onne
tionist and Gaussian mixtures a
ous-

ti
 models

These fun
tions e�e
tively and 
onsistently normalize the s
ores of heterogeneous

a
ousti
 models. For instan
e, a normalized s
ore of 0:5 represents in both models an

original, model-dependent s
ore that is lo
ated at the 
enter of gravity in the distri-

bution of model-dependent s
ores. The above normalization method 
orresponds to a

monotoni
 mapping whi
h preserves the order of s
ored models while maximizing the

entropy of the resulting normalized s
ores by approximating a uniform distribution.

Furthermore, the proposed method requires only a single table look-up to evaluate

the empiri
, histogram-based probability mass fun
tion and thus pla
es virtually no

additional 
omputational burden on a
ousti
 model 
ombination.

10.3 Dynami
 Combination

In dynami
 a
ousti
 model 
ombination, we allow for 
ombination weights that vary

with ea
h time frame, assuming that the quality of ea
h 
ontributing a
ousti
 model
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is not �xed a-priori but varies lo
ally, maybe depending on a
ousti
 
onditions or

broad 
lass of phoneti
 sound being uttered. Some models might provide a

urate

estimates for vowel sounds and be un
ertain for stop 
onsonants while others behave

vi
e versa (additionally depending on the a
ousti
 front-ends being used). In the

remainder, we will investigate dynami
 a
ousti
 model 
ombination based on linear

opinion pools, that is, we model the 
ombined a
ousti
 probabilities a

ording to

p(xjs

i

) =

m

X

k=1

g

k

(x) p

k

(xjs

i

) with g

k

(x) � 0 and

m

X

k=1

g

k

(x) = 1

where we have 
ondensed potentially di�erent feature spa
es into a single feature

spa
e for simpli
ity. Furthermore, we assume that heterogeneous a
ousti
 models

have been adequately normalized, for instan
e using one of the te
hniques presented

in the previous se
tion, before being used in the above 
ombination rule. The g

k

(x)

are time-varying weighting fun
tions that should re
e
t our relative 
on�den
e into

ea
h one of the a
ousti
 models at ea
h time step. There are several potential knowl-

edge sour
es that might be used for deriving the above weighting fun
tions. The


orresponding approa
hes might be 
ategorized into the following three 
lasses

1. Using frame-level measures of 
on�den
e, e.g., the entropy of the a-posteriori

distribution

2. Optimizing a frame-based training obje
tive (MAP)

3. Using phone-, word- or senten
e-level 
on�den
e s
ores

Sin
e frame-level a

ura
y is not ne
essarily 
orrelated with word-level re
ognition

a

ura
y, the frame-level measures of 
on�den
e applied in the �rst 
ase 
an not

guarantee to improve re
ognition a

ura
y. The se
ond and third approa
h appear

more promising but require 
onsiderably more e�ort to 
ompute the model weighting

fun
tions.

10.4 Gating Networks

The appli
ation of a gating network for 
omputing weighting fun
tions is moti-

vated by the Meta-Pi [Hampshire & Waibel '89℄ and the mixtures of experts frame-

work [Ja
obs '95℄ and its extension to hierar
hies of experts [Jordan & Ja
obs '92,

Jordan & Ja
obs '94℄ for fusing the opinions of several experts, expressed as proba-

bility distributions, into a single probability distribution that 
an be used for de
ision

making.
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Assuming that ea
h a
ousti
 model (expert) 
omputes a valid probability distribution,

a mixture of experts 
omputes a 
ombined probability distribution through linear in-

terpolation, using an additional estimator 
alled a gating network that weights the


ontribution of ea
h expert at ea
h time frame based on the 
urrent feature ve
tor

(see Fig. 10.7). In order to assure that the weights produ
ed by the gating net-

work satisfy the 
onstraints of a probability distribution, the output layer is typi
ally

parameterized using the softmax fun
tion.

Network
Gating

AM 1 AM 2

x

Figure 10.7: Mixtures of experts approa
h to dynami
 a
ousti
 model interpolation

De�ning a global, di�erentiable training obje
tive, e.g., maximum-likelihood or max-

imum a-posteriori, the parameters of the gating network 
an be learned by ba
k-

propagating errors from the output of the above ar
hite
ture to the gating network

and applying, for instan
e, gradient as
ent based optimization. Assuming that the

a
ousti
 models estimate a-posteriori distributions, the 
ombined system 
omputes

p(s

i

jx) =

m

X

k=1

g

k

(x) p

k

(s

i

jx)

In the 
ase of Viterbi-based MAP training, we obtain the following log-likelihood

based obje
tive fun
tion for the 
ombined system:

E =

X

t

log

m

X

k=1

g

k

(x) p

k

(s


(t)

jx)
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where 
(t) denotes the index of the HMM state that is assumed to have produ
ed x

at time t a

ording to a Viterbi alignment. Furthermore assuming that the gating

network is realized as a generalized linear model (single layer with softmax output

non-linearity), we 
an iteratively optimize its weight matrix W using gradient as
ent

as follows:

W

(i+1)

= W

(i)

+ �

X

t

dE(t)

dW

where � is the learning rate and the derivative of E(t) with respe
t to the matrix of

weights is given by

dE(t)

dW

= (h(x)� g(x)) x

T

with the ve
tor of posterior probabilities h(x) 
onsisting of 
omponents

h

j

(x) =

g

j

(x) p

j

(s


(t)

jx)

P

m

k=1

g

k

(x) p

k

(s


(t)

jx)

Note that the above optimization rules 
an easily extended to more 
omplex gating

networks su
h as multi-layer per
eptrons by applying the 
hain rule as in the original

ba
kpropagation algorithm.

We have been investigating the viability of this approa
h by training a multi-layer

per
eptron with a single hidden layer of 64 units as the gating network in a dynami



ombination of the two heterogeneous Swit
hboard models used earlier for the exper-

iments with stati
 
ombination. Estimates of both systems were normalized using

the empiri
 histogram mapping approa
h. The gating network was trained on 28

hours from the Swit
hboard 
orpus until log-likelihood 
onverged. Fig. 10.2 gives

re
ognition results of the individual models and the gated 
ombination, again on a

subset of the 1996 evaluation set.

A
ousti
 Model Word Error Rate

Mixture of Gaussians (MOG) 31.5 %

Hierar
hy of Neural Networks (HNN) 34.4 %

MOG+HNN, dynami
ally gated

by 39-64-2 MLP 30.2 %

Table 10.2: Results of dynami
 a
ousti
 model 
ombination using a gating network

In our experiment, dynami
 
ombination redu
es the word error rate by 4.1% relative

to using the best model in the ensemble in isolation. However, the gains of using
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a dynami
 weighting s
heme over simple stati
 
ombination are 
omparably small

(0.2% absolute), suggesting that the optimal weighting fun
tions are too 
omplex to

be learned adequately by a single gating network.

10.5 Dis
ussion

In this 
hapter, we have been presenting te
hniques for 
ombining the estimates of

several a
ousti
 models, fo
using on the 
ombination of heterogeneous models, e.g.,

Gaussian mixtures and 
onne
tionist models. In 
ontrast to 
ombinations of homoge-

neous models, we had to address the issue of s
ore normalization in order to be able to

dynami
ally 
ombine models that estimate di�erent quantities. We have argued for

the normalization to an a-posteriori probability distribution. However, as this kind

of normalization 
an be
ome 
omputationally prohibitive in large 
ontinuous density

HMM systems, we have presented an alternative normalization s
heme based on the

probability mass fun
tion of the distribution of model s
ores. We have demonstrated

the viability of this more eÆ
ient approa
h by using it to dynami
ally 
ombine a

Gaussian mixtures model with a hierar
hi
al 
onne
tionist model using a gating net-

work to estimate the weighting fun
tions. While this proved to be an e�e
tive method

for dynami
 model 
ombination, it turned out that simple stati
 
ombination was al-

most as e�e
tive. We assume that the optimal weighting fun
tions in the dynami



ase are too 
omplex to be learned by a single hidden layer per
eptron. A solution

to this problem would be to assign a separate gating network to suitable 
lusters of

HMM states, for instan
e to HMM states belonging to the same monophone.

In our approa
hes to a
ousti
 model 
ombination, we have assumed that the 
on-

tributing models are pre-trained and that their parameters are �xed su
h that the


ombination algorithms 
an treat them as bla
k boxes. It should be noted that

approa
hes based on an integrated training of several a
ousti
 models su
h as boost-

ing or mixtures of experts typi
ally yield larger gains in re
ognition a

ura
y sin
e

these approa
hes spe
i�
ally push towards independent experts as part of the train-

ing obje
tive. It has been shown [Jordan '95℄ that the degree of independen
e of the

estimates of an ensemble of learners is dire
tly 
orrelated with the potential gain in

a

ura
y obtained from a 
ombination of these learners. However, given the large and


omplex ar
hite
tures in a
ousti
 modeling that often require several days of training,

an approa
h su
h as the one presented in this thesis is 
onsidered more appropriate,

espe
ially when dealing with heterogeneous estimators.
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Chapter 11

Con
lusions

This thesis has presented a new, prin
ipled framework for 
onne
tionist a
ousti


modeling in large vo
abulary statisti
al spee
h re
ognition. Based on the divide-and-


onquer paradigm, it was possible to derive a hierar
hi
al, tree-stru
tured ar
hite
ture

that de
omposes the task of estimating HMM state posteriors into thousands of

smaller tasks, ea
h of whi
h being solved by a small neural network. In 
ontrast

to the 
onventional approa
h, this strategy allows (1) to 
onstru
t s
alable a
ousti


models whi
h allow to adapt the spe
i�
ity of 
ontext modeling to previously unseen

domains and to arbitrarily downsize the model without retraining, and (2) to devise

algorithms for e�e
tive speaker adaptation and a

elerated model evaluation that

exploit the inherent hierar
hi
al stru
ture.

Based on the proposed hierar
hi
al ar
hite
ture, it was for the �rst time possible

to 
onstru
t 
ompetitive 
onne
tionist a
ousti
 models for a state-of-the-art large

vo
abulary 
onversational spee
h re
ognition system, modeling as mu
h as 24000

unique HMM states using a tree stru
ture 
onsisting of over 4000 neural networks.

Using unsupervised speaker adaptation, our system a
hieves a word error rate of

31.8% on the Swit
hboard 
onversational telephone spee
h 
orpus. While this result

is 
omparable to what we have a
hieved with our best 
onventional, non-
onne
tionist

system, the hierar
hi
al 
onne
tionist a
ousti
 model requires only one forth the

number of parameters and de
odes more than 5 times faster at about 25 times real-

time.

Furthermore, we have ta
kled the important problem of domain dependen
e of a
ous-

ti
 models that usually prohibits the appli
ation of a spee
h re
ognition system in

domains that di�er from its training domain be
ause of an una

eptable in
rease

in the word error rate. This problem 
an be attributed to domain-spe
i�
 
ontext-

dependent modeling that on the one hand appears to be inevitable for state-of-the-art

performan
e but on the other hand ties the a
ousti
 model to the phoneti
 
hara
-

teristi
s of the training 
orpus. The resulting trade-o� prevents us from building

189
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a

urate and universal a
ousti
 models with respe
t to di�erent appli
ation domains.

However, the hierar
hi
al ar
hite
ture presented in this thesis allows for domain-

adaptive a
ousti
 modeling whi
h a
hieves domain-spe
i�
 performan
e after only

45-60 minutes of a
ousti
 adaptation data from an unseen target domain. We devel-

oped an algorithm 
alled Stru
tural Domain Adaptation (SDA), that takes advantage

of the multi-s
ale representation of phoneti
 
ontext in a hierar
hi
al 
onne
tionist

a
ousti
 model for adapting the spe
i�
ity of phoneti
 
ontext modeling to a new

domain. The e�e
tiveness of the SDA approa
h was experimentally demonstrated

by adapting a 
onversational telephone spee
h system to two signi�
antly di�erent,

previously unseen appli
ation domains.

In the following, we summarize the main 
ontributions of this thesis and give sugges-

tions for future work.

11.1 Thesis Contributions

This thesis has presented both a novel hierar
hi
al 
onne
tionist framework for a
ous-

ti
 modeling in large vo
abulary statisti
al spee
h re
ognition and a sele
tion of algo-

rithms that exploit the unique properties of the resulting tree-stru
tured ar
hite
ture

for purposes su
h as fast de
oding, e�e
tive speaker adaptation and domain-adaptive

spee
h re
ognition. Following is a list of the spe
i�
 
ontributions presented in this

thesis.

� Hierar
hy of Neural Networks (HNN):

Based on hierar
hi
ally fa
toring 
ontext-dependent HMM state posteriors, we

have derived a tree-stru
tured, lo
ally-dis
riminative a
ousti
 model that s
ales

to an arbitrarily large number of HMM states. The model was termed a Hi-

erar
hy of Neural Networks sin
e we apply small feed-forward neural networks

to the task of estimating the required lo
al 
onditional posterior probabilities

at ea
h internal node of the modeling tree. The most prominent advantages of

the proposed ar
hite
ture in 
ontrast to existing a
ousti
 models are the multi-

s
ale representation of phoneti
 
ontext and the hierar
hi
al stru
ture re
e
ting

a
ousti
 similarity at various levels in the modeling tree. We have evaluated

Hierar
hy of Neural Networks based a
ousti
 models on the Swit
hboard large

vo
abulary 
onversational telephone spee
h 
orpus and demonstrated that the

model (1) a
hieves state-of-the-art performan
e and (2) s
ales to as mu
h as

24000 HMM states whi
h was found to be bene�
ial in terms of performan
e.

� Constru
tive Methods for Designing HNNs:

We have presented agglomerative (bottom-up) and divisive (top-down) 
lus-

tering algorithms developed spe
i�
ally for the 
onstru
tion of a hierar
hi
ally
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stru
tured a
ousti
 model from se
ond order statisti
s of HMM state emis-

sions and 
ompared both approa
hes extensively on data from the Swit
hboard


orpus. Our algorithms have been designed to favor balan
ed trees and 
lose-to-

uniform prior distributions of 
hild nodes at ea
h tree node su
h that a

urate

training of lo
al 
onditional a-posteriori probabilities is fa
ilitated and the hi-

erar
hi
al stru
ture 
an be exploited most e�e
tively.

� Investigation of Lo
al Model Sele
tion:

Given the exponential de
rease in the amount of available training data from

root to leaves in an HNN tree, the size and 
omplexity of lo
al estimators

of 
onditional a-posteriori probabilities must be 
hosen 
arefully in order to

maximize generalization performan
e. We have simpli�ed the problem of model

sele
tion signi�
antly by using single hidden layer MLPs in our HNNs. The

single degree of freedom 
on
erning model 
omplexity - the number of hidden

units - allowed us to determine optimal model size in a two step pro
ess: (1) pre-

sele
tion of rough model size based on available training data and (2) iteratively

in
reasing or de
reasing model size based on performan
e improvement on an

independent validation set.

� EÆ
ient Distributed Training:

Typi
ally, training of 
onne
tionist a
ousti
 models is 
omputationally very ex-

pensive, often requiring days of training on spe
ial hardware. In 
ontrast, we

have presented eÆ
ient distributed training methods for Hierar
hies of Neural

Networks that allow to train this model as fast and sometimes even faster than

a 
onventional, mixture density based a
ousti
 model using standard hardware.

As ea
h network in an HNN 
an be trained independently without any 
om-

muni
ation or syn
hronization overhead, training of the 
omplete model 
an be

easily distributed among several low-
ost standard 
omputers, allowing training

times of less than 24 hours for the full Swit
hboard 
orpus.

� Dynami
 Tree Pruning for Fast De
oding:

Using simple dynami
 tree pruning based on partially 
omputed posteriors,

it is possible to signi�
antly redu
e the amount of 
omputation required to

evaluate our hierar
hi
al 
onne
tionist a
ousti
 model during de
oding. We

have demonstrated that this te
hnique allows to speed-up the evaluation of

a
ousti
 s
ores by a fa
tor of up to 10 with almost no measurable de
rease in

performan
e. The overall de
oding time on the Swit
hboard 
orpus 
ould be

improved by a fa
tor of 6 from 140 times real-time to only 24 times real-time

without an in
rease in word error rate.

� E�e
tive Speaker Adaptation:

It has been shown that our tree-stru
tured a
ousti
 model inherently realizes
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parameter sharing at multiple s
ales a

ording to a
ousti
 similarity whi
h 
an

be exploited for e�e
tive speaker adaptation with limited amounts of adaptation

data. We have developed an algorithm for speaker adaptation that bene�ts

from this build-in stru
ture and thus requires no additional tying stru
tures

su
h as regression trees that are typi
ally needed for adapting 
onventional

models. Using unsupervised adaptation on only up to 3 minutes of spee
h from

ea
h speaker, our method for speaker adaptation a
hieves a relative de
rease in

word error rate of 9.5% on a subset of 20 speakers from the 1996 Swit
hboard

evaluation test set.

� Stru
tural Domain Adaptation (SDA):

We have presented an algorithm to eÆ
iently and e�e
tively downsize and adapt

the stru
ture of large vo
abulary 
onversational spee
h re
ognition systems

based on the proposed hierar
hi
al 
onne
tionist a
ousti
 model to previously

unseen appli
ation domains. In 
ontrast to 
onventional, domain-dependent

models, the SDA approa
h allows to adapt the stru
ture and thus the spe
i-

�
ity of phoneti
 
ontext modeling in an HNN based a
ousti
 model for optimal

modeling in new domains. Experimental validation of the SDA approa
h has

been 
arried out by adapting size and stru
ture of HNN based a
ousti
 mod-

els trained on Swit
hboard to two quite di�erent, unseen domains, Wall Street

Journal newspaper arti
les and English spontaneous s
heduling 
onversations.

In both 
ases, our approa
h yields 
onsiderably downsized a
ousti
 models with

performan
e equal to domain-spe
i�
 models and improvements of up to 18%

over the unadapted baseline model.

� Mixture Trees:

Hierar
hies of Neural Networks are based on fa
toring posterior state probabil-

ities whi
h are not available in 
onventional mixture based modeling. However,

we have demonstrated that it is still possible to derive a likelihood-based tree-

stru
tured a
ousti
 model with properties similar to HNNs by hierar
hi
ally

tying mixture density 
omponents. We have derived a variant of the EM al-

gorithm for estimating the parameters of the resulting model, whi
h we have


alled Mixture Tree.

� Downsizing of Hierar
hi
al A
ousti
 Models:

Another quite attra
tive property of the hierar
hi
al a
ousti
 models that we

have presented in this thesis is the possibility of downsizing the trained models

to a

ommodate limited pro
essor speed and/or memory. Downsizing 
an be re-

alized by simple tree trimming and allows to operate a hierar
hi
al 
onne
tionist

a
ousti
 model in a variety of 
ontext resolutions, from fully 
ontext-dependent

down to 
ontext-independent modeling. No parameter re-training is required.
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We have demonstrated the e�e
ts of model downsizing for the 
ase of mixture

trees.

� Combination of Heterogeneous A
ousti
 Models:

We have dis
ussed methods for the 
ombination of multiple, possibly heteroge-

neous a
ousti
 models and presented a novel eÆ
ient normalization te
hnique

that allows for e�e
tive 
ombination of a 
onventional, mixture densities based

a
ousti
 model with a hierar
hi
al 
onne
tionist a
ousti
 model. A 
ombina-

tion approa
h based on dynami
ally weighting the models using an MLP gating

network yielded a relative redu
tion in word error rate of 4%.

11.2 Future Work

The hierar
hi
al a
ousti
 modeling framework presented in this thesis 
an be extended

in various ways. We give some brief suggestions for further work on tree-stru
tured

a
ousti
 models in statisti
al spee
h re
ognition and other appli
ations:

� Merging De
ision Trees and Hierar
hi
al A
ousti
 Models:

Instead of having separate trees for 
lassifying and s
oring phoneti
 
ontext

models as proposed in this thesis, we 
ould try to merge these stru
tures into

a single model. Of 
ourse, we would then have to �nd a 
ompromise between

the partially di�erent requirements and 
onstraints of ea
h one of the models.

� Appli
ation to Multilingual Spee
h Re
ognition:

While the experiments presented in this thesis have been restri
ted to a single

language, hierar
hi
al 
onne
tionist a
ousti
 models may be 
onstru
ted and

trained on multiple languages, resulting in a multilingual a
ousti
 model whi
h

may be bene�
ial for multilingual and 
rosslingual spee
h re
ognition [Cohen

et.al. '97, S
hultz & Waibel '98℄. The SDA algorithm presented in 
hapter 8

may then be used to adapt the model to a spe
i�
 target language.

� Appli
ation to Extended HMM Frameworks:

Re
ently, several innovative and alternative modeling frameworks have been

proposed for statisti
al spee
h re
ognition and the re
ognition of time series in

general. Although still related to standard HMMs, approa
hes su
h as IOHMMs

[Bengio & Fras
oni '96℄, fa
torial HMMs [Ghahramani & Jordan '97℄ and the

REMAP framework [Bourlard et al. '94℄ attempt to improve modeling a

ura
y

by avoiding some of the false assumptions typi
ally found in standard models.

Both approa
hes might bene�t from using the ar
hite
ture proposed in this

thesis for the purpose of probability estimation in large HMMs.
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� Boosting of Lo
al Estimators:

Boosting has been around for quite some time now and has been shown to

improve 
lassi�er performan
e 
onsiderably by 
ombining the estimates of sev-

eral learners trained subsequently on patterns re-weighted depending on the

errors of the prede
essors. This te
hnique might readily be applied to the lo
al

estimators in an HNN tree. To avoid ex
essive 
omputations leading to unfea-

sible long training times, boosting might be restri
ted to the estimators in the

vi
inity of the root node and still improve performan
e of the overall model.

� Other Appli
ations:

The hierar
hi
al 
onne
tionist model presented in this thesis is unique in its

ability to estimate posterior probabilities for a very large number of 
lasses. In

that respe
t, it might be interesting to apply our model to other tasks su
h

as speaker identi�
ation or fa
e re
ognition and furthermore bene�t from the

similarity groupings represented in the tree stru
ture.



Appendix A

Conne
tionist Posterior

Probability Estimation

We 
onsider the N 
lass 
lassi�
ation problem. The following proof assumes that

a 
lassi�er neural network of arbitrary ar
hite
ture with N output neurons (one for

ea
h target 
lass !

i

) is trained to minimize the squared error (MSE) between network

outputs y

i

and targets t

i

. Target ve
tors t are en
oded a

ording to the 1-out-of-N

s
heme, meaning that the 
orre
t 
lass is en
oded using a 1, while all others are

en
oded using a 0. Furthermore, we assume 
ontinuous valued input ve
tors x.

The network error under the MSE 
riterion 
an be expressed as follows:
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jx) denotes the Bayesian a-posteriori probability of 
lass !

i

given input

ve
tor x. Sin
e p(x) =
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ting

p

2

(!

j

jx) leads to

E =

Z

N

X

k=1

0

�

N

X

j=1

(y

2

j

(x)� 2y

j

(x)p(!

j

jx) + p

2

(!

j

jx))

1

A

p(!

k

;x) dx

+

Z

N

X

k=1

0

�

N

X

j=1

(p(!

j

jx)� p

2

(!

j

jx))

1

A

p(!

k

;x) dx

195



196 Appendix A Conne
tionist Posterior Probability Estimation

whi
h 
an be further simpli�ed to
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The se
ond term in the above expression 
an be negle
ted sin
e it is independent of

the network parameters. Minimization of the mean squared error 
riterion 
an thus

be a
hieved by minimizing the �rst term in the above expression whi
h is simply

the mean squared error between the network outputs y

j

(x) and the Bayesian a-

posteriori 
lass probabilities p(!

j

jx). Therefore, training a network to minimize the

MSE between outputs and 1-out-of-N targets results in the best approximation to

the true a-posteriori distribution in the sense of that 
riterion. However, the given

proof 
ontains impli
it assumptions:

� The network must be trained to the global minimum of error. Sin
e training a

feed-forward neural network is NP-
omplete, rea
hing the global minimum of

error 
an not be guaranteed in pra
ti
e. However, it was shown, that for real

world problems, lo
al minima often do not di�er signi�
antly from the global

one.

� The network must 
ontain enough free parameters (plasti
ity) to model the

potentially 
omplex posterior probability distribution. For instan
e, a single-

layer network will not be able to model a non-Gaussian, multimodal posterior

distribution.

� An in�nite amount of training samples is available for training the network.

This assumption is of 
ourse not realizable but in pra
ti
e, a reasonably large

training 
orpus is usually suÆ
ient as long as adding more samples improves

network performan
e only marginally.

It should be noted that the proof 
an be given for other 
ontinuous network opti-

mization 
riteria su
h as relative entropy as well.

The presented proof was originally published in [Ri
hard & Lippmann '91℄ for the

relative entropy 
riterion and later in [Morgan & Bourlard '95℄ for the mean square

error 
riterion. A similar proof 
an be found in [Bridle '90℄.



Appendix B

Allophoni
 Variation in 24000

State Swit
hboard Model

The following Table shows the distribution of the roughly 24000 allophoni
 variations

(tied states), modeled by the Hierar
hy of Neural Networks used in some of the exper-

iments in this thesis, among the positions in the underlying 3-state left-right phone

models (only the phones modeling spee
h sounds are shown). The 4 phones marked

with an ampersand denote spe
ial phones for modeling interje
tions. Using the split

likelihood gain 
riterion introdu
ed in se
tion 2.4.2, phoneti
 de
ision trees were 
on-

stru
ted for ea
h position of ea
h phone model based on 170 hours of training data

from the Swit
hboard LVCSR 
orpus. The number of allophoni
 variations shown

for begin, middle and end positions in the Table below 
orrespond to the number of

leaf nodes in the 
orresponding de
ision trees. Note the large variation in the num-

ber of 
ontext-dependent states generated for ea
h phone whi
h re
e
ts the highly

non-uniform distribution of monophone priors in the training 
orpus.

phone position in 3-state HMM total number

name begin middle end of tied states

T 609 421 598 1628

N 454 357 501 1312

R 415 430 440 1285

IY 327 304 435 1066

L 381 282 372 1035

AX 326 292 347 965

D 350 204 321 875

K 304 208 298 810

IX 265 230 260 755

M 288 166 275 729
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198 Appendix B Allophoni
 Variation in 24000 State Swit
hboard Model

phone position in 3-state HMM total number

name begin middle end of tied states

S 232 199 294 725

IH 244 206 263 713

AE 240 198 252 690

OW 242 177 266 685

EH 220 193 265 678

AY 196 179 245 620

EY 176 182 243 601

W 196 177 222 595

AH 191 153 207 551

UW 158 184 188 530

DH 164 186 173 523

V 172 140 180 492

Z 164 132 189 485

B 189 117 155 461

HH 170 125 151 446

P 134 122 172 428

AXR 141 112 163 416

Y 121 134 140 395

AA 114 98 153 365

F 122 109 126 357

G 129 86 121 336

ER 83 86 103 272

AO 84 75 101 260

NG 67 65 67 199

AW 64 59 63 186

&AH 60 35 68 163

TH 60 48 51 159

JH 49 59 46 154

SH 52 46 53 151

DX 57 38 50 145

CH 38 55 39 132

&M 30 43 41 114

UH 32 36 38 106

EN 20 28 25 73

OY 13 20 16 49

&HH 9 10 9 28

&OW 10 11 7 28

ZH 6 5 7 18
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