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Chapter 1

Introduction

“Machines are our friends!” These were the words I heard sometimes uttered by an office mate
and good friend of mine when he discovered a new feature on his computer, when a program was
running smoothly and functioned exactly as it was supposed to do, or when he was amazed by
the computer’s reliability or power. At that time I was very skeptical about this statement and
suspected some psychological problems in my friend’s interpersonal skills to be the reason for this
extrapolation of friendship to a computer. While I still remain skeptical about this statement, I
have to realize that my friend’s sentiment is not an unusual one and that similar views are quite
common when we interact with computers.

In several experiments Reeves and Nass (1996) show that humans extrapolate their interper-
sonal interaction patterns to their interaction with computers. Humans are polite to computers,
they are flattered by computers, there are good and bad computers, we can form teams with
computers, and we have emotional experiences when we interact with them. For instance, in
one experiment Reeves and Nass ask people to learn facts about several topics with the aid of
a computer. A subsequent computerized test would assess their learning curve. The people are
told that at the end of the session they would have to evaluate the computer with which they
were working. During the training session the computer only displays text and graphical buttons.
Even though the people are told that the computer adjusts the presentation of the topics based
on their feedback, every person is presented with the same facts in the same way. In the subse-
quent test session, people are informed by the computer whether their answer is correct or not.
After this test session the computer tells the subjects what it thought about its own performance
which in all cases it assessed as a great job. Finally, half of the group is asked to evaluate the
computer’s performance on the very same computer that they had done the experiment on and
which just had praised itself. The rest of the group is asked to evaluate the computer’s perfor-
mance on a different computer. People who have to evaluate the computer’s performance on the
very same computer give significantly more positive feedback about the computer’s performance
than the people who judge the computer on a different computer. In other words people were
polite to the computer!

If we indeed try to interact with computers very much the same way as we interact with other
humans, then this similarity should be reflected in the design of human-computer interfaces to
facilitate a more “natural”, more human-like interaction. Studies on human computer interaction
(HCI) recognize this similarity and also consider emotions to be an important factor in the
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communication between humans and machines. However, most investigations in HCI focus on
the synthesis of emotional expressions, both visual and acoustic, on the computer side (McCauley
et al., 1998; Isbister and Nass, 1998; Ball and Breese, 1998; Olveres et al., 1998; Tosa and Nakatsu,
1996; Nakatsu, 1997; Moriyama, Saito, and Ozwa, 1997; Cassell et al., 1994). We already have
cartoon-like characters popping up if we do something wrong or ask for help. Depending on the
situation these characters smile at us or frown. Soon these characters will speak to us, have facial
expressions, and use gestures to make a point (Cassell et al., 1998; Tosa and Nakatsu, 1996).

But if Reeves and Nass (1996) are right about their thesis then this kind of interface design
is dangerously one sided since this design ignores the emoting user. It might even be a little bit
confusing when we have to interact with characters emoting heavily while our emotional state
is — quite impolitely — ignored. We do need interfaces that not only express emotions but also
detect emotions in the user.

The problem of an emoting computer that is unaware of the emotional state of the human
user becomes even more evident when we allow the human user to speak to the computer using
a speech recognition system in the “front end” of the interface. When a speech recognition
interface only pays attention to what is said but ignores how it is said, the interface fails to pick
up information that is essential for human-to-human communication. For instance, certain word
or syntactic choices might indicate that the speaker is angry or sad. Certain acoustic features
might indicate that the speaker is bored or interested. It should be obvious that this kind of
information is important for natural interaction with a computer and essential for successful
communication. That is, the search for cues that allow the detection of the emotion expressed
by a speaker in an utterance becomes an important topic of research.

Emotions can be communicated in various ways by relying both on verbal and non-verbal
means. Non-verbal means comprise body gestures, facial expressions, the modifications of prosodic
parameters, and changes in the spectral energy distribution. This investigation is confined to
information within the speech signal and we show that verbal and non-verbal information within
the signal allows an effective decoding of the expressed emotion. In particular, we investigate the
role of word choice, spectral energy distribution, and prosody. The focus of this investigation lies
on the role of prosodic information and we explore the importance of several prosodic parame-
ters such as speaking rate, pitch, and intensity in signaling the four basic emotions happiness,
sadness, anger, or fear (Ortony and Turner, 1990). We show that the combination of verbal and
non-verbal information of an utterance allows the automatic detection of the expressed emotion
with an accuracy comparable to humans performing the same task.

The obvious way of expressing an emotion by verbal means is to name it explicitly:

(1.1) I am happy!

(1.2) I am angry!

However, speakers tend to be more subtle and implicit and encode emotion, for instance, by a
certain word choice:

(1.3) That’s terrific!

(1.4) Mind your damn business!
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Our corpus studies show that the explicit approach is used very rarely by speakers and we
concentrate our investigation on the detection of verbal cues given more implicitly. Modeling
verbal cues in the communication of emotions is complicated by the fact that verbal cues are
optional. That is, not every emotional utterance necessarily bears verbal cues. There are two
reasons why an emotional state would not be expressed by using verbal cues. First, the current
utterance does not indicate any particular emotion in its verbal setup because the emotion can
be inferred given the preceding discourse or context. Consider the following sentence from the
movie Kramer vs. Kramer:

(1.5) Where are you going?

In isolation the verbal information of this sentence does not allow any inference about the emo-
tional state of its speaker. However, given some preceding context such as displayed in the
sentence below, we can draw the inference that the speaker is either sad or angry. In this investi-
gation we do not try to model any emotion detection based on inferences relying on the preceding
discourse or semantic reasoning.

(1.6) I'm leaving you ... and I don’t love you anymore ...

A second situation in which no verbal cues are given would be when the speaker relies on acoustic
cues to express an emotion. Since we do model non-verbal cues explicitly in this investigation,
we compensate for the lack of verbal cues and still be able to detect the expressed emotion.

Emotion specific verbal behavior can be studied at various levels. Questions about how
interlocuters manifest and interpret emotions within in a conversation are explored in discourse
analysis (Fiehler, 1990b). Other studies focus on other linguistic levels such as the lexical or
syntactic level, and investigate how verbal devices are able to encode emotions (Davitz, 1969;
Fudge, 1970; Irvine, 1982). While most of these studies are empirical their goal is not to build
an automatic system for the recognition of the expressed emotion.

In this investigation we follow the linguistic research and pursue a strictly data driven ap-
proach. We do not try to model processes at the discourse or semantic level. Instead we model
lexical processes that signal an emotional involvement of the speaker. Some such examples are
given in (1.3) and (1.4) above. We model emotion-specific lexical information by computing the
probability of a certain word given the previous word and the emotion expressed by a speaker.
The idea behind computing these probabilities is that certain combinations are more probable
for the expression of certain emotion. Computing the probability of a certain word to given a
history of previous words is a technique widely used in speech recognition (language modelling).

In figure 1.1 we show the spectrograms of four utterances of the sentence “Go to sleep now!”
by the same actress expressing emotions (a) happy, (b) sad, (c) angry, and (d) afraid. The
respective spectrograms are quite different indicating that the distribution of energy is employed
by the speaker to express a certain emotion. We can also see that the sad and afraid realizations
of the sentence resemble each other to some extent in the spectrograms. As it turns out in our
experiments, sad and afraid utterances are confused with each other quite frequently both by
our automatic classification system and by humans.

3



CHAPTER 1. INTRODUCTION
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Figure 1.1: Spectrogram for the sentence “Go to sleep now!” spoken by an actress.

One possible way to capture spectral properties of emotional speech is to train emotion-
specific speech recognition systems, that is, systems trained on speech samples which encode
only a particular emotion. Each of these emotion-specific recognition engines then represents
the spectral properties typical for the respective emotion. While this is a valid approach, it
is foredoomed if there are not enough available training samples. A recognition system to be
trained from scratch requires about 20 hours of data (Finke, 1999). If we want to train systems
modeling spectral peculiarities of, for example, three emotions, we would need a total of about 60
hours of emotional speech. No emotion corpora of this size are available. Adaptation, however,
requires corpora which can be much smaller than corpora needed for training. We use an already
existing recognition system and adapt on emotion-specific speech samples.. We model the spectral
information by means of cepstral coefficients to account for the properties of the human auditory
system.

The role of prosody within the communication of emotions has been studied extensively in
psychology and psycho-linguistics. This kind of research focuses mainly on two questions:

e How do humans express emotions by modifying prosodic parameters of their speech?

e Which prosodic parameters allow the decoding of the emotion expressed by the speaker?

4



CHAPTER 1. INTRODUCTION

In this investigation we explore the potential of prosodic parameters such as speaking rate, pitch,
and intensity, to discriminate among several emotions. For example, in figure 1.2 we display
the fundamental frequency of four utterances of the sentence “Go to sleep now!”, spoken by
the same speaker portraying the emotions (a) happy, (b) sad, (¢) angry, and (d) afraid. The

Fundamental Frequency Fundamental Frequency
450 T T 450 T T

400 4 400

350 b 350

300 b 300

250 b 250
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200 b 200

100 b 100~

50 b 50

L L L L 0 L L L L L
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time time

(a) happy (b) sad
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L L L L L L L
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time time

(c) angry (d) afraid

Figure 1.2: Fundamental frequency for the sentence “Go to sleep mow!” spoken by an
actress.

differences are quite striking. Looking at the fundamental frequencies as given in Figure 1.2
above, we can speculate on some prosodic cues. For example, the angry utterance (c) seems to
be shorter than (a), (b), (d), indicating an increase in the speaking rate. Moreover, the mean
fundamental frequencies of these utterances are quite different. For example, the mean pitch for
the sad utterance is substantially lower than the utterance of the same sentence when expressing
happiness. Similar tendencies can be shown to be the case for intensity.

Prosodic features are multi-functional. They not only express emotions but also serve a
variety of other functions as well, such as word and sentence stress or syntactic segmentation.
Other functions of prosody include, for example, the distinction between yes/no questions and
statements by using a final rise. We also find that the phonetic content of an utterance has
an impact on its prosodic parameters. For instance, each vowel has an inherent fundamental
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frequency which can differ substantially among the vowels within a given language. Compare for
example, the fundamental frequency of the vowels /i/ and /o/. Differences between two vowels
can be as high as 20Hz in their fundamental frequency.

To illustrate the multi-functionality of prosodic features we display in figure 1.3 the funda-
mental frequency of utterances of the sentences (a) “Are you angry?”, (b) “Are you my friend?”,
(c) “Are you talking to me?”, and (d) “Be my friend Shrimp!” all uttered by the same actress
portraying happiness in all four cases. It is far from clear what renders these utterances in figure
1.3 similar to each other and different from the sad, angry, and afraid utterances in figure 1.2.
In this investigation we try to compensate for the multi-functionality of prosodic features by us-

Fundamental Frequency Fundamental Frequency
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300
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50+
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(a) “Are you angry me?” (b) “Are you my friend?”
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time time

(c) Are you talking to me?” (d) “Be my friend Shrimp!”

Figure 1.3: Fundamental frequency all spoken by the same actresst all portraying the
emotion happy.

ing several normalization and clustering techniques. Moreover, we investigate not just prosodic
features pertaining to a whole utterance but also prosodic features referring to smaller segments
such as phones to account, for example, for intrinsic prosodic properties of these segments.

Other studies investigating emotional speech tried to compensate for the multi-functionality
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CHAPTER 1. INTRODUCTION

of prosodic features by restricting the corpus to a very small number of sentences — sometimes
just one — and by collecting utterances of these sentences through several speakers. Limiting
the subject to pronounce sentences from a predefined set also forces the subject to encode his
or her emotion using non-verbal (spectral and prosodic) rather than verbal means. Thus, most
studies try to compensate for the optionality and variability of prosodic cues by restricting the
elicitation conditions.

In this investigation we are more liberal and do not restrict the elicitation conditions as
severely as the studies above. This investigation comprises two major experiments. The first
experiment is based on a predefined set of sentences uttered in four different emotions. This
corpus is used to explore spectral and prosodic properties of emotional speech. The second
experiment is based on a corpus comprising sentences from talk shows and movies. Since we do
not have control over the productions of utterances in this corpus, we expect actors to use both
verbal and non-verbal cues to encode an emotion and, moreover, we expect a large variability of
prosodic parameters among the utterances within this corpus. Investigating and combining both
verbal and non-verbal information to explore the emotion expressed by a speaker is studied for
the first time in this investigation.

The collection of emotional speech for the corpora constitutes a substantial part of this in-
vestigation. Our studies rely on the following corpora:

e Woggles Corpus: We asked 9 female drama students to portray 50 different sentences
expressing happiness, sadness, fear, and anger.

e Movie and Talk Shows: We collected several thousand utterances from movies and talk
shows. These utterance are transcribed and tagged for the expressed emotion. The tag
set comprises ten different emotion labels: neutral, bored, strong joy, weak joy, sad, afraid,
irony, angry, disgusted, and suspicious. Unfortunately, only neutral, sad and angry utter-
ances occur frequently enough to allow for a reliable estimation of emotion-specific verbal
and non-verbal parameters.

e In order to test how emotions are encoded in languages other than English we also tran-
scribed and tagged Spanish and German movies.

e Spanish Call Home: We tagged 39 dialogues of Spanish spontaneous telephone conversations
using the same tag set as for the movies and talk shows above.

To our knowledge these corpora constitute the largest set of corpora used so far to study the
impact of the expression on an emotion on an individual’s speech. The corpora collected from
movies and talk shows also allow to investigate the role of visual information in the communication
of emotions using the respective video data. This, however, will have to be part of future work.

Using corpora with several speakers uttering several sentences in various emotions makes the
task of finding robust prosodic cues for the detection of the underlying emotion quite challenging.
In figure 1.4 we display the fundamental frequency of the sentence “Go to sleep now!” from the
Woggles Corpus uttered by four different actresses portraying the emotion happy. We would
expect the fundamental frequencies to be similar. While it could be argued that utterances (a)
and (b) look similar, the case seems to be lost for utterances (¢) and (d). Finding prosodic features
which capture these changes across speakers and utterances constitutes a major contribution of
this investigation.
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Figure 1.4: Fundamental frequency for the sentence “Go to sleep now!” spoken by actresses
all portraying the emotion happy.

Research on the expression of emotions can be traced back at least all the way back to Charles
Darwin (Darwin, 1998). One of Darwin’s central claims was that the expression of emotions is
universal both for humans and animals, a claim later to be validated by extensive research lead by
Paul Ekman (1994) whose research focused mainly on the facial expression of emotions. Within
this investigation we carry out some pilot experiments which suggest that prosodic cues in the
expressions of emotions are to some extent universal as well. To substantiate this claim we
transcribe and tag Chinese and German movies and try to detect the expressed emotions by
using prosodic models developed on English data.

Throughout this investigation we perform several experiments involving human subjects. The
purpose behind these experiments is primarily to validate our corpora regarding the emotions
expressed and to assess an accuracy baseline to which we can compare the performance of the
automatic classification system. For studies focusing in particular on the way humans encode
and decode emotions in speech, consult the work of Scherer and Ekman (1984).
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We alluded to a possible application of emotion detection earlier on in this chapter. Research
on HCI aims to design interfaces which allow a more natural interaction involving emoting artifi-
cial agents. So far, however, these emoting agents are designed to operate without regard to the
expressed emotion of the human which renders these interfaces even more unnatural. We think
that this investigation closes the gap to some extent by demonstrating that the automatic detec-
tion of emotion is feasible. In addition, we think that the detection of emotion is not confined to
use in HCI but reveals interesting applications in other areas as well.

Verbal and nonverbal information can change or modify the literal meaning of an utterance.
Any natural language processing system that relies on a semantic representation, for example
speech-to-speech machine translation, has to be aware of the expressed emotion by the speaker to
warrant an accurate representation of the input sentence and its felicitous translation. Related to
this topic is the detection of irony or sarcasm which reverse the literal meaning of an utterance.
Ironic speech employs both verbal and non-verbal cues that allow the listener to decode the irony
of the utterance. Having a profound understanding on how emotions are encoded might help to
detect irony or sarcasm as well.

As mentioned several times in this introduction, prosody serves several important functions
within human communication. By modeling a certain linguistic function of prosody one has to
be aware of interferences from other functions that are also implemented by the modification
of prosodic parameters. One way to compensate for interferences is to model explicitly several
functions of prosody at the same time. To give a simple example, sentence boundaries are often
marked by pauses. Pauses, however, are also employed by humans to express sadness. By
modeling both functions at the same time, one can hope to improve the overall accuracy for
both, boundary and emotion detection. Moreover, while there is an extensive body of research
on the synthesis of emotional speech, synthetic speech still sounds unnatural. This study might
help to isolate those prosodic features which render the synthesized speech more natural.

One of our experiments in this investigation shows that the accuracy of a speech recognition
system depends on the emotion encoded in the input utterances. Modeling emotional speech
explicitly within a speech recognition system by using emotion-dependent spectral, prosodic,
and language models might improve the overall accuracy of the recognition system.

In the next chapter we describe how emotions are encoded in human communication. The
chapter begins with a brief description of the differences between verbal and non-verbal infor-
mation, followed by a brief introduction into the notion of emotions. We review previous studies
investigating the role of verbal and non-verbal cues in the communication of emotions. We pay
special attention to the role of prosody within this communication and we also describe how
prosodic features such as intensity or speaking rate can be extracted from the speech signal.

In the third chapter we introduce the formal apparatus which we use to model verbal and
non-verbal cues. This chapter comprises three sections in which we discuss verbal, spectral,
and prosodic cues. In the first section we give a very brief introduction into the language model
which we use to model verbal cues. The second and most comprehensive section describes first our
approach to model prosodic information. We model these both spectral and prosodic information
with the same underlying modeling approach relying on hidden Markov models. We develop a
hidden Markov architecture which allows to summarize atomic hidden Markov states into what
we call suprasegmental hidden Markov states. The atomic states in this suprasegmental hidden
Markov models are used to model spectral (segmental) information. The suprasegmental states,
having access to the overall time spent in their constituting states, are used to model prosodic
events. The last section describes the adaptation technique which we employ to model emotion-
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specific spectral properties.

The fourth chapter contains the experiments of this investigation which we arrange accord-
ing to the emotional speech corpus studied. The chapter starts with some general statements
pertaining to all of the experiments which follow. This includes a description of elicitation tech-
niques to collect emotional corpora and evaluation measures. The Woggles corpus is the starting
point to explore spectral and prosodic cues. With the corpus comprising speech segments from
movies and talk shows, we also investigate the role of verbal cues and its interaction with spectral
and prosodic cues. The prosodic models developed with this corpus are also tested on corpora
consisting of segments in different languages. The idea behind this set of experiments is to see
whether prosodic cues for the communication of emotions in English extrapolate to other lan-
guages. In a final set of experiments we explore the possibilities of detecting emotion cues in
telephone speech.

In the final chapter we summarize the results of this investigation and end with a conclusion
which points to some possible extensions of the formal apparatus and direction of future research.

For this study we use the JANUS Recognition Toolkit (JRTk) (Zeppenfeld et al., 1997).
For this study the JANUS system was extended by several tools for processing and modeling
prosodic information. We describe the implementation of the JANUS Prosodic Tool Kit (JPTk)
in an appendix. This set of additional JANUS objects allows the extraction of various prosodic
information from the signal and the training of different bounded prosodic models, for example,
phone, syllable, or world based prosodic models. All these JANUS objects have an Tcl/Tk
interface and can be accessed and configured at the Tcl/ Tk level without consulting the respective
C-code.
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Chapter 2

Communicating Emotions

Within human communication, messages can be conveyed by verbal and non-verbal devices. For
instance, for the pure exchange of information verbal devices seem to be the most common way
whereas for the expression of emotions, non-verbal devices tend to dominate (Knapp and Hall,
1997). In some cases, non-verbal devices might even substitute for the verbal devices completely.
For example, a convincing way to express anger at someone might involve just a wiggling finger
or the denial to cooperate in the conversation altogether. In other cases, the verbal message is
intensified by non-verbal means. A felicitous utterance of ’I love you’ should be accompanied by
certain facial expressions and additional vocal cues.

Verbal communication is based on the the choice of words and their linear order within an
utterance. Non-verbal communication, in contrast, relies on means such as extra speech sounds
(hissing, whistling, or laughing), special qualities of the voice (giggling or whiny), or the modifi-
cation of prosodic parameters (pitch, intensity, or speaking rate). Non-verbal communication is
not necessarily confined to the audio channel. It can open additional communication channels by
allowing body postures, gestures, or facial expressions to participate in the communication. The
visual channel can carry additional independent information or modify the information delivered
in parallel within the audio channel.

In this investigation we look at both verbal and non-verbal devices in the communication of
emotions and we investigate what specific means speakers employ to express an emotion. We
confine the investigation to the audio channel and focus on emotion-specific spectral and prosodic
changes and on verbal devices such as word choice.

The following section starts with a definition of emotions, a definition which allows us to
distinguish emotions from reflexes, drives, and moods. Following, we describe devices used to
communicate emotions. We first look into verbal devices at various linguistic levels such as
morphology, semantic, and syntax. We then cover non-verbal devices employed by a speaker to
signal an emotion: spectral changes and the modifications of prosodic parameters. The latter,
the modification of prosodic parameters, constitutes the focus of this investigation. As the
discussion shows, the communication of emotions relies on the modification of parameters which
serve other communicative functions as well. In particular this seems to be the case with prosodic
parameters which implement several other linguistic functions such as turn taking and syntactic
segmentation and disambiguation. In general, there is no reserved emotion-specific verbal or
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non-verbal cue which signals a certain emotion. What makes the communication of emotions
succeed nevertheless is the combination of cues given by the verbal and non-verbal parts within
a message.
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CHAPTER 2. 2.1. EMOTIONS

2.1 Emotions

This investigation is certainly not the place to go into a detailed discussion of emotions. However,
it is necessary for us to describe and explain how we use the word “emotion” in order to avoid
further misunderstandings during this investigation.

Following (Lazarus, 1994), we think that an emotional reaction comprises three components:

1. Experiences that include a cognitive evaluation of the current situation (appraisal).

2. Physiological reactions at various levels. For example, the sympathetic nervous system is
aroused when one feels angry or happy. Along with this arousal the blood pressure and
the heart beat increase. In contrast, the antagonistic parasympathetic nervous system is
aroused when we feel, for example, sad. The heart beat and the blood pressure decrease.
The arousal of both, the sympathetic and the parasympathetic nervous system has specific
effects on the speech production process, the details of which are given below.

3. Impulses to act in a certain way. For example, these action can impulses include fleeing,
shouting at someone, or attacking. We extend this list of possible action impulses by verbal
and non-verbal actions. We consider a particular choice of words or a certain syntactic
construction within an individual’s utterances to be an action as well. For instance, the
utterance of “Shut up!” certainly indicates through the choice of words and the imperative
word order an angry speaker. Compare this with an utterance of “Could you be quiet
please?”

The importance of these three components of an emotional reaction becomes clearer when
we use them to delimit an emotional reaction from, for example, sensorimotor reflexes, such
as the patellar or the pupillary reflex, or physiological drives, such as hunger. For a reflex,
releasing a specific sensory stimulus automatically triggers a fixed motoric response pattern,
not involving any cognitive activity. Thus a reflex utterly misses the cognitive evaluation of
the current situational context. In addition, within an emotional reaction, there exists only
action tendencies or impulses to act in a certain way; actions that do not have to be carried out
necessarily. For a reflex, in contrast, the response action is fixed and performed automatically.
Following the reasoning above, we classify distaste as a sensorimotor reflex to offensive substances
while we classify disgust as an emotional reaction.

While physiological drives do not dictate the corresponding action as directly as reflexes do,
drives still do lack the cognitive component which we consider essential for a reaction to be
emotional.

Looking at the other extreme, how can we distinguish between emotional reactions and moods
using the definition as given above? The main distinction between emotions and moods is the
lack of an evaluation of the current situational context in case of moods. Moods seem to refer
to larger segments of our life span and the reason for a particular mood, say melancholy, is not
related to a single, current situation but to a number of experiences dating back possibly for
quite some time. Also, moods seem to lack specific actions impulses.

We can look at emotions from several perspectives. For this investigation we adapt the
perspective of an outside observer of an emoting individual. Thus, we are interested in observables
that allow a reliable classification of an emotion expressed by some speaker.

13
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2.1.1 Observing Emotions

How can an outside observer tell someone’s emotional state? What are the features in someone’s
behavior which allow for a reliable classification? We can base our inferences on information
from three different domains: the social context, the physiological changes, and actions of the
emoting individual.

For this investigation we ignore the social context in which an emotional reaction takes place.
That is, we do not consider, for instance, environmental demands or constraints. Thus, we are
not modeling inferences of the form: the individual was socially insulted and is therefore angry.
Instead we focus on features based on physiological changes and actions as a consequence to an
emotional reaction.

When we attempt to determine an individual’s emotional state resulting from an emotional
reaction, we can consider physiological parameters such as automatic nervous activity, hormonal
secretion, brain activity, heart beat, skin resistance, or blood pressure. Most of these parameters
are not observable without extensive machinery and are highly inconvenient to the emoting
subject, and more appropriate for psychological studies of emotions (Katz, 1997). We do not
consider these parameters in our investigation.!

Some of the physiological reactions, in particular, the arousal of the sympathetic or parasym-
pathetic nervous system, have an effect on the speech production process. For example, the
arousal of the sympathetic nervous system tends to quicken speech and to increase the energy
distribution in the high frequency bands. In contrast, an arousal of the parasympathetic nervous
system lowers the speaking rate, the fundamental frequency and the overall energy distribu-
tion (Scherer, 1986). Spectral and prosodic properties in an individual’s voice, consequences of
physiological processes from an emotional reaction, are the first domain which we explore for
observables (Davis et al., 1996).

The second domain are action impulses of an emoting individual. Remember that the list of
possible actions which are responses to an emotional reaction is extended by linguistic actions.
We consider a particular choice of words or a certain syntactic construction a verbal action.
Thus, we investigate whether a certain word choice or particular syntactic constructions yield
information about someone’s emotional state.

There are several points we want to mention in this context. First, the arousal of the nervous
system is not a reliable sign for an emotional reaction in general. There might be other reasons for
its arousal. Second, note that the arousal of, say the sympathetic nervous system, is not specific
enough to infer a particular emotional reaction. We mentioned earlier that the sympathetic
nervous system is aroused when we are, for example, angry or happy. Third, the observation of
certain spectral and prosodic properties in an individual’s voice does not necessarily allow the
conclusion of a particular expressed emotion. As the discussion in the following sections shows,
particular prosodic parameters are modified by several linguistic functions such as segmentation
and accentuation. Nor does the absence of spectral and prosodic cues dictate that the speaker is
not experiencing a certain emotion. He or she might use verbal or different non-verbal means to
encode his or her emotion. The same caveats apply to verbal cues. The presence of certain verbal

IProgress in the development of computer hardware will soon facilitate some non-invasive assessments of
physiological data without any inconvenience to the human (Picard and Healey, 1997; Scheirer, Fernandez, and
Picard, 1999). However, physiological data exhibits a large variance and emotion detection algorithms based on
physiological data require specialized modeling techniques (Vyzas and Picard, 1998; Vyzas and Picard, 1999).
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material does not necessarily mean that the person is experiencing a certain emotion because
there are other reasons for using this material, for instance, certain speaking styles. Nor does the
absence of verbal cues necessarily determine that the speaker is not emotionally involved. Thus,
verbal or non-verbal cues looked at in isolation are highly unreliable indicators for an emotion.
It is the merging of spectral, prosodic, and verbal information which allows the communication
of emotions to succeed.

Because of this indetermination of emotional cues we think it necessary to investigate as many
verbal and non-verbal cues as possible with the underlying idea that the integration of all these
cues allows a reliable detection of an expressed emotion.

2.1.2 Categorical or Dimensional

So far we made two simplifications while discussing emotions. First, we assumed that it is only
possible to experience a single emotion at a given time. Second, we treat emotions as categorical.

We certainly do not deny that several emotions can occur at the same time. However, for our
investigations we assume that within a speech segment the speaker experiences a single constant
emotion. In fact, we try to segment our corpora to ensure that this is the case; see chapter 4 for
more details. The main reasons for assuming a single constant emotion in a speech segment are
the complications for the tagging, training, testing, and evaluation processes which would arise
otherwise.

By assuming emotions to be categorical we do not deny within-category variation. For in-
stance, we consider both annoyance and rage to fall within the anger category, even though they
occupy quite different points on the scale ranging from mild anger to intense anger.

There is a completely different way to look at emotions which denies them their categorical
status all together. In a dimensional view, emotions are clustered on the basis of their properties
along several dimensions (Lazarus, 1994). That is, emotions are thought of as having two or three
qualities and each emotion has a characteristic quantitative instantiation of these qualities. For
example, Watson and Tellegen (1985) assume two qualities: positive affect and negative affect.
Emotions which have a high quantity of positive affect comprise for instance peppy, excited, and
elated. Low quantities of negative affect include calm and relaxed, in contrast to nervous or
afraid which require a high amount of negative affect.

Given the fact that the following investigation focuses on the very basic emotions happy, sad,
afraid, and angry (Ortony and Turner, 1990), the question whether emotions should be treated as
categorical or dimensional does not really arise. However, for future studies of emotional speech,
involving the whole range of emotional variations, it might be promising to pursue a dimensional
approach.
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2.2 Verbal Cues

The influence of a speaker’s emotional state on his or her linguistic performance has not been
a major topic within linguistic research (Fiehler, 1990a). Until recently, linguistic research has
been primarily focused on written text — most of the time single sentences — for which the
notion of emotion is only marginally relevant. With the emergence of spontaneous language as
a central subject of linguistic research, the picture changed somewhat. However, research on
verbal cues in the communication of emotions is still very sparse (Fiehler, 1990a; Hiibler, 1998).
Existing linguistic research on the impact of the speaker’s emotional state is mainly concerned
with the distinction of neutral and emotional language. Emotion-specific linguistic choices are
not discussed in this research. Most studies describe linguistic devices signalling any kind of
emotional involvement and are agnostic about the actual underlying emotion. We think that the
main reason for not looking into emotion-specific verbal cues is that verbal information is highly
ambiguous without extensive context or non-verbal information. The actual emotion expressed
depends heavily on the context of the utterance and the way it is delivered, that is, the way
non-verbal cues accompany the verbal message. Consider, for instance, an utterance of (2.1).
The presence of the adverb so indicates some emotional involvement of the speaker.

(2.1) It is so warm!

But depending on the context and the way it is pronounced, (2.1) could either express someone
really satisfied and happy with the current temperature or someone really getting upset because
of the warm weather.

There is, of course, always the possibility of being very direct about the emotional state you
are currently in. That is, after some introspection you directly name the emotional state you are
in, for instance:

(2.2) I'm angry!

Following Hiibler (1998), we call this way of expressing ones emotional state explicit. The other
way, the way which concerns us in this investigation, is called implicit and refers to expressing
the emotional state by verbal cues, such as certain lexemes or certain syntactic constructions.

Affect sounds constitute a borderline case since they usually do not form a lexical unit. Under
affect sounds we understand phenomena such as moaning, crying or laughing. We do not review
their potential to indicate a particular emotion since we do not explore their impact in this
investigation. However, emotions can be expressed by a speaker through interjections which
we consider as lexical units. In the following we describe how a speaker can express his or her
emotional involvement by making certain choices offered by linguistic devices at various levels,
such as the morphological, the lexical and the syntactic levels.?

Probably the most obvious way to encode verbally an emotion other than explicitly naming
it, is to use certain lexemes. The use of interjections and exclamations indicates, in general, that

2We illustrate the following sections with several examples, some of which are drawn from the corpus comprising
movies and talk shows. This corpus is described in more detail in Chapter 4.
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the speaker is undergoing some emotional experience (Volek, 1987). Some examples are: Alas,
Shoot, Darn, Heck.

Other verbal cues make use of sometimes very drastic metaphorizations (Davitz, 1969). One
such metphorization — quite common in English — is given in (2.3).

(2.3) Son of a bitch!
(As Good As It Gets)

Other lexemes have certain connotations associated with them (Volek, 1987) and their mentioning

within an utterance advertises certain emotions. Some connotation-loaded lexemes are given in
(2.4) and (2.5).

(2.4) What are you jabbering/talking about?
(Volek, 1987)

(2.5) You are a spoiled rotten little brat!
(Kramer vs. Kramer)

Sometimes it is enough to intensify certain word meanings by grading adverbs or adjectives to
render the whole construction emotional, see (2.6)-(2.9) for some examples.

(2.6) schrecklich heifles Wasser
(terribly hot water)
(Mathesius, 1964)

(2.7) Something terrible has happened! (The Sweet Thereafter)
(2.8) I’'m in this fucking city! (The Sweet Thereafter)

(2.9) We ain’t got the slightest fucking idea what happened to Mr Blond or Mr Blue!
(Reservoir Dogs)

Certain morphological changes can also signal an emotional involvement of the speaker. These
cues seem to be more subtle than the lexical cues mentioned above. Morphological cues indicating
emotional involvement include diminutive and augumentative forms. An example is given in
(2.10) and (2.11).

(2.10) Mann - Ménnlein
man - small man
(Volek, 1987)

(2.11)  bacio - bacione
kiss - big kiss
(Volek, 1987)
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We also find intensification processes at the morphological level achieved by compounding. An
example is given in (2.12).

(2.12)  zuckersifl
sugar sweet
(Mathesius, 1964)

Intensification seems to be the prevalent tool to render verbal messages emotional. At the syntac-
tic level we find several intensification constructions as well. Two typical syntactic intensification
tools, the asyndetic and syndetic repetition, are exemplified in (2.13) - (2.16).

(2.13)  She is very very sweet!
(Mathesius, 1964)

(2.14) A long time ago, in a galaxy far far away ...

(2.15)  That makes me very very mad that’s why I came all the way up here.
(The Sweet Hereafter)

(2.16)  She cried and cried!

Other syntactic cues are more complex and involve the movement of a substantial amount of
verbal material. One such cue is the subjective word order which we illustrate with (2.17).

(2.17)  Where did that bitch disappear to, I would like to know!
(I would like to know where that bitch disappeared to!)
(Volek, 1987)

In addition, in (Hiibler, 1998) it was argued that grammatical devices such as the present perfect,
the periphrastic do, or the get-passive indicate an emotional involvement of the speaker.

In most of the cases the linguistic device indicating a speaker’s emotional involvement consists
of more language material than the neutral alternative. Using a more linguistically motivated
term, it seems that the emotional forms are marked with regard to the neutral alternative (Givon,
1991). Assuming that speakers do not tolerate synonyms in language (de Saussure, 1816; Clark,
1990), we have to attribute a special meaning to these choices. That is, the choice of the marked
form is interpreted to indicate the speaker’s emotional involvement (Hiibler, 1998).

As mentioned earlier, linguistic research’s recent focus on the communication of emotions
through verbal cues is descriptive, not yet formalized. This lack of a formalization prevents
a straightforward operationalization of this research. However, the research does suggest that
a data driven classification approach is promising. In our investigation we captured emotion-
specific verbal cues with a statistical approach which modeled the probability of a certain word
given a history of previous words and the emotion expressed by the speaker. The history of
previous words is normally confined to one or two to circumvent the sparse data problem and to
allow for a reliable estimation. With this constraint on the history, we could not hope to model
complex syntactic cues such as (2.13) or (2.17). Lexical and morphological cues, in contrast, do
not require a long history of previous words and could be modeled with this kind of probabilistic
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model. Finally, note that this probabilistic model is very similar to traditional language models
used in speech recognition systems (Jelinek, 1998).
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2.3 Spectral Cues

The role of spectral information in the communication of emotions was demonstrated in an ex-
periment by Lieberman and Michaels (1962), in which they resynthesized only pitch and intensity
information from the signals of emotional speech segments, thus removing basically all spectral
information. While the emotions of the original segments were recognized by human listeners
with an accuracy of 85%, this accuracy decreased dramatically to just 47% for the sentences in
which the spectral structure was filtered out and only prosodic information was preserved. Thus,
information other than prosodic information was also able to signal the emotions originally ex-
pressed in the sentences. Voice quality — for instance, its clearness or pleasantness — can carry
information about the vocal emotional expression. If changes in the voice quality correlate with
the expression of certain emotions than particular distributions of spectral energy might indicate
these very emotions.

Scherer et al. (1991) tried to approximate the spectral information responsible for commu-
nicating emotions by two numbers: first, the slope of the regression line of the energy decrease
from low to high frequencies and second, the percentage of the total energy below a cutoff level
of 635Hz. The results of this experiment showed some correlation of these parameters with
the expressed emotions. For example, anger seemed to be positively correlated with a very high
proportion of high frequency energy. In an additional experiment, Banse and Scherer (1996) com-
pared prosodic and spectral features to predict the emotion expressed in an utterance. Prosodic
features outperformed spectral features significantly. Frick (1985) claimed that the spectral bands
were narrower in the speech of grieving persons due to a high position of the larynx in the vocal
tract. Other studies found spectral changes to correlate with the expression of anxiety (Roessler
and Lester, 1976). However, most of the results mentioned above were based on very small data
sets and it is far from clear whether the findings transfer to other speech corpora.

Note that the above experiments exploring the systematic variations in vocal quality due to the
expression of certain emotions were based on differences in the short-term spectral representation
of a speech segment. One of the problems with using the short-term spectrum is that it does
not necessarily reflect the properties of the human auditory system. The human auditory system
has the best resolution for frequencies under 500Hz (Zwicker and Fastl, 1990). To model the
perceptually relevant aspects better, Davis and Mermelstein (1990) proposed to place filters
linearly at low frequencies and logarithmically at high frequencies. Furthermore, in several speech
recognition experiments Davis and Mermelstein (1990) demonstrated that mel-frequency cepstral
coefficients yielded superior performance than other parametric representations of the speech
signal. Cepstral coefficients are the result of a cosine transform of the real logarithm of the
short-term energy spectrum expressed on a mel-frequency scale (Davis and Mermelstein, 1990;
Schafer and Rabiner, 1990).

The circumstance that cepstral coefficients delivered superior recognition results than other
parametric representation of the speech signal motivated J.H.L. Hansen to explore the correlation
of these coefficients with the emotions expressed in a speech segment. (Cairns and Hansen, 1994;
Hansen, 1992; Hansen and Clements, 1993; Womack and Hansen, 1995; Womack and Hansen,
1996; Hansen and Womack, 1996). Hansen’s idea was to detect first the emotional state of the
speaker and, second, using information about the underlying emotional state of the speaker, to
improve recognition accuracy. For his experiments Hansen relied on the SUSAS database (Speech
Under Simulated and Actual Stress). This database had a relative small vocabulary; 35 aircraft
words made up over 95% of the database. The words were mono- and multisyllabic and were
highly confusable. The database comprised a total of 16,000 speech segments produced by 32
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speakers (male and female) covering five domains:

psychiatric analysis data (fear, depression, anxiety)

speaking styles (slow, fast, soft, loud, angry, clear, quotation)

speech produced in a noisy environment (Lombard)

dual tracking computer task

subject motion fear tasks (G-force, Lombard effect)

Womack and Hansen (1996) used mel-scale cepstral coefficients as input to their neural-network
based classifiers. In addition to these cepstral coeflicients, Hansen applied two additional features:
auto-correlation and cross-correlation

Classification results across 11 stress conditions ranged from 46% to 79% correctly classified
segments depending on whether the respective word was in the training vocabulary or not. Both
performance numbers were greater than chance. Using stress dependent hidden Markov model
recognizers, Hansen was able to improve the word accuracy when compared to neutral or multi-
style trained recognition systems.

In our investigation spectral information was also modeled by means of cepstral coefficients.
However, we investigated adaptation techniques to model emotion-specific spectral differences.
In addition, for our investigations different corpora were used comprising a substantially larger
than Hansen’s vocabulary and a greater number of speakers. Note also that Hansen’s classifiers
were speaker dependent while our classifiers are speaker independent.
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2.4 Prosodic Cues

The focus of this investigation lies on the detection of emotion-specific modifications of prosodic
parameters. Prosody, however, is not reserved for the communication of emotions but participates
in several other linguistic processes as well. The fact that prosody attends to several tasks
in parallel might lead to interferences, and makes the interpretation of prosodic observations
difficult. At the beginning of this section we give a definition of prosody and related terms followed
by a description of some of the linguistic functions of prosody other than the communication of
emotions. We conclude this section with a description of research emphasizing the role of prosody
in the communication of emotions.

2.4.1 Prosody

Prosody can be thought of as suprasegmental information achieved by the modification of seg-
mental acoustic parameters such as energy, fundamental frequency, and duration. Prosody is,
so to speak, “parasitic”, i.e. prosodic information is established by modifying acoustic features
which are already present in the signal for other reasons.

The essential difference between prosodic (suprasegmental) and acoustic (segmental) infor-
mation is that prosodic information can only be observed by considering a substantial context.
For example, a word accent can only be observed by considering the duration, energy, and fun-
damental frequency of segments in the context of the respective word (syntagmatic relation).
In contrast, acoustic information, such as the roundedness of a vowel, can be observed without
reference to neighboring segments (paradigmatic relation) (Lehiste, 1970).

Speech can either be described articulatorially, acoustically, or auditorially, depending on the
part of the communication process we are referring to. An articulatory description of speech is
mainly concerned with how speech is produced by the speaker. When we are concerned with the
perception of speech by a listener we describe speech via auditory processes, i.e. how the listener
perceives speech. Finally, acoustic notions refer to aspects of sounds which are independent of the
production or perception processes, and which can be measured automatically. It is important
not to confuse these notions. For example, pitch is an auditory term, that is, the perceived height.
It is analogous is to fundamental frequency (Fp) in terms of acoustics. In articulatory terms we
would say that pitch is increased or decreased by the tension of the vocal cords.

Note that there is not necessarily an isomorphism between these terms. The subjective
experience of pitch is primarily based on the fundamental frequency but both duration and
energy can modify this experience as well. The frequency resolution of the human ear is best for
frequencies under 500 Hz. Within this range humans are able to detect differences as small as
1 Hz. In addition, within this frequency range, the duplication of the frequency is experienced
as twice as high: Thus, the difference from 100 to 200Hz is experienced exactly as large as the
difference between 200 to 400Hz, an octave in both cases (Zwicker and Fastl, 1990). Thus, it
is not surprising that the fundamental frequency of human speech falls within this range. The
fundamental frequency typically ranges for men from 60 to 240Hz and for women from 130 to
400Hz. For childrem the fundamental frequency can exceed 500Hz.

Similar points apply to the subjective experience of loudness. The experience of loudness is
primarily based on the energy distribution within the signal but both duration and fundamental
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frequency have an impact as well (Zwicker and Fastl, 1990).

The importance of prosodic information within the communication process is evident when
we look at the difficulty humans experience when they try to understand non-natives trying to
speak their mother tongue. Most of the time, it is the distribution of stress and incorrect pitch
contours that render this speech unintelligible.(Cowie and Douglas-Cowie, 1996). Another area
to observe the importance of prosodic information is automatic speech synthesis. To a large
extent, the missing or poorly modeled prosody is the reason why synthetic speech sounds so
unnatural (Cahn, 1990; Murray and Arnott, 1993).

We can divide prosodic information into three classes corresponding to the spectral, the
energy, and the time dimension:

e timbre, quality, tone pitch,
e intensity,

e rhythm, speaking rate, silence.

As the following sections demonstrate, most of the time prosody relies on the modification of
all parameters in these three classes to implement a certain linguistic function. It is therefore
important to consider all three dimensions when investigating the role of prosody in human
communication.

2.4.2 Multi-Functionality of Prosody

Prosody is employed at various linguistic levels to implement a multitude of communicative
functions. The fact that prosody participates and interacts so actively at several linguistic levels
makes it difficult to recover a particular function given a particular prosodic observation. For
instance, an increased fundamental frequency can implement a yes-no question or indicate an
emotional speaker. We review briefly some of the communicative functions of prosody in the
following paragraphs to illustrate its multi-functionality.

One major task of prosody is to emphasize certain segments. The saliency of certain segments
is used to implement word stress or accents. For example, a given word can belong to more than
one part of speech. It is the distribution of the stressed syllable within the word which assigns it
a unique part of speech:

(2.18)  to import vs. the import

(2.19)  to insult vs. the insult
In other cases, the distribution of the stress distinguishes between homographs:

(2.20)  umfahren vs. umfahren
to run over, to drive round
(Kiefiling, 1997)
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(2.21) Tenor vs. Tenor
(KieBlling, 1997)

Other words can be used either as sentential adverbs or as cue phrases that can explicitly indi-
cate discourse structure. An example is the word incidentally which, when used as cue phrase,
indicates some kind of digression. Hirschberg and Litman (1993) claimed that pitch accent and
prosodic phrasing enable a distinction between these two usages.

Stress does not have to be confined to segments within a word. A whole word or phrase can
be accentuated to emphasize its importance in the current discourse state or to disambiguate
among possible semantic interpretations. Some examples for German are given below:

(2.22)  Ich ziehe Dresden Frankfurt vor
I prefer Dresden to Frankfurt

(2.23)  Ich ziehe Dresden Frankfurt vor
I prefer Frankfurt to Dresden

(2.24) Dann miilten wir noch einen Termin ausmachen
Then we need another meeting date.
Then we still need a meeting data.
(KieBlling, 1997)

In the first two sentences the distribution of the accent which can either be on Dresden or
Frankfurt identifies the accusative objects. In the last example, the interpretation of the sentence
depends whether the particle noch is accentuated.

Stressed segments appear to be more salient from their surroundings. It seems to be the case
that most prosodic parameters can be used to render a segment more salient. In general, the
salient segment is characterized and distinguished quantatively from surrounding segments, that
is, it is longer, louder, or higher (KieBling, 1997).

Prosody can also be used to segment speech, i.e. which group of syllables form a word (Barry,
1981). Some examples are given in 2.4.2.

(2.25)  Staubecken ws. Staub ecken
(KieBlling, 1997)

(2.26)  bewufter leben vs. bewuft erleben
(KieBlling, 1997)

Prosody also helps to segment and disambiguate at the syntactic level. Syntactic ambiguities
arise when a given surface string is assigned more than one valid syntactic structure. Depending
on the design and the size of the underlying grammar, the amount of syntactic ambiguity can be
quite large. Ambiguity is a difficult problem in every natural language processing system. For
spoken language, prosodic cues given in the utterance reduce this ambiguity. The utterance does
not simply consist of a homogeneous list of words but of words that are grouped into chunks,
prosodic phrases (Wightman et al., 1991). An example for English is given below:
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(2.27)  There was one bottle under the bridge and another on the park bench.
Andrea moved the bottle under the bridge.

vs. Where did Andrea move the bottle?
Andrea moved the bottle under the bridge. (Wightman et al., 1991).

The prepositional phrase under the bridge can either modify the preceding noun phrase the bottle,
or, as exemplified in the second case, the verb moved. Another example for syntactic ambiguity
is given below:

(2.28)  ja zur not geht’s auch am Sammstag
(KieBlling, 1997)

Without any prosodic information the above sentence has at least 36 different syntactic anal-
yses with different semantic interpretations. When using prosodic constituency for syntactic
disambiguation, the underlying assumption is that non-similar syntactic structures are realized
differently at the prosodic level. Syntactic structures and prosodic structures correlate to some
degree, i.e. the greater the prosodic break between two words the more the corresponding syn-
tactic constituents are separable; or conversely, the smaller the prosodic break the greater the
syntactic cohesion between the corresponding constituents. Note, however, that the correspon-
dence between the prosodic structure and the syntactic structure is not isomorphic. Several
prosodic features are used to indicate phrase boundaries: energy, fundamental frequency, du-
rations of preboundary segments, and the duration of of the pause between the phrases. The
fundamental frequency typically falls at the end of a major phrase and rises with the beginning of
following phrase (Lea, 1990). Another important cue to signal a syntactic or discourse boundary
is preboundary lengthening (Wightman et al., 1991) and a silent pause (Lea, 1990).

Pitch contours are also assumed to encode specific pragmatic meanings. A common example
is the distinction of statements and Yes-No questions. It is the final drop vs. the final rise of
the intonation which distinguishes between the otherwise possible identical utterances (Lehiste,
1970).

The pitch contour can also be used to discriminate among several pragmatic categories in
infant-directed speech. Katz, Cohn, and Moore (1996) used prosodic summary features and
the pitch contour to discriminate among three pragmatic categories (getting attention, showing
approval, and providing comfort).

This incomplete list of prosodic functionality illustrates that prosody interacts with basically
all linguistic levels. This fact makes prosody a very important subject of research. However, the
following caveats apply to research relying on the observation of prosodic features:

e Within a single utterance several prosodic functions can occur at the same time and are
implemented by the modification of the same prosodic parameters. This superimposition
of prosodic parameters complicates the attribution of a certain prosodic observation to a
particular function.

e Prosody relies on features that are also used in segmental information. Thus, we have to be
aware of the influence of segmental information on prosodic parameters. For example, low
vowels, such as /a/, have an intrinsic lower fundamental frequency than high vowels, such

25



2.4. PROSODIC CUES CHAPTER 2.

as /i/. Moreover, the duration of vowels is not only determined by the overall speaking rate
but also by the actual segmental context. For instance, vowels in the context of unvoiced
consonants tend to be shorter than in a voiced context.

e Prosody is to some extent optional. Its functionality within an utterance or discourse can
be implemented by other linguistic devices.

e Prosodic parameters interact. The realization of a certain prosodic function can be achieved
by the modification of different prosodic features. For example, a word accent can be
implemented by a either increased intensity, pitch, duration, or a combination of all three.

Besides the linguistic functions listed above, prosody also implements several indexical func-
tions that indicate the age, the sex, regional and social upbringing, and other traits. Other
additional functions of prosody comprise the signalling of irony, doubt, or rejection. In the
following sections we consider one of these additional functions of prosody: the expression of
emotion.

2.4.3 Prosody and Emotions

In order to demonstrate the role of prosody in the communication of emotions, Scherer (1971)
asked actors to portray certain emotions in their speech. Subsequently the recorded speech was
filtered by a high pass filter to eliminate all spectral energy above 400Hz. This method effectively
filtered out the verbal meaning but preserved many of the prosodic features. Listeners were still
able to recognize the underlying emotion from a list of possible emotions with a better-than-
chance accuracy.

The experiment above is interesting in several ways. First, it raises the question of how to
collect emotional speech. Is it valid to use actors, or are there other, more realistic ways to elicit
and collect emotional speech? Second, if it is indeed the case that by the modification of prosodic
parameters one can communicate emotions as suggested by this very experiment, what prosodic
parameters are modified? And, third, are there emotion-specific prosodic parameter settings? In
this section, we try to find some preliminary answers to questions number two and three, that
is, what are the relevant prosodic parameters in the communication of emotions and are there
emotion-specific prosodic parameter settings which allow the detection of particular emotions?
The issue of data collection is handled in chapter 4.

The experiment by Scherer (1971) as outlined at beginning of this section relied on the same
experimental format found in nearly all studies investigating the role of prosodic parameters in
the encoding of emotions: certain prosodic features were removed from the signal by certain
filters and subjects were asked to detect the underlying emotion of the thus altered utterance.
The most simple of these experiments involves whispered speech. The simple fact that whispered
voice also communicates emotions forces us to assume that it is not pitch alone which encodes
the underlying emotion of the speaker (Knower, 1941; Tartter and Braun, 1994). Remember that
whispered speech does not involve voicing.

Other experiments employed more extensive machinery to control certain prosodic param-
eters. For example, Lieberman and Michaels (1962) used vocoders to control the parameters
of intensity and fundamental frequency. They found that not only fundamental frequency but
also the intensity contributed to the encoding of an emotion. Uldall (1960) added a synthetic
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pitch contour to four neutral sentences which were originally spoken by humans but were now
reproduced through a vocoder. Uldall found that intonation contours carried information about
the strength of the emotion, its friendliness, and about the authority relationship between the
speaker and the hearer.

In general, it can be observed that the deprivation of prosodic information from an utterance
negatively correlates with the accuracy its underlying emotion can be detected. However, the re-
maining acoustic information in the utterance still allows a better-than-chance recognition of the
underlying emotions. All major prosodic features seem to have an impact on the communication
of emotions.

The above experiments show that there is strong evidence that prosody plays an essential role
in the communication of emotions. This leads us to the next question, are there specific prosodic
parameter settings that correlate with certain emotions?

The studies on emotion-specific prosodic parameter settings do not yield a very coherent
picture. This is largely due to the differences in the methods of data collection, the number of
emotions and subjects used in these studies. However, the studies do converge on some trends
of emotion-specific prosodic parameters which we describe in the following sections. We confine
the following description to the emotions studied in our own experiments.

Most studies extracted global prosodic features, i.e. features pertaining to the whole utter-
ance, and tried to correlate these features with the underlying emotion. The shortcoming of
these summary features to characterize emotions became evident by a simple experiment: pre-
senting the utterance backwards reduced substantially the recognition accuracy from 89% to 43%
(Knower, 1941). The inversion of the utterance left the prosodic summary features untouched
while the contours of the fundamental frequency and intensity were changed. Thus, the contours
of the fundamental frequency and intensity do carry information relevant for the decoding of
emotions. Based on his studies, Scherer (1974) suggested that falling pitch contours correlate
with pleasantness. Rising contours, on the other hand, suggest surprise or fear. Note however,
that there might be other reasons for a rising or falling pitch contour, see section 2.4.2 above for
more details.

Prosodic Features of Happiness

Happiness is often described as having gentle contours and some regularity (Davitz, 1964; Fonagy,
1978). The mean, range and variability of both fundamental frequency and intensity increases
when compared to neutral speech.

Prosodic Features of Sadness

When compared to neutral speech, sad speech shows a decrease in the mean of the fundamental
frequency, and a very low mean intensity (Davitz, 1964). Moreover, the range of changes in
the fundamental frequency is very small (Fonagy, 1978). Another important prosodic cue in the
communication of sadness is a slow speaking rate, involving extended intra- and inter-utterance
pauses (Fairbanks and Hoaglin, 1941; Siegman and Boyle, 1993)
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Prosodic Features of Anger

The expression of anger involves an increase in the fundamental frequency, high variability and
range. The intensity of angry speech also increases when compared to neutral speech (Frick,
1985).

Prosodic Features of Fear

Due to the difficulty of collecting authentic fearful speech there are only a handful of studies
considering this emotion. Fonagy (1978) reported an increased fundamental frequency. Also
the range and the variability of the fundamental frequency increase. Intensity also increases
compared to neutral speech.

2.4.4 Automatic Detection of Emotions

The research on the automatic detection of emotions using prosodic features is quite limited. We
think that the small number of studies is related to limited availability of speech corpora. Not
surprisingly, studies which investigate the relation of emotions and prosody and which do not
require emotional speech corpora are more frequent. There is, for example, a substantial body
of research on the synthesis of emotional speech focusing on prosodic parameters (Mozziconacci
and Hermes, 1999; Mozziconacci, 1998; Vroomen, Collier, and Mozzicanacci, 1993; Murray and
Arnott, 1996; Murray and Arnott, 1993; Heuft, Portele, and Rauth, 1996; Sato and Morshiama,
1996; Cahn, 1990).

Some studies, however, explicitly used machine learning techniques to automatically classify
the emotion expressed by a speaker using prosodic information. Dellaert, Polzin, and Waibel
(1996) applied several statistical pattern recognition techniques for the classification of emotional
speech. To model the contour of the fundamental frequency, a smoothing spline approximation
was used and combined with a majority voting of subspace specialists. The classification accuracy
on the Woggles corpus was comparable to human performance. See also section 4.2.

Amir and Ron (1998) used a corpus consisting of utterances of 24 subjects (12 male and 12
female). The subjects were asked to recall a past event which evoked one of the five emotions:
happy, angry, sad, afraid, and disgusted. The subjects were asked to talk about that event and
to participate emotionally. For the automatic classification of the emotional content, prosodic
features were extracted from the speech samples. The interesting aspect of this investigation
was that the classification system computed a fuzzy membership index for each emotion. This
approach allowed in principle to model intensities of a particular emotion and the superimposition
of several emotions.

Preliminary studies by Thymé-Gobbel (1998) on English and Spanish telephone data sug-
gested that prosodic features could also be used to assess the emotions expressed by the speakers
participating in telephone conversations. Other studies tried to integrate both visual and prosodic
information to detect emotions (Chen et al., 1998).

We think that the exploration of cues signalling a certain emotion has to be based on a
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substantial amount of data to prevent idiosyncrasies of speakers or utterances from being con-
sidered as reliable cues. For instance, (Tischer, 1993) based his investigation of prosodic features
signalling emotions on the sentence:

(2.29)  Sag das nochmal. Ich kanns nicht glauben. Was fiir ein Tag.
Say it again. I can’t believe it. What a day.

This sentence was uttered by four speakers in different emotion-provoking story contexts. As
mentioned earlier in this chapter, prosody participates in the implementation of several linguis-
tic functions other than the expression of emotions. Investigating the role of prosody in the
communication of emotions on such a small data space runs the risk of producing idiosyncratic
prosodic features which most probably fail to discriminate the expressed emotion in an utterance
of a different sentence by a different person. Thus, our investigation is based on four corpora
constituting the largest collection of emotional speech we are aware of.

In addition, we think that emotions are not necessarily expressed solely by acoustic cues but
that additional cues can be given by certain word choices or syntactic constructions. Therefore,
our approach explored — in contrast to the approaches as sketched above — in parallel spectral,
prosodic, and verbal information for cues to communicate emotions. We modeled verbal infor-
mation with emotion-specific language models. Spectral information was modeled by means of
cepstral coefficients and emotion-specific adaptation. The emphasis of this investigation, how-
ever, lay on the study of those prosodic features which allowed a robust classification of the
expressed emotions across speakers, utterances, and corpora. We explored prosodic features
pertaining to the whole utterance, for instance, the mean of the fundamental frequency or the
variance of the intensity within an utterance. In addition, we explored prosodic features which
referred to smaller segments such as phones. One such features was, for example, speaking rate
which we modeled with emotion-specific durations of vowels. We also explored the combination of
spectral, prosodic, and verbal information to see whether this combination resulted in an overall
improvement of the detection of the expressed emotions in some utterances.

In a possible application, the detection of the emotion expressed in some utterance would
probably be combined with a speech recognition module and additional subsequent natural lan-
guage processing modules. Because of the interdependencies of the expressed emotion with the
acoustic and verbal properties of the utterance, we want a tight interaction of the emotion de-
tection process with these modules. For instance, in one experiment we showed that the word
accuracy depended on the emotion expressed in an utterance. In addition, expressing a certain
emotion also changes the probability of certain words being uttered. Moreover, since prosodic
information was a reliable indicator for the emotion expressed in some utterance, prosodic infor-
mation should be part of this tight interaction as well. In the next chapter we introduce a hidden
Markov model architecture which allows the direct integration of prosodic information into the
speech recognition module. Thus, in principle, the recognition of speech and the detection of the
emotion expressed by spectral, prosodic, and verbal cues become one integrated process by using
this architecture.
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Chapter 3

Modeling Verbal and Non-Verbal
Information

In this chapter, we specify the underlying modeling assumptions to capture emotion-specific
verbal and non-verbal information. We describe in the first section our approach to model
emotion-specific verbal cues. Intuitively, we computed the probability of certain word combina-
tions depending on the expressed emotion. We used back-off language models to compute these
probabilities. The second section describes our approach to model emotion-specific prosodic
information. Because of the interdependencies of spectral and prosodic information we mod-
eled these two domains with the same underlying modeling approach relying on hidden Markov
models (HMM). We developed a hidden Markov architecture which allows to summarize atomic
HMM states into what we call suprasegmental hidden Markov states. The atomic states in this
suprasegmental hidden Markov models (SPHMM) were used to model spectral (segmental) infor-
mation. The suprasegmental states, having access to the overall time spent in their constituting
states, were used to model prosodic events. Remember that prosodic events cannot be observed
at the segmental level. See section 2.4 for details. Instead of training emotion-specific spectral
models from scratch, we adapted existing spectral models to maximize the use of the limited
amount of available emotion-specific training data. The description of this adaptation procedure
is given in the last section of this chapter.

Note that the modeling assumptions made in the following sections are quite general. In
fact, there are no references to emotions in the respective model definitions. In order to capture
emotion-specific verbal and non-verbal information, we exposed these models to emotion-specific
training data. Thus, we derived models which were only trained, for instance, on data which
expressed sadness. For the purpose of testing for the emotion expressed in some utterance, we
computed the likelihoods that this utterance was generated by emotion-specific models and took
the highest likelihood to be indicative of the emotion expressed.
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3.1 Modeling Verbal Information

The description of verbal information within the communication of emotions in section 2.2 shows
that the phenomena are distributed among several linguistic levels ranging from morphology to
syntax. The adequate modeling of all these phenomena presumably requires a full blown natural
language processing system comprising inter alia lexical and syntactical analyses. However,
modeling verbal phenomena by relying on such complex natural language tools was beyond the
scope of this investigation. Instead we made use of a simpler technique which was proven to be
a successful approximation for a variety of verbal phenomena. Language models represent the
probability, P(W), that certain words or strings of words, W = wyws ...wy, occur. Language
models have been shown to effectively constrain and guide acoustic hypotheses within speech
recognition systems (Jelinek, 1998). Language models are also capable of capturing idiosyncrasies
of different text corpora and can be used to discriminate among them. For example, language
models can be used to detect topics (Seymore and Rosenfeld, 1997b; Seymore and Rosenfeld,
1997a) or to infer discourse structure (Finke et al., 1998).

We can formulate P(W) using Bayes’s rule as

N
P(W) = HP(’IU, | uwsy .. .’11),'_1) (31)

where P(w; | wyws ... w;_1) is the probability that word w; follows words wyws ... w;_;. Esti-
mation of P(w; | wiws ... w;_1) is impossible even for moderate values of i due to sparse data.
Therefore in practice, different word strings wyws ... w;_;1 are treated as equivalent. A common
mapping is to treat all word strings with identical last two words as equivalent:

P(W) = H P(wz | wi,lwi,z). (3.2)

This kind of language model is referred to as a trigram. For the estimation of the probabilities
of trigram language models, we count the number of times w3 follows wjws in a given training
corpus divided by the times the word pair w;ws occurs in the same corpus:

C(’IU1UJ2’11)3)

C(wrws) (3.3)

P(UJ3 | 'IU11IJ2) =

where C' is a function counting the occurrences of its argument in the training corpus. Language
models based on equation 3.3 face the problem that they assign zero possibility to trigrams
which were never encountered within the estimation phase. There are several ways around
this problem. For instance, probabilities of bigrams and unigrams can be incorporated into
equation 3.3 by linear interpolation. For this investigation we use a different approach and apply
a language model which is known as the back-off language model (Katz, 1987). Intuitively we
make P(ws | wyws) depend on C(wywaws). If wiwsaws occurs in the training set frequently, then
the relative frequency is a reasonable estimation. In case there are only a very limited number
of occurrences of wjwyws within the training set, we back-off and approximate the trigram
probability by the bigram probability of wows and so on:

Lppuzva) - if Clwnwywy) > K
P(’UJ3 | ’11)111)2) = aQT(w3 | ’U)Q) if1< C(UJ11UQUJ3) <K (34)

BP (ws | wy)  otherwise,
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where o and 8 have to be chosen to normalize P(ws | wyws), K is a threshold, and Q7 (ws | wyws)
is a Good-Turing-type function. Note that equation 3.4 constitutes a recursion with the call of
P(ws | wy). For a detailed discussion of back-off language models consult (Jelinek, 1998). For
our experiments, we used the language model toolkit CLAUSI developed by Klaus Ries (Ries,
1997). Note that back-off language models relying on a Good-Turing-type function do not require

a development set to estimate the parameters o and .

There are no references to emotions in the above formulas. In our experiments we made
language models also to depend on the expressed emotion by training them on respective subsets
of the training corpora:

P(ws | wiws, expressed emotion). (3.5)

Thus, if a certain phrase occurs in one of these sets more often than in the remaining sets, other
things being equal, the respective language model assigns a higher probability to this phrase than
the language models trained on the remaining sets. In order to detect the expressed emotion in
some utterance we computed the probabilities that the utterance was produced by each of the
emotion-specific language models and then took the highest probability to indicate the expressed
emotion.
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3.2 Modeling Prosodic Information

We mentioned in section 2.4.1 the interdependence of prosodic (suprasegmental) and spectral
(segmental) information. The influence of segmental on prosodic parameters can be divided into
two classes. The first class consists of cases in which the influence is directly related to the
underlying phone. For instance, low vowels have an intrinsic lower fundamental frequency than
high vowels (Beckman, 1986; Lehiste, 1970). The second class comprises cases of coarticulation.
For instance, vowels in a context of non-voiced consonants tend to be shorter than in a voiced
context (Kieflling, 1997). Several linguistic functions of prosody have an impact on spectral
information (Campbell, 1995). Consider for example, the realization of an accented word which
can be achieved by increasing the energy and the fundamental frequency. Remember also that
prosodic information is implemented by the modification of segmental parameters.

Because of these interdependencies of prosodic and spectral information we developed an
HMM architecture which models both spectral and prosodic information. However, in order to
integrate prosodic information into a hidden Markov model, we had to overcome two inherent
problems of the traditional HMM architecture (Ostendorf, Digalakis, and Kimball, 1997):

1. State durations are implicitly modeled by a geometric distribution.

2. Features are confined to be based on frame-based observations.

Features relying on observations confined, for instance, to 10ms frames, do not yield information
about prosodic events. Thus we cannot observe prosodic events at the segmental level. In order
to model prosodic events we have to be able to observe the behavior of prosodic parameters over
several frames spanning for example a phone, syllable, or word. In addition, if we want to observe
the behavior of prosodic parameters over the duration of, say, a phone we have to make sure that
phone durations are assessable and modeled accurately.

In the following sections we show in more detail why hidden Markov models show these two
weaknesses. We specify a new suprasegmental hidden Markov model (SPHMM) architecture
which tackles the problematic duration modeling and the frame based extraction of features in
traditional hidden Markov models. This new architecture permits the summarization of several
atomic states within a hidden Markov model into what we call a suprasegmental state. These
suprasegmental states allow the consideration of the observation sequence spanned by their con-
stituting atomic states, thus overcoming the frame based extraction of features in atomic hidden
Markov models. In addition, because suprasegmental states know how many time steps were
spent by their constituent states, duration can be modeled by non-geometric parametric distri-
butions.

The next section introduces the basic architecture of HMMs and its underlying procedures
and describes the modifications to this architecture which have been proposed to address its
deficiencies as mentioned above. The final sections explain the extensions to HMMs which are
required to incorporate suprasegmental states in the overall architecture and processing.
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3.2.1 Hidden Markov Models

A specification of a hidden Markov model requires the number of states, N, and three probability
distributions A, B, and 7. A hidden Markov model is characterized by:!

1. The number of states, IV, where individual states are labelled as 1,2,..., N. An individual
state at time ¢ is denoted by g;. The notation g} is used as an abbreviation for ¢; = with
1<i<N.

2. A = ay; is a state-transition probability distribution where

3. m = m; is the initial state distribution where m; = P(g}) for 1 <i < N.

4. An observation sequence is referred to by O = (0102 ...0r) where T is the number of
observations in the sequence.

5. B = b;(0) is the observation probability distribution where b;(0) = P(o; | ¢}), 1 <t < T,
defines the symbol distribution in state j for j =1,2,..., N.

1 1 1 y—1
bilo) = — o alomu)'Cy(o—py) 3.6
AU AT o0

o is the n-dimensional observation vector,
p; is the n-dimensional mean vector, and

C; is the n x n covariance matrix.

6. A state sequence is referred to by ¢ = (¢1¢2 .. .qr). T is the number of observations in the
sequence.

Following Rabiner and Juang (1993), we use A = (4, B, 7) to refer to the complete parameter
set of a hidden Markov model. In order to apply an HMM as specified above we have to find a
solution for the following problems:

e Given a sequence O and a model A we want to compute the probability of the observation
sequence given the model:

P(O|N).

e Given an observation sequence O and model A we want to find the most likely state sequence
9192 ---4qT-

e How can we maximize P(O | A) by adjusting the model parameters \?

We compute P(O | A) with the forward/backward procedures (Rabiner and Juang, 1993). Be-
cause of the similarity of theses two procedures we confine ourselves to the forward procedure in

1The description of the theory of hidden Markov models in this section closely follows Rabiner and Juang
(1993).
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the next section. We use the Viterbi algorithm in order to compute the most likely state sequence
given an observation sequence O and model parameters A. We describe the Viterbi algorithm
after the specification of the forward procedure. Note that the maximization of P(O | A) by
adjusting the model parameters A is mainly based on the forward/backward and the Viterbi pro-
cedures. Consult (Rabiner and Juang, 1993) for details. Note also that the forward/backward
procedures and the Viterbi algorithm have to be adjusted to accommodate prosodic observations
in an SPHMM.

The Forward Procedure

The forward procedure is used to efficiently compute the probability of P(O | A). We define
(i) = P(0103 ...04,q} | \), (3.7)

i.e. the probability of observing the partial sequence 010 ...0; and being in state i at time ¢
given the model A:

Initialization:
a1 (i) = m; - bi(01), 1<i<N (3.8)
Induction:
N
a1(f) = lz (1) 'aij] “bj(og1),  1<t<T -1, (3.9)
i=1
1<j<N.
Termination:
N
PO XN =) ar(). (3.10)
i=1

The Viterbi Algorithm

The optimal state sequence ¢ = (g1¢ - - . gr) for the observation sequence O = (0102 ...or) given
a model A can be computed by the Viterbi algorithm. We define the quantity

5:(i)= max P(qiga,---q—1,q,0102...0; | ) (3.11)
q1,925.--qt—1

as the highest probability along a single path which ends in state ¢ at time ¢ accounting for the
first ¢ observations. We transform equation 3.11 into 3.12 using induction:

0+1(J) = [lgli%XN 6¢(2) - aiz] - bj(o441)- (3.12)

Keeping equation 3.12 in mind, the Viterbi algorithm can be specified with the following four
steps where the array ¢;(j) is used to store the argument maximizing equation 3.12 at time ¢.
In the last step of the Viterbi algorithm, the array 1);(j) is used to recover the state sequence.
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Initialization:
01(i) =m; - bi(01),1<i< N (3.13
(1) =0,1<i<N 3.14
Recursion:
03) = [[max 81 () - a]-bylo),  2<<T, (3.15)
1<j<N.
W) = g max a(i) o) 2SS, (3.16)
1<j<N
Termination:
pP* = [lrsnianN or()]. (3.17)
gy = arg 1rsnizgv[(ST(z)]. (3.18)
Recovering the state sequence:
q;; :¢t+1(QI+1): t:T—l,T—Z,...,l. (319)

In order to be applicable to SPHMMs, these specifications of the forward procedure and the
Viterbi algorithm have to be modified. Section 3.2.2 describes these modifications. Since the
modeling of duration is essential for the SPHMM, we describe in the next section alternative
approaches to model duration within hidden Markov model architectures. The development of
the modeling assumptions of SPHMMs is based on these approaches.

Duration Modeling

Before we describe our approach of modeling durations in SPHMMSs, let us have a look at how
duration is modeled within conventional HMMs. In a fully connected hidden Markov model du-
ration is modeled by self-transitions. It is interesting to look at the inherent duration probability
density P(d;) associated with some state ¢ with a self-transition coefficient a;;:

P(d;) = (@) ' (1 — a) (3.20)

which gives us the probability that the hidden Markov model will stay in state ¢ for d consecutive
times. That is to say, duration is modeled by an exponential function (geometric distribution),
seemingly a poor estimate (Rabiner and Juang, 1993). A straightforward extension to this model
is to deviate from a fully connected transition matrix and specify topologies in which certain
states are obligatory (Jelinek, 1976; Bakis, 1976). Other approaches rely on the idea of imposing
a fixed lower or upper bound on the duration of some segment. For instance, Gupta et al. (1992)
implemented a minimum duration constraint for phones. Only state sequences through a phone
which meet the minimum duration constraint of the respective phone are valid.

Levinson (1986) and Rabiner and Juang (1993) set the self-transition coefficients to zero and
model durations explicitly as a duration density. Let us have a brief look at the definition of
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the forward probabilities in this framework because it bears resemblance to our definition of
SPHMMs in the next section. Let P(d | ¢*) be the probability of staying in state ¢ for d time
steps and let D be the maximal number of time steps you can spend in a state. The forward
variable oy (7) is defined as follows:

ay(i) = P(010z . .. 04, the stay in ¢ ends at t | )). (3.21)

The inductive definition of a4 (j) is as follows:

t

D
() =YY o a(i)-a;-P@d]j)- J[ bilos), (3.22)

i=1 d=1 s=t—d+1

The additional ZdDzl sums over all possible durations of ¢/. Note that for a given duration d we
have to consider the a(i) which was computed d time steps before the current time ¢, i.e. a();_q4-
The final product, Hizt* a4l b;(0s), computes the probability to observe the last d observations
in state ¢/. Note the explicit state duration modeling achieved by P(d | j), i.e., the probability

of staying in state j for d consecutive time steps.

In order to incorporate explicit state duration densities can improve performance significantly
(Rabiner and Juang, 1993). At the same time, the computational effort increases quadratically
with D? /2 and the required storage increases by a factor of D. In a simple semi Markov model we
have to compute D additional parameters for each state. In order to decrease this large number
of parameters Juang and Rabiner (1985; Russel and Moore (1985) introduced parametric state
duration densities.
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3.2.2 A Suprasegmental Hidden Markov Model

Keep in mind that the modifications to the hidden Markov model architecture as discussed in
the previous section are still confined to extensions at the state level. That is, durations and
feature extractions are still modeled at the hidden Markov state level which models segmental, not
prosodic (suprasegmental) events. It is common practice to construct phone models with several
HMM states to account for idiosyncratic acoustic properties at the beginning, the middle, and
the end of a phone (Zhan et al., 1997; Zeppenfeld et al., 1997). Once the final state of a phone
model is reached, we cannot access information from its initial state because of the Markov
assumption. In particular, by leaving the final state we do not know how much time was spent
in the phone model of which it was a part. However, having access to the duration of larger
segments, such as phones, syllables, or words, is essential for the extraction and integration
of prosodic observations into an HMM architecture. In the following sections we develop a
suprasegmental hidden Markov model (SPHMM) architecture which allows to summarize atomic
states into what we call suprasegmental states. These suprasegmental states have access to the
overall time spent in their constituting states and, thus, allow the observation of prosodic events.

The following specification of an SPHMM is confined to one additional level of suprasegmental
states in order to keep the notational overhead to a minimum. However, the architecture and
the corresponding procedures allow multiple levels of suprasegmental states at the same time.
Thus, it is possible to model prosodic properties of phones, syllables, and words in parallel with
this architecture. The basic idea of a suprasegmental hidden Markov model is given in Figure
3.1 where the states ', §°, and §° constitute a suprasegmental state g where g' is the unique
initial and g° the unique final state. Let Q; denote the set of all atomic hidden Markov states.

Figure 3.1: Simple Suprasegmental Hidden Markov Model (SPHMM). The suprasegmental
state g' comprises the atomic hidden Markov states §', §°, and §° where §' is the unique
initial and g° the unique final state.

We require that the set of all suprasegmental states, QQ2, forms a partition of QJ;. We use Na
to refer to the number of suprasegmental states and use double bars to mark these states as
suprasegmental states:

Q:={7"7...7"}. (3:23)
Q=3 Ug...ug. (3.24)

39



3.2. MODELING PROSODIC INFORMATION CHAPTER 3.

V&, 7" € Q2 if F NGY =0 then k # k' (3.25)
1< kK < Ns.

We also require that each suprasegmental state has a unique beginning and end state which we
indicate by the superscripts s and e. In addition, we require that the last atomic state within
a suprasegmental state has no self-transition. We use D, to represent the maximal number of
time steps you can stay in a suprasegmental state.

The probabilistic model is very similar to the semi HMM architecture as described above
with equations 3.21 and 3.22. The main difference is that the explicit duration probability is not
defined for atomic first level states, as in the semi model, but for suprasegmental states. Similar to
a semi Markov models, the segmentation is uniquely specified by a sequence of segment durations
Df = {dy,...,ds}. Note that

> d, =T. (3.26)

Given a state sequence of atomic HMM states g, ... gr and a corresponding suprasegmental state
sequence g, ...qg, the probability of observing o; ...0, can be defined as follows where Ds
quantifies over all possible segmentations:

(3.27)
P(oy...or |Gy - - Q7+ Qy - --Tg)
= ZP(OI---OT;dl---dS|q1---qT;§1---§s)
DS
= > Plor...or|dy...ds, T ... Tr, Qs - --Ts)
DS
P(dr..ds | Ty T T - - Ts),
where
(3.28)
P(Ol"'OT|dl"'dS7ql"'aT751"'ES) =
S
H P(0t;4+1 -+ 0t;d; | dis Qg1 -+ Tooa; > Ti)>
=1
i—1
wheretiZZdj ifi>1and d; ifi =1,
j=1
and @}, q,..., and @, 4, € @G>
and where
s
P(dy...ds|Q .- 9,0 ---35) = ] Pldilqy) (3.29)
i=1

Thus, equation 3.28 defines the probability of observing o;...or given the state sequences
Gy -.-@p and @, ...Qg in which we spent d; time steps in g, and d2 time steps in g, and so
on. The constraint on ¢; ensures that all observations are accounted for in the right order by the

respective states. With g;, ;,..., and @}, 4. € G’ we make sure that we stay the correct number
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of time steps in the suprasegmental state g* which we had entered at time t; + 1 with the unique
start state g° and left after d; time steps with the unique end state g°. With equation 3.29 we

define the probability of a segmentation d; ...ds given state sequences g, ...qp and g ... qg.

In the following we explain the forward variable o which we defined earlier for traditional
hidden Markov models, see equation 3.7, and for semi Markov models, see equation 3.21. The
idea behind the following specification of the forward variable for SPHMMs is to specify the
probability of leaving some suprasegmental state at time ¢ in terms of the probabilities of leaving
its corresponding unique end state at time . We, therefore, define two different forward variables,
@; and @, where the bars indicate whether « is defined for atomic or suprasegmental hidden
Markov states. The inductive definition of @& is outlined below where D, indicates the maximal
number of time steps possible in a suprasegmental state:

(3.30)
N2 Do
= =i = —l =9 —7J, —d 1,t —
@) = DY G-a@)ag g PUAIT) @,
i=1 d=1
where
q
and ¢° and g° are the unique start and end states

¢ is the unique end state of the suprasegmental state g',

of the suprasegmental state ¢/ and 1 <t < T.
The definition of @ is given in equation 3.31 below.

Thus, the probability of observing ¢ events oy ... 0; and the stay ends in the suprasegmental state
@’ comprises four main parts:

—_

. the probability of observing t — d events by leaving suprasegmental state g,

2. the transition probability from the unique final state qg’_ 4 of suprasegmental state g¢ to the
unique initial state g;_,,; of suprasegmental state 7,

3. the probability of staying in g’ for d time steps, and

4. the probability of observing the last d events with the state sequences g;_;,,...q; and

=j =]
Tp_gyr---G¢-

We define @)t (i) as:
abteote (@) = Ploy, .. .oy, | 7 -.-a), (3.31)

i.e. the probability of observing os, _4...0;, in the suprasegmental state g* starting in the start
state g° at time t5 and ending in the end state g° at time ¢, where §° and g° are the unique
initial and final states of suprasegmental state g*. Note that only these initial and final states are
fixed and the only constraint applying to the states g, ,; ..., _; is that they have to belong to
suprasegmental state g°. The computation of this probability is very similar to the computation
of the genuine forward variable as given in equations 3.8-3.10, except that the observation starts
at time ¢, and ends at time t,. Moreover, only states of the suprasegmental state g* can be used
to account for the observation sequence.

The inductive definition of @**+t<(g¢) is as follows:
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Initialization:
—kytsyte . — Tri : b’l(ots) iﬁ tS = 17
@) = { b;(os,) otherwise, (3.32)
Vgt € ¢*.
Induction:
arlite()= | S0 @bt ay | bjlosr),  t<t+1<t,  (333)
qi c Ek
7 eq"
Termination:
Plog, ..o, [ N) = D @'t (i). (3.34)
7 et

Unfortunately, the complexity involved in computing &, (¢”) is immense. First, note the additional
sum over Ds in equation 3.30. Second, the forward variable @}"**** (-) is strictly local and has to

be computed again for every d in equation 3.30.

Let us assume the special case in where we have an one-to-one mapping between atomic and
suprasegmental states. In particular, we require ¢* = ¢¢ for 1 < i < N. That is, N = N. In
addition, we require that the maximal number of time steps in a conventional HMM state and
a suprasegmental state are indentcial: Dy = D. The definition of the forward variable, ay(g)
reduces to equation 3.22 as defined for a semi Markov model:

(3.35)
. N2 Do ] , ,
@) = D> @-a@) apg.-P@A|T) Pora---06,T_g--- T a--- 1)
i=1 d=1
Na D .
= D > @-a@)-agy - PA|T) - Plor—a---06,T_q---T)
=1 d=1
because ¢ =7 and @ = §
Na D2 . t
= Z Zat—d(ql) “Oge'gs P(d | qi) ’ H bj(OS)
i=1 d=1 s=t—d+1
because §f_; = =7, =4},
N D ‘ t
= > > @a@)-a;-Pd|g)- ][ bilos)
i=1 d=1 s=t—d+1

because Np = N, Dy = D, §" =7', and " = @'

The increase in complexity and storage requirements for a SPHMM for the implementation of the
forward procedure as mentioned above transfers to the Viterbi algorithm. In the next section,
we specify an approximation of the Viterbi which is computationally more reasonable.
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The Approximation of the Viterbi Algorithm

In our approximation of the Viterbi algorithm we include the duration probability distribution
for suprasegmental states, P(d | g;) into the overall score computation when we leave a supraseg-
mental state. Note that P(d | g,) is a posterior probability and its integration into the Viterbi
algorithm does not guarantee that the most likely state sequence @ . .. g is found. As mentioned
in the specification of the Viterbi in section 3.2.1 the algorithm computes the best preceding state
for each time step ¢ and state. Because P(d | g;) is posterior, however, a previously optimal state
might turn out to be suboptimal. In order to gurantee an optimal path we would have to recon-
sider all possible paths starting at ¢t — d in the unique start state of g, and end at time ¢ in the
unique final state of g,. Obviously, depending on the maximal segment size, the computational
cost can be immense. For the purposes of this investigation, we approximated the Viterbi al-
gorithm by storing not just the previous best state but by storing the r-best previous states of
some state §° at time t. We will use R to refer to the size of this ordered stack. We require three
arrays:

1. 4,r(3) denotes the r-best previous state of state ¢ at time ¢.
2. 04,r(i) denotes the r-best previous probability of having arrived in state i at time ¢.

3. 7¢,,(i) denotes the number of time steps spent in the suprasegmental state of state i at
time ¢ depending on the r-best previous states of state ¢ where 1 < 7,.(i) < D, for
1<t<T,1<r<Rand1<i<N,

where the index r indicates the position on the stack.

We represent, transitions from a state g to a state ﬁ{ 41 by the function a;;(d, t). This function

reduces to a;; in the case where both states gi and ﬁ{ 1 belong to the same suprasegmental state.
The function includes the duration probability distribution for a suprasegmental state if the
respective transition leaves a suprasegmental state. We require these complez transitions to obey
standard stochastic constraints:

aij(d,t) >0 (3.36)
1<i,j<N,1<d<D,, and1<t<T.

Z Qi (d, t) =1 (337)

The approximation of the Viterbi algorithm using ordered stacks of size R is as follows:

Initialization:
d1,.(i) = mibilor), (3.38)
Y1,.(0) = 0, (3.39)
() = 1, (3.40)

where 1 <i < N and 1<r < R.
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Recursion:
Ot (J) = (DA max, Ot—1,7(4) - @i (Te—1,r (8), ) - bj(04), (3.41)
g and @ € g*,

where a;;(d,t) =
aij - P(d | g*) 37" € Q2
¢ €, otherwise.
2<t<T,1<r,” <R,1<j<N,and1<k<Ns.

Thus, if we stay by traversing from an atomic state gi_; to an atomic state 6{ in the
suprasegmental state g*, the function reduces to the atomic transition probability ai;. On
the other hand, if we leave a suprasegmental state, the transition probablity is multiplied

by the duration probability of ramaining in the suprasegmental state g* for d time steps:
P(d|7").
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We informally specify the updating of the arrays St,r( J), ¥e.r(j) and 73 ,(j) with the proce-
dure given below:

For each time step t and each state j we keep an ordered stack of
size R where we store:

(a) the probability Sur(j),

(b) the time spent so far in the respective suprasegmental state,
Tt,r(j): and

(c) the predecessor ﬁ}:_l of ﬁ{.

The stack will be ordered according to the above probability
where the top of the stack, indexed with 1, stores the highest
probability. As we approach the bottom of this stack the
probability decreases. The index r denotes the respective stack
index.

For all states i, 1<i<Nandr, 1<r<R

begin
comHute .
0t(4) = Ot—1,0(2) - @z (Te-1,r(4), 1) -
update .
We start at the top of the stack and search for a o, (j)
which is smaller than the 6;(j) as computed above.
In case we find one:
O, (4) = 0¢(J)
¢t,r’ (.7) =i
Tt (j) = 1 if we leave a suprasegmental state and
T (J) = 7¢—1,7(i) + 1 otherwise.
end
Termination:
P* = o1 (i)]- 42
[ mas, Sr.a )] (3.2
3= 6.1 (0)]- 4
gr = arg max [07,1 ()] (3.43)

Recovering the state sequence:

In order to recover the state sequence correctly we need an additional variable which keeps
track of the number of time steps required to leave the suprasegmental state corresponding
to current best atomic state g;. We use d; to refer to this number. Recall that recovering
the state sequence starts at time T and moves backwards to ¢ = 1. Thus, for example,
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d; = 5 means that you leave the current suprasegmental state by moving 5 time steps
backwards. The variable d; is specified as follows:

(3.44)
T (q})7 iff t = T;
diy = ¢ Tev1(@h), iffdepr =1,
diy1 — 1, otherwise,
1<t<T.

The first case handles the situation where we want to know how many time steps we stay
in the suprasegmental state which ends at T'. The second case describes the situation in
which we leave a suprasegmental state, i.e. dy+1 equals 1. In this case we choose the
duration of the suprasegmental state corresponding to the best previous atomic state of
the current best atomic state. The last case covers the situation in which we stay within a
suprasegmental state and the duration correspondingly decreases by one.

Using d; we can start recovering the best state sequence. The first case covers the situation
in which we try to find the best atomic HMM state at time T'. If d;y1 = 1 we leave the
current suprasegmental state and we choose the best predecessor as stored in the array .
Remember that the array 1) was ordered and the index 1 refers to the best predecessor.
The third case corresponds to a situation in which we stay in a suprasegmental state. We
have to find the predecessor that agrees with the time steps yet to be spent in the current
suprasegmental state. These three cases are formalized below:

(3.45)
q;"; lﬁ' t = T'7
¢t+1,1(§Z+1), iff dpys =1,
Y41,-(T541), where 7 is the smallest r such there is an 7' such that
Te,r (@}) = dgg1 — 1, otherwise,

t=T,T—-1,T—2,...,1,and 1 <r,7 <R.

q; =

For this approximation of the Viterbi algorithm the memory increase is confined to the two
additional arrays &;,(j) and 7;,(j). The size of these arrays depend upon the stack size, R,
total time steps, T, and the number of atomic states, N. Additional memory requirements
arise to store parameters of suprasegmental models. The requirements depend on the number of
suprasegmental models, Ny. Additional computations are needed in three places:

1. the inclusion of suprasegmental duration probabilities,
2. the maintaining of the stacks, and

3. the additional maximization over R in equation 3.41.

The last two additional computational increases depend upon the stack size, R. In our experi-
ments, we used this approximation of the Viterbi algorithm to train prosodic models.
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3.2.3 Context Sensitive Prosodic Models

In order to reliably estimate the parameters of prosodic models, we have to be concerned with
two interdependent issues:

e Models based on prosodic information are highly sensitive to their surrounding context.
For example, the intensity, intonation, and duration of the same vowel depends whether
a vowel is a nucleus within a stressed syllable, whether it is word final, or utterance final
(KieBlling, 1997). Thus, in the best of all worlds, we would like to have different models,
one for each of these situations, to estimate their parameters as detailed as possible.

e We have to make sure that each model occurs in the training corpus with a frequency that
allows a reliable parameter estimation.

Thus, there is a tradeoff. If we design prosodic models too specifically, the estimation of these
models might be based on an insufficient number of training samples, and if we design the models
too generally, the parameter estimation procedure, although based on a sufficient number of
training samples, might be unreliable due to context effects. We use a clustering algorithm
(Breiman et al., 1984) to handle this tradeoff. Based on binary questions about the prosodic
segment and its context, the algorithm builds a regression tree in which a leaf node represents a
model for which we insure:

1. The parameter estimation process is based on sufficient samples.

2. The training instances of a leaf node are prosodically similar with each other and contrast
prosodically with the instances in the daughter node.

Note that we do not a priori stipulate specific context effects. By allowing various binary ques-
tions about the context, the clustering algorithm finds those questions first which maximize the
prosodic difference of the instances of two daughter nodes and the similarity of the instances
within a node. The technical detail are given below.

Following Kannan, Ostendorf, and Rohlicek (1994), we evaluate a likelihood ratio for each al-
lowable partition of the training data by a set of predefined binary questions. The null hypothesis
is that the observations were generated from one distribution which corresponds to the maxi-
mum likelihood estimate of the parent node. The alternative hypothesis is that the observations
were generated by two different distributions represented by the maximum likelihood estimates
of the daughter nodes. We define the likelihood ratio, A, as the ratio of the observations being
generated from one distribution and the likelihood of the observations being generated by two
different distributions. For normal distributions, we can express A as a product of the quantities
AMmEAaN and Acoc as defined below:

AN = (1 0 Gy )T m)) (3.46)
| ov 2] Su, [\ °
Acov | — 7 —— (3.47)
( W]
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where 7; and 7, are the number of observations in the left and right daughter node, n =n + 7y,
fu and i, are the sample means of the left and right daughter nodes, $; and £, are the sample
covariances for the left and right child nodes, a = %, and W is the frequency weighted tied

covariance W = %f)l + "n—rﬁT. If we want prosodic models to share a common covariance matrix
we grow the tree minimizing —logAcoy. In case we want to cluster distribution means, we
minimize —logApyrpan. If we want to cluster both distribution means and covariance, we have
to minimize —(log A\cov + log Amean). We compute log A\cov — log Amean for every binary
question within a set of allowable questions and build the tree top-down choosing those questions
which minimize the above difference and guarantee that the subsequent estimation of model
parameters is based on sufficient training data. We will use this algorithm to cluster prosodic
models. The actual question sets and resulting trees are given in the corresponding experiment
in Chapter 4.

48



CHAPTER 3. 3.3. MODELING SPECTRAL INFORMATION

3.3 Modeling Spectral Information

In principle, it is possible to train entire emotion-specific recognition systems. By comparing the
scores of these systems, we would find that system which most likely produced the emotional
utterance. However, training a recognition system requires a substantial amount of training
data. Since the corpora in our experiments are significantly smaller than the minimum cor-
pus size required to train a recognition system, we pursued a different approach. In order to
model emotion-specific spectral information, we started with an existing recognition system and
performed emotion-specific adaptations. In our investigation, we used an adaptation technique
which is frequently used to adapt a speech recognition system to novel speakers (Gales, 1996;
Legetter and Woodland, 1994). This approach adapts only the mean parameters of acoustic mod-
els to novel speech data by a set of linear transformations which are found using the maximum
likelihood training algorithm.

If the adaptation data is very limited, adaptation techniques face the problem that many
acoustic models are not present at all in the data. In order to find linear transformation for these
models as well, we first pool together acoustic models which behave similarly in acoustic space of
the original training set. We assume that these pooled models behave also acoustically similar in
the novel data and, thus, can be linearly transformed in the same way. This way, we can ensure
that we find adaptation transformations for all models, even for models which do not occur in
the adaptation data.

Having pooled models which behave alike in acoustic space according to some distance mea-
sure, we have to find the linear transformations for the parameters of these tied models in the
next step. To be more detailed, we reestimate the distribution means, fi;, of some state j us-
ing a linear transformation of the original means, p;. Thus, the probability density function as
specified in equation 3.6 for a state j observing a vector o of dimension n becomes

bi0) = ——b e Ho RO o) (3.48)
2m)z | Cj |2

where Cj is the corresponding covariance matrix, fi; is the linear transformation of u; by the
transformation matrix W;, and n is the dimension of the observation vector o. As shown by
(Legetter and Woodland, 1994) for maximum likelihood linear regression, the matrix W; can be
estimated using the Baum-Welch reestimation procedure as outlined in section 3.2.1.

To summarize, our approach to model emotion-specific spectral information comprises the
following steps:

1. We start with a fully trained speech recognition system and pool models according to their
acoustic similarity using k-means clustering.

2. We collect the necessary statistics to compute the transformation matrix, W, based on an
alignment of the novel speech data using the non-adapted recognition system.

3. We compute the transformation matrices making sure that for each model pool j, the
estimation of the matrix Wj is based on a sufficient number of training tokens within the
adaptation data.

4. We repeat steps 2 and 3 until a satisfactory result is achieved using the adapted models for
a realignment.
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In order to model emotion-specific spectral information, we estimate emotion-specific transfor-
mation matrices, W, for all model pools by adaptation on data which consistently expressed a
certain emotion. Thus, we had, for instance, acoustic model pools which were adapted only on
utterances expressing sadness. In order to test for the emotion expressed in a given utterance,
we computed the probabilities that the utterance was generated by the emotion-specific acoustic
models and took the highest probability to be indicative of the expressed emotion.
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Chapter 4

Experiments

In this chapter, we describe the experiments carried out within this investigation. The experi-
ments are divided with respect to the corpus studied. Thus, we have four major sections, in each
of which we explore a particular speech corpus. In the first section, we report experiments carried
out with the Woggles corpus, a corpus consisting of 50 sentences portrayed by drama students
in happy, sad, afraid, and angry variations. This corpus explored, in particular, emotion-specific
prosodic and spectral cues. The second corpus, comprised of segments from movies and talk
shows, studied the combination of spectral, prosodic, and verbal information. With the third
corpus, we conducted some pilot experiments to see whether prosodic models developed on En-
glish data extrapolated onto other languages. We tried to detect the underlying emotion of
Spanish and German movie segments using prosodic models estimated on the English movie
corpus. The last corpus of Spanish spontaneous telephone conversations investigated whether
acoustic information could be used to detect emotions in a natural telephone conversation.

Before we go to the individual experiments, we will describe several notions pertaining to all
experiments.

4.1 Experimental Set-Up

In this section we describe the training and testing procedures we used to model spectral,
prosodic, and verbal information. During the following experiments we frequently carried out
small pilot experiments involving human subjects. The tools for these pilots are introduced in the
following sections as well. We start with a discussion of elicitation techniques to collect emotional
speech.

4.1.1 Elicitation of Emotional Speech

Since it is our ultimate goal to classify the emotions expressed in natural and spontaneous speech,
a corpus providing this kind of data would be suited best for our experiments. Unfortunately,
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this kind of data is very difficult to procur for several reasons. Privacy issues make it difficult, for
instance, to use doctor-patient dialogues. Additional problems arise if we are concerned about
the recording quality (Greasley et al., 1995). Some studies, however, were based on natural
occurring emotional speech data (Utsuki and Okamura, 1976; Sulc, 1977). Both studies used the
radio transmissions of pilots experiencing dangerous situations. Because of the relative extreme
nature of the pilots’ situations, we have to questions whether the results transfer to more mundane
situations. In addition, the emotional categories were quite limited and basically confined to fear,
stress, or neutral.

A different way of collecting emotional speech data is to induce a certain emotion in a subject
and subsequently collect his or her utterances. One such approach to induce an emotion is to
embed the utterance to be collected in a story or to play emotion provoking music or movies
before recording the subject’s utterances. This technique was used in several studies (Scherer et
al., 1985; Scherer and Oshinsky, 1977; Scherer et al., 1991; Katz, 1997) and offers the advantages
of a recording situation where the collection of utterances is controllable.

The most common way of collecting emotional speech data is to ask subjects to simulate
emotional utterances. The subjects, usually actors, are asked to recreate an emotional state and
to utter the sentence to be collected. This technique offers two major advantages. First, the
recording situation and the sentence to be collected are now controllable. Second, this technique
allows the collection of a large number of utterances in a reasonable amount of time. This last
point is important, in particular, if we want to train probabilistic models which require a large
number of training tokens for a reliable parameter estimation. However, there are also problems
with this kind of data collection. For example, actors might portray only stereotyped cues and
might fail to reproduce other more subtle cues. Investigations based on induced and simulated
emotional speech also face the question of whether or not their results can be compared with
natural emotional speech. That is, is the induced or simulated emotion really the actual emotion
we are seeking to elicit? To answer this question at least partially we can test whether a group
of control subjects can identify the emotion as they listen to the respective recorded utterances.
All our corpora in this investigation had to undergo this kind of “quality control”. Studies based
on this data category are found, for example, in Walbott and Scherer (1986), Tischer (1993),
Bezooijen (1984), and Scherer, Ladd, and Silverman (1984).

Another very interesting approach for collecting emotional speech data is to embed the elicita-
tion and collection directly into a system prototype. The user is told that the system is sensitive
to his or her emotional state and the appropriate reaction of the system can be achieved by a
Wizard of Oz set-up. A step in this direction of data collection was done by Johnstone (1996)
and Riseberg et al. (1997). Healey, Seger, and Picard (1999) used small wearable computers
which recorded information about the human subject while he or she was interacting naturally
with the environment.

Three of our corpora comprise speech segments produced by actors. Another corpus consists
of natural Spanish spontaneous telephone conversations. In our investigation, these four corpora
were subject to the following kind of experiments:

e We carried out performance experiments with human subjects to control the quality of the
expression of emotions and to asses an upper performance bound.

e We conducted speech recognition experiments on some of these corpora.

e We investigated emotion-specific spectral information.
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e We explored emotion-specific prosodic information.

e We studied emotion-specific verbal information.

Each of these tasks is described in more detail in the following sections.

4.1.2 Assessing Human Performance

In order to assess the quality of a corpus consisting of emotional speech segments, experiments
were performed with human subjects who first listened to a speech segment and then were asked
to judge its expressed emotion. A screen snapshot of one such interface is displayed in figure 4.1.
The subject was allowed to listen to the segment of speech as many times as wished by using the

=

Figure 4.1: Interface for Experiments with Human Subjects.

repeat-button. When an emotion was chosen by clicking on the respective button with the mouse
cursor, the button changed its color to black. To proceed to the next segment the subject had
to press the next-button. We used Sennheiser headsets and the audio capabilities of sun work
stations for these experiments.

4.1.3 Spectral Information

We modeled spectral information by means of cepstral coefficients to account for the properties
of the auditory system. See sections 2.3 and 2.4 for details. If not indicated otherwise, the
speech samples in our corpora were sampled with 16kHz. From the short time spectral analysis
we derived a 16ms wide power spectrum that was calculated every 10ms. For the extraction
of the speech feature a 30 dimensional melscale filterbank was used and we derived 16 cepstral
coefficients from it. We also added the first and second order derivative of these coefficients.
In addition, we considered log power and its first and second derivative. Thus, we have a total
of 51 features which we reduced to 32 coefficients by linear discriminative analysis. In the
experiments investigating emotion-specific spectral information we did not evaluate individual
cepstral coefficients. Since the emphasis of this investigation lay on the exploration of prosodic
cues, we assessed the potential of the whole set of cepstral coefficients to discriminate among
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the emotions. For the experiments involving English corpora we used triphone acoustic models
comprising a total of 9358 states each with 70 mixture components per state. For our experiments
involving the Spanish telephone corpus, we had 2100 states each with 16 mixture components
per state.

To model emotion-specific spectral information we adapted acoustic models on a representa-
tion of the speech signal as described above. Consult section 3.3 for the details of the adaptation
technique. For the classification of the expressed emotion in some speech segment we used the
following procedure:

1. Depending on the experiment set-up, we used either the transcribed utterance or the ut-
terance as recognized by a recognition system.

2. Using the same recognition system as in step 1, we computed for all emotions the probability
that the utterance from step 1 was produced by the respective emotion-specific acoustic
models:

P(speech signal | sentence, acoustic models;), (4.1)

where 7 was an element from the set of emotions, F, we wanted to discriminate.

3. We compared the probabilities as computed in step 2 and took the highest probability to
be indicative of the underlying emotion, that is to say, we maximized equation 4.1:

expressed emotion = arg max P(speech signal | sentence, acoustic models;), (4.2)
€

where E denoted the set of emotions we wanted to discriminate.

4.1.4 Prosodic Information

One of the main aims of this investigation was to find robust prosodic features which detect the
expressed emotion across speakers and utterances. In this section we briefly describe how we
extracted prosodic information from the speech signal and how we trained and tested emotion-
specific prosodic models.

As mentioned above, the auditory experience of loudness or pitch can not be reduced solely
to energy or fundamental frequency, respectively. Both experiences are based on an intricate
interplay of energy, pitch, and duration (Zwicker and Feldkeller, 1967; Zwicker and Fastl, 1990).
In our experiments, we modeled these interdependencies by considering information from all three
dimensions in parallel. Thus, we operationalized loudness, for instance, by some energy measure
and assumed that dependencies with fundamental frequency and duration were taken care of
by modeling this information in parallel. Thus, a prosodic model observes a vector of prosodic
events comprising information about the fundamental frequency, intensity, and duration.!

Intensity

The computation of intensity consists of two parts: a transformation function, T'(), of the digitized
speech signal, s, and a window function, w, to model some context (Rabiner and Schafer, 1978).

1 This approach seems to be quite common, see (Kiefling, 1997; Kompe, 1996) for similar approaches.
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We use N to indicate the window size and n and m to refer to some frame within the speech
signal. Thus, the energy at some time, m, is given by equation 4.3.

N—1
E, = Z T(sn)wn (43)
n=0
For our experiments we will use a Hamming window which is given by equation 4.4.

2
wH = 0.54 — 0.46 cos (NL_"I) (4.4)

Other possible windows are the rectangle window and the Hann window, given in equations 4.5
and 4.6.

wi =1 where n € [0; N — 1] (4.5)
2mn

H =0.50 - 0. 4.

wy,, = 0.50 050cos<N_1> (4.6)

For the transformation function we have several options which are given in equations 4.7, 4.8,
and 4.9, respectively.

Ty(z) = 2 (4.7)
Trms(m) = \/ﬁ .
Tu(@) = |2 (49)

For our experiments, we will use equation 4.7 as the transformation function in combination
function with a Hamming window as the context function.

Fundamental Frequency

Extracting the fundamental frequency from a speech signal turns out to be quite complex because
of certain properties of the speech signal (Hess, 1983). For instance, depending on the articula-
tion of different sounds, the spectral content of the signal changes constantly. In addition, the
glottal impulses do not always have the same amplitude and the signal is, therefore, amplitude
modulated. In order to compensate for these properties of speech, pitch tracking algorithms rely
most of the time on short time analysis windows. Such a window, however, can contain several
pitch periods of the fundamental frequency and, in addition, can comprise voiced and unvoiced
regions (Medan, Yair, and Chazan, 1991). All these circumstances make the exact determina-
tion of the fundamental frequency difficult and we have to be aware that the estimation of the
fundamental frequency of a given utterance might be errornous.

For our experiments we used a pitch tracker developed by the Cambridge University Engi-
neering Department. The pitch tracker is based on an algorithm as described in (Medan, Yair,
and Chazan, 1991) which relies on two passes through the signal. In the first pass a set of possi-
ble pitch locations is computed for every 10ms using two adjacent non-overlapping windows and
cross-correlation. In the second step we compute the overall best pitch locations using dynamic
programming. In order to validate the results of our experiments investigating the fundamental
frequency we used a second pitch tracker which was developed by the Entropic Research Lab
based on an algorithm by (Secreset and Doddington, 1983). We did not find any significant
differences in our results using this pitch tracker.
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Speaking Rate

The discussion in chapter 2 showed that speaking can signal an emotional involvement of the
speaker. We will operationalize speaking rate by segment durations. That is, the longer the
average duration of the segments within an utterance, the slower the speaking rate. The duration
of segments is also an important prosodic parameter which participates in, for example, the
implementation of accents and prosodic boundaries (preboundary lengthening), (Wightman et
al., 1991). In order to observe a salient lengthening of a segment, that is, a slow speaking rate,
we have to know about the segments normal duration. Following Wightman et al. (1991), we can
compensate for the inherent durational differences of a segment, i.e., a phone, by a normalization
step as given in equation 4.10 where d; refers to the actual duration of the ith segment labelled
as p, and p,; and o, ; are the mean and standard deviation of the duration of phone p.

i, = %" i (4.10)

Op,i

Crystal and House (1988) showed that speaking rate has a strictly linear influence on the duration
of segments. Hence, we can model the impact of the overall speaking rate by a scaling factor, a.
Thus, equation 4.10 becomes:

(4.11)

This leaves us with the estimation of the scaling factor a. We can approximate a using segments
of speech with a constant speaking rate:

N
a=— 4.12
¥ (4.12)
where N is the number of segments in the speech segment used for the estimation of a. For
this investigation, we were interested in emotion-specific variations of the speaking rate, that
is, emotion-specific variations of the scaling factor a. We modeled emotion-specific speaking
rate variations by estimating the average duration of segments in emotion-specific subsets of the
respective training corpora using the suprasegmental hidden Markov model introduced in section
3.2.2. Thus, we computed, for example, the average duration of the phone /a/ in utterances
which expressed sadness.

For a hierarchical definition of speaking rate, see also (Chung and Seneff, 1997). Other
approaches approximated the speaking rate directly from the signal by measuring the length or
the frequency of voiced segments in a speech sample (Amir and Ron, 1998; Dellaert, Polzin, and
Waibel, 1996; Thymé-Gobbel, 1998).

Postprocessing of Prosodic Base Features

Before we could estimate emotion-specific models, we had to account for flaws in the extraction
of prosodic base features. For instance, postprocessing the output of the pitch tracker included:

e removal of unvoiced regions for global features such as mean pitch,

e median or mean smoothing,
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e normalization with respect to a speaker’s baseline.

Pitch normalization, turns out to be particularly problematic if one tries to normalize based
on very limited data. For some of our experiments, the speaker’s identity was known and we
disposed of a substantial number of speech tokens to normalize with respect to his or her base-
line. Normalization based on this procedure yields, in general, better classification results. If
the speaker’s identity is not known or there is not a sufficient number of speech tokens, normal-
ization became more difficult. Ladd (1983) proposed that a speaker’s pitch baseline could be
approximated based on the fundamental frequency of the last syllable, provided the sentence is
not a question or request. Scherer and Bergmann (1984) suggested to approximate a speaker’s
baseline by the average of the lowest 5% of the fundamental frequency values within an utterance
segment.

For intensity, similar caveats apply. In addition to differences among actors, we also had to
account for intensity differences among movies due to different recording settings. In general, we
used the minimum and maximum intensity values in voiced regions for normalization. Normal-
izing intensity of a given speech segment in a movie by the overall average can be flawed when
the distribution of emotional segments is not uniform.

In general, normalization techniques have to be applied very carefully, since the purpose is to
normalize with regard to variations among individuals or movies while preserving differences due
to the expression of an emotion. Disregarding these problems can result in deletion of prosodic
information which is essential for the detection of cues used by the speaker to express a certain
emotion.

Derived Prosodic Features

We will illustrate the extraction of prosodic features using figure 4.2 which shows an idealized
fundamental frequency (red lines) of some utterance. We can divide the prosodic features into
three major groups:

1. Global features refer to features pertaining to the whole utterance, for instance mean
pitch — referred to as line 1 in figure 4.2 — or standard deviation (2).

2. Local features refer to segments smaller than the utterance. These segments can refer
either to words, syllables, phones, or some other segment. Within these segments, we
are able to compute features such as mean or variance of the fundamental frequency or
intensity. In addition, we can take advantage of the segment size and compute features
such as the slope of the fundamental frequency over this segment (3 and 4) using, for
instance, regression methods for curve fitting. We can compute additional local features
by moving a small window over the fundamental frequency and compute the slope of the
contour in this window. Using the slope information we can compute the following features:

(a) the numbers of changes from a positive to a negative slope normalized by the total
number of windows,

(b) the number of positive slopes divided by the total number of windows, and

(¢) the number of negative slopes divided by the total number of windows.
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Figure 4.2: Tllustration of Prosodic Features. See text for an explanation.

Additional features involve the goodness of the fit of the regression line to the actual
contour, x2:

(a) the sum of all x2 of all positive slopes normalized by the number of positive slopes,
(b) the sum of all x? of all negative slopes normalized by the number of negative slopes,

(c) the sum of all x? of all slopes normalized by the number of windows.

3. Durational features allow us to compute the speaking rate (5). In our investigation, this
computation is based on the duration of phones. Knowing the duration of a segment allows
also the computation of vehemence features, that is, the duration up to the maximum (6)
or the minimum (7).

Using the prosodic features as described above we can train emotion-specific prosodic models
with Gaussian mixtures and the Viterbi algorithm of the suprasegmental hidden Markov model
as described in section 3.2.2. In order to test the accuracy of prosodic models on the classification
of emotional speech segments, we used the following procedure:

1. Depending on the experiment set-up we used either the transcribed utterance or the utter-
ance as recognized by a recognition system.

2. Using the same recognition system as in step 1, we computed for all emotions the probability
that the utterance from step 1 was produced by the respective emotion-specific prosodic
models.

P(speech signal | sentence, prosodic models;), (4.13)

where ¢ was an element of the set of emotions we want to discriminate.
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3. We compared the probabilities as computed in step 2 and took the highest probability to
be indicative of the underlying emotion, that is, we maximized equation 4.13:

(4.14)
expressed emotion =
arg max P(speech signal | sentence, prosodic models;),
1€

where E denoted the set of emotions we want to discriminate.

In this investigation we conducted various experiments to evaluate prosodic features with regard
to their potential to predict the expressed emotion in an utterance. In the following we report
only results of those experiments which proved that the respective prosodic feature allowed a
reasonable classification accuracy. Several of the prosodic features suggested by previous re-
search turned out not to yield reliable cues. For instance, Tischer (1993) proposed vehemence
features, that is, the time from the beginning of a segment until the minimum or maximum of
the fundamental frequency or the intensity. We illustrated these features in Figure 4.2 by (6)
and (7). We were not able to duplicate his findings in our experiments. We computed these
features on phone segments and on voiced segments but the respective classification accuracies
did not significantly exceed chance level. Note that Tischer found these features by studying only
one utterance pronounced by four speakers. An additional set of features which did not yield
reliable classification results were intonation based features. We conducted several experiments
in which we investigated whether certain contours of the fundamental frequency systematically
signal a certain emotion. We modeled contours on phone segments and on voiced segments but
neither approach lead to an reasonable accuracy. The failure of our experiments to demonstrate
that these prosodic features are reliable indicators for the expressed emotions does, of course,
not imply that these features can not be used to signal an emotion in general; see, for example,
(Davitz, 1964; Fonagy, 1978; Katz, Cohn, and Moore, 1996). We think that there are several
reasons for these features not to become reliable indicators in our experiments. Note that our
corpora were substantially larger than the corpus used, for instance, by Tischer (1993). If these
features are to some extend optional and are, as a consequence, not employed in every utterance
expressing a certain emotion, then a probabilistic approach has difficulties to reliably estimate the
corresponding parameters. In addition, these features are much more susceptible to interferences
arising from other communicative functions also implemented by the modification of prosodic
parameters. See section 2.4.2 for details. Thus, in order to model these prosodic features in
future research an integrated approach is needed that models several communicative functions
of prosody.

4.1.5 Verbal Information

We used emotion-specific back-off language models to detect the expressed emotion in an utter-
ance. We trained these language models on emotion-specific data to model verbal information.
Consult section for 3.1 more details. In order to test the accuracy of these models to detect the
expressed emotion in an utterance, we used the following procedure:

1. For each emotion we computed the probability that the words in the utterance were pro-
duced by the respective language model.

P(wiws ... wn | language model;), (4.15)
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where 7 was an element in the set of emotions we wanted to discriminate and N denoted
the number of words in the utterance.

2. We compared the probabilities as computed in the previous step and took the highest
probability to be indicative of the underlying emotion, that is, we maximized equation
4.15:

(4.16)

expressed emotion = arg max P((wywy ... wy | language model;),
1€

where E denoted the set of emotions we wanted to discriminate.

4.1.6 Combining Prosodic, Spectral, and Verbal Information

In order to use concurrently prosodic, spectral, and verbal information as a mean to detect the
emotion expressed in an utterance, we combined linearly their corresponding individual proba-
bilities:
(4.17)
expressed emotion = argmax
icE
M P(wiws ... wy | language — model;)
A2 P(speech signal | sentence, prosodic models;)

A3 P(speech signal | sentence, acoustic models;),

where F denoted the set of emotions we want to discriminate, and N the number of words in the
input sentence. The interpolation weights, A, were determined empirically on some independent
development set.
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4.1.7 Displaying Results

We use two ways of reporting and displaying results of our experiments: confusion matrices which
give information about the confusability among the emotions to be classified and a measure which
combines recall and precision to give a condensed form of the accuracy of a classification.

Within a confusion matrix, we display truth in the columns which, therefore, add up to
100%. Thus, a cell in column z and row Y indicates the percentage of how many of the segments
signalling emotion z are classified as Y. For illustration, we display a confusion matrix in Table
4.1 below. For instance, 75.8% percent of the happy segments are classified as HAPPY, or 25.0%

Table 4.1: Example of a confusion matrix.

| | happy | sad | afraid | angry |
HAPPY 75.8 3.2 11.1 6.1

SAD 7.1 65.1 24.4 8.0
AFRAID 5.7 25.0 | 58.5 5.8
ANGRY 11.4 6.7 6.0 80.1

of the sad segments are classified as AFRAID. Note that columns add up to 100%.

A more condensed form for reporting results of experiments is the fl-score which combines
precision and recall. Under precision we understand the ratio of the number of segments classified
correctly as ¢ and the number of segments in the corpus classified as ¢, regardless whether correctly
or not. We define recall as the ratio of the number of segments classified correctly as ¢ and the total
number of segments in the respective corpus belonging to class . The corresponding formulas
are given below:

precission; = C;/T; (4.18)
recall;, = C;/I;
where

C; is thenumber of segments in the corpus classified
correctly as i,

T; the number of segments in the corpus classified
as 1, regardless whether correctly or not, and
I; the actual number of segments in the corpus

belonging to class 3.
Combining precision and recall of some class i, we get the corresponding fl1-score, defined as

£, = 2 *prcicis'sion,- * recall; (4.19)
precission; + recall;

The closer the precision, the recall, and the corresponding fl-score is to 1, the more accurate the
classification of the respective classification system.
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4.2 The Woggles Corpus

The first corpus in our investigation, hence forth the Woggles Corpus, consisted of 50 different
sentences portrayed by 9 female drama students expressing either happiness, sadness, fear, or
anger. That is, the same material was available in all four different emotional realizations. By
having the same sentence pronounced in four different emotional variations we prevented the
students from using verbal cues and forced them to rely on spectral and prosodic cues only. The
Woggles Corpus was, therefore, used to explore the discriminative power of prosodic and spectral
features.

4.2.1 The Corpus

The sentences in the corpus comprised questions, statements, and orders. The sentence length
varied from 2 to 12 words; the mean sentence length was 5.8 words. The corpus consisted of 291
word tokens (87 word types).

We asked drama and linguistic students to express the emotion given in square brackets at the
beginning of the sentence on a computer screen. An example is given in Figure 4.3. The subjects

[HAPPY] I want to be friends.

[HAPPY] I want to see you go through the chute again.
[HAPPY] I want to sleep.

[HAPPY] I would love to play follow the leader.
[HAPPY] I'm angry because you won’t play.

Figure 4.3: Subjects were asked to express the emotion as indicated by the label in the
square brackets.

were asked to portray five sentences in the same emotion, followed by the same five sentences
to be pronounced in the remaining emotions. Thus, we had a maximum of 200 sentences for a
given speaker. We used the utterances of 5 speakers for training and testing. We reserved the
utterances of two speakers as a development set. The utterances of the last two speakers were
reserved to test for speaker independence of spectral and prosodic models.

SennHeiser HMD 410 or SennHeiser HMD 414 microphones were used for all recordings. We
used a gradient box (Gradient Desklab Model 14) with a sampling rate of 16 kHz for recod-
ing. During the recording sessions, attention was paid on the energy of the utterance in order
to ensure that it lay within a certain range. In case the energy distribution of an utterance
exceeded or fell below this range, the subject was asked to repeat the utterance and to speak
louder or softer. While this recording schema guaranteed a smooth signal, it also excluded very
dynamical utterances. As we see in the following experiments based on this corpus, intensity as
a consequence failed to be become a reliable indicator for emotions. Finally, all utterances were
transcribed by trained students.
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4.2.2 Assessing Human Performance

In order to control the quality of the expression of emotions in the Woggles corpus, we carried
out an experiment in which we asked humans to classify utterances as either happy, sad, afraid,
or angry. For this experiment, we asked eleven subjects, both men and women, to listen and
classify 240 utterances drawn from the Woggles test corpus. The experiment included a brief
training period in which the subjects could familiarize themselves with the data by listening to
40 utterances. During that training session the respective emotion-button became dark, thus
informing the subject about the underlying emotion of the current utterance. For more details
about the experimental design see section 4.1.2 above.

The confusion matrix based on the performance of eleven subjects is given in Table 4.2. The
emotions in lower case indicate the actual emotion as portrayed by the actors and, thus, the per-
centages in the columns add up to 100%. As apparent from the confusion matrix above, subjects

Table 4.2: Confusion matrix for Human Subjects. Overall about 69% of the utterances were
classified correctly.

| | happy | sad [ afraid | angry |
HAPPY 75.8 3.2 11.1 6.1

SAD 7.1 65.1 24.4 8.0
AFRAID 5.7 25.0 | 58.5 5.8
ANGRY 114 6.7 6.0 80.1

experienced problems with distinguishing sad and afraid utterances. Most of the confusion took
place between this pair of emotions. For instance, 25.0% of the sad sentences were classified as
afraid and 24.4% of the afraid sentences were classified as sad. Looking at the fl-scores, given
in Table 4.3, we see that the confusion between sad and afraid utterances was reflected in the
respective fl-scores. Sad had an fl-sore of 0.64, afraid of 0.60. Compare these fl-scores with the
f1-score of happy (0.77) and angry (0.78). The overall fl1-score was 0.69.

Table 4.3: Precision, recall, and fl-scores for human subjects.

| | happy | sad | afraid | angry |
precision 0.79 | 0.62 | 0.62 0.77
recall 0.76 0.65 | 0.58 0.8
f1 0.77 0.64 | 0.60 0.78

The percentage of correctly classified sentences for each of the four actors is given below in
Table 4.4. The percentage of correctly classified sentences ranged from 65.3% to 75.0%. That is,
the sentences of all speakers were detected by the eleven subjects with a comparable consistency
and well above chance level (25%).

On a side note, actor C was able to portray all of the afraid sentences in a way that none of
the subjects confused it with an angry portrayal. The performance of the eleven subjects was
consistently better than chance and ranged from 65% to 89% correctly classified segments. The
performance of the female listeners tended to be better than the performance of the male listeners.
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Table 4.4: Speaker-specific Human Discrimination Performance

| | A[B ] C[D]
| Correct || 65.3 | 70.8 | 71.3 | 75.0 |

However, the number of subjects is too small to make any claims about gender differences in the
perception of emotions (Bonebright, Thompson, and Leger, 1996). With this experiment we
validated the Woggles corpus. Subjects were able to detect the emotions expressed by the actors
consistently and well above chance level. This was the case for all four actors in the test set.

In the following experiments, we explored the possiblity of achieving a comparable accuracy by
building classification systems relying on spectral and prosodic information. First, however, we
investigated whether the expression of a particular emotion in someone’s speech has an impact
on the accuracy with which an utterance can be recognized automatically. That is, does the
expression of certain emotions correlate with particular speech recognition accuracies?
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4.2.3 Recognizing Emotional Utterances

For the following experiments, we used a speech recognition system which was developed inde-
pendently on a different corpus of English spontaneous speech and achieved an accuracy of about
86% (Lavie et al., 1997). Before carrying out emotion-specific word recognition tests, we adapted
the recognition system to the Woggles corpus using adaptation of acoustic models. See section
3.3 for a detailed description of this adaptation technique. Note that the adaptation was carried
out on the whole training set, that is, on all utterances regardless of the expressed emotion.

For testing, however, we divided the test corpus into emotion-specific subsets to see whether
there are emotion-specific differences in word accuracy.?

As it turned out — the results are given in Table 4.5 — depending on the emotional variation in
the test sentences, the differences in word accuracy were quite large. Angry sentences achieved
the highest recognition accuracy with 76% while happy sentences scored about 10% worse. Sad
and afraid sentences were recognized with a word accuracy of about 70%. The average word

Table 4.5: Word accuracy depending on the underlying emotion of the test utterances. The
average word accuracy was about 70%.

| | happy | sad | afraid | angry |
| word accuracy || 63.3 [ 70.3 ] 688 | 76.2 |

accuracy was 69.7%. For this experiment we used a vocabulary with about 1000 words and a
language model with a perplexity of 46.8. Note that the sentences were the same for all four
emotions. Thus, differences in word accuracies were based solely on acoustic differences.

This experiment demonstrated the necessity to model acoustic differences in emotional speech
in future speech recognition systems. Even though we will not pursue the speech recognition
problem any further, the following experiments point to major acoustic differences of emotional
speech and thus might suggest where to improve acoustic modeling in recognition systems.

2We use the standard definition of word accuracy (wa) given in 4.20 to evaluate the performance of the
recognition system.

refs — subst — del — ins

wa = oy (4.20)
where
refs is the number of reference words,
subst is the number of substitutions,
del is the number of deletions, and
ins is the number of insertions.

65



4.2. THE WOGGLES CORPUS CHAPTER 4.

4.2.4 Emotion-Specific Spectral Information

In order to model emotion-specific spectral information, we adapted spectral models on emotion-
specific subsets of the training corpus. Consult section 4.1.3 for the adaptation procedure. Using
acoustic models from the recognition system as described in section 4.2.3, we adapted spectral
models on emotion-specific subsets of the corpus. That is, we had spectral models which were
adapted only to happy sentences, models which were adapted only to angry sentences and so on.
Using these emotion-specific adapted spectral models, we tried to recover the expressed emotion
of an utterances in the test corpus by applying the algorithm as described in the beginning of this
chapter in section 4.1.3. Note that we used the transcribed text for both training and testing.

Table 4.6: Confusion matrix. Overall, about 68.8% of the segments were correctly classified.

| | happy | sad | afraid | angry |
HAPPY 68.3 5.0 11.7 8.3

SAD 13.3 70.0 | 33.3 8.3
AFRAID 11.7 23.3 | 55.0 1.7
ANGRY 6.7 16.7 0.0 81.7

In Table 4.6 we show the confusion matrix of the outcome of this experiment. Most of the
confusion took place between sad and afraid utterances. For instance, 23.3% of the sad utterances
were classified as afraid and a third of the afraid utterances were classified as sad. We encountered
a similar confusion when we asked human subjects to perform this task, see Table 4.2 for details.
Similar to the results in the experiment with the human subjects, happy and angry sentences
could be discriminated from the remaining emotions quite accurately. Note that none of the
afraid segments was classified as angry.

Table 4.7: Precision, recall, and fl-scores for spectral information.

| | happy | sad | afraid | angry |
precision 0.73 | 0.56 | 0.60 0.91
recall 0.68 | 0.70 | 0.55 0.82
f1 0.71 | 0.62 | 0.57 0.86

As a result of the confusion between sad and afraid sentences, the corresponding f1-scores for
these two emotions, given in Table 4.7, were only around 0.6, whereas the fl-score for happy and
angry utterances were 0.71 and 0.86, respectively. This accuracy was comparable to the accuracy
of human listeners as assessed in section 4.2.2.

Using emotion-specific spectral models for recovering the underlying emotion of an utterance
was surprisingly robust against a decrease in word accuracy. Instead of using the transcription
as the input for the emotion detection, we used in a second experiment the actual recognized
words as the input. We decreased the word accuracy to about 52% by decreasing the weight of
the language model in the speech recognition step. The subsequent emotion detection accuracy
only dropped to about 65%. Apparently, the remaining islands of correct recognized speech were
still sufficient for a reasonable discrimination among the emotions. In addition, note that the
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recognized sentences still bore some phonetic similarity with the actual sentence. An example of
an actual sentence uttered and the corresponding recognized sentence is given in 4.21 and 4.22
below.

(4.21)  what do you want

(4.22)  would you want

Finally, note that all four emotion classes were affected by the degradation in the word accuracy.
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4.2.5 Emotion-Specific Prosodic Information

In the following sections we evaluated particular prosodic features with regard to their potential
to discriminate among the four emotions represented in the Woggles corpus. Moreover, for each
feature, we also computed the relative order of the emotion-specific values to each other. Later
on, we compared the relative order of emotion-specific values across different corpora to explore
whether the respective features were consistent.

Fundamental Frequency (Utterance Mean and Variance)

In the first experiment, we computed the global mean and variance of the fundamental frequency
within a given utterance segment. We removed spikes to compensate for errors in the pitch
detection process before mean smoothing. In addition, we performed a speaker-dependent nor-
malization. We then trained emotion-specific prosodic models based on these two features. We
used the test procedure as described in section 4.1.4 to classify the utterances in the test cor-
pus. The corresponding confusion matrix is given in Table 4.8. Angry segments were classified
best since 83% of the angry segments were detected correctly. Most of the confusion took place
between sad and afraid segments. For instance, a third of the sad segments were classified as
afraid and 21.7% of the afraid segments were classified as sad. Overall, 55.8% of the segments
were classified correctly.

Table 4.8: Confusion matrix based on the mean and variance of the fundamental frequency.
Overall 55.8% of the utterances were classified correctly.

| | happy | sad [ afraid | angry |
HAPPY 41.7 5.0 15.0 5.0

SAD 20.0 46.7 21.7 10.0
AFRAID 20.0 33.3 | 51.7 1.6
ANGRY 18.3 15.0 11.6 83.0

If we look at the corresponding fl-scores, i.e. the combination of precision and recall, we see
that all emotions except angry had an fl-score of about 0.5. The fl-score for angry was 0.73.
Precision, recall, and fl-scores are given in Table 4.9 below.

Table 4.9: Precision, recall, and fl-scores for mean and variance of the fundamental fre-
quency.

| | happy | sad | afraid | angry |
precision 0.63 | 047 | 048 0.65
recall 0.42 0.47 | 0.52 0.83
f1 0.50 0.47 | 0.50 0.73

The relative order of the emotion-specific mean and variance values of the fundamental fre-
quency are given in Table 4.10. The values for angry occupied the most salient positions in this
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Table 4.10: Relative order of mean and variance of Fp

| | happy | sad [ afraid | angry | | | happy | sad | afraid | angry
happy > < > happy > > >
sad < < > sad < < >
afraid > > > afraid < > >
angry < < < angry < < <
(a) Fo mean (b) Fp variance

table since their respective values were lower for both mean and variance than the values of the
remaining emotions. These salient positions of the values for angry explained the high accuracy
with which angry utterances could be detected. Remember, the f1-score was 0.73. The positions
of the other emotions were less pronounced and their detection accuracy was as a consequence
lower.
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Fundamental Frequency (Jitter))

With the following experiment we tried to capture some of the dynamics of the fundamental
frequency. We moved a window over the fundamental frequency and computed the slope of the
pitch contour in the corresponding segments. Using this slope information we computed the
following two features:®

1. the number of changes from a positive to a negative slope (or vice versa) normalized by the
total number of windows and

2. the sum of all x2 of all slopes normalized by the total number of windows.

Note that for the computation for these features the fundamental frequency was not smoothed.
We trained and tested these two features using the procedures as described in section 4.1.4. The
confusion matrix for a classification system relying on these two features is given in Table 4.11.
We found the substantial confusion between sad and afraid segments. For instance, 41.7% of the
sad segments were classified as afraid and 18.3% of the afraid segments as sad. Another large
source of confusion was that 58.3% of the happy segments were classified as angry. Only 6.7%
of the happy segments were correctly classified. Jitter information seemed to help mainly the
discrimination of afraid and angry segments, since 61.7% of the afraid and 65.0% of the angry
segments could be detected.

Table 4.11: Confusion matrix based on jitter information. Overall 40.4% of the utterances
were classified correctly.

| | happy | sad | afraid | angry |
HAPPY 6.7 3.3 6.6 0.0

SAD 20.0 28.3 18.3 31.7
AFRAID 15.0 41.7 | 61.7 3.3
ANGRY 58.3 26.7 13.4 65.0

We found the assumption that these two jitter features mainly helped to discriminate afraid
and angry segments confirmed when we looked at the corresponding fl-scores given in Table
4.12. Only the f1-scores for afraid and angry segments lay with 0.56 and 0.49 significantly above

Table 4.12: Precision, recall, and fl-scores for jitter features.

| | happy | sad | afraid | angry |
precision 0.40 | 0.29 | 0.51 0.40
recall 0.07 0.28 0.62 0.65
f1 0.11 0.29 0.56 0.49

chance level. The fl-score for happy segments was 0.11, the one for sad segments 0.29. Overall,
about 40% of the segments were classified correctly.

3See the section 4.1.4 at the beginning of this chapter for a more detailed description of these features.
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We found the reasons that these two jitter features detected afraid and angry segments better
than happy and sad segments when we looked at the relative positions of the respective emotions-
specific values given in Table 4.13. For both features it was the case that the values for angry

Table 4.13: Relative order of the two jitter features.

| | happy | sad | afraid | angry | | | happy | sad | afraid | angry
happy < < > happy < < >
sad > < > sad > < >
afraid > > > afraid > > >
angry < < < angry < < <
(a) normalized number of changes (b) normalized x>

were smaller than of any other emotion. For the afraid values the opposite was true, the values
were larger than for any other emotion. Thus, afraid and angry values occupied the extreme
positions while the values of happy and sad lay in between.
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Intensity (Mean and Variance)

In the following experiment we explored intensity mean and variance within an utterance. As
mentioned in section 4.2.1, the recording procedure prevented the collection of very dynamical
utterances since the energy of all utterances had to lie within a certain range. As a consequence,
intensity failed to become a reliable indicator for emotional speech, contrary to previous research
(Scherer, Ladd, and Silverman, 1984; Frick, 1985; Katz, 1997). For this experiment, intensity
was normalized with respect to the speaker and the computation of the two intensity features,
mean and variance, was based only on voiced segments. The confusion matrix of the resulting
classification system based on these two intensity features mean and variance is given in Table
4.14. Overall, only about 33% of the segments were classified correctly. The most surprising
numbers in the matrix are that 58% of the angry segments were classified as afraid and that only
five percent of the angry segments were correctly classified. We also found substantial confusion
between sad and afraid segments. For instance, 50% of the sad segments were classified as afraid.
Moreover, 55% of the happy segments were misclassified as afraid. In general, more than half of
the segments in the test corpus was classified as afraid.

Table 4.14: Confusion matrix based on intensity. Overall only about a third of the utter-
ances were classified correctly.

| | happy | sad | afraid | angry |
happy 26.7 3.3 6.7 134
sad 16.7 46.7 | 38.3 23.3
afraid 55.0 50.0 | 53.3 58.3
angry 1.6 0.0 1.7 5.0

The strong tendency of the system to classify segments as afraid led to low fl-scores which
are given in Table 4.15. Only sad segments seemed to profit from intensity information. Sad
segments could be detected with an fl-score of 0.41, while happy and afraid had an fl-score of
only 0.36 and 0.34, respectively. Angry segments had a very low fl-score of 0.09.

Table 4.15: Precision, recall, and fl-scores for mean and variance of the intensity.

| | happy | sad | afraid | angry |
precision 0.53 | 0.37 | 0.25 0.60
recall 0.27 | 0.47 | 0.53 0.05
f1 0.36 | 0.41 | 0.34 0.09

Looking at the relative positions of the mean and variance values in Table 4.16, we see that
the mean intensity for angry was larger than for any other emotion. Moreover, the intensity mean
for sad was smaller than the values of the remaining emotions. Finally, the mean intensity for
happy was bigger than the mean intensity of afraid. Surprisingly, the internal relations between
the emotions for intensity variance were identical to the relations for intensity variance. That is,
the variance for angry was larger and the variance for sad was smaller than for the remaining
emotions. These extreme positions of the sad and angry values in these tables explained the
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respective values in the confusion matrix above. Note that no sad segment was mistaken as
angry.

Table 4.16: Relative order of intensity mean and variance.

| | happy | sad | afraid | angry | | | happy | sad | afraid | angry
happy > > < happy > > <
sad < < < sad < < <
afraid < > < afraid < > <
angry > > > angry > > >
(a) Intensity mean (b) Intensity variance

Overall, classification based on intensity information yielded a very low accuracy of about
33%. Remember, for example, that classification based on information about the utterance
mean and variance of the fundamental frequency resulted in an accuracy of 55.8%. In subse-
quent experiments, involving other corpora, we demonstrated that this low accuracy of these two
intensity features was not necessarily the case since intensity information could become a reliable
indicator for emotions. As mentioned earlier, we attributed the failure of intensity to discriminate
among the respective emotions to the recording conditions of this corpus’s data collection.
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Intensity (Tremor)

The previous experiment showed that intensity mean and variance failed to become a reliable
indicator for the expressed emotion of a speech segment. We attributed this failure to particular
recording conditions which forced the drama student’s intensity to fall within a certain range,
thus, preventing them from producing very soft or very loud speech. This constraint, however,
should not have had any effect on tremor features. While these features are still based on
intensity, they only measure small perturbations in the overall intensity contour. These small
perturbations should still be present in the signal regardless of the constraint on the recording
conditions. To test this hypothesis, we computed the following two features on the logarithms of
the intensity in voiced segments within an utterance by moving a window over the voiced regions
of the intensity contour:

1. the number of changes from a positive to a negative slope (or vice versa) normalized by the
total number of windows and

2. the sum of all x? of all regression slopes normalized by the number sum windows.

We trained emotion-specific prosodic models using these two features and used the test procedure
as described in section 4.1.4. The confusion matrix of this experiment is given in Table 4.17.
The system had the tendency to classify segments as either afraid or angry. 38.3% of the happy
and 46.7% of the sad segments were misclassified as afraid and 23.3% of the happy and 25.0%
of the sad segments as angry. As a consequence, only 31.7% of the happy and 10.0% of the sad
segments were classified correctly. Tremor features helped mainly to detect afraid and angry
segments since 70.0% of the afraid and 70.0% of the angry segments were classified correctly.

Table 4.17: Confusion matrix based on tremor information. Overall 45.4% of the utterances
were classified correctly.

| | happy | sad | afraid | angry |
happy || 317 | 183 | 150 | 15.0
sad 6.7 10.0 1.7 5.0
afraid 38.3 46.7 | 70.0 10.0
angry 23.3 25.0 | 13.33 70.0

As a consequence of the high confusion of happy and sad with afraid and angry, only the
fl-scores for afraid and angry lay significantly above chance level. The fl-scores are given in
Table 4.18. For afraid and angry the fl-score were 0.53 and 0.60, respectively, whereas happy
achieved only an fl-score of 0.32. Sad was most difficult to detect, its fl-score was only 0.16.
Overall, 45.4% of the segments were classified correctly.

Looking at the relative emotion-specific positions of these two features, given in Table 4.19,
we see that the value of the first tremor feature was largest for afraid, followed by angry. Sad
had the smallest value. The value for angry was the smallest for the second feature and the
highest for afraid. These extreme positions of the values for angry and afraid explained their
high fl-scores.
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Table 4.18: Precision, recall, and fl-scores for tremor features.

| | happy | sad | afraid | angry |
precision 0.40 | 0.43 | 042 0.53
recall 0.32 | 0.10 | 0.70 0.70
f1 032 | 0.16 | 0.53 0.60

Table 4.19: Relative order of the two tremor features.

| | happy | sad | afraid | angry | | | happy | sad | afraid | angry
happy > < > happy > < >
sad < < < sad < < >
afraid > > > afraid > > >
angry > > < angry < < <
(a) normalized number of changes (b) normalized x?

This experiment proved our hypothesis that these two tremor features were not affected by
the particular recording conditions. Tremor features turned out to be quite reliable features for
the detection of afraid and angry segments. The overall accuracy was well above chance level and
well above the accuracy we achieved with intensity mean and variance in the previous experiment.
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Speaking Rate (Phone Duration)

The suprasegmental hidden Markov model which we introduced in section 3.2.2 allowed us to
model speaking rate by state occupancy. That is, we used suprasegmental states to model phones
and we recorded the durations spent in these suprasegmental states. In the following experiment,
we computed the durations of vowels to model emotion-specific speaking rates.

The confusion matrix of a system using this single duration feature is given in Table 4.20. We
found the typical confusion between afraid and sad segments: 18.3% of the sad segments were
classified as afraid and 13.3% of the afraid segments as sad. Moreover, substantial confusion
took place between afraid and happy, 41.7% of the afraid segments were classified as happy, and
23.3% of the happy segments were classified as afraid. Despite all this confusion, about 42% of
the segments in the test set were classified correctly.

Table 4.20: Confusion matrix based on phone duration. Overall, about 42% of the utter-
ances were correctly classified.

| | happy | sad | afraid | angry |
HAPPY 46.7 18.3 | 41.7 28.3

SAD 15.0 45.0 13.3 5.0
AFRAID 23.3 18.3 | 28.3 20.0
ANGRY 15.0 18.4 16.7 46.7

In Table 4.21 we give the corresponding fl-scores. The most difficult emotion to detect was
afraid with an f1-score of 0.3. Sad segments could be detected best with an fl-score of 0.5. Happy
and angry achieved an fl-score of 0.4 and 0.47, respectively.

Table 4.21: Precision, recall, and fl-scores for speaking rate.

| | happy | sad | afraid | angry |
precision 0.35 | 0.57 | 0.31 0.48
recall 0.47 | 0.45 | 0.28 0.47
f1 0.40 | 0.50 | 0.30 0.47

It is no so evident to display the relative order of emotion-specific phone durations since not all
phones behaved consistently within a given emotion class. The relative order of emotion-specific
vowel durations is given in Table 4.22. The additional number indicates the percentage of vowels
for which the respective relation was true. The set of vowels comprised in total 17 vowels. As can
be seen from the table, vowels in sad speech were consistently longer than in any other emotion.
Following our operationalization of speaking rate as the inverse of phone duration, this means
that the speaking rate of sad utterances was slower than the speaking rate of the remaining
emotions. The speaking rate of happy speech was highest but close to the rate with which angry
was produced. The speaking rate of an afraid speaker was lower than the rate of of an angry
speaker. Also, note that all vowels in angry speech were longer than in sad speech, a situation
reflected in the confusion matrix in which only 5% of the angry sentences were classified as sad.
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Table 4.22: Relative order of phone durations for vowels. The additional number indicates
the percentage of vowels for which the respective relation holds true for the respective emo-
tion pair. For instance, 88.2 % of the sad vowel models had a larger mean duration than the
respective happy models.

| | happy | sad | afraid [ angry |
happy < < <
sad > (88.2%) > >
afraid || > (64.7%) | < (88.2%) >
angry || > (52.8%) | < (100.0%) | < (82.3%)
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Context Sensitive Prosodic Phone Models

In the previous experiments we explored prosodic features pertaining to the whole utterance seg-
ment. We ignored the phonetic context from which these prosodic features arose. As mentioned
in section 2.4.2, the phonetic context, however, has an impact on the prosodic appearance of the
overall utterance. For instance, low vowels have a lower intrinsic fundamental frequency than
high vowels. With the following experiments we explored whether emotion-specific information
at the phonemic level led to an overall improvement in the detection of emotions. Similar to
the modeling of speaking rate, we used prosodic phone models to model fundamental frequency
features. See section 3.2.2 for a detailed description of the underlying modeling assumptions of
the suprasegmental hidden Markov model.

In the first experiment, we trained emotion-specific context independent phone models relying
on mean and variance information of the fundamental frequency. The corresponding confusion
matrix is given in Table 4.23. The resulting system had the tendency to classify segments as
afraid since half of the happy and half of the sad segments were missclassified as afraid.

Table 4.23: Confusion matrix based on context independent phone models relying on mean
and variance information of the fundamental frequency. Overall, about 46% of the utterances
were correctly classified.

| | happy | sad | afraid | angry |
HAPPY 21.7 5.0 15.7 5.0

SAD 5.0 18.3 0.0 5.0
AFRAID 51.7 | 51.7 | 65.0 10.0
ANGRY 21.8 | 25.0 | 20.0 80.0

The corresponding fl-scores are given in Table 4.24. Angry segments were recognized most

Table 4.24: Precision, recall, and fl-scores for context independent phone models.

| | happy | sad | afraid | angry |
precision 0.46 | 0.65 | 0.36 0.55
recall 0.22 | 0.18 | 0.65 0.80
f1 0.30 | 0.29 | 0.47 0.65

accurately with an fl-score of 0.65, followed by afraid (0.47), happy (0.30), and sad segments
(0.29). Overall, 46.2% of the segments were classified correctly which was about 10% absolute
worse than the accuracy we achieved with mean and variance information of the fundamental
frequency of the entire utterance. Note that angry and afraid segments were also classified most
accurately in that experiment. See Table 4.9 for details.

We think that one of the reasons for the different accuracies of prosodic utterance and phone
models lay in context effects on phone models as mentioned above. In addition, note that the
parameter estimation of phone models is based on an alignment of the speech signal with the
model sequence and is, thus, more susceptible to estimation errors than global utterance models
which do not require an alignment. In order to compensate for context effects we used the cluster
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algorithm as described in section 3.2.3 to find appropriate context sensitive prosodic models. In
this experiment we allowed the following questions about the preceding, the current, and the
following phone:

1. the phone’s identity
2. place of articulation (bilabial, alveolar, etc.)

3. manner of articulation (fricatives, nasals, liquids, etc.)

In the first step we used these question to cluster models based on their prosodic similarity using
the cluster algorithm as described in section 3.2.3. We then trained emotion-specific clustered
models in the second step and used them to test for the underlying emotion. The corresponding
confusion matrix is given in Table 4.25. The system had a tendency to classify segments as
afraid or angry. About 60% of the happy and about 65% of the sad segments were misclassified
as either afraid or angry. As a consequence, the fl-scores for happy and sad segments were very

Table 4.25: Confusion matrix based on context dependent phone models relying on mean
and variance of the fundamental frequency. Overall, about 49.6% of the utterances were

correctly classified.

| | happy | sad [ afraid | angry |
HAPPY 25.0 6.7 18.3 3.3

SAD 16.7 28.3 10.0 5.0
AFRAID 38.3 35.0 | 56.7 34
ANGRY 20.0 30.0 15.0 88.3

low and lay at 0.33. and 0.35, respectively. Angry segments were classified with an accuracy of
0.7, followed by afraid with an score of 0.49, see Table 4.26 for details. The context dependent
models outperformed the context independent models in each emotion category and their overall
accuracy of 49.6 lay about three percentage points above the context independent modeling
approach.

Table 4.26: Precision, recall, and fl-scores for context dependent phone models.

| | happy | sad | afraid | angry |
precision 0.47 | 047 | 042 0.58
recall 0.25 | 0.28 | 0.57 0.88
f1 0.33 | 0.35| 049 0.70

Note that we started the clustering with all phone models including noise and consonants
models. As a consequence, the first question of the resulting regression tree was to distinguish
phones from noise models. A little bit further down the tree, another question distinguished
between vowels and consonants. Another interesting observation is that we achieved the best
accuracies when we reduced the number of models by increasing the required number of ob-
servations for a model. This circumstance indicated that the limiting factor for an additional
improvement of phone models was the amount of available training data.

79



4.2. THE WOGGLES CORPUS CHAPTER 4.

4.2.6 Combining Prosodic Information

In the following experiment, we combined the prosodic features which we explored earlier in this
chapter. That is, we had a vector comprising several prosodic observations:

1. four prosodic features characterizing the behavior of the fundamental frequency: mean,
variance, and the two jitter features.

2. four prosodic features characterizing the behavior of intensity: mean and variance, and the
two tremor features.

In order to use the speaking rate as a discriminate feature, we also modeled the duration of
vowels context independently. See the respective experiments above for a detailed descriptions
of these features.

Using these nine prosodic features, the system was able to classify 60.4% of the segments in the
test set correctly. Note that this percentage of correctly classified segments was about 4% points
higher than the best two individual prosodic features: mean and variance of the fundamental
frequency. The corresponding confusion matrix is given in Table 4.27. We still found the common
confusion of sad and afraid segments. For instance, a third of the sad segments were classified as
afraid and 11.7% of the afraid segments as sad.

Table 4.27: Confusion matrix based on prosodic information. Overall, 60.4% of the utter-
ances were classified correctly.

| | happy | sad | afraid | angry |
happy 55.0 6.7 21.7 6.7
sad 8.3 56.7 | 11.7 20.0
afraid 183 | 30.0 | 63.3 6.6
angry 18.3 6.6 3.3 66.7

When we look at the fl-score, given in Table 4.28, we can see that angry segments were
recognized best with an fl-score of 0.68. Happy, sad, and afraid segments had an fl-score of
0.58. The combination of prosodic features helped in particular to classify happy, sad, and afraid
segments. For these emotions the fl-score was about 8% points higher than the best subset of
features studied previously in the corresponding experiments. Note, however, that the overall

Table 4.28: Precision, recall, and fl-scores for the combined prosodic information.

| | happy | sad | afraid | angry |
precision 0.61 0.59 | 0.54 0.70
recall 0.55 | 0.57 | 0.63 0.67
f1 0.58 | 0.58 | 0.58 0.68

accuracy still lay below the performance of humans who were able to classify about 70% of the
segments correctly.
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Comparing classification accuracies based on prosodic information with accuracies based
on spectral information, we see that classification based on spectral information outperformed
prosodic information by about 10%. Consult Table 4.7 for the respective experiment involv-
ing spectral information. The next section explored the combination of prosodic and spectral
information
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4.2.7 Combining Spectral and Prosodic Information

In the following experiment, we combined spectral and prosodic information. We used the same
nine prosodic features as explored in the previous experiment: mean and variance of the funda-
mental frequency, two jitter features, mean and variance of the intensity, two tremor features,
and speaking rate. Consult the respective experiments above for a more detailed descriptions
of these features. Emotion-specific spectral information was captured by adaptation of spectral
models. See section 4.2.4 for a more detailed description. The experiment in that section also
demonstrated that spectral information and adaptation were a powerful technique to classify
emotional speech segments. Remember, using spectral adaptation we classified about 69% of the
segments correctly which was about an absolute of 10% better than the classification based on
prosodic information. For the current experiment, we used weights determined independently on
the development set for the linear combination of spectral and prosodic probabilities. For details
see section 4.1.6.

The confusion matrix for the linear combination or spectral and prosodic information is given
in Table 4.29. Note that overall, 69.2% of the segments were classified correctly. This accuracy
was basically the same accuracy we achieved with spectral information in the first place. Thus,
the combination of prosodic and spectral information did not result in an overall improvement.

Table 4.29: Confusion matrix based on the combination of spectral and prosodic informa-
tion. Overall 69.2% of the utterances were classified correctly.

| | happy | sad | afraid | angry |
happy || 667 | L7 | 160 | 17
sad 0.3 56.7 | 16.7 10.0
afraid 16.7 | 36.6 | 66.7 1.6
angry 13.3 5.0 1.6 86.0

Let us compare the current f1-scores, given Table 4.30, with the scores we were able to achieve
with spectral information alone, see Table 4.7 in section 4.2.4. We can see that only the fl-score
for afraid and happy segments improved from 0.57 to 0.6 and from 0.71 to 0.72, respectively.

Table 4.30: Precision, recall, and fl-scores for the combination of spectral and prosodic
information.

| | happy | sad | afraid | angry |
precision 0.78 | 0.65 | 0.55 0.81
recall 0.67 | 0.57 | 0.67 0.87
f1 0.72 | 0.61 | 0.60 0.84

We list the accuracies for each speaker in Table 4.31 depending on whether classification
was based on prosodic or spectral information. An additional row gives the accuracies of the
combination of prosodic and spectral information. In general, the classification accuracies largely
varied depending upon the speaker. The accuracies for individual speakers ranged from 50% to
68% when relying on prosodic information. For spectral information, the accuracy ranged from
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60% to 75%. The main effect of the combination of prosodic and spectral information seemed to

Table 4.31: Speaker-specific classification accuracies based on prosodic and spectral infor-
mation and their combination.

| [ Al B|]C[D]
prosodic || 66.6 | 50.0 | 68.3 | 56.7

spectral || 60.0 | 71.7 | 68.3 | 75.0
combined || 66.1 | 65.0 | 78.3 | 66.7

be that the speaker-specific accuracies became more similar to each other. With the exception
of speaker C whose utterances were classified with an accuracy of 78.3%, the remaining accuracy
levels lay all at around 66%.

The speaker-specific accuracies of human listeners did not correlate with the accuracies of the
classification system. For instance, the utterances of speaker D were classified most accurately
by human subjects (75%). The classification by the system achieved only an average accuracy of
66.7%. The utterances of speaker C, in contrast, were classified most accurately by the system
(78.3%) but human subjects were only able to achieve an average accuracy of 71.3%. See Table
4.4 for the respective accuracies achieved by human subjects.

In this experiment we linearly combined the probabilities of prosodic and spectral informa-
tion and chose this overall score to be indicative of the expressed emotion in some utterance.
As mentioned above, we determined the weights in this linear combination on an independent
development set. In order to assess an upper bound for a combination of prosodic and spectral
information we used an oracle which told us when to choose prosodic information and when to
choose spectral information to classify a given utterance. The confusion matrix of this oracle ex-
periment is given in Table 4.32. Note that there was still considerable confusion between sad and
afraid: 11.7% of the afraid segments were misclassified as sad and 16.7% of the sad segments were
classified as afraid. Note that the oracle could perfectly distinguish between afraid and angry
segments. Overall, 86.7% of the segments were correctly classified. The corresponding f1-scores

Table 4.32: Confusion matrix based on the combination of spectral and prosodic information
using an oracle. Overall 86.7% of the utterances were classified correctly.

| | happy | sad | afraid | angry |
happy 88.4 5.0 3.3 1.6
sad 3.3 78.3 | 11.7 3.3
afraid 5.0 16.7 | 85.0 0.0
angry 3.3 0.0 0.0 95.0

are given in Table 4.33. All emotion classes profited from the oracle. Angry was still classified
best with an fl-score of 0.96, followed by sad with an fl-score of 0.89. Afraid and sad were
detected with an accuracy of 0.82 and 0.8, respectively. When we compare the oracle with the
previous linear combination, we see that the oracle improved the overall accuracy from 69.2%
to 87.6%. The linear combination seemed to indicate that prosodic and spectral information
were not orthogonal in the Woggles corpus since their combination did not result in an overall
improvement. However, this finding was not confirmed by the experiments involving an oracle.
Spectral and prosodic information did yield different predictions about the emotion expressed in

83



4.2. THE WOGGLES CORPUS CHAPTER 4.

Table 4.33: Precision, recall, and fl-scores for the combination of spectral and prosodic

information using an oracle.

| happy | sad | afraid | angry |

precision 0.90 | 0.81 | 0.80 0.97
recall 0.88 | 0.78 | 0.85 0.95
f1 0.89 | 0.80 | 0.82 0.96

an utterance and knowing when to choose spectral or prosodic information could improve the

overall accuracy significantly.
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4.2.8 Speaker Independence

In the previous experiments, we were able to classify the emotions in the Woggles corpus with an
accuracy comparable to humans subjects. Note, however, that we had a multi-speaker system;
that is, we trained and tested on utterances of the same speakers. In the following experiment
we investigated next whether the classification accuracies degraded when tested on two speakers
who where not in the training set. We then tested spectral and prosodic information separately
to see whether the respective models reacted differently on utterances of unseen speakers. In
addition, we also examined the linear combination of spectral and prosodic information. For the
following experiments we used the same sentences as in the previous test set uttered by two novel
speakers. Thus, the current test set comprised 120 utterances.

The confusion matrices are given in Table 4.34. Overall, a system based on spectral infor-
mation was able to obtain an accuracy of 47%. A system using prosodic models outperformed
spectral information and classified 50% of the segments correctly. We found the usual confusion
between sad and afraid utterances in both cases. For spectral information, 63.3% of the afraid
segments were misclassified as sad and 20% of the sad segments as afraid. On the other hand, this
trend was less pronounced for prosodic information: 36.7% of the sad segments were classified as
afraid and 10% of the afraid segments were misclassified as sad. Spectral information tended to
classify segments as sad whereas prosodic information was inclined to classify segments as happy.
Note that neither sad nor afraid segments were classified as angry.

Table 4.34: Confusion matrices for spectral and prosodic information tested on novel two
speakers. Overall, spectral information achieved an accuracy of 47% whereas prosodic infor-
mation obtained an accuray of 50%.

| | happy | sad | afraid | angry |

HAPPY 60.0 10.0 3.3 10.0

SAD 27.7 | 63.3 | 63.3 46.7

AFRAID 6.7 20.0 | 26.7 6.6

ANGRY 6.6 6.7 6.7 36.7
(b) Spectral Information

| | happy | sad | afraid | angry |

HAPPY 66.7 16.7 | 30.0 26.7

SAD 3.3 46.7 10.0 36.6

AFRAID 13.3 36.7 | 60.0 10.0

ANGRY 16.7 0.0 0.0 26.7
(b) Prosodic Information

The f1-scores for spectral and prosodic information are given in Table 4.35. Happy segments
are classified most accurately for both spectral and prosodic information (0.65 and 0.56). The
accuracy of happy segments based on prosodic information was very close to the accuracy for
afraid segments (0.55). Classification based on spectral information achieved the worst accuracy
for afraid (0.33) and classification based on prosodic for angry (0.37). Sad segments could be
detected with comparable accuracies both by spectral and prosodic information (0.42 and 0.47).
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Table 4.35: Precision, recall, and fl-scores for spectral and prosodic information tested on
two novel speakers.

| | happy | sad | afraid | angry |

precision 0.72 | 0.32 | 0.44 0.65

recall 0.60 | 0.63 | 0.27 0.37

f1 0.65 | 0.42 | 0.33 0.47
(b) Spectral Information

| | happy | sad | afraid | angry |

precision 0.48 | 0.48 | 0.50 0.62

recall 0.67 | 0.47 | 0.60 0.27

f1 0.56 | 0.47 | 0.55 0.37
(b) Prosodic Information

Regarding prosodic information, this experiment showed that, in particular, sad and afraid
segments became more difficult to detect when tested on utterances of novel speakers. See Table
4.28 for the fl1-scores of prosodic information evaluated on the original test set. Finally, note that
the accuracy dropped from 60% to 50%. For spectral information, the drop was more dramatic.
The accuracy fell from 69% to 46% when we switched to the current corpus. The detection
accuracies for all four emotions were effected strongly. See Table 4.7 for a comparison.

A classification based on the linear combination of the spectral and prosodic probabilities led
to an overall improvement for the current corpus. We used the same weights for the combination
as in the previous experiments. The resulting confusion matrix is given in Table 4.36. Overall,
54.2% of the segments were correctly classified. We find the usual confusion between sad and
afraid: 36.6% of the sad and 26.6% of the afraid segments are either misclassified as sad or afraid.
None of the sad and none of the afraid segments were misclassified as angry.

Table 4.36: Confusion matrix for the combination of prosodic information tested on two
novel speakers.Overall, 54.2% of the segments were correctly classified.

| | happy | sad [ afraid | angry |
HAPPY 73.3 6.7 16.7 23.3

SAD 3.3 56.7 | 26.6 33.3
AFRAID 10.0 36.6 | 56.7 13.4
ANGRY 13.4 0.0 0.0 30.0

The corresponding fl-scores are given in Table 4.37. The overall accuracy increased from
50% - achieved by prosodic information — to 54% by the combination of prosodic and spectral
information. In particular, the emotions happy, sad, and afraid profited from the combination.
For instance, the fl-score for afraid rose from 0.37 to 0.52. The fl-score for angry dropped from
0.55 to 0.42.

To summarize, prosodic information was more reliable when testing for speaker independence.
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Table 4.37: Precision, recall, and fl-scores for the combination spectral and prosodic infor-

mation tested on two novel speakers.

| happy | sad | afraid | angry |

precision 0.61 | 0.47 | 0.49 0.69
recall 0.73 | 0.57 | 0.57 0.30
f1 0.67 | 0.52 | 0.52 0.42

The drop in accuracy was less pronounced when compared to the drop of the accuracy for
spectral information. In addition, classification based on prosodic information performed better
than classification based on spectral information.
the first test set in which spectral information outperformed prosodic information. A possible
explanation for the brittleness of spectral information when confronted with novel speakers was
that the adaptation of spectral models captured very specific idiosyncrasies of the data in the
training corpora. Whereas these idiosyncrasies interpolated onto the first test set and led to
high accuracies comparable to human performance, these idiosyncrasies did not transfer as well
to novel speakers and resulted in a large drop below the accuracies we achieved with prosodic

information.
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4.2.9 Summary

This section summarizes the results of the experiments carried out with the Woggles corpus.
Table 4.38 shows the results of the most important experiments. The best prosodic features

Table 4.38: Overview

| No. | Features | Segments | Signal Postprocessing | Test Set | fl-score |
1 spectral utterance Woggles (1) 0.69
2 Fy, utterance | median smoothing Woggles (1) 0.56
mean/variance speaker normalization
3 Fy, utterance Woggles (1) 0.40
jitter
4 Intensity, utterance | voiced segments Woggles (1) 0.33
mean/variance
5 Intensity, utterance | voiced segments Woggles (1) 0.45
tremor log
6 Duration phones Woggles (1) 0.42
7 2,3,4,5,6 Woggles (1) 0.60
8 1,7 Woggles (1) 0.69
9 1 Woggles (2) 0.47
10 7 Woggles (2) 0.50
11 1,7 Woggles (2) 0.54
12 human Woggles (1) 0.69
13 1,7 (oracle) Woggles (1) 0.87

were mean and variance of the fundamental frequency (2) which allowed to classify 56% of the
segments correctly. The worst classification results were obtained when we relied on mean and
variance of the intensity (4). Only a third of the segments could be classified correctly. Jitter
(3), tremor (5), and speaking rate (6) allowed fl-scores of about 0.4. The combination of all nine
prosodic features (8) resulted in an fl-score of 0.6 which was 4% absolute better than the fl-score
achieved with the mean and variance of the fundamental frequency.

Classification based on a spectral representation of the speech signal achieved an fl-score of
0.69 (1). However, the combination of spectral and prosodic information did not produce an
additional improvement of the overall accuracy. Spectral information alone allowed a classifica-
tion accuracy comparable to human subjects (12). However, knowing when to choose spectral
and when to choose prosodic information to detect the emotion expressed in some utterance, an
overall accuracy of 0.87 was achieved in the experiment relying on an oracle (13). This finding
indicated that spectral and prosodic information yielded to some extend independent information
with regard to the expressed emotion in the utterances from the Woggles corpus.

In addition, other experiments were conducted to test spectral and prosodic models on utter-
ances of two novel speakers, that is, speakers who were not in the training set. In this situation,
the classification accuracy based on prosodic information fell from 0.6 to 0.5 (10). The accuracy
for spectral information fell from 0.7 to 0.46. These results suggested that prosodic models trans-
fered reasonably to novel speakers whereas spectral models focussing too closely on speakers in
the training set, did not properly transfer to the utterances of the two novel speakers. This tight
focus on the speaker in the training set also explained the high accuracy of 0.69 on the first test
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Figure 4.4: Plot of fl-score for prosodic features, the combination of all prosodic features,
and the combination of prosodic and spectral information.

set (1).

We also investigated whether we could improve accuracies by modeling other features than
the duration feature on the phone model. For this reason we explored context sensitive phone
models relying on mean and variance information of the fundamental frequency. While context
sensitive models outperformed context dependent models (49.6% and 46.3%), they could still not
achieve the accuracy we achieved with this kind of information at the utterance level (55.8%).

In figure 4.4, we plotted the fl-scores of some of the prosodic features investigated in the
previous experiments. There are two points we wish to mention. First, note that angry segments
were far more detectable than the remaining emotions for all prosodic features with the exception
of the mean and variance of intensity. Second, the fl-scores exhibited large oscillations both for
prosodic features and emotions. That is, whereas some prosodic features allowed for strong
classification of certain emotions, it failed for other emotions. However, if we combined all
prosodic features, the fl-scores of the four emotions became very similar. In addition, the graph
above also shows that the combination of prosodic and spectral information did not result in
an overall improvement of the fl-score. Finally, the graph shows that there is still room for an
improvement of the overall accuracies, indicated by the accuracies achieved by the experiment
involving an oracle to predict when to choose prosodic and when to choose spectral information.
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4.3 Talk Shows and Movies

The second major corpus of this investigation comprised segments from movies and talk shows.
The decision to use talk shows and movie screen plays as sources of emotional speech was moti-
vated by three reasons. First, the experiments relying on the Woggles corpus showed that acted
speech could be decoded by humans quite reliably. Second, to accurately estimate statistical
models, an extensive quantity of training data is needed. By using a films close captions as a
first approximation for segmentation, transcription, and tagging, we were able to collect a large
supply of emotional speech samples in a relatively short amount of time. Third, even though
we did not pursue visual cues in this investigation, this corpus allows the integration of visual
information with spectral, prosodic, and verbal information in future work.

4.3.1 The Corpus

The movies and talk shows were down loaded from a Toshiba VCR (M-752) to a Pentium II
personal computer equipped with a Crystal Audio System with a sampling rate of 16kHz and 16
bits. The close captions from the video stream were extracted with the Text Grabber VBI Line
21 Video Decoder (GP-500). For the segmentation, transcribing, and tagging we employed five
students who were instructed in several training sessions.

Three major steps were involved in tagging these talk shows and movies:

1. Segmentation: Transcribers were told to find segmentations which coincided with sen-
tence or utterance boundaries. The expressed emotion within a segment had to be constant.
Initial or final noises or silences were to be excluded from the segment.

2. Transcriptions: The close captions were the starting point for the transcriptions. Missing
noises (human and non-human) or words were added by the transcribers.

3. Tagging: Each segment was annotated with three tags. The first tag indicated the gender
of the speaker and the second tag the amount of background noise. For the last tag, the
emotion expressed by the speaker, we told the transcribers to be as specific as possible and
to choose from the emotion tags as given in Table 4.39.

For the tagging process the transcribers relied on either CoolEdit 96 (Syntrillium) or Sound Forge
4.0 (Sonic Foundry) and Sennheiser headsets.

The distribution of emotions within this corpus is given in Table 4.40 in which we considered
all segments regardless of the amount of background noise or music. The distribution of emotions
changed substantially when we considered only segments suited for acoustic modeling. The exact
numbers are given in Table 4.41.

Only utterances with a moderate noise level were used for training and testing spectral and
prosodic models. The noise level was ignored for training emotion-specific language models. In
order to guarantee a sufficient number of training tokens for the estimation of verbal, spectral,
and prosodic models, the experiments were confined to the emotions angry, sad, and neutral.
We divided the corpus into three parts: training sets, development set, and two test sets. The
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Table 4.39: The list of the ten emotion tags used by the transcribers.

1. neutral (neu): neutral, no noticeable emotion

2. bored (bor) : boredom, disinterest

. strong joy (stj): happy, exited, laughter, delight

. weak joy (wkj): slightly happy, liking, love, satisfied, admiration, content
. sad (sad): sadness,sorrow, depression, remorse, shame, disappointment
afraid (afr): upset, worried, fear

irony (iro): irony, sarcasm, mockery,

angry (ang): anger, reproach, threat, scolding

© ® N > s ok w

disgust (dis): offense, resentment, disliking, indignation, contempt

10. suspicion (sus): disbelief, doubt, uncertainty, incredulous

Table 4.40: Distribution of speech segments according to their emotion.

| tag | neutral | angry | sad | afraid | disgusted | ironic | happy | surprised ]
[ 7 segments || 2991 | 1586 | 1076 | 203 | 26 | 28 | 347 | 19 |

Table 4.41: Distribution of speech segments according to their emotion suited for training
spectral and prosodic models.

| tag || neutral | angry | sad | afraid | disgusted | ironic | happy | surprised |
[# ] 1344 | 759 [518] 4 | 0 | 8 [ 19 | 4 |

first test set comprised speech segments randomly chosen from several movies. For each emotion
category we chose 102 test sentences. The second test set consisted of all segments from the

movie “One True Thing”. The development set consisted of segments from the movie “Primary
Colors” and “Alien”.

Since in the first test set the emotions were distributed evenly, the baseline accuracy lay at
33% correctly classified segments which could be achieved by always guessing the same emotion.
Extrapolating from the movies within the training set, we could assume that neutral segments
occurred more often than angry or sad segments in the second test set. In the training set, about
51% of the segments were neutral. Transferring this ratio to the second test set, the baseline
accuracy increased to about 51% by guessing the emotion always to be neutral. Thus, in order to
claim that our system achieved a reasonable performance, the system had to obtain an accuracy
of at least 51%. The actual distribution of emotion segments is given below in Table 4.42 (a) for
the subset suitable for testing acoustic models and (b) for the whole movie.
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Table 4.42: Distribution of segments in the second test set from the movie “One True

Thing”.
| | sad | angry | neutral | | | sad | angry | neutral |
| # segments || 67 | 22 | 80 | | #segments || 108 | 47 [ 174 |
(a) suitable for acoustic testing (b) the whole movie
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4.3.2 Human Performance (Intercoder Agreement)

Whereas for the Woggles corpus we could stipulate that we knew the underlying emotion of
the utterances, we had no such a priori knowledge about the underlying emotions for speech
segments within the movie corpus. Thus, assessing the agreement of the transcribers became
essential to validate the quality of the corpus and to obtain a performance number for comparing
the performance of the system. For the following experiments, we assumed that the original
emotion tag given by the transcriber represented the emotion expressed by the actor.

Acoustic and Verbal Information

In the first experiment, we asked four transcribers to classify the utterances of the first test as
either angry, sad, or neutral. We used the interface as described in section 4.1.2. The test corpus
was randomized, thus no context was given for a particular utterance. The confusion matrix of
the four coders is given in Table 4.43. As is apparent from the confusion matrix, transcribers

Table 4.43: Confusion matrix of four coders classifying 306 utterances from the first test
set. Overall, about 70% of the segments were classified correctly.

| | sad | angry | neutral |
SAD 46.6 4.5 5.2
ANGRY 5.7 72.3 3.6
NEUTRAL || 47.7 | 23.2 91.2

experienced problems differentiating neutral and sad segments: 47.7% of the sad sentences were
classified as neutral. Subjects had the most problems detecting sad sentences, only 46% of the
sad sentences were classified as sad. There was also substantial confusion between angry and
neutral since 23.2% of the angry segments were misclassified as neutral.

Table 4.44: Precision, recall, and fl-scores for human subjects classifying the 306 speech
segments in the first test set.

| | sad | angry | neutral |
precision || 0.83 | 0.89 0.56
recall 047 | 0.72 0.91
f1 0.60 | 0.80 0.70

Table 4.44 presents precision, recall, and fl-scores for all emotions. The fl-score was best for
angry segments with 0.8, followed by neutral with an fl-score of 0.70. Sad segments, as already
suggested at the discussion of the confusion matrix, were identified with the f1-score of only 0.60.

The accuracy for each of the four coders ranged from 65% to 78%. The overall accuracy was
70%. Note that the baseline for this experiment was 33% achieved by guessing always the same
emotion. An overall accuracy of 70% indicated that the emotions expressed in this corpus were
detected very well. Remember that the human accuracy on the Woggles corpus was also about
70%. See section 4.2.2 for details.
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Acoustic, Verbal and Context Information

With the second experiment we explored the impact of contextual information on the accuracy
of emotion detection. Two transcribers listened to all speech segments of the movie “One True
Thing” in their natural order. For utterances tagged originally as sad, angry, or neutral, the
coders were asked to classify them as either sad, angry, or neutral using the interface as described
in section 4.1.2 above. The other two transcribers had no contextual aids since their test set
comprised only sad, angry, and neutral utterances in random order of the same movie.

Table 4.45 shows the confusion matrix of the two coders who had to classify the randomized
subset of the movie. Similar to the experiment above, neutral seemed to be the default assumption
of the coders; 63.6% of the sad and 28.9% of the angry sentences were misclassified as neutral.
Sad segments were most difficult to detect, only 32.5% of the sad segments were classified as sad.
Overall, 63.4% of the segments were classified correctly which was about 6% lower than for the

Table 4.45: Confusion matrix of two coders classifying sad, angry, or neutral segments in
the movie “One True Thing”. Only sad, angry, and neutral segments were played in random
order. Overall, about 63.4% of the segments were classified correctly.

| | sad | angry | neutral |
SAD 32.5 11.6 3.2
ANGRY 3.9 59.4 10.9
NEUTRAL | 63.6 | 28.9 85.9

first test set.

Table 4.46: Precision, recall, and fl-scores for human subjects who were given no context
information.

| | sad | angry | neutral |

precision || 0.78 | 0.54 0.62
recall 0.32 | 0.59 0.86
f1 0.46 | 0.57 0.72

In the second part of this experiment, two different transcribers listened to all speech segments
of the movie “One True Thing” in their proper order. For segments previously tagged as sad,
angry, or neutral, the subjects were asked to classify them again as either sad, angry, or neutral.

The confusion matrix for the two transcribers is given in Table 4.47. Neutral seemed to be
the default assumption of these transcribers as well. 38.1% of the sad and 17.4% of the angry
sentence were classified as neutral. Sad sentences were the most difficult to detect, only 57% of
the sad sentences were classified as sad. The overall accuracy lay with 72.8% by more than 10%
absolute higher than in the previous experiment suggesting that context information did help in
this kind of classification task. We expect this trend to be even more obvious for the detection
of more subtle emotions such as afraid. Comparing the fl-scores of the second test set with and
without context information, we see that context helped to recover, in particular, sad and angry.
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Table 4.47: Confusion matrix of two coders classifying sad, angry, or neutral segments in
the movie “One true Thing”. All speech segments of the movie were played in the proper
order. Overall, about 73% of the segments were classified correctly.

| | sad | angry | neutral |
SAD 57.4 2.9 12.1
ANGRY 4.5 79.7 6.3
NEUTRAL || 38.1 17.4 81.6

Table 4.48: Precision, recall, and fl-scores for human subjects who were given context
information.

| | sad | angry | neutral |
precision || 0.75 | 0.70 0.72
recall 0.57 | 0.80 0.82
f1 0.65 | 0.74 0.77

Having context information increased the fl-score for sad from 0.46 to 0.65 and for angry from
0.57 to 0.74.

Note, however, that in both experiments above, we compared the classifications of the human
subjects to the previously tagged corpus. Tagging the corpus for emotions, the transcribers
presumably used context information for a given segment. Thus, the second experiment mimicked
this process much closer than the first experiment. The higher accuracy in the second experiment
may be partially attributed to this fact. Moreover, we based our results on a total of four coders.
As mentioned before, the primary objective of these experiments involving human listeners was
not to investigate how humans decode emotional cues but to validate the emotional speech
corpora itself and to establish a performance number for assessing the quality of the following
classification results.

Verbal Information

While it is not evident how to delete verbal information in speech segments, deleting spectral
and prosodic information can be implemented by simply presenting in text form what was said
in a given utterance. Thus we can test, how well humans can distinguish among emotions when
basing their judgments solely on verbal information.

For the following experiment we asked five subjects to classify all 306 segments from the first
test set as either sad, angry or neutral. The confusion matrix of this experiment is given in
Table in 4.49. The human subjects seemed to use neutral as a default case since 55.7% of the
sad and 31.7% of the angry segments were classified as neutral. Only 30.4% of the sad segments
were classified as sad. The subjects’ classification accuracies were fairly consistent and ranged
from 54-59%. Note that for the first test set the base line was at 33% achieved by voting for the
same emotion all the time. Overall, 55.7% of the segments were classified correctly. Compare
this performance number to the performance which was achieved if the subjects had the audio
information available which was about 70%. Thus, having the audio version instead of only the
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Table 4.49: Confusion matrix for humans relying only on a textual representation of the
segments in the first training set. Overall, about 55.7% of the segments were classified
correctly.

| | sad | angry | neutral |
SAD 30.4 7.4 9.9
ANGRY 13.9 | 60.9 14.3
NEUTRAL || 55.7 | 31.7 75.8

textual presentation, humans could improve their accuracy substantially, in this case by about a
15% absolute.

It is also illustrative to examine the precision and recall numbers, in Table 4.50 below, because
they show that angry segments were detected actually best with an fl-score of 0.65, followed by
neutral segments with an fl-score of 0.54 and sad segments with an fl-score of 0.43.

Table 4.50: Precision, recall, and fl-scores for human subjects classifying speech segments
based on a textual representation.

| | sad | angry | neutral |
precision || 0.53 | 0.61 0.50
recall 0.36 | 0.69 0.59
f1 0.43 | 0.65 0.54

With the previous experiments we tried to validate the current corpus. Humans were able to
decode emotional cues given in the utterance of this corpus well above chance level. For the first
test set, humans achieved an accuracy of about 70% when they could listen to the segments. If
only the verbal information was given, that is, the textual representation of what was said in the
utterance, the accuracy dropped to about 57% which was still well above the chance level (33%).

We established similar results for the second test set which comprised segments from the
movie “One True Thing”. Human listeners achieved an accuracy of about 63% when asked to
classify a randomized subset of movie segments. Further, when the segments occurred in their
natural context and order, the overall accuracy increased to 72.9%. This suggests that additional
context information allowed a more accurate classification.
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4.3.3 Emotion-Specific Spectral Information

In the first experiment we modeled emotion-specific spectral information using adaptation of
spectral models. For a detailed description of this adaptation procedure see sections 3.3 and
4.1.3. Training of emotion-specific spectral models comprised two steps. Starting with the
same recognition system as used in the Woggles experiments — see section 4.2.3 — we adapted
spectral models in the first step on all training data regardless of the underlying emotion of the
respective training samples. With this step we tuned the spectral models to acoustic properties
of the speech samples in the current corpus. In the second step, we used the same procedure
but adapted spectral models separately on emotion-specific subsets of the speech database using
the models trained in the previous step as a starting point. Thus, we obtained three sets of
emotion-specific spectral models which we used for the classification in the test phase.

The confusion matrices for both test sets of a classification system based on emotion-specific
spectral models are given below in Table 4.51. In 4.51 (a) we give the matrix for the first test

Table 4.51: Confusion matrix using spectral information. Overall 63.9% and 57.1% of the
segments in the first and second test set were classified correctly.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 52.0 4.0 16.7 SAD 46.3 4.5 32.9
ANGRY 8.0 72.0 15.6 ANGRY 134 | 77.3 6.3
NEUTRAL || 40.0 | 24.0 67.7 NEUTRAL || 40.3 | 18.2 60.8
(a) Test set 1 (b) Test set 2

set. The system had — similar to the human subjects — a preference for neutral: 40.0% of the
sad and 24.0% of the angry segments were classified as neutral. Overall, 63.9% of the segments
were classified correctly.

The confusion matrix for the second test set is given in Table 4.51 (b). Overall, the confusion
was similar to the confusion we found with the first test set. The default assumption of the
system was also that a segment was neutral: 40.3% of the sad and 18.2% of the angry segments
were classified as neutral. Sad and angry segments were distinguished fairly well in both test
sets. The confusion between sad and angry segments lay at about 4% in the range of human
subjects. Remember also, that human subjects had the tendency to classify segments as neutral,
see Tables 4.43, 4.45, and 4.47 for the details. Overall, 57.1% of the segments were classified
correctly.

Table 4.52: Precision, recall, and fl-scores for spectral information.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.72 | 0.76 0.50 precision || 0.53 | 0.55 0.61
recall 0.52 | 0.72 0.68 recall 0.46 | 0.77 0.61
f1 0.6 0.74 0.58 f1 0.50 | 0.64 0.61
(a) Test set 1 (b) Test set 2
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It is also illustrative to compare the fl-scores of both test sets. First note that the overall f1-
score was higher for the first test set (0.63 vs. 0.57). This was not surprising since the segments in
the first test set were randomly drawn from movies which were also in the training set. However,
this was not the case for the second test set. Angry segments were detected best in both test
sets (0.74 and 0.64). Neutral segments achieved an accuracy of about 0.6 for both test sets.
Sad segments were classified with an accuracy of 0.6 and 0.5 in the first and second test set,
respectively.

Emotion-specific differences in the detection accuracy were also found in our experiments with
humans subjects, see Tables 4.44, 4.46, and 4.48 in section 4.3.2. The relationships were identical,
that is, angry segments were in general detected best, followed by neutral. Sad segments were
detected with the most difficulties, both by the system and by human subjects.

Even though the performance of the system using emotion-specific spectral models lay lower
than the respective performance of human subjects, it lay well above chance level. Also note,
that humans subjects benefited both from prosodic and verbal cues, cues which we investigated
further with the following experiments.
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4.3.4 Emotion-Specific Prosodic Information

We investigated several prosodic features and their potential to distinguish among sad, angry,
and neutral speech segments in the following experiments.

For each prosodic feature we also showed how its emotion-specific value compared to the
values of the remaining emotions. In addition, we compared emotion-specific values with the cor-
responding values gained in the previous Woggles corpus to check for consistency across corpora.

Fundamental Frequency (Mean and Variance)

Before computing the mean and variance of the fundamental frequency in an utterance, we nor-
malized regarding to the gender of the speaker. Other normalization techniques as discussed in
section 4.1.4, turned out to be less accurate. Normalization with respect to the speaker’s gen-
der was implemented by using minimum and maximum values to compensate for a non-uniform
distribution of emotional speech between men and women. After the removal of spikes, the fun-
damental frequency was median smoothed. 4.53 (a) gives the confusion matrix of a classification

Table 4.53: Confusion matrix based on the mean and variance of the fundamental frequency.
Overall 49.3% and 41.6% of the segments in the first and second test set were classified

correctly.
| | sad | angry | neutral | | | sad | angry | neutral |
SAD 19.8 | 15.0 11.3 SAD 12.1 4.5 2.6
ANGRY 33.7 1 53.0 12.4 ANGRY 50.0 | 90.9 44.8
NEUTRAL || 46.5 | 32.0 76.3 NEUTRAL | 37.9 4.6 52.6
(a) Test set 1 (b) Test set 2

system, tested on the first test set that used the mean and variance of the fundamental frequency
within an utterance as input features. The tendency to classify segments as neutral was also the
case in this experiment. 46.5% of the sad and 32.0% of the angry segments were classified as
neutral. Only 19.8% of the sad segments were classified as sad. 53% of the angry and 76.3%
of the neutral segments were classified correctly. Overall, 49.3% of the segments were classified
correctly. 4.59 (b) gives the confusion matrix for the second test set. Segments were classified
primarily as angry: half of the sad and 44.8% of the neutral segments were classified incorrectly
as angry. Overall, 41.7% of the segments were classified correctly.

The fl-scores are given in Table 4.54. We can see that sad segments were the most difficult
to detect in both test sets (0.27 and 0.21). Neutral segments were detected most accurately in
both test sets (0.59 and 0.57). Angry segments were detected in the first test set (0.53) better
than in the second test set (0.36). Overall, emotional segments were classified more accurately
in the first test set.

Table 4.55 gives the relative order of the emotion-specific values of mean and variance of the
fundamental frequency. Here, the values for sad segments occupy the extreme positions in these
tables. Also, for both mean and variance, sad segments had the largest values while neutral
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Table 4.54: Recall, precision, and fl-score for mean and variance of the fundamental fre-

quency.
| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.43 | 0.54 0.48 precision || 0.73 | 0.23 0.61
recall 0.20 | 0.53 0.76 recall 0.12 | 0.91 0.53
f1 0.27 | 0.53 0.59 f1 0.21 | 0.36 0.57
(a) Test set 1 (b) Test set 2

segments had the lowest. For mean and variance of the fundamental frequency, the order was

Table 4.55: Relative order of prosodic features.

| | sad | angry | neutral | | | sad | angry | neutral |
sad > > sad > >
angry < > angry < >
neutral || < < neutral || < <
(a) utterance Fy mean (b) utterance Fy variance

identical to the order found within the Woggles corpus, that is sad segments had a higher mean
and a larger variance than angry segments, see Table 4.10 for a comparison.
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Fundamental Frequency (Jitter)

In the following experiment, we tried to model some of the dynamics of the fundamental frequency.
We moved a window over the fundamental frequency to compute the following features:

1. the number of changes from a positive to a negative slope (or vice versa) normalized by the
total number of windows and

2. the sum of all x2 of all regression slopes normalized by the number of windows.

Note that for the computation of these two feature, the fundamental frequency was not smoothed
or normalized. We trained emotion-specific models using these two features on the respective
training sets.

The confusion matrices for the first and second test set are given in Table 4.56. For the first
test set, the system had the tendency to classify segments as neutral. For instance, 36.6% of
the sad and 43.0% of the angry segments were classified as neutral. A different picture emerged,
however, from the second test set. Here the system preferred to classify segments as sad. 59.1%
of the angry and 39.7% of the neutral segments were classified as sad. It appeared that the roles
of sad and angry were reversed in the first and second test set. But overall, 47.7% of the segments
in the first and 46.4% of the segments in the second test set were classified correctly.

Table 4.56: Confusion matrix based on intensity features. Overall 47.7% and 46.4% of the
segments in the first and second test set are classified correctly.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 44.6 | 28.0 12.4 SAD 60.6 | 59.1 39.7
ANGRY 18.8 | 29.0 17.5 ANGRY 288 | 31.8 21.8
NEUTRAL || 36.6 | 43.0 70.1 NEUTRAL | 10.6 9.1 38.5
(a) Test set 1 (b) Test set 2

However, if we look at the corresponding fl-scores, given in Table 4.57, we see a more con-
sistent picture. In both test sets, the fl-scores for sad and neutral were very similar. Neutral
segments had in both sets the highest fl-scores (0.56 and 0.51), followed closely by the f1-scores
for sad segments (0.48 and 0.53). Angry segments were detected with more difficulty. The
corresponding fl-scores were 0.35 and 0.22.

Table 4.57: Recall, precision, and fl-scores for jitter features.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.53 | 0.45 0.46 precision || 0.48 | 0.16 0.77
recall 0.45 | 0.29 0.70 recall 0.61 | 0.32 0.38
f1 0.48 | 0.35 0.56 f1 0.53 | 0.22 0.51
(a) Test set 1 (b) Test set 2
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The explanation for the high fl-scores for sad and neutral segments and the low score for
angry segments could be found when we look at the relative positions of the emotion-specific
values of these two features which are given in Table 4.58. For both features, the sad values were
larger than the corresponding values for angry and neutral. The neutral values always remained
smaller. Finally, note that the relative positions of the sad and angry values to each other were

Table 4.58: Relative order of prosodic features.

| | sad | angry | neutral | | | sad | angry | neutral |
sad > > sad > >
angry < > angry < >
neutral || < < neutral || < <
(a) normalized number of changes (b) normalized x>

identical to the positions of these features in the Woggles corpus, given in Table 4.13 in section
4.2.5.
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Intensity (Mean and Variance)

Intensity had not been a strong cue in the experiments using the Woggles corpus. See section
4.2.5 for the corresponding experiments. We speculated that this was the case because of the
recording conditions for the Woggles corpus. The recording conditions prohibited very dynamical
utterances, thus forcing the drama students to use a relative similar intensity for all emotional
variations of a given sentence. We had no such constraint in the current corpus and expected
intensity to become a much more reliable cue for detecting emotions.

Because we had less control over the recording conditions for the current corpus we explored
some normalization techniques. The most successful technique used in the results reported below
implied a movie specific normalization of the intensity. Only energy in voiced segments was
considered, and the minimum and maximum values were used for normalization. Normalization
using minimum/maximum values turned out to be superior to normalization by average since
emotions were not necessarily uniformly distributed within a movie.

Using a system relying only on information about intensity mean and variance within an
utterance, we were able to correctly classify 58.4% of the segments in the first test set. The
corresponding confusion matrix is given in Table 4.59 (a). Most of the confusion took place
between sad and neutral: 45.4% of the neutral segments were classified as sad and 13.9% of the
sad segments were classified as neutral. The confusion matrix for the second test set is given in

Table 4.59: Confusion matrix based on intensity features. Overall 58.4% and 61.4% of the
segments in the first and second test set were classified correctly.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 75.2 | 19.0 45.4 SAD 37.9 0.0 17.9
ANGRY 109 | 60.0 154 ANGRY 1.5 68.2 2.6
NEUTRAL || 13.9 | 21.0 39.2 NEUTRAL || 60.6 | 31.8 79.5
(a) Test set 1 (b) Test set 2

Table 4.59 (b). Similar to the first test set, most of the confusion took place between neutral
and sad: 17.9% of the neutral segments were classified as sad, and 60.6% of the sad segments
were classified as neutral. Note that the confusion was marginal between sad and neutral. No
angry segment was classified as sad and only 1.5% of the sad segments were classified as angry.
Overall, 61.4% of the segments in the second test set were classified correctly.

Table 4.60: Recall, precision, and fl-scores for mean and variance of the intensity.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.55 | 0.70 0.52 precision || 0.64 | 0.83 0.57
recall 0.75 | 0.60 0.39 recall 0.38 | 0.68 0.79
f1 0.63 | 0.65 0.39 f1 0.48 | 0.75 0.66
(a) Test set 1 (b) Test set 2

Intensity was an insightful cue for detecting angry segments. The fl-score for angry segments
was 0.65 for the first and 0.75 for the second test set, higher than for neutral (0.39 and 0.66) and
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for sad segments (0.63 and 0.48).

The relative order of intensity mean and variance among the emotions sad, angry and neutral
— given in Table 4.61 below — can be succinctly summarized. For sad segments both intensity
mean and variance were smaller than for angry or neutral segments. The opposite was the case
for angry segments. Their mean and variance values were larger than for both neutral and sad
segments. This order was consistent with the order we found for angry and sad segments within
the Woggles corpus. See Table 4.16 in section 4.2.5.

Table 4.61: Relative order of prosodic features.

| | sad | angry | neutral | | | sad | angry | neutral ]
sad < < sad < <
angry > > angry > >
neutral || > < neutral || > <
(a) utterance intensity mean (b) utterance intensity variance

This experiment substantiated the previous speculation that the recording conditions for the
Woggles corpus were the cause for the poor performance of intensity in that corpus. Differences
in intensity turned out to be a quite reliable indicator for the emotion expressed in an utterance.
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Intensity (Tremor)

The previous experiment showed that intensity mean and variance of an utterance allowed for a
clear discrimination among the emotions well above chance level. In the following experiment,
we explored two additional features derived from intensity. We moved a window over the voiced
segments in an utterance and computed the following two features:

1. the numbers of changes from a positive to a negative slope (or vice versa) normalized by
the total number of windows and

2. the sum of all x? of all regression slopes normalized by the number of windows.

We obtained two very different pictures for the first and second test set. For the first test set,
52.7% of the segments overall were classified correctly. But for the second test set, the accuracy
plunged to 26.5%. The system had the tendency to classify segments of the first test set as
neutral and for the second set as angry. For instance, 46.5% of the sad segments and 28.0%
of the angry segments were misclassified as neutral in the first test set. In the second test set,
78.8% of the sad and 78.2% of the neutral segments were classified as angry. The corresponding
confusion matrices are given in Table 4.62.

Table 4.62: Confusion matrix based on tremor information. Overall 52.7% of the segments
in the first and 26.5% of the segments in the second test set were classified correctly.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 16.8 | 11.0 8.2 SAD 10.6 0.0 2.6
ANGRY 36.6 | 61.0 10.3 ANGRY 78.8 | 100.0 78.2
NEUTRAL || 46.5 | 28.0 81.5 NEUTRAL | 10.6 0.0 19.2
(a) Test set 1 (b) Test set 2

The tendencies to classify segments as either neutral or angry were reflected in the corre-
sponding fl-scores given in Table 4.63. For the first test set, the fl-score for neutral was 0.63,
followed by 0.59 for angry. Sad achieved only an fl1-score of 0.23. We had the same relative order
for the second test set where neutral was detected best, followed by angry and sad. However, the
overall accuracy was much lower. For neutral, we had an fl-score of 0.3, and for sad and angry
fl-scores of 0.19 and 0.28, respectively.

Table 4.63: Recall, precision, and fl-scores for tremor features.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.47 | 0.56 0.51 precision || 0.78 | 0.16 0.68
recall 0.17 | 0.61 0.81 recall 0.11 1.0 0.19
f1 0.25 | 0.59 0.63 f1 0.19 | 0.28 0.30
(a) Test set 1 (b) Test set 2
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The relative positions of the emotion-specific value of the two tremor features are given in
Table 4.64. For the first feature, the neutral value was larger than the values of the remaining
emotions. The sad value was the smallest. However, for the second feature, the neutral value
again occupied an extreme position. This time, the sad value was smaller than the other values.
The value for angry was larger than the values of the remaining emotions. Note that the relative
positions of the sad and angry values of the first feature for this corpus are the same as in the
Woggles corpus, given in Table 4.19. That is, the angry value was larger than the sad value. For
the second feature, we did not get a consistent picture. For the current corpus, the angry value
was larger than the sad value while in the Woggles corpus the opposite was the case. It is not

Table 4.64: Relative order of prosodic features.

| | sad | angry | neutral | | | sad | angry | neutral |
sad < < sad < >
angry > < angry > >
neutral || > > neutral || < <
(a) normalized number of changes (b) normalized x?

quite clear whether the two tremor features yield reliable information for the discrimination of
emotions. For the Woggles corpus and for the first test set in the current experiment, tremor
information allowed the discrimination of emotions well above chance level. However, the tremor
values failed on the second test set. Moreover, the emotion-specific values were not consistent
across corpora.
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Speaking Rate (Phone Duration)

Speaking rate was a reliable feature for the detection of emotions in the Woggles corpus, see
section 4.2.5 for details. We operationalized speaking rate as state occupancy in suprasegmental
hidden Markov states which were specified to model phones. We computed this state occupancy
only for vowels.

Table 4.65 gives the confusion matrix of a system relying only on emotions-specific phone
durations. For both test sets, the system preferred to classify segments as angry. For instance, in
the first test set 56.4% of the sad and 71.1% of the neutral segments were misclassified as angry.

Table 4.65: Confusion matrix based on speaking rate information. Overall 39.6% and 23.2%
of the segments in the first and second test set were classified correctly.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 19.8 | 10.0 10.3 SAD 11.9 | 13.6 114
ANGRY 56.4 | 80.0 71.1 ANGRY 68.7 | 59.1 65.8
NEUTRAL || 23.8 | 10.0 18.6 NEUTRAL | 19.4 | 27.3 22.8
(a) Test set 1 (b) Test set 2

Due to the system’s strong preference to classify segments as angry, the corresponding f1-
scores — given in Table 4.66 — lay in most of the cases below chance level. For instance, in the
first test set, the fl-scores for sad and neutral were 0.28 and 0.24. Only angry, with an fl-score
of 0.52 lay above chance level. In the second test set, not even angry lay above chance level.

Table 4.66: Recall, precision and fl-scores for speaking rate.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.50 | 0.39 0.35 precision || 0.40 | 0.12 0.49
recall 0.20 | 0.80 0.19 recall 0.18 | 0.59 0.23
f1 0.28 | 0.52 0.24 f1 0.18 | 0.20 0.31
(a) Test set 1 (b) Test set 2

The reason for this poor performance of the duration feature can be found when we look
at the relative positions of this feature for each emotion. Since sad segments were in general
produced with a lower speaking rate than angry or neutral segments, the corresponding value
was higher than for angry or neutral. Angry segments were produced fastest since the value for
angry was smaller than for the remaining emotions. The relative order between sad and angry
was the same as in the the Woggles corpus, see Table 4.22 for details. There, sad segments were
also uttered slower than angry segments. However, if we have a closer look, we see that the
difference in the speaking rate was less pronounced for the current corpus. While the average
vowel durations in sad segments were longer than in angry segments in the Woggles corpus, this
was true in only for 58.8% of the vowels in the current corpus. The differences between the other
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Table 4.67: Relative order of speaking rate.

| [ sad | angry [ neutral |
sad > >
angry || < (58.8%) <
neutral || < (64.7%) | > (58.8%)

pairs were also not very pronounced. This situation explains the overall poor performance of a
speaking rate feature to discriminate among the emotions in the current corpus. We thought
that there are two reasons for this poor performance:

e The current corpus comprised segments from various movies with very different acoustic
properties. Even though we used adaptation of spectral models to tune the recognition
system to these peculiarities, the large acoustical variance may have prevented an optimal
adaptation. The Woggles corpus, in contrast, was recorded in a way to ensure an acoustic
similarity among the utterances. As a consequence, the alignment of the transcription with
the speech signal may not have been as accurate in the current corpus as in the previous
experiments using the Woggles corpus. Note that the computation of state occupancy
which we employed as an operationalization of speaking rate was based on this alignment.

An indication for the increased acoustic diversity of the current corpus compared to the
Woggles corpus was the discrepancy in the classification accuracies based on spectral in-
formation. Remember that for the Woggles corpus, we were able to achieve an accuracy
of about 70% while for the current corpus the corresponding accuracy was only at about
60%. This difference became more evident when we looked at the corresponding baselines
achieved by always guessing the same emotion. For the Woggles corpus the baseline lay at
25% and for the first test set of the current corpus by 33%.

e In addition to the acoustic variance among the movies and talk shows, we also had to cope
with variances due to of different speaking styles and dialects. For the Woggles corpus,
in contrast, the recording conditions produced a homogeneous speaking style among the
participating drama students.

Even though the speaking rate failed to indicate the expressed emotion in this experiment, we
know from the previous Woggles experiment that speaking rate can be a reliable feature if we
can compensate for variance arising from different speaking styles or dialects and can guarantee
an accurate extraction of the durations of segments.
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Combining Prosodic Information

Whereas in the previous experiments we investigated individual prosodic features, the following
experiment combined the eight following prosodic features: mean and variance of the fundamental
frequency and intensity, two jitter features, and two tremor features. Consult the previous
experiments for a more detailed descriptions of these features.

The confusion matrix for the first and second test set is given in Table 4.68. The overall
accuracy was 61.4% and 62.7% for the first and second test set, respectively. Remember that
we achieved an accuracy of 58% and 61% in a previous experiment with just intensity mean and
variance. Thus, we gained about 2% absolute by the combination of prosodic features. For both
test sets, most of the confusion took place between sad and neutral. For instance, in the first
test set 39.6% of the sad segments were classified as neutral and 15.5% of the neutral segments
were classified as sad. In the second test set, 57.7% of the neutral segments were classified as sad
and 13.6% of the sad segments as neutral.

Table 4.68: Confusion matrix based on eight prosodic features. Overall 61.4% and 62.7%
of the segments in the first and second test set were classified correctly.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 47.5 | 15.0 15.5 SAD 84.9 | 22.7 57.7
ANGRY 129 | 67.0 14.5 ANGRY 1.5 77.3 2.6
NEUTRAL || 39.6 | 18.0 70.1 NEUTRAL | 13.6 0.0 39.7
(a) Test set 1 (b) Test set 2

When we look at the fl-scores, given in Table 4.69, we see that the fl-scores in both test sets
for angry were higher than for the remaining emotions (0.69 and 0.81). In the first test set, sad
segments were detected with an accuracy of 0.54 and in the second set with 0.65. Neutral was
detected better in the first test set than in the second set (0.61 and 0.53).

Table 4.69: Recall, precision, and fl-scores for combined prosodic information.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.62 | 0.71 0.54 precision || 0.53 | 0.85 0.478
recall 0.48 | 0.67 0.70 recall 0.85 | 0.77 0.40
f1 0.54 | 0.69 0.61 f1 0.65 | 0.81 0.53
(a) Test set 1 (b) Test set 2

With the combination of prosodic features we obtained an accuracy which was comparable
to the accuracy we achieved with spectral information in a previous experiment, see section
4.3.3. For the second test set, the accuracy of the combination of prosodic features was higher
than the accuracy obtained by spectral information (0.63 vs. 0.47). In the next experiment we
combined the prosodic features explored in this section with spectral information to see whether
the combination would result in an overall improved performance.

109



4.3. TALK SHOWS AND MOVIES CHAPTER 4.

Combining Prosodic and Spectral Information

In the following experiment we combined prosodic and spectral information. We chose the same
eight prosodic features as in the previous experiment: mean and variance of the fundamental
frequency and the intensity, two jitter, and two tremor features. See the experiments above for
a more detailed descriptions of these features, also see section 4.3.3 for a description of the way
how we model spectral information in the current corpus. We combined linearly the prosodic
and spectral probabilities using weights determined independently on a development set.

The combination of prosodic and spectral information resulted in an overall f1-score of 0.68
for the first and 0.63 for the second test set. If we look at the confusion matrices, given in
Table 4.70, we see that most of the confusion took place between sad and neutral segments. For
instance, in the first test set 37.7% of the sad segments were misclassified as neutral and 16.5% of
the neutral segments as sad. In the second test set, 57.7% of the neutral segments were classified
as sad and 13.6% of the sad segments as neutral. Angry segments were detected quite accurately.
Note that of the angry segments in the second test set none were misclassified as sad.

Table 4.70: Confusion matrix based on prosodic and spectral information. The overall
fl-score for the first test set is 0.68 and for the second test set 0.63.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 57.4 8.0 16.5 SAD 84.8 | 22.7 57.7
ANGRY 4.9 75.0 11.3 ANGRY 1.5 77.3 2.6
NEUTRAL || 37.7 | 17.0 72.2 NEUTRAL || 13.6 0.0 39.7
(a) Test set 1 (b) Test set 2

The relative high confusion between sad and neutral segments was reflected in the corre-
sponding fl-scores given in Table 4.71 for both test sets. The fl-scores for sad and neutral were
lower than for angry. For instance, for the first test set, the fl-scores for sad and neutral were
0.63 while for angry the fl-score was 0.79.

Table 4.71: Recall, precision, and fl-scores for the combination of prosodic and spectral

information.
| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.71 | 0.75 0.72 precision || 0.53 | 0.85 0.78
recall 0.57 | 0.75 0.72 recall 0.85 | 0.77 0.40
f1 0.63 | 0.79 0.63 f1 0.65 | 0.81 0.53
(a) Test set 1 (b) Test set 2

If we compare the fl-scores we obtained considering solely prosodic and spectral information,
we see that the combination resulted in an overall moderate improvement. See Tables 4.51
and 4.69 for the corresponding fl-scores. We achieved fl-scores of 0.63 and 0.57 for spectral
information and fl-scores of 0.61 and 0.63 for prosodic information for the first and second test
set.
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We also assessed an upper bound of pooling spectral and prosodic information by using an
oracle which decided when to rely on spectral information and when to when to rely on prosodic
information. The corresponding confusion matrices are given in Table 4.72. In the first test set,
most of the confusion took place between sad and neutral (22.7% and 11.3%) and angry and
neutral (16.0% and 8.2%). The same was true for the second test set. For instance, 9.1% of
the angry segments were confused with sad segments and 30.8% of the neutral segments were
classified as neutral. However, note that there was far less confusion than in the experiment
above in which we combined linearly the spectral and prosodic probabilities. As a consequence,
the classification accuracies were significantly higher as well. For the first test, we were able to
classify about 78% of the segments correctly and about 79% for the second test set.

Table 4.72: Confusion matrix based on prosodic and spectral information using an oracle.
The overall fl-score for the first test set is 0.78 and for the second test set 0.79.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 74.3 4.0 11.3 SAD 89.4 9.1 30.8
ANGRY 3.0 80.0 8.2 ANGRY 1.5 90.9 2.5
NEUTRAL || 22.7 | 16.0 80.4 NEUTRAL || 9.1 0.0 66.7
(a) Test set 1 (b) Test set 2

The corresponding f1-score are given in Table 4.73. Using an oracle improved the classification
accuracy for all emotions in both test sets. Angry was classified most accurately in both test sets
(0.84 and 0.89), followed by sad (0.79 and 0.78) and neutral (0.73 and 0.76).

Table 4.73: Recall, precision, and fl-scores for the combination of prosodic and spectral
information using an oracle.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.83 | 0.88 0.67 precision || 0.69 | 0.87 0.90
recall 0.74 | 0.80 0.80 recall 0.89 | 091 0.67
f1 0.79 | 0.84 0.73 f1 0.78 | 0.89 0.76
(a) Test set 1 (b) Test set 2

To summarize, we were able to show that the linear combination of prosodic and spectral prob-
abilities improved the overall classification accuracy for the first test set. No such improvement
could be demonstrated for the second test set. We assessed an upper bound of the combination of
prosodic and spectral information by using an oracle in order to predict when to rely on prosodic
and when rely on spectral information to classify an utterance with regard to the expressed emo-
tion. This upper bound lay at least 10% points higher than the accuracy we achieved with a
linear combination.
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4.3.5 Emotion-Specific Verbal Information

One interesting property of the current movie corpus was that we could investigate emotion
specific verbal cues. As described in section 3.1, we used language models to capture emotion-
specific verbal information. Even though the corpus comprised segments from about twenty
movies and talk shows, its size was still small compared to corpora typically used to train language
models. The details of the distribution of segments, words, and word types in the various sets
are given in in Table 4.74. The word counts refer to sentences after function words were deleted.
The training set, given in Table 4.74 (a), comprised about 5,400 segments in total, about 30,000
words and about 3,000 word types. Because emotional segments were not distributed uniformly
throughout a movie, more neutral than sad or angry segments were available. The first test
set, given in Table 4.74 (b), was the test set we used throughout the previous experiments,
and comprised segments randomly drawn from several movies. Within this corpus, emotional
segments were distributed uniformly. The second test set, given in Table 4.74 (c), comprised sad,
angry, and neutral segments without any substantial background noise from the movie “One True
Thing” and was used in the previous experiments as well. Finally, Table 4.74 (d) informs about
all sad, angry, and neutral segments in the movie “One True Thing” regardless of the amount
of background noise. This last test set comprised a total of 329 segments, a third were sad and
about a sixth were angry.

Table 4.74: Distribution of segments, words, and word types for training and test sets.
The second test set comprised all angry, sad, and neutral segments in the movie “One True
Thing”. The subset of these segments which had no background noise is given (d). All
counts are based on sentences in which function words were deleted beforehand.

| | sad [ angry | neutral | | | sad | angry | neutral |
# segments || 968 1635 2817 # segments || 102 102 102
# words 5014 | 10299 | 16725 # words 495 | 555 620
# types 630 1582 3201 # types 241 | 305 282
(a) Training set (b) Test set 1
| | sad | angry | neutral | | | sad | angry | neutral |
# segments || 67 22 80 # segments || 108 47 174
# words 263 | 140 416 # words 443 | 314 961
# types 132 94 233 # types 168 | 103 471
(c) Test set 2 (no background noise) (d) Test set 2

The deletion of function words turned out to improve the accuracy of the subsequent emotion
discrimination. Moreover, discrimination based on bigram back-off models tended to be more
accurate than discrimination on unigrams or trigrams. Since training of emotion-specific language
models had to be based on such a small data set, we could only expect that the most obvious
verbal cues were modeled.
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Modeling Verbal Information (Test Set 1)

We started exploring emotion-specific verbal information with the first test set. We trained
emotion-specific back-off bigrams on emotion-specific training sets. Note that we first deleted
all function words from these sets. Consult sections 3.1 and 4.1.5 for a detailed description for
the training and testing procedure. We then used these bigrams to score the segments in the
test set after all function words were deleted as well. We chose the score of the highest scoring
emotion-specific language model to be indicative of the expressed emotion. The corresponding
confusion matrix is given in Table 4.75. As observed several times before in previous experiments

Table 4.75: Confusion matrix using back-off bigram language models. Overall, 46.7% of the
segments in the first test set were classified correctly.

| [ sad | angry [ neutral ]
SAD 41.2 | 22.5 30.4
ANGRY 5.9 33.3 3.9
NEUTRAL || 52.9 | 44.2 65.7

on acoustic and prosodic information, the system had a preference to classify segments as neutral.
For instance, 52.9% of the sad and 44.2% of the angry segments were classified as neutral. This
preference to classify segments as neutral reflected most likely the situation that more training
data was available to train neutral language models than sad or angry models. The system was
able to detect a third of the angry segments. It classified only 5.9% of the sad and 3.9% of the
neutral segments as angry.

The precision, recall and the fl-scores are given in Table 4.76. Note that for all three emotion

Table 4.76: Precision, recall and fl-score for the first test set using verbal information.

| | sad | angry | neutral |
precision || 0.44 | 0.77 0.40
recall 0.41 | 0.33 0.66
fl 042 | 047 0.50

classes, the fl-score lay above the baseline of 0.33. Remember that we also asked human subjects
to classify these segments based only on a textual presentation. The corresponding results were
given in Table 4.50. In that experiment, the fl-score for sad segments was 0.43 and was very
similar to the current f1-score for sad (0.42). The same was the case for neutral segments. The
system achieved an fl-score of 0.5 and human listeners obtained and fl-score of 0.54. The largest
difference between human subjects and the system lay in the detection of angry segments. Human
subjects achieved their highest fl-score of 0.65 for angry segments. The system, in contrast,
could only achieve a score of 0.47. Overall, the system was able to classify 46.7% of the segments
correctly whereas humans achieved a correct classification for 55.7% of the segments.
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Modeling Verbal Information (Test Set 2)

With the next experiment, we explored verbal cues in the second test set comprising segments
from the movie “One True Thing”. For training the emotion-specific bigram models, we used
the training set as described above and the first test set. The training and test procedure were
the same as described above.

We tested on two test sets. The first set comprised only the sad, angry, and neutral segments
of the movie which were free of any substantial background noise. The second set consisted of all
sad, angry, and neutral segments in the movie regardless of the amount of background noise. The
reason for this separation into two test sets was to investigate the impact of the combination of
spectral, prosodic, and verbal information in subsequent experiments. The combination of these
three sources, however, could only be tested on the segments free of background noise.

The confusion matrix for the second test set comprising segments free of any background noise
is given in Table 4.77 (a). The overall performance of 46.7% was very similar to the first test set
which was given in Table 4.75 above. The overall default was to classify a segment as neutral:
52.9% of the sad and 40.9% of the angry segments were classified as neutral. For the second test

Table 4.77: Confusion matrix using back-off bigram language models for the movie “One
True Thing”. Overall 46.7% and 47.4% of the segments in the first and second test set were
classified correctly.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 46.3 | 40.9 38.7 SAD 41.7 | 34.0 32.8
ANGRY 2.9 18.2 6.3 ANGRY 1.8 12.8 6.3
NEUTRAL || 50.8 | 40.9 55.0 NEUTRAL | 56.5 | 53.2 60.9
(a) Test set 2 (no background noise) (b) Test set 2

set, comprising all sad, angry, and neutral segments, we had a similar confusion pattern. Most
of the confusion took place between sad and neutral: 56.5% of the sad segments were classified
as neutral and 32.8% of the neutral segments were classified as sad. Overall, about 47% of the
segments were classified correctly.

Precision, recall, and fl-scores for both test sets are given in Table 4.78. The fl-scores for sad

Table 4.78: Precision, recall, and fl-scores for the second test set using verbal information

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.44 | 0.36 0.51 precision || 0.38 | 0.32 0.55
recall 0.46 | 0.18 0.55 recall 042 | 0.13 0.61
f1 045 | 0.24 0.53 f1 0.40 | 0.18 0.58
(a) Test set 2 (no background noise) (b) Test set 2

segments were similar for both test sets (0.45 and 0.42). Neutral segments were detected with
the highest accuracy, their fl-scores was 0.53 and 0.58. Angry segments were detected with an
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fl-score of only 0.21 and 0.18. For all test sets, the overall detection rate was with about 47%
fairly consistent and lay well above chance level.

Examples of Verbal Information

In order to explore the verbal cues in the current corpus, we ranked the emotion-specific language
models. Note, however, that the most likely bigram within an emotion-specific language model
was not necessarily the bigram which helped to discriminate among the emotions. We were
interested in those bigrams which were very likely in one emotion-specific language model and
very unlikely in the remaining models and thus discriminated among the respective emotions.

In order to find these bigrams, we introduced the following simple measure. We were inter-
ested in those bigrams w;_;w; modeling emotion e which satisfied the constraints as given with
equations 4.23 and 4.24:

Pe(wi|w,~,1) >« (4.23)

Yerer Per(wi | wi—1)
n

> ﬂPe(wi | wi—l) (424)

where o and 8 were values to be determined empirically, E denotes the set of emotions we are
trying to discriminate, and n is the cardinality of £. With equation 4.23 we guaranteed that the
bigram w;_jw; is likely to occur in a corpus consisting of segments expressing emotion e. With
equation 4.24 we guaranteed that the likelihood of the bigram P,(w; | w;—1) is larger than the
average likelihood of the bigram w; jw;.

In order to illustrate this measure and to exemplify the most obvious verbal cues in the
current corpus, we listed the first twenty emotion-specific bigrams in Table in 4.79. Note that we
deleted function words before applying the language models to compute the score. We could use
the lists of bigrams in Table 4.79 to speculate about the lexical cues modeled by the emotion-
specific bigrams. In particular, the bigrams modeling verbal cues encoding anger comprise certain
lexemes, metaphorizations, and intensification. The bigram “objection honour” on rank 18 was
a consequence of several movies taking place in a court room. The bigram “factory played’
originated from the movie “Roger and Me”. For bigrams modeling cues signalling sadness, the
high number of the words “no” and “love” was surprising. The best way to summarize the
bigrams signalling neutral, was that they really do not invoke any particular emotion. They
sounded more affirmative than the bigrams signalling sadness.

As a side remark, we tried to use the measure introduced in equations 4.23 and 4.24 in an
additional experiment to classify segments according to the expressed emotion. We were not able
to achieve any significant improvements on the results of the experiments reported above.

To summarize, even though the emotion-specific language models had to be trained on rel-
atively small corpora consisting of about 5,000 to 17,000 words, they modeled some emotion-
specific lexical cues and were able to discriminate among sad, angry, and neutral with an accu-
racy of about 47%, well above chance level. Note, also, that human subjects performing a similar
task, that is, classifying sentences based on verbal cues only, achieved an accuracy of 55.7%.

With the following experiment we explored whether the combination of verbal and non-verbal
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Table 4.79: The top twenty emotion-specific bigrams using the distance measure as de-
fined in euquations 4.23 and 4.24. Remember that function words were deleted before the
computation of the emotion-specific language model scores.

| | sad | angry | neutral |
1 || no mommy fuck fuck now ever
2 love want shut fuck SO ever
3 mean love shut fucking got got
4 love just fuck fucking SO see
5 no only factory played now so
6 want want | fucking bullshit about well
7 || sorry going fuck harold so got
8 no know hate hate know about
9 no want fucking leave SO SO
10 no sorry shut god about know
11 || no mollly fucking shit right got
12 going so get fuck now right
13 SOrTy no stop fucking right now
14 || no doctor stop fucking just got
15 || how going tell fuck no time
16 || no nothing knows hell so think
17 no really tell fuck right so
18 no good objection honour yes know
19 how how fuck talking well let
20 no going hey fuck right just
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4.3.6 Combining Prosodic and Verbal Information

In the following experiment, we combined prosodic and verbal information. We modeled prosodic
information based on eight features: mean and variance of the fundamental frequency and the
intensity, two jitter, and two tremor features. Consult the corresponding experiments above for a
detailed description of these features. We used emotion-specific back-off bigrams to model verbal
information. See section 4.3.5 for a detailed description. We combined prosodic and spectral
probabilities linearly with weights determined empirically on an independent development set.

The corresponding confusion matrices for the first and second test set are given in Table
4.80. Overall, about 62% and 63% of the segments in the first and second test set were classified
correctly. For the first test set, the system tended to classify segments as neutral: 40.6% of the
sad and 15.0% of the angry segments were classified as neutral. For the second test set, the
system tended to classify segments as sad since 22.7% of the angry and 57.7% of the neutral
segments were confused with sad.

Table 4.80: Confusion matrix based on eight prosodic features and verbal information.
Overall about 62% of the segments in the first and 63% of the segments in the second test
set were classified correctly.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 46.5 | 15.0 15.5 SAD 86.4 | 22.7 57.7
ANGRY 12.9 | 70.0 144 ANGRY 1.5 77.3 2.6
NEUTRAL || 40.6 | 15.0 70.1 NEUTRAL || 12.1 0.0 39.7
(a) Test set 1 (b) Test set 2

The corresponding fl-scores are given in Table 4.81. Angry segments achieved the best f1-
scores: 0.71 and 0.81 for the first and second test set, respectively. For the first test set, angry
was followed by neutral with an fl-score of 0.62. For the second test set, sad segments (0.66)
were classified better than neutral (0.53).

If we compared the current fl-scores to the fl-scores we obtained by relying only on prosodic
features — consult Table 4.69 — we saw only a marginal improvement. Remember that the overall
fl-scores for prosodic information were about 0.61 for the first and 0.63 for the second test set.

Table 4.81: Recall, precision, and fl-scores using both prosodic and verbal information.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.61 | 0.72 0.55 precision || 0.53 | 0.85 0.40
recall 0.47 | 0.70 0.70 recall 0.86 | 0.77 0.40
f1 0.53 | 0.71 0.62 f1 0.66 | 0.81 0.53
(a) Test set 1 (b) Test set 2

This experiment demonstrated that verbal and prosodic cues in the decoding of emotions are
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not necessarily orthogonal. The combination of prosodic and verbal information did not improve
the overall fl-score when compared to the accuracy we obtained in a previous experiment by
relying just on prosodic information.
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4.3.7 Combining Spectral and Verbal Information

When we combined verbal and prosodic information in the previous experiment, the gain in
classification accuracy was only moderate. In this experiment we pooled verbal and spectral
information to see whether this combination led to an overall improvement. We linearly combined
the spectral and verbal probabilities using weights which we determined on an independent
development set.

The confusion matrices for the current experiment are given in Table 4.82. Overall, about
65% of the segments in the first and 59% in the second test set were classified correctly. For the
first test set, the system tended to classify segments as neutral since 42.6% of the sad and 19.0%
of the angry segments were classified as neutral. The same trend was true for the second test
set: 39.4% of the sad and 18.2% of the angry segments were classified as neutral. In addition,
more than half of the neutral segments were confused with angry. The corresponding f1-scores of

Table 4.82: Confusion matrix based on spectral and verbal information. The overall f1-score
for the first test-set was 0.65 and for the second set 0.59.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 47.5 7.0 15.5 SAD 46.9 4.5 30.8
ANGRY 9.9 74.0 10.3 ANGRY 13.5 | 77.3 51.2
NEUTRAL || 42.6 | 19.0 74.2 NEUTRAL || 394 | 18.2 64.0
(a) Test set 1 (b) Test set 2

the linear combination of verbal and spectral probabilities are given in Table 4.83 below. Angry
segments achieved the highest fl-scores with 0.76 and 0.65 for the first and second test set,
followed by neutral segments (0.62 and 0.63) and sad segments (0.56 and 0.51).

If we compared the current fl-scores with the scores of spectral information, given in Table
4.52, we saw that the combination seemed to improve the correct classification of angry and
neutral. For instance, for the first test set, the fl-score for angry improved form 0.74 to 0.76 and
for neutral from 0.58 to 0.62 whereas the fl-score for sad segments dropped from 0.6 to 0.56.
Overall, the combination amounted to an improvement of about 2% absolute over a system based
only on spectral information.

Table 4.83: Recall, precision, and fl-scores using spectral and verbal information.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.69 | 0.79 0.54 precision || 0.55 | 0.57 0.62
recall 0.48 | 0.74 0.74 recall 0.47 | 0.77 0.64
f1 0.56 | 0.76 0.62 f1 0.51 | 0.65 0.63
(a) Test set 1 (b) Test set 2

To summarize, the combination of verbal information with either prosodic or spectral infor-
mation resulted only in moderate improvements for both test sets. The next experiment explored
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whether there was an overall improvement when combining spectral, verbal, and prosodic infor-
mation.
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4.3.8 Combining Spectral, Prosodic, and Verbal Information

In the final experiment using the current movie corpus, we combined spectral, prosodic, and
verbal information. Similar to the previous experiments, we combined the probabilities of each
of these three model sets linearly with weights determined on an independent development set.
For the second test set, we were not able to achieve any improvements over the best results
achieved earlier. For the first test set, however, we were able to improve slightly by about 1%
to 69% correctly classified segments. The confusion matrix for the first test is given in Table
4.84. The system had the tendency to classify segments as neutral: 35.6% of the sad and 17.0%
of the angry segments were classified as neutral. We found this kind of confusion in earlier
experiments as well. Remember that the best previous accuracy was 68% using prosodic and

Table 4.84: Confusion matrix based on prosodic, spectral, and verbal information. Overall,
about 69% of the segments in the first set were classified correctly.

| | sad | angry | neutral |
SAD 58.4 8.0 15.5
ANGRY 5.9 75.0 10.3
NEUTRAL || 35.6 | 17.0 74.2

spectral information. See Tables 4.70 and 4.71 for the respective numbers of that experiment.
The accuracy for angry segments stayed constant across these two experiments.

Table 4.85: Recall, precision, and fl-scores using verbal, spectral, and prosodic information
for the first test set.

| | sad | angry | neutral |
precision || 0.72 | 0.82 0.58
recall 0.58 | 0.75 0.74
f1 0.64 | 0.79 0.65

The accuracies for sad and neutral segments increased slightly. The fl-scores for the combi-
nation of spectral, prosodic and, and verbal cues are given in Table 4.85. Angry segments were
classified most accurately with an fl-score of 0.79. The fl-scores for sad and and neutral were
0.64 and 0.65, respectively.

We also computed the classification accuracies pretending we knew when to choose spectral,
prosodic, or verbal information. The corresponding confusion matrices of these oracle experi-
ments are given in Table 4.86. In the first test set, the only noteworthy confusion takes place
between sad and neutral (13.9%) and between angry and neutral (9.8%). We find even less
confusion in the second test set.

As a consequence of the marginal confusion between the emotions the corresponding fl1-scores,
given in Table 4.87, were very low. For the first test set, angry segments were classified with an
accuracy of 0.9, followed by sad (0.86) and neutral (0.84). For the second test set, the fl-score
for all three emotion lay at around 0.9. Overall, 86.6% of the segments in the first and 90.4% of
the segments in the second test set were classified correctly. Recall that the upper bounds of the
combination of spectral and prosodic information were 78% and 79% for the first and second test
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Table 4.86: Confusion matrix based on prosodic and spectral information using an oracle.
The overall fl-score for the first test set is 0.68 and for the second test set 0.63.

| | sad | angry | neutral | | | sad | angry | neutral |
SAD 84.3 3.9 7.8 SAD 97.0 9.1 12.8
ANGRY 1.9 86.3 2.9 ANGRY 0.0 90.9 2.6
NEUTRAL || 13.8 9.8 89.2 NEUTRAL || 3.0 0.0 84.6
(a) Test set 1 (b) Test set 2

Table 4.87: Recall, precision, and fl-scores for the combination of prosodic and spectral
information using an oracle.

| | sad | angry | neutral | | | sad | angry | neutral |
precision || 0.88 | 0.95 0.79 precision || 0.84 | 0.91 0.97
recall 0.84 | 0.86 0.89 recall 097 | 0.91 0.85
f1 0.86 | 0.90 0.84 f1 0.90 | 0.91 0.90
(a) Test set 1 (b) Test set 2

set. We established these upper bounds also by using an oracle predicting when to choose the
spectral and when to choose the prosodic score. Thus, the additional verbal information allowed
an improvement of about 10% absolute for both test sets.

The gain in the overall accuracy by the linear combination of spectral, prosodic, and verbal in-
formation was marginal. However, the current overall accuracy of 69% lay just 1% absolute lower
than the accuracy humans achieved. We did not expect the classification system to outperform
humans on the classification of emotional speech segments.

The experiments relying on an oracle indicated that spectral, prosodic, and verbal information
was orthogonal to some extend. The fact that our approach of linear combining spectral, prosodic,
and verbal probabilities fell about 10% short of the bound established by the oracle experiment
suggested that alternative approaches might bridge the gap.
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4.3.9 Summary

In this section we investigated spectral, prosodic, and verbal cues in sad, angry, or neutral speech
segments drawn from movies and talk shows. We conducted several experiments involving human
subjects to control the quality of the cues signalling an emotion. When the human subjects
listened to the speech segments, they classified correctly about 70% of the segments. However, in
the case when the subjects based their judgement only on a textual representation, their accuracy
dropped to about 56% correctly classified segments. An additional pilot experiment showed that
context information helped the classification. In this experiment, the first group of two subjects
had to judge the emotion expressed in a randomly drawn utterance from the movie “One True
Thing”. The second group judged the same segments which, in contrast, were represented in their
original order and context. As a result, the second group outperformed the first one significantly.
As mentioned earlier, we conducted the experiments involving human listeners to control the
quality of the respective corpus and to establish a classification accuracy which we could use to
evaluate the accuracy of spectral, prosodic, or verbal cues. Note that these experiments were not
intended to explore how humans decode emotions expressed.

In Table 4.88 we list the results of some of the experiments we carried out in this section.
All cues were evaluated on two test sets. The first test set comprised speech segments randomly
drawn from several movies. The second test set comprised all relevant speech segments from the
movie “One True Thing”.

The first experiment investigated spectral information which we modeled by cepstral coef-
ficients, power, delta power, and delta-delta power (1). We trained emotion-specific spectral
models using adaptation techniques. Using these codebooks for classification, we were able to
classify 63% of the segments in the first and 57% of the segments in the second test set correctly.

The next experiments explored several prosodic cues. Classification based on the mean and
variance of the fundamental frequency classified 49% of the first and 41% of the second test set
correctly (2). Jitter information classified 47% of the first and 46% of the second test set correctly
(3). The most reliable prosodic cue was the mean and variance of the intensity (4). Using these
two features, we were able to classify 58% of the segments in the first and 61% of the segments
in the second test set correctly. Remember that these two features failed to indicate the emotion
for the segments in the Woggles corpus. We speculated then that this failure was due to the
recording conditions which forced the actors’ intensity to lie within a certain range. In order to
become reliable indicators, intensity had to be normalized with regard to the movie. In addition,
we only considered intensity in voiced regions. We studied two additional features based on
intensity. Tremor information allowed to classify more than half of the segments in the first test
set correctly (5) whereas it failed completely to indicate the expressed emotions in the second test
set. We also explored the potential of the speaking rate to indicate the expressed emotions for the
segments in the current corpus (6). We discovered, in contrast to the Woggles corpus, speaking
rate was not a reliable indicator. We attributed this shortcoming to the acoustical diversity of
the corpus which did not a allow a very accurate alignment of the utterance with the signal, a
prerequisite for the estimation of the speaking rate. In addition, different speaking styles and
dialects complicated the estimation of the speaking rate parameters. In a final experiment we
combined the above mentioned prosodic parameters with the exception of speaking rate. Here,
the combination of these prosodic features resulted in an improvement of 2-3% absolute for the
two test sets.

We also compared the relative order of the emotion-specific values of all the prosodic features
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to each other. As it turned out, for sad and angry the relative order of the values of the prosodic
features was the same as in the Woggles corpus. For instance, sad segments had in both corpora
a larger mean and variance in their fundamental frequency. For intensity, the mean and variance
for sad segments was lower than for angry segments.

Table 4.88: Overview

| No. | TFeatures [ Segments | Signal Postprocessing | Test Set | fl-score |
1 spectral utterance 1/2 0.64/0.57
2 F, utterance | median smoothing 1/2 0.49/0.41
mean/variance gender normalization
3 Fy, utterance 1/2 0.47/0.46
jitter
4 Intensity, utterance | voiced segments 1/2 0.58/0.61
mean /variance normalized
5 Intensity, utterance | voiced segments 1/2 0.52/0.25
tremor log
6 Duration phones | vowels only 1/2 0.39/0.23
7 Verbal bigram | function words 1/2 0.46/0.47
deleted

8 | 2,3,4,5,6 1/2 | 0.61/0.63
9 7,8 1/2 | 0.62/0.63
10 1,7 1/2 | 0.65/0.59
11 1,8 1/2 | 0.68/0.63
12 8, 10 1/2 | 0.69/0.63
13 humans 1 0.7

14 1, 8 (oracle) 1/2 0.78/0.79
15 | 1,7, 8 (oracle) 1/2 0.87/0.90

The current corpus allowed us to explore verbal cues as well (7). We trained emotion-specific
language models (bigrams back-off models) and applied them to classify segments according to
the expressed emotions. Using these emotion-specific language models we were able to classify
about 46% of the segments in the first and second test set correctly. Human subjects were able
to classify 56% of the segments correctly if their judgment was based on a transcription of the
utterance.

In several experiments we pooled spectral, prosodic, or verbal information by combining their
probabilities linearly with weights determined on an independent development set. The gains
in the overall accuracy were moderate. For instance, combining spectral and verbal information
amounted to an improvement of 2% absolute (10). Combining prosodic and verbal information
did result in an improvement of about 1% for the first test set but no improvement was achieved
for the second corpus (9). The combination of spectral and prosodic information improved the
accuracy to 68% for the first test set (11). No improvement was achieved for the second test set.
Remember that the combination of prosodic and spectral information in the Woggles corpus also
did not yield significant improvements. See section 4.2.7 for details. Pooling all three kinds of
information, we achieved an accuracy of 69% for the first test set (12) whereas for the second
test set, we did not achieve any improvements. However, the performance of spectral information
or the linearly combined prosodic information lay already close to the performance of human
subjects. The failure of a linear combination of spectral, prosodic, and verbal probabilities
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to improve the overall classification accuracies does not necessarily entail that the respective
information is not orthogonal. We assessed the upper bound for pooling spectral, prosodic, and
verbal information by using an oracle predicting when to choose the spectral, prosodic, or verbal
information (14 and 15). The respective upper bounds lay about 10% absolute over the accuracies
achieved with a linear combination (11 and 12).

In Figure 4.5, we plotted the emotion-specific f1-scores for several of the experiments based
on the first test set. Remember that the baseline was 33% achieved by guessing always the same
emotion.
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Figure 4.5: Plot of fl-score for prosodic features, the combination of all prosodic features,
the combination of prosodic and spectral information, the combination of prosodic, spectral,
and verbal information, and two oracle experiments. Note that the fl-scores are based on
the first test set.

In general, angry segments were detected best. Looking at the experiments investigating
prosodic information, we can see that certain prosodic features yielded very good accuracies for
certain emotions while breaking down completely on others. This was the case for all prosodic
features until their combination. The combination of prosodic features did not only improve
the overall accuracy but also resulted in comparable accuracies for each emotion. We observed a
similar behavior of prosodic information in the Woggles corpus. See Figure 4.4 in section 4.2.9 for
details. The graph also shows the moderate improvements when we combined spectral, prosodic,
and verbal information. The last two data points indicate upper bounds on the combination
of spectral, prosodic, and verbal information. We established these upper bounds by an oracle
predicting when to choose the spectral, prosodic, or verbal information.
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4.4 Prosodic Cues In Chinese and German

With the following experiments we investigated whether emotion-specific prosodic properties of
English transfered onto other languages such as Spanish or German. We used prosodic models
which were trained on English movies and talk shows. See section 4.3 for details. Note that we
only investigated global prosodic features such as mean and variance of the intensity and the
fundamental frequency of utterances. Other prosodic features such as speaking rate could not
be explored since no alignment path of the signal and the utterance was available.

4.4.1 Spanish

The first corpus consisted of segments from the movie “Johnny Cien Pesos”. The test set com-
prised 90 segments. Within the test set the emotion tags were distributed uniformly. Thus the
baseline performance was 33%. We computed eight prosodic features: mean and variance of
the fundamental frequency, normalized by gender, mean and variance of the intensity, two jitter
and two tremor features. Note that intensity was normalized with respect to the movie. For a
detailed description of the prosodic features consult sections 4.1.4 and 4.2.5.

Using prosodic models previously trained on English segments of movies and talk shows, we
tested the 90 segments in this Spanish corpus. The confusion matrix of this test is given in Table
4.89. The system had a tendency to classify segments as sad. For instance, 64.3% of the angry
and 25.9% of the neutral segments were misclassified as sad. There was very little confusion
between angry and neutral. Only 7.1% of the angry segments were classified as neutral and no
neutral segment was classified as angry. Overall, 50.6% of the segments were classified correctly.
Looking at the fl-scores, given in Table 4.90, we see that neutral segments were detected most

Table 4.89: Confusion matrix based on fundamental frequency and intensity. Overall, close
to 50% of the segments were classified correctly.

| | sad | angry | neutral |

Sad 50.0 | 64.3 25.9
Angry 7.1 28.6 0.0
Neutral || 42.9 | 7.1 74.1

accurately with an fl-score of 0.66. The fl-scores of both sad and angry lay with 0.42 above
chance level. The relative order of the eight prosodic features are given in Table 4.91 and 4.92.

Table 4.90: Precision, recall and fl-scores for prosodic information.

| | sad | angry | neutral |

precision || 0.36 | 0.80 0.59
recall 0.50 | 0.29 0.74
f1 0.42 | 0.42 0.66

Let us look at the first table in which we display the order of the four features based on the
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fundamental frequency. Let us also recall the relative positions of these four features in the
corpus comprising segments from movies and talk shows, see Tables 4.55 and 4.58. Note that for
all four features in both corpora the values for neutral segments were always smaller than for sad
and angry segments. However, the positions of sad and angry to each other changed across these
two corpora. While sad values were larger than the corresponding angry values in the movie
and talk show corpus they were smaller in the current Spanish corpus. The picture regarding

Table 4.91: Relative order of Fy features.

| | sad | angry | neutral | | | sad | angry | neutral ]
sad < > sad < >
angry > > angry > >
neutral < < neutral < <
(a) Fy mean b) Fy variance
| | sad | angry | neutral | | | sad | angry | neutral |
sad < > sad < >
angry > > angry > >
neutral < < neutral < <
(¢) normalized number of changes (d) normalized x>

to the four intensity features is less coherent. The positions of these four features are given in
Table 4.92 for the current Spanish corpus and in Tables 4.61 and 4.62 for the movie corpus. In
general, it was the case that in both corpora the values for angry segments were larger than for
sad segments, the only exception being the third feature (c) in the current corpus. Also, the
positions of angry and neutral to each other were consistent across both However, this was not
the case for sad and neutral. While the eight prosodic feature did not behave identically on both

Table 4.92: Relative order of intensity features.

| | sad | angry | neutral | | | sad | angry | neutral |
sad < > sad < >
angry > > angry > >
neutral < < neutral < <
(a) Intensity mean (b) Intensity variance
| | sad | angry | neutral | | | sad | angry | neutral |
sad > > sad < >
angry < < angry > >
neutral < > neutral < <
(¢) normalized number of changes (d) normalized x?

corpora, they still allowed to classify Spanish speech segments well above chance level. About
50% of the segments were classified correctly. Remember that the system was able to classify
correctly about 60% of the segments in the test set of the English movie corpus using the very
same prosodic features.
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4.4.2 German

We also tested prosodic models trained on the English movie corpus on segments from the movie
“Das Boot”. This German corpus comprised a total of 84 segments: 27 sad, 35 angry, and 22
neutral segments. We used the same 8 prosodic features as in the preceding experiment: mean
and variance of the fundamental frequency and intensity, two jitter, and two tremor features.

The resulting confusion matrix is given in Table 4.93. Overall, only 39.3% of the segments
were classified correctly which was about a drop of 10% absolute compared to the experiment
testing Spanish data and about a drop of 20% absolute compared to the experiment with English
data, see Tables 4.3.4 in sections 4.3.4 and 4.4.1, respectively. Thus, the English prosodic models
did not extrapolate to the German data. However, it is interesting to see that none of the sad
and none of of the neutral segments were misclassified as angry.

Table 4.93: Confusion matrix based on eight prosodic features. Overall, only about 39% of
the segments were classified correctly.

| | sad | angry | neutral |

Sad 14.8 | 514 4.5
Angry 0.0 | 229 0.0
Neutral || 85.2 | 25.7 95.5

The high confusion among the emotions resulted in very low fl-scores. Sad had an fl-score
of only 0.16, angry of 0.37. Neutral segments had the highest fl-score with 0.56. The reason

Table 4.94: Precision, recall, and fl-scores for prosodic information.

| | sad | angry | neutral |

precision || 0.17 1.0 0.4
recall 0.15 | 0.23 0.96
f1 0.16 | 0.37 0.56

for the failure of the English prosodic models to classify the German segments can be found if
we look at the relative positions of the emotion-specific values for the respective eight features,
given in Tables 4.95 and 4.96. None of the positions of the emotion-specific values based on
fundamental frequency agreed completely with the positions of these features in English, see
Tables 4.55 and 4.58 in section 4.3.4. However, some of the positions of the emotion-specific
intensity based values agreed with the positions of these features in English, see Tables 4.61 and
4.64 in section 4.3.4. For instance, both for German and English it was the case that neutral
segments were louder than sad segments and that angry segments were still louder than neutral
segments. German and English also agreed on the tremor features.
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Table 4.95: Relative order of Fy features.

| | sad | angry | neutral | | | sad | angry | neutral |
sad < < sad < >
angry > > angry > >
neutral > < neutral < <
(a) Fo mean (b) Fy variance
| | sad | angry | neutral | | | sad | angry | neutral |
sad < < sad < >
angry > > angry > >
neutral > < neutral | < <
(c) normalized number of changes (d) normalized x?

Table 4.96: Relative order of intensity features.

| | sad | angry | neutral | | | sad | angry | neutral |
sad < < sad < <
angry > > angry > >
neutral || > < neutral || > <
(a) Intensity mean (b) Intensity variance
| | sad | angry | neutral | | | sad | angry | neutral ]
sad > < sad < >
angry < < angry > >
neutral || > > neutral || < <
(c) normalized number of changes (d) normalized x?

4.4.3 Summary

The size of the underlying corpora of this two pilot experiments above prevents any general claims
about the universality of prosodic cues. More languages with substantial larger data sets must
be explored to warrant any such claims. We also have to be careful about the origin of the speech
segments studied. All the corpora consisted of speech segments produced by actors performing
in movies which were produced with the idea in mind to be exported to foreign countries. In
addition, actors had certainly prior exposure to foreign languages.

However, besides all the caveats mentioned above, some of the intensity features, in particular,
exhibited a consistent behavior across languages. For instance, the values of the intensity mean
and the tremor features were consistent for sad and angry across English, Spanish, and German.
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4.5 Spanish Call Home

With the Spanish Call Home corpus we explored whether we could detect emotions in spontaneous
Spanish telephone conversations. Note that this corpus, in contrast to the previous corpora, did
not rely on actors. Instead, people were granted free long distance telephone calls if they allowed
their conversations to be recorded. In the following experiments we modeled only emotion-specific
spectral information. Moreover, we confined the experiments to binary classification tasks. That
is, we tried to distinguish between emotion pairs: sad vs. weak joy and sad vs. strong joy. We
expected spectral differences between these emotion pairs to be the largest. In addition, only
these emotions occurred in the corpus frequently enough to allow a reliable estimation of the
model parameters.

4.5.1 The Corpus

The Spanish Call Home corpus comprised a total 120 conversations. We annotated a subset of 39
conversations with emotion tags using the list of tags described previously in section 4.3.1. The
distribution of speech act segments in these 39 conversations is given in Table 4.97. Note that

Table 4.97: Distribution of speech acts according to their emotion tag where neu indicates
neutral sentences, wkj weak joy, sad sad, afr afraid, stj strong joy, iro irony, bor bored, sus
suspicion, and ang angry.

| tag || neu | wkj | sad | afr | stj [ dis | iro | bor [ sus | ang |
[ # [ 9868 | 2470 | 341 | 170 [ 160 | 97 | 93 | 46 | 44 | 15 |

only segments tagged as neutral, sad, afraid, and weak and strong joy occurred more than 150
times in the corpus. In general, it can be said that corpus did not comprise emotional segments
in a density we had encountered in the previous corpora.

The speech style in the Spanish Call Home corpus was extremely informal and, moreover,
comprised several South American dialects combined with foreign words, both English and local.
The foreign line quality was often poor and there was a lot of background noise such as babies
crying or kitchen noises.

For the following experiments we used the Janus Recognition Toolkit which was trained on a
subset of 80 conversations and additional training data from Call Friend Spanish and the Ricardo
database. The word error rate of the trained system was 61.1% which was comparable to results
reported from other sites, such as 57.4% from BBN, 57.5% from SRI, and 61.3% from NSA.

4.5.2 Intra- and Intercoder Tagging Agreement

The conversations were segmented into segments using a schema as described in (Finke et al.,
1998). For annotating the resulting segments with emotion tags we employed two transcribers,
both natives from Chile. In order to validate the quality of the expression of emotions and
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the consistency of the tagging process, we conducted two experiments in which we tested the
agreement between the two transcribers and between a transcriber and herself.

Intracoder Agreement

To test for intracoder agreement we asked transcriber A to tag again three conversations she had
tagged about 2 months ago. She was told not to consult her previous tagging. The confusion
matrix for the two tagging sessions of transcriber A is given in Table 4.98. The baseline was

Table 4.98: Intracoder Confusion Matrix for Transcriber A. Overall, transcriber agreed on
83.9 of her tags.

| A1\ Ay | neu | wkj | sad | afr | stj | dis | iro | bor | sus | ang [| Tot |

neu 576 | 65 8 8 16 | 2 2 677
wkj 24 | 93 3 1 121
sad 9 1 10
afr 13 13
stj 3 2 5
dis 19 19
iro 2 4 8 14
bor 0
sus 3 3
ang 3 3
| Tot [ 602]165]| 17 [ 21| 5 [36]10] 0 | 6 | 0 [ 862]

78.5% or 69.8% depending which of the two tagging sessions we assume to be correct. The
baseline could be achieved by guessing always the most frequent tag, that is neutral. As the
confusion matrix shows, most of the confusion took place between weak joy and neutral: 65 of
the segments tagged as weak joy were previously tagged as neutral. And 24 segments, previously
tagged as weak joy were tagged as neutral in the second session.

Intercoder Agreement

In order to test for agreement between transcribers, we asked transcriber B to tag 5 conversations
previously tagged by transcriber A. The confusion matrix is given in Table 4.99. Similar to the
intracoder agreement, most of the confusion between coders A and B took place among the tags
neutral (neu) and weak joy (wkj). 54 of the segments tagged as weak joy by tagger A were
classified as neutral by coder B. And 21 of the segments classified as neutral by coder B were
tagged as weak joy by the other coder.

The baseline of this agreement test was 71.1% or 68.7% — depending whether we chose the
tags of transcriber A or B to be correct. The baseline could be achieved by always guessing the
most frequent emotion tag which was neutral for both tagging sessions. Note that a different
set of conversations was used in the intracoder and intercoder experiment. Thus, the agreement
numbers are difficult to compare. However, in both experiments the actual agreement lay higher
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Table 4.99: Intercoder Confusion Matrix. Overall,the two transcribers agreed on 92.6% of
the tags.

| A\B || neu | wkj | sad [ afr | stj [ dis [ iro | bor | sus | ang || Tot |

neu 1143 | 54 8 5 4 1 2 1217
wkj 21 316 12 | 1 2 352
sad 9 36 1 46
afr 1 22 1 24
stj 2 35 37
dis 2 1 13 16
iro 15 15
bor 2 2
sus 2 2
ang 1 1

[ Tot [[1176 372 ] 45 [ 28 [47 [ 18 [17] 3 | 5 | 1 [ 1712]

than the baseline, suggesting some consistency in the tagging process. In addition, both experi-
ments above also validated the expression of emotion in this corpus. Both transcribers were able
to decode some of the emotions expressed in the conversations well above chance level.

4.5.3 Spectral Cues

We trained emotion-specific models on 23 conversations to capture spectral differences. We
used these emotion-specific spectral models to classify the speech segments in the remaining
16 conversations. See section 4.1.3 for a more detailed description of the training and testing
procedure. In order to have a sufficient number of training tokens for the parameter estimation,
we confined the following experiments to the emotions weak and strong joy and sad. We also
expected the spectral differences between these emotion pairs to be the largest.

In the first experiment we tried to distinguish between sad and weak joy. The corresponding
confusion matrix is given in Table 4.100. Overall, 94.5% of the segments were classified correctly
which was above the baseline of 92.6% achieved by guessing always weak joy. The precision,

Table 4.100: Confusion Matrix for weak joy and sad. Overall, 94.5% of the segments were
classified correctly.

wkj | sad
WKkj || 96.5 | 36.7
Sad || 3.5 | 63.3

recall, and fl-scores are given in Table 4.101. Since only 3.5% of the weak joy segments were
misclassified as sad, the fl-score for weak joy lay at 0.97. However, since 36.7% of the sad
segments were classified as neutral, the corresponding fl-score lay at only 0.64. In the next
experiment we tested whether spectral information could distinguish between sad and strong joy.
The confusion matrix for this emotion pair is given in Table 4.102. Note that none of the sad
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Table 4.101: Recall, Precision, and fl-scores for spectral information.

wkj | sad
precision || 0.97 | 0.61
recall 0.96 | 0.63
f1 0.97 | 0.64

segments was misclassified. However, 69.5% of the strong joy segments were classified as sad.
Overall, 64% of the segments were classified correctly. The baseline is 51.8% achieved again by
always guessing the most frequent tag, i.e. strong joy (stj). The corresponding fl-score are given

Table 4.102: Confusion Matrix for Strong Joy and Sad. Overall, 64% of the segments were
classified correctly.

stj | sad
STJ || 30.5| O
SAD || 69.5 | 100

in Table 4.103. Since none of the sad segments was misclassified, we had a perfect recall-value

for sad. Sad segments were classified with an accuracy of 0.73, strong joy achieved an accuracy
of 0.46.

Table 4.103: Recall, Precision, and fl-scores for spectral information.

stj | sad
precision || 1.0 | 0.57
recall 0.31 | 1.0
f1 0.46 | 0.73

4.5.4 Summary

The experiments in this section were definitely handicapped by the very limited number of
segments expressing emotions in the telephone conversations. Note that, both parties of the
telephone conversations were aware that their conversation was recorded and used for research.
Due to this condition, the number of emotional segments was most likely low and the emotions
expressed were, in addition, only moderate. We, therefore, confined our experiments to binary
classification tasks. That is, we conducted experiments to distinguish between sad and weak
joy and between sad and strong joy. We adapted models to capture emotion-specific spectral
differences. Using these emotion-specific models we were able to distinguish in both cases among
the emotions with an accuracy which lay above the baseline.

This experiment indicated that it is possible to use spectral information to detect emotions
in spontaneous speech in telephone conversations. We also tried to use verbal and prosodic
information to classify speech segments. However, we were not able to achieve a performance
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accuracy above chance. We think that there were several reasons for this poor performance of
prosodic and verbal information. First, it was very difficult to estimate reliably the fundamental
frequency due to the often poor line quality and the fact that telephone speech is sampled
with 8kHz. Training emotion-specific language models requires substantial data which was not
available in the current corpus. The limited amount of training data was one of the reasons why
verbal information failed to indicate the emotion. In general, it can be said that the telephone
conversations took place between family members or people who knew each other very well and
for a long time. We hypothesize that because of this familiarity both members could rely on
idiosyncratic hints and very subtle cues which are obviously more difficult to detect and subject
to future research.
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Summary

In this investigation, we explored verbal and non-verbal cues in the communication of emotions.
We focused our attention on three domains: verbal cues, spectral cues, and prosodic cues. We
studied their potential to discriminate among several emotions (happy, sad, angry, afraid, and
neutral) from speech segments of four different corpora.

The first corpus comprised 50 English sentences portrayed by nine drama students in happy,
sad, afraid, and angry variations. The second corpus comprised English speech segments from
talk shows and movies. The third corpus consisted of segments from Spanish and German movies.
With this third corpus we studied whether prosodic models trained on English data were also
able to discriminate emotions in Spanish or German speech segments. Since only sad, angry,
and neutral segments occurred frequently enough in the second and third corpus to warrant a
reliable parameter estimation of emotion-specific models, we confined the experiments which use
these two corpora to those three emotions. With the last corpus, we explored whether spectral
information could be used to detect emotions in speech segments from spontaneous Spanish
telephone conversations. Note that this fourth corpus did not rely on actors. To our knowledge
these four corpora constitute the largest collection of emotional speech data available and the
collection, transcription, and tagging was a substantial part of this investigation.

We conducted several experiments to control the quality of these corpora. In these experi-
ments we asked human subjects to listen to segments from these corpora and to classify them
according to the expressed emotions. In all of these studies, the subjects could consistently re-
cover the emotions expressed by the actors or by the participants in the telephone conversation.
For the first corpus, for instance, subjects were able to classify about 70% of the speech segments
correctly where most of the remaining confusion took place between sad and afraid segments.
We conducted a similar experiment using the second corpus. Human subjects were also able to
classify about 70% of the segments correctly. However, in this case, they had only to discriminate
between sad, angry, and neutral and, in addition, could rely on verbal cues which were absent
in the first corpus. We also tested the ability of subjects to classify segments based on verbal
information only, that is, the textual representation of what was said in the utterance. The
accuracy dropped by about 14%. Only 56% of the segments were classified correctly.

In our investigation we captured emotion-specific verbal information with bigram back-off
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models. Using these language models to distinguish between sad, angry, and neutral segments,
we were able to classify about 46% of the segments in the test set correctly which was about
a drop of 10% absolute compared to the accuracy human subjects were able to achieve on this
task. Note that these language models were trained on relatively small corpora and were only
able to model the most obvious verbal cues. In order to approach human accuracy more training
data and refined modeling techniques are required. A possible extension might be the inclusion
of decision trees which are able to ask questions about syntactic constructions and the discourse.

We modeled spectral information by means of cepstral coefficients and we used codebook
adaptation to train emotion-specific models. In general, it was the case that this technique
captured emotion-specific spectral differences quite well, and the classification of speech with
respect to the expressed emotion was fairly accurate, sometimes approaching human performance.
For instance, in the first corpus, we were able to classify 69% of the segments correctly. With the
second corpus comprising segments from movies and talk shows, classification based on spectral
information achieved an accuracy of 60%.

We also applied emotion-specific spectral information to the classification of segments from
Spanish telephone conversations. We tried to distinguish between sadness and weak joy and
between sadness and strong joy. In both cases, the classification accuracy was better than
chance.

We paid special attention to prosodic information and investigated several individual prosodic
features and their potential to discriminate among the emotions expressed in the respective
corpora. We found nine prosodic features to be most reliable:

e The mean and variance of the fundamental frequency within an utterance which we nor-
malized depending on the sex of the speaker or depending on the speaker herself.

e Two jitter features which we computed by moving a window over the fundamental frequency
to compute its smoothness.

e The mean and variance of the intensity within the utterance which we normalized with
regard to the movie or talk show. In addition, we only considered intensity in voiced
regions within the speech segment.

e Two tremor features which we computed by moving a window over the intensity to compute
its smoothness.

e The speaking rate which we modeled with vowel durations.

Using these nine features we trained emotion-specific prosodic models. Based on these prosodic
models we were able to classify 60% of the segments in the test set of the first corpus correctly. We
could achieve about the same accuracy on the test sets of the second corpus. It was interesting to
observe that individual prosodic features yielded very different accuracies for certain emotions.
For instance, prosodic models based only on mean and variance of the intensity within the
utterance were able to classify sad and angry segments fairly accurately. But these two features
failed completely to detect neutral segments. However, combining all nine prosodic features not
only resulted in an overall better classification accuracy but also all emotions were detected with
comparable accuracies. This was the case for both the first and the second corpus.
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We also studied the relative order of the emotion-specific values of these nine prosodic features
to each other. As it turned out, in most of the cases the relative order of the emotion-specific
values of these features was preserved across corpora. For instance, the intensity of sad segments
was lower than the intensity of angry segments in both corpora. The consistency of the relative
order of these values across corpora was another indication that the respective prosodic features
yielded reliable cues for the communication of emotions. Some prosodic features, in particular
features based on intensity, produced even consistent values across languages. That is, the relative
order of the values of these features was the same for English, Spanish, and German. Note that
the nine prosodic features as described above were similar to prosodic features in other studies
(Amir and Ron, 1998; Banse and Scherer, 1996).

We also investigated prosodic information other than duration at the phone level. The mo-
tivation behind these studies was to compensate for phone intrinsic prosodic properties. Low
vowels, for instance /a/, have an intrinsic lower fundamental frequency than high vowels, such as
/i/. However, modeling these intrinsic prosodic properties explicitly with prosodic phone models
did not result in an overall improvement of the classification accuracy. We speculated that phone
intrinsic prosodic properties were overwritten by the overall variance in the data due to different
speakers, speaking styles, and different ways to encode an emotion.

While we did explore a wide range of prosodic features, some prosodic features remain subject
of future research. For instance, we did not consider pauses which is considered to be a reliable
indicator for sadness. The reason for not considering pauses in our experiments was that the
transcription protocol used pauses as an indicator for a speech segment boundary.

We found prosodic features pertaining to the whole utterance to be the most reliable indicators
for the expressed emotion. These global features, however, failed when an emotion was signalled
more subtly. Listening to the segments which were misclassified in our experiments, we found that
emotions were sometimes expressed by the prosodic modifications of a single word which render
the respective word more salient. Prosodic modifications pertaining to a single word within an
utterance comprising several words could not have been picked up by the above global prosodic
features. Thus, we need a more fine grained modeling of prosodic parameters at the phone,
syllable, or word level. Note that the suprasegmental hidden Markov model which we introduced
in this investigation as a tool to model prosodic events, allows the modeling of prosodic events at
these levels. However, when modeling more fine grained prosodic events at the phone, syllable,
or word level, we have to account for the multi-functionality of prosody. Prosody is not only
used to signal emotions but implements a variety of linguistic functions. There might be several
reasons for a word to be salient. A word’s saliency might indicate a certain emotion, it might
indicate that the word constitutes new and important information in the current discourse, or it
might simply indicate some segmentation information. Thus, modeling prosodic events at these
levels requires an integrated approach which reflects that prosody simultaneously implements
several linguistic functions. We explored the impact of the expression of certain emotions on the
phone level and we were able to show that context dependent prosodic phone models classified
about half of the segments in the Woggles test set correctly. Modeling other linguistic functions
of prosody at this level as well, should improve the overall accuracy and should finally facilitate
the modeling of more subtle cues in the communication of emotions. This, however, is subject
to future research.

The linear combination of spectral, prosodic, and verbal scores did not necessarily result
in an overall improvement of the classification accuracy. In fact, the gains were moderate and
confined to one or two percent absolute. However, in most of our experiments, the accuracy of
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a classification system based on either spectral or prosodic information approached closely the
accuracy of humans. We think that acoustic and verbal information becomes more orthogonal
if we consider a larger variety of emotions. For instance, the high confusability of afraid and
sad segments in the Woggles corpus both by the system and human listeners was probably due
to the total lack of verbal information. We also established upper bounds on the combination
of spectral, prosodic, and verbal information using an oracle which predicted when to choose
spectral, prosodic, or verbal scores. These upper bounds lay about 10% absolute higher than
the accuracies achieved with linear combinations of the respective scores. This indicates that
different approaches to combine spectral, prosodic, and verbal information might be promising
and result in an additional overall improvement.

Prosodic information was more robust than spectral information when confronted with novel
movies or novel speakers. When confronted with utterances of novel speakers, the accuracy of
a classification system based on spectral information dropped from 70% to only 46% correctly
classified segments from the Woggles test set while the classification system based on prosodic
information fell from 60% to 50%. Similar results were found for the movie corpus. When
confronted with the novel movie “One True Thing” the accuracies of spectral models fell from
63% to 57%. At the same time, classification based on prosodic information stayed nearly
constant.

There are several apparent ways to improve and to extend the existing approach. The most
obvious course would seek to integrate visual information into the classification process. This
visual information could comprise information about facial movements but also about certain
body postures and gestures. Other additional information sources could include information
about heartbeat, body temperature, and skin resistance. These last three sources will become
even more interesting when their assessment can be performed in a non-intrusive way. Physiolog-
ical information, in general, will also help to detect stress or cognitive overload more reliably (Fay
and Middleton, 1941; Mendoza and Carballo, 1998a; Protopapas and Lieberman, 1997; Mendoza
and Carballo, 1998b; Laukkanen et al., 1996; Griffin and Williams, 1987; Streeter et al., 1983;
Simonov and M.V.Frolov, 1973). Other directions might include the automatic detecion of lies
(Hollien, Geison, and Hicks, 1987; Disner, 1982).

In our investigation we considered only a very limited number of emotions: happy, sad, afraid,
and angry. The reason for this limitation was that sufficient training data was only available for
these emotions. Future research on the expression of emotions has to extend this list with
less frequent emotions. This, of course, means that more transcribed and tagged data is needed.
Moreover, it would also be useful to have information about the intensity of an expressed emotion,
for instance, is the individual happy or very happy, annoyed or furious? A dimensional view on
emotions might prove beneficial in this context. It might also be the case that by considering a
more comprehensive list of emotions and their intensity, verbal, spectral, and prosodic information
becomes more orthogonal and the combination proves to be more fruitful than in the experiments
in this investigation. However, this is subject to future research.

In conclusion, this investigation revealed that verbal and non-verbal cues can be used to detect
the emotion expressed in an utterance. Our classification system based on verbal, spectral, and
prosodic information was able to achieve a classification accuracy comparable to the performance
of human listeners.
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By integrating this classification system into human-computer interfaces we would be able to
endow computers with the ability to detect the emotion expressed by a human user and to act
accordingly. Humans would not be faced with computers which emote heavily but ignore quite
impolitely the user’s feelings. Since humans tend to extrapolate their interpersonal communica-
tion skills to the interaction with computers, a computer interface capable of both the expression
and detection of emotions would accommodate this tendency and result in a more user friendly
interface. However, if computers can become our friends then there is probably also potential for
them to become our enemies.
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Appendix A

The Meeting Browser

One possible application of the automatic detection of emotions is the Meeting Browser (Waibel
et al., 1998). The Meeting Browser allows to peruse through a meeting which is represented along
a horizontal time line. Along this time line additional information be displayed synchronously:

e the current speaker

e the line of sights of people participating in the meeting.

The Meeting Browser allows queries about this kind of information. In addition it is possible
to display certain discourse information, such speech acts and so on (Finke et al., 1998). Other
interesting information might consist of the emotional states of the discourse participants. It
would allow queries for certain conditions, such as, when is speaker A angry at speaker B and
talks about topic C.

In order to demonstrate the capabilities of both the Meeting Browser and the automatic
detection of emotions, we integrated the system for the emotion detection into the Meeting
Browser allowing the Browser to display all of the emotional states of the speakers. A snapshot
of this Meeting Browser application is given in Fig. A.1 for the movie “A Few Good Men”.
The display of the Meeting Browser comprises three major windows. The two windows at the
bottom display the close captions of what is said annotated by the emotion the speaker is in.
The right window shows the corresponding video segment. The top window displays the whole
meeting/movie at once using emotion labels which extend over whole speech segments. We use
black to indicate neutral segments. Angry segments are represented by red and sad segments by
blue. This window also allows to browse through the meeting and select segments of interests.
When a segment of interest is selected, the Meeting Browser plays both audio and video in the
bottom right window while highlighting the words uttered in the bottom left window. At the
same moment, the time cursor — represented by the vertical green bar in the top window — slides
through the selected segment.
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Figure A.1: Snapshot of the Meeting Browser displaying the movie “A Few Good Men”.
The left major window shows the close captions annotated by an emotion tag as detected
by the system. The right window shows the video. Neutral speech segments are marked as
black, angry segments as red, and sad segments as blue in slideable top window.
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The JANUS Prosodic Toolkit

The Janus Prosodic Toolkit (JPTk) allows for the integration of prosodic information into the
Janus recognition system. JPTk comprises several new modules which facilitate the extraction of
prosodic features from the speech signal and the training of prosodic models. Prosodic informa-
tion can be used to train models to detect the prosodic properties of emotional speech, syntactic
or discourse boundaries, or stressed and unstressed words and so on.

Following the JANUS object oriented software design idea, prosodic modules are implemented
as high level objects which can be accessed interactively at the Tcl/ Tk level (Ousterhout (1994)).
Prosodic objects start their life under-specified. Their concrete instantiation is achieved by
configuring these objects at the Tcl/Tk level. This open design approach allows to experiment
with different configurations for training and testing without the need to consult the underlying
C-code. JPTk also makes use of the AWT of Tcl/Tk. Graphical interfaces allow an easy first
glimpse at the data, for example, the contour of the fundamental frequency or the intensity.
JPTk is available for the following platforms: Sun Solaris, Linux, Alpha, and Hewlet Packard.

Within a speech recognition system, acoustic events are normally observed at a rate of 10ms.
This rate is not appropriate for observing prosodic events which require substantial context
information. Ideally, we would like to observe prosodic events in segments spanning phones,
syllables, words, or even whole utterances. Within JPTk, it is possible to define these kind of
segments in the dictionary by using lexical tags. For instance, if we want to investigate prosodic
phone models we would specify every phone in the dictionary as segment final:

{AND} {{AE phoneFinal} {N phoneFinal} {DD phoneFinal}}

This encoding might look redundant at first sight but it is consistent with the encoding you have
to use when you investigate, for example, syllable based prosodic segments:

{AND} {{AE} {N} {DD syllableFinall}}

or word based segments:
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{AND} {{AE} {N} {DD wordFinall}}

It is, of course, possible to model different segment sizes at the same time, for instance, phone
and word segments:

{AND} {{AE phoneFinal} {N phoneFinal} {DD phoneFinal wordFinal}}

Note that these final tags have to be defined in the corresponding dictionary tag set. There is a
special predefined tag called uttFinal which denotes the end of the whole utterance segment.

These segment final tags play a crucial role in the specification and training of prosodic models.
Each prosodic model is associated with a set of prosodic observations. To be consistent with the
JANTUS terminology we will use the term features to refer to these observations. Within a feature
description the above mentioned segment final tags are used to associate prosodic segments with
prosodic features. Thus, it is possible to have different features for differently bounded prosodic
segments.

Note that segment final tags only specify the segment boundary. They do not specify which
actual prosodic model instantiates the respective segment. The mapping from a segment bound-
ary to a prosodic model is achieved by a regression tree in the following way. We determine
properties within the context surrounding the segment boundary by using what we call property
functions. The result is a property vector which serves as the input to a regression tree. The
questions within this regression tree refer to positions within this property vector, and depending
on the answer, we traverse the tree. When we arrive at a leaf node, an integer pointer refers to
the actual model index. This setup allows prosodic models to be clustered and, moreover, to be
context dependent.

Note that this appendix is not a JPTk manual. Please consult the online documentation
for a more detailed description of the prosodic modules and their usage. The objective of this
appendix is to illustrate the possibilities of JPTk and how it was used to model emotion specific
prosodic models.

Throughout this chapter we will develop an example program which illustrates how to specify,
train, and test context independent prosodic phone models. During this illustration we sometimes
have to rely on traditional JANUS modules, for example, the dictionary or the feature description
set. We assume that the reader is familiar with these objects since we will not explain in detail
their specification.

B.1 Prosodic Feature Set

Tags within the dictionary are used to define segment boundaries of prosodic models. The same
tags are used to define the corresponding prosodic features for these models. The specification
of prosodic features is similar to the specification of acoustic features in the acoustic feature set,
FeatureSet. There are, however, several important differences:

e A typical specification in the acoustic feature description comprises the input and output
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features and a function responsible for transforming the input to the output feature. In
contrast, a specification within the prosodic feature description comprises an additional
segment final tag, indicating that this feature belongs to segments bounded by this tag.

e The feature description set is evaluated only once, namely at the very beginning of the
decoding process. In contrast, the prosodic feature set is evaluated every time we leave
a segment. To be precise, each time we leave a segment as marked by the segment final
tag, we evaluate that part of the description which specifies prosodic features for this very
segment.

e You can use features from the acoustic feature set within the prosodic feature set but not
vice versa.

Since, it is possible to use features defined in the acoustic feature set within the prosodic set, you
have to specify the former as an extra argument when creating the latter:

% Creating a prosodic feature set

Y

% ’acousticFeatSet’ is a FeatureSet object and

% ’prosodicFeatDescFile.txt’ is the file containing the

% actual prosodic feature description

ProsodicFeatureSet prosodicFeatDesc acousticFeatureSet \
-desc prosodicFeatDescFile.txt

The following functions are defined for the computation of prosodic features:

e moments:
L] range :

e cut :

e smooth

e length

e lin :

e concat

e pitch :

It is possible to define prosodic features for several differently bounded segments within one

prosodic feature set. Note that the last feature defined for some segment specification implements
the prosodic features for the respective models.

The actual feature description should be specified within a file which has to be specified with
the -desc argument when we create a prosodic feature set (see above). For our example, we
specify the following prosodic features for prosodic phone models:
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% Prosodic Feature Set Description File

A —
% note PITCH and POWER are define in the acoustic feature
% description file

% prosodic features for phoneSegments
$fes moments phoneFinal phonePitchMoms PITCH

$fes cut phoneFinal phonePitchMean phonePitchMoms 0 1
$fes moments phoneFinal phonePowerMoms POWER
$fes cut phoneFinal phonePowerMean phonePowerMoms 0 1

$fes concat phoneFinal phoneFeatures phonePitchMean phonePitchMean

Thus prosodic phone models will be based on two features, the mean of the fundamental frequency
(PITCH) and the mean of the energy (POWER).

B.1.1 Property Set

Prosodic models are not atomic but are characterized by a vector of properties. This property
vector is computed by functions which are specified in a property set. A property set comprises
a list of functions which are evaluated at every segment boundary. The values of these functions
make up the property vector which is the input to the regression tree for the final mapping to a
prosodic model index.

JPTk offers the following property functions:

1. lexTag: this function requires one string argument indicating the lexical tag you want ask
about. For example, if you want to model syllables, you might want to add lexical tags
such as nucleus, coda, or onset:

{AND} {{AE nucleus} {N coda} {DD coda syllableFinal}}

Using the function lexTag you can ask whether a certain phone within a syllable is anno-
tated with a certain tag.

2. phonelIdx: this function returns the index of the current phone within the phone set as
specified by the additional argument. This phone set has to refer to a set within the
PhonesSet of the dictionary.

By using the optional argument -pos within a property function it is possible to compute proper-
ties of the context surrounding the current segment. For example, -pos -1 refers to the previous
phone. In case no context is available, the property functions return -1.

Creating a property set is fairly straightforward because the definition does not require any
additional objects as arguments:

% Creating a property set
PropertySet phonePropertySet
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To continue our example, a specification of the property set is given below:

% Property set for prosodic phone models
propl phonelIdx Phones

By using the property function phoneIdx in this way, we assign a unique integer to each phone.
We load this specifiction with the read function:

% Reading specification of properties from file ’phoneProps.txt’
phonePropertySet read phoneProps.txt

B.1.2 Question Set

A question within a question set refers to a position in the property vector as computed by the
property functions within a property set. Questions return boolean values only.

Creating a question set is fairly straightforward. No additional objects are required as argu-
ments.

% Creating a question st
QuestionSet phoneQuestionSet

The syntax for specifying a question is as follows. The beginning integer refers to the position
within the property vector the question refers to. It follows the compare operator which can be
either =, <, or >. The last value specifies the value we are asking for in that position within the
property vector.

In our ongoing example, we specified only one property for phones. That is, the specification
of the actual questions is as follows:

% Question set for prosodic phone models
0 = 0.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
= 10.000000
= 11.000000
= 12.000000

1]
O o0 ~NO O WN -

OO O OO OO OO O OO0
Il
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= 13.000000
= 14.000000
= 15.000000
= 16.000000
= 17.000000
= 18.000000
= 19.000000
= 20.000000
= 21.000000
= 22.000000
= 23.000000
= 24.000000
= 25.000000
= 26.000000
= 27.000000
28.000000
= 29.000000
= 30.000000
= 31.000000
= 32.000000
= 33.000000
= 34.000000
= 35.000000
= 36.000000
= 37.000000
= 38.000000
= 39.000000
= 40.000000
= 41.000000
= 42.000000
= 43.000000

[N elNeolNeoNeoNeoNeNe NeNeoNeNoNoRe e Ne e NeNeoNoRoNoBoRoNeoNe e Neo e Neo N e
Il

Assuming we stored the above specifications in a file named phoneQuestions.txt, we can read
them in by the following command:

% Reading specification of questions from file ’phoneQuestions.txt’
phoneQuestionSet read phoneQuestions.txt

B.1.3 Regression Tree

Using a question set and a regression tree we can finally map from properties (property vector)
to an actual prosodic model. At each segment boundary, we first compute the properties of
the current segment. Starting at the root node, we then traverse the tree, asking node specific
questions about these properties. Depending on the boolean answer we pursue the left node (false)
or the right node (true). Arriving at a leaf node, an additional argument, -model, specifies the
index of the corresponding prosodic model.

Creating a regression tree is fairly straightforward because it requires only a question set as
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an additional argument:

% Creating a regression tree
RegTree phoneRegTree phoneQuestionSet

Regression trees are defined top-down, beginning with the root node ROOT. A typical speci-
fication starts with a mother node, followed by an integer index pointing to a question within
the corresponding question description, followed by two daughter nodes. The first daughter,
points to a node which is followed up when the corresponding question returns false. The second
daughter points to a node which is followed up when the question returns true. The absence of
a daughter is indicated by a hyphen. Thus, leaf nodes have two hyphens. Moreover, leaf nodes
have an additional argument -model whose integer value specifies the index of the corresponding
prosodic model. Finally, because leaf nodes have no daughters, there is no question to be asked.
The absence of question is indicated by a -1.

Continuing our example of prosodic phone models, the specification of the regression tree is
as follows:

% Regression tree for prosodic phone models

ROOT {0} node-AE leaf-AA
node-AE {1} node-AH leaf-AE
leaf-AA {-1} - - -model 0
node-AH {2} node-A0 leaf-AH
leaf-AE {-1} - - -model 1
node-AD {3} node-AW leaf-AD
leaf-AH {-1} - - -model 2
node-AW {4} node-AX leaf-AW
leaf-AD {-1} - - -model 3
node-AX {5} node-AXR leaf-AX
leaf-AW {-1} - - -model 4
node-AXR {6} node-AY leaf-AXR
leaf-AX {-1} - - -model 5
node-AY {7} node-B leaf-AY
leaf-AXR {-1} - - -model 6
node-B {8} node-CH leaf-B
leaf-AY {-1} - - -model 7
node-CH {9} node-D leaf-CH
leaf-B {-1} - - -model 8
node-D {10} node-DD leaf-D
leaf-CH {-1} - - -model 9
node-DD {11} node-DH leaf-DD
leaf-D {-1} - - -model 10
node-DH {12} node-DX leaf-DH
leaf-DD {-1} - - -model 11
node-DX {13} node-EH leaf-DX
leaf-DH {-1} - - -model 12
node-EH {14} node-ER leaf-EH
leaf-DX {-1} - - -model 13
node-ER {15} node-EY leaf-ER
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leaf-EH
node-EY
leaf-ER
node-F
leaf-EY
node-G
leaf-F
node-HH
leaf-G
node-IH
leaf-HH
node-IX
leaf-IH
node-IY
leaf-IX
node-JH
leaf-IY
node-K
leaf-JH
node-L
leaf-K
node-M
leaf-L
node-N
leaf-M
node-NG
leaf-N
node-0W
leaf-NG
node-P
leaf-0W
node-R
leaf-P
node-3
leaf-R
node-SH
leaf-S
node-T
leaf-SH
node-TD
leaf-T
node-TH
leaf-TD
node-UH
leaf-TH
node-UW
leaf-UH
node-V
leaf-UW
node-W
leaf-Vv

{-1} - - -model 14
{16} node-F leaf-EY
{-1} - - -model 15
{17} node-G leaf-F
{-1} - - -model 16
{18} node-HH leaf-G
{-1} - - -model 17
{19} node-IH leaf-HH
{-1} - - -model 18
{20} node-IX leaf-IH
{-1} - - -model 19
{21} node-IY leaf-IX
{-1} - - -model 20
{22} node-JH leaf-IY
{-1} - - -model 21
{23} node-K leaf-JH
{-1} - - -model 22
{24} node-L leaf-K
{-1} - - -model 23
{25} node-M leaf-L
{-1} - - -model 24
{26} node-N leaf-M
{-1} - - -model 25
{27} node-NG leaf-N
{-1} - - -model 26
{28} node-0W leaf-NG
{-1} - - -model 27
{29} node-P leaf-0W
{-1} - - -model 28
{30} node-R leaf-P
{-1} - - -model 29
{31} node-S leaf-R
{-1} - - -model 30
{32} node-SH leaf-$S
{-1} - - -model 31
{33} node-T leaf-SH
{-1} - - -model 32
{34} node-TD leaf-T
{-1} - - -model 33
{35} node-TH leaf-TD
{-1} - - -model 34
{36} node-UH leaf-TH
{-1} - - -model 35
{37} node-UW leaf-UH
{-1} - - -model 36
{38} node-V leaf-UW
{-1} - - -model 37
{39} node-W leaf-V
{-1} - - -model 38
{40} node-Y leaf-W
{-1} - - -model 39
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node-Y {41} node-Z leaf-Y
leaf-W {-1} - - -model 40
node-Z {42} - leaf-Z
leaf-Y {-1} - - -model 41
leaf-Z {-1} - - -model 42

Assuming that the above specification is stored in a file named phoneRegTree.txt, we can
read this file in with the following command:

% Reading specification of properties from file ’phoneRegTree.txt’
phoneRegTree read phoneRegTree.txt

The regression tree above, combined with the property set, as defined in Section B.1.2, and
the question set, as defined in Section B.1.1, merely implements a bijective mapping from a
phone index to a prosodic model index. However, the regression tree, question and property sets
allow to use maximum likelihood clustering techniques to develop more accurate prosodic models
which can, in addition, be context sensitive. For the theoretical background see Section 3.2.3
and for implementational issues consult the online documentation.

B.2 Prosodic Hierarchy
Putting Everything Together

It is convenient to be able to refer to all prosodic models corresponding to the same boundary
tag, for example, all prosodic models instantitiated be the phoneFinal tag. In addition, note
that we are left with several loose ends. For example, prosodic models are not yet linked with
a regression tree, a dictionary, a property set or a prosodic feature set. To wrap up these loose
ends we introduce the concept of a prosodic hierarchy into JPTk.

A prosodic hierarchy needs access to several JANUS objects which therefore have to be
provided as additional arguments when we create a hierarchy:

% Creating a prosodic hierarchy
Hierarchy prosodicHierarchy dictionary prosodicFeatDesc

To add prosodic models — corresponding to the same segment boundary tag — to this hierarchy
we specify:

% adding a prosodic level to the prosodic hierarchy
prosodicHierarchy add phoneModels phoneFinal phoneRegTree \
phonePropDesc

The argument following the function name add, i.e. phoneModels, refers to the name which will
allow the reference to all prosodic phoneModels. The remaining arguments refer to the segment
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final tag, the corresponding regression tree, and the property set, respectively. Thus, we can find
the segment final tag in the tag set of the dictionary used, presumably in that very dictionary,

the prosodic feature description, and, finally, in the add message above.

The specification of a prosodic

We are still left with the specification of prosodic models.
model comprises the model name, the number of prosodic features and the number of mixtures

to model these prosodic features, followed by a list of the model parameters (weight, variance,

and mean).

Because we

For example, let us assume we want to train prosodic phone models.

have yet no model parameters we initialize everything to zero:

AA 21 {0.0 0.0 0.0 0.0 0.0}
AE 21 {0.0 0.0 0.0 0.0 0.0}
AH 21 {0.0 0.0 0.0 0.0 0.0}
AD 21 {0.0 0.0 0.0 0.0 0.0}

AW 21 {0.0 0.0 0.0 0.0 0.0}

AX 21 {0.0 0.0 0.0 0.0 0.0}

AXR 2 1 {0.0 0.0 0.0 0.0 0.0}

Ay 21 {0.0 0.0 0.0 0.0 0.0}

21 {0.0 0.0 0.0 0.0 0.0}
CH 21 {0.00.00.00.00.0}

B

21 {0.0 0.0 0.0 0.0 0.0}
DD 2 1 {0.0 0.0 0.0 0.0 0.0}
DH 21 {0.0 0.0 0.0 0.0 0.0}
DX 21 {0.0 0.0 0.0 0.0 0.0}
EH 21 {0.0 0.0 0.0 0.0 0.0}
ER 21 {0.0 0.0 0.0 0.0 0.0}

EY 21 {0.0 0.0 0.0 0.0 0.0}

D

21 {0.0 0.0 0.00.00.0}
21 {0.00.00.00.00.0}

HH 2 1 {0.0 0.0 0.0 0.0 0.0}
IH 21 {0.0 0.0 0.0 0.0 0.0%}
IX 21 4{0.00.00.00.00.0%}
IY 21 {0.00.0 0.0 0.0 0.0%}
Ji 21 {0.00.00.00.00.0%}

F
G

21 {0.0 0.0 0.0 0.0 0.0}
21 {0.0 0.0 0.0 0.0 0.0}
21 {0.0 0.0 0.0 0.0 0.0}
21 {0.0 0.0 0.0 0.0 0.0}

NG 21 {0.0 0.0 0.0 0.0 0.0}
oW 21 {0.00.00.00.0 0.0}

K
L
M
N

21 {0.0 0.0 0.0 0.0 0.0}
21 {0.0 0.0 0.0 0.0 0.0}
21 {0.0 0.0 0.00.0 0.0}

SH 21 {0.0 0.0 0.0 0.0 0.0}

P
R
S

21 {0.0 0.0 0.0 0.0 0.0}
™ 21 {0.0 0.0 0.0 0.0 0.0}
TH 21 {0.0 0.0 0.0 0.0 0.0}
UH 21 {0.0 0.0 0.0 0.0 0.0}

T

Uw 21 {0.0 0.0 0.0 0.0 0.0}

21 {0.00.00.00.00.0}
21 {0.0 0.0 0.0 0.0 0.0}

v
W
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To complete the example, we still have to read in the prosodic model specification. Assuming
that we saved the above prosodic model specification in a file name phoneModels.txt, we can
write:

% read in prosodic phone models
prosodicHierarchy:phoneModels read phoneModels.txt

The linear order of prosodic models within the file matters. A leaf node of a regression tree
specifies with its -model argument the index of the respective prosodic model and this index
refers to a model’s position within the list of all prosodic models.

The estimation of these model parameters takes place when we train prosodic models. In
our example, the first parameter will be based on the distribution of the fundamental frequency
(PITCH), the second parameter on the distribution of energy (POWER) in the speech samples within
the training set. Remember, both features were defined in the prosodic feature description for
these prosodic segments.

Note that in this example, the prosodic hierarchy comprises only the phone level. Additional
levels such as a syllable or a word level can be added accordingly.

This concludes the initialization of prosodic models within the prosodic toolkit of Janus. The
following sections, first, describe briefly how prosodic models can be trained, and, second, point
to possible applications.

B.3 Training Prosodic Models

Training of prosodic models is based on a forced alignment of the speech signal with a text
transcription of what was said in the respective utterance. Based on this alignment we know the
start and end times of prosodic segments and we can compute and accumulate the corresponing
prosodic features. For maximum-likelihood training we then compute mean and variance of these
prosodic features to estimate the prosodic model’s parameter.

Note that a hidden Markov model, HMM, requires information about prosodic segment bound-
aries. Thus, we have to provide the prosodic hierarchy as an additional argument when we create
an HMM:

% Creating a hidden Markov model with additional information
% about prosodic segment boundaries
HMM hmm dictionary -hierarchy prosodicHierarchy

We start the training of prosodic models by creating accumulators. By referring to the respective
prosodic level within the hierarchy we can achieve this by:
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prosodicHierarchy:phoneModels createAccus

After each forced alignment we accumulate based on the resulting alignment path. We have to
provide this alignment path, path, as an additional argument to the accumulator function accu:

prosodicHierarchy:phoneModels accu path hmm

We compute the alignment path and accumulate prosodic features for each utterance in the
training set. To estimate the model parameter, we compute mean and variance for each prosodic
feature for each prosodic model with the update function:

prosodicHierarchy:phonelevel update

We might want to save the accumulators for further processing. For sure, we want to save the
prosodic models to a file.

% Saving accus to file ’phonelevelAccus.txt’
prosodicHierarchy:phoneModels save phonelLevelAccus.txt

% Saving prosodic phone models to file ’phoneLevelModels.txt’
prosodicHierarchy:phoneModels write phonelLevelModels.txt

Note that the accuracy of the alignment has an immediate impact on the accuracy on the
parameter estimation of the prosodic models. Thus, if the alignment is based on an inaccurate
speech recognition system or an inaccurate transcription the resulting prosodic models will be
flawed.

As shown above, we can supply the hidden Markov model with prosodic information by using
the -hierarchy argument. Once you have estimated prosodic models you can use this prosodic
models to participate in the computation of the alignment path, meaning the path will be based
on acoustic and prosodic model information (or just prosodic information!). The corresponding
command is:

path viterbiProsody hmm

Given trained prosodic models we can compute the log-likelihood of the signal with the
function score:

prosodicHierarchy:phonelevel score path

If the prosodic hierarchy comprises more than one level we use

prosodicHierarchy score path hmm

to compute the combined likelihood.
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B.4 Using Prosodic Models

Due to the open design of the prosodic objects, prosodic models can be used in several ways:

e Yes/no-question: Using for example, the linReg function within the prosodic feature
set to determine the final rise of the fundamental frequency, one can train prosodic models
which discriminate between yes/no-questions and statements.

e Segmentation: Syntactic boundaries are often marked prosodically, for example by, si-
lence, lowering of the fundamental frequency and intensity, or a preboundary lengthening.
All this information can easily be extracted by the functions within prosodic feature set.

e Stress detection: A stressed word within a utterance is marked by an increased fun-
damental frequency, intensity, or lengthening when compared to other words within the
utterance. The prosodic feature description set allows access to all these features.

e Speech recognition: Prosodic models can be used in two ways within a speech recognition
system. First, prosodic models can be used within the Viterbi to find the most likely path for
a given utterance with the speech signal. Thus the training of acoustic models is moderated
by prosodic information. Second, prosodic models can be used within the lattice rescoring
process within the decoding step.

e Emotion detection: As demonstrated in this investigation, prosodic models can be used
to model emotion specific prosodic cues.

Using Tcl/Tk all this functionality can be implemented without ever consulting or changing the
underlying C-code.
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Appendix A

The Woggles Corpus

Are you angry at me?

Are you happy?

Are you my friend?

Are you talking to me?

Be my friend, Shrimp.

Bear, don’t defend Shrimp.

Can I help you?

Don’t be angry.

Don’t be scared of Wolf.

Follow me.

Go through the chute.

Go to sleep now.

Hey Wolf, you wouldn’t want to play, would you?
How come you are moping?

am angry at Wolf now.

am attacking Wolf because he is attacking me.
am not happy.

am not playing with you because I’m scared of you.
am playing with you because I like you.

am scared of Bear since he attacked me.

can’t talk now, I am going to dance on the pedestals.
don’t think I want to play follow the leader with you.
don’t understand what’s going on.

like to go through the chute.

never get tired.

want to be friends.

want to see you go through the chute again.
want to sleep.

I would love to play follow the leader.

I’'m angry because you won’t play.

I’'m not angry at you.

I’m not moping.

I’'m sorry. Don’t be sad.

HHHHHH HH H H H H H H
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THE WOGGLES CORPUS

Is there a problem?

Play follow the leader with me.

Please go away from me.

Please help me stop Wolf from attacking me.
Shrimp is a good friend of mine.

Talk to me.

Try to be happy.

Want to dance on the pedestals with me?
What do you want?

Who are you talking to?

Why are you attacking Shrimp?

Why don’t you lead?

Wolf, don’t attack Shrimp.

Would you like to play follow the leader?
Yes, I’m talking to you.

You look sad; is there anything I can do to help?
Shrimp, don’t attack Wolf.
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