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“The most beautiful thing we can experience is the mysterious. It is the source of all
true art and science. He to whom this emotion is a stranger, who can no longer
pause to wonder and stand wrapped in awe, is as good as dead”

Albert Einstein.






Abstract

This thesis presents a new, hierarchical framework for connectionist acoustic model-
ing in large vocabulary statistical speech recognition systems. Based on the divide
and conquer paradigm, the task of estimating HMM state posteriors is decomposed and
distributed in the form of a tree-structured architecture consisting of thousands of
small neural networks. In contrast to monolithic connectionist models, our approach
scales to arbitrarily large state spaces. Phonetic context is represented simultaneously
at multiple resolutions which allows for scalable acoustic modeling. We demonstrate
that the hierarchical structure allows for (1) accelerated score computations through
dynamic tree pruning, (2) effective speaker adaptation with limited amounts of adap-
tation data and (3) downsizing of the trained model for small memory footprints.
The viability of the proposed hierarchical model is demonstrated in recognition exper-
iments on the Switchboard large vocabulary conversational telephone speech corpus,
currently considered the most difficult standardized speech recognition benchmark,
where it achieves state-of-the-art performance with less parameters and faster recog-
nition times compared to conventional mixture models.

The second contribution of this thesis is an algorithm that allows for domain-adaptive
speech recognition using the proposed hierarchical acoustic model. In contrast to hu-
mans, automatic speech recognition systems still suffer from a strong dependence on
the application domain they have been trained on. Typically, a speech recognition
system has to be tailored to a specific application domain to reduce semantic, syn-
tactic and acoustic variability and thus increase recognition accuracy. Unfortunately,
this approach results in a lack of portability as performance typically deteriorates
unacceptably when moving to a new application domain.

We present Structural Domain Adaptation (SDA), an algorithm for hierarchically
organized acoustic models that exploits the scalable specificity of phonetic context
modeling by modifying the tree structure for optimal performance on previously
unseen application domains. We demonstrate the effectiveness of the SDA approach
by adapting a large vocabulary conversational telephone speech recognition system
to (1) a telephone dictation task and (2) spontaneous scheduling of meetings. SDA
together with domain-specific dictionaries and language models allows to match the
performance of domain-specific models with only 45-60 minutes of acoustic adaptation
data.






Zusammenfassung

Die vorliegende Arbeit prisentiert einen neuen, hierarchischen Ansatz fiir die kon-
nektionistische akustische Modellierung in statistischen Spracherkennungssystemen
fiir grole Wortschitze. Basierend auf dem Teile-und-Herrsche Paradigma werden a-
posteriori Wahrscheinlichkeiten von HMM Zustdnden in einer verteilten, in Form eines
Baumes strukturierten Architektur mit Hilfe mehrerer Tausend kleiner neuronaler
Netze geschiitzt. Im Gegensatz zu monolithischen konnektionistischen Architekturen
skaliert der vorgestellte Ansatz auf beliebig grofie Zustandsraume. Phonetische Kon-
texte werden dabei simultan in mehreren Auflsungen repréasentiert wodurch skalier-
bare akustische Modellierung erméglicht wird. Es wird gezeigt, daf8 die hierarchis-
che Architektur (1) beschleunigte Evaluation mittels dynamischem Pruning, (2) ef-
fektive Sprecheradaptation mit nur geringen Mengen an Adaptionsdaten und (3)
nachtragliche Verkleinerung eines trainierten Modells erlaubt.

Die Leistungsfihigkeit des vorgeschlagenen hierarchischen Modells wird anhand von
Erkennungsexperimenten mit dem Switchboard Korpus bestehend aus spontansprach-
lichen Telefonkonversationen, dem derzeit schwierigsten standardisierten Spracher-
kenner Bechmark, demonstriert. Die vorgeschlagene Architektur erzielt dabei eine
Erkennungsleistung vergleichbar zu den derzeit leistungsfahigsten Systemen, bendtigt
dazu jedoch deutlich weniger Parameter und Rechenzeit.

Der zweite Beitrag dieser Arbeit ist ein Algorithmus der domanen-adaptive Sprach-
erkennung mit der vorgeschlagenen hierarchischen Architektur ermdglicht. Heutige
Spracherkennungssysteme leiden immer noch an einer starken Abhangigkeit von der
Anwendungsdoméne fiir die sie trainiert wurden. Typischerweise muf} ein Spracherken-
nungssystem auf eine bestimmte Anwendungsdoméne hin zugeschnitten werden um
die semantische, syntaktische und akustische Variabilitit so weit wie moglich ein-
zuschrdnken und dadurch die Erkennungsleistung zu verbessern. Ungliicklicherweise
fiihrt ein solcher Ansatz zu einem Mangel an Portabilitét, ersichtlich daran, daf§ die
Erkennungsleistung stark einbricht, wenn das System auf einer neuen, andersartigen
Doméne angewendet wird.

Wir présentieren Strukturelle Doménenadaption (SDA), einen Algorithmus fiir hier-
archisch organisierte akustische Modelle, der die Skalierbarkeit der Spezifizitdt der
Kontextmodellierung ausnutzt um die Baumstruktur des Modells an die Gegeben-
heiten in einer neuen Anwendungsdoméne anzupassen, um die Erkennungsleistung zu
optimieren. Die Effektivitit des Algorithmus wird anhand zweier Adaptionsexperi-
mente demonstriert. Dabei wird ein auf der Switchboard Doméne trainiertes System
auf (1) eine Telefon-Diktierdoméane und (2) eine spontansprachliche Dialogdoméne
portiert. SDA zusammen mit doméanen-spezifischen Worterbiichern und Sprachmod-
ellen erlaubt dabei eine Erkennungsleistung, die der Leistung doméanen-spezifischer
Erkenner entspricht, dabei jedoch nur 45-60 Minuten an Adaptationsdaten aus der
jeweiligen Zieldoméane benétigt.
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Chapter 1

Introduction

Over the past years, research in speech recognition systems has improved the state-of-
the-art significantly, such that a wide range of new, speech enabled applications have
become possible. Consequently, the market in speech technology and applications
develops rapidly. For instance, high quality, speaker-independent continuous-speech
dictation systems, which formerly have only been available in research labs and for
specific application domains, now are available for the general purpose mass market
and will soon be integrated into computer operating systems. Another emerging
application of speech technology is in Interactive Voice Response (IVR) enabled call
centers, where people now can call fully automated information systems and retrieve
selective information by communicating with the system in a natural dialog instead
of by hitting the touch tone buttons of the telephone. A very interesting application
of speech technology emerges in the field of multimedia information retrieval, where
speech recognition systems are increasingly being used to categorize and transcribe
radio and TV broadcast news for the purpose of indexing and content classification.
Such technology appears to be a major factor in managing, accessing and filtering
the huge amounts of information spilled out by the mass media.

1.1 Motivation

Despite all these promising and exciting applications, speech recognition technology
still struggles with a lot of unresolved problems. For instance, speech recognition
systems have to be tailored to specific application domains in order to at least ap-
proach performance comparable to humans. As a consequence, performance drops
unacceptably when the system is applied to domains different from the originally tar-
geted domain. Therefore, there currently is no universal speech recognition system
available that, for any given language, would work in any environment, recognizing
an arbitrary vocabulary in an arbitrary application domain. Rather, a typical speech
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recognition system requires that detailed operating conditions are met in order to
achieve optimal performance:

e Specification of the type of microphone to be used
e Specification of recording conditions (e.g., quiet office)
o Specification of a finite recognition vocabulary

e Specification of an application domain (e.g., dictation of financial newspaper
articles, transcription of telephone conversations)

Due to the statistical nature of current speech recognition technology based on Hid-
den Markov Models (HMM), which implies that system parameters are learned from
a large but finite set of training patterns, a restriction to a specific application domain
appears to be absolutely necessary for achieving reasonable performance. The result-
ing lack of robustness and universality in most of the components of such systems
has been identified as a major weakness of today’s speech recognition technology.
While domain specific vocabularies, pronunciation dictionaries and language models
can typically be obtained and exchanged easily in order to accommodate a switch to a
new domain, the exchange or adaptation of the acoustic model of a speech recognizer
requires considerably more effort. The task of the acoustic model is to estimate
the probability of acoustic observations (suitably parameterized representation of an
acoustic waveform) given a sequence of words. Typically, an acoustic model consists
of a set of HMMs with associated mixture density probability models. Mismatches
in the acoustic model are not only caused by changes in the recording conditions, the
type of microphone or the speaker characteristics, as one might think at first glance.
Basic acoustic units such as phones are modeled in various alternative realizations,
depending on their phonetic context. This strategy has become standard practice in
large vocabulary speech recognition and improves recognition accuracy considerably
but renders the acoustic model highly dependent on domain specific components
such as the vocabulary and the language model. As a result, we typically observe a
mismatch in the specificity of context modeling in addition to an acoustic mismatch
in a new target domain. As the specificity of context modeling can not be altered
easily in conventional acoustic models because of a lack of structure and scalability,
the standard approach is to build and train a new domain-specific acoustic model to
replace the existing one as soon as the phonetic characteristics of the target domain
differ significantly from those of the training domain. Unfortunately, this approach is
time-, labour- and cost-intensive as it requires large amounts of transcribed acoustic
data.
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As an alternative to conventional acoustic modeling based on mixture densities, sev-
eral researchers have independently developed a methodology for incorporating con-
nectionist models (based on neural networks) into a statistical speech recognition
system. Such systems are often called hybrid speech recognition systems since they
combine discriminatively trained connectionist acoustic models with the standard
HMM framework. In the most simple setting, a single artificial neural network is ap-
plied to the estimation of posterior phone or state probabilities. While offering better
discrimination, faster evaluation and a smaller number of parameters, monolithic con-
nectionist acoustic models are difficult to scale to context-dependent modeling and
have therefore been used primarily for monophone modeling. However, the fact that
state posteriors and state priors are both explicitly available offers attractive potential
for adapting these models to domains different from the training domain.

1.2 Approach

This thesis presents a new, hierarchical framework for connectionist acoustic modeling
that, among other beneficial properties, allows to dynamically adapt the specificity of
context modeling to new, previously unseen application domains. The tree-structured
model offers all the advantages of conventional connectionist acoustic models while
offering a variety of beneficial new properties such as scalability to any number of
HMM states and fast evaluation through dynamic tree pruning. The model is demon-
strated to be effective in modeling up to 24000 states with connectionist estimators,
achieving performance comparable to standard mixture based acoustic models while
being smaller in size and faster to decode.

We motivate, introduce and evaluate the proposed hierarchical connectionist archi-
tecture as an alternative to standard mixture based modeling in large vocabulary
conversational speech recognition. Experimental evaluation of architectural aspects
is performed on the Switchboard corpus, currently a major focus in the speech research
community. Switchboard contains more than 170 hours of telephone quality record-
ings of human-to-human conversations over the public telephone network. As such
it exhibits strong variations in recording quality and background noise. Even worse,
the conversational nature of the recordings implies a high proportion of disfluencies
such as false starts, hesitations, interjections, etc. As one can imagine, Switchboard
is a comparably hard speech recognition domain. Today’s state-of-the-art systems
yield performance in the range of 30-40% word errors.

The hierarchical structure of the proposed model together with its connectionist
framework for estimating both state posteriors and state priors leads to the sec-
ond major contribution of this thesis: An algorithm for dynamically adapting the
structure, the size and the predictors of a trained hierarchical connectionist acoustic
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model for efficient adaptation of a speech recognition system to a previously unseen
domain. In Structural Domain Adaptation (SDA), as the algorithm is called, a com-
parably small amount of transcribed data from the new domain is used to estimate
the prior distribution of the HMM states of the original model in the new domain.
Typically, this distribution is quite different from the one obtained on the original
training corpus, due to differences in vocabulary and language model. Using an esti-
mate of the state prior distribution on the new domain, we adapt the priors in each
node of the modeling tree by propagating the state priors through the tree structure.
Typically, certain branches of the modeling tree will be pruned as they lead to HMM
states with very low observation counts. In addition, SDA allows to further prune
the resulting tree structure according to the observation counts, for instance to down-
size the acoustic model for small memory footprint and/or faster evaluation. Thus,
the hierarchical architecture together with the algorithm for structural adaptation
represent a versatile tool for domain-adaptive acoustic modeling.

We evaluate structural domain adaptation of our hierarchical model using two quite
different application scenarios. The baseline to both experiments is a model trained
on the Switchboard corpus. In the first scenario, we adapt this model’s structure
to a domain consisting of read newspaper articles, the Wall Street Journal (WSJ)
domain. In contrast to the majority of this corpus, we selected a subset consisting
of telephone quality speech in order to keep acoustic differences small. In the second
scenario, we port the Switchboard model to a domain called English Spontaneous
Scheduling Task (ESST), consisting of spontaneous human-to-human conversations.
This corpus is recorded with high-quality microphones and exhibits a comparably
small and restricted vocabulary. Using the SDA algorithm, we demonstrate that the
Switchboard trained hierarchical connectionist model can be adapted effectively to
the unseen domains using only 45-60 minutes of acoustic adaptation data. The result-
ing structurally adapted systems match the performance of domain-specific systems
trained on several hours of data.

1.3 Outline

On a global level, this thesis is divided into two major parts. Chapters 2 to 4 are of
introductory nature, summarizing specific aspects about automatic speech recogni-
tion that are of relevance to the remainder of the thesis. The following chapters 5 to
10 are then devoted to the original contributions of this thesis.

Chapter 2 introduces the reader to the field of statistical speech recognition. Rather
than presenting all the bells and whistles of the state-of-the-art, this review of the
basic concepts in automatic speech recognition is meant to provide the necessary
background for readers unfamiliar with this discipline. Therefore, it only briefly
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touches certain aspects that are less relevant for the content of later chapters. Also,
this chapter is restricted to the presentation of standard technology, namely the one
build around continuous density Hidden Markov Models. Phonetic context model-
ing, a very important modeling technique now found in any large vocabulary speech
recognition system is reviewed. The focus here is to introduce the reader to the side
effects of context modeling: on the one hand, it significantly improves performance;
on the other hand it introduces a strong dependence on the specific training domain
which can dramatically decrease robustness towards unseen domains. As this thesis
presents a solution to this problem, this part might be regarded as both a review and
a motivation for later chapters.

Chapter 3 is devoted to connectionist acoustic modeling and hybrid architectures.
Here, it is shown how classifier neural networks can be integrated into the HMM
formalism in order to take advantage of properties such as better class discrimination
and faster model evaluation. The chapter presents and discusses architectures that
have been used for hybrid speech recognition in the past.

Chapter 4 is devoted to the Switchboard large vocabulary conversational speech
recognition (LVCSR) corpus. This widely used corpus serves as a benchmark for
the architectures and algorithms presented in this thesis.

Chapter 5 introduces hierarchical connectionist acoustic modeling as a conceptual
framework for tree-structured, scalable acoustic models. We theoretically motivate
the derivation of this divide-and-conquer based architecture which is grounded on sta-
tistical factoring of posterior state probabilities. We discuss properties of the resulting
tree based classifiers focusing on design algorithms for inducing tree structures. We
show how such a model can be integrated into the classical HMM framework for the
purpose of acoustic modeling. Furthermore, we analyze the viability of feed forward
classifier neural networks for the task of estimating conditional posterior probabilities
in tree nodes. The resulting hierarchical acoustic model, which we call a Hierarchy
of Neural Networks, is then integrated into a state-of-the-art speech recognizer and
evaluated on the Switchboard LVCSR corpus.

In Chapter 6, we experimentally analyze dynamic posterior based pruning of the
model introduced in chapter 5. This technique is very efficient in avoiding to evaluate
posterior probabilities of unlikely states, thereby reducing the computational load of
acoustic model evaluation significantly. We show how this simple technique allows to
efficiently trade-off recognition accuracy against decoding speed.

Chapter 7 presents an algorithm for optimally adapting a hierarchical acoustic model
to the acoustic characteristics of specific speakers, an important prerequisite for many
applications of speech recognition (e.g., dictation). In contrast to existing acoustic
models such as those based on mixture densities, the proposed model does not require
additional model parameter tying mechanisms such as regression class trees to achieve
efficient speaker adaptation even with small amounts of data. We demonstrate how
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the hierarchical structure of the model itself can be exploited for speaker adaptation
and evaluate the resulting algorithm on Switchboard.

Building on the material from chapter 5 and 7, chapter 8 introduces Structural Do-
main Adaptation (SDA), an algorithm for adapting a hierarchical acoustic model to
unseen domains. For that purpose it uses a combination of tree pruning and node
adaptation which also adjusts the size of the model to the new domain. We present
details of the SDA algorithm and evaluate it by porting a Switchboard trained model
to two unseen domains of quite different nature, namely Wall Street Journal (WSJ)
data and English Spontaneous Scheduling Task (ESST) data. We demonstrate how
SDA applied to the hierarchical Switchboard model allows to efficiently and effectively
adapt the recognizer to the new domains, requiring only 45-60 minutes of speech from
those domains.

Chapter 9 is devoted to a related hierarchical architecture that has been developed as
part of this thesis, so called mizture trees. Here, the emphasis was on hierarchically
structuring the components of a standard, likelihood based acoustic model, in order
to take advantage of the scaling and adaptation properties found for tree structured
connectionist acoustic models. We derive an EM algorithm for estimating the param-
eters of such a model and evaluate it on the Switchboard corpus. Also, we compare
it with the connectionist counterpart presented in earlier chapters.

Chapter 10 presents strategies for static and dynamic combination of multiple, pos-
sibly heterogeneous acoustic models in an attempt to improve recognition accuracy
over each one of the contributing models. In contrast to existing frame-level combi-
nation approaches, we present an approach that achieves a reduction in word error
rate through a dynamic combination of a conventional likelihood based model and
the proposed hierarchical connectionist model.

Finally, chapter 11 summarizes the main contributions of this thesis and concludes
with a discussion of possible future work.



Chapter 2

Statistical Speech Recognition

This chapter presents the main concepts of the state-of-the-art in statistical speech
recognition. It introduces Hidden Markov Models (HMM) and their application to
automatic speech recognition. Since the focus of this thesis lies in acoustic mod-
eling, we restrict this presentation to aspects relevant to later chapters such as
context-dependent modeling and the resulting domain dependence of acoustic mod-
els, and only briefly touch topics such as preprocessing and language modeling. For
further details on specific aspects that could not be included in this chapter, the
author refers the reader to the excellent reviews in [Rabiner '89, Huang et al. ’90,
Rabiner & Juang ’93, Young '96, Jelinek ’97]. Readers already familiar with the ba-
sic statistical framework of automatic speech recognition based on hidden Markov
models may want to skip this chapter.

2.1 Overview

The basic unit of interest in statistical speech recognition is the posterior probabil-
ity of word sequences Wi, ..., Wy given a sequence of acoustic observation vectors
X1,...,xMm and a set of model parameters ©®

p(Wl,. . .7I/VN|X17 e ,XM7@).

The sequence of acoustic observation vectors consists of a condensed and suitably
transformed and preprocessed representation of the actual sampled speech waveform
which contains a lot of redundancy. Fig. 2.1 depicts how uttered word sequence and
acoustic realization are linked by this fundamental probability density.

On a rather high level of description, a statistical speech recognition system consists
of the following parts:

o A suitable framework for modeling the above probability.

7
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Figure 2.1: Overview: statistical speech recognition

e A method for estimating the parameters of the model. This is called the esti-
mation problem.

e A method for decoding/searching the most likely word sequence, given some
acoustic observation. This is referred to as the recognition problem.

From the early beginnings of speech recognition research, the single most important
modeling framework that has been applied to statistical speech recognition has been
the concept of a hidden Markov model (HMM). Today, this technique for modeling
temporal sequences has evolved and been refined substantially in the context of speech
recognition. Consequently, HMM based speech recognition systems dominate the
field. Many alternative modeling frameworks have been shown to be just instances
or special cases of HMMs. We will discuss HMMs in detail in section 2.3.1.
Training or estimation of such a model consists of finding model parameters ® that
maximize the above posterior probability on a certain amount of training data

T
O = argmaxg HP(W1(

t=1

t t t t
)v~-~7W1(vgt)|X5)7-~-7X5|/[)(t)7@)'
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Here, the term training data refers to a collection of 7" training sentences, each one
consisting of the uttered word sequence and the corresponding sequence of acoustic
observation vectors.

When applying a trained model to the problem of speech recognition, we seek to find
the sequence of words that maximizes the posterior probability for a given sequence
of acoustic observation vectors and fixed model parameters @

Wi, ..., Wy = argmaxy, . p(Wi,...,Wylxi,...,xu, ©).

Bayes’ rule allows to factor the posterior probability of word sequences as follows:

p(xla"'va‘le"'aWN) P(Wla"'aWN)

p(X1, .-+, Xar)-

p(le"wWN'le"'axM):

To avoid unnecessary confusion, we have omitted the explicit dependence on ®. This
rule allows to separate the estimation process into the so called acoustic model (AM)
consisting of terms that depend on the acoustic observations xi,...,xp and the
language model (LM) consisting of terms that depend only on the sequence of words
Wi, ..., Wy. Since the term in the denominator does not depend on the sequence of
words, it can be omitted in the search for the most likely word sequence leading to
the following simplified maximization problem

Wl,...,WN = argmaxyy, w, P(Xi,.. ., Xy|Wi,...,Wy) P(Wy,...,Wy).

In the remainder of this chapter, we will discuss some of the issues in statistical speech
recognition in more depth.

2.2 Preprocessing

As the raw speech waveform contains a lot of redundancy, speech recognition systems
usually employ some form of preprocessing to periodically extract relevant informa-
tion about speech sounds in form of so called acoustic feature vectors from the speech
signal. Although there are many different preprocessing techniques, most of them are
based on short time spectral analysis or linear prediction [Rabiner & Schafer '78].
Fig. 2.2 depicts the basic principle in preprocessing speech waveforms. Typically, a
Hamming window,

2
h(t):0.54—0.46003(%t) for  te[0,D],

of duration D = 10...40 msec is used to extract a short segment of speech from which
a representation such as the Fourier power spectrum is computed. The window is
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Figure 2.2: Preprocessing: short time spectral analysis

shifted in discrete steps of 5-20 msec, thereby allowing to compute short time power
spectra at a rate of 50-200 frames per second.

Usually, the computation of the power spectrum is just the first step in a whole
series of transformations and normalizations. For instance, a very popular pre-
processing strategy consists of computing Mel-scale Frequency Cepstral Coeflicients
(MFCCs) [Hunt et al. ’80, Davis & Mermelstein ’80]. In that case, the power spec-
tra are first transformed into the Mel-scale [Davis & Mermelstein ’80], a perceptually
motivated logarithmic frequency scale that emphasizes low frequency components.
Next, the cosine transformation is applied to the Mel-scale spectra, resulting in so
called cepstra. MFCCs are often modified to include a non-linear warping of the
frequency axis in order to compensate different vocal tract lengths across differ-
ent speakers [Cohen et al. ’95]. Furthermore, in order to increase the robustness
against different microphones and recording conditions the cepstra are often normal-
ized for mean zero and unit variance which is called cepstral mean compensation
[Beattie & Young '92]. The resulting feature vectors are sometimes further trans-
formed using principal component analysis (PCA) [Jolliffe '86] or linear discriminant
analysis (LDA) [Haeb-Umbach & Ney ’92] to reduce the correlation among coeffi-
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cients, increase class separability and/or to reduce the final feature dimensionality.
No matter what specific sequence of transformations is being used, all preprocessing
techniques aim at extracting highly condensed representations of speech from the
waveform to be recognized while preserving all the information necessary for discrim-
inating the different speech sounds in later stages.

2.3 Acoustic Modeling

By applying Bayes’ rule to factor the estimation process into acoustic model and
language model, we have separated the vector of model parameters into parameter
subsets ©4M and ©LM | respectively. The task of acoustic modeling in statistical
speech recognition is to estimate the subset @M of acoustic model parameters which
maximize

p(Xl, . ,XM|W17 ey VVN7 @AM)
Words W; are modeled as sequences (or graphs) of phone models. The mapping
from words to phone models is usually accomplished by means of a pronunciation

dictionary. Phone models in turn are modeled by hidden Markov models in order to
capture their temporal and acoustic variability.

2.3.1 Hidden Markov Models for Speech Recognition

A first-order hidden Markov model (HMM) is a probabilistic automaton
A={S,1 A BV}

consisting of the components

S, the set of HMM states, S = {s1,...,5,}

m, the probability distribution over the states, where ; is the probability that state
8; 1s initial.
A, the matrix of transition probabilities, where a;; is the probability that state s;

follows state s;.

B, the set of emission probability densities B = {b1, ..., b}, where b;(x) models the
conditional probability of observing/emitting feature vector x in state s;.
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V, the set of observed features which can be discrete (discrete HMM) or continuous
(continuous density HMM). In the case of speech recognition, continuous den-
sity HMMs operate on a continuous multivariate representation of the speech
signal while discrete HMMs operate on a finite set of discrete symbols that
are obtained from the continuous feature space by means of a vector quantizer
[Gersho & Gray ’92]. Continuous density HMMs typically outperform discrete
HMMs in speech recognition due to a better resolution of the acoustic feature
space.

An HMM models a stochastic state-based process, starting at some initial state. At
each time step, a new feature vector is generated (emitted) according to the current
state’s emission probability density followed by a transition to a new state according
to the current state’s transition probability distribution. HMMs get their name from
the fact that the sequence of states generating the observable sequence of feature
vectors is hidden.

In the context of HMMs, there are 3 well known problems [Rabiner '89], all of which
have solutions in form of efficient algorithms:

e Evaluation Problem: Given a sequence of observation vectors and an HMM,
what is the probability that the sequence has been generated by the HMM?
Using a dynamic programming approach, it can be shown that this problem
can be efficiently solved in time O(n*T), where n is the number of states and
T is the length of the sequence. The corresponding algorithm is called Forward
algorithm.

e Decoding Problem: Given a sequence of observation vectors and an HMM,
what is the most likely sequence of HMM states for generating the observed
sequence? Again, there is an efficient solution to this problem in time O(n2T)
via a dynamic programming approach. In the case of the decoding problem,
the resulting algorithm is called Viterbi algorithm.

e Optimization Problem: Given a sequence of observation vectors and an
HMM topology, estimate the parameters of the HMM so as to maximize the
likelihood of the sequence being generated by the HMM. There is no analytical
solution to this problem. However, there is an efficient iterative method, the
FEzpectation Mazimization (EM) algorithm [Dempster et al. *77] which can be
applied. In the context of speech recognition, the specific form of this algorithm
is often called Forward-Backward or Baum-Welch algorithm.

For the purpose of speech recognition, a specific form of HMMs, namely first-order
n-state left-right HMMs, are being applied to model basic speech units such as phones
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and/or syllables (see Fig. 2.3). The assumption here is that speech is a sequential
process exhibiting great variability in the realization and duration of specific phones.
Furthermore, the asymptotic complexity of the Forward and Viterbi algorithms typi-
cally reduces to O(nT) in a left-right HMM as there is only a small constant number
of valid local transitions from each state.

p(sis) p(s)s) p(sis)

Y T 1) e

O O -

(s)s) p(sds) p(s s)

&)
U U A e

p(xilsy p(x;ls) p(x;lsy)
Figure 2.3: First-order 3-state left-right HMM

Modeling the inventory of phones in a specific language using the HMM model of
Fig. 2.3, we can identify the acoustic model parameters of a speech recognizer to
be the collection of all HMM parameters, ® = \. Fig. 2.4 shows the process of
converting a sequence of words into

1. a pronunciation graph (containing pronunciation variants) and
2. an HMM state graph,

which allows us to formulate the problem of recognizing words from speech via the
standard HMM framework. In this framework, where word sequences are represented
as directed acyclic graphs of HMM states, the likelihood of an acoustic observation
can be rewritten as (omitting the dependence on Wi, ..., Wy of the right hand side
for simplicity)

p(xa, - xu|Wa, o W) = >0 p(xa,. . Xulsy, o, su) Plsy, ., su)

81,8
where the summation extends over all possible state sequences sy, ..., sy in the HMM
model for the word sequence Wi, ..., Wy. In the Viterbi approximation, the above

likelihood is approximated by the probability of the most likely state sequence
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Figure 2.4: Typical hidden Markov model in speech recognition

p(x1, .., xu|Wh, ..., W) & Slll}ag(Mp(Xl,---,XM\Sh ~..,5um) P(s1,...,5n)

Given a specific state sequence, the likelihood of the acoustic observations given that
sequence and the sequence prior probability can be factored as follows

M
p(X1,. .., Xy|S1,-.,8m) = Hp(xi|x1,...7xi,1,51,...,sM)

i=1
M

P(517...7SM) = HP(Si|81,...,Si,1)

i=1
When applying first-order hidden Markov models to the estimation of such likelihoods
one makes two simplifying assumptions:

e Independence of Observations:

p(X1,~-~7XM‘517-~-75M) = Hp(xi‘slv"'st)
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e First-order Assumption (Observations depend only on the current state, tran-
sitions depend only on the previous state instead of on the whole history of
states):

e

p(xils:)

p(X1,. . Xls1,. 0, 80) =

.
Il
—

P(s1,...,sum) P(silsi-1)

.
1l
—

I
s

Clearly, these assumptions do not hold for speech where successive feature vectors
often exhibit high correlation and co-articulation effects can influence the realization
of phones over several 100 msecs. Nevertheless, first-order hidden Markov models
are widely used to model speech units, mostly because of the availability of efficient
estimation and decoding algorithms. Also, many techniques have been developed
over time which extenuate the effects resulting from the above assumptions.

2.3.2 Emission and Transition Modeling

Mainstream speech recognition systems follow the above approach by modeling emis-
sion probability distributions p(x|s;) and transition probabilities P(s;|s;—1) separately
and independently. Emission probability distributions are usually modeled using mix-
ture densities from the exponential family, such as the mixture of Gaussians

p(x[si) = Z% j(x]s:)

_ 1 1 R N
Nj(x[s;) = m exp { —g(X—ﬂu)Ei]’ (x — psj) }

where the v; denote mizture coefficients and the N; Gaussian mizcture component
densities in a d-dimensional space with mean vectors p;; and covariance matrices
Yij. Often, full covariance Gaussians (1) can not be estimated reliably due to data
sparsity, (2) in total require more than the available amount of memory, or (3) are
too expensive to evaluate. In such cases, one typically assumes diagonal covariance
Gaussians:

Ny(xlsi) = i ex {7321

/-‘L’L]k }
(27T)d Hk 1 Uz]k

U’L]k
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Transition probabilities on the other hand are modeled by simple multinomial prob-
abilities since they are conditioned on a discrete variable only and not on the input
vector!.

The advantage of this approach is a decoupled estimation process that separates tem-
poral and acoustic modeling. As such, it allows to easily vary HMM state topologies
after training in order to modify temporal behavior. For instance, minimum duration
constraints in phone models can easily be enforced by expanding the model from a
single to multiple states with tied observation probabilities [Robinson et al. *96].
However, the disadvantage of the above approach is a mismatch in the dynamic range
of emission and transition probabilities. The reason is that transition probabilities
are modeled separately as multinomial probabilities, constrained by the requirement
to sum to one. This leads to a dominant role of emission probabilities with transition
probabilities hardly influencing overall system performance [Bengio "96].

2.4 Phonetic Context Modeling

So far we have assumed that only a single HMM is used to model each monophone
(see Fig. 2.4). Since the English language can be modeled by approximately 40-50
monophones, one might get the impression that only that number of HMM models
need to be trained.

2.4.1 From Monophones to Triphones to Polyphones

However in practice, one observes an effect called co-articulation that causes large
variations in the way specific monophones actually sound, depending on their pho-
netic context [Chow et al. ’86]. Usually, explicit modeling of phones in phonetic
context yields substantial gains in recognition accuracy [Lee ’88]. However, it is not
immediately clear how to achieve robust context-dependent modeling. Consider, for
example, so called triphone models. A triphone essentially represents the realiza-
tion of a specific monophone in a specific context spanning one phone to the left
and right. For instance, in the HMM state graph of Fig. 2.4 the two occurrences
of monophone L correspond to two different triphone models, namely L(AY,G) and
L(IH,G)2. Assuming an inventory of 50 monophones, the number of (theoretically)
possible triphones is 49 x 50 * 49 = 120050. Many of these triphones will occur rarely
or never in actual speech due to the linguistic constraints in the language. Separate
modeling of all triphones therefore does not make sense as it leads to poor gener-

Tt should be noted that it is possible to enhance the HMM formalism such that it allows to
condition transition probability distributions on observation vectors.
2Here, the first argument denotes the left and the second argument the right neighboring phone.
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alization due to unreliable parameter estimates. The problem becomes even more
evident when generalizing triphones to so called polyphones by allowing dependence
on a wider context, and not just the immediate left and right neighboring phones. To
avoid this data sparsity problem, one can either apply smoothing techniques based
on interpolation of polyphone models with more robust ones, or introduce a mecha-
nism for sharing parameters across different polyphones models. The latter approach
in conjunction with decision trees has become the most popular context modeling
technique and will be discussed next.

2.4.2 Phonetic Decision Trees

Decision trees [Safavian & Landgrebe ’91] can be applied to cluster observed poly-
phones into generalized context classes according to acoustic and phonetic similarity
[Bahl et al. ’91]. Typically, a separate CART [Breiman et al. ’84] like decision tree
is constructed for each HMM state of each monophone by top-down clustering of
all observed polyphonic contexts of the respective monophone state. Through the
use of categorical questions about specific attributes at each internal node, decision
trees allow to generalize to unseen classes. This property is essential for modeling
polyphonic contexts in speech recognition where decision trees allow to generalize to
previously unseen polyphonic contexts that might occur during decoding.

For phonetic context modeling, a finite and meaningful set of categorical questions
about phonetic contexts has to be defined. The most straight-forward questions
are those relating to a specific neighboring monophone. For illustration, consider
Table 2.1 containing 6 words and their phonetic transcription. We examine context
modeling for the monophone AX which is contained in all 6 words. Note that the
transcriptions in Table 2.1 have been arbitrarily aligned around the phone AX for
easy comparison of phonetic contexts. Even when restricting context modeling to
immediate neighboring phones, five of the six occurrences of the monophone AX in
Table 2.1 correspond to different triphones?.

Categorical questions for building a phonetic decision tree for monophone AX could
contain simple questions for specific monophones. For instance, consider the question
‘Is monophone R at position +1 7, in other words, ‘Is monophone R an immediate
right neighboring phone?’. This question induces two sets of AX-polyphones, namely
the ones that answer ‘yes’ and the ones that answer ‘no’. While some other mono-
phone questions make sense in this example, there are others which are useless (e.g.,
‘Ts monophone AX at position +1 ?’) since all polyphones would generate the same
answer.

In addition to questions about specific monophones, questions about specific pho-
netic classes such as vowels, consonants, liquids, and fricatives are frequently used.

3Only ‘agglomerate’ and ‘boomerang’ share the same triphone at ‘AX’.
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‘Word Phonetic Transcription ‘
advisory AE|D | V | AY Z |AX| R | IY
agglomerate | AX [G| L | AA| M |AX | R |EY| T
boomerang B|UW| M | AX | R | AE | NG
brilliant B|R|IH| L Y [AX| N | T
devouring D|IH| V |AW| AX | R | [H | NG
indicative IH|N|D| IH K |[AX| T |IH| V
Position S5 [4]-3] 2 [ 1] 0 [+1[+2]+3]

Table 2.1: Word transcriptions to illustrate phonetic context modeling

Furthermore, context modeling may not be limited to within-word phonetic context
but may include cross-word context. In that case, questions about the existence of
word boundaries are quite useful, if such information is available.

Fig. 2.5 shows a typical decision tree for clustering the polyphonic variations of a
particular state of monophone model AX. During construction of a phonetic decision
tree for a specific state of a specific monophone, an objective function is evaluated at
each node for each question to determine the question that yields the greatest gain
when context classes are split according to that question. Assuming that appropriate
statistical models (e.g., Gaussians) have been estimated for each polyphone observed
in some training corpus, we can for instance take split likelihood gain as our objective
function that scores the goodness of splits:

G(N, N, Ng) = (3 logpr(x) + Y logpr(x)) — 3 log p(x)

XENL xENp xeN

where N is the node in question, N7, and Ng are the left and right child nodes and p(),
pr.() and pg() are the statistical models for the node and its left and right child nodes.
Split likelihood gain measures how much the likelihood of the data in a specific node
can be increased by splitting the data in two sets according to a phonetic question and
modeling the data in each set separately. In case of often used simple D-dimensional
diagonal covariance Gaussian models, split likelihood gain simplifies to

D D b
G(N, Ny, Np) =n Y log o™ — (ne Y log 2™ 4 npY log Uf(NR))
k=1 k=1 k=1

where n, ny, and ng are the number of samples in node N, left child Ny, and right
child Ng, respectively. o2 62 and 62 are the k-th diagonal covariance
coefficients of the Gaussians for node N, left child Nz and right child Ng, respec-
tively. Using an objective function such as split likelihood gain, decision trees can

be grown by iteratively splitting nodes until the gain falls below some predetermined
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+1=SONORANT?

+2=VOICED?

AX-m(0) AX-m(4) AX-m(5)

[ -1=LABIAL? ]

N Y N Y

Figure 2.5: Phonetic context modeling using decision trees. Shown is a decision tree
modeling phonetic contexts of the middle state (3-state HMM) of monophone AX.

AX-m(1) ‘ [ +3=BACK-VOW?]

threshold. Alternatively, trees can be grown up to a predetermined number of leaf
nodes. Usually, the optimal number of leaf nodes is determined experimentally by
recognition runs on independent validation sets.

The collection of leaf nodes of phonetic decision trees for all monophone states rep-
resents the recognizer’s set of distinctly modeled context-dependent sub-phonetic
units. Since each of these units models several actual HMM states, they are often
called tied states. Typically, a large vocabulary continuous speech recognizer models
thousands (up to 20000 and more) of tied states via phonetic decision trees. See
Appendix B for a distribution of allophonic variation in a decision tree clustered
Switchboard model for 24000 tied states. Context-dependent phonetic modeling has
been reported to decrease the word error rate of speech recognition systems by up
to 50% [Schwartz et al. ’85, Chow et al. '86]. In our own experiments, we have ob-
served a 40% reduction in word error rate when going from context-independent to
context-dependent modeling.
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2.4.3 Domain Dependence of Context Models

Phonetic context modeling using decision trees has emerged to a standard HMM
modeling technique for large vocabulary speech recognition that has been adopted by
almost all current state-of-the-art speech recognition systems. However, while context
modeling reduces word error rates consistently, it significantly increases dependence
on the acoustic characteristics and the vocabulary, phonetic dictionary and language
model of the training domain. The a-priori distribution of within-word context-
dependent phone models depends on both the phonetic transcription of the words
in the training dictionary and the relative frequency of these words in the training
corpus. Often, the words that constitute the recognition dictionary differ vastly across
domains. As a result, context models obtained from data in one domain differ from
those obtained on some other domain and performance of speech recognition systems
in cross-domain applications drops significantly due to the mismatch in coverage of
phonetic contexts.

In addition, cross-word phonetic context modeling, which improves performance over
within-word context modeling, introduces yet another dependency on the training
domain. By allowing context models to span across word boundaries, cross-word
context models additionally depend on the relative frequency of word pairs and word
triples (in case of single phone words) in the training domain. Such statistics are
captured by the language model of a speech recognizer (see next section) and are
known to differ significantly across domains.

As a consequence of the above mentioned dependencies, context models are typi-
cally constructed specifically on data from a specific target domain, selecting size
and structure of phonetic decision trees for optimal recognition performance on data
from that target domain. By focusing on a specific target domain, improved per-
formance is achieved at the cost of reduced robustness and lack of portability to
other domains. Often, context-dependent acoustic models are rebuild from scratch,
if it becomes necessary to port a trained speech recognition system to some other,
previously unseen domain of significantly different acoustic, phonetic and linguistic
characteristics. While other domain dependent components of a speech recognition
system such as dictionary and language model can be obtained relatively easily for
a new domain, the construction of context-dependent acoustic models requires large
amounts of transcribed acoustic data which renders porting efforts time-, labour- and
cost-intensive.

Through the application of a scalable, hierarchical architecture, this thesis presents
a solution to the problem of domain-dependence of context modeling that does not
require expensive reconstruction of the acoustic model when switching to a new do-
main.
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2.5 Language Modeling

The task of a language model in statistical speech recognition is to estimate the
probability of word sequences, P(W, ..., Wy), which can be factored as follows:

N
P(Wy,...,Wy) = P(Wy) P(Wa|Wh) [ P(Wi|Wi_y, ..., Wy).
i=3
In statistical n-gram modeling, one simplifies the above expression by reducing the
conditioning on the full history of words to the last n — 1 words. For instance, in 3-
gram (trigram) modeling, one approximates the language model probability according
to
N
f’(‘/l/vl7 - 7I/I/v]\]) I~ P(Wl) P(WQ‘Wl) H P(VVi‘w/i—h VVi,Q).
i=3
Unfortunately, the usefulness of standard n-gram modeling is restricted to small val-
ues of n due to the exponential growth of the number of n-grams. Assuming a recog-
nition vocabulary of M distinct words, the total number of n-tuples that theoretically
need to be modeled by an n-gram equals M™, a number that even for moderate sizes
of vocabularies of a few thousand words quickly exceeds the storage and computa-
tional resources of todays computers. On the other hand, many of the M™ n-tuples
never occur in any text corpus due to the grammatical regularity of language. Es-
timation of m-gram probabilities therefore requires smoothing techniques, typically
a combination of discounting and backing-off (e.g., [Kneser & Ney '95]) in order to
obtain robust probability estimates from raw n-tuple counts. In the case of trigram
modeling, discounting means that the trigram counts of the more frequently occur-
ring trigrams are reduced and the resulting excess probability mass is redistributed
amongst the less frequently occurring trigrams. Backing-off is applied when there
are too few trigrams to form any estimate at all and involves replacing the trigram
probability by a scaled bigram probability.
Despite of the restricted context width of 2-4 words, statistical n-gram language
models have proven to be quite effective. Furthermore, variable-length and category-
based n-gram models [Niesler & Woodland ’95], cache models [Jelinek et al. ’91] and
trigger models [Lau et al. ’93] allow to robustly increase the context width beyond 4
words. Although many other language modeling techniques have been proposed over
the years, n-gram models still dominate the field.

2.6 Decoding

The so called decoder represents the heart of any speech recognition system. Its task
is to find the most likely sequence of words for any given acoustic input, where each
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word is modeled by a sequence (sometimes a graph) of HMM states. As already
mentioned, the decoding problem for HMMs possesses an efficient solution in form of
the Viterbi algorithm. However, when decoding large vocabulary continuous speech
with n-gram language models, an exact solution becomes intractable due to the very
large number of competing sentence hypotheses.

The most popular solution is the application of a form of heuristic pruning to a time-
synchronous Viterbi decoder which is then called Viterbi beam search. At any time
step, partial hypotheses are extended by all possible successor states but are kept
for future consideration only when their score stays within a certain threshold (the
beam) relative to the score of the current best hypothesis. This way, only a very
small fraction of the actual search space has to be examined, leading to a manage-
able computational complexity. Unfortunately, such a search process is no longer
guaranteed to find the most probable hypothesis. Search errors are introduced when
the globally best hypothesis gets pruned during decoding because of a temporarily
bad local score.

T T T T T T T T T T T T T

L globally best hypothesis

* N\

pruning threshold

cummulative score

r~""  locally best score i

time
Figure 2.6: Decoding errors with Viterbi beam search

This fact is illustrated by Fig. 2.6. Here, lower scores correspond to more likely
hypotheses. The lowest curve indicates the score of the locally best hypotheses for
each time step. Above this curve, there is the equidistant pruning threshold curve.
The score traces of two hypotheses have been included into the plot: (1) the curve
for the globally best (most probable) hypothesis and (2) the curve for the ‘winning’
hypothesis found by this particular instance of a beam search. Note that although
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the final score of the globally best hypothesis is better than the final score of the
winning hypothesis, the globally best hypothesis never reaches the end of the utter-
ance. Instead, it gets pruned at the time mark indicated by a circle since its partial
score temporarily exceeds the pruning threshold. This search error can be omitted
by increasing the pruning beam width such that the correct hypothesis stays below
the pruning threshold curve at all times.

Large vocabulary speech recognition systems typically operate at the two endpoints
of a continuous spectrum of beam widths. Research & evaluation systems have to
use very large beam widths in order to reduce the probability of decoding errors.
However, the increase in performance comes at the cost of high decoding time (often
over one hundred times slower than real time). On the other hand, applications such
as large vocabulary dictation require decoding times of almost real time in order to
be usable. Among other techniques applied in this case, decoding beams have to
be tightened considerably. Of course, pruning errors become more likely, resulting
in a loss of performance. The trade-off between recognition accuracy and decoding
speed is illustrated in Fig. 2.7 for various decoding beam widths of a typical large
vocabulary speech recognition system.
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Figure 2.7: Effect of varying decoder pruning beam width

An alternative approach to the problem of searching the most probable word hy-
pothesis in a speech recognition system is based on so called best-first stack de-
coding [Paul '92, Renals & Hochberg ’99] which is related to the A* algorithm used
for heuristic search in artificial intelligence. These search algorithms are time asyn-
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chronous — the best scoring path or hypothesis, irrespective of time, is chosen for
extension and this process is continued until a complete hypothesis is determined.
The asynchrony of operation requires that a suitable heuristic is employed in com-
paring the scores of competing hypotheses. Stack decoding has several potential
advantages over Viterbi decoding: (1) The language model is decoupled from the
acoustic model and is not used to generate new recognition hypotheses, (2) It is easy
to incorporate non-Markovian knowledge sources (e.g., long-span LMs) without mas-
sively expanding the state space, and (3) The Viterbi assumption is not embedded in
the search and thus a full maximum-likelihood search criterion may be used with little
or no computational overhead. Disadvantages of the approach include sensitivity to
the choice of heuristic and the possibility of repeated computation.

It should be noted that today’s decoder technology has become quite complex due to
cross-word context-dependent phonetic modeling, tree-structured pronunciation lex-
ica, and look-ahead techniques. It is beyond the scope of this thesis to go into all these
details. The interested reader is referred to [Odell '95, Young ’96, Ravishankar '96].



Chapter 3

Connectionist Acoustic Modeling

This chapter starts with a critical view on standard HMM based acoustic modeling
in speech recognition. We reveal the major weaknesses of traditional HMM modeling
that, together with the reborn interest in connectionist models of cognitive processes
in the eighties, led to the formulation of an alternative paradigm for acoustic model-
ing. We motivate and introduce connectionist acoustic modeling, giving a review on
the techniques and architectures that have been investigated. We close this chapter
with a discussion of some shortcomings of connectionist acoustic modeling.

3.1 Drawbacks of Standard Modeling

By standard modeling, we refer to the statistical framework based on Hidden Markov
Models presented in chapter 2. More specifically, standard modeling refers to the ap-
plication of Gaussian mixture models for HMM observation probability estimation.
Recognition systems based on such models offer powerful learning and decoding al-
gorithms along with flexible modeling of temporal aspects which is why they have
attracted so much interest in the speech recognition community. Practically all exist-
ing speech recognition systems are build around this modeling paradigm. However,
in order to take advantage of the representational power of HMMs, algorithms must
explicitly or implicitly make simplifying assumptions about the time series being
modeled. Some of these assumptions are obviously unrealistic and violated when
modeling speech with HMMs. Nevertheless, this suboptimal model is generally ac-
cepted because it can be used more effectively than any alternative. Given the strong
base of mathematical tools for statistical speech recognition with HMMs, modifying
only a few aspects of the existing approach at a time seems more appropriate than
starting from scratch. Following is a list of shortcomings that have been identified
with standard modeling:

25
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e Independence Assumption: Successive observation vectors are considered
independent and therefore uncorrelated. This is a poor match to most kinds
of speech segments. Diphthongs (e.g., AY,EY,0Y) and glides (e.g., W,Y), for
instance, exhibit strong non-stationary behavior.

e First-Order Assumption: Observation vectors depend only on the current
HMM state and transitions depend only on the previous HMM state instead of
on the whole history of states. In contrast, speech is characterized by strong
co-articulation effects, e.g., observation vectors are influenced by the previous
phonetic state(s).

e Poor Discrimination: HMM training algorithms are based on Maximum
Likelihood (ML) which assumes correctness of the models. As we just argued,
correctness of the models must be questioned due to first-order and indepen-
dence assumptions. More importantly, ML implies poor discrimination since
ideally, minimization of the word error rate should be based on minimizing
a-posteriori word or sentence probabilities.

e Distributional Assumptions: For practical as well as computational rea-
sons, observation probability distributions in large vocabulary conversational
speech recognition systems are almost always modeled by mixtures of diagonal
covariance Gaussians. The diagonal covariance assumption neglects correlations
between individual coefficients of observation vectors.

e Architectural Structure: Standard mixture based modeling of observation
probability distributions results in an independent and unstructured set of mod-
els. Missing structure is not problematic in terms of performance or accuracy
of modeling. However, many algorithms in speech recognition such as speaker
adaptation and fast acoustic match require to structure the acoustic model
according to some acoustic similarity criterion. If such structure were built
inherently into the model, the above mentioned algorithms could be realized
much easier. Also, the missing structure prevents us from scaling the model in
terms of the number of modeled HMM states.

Almost all of the above mentioned assumptions and shortcomings have been ad-
dressed by researchers over the years. The first two assumptions are inherent to the
HMM model being used and can only be addressed by some sort of add-on correction
mechanism or by moving to an entirely different model. However, the latter three
assumptions/shortcomings can be addressed by replacing the set of mixture density
models that approximate the HMM state observation probabilities by a more suitable
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model. This approach allows the system to benefit from the excellent temporal mod-
eling properties of HMMs while investigating alternative forms of acoustic modeling
of speech.

3.2 Discriminative Modeling

A detailed treatment of discriminative modeling requires to establish a globally dis-
criminant training criterion based on the posterior probability of sequences of words.
Globally discriminant approaches have been investigated (e.g., [Valtchev ’95]) but
usually suffer from high computational complexity which is why simplifying assump-
tions are often made in order to apply these approaches to large vocabulary speech
recognition tasks.

To avoid the computational pitfalls of globally discriminative modeling and still im-
prove discrimination, locally discriminative modeling has been proposed by several
researchers (e.g., [Bourlard & Morgan *94]. In locally discriminative modeling, the
training criterion is based on the posterior probability distribution over the set of
acoustic HMM states for a specific acoustic feature vector. In other words, rather
than discriminating words in a sentence, we aim at discriminating the basic speech
units in each frame of speech data. Before discussing the potential benefits and ad-
vantages of such modeling, we first have to elaborate on how locally discriminative
modeling can be integrated into HMMs. After all, the HMM formalism requires to
model state likelihoods for each frame of acoustic data. Using Bayes’ rule we can
satisfy this constraint:

p(silx)
p(si)

p(x]si) = p(x)

Instead of directly estimating the state likelihoods p(x|s;) for each state s; given an
input feature vector x, we can take a detour that allows us to include the state posteri-
ors p(s;|x). Estimators for the latter can be trained using the Maximum A Posteriori
(MAP) rather than the Maximum Likelihood (ML) training criterion. However, as
seen in the above expression, the integration of a MAP estimator requires to divide
the estimates of the posterior state probabilities by their prior probabilities and to
multiply the outcome by the unconditional probability of observing the feature vector
x. Fortunately, there is no need to estimate p(x) when applying the above rule to
speech recognition. It merely adds an offset to the acoustic scores for each acoustic
frame that is independent of the HMM state and therefore does not influence the
outcome of a Viterbi style search for the most likely state/word sequence. There-
fore, locally discriminative modeling in the HMM framework requires only to divide
estimates of the posterior state probabilities by their prior probabilities. The result-
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ing quantity p(x|s;) can directly be used as HMM state emission probability and is
usually called scaled likelihood:

p(si[x)
p(s:)
The reader may ask: What is the point of going through this detour when we finally

derive essentially the same probability as we would with a conventional Gaussian
mixture based estimator? There are at least the following potential advantages:

P(x]si) =

e Improved Discrimination: Estimators of the posterior probabilities are tr-
ained according to MAP in contrast to the ML based likelihood estimators. In
MAP based modeling, the emphasis is on modeling class boundaries while in
ML modeling, the emphasis is on accurately modeling each class’ distribution.
ML based estimators are in danger of wasting a lot of their parameter resources
in modeling a distribution in regions where no other classes compete. MAP
estimators on the other hand focus their parameter resources at class boundaries
in order to maximize discrimination between classes.

likelihood-estimator
p(xIs)

a-posteriori-estimator
p(six)

X

Figure 3.1: Likelihood estimators vs. a-posteriori estimators

Fig. 3.1 illustrates this behavior for a two class problem. The upper graph shows
relatively complex class distributions that the likelihood based estimators seek
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to capture as accurately as possible. However, as can be seen in the lower
plot, discrimination between the two classes can be achieved with a very simple
MAP estimator since there is almost no overlap between the classes (the MAP
estimator for the second class is simply 1 — p(s|z) and is not included in the
plot).

e Smaller Number of Parameters: Fig. 3.1 also reveals another problem
with likelihood estimators. The waste of parameter resources in modeling the
distribution in regions where it would not be necessary typically requires more
parameters and more complex estimators than in the case of discriminative a-
posteriori estimators.

It was shown [Bourlard & Morgan '94, Morgan & Bourlard ’95], that locally
discriminative acoustic models can indeed achieve the same performance with
less parameters when compared to standard HMM modeling.

e Explicit Control over Class Priors: In case of a mismatch of class priors
between training and test corpus, for instance caused by a significantly different
vocabulary, locally discriminant models can be adapted effectively since the
class priors are explicitly available.

In addition, depending on the type of estimator being used, locally discriminant mod-
els offer easy integration of additional knowledge sources and reduced assumptions
about the type of emission probability distribution. In the case of neural network es-
timators, which we will discuss next, the assumption of independence of observations
can be weakened considerably by taking a window of frames around the current time
frame as input to the estimator, instead of just the current time frame. This way,
important contextual information can be incorporated into the probability estimation
process.

3.3 Connectionist Acoustic Modeling

Relying on distributed internal representations for solving classification and regres-
sion tasks, connectionist architectures, also known as (artificial) neural networks
[Rumelhart & McClelland ’86, Bishop ’95a, Ripley ’96], created considerable interest
in the speech recognition community [Lippmann ’89, Waibel & Lee 90, Waibel '91].
As neural networks were found to be excellent tools for classifying speech units such
as phones, they have primarily been applied to simple speech recognition problems
such as classification of static patterns. Neural networks for classification of complete
temporal sequences have not been successful for continuous speech recognition where
the number of possible word sequences are practically infinite. However, within the
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HMM framework, connectionist architectures have proven to be viable and some-
times superior alternatives as acoustic models for the estimation of (scaled) state
likelihoods.

A few years back, it was shown (e.g., [Bridle '90]) that the outputs of appropriately
trained classifier neural networks approximate class posterior probabilities. A proof
of this property can be found in Appendix A. In fact, classifier neural networks were
found to be both efficient and versatile tools for approximating posterior probabili-
ties. Although there are other estimators for posterior probabilities such as polyno-
mial classifiers, neural networks have become the single most important architecture
for locally discriminant acoustic modeling. Neural network based locally discrimi-
nant models are usually called connectionist acoustic models and speech recognition
systems based on these models are often termed hybrid NN/HMM systems.

A wide variety of neural network models has been investigated for the purpose of
estimating posterior state probabilities. Following is a list of the most popular archi-
tectures that have been applied to connectionist acoustic modeling:

e Multi Layer Perceptrons (MLP): MLPs arguably are the most frequently
applied neural network models for connectionist acoustic modeling (e.g., [Mor-
gan & Bourlard ’90, Bourlard & Morgan '94, Morgan & Bourlard ’95, Tebelskis
’95]) due to a simple topology and an efficient training algorithm based on
gradient descent (error backpropagation). Since MLPs were also applied exten-
sively in the architecture proposed in this thesis, we will present this type of
neural network in more detail.

Fig. 3.2 depicts the structure of a typical feed-forward classifier MLP for con-
nectionist acoustic modeling consisting of fully interconnected layers (each unit
in the hidden and output layer receives activation from all units in the previous
layer). Although MLPs can consist of several hidden layers in addition to an
input and an output layer, those with a single hidden layer were found to be suf-
ficient for successful classification of speech units and are theoretically capable
of modeling the same class of functions as networks with more hidden layers,
provided there are enough units in the hidden layer. Each unit in the hidden
and output layer computes a nonlinear function of its input vector x consisting
of a linear activation function followed by a non-linear transfer function. While
all MLP units use the following projective kernel

N
H.i(X) = Z WipZTr + b,’,
k=1

as activation function, where the w;; are weights and the b; are the unit biases!,
transfer functions are different for different layers of the network. Hidden units

1Often, input vectors are implicitly extended by a constant coefficient of 1 which allows to write
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Figure 3.2: Multi layer perceptron (MLP)

are mostly equipped with the sigmoid transfer function, yielding the following
output function

_ 1 _ 1

~ L4exp(—ai(x))  1+exp(— XN, wpzy — b;)

Yi(x)

Alternatively, the tanh function which is just a symmetric version of the sigmoid
function is applied to hidden unit activations. The type of transfer function
used for units in the output layer depends on the learning task and should not
be chosen arbitrarily. In the case of connectionist acoustic modeling, MLPs
are used for multi-way classification of speech units such as monophone HMM
states. In statistical theory, multi-way soft classification is modeled by a multi-
nomial probability density. It can be shown [Jordan & Jacobs ’94, Jordan ’95],
that the matching network transfer function (canonical link) for this probability
model is the softmaz [Bridle '90] function:

exp(a;(x)) _ exp(Ta; wieas + bi))
Y7Ly exp(Cily wiken + b5))

W) = e (a()

where M is the number of output units, N is the number of hidden units and
zy is the output of the A-th hidden unit. The softmax function together with

the bias as part of the weight vector w
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a cross-entropy error function (which essentially is equivalent to the log of a
multinomial probability density) constitute the optimal choice for output units
of a classifier neural network with respect to statistical interpretation of network
outputs and efficiency of parameter estimation. For these reasons, we adhere
to the above theory and use classifier MLPs with softmax outputs throughout
this thesis. Nevertheless, it should be noted that other transfer functions can
and have been applied to MLP based classification as well, particularly when
statistical interpretability of network outputs is not required.

Recurrent Neural Networks (RNN): RNNs are comparable to MLPs ex-
cept that they contain additional recurrent connections that feed activations
from the outputs of a particular layer back to the inputs of that layer. Such
recurrent connections effectively allow for improved modeling of temporal dy-
namics, which was found to be advantageous in speech recognition [Robinson &
Fallside ’91, Robinson 94|, where there are considerable correlations between
adjacent feature vectors. The Abbot system [Hochberg et al. '95], arguably
the first connectionist speech recognition system that has achieved competi-
tive performance on large vocabulary speech recognition tasks has been built
around a recurrent neural network [Robinson et al. ’96] and is regularly partic-
ipating in the annual DARPA Broadcast News evaluations [Cook et al. '97a,
Cook & Robinson '98, Cook et al. ’99].

An interesting extension of RNNs that allows to simultaneously train and opti-
mally combine recurrent neural networks for forward and backward time direc-
tions, the bidirectional recurrent neural network [Schuster & Paliwal ’97], has
also been applied successfully to the task of connectionist acoustic modeling.

However, even though there is a generalization of backpropagation called Back-
propagation Through Time (BPTT) available for recurrent networks, training
of RNNs is considerably more expensive than training of MLPs and requires
presentation of training patterns in their correct sequential order. Furthermore,
by using a window of frames around the current training frame as input pattern
vectors, contextual information can be incorporated into MLPs to some extent
as well.

Radial Basis Function Networks (RBF): In contrast to the projective
kernel used as activation function in MLPs, RBFs make use of the following
radial kernel in hidden units

N (wk _ xk)2
a;(x) = Z lT
k=1 1



3.3 Connectionist Acoustic Modeling 33

with parameters w;; (cluster means) and ¢ (cluster variances). Also, an ex-
ponential transfer function is used in hidden units which yields the following
output

N 2

) = exp( ) = exp( - - =)

k=1 gi
Usually, RBFs [Moody & Darken ’89, Renals ’89, Poggio & Girosi ’90] consist
of a single hidden layer and a linear output layer which renders these models very
similar to Gaussian mixture densities. As such, RBFs can be initialized more ef-
ficiently than MLPs by applying unsupervised clustering algorithms for obtain-
ing the parameters of the hidden layer. Also, RBFs with linear output layer need
not be trained with iterative gradient descent optimization methods. Rather, a
more efficient two step process of (1) clustering hidden unit means and select-
ing appropriate variances, and (2) estimating output weights analytically using
minimum least squares procedures is typically applied [Moody & Darken ’89].
Although RBFs are primarily used with linear output layers for the purpose
of regression, they can also be applied to classification tasks [Yee '92]. How-
ever, due to their localized activations in the hidden layer, RBFs are better
suited to regression tasks and it is often found that networks with projective
kernels such as MLPs outperform RBFs on classification tasks. Due to their
close relationship to mixture densities, RBF's have raised considerable interest in
the speech recognition community (e.g., [Ney 91, Renals et al. '91]) and even
classifier RBFs were applied successfully to the task of connectionist acoustic
modeling in speech recognition systems [Fritsch '96].

In addition to the above connectionist architectures, Time-Delay Neural Networks
(TDNN) [Waibel et al. ’87, Waibel 89, Hild & Waibel '93], modular ensembles of
TDNNs [Waibel et al. ’88, Waibel '88, Waibel '89], and Hierarchical Mixtures of Ex-
perts (HME) [Jordan & Jacobs ’'94] have been used to build state-of-the-art connec-
tionist speech recognition systems [Fritsch ’96, Fritsch et al. ’96].

Initially, connectionist acoustic modeling was applied to context-independent pho-
netic modeling, using a single, sometimes very large neural network with 40-60 out-
put units for jointly estimating posterior probabilities of typically about 40-60 HMM
states representing the phones modeled by the system. In a number of studies, it
was shown that such monolithic connectionist acoustic models can outperform clas-
sical acoustic models based on Gaussian mixture densities, provided they both use
the same number of parameters and the same input features. However, performance
of Gaussian mixture models can be improved over connectionist acoustic models
by switching to context-dependent phonetic modeling. In contrast to connectionist
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modeling, the increased number of HMM states in context-dependent systems pose
no conceptual problem to traditional mixture modeling since each state’s emission
probability distribution is modeled independently, using a separate mixture model
for each state. Connectionist acoustic models based on a monolithic neural network
lack such scalability and are not directly suitable for context-dependent phonetic
modeling since joint estimation of state posteriors requires the output layer of the
network to consist of as many units as there are HMM states. Successful training of
classifier neural networks becomes increasingly difficult if not impossible with larger
and larger output layers. Other ways of incorporating context-dependency into the
connectionist acoustic modeling framework therefore had to be found.

3.4 Connectionist Context Modeling

In context-dependent acoustic modeling, we have to estimate HMM state likelihoods
p(x|s;) for 1 < I < N just as in the context-independent case, except that the
total number of HMM states NV is significantly larger. Noteworthy, each state s;
does not only correspond to a specific phone and position in the underlying atomic
HMM model but also to a specific context class (e.g., diphone, triphone). In classical
context-dependent acoustic modeling based on Gaussian mixture densities, knowledge
about underlying phone, position and context class identities of individual states is
not required as each state simply gets its own mixture density.

However, for connectionist acoustic modeling, it is advantageous to rewrite the state
likelihoods by making the knowledge about underlying phone w;, context class c; and,
in case of multi-state HMM topologies, position 7 in the atomic HMM of state s;
explicit:

p(x[s1) = p(Xlwi(a), Cj(sn))
with i(s;) € {1,...,I} and j(s;) € {1,...,J} for single-state HMMSs and

p(xlst) = p(x|wis,)s Ci(s1)s T(sr))-

for K-state HMMs (k(s;) € {1,..., K}). In the locally discriminant framework, we
apply Bayes’ rule to express state likelihoods in terms of state posteriors and priors
as already described earlier. We first take a look at context-dependent modeling with
single-state HMM topologies. Bayes’ rule yields

p(wi, ¢j[¥) p(x)

p(x|ws, ¢j) = Plwic;)
(2R}

As usual, p(x) can be omitted, resulting in scaled likelihoods
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. p(wi, ¢[X)

p(x\u},,c]) P(LL),’,C]') *

Straight-forward application of a single network for estimating p(w;, ¢;|x) requires
I x J output nodes. However, context-dependent posteriors p(w;, ¢;|x) and priors
P(wi, ¢;) can be decomposed into smaller, easier to solve subtasks that require only
networks with 7 and J output nodes using statistical factoring [Morgan & Bourlard
’92]. According to the definition of conditional probability, there are two different
ways of factoring, yielding considerably different context-dependent connectionist
architectures:

1. Factoring Contexts:

Sl o) = PWircilX) _ pleilx) plwile;, x)
P(x|wi, cj) P(wi, cj) P(cj) P(wile;)

2. Factoring Phones:

p(X|ws, cj) = pw;, ¢j|x) _ plwilx) plejlwi, x)
P(x|w;, ¢;) Plws, ;) P(w;) P(cjlwi)

In both cases, the original posterior state probability p(w;,c;|x) has been decom-
posed into a product of an unconstrained posterior probability and a conditional
posterior probability. The first one can be estimated with a neural network just like
in the context-independent case. The second, conditional posterior probability can
be estimated in various ways. Viewing a feed-forward classifier neural network as an
estimator of the left side of a conditional, given the right side as input, the input
layer of such a network can be extended by adding binary nodes that sparsely encode
the value of the discrete dependent variable.

Alternatively, conditional posterior probabilities can be estimated using a set of neural
networks, one for each possible value of the discrete dependent variable. Each one
of these networks has to be trained only on data corresponding to the specific value
of the discrete dependent variable for which it was build. Consider for instance the
case of (1.) factoring contexts. The unconstrained posterior probability p(c;|x) can
be estimated with a neural network with J output units, one for each context class.
The conditional posterior p(w;|c;,x) can be estimated with a set of J neural networks
N;, one for each context class, estimating

pj(wilx) = p(wilej,x) Vi e{l,...,J}
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The conditional dependence of pj(w;|x) on ¢; is realized by training each network only
on data corresponding to its context class ¢;. While each of these networks estimates
phone posteriors as in the context independent case, they all do so for a different
phonetic context. Since they represent specialized versions of a network for context-
independent connectionist modeling, it is advantageous to initialize the parameters of
all the context-specific networks with the parameters of a trained context-independent
network. This way, training of the networks is accelerated and context-dependent
estimates are regularized which avoids overfitting in cases of little available context-
specific training data.

In the case of (2.) factoring phones, the unconstrained phone posterior p(w;|x) is
identical to the one estimated in the context-independent case. In contrast to the
case of factoring contexts, context-independent modeling is transparently embedded
into the context-dependent architecture, allowing to easily switch between the two
modes of operation. Furthermore, factoring phones allows to apply phonetic decision
trees to induce a variable, robust and data-dependent number of generalized context
classes for each phone. The conditional posteriors p(c;|w;,x) can be estimated by a
set of I phone-specific neural networks N; such that

pi(c;|x) = p(cjlwi,x)  Vie{l,...,I}

Again, the conditional dependence on the phone w; is realized by restricting the
training set of each phone-specific network to data corresponding to the respective
phone. The resulting context-dependent connectionist architecture consists of expert
networks for discriminating the context classes separately for each phone while the
architecture resulting from factoring contexts consists of expert networks for discrim-
inating the phones separately for each context class. Both approaches have been
applied successfully, yielding improved performance over context-independent con-
nectionist acoustic modeling [Franco et al. '94, Franco et al. ’97, Fritsch et al. ’97,
Kershaw et al. 795, Kershaw ’97].

The factored priors in the denominator of the expressions for scaled likelihoods are
determined according to relative frequencies in the training set. Conditional priors
can be obtained in a similar way as conditional posteriors by restricting the training
set on which relative frequencies are computed to data corresponding to the value of
the discrete dependent variable.

Finally, we note that state posteriors for multi-state HMM topologies can be decom-
posed analogously to the single-state case. The additional variable 7, indicating
position in the multi-state HMM, simply adds another degree of freedom in the order
of factoring. However, not all of the 6 possible ways of factoring the state posteriors
yield reasonable configurations as has been investigated in [Fritsch '96].
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3.5 Problems with Connectionist Modeling

Connectionist acoustic models possess a wide range of properties (locally discrimi-
nant, more compact, faster evaluation, explicit class priors, etc.) that are missing
in traditional mixture density based models. Nevertheless, wide-spread use of stan-
dard connectionist acoustic models in large vocabulary speech recognition systems
has been hindered because of the following problems:

e Lack of Scalability: As already mentioned, monolithic connectionist acous-
tic models scale poorly with respect to the number of HMM states that are
modeled. A classification task involving n classes requires a classifier neural
network with n output nodes. Unfortunately, the number of output nodes in a
neural network can not be increased arbitrarily. In [Cohen et al. ’92], the au-
thors report a decrease in speech recognition performance when increasing the
number of output units in a monolithic network from 69 (context-independent)
to 200 (context-dependent). In fact, connectionist acoustic models were ob-
served to perform best when applied to the level of speech monophones instead
of on the level of subphonetic HMM states. We have shown how the tech-
nique of factoring context-dependent state posteriors allows for decomposition
of an otherwise oversized classification problem into a sequence of two or three
considerably smaller classification problems. Although factoring posteriors has
opened the door to context-dependent connectionist modeling, some of the re-
sulting classification tasks may still be too large for accurate estimation of
posteriors, especially when phonetic decision trees are used to induce variable
amounts of context classes for each phone.

e Non-Uniform Priors: It has been observed that classifier neural networks
generate poor estimates of posterior class probabilities for infrequent classes
that occur rarely in the training set. Estimates of posteriors for frequent classes
tend to be overestimated by the network while estimates of posteriors for very
infrequent classes often vanish [Lawrence et al. '98].

For optimal results, the classes to be discriminated by the network should be
distributed uniformly in the data used for training the neural network. Un-
fortunately, real-world classification problems typically exhibit quite irregular,
non-uniform prior distributions. For instance, the following plot (Fig. 3.3) de-
picts the distribution of prior probabilities of English phones as estimated on
the Switchboard LVCSR corpus (see Chapter 4).

The least frequent phones (ZH,0Y,EN) are about 20 times less probable than
the most frequent phones (S,T,N).
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Figure 3.3: Non-uniformity of phone prior distribution on Switchboard

e Computational Cost of Training: The amount of computation required for
training the neural networks in a connectionist acoustic model can be orders of
magnitude more than is required for classical HMM training. This is a conse-
quence of locally discriminant modeling, in which all parameters are potentially
modified for each training pattern, irrespective of the class the pattern belongs
to. In traditional, non-discriminatively trained Gaussian mixture models, only
the parameters of a single mixture (out of several thousand) are affected by
any training pattern. Furthermore, maximum likelihood training of Gaussian
mixture based acoustic models can easily be distributed among several comput-
ers, speeding up training times significantly. In contrast, connectionist acoustic
models require on-line training of typically very large neural networks which
can not be distributed as easily. Rather, efficient training requires dedicated
hardware which is not the case for conventional models. Furthermore, even
when using dedicated parallel hardware for the training of neural networks, re-
searchers have reported training times of up to several weeks for their largest
connectionist acoustic models.

We will present a new architecture for connectionist acoustic modeling in chapter
5 that, in addition to providing structural benefits not found in traditional models,
avoids each one of the above pitfalls that have prevented wide-spread application of
connectionist acoustic models so far.



Chapter 4

The Switchboard Corpus

In order to assess and compare the performance of speech recognition systems, a va-
riety of standardized speech recognition benchmarks and corpora have been collected
over the years. Large structured collections of speech and associated transcriptions
are essential to progress in automatic speech recognition. Due to the many approxi-
mations and heuristics, superiority or inferiority of algorithms and architectures can
not only be justified theoretically but must be assessed on widely used benchmark
corpora. In the following, we present the Switchboard corpus [Godfrey et al. '92],
which has been used for experimental evaluation of the architecture and algorithms
proposed in this thesis.

4.1 Overview

Switchboard is a large multi-speaker corpus of conversational American English tele-
phone speech and text collected automatically over T1 lines at Texas Instruments
(TT). It includes about 2500 conversations by 500 different speakers from every major
dialect region in the United States. Originally designed for speaker identification and
topic spotting, it is now being used primarily for evaluating large vocabulary con-
versational speech recognition (LVCSR) systems for band-limited (telephone quality)
speech.

Overall, the corpus contains about 250 hours of speech and nearly 3 million words of
text. The conversations were recorded as two separate but synchronized data streams
with 8kHz sampling rate and p-law encoding, one for each speaker. The isolation of
the two speakers is limited by the long distance telephone network’s echo cancelling
performance, but is generally better than 20 decibel. However, some recordings
exhibit heavy cross-talk with both speakers audible on one recording side. Although
adaptive filters can be used to reduce such cross-talk, it is nevertheless regarded as a
potential problem for speech recognition algorithms.

39
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Participating subjects were asked to lead a natural conversation for about 5 minutes
whereby the automatic collection system suggested one out of 70 topics such as ‘air
pollution’, ‘care of the elderly’, ‘football’, ‘music’, ‘child care’, ‘taxes’; etc. Various
demographic information about the participating speakers was gathered and stored.
This includes their age, sex, level of education and geographically-defined dialect area
where they grew up. According to this information, about 54.9% of the speakers were
male, 45.1% female. About 90% of the speakers had an education of college level or
above. The following two tables give information about age and dialect distribution
in the corpus:

Dialect Region [| Percentage

\SNOUtth Midland ?2111? Age |
estern 1%
North Midland 14.6% 2029 26.4%
30-39 33.7%
Northern 14.2%
40-49 21.1%
Southern 10.6%
- 50-59 16.4%
New York City 6.2% 5060 5.4
Mixed 4.9% -2
New England 4.0%

Table 4.1: Dialect region and age distribution in Switchboard

The relatively high percentage of speakers from the ‘South Midland’ area is at-
tributable to the fact that a lot of Texas Instruments employees participated and
the company is located in this area. The speech in the Switchboard corpus is fully
transcribed, and the transcription conventions documented. Court reporters pro-
duced most of the verbatim transcripts, following a manual prepared specifically for
the project.

4.2 Characteristics

Switchboard is a spontaneous, conversational telephone speech corpus. As such, it
exhibits a variety of phenomena that render automatic speech recognition a very
difficult problem:

e Speaking Style: disfluencies, linguistic incoherence, false starts, interruptions,
repetitions, emotions (mostly laughter), bad grammar



4.2 Characteristics 41

e Pronunciation Effects: highly variable speaking rate, reduced pronunciations
(going to — gonna), co-articulation, sloppy speech (whatcha gonna do ‘bout
it?)

e Telephone Channel: reduced bandwidth, signal degradation, high variation
in channel quality, reverberations, echos, cross-talk, static noise

e Ambient Noise: music, television, kids crying, cars passing by, kitchen noise,
etc.

Furthermore, conversational speech exhibits an extremely non-uniform distribution
of words.
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Figure 4.1: Word coverage — Switchboard corpus

The Switchboard corpus contains about 28000 distinct words. Fig. 4.1 shows corpus
coverage with respect to most frequent words. According to this analysis, the 100
most frequent words account for roughly 65% of the corpus. The 1000 most frequent
words account for ca. 90% of the corpus. Among the most frequent words are ‘T’,
‘THE’, ‘AND’, ‘YOU”’, ‘THAT", ‘TO’, ‘A’, ‘OF’ and ‘IT". 90 of the 100 most frequent
words are composed of only a single syllable. There is a large diversity of phonetic
pronunciation of these short, frequent words. For instance, the word ‘AND’ has been
found in 87 different phonetic pronunciations where the most common pronunciation
represents just 16% of all occurrences. The high variation in phonetic realization
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Figure 4.2: Word frequencies — Switchboard corpus

renders the recognition of these words rather difficult. Even worse, since these words
are very common, their mis-recognition influences overall performance severely.

Fig. 4.2 shows word frequencies for the Switchboard corpus. While the 100 most
frequent words have frequencies that would allow separate word models for each one
of them, more than 20600 words (73.6%) occur less than 10 times in the corpus.

4.3 LVCSR Evaluations

The Defense Advanced Research Projects Agency (DARPA) together with the Na-
tional Institute for Standards and Technology (NIST) performs annual official eval-
uations (denoted ‘Hub-5E’) of large vocabulary conversational speech recognition
(LVCSR) systems on the Switchboard and Callhome corpora. Among the sites that
have participated in such evaluations are BBN, Dragon Systems, SRI, Boston Uni-
versity, Cambridge University and Carnegie Mellon University. In 1997, the author
participated as a member of the Interactive Systems Labs, a group of researchers from
University of Karlsruhe and Carnegie Mellon University which scored first on that
year’s Switchboard test set [Finke et al. ’97]. The following table presents the best
results in terms of word error rate in recent years’ evaluations. Unfortunately, results
are not directly comparable since NIST selects a new test set of varying difficulty
each year. Switchboard-I denotes the original corpus, while Switchboard-IT denotes
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a relatively new, not yet fully transcribed additional corpus that has been used in
recent evaluations.

year || test set word error rate
1995 || Eval-95 from Switchboard-I 48.0%
1996 || Eval-96 from Switchboard-T 38.8%
1997 || Eval-97 from Switchboard-TT 35.1%
1998 || Eval-98 from Switchboard-TT 36.7%

Table 4.2: Best performances in official Switchboard evaluations

While there has been a lot of progress in speech recognition technology on the Switch-
board corpus, the word error rate still hovers in the thirties, falling far short of human
capabilities (4% word errors according to [Lippmann ’97]) on this data.

4.4 Thesis Relevance

The Switchboard corpus offers unique features that make it attractive for evaluat-
ing the architecture and algorithms proposed in this thesis. It is one of the largest
existing speech corpora and arguably the most difficult one for today’s speech recog-
nition technology with lots of open questions and great potential for improvements
in modeling. With respect to thesis relevance, the Switchboard corpus

e is ideal for building a robust baseline recognizer for general American English
and for domain adaptation experiments due to its acoustic and linguistic vari-
ability.

e offers a high degree of phonetic variability which requires detailed phonetic
context modeling to achieve competitive performance. On the one hand, this
allows to demonstrate the scalability of the proposed hierarchical connectionist
acoustic model to arbitrarily large HMM state spaces. On the other hand, this
leads to very specific context models ideally suited for structural adaptation
experiments on domains with less variability in phonetic context.

e represents a large vocabulary corpus. With a phonetic dictionary of about 30000
distinct word forms from a large variety of topics, a Switchboard recognizer
covers most of the words of smaller domains.

While there are speech corpora with even larger vocabularies such as the Wall Street
Journal (WSJ) and the Broadcast News (BN) domains, Switchboard is rather unique
in its combination of conversational speaking style, large vocabulary and reduced
bandwidth acoustic quality.
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Chapter 5

Hierarchical Connectionist
Acoustic Modeling

This chapter presents a hierarchically organized connectionist architecture for prob-
abilistic classification and its application to acoustic modeling in automatic speech
recognition [Fritsch '97, Fritsch & Finke '98a, Fritsch & Finke ’98b]. We introduce
hierarchical soft classifiers and discuss their theoretical properties with respect to
statistical interpretation which allows for integration into the HMM framework. In-
duction of suitable tree structures is discussed in detail, focusing on clustering algo-
rithms and distance metrics developed specifically for acoustic modeling. We present
Hierarchies of Neural Networks — hierarchical classifiers that rely on feed-forward
neural networks for local conditional posterior probability estimation. Thousands of
neural networks have to be optimized when training such a model for connectionist
acoustic modeling. We present efficient training techniques that allow to train hierar-
chical models much faster than most existing connectionist acoustic models. Finally,
we present experiments and recognition results using the proposed architecture on
the Switchboard corpus.

5.1 Hierarchical Classifiers

Consider the task of classifying patterns x as belonging to one of N classes wy,
where N is assumed to be very large (N > 5000). Applying the principle of divide
and conquer, the task of discriminating between thousands of classes can be broken
down into a hierarchical structure of many considerably smaller classification tasks.
This idea underlies the approaches to decision tree architectures [Breiman et al. '84,
Quinlan '86, Safavian & Landgrebe '91]. Decision trees classify input patterns by
asking categorical questions at each internal node. Depending on the answer to these
questions a single path is followed to one of the child nodes and the process repeats
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until a leaf node is reached and a winner class label is emitted. However, decision tree
classifiers are restricted to hard decisions. No information about the confusability of
a specific input pattern is available. Rather, we are often interested in the posterior
class probabilities p(wx|x) as a measure of the degree of class membership. The opti-
mum choice in the Bayes’ sense then is to pick the class with maximum a-posteriori
probability!'. Furthermore, it is sometimes required to supply a measure of the degree
of membership for all potential classes to a superordinate decision making process as,
for instance, in statistical speech recognition. Adhering to the divide and conquer
approach but generalizing the decision tree framework, the statistical method of fac-
toring posteriors can be applied to decompose the class posteriors hierarchically. We
call the resulting architecture a soft classification tree.

5.1.1 Hierarchical Decomposition of Posteriors

For now, we assume, that optimal posterior probabilities are available. Let S be the
set of classes wy, to be discriminated. Consider we have a method at our disposition
which gives us a partitioning of S into M disjoint and non-empty subsets S; such that
members of S; are almost never confused with members of S; (Vj # i). A particular
class wy, will now be a member of S and exactly one of the subsets S;. Therefore, we
can rewrite the posterior probability of class wy as a joint probability of the class and
the corresponding subset S; and factor it according to

p(we, Si|x) with wr € 5;
p(Silx) p(we|Si, x).

p(wr[x)

Thus, the global task of discriminating between all the classes in S has been converted
into (1) discriminating between subsets S; and (2) independently discriminating be-
tween the classes wy remaining within each of the subsets S;. This two-stage process
can be interpreted as corresponding to a tree-structured architecture (see Fig. 5.1).
In this tree structure, the root node (first level) performs coarse classification between
the subsets S;, while the second level nodes perform classification among the classes
wy within each subset S;. Each base class wy is represented by a leaf node in the
tree. By subdividing subsets S; further and hierarchically repeating the process of
factoring conditional posteriors, we can build larger, deeper tree structures.

In the limit, a NV class classification problem can be decomposed into a binary tree
structure consisting of N — 1 nodes, each modeling a binary classification problem
(see Fig. 5.2). Note however, that the branching factor does not have to be binary

! Assuming that equal risks are assigned to all classes.
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or constant for all nodes in the classification tree but that it might be subject to
optimization during the tree design phase.

In order to compute the posterior probability for a specific class, we have to follow
the path from root node to the leaf corresponding to the class in question, taking
the product of all the conditional posteriors along the way. Both the design of the
tree structure (divide) and the estimation and multiplication (conguer) of conditional
posteriors at each node are important aspects in this architecture, that have to be
considered thoroughly because in practice, only approximations to the conditional
posteriors are available [Schiirmann & Doster '84].

1

X

P(Sy| S1.%) P(S;] S;%)
T T
X X
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Figure 5.1: Hierarchical decomposition of posteriors

5.1.2 Properties

In addition to being applicable to classification tasks involving thousands of classes,
hierarchical soft classifiers possess a variety of other interesting properties that make
this kind of model particularly interesting for connectionist acoustic modeling.

o Mass Distribution: The presented architecture can be interpreted as a prob-
ability mass distribution device. At the root node, an initial probability mass
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of 1 is fed into the architecture. At each node, the incoming probability mass is
multiplied by the respective conditional posterior probabilities and fed into the
child nodes. Eventually, the probability mass is distributed among all the leaves
(classes) rendering their posterior probabilities. In contrast, decision trees rep-
resent hard-switching devices, where only a single path from root node to one
of the leaves is considered.

Posteriors

Conditional

Figure 5.2: Binary tree structure for computing class posteriors

e Fault Tolerance: If one of the nodes in a classification tree, for example
the root node, fails to provide good estimates of conditional posteriors, a hard
decision tree will produce many classification errors due to the greedy local
decisions. In contrast, such shortcomings will influence the decision process
less dramatically in a soft classification tree as classification decisions are being
delayed until the tree is fully evaluated and the complete posterior probability
distribution is available at the leaf nodes. More general, Fig.5.3 demonstrates
that greedy local choices as performed in a hard decision tree do not neces-
sarily lead to the maximum a-posteriori leaf node (the one chosen by a soft
classification tree).
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Figure 5.3: Difference between soft classification tree and hard decision tree

e Cross Sectioning: A very interesting and important aspect of soft classi-
fication trees is the sum-to-unity property observable in any horizontal cross
section at any level of the tree (see Fig. 5.4. For any cross section, the partial
posteriors computed down to the specific tree level sum up to 1 and constitute
a valid posterior probability distribution. Thus, a soft classification tree can be
cut off at any tree level and still be used to compute posterior probabilities for
a reduced number of classes. This is equivalent to merging the original classes
according to the tree topology up to the level of cross sectioning. The resulting
classification task will be less specific and often easier to solve than the original
one.

e Pruning: Related to the sum-to-unity property of cross sections is the property
that partial posteriors computed on a path from the root node to a leaf are
decreasing monotonically. This in turn allows to close paths whenever the
partial posterior falls below a suitable threshold, thereby pruning whole subtrees
with classes that would otherwise receive posteriors smaller than the threshold.
This property yields the possibility to smoothly trade-off classification accuracy
against computational complexity. In the limit, when only a single path with
highest conditional posterior probability is followed, the soft classification tree
resembles a decision tree.

The above properties together with the fact that soft classification trees are suitable
to any size of classification task render this kind of model an optimal choice for
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Figure 5.4: Sum-to-unity property of cross sections

locally discriminant acoustic modeling. However, in order to be applicable in a speech
recognition system, the following issues have to be addressed:

e Given a set of HMM states to be modeled, how can we construct a suitable tree
structure for hierarchical acoustic modeling?

e How can we estimate the local conditional posterior probabilities required at
each tree node?

e How can a hierarchical acoustic model be trained efficiently, given the huge
amount of training data typically required for speech recognition?

e How can a hierarchical classifier be integrated into an HMM based speech recog-
nition system?

The remainder of this chapter is therefore devoted to the analysis of the above issues
and to the specific algorithmic and architectural solutions that we have developed in
order to realize a speech recognition system based on a hierarchical acoustic model.

5.2 Tree Construction

When it comes to the design of soft classification trees, or equivalently to the design
of hierarchical decompositions of class posteriors, the choice of algorithm depends
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mostly on the number of initial classes. In our specific case, we are seeking a tree
structure on top of a set of HMM states, that results in an effective hierarchical
decomposition of the state posteriors. As the set of base classes in this case consists
of the set of decision tree clustered HMM states, we might consider to adopt the
structure of the context clustering decision trees for the purpose of hierarchically
factoring the state posteriors. However, the set of decision trees typically constitutes
a bad choice for hierarchical acoustic modeling for the following reasons:

o In the standard approach, phonetic decision trees are grown independently for
each monophone. One of the motivations for this restriction is reducing the com-
putational complexity of tree growing. However, there is considerable evidence
for acoustic similarities between allophonic variants of different monophones
which suggest to not enforce any such constraint when the tree structure is to
be exploited for hierarchical acoustic modeling.

o Phonetic decision trees typically exhibit a strong imbalance due to the categor-
ical questions used for splitting nodes. While the yes-branch of such questions
contains only few examples, the no-branch contains the majority of examples
and therefore is subject to excessive further splitting, causing the imbalance.
In contrast, a more balanced tree is desirable for hierarchical soft classifica-
tion of HMM states in order to exploit the divide-and-conquer principle most
effectively.

Instead of adopting the most likely suboptimal phonetic decision tree structure, we
will investigate approaches at constructing alternative tree structures specifically for
the purpose of hierarchical soft classification of HMM states. To that end, we postu-
late the following design criteria for tree structures that are to be used for hierarchical
acoustic modeling.

1. Acoustic similarity of child nodes should be smallest for the root node and
should increase monotonically towards the bottom of the tree. This is to ensure
that the complexity of the local classification tasks increases from top to bottom.
As the quality of estimates of the local conditional posterior probabilities at the
root node influences the accuracy of posterior probabilities of all leaf nodes, we
want to have a classification task as easy as possible at the root node. Further
down the tree, the accuracy of estimates of the local conditional posteriors
becomes less and less critical.

2. Balanced trees should be favored, such that an approximately equal number of
nodes have to be traversed to evaluate any leaf node.
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3. The a-priori distribution of child nodes should be close to a uniform distribution
for any tree node to allow for the training of accurate estimators of the local
conditional posterior probabilities.

We will first discuss optimal tree structures before we will turn to locally optimal algo-
rithms required when dealing with the large number of classes typically encountered
in context-dependent acoustic modeling.

5.2.1 Optimality

The optimal soft classification tree for a given task and given type and structure of
estimators for the conditional node posteriors is the one which results in minimum
classification error. If all the node classifiers would compute the true conditional
posteriors, the tree structure would have no influence on the classifier performance
because any kind of factoring (through any kind of tree structure) yields an accurate
decomposition of the class posteriors. However, in practice, approximation errors
of node classifiers render the choice of tree structure an important issue. For small
numbers of classes, the optimal tree can in principle be found by exhaustively training
and testing all possible partitionings for a particular node (starting with the root
node) and choosing the one that gives the highest recognition accuracy. However, even
if restricting the tree structure to binary branching nodes and balanced partitionings,
the number K of partitionings that have to be examined at the root node

e (N%)

quickly brings this algorithm to its limits, even for a moderate number of classes
N. Therefore, we have to consider heuristics to derive potentially sub-optimal tree
structures. For example, one valid possibility is to assume that the achievable ac-
curacy of approximations to the true posteriors is related to the separability of the
corresponding sets of classes.

5.2.2 Prior Knowledge

Following the above mentioned guideline, prior knowledge about the task in question
can often be applied to hierarchically partition the global set of classes into reasonable
subsets. The goal is to partition the remaining set of classes in a way that intuitively
maximizes the separability of the subsets. For example, given a set of phones in a
speech recognizer, a reasonable first partitioning would be to build subsets consisting
of voiced and unvoiced phones. In larger speech recognition systems where we have
to distinguish among multiple context-dependent phone states, prior knowledge such
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as state and context identity can be used as splitting criterion (see Fig. 5.5). In tasks
such as speaker or writer identification, features such as gender or age are potential
candidates for splitting criteria.

%ﬂiﬂ% monophones

context classes

Bomoomom

Figure 5.5: Three level tree structure for context-dependent hierarchical acoustic
modeling constructed based on prior phonetic knowledge

The advantage of such knowledge driven decompositions is a fast tree design phase
which is a clear superiority of this approach when dealing with large numbers of
classes. However, this method for the design of hierarchical classifiers is subjective
and error prone. T'wo experts in a specific field might disagree strongly on what con-
stitutes a reasonable hierarchy. Furthermore, it is not always the case that reasonable
partitionings yield good separability of subsets. Expert knowledge can be misleading.

5.2.3 Confusion Matrices

In case the number of classes is small enough to allow the training of a single classifier,
the design of a soft classification tree can be based on the confusion matrix of the
trained monolithic classifier. Indicating the confusability of each pair of classes, the
confusion matrix yields relatively good measures of the separability of pairs of classes.
This information can be exploited for designing a tree structure using a clustering
algorithm. For instance, we can define the following (symmetric) distance measure
between two disjunct sets of classes S; and S;
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where C'(w;,w;|T’) denotes the number of times class w; is confused with class w; as
measured on a set of labeled patterns 7. The distance d(Sk,S;) can now be used
as a replacement for the usual Euclidean distance measure in a standard bottom-up
clustering algorithm. Unfortunately, once the number of classes increases to several
thousand, training of a monolithic classifier becomes increasingly difficult.

5.2.4 Cluster Methods

Assuming that separability of classes correlates with approximation accuracy of es-
timators for the posterior class probabilities, we can go further and assume that
separability of classes can be measured by a suitable distance between a class repre-
sentative or the class conditional distributions in feature space. Examples of distance
measures include, for instance, the Euclidean distance between class means or the
Mahalanobis distance between the classes second order statistics. Irrespective of the
chosen distance measure, the goal always is to group the set of classes in a way that
results in maximum inter- and minimum intra-group distances. Solutions to this
problem are known as clustering algorithms (e.g., [Duda & Hart ’73]). We will in-
vestigate this class of algorithms in more detail in the following section and develop
efficient solutions for designing soft classification trees.

5.3 Bottom-Up vs. Top-Down Clustering

Considering the large amount of HMM states that we intend to model with hierar-
chical classifiers, efficiency and practicality of a tree growing algorithm is of foremost
importance. It is for this reason, that we are focusing on cluster methods for con-
structing the proposed hierarchically organized acoustic models. In the following, we
develop specific solutions for clustering hierarchical classifiers based on parametric
models (single Gaussians) for the HMM states and suitable distance measures be-
tween such densities, comparing the two major types of hierarchical cluster methods,
namely agglomerative (bottom-up) and divisive (top-down) algorithms. Agglomera-
tive procedures start with n singleton clusters as the leaf nodes and construct a tree
structure bottom-up by successively merging clusters. In contrast, divisive procedures
start with all the samples in one cluster (the root node) and construct a tree structure
top-down by successively splitting clusters. We will see that both approaches exhibit
pros and cons with respect to our application.
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5.3.1 Distance Measures

As already mentioned, we represent each initial class (HMM state) probabilistically
using a single Gaussian density. In contrast to more simple representations, for
instance consisting of just a mean vector, the additional second order statistics allow
for more accurate distance measures. Gaussian densities for each HMM state can
easily be obtained from the training data using maximum likelihood estimation.

In our work, we have investigated two distance measures based on second order
statistics for hierarchical clustering, namely one based on information divergence and
one based on split likelihood gain.

e Symmetric Information Divergence:
Information divergence, also known as Kullback-Leibler (KL) divergence [Kull-
back & Leibler ’51], measures the amount of information that is lost, when
approximating a continuous probability density p; with some other continuous
density p;. In its basic form, it is defined as

o) = [ a0 log PO
KL(pipy) = [ pit)log 5

It measures how closely p; resembles p;. For increasing similarity, the KL diver-
gence approaches zero, which is obtained only in case of p; = p;. Unfortunately,
the standard form of the KL divergence is not symmetric and hence can not be
used directly as a distance measure. However, a symmetric version of the KL
distance can easily be derived:

Apops) = KLpops) + K Lpypi) = [ (%) = py(30) log 20 i

x pi(x)
In our case, the densities p; and p; model the distribution of acoustic vectors
in HMM states s; and s; and are parameterized by normal densities. The
above KL divergence thus measures the amount of dissimilarity between HMM
states s; and s;. One can show (e.g., [Tou & Ganzales '74]) that the symmetric
information divergence between two normal densities amounts to

AN N = Ser{(S- S8 - =)

(S 7 ) )}
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To reduce the computational load of a clustering algorithm that utilizes this
distance measure, we typically restrict the Gaussian covariances to diagonal
matrices, resulting in the following simplified distance measure

1 o3 =) 0%+ (e — pin)?
d(Nth):_ZUlk*'(ﬂ;c pik)® | i (M/ze pik)®

k=1 Ok Ok
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Split Likelihood Gain:

In contrast to symmetric information divergence, split likelihood gain measures
the gain in likelihood obtained by splitting the data of a specific cluster into two
halves and modeling each half separately. Therefore, this measure is primarily
used for divisive clustering. We have already introduced split likelihood gain
in our overview of phonetic context modeling in chapter 2 where it served as
the optimization criterion in selecting phonetic questions for divisive growing
of phonetic decision trees. Assuming perfect models for the distribution of our
data vectors, there would be no gain from separately modeling parts of a given
density. However in practice, we can only approximate the true distribution
of our data, for instance by means of second order statistics. Consequently,
considerable gains in likelihood can be obtained by splitting the data as is
illustrated in Fig. 5.6.

True density

Gaussian model

Al

Figure 5.6: Split likelihood gain with Gaussian models

Split likelihood gain can also be considered a measure of the dissimilarity of the
classes resulting from a split. In the limit of identical distributions for the data
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in each class, its value converges to zero as there is no gain from modeling the
classes separately. As already stated in chapter 2, split likelihood gain is defined
as the difference in log likelihood between the child nodes and the parent node.

d(p,pr,pr) = (Z logpr(x) + > IngR(X)) - > logp(x)

XENL XENR xEN

Let N(x;pu,0?) denote a diagonal covariance Gaussian density modeling the
data distribution before the split and Ni(x;ur,02), Nr(x;ur,0%) denote di-
agonal covariance Gaussian densities modeling the data distribution after the
split. Hereby, split likelihood gain simplifies to the following, computationally
efficient expression:

D D D
d(N,N,,Ng)=n>_loga; — (nLZloga%k +ng Y log U?{k>

k=1 k=1 k=1

where n, ny, and ng denote the number of samples observed in the parent and
child distributions, respectively.

5.3.2 Agglomerative Clustering

Our initial approach to hierarchically clustering HMM states for tree-structured con-
nectionist acoustic modeling is based on agglomerative clustering. Starting with a
set of leaf nodes representing the HMM states to be clustered, we successively cre-
ate new tree nodes by merging existing ones according to their acoustic similarity,
thereby constructing a binary tree structure in a bottom-up fashion. We model the
data distribution at the initial leaf nodes by diagonal Gaussian densities and measure
their dissimilarity using the symmetric information divergence introduced earlier.

In a straight-forward approach, we would merge the statistics of two child nodes to
form a new, single Gaussian density for the parent node. However, as the available
amount of data increases exponentially towards the top of the tree, the complexity
of the corresponding distribution will also increase considerably. A single, diagonal
Gaussian density must be considered a poor approximation of the distribution in the
upper region of the tree. In order to improve the modeling accuracy, we developed
an extension [Fritsch et al. '97] of standard agglomerative clustering which forms
mixture densities as models of the data distribution in parent nodes by successively
merging the initial Gaussian densities, using the within-cluster a-priori probabilities
of the Gaussians as the mixture weights (see Fig. 5.7). This way, none of the initial
information is lost during clustering, given that we generalize the distance measure
to the information divergence between mixtures of Gaussians.
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Figure 5.7: Forming Gaussian mixtures for improved agglomerative clustering

A computationally feasible approximation to the otherwise not analytically solvable
integral expression for the KL divergence between Gaussian mixtures can be obtained
by assuming linearity of the symmetric information divergence d(Sk, S;) between two
clusters S, and S;:

d(S,S1) = d ( > p(silSk) Niy > p(s51S) Nj)
5 €Sk s;€S)
~ Y > p(silSk) p(silSy) d(Ni, N;)
si€S) s;ES;

Here, p(s;|Sk) and p(s;|S;) denote the within-cluster a-priori probabilities of the states
s; in the cluster Si and the states s; in the cluster S;. N; and N; denote the Gaussian
models for states s; and s;, respectively.

Finally, Fig. 5.8 details the agglomerative clustering algorithm as we have used it
for clustering tree structures for a given set of HMM states. The computational
complexity of this algorithm is O(n®)?, where n is the number of HMM states. In
our initial experiments, we were applying this algorithm to construct tree structures

2Under the assumption that we only have O(n) memory available. If we would have O(n?)
memory available, the computational complexity could be reduced to O(n?) using a priority queue
for maintaining the distances between all pairs of states.
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for context-independent modeling, typically involving less than 200 HMM states.
For illustration purposes, Fig. 5.9 shows a dendrogram of a typical agglomerative
clustering run on a relatively small set of only 56 HMM states corresponding to the
set of single-state monophone HMMs in a context-independent Switchboard system.
The model set consists of 44 standard English phones along with 7 noise sounds
(marked with a plus), 4 phones modeling interjections (marked with an ampersand)
and silence (SIL).

Agglomerative Clustering Algorithm

1. Initialize algorithm with n clusters S;, each containing
(1) a parametric model of the state-conditional likelihood
for the corresponding state s;, e.g., a diagonal Gaussian
(2) a count Cj, indicating the frequency of state s; in the training set.

2. Compute within-cluster priors p(s;|Si) for each cluster Sy based on the
counts Cj

3. Compute the symmetric divergence measure d(Sk, S;) between all pairs
of clusters Sy and Sj.

4. Find the pair of clusters with minimum divergence, S; and S;

5. Create a new cluster S = S/ S, containing all states from S} and
S/ plus their respective counts. The resulting parametric model is a
mixture of Gaussians where the mixture coefficients are the state priors

6. Delete clusters S; and S}

7. While there are at least 2 clusters remaining, continue with 2.

Figure 5.8: Agglomerative clustering algorithm based on information divergence

Interestingly, the agglomerative clustering algorithm identifies clusters of phones
that correspond roughly to well known linguistic classes, such as stop consonants,
nasals and fricatives. The top level split separates silence, breathing and noise
sounds (lower subtree) almost perfectly from speech sounds (upper subtree). Remark-
able phone clusters that emerge early on during clustering consist of (IX,IH,IY,Y),
(JH,CH,SH,ZH), (Z,S,F), (ER,AXR,R), (T,D,PK). After these initial experiments
with context-independent systems, we switched to context-dependent models with
thousands of states as required for state-of-the-art performance in large, complex
domains such as Switchboard. Fig. 5.10 shows a tiny part of the dendrogram for
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Figure 5.9: Agglomerative clustering of context-independent phones
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unconstrained agglomerative clustering of 5000 context-dependent HMM states.
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Figure 5.10: Agglomerative clustering of context-dependent HMM states

Note, that the algorithm groups together HMM states belonging to different mono-
phones right from the start®. This observation confirms our earlier claim that the
acoustic similarity of HMM states can sometimes be larger between allophonic vari-
ants of different monophones than between allophonic variants of the same mono-
phone.

The basic agglomerative clustering algorithm as presented so far exhibits certain
weaknesses that become most prominent when increasing the number of HMM states
to be clustered. First of all, the algorithm tends to produce very imbalanced trees.
The upper curve in Fig. 5.11 shows the average depth of leaf nodes for different num-
bers of leaf nodes. For comparison, we have included a curve that gives the depth of
leaf nodes in a balanced binary tree for the same number of leaf nodes*. For 5000
HMM states (leaf nodes), the average depth of leaf nodes of a tree constructed by
agglomerative clustering already reaches 80 with a standard deviation of over 50. As
stated in the beginning of this section, such imbalanced trees are problematic and

3The state names consist of an initial monophone name, followed by the identifier for the position
in a three state left-right HMM (b,m,e), followed by an identifier for the specific allophonic variant
of that state (in brackets).

4This curve constitutes a lower bound for the average depth of leaf nodes in any binary tree
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Figure 5.11: Unconstrained agglomerative clustering leads to imbalanced trees

undesirable for the task of hierarchically estimating HMM state posteriors. Thus,
we incorporated an additional penalty term into the distance measure for cluster-
ing which enforces balanced trees by favoring a uniform distribution of the a-priori
probabilities of child nodes. More specifically, we chose the negative entropy of the
distribution {p,1 — p} of a-priori child node probabilities

—H(p) =p log(p) + (1 —p) log(1 —p)

as the penalty term and incorporated it additively into our distance measure using
an empiric weighting factor « as follows:

d(Sk, S1)* = d(Sk, S1) — aH(p(Sk))

As can be seen in Fig. 5.11 (a = 100), the additional penalty term allows to cluster
balanced trees using the agglomerative algorithm. In Figs.5.12 and 5.13, we have
investigated the effect of the additional penalty term in more detail.

For four different systems with 5000, 1000, 500 and 200 decision tree clustered,
context-dependent HMM states, we have clustered soft classification trees using the
agglomerative clustering algorithm with additional entropy penalty term. The effect
of varying the weight o on the average depth of leaf nodes can be seen in Fig. 5.12.
For increasing «a, we obtain more and more balanced trees, until for a > 50, this
process eventually saturates. Particularly for systems with large numbers of HMM
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Figure 5.12: Average depth of leaf nodes when penalizing non-uniform priors during
agglomerative clustering of binary trees

states such as the 5000 state system, the additional penalty term greatly improves
tree balance.

However, balancing our agglomerative cluster trees is only an indirect effect of the
additional entropy based penalty term. In fact, the original purpose of introducing
this penalty term was to favor a uniform prior distribution of child nodes at each tree
node. With respect to the estimation of posterior probabilities of child nodes, a highly
non-uniform prior distribution typically leads to poor estimates for the infrequent
child node, especially when a neural network is trained to estimate these posteriors.
We will discuss this aspect in more detail in a later section on aspects of connectionist
estimators for conditional posterior probabilities in our architecture. The effect of the
additional penalty term on the prior distribution of child nodes can be seen in Fig. 5.13
for the same state sets and cluster runs already depicted in Fig. 5.12. This time,
however, we have plotted the average normalized entropy of the a-priori distribution
of child nodes vs. varying values of a. The normalized entropy has a range of [0, 1],
with 0 corresponding to one of the priors being zero and 1 corresponding to a perfectly
uniform prior distribution. As expected, the incorporation of the additional penalty
term not only leads to more balanced trees but is also effective in increasing the
average normalized node entropy and thereby allows to control the prior distribution
and to enforce uniform priors.

The second disadvantage of the basic agglomerative clustering algorithm is the re-
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Figure 5.13: Average entropy of node prior distributions when penalizing non-uniform
priors during agglomerative clustering of binary trees

striction to binary trees. A binary tree requires n — 1 local estimators, one for each of
n—1 internal nodes, given n leaf nodes. In our application, detailed context-modeling
can easily lead to several thousand HMM states requiring the same number of local
estimators for a binary hierarchy. Trees with a larger branching factor would allow
to decrease the number of local estimators (at the cost of creating more complex
classification tasks) and to decrease the average depth of the soft classifier tree. Ex-
tending the basic agglomerative clustering algorithm to allow for larger branching
factors b essentially increases the computational complexity exponentially according
to O(nb*1), which is unfeasible in practice. However, we can construct b-ary trees
from binary trees in a post-processing step by applying the following greedy bottom-
up node merging algorithm:

1. Create a list P of tree nodes that initially consists of all leaf nodes

2. Determine a list @ of tree nodes that constitute root nodes of the largest sub-
trees containing 2 < n < b nodes from P.

3. For each node ¢ in Q: Find the set of nodes P, € P in the corresponding subtree
and make them leaf nodes of a new node ¢ that replaces g. Set P = (P\P,)U¢'.
Throw away all other nodes in the subtree of q.

4. While P contains more than 2 nodes, go to step 2.
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In addition to criteria such as tree balance, uniformity of priors and possible branching
factors, computational complexity and scalability also are important aspects of a
tree construction algorithm. The relatively high computational complexity of the
proposed agglomerative clustering algorithm diminishes its applicability to clustering
more than about 1000 HMM states. However, allowing for the following simplification
of the proposed algorithm, we can significantly reduce its computational complexity:
Consider only the distances between the cluster with smallest count and all other
clusters in step 3 of algorithm 5.8 (this reduces the complexity from O(n?) to O(n?)).
This way, low probability states are grouped together early in the clustering process,
increasing cluster mass rapidly such that later decisions will be based on reasonably
reliable cluster models. Furthermore, this strategy naturally leads towards balanced
trees.

In summary, agglomerative clustering based on information divergence is a viable
strategy for constructing hierarchical soft classifiers for connectionist acoustic mod-
eling. However, we had to modify and extend the basic algorithm in order to make
the algorithm more efficient, more flexible and to enforce balanced trees and uniform
priors.

5.3.3 Divisive Clustering

As an alternative to agglomerative clustering, we have investigated divisive (top-
down) clustering. In divisive clustering, we start with a single cluster containing all
the HMM states and successively split clusters until only clusters containing a single
HMM state remain. Top-down approaches have the advantage, that if most interest
is on the upper levels of the resulting tree structure, they are more likely to produce
informative clusterings. In the binary case, a divisive method has to consider 2"~ —1
partitions of n states into two non-empty sets at the first step. In general, this is
computationally unfeasible, so we have to apply reasonable heuristics such that we
only have to consider a small proportion of these partitions. In our case, we seek
a division into two clusters that maximizes their dissimilarity, measured by means
of the split likelihood gain distance measure introduced earlier. There are various
heuristic approaches to find a division that yields a dissimilarity as close as possible
to the maximum (e.g., variants of k-means clustering). As k-means is not directly
applicable to split likelihood gain, we developed an iterative method for divisive
clustering of HMM states (see Fig. 5.14).

Note, that this instance of a divisive algorithm allows to construct trees with arbitrary
branching factor, not just binary trees as is the case with the standard agglomerative
clustering algorithm. Furthermore, experimental evaluation of the above algorithm
revealed, that the cost of constructing b-ary trees depends only linearly on b, even
though the theoretical number of possible legal partitionings grows exponentially with
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increasing b. Note also the similarity of the given divisive algorithm to the one that is
typically used for growing phonetic decision trees for context modeling. However, a
finite set of questions allows to limit the number of splits to be considered for growing
phonetic decision trees to a few hundred, whereas the algorithm in Fig. 5.14 relies on
a greedy optimization heuristic.

Divisive Clustering Algorithm

1. Initialize algorithm with a single cluster, containing
sufficient Gaussian statistics (accumulators) for each
one of the HMM states s; to be modeled

2. Randomly select b states from the current cluster and use
their statistics as initial models for b new child nodes

3. For all remaining states in the current cluster:
Find the child node for which the split likelihood criterion
is maximized when adding the state’s statistics and put
it into that node

4. Randomly select a child node and a state in that node:
Compute the difference in split likelihood gain when removing
the state from the selected node and putting it into each one
of the other child nodes

5. If split likelihood gain can be increased, move the selected
state from the selected child node into the child node which
gives maximum gain and go back to step 4

6. For each child node:
If there are more than b states left, continue with step 2; otherwise
create leaf nodes for the remaining states

Figure 5.14: Divisive clustering algorithm for constructing b-ary trees based on split
likelihood gain

In addition to being computationally more efficient than the agglomerative counter-
part and allowing to directly construct trees with branching factors b > 2, the above
divisive cluster algorithm offers yet another advantage in that it creates more bal-
anced trees. Fig. 5.15 shows how the average depth of leaf nodes in trees clustered
with the divisive algorithm decreases with increasing branching factor. The curves
are given for different numbers of leaf nodes (HMM states).
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Figure 5.15: Average tree depth vs. branching factor for divisive clustering

Note that even a binary tree clustered for as many as 20000 HMM states is almost
perfectly balanced without the use of any explicit penalty term in the distance mea-
sure as was required for agglomerative clustering. This behavior can be attributed to
the fact that the split likelihood gain distance measure already favors uniform splits
to some extent as it is highly dependent on the distribution of model counts.

In order to be able to visually compare the shape and quality of clustered trees,
we next applied the divisive algorithm to a small set of context-independent HMM
states, similar to the one used in Fig. 5.9. Fig. 5.16 depicts the resulting dendro-
gram. Note, that the dendrogram is plotted on a log-scale since split likelihood gain
correlates with the amount of data being split (the model counts) which decreases
exponentially due to the splits being applied during clustering. Clusters of phones
similar to the ones found in agglomerative clustering can be identified in Fig. 5.16,
e.g., (JH,CH,SH,ZH), (Z,S,F) and (M,N,NG). However in divisive clustering, the spe-
cific value of the distance measure at which a split occurred is more indicative of the
amount of data (sum of counts of the corresponding HMM states) in the cluster than
of the acoustic similarity. In contrast, the agglomerative clustering algorithm allows
for better analysis and comparison of the acoustic similarity of states and clusters
across the tree since the applied distance measure is independent of the amount of
data used to estimate the cluster statistics.

Although the divisive clustering algorithm does not suffer from the tree imbalance
problem of standard agglomerative clustering, we still investigated the effect of explic-
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Figure 5.16: Divisive clustering of context-independent phones
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itly enforcing uniform priors at each tree node during clustering. For that purpose,
we modified the basic divisive algorithm in steps 3 and 4 by verifying that

b min p;>¢  $e€0,1]

is satisfied before adding or relocating any state in any child node (the p;’s are the
child node priors). A value of ¢ = 0 corresponds to the original divisive algorithm
where no restrictions are imposed. Larger values of ¢ slowly enforce a uniform a-
priori distribution until for ¢ = 1, only a perfectly uniform prior distribution will be
allowed. Of course, ¢ = 1 is not a reasonable value in practice. The algorithm will
fail to enforce the constraint as perfectly uniform prior distributions can normally
not be realized. Fig. 5.17 and 5.18 give results for clustering runs with the extended
divisive algorithm. As already observed in Fig. 5.15, the basic divisive algorithm
already creates reasonably balanced trees. Consequently, the additional constraint
on the prior distributions hardly reduces the average depth of leaf nodes as can be
seen in Fig. 5.17. Only the curve for 5000 states shows a significant decrease in
average depth of leaf nodes for increasing prior penalty ¢.
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Figure 5.17: Average depth of leaf nodes when penalizing non-uniform priors during
divisive clustering of binary trees

However, there is a measurable effect when examining the average node prior distri-
bution (see Fig. 5.18). The average normalized entropy of prior distributions can be
increased significantly for ¢ =~ 0.8. Not surprisingly, the average entropy decreases
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Figure 5.18: Average entropy of node prior distributions when penalizing non-uniform
priors during divisive clustering of binary trees

again for larger values of ¢ as it becomes harder, if not impossible to enforce the
uniformity constraint at some nodes. However, comparing Fig. 5.18 with Fig. 5.13,
we can see that enforcing uniform priors is not nearly as important in the divisive as
it is in the agglomerative algorithm.

5.3.4 Discussion

In summary, divisive clustering is computationally more efficient than agglomerative
clustering and offers the attractive advantage of being more flexible in that it al-
lows to directly construct trees with arbitrary branching factors. In addition, the
trees resulting from divisive clustering are more balanced and the algorithm does
not necessarily require any intervention to enforce tree balance as is the case with
agglomerative clustering. Table 5.1 compares the main features of the two clustering
algorithms presented in the previous two sections.

While these considerations lead us to a preference towards the divisive algorithm, it
should be noted that this preference results mainly from a computational complex-
ity point of view. In fact, agglomerative clustering often yields linguistically more
meaningful tree structures. In their extended versions, both algorithms are capable
of generating balanced tree structures that hierarchically represent acoustic similarity
of HMM states - a prerequisite for effective hierarchical acoustic modeling.
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Agglomerative Clustering || Divisive Clustering
emphasis on lower levels emphasis on upper levels
better representation of more influenced by
acoustic similarity prior probabilities
binary trees arbitrary b-ary trees
locally optimal based on heuristics
explicit balancing required yields balanced trees
computationally expensive comparatively fast

Table 5.1: Comparison between agglomerative and divisive clustering algorithms

5.4 Local Probability Estimation

Once a suitable tree structure has been constructed using one of the methods pre-
sented in the previous section, it remains to provide estimators for the local con-
ditional a-posteriori probabilities at each tree node. In this section, we discuss the
various issues that have to be addressed in order to ensure that accurate estimates
of the conditional posteriors can be obtained. In particular, we address the following
issues:

e How to estimate conditional posteriors (5.4.1)

e What kind of connectionist model to apply (5.4.2)

How to obtain suitable target vectors for training (5.4.4)

How to determine the model complexity (5.4.5)

What kind of learning algorithms to apply (5.4.6)

5.4.1 Estimation of Conditional Posteriors

Fig. 5.19 shows the task of estimating local conditional a-posteriori probabilities at
a specific tree node. Given a certain input feature vector x, the local estimator
has to provide a-posteriori probabilities p(S;|S,x) for each one of the child nodes
S;, conditioned on the current node S. Of course, the estimates of the conditional
a-posteriori probabilities have to satisfy

p(S;|S,x) >0 Vi and S op(Si18,x) =1

in order to represent a valid posterior probability distribution.
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Conditional
Posteriors
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p(S21S,x)
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Figure 5.19: Local Probability Estimation

As already discussed in chapter 3, classifier neural networks have proven to be ex-
cellent tools for estimating posterior class probabilities, when trained appropriately.
A wide variety of monolithic network architectures has been applied to the task
of directly estimating HMM state posteriors, an approach that is commonly called
connectionist acoustic modeling with the resulting speech recognition systems called
hybrid NN/HMM systems. In the case of our hierarchical architecture, we have
decomposed the task of jointly estimating HMM state posteriors into a tree struc-
tured, modular ensemble of smaller, localized tasks, namely to estimate conditional
a-posteriori probabilities for child nodes in the tree. In order to apply neural network
models to the estimation of these probabilities, we first have to solve the problem of
estimating conditional posteriors using a classifier neural network.

Each of the modularized estimation tasks is associated with a particular tree node
and is furthermore independent of all others. As the posteriors to be estimated are
conditioned on the particular tree node the task is associated with, the conditional
dependence on this tree node can be realized by restricting the training set for the
local neural network estimator to training patterns of HMM states that are located
within the subtree with the specific tree node as root node. Fig. 5.20 illustrates this
technique for a three layer, binary hierarchy.

Associated with each leaf node (HMM state) is a particular set of training patterns®,
labeled with the index of the corresponding leaf node. Associated with each internal
tree node is a neural network estimator for the conditional posterior probabilities
of all its child nodes. The networks at the nodes in the lowest level of the tree are
trained on the patterns of all their direct child nodes, which are at the same time

5 Assuming, for now, that the underlying HMMs are trained according to the Viterbi algorithm
that implies a one-to-one mapping between HMM states and training patterns.
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leaf nodes. The training set for the networks at the nodes one level above consists
of the combination of the training sets of the corresponding child nodes, which is
approximately twice as big in a binary hierarchy. This process continues further up
the hierarchy, with the nodes’ training sets roughly doubling at each tree layer, until
we reach the root node. The training set at the root node consists of all patterns of
all leaf nodes, i.e. the complete training set from all HMM states. By restricting the
training sets in the above described manner, we have set the basis for training the
local neural networks to estimate the desired conditional posterior probabilities.

¥ & ©® B @
Figure 5.20: Hierarchical distribution of HMM state training data

It should be noted that there are other, non-connectionist approaches to the task of es-
timating a-posteriori probabilities, for instance polynomial regression [Schiirmann ’96].
However, as we will shortly see, connectionist models have the distinct advantage that
particularly classification models are well understood in terms of statistical interpreta-
tion [McCullagh & Nelder '89] and can be realized such that they intrinsically adhere
to the constraints of an a-posteriori probability distribution. Polynomial regression
models, in contrast, require post-processing in form of confidence mapping to achieve
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this property.

In the remainder of this thesis, we refer to a soft classification tree equipped with neu-
ral networks at each internal tree node for the estimation of the relevant conditional
a-posteriori probabilities as a Hierarchy of Neural Networks (HNN) [Fritsch ’97,
Fritsch & Waibel '98]. When applied to the task of estimating posterior probabilities
of HMM states in a hybrid, locally discriminative speech recognition system, we call
our architecture a Hierarchical Connectionist Acoustic Model. We finally note that
the Neural Tree model proposed in [Stromberg et al. ’91] is architecturally similar to
the Hierarchy of Neural Networks. However, Neural Trees represent a specific form of
standard decision trees in which neural networks are used for making hard local de-
cisions. Instead of computing a posterior probability distribution over HMM states,
Neural Trees make hard decisions about the potentially correct HMM state (as do
most of the decision tree models) and are therefore only of limited use for acoustic
modeling in large vocabulary speech recognition.

5.4.2 Feed-Forward Classifier Networks

We chose a simple feed-forward architecture, the Multi-Layer Perceptron (MLP) with
a single, non-linear hidden layer of problem-dependent size, a non-linear softmax out-
put layer and fully interconnected layers without shortcuts as the sole connectionist
model for the estimation of local conditional posterior probabilities in a Hierarchy of
Neural Networks. Fig. 5.21 depicts the structure of such a model, to be used in a
binary HNN.

The units in the hidden layer compute the weighted sum of their inputs which in-
cludes a bias unit with a constant activation of 1 and passes the result through a
tanh shaped squashing function, a symmetric version of the commonly used sigmoid
activation function (see also section 3.3). The nodes in the output layer also com-
pute a weighted sum of their inputs which consist of the activations in the hidden
layer. Again, an additive bias vector is included before the final network outputs
yr are computed through a softmax activation function. The softmax activation
function has been chosen because in the terminology of generalized linear mod-
els, it represents the (inverse) canonical link to a multinomial probability model
for a likelihood based objective function (cross-entropy) for multi-way classification
[McCullagh & Nelder 89, Jordan & Jacobs ’94, Jordan '95]. As we will shortly see,
the network has to be trained as a multi-way classifier® in order to approximate a-

5In the case of a binary HNN, the networks in the tree structure have to be trained for binary
classification which, according to the generalized linear model theory, involves a Bernoulli probability
model and a single sigmoid output node. However, one can show that softmax for two output nodes
is equivalent to a single node sigmoid. This allows to unify our approach and to represent both
binary and multi-way classification using the same model.
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posteriori probabilities and choosing the canonical link instead of an arbitrary squash-
ing function at the network’s output layer together with the appropriate objective
function allows for statistical interpretation and in addition simplifies first-order train-
ing algorithms such as error backpropagation [Rumelhart et al. ’86], as parts of the
derivatives cancel out.

Conditional Posteriors

output layer
(softmax nodes)

bias vector b

hidden layer
(tanh nodes)

bias node

weight matrix V .
bias vector a

Input
Layer

Input Feature Vector bias node

Figure 5.21: Multi layer perceptron (MLP) with a single hidden layer for local esti-
mation of conditional posteriors in a binary HNN

Overall, the network jointly computes the following functions y(x) at its output units
which will be interpreted as estimates of an a-posteriori probability distribution over
the feature space, from which x is taken:

= SPEED) S e tanh (S vzt 0 ) + b
yk( ) ZleXp(ZI(X)) k( ) XJ: ]t& h(; Jv l+ ]) +b

where the v;; denote the weights from unit ¢ in the input layer to unit j in the hidden
layer (subsumed in the weight matrix V'), a; denotes the bias weight for hidden unit
J (subsumed in the bias vector a), the wy; denote the weights from unit j in the
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hidden layer to unit k in the output layer (subsumed in the weight matrix W) and
by denotes the bias weight for output unit & (subsumed in the bias vector b).
Typically, we include the bias vectors a and b into the weight matrices V and W,
respectively, and extend the input and hidden layer activation vectors by an additional
constant of 1, which allows to formulate the network function more compact as

y = softmax(W tanh(Vx))

The number of input units in this architecture is fixed for all networks in the tree and
is given by the dimensionality of the input feature space. The number of output units
is equal to the branching factor at the tree node for which the network computes a-
posteriori probabilities, i.e. the number of child nodes. Each unit in the output layer
represents a particular child node of the corresponding tree node. The size of the
hidden layer can be chosen arbitrarily and constitutes the single degree of freedom in
terms of varying model complexity. We prefer this standard MLP architecture over
more complex models for the following reasons:

e According to the universal approximation theorem that goes back to a theorem
by the Russian mathematician Kolmogorov, any continuous n-variate function
(e.g., the posterior probabilities in our case) can be approximated to an arbi-
trary degree of accuracy by an MLP with a single hidden layer of appropriate,
finite size containing non-linear squashing functions. According to this, a sin-
gle non-linear hidden layer is sufficient for general function approximation and
the corresponding MLP constitutes the simplest architecture that exhibits this

property.

e MLPs have been used extensively and successfully for the estimation of pos-
terior probabilities in the past, especially in the field of connectionist acoustic
modeling.

e The simplicity of the MLP and its layered architecture allows for efficient on-
line training using the error backpropagation algorithm. Efficiency of parameter
estimation is an important aspect of hierarchical connectionist acoustic models
as the tree structures can contain several thousand nodes, requiring to train
thousands of neural networks.

e The process of optimizing the network size in terms of generalization perfor-
mance is simplified by the fact that there is only a single parameter (the number
of hidden units) for controlling the model complexity.
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5.4.3 Local Training Targets

Estimation of a (conditional) posterior probability density with the proposed type
of neural network requires, in addition to an appropriate non-linearity at the out-
put layer, that the network is trained as a pattern classifier, minimizing a suitable
objective function for 1-out-of-N target vectors. In the case of our hierarchical con-
nectionist architecture, such target vectors are obtained according to Fig. 5.22.

X

U U [ | U U U U U

Figure 5.22: Local training targets for Viterbi based HMM training

Under the Viterbi assumption, an acceptable simplification in training HMMs for
speech recognition, there is exactly one HMM state that is considered responsible
for generating each pattern vector. In our tree structure, the Viterbi assumption
implies that only a single leaf node has to be considered for each training pattern.
As a consequence, only the networks at nodes on the path from the root node to the
currently active leaf node receive training information for the corresponding training
pattern. Local training targets for the networks at the nodes along that path consist
of vectors of Os with a single 1 at the position that corresponds to the next child
node on the path. Depending on the training mode, the parameters of the local
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classifiers are either updated after each training pattern (on-line training), after a
certain number of patterns (batch training), or after all training patterns have been
presented to the architecture (off-line training).

5.4.4 Model Selection

When applying connectionist models (or any other model) to the task of supervised
pattern classification based on a finite training set, it is well known that the complex-
ity of the model, i.e. the number of parameters employed, must be chosen carefully
in order to avoid overfitting and achieve generalization to unseen data. Typically,
there is a certain operating point for a given number of training patterns, where clas-
sification performance on an independent validation set is optimal. While classifiers
with a smaller number of parameters are not capable of capturing the full complexity
of the classification task, those with a larger number of parameters overfit to the
training set and exhibit poor generalization to unseen data. This effect is known as
the bias/variance-dilemma or -trade-off [Geman et al. '92, Tibshirani ’96].

Basically, the prediction error of a learner can be decomposed into a sum of a bias
(measuring how accurate the learner predicts the training data) and a variance com-
ponent (measuring how much the learners prediction errors vary over different test
sets), plus an additional term that quantifies the difficulty of the learning problem.
Increasing the number of parameters reduces the bias of the predictor but at the same
time increases the variance, while decreasing the number of parameters decreases the
variance but increases the bias. The problem of selecting the optimum model size is
usually addressed by one of the following approaches:

1. A-priori, knowledge based selection of model size
2. Tterative selection of model size (several trials)

3. Regularization [Girosi et al. ’95]

We first investigate a-priori selection of the model size. Ideally, the complexity of
local node classifiers should be selected so as to maximize generalization ability of
the complete hierarchy. Generalization, on the other hand, is influenced by three
factors: (1) size and distribution of the training set, (2) model complexity and (3)
classification complexity of the specific task at hand. Obviously, we can not influence
the latter of these factors. Furthermore, in the context of our architecture, we assume
that the size of the training set for each tree node is fixed by the tree topology, once
the hierarchy has been designed. Therefore, we have to choose the model complexity
of the estimator at each node based on available training data and difficulty of classi-
fication task. The following Fig. 5.23 shows the amount of training data available on
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average at each level in a typical binary hierarchical connectionist acoustic model for
6000 HMM states”. In accordance with the intuition already gained from Fig. 5.20,
the number of available training patterns increases exponentially from the bottom of
the tree to the top.
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Figure 5.23: Available training data in different depths of HNN tree

The overall number of parameters in the type of neural network that we are using
depends linearly on the number of hidden units. According to [Baum & Haussler ’89]
and with some approximations, a rule of thumb is to choose the number of hidden
units M to satisfy

M < Ne

where N denotes the number of available training patterns and e is the expected error
rate on the test set. In our case, the variation in the number of training patterns in the
different nodes is expected to dominate the above formula. Therefore, a reasonable
initial strategy is to set the number of hidden units proportional to b~¢, where b is
the branching factor of the tree structure and d is the depth of the node. As long as
the tree is approximately balanced in terms of the prior distribution of child nodes,
this strategy leads to hidden layers with size proportional to the number of available
training patterns. However, as an exponential increase in the number of hidden units

"The tree has been designed from the full Switchboard training set, using the agglomerative
clustering algorithm from section 5.3.2, penalizing non-uniform priors.
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(when going from the bottom of the tree to the top) quickly leads to unfeasibly large
networks and the gains from making large networks even larger seem not to be worth
the additional complexity, it is advisable to limit the number of hidden units to some
predefined maximum.

The second approach to model selection is more thorough but at the same time con-
siderably more expensive. In our case it consists of training a set of MLPs with
different numbers of hidden units, e.g., 16, 32, 64, etc., for each tree node and com-
paring their performance on a previously unseen validation set, finally selecting the
network which gives maximum accuracy and discarding all others. The disadvantage
of this approach, of course, is that a large number of networks will be trained in
vain and the overall training time increases significantly. Nevertheless, we have in-
vestigated this approach for building a hierarchical connectionist acoustic model for
the Switchboard domain. We report results of these experiments in the evaluation
section.

The effectiveness of the third approach, regularization, has been demonstrated for
many other connectionist architectures [Girosi et al. ’95] but remains to be investi-
gated in the context of the proposed model in future work.

5.4.5 Optimization Algorithms

Even though the majority of individual networks in our tree structure have to be
trained only on small proportions of the full training corpus, there are several hun-
dred if not thousand such classification tasks to be processed in order to obtain a
completely trained hierarchy (see next section). Therefore, we consider only stochas-
tic learning/optimization algorithms that compute approximations to the gradients
and update the parameters of a network either after each single training pattern or
after a small batch of pattern vectors instead of after presentation of the complete
training set.

Another important issue with our tree structured architecture is memory require-
ments. A feasible optimization algorithm has to be conservative in its memory re-
quirements if we want to train all neural networks within a hierarchy while passing
through the data. For instance, assuming that we have 256 MBytes available and
our hierarchical acoustic model consists of about 4000 networks, an optimization al-
gorithm must not take more than 64 KBytes of memory per network. Assuming
furthermore that the local networks in our hierarchy typically consist of about 2000
weights, each taking 4 Bytes, the available memory for an optimization algorithm
allows only to store the equivalence of about 8 times the vector of weights. Thus,
we are limited to first-order optimization algorithms. A second order algorithm such
as the Newton-Raphson method would require to store the Hessian of the objective
function with respect to the vector of weights, a 2000 x 2000 matrix, for each network,
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summing up to a total of about 256 GBytes in the scenario given above.

Consider a particular network at a particular node in an HNN tree. Let 7 denote
the training set available for estimating the parameters of the network. The training
set consists of pairs of input and target vectors:

T ={(x1,t1),. ., (Xn,tn)}

The cross-entropy error function simplifies as follows under the assumption of 1-out-
of-N target vectors:

E

n b
=D tijlog y;(xi)

i=1j=1

= - Zlog Ye(i) (Xs) for ti; =1 and t;; =0 Vj # c(i)
i=1
where y;(x) represents the function computed by the network at its j-th output
unit. The goal of training is to minimize the above error function with respect to
the weights in the neural network estimator. For the experiments presented in this
thesis, we have investigated the following two optimization algorithms for training
the networks in an HNN:

Stochastic Gradient Descent

In its standard formulation, gradient descent updates the vector of weights w; at time
t according to

) d
Wi =W+ Awy  with Aw, = —ﬂa(wt)

with scalar learning rate . The on-line version of gradient descent, often called
stochastic gradient descent computes a stochastic estimate of the true gradient from
only a few training vectors in order to update the parameters of the network more
often than just after presentation of the whole training set. As mentioned before,
on-line operation of the optimization algorithm is crucial for achieving acceptable
training times in speech recognition applications. It has frequently been observed
that convergence of gradient descent can be sped up significantly by introducing a
so-called momentum term:

dE
Aw; = 7nd—w(wt) + aAw;_;

using a scalar momentum factor . Although simple gradient descent is surprisingly
effective in training neural networks, there is one noticeable disadvantage with respect
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to our architecture: The learning parameters (learning rate n and momentum factor
a) have to be tuned separately for the training of each network in a Hierarchy of
Neural Networks as different networks require different parameter settings for optimal
learning. Due to the large number of networks in such a hierarchy, we have to find
ways of automatically tuning these parameters in order to obtain a reasonable training
algorithm for the full HNN tree.

Scaled Conjugate Gradients

To avoid problems with learning parameters that have to be tuned specifically for
each network in an HNN, we have investigated a second optimization algorithm that
allows to train a neural network without requiring any crucial learning parameter. We
adopted an algorithm called Scaled Conjugate Gradients (SCG) [Mgller 93] which is
a variant of the standard conjugate gradients algorithm that does not require a time
consuming line search. In fact, the SCG algorithm contains no critical user dependent
parameters and enables a fully automatic network training.

In the SCG algorithm, the vector of weights w; at time ¢ is updated according to the
following iterative optimization rule:

Wipl = Wi + Aw; with Aw; = a;p;

with the scalar o, computed as follows

where g; denotes the negative gradient of E at time ¢ with respect to the weights w:
dE
g =—F'(w) = *dfw(wt)

and the conjugate gradients p; computed recursively as follows

Po = 8o
Pt+1 = 8tr1 — Bibe

with the scalar f; according to

_ |g:+1\2 - galgt
Br=""g_—"""".
P: 8t
The SCG algorithm differs from the standard conjugate gradients algorithm in the
expression for the vector s; which is approximated as follows to avoid computing the
Hessian with respect to the weights:
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E'(w; + — E'(w,
St = Eu(wt)Pt ~ (e Epé) (we) + APt

The constant € is uncritical as long as it is kept small enough and the scaling fac-
tor A; is adjusted automatically by the SCG algorithm depending on the positive
definiteness of the Hessian (see [Mgller *93] for further details).

Although the SCG algorithm theoretically requires ‘true’ gradients, i.e. off-line mode
of operation, we have obtained satisfactory results with stochastic gradients com-
puted from about 100 training patterns which again is crucial for our application.
It should be noted though, that the SCG algorithm routinely fails to converge when
using considerably less than the above mentioned 100 pattern vectors for computing
estimates of the gradients.

5.4.6 Approximation Accuracy

While we have discussed how we can accurately estimate local conditional posterior
probabilities in a hierarchical classifier using small classifier neural networks, it is not
immediately clear whether the final estimates computed at the leaf nodes accurately
approximate the real a-posteriori probability distribution. Inevitably, the local node
classifiers can only produce estimates of the true conditional posteriors. Final class
posteriors at the leaf nodes are computed by multiplying these local estimates in a
specified manner. How do local approximation errors influence the global approxi-
mation error in a Hierarchy of Neural Networks?

A common way to empirically verify a classifiers ability to approximate posterior
class probabilities is to compute a histogram for the probability of a classifier output
y;(x) belonging to the correct target class. Formally, we estimate P(i = c|y;(x)),
where y;(x) is the output of the classifier for class i, given an input feature vector
x and c is the index of the target class. The plot in Fig. 5.24 was computed from
the outputs of a trained Hierarchy of Neural Networks classifier for 8000 tied HMM
states (see section 5.7.6 for details) fed with 500000 pattern vectors. A classifier
that produces perfect a-posteriori probabilities would yield a histogram curve that
follows the diagonal from (0,0) to (1,1). The closer a histogram curve follows that
diagonal in practice, the more accurate are the classifier’s approximations to the true
posteriors.

As we can see from Fig. 5.24, our experiment yields an almost perfect diagonal,
demonstrating that a Hierarchy of Neural Networks can indeed be trained to produce
accurate estimates of posterior probabilities for a large number of classes. It appears
that local approximation errors (if present) do not amplify but cancel out during
the top-down computation of state posteriors in a hierarchical connectionist acoustic
model.
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Figure 5.24: Empiric Validation of Posterior Approximation Property of Hierarchical
Classifier for 8000 HMM States

5.5 Global Training Techniques

The training of connectionist acoustic models is typically reported to be orders of
magnitude more expensive then training of comparable conventional acoustic models
based on mixture densities. In the past, dedicated parallel processing hardware has
often been necessary in order to train the sometimes very large connectionist acoustic
models in reasonable times®. This is considered one of the major drawbacks of the
connectionist approach to acoustic modeling.

Although the individual networks in our hierarchical connectionist model are com-
paratively small, training of the overall architecture is also computationally quite
expensive due to the very large number of networks that typically constitute such a
hierarchy. However, in contrast to monolithic connectionist models, training of our
HNN model can still be realized efficiently on standard hardware as each network
in an HNN tree can be trained independently of all others. The set of tree nodes
with associated networks can be distributed among several standard computers and
trained independently.

We have developed two parallelizable training techniques for HNN trees which will be
described in the following. The first one is based on jointly training all the networks
in an HNN tree while passing through the training data. In contrast, the second

SWhere ‘reasonable’ quite often translates to ‘several days’!
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technique is based on extracting separate training sets for each one of the networks
in an HNN tree using a single pass through the training data and then independently
training all the networks in parallel on their respective training set.

5.5.1 Joint Training

Consider the process of jointly training all the networks in a Hierarchy of Neural Net-
works. We sequentially process the input training patterns and determine for each
pattern the networks involved in estimating the posterior probability of the associ-
ated HMM state according to a Viterbi alignment (see Fig. 5.22). These networks
are located on the path from root node to the specific leaf node representing the
target HMM state. The associated training pattern is presented to each one of these
networks together with 1-out-of-N target vectors that are constructed according to
Fig. 5.22. At each time step, different networks will receive the respective training
pattern depending on the target HMM state?. Whenever a network in the HNN tree
has accumulated a certain predefined amount of training patterns (the batch size), we
trigger a parameter update using one of the optimization algorithms presented in the
previous section and start to accumulate training patterns again, possibly keeping
local state information for the optimization algorithm (such as the previous gradient
for computing momentum terms in subsequent updates).

There is no communication or synchronization required between the individual tree
nodes. Thus, the entire training scheme can be parallelized and distributed easily
among several processors. We simply keep the entire HNN tree structure on each
processor but instantiate only disjunct sets of nodes with networks. After training,
we merge the networks from each training process into a single complete HNN tree
structure. As no communication is required, the speed-up obtained from distributing
joint training scales almost linearly with the number of available computers!®.

In principle, the individual nodes in an HNN tree can be distributed in any fashion.
However, we certainly prefer configurations that result in sufficiently balanced com-
putational load during training. Fig. 5.25 presents a strategy that aims at optimal
load balance by grouping all nodes in every tree level and assigning a different pro-
cessor to each such node cluster. At each time step during training, a single network
in each cluster receives the current training vector according to the path from root
node to the leaf node representing the current target HMM state. Assuming that all
networks in the HNN get updated after having received a globally constant amount
of training patterns, the presented strategy in fact achieves optimal load balance.

90f course, the network at the root node will receive all training patterns, irrespective of the
target HMM states.

0Tn practice, disk I/O can become a bottleneck since all parallel processes have to access the
speech waveform data (or the precomputed feature vectors) during training.



86 Chapter 5 Hierarchical Connectionist Acoustic Modeling

In case we apply stochastic gradient descent to the task of jointly training the indi-
vidual networks in an HNN, we have to tune the learning parameters specifically for
each network. This is important because networks in different levels of the HNN tree
receive vastly different amounts of training data. For instance, the network at the
root node typically requires a comparatively small learning rate as it receives several
million training patterns (in our application). In contrast, the networks at the bot-
tom of the tree receive only a few thousand training patterns and therefore require
considerably larger learning rates to guarantee fast convergence. Thus, we assign
individual learning rates to each network in an HNN but keep a global momentum
factor (typically o = 0.9).

UJ U U U UJ

Figure 5.25: Distributing joint training of HNN nodes on several CPUs

The local learning rates 7; are initialized with a single global learning rate n¢. During
the process of training the hierarchy, the local learning rates are adapted individually
with the global learning rate functioning as an upper bound for the local learning
rates to avoid divergence of the optimization process due to excessively large local
learning rates. Furthermore, the global learning rate 7¢ is annealed according to the
following rule to stabilize gradient descent towards the end of training:

W =) s
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Typically, we use an initial global learning rate n(GO) between 0.001 and 0.01 and
a global annealing factor kg of 0.999...0.9999 applied after each 10000 training
patterns.

In order to accommodate the different learning speeds of the node classifiers due to
the different amounts of available training data, we control individual learning rates
using the following measure of correlation between successive gradient vectors gt~

and g®:
() g(t=1)
) _ 99 )
7" = arccos | ——"———
(\g("l gt

4® measures the angle between the gradients g¢~" and ¢®). Small angles indi-

cate high correlation and therefore steady movement in weight space. Therefore, we
increase the learning rate linearly up to the current maximum (as determined by
initial learning rate, annealing factor and number of updates performed) whenever
7 < 90° for several updates. Large angles, on the other hand, indicate random
jumps in weight space. We therefore decrease the learning rate exponentially when-
ever y(!) > 90° for several consecutive updates. In summary, we obtain the following
update rule for local learning rate n; of network ::

' +o 3 (ZiLyy9) <900 — ¢

m(z+1) — min ngﬂ)’ 77l(t) £k if (EkM=O ,Y(t—k)) > 90° + ¢
n; else

gl-

()

with linear increase 0 = 0.001...0.01 and exponential annealing factor x = 0.5...0.9.
The number of batch updates M controls smoothing of y whereas e controls the
influence of the global learning rate. For ¢ — 90°, local learning rates are forced
to follow the global learning rate, whereas low values of ¢ allow local learning rates
to develop individually. Typical values that have been used in our experiments are
M =10 and € = 20°. We finally note that the above learning rate adaptation scheme
is very similar in spirit to the delta-bar-delta learning rule proposed in [Jacobs '88].
However, in contrast to our scheme the delta-bar-delta rule is based on the sign of
the product instead of on the angle between successive gradient vectors!!.

5.5.2 Independent Training and Sampling

In addition to the joint training technique presented above, we have developed an
alternative training scheme that, although requiring considerable amounts of tempo-
rary disk space, allows for faster and more convenient training of the local neural

' Furthermore, the delta-bar-delta rule assumes a separate learning rate for each network weight.
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networks in an HNN. Furthermore, this approach allows us to apply more sophis-
ticated optimization algorithms of higher order since the individual networks are
trained sequentially on each processor.

Independent training proceeds in three stages (see Fig. 5.26). In an initial step, we
process the complete training database, determine the relevant nodes in the hierar-
chy for each training pattern and store for each one of these nodes the pattern vector
together with the corresponding target vector in a node-specific training data set
for subsequent network training. Instead of storing all the pattern vectors relevant
to each node, we sample only a subset of these patterns for the nodes in the upper
levels of the tree. This saves substantial amounts of storage space and is considered
uncritical (in terms of the accuracy of the resulting estimators) since there is a lot
of redundancy in the corresponding training sets. In our experiments on the Switch-
board corpus, consisting of roughly 60 million training patterns, we required about
3-5 GBytes of disk space for storing the partially sub-sampled training sets for all the
tree nodes of a typical HNN.

1.Extract Training Data 2.Train Networks 3.Recombine HNN
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Figure 5.26: Data sampling and independent training of HNNs

In a second step, we sequentially train neural networks for each one of the extracted
node-dependent training sets. All kinds of sophisticated, memory-intensive optimiza-
tion algorithms can be applied in this stage as we do not have to keep the complete
hierarchy in memory as in the case of joint training. Furthermore, independent
training can easily be distributed among several processors without requiring any
code changes, achieving linear speed-up and optimal load balancing without any ef-
fort. We simply partition the set of networks to be trained appropriately and let each
processor train a separate subset of networks.

In the final step of sequential training, we have to plug in the trained networks
into the corresponding nodes of the HNN tree in order to obtain the completely
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trained hierarchical connectionist model. One of the big advantages of independent
training is that we can efficiently experiment with different network sizes or different
optimization algorithms once the training sets have been extracted and stored on
disk. A potential disadvantage is the large amount of required temporary disk space.
Using the independent training technique, we were able to train medium sized HNNs
consisting of around 1000 nodes on the full Switchboard corpus in less than 24 hours
using 8 Pentium-11/400Mhz CPU’s. This is comparable to the training time re-
quired for a conventional non-connectionist model using the same number of CPU’s.
In summary, our hierarchical connectionist acoustic model does not suffer from the
excessively long training times typically reported for monolithic connectionist archi-
tectures.

5.6 Integration into HMM Framework

We now turn our attention to aspects concerning the integration of the presented
hierarchical connectionist model into the standard HMM framework found in nearly
all of today’s large vocabulary continuous speech recognition systems.

5.6.1 Model Integration

We consider the case of integrating our hierarchical connectionist acoustic model into
a decision-tree clustered context-dependent HMM speech recognizer. Fig. 5.27 gives
an overview of the relevant parts of the resulting hybrid NN/HMM speech recogni-
tion system. A sequence of raw sub-phonetic HMM states, e.g., a triphone HMM,
is translated into a sequence of more robust tied HMM states by means of the ap-
propriate phonetic decision trees. This part of the recognizer is identical for both
conventional as well as connectionist acoustic models. In conventional models, we
assign a separate Gaussian mixture model to each leaf node in all phonetic decision
trees for estimating emission probabilities for the corresponding tied HMM state.
In contrast, a hierarchical connectionist acoustic model estimates these HMM emis-
sion probabilities within a single tree structure where there is a one-to-one mapping
between the leaf nodes of the HNN tree and the set of leaf nodes of all decision trees.
We distinguish the following three phases of building a context-dependent large vo-
cabulary connectionist speech recognizer from initial state alignments of the training
datal?:

e Tree Building: Once the phonetic decision trees have been grown for a par-
ticular application domain, we construct a Hierarchy of Neural Networks model

2These alignments might either be obtained by uniform segmentation or by running the Viterbi
algorithm on reference word transcriptions using some other, previously trained acoustic model
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for the set of leaf nodes of all decision trees. If the HNN is to be constructed
using one of the cluster algorithms presented in section 5.3, we first have to
estimate the required Gaussian models for each leaf node in each decision tree
according to the given initial state alignments.

Hierarchy of
Neural Networks

abieliiGe
TN Y IIY Y
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Figure 5.27: Integration of a hierarchical connectionist acoustic model into a decision
tree clustered HMM recognizer

e Training: In Viterbi/label training, there is a one-to-one mapping between
target HMM state and feature vector for each time step. Using the appropriate
phonetic decision tree, we can determine the HNN leaf node that corresponds
to the target HMM state and assign the current feature vector to the nodes on
the path from that leaf node to the HNN root node for subsequent training of
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the corresponding neural network estimators. In principle, we could also apply
forward-backward HMM training but the computational complexity of training
the hierarchical connectionist acoustic model then increases several-fold with
hardly any gains in recognition performance.

e Decoding: Typically, a frame synchronous Viterbi beam search accesses the
acoustic model by requesting emission probabilities for a list of currently active
tied HMM states for each time frame. This list translates into a list of HNN leaf
nodes, for which we compute posterior probabilities by top-down evaluation of
the relevant nodes in the tree.

5.6.2 Incorporating Priors

So far, we have been concerned with the estimation of HMM state posteriors p(s;|x)
through a tree-structured connectionist model. In the HMM framework however, we
are required to provide estimates of the HMM state emission probabilities p(x|s;)
also referred to as state likelihoods. Application of Bayes’ rule yields an expression
for converting state posteriors into state likelihoods:

plalss) = p;%‘;‘)p(x)

The last term p(x) can be omitted in frame-synchronous decoding as already men-
tioned in section 3.2. According to this, a scaled likelihood can be computed by
simply dividing the estimates of the state posteriors by the state priors:

5(xls) = p(s:x)
T

In our hierarchical connectionist acoustic model, we have decomposed the state pos-
teriors into products of local conditional node posteriors. The posterior probability
of a specific HMM state is computed by multiplying all the estimates of local condi-
tional posteriors on the path from root node to the leaf node representing the HMM
state (see Fig. 5.28).

Using the naming conventions from Fig. 5.28, a specific HMM state posterior is
computed according to

D(s;)-1
plsib) = IT p(Nilk + 1)INi(K), x)

given a tree structure and local estimators for the conditional posterior probabilities
(D(s;) denotes the depth of the leaf node that represents the state s;). Now, the
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Figure 5.28: Top-down computation of state posteriors in a hierarchical connectionist
acoustic model

same tree structure can be used to decompose the HMM state prior probabilities into
a product of conditional prior probabilities:

D(s;)-1
p(si) = 1:[ p(Ni(k + 1)|Ni(k))

Thus, in addition to having a separate neural network based estimator for the condi-
tional posterior probabilities at each tree node, we need to estimate conditional prior
probabilities of child nodes at each tree node. This can simply be done by counting
the occurances of child nodes for each tree node and normalizing these counts to
relative frequencies. Interestingly, decomposing the priors as well as the posteriors
allows to rewrite the expression for the scaled likelihood of HMM states such that we
can compute it from local scaled likelihoods at each node in the HNN tree:

(Ni(k + D)|N;(k), %)
p(Ni(k + 1)|N;(k))

D(s;)-1 P
plxls) = ]I
k=0

Thus, as a byproduct of computing scaled likelihoods for an HMM state (represented
by a particular leaf node), we also obtain scaled likelihoods for the tree nodes along
the path down to that HMM state.
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with 0 <j < D(s;)

Both the partial posterior and partial prior computed down to a specific tree node
represent valid probabilities. In fact, they model the posterior and prior probabilities
of the acoustic unit emerging from the union of HMM states reachable from that node.
We gradually refine the estimates of the state posterior and prior probabilities on our
way from the root node down to a leaf node by increasing the acoustic resolution from
broad phonetic classes down to single HMM states. This multi-scale representation
and computation of the probabilities of acoustic units is one of the main properties
and advantages of the hierarchical approach presented in this thesis and will be
exploited for various purposes in later chapters.

Another interesting point to note is that the hierarchical decomposition of prior prob-
abilities according to the tree structure of an HNN and their explicit utilization in
the modular computation of scaled likelihoods offers possibilities for soft structural
modifications absent in any conventional connectionist acoustic model. By altering
the local conditional priors at a specific tree node, we can re-weight the contribution
of the subtrees emerging from its child nodes. We can even softly pinch off certain
tree branches completely without having to explicitly remove these branches. The
explicit availability of state priors in connectionist acoustic models is considered to be
advantageous since it allows to adapt the model to differences in the prior distribu-
tions between training and test set. In monolithic connectionist models however, the
modification of priors does not influence the structure or behavior of the model itself.
In contrast, the tree structure of our hierarchical connectionist acoustic model repre-
sents just a hull of possible structures that are shaped by the actual local conditional
priors. This property of our model opens the door to structural model adaptation
and modification of the specificity of context modeling. We will detail this aspect of
the model and its application to domain-adaptive speech recognition in chapter 8. In
summary, it is most important to note that priors are an essential and powerful part
of our hierarchical model that allow to dynamically control its structure, rather than
just an add-on correction mechanism required by the HMM formalism.

5.6.3 Embedded Training

It is possible to use so-called embedded Viterbi training to iteratively optimize both
the alignment of the training data, i.e. the segmentation into words, phones and HMM
states, and the parameters of a connectionist acoustic model [Franzini et al. ’90].
With respect to this technique, our hierarchical connectionist model does not differ
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from conventional, monolithic connectionist models and the same algorithm can be
applied:

1. Compute initial state labels for entire training set
2. Train HNN model on current state labels

3. Relabel training set using the current HNN model by performing Viterbi align-
ments

4. Unless some stopping criterion is fulfilled, go to step 2.

Of course, we need to provide reasonable initial state labels and we must have a
consistent criterion for stopping the above iterative process. Provided that we start
from accurate initial labels, e.g., Viterbi alignments with some other trained acoustic
model, recognition accuracy typically saturates quickly, requiring only 2-3 iterations
of embedded training.

5.7 Evaluation on Switchboard

The performance of hierarchical connectionist acoustic models in large vocabulary
speech recognition systems has been evaluated in experiments on the Switchboard
telephone speech corpus. We detail the architectures that we have constructed and
trained and compare their performance on this difficult but standard benchmark task.

5.7.1 General Setup

All of the experiments with hierarchical connectionist acoustic models were performed
in more or less the same general speech recognition setup which is described in
the following. We were mostly using the Janus Recognition Toolkit (JanusRTk)
[Finke et al. '97, Zeppenfeld et al. '97], a state-of-the-art statistical speech recogni-
tion toolkit very well suited for research and development due to its object-oriented
modular structure and its tight coupling with the Tcl/Tk scripting language. For
some of the more recent experiments, we were using a new, completely rewritten
large vocabulary speech recognition toolkit [Finke et al. '99] which is particularly
well suited for modeling conversational speech as, for instance, found in the Switch-
board corpus. Irrespective of the recognition toolkit used, the basic recognizer com-
ponents (feature preprocessing, phones set, phonetic dictionary, language model, etc.)
were identical such that recognition results are directly comparable. Following is an
itemized description of the main components:
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e Preprocessing: First, we applied a Hamming-windowed short-time spectral
analysis using a 256-point Fast Fourier Transformation (FFT) to the raw 8 kHz
audio data. The analysis window has a length of 160 samples and is shifted by 80
samples, resulting in a preprocessing rate of 100 frames per second. The power
spectrum is then frequency warped using a piecewise linear transformation to
compensate different vocal tract lengths. After transforming the power spectra
into a 30-dimensional log Mel-scale, 13-dimensional cepstra are computed by
applying a discrete cosine transformation. The resulting Mel-Frequency Cep-
stral Coefficients (MFCC) are normalized by cepstral mean subtraction for each
conversation side. After adding the average log power of the analysis window,
42-dimensional vectors consisting of the 14-dimensional static features and their
first and second order time derivatives were computed. The final 32-dimensional
feature vectors were obtained by applying a truncated LDA transformation. We
also experimented with 39 dimensional feature vectors consisting of 13 MFCCs
and their first and second order time derivatives without applying the LDA and
obtained similar results.

Conventional context-independent connectionist acoustic models are often built
on much higher dimensional pattern vectors consisting of a window of multiple
MFCC vectors extending several frames into the past and the future in order
to capture a higher amount of acoustic context and thereby improve modeling
accuracy. In contrast to such implicit incorporation of acoustic context, our hi-
erarchical model allows for more effective explicit modeling of phonetic context
which is why standard preprocessing appears to be sufficient. Furthermore,
we are interested in compact features as the number of parameters in our dis-
tributed and modular hierarchical architecture depends linearly on the feature
dimensionality.

e Phonetic Modeling: The set of monophones consists of 1 silence model, 1
garbage mumble phone for modeling unknown words, 6 noise models (breathing,
human noise, non-human noise, lip smack, throat cleaning and laughter) and
48 speech phones (containing 4 special phones for modeling interjections). In
phonetic context modeling, phonetic decision trees were grown only for the 48
speech phones and for 2 of the noises (laughter and mumble). Silence and all
other noises were modeled context-independently. For clustering pentaphone
context decision trees, a set of around 100 phonetic questions was asked in a
window of +/- 2 phones within words and +/- 1 phone across words. Phones at
word boundaries and three different stress levels are marked with special tags
which can be queried in addition to the standard phonetic features.

e Pronunciation Modeling: Accurately modeling pronunciation variability in
conversational speech is an important component for automatic speech recogni-
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tion. Pronunciation modeling in our Switchboard system is based on the work
reported in [Finke '96, Finke & Waibel ’97b]. The pronunciation dictionary
contains 15000 unique words with an average of 2 pronunciation variants per
word, yielding a total of 30000 entries. 59% of the words are represented by just
a single pronunciation variant. Some of the remaining words are represented by
up to 50 different pronunciation variants. The pronunciation variants are gen-
erated from the baseform pronunciations by a decision tree based approach and
associated pronunciation weights are learned from the training corpus. In ad-
dition, the phonetic dictionary was enhanced by 1756 pronunciation variants of
the 262 most frequently occurring word-tuples (e.g., GOING-TO) and -triples
(e.g., A-LOT-OF), so-called multi-words. This allows to capture cross-word
pronunciation effects much better (e.g.,, GOING-TO — GONNA). In a pro-
cedure called Flexible Transcription Alignment (FTA) [Finke & Waibel '97a],
the acoustic training data is aligned against an artificially enriched training
transcription represented as a directed acyclic graph. The graph models a va-
riety of conversational effects by allowing for multiple pronunciations, optional
multi-words, optional filler words, optional begin and end words etc. Using
the Viterbi algorithm, the best matching sequence of words is extracted and
aligned for subsequent training of the acoustic model. This way, FTA improves
the quality of transcriptions which was shown to yield significant gains in recog-
nition accuracy.

Language Modeling: For language modeling, we use a three-way non-linear
interpolation of Kneser-Ney [Kneser & Ney ’95] back-off trigram models. The
three models were trained on the Switchboard (3M words), Callhome (200k
words) and Broadcast News (130M words) corpora, respectively. Where noted,
we have used the Switchboard language model by itself in order to simplify and
speed up decoding.

Decoding: A state-of-the-art time-synchronous Viterbi beam search decoder
using a phonetic prefix-tree organized lexicon was used for generating word
lattices and first best hypotheses with context-dependent acoustic models. A
standardized interface between the decoder and potential acoustic models allows
for easily switching between conventional mixture based acoustic models and
the hierarchical connectionist acoustic models presented in this thesis.

For further details on specific aspects of the speech recognition system used for our
experiments on the Switchboard domain, the reader is referred to [Finke et al. ’97,
Zeppenfeld et al. ’97]. All recognition results were obtained on a subset of the official
1996 Switchboard evaluation test set consisting of the first 30 seconds of speech from
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all 40 speakers in that set, which amounts to 4550 words contained in a total of 20
minutes of speech.

5.7.2 Manually Constructed vs. Clustered HNNs

First, we compare manually constructed against automatically clustered Hierarchies
of Neural Networks (HNN). An HNN for 10000 decision tree clustered tied HMM
states was manually constructed using knowledge about phonetics and HMM topolo-
gies involved. Fig. 5.29 depicts the structure of this model and the strategy applied
in decomposing the task into a hierarchical model.
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Figure 5.29: Manually constructed HNN for 10000 HMM states

The root consists of a binary node for discriminating between the silence phone and
all other phones. In the second layer, another binary node is used to discriminate
between noise phones and speech phones. In the third layer, we use a 7-ary node
for discriminating the noise phones and a 48-ary node for discriminating the speech
monophones. In the fourth layer, we use 3-ary nodes for discriminating between the
begin-, middle- and end- states of the atomic 3-state left-right HMM topologies used
for modeling speech and noise phones. In the final fifth layer, we discriminate between
the individual contextual variations of each sub-phonetic unit as provided by the
context-clustering decision trees. The complete tree contains a total of 209 internal
nodes equipped with single hidden layer MLPs for estimating the local conditional
posteriors. Note that the branching factor of the individual nodes varies considerably
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in the tree (Fig. 5.30). While the roughly 50 state nets perform 3-way classification
tasks, some of the context nets perform classification tasks involving more than 200
classes.
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Figure 5.30: Branching factors of individual nodes in manually constructed HNN

To make the distribution of branching factors more uniform, the monophone node
could be decomposed further according to phonetic classes such as plosives, fricatives,
vowels, etc. However, we would also have to decompose the context nodes in the final
layer of the HNN tree. Although this could be accomplished by cloning the structure
of the corresponding context decision trees, such proceeding would lead to a highly
imbalanced HNN tree which is undesirable for the reasons stated in section 5.2.

The manually constructed HNN was compared against a bottom-up clustered hier-
archy for 6000 tied HMM states. We chose a system with 6k HMM states instead
of the above 10k HMM states in order to reduce the number of parameters in the
clustered HNN to a value comparable to the manually constructed HNN. As clustered
HNNSs benefit from more tree nodes, a comparison between 10k systems would not be
fair. In bottom-up clustering, we applied an additional penalty term to enforce tree
balance and avoid non-uniform priors. The resulting binary HNN was compactified
to a 10-ary HNN using the node merging algorithm presented in section 5.3.2. After
experimenting with various tree branching factors, we found that values in the range
4-10 yield tree structures that represent a good compromise between resolution and
compactness. Binary trees are disadvantageous because they are expensive to eval-
uate and ineffective in their use of parameters as they are comparatively deep and
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contain the largest amount of internal tree nodes. HNN trees with branching factors
considerably larger than 10, on the other hand, are difficult to train as the complexity
of the local learning tasks increases with increasing branching factor.

depth # nodes = # hidden
# networks | units/network

0 1 256

1 6 128

2 43 128

3 145 64

4 326 64

5 298 32

6 143 32

total 962 \

Table 5.2: Overview of bottom-up clustered 10-ary HNN for 6k HMM states

The final tree for modeling 6k HMM states has height 7 and consists of 962 internal
tree nodes. A set of 962 single hidden layer MLPs was assigned to the tree nodes
and model complexity was controlled by increasing the number of hidden units from
32 at the bottom of the tree to 256 at the top of the tree. The overall number of
parameters of this model amounts to 2.1 million, which compares to about 2 million
parameters contained in the manually constructed HNN. Table 5.2 gives details for
the clustered tree and Table 5.3 gives recognition results obtained with the manually
constructed and the clustered HNN trees. Even though modeling considerably less
HMM states, the clustered HNN achieves a significantly better recognition rate than
the manually constructed HNN.

| acoustic model H # states ‘ # params | word error rate |
[ manually constructed HNN | 10000 | 2.0 M | 373 % |
| bottom-up clustered HNN || 6000 | 21 M | 35.8 % |

Table 5.3: Performance of manually constructed vs. clustered HNN

We attribute the difference in performance to the differing tree topologies. In contrast
to the manually constructed HNN tree, the bottom-up clustered HNN tree exhibits
small and comparatively uniform average branching factors that allow to robustly
train estimators of conditional posterior probabilities. Some of the local classification
tasks in the manually constructed tree may not be performed accurately due to an
excessively large number of classes involved.
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5.7.3 Scalability

In order to demonstrate the scalability of the hierarchical connectionist modeling
framework with respect to the amount of phonetic context modeling we give results
obtained with three different clustered HNN models: (1) a tree similar to the one
in Fig. 5.9 for 3-state context-independent modeling of the 56 monophones, (2) the
tree for 6k decision tree clustered context-dependent HMM states from the previous
section and (3) a tree for 24k decision tree clustered context-dependent HMM states.
To our knowledge, it has never before been attempted to construct a connectionist
acoustic model for such a high degree of context modeling and it would not make
much sense to apply a monolithic architecture to this task. However, the hierarchical
decomposition of posteriors used in our hierarchical connectionist model allows to
apply this model even to as many as 24000 HMM states and benefit from the increased
acoustic and phonetic resolution.

During the construction phase for the 24k tree, we carefully experimented with differ-
ent values for the non-uniform prior penalty in order to obtain an even more compact
tree structure than in the case of 6k HMM states. The resulting tree structure has
height 5 and contains a total of 4046 internal tree nodes with a maximum branching
factor of 10. Again, we were assigning a set of 4046 single hidden layer MLPs as
estimators for the local conditional posteriors to the tree nodes. Also, the number of
hidden units was increased from the bottom to the top of the tree, this time however
using values ranging from 16 to 128. The resulting hierarchical connectionist acous-
tic model contains a total of 3.1 million parameters distributed over the 4046 neural
networks (see Table 5.4).

depth || # nodes = # hidden
‘ ‘ # networks | units/network
0 1 128
1 10 128
2 7 64
3 524 32
4 3434 16
[ total [ 4046 | |

Table 5.4: Overview of bottom-up clustered 10-ary HNN for 24k HMM states

Table 5.5 gives recognition error rates obtained for all three HNN models. Obviously,
context-dependent modeling improves performance enormously compared to context-
independent modeling. Furthermore, modeling 24000 instead of only 6000 context-
dependent HMM states reduces the word error rate by 2.5% absolute.
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acoustic model # states | # params | word error rate
context-independent HNN 154 0.8 M 56.4 %
context-dependent HNN 6000 21 M 35.8 %
context-dependent HNN 24000 3.1 M 33.3 %

Table 5.5: Scalability of hierarchical connectionist acoustic modeling framework

These results show that the hierarchical connectionist modeling framework scales well
to excessive amounts of context modeling and that this property allows to significantly
improve performance on Switchboard compared to context independent modeling.

5.7.4 Joint Training

The HNN trees for 6k, 10k and 24k HMM states were trained on Viterbi state align-
ments from a mixture of Gaussians system using stochastic on-line gradient descent
and the joint training technique presented in section 5.5.1. A randomly selected set
of 100 utterances was excluded from the training set and used as a validation set for
determining early stopping. The three plots in Fig. 5.31 show the evolution of various
performance measures on the validation set during training of the largest model built,
namely the HNN tree for 24k HMM states. Each vertical line corresponds to a full
pass through the available training data consisting of 2500 conversation sides with a
total of 87000 utterance segments.

From top to bottom, the plots show (1) the normalized log likelihood of the valida-
tion data according to the given state alignments and the model trained so far, (2)
the average of the local normalized log likelihood over all the 4046 classifier neural
networks in the tree and (3) the average of the normalized mis-classification errors,
again averaged over all the 4046 tree nodes. All three curves level off after about 3
passes through the training data, demonstrating that even such a large model can be
trained to convergence in very few training iterations. Furthermore, the fact that the
normalized log likelihood levels off on the validation set instead of starting to decrease
again at some point, indicates that the hierarchical model is very robust to overfitting
effects on the Switchboard domain. In contrast to the training of monolithic connec-
tionist models on smaller tasks, explicit regularization is not required in our case.
Obviously, the large amount of training data'® allows for excellent generalization and
early stopping is not necessary. We attribute this behavior to the following aspects:

e Training data can be considered very noisy, since a large variety of different
speakers and recording conditions have been considered during collection of

13The full Switchboard training corpus consists of roughly 60 million patterns
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Figure 5.31: Monitoring performance on validation set during joint training of HNN
architecture for 24k HMM states
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the corpus. Training with noisy data is similar to regularization and therefore
improves generalization [Bishop '95b].

e Some of the 3434 networks at the nodes in the lowest level of the 24k HNN tree
do not receive enough training samples to generalize well to unseen new data.
Although all of these networks together constitute 85% of the total number of
networks in the tree, they contribute just as one out of 5 (height of the tree)
networks to any particular posterior probability. The networks in the upper
part of the hierarchy have the largest influence on the posteriors computed by
the tree. For those networks, the very large amount of available training data
guarantees that the validation set error approaches the training set error which
is an indicator for good generalization performance.

5.7.5 Comparison to Conventional Models

We compare the performance of our largest hierarchical connectionist model to the
performance of a state-of-the-art system with a conventional, mixtures of Gaussians
based acoustic model. For this purpose, we had available the best performing system
[Finke et al. ’97] on the Switchboard part of the official 1997 DARPA Hub-5E eval-
uation. As the author was participating in the group of researchers that developed
that system, a direct comparison of the two modeling paradigms within the same
general system setup is possible. We report recognition error rates for two systems
that differ only in the model for estimating HMM emission probabilities (Table 5.6).

acoustic model # params | word error | decoding
rate time

Hierarchy of Neural Networks (HNN) 3.1 M 34.4% 90 xRT |

Mixtures of Gaussians (CMU-ISL/Hub-5E 97) 6.6 M 31.5% 300 xRT |

Table 5.6: Comparison between hierarchical connectionist and conventional acoustic
models on 1997 development test set

In contrast to earlier experiments, these results were obtained with a single (Switch-
board) trigram language model. The underlying context clustering decision trees
were constructed for the mixtures of Gaussians model and define a set of 24000 tied
pentaphone HMM states. They were adopted without modifications for hierarchical
connectionist modeling. For decoding, we have used large beams to minimize the
number of pruning errors caused by the heuristic search strategy as the focus of this
experiment was on comparing the acoustic models. Tightening the search beam yields
faster decoding times for both models but also increases the word error rate. Also, it
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should be noted that the HNN model has a slight disadvantage because it was trained
only on state alignments generated with the mixtures of Gaussians model.
Considering that the mixtures of Gaussians model (a) contains more than twice the
number of parameters, (b) went through several iterations of embedded Viterbi train-
ing and (c) was heavily optimized on the above test set during the development of
the evaluation system, the hierarchical connectionist modeling framework yields per-
formance competitive to the best current state-of-the-art systems'* while decoding is
more than 3 times faster for decoding beams that minimize the number of pruning
€rrors.

5.7.6 Local Model Selection

In another experiment, we were comparing a-priori determined model size against
automatic local model selection. For that purpose, we constructed a 4-ary HNN tree
for 8000 tied HMM states using the top-down divisive clustering algorithm. The
resulting model tree has height 9 and was equipped with single hidden layer MLPs
as shown in column 3 of Table 5.7 for the baseline model. In automatic local model
selection, we used the same tree structure but trained a set of MLPs with 4, 8, 16,
32, 64 and sometimes even 128 hidden units for each tree node and selected the one
which gave minimum error on an independent validation set.

‘ depth H # nodes = ‘ # hidden units per network |
# networks ‘ baseline ‘ model selection |

0 1 64 max 128

1 4 64 max 128

2 12 64 max 128

3 23 64 max 128

4 76 32 max 128

5 256 32 max 64

6 984 32 max 64

7 2188 16 max 64

8 330 16 max 64
[ total [ 3866 | [ |

Table 5.7: Overview of top-down clustered 4-ary HNNs for 8k HMM states

In order to be able to easily train and test several different MLPs for each tree node,
we used the independent instead of the joint training technique for HNN training. For

The official evaluation results on the 1997 Switchboard evaluation test set ranged from
35.1% (achieved by the CMU-ISL/Hub-5E 97 system used in the above comparison) to 42.9%
[Martin et al. *97]. Note that the results in Table 5.6 were obtained on a different test set.
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this purpose, we extracted and stored a predetermined number of feature vectors (up
to 150000) for each node in the HNN tree in one pass through the available training
data. Once the training data was extracted, neural networks for each tree node were
trained sequentially on the corresponding training set. Fig. 5.32 shows the mean and
standard deviation of the optimal number of hidden units in each tree level as found
by local model selection.

140 ; . . ; . . T . .
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100 T e
80 | . 4
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# hidden units
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20 B

0 1 1 1 1 1 1 1 1 1

3 4 5
node depth
Figure 5.32: Automatic local model selection (see text)

As expected, the average number of hidden units decreases with increasing tree depth.
However, there are some nodes even in the upper levels of the tree where networks
with only 4 hidden units yield best performance. On the other hand, some nodes
at the bottom of the tree are equipped with networks with 64 hidden units by local
model selection.

acoustic model # states | # params | word error rate ‘
baseline HNN 8000 2.7 M 38.6 % |
local model selection 8000 3.6 M 378 % |

Table 5.8: Effect of local model selection on recognition performance

Finally, Table 5.8 gives recognition results for the baseline HNN and the HNN result-
ing from local model selection. Again, these results were obtained on our standard
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test set with a single (Switchboard) trigram language model. Local model selection
increases the number of parameters from 2.7 to 3.6 million and decreases the word
error rate by 0.8% absolute.

5.7.7 Embedded Viterbi Training

In all the experiments reported so far, the hierarchical connectionist models were
trained on state alignments that were generated with a conventional mixture of Gaus-
sians model. In this experiment, we investigated whether we can improve performance
by re-training on state alignments computed with the hierarchical connectionist model
itself. This procedure is commonly called iterative embedded Viterbi training. We
used the HNN model for 8k HMM states from the previous section as our baseline
model. Table 5.9 gives word error rates for the baseline and one iteration of embedded
Viterbi training.

acoustic model trained on state labels from | word error rate
baseline HNN mixture of Gaussians system 38.6 %
embedded training baseline HNN 37.6 %

Table 5.9: Performance gain through embedded Viterbi training

Re-aligning the training data with the connectionist model followed by re-training
improved performance by 1.0% absolute. This results shows that state labels op-
timized with one particular acoustic model are not necessarily optimal for training
some other acoustic model.



Chapter 6

Fast Model Evaluation

This chapter presents a technique for efficiently evaluating the hierarchical connec-
tionist acoustic model presented in the previous chapter. Based on exploiting the
hierarchical structure by means of dynamic tree pruning, it allows to accelerate the
evaluation of posterior state probabilities in hierarchies of neural networks consider-
ably. While dynamic tree pruning represents a technique for trading-off recognition
speed against accuracy, we present experimental results that indicate that the eval-
uation of a hierarchical connectionist acoustic model can be sped up by a factor of
almost 10 with hardly any increase in word error rate. Furthermore, dynamic tree
pruning can be realized by adding a single line of code as the potential for fast evalua-
tion is inherent to the architecture. In contrast, conventional acoustic models require
additional structures for determining relevant subsets of HMM states to be evaluated
and do not provide comparably high speed-ups.

6.1 Real-Time Speech Recognition

Today, automatic speech recognition technology still is comparably demanding in
terms of memory and processing speed requirements. For instance, state-of-the-
art research systems for large vocabulary conversational speech recognition on the
Switchboard domain were reported to require 200-300 MBytes of RAM and to run
in 100-300 times real-time (xRT)! on standard hardware [Martin et al. *97]. More
recently, there have been substantial efforts in speeding up research systems which
led to a new Spoke condition in the Broadcast News evaluation for systems that run
at about 10xRT and faster [DAR ’98]. For commercial applications, a speech recog-
nition system often has to cope with limited resources and has to fulfill real-time
constraints in order to be useful.

1100xRT means that it takes 100 seconds to decode an utterance of 1 sec duration.

107
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Regardless of the specific type of acoustic model being employed, the approaches to
speeding up a statistical speech recognition system always follow the same general
pattern. Fig. 6.1 illustrates this process in terms of the distribution of computations
into two broad classes: (1) evaluating the acoustic model and (2) decoding (where
decoding contains evaluating the language model).

research system pruned search real-time
(>100xRT) (5xRT) system

80%

50% 50%
decoder acoustic model
speed-up speed-up
10%
acoustic acoustic acoustic
o (fel decoder o ei decoder e (fei decoder

Figure 6.1: From research to real-time systems: qualitative analysis of proportion of
time spent in acoustic model evaluation vs. actual decoding

As the qualitative analysis of Fig. 6.1 shows, the evaluation of the acoustic model
constitutes only a very small proportion of the overall computations in a typical
research system. Most of the time is spent in decoding word hypotheses as pruning
beams are kept large to avoid search errors. The first step in speeding up a Viterbi
beam search based decoder therefore always is to tighten the pruning beams which
vastly reduces overall computations. Small increases in word error rate typically
have to be tolerated in this step as search errors are introduced. The middle plot
in Fig. 6.1 shows the implications of tight decoding beams on the distribution of
computations. While the time spent in actual decoding has been reduced significantly,
the proportion of time spent in evaluating acoustic model scores all of a sudden
dominates the overall running time and can consume even more than 80% of the
total amount of computation in a speech recognition system. Applying some kind
of technique for fast, approximative acoustic model evaluation becomes crucial for
achieving automatic speech recognition in real-time with an approximately uniform
distribution of computations among acoustic model evaluation and actual decoding.
Consequently, there has been a large body of work on techniques for speeding up the
evaluation of conventional mixture densities based acoustic models (e.g., [Watanabe
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et. al. '94, Fritsch et. al. ’95, Fritsch & Rogina ’96, Knill et. al. 96, Ravishankar
’96]). Some of these approaches are based on applying a tree structure to quickly and
dynamically determine a significantly reduced set of HMM states with potentially
high emission probabilities. Only the likelihoods of states in this reduced set are fully
evaluated, the likelihoods of all others are approximated. Speed-ups in the evaluation
of the acoustic model on the order of a factor of 3-5 with virtually no or only a modest
increase in word error rate have been reported using such techniques. However, the
computation required to construct the additional structures for determining reduced
sets of HMM states and the additional memory required to store these structures
sometimes limits the usefulness of these techniques in practice.

Consider now the hierarchical connectionist acoustic model presented in the previous
chapter. This model already is organized in a tree structure which can be exploited
for fast, approximative evaluation without a need for additional structure as we will
shortly see. In addition, improved local discrimination of HMM states in the hier-
archical connectionist model allows to speed-up model evaluation more aggressively
than in the case of conventional models.

6.2 Dynamic Tree Pruning

For any given time frame, the scores of HMM states with high posterior probabil-
ity of emitting the current feature vector have to be evaluated with high accuracy
as they are most likely to influence the result hypothesis of a Viterbi beam search.
However, the majority of HMM states exhibit comparably small posterior probabil-
ities of emitting the current feature vector. It is sufficient to efficiently compute
approximations of the scores of these states which allows to save a large propor-
tion of overall computations. The tree-structured top-down computation of posterior
probabilities in a hierarchical connectionist acoustic model allows to implement this
idea in form of dynamic tree pruning [Fritsch & Finke '98a]. A similar pruning tech-
nique has been proposed by [Waterhouse & Robinson '95, Waterhouse '97] for fast
approximative evaluation of hierarchical mixtures of experts [Jordan & Jacobs '94].
The posterior probability of an HMM state in a Hierarchy of Neural Networks is
computed as the product of the conditional node posteriors along the path from root
node to the specific leaf node representing the HMM state (see Fig. 5.28):

D(s;)—1

p(silx) = kl:[g p(Ni(k + 1)|Ni(k),x)

where D(s;) is the depth of the leaf node, x is the current feature vector and the
N;i(k), Vk={1,...,D(s;)} denote the tree nodes along the path from root to s;. As
each of the conditional node posteriors in the above product fulfills the constraint
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0 < p(Ni(k +1)|N;(k),x) < 1

the top-down computation of p(s;|x) yields monotonically decreasing partial posterior
probabilities

pi(silx) = ]li[p(Ni(kJrl)\Ni(k),X) Vjiefl,...,D(s:)}

pi(six) < pja(silx)

with p(s;|x) = pps,(silx). The monotonicity of partial posteriors implies that the
posterior probability of HMM states in a subtree can never become larger than the
partial posterior computed down to the root node of that subtree. This allows to effi-
ciently identify subtrees that contain HMM states with posterior probability less than
a given threshold ©. As the score of these dynamically determined low-probability
states does not have to be computed with full accuracy, we can stop evaluating con-
ditional posteriors on our way down the tree according to the following rule

if pj(silx) <O, stop top-down evaluation

Fig. 6.2 illustrates dynamic tree pruning for the case of a binary tree. For the specific
feature vector in this example, only the shaded nodes have to be evaluated. All others
lie on paths with partial probability smaller than ©. The dashed boxes represent the
subtrees that are not evaluated. The posterior probabilities of all HMM states in such
a dashed box are tied and approximated by some function of the partial posterior at
the associated root node.

Several strategies for assigning posteriors to HMM states in pruned subtrees have
been investigated in this thesis. Although the speed-up in evaluating the acoustic
model stand-alone is identical for all these strategies (depending only on the pruning
threshold ©), the effect on sentence decoding in a complete recognition system are
very different. Consider the case that the partial posterior p;(s;x) < © for some
j < D(s;):

e Partial Posterior Pruning (PPP):

In partial posterior pruning, we assign the partial posterior computed down to
the node where pruning occurs to the HMM states in the corresponding subtree:

p(silx) = p;(silx)
This partial posterior is an upper bound on the posterior probabilities of the
HMM states in the subtree and therefore overestimates the true posteriors. For

that reason, PPP might even slow down decoding and be counterproductive for
very small ©.
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e Uniform Posterior Pruning (UPP):
In uniform posterior pruning, we scale the partial posterior by a factor y = 1/N,
where N is the number of HMM states in the pruned subtree:

p(silx) = v pj(silx)

This rule distributes the partial posterior uniformly among all HMM states
in the pruned subtree and thereby ensures that the hierarchical connectionist
acoustic model computes a valid overall posterior probability distribution.

'

0 O

Figure 6.2: Dynamic tree pruning

e State Deactivation Pruning (SDP):
In state deactivation pruning, we effectively deactivate the HMM states in the
pruned subtree by setting
p(silx) =0
This strategy indirectly speeds up decoding significantly as partial hypothe-
ses that end with one of the pruned states get pruned immediately as their
score falls out of the decoder’s pruning beam. We have termed this technique
state deactivation pruning as it is similar in spirit to phone deactivation prun-
ing [Renals '96]. However, in contrast to phone deactivation pruning which
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was proposed in the context of a monolithic connectionist model, SDP in a
hierarchical acoustic model additionally yields significant savings in score com-
putation as only parts of the hierarchy have to be evaluated. It should be noted
though, that phone deactivation pruning may also yield savings in score com-
putation if the monolithic, context-independent acoustic model is augmented
with context-dependent modules as in [Kershaw et al. ’95].

In the remainder, we present experiments and results of dynamic tree pruning in
hierarchical connectionist acoustic models. We evaluate the above three strategies in
terms of their effect on recognition speed and word error rate.

6.3 Experimental Evaluation

All of the experiments with dynamic tree pruning have been carried out on the Switch-
board corpus, using a recognition setup identical to the one used for the experiments
in chapter 5. We first analyze the effect of dynamic tree pruning on the hierarchical
connectionist architecture in isolation and then take a look at the effects on decod-
ing speed and word error rate in a complete large vocabulary conversational speech
recognition system.

6.3.1 Pruning Hierarchies of Neural Networks

For the experiments reported here, we have selected two of the HNN acoustic models
constructed in the previous chapter, one for 8000 tied HMM states, the other one for
24000 tied HMM states. We first take a look at the effect of dynamic tree pruning
on the average percentage of tree nodes that have to be evaluated in the HNN.
Fig. 6.3 shows the impact of the pruning threshold © on the amount of computations
required in the acoustic model. The outcome of this experiment is independent
of the pruning strategy as the acoustic model was evaluated stand-alone (without
subsequent decoding).

The baseline percentage (no pruning) for these curves is 65% (not 100%) as this is
a typical average number of HMM states for which the decoder requests emission
probabilities for each frame. The percentage of nodes that have to be evaluated is
roughly halved for pruning thresholds of © ~ 1073% for the model with 8000 leaf
nodes and © =~ 107% for the model with 24000 leaf nodes. A speed-up of about 10
in computation of acoustic scores can be achieved by setting © ~ 1072 for the 8k
model and © ~ 10~* for the 24k model.

Next, we take a look at the percentage of HMM states for which the posterior prob-
abilities are computed with full accuracy, i.e. for which the partial posteriors are
computed completely down to the leaf nodes (see Fig. 6.4).
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Figure 6.3: Effect of dynamic tree pruning on percentage of evaluated tree nodes
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Figure 6.4: Effect of dynamic tree pruning on percentage of HMM states fully eval-
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This time we consider only those HMM states for which an estimate of the emission
probability is requested by the decoder, thus the baseline for no pruning is 100%.
Dynamic tree pruning starts to reduce the number of fully evaluated HMM states for
© > 1073, The curves in Fig. 6.4 are very similar to those in Fig. 6.3, however one
can make an interesting observation. The effect of pruning with a given threshold ©
is stronger in case of the 24k model compared to the 8k model. As a consequence,
speed-ups are larger for the 24k model than for the 8k model, given equal pruning
thresholds. Of course, speed-up by itself means nothing if not set in relation to the
effect of pruning on the accuracy with which posterior probabilities are estimated
in an HNN. The following Fig. 6.5 depicts how the average (negative logarithmic)
posterior probability of the correct model (along Viterbi alignments of the validation
set) is influenced by the dynamic tree pruning threshold ©.

0.09 ‘/
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[=]
5 0.07 /
S ‘
[}
2 )
@ 0.05
g /
ﬂg)’ 8k states
©

0.03

— 24k states
0.01
le-10 le-8 le-6 le-4 le-2 1

pruning threshold
Figure 6.5: Effect of dynamic tree pruning on posteriors

Here, we have applied partial posterior pruning (PPP) to assign probabilities to
pruned HMM states. PPP was chosen because pruning errors show up clearly in
form of overestimation of posteriors with this pruning strategy. This allows to easily
find useful operating points for the threshold ©. Up to a pruning threshold of about
© = 107%, the posterior probabilities along the alignments of the correct hypotheses
are hardly influenced by dynamic tree pruning. Above this however, pruning starts
to influence the probability of the correct HMM states. As already discussed before,
PPP overestimates the true posterior probabilities which is experimentally confirmed
by the plots in Fig. 6.5. Still, for © = 10~* we can achieve speed-ups of a factor of
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10 and more in evaluating the state posteriors with almost no effect on the score of
the correct hypotheses.

6.3.2 Pruning during Decoding

We now investigate the effect of dynamic tree pruning on a complete large vocabulary
conversational speech recognition system. To this end, we use the HNN acoustic
model for 24000 HMM tied states in the recognition system described in section 5.7.
The baseline system with no pruning in the hierarchical connectionist acoustic model
and wide decoding beams runs in 145 times real-time (xRT) on a 300 MHz Sun
UltraSparc and achieves a word error rate of 34.4% on a subset of 12 speakers taken
from the 1996 Switchboard evaluation test set.

As a first step, we tighten the decoding beams until performance starts to decrease
due to search errors. Tighter decoding beams allow us to speed-up the recognition
system to roughly 90xRT with a small increase in word error rate to 34.8%. For
even tighter beams the word error rate increases considerably. In contrast to other
less difficult domains, the conversational style of speaking and the poor quality of
telephone channels in the Switchboard domain leads to diffuse acoustic models and
a comparably high amount of confusion during decoding. That in turn limits the
recognition speed obtainable by tightening the decoding beams such that real-time
operation without significant losses in recognition accuracy appear impossible on
today’s standard hardware. However, we next show that applying dynamic tree
pruning to the hierarchical connectionist acoustic model yields considerable savings
in both the evaluation of the acoustic model and in decoding.

Consider first the impact of dynamic tree pruning on the decoding time. Fig. 6.6
shows a plot of the real-time factors obtained with dynamic tree pruning for all three
pruning strategies introduced earlier. As mentioned earlier, the baseline speed for no
pruning is a decoding time of roughly 90 times real-time. As expected, the required
decoding time decreases with increasing pruning threshold ©2. Furthermore, SDP
yields the largest gains in recognition speed, followed by UPP. PPP on the other
hand yields comparably small gains in recognition speed especially for high pruning
thresholds. Note that the different gains in recognition speed obtained by these three
pruning strategies reflect the differences in their ability to indirectly prune the search
space and thereby speed-up decoding. The gains in evaluating the acoustic model
itself are identical for all three methods.

Of course, the gains in recognition speed obtained by dynamic tree pruning must
be contrasted with the impact on the recognition error rate in order to determine
appropriate values for the pruning threshold © and to assess and compare the quality

2 Again, note that higher pruning thresholds correspond to smaller values on the x-axis in these
plots, due to the negative logarithmic transform applied
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of each one of the above pruning strategies. Fig. 6.7 shows how different pruning
thresholds affect the recognizer’s word error rate for all three pruning strategies.
This plot reveals that although SDP yields high gains in recognition speed, it also
causes significant increases in word error rate. In contrast, PPP and UPP exhibit
a more gentle influence on recognition accuracy. In fact, for the range of pruning
thresholds shown in Fig. 6.7 the recognition accuracy is not affected adversely at all.
It is interesting to analyze the effects of dynamic tree pruning by means of a combined
plot of recognition speed and accuracy. Fig. 6.8 depicts the trade-off between recog-
nition speed and accuracy induced by dynamic tree pruning in a single graph. Here,
we have investigated a bigger range of pruning thresholds from 10™° < © < 10~% in
order to make the trade-off more obvious.
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Figure 6.8: Word error rate vs. decoding time for varying pruning threshold in
dynamic tree pruning

6.4 Discussion

Based on the above experiments and results, the usefulness and applicability of the
proposed pruning strategies appear as follows:

e Partial Posterior Pruning (PPP):
PPP yields comparably small gains in recognition speed and furthermore slows
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down decoding for high pruning thresholds such that the usefulness of this
technique is rather restricted.

e Uniform Posterior Pruning (UPP):
UPP yields gains in overall recognition speed of up to a factor of 6 over the
wide beam baseline system without negative effects on the recognition accu-
racy. Because of its moderate impact on recognition accuracy for high pruning
thresholds, UPP should be regarded as the standard pruning strategy for dy-
namic tree pruning.

e State Deactivation Pruning (SDP):
SDP yields considerably higher gains in recognition speed than those obtainable
by UPP (up to a factor of 11). However, such high gains decrease the recognition
accuracy noticeably. Therefore SDP should only be applied with comparably
small pruning thresholds © or in cases where the speed-ups obtained by UPP
are not sufficient for the particular application.

The following table 6.1 summarizes our results for speeding up a large vocabulary
conversational speech recognition research system in terms of word error rate and
associated decoding times. The baseline word error rate of 34.4% can be maintained
while speeding up the system by a factor of 6 using uniform posterior pruning (UPP).

condition word error rate (%) | decoding time (xRT)
baseline 34.4 145
tight decoding beams 34.8 91
moderate dynamic tree pruning 34.6 24
aggressive dynamic tree pruning 45.1 13

Table 6.1: Summary of results for fast model evaluation on Switchboard

Allowing a 30% relative increase in the word error rate, we can even speed-up the
system by a factor of 13 using the more aggressive state deactivation pruning (SDP).
Note that these results have been obtained with a large and complex evaluation sys-
tem using the largest and most accurate hierarchical connectionist acoustic model
(24000 tied states) that we have build so far. The techniques presented in this chap-
ter allow us to reduce the turn-around times during the development of evaluation
systems significantly from 145 times real-time to 24 times real-time without a loss in
recognition accuracy.



Chapter 7

Speaker Adaptation

This chapter presents an algorithm for effectively adapting the parameters of a
speaker-independent hierarchical connectionist acoustic model to the characteristics
of a specific speaker. In contrast to existing acoustic models such as those based
on mixture densities, the proposed hierarchical connectionist model does not require
additional model parameter tying mechanisms such as regression class trees for effec-
tive adaptation of the model to specific speakers in the case of limited amounts of
adaptation data. Rather, we benefit from the multi-level tree-structured representa-
tion of HMM states in our hierarchical connectionist model which inherently realizes
parameter tying according to acoustic similarity.

7.1 Introduction

In some very rare cases, it is adequate to train the acoustic model of a speech recog-
nition system on data from a single speaker, yielding a so-called speaker-dependent
system. In most cases however, we are more interested in speaker-independent models
that do not require data from a potential user during training. The parameters of a
speaker-independent acoustic model are trained on data from several hundred differ-
ent speakers in order to achieve robustness to unseen speakers. Unfortunately, this
strategy not only increases robustness but also degrades overall system performance
because of an increase in model variance. Fig. 7.1 illustrates this for two hypothetic
acoustic models A and B. The incorporation of distributions from several speakers
increases the variance of A and B compared to a single speaker and thereby increases
their overlap which makes it harder to distinguish the two classes.

Generally, the error rate of a speaker-independent system is about twice as high as
that of a speaker-dependent system. To close the gap in performance in cases where
speaker-independent modeling is unavoidable as for example in commercial dictation
systems, various methods for speaker adaptation have been proposed as a means for
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A

Figure 7.1: Speaker-dependent (left) vs. speaker-independent (right) models

improving the performance of such models on a specific speaker. In any case, speaker
adaptation requires some acoustic data from the target speaker, so called adaptation
data. We distinguish the following two principle strategies for speaker adaptation:

e Feature based adaptation: The preprocessed acoustic data of the target

speaker is normalized by applying some kind of transformation such that the
performance of the acoustic model improves on that data. A popular example
of this strategy is vocal tract length normalization (VTLN) which attempts
to normalize speech spectra for differing lengths of the vocal tract. In other
approaches, speech cepstra are transformed by a general linear or affine map
which is obtained by maximum likelihood estimation on the adaptation data.
Feature based adaptation typically yields only moderate gains in accuracy as
a single (linear) transformation of the input features does not allow to capture
the characteristics of different speakers.

e Model based adaptation: Here, we follow the opposite strategy. Instead

of transforming the input features such that the probability that our model
has generated it is maximized, we transform the model to fit the data. At
first glance, we might claim that there is no real difference between these two
approaches. However, in model based adaptation, one typically applies differ-
ent transformations to different HMM states or even to different component
densities in a mixture model and thereby takes into consideration the complex
variation in the acoustic realization of different polyphones across speakers. The
most popular example for this strategy is Maximum Likelihood Linear Regres-
sion (MLLR) [Leggetter & Woodland '94] which applies linear (actually affine)
transformations to the means (and potentially also to the variances) of Gaus-
sians in a mixture densities based acoustic model. In fact, MLLR has evolved
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to now being the standard technique for speaker adaptation in mixture based
acoustic modeling.

Interestingly, it has been found that the gains obtained from feature and model
based adaptation are nearly additive [Pye & Woodland '97], suggesting that both
approaches cover different aspects of the variation among speakers. Depending on
whether reference transcriptions are available with the acoustic adaptation data or
not, we furthermore distinguish between supervised and unsupervised speaker adap-
tation:

e Supervised adaptation: For each adaptation utterance both the acoustic
data (e.g., cepstra) and the reference word transcription are available (as is
the case in training). Using the Viterbi algorithm, a state alignment can be
generated that assigns HMM states to acoustic pattern vectors for each time
frame. For instance, supervised adaptation is typically incorporated into a
dictation system in form of an enrollment phase where the user has to read
adaptation sentences that are provided by the system before he/she is allowed
to use the system.

e Unsupervised adaptation: Only the acoustic data is available for each adap-
tation utterance. In order to obtain the state alignments required for most adap-
tation algorithms, the adaptation utterance is first decoded with the speaker-
independent acoustic model, yielding a sentence hypothesis. This sentence hy-
pothesis (although probably containing erroneous words) is then aligned with
the adaptation data by applying the Viterbi algorithm!. If available, estimates
of word confidence can be used to mask portions of the sentence that are con-
sidered unreliable by the recognizer. Unsupervised adaptation does not require
user cooperation in form of an enrollment phase but can be applied while the
recognizer is in use. However, unsupervised adaptation yields lower gains in
recognition accuracy than supervised adaptation.

The approach to speaker adaptation that we present in the remainder of this chapter
falls into the category of model based adaptation algorithms. We present and evaluate
it in the context of unsupervised speaker adaptation on the Switchboard domain but
it can just as well be applied to supervised adaptation as we will demonstrate in
chapter 8.

1Often, a Viterbi decoder already provides a state alignment of the sentence hypothesis.
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7.2 Limited Amounts of Adaptation Data

An important aspect of speaker adaptation that has to be addressed by any adapta-
tion algorithm is data sparsity resulting from limited amounts of available adaptation
data. A typical state-of-the-art acoustic model for large vocabulary speech recogni-
tion models several thousand distinct HMM states. For instance, consider a mixture
density based acoustic model for 8000 HMM states trained on the Switchboard cor-
pus. Fig. 7.2 depicts the coverage of this set of HMM states for various amounts of
adaptation data (assuming a preprocessing rate of 100 frames per second).
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Figure 7.2: Data sparsity problem in speaker adaptation

About 5 minutes of adaptation data yield at least a single pattern vector (sample)
for half of the HMM states. In order to cover 90% of all HMM states with at least
a single pattern vector, over 35 minutes of adaptation data is required. However,
observing a single pattern vector clearly does not allow to estimate an MLLR adap-
tation transformation. If we demand that more than 100 pattern vectors (samples)
be observed per state, even a full hour of adaptation data only yields a coverage of
6.5% of all HMM states.

In practice, the amount of available adaptation data per speaker often is much lower.
The Switchboard corpus, for instance, consists of telephone conversations between
two speakers with an average duration of about 6 minutes and a maximum duration
of about 10 minutes. Fig. 7.3 depicts a histogram plot showing the distribution of the
amount of speech available per conversation side (speaker) in the corpus. There is a
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sharp peak at around 3 minutes of data per speaker. For that amount of data, almost
two thirds (65%) of the 8k HMM states in the above mentioned acoustic model will
not be observed at all. Clearly, some kind of transformation tying must be introduced
such that the large proportion of unobserved models can also benefit from these small
amounts of adaptation data. Furthermore, tying is crucial for accumulating enough
data for robust estimation of the parameters of an adaptation transformation.
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Figure 7.3: Histogram plot of amount of available data for 20000 Switchboard con-
versation sides

The standard approach to transformation tying uses a precomputed regression class
tree for assigning a small, data dependent number of MLLR transformations (cor-
responding to the leaf nodes of the regression class tree) to the set of component
densities of all mixtures. A regression class tree is computed by top-down clustering
the set of component densities according to acoustic similarity down to a certain
number of leaf nodes that depends on the amount of available adaptation data (see
Fig. 7.4). The more adaptation data we have available, the deeper the regression
class tree. At each leaf node of the regression class tree, a single MLLR adaptation
transformation is estimated from the joint data of all component densities tied to
that leaf node and then applied to transform the parameters of the tied component
densities.

This way, it is possible to adapt even the component densities in HMM states that
have not been observed in the adaptation data. However, such regression class tree
based MLLR requires to compute and store the additional tying structure as the
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Figure 7.4: Transformation tying in regression tree based MLLR of conventional
acoustic models

conventional acoustic model itself exhibits no structure at all. Interestingly, the
tying structure that is missing in conventional acoustic models is readily available
in a hierarchical connectionist acoustic model. Consequently, this kind of model
inherently supports effective adaptation with limited amounts of adaptation data and
the corresponding adaptation algorithm turns out to be much simpler and requires
no additional structure.

7.3 Adaptation Algorithm for HNN Models

In our implementation of a speaker adaptation algorithm for the hierarchical connec-
tionist acoustic model presented in this thesis, we exploit the multi-level state tying
inherent to this tree structured model. When presenting training or adaptation data
to the hierarchy, the available amount of data at each node increases from the bottom
to the top of the tree. The root node of an HNN tree receives all data presented to the
acoustic model and its estimates of posterior and prior probabilities are contributing
to all the HMM states. Thus, the root node realizes the highest level of parameter
sharing in this model and therefore is our primary candidate for model adaptation.
Depending on the amount of available adaptation data, we might also adapt the tree
nodes in the level below the root node and so on.

Following the above lines of thought, we can formulate a general method for speaker
adaptation in the hierarchical acoustic model (Fig. 7.5). It consists of the three
steps counting, node selection and node adaptation. First, the available amount
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of adaptation data is computed for each tree node. The single free parameter in
the algorithm is the adaptation threshold Cy,i, which defines how many samples are
considered to form ’enough data’ for adapting the parameters of a node. Based on
this threshold, we select tree nodes for adaptation in the second step.

HNN Speaker Adaptation Algorithm
1. Counting:

(a) Compute state labels for the adaptation data using Viterbi alignments
of either the correct transcripts (supervised adaptation) or the word
hypotheses generated by the recognizer (unsupervised adaptation).

(b) For each HMM state: count the number of adaptation samples assigned
to that state according to the state alignments.

(c) Assign these state counts to the corresponding leaf nodes in the HNN
tree. Compute HNN node counts C(NN;) for all nodes N; in a bottom-up
fashion:

C(V;) = > C(N;)

N;ECHILDREN(N;)

2. Node Selection:

(a) Determine a reasonable minimum number of adaptation samples re-
quired to adapt a HNN tree node, the adaptation threshold Copyin-

(b) Select all HNN nodes N; for adaptation that satisfy C(N;) > Chin.
3. Adaptation of Selected Nodes:

(a) Adapt local estimator of conditional a-posteriori probabilities

(b) Adapt estimates of the prior probabilities of child nodes

Figure 7.5: Outline of speaker adaptation algorithm for hierarchical connectionist
acoustic model

Finally, we adapt the parameters of the selected nodes based on the available adap-
tation data. It is very important to note that both the local estimator of posterior
probabilities (a neural network in our case) and the estimates of child prior proba-
bilities need to be adapted in each selected node as we use the model to compute
scaled likelihoods. Nodes that receive less than C,;, samples of adaptation data are
not adapted by the algorithm. Although this might potentially lead to a mismatch
between the adapted and the unadapted nodes in the tree structure, the benefit of
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(1) improved discrimination in the selected and adapted tree nodes, and of (2) the
significant amount of sharing of these nodes among the HMM states is expected to
compensate such an effect.

7.3.1 Node Selection

For a given constant adaptation threshold C.,,, different numbers of tree nodes
will be selected for different speakers, depending on the amount of available adap-
tation data. This is exactly the behavior we desire in speaker adaptation: With
increasing amount of adaptation data the number of tree nodes subject to adapta-
tion increases until eventually all tree nodes are adapted to the characteristics of
a particular speaker. In practical applications of speaker adaptation however, the
amount of available adaptation data typically is very limited and allows to adapt
only a small proportion of all tree nodes. Figs. 7.6 and 7.7 depict the situation for
small and medium amounts of adaptation data.

U 0 0 U 0 U 0 U

Figure 7.6: Adaptive selection of HNN nodes: small amount of adaptation data

For our investigation of speaker adaptation of hierarchical connectionist acoustic mod-
els on the Switchboard speech corpus, we chose the previously mentioned HNN model
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U U U U U U U U

Figure 7.7: Adaptive selection of HNN nodes: medium amount of adaptation data

for 8000 tied HMM states and a set of 20 representative speakers from the 1996 eval-
uation test set. The amount of available adaptation data for each speaker varies
between 1 minute and 7 seconds to 3 minutes and 16 seconds. Fig. 7.8 depicts the
minimum, mean and maximum number of tree nodes selected for adaptation on that
test set, depending on the value of the adaptation threshold C\,.

Assuming for instance, that C),;, = 2000 yields enough data for robustly adapting
HNN tree nodes, our algorithm selects between 2 and 7 tree nodes for adaptation.

7.3.2 Node Adaptation

Before we can answer the question of how to set the value of C),;,, we first discuss
methods for adapting the parameters of a particular HNN tree node as the choice of
adaptation method will determine the amount of adaptation data required. As men-
tioned above, adaptation of HNN tree nodes requires to adapt the neural network
that estimates local conditional posterior probabilities and furthermore to adapt the
estimates of the prior probabilities of child nodes. Severe mismatches between pos-
teriors and priors will lead to degraded performance if we only adapt one of the two
distributions in a connectionist acoustic model.

Let’s first consider the task of adapting the neural network for estimating local con-
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Figure 7.8: Min/mean/max number of HNN nodes subject to adaptation for different
adaptation thresholds over 20 Switchboard test set speakers

ditional posterior probabilities at a specific tree node. The estimates produced by
the network reflect the posterior probability distribution on the training set. Given
a small set of adaptation samples from a specific speaker, we want to take account of
the fact that the posterior distribution for that speaker might differ from the learned
speaker-independent distribution. Depending on the number of available adaptation
samples, we might consider the following techniques for adapting a network’s param-
eters. In all cases, we have to withhold a small proportion of the adaptation data to
be used as a validation set during network training. Otherwise, we will overfit the
relatively small amounts of adaptation data, resulting in poor generalization.

e Train new network: If we have available a comparably large amount of
adaptation data, we can train a new neural network with randomly initialized
weights to estimate the local posterior probabilities on the adaptation data
and simply replace the existing network in the corresponding HNN tree node.
However, we must be aware of the fact that we will discard all information

gained from speaker-independent training for the particular node that is subject
to adaptation.

Retrain old network: In this variant of adaptation, we continue to train the
existing speaker-independently trained neural network on the adaptation data
available at the corresponding HNN tree node. As we monitor the networks



7.4 Adaptation Ezperiments 129

performance on a withheld validation set during training, we can guarantee
that the performance of the adapted network will be at least as good as the
performance of the speaker-independent network with which we have started.
Thus, this technique implicitly regularizes the adaptation step and prevents
overfitting of small adaptation data sets.

e Train additional linear front-end layer: In cases where a HNN tree node
obtains very little adaptation data or where the corresponding neural network
is too large for retraining, we might want to keep the parameters of the network
fixed and add an additional layer in front of the network’s input layer which
linearly transforms the input pattern vectors. This way, only a relatively small
amount of parameters have to be estimated from the adaptation data which in-
creases the robustness and generalization performance of the resulting adapted
network. Adding a linear front-end layer for adaptation purposes is best suited
to the relatively large networks used in traditional, monolithic connectionist
acoustic models where it has been applied successfully (e.g., [Neto et al. ’95]).
For smaller networks, it will not be as effective as network retraining since a
linear front-end layer can not fully capture the typically non-linear mapping
from speaker-independent to speaker-dependent feature space.

Compared to traditional monolithic connectionist acoustic models, the networks used
in our hierarchies of neural networks are much smaller which normally allows to apply
retraining of the relevant speaker-independent networks in order to achieve effective
speaker adaptation. Adaptation of local prior probabilities can be accomplished by
simply re-estimating them on the adaptation data. As the available adaptation data
at a particular HNN node must be sufficient for retraining the local neural network,
it will be more than sufficient for re-estimating the priors.

7.4 Adaptation Experiments

In the following, we present results of applying the proposed adaptation algorithm to
the task of unsupervised speaker adaptation of a hierarchical connectionist acoustic
model on 20 representative speakers from the 1996 Switchboard evaluation test set.
For that purpose, a speaker-independent Hierarchy of Neural Networks acoustic model
for 8000 context-dependent tied HMM states has been trained on the full Switchboard
training corpus, consisting of data from more than 500 different speakers. As we
investigate unsupervised speaker adaptation, we first have to run the recognizer with
the speaker-independent acoustic model and generate sentence hypotheses and state
alignments for the acoustic adaptation data. Fig. 7.9 shows the amount of adaptation
data available for each of the 20 adaptation speakers.
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Figure 7.9: Available adaptation data for 20 Switchboard test set speakers

The baseline performance of the speaker-independent system on the set of these
20 adaptation speakers is 36.8% word error. Thus, on average every third word is
decoded falsely, resulting in erroneous word and state alignments. We did not attempt
to mask the false segments by applying some kind of word confidence measure as has
become popular now, but used all of the obtained state alignments for adaptation.

7.4.1 Node Selection

For each speaker, we compute sample counts for all HNN tree nodes from the state
alignments and select nodes subject to adaptation based on a pre-determined adap-
tation threshold C,in. We have experimented with

Chin € {500, 1000, 2000, 4000, 6000, 8000}

The following table 7.1 gives an overview of the number of adaptation samples
(frames) available for each speaker and the number of tree nodes selected for adap-
tation based on the different values of C,,;,. Note how the differing global amounts
of available adaptation data lead to significantly different numbers of selected tree
nodes for each speaker. Furthermore, the value of C),;, must be carefully selected
such that it does not exceed the available amount of adaptation data as in the case
of Cpin = 8000 for speaker 'sw4338-A’. Otherwise, none of the tree nodes will be
selected and the model can not be adapted.
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7.4.2 Neural Network Adaptation

Having selected tree nodes for adaptation according to the adaptation threshold, we
proceed with the adaptation of the local neural networks. We opted for the method
of retraining the existing speaker-independent networks on the available adaptation
data. For each selected tree node, 10% of the corresponding adaptation data were
withheld as the validation set for monitoring performance. The remaining 90% were
used for gradient-descent based training. Training was stopped as soon as the per-
formance on the validation set ceased to improve.

Speaker # adapt. # HNN nodes subject to adaptation
ID frames for various values of C,,;,

500 | 1000 | 2000 | 4000 | 6000 | 8000
sw3157-A 10933 18 8 5 2 2 2
sw3157-B 14164 24 9 7 2 2 2
sw3264-A 15719 25 10 7 2 2 2
sw3380-A 14182 24 9 7 2 2 2
sw3494-B 13044 23 8 6 2 2 2
sw3538-A 15881 24 11 7 2 2 2
sw3538-B 9348 17 7 4 2 2 2
sw3822-A 8433 9 7 3 2 2 1
sw3824-B 19658 25 16 7 4 2 2
sw3835-A 14950 25 9 7 2 2 2
sw3927-A 14715 25 9 7 2 2 2
sw3940-B 8782 10 8 2 2 2 1
sw4073-B 19546 26 12 7 4 2 2
sw4093-A 13990 23 9 7 2 2 2
sw4093-B 8247 12 7 3 2 2 1
swaldl-A 15525 25 10 7 2 2 2
swal78-A 15341 25 9 7 2 2 2
sw4322-A 13510 23 8 6 2 2 2
sw4338-A 6726 10 6 2 2 1 0
sw4373-B 9524 15 8 4 2 2 1
Average: 13111 | 20.4 9.0 5.6 2.2 2.0 1.7

Table 7.1: Adaptation data and number of adapted nodes for 20 Switchboard test
set speakers

As an example, we take a closer look at the network at the root node of the HNN
tree. Fig. 7.10 shows for each test speaker the classification error rate of this network
on the speaker’s validation data before and after adaptation. In all but 3 cases,
the classification error rate of the network at the root node could be improved by
retraining it on the adaptation data. As can be seen from table 7.1, the adaptation
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algorithm typically selects more than just the root node for adaptation. Thus, even
if the performance of the root node could not be improved by retraining on the
adaptation data, some other node further down the tree might be.
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Figure 7.10: Classification error of root node classifiers before and after adaptation

Let’s now take a look at how the local improvements in conditional posterior probabil-
ity estimation at the adapted nodes influence the estimation of HMM state posteriors
in the complete hierarchy. Fig. 7.11 shows the average negative log posterior prob-
ability of the HMM state assigned to an adaptation sample for different numbers of
adapted tree nodes in the hierarchical connectionist acoustic model. The estimates
are averaged over all data of all 20 adaptation speakers. As expected, the average
negative log posterior decreases (the posterior probability increases) with increasing
number of adapted nodes. The plot in Fig. 7.11 suggests to adapt even more than
an average of 20 nodes in the HNN tree as the average posterior probability of the
adaptation data is expected to rise even further. However, we must be careful and
not jump to conclusions imprudently. The state alignments that we are scoring were
obtained from erroneous sentence hypotheses generated by the decoder as we operate
in unsupervised adaptation mode. Thus, an increase in the number of adapted tree
nodes will only increase the probability of the falsely decoded hypotheses - not the
probability of the unknown correct transcription that we really seek to increase. In
practice, we have to measure the word error rate for different values of C)p;, in order
to find an optimal number of adapted tree nodes.
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Figure 7.11: Average negative log posterior probability of adaptation data for varying
number of adapted tree nodes

7.4.3 Prior Adaptation

As stated before, the estimates of child prior probabilities at selected tree nodes
are adapted by re-estimating these probabilities on the adaptation data. This is
accomplished by simply normalizing the counts for each child node to get relative
frequencies. To demonstrate that there really are differences in the distributions of
prior probabilities between the speaker-independent training set and adaptation sets
of different speakers, we again take a closer look at the root node of the HNN tree.
The root node in our 8k HNN has four child nodes. Fig. 7.12 plots the symmetric KL
distance (information divergence) between the speaker-independent prior distribution
and the speaker-adapted prior distributions for each speaker.

Although comparably small, there are measurable differences between these prior dis-
tributions. As the KL-distances themselves are not easily interpretable, we also plot
the actual prior distributions for the speaker-independent baseline and the speakers
with the smallest (sw4141-A / #16) and largest (sw4338-A / #19) KL distances in
Fig. 7.13.

Primarily the prior probability of the first child node seems to vary strongly between
different speakers. In the case of speaker sw4338-A, this prior has more than dou-
bled compared to the speaker-independent estimates. This observation confirms the
importance of prior re-estimation as an essential part of speaker adaptation in our
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hierarchical connectionist acoustic model.

7.4.4 Recognition Results

Finally, we present recognition results for using the speaker-adapted hierarchical mod-
els for re-decoding the corresponding speaker’s data. Table 7.2 gives individual results
for all 20 test speakers and the different adaptation thresholds investigated in this
study.

Speaker adapt. | unadapted | word error rates for various values of C,,;, ‘
‘ ID data baseline | 500 [ 1000 [ 2000 [ 4000 [ 6000 | 8000 |
sw3157-A 1’497 39.3% | 38.6% | 38.6% | 38.6% | 38.6% | 38.6% | 38.6%
sw3157-B 2’217 43.3% | 41.3% | 42.3% | 43.3% | 44.2% | 44.2% | 44.2%
sw3264-A 2’37 31.8% | 29.4% | 29.4% | 31.2% | 32.7% | 32.7% | 32.7%
sw3380-A 2’217 25.0% | 23.0% | 23.0% | 22.2% | 24.4% | 24.4% | 24.4%
sw3494-B 2’107 41.8% | 34.9% | 33.6% | 34.9% | 35.6% | 35.6% | 35.6%
sw3538-A 2°38” 276% | 21.9% | 25.7% | 25.7% | 21.9% | 21.9% | 21.9%
sw3538-B 1'33” 37.9% | 36.5% | 34.8% | 40.0% | 39.1% | 38.3% | 38.3%
sw3822-A 1'24” 47.2% | 43.8% | 44.9% | 46.1% | 46.1% | 46.1% | 46.1%
sw3824-B 3'16” 37.9% | 36.8% | 36.8% | 38.5% | 36.8% | 36.8% | 36.8%
sw3835-A 2°29” 37.5% | 35.9% | 36.7% | 38.3% | 35.9% | 35.9% | 35.9%
sw3927-A 227" 39.8% | 31.2% | 32.1% | 32.1% | 33.0% | 33.0% | 33.0%
sw3940-B 1277 53.8% | 48.7% | 47.4% | 50.0% | 50.0% | 50.0% | 51.3%
sw4073-B 3’15” 39.3% | 36.1% | 36.1% | 35.2% | 33.6% | 34.4% | 34.4%
sw4093-A 2’19” 34.8% | 31.5% | 29.3% | 29.3% | 29.3% | 29.3% | 29.3%
sw4093-B 1’227 25.2% | 24.4% | 22.8% | 23.6% | 22.8% | 22.8% | 29.1%
swal41-A 2’35” 22.8% | 22.8% | 21.3% | 221% | 22.1% | 22.1% | 221%
sw4l78-A 2’33 35.5% | 30.1% | 28.0% | 28.0% | 30.1% | 30.1% | 30.1%
sw4322-A 2’157 37.7% | 30.8% | 31.5% | 30.8% | 33.1% | 33.1% | 33.1%
sw4338-A 1°07” 55.5% | 51.8% | 52.6% | 51.1% | 51.1% | 55.5% | 55.5%
sw4373-B 1’35” 31.8% | 26.4% | 27.1% | 26.4% | 26.4% | 26.4% | 34.1%
Total: - 36.8% | 33.4% | 33.3% | 33.9% | 33.9% | 34.1% | 35.0%

Table 7.2: Results of unsupervised speaker adaptation for 20 Switchboard test set
speakers

The last row gives word error rates for the unadapted baseline and all adapted systems
averaged over all 20 test speakers. As expected, the overall performance improves
with increasing number of adapted tree nodes. However, there usually is a trade-off
between increasing the number of adapted parameters and generalization performance
in unsupervised adaptation algorithms. With increasing number of parameters, per-
formance typically first improves (as we have observed here too) but then starts to
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degrade again as we gradually allow the model to perfectly reproduce the erroneous
transcriptions of the adaptation data. It appears that the algorithm for adapting
hierarchical connectionist acoustic models does not suffer from this overfitting effect.
Performance of adapted models seems to level off with increasing number of adapted
parameters. The difference between the results for C),;, = 1000 and C,,;, = 500 are
not statistically significant.

Concerning this kind of behavior, the robustness of our adaptation algorithm can
be attributed to the fact that we are not seeking to optimize the likelihood of all
the available adaptation data, as for example is the case in MLLR, but the pos-
terior probability over a smaller, withheld validation set as is common practice for
avoiding overfitting in the training of neural networks. As we start training on the
adaptation data with the speaker-independent network parameters and do not allow
for a decrease in the performance on the validation set during adaptation, the ef-
fective number of adapted parameters is smaller than what we would assume from
the selected number of tree nodes. In fact, with decreasing Clyin, we only allow the
adaptation algorithm to adapt more networks in the HNN tree - we do not force it
to really adapt all the selected networks. As a result the adaptation algorithm is less
dependent on finding an optimum value for C;,.

Finally, Fig. 7.3 summarizes the recognition results we have obtained with unsuper-
vised adaptation on Switchboard data. Here, we have included both the adaptation
threshold used for selecting tree nodes for adaptation and the resulting average num-
ber of selected tree nodes.

Conin average
# selected nodes | word error rate
unadapted - 36.8%
8000 1.7 35.0%
6000 2.0 34.1%
4000 2.3 33.9%
2000 5.6 33.9%
1000 9.0 33.3%
500 20.4 33.4%

Table 7.3: Summary of results for unsupervised speaker adaptation

Compared to the unadapted baseline, unsupervised speaker adaptation on an average
of about 2 minutes of adaptation data yields an average relative reduction in word
error rate of 9.5%. While this is comparable to what has been reported for regres-
sion tree based MLLR adaptation of conventional acoustic models, the hierarchical
structure of the connectionist model presented in this thesis allows for more natu-
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ral integration of speaker adaptation. No additional structures such as regression
class trees are required for dealing with small amounts of adaptation data as the tree
structured model itself realizes the required parameter sharing.
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Chapter 8

Structural Domain Adaptation

One of the most interesting applications of hierarchical connectionist acoustic models
is in domain-adaptive speech recognition. We present Structural Domain Adaptation
(SDA) [Fritsch et al. *98a, Fritsch et al. '98b], an approach for efficiently and effec-
tively downsizing and adapting the structure of a hierarchical connectionist acoustic
model for the purpose of porting a large vocabulary conversational speech recogni-
tion system to a previously unseen application domain. We motivate why structural
as well as acoustic adaptation is beneficial in addition to the adaptation of the vo-
cabulary and the language model of a speech recognition system. We demonstrate
how SDA allows to build domain-adaptive speech recognition systems that match the
performance of domain-specific systems with only moderate requirements regarding
the amount of acoustic adaptation data.

8.1 Motivation

It is well known that statistical speech recognition systems are highly dependent on
the characteristics of the data they are trained on. To obtain reasonable performance,
one has to focus on a specific application domain in order to restrict the variability
of both the acoustic and the linguistic training data. Typical aspects of relevance are

e quality of acoustic data (sampling rate, microphone, AD converters)

e recording conditions (indoor/outdoor/telephone, background noise)

e type of speech (read/spontaneous/conversational, isolated/continuous)
e vocabulary and phonetic transcription of words

e a-priori probability of words and word sequences

139
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In addition to the large variability in acoustic realization of elementary speech units,
the typically finite size of the recognition vocabulary and the language model require
to restrict the application domain of a speech recognition system. The resulting lack
of universality stands in sharp contrast to what we all experience in human speech
recognition. Following is a list of the most popular application domains for which
speech recognition systems are currently built:

e Personal speech-to-text (dictation) systems

o Interactive Voice Response (IVR) systems for automated call centers

Transcription of broadcast news for building searchable multimedia databases
for information retrieval

Command & control systems

Car navigation systems

As long as statistical speech recognition systems are being used in matched conditions,
meaning that the application domain matches the training domain, performance can
be expected to be similar to what has been observed on a validation set during
training. However, if there are considerable acoustic or linguistic mismatches caused
either by deploying a lab-trained system to the field or by applying a system to
an unseen, new application domain, performance often drops unacceptably (e.g.,
[Thomson 97]).

In the following, we experimentally examine this problem by means of the Switch-
board domain (spontaneous conversational telephone speech) as the baseline training
domain and the following two rather different target domains:

e Wall Street Journal (WSJ): This domain is representing a dictation task
that consists of read financial newspaper articles. For the purposes of this thesis,
we are using a less known subset of the WSJ corpus consisting of telephone data
(from DARPA’s 1993 WSJ Spoke 6 evaluation) in order to match the recording
conditions between Switchboard and WSJ. Still, there are large differences in
type of speech, vocabulary and language between these two corpora. The focus
in choosing this particular subset of the WSJ domain was on investigating the
problem of porting a conversational speech recognition system to a dictation
domain.

e English Spontaneous Scheduling Task (ESST): This domain is consisting
of high-quality (16 KHz) recordings of spontaneous conversations for scheduling
meetings. Although the differences in type of speech are less serious between
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this corpus and the Switchboard corpus, there are significant differences in size
of vocabulary, language model and quality of acoustic data. The focus in choos-
ing this domain was on investigating the problem of porting a conversational
speech recognition system to a domain of much smaller and more specific vo-
cabulary.

Table 8.1 gives recognition results obtained in in-domain vs. out-of-domain conditions
on the above two corpora. These results impressively demonstrates the domain-
dependence of statistical speech recognition systems. The first row gives the word
error rate for a speech recognition system that was trained and optimized specifically
for the WSJ domain and tested on data from the same domain. The second row gives
the word error rate for another system, this time trained and optimized specifically for
the ESST domain and tested again on in-domain data. In contrast, the last row gives
word error rates for a system trained and optimized on the Switchboard domain
and tested without modifications’ on data from the WSJ and the ESST domains,
respectively.

recognizer word error rate | word error rate
training domain || on WSJ domain | on ESST domain
WSJ 12.5% - \
ESST - 19.5% |
| Switchboard I 45.4% \ 55.3% |

Table 8.1: In-domain vs. out-of-domain performance of speech recognition systems

In our scenario the out-of-domain word error rate is roughly 3 times higher than what
is achievable with dedicated recognizers in matched conditions. In addition, the out-
of-domain performance is way too poor in both cases to allow for any reasonable
application.

From the results above it is obvious that universal, domain-independent speech recog-
nition is not available with today’s technology. However, it is possible to at least
adapt or exchange the relevant components of a recognizer using some data from
a new domain and thereby reduce the mismatch between training and application
domain. Whereas new domain-specific vocabularies and phonetic dictionaries can
be obtained quickly and inexpensively [Geutner et al. ’97], and new domain-specific
language models require only that large amounts of text data are available, the adap-
tation of the acoustic model is considerably more expensive and time- and labour-
consuming as it also requires the availability of transcribed acoustic data.

!Except that 16 KHz data was downsampled to 8 KHz as required by the Switchboard prepro-
cessing frontend.
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In addition, an analysis of state-of-the-art decision tree clustered context-dependent
acoustic modeling reveals that there are two different aspects that cause a dependence
on the training domain:

e Estimators of HMM emission probabilities depend on the acoustic characteris-
tics of the training domain.

o Specificity of context modeling as represented by number and identity of pho-
netic context classes depends on vocabulary, phonetic dictionary and language
model of the training domain.

It is important to note that the phonetic transcription of words and their a-priori
probabilities in the training corpus affect the outcome of word internal phonetic
context clustering. Additionally, cross-word phonetic context modeling is affected by
the probabilities of word pairs (and word triples in the case of single-phone words) in
the training corpus. Previous approaches to domain adaptation (e.g., [Siu et al. '99])
have only addressed the first of the above items by means of some sort of supervised
acoustic adaptation. The second item is mostly ignored, as size and specificity of
conventional acoustic models can not easily be modified due to the flat, independent
representation and evaluation of emission probabilities. This is quite disadvantageous
in terms of memory and computational requirements in cases where a considerably
smaller amount of context modeling is sufficient in the target domain.

Consider for instance the extreme case of porting a large vocabulary conversational
speech recognition (LVCSR) system (e.g., trained on the Switchboard corpus) to a
ten word vocabulary digit recognition task. The very specific acoustic model of the
LVCSR system will typically consist of several thousand context-dependent HMM
states and require over 20 MBytes of RAM and considerable amounts of computa-
tion during decoding. Simple acoustic adaptation might be effective in reducing the
word error rate to some extent but the model will still be too large and detailed to
be used for simple ten word digit recognition. Instead, a completely new acoustic
model is typically clustered and trained from scratch, which requires large amounts
of transcribed acoustic data.

In the remainder of this chapter, we will present a technique that, in addition to
acoustic adaptation, allows us to adapt the size and structure of hierarchical connec-
tionist acoustic models to smaller requirements regarding the specificity of phonetic
context modeling. In contrast to acoustic adaptation of conventional acoustic mod-
els, our approach addresses both of the discussed aspects of domain dependence and
allows to adapt the size and re-use parts of a trained hierarchical model for any new
domain, even in cases such as the ten digit task described above. We will show that
domain-specific performance can be achieved with domain-specific model size and
only small requirements regarding the amount of transcribed acoustic adaptation
data.
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8.2 Quantifying Domain Mismatches

First however, we analyze and quantify the differences between application domains
that cause the large discrepancy in performance between in-domain and out-of-
domain application of speech recognition systems in more detail, using Switchboard
(SWB) as the baseline training domain and WSJ and ESST as the target application
domains.

8.2.1 Vocabulary and Language Model

We compare the vocabulary and language model used in the SWB recognizer with
vocabularies and language models built specifically for the WSJ and ESST domains,
respectively. The vocabulary used in the SWB domain consists of 15000 unique
words. In contrast, the vocabulary used in the WSJ domain consists of only 5000
unique words and the vocabulary used in the ESST domain consists of only 2850
unique words. Even though both of the target domains exhibit a much smaller
vocabulary, the vocabulary of the SWB domain does not cover all of the words in the
target domains (see Table 8.2).

domain || out-of-vocabulary rate
WSJ 7.4%
ESST 0.9%

Table 8.2: Out-of-vocabulary rates of SWB vocabulary on WSJ and ESST test sets

On the test sets used for our experiments the Out-Of-Vocabulary (OOV) rate for the
SWB vocabulary is 7.4% for WSJ and 0.9% for ESST. Particularly in the case of
WSJ, the OOV words are expressions and proper names specific to the domain of
financial news. A general rule of thumb is that each OOV word causes between 1 and
2 word errors. Thus, the mismatch in vocabulary explains a significant part of the
increase in word error rate of the SWB recognizer at least in the case of WSJ data.

A much larger contribution to the mismatch however is caused by differences in the
domain-specific language models. Standard n-gram language models learn to predict
characteristic word sequences that are specific to the training domain. They typically
perform poorly on texts from a different, previously unseen domain. We measure the
difficulty of a recognition task relative to a given statistical language model and a
test set consisting of a sequence of words wy,...,w, by the perplexity

o 1

PP =P(w,...,w,) =
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where 13() denotes the probability of a word sequence as estimated by the language
model. The perplexity measures the average number of words between which the
recognizer must decide when transcribing a word of spoken text, relative to the given
language model. The maximum in perplexity is given by the size of the vocabulary.
All other things being equal, we are interested in a language model that minimizes
the perplexity. Table 8.3 gives perplexities computed for different domain-specific
language models on the specific test sets from WSJ, ESST and SWB that were used
for the experiments in this chapter. Obviously, there are great differences in perplexity
between in-domain and out-of-domain usage.

language model

perplexity ‘ perplexity ‘ perplexity ‘

training domain on WSJ on ESST on SWB
WSJ 68 251 148
ESST 1607 23 500
SWB 757 205 71

Table 8.3: In-domain vs. out-of-domain perplexity of various language models on
test sets used in this thesis

For the out-of-domain recognition results reported in Table 8.1, we have used the
SWB language model for recognizing speech from WSJ and ESST. In these two
cases, the perplexity on the test sets increased by a factor of 11 from 68 to 757 on
WSJ and by a factor of 9 from 23 to 205 on ESST!

To measure the effect of mismatches in vocabulary and language model on the word
error rate of a recognizer, we repeated the experiments from Table 8.1, this time
however with domain-specific vocabularies and language models. Table 8.4 gives
results for these experiments.

recognizer word error rate | word error rate
training domain (| on WSJ domain | on ESST domain
WSJ 12.5% - |
ESST - 19.5% |
SWB 17.2% 28.3% |

Table 8.4: In-domain vs. out-of-domain performance of speech recognition systems
when using domain-specific vocabularies and language models

Interestingly, 62% (WSJ) and 49% (ESST) of the mismatch in word error rate between
in-domain and out-of-domain speech recognition can be compensated by switching to
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domain-specific vocabularies and language models. It can be assumed, that obtaining
domain-specific vocabularies and dictionaries requires relatively little effort. Further-
more, training domain-specific language models is simplified by an ever increasing
amount of available text material, for instance on the Internet.

However, there still is a significant difference in word error rate remaining which is
caused primarily by mismatches in acoustic modeling.

8.2.2 Acoustic Model

Mismatches in acoustic modeling are much harder to compensate than mismatches
in vocabularies and language models. In contrast to the latter, replacing the original
model with a domain-specific one is typically impracticable for acoustic models as
it would require the very expensive recording and transcription of several hours of
speech data in order to obtain enough training material for robustly clustering and
training a completely new domain-specific acoustic model.

Before we discuss alternative, less expensive solutions to this problem, let’s first
analyze which factors contribute to a mismatch in acoustic modeling in out-of-domain
applications of speech recognition systems. We have identified the following three
types of mismatches that typically occur jointly:

1. Acoustic mismatch: An acoustic mismatch is caused by a wide variety
of factors: different microphones, pre-amplifiers and AD converters, different
sampling rates, different recording conditions, existence/nonexistence of back-
ground noise, different dialect, age or gender of speakers. All these factors lead
to a difference in emission probability distributions for the basic speech units
modeled by the HMM states in an acoustic model.

2. Context specificity mismatch: Different application domains require dif-
ferent amounts of phonetic context modeling, depending on difficulty, type of
speech (conversational vs. read) and size of the domain vocabulary. The speci-
ficity of phonetic context modeling is determined by the number of decision
tree clustered HMM states which is typically fixed a-priori for a given training
domain and can not be altered easily in conventional acoustic models. In out-
of-domain scenarios the acoustic model can either turn out to be too general
(too small, not enough allophonic variation) or too specific (too large, overfit-
ting, many unseen HMM states) for the target domain. Even if we manage to
eliminate overfitting effects in cases where the model is too large and detailed
by techniques such as parameter tying, we still have an oversized model that
consumes too much memory.
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3. Prior mismatch: The distribution of a-priori probabilities of a set of context-

dependent HMM states that were clustered on some training domain varies
significantly from domain to domain, mostly depending on the words in the
vocabulary, their phonetic transcriptions and their unigram probabilities. The
following Fig. 8.1 demonstrates this effect by means of a decision tree clustered
model for 24k HMM states constructed on the SWB corpus. The baseline a-

KL Divergence
N

0 10 20 30 40 50 60 70
Amount of Speech Data [min]

Figure 8.1: KL-divergence of a-priori HMM state distributions between the train-
ing domain (SWB) and various application domains (SWB,WSJ,ESST) for different
amounts of data

priori distribution of the 24k HMM states is estimated on the full SWB training
corpus. This distribution is then compared against a-priori distributions esti-
mated from a variable amount of data from the SWB, WSJ and ESST corpora,
respectively. We use information divergence (KL-distance) to compare two a-
priori distributions. The smaller the KL-distance, the more similar the a-priori
distributions. From left to right, the a-priori distributions become more and
more stable as more data is being used for their estimation. As expected, the
SWB curve approaches zero for an increasing amount of data, as the corre-
sponding prior distribution converges against the prior distribution estimated
on the full training corpus. However, the curves for WSJ and ESST level off
at some offset distance considerably larger than zero after about one hour of
data. Obviously, the a-priori distributions of the SWB clustered HMM states
on WSJ and ESST will never converge to that of the SWB corpus, no matter
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how much data we use for estimating them.

In the standard approach, only the first type of mismatches is addressed by some
sort of supervised acoustic model adaptation, for instance using regression tree based
MLLR with a mixture of Gaussians based acoustic model. Mismatches in the speci-
ficity of phonetic context modeling and the prior distribution of HMM states are
ignored completely. These kind of mismatches are a result of the domain-dependence
of phonetic decision trees used for clustering basic speech units such as phones based
on their phonetic context. Size and structure of these trees are determined on the
training domain and therefore depend heavily on the specific vocabulary, phonetic
dictionary, and language model of the training domain. Out-of-domain mismatches
in these components therefore cause mismatches in the phonetic decision trees that
in turn cause mismatches in the specificity of context modeling and the prior distri-
bution of HMM states because the leaf nodes of the phonetic decision trees define the
set of distinctly modeled HMM states.

To eliminate these mismatches, we would have to replace the set of phonetic decision
trees with a set of new ones constructed specifically for the target domain. Unfortu-
nately, such an approach implies that a completely new acoustic model is trained on
the target domain which is impracticable for the reasons already stated above.

8.3 The SDA Algorithm

In contrast to conventional models, the tree structure of hierarchical connectionist
acoustic models together with their scalability and multi-level representation of pho-
netic contexts allows for efficient and effective compensation of all three kinds of
mismatches in acoustic modeling (see previous section) that occur in out-of-domain
applications of speech recognition systems. To demonstrate this, we have devel-
oped an algorithm called Structural Domain Adaptation (SDA) [Fritsch et al. '98a,
Fritsch et al. ’98b] that is based on the observation that it is always possible to reduce
the specificity of context modeling in a trained hierarchical connectionist acoustic
model by removing (pruning) irrelevant substructures from the modeling tree.

Consequently, the idea in structural domain adaptation is to construct a very detailed,
highly specific hierarchical connectionist acoustic model using phonetic decision trees
that yield a large amount of context resolution such that almost all potentially signif-
icant contexts of a particular language are represented in the model tree. Of course,
this requires a training domain that exhibits a comparably large amount of phonetic
variability and a large vocabulary. If there is no such training domain available, we
can use a meta-domain composed of several different sub-domains. Starting from
the resulting large and very detailed acoustic model, structural domain adaptation
then compensates (1) acoustic and (2) structural mismatches in a specific target
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domain in a two step process based on a moderate amount of transcribed acoustic
adaptation data (typically less than an hour). Additionally, it allows to arbitrarily
reduce the overall size and specificity of the acoustic model to decrease memory and
computational requirements.

Acoustic mismatches are reduced by applying the adaptation algorithm presented in
the previous chapter in supervised mode. Based on the amount of available adapta-
tion data and an adaptation threshold C),,, this step in the algorithm dynamically
determines a set of tree nodes in the hierarchical connectionist acoustic model that
receive enough adaptation samples for adapting the corresponding estimators of local
posterior and prior probabilities. As these nodes are located in the upper layers of
the tree, their estimates are contributing to a large number of HMM states and by
adapting these nodes, we effectively and robustly adapt all HMM states through the
tree’s tying mechanism. The algorithm automatically adjusts the number of adapted
parameters to the amount of available adaptation data. Furthermore, the adaptation
step in SDA adjusts the local prior probabilities of selected nodes thereby compen-
sating a large proportion of the mismatch in the a-priori probability distribution
of HMM states between training and target domain. See chapter 7 for a detailed
analysis.

Structural mismatches, i.e. differing local requirements concerning the specificity of
context modeling, are compensated by identifying and permanently deleting irrelevant
substructures in the hierarchical model. Tree nodes are considered irrelevant if they
receive less or equal than a small, empirically determined pruning threshold Cprune
of adaptation samples in the target domain (represented by the adaptation data). If
a particular tree node is rarely used in the target domain (as indicated by a small
node count), we can assume that the partitioning into more specific context classes
performed by this tree node no longer makes sense and can not be performed robustly
in the target domain. Fortunately, the modular composition of HMM state posteriors
in a hierarchical connectionist acoustic model allows to remove such nodes and thereby
reduce the local specificity of context modeling without having to adjust a single
parameter. Due to the over-specificity of the baseline model, certain HMM states
will not be observed at all in the adaptation data available from the target domain.
Tree branches leading to such ’dead’ states are pruned implicitly as a result of prior
adaptation but SDA will additionally remove obsolete nodes (nodes that lead only to
unobserved states), if existing in the model tree.

Since we count the number of adaptation samples for each tree node as the first
step of acoustic adaptation anyway, determining whether or not a node is subject to
pruning can take place in conjunction with determining whether or not it is subject
to adaptation. Of course, the count thresholds must satisfy Cprune < Cmin since
tree nodes can not be adapted and pruned at the same time. The following Fig. 8.2
illustrates structural domain adaptation by means of a small balanced binary example
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Figure 8.2: Structural domain adaptation of hierarchical connectionist acoustic mod-
els
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tree. Note however that the SDA algorithm imposes no restrictions on the branching
factor and the balance of the adapted model’s tree structure.

Fig. 8.3 summarizes the SDA algorithm in compact form. Optimal values for the two
parameters Cpn;;, and Cprune Of the algorithm must be determined empirically on the
available adaptation data. Increasing Cprune beyond the value that results in optimal
recognition performance on the target domain allows for controlled downsizing of the
hierarchical connectionist acoustic model, trading off recognition accuracy against
memory and computational requirements.

Structural Domain Adaptation Algorithm

1. Counting: Compute state alignments of the adaptation data. For each HMM
state (tree leaf node), count the allotted number of adaptation samples and
propagate these counts up through the tree structure, thereby computing pat-
tern counts C; for each tree node.

2. Acoustic Adaptation: Select nodes subject to adaptation by checking
whether C; > Chn using a pre-defined adaptation threshold Chn;,. Adapt
the local estimators for conditional posterior and prior probabilities in the
selected tree nodes.

3. Structural Adaptation: Select nodes subject to pruning by checking
whether C; < Cprune using a pre-defined pruning threshold Cppypne with
Cprune < Cmin- Remove the selected tree nodes and tie all dangling HMM
states in a pruned subtree to a newly created leaf node that replaces the root
of the pruned subtree.

Figure 8.3: Algorithm for structural domain adaptation of hierarchical connectionist
acoustic models

8.4 Domain Adaptation Experiments

In the following, we experimentally evaluate the SDA algorithm by adapting a Switch-
board recognizer to the two previously mentioned target domains. In these exper-
iments, we focus on structural domain adaptation of the hierarchical connectionist
acoustic model, assuming that domain-specific vocabularies and language models are
available.
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8.4.1 Baseline Switchboard Recognizer

Our baseline recognizer is built and trained on 170 hours of Switchboard conversa-
tional American English telephone speech. This training corpus is covered by roughly
30000 distinct words. The recognizer’s training dictionary contains 64000 pronunci-
ations for these 30000 words. Based on the training data and the pronunciation
dictionary, a cross-word context-dependent (pentaphone) hierarchical connectionist
acoustic model with a total of 24000 tied states distributed among 56 3-state left-
right phonetic HMMs was constructed and trained. See Appendix B for details on
the distribution of tied states among phone models. The large number of 24000
tied HMM states was chosen in order to obtain a very detailed and over-specific (in
terms of phonetic context modeling) baseline model suitable for subsequent structural
adaptation.

On a subset of the official Switchboard 1996 evaluation test set, the Switchboard
recognizer based on the connectionist 24k HNN acoustic model achieves a word error
rate of 33.3%.

8.4.2 Selection of Nodes for Adaptation and Pruning

In a first experiment, we quantify the effects of adaptation threshold C,;, and prun-
ing threshold Cprune on the number of nodes selected for adaptation and pruning,
respectively. For this purpose, we consider an equal amount of adaptation data (45
min) from both target domains. For both target domains, we first compute HMM
state counts and HNN tree node counts on Viterbi alignments of the available adap-
tation data. With respect to these counts, we compute the number of tree nodes
subject to adaptation for different values of C,,;,,. Fig. 8.4 shows the resulting curves
on the WSJ and ESST domains (note the logarithmic scale on the abscissa). For ex-
ample, approximately 100 tree nodes are selected for adaptation when using a value
of Chin = 1000 frames.

Fig. 8.5 shows for different pruning thresholds Cprune how many tree nodes are re-
moved in the pruning step of structural domain adaptation. Interestingly, these curves
do not start at 0% for Cprune = 0, indicating that there are significant amounts of
unobserved HMM states in both target domains for the given adaptation data. The
considerably larger amount of tree nodes pruned in the case of ESST data can be
attributed to the smaller phonetic variety resulting from the smaller vocabulary in
that domain. Furthermore, although an equal amount of adaptation data was used
for computing the curves in Fig. 8.4 and Fig. 8.5, the WSJ data yields more nodes for
acoustic adaptation and less nodes for pruning, indicating a more uniform distribution
of HMM states than in the case of the ESST data.
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8.4.3 Adapting to WSJ Domain

We now take a closer look on structural domain adaptation on the Wall Street Journal
(WSJ) target domain. In our experiments, we were using the WSJ’93 Spoke 6 subset,
consisting of read Wall Street Journal articles that were recorded through a telephone
headset. The domain specific vocabulary is three times smaller than the vocabulary of
the baseline Switchboard recognizer and consists of 5000 words. The WSJ’93 Spoke 6
subset defines separate adaptation and test sets that were adopted for our experiments
as they allow us to compare our results with the official evaluation results. The
following Table 8.5 provides details about these adaptation and test sets. Note that
a maximum of 45 minutes of transcribed adaptation data is available for structural
domain adaptation on the WSJ domain.

# adaptation speakers 10
amount of adaptation data || 45.5 min
# adaptation frames 273500
# test set speakers 10
amount of test data 27 min
# words in test set 3865

Table 8.5: Adaptation and test sets for SDA on WSJ domain

The coverage of the original 24000 tied HMM states on the 45 minutes of WSJ
adaptation data amounts to 93.3%. Using a domain specific vocabulary and language
model and after several iterations of (1) optimization of the speaker dependent VTLN
warping factors based on the first hypothesis transcripts and (2) normalization of the
loudness of the input waveforms and (3) adjustment of the language model weight
and the word insertion penalty for optimal performance on a held out development
set consisting of parts of the adaptation data, we achieve a baseline word error rate
of 14.4% on the WSJ test set with the otherwise unaltered acoustic model trained
on the Switchboard corpus. Note that this tuning phase already yields a significant
improvement in the word error rate.

We then applied the SDA algorithm for three different adaptation thresholds Ciin
and varying pruning thresholds (Cprune € {0, 20,40, 80,160, . ..}). Fig. 8.6 shows the
resulting word error rates in relation to the remaining number of HNN leaf nodes
(equivalent to the number of unique HMM states). For each of the three curves
(corresponding to the three different values of C,;, investigated) in Fig. 8.6, Table
8.6 gives details about the performance and size of the resulting structurally adapted
HNN tree for the pruning threshold that yields the optimal word error rate.

The best overall result of 12.0% word error rate is achieved for Cp;, = 500 and
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Cprune = 40. Although tree pruning yields only minor improvements in terms of the
word error rate?, it is very effective in reducing the size of the original model. For
the optimal settings, SDA prunes the original HNN tree to 65% of its original size
and improves performance by 16.7%. Using a larger value for the pruning threshold,
the size of the HNN tree can be further decreased to only about 20% of its original
size (4585 leaf nodes) with only a slight increase in word error rate to 12.8%.
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Figure 8.6: Structural domain adaptation on the WSJ domain

acoustic || # adapted # unique HNN tree | word error | relative
model nodes HMM states size rate gain
baseline - 24016 100% 14.4% -
SDA2000 72 16532 65% 12.7% 11.8%
SDA1000 101 20706 84% 12.2% 15.3%
SDA500 240 16532 65% 12.0% 16.7%

Table 8.6: Results for optimal structural domain adaptation on WSJ

We compare these results to the best official evaluation result of 12.5% word error
rate, achieved by a domain-specific (trained on 62 hours of band-limited WSJO0 and

2The rightmost point on the curves in Fig. 8.6 correspond to the absence of explicit pruning with
Cprune = 0. From there, the pruning threshold increases towards the left of the plot.
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WSJ1 data) and telephone-adapted recognizer on the same WSJ'93 Spoke 6 evalua-
tion test set [ARP ’94]. Clearly, the SDA approach allows to match domain-specific
performance with an out-of-domain hierarchical connectionist acoustic model and
only 45 minutes of acoustic adaptation data. Table 8.7 summarizes all results dur-
ing the various phases from the original Switchboard system to the final structurally
adapted system for the WSJ domain.

‘ condition || # HMM states | word error rate |
SWB recognizer 24016 45.4%
+ domain-specific vocab/LM 24016 17.2%
+ tuning on development set 24016 14.4%
+ optimal performance SDA 16532 12.0%
+ minimum tree SDA 4585 12.8%
WSJ recognizer N/A 12.5%

Table 8.7: Summary of domain adaptation on WSJ

Most importantly, the SDA algorithm not only yields domain-specific recognition
performance but furthermore allows for a significant decrease in the specificity of
phonetic context modeling which results in a considerably smaller acoustic model.

8.4.4 Adapting to ESST Domain

In a second set of experiments, we used the SDA algorithm to adapt the Switchboard
recognizer to the ESST domain. In contrast to the WSJ’93 Spoke 6 data, the entire
ESST corpus is collected in 16 kHz / 16 bit using high-quality Sennheiser micro-
phones. We therefore had to downsample the data to 8 kHz before feeding it into the
Switchboard recognizer. Although ESST consists of spontaneous human-to-human
dialogs, it is considerably different from the Switchboard domain in many respects.
The vocabulary consists of 2850 unique words which is only 19% of the size of the
Switchboard vocabulary. In contrast to Switchboard, general articulation is much
clearer and there are hardly any conversational phenomena such as false starts, inter-
jections and laughter. Finally, there is only a single topic in ESST (the scheduling of
meetings) which restricts linguistic and phonetic variability considerably. We there-
fore expect that the ESST domain requires significantly less specificity in phonetic
context modeling than is realized in our 24k states Switchboard recognizer.

For the following domain adaptation experiments, we have compiled an adaptation
set of 62 minutes of speech and a test set of 18 minutes of speech. Table 8.8 gives an
overview of these two data sets. Using the transcriptions available for the adaptation
data, we first computed Viterbi state alignments with the original 24000 tied states
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HNN model. In these alignments, the coverage of the 24000 states amounts to 74.9%.
In other words, one forth of all HMM states were not observed in the 62 minutes of
adaptation data.

# adaptation speakers 18
amount of adaptation data || 62 min
# adaptation frames 372100
7 testset speakers 14
amount of test data 18 min
# words in test set 3309

Table 8.8: Adaptation and test sets for SDA on ESST domain

In contrast to the WSJ domain, there never was an official evaluation on the ESST
domain as it is an internal CMU-collected domain. However, for comparison we had
a recognizer available that was built and optimized specifically for the ESST domain.
On the above test set, this domain-specific mixtures of Gaussians based recognizer
achieves a word error rate of 19.5% and models only 1150 tied HMM states.

In comparison, using a domain specific vocabulary and language model and the same
kind of optimizations of acoustic parameters and decoding parameters already applied
in the case of WSJ, we achieve a baseline word error rate of 25.5% on the ESST
test set with the unaltered 24k acoustic model trained on Switchboard. Thus, the
performance of the raw Switchboard acoustic model is 30% worse than that of a
domain-specific one. In addition, the Switchboard model is over-sized and over-
specific as it models 20 times more allophonic variations (HMM states).

We then used the ESST adaptation data to apply the structural domain adapta-
tion algorithm to the Switchboard HNN tree. As in the case of WSJ, we applied
three different adaptation thresholds (Cynn € {500,1000,2000}) and varying pruning
thresholds (Cprune € {0,20,40,80,160,...}). Fig. 8.7 shows the resulting word error
rates in relation to the remaining number of HNN leaf nodes.

Again, tree pruning in addition to acoustic adaptation yields only minor improve-
ments in terms of the word error rate but is very effective in reducing the size of
the original model, as already observed on the WSJ domain. However, there are two
remarkable differences to the curves obtained on the WSJ domain. First, optimal
performance is obtained for the largest instead of for the smallest value of Cpn,
meaning that it is advantageous to adapt less tree nodes on ESST than on WSJ.
Secondly, the ESST domain allows for much larger pruning thresholds and thereby
a considerably smaller size of the HNN tree. In fact, the hierarchical connectionist
acoustic model can be pruned to only about 13% of its original size before the word
error rate starts to increase noticeably.
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Figure 8.7: Structural domain adaptation on the ESST domain

For each of the three curves in Fig. 8.7, Table 8.9 gives details about the performance
and size of the resulting structurally adapted HNN tree for the pruning threshold

that yields the optimal word error rate.

acoustic || # adapted # unique HNN tree | word error | relative
‘ model nodes HMM states size rate gain
baseline - 24016 100% 25.5% -
SDA500 280 12210 49% 22.0% 13.7%
SDA1000 120 12210 49% 21.3% 16.5%
SDA2000 71 8411 34% 20.8% 18.4%

Table 8.9: Results for optimal structural domain adaptation on ESST

The best overall result of 20.8% word error rate is achieved with C,;, = 2000 and
Cprune = 160. For these settings, SDA prunes the original HNN tree to 34% of its
original size and improves performance by 18.4%. As mentioned before, the size of the
HNN tree can be further decreased to only about 13% of its original size with only a
slight increase in word error rate to 21.3%. Table 8.10 summarizes all results during
the various phases from the original Switchboard system to the final structurally

adapted system for the ESST domain.

In comparison, the structurally adapted Switchboard system achieves performance
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condition # HMM states | word error rate

SWB recognizer 24016 55.3%

+ domain-specific vocab/LM 24016 28.3%

+ tuning on development set 24016 25.5%
[ + optimal performance SDA || 8411 | 20.8% |
| + minimum tree SDA I 3051 | 21.3% |
[ ESST recognizer I 1150 | 19.5% |

Table 8.10: Summary of domain adaptation on ESST

close to a domain-specific ESST system which has been optimized extensively on the
given test set. While the adaptation step of SDA yields most of the gain in recogni-
tion accuracy, the pruning step in addition allows to prune substantial parts of the
original hierarchical connectionist acoustic model which (a) improves generalization
by reducing the specificity of context modeling through state tying and (b) yields
significant savings in memory requirements.

8.4.5 Comparison to Conventional Acoustic Adaptation

In a last series of experiments, we compare structural domain adaptation with con-
ventional regression tree based MLLR adaptation of a mixtures of Gaussians acoustic
model. In contrast to the SDA approach, regression tree based MLLR can only be
used to acoustically adapt the existing set of context models. It does not allow to
reduce the specificity of context modeling or the size of the acoustic model to reflect
the differing requirements in a new target domain. By comparing the two adaptation
approaches, we seek to determine whether structural adaptation in addition to acous-
tic adaptation as performed by the SDA algorithm is beneficial in terms of reduction
of the word error rate.

For the following experiments with supervised MLLR adaptation, we were using a
Switchboard-trained continuous-density mixtures of Gaussians acoustic model for the
same 24000 tied HMM states used in the previous sections. The mixtures of Gaus-
sians based model was taken from the Interactive Systems Labs 1997 Switchboard
evaluation system (CMU-ISL) and achieves a baseline word error rate of 31.5% on
the Switchboard test set.

Using domain-specific vocabularies and language models and some tuning of the
decoding parameters, we obtain baseline word error rates of 13.3% (WSJ) and 24.8%
(ESST) with the unadapted conventional acoustic model. We then used alignments
of the available adaptation data to perform regression tree based MLLR adaptation
of the means of the approximately 100000 Gaussian densities in the system.
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To vary the number of adaptation transforms, we were experimenting with three dif-
ferent settings for C,:, (2000, 4000 and 8000). Table 8.11 gives results obtained with
the adapted models on the WSJ domain. The number of full rank linear adaptation
transforms applied to the Gaussian means ranges from 99 down to 31.

[ Chmin || # transforms | word error rate | relative gain |

[ baseline ]| = [ 13.3% [ = |
8000 31 11.6% 12.8%
4000 51 11.7% 12.0%
2000 99 12.0% 9.8%

Table 8.11: Results with regression tree based MLLR adaptation on WSJ

Optimal performance was achieved using C);, = 8000 which yields a relative reduc-
tion in word error rate of 12.8% compared to the unadapted baseline. Table 8.12
gives results obtained for the same set of experiments on the ESST data.

[ Chmin || # transforms | word error rate | relative gain |

[ baseline ]| - [ 24.8% [ - |
8000 35 22.2% 10.5%
4000 63 22.0% 11.3%
2000 108 23.0% 7.3%

Table 8.12: Results with regression tree based MLLR adaptation on ESST

Again, three different adaptation thresholds were investigated. As the ESST adap-
tation set is a little larger than that of the WSJ domain, the number of adaptation
transforms obtained increased slightly. The best result was achieved for C\,;, = 4000
which yields a relative reduction in word error rate of 11.3%.

The following Table 8.13 summarizes and compares the performance improvements
obtained with the SDA and MLLR approaches. Our results show that MLLR based
adaptation yields smaller relative improvements in word error rate, particularly in
the case of adapting a Switchboard model to the ESST domain.

In contrast to MLLR based adaptation of a conventional architecture, the SDA ap-
proach not only compensates for mismatches in acoustic space but furthermore adapts
to differing specificity of phonetic context in unseen domains by adapting node priors
and by pruning defective parts in the modeling hierarchy. This way, differences in the
a-priori probability of HMM states can be compensated and the resolution of context
modeling can be adapted to the specific requirements in the target domain. As an
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type of adaptation || relative gain on

acoustic model approach || WSJ domain [ ESST domain |
[ Hierarchy of Neural Networks | SDA | 16.7% [ 18.4% |
| Mixtures of Gaussians | MLLR I 12.8% ‘ 11.3% |

Table 8.13: Comparison of relative gains obtained with SDA vs. with MLLR

important side effect, the SDA algorithm allows to downsize a hierarchical connec-
tionist acoustic model and thereby reduce the memory requirements and decoding
time substantially.



Chapter 9

Mixture Trees

In previous chapters, we have seen how a large vocabulary conversational speech
recognition system benefits from a hierarchically organized connectionist acoustic
model. By adopting the connectionist framework of estimating state posteriors in-
stead of state likelihoods, we were able to apply hierarchical factoring to obtain a
tree structured estimator with advantageous scaling properties. In this chapter, we
present mizture trees, a different but related tree structured architecture for acoustic
modeling. We demonstrate that most, but not all of the properties of a hierarchical
connectionist acoustic model can also be obtained with this likelihood based model.

9.1 Hierarchically Tied Mixture Densities

We consider the task of estimating HMM state observation likelihoods for a set of N
decision tree clustered states s; using mixture densities. In a conventional continuous-
density HMM setting, we model each state independently according to

K;—1
pilx) = p(xlsi) = 3 & ¢P(x)  Vie{1,...,N}
k=0

™) are (affine) mixture weights satisfying ZkK;alc,(k) =1 and cgk) >0,

where the c;
and the ql(k)(x) are mixture component densities in the space of feature vectors x.
Mixture densities are usually preferred over simple densities because of their universal
approximation property.

Mixture trees are motivated both by the observation that individual mixture densities
of context-dependent speech models overlap considerably in feature space and by
the desire for a tree structured acoustic model with all the advantageous properties
that we have discussed in previous chapters. Thus, instead of using separate sets
of component densities for each mixture density, we share some of the component
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densities to allow for joint modeling of the overlapping parts of the distributions. For
instance, consider the set of 4 mixture densities depicted in Fig. 9.1.

@

p2x) px) px) px)

Figure 9.1: Hierarchically tying mixture densities

Each one of the densities consists of 3 vertically organized component densities. In-
stead of assigning 3 component densities exclusively to each mixture, we share some
of them between adjacent mixtures such that the bottom level components are used
exclusively, the center level components are shared between two and the top level
components are shared between all four densities. However, hierarchically sharing
component densities by itself does not yet yield a truly hierarchical model. We also
have to find a hierarchical representation of the mixture weights that allows to rep-
resent and evaluate hierarchically tied mixture densities in a tree structure. For that
purpose, we introduce (shared) mixture interpolation weights at each vertical arc that
connect component densities. We call the resulting tree structured configuration a
mizture tree [Fritsch 99b, Fritsch '99a] (Fig. 9.2).

Introducing depth d and branching factor b of a mixture tree, we rewrite the state
observation likelihoods, now being estimated by the leaves of the mixture tree, as
pi(x) = pgd)(x) and recursively define the mixture model as

0 0

x) = ¢)(x)

k k k k k—1
) = o x) + (1-a)pl) (%)

(%)

)

Ek) are (tied) component densities and the a; ' are local interpolation

weights, satisfying 0 < al(»k) < 1, such that the p; are valid probability densities. An

where the g,
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x) Pt pitx) ptx)

Figure 9.2: Mixture tree (d = 2,b = 2)

individual mixture density represented in the tree is evaluated top-down, starting at
the root node. Proceeding down the tree towards the corresponding leaf node, we
incrementally refine the current estimate by computing affine interpolations between
the already accumulated partial mixture probability and the current local component
density using interpolation weights agk). For agk) = 0, the local component density
does not contribute at all and the mixture likelihood up to that point is determined
by all predecessors. In effect, setting a,(k) = 0 allows to skip a component density. In
contrast, setting agk) = 1 corresponds to neglecting the partial mixture probability
accumulated through all the predecessor nodes. Of course, such an extreme behavior
is not desired as it renders the tree structure ineffective and is not expected to happen
unless there is absolutely no overlap between the modeled distributions.
Hierarchically tied mixture densities, as computed recursively by a mixture tree, can
be interpreted as conventional mixture densities

K;—1
pilx) = p(xlsi) = Y & ¢P(x)  Vie{1,...,N}
k=0

(%)

with tied components qgk) and component mixture weights c;

from the affine interpolation weights according to

that are computed

Ki—1 )
M=o T -y  vkefo,.. K 1}

j=k+1

where al(»o) = 1 and K; is the number of component densities for mixture p;, equivalent

to the depth of the corresponding leaf node in the mixture tree. Thus, the recursive
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interpolation scheme that we have proposed for mixture trees can be justified by the
correspondence to a set of constrained conventional mixture densities.

Also, an interesting and important aspect of mixture trees is that any node (not
just the leaf nodes) computes a valid probability density which depends only on
predecessor nodes. This property allows to downsize the mixture tree without having
to re-estimate any of the parameters as is required with conventional acoustic models
(e.g., [Hwang & Huang ’98]). In fact, the partial mixture probability computed down
to a specific node represents the probability of the feature vector being generated by
any of the leaf nodes (states) in the corresponding subtree. This implies that the

root component density q[()o)(x) models the unconditional density p(x) of the data.

9.2 Parameter Estimation

Assuming a maximum likelihood framework, the parameters of a mixture model
have to be estimated iteratively using an Expectation-Maximization (EM) algo-
rithm [Dempster et al. ’77, Redner & Walker ’84, McLachlan & Krishnan ’97]. Fur-
thermore, if the Forward-Backward algorithm is used for training the HMMs, we face
two nested probabilistic models; (1) assigning HMM states to observations and (2)
assigning mixture component densities within state mixtures to observations.
In the following, we will derive an EM algorithm for estimating the parameters of
a mixture tree that is applied to the estimation of HMM state emission likelihoods
in a statistical speech recognition system. Without sacrificing universality, we first
present the EM algorithm for the case of Gaussian component densities. The resulting
algorithm can easily be modified for other types of component densities, even for com-
ponent densities that are mixtures themselves. We discuss both Forward-Backward
and Viterbi based HMM training.
Irrespective of the kind of HMM training algorithm chosen, the E-step (Expectation)
of the EM algorithm for mixture trees is identical and consists of computing posterior
probabilities of mixture tree nodes for each input feature vector x. For that purpose,
it is crucial to note that the interpolation weights agk) represent the a-priori node
probabilities in the tree. Thus, for each feature vector x in the training set, we can
compute the a-posteriori node probabilities hgk) (x) according to

B () af ¢ (x) _ o (x)

aqMe0) + (1= a) pl) ) )

with the exception of h[()o)(x) = 1. The hgk)(x) measure the probability with which
the respective node’s component density contributes to the partial mixture that has
been accumulated down to that node. Again, it is important to note that the node
posteriors in our model depend only on parent nodes, not on any of the child nodes.
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For the M-step (Maximization) of the algorithm, we have to distinguish between
Forward-Backward and Viterbi Training.

9.2.1 Forward-Backward Training

In Forward-Backward HMM training, we obtain HMM state occupation probabilities
7:(x) for each HMM state s; and each feature vector x. In our case, state occupation
probabilities translate to mixture tree leaf occupation probabilities and represent the
a-priori probabilities of leaf nodes.

In the M-step, we update the mixture weights al(»k)
ponent densities q,(k) based on the expectations for all training patterns gained in the
E-step such that the likelihood of the model given the data increases. We obtain the

following updates for the node parameters:

and the parameters of the com-

A0 S o) MY ()

' M 175’“)(xm>

o — Zaaol” (xn) 7 (Xm) Xm
' M A (m) B (i)
MY (xm> ) (%) XL,

M P (xm) Y (xm)

nk

where ul(» ) is the mean vector and EE ) is the covariance matrix of the Gaussian

component density q,(k). The node occupation probabilities %?’“)(x) can be computed
in a bottom-up fashion from the state/leaf occupation probabilities 7;(x) according

to

W) = i)
. b(i+1)—1 .
1
ey = X "R
j=bi

That is, a node occupation probability is computed as the sum of all state occupation
probabilities of all states (leaf nodes) in the corresponding subtree.

9.2.2 Viterbi Training

In the case of Viterbi training, a state alignment implies a one-to-one mapping be-
tween HMM states and feature vectors. Thus, for any input feature vector, there
is exactly one state with state occupation probability v;(x) = 1, all other state oc-
cupation probabilities vanish. In a mixture tree, the Viterbi assumption leads to a
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single path of non-zero node occupation probabilities %(k)(x) =1 from root to one of
the leaves for each feature vector. Therefore, node posteriors in the E-step have to
be evaluated only along the path through the mixture tree that corresponds to the
current pair of feature vector and HMM state. The parameter update formulas in

the M-step simplify accordingly to

k
NO) o er® 1 (xm)
‘ szETi“"’ 1

Zﬂmertk) hgk) (Xm) Xm

Hi
szET-(k) hik) (Xm)
s _ Zemer® W ()
LT e )

where 7;('“) denotes the set of training patterns that correspond to the respective
tree node. In other words, 7;('“) consists of the feature vectors with state labels

corresponding to one of the leaf nodes in the subtree starting at node Ni(k).

9.2.3 Parameter Initialization

As with standard mixture densities, reasonable initialization of parameters is crucial
for rapid convergence of the EM algorithm. In the case of hierarchically tied mix-
ture densities with Gaussian component densities, we initialize local mixture weights
according to

1
o =L
k+1
which corresponds to a uniform component prior distribution for all mixtures in the

mixture tree as can be seen by substituting the above expression into the expression
for computing mixture weights cg ) from interpolation weights ag ) in a mixture tree:
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1 k+1 K;-2 K;-1
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Individual Gaussian component densities are initialized using the ML estimates for
the Forward-Backward weighted data observed at the corresponding tree node:
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In case of Viterbi training, this simplifies to the ML estimates for all data of all states
(leaf nodes) found in the subtree of the node to be initialized.

9.2.4 Mixtures as Component Densities

Mixture component densities q,( ) in a mixture tree can themselves be mixture den-
sities, allowing for more accurate modeling of node distributions. For instance, each

node’s component density may be modeled as a mixture of Gaussians:

o = X__: Z_: \/W xp{f%(x — i)' ST (x = i)}

The easiest way to train a mixture tree with this kind of component densities is
to start with component densities that consist of single Gaussians, train the mixture
tree until convergence of the EM algorithm and then apply a technique called mixture
splitting [Young ’94], that replaces the single Gaussians with mixtures of M Gaus-
sians randomly positioned around the mean of the original Gaussian according to its
variance. After increasing the number of components in the mixture densities of the
mixture tree using this technique, we can continue to train the parameters accord-
ing to the EM algorithm, however now considering the fact that we face two nested
probabilistic models which requires to weight updates for the within-node component
densities with the node posteriors obtained in the E-step of the EM algorithm for
mixture trees.

9.3 Constructing Mixture Trees

As already mentioned, an important prerequisite for the successful application of
mixture trees is that state distributions overlap in feature space, such that mixture
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density components can be tied for joint modeling of the overlapping parts. While
this is usually the case for context-dependent HMM models, it is not immediately
clear how to group these models to form an optimal mixture tree structure. Consid-
ering the large amount of HMM states and our experience gained with hierarchical
connectionist acoustic models, cluster algorithms appear to be viable solutions to
the task of constructing suitable mixture trees. Also, it is in principle possible to
adopt the structure of the phonetic context modeling decision trees for mixture tree
modeling as already noted in section 5.2. However, due to the categorical questions
asked, decision tree structures are typically highly imbalanced, a rather undesirable
property of mixture trees. In fact, the following issues are particularly important
aspects of mixture trees:

e Tree Balance: A mixture tree should be balanced to ensure that all embedded
mixture densities consist of an approximately equal number of component den-
sities. Otherwise, we allow certain HMM states to be modeled more accurately
than others.

e Branching Factor: The number of component densities that constitute the
mixture modeling a given state is determined by the depth of the correspond-
ing tree leaf node. Assuming a balanced mixture tree, the average number of
components per mixture is determined solely by the tree branching factor!. A
binary tree maximizes this number. Furthermore, the branching factor controls
the degree of component sharing and might therefore be subject to data-driven
optimization.

Keeping the above constraints in mind, the agglomerative and divisive clustering
algorithms that we have presented and discussed in section 5.3 are applicable to the
task of mixture tree construction without modifications.

9.4 Exploiting Tree Structure

The hierarchical structure of mixture tree based acoustic models offers almost the
same advantageous properties than those of hierarchical connectionist acoustic mod-
els. With the exception of techniques that require estimates of (partial) posterior
probabilities such as fast evaluation by pruning against a fixed posterior threshold,
the algorithms that we have developed for the connectionist hierarchical model are
applicable to mixture trees as well:

! Assuming that the number of leaf nodes/HMM states is fixed and given a-priori
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Structural Adaptation: A speech recognition system based on a very de-
tailed, highly specific mixture tree can efficiently and effectively be ported to
a previously unseen domain. The differing vocabulary and language model in
this domain typically induce a strong mismatch in the a-priori distribution of
HMM states and in the specificity of context modeling required for optimal per-
formance as discussed in chapter 8. Using a small amount of adaptation data
for estimating a-priori state distributions in the new domain, we can identify
low probability states that model phonetic contexts that are irrelevant to the
new domain and prune the corresponding branches in the mixture tree. The
resulting tree is structurally adapted to the unseen domain and its local esti-
mators can additionally be adapted to the differing acoustic distributions by
means of adaptation algorithms such as maximum likelihood linear regression
(MLLR) [Leggetter & Woodland *94]. However, in contrast to the connection-
ist counterpart, branch priors that play an important role in adapting the tree
structure are not explicitly available in mixture trees. Therefore, structural
adaptation of mixture trees is somewhat limited in comparison to the hierar-
chical connectionist model.

Speaker Adaptation: As discussed earlier, the structure of mixture trees
represents exactly the kind of information needed for tying component densities
for MLLR based adaptation when only a limited amount of adaptation data is
available. As such, mixture trees can be interpreted as MLLR regression trees
that have to be constructed additionally for conventional mixture models. As
component densities are already tied in a mixture tree, speaker adaptation with
a limited amount of adaptation data can be accomplished by simply selecting
those tree nodes in the vicinity of the root node for which we observe more than
a predefined amount of data and applying the usual linear transformation to
the parameters of the corresponding component densities.

Downsizing the Tree: In order to compute the likelihood of a specific state
by means of a mixture tree, we have to follow the path from the root node
to the leaf corresponding to that state, refining estimates of the likelihood at
each node. Instead of traversing the tree all the way down to the leaves, we
can stop computing refined likelihoods at any tree level and treat all states in
the remaining subtree as a new tied state. This way, the specificity of context-
dependent modeling and the number of distinctly modeled HMM states of a
trained mixture tree can be reduced arbitrarily, from full context-dependent
modeling all the way down to context-independent modeling and further. Thus,
pruning of mixture trees allows to easily adapt recognizers to available memory
and/or processor speed without having to re-train or re-cluster the acoustic
model.
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e Fast Model Evaluation: In contrast to hierarchical connectionist acoustic
models, fast model evaluation can not be achieved by pruning partial scores
against a fixed absolute threshold as this requires estimates of the partial pos-
terior probabilities. However, fast evaluation of mixture trees can be achieved
by evaluating the tree structure in a breadth first manner. This way, pruning
can be delayed until partial scores are available for all nodes in a specific tree
layer. As pruning can not be based on an absolute threshold, we may identify
promising branches by rank ordering and selecting the n best nodes in each tree
layer for further evaluation.

9.5 Experiments on Switchboard

For our experiments with a mixture tree based acoustic model on the Switchboard
corpus, we constructed a context-dependent HMM system with a total of 8000 tied
states by building about 150 phonetic decision trees, one for each state of context-
independent 3 state HMM phone models. Top-down decision tree clustering was
based on split likelihood gain using diagonal Gaussians to model state distributions.

9.5.1 Construction and Evaluation of Mixture Trees

We applied divisive clustering to construct a binary mixture tree for the 8000 states.
Non-uniform priors were penalized during tree construction in order to obtain a bal-
anced tree. The final mixture tree had a maximum depth of 18. Simple diagonal
Gaussians were chosen as component densities in each node. After initialization ac-
cording to section 9.2.3, we trained the mixture tree for 4 iterations using Viterbi
state alignments of 170 hours of Switchboard data from a conventional recognizer.
To improve modeling accuracy, we then replaced the Gaussian component densities
in each tree node by mixtures of 8 Gaussians that were obtained from the original
Gaussian by mixing-up as explained earlier. The resulting mixture tree, containing a
total of 127992 Gaussians in 15999 nodes, was trained for another 6 iterations, until
training data likelihood converged.

Fig. 9.3 depicts the initial as well as mean and standard deviation of the final in-
terpolation weights « in each level of the trained mixture tree. For increasing tree
depth, interpolation weights get smaller consistent with the initialization strategy
and eventually level off at a mean of around 0.3. Their variance increases slightly
towards the bottom of the tree which might indicate saturation of the specificity of
context-modeling in some branches of the tree.

Next, we evaluated the performance of the trained mixture tree in recognition exper-
iments. All recognition runs used a 15k vocabulary and a standard trigram language
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Figure 9.3: Distribution of interpolation weights in mixture tree

model trained on the Switchboard corpus. The results reported here were obtained
on a test set consisting of the first 30 seconds from 12 representative speakers taken
from the 1997 development test set and contained a total of 1340 words. Using the
full mixture tree with mixtures of 8 Gaussians as component densities in each node,
we achieved an unadapted word error rate (WER) of 36.6% on this test set.

[ Acoustic Model || # states | # components [ # params [ WER |

[ Mixture Densities || 8000 | 16/mixture | 101 M [36.1% |
| Binary Mixture Tree | 8000 | 8/treenode | 10.0M |36.6% |

Table 9.1: Mixture tree vs. mixture densities based acoustic models

For comparison, a conventional model based on mixtures of Gaussians with an ap-
proximately equal number of parameters (using mixtures of 16 Gaussians for each of
the 8000 states) achieves a comparable unadapted word error rate of 36.1% on the
above test set. Table 9.1 summarizes the results of this comparison.

9.5.2 Downsizing of Mixture Trees

In this experiment, we investigated the effects of downsizing the mixture tree, thereby
reducing the specificity and amount of context modeling. The original tree of depth
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18 that models 8000 HMM states was successively reduced in size by removing the
lowest tree level. This way, we obtained mixture trees with depths ranging from
the original 18 down to 8. The smallest mixture tree with depth 8 lead to only 179
distinctly modeled states, corresponding roughly to the number of states in a context-
independent system. We decoded the above test set for each pruned mixture tree,
using the exact same decoder parameters as with the original mixture tree. Table
9.2 summarizes the results obtained with the original and the pruned trees regarding
size, overall decoding speed and word error rate (WER) on the above test set.

pruning || # tied | # nodes | tree size | speed | WER

depth states | in tree [%] [xRT] | [%]
- 8000 15999 100.0 48 36.6 ‘
17 7991 15983 99.8 48 36.6
16 7897 15795 98.7 48 36.6
15 7290 14581 91.1 45 36.7
14 5722 11445 71.5 39 37.2
13 3699 7399 46.2 31 39.4
12 2109 4219 26.3 24 40.6
11 1143 2287 14.2 19 43.8
10 619 1239 7.7 17 52.0
9 331 663 4.1 16 55.4
8 179 359 2.2 16 62.5

Table 9.2: Results with downsized mixture trees

While the speed-up in evaluating likelihoods (not shown in Table 9.2) that can be
achieved by pruning the mixture tree corresponds roughly to the reduction in tree
size, the speed-up for overall recognition time depends on the proportion of time
spent in actual decoding which can significantly exceed the proportion of time spent
in evaluation of acoustic likelihoods. The highest speed-ups can be expected for close
to real-time systems. In our case, decoding with the smallest tree was about three
times faster than decoding with the full tree.

Fig. 9.4 depicts a plot of word error rate vs. mixture tree size for the results sum-
marized in Table 9.2. As expected, the performance for the smallest tree, modeling
179 distinct HMM states is comparable to what is typically reported for context-
independent Switchboard systems. On the other hand, the mixture tree can be
downsized to about 25% of its original size at the cost of only moderate increases in
word error rate of about 4% absolute.
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Figure 9.4: Word error rate vs. size of pruned mixture tree

9.6 Discussion

Mixture trees represent a likelihood-based alternative to hierarchical connectionist
acoustic models with very similar structural properties, which can be exploited for
a variety of tasks in speech recognition. As such, mixture trees offer the same ad-
vantages compared to conventional mixture models. However, although the two tree
structured models share a lot of properties, they differ in the following aspects:

e Estimation Paradigm: While mixture trees directly estimate state condi-
tional likelihoods as required by the HMM formalism, its connectionist counter-
part separately estimates state posteriors and priors, which are then combined
via Bayes’ rule to form estimates of scaled likelihoods. The latter approach of-
fers advantages with respect to the training criterion and the explicit availability
of state priors and tree branch priors.

e Training Criterion: Mixture trees are trained according to the maximum
likelihood (ML) criterion, using a variant of the EM algorithm. In contrast, a
hierarchical connectionist acoustic model is trained according to the maximum
a-posteriori (MAP) criterion which leads to more discriminant models.

e Explicit Priors: The explicit availability of priors in all levels of the tree
structure allowed us to develop an algorithm for soft structural adaptation of
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hierarchical connectionist acoustic models to unseen domains. By modifying
the priors according to empiric distributions gained on adaptation data in the
unseen domain, we were able to gradually pinch off certain undesired branches
of the tree structure. As priors are not explicitly available in a likelihood based
model, we can only decide upon keeping or removing such branches in a mixture
tree model.

Thus, mixture trees represent an interesting tree-structured architecture for acoustic
modeling with advantageous properties compared to conventional mixture models and
a close relationship to the hierarchical connectionist model we have presented earlier.
While both models offer scalable phonetic context modeling, the connectionist variant
exhibits unique properties that render it more suitable for structural adaptation and
domain-adaptive speech recognition.
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Acoustic Model Combination

In this chapter, we discuss methods for improving speech recognition performance by
combining several information sources. It is well known that pattern classification
tasks benefit from almost any kind of combination approach as long as sufficiently
diverse representations or learners are involved. In the case of an automatic speech
recognition system, there are three potential levels where combination may be in-
troduced (see Fig. 10.1). First, we can combine the probability estimates of several
acoustic models before they are fed into the decoder (referred to as acoustic model
combination). Second, we can combine the probability estimates of several language
models before they are fed into the decoder (referred to as language model combina-
tion) and third, we can run several complete and independent recognizers in parallel
and combine their output word hypotheses (referred to as hypothesis combination).
Of course, combination can occur simultaneously at several of these levels.

It is now common practice in evaluation systems to combine several language models
estimated on different corpora by interpolating their probability estimates. Also,
it has recently become popular to apply a word hypothesis combination scheme
based on voting to evaluation systems, see [Fiscus ’97] for details. Combination at
the level of acoustic models is less commonly applied but appears to yield consid-
erable gains for connectionist acoustic models, for instance in the Meta-Pi frame-
work [Hampshire & Waibel "89] or when applying the mixtures of experts model
[Jacobs 95] to homogeneous [Waterhouse & Cook ’96, Cook et al. ’97b] and hetero-
geneous [Fritsch & Finke '97] acoustic models. Furthermore, a variant of boosting
[Cook & Robinson '96] appears to yield the greatest gains in combining several con-
nectionist acoustic models but is computationally very demanding during training.
In our work, we have focused on the level of acoustic modeling and developed meth-
ods for the combination of heterogeneous acoustic models [Fritsch & Finke ’97], e.g.,
conventional Gaussian mixture models and locally discriminative models such as the
hierarchical connectionist acoustic model presented earlier.
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Acoustic Model Combination
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Figure 10.1: Acoustic model, language model and word hypothesis combination
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The difference in training paradigms underlying these two types of models leads to
significantly different probability estimates that exhibit less mutual dependence than
ensembles of homogeneous models. It can be expected that heterogeneous mod-
els focus on different parts of the speech signal, resulting in greater diversity and
thus greater potential gains in combination. However, heterogeneous acoustic mod-
els require some kind of normalization as they typically estimate different quantities
(likelihoods vs. scaled likelihoods or posteriors).

10.1 Static Combination

In static combination approaches, one assumes that only a-priori information about
the accuracy of individual acoustic models is available. As a consequence, the models
are combined using constant weighting factors. Consider m different acoustic models,
each estimating HMM emission probabilities p(xk|s;) for the same HMM states s;
based on different feature vectors xx. We can compute combined estimates of the
HMM emission probabilities by applying the product rule

—s

p(X1,- .-, Xm|8;) = p(xx|si)”™ with ~ >0 and Z’yk =1
k=1

k=1 =

where the ~y, are a-priori weights that allow to control the relative contribution of
each acoustic model to the combined estimates. Typically, the a-priori weights are
manually tuned for maximum performance on an independent validation set.

Alternatively, combined estimates of the HMM emission probabilities can be com-
puted by affine interpolation, known as linear opinion pools in statistics [Jacobs '95]:

p(X1,. ., Xm|$:) = Y W p(xk|s;) with 4, >0 and > v =1
k=1 k=1

Note, that a linear opinion pool results from applying the logarithm to the product
rule, which is interesting since speech recognition systems typically operate in the log
domain.

Now consider the case of combining two heterogeneous acoustic models, one produc-
ing estimates of the class conditional likelihoods p(x|s;), the other producing esti-
mates of scaled likelihoods p(x—,‘:i) by means of a locally discriminative connectionist
acoustic model. In a theoretically sound framework, we would either have to treat
these estimates as ’data’ and apply a supra-Bayesian approach [Jacobs '95] or apply
some transformation to normalize the estimates of each model to a common domain,
suitable for combination. Although such normalization becomes crucial in more elab-
orate combination techniques, it can be omitted in practice for the simple case of
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applying constant scalar weights to each acoustic model. Of course, the estimates
resulting from such disregardful combination will not be interpretable as a probability
distribution but the combination usually improves accuracy nevertheless.

We have been investigating static weighted combination based on the product rule
using two heterogeneous acoustic models trained on the Switchboard corpus. The
first one was the state-of-the-art conventional Gaussian mixture model for 24000
tied HMM states that was used in the best performing system in the 1997 Hub-5
evaluation [Finke et al. '97]. The second model was a Hierarchy of Neural Networks
(HNN) consisting of roughly 4000 networks, designed for the same set, of 24000 HMM
states and trained on the same corpus. Fig. 10.2 depicts how the word error rate
of the combined system varies for different combination weights, when decoding a
subset of the 1996 evaluation set (all other components of the recognizer were kept
identical).
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Figure 10.2: Static combination of (1) a mixtures of Gaussians model (MOG) and
(2) a hierarchical connectionist acoustic model (HNN)

Table 10.1 shows the word error rates of the two models used stand-alone (left and
right end of plot in Fig. 10.2) and in combination. The optimal combination weights
turned out to be 0.6 for the Gaussian mixture model and 0.4 for the HNN. and
resulted in a relative decrease in word error rate of 3.4% and 11.6% compared to
stand-alone use of the mixtures of Gaussians and HNN model, respectively.

Up to now, we have assumed that the a-priori weighting factors are applied globally
to the combination of estimates for all HMM states. Instead, one can generalize
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acoustic model word error rate
Mixture of Gaussians (MOQ) 315 %
Hierarchy of Neural Networks (HNN) 34.4 %

[ MOG+HNN, product rule (0.6/0.4) | 30.4 % |

Table 10.1: Best result for static, log-linear combination of heterogeneous acoustic
models

the above combination rules to allow for state-dependent a-priori model weights, as
proposed in [Rogina & Waibel '94]:

P(X1,. ..y Xm|$i) = H p(xk\si)"’*(si) with  y.(s;) >0 and Z Ye(si) =1 Vi
k=1 k=1

In contrast to the case of global weights, the considerably larger number of state-
dependent weights vx(s;) can no longer be tuned manually but must be optimized on
some training set, for instance using gradient ascent in log likelihood. This in turn
prevents us from directly applying this rule to the case of heterogeneous models and
requires to normalize the estimates of such models prior to combination.

10.2 Normalizing Heterogeneous Models

When attempting to combine likelihood estimates of conventional and posterior or
scaled likelihood estimates of connectionist acoustic models using state-dependent or
dynamically computed weights, we have to transformation the estimates of one or
both types of models such that both provide properly normalized probability dis-
tributions, suitable for subsequent combination. In the following, we present two
such normalization methods, one targeting a-posteriori probability distributions and
another, computationally more efficient one based on empiric normalization of likeli-
hoods.

10.2.1 A-Posteriori Normalization

The principle behind our first approach is to require that each acoustic model provides
an a-posteriori probability distribution for the set of HMM states and to compute
such a distribution as a post-processing step, if necessary. Connectionist acoustic
models directly estimate the desired probability distribution and thus can be plugged
into the model combination step as is. Conventional mixture models on the other
hand provide estimates of the state conditioned HMM emission probabilities which
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have to be converted to an a-posteriori probability distribution in order to be fed
into the combination step. The task of the combination step then is to compute an
aggregate a-posteriori distribution from all the incoming a-posteriori distributions.
Just as with a single connectionist acoustic model, the resulting combined a-posteriori
distribution has to be converted back to scaled likelihoods by dividing by state priors
in order to accommodate the HMM framework. Fig. 10.3 depicts the scenario for the
combination of one conventional and one connectionist acoustic model.

Model
Priors

T

Mixtures of Convert to
Gaussians Posteriors \
> Dynamic »| Prior » Caled
X [Cor%/bi nation [ Division likelihoods

Connectionist A
Model

Figure 10.3: Model combination based on normalizing to a-posteriori probabilities

It remains to discuss how we can compute an a-posteriori probability distribution
from the state likelihoods estimated by a conventional acoustic model. According to
Bayes’ rule, the a-posteriori probability of a state s; given some input feature vector
x can be computed according to

p(x[si) p(si) _  p(x]si) p(s:)
p(x) ¥ p(xls;) p(s;)

which requires the states’ prior probabilities p(s;) in addition to the state likelihoods
p(x|s;). For a conventional continuous density model with sometimes more than
20000 unique HMM states, computation of the a-posteriori probability distribution
according to the above formula turns out to be computationally very expensive due
to the sum of likelihoods in the denominator. As pointed out in [Willett et al. 98],
there is an efficient way of computing the a-posteriori distribution in the case of
heavy mixture tying, i.e. in phonetically-tied, semi-continuous and discrete HMMs.
However, in the case of a fully continuous density HMM system, the required amount
of computations can become prohibitive. A computationally less expensive alterna-
tive is to directly estimate p(x) in the above formula using a mixture density with a
sufficiently large number of component densities. New problems arise in that case:

psifx) =
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how do we ensure that the resulting a-posteriori distribution is properly normalized
such that the probabilities sum up to one? How can we efficiently compute a mixture
density with the large number of component densities that are required for accu-
rately estimating p(x)? Depending on the specific case, we might still end up with a
computationally very expensive procedure.

In summary, normalization to a-posteriori distributions appears to be attractive in
cases where we want to combine only a single conventional model with one or many
connectionist models or in cases where the conventional models employ some kind of
mixture tying such that we can efficiently compute the required a-posteriori distri-
butions.

10.2.2 Empiric Normalization

We have developed an efficient technique for normalizing estimates of heterogeneous
acoustic models that does not even require that the models produce probability scores
at all [Fritsch & Finke '97]. All that is required is that the emitted model scores are
continuous, bound to a finite interval and that all acoustic models adhere to the same
interpretation of score ordering, for instance, that lower scores correspond to better
acoustic matches.

Mixtures of pmf
Gaussians transform
Dynamic ikeli
X —* Corbindtion likelihoods
Connectionist pmf
Model transform

Figure 10.4: Model combination by normalizing based on empiric probability mass
functions

Fig. 10.4 depicts the setup for empiric normalization. Here, the outputs of all acoustic
models are normalized using a transformation based on the empiric probability mass
function (pmf) of the distribution of model scores. The resulting transformed esti-
mates are bound to the range [0, 1] and represent pseudo-probabilities, e.g., a value
of 0 corresponds to the worst score while a value of 1 corresponds to the best score
of the corresponding acoustic model. This property is achieved consistently for all
acoustic models participating in the ensemble and thus enables dynamically weighted
combinations.
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The normalization functions for each acoustic model are estimated as follows. First,
we empirically estimate the distribution of acoustic scores for each acoustic model
based on some held-out training set. This is typically done by estimating a discrete,
histogram-based probability distribution. For instance, consider the earlier case of (1)
a conventional Gaussian mixtures model and (2) a hierarchical connectionist acoustic
model. Fig. 10.5 shows empiric distributions of acoustic scores for both models.
Here, the Gaussian mixture model emits the negative logarithm of likelihoods and
the connectionist model emits the negative logarithm of scaled likelihoods.
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Figure 10.5: Distribution of likelihood scores for connectionist and Gaussian mixtures
acoustic models

While the distribution of the Gaussian mixtures scores seems to smoothly follow
a Gaussian, the distribution of the hierarchical connectionist model scores contains
bumps and a very strong peak near zero. This peak is attributable to the very
frequent silence model and the MAP training procedure which leads to good discrim-
ination of silence and speech models. Note also, that part of the distribution for the
connectionist model reaches into the area of negative scores due to the division by
priors applied to obtain scaled likelihoods.

Let Vi = pr(x|s;) be the random variable representing scores computed by the k-th
acoustic model for all x and s;. According to this notation, the histograms depicted
in Fig. 10.5 represent p(Y = Y},), the probability distribution of scores. We now intro-
duce a score normalization function ¢ for each acoustic model that maps the original
model-dependent scores into the range [0,1] by evaluating the empiric probability
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mass function (pmf):

q(Ye) := p(Y > Yi)

Fig. 10.6 depicts the probability mass functions computed from the histograms in
Fig. 10.5 for normalizing the corresponding two acoustic models.
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Figure 10.6: Normalization functions for connectionist and Gaussian mixtures acous-
tic models

These functions effectively and consistently normalize the scores of heterogeneous
acoustic models. For instance, a normalized score of 0.5 represents in both models an
original, model-dependent score that is located at the center of gravity in the distri-
bution of model-dependent scores. The above normalization method corresponds to a
monotonic mapping which preserves the order of scored models while maximizing the
entropy of the resulting normalized scores by approximating a uniform distribution.
Furthermore, the proposed method requires only a single table look-up to evaluate
the empiric, histogram-based probability mass function and thus places virtually no
additional computational burden on acoustic model combination.

10.3 Dynamic Combination

In dynamic acoustic model combination, we allow for combination weights that vary
with each time frame, assuming that the quality of each contributing acoustic model
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is not fixed a-priori but varies locally, maybe depending on acoustic conditions or
broad class of phonetic sound being uttered. Some models might provide accurate
estimates for vowel sounds and be uncertain for stop consonants while others behave
vice versa (additionally depending on the acoustic front-ends being used). In the
remainder, we will investigate dynamic acoustic model combination based on linear
opinion pools, that is, we model the combined acoustic probabilities according to

ge(x) pr(x|s;) with gr(x) >0 and ng(x) =1
1 k=1

NgE

p(xsi) =

=~
1l

where we have condensed potentially different feature spaces into a single feature
space for simplicity. Furthermore, we assume that heterogeneous acoustic models
have been adequately normalized, for instance using one of the techniques presented
in the previous section, before being used in the above combination rule. The gi(x)
are time-varying weighting functions that should reflect our relative confidence into
each one of the acoustic models at each time step. There are several potential knowl-
edge sources that might be used for deriving the above weighting functions. The
corresponding approaches might be categorized into the following three classes

1. Using frame-level measures of confidence, e.g., the entropy of the a-posteriori
distribution

2. Optimizing a frame-based training objective (MAP)

3. Using phone-, word- or sentence-level confidence scores

Since frame-level accuracy is not necessarily correlated with word-level recognition
accuracy, the frame-level measures of confidence applied in the first case can not
guarantee to improve recognition accuracy. The second and third approach appear
more promising but require considerably more effort to compute the model weighting
functions.

10.4 Gating Networks

The application of a gating network for computing weighting functions is moti-
vated by the Meta-Pi [Hampshire & Waibel ’89] and the mixtures of experts frame-
work [Jacobs ’95] and its extension to hierarchies of experts [Jordan & Jacobs ’92,
Jordan & Jacobs '94] for fusing the opinions of several experts, expressed as proba-
bility distributions, into a single probability distribution that can be used for decision
making.
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Assuming that each acoustic model (expert) computes a valid probability distribution,
a mixture of experts computes a combined probability distribution through linear in-
terpolation, using an additional estimator called a gating network that weights the
contribution of each expert at each time frame based on the current feature vector
(see Fig. 10.7). In order to assure that the weights produced by the gating net-
work satisfy the constraints of a probability distribution, the output layer is typically
parameterized using the softmax function.

Figure 10.7: Mixtures of experts approach to dynamic acoustic model interpolation

Defining a global, differentiable training objective, e.g., maximum-likelihood or max-
imum a-posteriori, the parameters of the gating network can be learned by back-
propagating errors from the output of the above architecture to the gating network
and applying, for instance, gradient ascent based optimization. Assuming that the
acoustic models estimate a-posteriori distributions, the combined system computes

NgE

p(silx) = ) gr(x) pr(silx)

Eol
Il

1

In the case of Viterbi-based MAP training, we obtain the following log-likelihood
based objective function for the combined system:

E=73"log Y gi(x) pr(se(n)|x)
k=1

t
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where ¢(t) denotes the index of the HMM state that is assumed to have produced x
at time ¢ according to a Viterbi alignment. Furthermore assuming that the gating
network is realized as a generalized linear model (single layer with softmax output
non-linearity), we can iteratively optimize its weight matrix W using gradient ascent
as follows:

; ; dE(t)
(i+1) — () -
w W +n ; ¥

where 7 is the learning rate and the derivative of E(t) with respect to the matrix of
weights is given by

4B () :
S = (h(x) — g(x) x

with the vector of posterior probabilities h(x) consisting of components

(x) = 95X Pi(Senlx)
h;(x) Sy gr(x) pr(Sew) %)

Note that the above optimization rules can easily extended to more complex gating
networks such as multi-layer perceptrons by applying the chain rule as in the original
backpropagation algorithm.

We have been investigating the viability of this approach by training a multi-layer
perceptron with a single hidden layer of 64 units as the gating network in a dynamic
combination of the two heterogeneous Switchboard models used earlier for the exper-
iments with static combination. Estimates of both systems were normalized using
the empiric histogram mapping approach. The gating network was trained on 28
hours from the Switchboard corpus until log-likelihood converged. Fig. 10.2 gives
recognition results of the individual models and the gated combination, again on a
subset of the 1996 evaluation set.

Acoustic Model ‘Word Error Rate
Mixture of Gaussians (MOG) 315 %
Hierarchy of Neural Networks (HNN) 34.4 %
MOG+HNN, dynamically gated

by 39-64-2 MLP 30.2 %

Table 10.2: Results of dynamic acoustic model combination using a gating network

In our experiment, dynamic combination reduces the word error rate by 4.1% relative
to using the best model in the ensemble in isolation. However, the gains of using
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a dynamic weighting scheme over simple static combination are comparably small
(0.2% absolute), suggesting that the optimal weighting functions are too complex to
be learned adequately by a single gating network.

10.5 Discussion

In this chapter, we have been presenting techniques for combining the estimates of
several acoustic models, focusing on the combination of heterogeneous models, e.g.,
Gaussian mixtures and connectionist models. In contrast to combinations of homoge-
neous models, we had to address the issue of score normalization in order to be able to
dynamically combine models that estimate different quantities. We have argued for
the normalization to an a-posteriori probability distribution. However, as this kind
of normalization can become computationally prohibitive in large continuous density
HMM systems, we have presented an alternative normalization scheme based on the
probability mass function of the distribution of model scores. We have demonstrated
the viability of this more efficient approach by using it to dynamically combine a
Gaussian mixtures model with a hierarchical connectionist model using a gating net-
work to estimate the weighting functions. While this proved to be an effective method
for dynamic model combination, it turned out that simple static combination was al-
most as effective. We assume that the optimal weighting functions in the dynamic
case are too complex to be learned by a single hidden layer perceptron. A solution
to this problem would be to assign a separate gating network to suitable clusters of
HMM states, for instance to HMM states belonging to the same monophone.

In our approaches to acoustic model combination, we have assumed that the con-
tributing models are pre-trained and that their parameters are fixed such that the
combination algorithms can treat them as black boxes. It should be noted that
approaches based on an integrated training of several acoustic models such as boost-
ing or mixtures of experts typically yield larger gains in recognition accuracy since
these approaches specifically push towards independent experts as part of the train-
ing objective. It has been shown [Jordan ’95] that the degree of independence of the
estimates of an ensemble of learners is directly correlated with the potential gain in
accuracy obtained from a combination of these learners. However, given the large and
complex architectures in acoustic modeling that often require several days of training,
an approach such as the one presented in this thesis is considered more appropriate,
especially when dealing with heterogeneous estimators.
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Chapter 11

Conclusions

This thesis has presented a new, principled framework for connectionist acoustic
modeling in large vocabulary statistical speech recognition. Based on the divide-and-
conquer paradigm, it was possible to derive a hierarchical, tree-structured architecture
that decomposes the task of estimating HMM state posteriors into thousands of
smaller tasks, each of which being solved by a small neural network. In contrast
to the conventional approach, this strategy allows (1) to construct scalable acoustic
models which allow to adapt the specificity of context modeling to previously unseen
domains and to arbitrarily downsize the model without retraining, and (2) to devise
algorithms for effective speaker adaptation and accelerated model evaluation that
exploit the inherent hierarchical structure.

Based on the proposed hierarchical architecture, it was for the first time possible
to construct competitive connectionist acoustic models for a state-of-the-art large
vocabulary conversational speech recognition system, modeling as much as 24000
unique HMM states using a tree structure consisting of over 4000 neural networks.
Using unsupervised speaker adaptation, our system achieves a word error rate of
31.8% on the Switchboard conversational telephone speech corpus. While this result
is comparable to what we have achieved with our best conventional, non-connectionist
system, the hierarchical connectionist acoustic model requires only one forth the
number of parameters and decodes more than 5 times faster at about 25 times real-
time.

Furthermore, we have tackled the important problem of domain dependence of acous-
tic models that usually prohibits the application of a speech recognition system in
domains that differ from its training domain because of an unacceptable increase
in the word error rate. This problem can be attributed to domain-specific context-
dependent modeling that on the one hand appears to be inevitable for state-of-the-art
performance but on the other hand ties the acoustic model to the phonetic charac-
teristics of the training corpus. The resulting trade-off prevents us from building
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accurate and universal acoustic models with respect to different application domains.
However, the hierarchical architecture presented in this thesis allows for domain-
adaptive acoustic modeling which achieves domain-specific performance after only
45-60 minutes of acoustic adaptation data from an unseen target domain. We devel-
oped an algorithm called Structural Domain Adaptation (SDA), that takes advantage
of the multi-scale representation of phonetic context in a hierarchical connectionist
acoustic model for adapting the specificity of phonetic context modeling to a new
domain. The effectiveness of the SDA approach was experimentally demonstrated
by adapting a conversational telephone speech system to two significantly different,
previously unseen application domains.

In the following, we summarize the main contributions of this thesis and give sugges-
tions for future work.

11.1 Thesis Contributions

This thesis has presented both a novel hierarchical connectionist framework for acous-
tic modeling in large vocabulary statistical speech recognition and a selection of algo-
rithms that exploit the unique properties of the resulting tree-structured architecture
for purposes such as fast decoding, effective speaker adaptation and domain-adaptive
speech recognition. Following is a list of the specific contributions presented in this
thesis.

e Hierarchy of Neural Networks (HNN):

Based on hierarchically factoring context-dependent HMM state posteriors, we
have derived a tree-structured, locally-discriminative acoustic model that scales
to an arbitrarily large number of HMM states. The model was termed a Hi-
erarchy of Neural Networks since we apply small feed-forward neural networks
to the task of estimating the required local conditional posterior probabilities
at each internal node of the modeling tree. The most prominent advantages of
the proposed architecture in contrast to existing acoustic models are the multi-
scale representation of phonetic context and the hierarchical structure reflecting
acoustic similarity at various levels in the modeling tree. We have evaluated
Hierarchy of Neural Networks based acoustic models on the Switchboard large
vocabulary conversational telephone speech corpus and demonstrated that the
model (1) achieves state-of-the-art performance and (2) scales to as much as
24000 HMM states which was found to be beneficial in terms of performance.

e Constructive Methods for Designing HNNs:
We have presented agglomerative (bottom-up) and divisive (top-down) clus-
tering algorithms developed specifically for the construction of a hierarchically
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structured acoustic model from second order statistics of HMM state emis-
sions and compared both approaches extensively on data from the Switchboard
corpus. Our algorithms have been designed to favor balanced trees and close-to-
uniform prior distributions of child nodes at each tree node such that accurate
training of local conditional a-posteriori probabilities is facilitated and the hi-
erarchical structure can be exploited most effectively.

Investigation of Local Model Selection:

Given the exponential decrease in the amount of available training data from
root to leaves in an HNN tree, the size and complexity of local estimators
of conditional a-posteriori probabilities must be chosen carefully in order to
maximize generalization performance. We have simplified the problem of model
selection significantly by using single hidden layer MLPs in our HNNs. The
single degree of freedom concerning model complexity - the number of hidden
units - allowed us to determine optimal model size in a two step process: (1) pre-
selection of rough model size based on available training data and (2) iteratively
increasing or decreasing model size based on performance improvement on an
independent validation set.

Efficient Distributed Training:

Typically, training of connectionist acoustic models is computationally very ex-
pensive, often requiring days of training on special hardware. In contrast, we
have presented efficient distributed training methods for Hierarchies of Neural
Networks that allow to train this model as fast and sometimes even faster than
a conventional, mixture density based acoustic model using standard hardware.
As each network in an HNN can be trained independently without any com-
munication or synchronization overhead, training of the complete model can be
easily distributed among several low-cost standard computers, allowing training
times of less than 24 hours for the full Switchboard corpus.

Dynamic Tree Pruning for Fast Decoding:

Using simple dynamic tree pruning based on partially computed posteriors,
it is possible to significantly reduce the amount of computation required to
evaluate our hierarchical connectionist acoustic model during decoding. We
have demonstrated that this technique allows to speed-up the evaluation of
acoustic scores by a factor of up to 10 with almost no measurable decrease in
performance. The overall decoding time on the Switchboard corpus could be
improved by a factor of 6 from 140 times real-time to only 24 times real-time
without an increase in word error rate.

Effective Speaker Adaptation:
It has been shown that our tree-structured acoustic model inherently realizes
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parameter sharing at multiple scales according to acoustic similarity which can
be exploited for effective speaker adaptation with limited amounts of adaptation
data. We have developed an algorithm for speaker adaptation that benefits
from this build-in structure and thus requires no additional tying structures
such as regression trees that are typically needed for adapting conventional
models. Using unsupervised adaptation on only up to 3 minutes of speech from
each speaker, our method for speaker adaptation achieves a relative decrease in
word error rate of 9.5% on a subset of 20 speakers from the 1996 Switchboard
evaluation test set.

Structural Domain Adaptation (SDA):

We have presented an algorithm to efficiently and effectively downsize and adapt
the structure of large vocabulary conversational speech recognition systems
based on the proposed hierarchical connectionist acoustic model to previously
unseen application domains. In contrast to conventional, domain-dependent
models, the SDA approach allows to adapt the structure and thus the speci-
ficity of phonetic context modeling in an HNN based acoustic model for optimal
modeling in new domains. Experimental validation of the SDA approach has
been carried out by adapting size and structure of HNN based acoustic mod-
els trained on Switchboard to two quite different, unseen domains, Wall Street
Journal newspaper articles and English spontaneous scheduling conversations.
In both cases, our approach yields considerably downsized acoustic models with
performance equal to domain-specific models and improvements of up to 18%
over the unadapted baseline model.

Mixture Trees:

Hierarchies of Neural Networks are based on factoring posterior state probabil-
ities which are not available in conventional mixture based modeling. However,
we have demonstrated that it is still possible to derive a likelihood-based tree-
structured acoustic model with properties similar to HNNs by hierarchically
tying mixture density components. We have derived a variant of the EM al-
gorithm for estimating the parameters of the resulting model, which we have
called Mixture Tree.

Downsizing of Hierarchical Acoustic Models:

Another quite attractive property of the hierarchical acoustic models that we
have presented in this thesis is the possibility of downsizing the trained models
to accommodate limited processor speed and/or memory. Downsizing can be re-
alized by simple tree trimming and allows to operate a hierarchical connectionist
acoustic model in a variety of context resolutions, from fully context-dependent
down to context-independent modeling. No parameter re-training is required.
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We have demonstrated the effects of model downsizing for the case of mixture
trees.

e Combination of Heterogeneous Acoustic Models:
We have discussed methods for the combination of multiple, possibly heteroge-
neous acoustic models and presented a novel efficient normalization technique
that allows for effective combination of a conventional, mixture densities based
acoustic model with a hierarchical connectionist acoustic model. A combina-
tion approach based on dynamically weighting the models using an MLP gating
network yielded a relative reduction in word error rate of 4%.

11.2 Future Work

The hierarchical acoustic modeling framework presented in this thesis can be extended
in various ways. We give some brief suggestions for further work on tree-structured
acoustic models in statistical speech recognition and other applications:

e Merging Decision Trees and Hierarchical Acoustic Models:
Instead of having separate trees for classifying and scoring phonetic context
models as proposed in this thesis, we could try to merge these structures into
a single model. Of course, we would then have to find a compromise between
the partially different requirements and constraints of each one of the models.

e Application to Multilingual Speech Recognition:
While the experiments presented in this thesis have been restricted to a single
language, hierarchical connectionist acoustic models may be constructed and
trained on multiple languages, resulting in a multilingual acoustic model which
may be beneficial for multilingual and crosslingual speech recognition [Cohen
et.al. '97, Schultz & Waibel '98]. The SDA algorithm presented in chapter 8
may then be used to adapt the model to a specific target language.

o Application to Extended HMM Frameworks:

Recently, several innovative and alternative modeling frameworks have been
proposed for statistical speech recognition and the recognition of time series in
general. Although still related to standard HMMSs, approaches such as IOHMMs
[Bengio & Frasconi ’96], factorial HMMs [Ghahramani & Jordan '97] and the
REMAP framework [Bourlard et al. ’94] attempt to improve modeling accuracy
by avoiding some of the false assumptions typically found in standard models.
Both approaches might benefit from using the architecture proposed in this
thesis for the purpose of probability estimation in large HMMs.
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Chapter 11 Conclusions

e Boosting of Local Estimators:

Boosting has been around for quite some time now and has been shown to
improve classifier performance considerably by combining the estimates of sev-
eral learners trained subsequently on patterns re-weighted depending on the
errors of the predecessors. This technique might readily be applied to the local
estimators in an HNN tree. To avoid excessive computations leading to unfea-
sible long training times, boosting might be restricted to the estimators in the
vicinity of the root node and still improve performance of the overall model.

Other Applications:

The hierarchical connectionist model presented in this thesis is unique in its
ability to estimate posterior probabilities for a very large number of classes. In
that respect, it might be interesting to apply our model to other tasks such
as speaker identification or face recognition and furthermore benefit from the
similarity groupings represented in the tree structure.



Appendix A

Connectionist Posterior
Probability Estimation

We consider the N class classification problem. The following proof assumes that
a classifier neural network of arbitrary architecture with N output neurons (one for
each target class w;) is trained to minimize the squared error (MSE) between network
outputs y; and targets ¢;. Target vectors t are encoded according to the 1-out-of-N'
scheme, meaning that the correct class is encoded using a 1, while all others are
encoded using a 0. Furthermore, we assume continuous valued input vectors x.

The network error under the MSE criterion can be expressed as follows:

B = [p00 25 pleal) lni(x) — oI dx

Here, p(w;|x) denotes the Bayesian a-posteriori probability of class w; given input
vector x. Since p(x) = Y0, p(wr, x), we have

b= /Z(gzlwx lyi(x t()]) P, x) dx

Using the 1-out-of- N assumption that ¢;(x) = d;; if x € w; and adding and subtracting
p(wj|x) leads to
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which can be further simplified to

b >
+/z(

N
The second term in the above expression can be neglected since it is independent of
the network parameters. Minimization of the mean squared error criterion can thus
be achieved by minimizing the first term in the above expression which is simply
the mean squared error between the network outputs y;(x) and the Bayesian a-
posteriori class probabilities p(wj|x). Therefore, training a network to minimize the
MSE between outputs and 1-out-of-N targets results in the best approximation to
the true a-posteriori distribution in the sense of that criterion. However, the given
proof contains implicit assumptions:

N

(yi(x) — p(ijX))z) p(wi, x) dx

(p(wjfx) = pQ(ij))) P(wg, X) dx

j=1

e The network must be trained to the global minimum of error. Since training a
feed-forward neural network is NP-complete, reaching the global minimum of
error can not be guaranteed in practice. However, it was shown, that for real
world problems, local minima often do not differ significantly from the global
one.

e The network must contain enough free parameters (plasticity) to model the
potentially complex posterior probability distribution. For instance, a single-
layer network will not be able to model a non-Gaussian, multimodal posterior
distribution.

e An infinite amount of training samples is available for training the network.
This assumption is of course not realizable but in practice, a reasonably large
training corpus is usually sufficient as long as adding more samples improves
network performance only marginally.

It should be noted that the proof can be given for other continuous network opti-
mization criteria such as relative entropy as well.

The presented proof was originally published in [Richard & Lippmann ’91] for the
relative entropy criterion and later in [Morgan & Bourlard '95] for the mean square
error criterion. A similar proof can be found in [Bridle *90].
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Allophonic Variation in 24000
State Switchboard Model

The following Table shows the distribution of the roughly 24000 allophonic variations
(tied states), modeled by the Hierarchy of Neural Networks used in some of the exper-
iments in this thesis, among the positions in the underlying 3-state left-right phone
models (only the phones modeling speech sounds are shown). The 4 phones marked
with an ampersand denote special phones for modeling interjections. Using the split
likelihood gain criterion introduced in section 2.4.2, phonetic decision trees were con-
structed for each position of each phone model based on 170 hours of training data
from the Switchboard LVCSR corpus. The number of allophonic variations shown
for begin, middle and end positions in the Table below correspond to the number of
leaf nodes in the corresponding decision trees. Note the large variation in the num-
ber of context-dependent states generated for each phone which reflects the highly
non-uniform distribution of monophone priors in the training corpus.

‘ phone ‘ position in 3-state HMM || total number
name || begin | middle | end || of tied states
T 609 421 598 1628
N 454 357 501 1312
R 415 430 440 1285
1Y 327 304 435 1066
L 381 282 372 1035
AX 326 292 347 965
D 350 204 321 875
K 304 208 298 810
IX 265 230 260 755
M 288 166 275 729
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phone || position in 3-state HMM | total number
name begin | middle end || of tied states
S 232 199 294 725
TH 244 206 263 713
AE 240 198 252 690
oW 242 177 266 685
EH 220 193 265 678
AY 196 179 245 620
EY 176 182 243 601
w 196 177 222 595
AH 191 153 207 551
UwW 158 184 188 530
DH 164 186 173 523
\% 172 140 180 492
VA 164 132 189 485
B 189 117 155 461
HH 170 125 151 446
P 134 122 172 428
AXR 141 112 163 416
Y 121 134 140 395
AA 114 98 153 365
F 122 109 126 357
G 129 86 121 336
ER 83 86 103 272
AO 84 75 101 260
NG 67 65 67 199
AW 64 59 63 186
&AH 60 35 68 163
TH 60 48 51 159
JH 49 59 46 154
SH 52 46 53 151
DX 57 38 50 145
CH 38 55 39 132
&M 30 43 41 114
UH 32 36 38 106
EN 20 28 25 73
(0)' 13 20 16 49
&HH 9 10 9 28
&OW 10 11 7 28
ZH 6 5 7 18
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