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Abstract

The basic objective of this thesis is to examine the extent to which

automatic speech translation can benefit from an often available but

ignored resource, namely human interpreter speech. The main con-

tribution of this thesis is a novel approach to speech translation

development, which makes use of that resource.

The performance of the statistical models employed in modern speech

translation systems depends heavily on the availability of vast amounts

of training data. State-of-the-art systems are typically trained on:

(1) hundreds, sometimes thousands of hours of manually transcribed

speech audio; (2) bi-lingual, sentence-aligned text corpora of man-

ual translations, often comprising tens of millions of words; and (3)

monolingual text corpora, often comprising hundreds of millions of

words. The acquisition of such enormous data resources is highly

time-consuming and expensive, rendering the development of deploy-

able speech translation systems prohibitive to all but a handful of eco-

nomically or politically viable languages. As a consequence, speech

translation development for a new language pair or domain is typically

triggered by global events, e.g. disaster relief operations, that incur

a major need for cross-lingual, verbal communication—justifying the

high development costs. In such situations, where an urgent need for

cross-lingual communication exists, but no automatic speech transla-

tion solutions are (yet) available, communication is achieved with the

help of human interpreters.



In this thesis, we introduce methods that exploit audio recordings

of interpreter-mediated communication scenarios for speech transla-

tion system development. By employing unsupervised and lightly

supervised training techniques, the introduced methods allow to omit

most of the manual transcription effort and all of the manual transla-

tion effort that has typically characterized speech translation system

development. Thus, we are able to significantly reduce the amount

of time-consuming and costly human supervision that is attached to

speech translation system development.

Further contributions of this thesis include: (a) a lightly supervised

acoustic model training scheme for recordings of European Parliament

Plenary Sessions, supporting the development of ASR systems in the

various languages of the European Union without the need of costly

verbatim transcriptions; and (b) a sentence segmentation and punctu-

ation recovery scheme for speech translation, addressing the mismatch

between output of automatic speech recognition and machine trans-

lation training data.



Zusammenfassung

Die vorliegende Dissertation1 behandelt die Frage ob automatische

Sprachübersetzung Nutzen aus Audioaufnahmen menschlicher Inter-

pretationsszenarien ziehen kann. Im Kern der Arbeit werden Ansätze

entwickelt, die es erlauben, die an der Sprachübersetzung beteiligten

Komponenten, automatische Spracherkennung und maschinelle Über-

setzung, mit Hilfe solcher Audioaufnahmen zu trainieren. Diese An-

sätze werden anhand eines realen Anwendungsszenarios entwickelt,

welches menschliche Simultanübersetzung (Interpretation), manuelle

Transkription und manuelle Übersetzung im großen Stil verlangt: Sitz-

ungen des Europaparlaments und die mit diesen Sitzungen verbunde-

nen, multi-lingualen Dokumente. Die entwickelten Ansätze erlauben

es, Sprachübersetzung direkt auf Aufnahmen menschlicher Interpreta-

tionsszenarien zu trainieren und benötigen dabei nur geringe Mengen

an zeitaufwendiger und kostspieliger menschlicher Überwachung. Ins-

besondere wird nur ein geringer Teil der bisher für Sprachübersetzung

notwendingen manuell transkribierten Sprachaufnahmen benötigt und

keine der ansonsten notwendigen manuell angefertigten Übersetzun-

gen.

Des weiteren wird im Rahmen dieser Dissertation ein Verfahren ein-

geführt, welches das Trainieren von Spracherkennungssystemen in den

verschiedenen Sprachen der Europäischen Union unterstützt. Hier-

bei werden die frei zugänglichen Text- und Audioressourcen des Eu-

ropaparlaments ausgenutzt, um akustische Modelle ohne kostspielige,

wortgetreue Transkriptionen zu trainieren. Die vorliegenede Arbeit

untersucht des weiteren, wie die Kombination von Spracherkennung

und maschineller Übersetzung mit Hilfe einer automatischen Satzseg-

mentierung und einer automatischen Wiederherstellung von Satzze-

ichen verbessert werden kann.

1Appendix A beinhaltet eine Kurzfassung der Dissertation in deutscher Sprache.
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Introduction

1.1 Motivation

Globalization as well as international crises and disasters spur the need for cross-

lingual verbal communication for myriad languages. This is reflected in ongoing

intense research activity in the field of automatic speech translation (ST). The

field has seen tremendous performance improvements over the past two decades.

Early efforts in ST started from the rather artificial research problem of trans-

lating speech recorded under controlled conditions, with restricted vocabular-

ies, strong domain limitations and the necessity of a constrained speaking style.

Nowadays, research in ST turned towards the task of translating spoken lan-

guage as found in real life (spoken language translation) and constitutes as such

one of the major research areas of speech and language processing. For example,

major research projects of recent years focused on spoken language translation

for the relatively broad domains of broadcast news and parliamentary speeches.

The impressive advances in ST to date can largely be attributed to the statis-

tical modeling schemes employed in the two component technologies of speech

translation: automatic speech recognition (ASR) and machine translation (MT).

Statistical modeling schemes for ASR and MT, and consequently ST, are primar-

ily language independent and have been proven to work well for many language

pairs. However, the performance of statistical models depends heavily on the

availability of vast amounts of training data. Modern, large scale ST systems

are typically trained on: (1) hundreds of hours of manually transcribed speech
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audio; (2) sentence-aligned parallel text corpora, comprising tens of millions of

manually translated words; and (3) monolingual text corpora, often comprising

hundreds of millions of words. The high cost attached to acquiring such large

amounts of training data turn out to be prohibitive for most language pairs and

domains, limiting the availability of large-scale data collections to only a handful

of languages. Consequently, ST development for a new language pair typically

faces the problem of having no or only very limited training data resources readily

available. As the resulting necessary data collection effort is not only cost inten-

sive, but also highly time-consuming, deployable ST systems can only be made

available for a new language after months or even years of effort. Such a delay is

unacceptable for many situations that call for rapid development of automatic ST

solutions, as given by disaster relief operations or military operations. The urgent

need for cross-lingual, verbal communication in these situations, combined with

the absence of automatic ST solutions, consequently necessitates the deployment

of human interpreters.

In this thesis, we examine whether speech translation and its component tech-

nologies can benefit from human interpreter speech as a novel, low-cost data re-

source for system development. We develop methods to directly train speech

translation systems on audio recordings of interpreter-mediated communication.

By employing unsupervised and lightly supervised training techniques, the pro-

posed methods allow us to omit most of the manual transcription effort and all of

the manual translation effort that has typically characterized speech translation

system development. Thus, the amount of costly and time-consuming human

supervision necessary for speech translation system development is substantially

reduced. We develop our methods on a large-scale, real-world spoken language

translation task, for which large amounts of training data are available. This

enables us to examine our approach under different levels of resource availability.

We then transfer our most important findings to the setting of actual resource lim-

itation, highlighting the feasibility and importance of our approach to developing

speech translation systems for new language pairs rapidly and in a cost-effective

manner. Further, the thesis also examines the question of how to optimally
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combine ASR and MT for speech translation, following a (fully) decoupled ST

architecture, as described in Section 3.4.

1.2 Outline

The following chapter, Chapter 2, discusses the background and related work.

All subsequent chapters will be presented in two parts.

Chapters 3 to 6 are a description of the basic overall experimental setup that

is used for most of the experiments conducted within this thesis. These chapters

introduce the basic methods for automatic speech translation applied through-

out this work. Further, they describe the spoken language translation task on

which most our experiments are based, and they also describe the ASR and MT

systems that were developed for this task. In this context, we also describe our

experiments to improve the combination of ASR and MT for automatic speech

translation of spoken language.

The second part of this thesis is presented in Chapters 7 to 12. Here, we

describe experiments that aim to exploit audio recordings of human interpreter-

mediated communication as a novel resource for speech translation system devel-

opment. Finally, in Chapter 13, we summarize and discuss our results, and we

identify some of the remaining research challenges. A more detailed overview on

the chapters of the two main parts of the thesis is given in the following.

1.2.1 Part I

Chapter 3, reviews the statistical methods applied in state-of-the-art speech trans-

lation and its component technologies, ASR and MT. The chapter also gives a

short summary of some of the algorithms and implementations resulting from the-

oretical statistical formulations and it further describes the performance metrics

used throughout this work. Chapter 4 introduces the large-scale spoken language

translation task that will set the stage for most of our experiments: the speeches
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of the European Parliament as well as the recordings of the simultaneous inter-

preters supporting the sessions of the European Parliament. In Chapter 5 we

explain, with our English and Spanish ASR and MT systems as an example, the

training and decoding schemes as they are used throughout this work.

Chapter 6 describes our experiments to improving the combination of ASR

and MT for speech translation of spoken language. Specifically, we describe in

this chapter our sentence segmentation and punctuation recovery scheme for spo-

ken language translation.

1.2.2 Part II

In chapter 7, we take a first look at interpretation as a data resource for speech

translation by closely examining the nature of interpretation and comparing it to

manual and automatic translation. We identify several possible ways to exploit

interpretation as a data resource for improving ST performance. One presented

idea involves exploiting interpretation as an auxiliary information source, by bias-

ing ASR and MT, applied to source language speech, with information extracted

from already available interpretation in the target language. Experiments based

on this idea are presented in Chapter 8.

Chapters 9, 10 and 11 examine interpretation audio as training data resource

for ST. Specifically, Chapter 9 examines interpretation audio, as it is available

for sessions of the European Parliament, for acoustic model training. Chapter 10

introduces our approach for training translation models from interpreter speech.

In Chapter 11, we present a framework that allows for an automatic training

data extraction from interpretation audio and a successful application of such ex-

tracted training data, by tying together the approaches developed in the previous

chapters. We conclude our experiments in Chapter 12, by transferring our most

important findings to a setting of actual resource limitation: speech translation

development between English and Pashto.
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Related Work

The main focus of this thesis lies on the development of human interpreter speech

as a novel resource for building speech translation systems. Chapter 6, which in-

troduces a sentence segmentation and punctuation recovery scheme for spoken

language translation, deviates from this main focus. For this reason, the dis-

cussion of work related to sentence segmentation and punctuation recovery is

presented within Chapter 6. In the following we shortly discuss work that is re-

lated to the main objective of this thesis.

We are not aware of any previous work on exploiting human interpreter speech

for training automatic speech translation. This is particularly true for our ex-

ploitation of interpretation audio for training automatic translation (models).

However, this work is related to and stems from ideas first presented in 1994 and

1995 by Brown et al. [9] and Brousseaux et al. [8], respectively. Both propose

to improve dictation systems for professional translators with the help of infor-

mation that is automatically derived from the source language text that is to be

translated. This scenario has seen renewed interest in recent years [3; 30; 53].

While all these previous works only considered biasing dictation systems with

knowledge extracted from source language text, we applied the described ap-

proach in [53; 54] for the first time to extract knowledge from source language

speech. However, our experiments presented in [53; 54] only considered read-

speech, with source and target language speaker reading from a travel-domain

parallel text corpus of sentence-aligned translations. In contrast to this rather
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artificial task, we consider in this thesis speech audio as it occurs in real-world

human interpretation. Further, we do not aim to develop or improve a dictation

system for human translators, but we aim to train speech translation systems

using such interpretation speech audio.

2.1 Limiting the Amount of Human Supervision

The enormous training data requirements of the statistical methods governing

the component technologies of speech translation, automatic speech recognition

and machine translation, have prompted numerous research trying to limit the

amount of costly human supervision attached to the creation of such training

data. The in this thesis developed approaches for exploiting interpreter speech

for speech translation aim to significantly limit the amount of costly human su-

pervision necessary for ST development. This thesis therefore needs to be seen

in the context of previous research that aims to limit the amount of supervision

for ASR or MT.

2.1.1 Limiting Supervision in Automatic Speech Recog-

nition

Unsupervised and lightly supervised acoustic model training [37] are common

approaches in automatic speech recognition to limit the amount of costly human

supervision. Unsupervised acoustic model training is based on large amounts

of speech data for which no human transcriptions are available. Training relies

on automatic transcriptions that are created with an initial ASR system that

was trained on small amounts of manually transcribed speech audio. Lightly su-

pervised acoustic model training refers to the case where some imperfect human

transcriptions, for example closed-captions provided during television broadcasts,

can be used to either bias the initial ASR system for an improved transcription

performance or to filter erroneous ASR hypotheses.
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The application of language independent and language adaptive acoustic mod-

els [66] is another possibility to limit the amount of manually transcribed audio

data needed for training accurate acoustic models. The core idea here is to limit

the necessary amount of transcribed speech data for a new language by borrowing

models and data from one or more other languages.

Similar to exploiting automatic transcriptions for unsupervised acoustic model

training, it is also possible to exploit automatic transcriptions as additional lan-

guage model training data [45]. In situations were only limited amounts of

in-domain text data are available for language modeling, it is also possible to

automatically collect additional in-domain data from the world-wide-web [85].

However, this approach is only feasible for the handful of languages were large

amounts of monolingual text data are available via the world-wide-web.

2.1.2 Limiting Supervision in Machine Translation

Similar to collecting monolingual text data from the world-wide-web for language

modeling, it is possible to crawl the web for comparable corpora [19] that can

be used for translation model training. Comparable corpora are bilingual texts

that are not translation of each other, but that are related and include the same

information to some degree. An example for comparable corpora are the online

articles of news agencies in different languages. As in the case of crawling mono-

lingual text data for language modeling, collecting comparable corpora is again

limited to only the major languages of the world-wide-web. Further, as the major

source for comparable corpora are the web pages of news agencies, the domain of

comparable corpora is mostly limited to news.

The analogoue to unsupervised acoustic model training, namely unsupervised

translation model training, was first investigated by Ueffing et al. in [76]. Ueffing

et al. refer to this concept as ‘self-training’. As only a very small amount of

monolingual data were used for self-training, the approach was presented more in

the context of domain adaptation, rather than unsupervised training. In detail,

Ueffing et al. applied machine translation only to a test set, and then selected
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the most reliable automatic translations to build a small phrase table. This small

phrase table was then used together with the baseline phrase table to re-translate

the test set in a second pass. Self-training (unsupervised translation model train-

ing) in the context of large monolingual corpora was first investigated in [67].

Another possibility to limit the amount of costly human supervision in the

context of machine translation is to reduce the amount of necessary parallel text

data as strong as possible, without impacting automatic translation performance.

Eck et al. [15] sort the sentences of monolingual text data, with the top n

sentences representing the most valuable sentences for translation model training.

Only these top n sentence are then given to human translators to create parallel

text.
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3

Statistical Speech Translation

3.1 Terminology

Automatic speech recognition (ASR) converts speech to text. Machine translation

(MT) refers to the automatic translation of source language text to target lan-

guage text. Speech translation (ST) refers to the automatic translation of source

language speech to target language text, for example by applying machine trans-

lation to the output of automatic speech recognition. In the context of speech

translation, two additional terms are frequently used; speech-to-speech translation

(S2S) and spoken language translation (SLT). In speech-to-speech translation, the

output modality is speech rather than text, achieved with the help of speech syn-

thesis systems. Spoken language translation refers to speech translation that is

applied to spoken language ‘as found in real life’, which often suffers from speech

disfluencies like fillers, repetitions and corrections. Examples for ‘real life’ speech

are parliamentary speeches or the conversational speech encountered in television

shows.

3.2 Automatic Speech Recognition (ASR)

State-of-the-art ASR systems are based on statistical methods. The fundamental

equation of speech recognition applies Bayes’ decision rule to rewrite the classi-

fication problem of finding the most likely word sequence Ŝ given the observed
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sequence X of feature vectors (extracted from the acoustic signal) as follows:

Ŝ = arg max
S

P (S|X)

= arg max
S

P (S)P (X|S)

P (X)

= arg max
S

P (S)P (X|S)

(3.1)

By applying Bayes’ theorem, a decomposition into two independent proba-

bility distributions is achieved. The language model (LM) P (S) determines the

prior probability of observing the word sequence S, and the acoustic model (AM)

P (X|S) represents the probability of observing the sequence X of feature vectors

given S. State-of-the-art ASR systems typically apply n-gram language models

and Hidden Markov acoustic models [61]:

• N -gram language models provide the likelihood of the word wi, given a

history of words w1...wi−1, by approximating it with the likelihood of wi

given only the n − 1 preceding words. In the case of a tri-gram LM, the

probability of wi is therefore given as: P (wi|w1...wi−1) = p(wi|wi−2, wi−1).

• Hidden Markov Models (HMMs) are stochastic finite state-automata, con-

sisting of a Markov chain of states. Each hidden state has an emission prob-

ability distribution of observable output tokens. In the context of speech

recognition, HMM states are acoustic states and the output tokens are the

observable acoustic feature vectors. Most commonly, the state-specific emis-

sion probability distribution is modeled with the help of Gaussian Mixture

Models. The transitions between the states, together with their transition

probabilities, serve to model the temporal structure of speech [44; 61]. In

ASR, HMMs are used to model sub-word units, typically phoneme units.

Figure 3.1 gives an example for a three-state HMM modeling the phoneme

/æ/. The model consists of three sub-phoneme acoustic states in a strictly

sequential left-to-right topology. Word models are constructed, as they

become needed, by concatenating phoneme models, as described in more

detail in Section 3.2.2.
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æ-b æ-m æ-e

Figure 3.1: Example for a Hidden Markov Model phoneme unit.

3.2.1 Language Model Training

Language model training data consists of text corpora comprising often hundreds

of millions of words. These text corpora are used to estimate the n-gram proba-

bilities p(wi|wi−2, ..., wi−n+1), based on their occurrence counts:

p(wi|wi−n+1, ..., wi−1) =
#(wi−n+1, ..., wi)

#(wi−n+1, ..., wi−1)
(3.2)

For uni-grams, the probability is given by:

p(wi) =
#wi∑
j #wj

(3.3)

Even the largest training corpora do not contain all possible n-gram combi-

nations that are valid for a specific ASR vocabulary. To avoid zero probabilities

for such unseen n-grams, smoothing (also known as discounting) in combination

with LM back-off to shorter word histories is applied. Discounting means that

some probability mass from the observed n-grams is removed and redistributed

to the unobserved n-grams. In the context of this work, we apply Kneser-Ney

smoothing [34].

3.2.2 Acoustic Model Training

Acoustic model training data consists of large amounts, often hundreds of hours

of speech audio, transcribed at the word level. To adjust the parameters of the

HMMs so that the acoustic models ‘optimally’1 represent the sequences of feature

1Different optimization criteria are used for AM training, e.g. Maximum Likelihood or
Maximum Mutual Information.
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vectors found in the training data, it is first necessary to transform the training

word sequences (the transcriptions) into sequences of HMM states. This is ac-

complished with the help of pronunciation dictionaries that list the phonetic tran-

scription of words. Word models are build by concatenating the HMM phoneme

units in a linear fashion, from left-to-right, to form word models, and ultimately

word sequences. Given these word sequence HMMs together with their observed

sequences of feature vectors it is now possible to optimize the HMM parameters.

Most commonly, the Baum-Welch algorithm (in the context of Gaussian Mix-

ture Models) is applied for parameter optimization. The Baum-Welch algorithm

[4] is a special case of the Expectation Maximization [13] algorithm and applies

the Maximum Likelihood (ML) optimization criterion. Modern ASR systems

typically also apply discriminative training methods after ML training, as for ex-

ample Maximum Mutual Information [58] training or Minimum Phone Error [65]

training.

3.2.3 Decoding

The task of finding the word sequence Ŝ that maximizes equation 3.1 is accom-

plished during the so-called decoding stage. Decoding can be imagined as the

task of finding the best possible path through a search graph, consisting of a

huge HMM that represents all possible word sequences S. This search graph

combines the acoustic model probabilities with the language model probabilities,

by applying the LM at transitions between words. This means that the score

(negative logarithm of probabilities) of each path through this search graph is

computed by accumulating the individual (and usually differently weighted) AM

and LM scores. Different decoding strategies are applied in modern ASR systems.

In the following, we will shortly describe the decoding strategy applied by the

IBIS single-pass decoder [71] (part of the Janus Recognition Toolkit, JRTk [16])

as we use this decoder throughout this work.

The IBIS decoder applies a time-synchronous Viterbi beam search for decod-

ing. The search for Ŝ is conducted in a dynamically constructed search graph.

To dynamically build this search graph, the decoder evaluates the presented
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speech frames sequentially1. The Viterbi approximation (maximum approxima-

tion) helps to limit the computational overhead. In each time step, the search

states in the graph are updated only by the score of the best incoming path, in-

stead of considering all incoming paths. To deal with the combinatorial explosion

associated with large vocabularies, typically only the best states (hypotheses) are

expanded in each time step—this heuristic is commonly referred to as ‘beam

search’.

3.3 Statistical Machine Translation (MT)

Statistical machine translation is based on the same basic statistical methods as

ASR. Brown et al. [10] introduce the fundamental equation of statistical machine

translation as:

T̂ = arg max
T

P (T |S)

= arg max
T

P (T )P (S|T )

P (S)

= arg max
T

P (T )P (S|T )

(3.4)

The most likely word sequence T̂ in the target language given a word sequence

S in the source language can be computed with the help of two independent

models: the target language model P (T ) and the translation model P (S|T ). As

in ASR, MT typically applies n-gram language models. Virtually all statisti-

cal translation models use the IBM alignment-lexicon models [10] as a starting

point [11]. These models provide the translation probability p(t|s) of the source

and target word pair (t, s). The probabilities are estimated on large amounts of

sentence-aligned, bilingual parallel text of manual translations—often comprising

tens of millions of translated words. Similar to the hidden states of HMMs in

ASR, the concept of word alignment is used to describe the unknown correspon-

dences between source and target words [11] (which word in the training source

1The original audio signal is represented by a sequence of speech frames. The typical frame
size is 10ms.
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sentence S corresponds to which word in the respective training target sentence

T).

A generalization of Equation 3.4 can be achieved by directly modeling the

posterior probability P (T |S) in a log-linear framework, as proposed by [47; 51].

Here, P (T |S) is given by different models Mi(T |S) and their scaling factors λi as

follows:

P (T |S) =
exp(

∑
i λiMi(T |S))∑

T ′ exp(
∑

i λiMi(T ′|S))
(3.5)

The denominator only depends on the source sentence S. Therefore, T̂ can be

expressed as:

T̂ = arg max
T

P (T |S)

= arg max
T

exp(
∑

i

λiMi(T |S))
(3.6)

This generalized approach allows for an easy integration of additional models

Mi. The scaling factors λ attached to these models are typically trained using

minimum error rate training [46], as it is explained in more detail at the end of

Section 5.2.

3.3.1 Phrase-Based Approach

Throughout this work, we rely on phrase-based statistical MT, which can eas-

ily be identified as today’s most popular approach to statistical MT. Instead of

translating a source sentence on a source-word to target-word basis into the target

sentence, the basic idea of phrase-based MT is to translate source phrases, com-

prised of one or more words, into target phrases. During decoding, this involves

segmenting the source sentence into source phrases and then composing the target

sentence from the translated phrases. Phrase pairs are typically extracted from

the training data based on IBM model word alignments that are computed for

both translation directions. Various phrase extraction methods are used today.

Throughout this work, we rely on the phrase extraction method described by
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Koehn et al. [35]. The extracted phrases are stored in so-called phrase-tables.

Each line in such a phrase-table file includes one phrase-pair accompanied with

the phrase-pair probabilities, as determined by the applied translation models Mi.

The search for the target sentence T̂ during decoding applies the important

constraint that ‘all positions of the source sentence should be covered exactly

once’ [11]. Several operations have to be taken into account during decoding:

segmenting the source sentence into phrases, reordering the phrases in the target

language, and determining the most probable word sequence [11]. Various de-

coding strategies are available. In the following, we describe the search strategy

of the Interactive Systems Laboratories (ISL) beam search decoder [78], since we

use this decoder throughout this work:

Here, decoding is organized in two stages. First, a so-called translation lattice

is build, after which a best path search is conducted through the lattice. Starting

from the source sentence, a linear graph is constructed that includes one edge

per source word. Then, additional edges are inserted into the graph, according

to the phrase translations presented in the phrase table. To limit the search

space, only the n best translation alternatives are considered during phrase in-

sertion. The best path search during the second step includes the application of

additional models not included in the phrase table, as for example the language

model. Further, an internal word reordering model is applied that allows for word

permutation within a limited reordering window. The search space is pruned by

applying a relative beam.

3.4 Speech Translation: Combining ASR and

MT

Speech Translation can be viewed as the problem of combining its component

technologies, ASR and MT, in a computational feasible way for an optimal trans-

lation performance. Throughout this work, we follow the popular decoupled
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approach to statistical speech translation, which relies on a sequential approx-

imation of the joint optimization problem. In the following, we give a formal

motivation to the sequential approximation, based on the formulations presented

in [11].

Formally, we seek the target sentence T̂ given a sequence of source language

acoustic feature vectors X. By introducing the source sentence S as a hidden

variable and by assuming that P (T |S,X) = P (T |S) we can write:

T̂ = arg max
T

P (T |X)

= arg max
T

∑
S

P (T, S|X)

= arg max
T

∑
S

P (T |S)P (S|X)

∼= arg max
T
{max

S
P (T |S)P (S|X)}

(3.7)

In the last step, we applied the maximum approximation. The two tasks

involved in speech translation, ASR and MT, are clearly represented in this for-

mulation by the posterior probabilities P (S|X) and P (T |S). We can now fully

decompose the speech translation task by applying the following sequential ap-

proximation:

T̂ = arg max
T
{max

S
P (T |S)P (S|X)}

∼= arg max
T

P (T | arg max
S

P (S|X))
(3.8)

Figure 3.2 depicts the speech translation system setup that follows from this

sequential approximation. The drawback of the sequential approximation is obvi-

ous: MT is simply applied on the error-prone first-best ASR hypothesis, resulting

in an accumulation of ASR and MT errors. For this reason, numerous works have

investigated to enrich the interface between ASR and MT with the competing n-

best ASR hypotheses, which may contain more accurate results. For example it

was investigated to apply MT to ASR n-best lists [83], ASR word-lattices [41] or
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Figure 3.2: Speech translation system setup following the decoupled approach.

ASR confusion networks [5]. Another problem results from a mismatched condi-

tion between typical MT training data and ASR input to the translation system.

Most available MT training data consist of well-formed sentences with proper

punctuation. ASR output, on the other hand, does not include punctuation,

suffers from recognition errors and is usually segmented using voice activity de-

tection. Further, speech translation that is applied to spoken language as encoun-

tered in real life (spoken language translation), suffers from ill-formed sentence

structures and frequent speech disfluencies (fillers, repetitions and corrections).

To tackle this mismatch, it is possible to enrich the interface between ASR and

MT with an ASR post-processing component that removes fillers, re-segments

ASR output into more sentence-like units and introduces punctuation.

For further reading: an excellent overview on the state-of-the-art in automatic

speech translation is given by articles presented in ‘IEEE Signal Processing Mag-

azine: Special Issue on Spoken Language Technology’, May 2008 [11; 20; 80].

3.5 Performance Evaluation

The primary performance metrics used in this work are word error rate (WER)

for measuring ASR performance and BLEU metric [50] for measuring MT and

ST performance.

Word error rate is based on the minimal edit distance between hypothesis and

reference sentence, this means it is based on the minimal number of substitutions

s, insertions i, and deletions d necessary to transform the hypothesis into the

reference. With n the number of reference words, the WER is given as:

19



3. STATISTICAL SPEECH TRANSLATION

WER =
s+ i+ d

n
× 100% (3.9)

BLEU metric [50] compares the MT hypotheses to one or more human refer-

ence translations based on n-gram comparison. Specifically, it computes the ge-

ometrical mean of the modified n-gram precisions with n ∈ {1, ..., 4} and applies

a length penalty to translation hypotheses that are shorter than the, in regard to

its length, best matching reference translation. The n-gram precisions are modi-

fied in a way to serve the intuitive demand for considering a reference n-gram as

exhausted after a matching candidate n-gram is identified. In its original defini-

tion, the BLEU score ranges from 0 to 1, whereas a translation that is identical

to a reference translation attains a score of 1. However, throughout this work the

BLEU score will be given in the range from 0–100, i.e. multiplied by the factor

100. Depending on the used BLEU scoring script, we identify two different ‘ver-

sions’ of BLEU metrics in this work. Whenever we use the BLEU scoring script

‘mteval-v11b’, provided by NIST, we speak of NIST BLEU metric, otherwise of

IBM BLEU metric. NIST BLEU incorrectly computes the brevity penalty based

on the length of the shortest reference translation, while IBM BLEU computes

the brevity penalty based on the closest matching reference translation.
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4

A Large-Scale Spoken Language

Translation Task: European

Parliament Plenary Sessions

(EPPS)

4.1 Task Description

The European Union (EU) language policy actively promotes the freedom of its

citizens to speak and write their own language. This is reflected by the fact

that “legislation and documents of major public importance or interest are pro-

duced in all 23 official languages” of the Union and that all other documents

are translated into “the languages needed” [77]. This multilingualism entails a

tremendous translation and interpretation effort, costing the EU more than 1

billion Euros annually [77]. A good example for this tremendous effort is the

European Parliament. The document flow of the European Parliament is fully

multilingual from the outset, as Members of the Parliament need working doc-

uments in their own language [77]. This means that proceedings of European

Parliament Plenary Sessions (EPPS) are translated into all 23 official languages.

These so-called final text editions (FTEs) are made publicly available approxi-

mately 2 months [24] after a session on the Parliamentary web pages. Further, it

is necessary to provide Members of the Parliament with a simultaneous interpre-
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TASK: EUROPEAN PARLIAMENT PLENARY SESSIONS (EPPS)

tation in their native tongue, as speeches in the Parliament can be given in any

of the official languages. These interpretations, along with the original politician

speech, are broadcast live via satellite on different audio channels. Figure 4.1

depicts the described translation and interpretation effort. The live broadcast,

language dedicated audio channels are shown on the upper right hand side of Fig-

ure 4.1. An interpreter provides the simultaneous interpretation in language Li

whenever a politician is speaking in a language Lj 6=i. In the case that a politician

is speaking in the respective language of an audio channel, the original speech of

the politician is being broadcast on that channel.

L
1

L
2

L
3 . . .

pol. interpreter . . .

int. politician int. . . .

interpreter pol. . . .

n audio channels provided 
during live broadcast 

final text editions
available after ~2 
months in all 
official languages

FTE

transcribers

rainbow edition
transcript of 
politician speech

Hello good 
morning I give 
the floor  to Mr. 
Mueller.
Meine Damen 
und Herren, ich 
spreche heute ...

interpreters

live

off-line→  ASR?

→  MT?
→  dictation system?

translators

→ real-time
S2S?

L
1
:

L
2
:

L
n
:

politicians speaking different languages 

Figure 4.1: Manual transcription, translation and interpretation in the context of
European Parliament Plenary Sessions (EPPS) and possible automatic solutions:
automatic speech recognition (ASR), machine translation (MT) and speech-to-
speech translation (S2S).

As shown in Figure 4.1, the tremendous translation and interpretation ef-

fort necessary for EPPS offers various possible application scenarios for speech

translation and its component technologies, ASR and MT. For example, real-
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4.2 EPPS Data Resources

time speech-to-speech translation (S2S) could be employed during EPPS, easing

the interpretation effort. Further, it is possible to support the creation process

of the final text editions by a) applying ASR for an automatic transcription of

the speeches held in the Parliament and/or b) by automatically translating these

transcriptions, or their revisions1, into the various languages of the Union. In

addition to MT, automatic speech recognition can further support the transla-

tion process in form of dictation systems for human translators. Such dictation

systems can significantly speed up the manual translation process by allowing the

human translator to dictate the translation, rather than typing it. Another ap-

plication scenario is the automatic translation of manually or semi-automatically

created FTEs. For example, one manually created English FTE could be auto-

matically translated into all other languages of the Union.

In the context of this work, we mainly concentrate on the task of automat-

ically transcribing and translating the speeches given by the politicians2. Such

verbatim transcriptions and translations are valuable for archiving purposes

and they can also directly support the creation process of the FTEs. We develop

various scientific approaches for this verbatim transcription and translation task.

The developed approaches are not just valuable for spoken language translation

in the context of EPPS, but more importantly, they are valuable for automatic

speech translation in general.

4.2 EPPS Data Resources

Significant data resources are available in the context of EPPS. The final text

editions published on the web pages of the European Parliament in the various

languages of the Union are an ideal data resource for training statistical language

models and translation models. For example, the publicly available Europarl

corpus [32] combines FTEs in 11 European languages in a multilingual, sentence-

aligned text corpus for the development of statistical machine translation systems.

1Politicians are allowed to revise the transcriptions of their speeches held in Parliament.
2For this task, it is also beneficial to automatically transcribe and translate the EPPS

simultaneous interpretations, as explained in the following chapters.
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But it must be a policy that is shared  in partnership with Russia, not a 
covert <hesitation> cover for directing ...

However, it must be a shared policy in partnership with Russia, 
not a covert way of directing ... 

Comparing English politician speech (1) with English RTE/FTE (2)

(1)

Comparing English interpreter speech (3) with English FTE (4) and an English 
'verbatim translation' of respective Spanish interpreter speech (5)

Mister Poettering President President of the Commission, we confirmed 
with a great majority the Commission President designate, J. Barroso ...

Mister President of the Commission, J. Barroso was elected by a 
large majority as the next President of the European Commission, ...

Mister President of the Commission, J. Barroso, the future President of 
the European Commission, was elected by a broad majority ...

(2)

(3)

(4)

(5)

Figure 4.2: Comparing rainbow text edition (RTE) and final text edition (FTE)
with respective verbatim transcription and translation of politician and interpreter
speech.

In its current version, the Europarl corpus v3 includes FTEs from 1996 to 2006

and comprises up to 55 million words per language [31]. Further, the live broad-

cast audio channels, as they are depicted in Figure 4.1, can be recorded and used

for acoustic model training. Within the project TC-STAR (compare Section 4.3),

University RWTH Aachen recorded approximately 100h of English and Spanish

live broadcast EPPS audio for the purpose of ASR development. Despite the ex-

istence of the so-called rainbow editions (RTEs), depicted in Figure 4.1, and the

final text editions, verbatim transcriptions had to be created for the recorded En-

glish and Spanish speech1. As explained in Section 4.1, the language dedicated

audio channels contain a mix of politician speech and interpreter speech. The

RTEs only provide a transcription of politician speech, “aim for high readability”

[24] and include revisions made by the politicians themselves. Therefore, they do

not provide a verbatim transcript but differ, in parts strongly, from the original

1RWTH Aachen and UPC provided these verbatim transcriptions within TC-STAR.
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politician speeches. Gollan et al. [24] note that the RTEs include the removal

of hesitations, false starts and word interruptions. Furthermore, they note that

transpositions, substitutions, deletions and insertions of words can be observed.

The final text editions, which are solely based on the rainbow editions, conse-

quently include these differences between original politician speech and RTE.

Furthermore, the translations found in the FTEs differ even more strongly from

verbatim transcriptions of respective interpreter speech. Figure 4.2 gives an ex-

ample in which we compare (a) a verbatim transcript of English politician speech

with its RTE/FTE transcript and (b) a verbatim transcript of English inter-

preter speech with its respective section in the FTE. For the latter example, we

also show a manual English ‘verbatim translation’ of Spanish interpreter speech.

In addition to the described data resources, we have in-house collected recordings

of live broadcast EPPS available. Our recordings include several of the broadcast

language dedicated audio channels, including German, English and Spanish.

4.3 The European project TC-STAR

The European project “Technology and Corpora for Speech-to-Speech Transla-

tion” (TC-STAR) was a three year project that aimed to advance research in

the core technologies for speech-to-speech translation. Three competitive eval-

uations were conducted in the years 2005, 2006 and 2007 to foster advances in

all speech-to-speech translation technologies. The evaluations were split in four

sub-categories. These sub-categories included evaluations in (a) automatic speech

recognition, (b) machine translation, (c) text-to-speech and (d) end-to-end per-

formance. TC-STAR participating sides competed in the sub-categories (a) to

(c). End-to-end performance was not measured on individual systems or on a

system build from the best competing ASR and MT systems. Instead, system

combination techniques where applied whenever possible. For example, the out-

put of the ASR systems that had been competing in category (a) was combined

by applying NIST’s Recognizer Output Voting Error Reduction (ROVER) [17]

before handing it over to MT for spoken language translation.
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4.3.1 EPPS Machine Translation tasks of TC-STAR

TC-STAR distinguished between three machine translations tasks in the con-

text of EPPS. These tasks considered machine translation between English and

Spanish. The SLT task constituted the task of automatically translating the

ROVERed English and Spanish ASR system outputs. In the verbatim task,

the respective manual verbatim transcriptions replaced the ROVERed ASR hy-

potheses as input to the MT systems. Finally, the FTE task considered the

automatic translation of English and Spanish final text editions.

4.4 EPPS Development and Evaluation Sets

For performance evaluation of our EPPS English and Spanish ASR and MT sys-

tems, we rely on the development and evaluation sets as they were provided

within the project TC-STAR. Specifically, we make use of the 2005 development

set, the 2006 development set (dev06) and the 2007 evaluation set (eval07). These

sets include case-sensitive transcription and translation references with proper

punctuation. For measuring translation performance, two reference translations

are provided. Our default scoring of ASR and MT performance relies on case-

insensitive WER and case-insensitive BLEU, respectively. Further, we usually

remove the punctuation marks present in the transcription and translation ref-

erences before scoring1. We explicitly state whenever we apply a case-sensitive

scoring or a scoring that includes punctuation.

Dev06 and eval07 only comprise politician speech and no interpreter speech.

Further, no manual speech utterance segmentation is provided for dev06 and

eval07. In the context of this work, we use a language-independent HMM based

speech/non-speech audio segmentation to infer speech utterances before apply-

ing ASR. For unsupervised speaker-adaptation, we cluster the resulting speech

utterances into several speaker clusters, using the hierarchical, agglomerative clus-

tering technique described in [29]. In contrast to dev06 and eval07, the TC-STAR

1All data statistics listed in this section refer to non-punctuated references.
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2005 development set presents a mix of politician and interpreter speech. Fur-

ther, it is provided with a manual utterance segmentation that is kept consistent

for the reference transcriptions and the reference translations. In other words,

for all English and Spanish speech utterances included in the 2005 set, aligned

transcription and translation references are provided. As these properties of the

TC-STAR 2005 development set are of special value for the experiments described

in Chapter 8 and 10, we extract two European Parliament sessions from it, for

further development and evaluation purposes. In the following, we refer to these

two sets simply as dev05 and dtest05. Table 4.1 lists the data statistics of the

English and Spanish dev05 and dtest05 sets. Table 4.2 shows the data statis-

tics for dev06 and eval07. Due to the automatic utterance segmentation applied

prior to ASR on dev06 and eval07, the amount of speech segments and reference

translations segments differs. To align the translated speech utterances to the

translation reference for scoring SLT performance, we rely on the multiple refer-

ence word error (mWER) [42] script, as it was provided by RWTH Aachen within

TC-STAR.

English Spanish

dev05 dtest05 dev05 dtest05

utterances 1256 448 1589 849

words [k] 17.4 5.9 14.7 6.6

audio [min] 95 40 89 40

Table 4.1: Data statistics for dev05 and dtest05.

English Spanish

dev06 eval07 dev06 eval07

speech utt. 1287 1926 1707 2085

transl utt. 1194 1167 792 746

words [k] 27.9 26.0 22.4 25.8

audio [h] 3.2 2.7 2.3 2.7

Table 4.2: Data Statistics for dev06 and eval07.
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5

EPPS English/Spanish

Automatic Speech Recognition

and Machine Translation

In the following sections, we explain on the example of our English/Spanish sys-

tems the ASR and MT training and decoding schemes as they are used throughout

this work.

5.1 Automatic Speech Recognition Systems

Our ASR systems are developed with the Janus Recognition Toolkit (JRTk),

featuring the IBIS single pass decoder [71]. For language model estimation, we

rely on the SRI Language Model toolkit [72].

5.1.1 Front-ends

Our preprocessing typically relies on traditional Mel-frequency Cepstral Coeffi-

cients (MFCC). In some cases, we also apply a pre-processing that is based on the

warped minimum variance distortionless repsonse (MVDR). The latter replaces

the Fourier transformation by a warped MVDR spectral envelope [81] . Our

front-ends provide features every 10ms. However, for speaker adaptive decoding

in a multi-pass setup, we change this value to 8ms. The applied front-ends use
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13 cepstral coefficients, with mean and variance normalized on a per utterance

basis. Seven adjacent frames are combined into one single feature vector which

is then reduced to 42 dimensions using linear discriminant analysis.

5.1.2 Acoustic Model Training

Our ASR systems are based on sub-phonetically tied three-state Hidden Markov

Models without state-skipping. The applied acoustic model training scheme first

estimates context independent AMs and then uses JRTk’s standard top-down

clustering approach to obtain context-dependent models. Training involves in-

cremental splitting of Gaussians and several iterations of Viterbi training. For

the English ASR system in Chapter 12, we also apply boosted Maximum Mutual

Information training [59]. The systems feature single global semi-tied covari-

ance matrices after linear discriminant analysis [23]. In the case of unsupervised

speaker adaptation in a second decoding pass, we employ acoustic models trained

via feature space speaker adaptive training.

5.1.3 English Automatic Speech Recognition

The EPPS English ASR system is based on ASR sub-systems that were developed

at University Karlsruhe by Stüker et al. [74] for the TC-STAR 2006 evaluation.

The featured decoding setup is a simplified version of the 2006 evaluation sys-

tem’s decoding setup.

The decoding setup consists of two decoding passes, with two ASR sub-

systems in each pass and confusion network combination [40] at the end of each

pass. One MFCC front-end based ASR sub-system and one MVDR front-end

based ASR sub-system is used in each decoding pass. The ASR sub-systems

of the first pass apply speaker-independent AMs while the sub-systems of the

second pass apply feature space speaker adaptive training models. Unsuper-

vised speaker adaptation is performed on the output of the first decoding pass

by applying Maximum Likelihood Linear Regression (MLLR) [38], feature space

constrained MLLR [22] and Vocal Tract Length Normalization [82]. Figure 5.1

depicts the decoding setup and list the eval07 word error rates achieved in the
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several decoding passes. The acoustic models of the ASR sub-systems are trained

on approximately 80h of English EPPS data, as provided by RWTH Aachen for

the TC-STAR 2006 evaluation. The pronunciation dictionary consists of 47k low-

ercased pronunciation entries. The 4-gram LM is trained on the 2006 available

EPPS transcriptions (750k words) and EPPS final text editions (33M words) as

well as on the Hub4 broadcast news data (130M words) and the English part

of the UN Parallel Text Corpus v1.0 (41M words). Table 5.1 lists the language

model perplexity (PPL), out-of-vocabulary (OOV) rate and case-insensitive WER

on our dev and eval set (please refer to Section 4.4 for a description of dev and

eval).

MFCC
17.7%

MVDR
18.5%

CNC
16.5%

MFCC
12.8%

MVDR
12.7%

CNC
12.2%

pass I

pass II

Figure 5.1: ASR decoding setup and influence on word error rate (English,
eval07). The setup applies two decoding passes with ASR systems based on two
different front-end types: Mel-frequency Cepstral Coefficients (MFCC) and min-
imum variance distortionless repsonse (MVDR). Confusion network combination
(CNC) is applied at the end of each decoding pass.

5.1.4 Spanish Automatic Speech Recognition

We developed a Spanish ASR system that applies the same decoding setup as

the described English ASR system. The acoustic models of the four Spanish

ASR sub-systems are trained on 140h of Spanish EPPS and Spanish Parliament

31



5. EPPS ENGLISH/SPANISH AUTOMATIC SPEECH
RECOGNITION AND MACHINE TRANSLATION

dev06 eval07

Spanish English Spanish English

PPL 89 108 89 106

OOV [%] 0.57 1.12 0.83 0.95

WER [%] 8.4 13.9 9.0 12.2

Table 5.1: EPPS English/Spanish ASR system statistics: perplexity (PPL), out-
of-vocabulary rate (OOV) and word error rate (WER).

(CORTES) data. Our lowercase pronunciation dictionary has 74.2k . The 4-gram

LM is estimated on the Europarl v1[32] Spanish FTEs (25M words), the CORTES

texts (44M words) and the EPPS+CORTES (748k words) manual transcriptions.

Language model perplexity, out-of-vocabulary rate and case-insensitive WER on

our dev06 and eval07 set are listed in Table 5.1.

5.2 English ↔ Spanish Machine Translation

This section describes the English↔Spanish MT system as we developed it for

the verbatim translation task of the TC-STAR 2007 evaluation. The author

would like to thank all people that contributed to the system build; Jan Niehues

for implementing the phrase table smoothing as it was first introduced in [18],

Kay Rottmann for providing the part-of-speech based re-ordering scheme [63] and

Stephan Vogel for giving valuable advice and insights into statistical phrase-based

machine translation.

5.2.1 Word and Phrase Alignment

Phrase-to-phrase translation pairs are extracted by training IBM Model-4 word

alignments in both directions, using the GIZA++ toolkit [48], and then extract-

ing phrase pair candidates which are consistent with these alignments, starting

from the intersection of both alignments. This is done with the help of phrase

model training code provided by University of Edinburgh during the NAACL

2006 Workshop on Statistical Machine Translation [33]. The raw relative fre-
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quency estimates found in the phrase translation tables are then smoothed by

applying modified Kneser-Ney discounting as explained in [18].

5.2.2 Source-side Word Reordering

we all agree on that  |  PRP DT VB IN DT

en {4} esto {5} estamos {1} todos {2} de {} acuerdo {3}

PRP  DT  VB  IN  DT  →  4 – 5 – 1 – 2 – 3

on that we all agree

Tagged source:

Alignment:

Extracted rule:

Re-Ordering:

Figure 5.2: Learning part-of-speech reordering rules.

We apply a part-of-speech (POS) based reordering scheme [63] to the source

sentences before decoding. For this, we use the GIZA++ alignments and a POS-

tagged source side of the training corpus to learn reordering rules that achieve

a (locally) monotone alignment. Figure 5.2 shows an example in which a rule is

extracted from the POS tags of an English source sentence and its corresponding

Spanish GIZA++ alignment. Before translation, we construct lattices for every

source sentence. The lattices include the original source sentence along with

reorderings that are consistent with the learned rules. All incoming edges of

the lattice are annotated with distortion model scores that are dependent on

the relative frequency of the learned rules. We refer the reader to [63] for an

in depth discussion on how these model scores are computed. Figure 5.3 gives

an example of such a lattice. In the subsequent lattice decoding step, we apply

either monotone decoding or decoding with a reduced local reordering window,

typically of size 2.

5.2.3 Decoder and Minimum Error Rate Training

The ISL beam search decoder [78] combines all the different model scores to find

the best translation hypothesis. The presented system applies following models:

- The translation model, i.e. the phrase-to-phrase translations extracted from

the bilingual corpus, annotated with four translation model scores. These

33



5. EPPS ENGLISH/SPANISH AUTOMATIC SPEECH
RECOGNITION AND MACHINE TRANSLATION

0

1

7

2

honorable
0.67

Members
1

Members
0.33

honorable
1

4

5

8

6

have
0.08

a
1

a
0.92

have
1

3

,
1

we
1

honorable Members , we have a ...

Figure 5.3: Encoding source side reorderings in a lattice structure.

four scores are the smoothed forward and backward phrase translation prob-

abilities and the forward and backward lexical weights.

- A 4-gram LM. The SRI language model toolkit is used to train the LM.

- A 6-gram suffix array LM [84].

- An internal word reordering model. This internal reordering model assigns

higher costs to longer distance reordering.

- Simple word and phrase count models. The former is essentially used to

compensate for the tendency of the LM to prefer shorter translations, while

the latter can give preference to longer phrases, potentially improving flu-

ency.

The decoding process itself is organized in two stages. First, all available word

and phrase translations are found and inserted into a so-called translation lat-

tice. Then the best combination of these partial translations is found by doing

a best path search through the translation lattice, where we also allow for word

reorderings within a predefined local reordering window.

To optimize the system towards a maximal BLEU score, we use minimum

error rate (MER) training as described in [46]. For each model weight, MER

applies a multi-linear search on the development set n-best list produced by the

system. Due to the limited numbers of translations in the n-best list, these new

model weights are sub-optimal. To compensate for this, a new full translation is

done. The resulting new n-best list is then merged with the old n-best list and
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the optimization process is repeated. Typically, the translation quality converges

after three iterations.

5.2.4 Training Data Normalization and Statistics

For training, we use the sentence-aligned Europarl corpus v2 [32] combined with

the TC-STAR sentence-aligned EPPS parallel text corpus provided by RWTH

Aachen [24]. Both corpora are based on EPPS final text editions crawled from the

web site of the European Parliament. The resulting parallel text corpus comprises

FTEs from April 1996 to May 2006. For a minimal mismatch between training

data and source language input to the final MT system, we apply an extensive,

automatic pre-processing to the training corpus and the source language input.

This pre-processing relies mostly on hand-written rules and includes:

- A data driven true-casing of words. Words at sentence-begin are cased in

the same way as they should be cased within a sentence.

- Tokenization of punctuation marks.

- Removal of ‘noisy’ sections. This includes for example the removal of doc-

ument references and poorly sentence-aligned sections.

- Expansion of abbreviations and the conversion of numbers and dates to

their spoken form.

Further, we remove all bi-lingual training sentences that include more than 80

words on the source or target side. Detailed statistics for our pre-processed

training corpus are shown in Table 5.2.

5.2.5 Translation Performance

While our English↔Spanish MT system directly targets the TC-STAR verba-

tim and spoken language translation task, we also participated with the system

in the FTE task (for a more detailed description of the separate tasks refer to

Section 4.3). For the FTE task, we include a post-processing step which maps

the verbatim-like translation output back to a more FTE-like format. In the
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English Spanish

sentence pairs 1219415

unique sent. pairs 1190315

sentence length 27.3 28.5

words/tokens 33.2 M 34.8 M

proper words 29.8 M 31.4 M

vocabulary 94.2 K 135.6 K

Table 5.2: Training corpus statistics.

following, we present the translation results (NIST BLEU metric, case-sensitive)

achieved with our system in the TC-STAR 2007 evaluation. For all three trans-

lation tasks, two manual reference translations with proper punctuation are pro-

vided. The English and Spanish development and evaluation sets introduced in

Section 4.4 are based on the TC-STAR 2007 development and evaluation set for

the verbatim task. The references presented in the TC-STAR 2007 development

and evaluation set for the ST task are identical to the references of the verba-

tim task. The official source input to the ST task was generated by combining

the ASR system outputs of the individual TC-STAR participating sides using

ROVER [17]. The lowercase WER of this source input is 6.9%. The official

source input was enriched with punctuation marks that were automatically in-

serted in a post-processing step after rovering. The translation results of our

system (University Karlsruhe, UKA), along with the anonymized results of the

best competing systems of other TC-STAR participants, are depicted in Figures

5.4, 5.5 and 5.6.

With the exception for the English→Spanish spoken language translation

task, we achieve highly competitive translation results with our MT system. For

the SLT task, we decided to rely on the punctuation marks and the sentence seg-

mentation as provided in the official evaluation source input. A post-evaluation

error analysis indicated that the performance drop we experienced was a direct

result of this decision, as the sentence segmentation and punctuation recovery

applied to the English ASR hypotheses of the official evaluation set yielded only
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Figure 5.4: Official results for the final text edition (FTE) task of the TC-STAR
evaluation 2007.

a very low performance. This result prompted us to develop a more sophisticated

sentence segmentation and punctuation recovery approach for spoken language

translation, as it is described in the following Chapter 6.
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Figure 5.5: Official results for the verbatim task of the TC-STAR evaluation
2007.
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Figure 5.6: Official results for the spoken language translation (SLT) task of the
TC-STAR evaluation 2007.
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6

Sentence Segmentation and

Punctuation Recovery in Speech

Translation

Most machine translation training data consists of written text corpora with

well-formed sentences and correct punctuation. ASR output, on the other hand,

consists of non-sentence like chunks (utterances) of non-punctuated hypotheses.

Recognition errors and speech disfluencies like fillers, repetitions and corrections

further increase the mismatch between ASR output and MT training data. This

severe data mismatch leads to a suboptimal translation performance when ap-

plying MT directly to ASR output in the context of spoken language translation.

One important step to reduce the given data mismatch is to re-segment ASR

hypotheses into sentence-like units before performing translation. Punctuation

recovery in ASR output, punctuation removal in MT training data or a mixed

approach with a selective punctuation restoration/removal can further reduce the

data mismatch. On top of improving translation accuracy, sentence segmentation

and punctuation recovery can significantly increase the readability of ST system

output. In this chapter, we introduce a combined approach for sentence seg-

mentation and punctuation recovery [52] that uses a decision tree based sentence

segmentation system and modified phrase tables. We develop our approach on

the basis of our EPPS verbatim MT system, as it was applied to the TC-STAR

2007 English→Spanish spoken language translation task. Further, we successfully
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port the developed approach to two additional language pairs: Arabic→English

and Chinese→English.

6.1 Related Work

Finding sentence-like units and introducing punctuation in automatic speech

recognition output has seen tremendous attention in the past years [12; 25; 28;

39; 69]. An excellent overview on such past work is given by Yang Liu in [39].

Yang Liu summarizes that “previous work has shown that lexical cues are a

valuable knowledge source for determining punctuation roles and detecting sen-

tence boundaries, and that prosody provides additional important information

for spoken language processing. Useful prosodic features include pause, word

lengthening, and pitch patterns. Past experiments also show that detecting sen-

tence boundaries is relatively easier than reliably determining sentence subtypes

or sentence-internal breaks (e.g., commas)”.

One main motivation for detecting sentence boundaries and introducing punc-

tuation in ASR output is to enhance the readability of the automatic transcrip-

tions. Another main motivation is to “aid downstream language processing tools,

which typically expect sentence-like segments” [39]. However, as noted by Rao

et al. [26], past work has simply focused on spotting sentence boundaries as de-

fined by humans, mainly ignoring the downstream language processing applied

to the ASR output. In this work, we specifically examine sentence segmentation

and punctuation recovery in the context of machine translation applied to ASR

output of spoken language, similar to work presented in [2; 26]. Both, [2; 26] in-

vestigate sentence segmentation to improve spoken language translation accuracy.

Rao et al. [26] report improvements in translation accuracy by introducing non-

punctuated intra-sentence segments before translation. Al-Onaizan and Mangu

[2] investigate the recovery of punctuation during translation, by applying trans-

lation phrase tables that do not include punctuation on the source side, but on

the target side.
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6.2 Experimental Setup

6.2 Experimental Setup

6.2.1 Data & Scoring

Our experiments on English→Spanish ST use the post-processed, ROVERed ASR

hypotheses files, as they were provided during the TC-STAR 2006 and 2007 eval-

uations for the spoken language translation (SLT) task. Both evaluation sets

exhibit a case-insensitive WER of 6.9%. For our experiments on Arabic→English

and Chinese→English ST, we extract two data sets per language pair from the

shadow data included in the ROSETTA team ASR output of the GALE [21]

2007 evaluation. Table 6.1 list the data statistics of the used development and

evaluation sets.

English Arabic Chinese

dev (eval06) eval (eval07) dev eval dev eval

words/chars [k] 30 26 8 9 23 8

WER/CER [%] 6.9 6.9 12.1 21.7 10.5 17.1

Table 6.1: Sentence segmentation and punctation recovery: data statistics, in-
cluding word error rate (WER) for Arabic and English and character error rate
(CER) for Chinese.

We measure the success of our approaches for sentence segmentation and punc-

tuation recovery in terms of an end-to-end translation performance using BLEU

metric on human translation references that include proper punctuation. For

English→Spanish, two case-sensitive translation references are used and we re-

port case-sensitive BLEU scores. The translation references for Arabic→English

and Chinese→English are lowercase and comprise only one reference per source

sentence.

6.2.2 MT Systems

The En→Sp spoken language translation experiments reported in this chapter

are based on the MT system described in Section 5.2. For Ar→En and Ch→En
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spoken language translation, we apply statistical phrase-based MT systems as

they were trained at the Interactive Systems Labs for the GALE 2007 evaluation.

The training setup of these systems is similar to the training setup described in

Section 5.2. In contrast to the En→Sp system, no reordering based on part-of-

speech tags is applied to the source sentences prior to translation. Instead, a

simple word reordering which assigns higher costs to longer distance reorderings

is used. The Ar→En system uses a reordering window of four words and Ch→En

system uses a reordering window of two words.

6.2.3 Baseline Segmentation

The baseline segmentation of the Arabic and Chinese ASR hypotheses is iden-

tical to the automatic speech utterance segmentation that was inferred prior to

ASR via voice-activity detection. The baseline segmentation of the English ASR

hypotheses found in eval06 and eval07 is based on the periods that are included

in these sets. Punctuation marks (period, comma) were inserted in these sets

before distributing them to the TC-STAR participants. The insertion of punc-

tuation marks relied on University Karlsruhe’s punctuation recovery system, as

we originally developed it for the TC-STAR 2006 evaluation. This simple punc-

tuation recovery system is based on local language model context and pause

duration between words. A period is explicitly inserted if the pause duration p

at a given word boundary Bi is bigger than 0.7 seconds. For 0.03s < p ≤ 0.7s,

the insertion of a period or a comma is determined by the local LM context

wi−2Bi−1wiBiwi+1Bi+1wi+2, with Bi−1 being the boundary / punctuation mark

type estimated in the previous step i − 1. For Bi+1, all possible punctuation

marks are considered.

6.3 Comma Recovery via Modified Phrase Ta-

bles

Punctuation recovery for SLT can either be performed before, after or implicitly

during translation. Punctuation recovery before translation can rely on acous-

tic features (prosody, pause duration, etc.) that are extracted from the speech
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signal. Our experiments indicate that such features are especially of value for

the recovery of periods. However, introducing punctuation in the source may

have the disadvantage to degrade translation performance due to punctuation

errors. A faulty punctuation may split up long source phrase matches into two

or more short phase matches. Punctuation recovery during or after translation

does not suffer from this problem, as non-punctuated source phrases guarantee a

maximal match. Further, these approaches are more strongly influenced by the

target language model, which possibly results in a more ’natural’ punctuation of

the translation output. Our experiments indicate that these considerations are

especially important in the context of comma recovery. Punctuation recovery

during translation can be realized by removing punctuation from the source side

of the parallel MT training data while retaining punctuation on the target side.

However, Al-Onaizan and Mangu [2] point out that this will likely degrade word

alignment accuracy as it may not be possible to correctly align target punctua-

tion. Instead, they propose to remove punctuation from the source phrases in the

phrase table of a phrase-based statistical MT system, while retaining punctuation

in the target phrases.

We explicitly distinguish between two separate tasks; sentence segmentation

and punctuation recovery. A sentence segment constitutes the unit presented to

MT; MT processes each unit independently, one after another. A sentence seg-

ment may include one or multiple punctuation marks (period, comma)—or none

at all. By explicitly separating sentence segmentation from punctuation restora-

tion, it is possible to fully explore punctuation recovery before, after or during

translation.

We examine the effect of performing punctuation recovery before and/or dur-

ing translation by comparing English→Spanish SLT performance when (1) re-

taining periods and commas as presented in eval06 and eval07, (2) removing all

punctuation marks and applying implicit recovery of periods and commas during

translation, and (3) retaining periods in the ASR output and recovering commas

during translation. For (2) and (3) we initially train phrase-tables with punctua-

tion and then remove punctuation from the source side as described in [2]. Table

43



6. SENTENCE SEGMENTATION AND PUNCTUATION
RECOVERY IN SPEECH TRANSLATION

6.2 shows the achieved SLT performance in BLEU. Inserting full stops prior to

MT, on the source side at each segment end and recovering commas implicitly

during translation using a modified phrase table obtains the best translation per-

formance. For Arabic and Chinese we observe that inserting periods at each

segment end leads to an improved translation performance, even for the baseline

speech/non-speech audio segmentation. This concurs with results presented in

[2]. Table 6.3 shows the influence of comma recovery via modified phrase tables

on Ar→En and Ch→En SLT performance. For all subsequent experiments re-

ported in this chapter we include a period at the end of each source segment and

we apply modified phrase tables for comma recovery.

period comma dev eval

source source 38.7 36.6

phrase table phrase table 39.2 38.3

source phrase table 40.2 39.0

Table 6.2: En→Sp BLEU scores for different punctuation recovery schemes:
source side vs. modified tables.

period comma dev eval

Ar→En
source - 19.5 13.5

source phrase table 21.3 15.3

Ch→En
source - 8.3 8.7

source phrase table 8.8 10.1

Table 6.3: Ar→En and Ch→En BLEU scores without comma recovery and with
comma recovery using modified phrase tables.

6.4 Decision Tree Based Sentence Segmentation

To improve sentence segmentation compared to the baseline segmentation de-

scribed in Section 6.2.3, we develop a decision tree based sentence segmentation

architecture that uses multiple word boundary features. We use J.R. Qinlans
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C4.5 induction system [60] for decision tree training and rule extraction. We

create the necessary training examples by automatically aligning ASR hypothe-

ses to their reference transcriptions, using RWTH Aachen’s multiple word error

rate (mWER) segmentation tool [42]. Such mWER segmented ASR hypothe-

ses observe the segmentation of the manually created reference transcriptions,

while still including typical ASR transcription errors. This guarantees a minimal

mismatch between training and evaluation data. Using different word boundary

feature combinations, we select the decision tree and feature set combination that

yields the highest F-measure in regards to human segmentation on a development

set.

For English, we train the decision tree on the English dev (eval06) ASR hy-

potheses. The final feature set combination consists of word duration of the word

preceding the current boundary, pause duration and LM probabilities for comma

and full stop insertion (with the same local LM context as described in Section

6.2.3). For Chinese, we train the decision tree on shadow data included in the

ROSETTA team 2007 ASR dry-run. This data consists of 6 shows from the

GALE 2006 development set and of the second half of the GALE 2007 devel-

opment set. For Arabic, we use 4 shows from the BNAD05 data set. For both

languages, the final feature set combination consists of pause and word duration

as well as LM probabilities for full stop insertion. For Arabic, we also include

prosody based features. Specifically, we encode pitch information by combining

pitch and delta pitch values in the vicinity of 700 milliseconds of the candidate

boundary. We also included the signal power values in the same region as well as

total signal power on either side of the boundary. As high dimensional features

cause data sparsity problems and result in over-fitting of the decision tree, we

reduce the dimensionality by training a support vector machine based classifier

on these features. We then use the scores of the support vector machine classi-

fier as features within the decision tree. We considered the same prosody based

features for English and Chinese sentence segmentation. However, for these lan-

guages we did not observe any improvements in terms of F-Measure by adding

the prosody based features to our standard feature set. Table 6.4 compares the
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F-Measures of the baseline segmentation and the decision tree based segmenta-

tion. Table 6.5 lists the BLEU scores of the end-to-end system, depending on the

used sentence segmentation. For all three language pairs, the decision tree based

sentence segmentation achieves consistently higher BLEU scores than the base-

line segmentation. In addition to the results for the baseline segmentation and

the decision tree based segmentation, we also list the BLEU scores achieved when

using mWER sentence segmentation (the sentence segmentation of the transcrip-

tion references). The results show that human style sentence segmentation results

in improved automatic translation performance.

segmentation dev eval

English
baseline 54.79 52.48

decision tree 65.97 62.14

Arabic
baseline 33.89 37.50

decision tree 40.97 43.41

Chinese
baseline 30.75 31.59

decision tree 59.16 53.38

Table 6.4: F-Measures; baseline segmentation vs. decision tree based segmenta-
tion.

6.5 Phrasal and Target LM Context for Source

Side Sentence Segmentation

Different source side sentence segmentations lead to different source phrase matches

and different target side language model histories during translation. Possible

word and phrase re-orderings during translation are also affected. For a better

integration of source sentence segmentation and phrase based MT, we experiment

with features to incorporate phrasal and target language model context during

source sentence segmentation. To infer such features, we apply knowledge derived

from the translation beam-search lattice as it is constructed during decoding (we
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segmentation dev eval

baseline 40.2 39.0

En→Sp decision tree 40.3 39.5

mWER 41.4 41.3

baseline 21.3 15.3

Ar→En decision tree 21.4 15.5

mWER 21.8 16.0

baseline 8.8 10.1

Ch→En decision tree 8.9 10.7

mWER 9.4 11.0

Table 6.5: BLEU scores for different segmentations: baseline segmentation, deci-
sion tree based segmentation and multiple word error rate segmentation.

refer the reader to Section 3.3.1 for a more detailed description of the translation

lattice). The motivation is not to break up source phrases that are valuable for

MT and also to pay attention to the target LM context during sentence segmen-

tation.

To compute a score indicating if phrasal context or target LM context is jeop-

ardized when segmenting at a given word boundary, we apply a sliding window

of 24 words with a step size of 6 words on the ASR output. For each step, we

translate the 24 word sentence and compute two probabilities, phrSP and tbiSP ,

for each of the 11 word boundaries between the innermost 12 words. These two

probabilities are computed from the translation lattice used by our beam-search

decoder. The edges in this lattice correspond to source words and phrases (to-

gether with their translation) and the nodes to the boundaries between these

words and phrases. The phrasal split-point probability phrSP for a given word

boundary is computed as the number of paths going over its corresponding node

divided by the number of paths visiting its node. We consider only the n-best

pathes, i.e. the n-best translations. A phrasal split-point probability of one in-

dicates that the word boundary is always seen between two source phrases in

the n-best translations. Introducing a segment boundary at such a point should
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therefore not negatively affect possible phrase matches during translation. The

target LM split-point probability tbiSP is computed only for word boundaries

with phrSP > 0 and is based on bi-gram probabilities. For all m word bound-

aries that are found to lie between two phrases, the target LM probability tbi of

the bi-gram formed by the last word of the left source phrase and the first word

of the right source phrase is computed. If the target LM does not include an

according bi-gram, a bi-gram probability of 0 is assumed. tbiSP is defined as:

tbiSP = 1− (
∑m tbi)/m.

We analyze the correlation of the phrasal split-point probability phrSP with

actual sentence boundaries. We compute phrSP for all word boundaries found

in the human transcriptions of the English dev set using the 100-best transla-

tions. We then select six split-point probability ranges. For each range, we com-

pute the percentage of sentence boundaries compared to the absolute number of

boundaries within the range. Figure 6.1 shows the result. While a high phrasal

split-point probability does not necessarily predict a sentence boundary, a low

phrasal split-point probability seems to be a strong indicator of a non-sentence

boundary. However, augmenting our decision tree based sentence segmentation

with phrSP as an additional feature did not lead to any significant improvements.
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Figure 6.1: Percentage of sentence boundaries compared to the absolute number
of boundaries (words) within different phrasal split-point probability ranges p.

We repeat a similar experiment for different target LM split-point probabil-

ity tbiSP ranges r with 0.0 < r <= 1. The ranges are selected in a way that
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each range contains approximately 1600 boundaries (words). The continuous line

in Figure 6.2 shows the percentage of sentence boundaries included in the dif-

ferent ranges. While there seems to be no clear correlation between target LM

split-point probability and human sentence boundaries, an increase of included

sentence boundaries around range r4 can be observed. When plotting the per-

centage of bi-grams that include a comma in the same graph (dotted line), we

see that the same region has a high percentage of bi-grams including commas.

Phrase boundaries that are connected with a comma therefore seem to correlate

stronger with human sentence boundaries. This coincides with the intuition that

distinguishing between a comma boundary and a full stop boundary when tran-

scribing spoken language is often times up to interpretation and dependent on

the style of the individual human transcriber.
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Figure 6.2: Percentage of included sentence boundaries (continuous line) for
different target language model split-point probability ranges r.

6.6 Chapter Summary & Discussion

We described our sentence segmentation and punctuation recovery scheme for

spoken language translation. By applying modified phrase tables for implicit

target side comma recovery during translation and by introducing a decision

tree based sentence segmentation for insertion of full stops on the source side,
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we significantly improved translation performance on three language pairs. Re-

sults in BLEU are summarized in Table 6.6. Furthermore, we investigated two

novel features indicating if phrasal context and target language model context

is jeopardized when segmenting at a given source word boundary. However, no

additional gains in end-to-end translation performance could be observed with

these features.

En→Sp En→Sp En→Sp

baseline 36.6 8.7 13.5

combined approach 39.5 10.7 15.5

Table 6.6: Improved spoken language translation performance, measured in
BLEU, by applying our combined sentence segmentation and punctuation recovery
scheme.
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PART II

Audio Recordings of Human Interpretation

as a Novel Resource for

Speech Translation System Development
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7

Interpretation: A Data Resource

for Speech Translation?

7.1 Terminology

Translation refers to the transfer of meaning from source language text to target

language text, with time and access to resources as dictionaries, phrase books, et

cetera. Interpretation (of speech) refers to the transfer of meaning from source

language speech to target language speech, either simultaneously, while the source

language speaker continuously speaks, or consecutively, with source language

speaker and interpreter taking turns. We define the term parallel speech (pSp) as

speech of a source language speaker together with the target language speech of

an interpreter. Parallel speech therefore always refers to either simultaneous in-

terpretation (SI) or consecutive interpretation (CI). It specifically excludes speech

of translators as it for example occurs in the context of automatic dictation sys-

tems for translators.

7.2 The Nature of Interpretation

Figure 7.1 gives an example for (manually transcribed) parallel speech as it occurs

in SI and CI. The figure also provides a manual translation of the non-English
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parallel speech. Comparing the provided interpretation and translation, signif-

icant differences become immediately apparent. To understand why and how

interpretation differs from translation, it is necessary to take a closer look at the

strategies applied by interpreters.

Simultaneous Interpretation Consecutive Interpretation

SPANISH UTTERANCE:
“trataremos de que todo el 
personal tenga”

TRANSLATION:
“we shall try that all the staff will 
get”

PARALLEL SPEECH:
“... in addition to that we are going 
to try to make sure that members 
of staff from different members 
states of the european union will 
be granted an equal status ...”

ENGLISH UTTERANCE:
“okay and what is the importance of 
this gas station”

PARALLEL SPEECH:
بېخي صحیح ده د دې په هکله تا څه" 
"غوښتل چې زما سر هووایې

TRANSLATION: 
“it is okay - what do you want to tell 
me about this”

Figure 7.1: Interpretation (parallel speech) versus translation.

The strategy of ‘dropping form’ is one of the main reasons why interpreta-

tion and translation differ strongly, even if the interpreter conveys all elements

of meaning. Dropping form refers to the fact that interpreters immediately

and deliberately discard the wording and retention of the mental representa-

tion of the message [68]. Only by discarding the words, sentence structure, etc.,

interpreters—in SI as well as in CI—are able to concentrate on the meaning of

the message and its reformulation in the target language [64]. The reason for this

lies within the limitations of the human short-term memory. Only up to six or

seven items can be retained in short-term memory, and only if we give all of our

attention to them [70].

In the case of SI, the difference to translation is also strongly influenced by

special strategies interpreters have to apply to keep pace with the source lan-

guage speaker. These strategies include anticipation-strategies [7] and compen-
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satory strategies [1]. For example, interpreters anticipate a final verb or syntactic

construction before the source language speaker has uttered the corresponding

constituent. The interpreter confirms this anticipation or corrects it when he re-

ceives the missing information. The use of open-ended sentences that enable the

interpreter to postpone the moment when the verb must be produced is another

anticipation-strategy. Compensatory strategies include skipping, approximation,

filtering, comprehension omission and substitution. Corrections of previous in-

terpretation errors as well as fatigue and stress also negatively affect SI quality.

It is important to note that SI can result in a significant loss of information. Ex-

periments reported during the course of the TC-STAR project [43] suggest that

the information loss for English-to-Spanish SI as provided during EPPS amounts

to approximately 9%. This number is based on a test set of comprehension ques-

tions created from the English speech and the respective amount of answers that

cannot be found in the Spanish SI. Further, it is reported in [43] that the effec-

tive information loss is with 29% significantly higher. This effective information

loss results from the combination of missing information and the difficulty of hu-

man evaluators to follow the flow of—often syntactically misformed—interpreter

speech. In the reported evaluation scenario, the human evaluators are allowed

to listen to the recorded interpreter speech twice and they could interrupt the

playback to write down their answers.

In CI, interpreters face less severe time constraints, resulting in more accu-

rate, equivalent, and complete interpretations [64]. However, the less severe time

constraints in CI can also contribute to the differences between interpretation

and translation, as “interpreters also elaborate and change information and they

do not only convey all elements of meaning, but also the intentions and feelings

of the source speaker” [36]. We speculate that these effects are more prevalent in

CI than in SI, as CI scenarios tend to be more personal and the interpreter has

more time to elaborate.
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7.3 Interpretation and Automatic (Speech) Trans-

lation

To measure the performance of automatic translation of speech or text we apply

the widely adopted BLEU metric, which, on a scale from 0–100, compares MT

output to one or more human reference translations based on n-gram compari-

son. Like all automatic evaluations, BLEU is not able to determine if a given MT

output correctly translated all meaning, but can only determine how ‘similar’ the

output is to given reference translations. As described in detail in Section 7.2, we

cannot expect interpretation to be ‘similar’ to translation, even if an interpreta-

tion captures all meaning.

To underline this point, we compute the BLEU score of the manual transcrip-

tion of Spanish-to-English (Sp→En) and English-to-Spanish (En→Sp) SI speech,

as present in our dev05 set (for a description of dev05, refer to Section 4.4). Given

two reference translations, only 14.2 BLEU for Sp→En and 18.2 BLEU En→Sp

are achieved. This compares to scores of above 40 BLEU points, achieved by

state-of-the art spoken language translation systems (trained on approximately

100h of transcribed speech and 30+ million translated words), as developed within

the European project TC-STAR.

7.3.1 A Hypothesis

Despite this low ‘translation’ performance of interpreters (measured in BLEU)

we argue that interpretation has the potential to be a valuable resource for auto-

matic translation of text and speech—even if we only measure its value in terms

of machine evaluation metrics, like BLEU score. Apart from the fact that an

interpretation should, ideally, represent the same elements of meaning as a re-

spective translation, its potential value is already indicated by the fact that the

above computed BLEU scores for SI are not zero. In other words, we believe that

the existing n-gram matches between interpretation and translation can already

be of value to improve automatic translation performance in the context of MT
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and ST. Figure 7.2 gives an example for the n-gram matches that can be found

between interpretation and translation.

Mister Poettering President President of the Commission, we 
confirmed with a great majority the Commission President 
designate, J. Barroso.

Mister President of the Commission, J. Barroso was elected by 
a large majority as the next President of the European 
Commission.

I:

T:

Figure 7.2: N -gram matches between interpretation (I) and translation (T).

By completely ignoring the aspect of meaning and relying on the same core

ideas of statistical phrase-based MT, we can simply look at interpretation as

some form of ‘noisy’ translation, that still includes valuable word-to-word or

phrase-to-phrase translations. Having this concept in mind, we can simply state

that the amount of ‘noise’ depends on how far the interpreter deviated in his

interpretation from the original wording of the source speech. Given the fact

that (a) an interpretation should ideally convey the same elements of meaning

as a translation does, and (b) there are only ‘so many ways’ one can express

the same concept in a given language, we could go even further and speculate

that to cover the same phrase-to-phrase translations found in a specific bi-lingual

translation corpus, it is simply necessary to acquire a larger interpretation corpus

(on the same topic). A statistical phrase-based MT system, based solely on these

matching phrase-to-phrase translations, would necessarily yield a very similar

translation performance as a system trained on the smaller bi-lingual translation

corpus.

7.3.2 Prospective Use of Interpretation Data

Speech translation combines two technologies, ASR and MT. Accordingly, we

can identify two separate goals when trying to exploit interpretation as an ad-

ditional data resource for ST. From an ASR point of view, we want to improve

transcription performance while from a MT point of view, we desire to improve
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translation performance. Both goals contribute to an improved end-to-end system

performance. Considering these two goals, we can identify different prospective

use cases for interpretation data.

In a scenario where we seek to automatically transcribe the speech of a source

language speaker (in language A) and the parallel speech of an interpreter (in

language B), we should be able to improve the recognition performance for lan-

guage B, by biasing ASRB with knowledge derived from the source speech. After

all, the interpreter should deliver the same elements of meaning expressed by the

source speaker. The speech in language A may therefore serve as a predictor of

what the interpreter is going to say. To accomplish such a biasing of ASRB, we

can for example apply A→B speech translation and use the resulting translation

to adapt the language model of ASRB. In the same manner, we can bias ASRA.

The described approach is based on ideas first presented by Brown et al. [9]

and Dymetman et al. [14] for improving the performance of dictation systems for

human translators in the context of machine aided translation. While pervious

works only considered biasing target language dictation systems with knowledge

extracted from source language documents, we applied the described approach

in [53; 54] for the first time to extract knowledge from source language speech.

However, our experiments presented in [53; 54] only considered read-speech, with

source and target language speaker reading from a travel-domain parallel text

corpus of sentence-aligned translations. In contrast to this rather artificial task,

we consider in this thesis parallel speech audio, as it occurs in the form of si-

multaneous interpretation within the European Parliament. In [53; 54], we also

exploited the ASRA (ASRB) transcriptions to bias the B→A (A→B) machine

translation system, leading to an improved automatic translation performance.

This improved translations were then used in an iterative manner to further im-

prove the transcription performance of ASRA and ASRB.

The technique of biasing ASR (MT) with parallel speech promises an improved

transcription (translation) performance on parallel speech only. However, an

automatically transcribed parallel speech corpus may be valuable as additional
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training data that helps to improve the general performance of the statistical

models involved in speech translation. In other words, it may be possible to

train automatic speech translation from parallel speech and apply such a system

in situations where no interpreter is available. The automatic transcriptions,

together with the original audio, may serve as additional acoustic model training

data. Further, the automatic transcriptions may be used as additional language

model training data. Finally, following the argumentation given in Section 7.3.1,

the automatically transcribed parallel speech may be tied together in a parallel

text corpus suitable for translation model training.

7.3.3 Automatic Interpretation

So far, we only discussed the prospective value of parallel speech (interpretation)

as a data resource for automatic translation of speech or text. In fact, even for

the prospective application case of easing the simultaneous interpretation effort

of EPPS with automatic methods (Figure 4.1), we speak of automatic real-time

speech-to-speech (S2S) translation. The question arises if it is not desirable to

achieve automatic interpretation or, in other words, to simulate the techniques

and strategies applied by human interpreters.

In Section 7.2, we listed results regarding human simultaneous interpreta-

tion performance, as reported in [43]. These results indicate that simultaneous

interpretation, as presented during EPPS, can result in a significant loss of in-

formation. Only 74% of content questions, created from an English politician

speech, could be answered by human judges after the judges were allowed to

listen twice to a Spanish interpretation of the English speech. This significant

information loss is a direct result of the strategies applied by human interpreters.

Therefore, we argue that it is not desirable to simulate the techniques/strategies

applied by human interpreters in the form of automatic interpretation systems.

As described in Section 7.2, Mostefa et al. [43] further report that the actual

missing information in the Spanish interpreter speech amounts only to approxi-

mately 9% and that the total amount of information loss results from an inability
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of human judges to extract all information from interpreter speech. Mostefa et al.

[43] repeated the same experiment, replacing the Spanish interpreter speech with

the system output of the TC-STAR 2007 end-to-end system. Figure 7.3 depicts

the overall results. Only 64% of the content questions could be answered, with

the amount of total information not included in the system output being approx-

imately 11%. The performance of the automatic speech-to-speech translation

system is surprisingly close to the performance of the human interpreter. Due to

human cognitive limitations, simultaneous interpretation will always suffer from

a significant information loss. However, automatic S2S translation continues to

be subject to tremendous research activity and has access to ever faster proces-

sors and larger amounts of memory. Therefore, the question arises, if real-time

S2S translation—combined with methods of delivering the automatic transla-

tion in an effective way, e.g. by applying summarization techniques—may one

day outperform human simultaneous interpretation performance. The very first

open-domain, real-time S2S translation system for lectures and speeches was pre-

sented in late 2005 at the Interactive Systems Laboratories (interACT). First

steps towards the development of this system were already taken as early as 1998

by developing automatic transcription (and browsing) systems for meetings and

lectures [62; 79].

60



7.3 Interpretation and Automatic (Speech) Translation

0
10
20
30
40
50
60
70
80
90

100

74
64

% correctly answered
questions

SI S2S

9% 11%

% missing information

Figure 7.3: TC-STAR comprehension evaluation; simultaneous interpretation
(SI) vs. speech-to-speech (S2S) translation.
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8

Interpretation as an Auxiliary

Information Source

In Section 7.3.2 we discussed several prospective benefits of interpretation data

for spoken language translation. For example, we argued that approaches previ-

ously applied in dictation systems for human translators should be transferable

to the simultaneous interpretations provided during EPPS and should therefore

be beneficial to the EPPS verbatim transcription and translation task. In this

chapter, we explore such approaches. Specifically, we seek to improve automatic

transcription and automatic translation applied—in an offline fashion—to the

parallel speech of politician and simultaneous interpreter, by exploiting the par-

allel information given in the respective other language stream. In Section 7.3.2

we argued that a (well) transcribed parallel speech corpus may be of value for

training ST models. The approaches introduced in this chapter for improving

ASR of parallel speech will be applied to ST model training in Chapter 11.

8.1 Experimental Setup

8.1.1 Data and Scoring

The experiments presented in this chapter are based on the EPPS dev05 and

dtest05 sets, as described in detail in Section 4.4. Each of these sets represents

an English/Spanish parallel speech corpus. Further, for each of these sets, the
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speech in the parallel English and Spanish audio tracks switches between politi-

cian speech and interpreter speech. We do not explicitly distinguish between

politician or interpreter speech in the following. It is possible that some time seg-

ments of the parallel English and Spanish audio contain only interpreter speech

on both channels, and no politician speech. In such a situation, the politician

that took the floor in the European Parliament spoke in a language different from

English or Spanish.

To evaluate ASR performance, we compute case-sensitive WER for Spanish

ASR and case-insensitive WER for English ASR. To evaluate automatic trans-

lation performance, we rely on two non-punctuated, case-sensitive translation

references for NIST BLEU score computation. In addition to the BLEU scores

based on these two reference translations, we also provide BLEU scores based

on the reference transcription of respective parallel speech. To distinguish be-

tween these two BLEU scores, we provide the latter always in square brackets.

At the very end of this chapter, we will also use BLEU metric to express the

‘translation’ performance of parallel speech. This is accomplished by computing

the BLEU score of the pSp reference transcription in respect to the available

two reference translations. Figure 8.1 gives a schematic overview on the data

input involved when computing these three different BLEU scores and lists the

according baseline scores for the translation direction En→Sp on dev05.

8.1.2 Baseline Systems

All systems used in this chapter are based on the EPPS systems described in

Chapter 5. The English ASR is identical to the previous described English ASR,

while the Spanish ASR differs from the previously described Spanish ASR in its

pronunciation dictionary and language model—here, we use case-sensitive ver-

sions. We do not use the sentence segmentation and punctuation recovery scheme

described in Chapter 6, but we apply MT directly on ASR output. To tailor our

MT system to the task of translating non-punctuated ASR hypotheses, we re-

move source and target side punctuation from the phrase table entries. Since the

English ASR produces only lowercased hypotheses, we also lowercase the English
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Figure 8.1: Interpreting the provided BLEU scores correctly: data input involved
in score computation and example scores for En→Sp on dev05.

phrase table entries for the English→Spanish translation direction. Further, we

do not apply the POS-based reordering scheme described in Section 5.2.2, but

only rely on the internal word reordering model of the ISL beam search decoder,

using a reordering window of 2.

8.1.3 Confusion Network Translation

As discussed in Section 3.4, it is possible to improve speech translation perfor-

mance by considering multiple ASR hypotheses for MT, instead of applying MT

only on the first-best ASR hypotheses. Bertoldi et al. [5] have shown that the

translation of ASR confusion networks (CNs) is an efficient integration strategy

that improves translation performance. The ISL beam-search decoder does not

natively support confusion network translation. In order to process ASR confu-

sion networks, it is necessary to transform the CNs into the native lattice input

format of the decoder. Due to decoder constraints, the internal word reorder-
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ing model works only on input lattices where all source sentences found within

the lattice are of equal length. Confusion networks do show this property, since

they assure source-sentences of equal length by introducing special empty words

ε. To handle ε correctly during translation, we further modify the phrase ta-

bles of our MT system. From the 10k best paths of each CN, we extract all

n-grams that include ε. We then extend the phrase tables1 by duplicating all

entries where the source phrase would match an extracted n-gram if the ε would

not be there. Finally, we replace the original source phrases of these duplicates

with the n-gram containing ε. Table 8.1 compares the translation performance

when translating the reference transcriptions, ASR first-best hypotheses and the

confusion networks. Confusion network translation outperforms ASR first-best

translation by 0.7 to 0.8 BLEU points on dtest05 in both translation directions.

We use confusion network translation for all remaining spoken language transla-

tion experiments in this chapter.

dev05 dtest05

ref. 1-best CN ref. 1-best CN

En→Sp 45.1 40.3 42.1 44.2 39.8 40.6

Sp→En 54.7 48.6 50.1 52.2 44.8 45.5

Table 8.1: BLEU score for translating reference transcriptions, ASR 1-best hy-
potheses and ASR confusion networks (CN).

8.2 Biasing Machine Translation

8.2.1 MT Language Model Adaptation

For biasing the machine translation LM with knowledge extracted from parallel

target language speech, we mostly rely on target language n-grams extracted

from an ASR first-best hypothesis of the target language speech. Specifically, we

extract all n-grams with n ∈ {1, 2, 3} from the ASR first-best hypothesis of the

1We use individual phrase tables, one per source sentence. These phrase tables are loaded
dynamically during decoding.
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target language audio snippet that begins 6 seconds before and ends 6 seconds

after a source language utterance. We chose this 6 seconds padding of the target

speech as we observed that, if the information contained in the source utterance

is at all present in the parallel speech, such a padding almost always guarantees

that the respective information is present in the parallel speech snippet. In the

following, we refer to the extracted n-grams as ASR n-gram hints. Prior to

extracting ASR n-gram hints from the target language ASR first-best hypothesis,

we remove all words from the hypothesis that have a word confidence of c < 0.9.

For each source utterance, we dynamically load its respective ASR n-gram hints

during MT decoding. Whenever an ASR n-gram hint is observed during decoding,

a discount is applied to the LM score (cost) of the current translation hypothesis.

In this way, we favor translations that contain ASR n-gram hints. The discount

value of each hint is computed as wn times its logarithmic LM probability. The

LM probability of each ASR n-gram is determined by the unadapted LM. The

value for wn is estimated via MER optimization. In addition to this scheme, we

penalize all words that are not part of the ASR first-best vocabulary. The factor

by which we penalize non-ASR vocabulary words is again estimated via MER

optimization. The ASR first-best vocabulary is determined on a ‘per session’

basis1, rather than on a per utterance basis. Tables 8.2 and 8.3 list the achieved

BLEU scores for the two translation directions. In addition to the BLEU scores

computed with two reference translations, we list in brackets the BLEU scores

computed with the ASR reference transcription of the respective parallel speech

in the target language. For both translation directions we observe consistent

gains in translation [‘interpretation’] performance, measured in BLEU. In other

words, by biasing the MT language model towards parallel speech n-grams, we

achieve automatic translations that do not just contain more parallel speech n-

gram matches, but also more translation reference n-gram matches. Another

observation is that the BLEU scores computed with the parallel speech reference

transcription shows a much stronger deviation between dev05 and dtest05 than

the BLEU scores computed with the two translation references. This possibly

indicates that parallel speech (interpretation) is less consistent than translation.

1Dev05 and dtest05 both contain only one parliamentary session each.
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dev05 dtest05

ref. CN ref. CN

Baseline
45.1 42.1 44.2 40.6

[11.4] [11.6] [15.9] [14.4]

LM bias
46.2 43.3 44.7 43.0

[13.8] [14.4] [18.4] [18.2]

Table 8.2: En→Sp BLEU scores when biasing the Spanish MT language model
with Spanish parallel speech. Results are listed for reference transcriptions (ref.)
as input to the MT system and ASR confusion networks (CN) as input to the MT
system.

dev05 dtest05

ref. CN ref. CN

Baseline
54.7 50.1 52.2 45.5

[8.9] [8.2] [19.9] [17.0]

LM bias
55.6 51.6 52.9 46.4

[10.4] [9.9] [24.2] [20.9]

Table 8.3: Sp→En BLEU scores when biasing the English MT language model
with English parallel speech. Results are listed for reference transcriptions (ref.)
as input to the MT system and ASR confusion networks (CN) as input to the MT
system.

8.2.2 Translation Model Adaptation

In addition to biasing the MT language model, we also conduct experiments to

bias the source sentence specific phrase tables. For this, we extract ‘ASR trans-

lation phrases’ by computing the alignment matrix between the ASR first-best

hypotheses of a source utterance and its respective ±6 seconds padded target

language audio snippet. In a first iteration, this alignment matrix consists only

of word-to-word translation probabilities extracted from the forward and back-

ward IBM4 lexicons that were computed during MT phrase table training. We

then estimate for each source word a discrete probability distribution for source-

to-target word delays d, with d ∈ {−6, .., 0, ..+ 6} seconds. The source-to-target

word delay is defined as the distance in seconds between the start time of the
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source words and their respective target language translation in the parallel audio.

For estimating the discrete probability distribution, we consider only words that

are aligned with a high lexical translation probability and that are found within

a 60 second window around the current source word. The alignment matrix is

then re-estimated, using an interpolation of lexical translation probabilities and

the estimated delay alignment probability. In a next step, we introduce binary

alignment links. These binary alignment links are computed with the help of a

simple algorithm described in [75]. This algorithm allows limited alignment link

overlaps, i.e. links that either share the same source or the same target word.

In a final step, we cluster the binary alignment links using a neighborhood of k

source and target words around each link. These clusters now constitute ASR

translation phrases. Examples for phrase extracted in this manner, with a neigh-

borhood of k = 1, are:

entre Parlamento y Consejo # between parliament and council

presupuesto aqui en el Parlamento # budget here in the parliament

For each of these phrases, we compute the forward and backward transla-

tion probability based on the IBM4 lexicons. To incorporate these new phrases

into the baseline phrase tables, we extend the baseline phrase table entries with

two additional TM probabilities, set to 1 (zero logarithmic cost). Accordingly,

the additional ASR phrases have probabilities of 1 at the positions of the four

original TM probabilities, followed by the two computed TM probabilities of

the ASR phrases. While a visual inspection of the in this manner extracted

ASR phrases seemed promising, we only achieved inconclusive results using these

phrases. In particular, we observed only a statistically insignificant improvement

in one translation direction and a statistically insignificant degradation in the

opposite translation direction.

8.3 Biasing Automatic Speech Recognition

The experiments described in the following are based on automatic translations

computed with the baseline MT systems.

69



8. INTERPRETATION AS AN AUXILIARY INFORMATION
SOURCE

8.3.1 ASR Language Model Adaptation

Similar to MT language model adaptation, ASR LM adaptation is based on ST

n-gram hints, with n ∈ {1, 2, 3}. ST n-gram hints are n-grams found in the m-

best speech translation hypotheses (m = 500) of the ±6 seconds padded target

language audio. Whenever a ST n-gram hint is observed during decoding, a

discount is applied to the LM score (cost) of the current ASR hypothesis. In

this way, we favor hypotheses that contain ST n-gram hints. The discount value

d(h, n) of each ST n-gram hint h depends on the logarithmic baseline LM score

of h and is computed as follows:

d(h, n) =
{ wn ∗ LMscore(h) for LMscore(h) ≥ tn

0 for LMscore(h) < tn

We estimate optimal values for the parameter wn and tn via manual gradient

descent on dev05. The threshold tn ensures that we do not further discounts

n-grams with a high LM probability (these are mostly function words). Further,

we only apply discounts for ST n-gram hints that can also be found in the 500-

best ASR hypotheses of the baseline ASR system. In other words, we only keep

those ST n-grams in which baseline ASR and baseline MT agree in their respec-

tive m-best hypotheses lists. As ASR decoding is time-consuming, we investigate

the effect of the adapted language model not just for ASR decoding, but also

for ASR lattice re-scoring. In the following, we refer to applying the adapted

LM during decoding as LMD adaptation and to applying the LM in a re-scoring

step after decoding as LMR adaptation. Accordingly, LMR+D adaptation refers

to the combination of both adaptation schemes. Table 8.4 lists the English and

Spanish word errors achieved by applying LMR adaptation to the ASR output

of the second pass1. We test LMR+D adaptation in an additional third decoding

pass in combination with acoustic model adaptation, as described in the following

section. For LM adaptation via n-gram discounts, we found that ST uni-gram

1As described in detail in Chapter 5, our baseline ASR systems apply a two-pass decoding
setup.
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dev05 dtest05

En Sp En Sp

2nd pass
baseline 13.2 11.5 9.1 12.7

LMR 12.8 11.3 8.7 12.5

3rd pass
baseline 12.7 11.4 8.7 12.4

AM adapt 12.5 11.3 8.6 12.2

AM+LMR+D 12.2 11.1 8.4 12.1

Table 8.4: English and Spanish word error rates for biasing ASR with parallel
speech in the 2nd and 3rd decoding pass. Biasing schemes include using adapted
acoustic models (AM) during decoding and using adapted language models, either
in a lattice rescoring step (LMR) after decoding or both, during decoding and for
lattice rescoring (LMR+D).

hints are the most important information source. We observed only very small

additional improvements using the bi- and tri-gram ST hints. Similar LM adap-

tation experiments, reported in Chapter 11, therefore rely only on uni-gram ST

hints.

8.3.2 Acoustic Model Adaption

In order to bias the acoustic model with the extracted ST n-gram hints, we add

a third decoding pass to our ASR decoding setup. The unsupervised speaker

adaptation of the third pass’ baseline system relies on the ASR hypotheses of

the second pass’ baseline system. To bias the AM with the parallel speech in

the third pass, we simply rely on hypotheses from the LMR adapted second

pass. We apply word confidences during speaker adaptation in the following

manner. Frames associated with words that have a word confidence of c < 0.5

are ignored. Frames associated with words that have a word confidence of c ≥ 0.5

contribute to speaker adaptation with a weight equal to c. The computation of

word confidences is strongly influenced by the LM score. For this reason, LMR

adaptation also influences the word confidences computed in the CN combination

at the end of the second pass. Speaker adaptation in the third pass is therefore

not only influenced by improved ASR hypotheses, but also by changed ASR word
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confidences. We achieve lowest word error rates by combining AM adaption with

LMR+D adaptation, denoted with AM+LMR+D in Table 8.4.

8.4 Chapter Summary & Discussion

Despite very strong baseline systems and despite strong differences between si-

multaneous interpretation and translation, we were able to successfully improve

ASR and MT system performance by automatically translating parallel speech (in-

terpretation) and by then using these translations to adapt the underlying ASR

and MT models. The improvements in spoken language translation performance,

gained by biasing the involved MT systems and measured in BLEU, are shown

in Figure 8.2. The figure compares the BLEU score of the baseline MT system

with the BLEU score of the biased MT system. Further, it lists the relatively low

BLEU score achieved by scoring the respective target language parallel speech

reference transcription against the two target language translation references.

These low BLEU scores underscore the strong differences between parallel speech

(interpretation) and translation. The reported gains in transcription performance

were small, but consistent. We will see in Chapter 11 that parallel speech is of

greater value in the context of weaker baseline ASR systems.

Compared to similar experiments that we conducted in the context of bias-

ing dictation systems for human translators [54], the achieved improvements in

automatic transcription and translation performance seem small. However, in

contrast to our experiments reported in [54], we were exploiting spontaneous par-

allel speech in the form of EPPS simultaneous interpretations. Our experiments

in [54] only considered read translations from the relatively small travel domain.
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Figure 8.2: Comparing parallel speech (pSp), spoken language translation (SLT)
and pSp-biased SLT (SLT+pSp) in terms of BLEU metric.
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9

Acoustic Model Training on

EPPS Simultaneous

Interpretation

9.1 EPPS Data Resource-Limitations

In Chapter 4, we described in detail the enormous translation and interpreta-

tion effort that is attached to European Parliament Plenary Sessions (EPPS).

Parliamentary proceedings (final text editions, FTEs) are made available in the

23 official languages of the Union, and simultaneous interpretations are provided

during the sessions to support the multilingualism of the Members of Parliament.

Automatic solutions targeted to support this translation and interpretation effort

need to support the many languages spoken in the Parliament. However, large-

scale spoken language translation development in the context of EPPS remains

mostly limited to the English/Spanish language pair. While large amounts of

multilingual parallel text data are available in the form of final text editions,

suitable to support the development of translation models and language models,

ASR development suffers from an unavailability of—costly—verbatim transcrip-

tions for languages different from English and Spanish. As explained in Section

4.2, the segments of the final text editions that represent transcriptions of the

politician speeches are revised versions these speeches and they are formatted for

an easy readability. For this reason, FTEs can differ significantly from verbatim
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transcriptions of the speeches held in Parliament. Further, the segments of the

final text editions that represent translations of the politician speeches deviate

even more strongly from their respective simultaneous interpretation. This is not

just due to the differences inherent to interpretation and translation, as explained

in Chapter 7, but also due to the fact that the FTE translations are based on

the already revised and re-formatted FTE transcriptions. Figure 9.1 gives an

overview data resources available in the context of European Parliament Plenary

Sessions: final text editions and live broadcast audio in the different languages

of the Union. The figure also gives an example that compares verbatim tran-

scription of politician speech and interpreter speech with the respective final text

edition.

9.2 Lightly Supervised Acoustic Model Train-

ing for EPPS

To support the development of EPPS spoken language translation systems for lan-

guage pairs different from English/Spanish, we consider unsupervised and lightly

supervised acoustic model training techniques applied to audio recording har-

vested from the EPPS live broadcasts [55]. Unsupervised acoustic model training

is based on speech data for which no human transcriptions are available. Train-

ing relies in that case on automatic transcriptions that are created with an initial

ASR system. Lightly supervised acoustic model training [37] refers to the case

where some imperfect human transcriptions, for example closed-captions provided

during television broadcasts, can be used to either bias the initial ASR system

for an improved transcription performance or to filter erroneous ASR hypotheses.

Given the availability of final text editions and several audio channels in differ-

ent languages, recordings of EPPS are suitable for lightly supervised acoustic

model training. Supervision for acoustic model training in language Li can be

introduced via the respective final text edition in language Li or via automatic

translations into language Li from final text editions and interpretations available

in languages Lj 6=i. Gollan et al. mention in [24] the possibility to include En-

glish final text editions in the language model training data to achieve a lightly
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Figure 9.1: EPPS data resources and an example that highlights the differences
between final text edition (FTE) and verbatim transcription.

supervised acoustic model training on English EPPS recordings. However, no

experiments for FTE-based supervision are reported in [24].

In the following, we examine the impact of FTE-based and pSp-based super-

vision on German word error rate (WER). We make use of German final text

editions and of German automatic translations extracted from the English and

Spanish audio channels via spoken language translation. Further, we present re-

sults for acoustic model training based on automatic transcriptions created under

FTE-based and pSp-based supervision.
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9.3 Experimental Setup

9.3.1 Data

Table 9.1 gives an overview on the German audio data statistics of the develop-

ment set, evaluation set and non-transcribed training set. All sessions included

in the respective sets were recorded in our laboratory from the EPPS satellite live

broadcasts in several languages, including German, English and Spanish. For au-

dio segmentation, we use the same language-independent Hidden Markov Model

based speech/non-speech audio segmenter as we applied it on the English/Spanish

dev06 and eval07 sets. The speakers in the recordings switch between interpreters

and native or non-native speakers with different, and partly strongly pronounced,

accents. Whenever a politician speaks in a language different from the language of

the respective audio channel, the microphone is switched back to the interpreter.

Delays when the microphone is switched result in short periods of foreign lan-

guage speech. The German verbatim transcriptions used to measure automatic

transcription performance were created in our laboratory. To measure automatic

translation performance, we compute BLEU scores based on these German ver-

batim transcriptions. We did not we create any additional English→German or

Spanish→German reference translations. Therefore, the presented BLEU scores

actually measure the similarity of German automatic translations, created from

English or Spanish parallel speech, to German parallel speech. We do not have

any reference transcriptions available for the English and Spanish parallel speech.

Therefore, it is not possible to compute the English and Spanish WER.

sessions utterances audio [h]

dev 1 592 1.69

eval 1 885 2.04

training 93 73,408 142.74

Table 9.1: German audio data statistics: development, evaluation and training
sets.

78



9.3 Experimental Setup

9.3.2 ASR Systems

The German ASR system features a speaker-independent and a speaker-dependent

decoding pass. The ASR subsystems used in the two passes feature MVDR front-

ends [81]. In the first pass a single ASR system is employed to provide the second

pass with first-best hypotheses for unsupervised speaker adaptation. We apply

Maximum Likelihood Linear Regression, feature space constrained MLLR and

vocal tract length normalization for speaker adaptation. The second pass uses

two ASR subsystems with slightly different phones sets. At the end of the sec-

ond pass, confusion network combination [40] is applied. The acoustic models

are trained on 70h of German broadcast news data1. The dictionary consists of

89.6k pronunciation entries. Compound word splitting is employed to keep the

out-of-vocabulary rate small. The 4-gram LM is trained on the German final

text editions extracted from the Europarl v3 corpus [32]. The LM perplexity and

WER for the development set and evaluation set are shown in the first column

of Table 9.4.

The English ASR and Spanish ASR are identical to the EPPS English and

Spanish ASR systems described in Chapter 5. The English and Spanish WER

on the used development set and evaluation set cannot be computed, since we

do not have the necessary English and Spanish verbatim transcriptions available.

The typical word error rate on this task ranges from 11% to 12% for the Spanish

ASR system and from 12% to 13% for the English ASR system.

9.3.3 MT Systems

The English→German and Spanish→German MT systems are trained on

the respective parallel parts of the Europarl v3 corpus [32]. Training data statis-

tics are shown in Table 9.2 and Table 9.3. We lowercased the training data

and removed all punctuation. Both systems apply the same 4-gram language

model as used in the German ASR system. For decoding, we rely on the in-

ternal word reordering of the ISL decoder. We use a reordering window of 2.

1Thanks go to Christian Fügen and Matthias Wölfel for providing the baseline acoustic
models and to Florian Kraft for providing the German compound word splitter.
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English German

sentence pairs 1212846

unique sent. pairs 1194175

sentence length 25.4 23.4

words/tokens 30.8 M 28.4 M

vocabulary 85.8 K 284.6 K

Table 9.2: MT training corpus statistics, English→German.

Spanish German

sentence pairs 1257807

unique sent. pairs 1238129

sentence length 26.5 24.2

words/tokens 33.3 M 30.4 M

vocabulary 128.2 K 189.7 K

Table 9.3: MT training corpus statistics, Spanish→German.

The English→German and Spanish→German automatic translations are com-

puted using the first-best English/Spanish ASR hypotheses as input. The trans-

lation reference for IBM BLEU score computation is equal to the German ref-

erence transcription used for computing the German ASR word error rate. The

BLEU score on the development set is 12.5 for English→German and 11.9 for

Spanish→German. On the test set, the BLEU score is 15.2 and 13.4, respec-

tively. Although the Spanish ASR word error rate is typically approximately 1%

lower than the WER of the English ASR, we see a consistently better translation

performance for English→German translation. This can be explained by the fact

that Spanish is a morphologically rich language compared to English.

9.4 FTE-based and pSp-based Supervision: Im-

pact on WER

We employ two different types of supervision that are based on the final text

editions. In the case where the FTE of a specific session is part of the overall
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language model training data, we speak of a ‘general’ FTE (gFTE) supervision.

Whenever we mention FTE supervision without the addition of the word ‘general’

we refer to the case where the final text edition of a specific session receives a

higher weight than the remaining LM training data. We achieve FTE supervision

by building a language model on all available FTEs and a LM on the FTE of

the respective session. We then interpolate both language models with a fixed

interpolation weight of 0.28 for the smaller, session specific language model. This

interpolation weight was determined to yield the lowest perplexity on the devel-

opment set.

In order to introduce pSp-based supervision, we automatically transcribe and

translate the English and Spanish audio that is available for each session. Using

the 1000-best translation hypotheses from each MT system, we build two separate

language models and interpolate these. The LM based on the English→German

translations receives an interpolation weight of 0.54. Finally, we interpolate this

LM with the FTE supervised LM, where the interpolation weight for the transla-

tion based LM is set to 0.34. The used interpolation weights are again determined

on the development set to yield a minimal perplexity.

The English and Spanish ASR systems do not employ any form of supervision,

that is, we do not apply FTE supervision nor pSp supervision to these systems.

However, our English→German and Spanish→German MT systems apply gen-

eral FTE supervision on development, test and training set, since the respective

final text editions are part of the translation model and language model training

data.

Table 9.4 shows the German language model perplexity and German word

error rate for the different types of supervision. The first column gives the results

when no supervision of any form is applied. In the last column we list the results

for combining FTE supervision with pSp-based supervision using both, English

and Spanish parallel speech (interpretation), as well as the results when using only

the English or Spanish pSp on top of FTE based supervision. The results show

that a significant gain in transcription performance can be achieved by applying
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supervision→ none gFTE FTE FTE & pSp

PPL
dev 219 206 161 138e 142s 130

eval 190 176 146 127e 130s 118

WER
dev 22.3 21.6 20.9 20.7e 20.3s 20.1

eval 21.0 20.1 19.4 19.1e 19.2s 18.8

Table 9.4: Language model perplexity (PPL) and word error rate (WER) for
different types of supervision. The last column lists results for combining FTE
supervision with pSp-based supervision using either English parallel speech (e),
Spanish parallel speech (s) or both, English and Spanish parallel speech together.

FTE supervision and a combination of FTE supervision and pSp-based supervi-

sion. Further, the results suggest that the gain in transcription performance for

pSp-based supervision depends on the number of languages used. This indicates

that complementary information is added with each additional language.

9.5 FTE and pSp Supervised Acoustic Model

Training

We automatically transcribe the available 142.7h of German EPPS recordings,

using general FTE supervision, session specific FTE supervision and a combi-

nation of session specific FTE and pSp supervision. Before training on these

automatic transcriptions, we apply a simple rule based filter to remove noisy and

low confidence utterances. The rules for this filter are hand written and tuned on

the development set in regards to word error rate. We remove all utterances that

have a filler to word ratio that is greater than 2.5 or that have an average word

confidence lower than 0.4. During training we do not apply the available word

confidence scores in any way. Acoustic model training consists of two iterations

of Viterbi training starting from the baseline AM.

To test the new acoustic models, we add a simplified third decoding pass to

the German decoding setup. This simplified pass features only one ASR sys-

tem and does not include confusion network combination. Unsupervised speaker
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adaptation is performed on the confusion network combination output from the

second pass. Results are listed in Table 9.5. The word error rate for the original

acoustic model in the third pass is slightly worse than the WER achieved after

confusion network combination in the second pass. We list results achieved with

the different AMs using either no supervision on the development and evalua-

tion set or a combination of FTE-based and pSp-based supervision. Compared

to the original AM, the re-trained AMs show in both cases significant gains in

transcription performance. Using the best-performing AM (FTE & pSp AM) and

applying no supervision on the evaluation set, the 21.0% WER of the baseline

system is reduced to 19.8%. Applying FTE+pSp supervision on the eval set, the

WER is further reduced to 18.0%.

supervision→ none FTE & pSp

dev eval dev eval

original AM 22.2 21.2 20.6 19.2

gFTE AM 20.9 20.0 18.8 18.4

FTE AM 20.7 19.9 18.8 18.2

FTE & pSP AM 20.4 19.8 18.8 18.0

Table 9.5: Word error rates achieved in a third decoding pass, using different
acoustic models (AM) and applying either no supervision or FTE & pSP based
supervision.

9.6 Chapter Summary & Discussion

We achieved significant gains in German transcription performance by applying

unsupervised and lightly supervised AM training in the context of audio record-

ings harvested from EPPS live broadcasts. Thus, we successfully exploited the

live broadcast EPPS simultaneous interpretations and speeches as acoustic model

training data without having to create costly verbatim transcriptions. In com-

bination with the language dedicated audio channels provided during EPPS, the

proposed approach therefore supports the development of ASR systems in the

various languages of the European Union. Our approach introduces light super-

vision on a per session basis by using the freely available EPPS data resources:
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final text editions and live broadcast parallel speech. Light supervision was ei-

ther applied during training only or during training and testing. However, while

the applied light supervision techniques resulted in significantly lower word error

rates—on the evaluation set, the word error rate between gFTE and FTE & pSp

supervision differs by 1.3% absolute in the second pass—the impact of these lower

word error rates during training seems to remain small. For example, in the third

pass and applying no supervision on the evaluation set, the gFTE acoustic model

is only 0.2% absolute worse than the FTE & pSp acoustic model.
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Automatic Translation from

Simultaneous Interpretation

In this chapter we introduce our approach for training statistical translation

models from parallel speech audio [56]. Our experiments are based on paral-

lel speech audio from English/Spanish simultaneous interpretation, as provided

during EPPS. As motivated in the introduction, training translation models from

parallel speech audio is of special interest for speech translation development be-

tween new language pairs where pre-existing data resources for traditional speech

translation training are scarce. The significant data resources that are already

available in the context of EPPS enable us to study our approach at different

levels of resource availability.

10.1 General Approach & Major Challenges

We use parallel speech audio within a standard training setup for phrase-based

statistical machine translation. To do so, we transcribe the parallel speech using

ASR. The resulting ASR hypotheses are aligned on a speech utterance basis by

applying special alignment strategies that are tailored to the parallel speech of

simultaneous interpretation. These alignment strategies are described in detail

in Section 10.3. With the help of these strategies, we align to each automatically

transcribed source speech utterance the related target speech transcription. This

forms the first part of our bilingual TM training corpus. The second part results
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from repeating the same utterance alignment procedure in the reverse direction.

Our standard training setup extracts phrase tables from the created bilingual

training corpus by using the GIZA++ toolkit [49], in combination with Univer-

sity Edinburgh’s training scripts, as provided during the NAACL 2006 Workshop

on Statistical Machine Translation [33]. The GIZA++ toolkit is run with its

standard parameter settings.

The major challenges faced include (a) the significant difference between trans-

lation and interpretation as explained in Chapter 7, (b) the problem of aligning

source and target speech utterances and (c) the (high amount of) transcription

errors in the ASR output (of the resource-deficient ASR).

10.2 Experimental Setup

10.2.1 Data and Scoring

For training translation models from parallel speech, we use a parallel speech cor-

pus that was recorded in our laboratory from satellite live broadcasts of EPPS.

These recordings do not include any parliamentary sessions used for ASR system

training nor do they overlap with our development or evaluation sets. For seg-

menting the pSp corpus, we use the same language-independent Hidden Markov

Model based speech/non-speech audio segmentation as we applied it on dev06

and eval07. To measure the performance of the trained translation models, we

use the English/Spanish dev06 and eval07 sets, described in detail in Section 4.4.

As dev06 and eval07 only consist of politician speech and do not form a pSp

corpus, we further rely on dev05 to tune our alignment algorithm presented in

Section 10.3. Table 10.1 summarizes the data statistics of the used pSp corpus.

The amount of words included in the parallel speech corpus is estimated on the

ASR first-best hypotheses, since no reference transcriptions are available for the

pSp corpus.

For scoring ASR and MT performance we use non-punctuated, lowercased

references. MT performance is measured in IBM BLEU. We use the mWER
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English Spanish

utts [k] 65.3 63.2

words [k] 954.4 897.0

audio [h] 111.3 105.2

Table 10.1: Parallel speech corpus: amount of utterances, words and audio.

segmentation script, to align the translated speech utterances to the translation

references for scoring.

10.2.2 ASR and MT Systems

English and (unconstrained) Spanish ASR are identical to the systems described

in Chapter 5. In addition to the standard Spanish ASR system we use two con-

strained Spanish ASR systems, Spc0 and Spc1, to simulate ASR performance levels

encountered in the context of resource deficiency. In the situation of resource lim-

itation, the lack of text data and transcribed audio data leads to a weak LM and

and a weak AM. Both contribute to an increased WER. To simulate resource

limitation, we first (Spc0) constrain the Spanish LM to the 748k running words

of the transcriptions that were used to train the AM. To simulate a lower perfor-

mance AM (Spc1), we further limit the system to a context independent phone-set.

That is, system Spc1 applies the constrained LM in addition to a constrained AM.

Table 10.2 lists the word error rates and LM perplexities of the used ASR systems.

dev06 eval07

Sp Spc0 Spc1 En Sp Spc0 Spc1 En

PPL 89 178 178 108 89 177 177 106

WER 8.4 16.1 33.3 13.9 9.0 16.5 33.1 12.2

Table 10.2: Language model perplexity (PPL) and ASR word error rates (WER).

For MT, we use the ISL beam search decoder. The reordering window of

the internal word reordering model is set to 4. Spoken language translation is

achieved by applying the MT system on the ASR first-best hypotheses. The MT
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language models are identical to the language models used in the ASR systems.

As a consequence, English→Spanish spoken language translation relies in the

context of a simulated resource-limitation on the constrained Spanish LM.

10.3 Aligning Parallel Speech of Simultaneous

Interpretation

Where not otherwise mentioned, the pSp corpus used in this section is transcribed

at estimated English and Spanish WER levels of 12-14% and 9%, respectively.

We estimate these numbers based on the English and Spanish ASR performance

on dev06 and eval07, since no manual transcription of the pSp corpus is available.

Since simultaneous interpreters have to keep pace with the source language

speaker, an approximate time alignment between source and target language

speech is already given. We can exploit this fact to align source speech utterances

to parallel target speech by considering the target speech snippet that starts/ends

x seconds before/after the source speech utterance starts/ends. We need to in-

clude target speech before the start time of the respective source utterance since

we do not know which of the audio channels contains interpreter speech. In fact,

it often occurs that both audio channels contain interpreter speech. In such cases,

the politician that took the floor in the Parliament is giving a speech in a lan-

guage different from English and Spanish. To minimize computation time, we

decode the pSp corpus only once, based on the speech utterance segmentation

that was introduced via voice activity detection prior to ASR. To extract the ASR

hypotheses of the padded speech snippets, we rely on the hypothesized word-start

and word-end times.

In order to find an optimal padding value x, we conduct two sets of experi-

ments. First, on dev05 and for different values of x, we compute the F1-measure

in respect to uni-gram matches between the padded, automatically transcribed

pSp snippets and the dev05 available reference translations. Figure 10.1 depicts

how the F1-measure changes for different values of x. It shows a peak at x = 2
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Figure 10.1: F1-measure (y-axis) on dev05 and BLEU score on dev06 for different
target speech snippet padding values x ∈ {0, 1, ..., 5, 6}.

seconds for both cases, when aligning English utterances to Spanish pSp snippets

and when aligning Spanish utterances to English pSp snippets. In the second

set of experiments, we create seven different parallel MT training corpora from

the automatically transcribed pSp; one training corpus each for x ∈ {0, 1, ..., 5, 6}
seconds. After extracting seven different phrase tables from these MT training

corpora, we compute the translation performance for Sp→En on dev06, using

these phrase tables. As we can see in Figure 10.1, the BLEU score again peaks

at x = 2s, showing that the F1-measure computed on dev05 correlates well with

the translation performance on dev06. In other words, the optimal padding value

x for aligning our pSp corpus can be well predicted by simply computing the

F1-measure on dev05.

In addition to a simple word-time based padding of the parallel speech snip-

pets for aligning the pSp corpus, we also experiment with a more sophisticated

two-pass alignment strategy. By manually inspecting the parallel speech present

in dev05, we find that, if the information contained in the source utterance is

at all present in the parallel speech, a 6 seconds utterance padding almost al-
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ways guarantees that the information can be found in the respective target audio

snippet. By a 6 seconds utterance padding, we refer to the case where a target

speech snippet is comprised of all target speech utterances that fall into the time

window that is formed by padding the source utterance start/end time with 6

seconds. Figure 10.2 gives an example of parallel speech that is aligned based

on a 6 seconds utterance padding. In addition to the transcription reference of

the Spanish speech utterance and the respective English pSp-snippet, the figure

shows one of the two Sp→En translation references. The part of the English

speech snippet that is directly related to the Spanish speech utterance is in red

font. As can be seen, the padded pSp segment contains too much irrelevant, and

potentially misleading, information.

Our two-pass algorithm for aligning parallel target speech to source speech

utterances operates on a per-source-utterance basis and uses 6 second utterance-

padded target speech snippets. In addition to the source utterance at hand, the

algorithm also considers all neighboring source utterances that overlap in their

respective target speech snippet with the target speech snippet of the current

source utterance. In a first step, the combined forward and backward transla-

tion probability for each source word to each target word is computed and an

alignment link is introduced if the combined translation probability is above a

specific threshold tp and if the absolute distance between source word-start time

and target word-start time is below a specific threshold td. The word-to-word

translation probabilities are based on IBM4 word lexicons that are computed

in a first pass on the parallel MT training corpus that results from a 2 second

word-time based padding of the pSp snippets. The translation probability of the

alignment link al between source word sw and target word tw is weighted by the

combined translation probability times the ‘importance’ of the target word. We

define the importance of the target word as:

importance(tw) = 1.0− sL ∗ LM(tw) (10.1)

with sL equal to the length in words of the target speech snippet and LM(tw)

equal to the uni-gram LM probability of the target word. In a next step, we find
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SPANISH UTTERANCE: “hay que terminar los las negociaciones”
TRANSLATION: “it is necessary to complete the negotiations”
PARALLEL SPEECH SNIPPET: “so we have our buildings policy for 
brussels there are two buildings in particular that account for 
more than three hundred million euros the two buildings there 
in brussels we have negotiations under way they shall be 
concluded i hope before the end of the year and that would mean 
that we could already start making some of the payments in the 
year two thousand and five”
---------------------------------------------------------------
SPANISH UTTERANCE: “el las conversaciones para que ya podamos 
hacer una parte de esos pagos en el año dos mil cinco”
TRANSLATION: “and the conversations to enable us to make a part 
of those payments already in the year two thousand five”
PARALLEL SPEECH SNIPPET: “buildings in particular that account 
for more than three hundred million euros the two buildings 
there in brussels we have negotiations under way they shall be 
concluded i hope before the end of the year and that would mean 
that we could already start making some of the payments in the 
year two thousand and five also in addition to that we are 
going to try to make sure that members of staff from different 
members states of the european union will be granted an equal 
status”
--------------------------------------------------------------
SPANISH UTTERANCE: “también”
VERBATIM TRANSLATION: “in addition”
PARALLEL SPEECH SNIPPET: “and that would mean that we could 
already start making some of the payments in the year two 
thousand and five also in addition to that we are going to try 
to make sure that members of staff from different members 
states of the european union will be granted an equal status”
--------------------------------------------------------------
SPANISH UTTERANCE: “trataremos de que todo el personal tenga”
TRANSLATION: “we shall try that all the staff will get”
PARALLEL SPEECH TRANSCRIPT: “in addition to that we are going 
to try to make sure that members of staff from different 
members states of the european union will be granted an equal 
status we look forward to amend the statuate of course we hope 
that that will be approved as soon as possible and we hope that 
it proves viable in practice”

Figure 10.2: Examples for pSp based on a 6 seconds utterance based padding.
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the optimal ‘left cut’ position in the target speech snippet that defines all words

before this position as irrelevant to the source utterance and all words after this

position as relevant. This is done by computing the sum over all alignment links

left of a cut position candidate that belong to neighboring source utterances and

then adding the sum computed over all alignment links right of the cut position

candidate that belong to the current source utterance. The cut position with the

highest overall sum is selected. During this process, we also consider alignment

link clusters forming target bi- and tri-grams. For each such cluster we introduce

additional alignment links that are included in the overall sum. The alignment

link alBI for a bi-gram alignment cluster formed by the alignment links al1 and

al2 is, for example, given as:

alBI(al1, al2) = (al1 ∗ al2)bw (10.2)

with the bi-gram weight bw to allow for a flexible additional weighting of such

bi-gram link clusters. Accordingly, an optimal right cut position is found by com-

puting the sum over all alignment links left of the cut position that belong to the

current source utterance and adding the sum computed over all alignment links

right of the cut position that belong to neighboring source utterances.

To optimize the two-pass alignment algorithm, we perform a grid search on

dev05, aiming for a maximal value of F1-measure that is based on matching uni-

grams in the pSp snippets and the reference translations. In addition to uni-gram

F1-measure (and precision and recall), we also compute the respective values for

n-gram matches with n ∈ [1, 4]. Table 10.3 shows the results for the two alignment

passes of the algorithm. The first pass is identical to the 2 seconds word-time

based padding of the speech snippets. The table shows that the two-pass algo-

rithm yields higher F1 values at a higher precision and lower recall than the word

time based padding. Further, we can see that the overall low recall degrades

strongly for higher order n-grams. We observe values as low as 3.4 for 4-gram

matches between the parallel speech snippets and the two reference translations.

This underlines the strong difference between translation and interpretation, as
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already explained in detail in Chapter 7.

Table 10.4 lists the Spanish→English machine translation performance when

using the two different alignment strategies and automatically transcribing the

parallel speech corpus at different Spanish word error rate levels. At all three

Spanish word error rate levels, the two-pass alignment strategy outperforms the

word-time based alignment by approximately 1 BLEU point. This is in all cases

statistically significant (p < 0.05). The results also show that, even for a highly

degraded Spanish transcription performance at 33% WER (3.7 times worse than

the transcription performance of the standard Spanish ASR system), the ma-

chine translation performance degrades only by approximately 12% relative on

the eval set. This indicates that training translation models from automatically

transcribed parallel speech is robust to strong variations in ASR performance on

one side of the parallel speech corpus.

n alignment EnUtt-SpSnip SpUtt-EnSnip

Pre Rec F1 Pre Rec F1

1
2 seconds 34.8 31.7 33.2 24.9 36.7 29.6

2-pass 38.9 30.8 34.4 29.7 35.0 32.1

2
2 seconds 15.2 12.4 13.7 9.6 13.6 11.2

2-pass 17.5 12.7 14.7 11.6 13.9 12.7

3
2 seconds 8.2 6.4 7.1 4.8 6.8 5.6

2-pass 9.7 6.6 7.9 5.7 6.9 6.3

4
2 seconds 4.6 3.4 3.9 2.5 3.7 3.0

2-pass 5.6 3.7 4.5 3.0 3.8 3.3

Table 10.3: Precision, Recall and F-measure (F1) on dev05 for the two utterance
alignment passes.
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dev06 eval07

Sp pSp WER 9% 16% 33% 9% 16% 33%

2 seconds 34.3 32.1 28.2 33.5 32.6 28.5

2-pass 35.1 33.5 29.1 34.3 33.5 30.1

Table 10.4: 2-pass alignment strategy: Sp→En automatic translation perfor-
mance using Spanish reference transcriptions (0% word error rate) as input to MT
and translation models trained with parallel speech transcribed at Spanish word
error rate levels of 9/16/33%.

10.4 Machine Translation and Speech Transla-

tion Results

Table 10.5 lists the Sp→En and En→Sp machine translation results obtained

when using translation models trained from parallel speech. We list the results

for parallel speech that was transcribed at different Spanish word error rate levels;

the approximate Spanish WER achieved on pSp is shown in the first column. The

English ASR system was kept unchanged; we estimate its WER at approximately

12-14% WER, given its performance on dev06 and eval07. BLEU scores marked

with c were computed using the constrained Spanish LM. For comparison, we

also list results when training translation models on a bilingual, sentence-aligned

text corpus of manual translations. This text corpus was extracted from the

bilingual MT training corpus as it was provided during the TC-STAR evaluation.

We randomly selected sentence pairs from the original TC-STAR training corpus,

until the number of running words on the English part reached 954.4k running

words. This is the same number of running words as we estimated for the English

part of our pSp corpus. The TC-STAR training corpus is based on the final text

editions. It therefore exhibits a certain mismatch in style compared to verbatim

style transcriptions and translations. To reduce this mismatch we pre-processed

the text corpus accordingly. This pre-processing included punctuation removal,

expansion of abbreviations and conversion of numbers and dates to their spoken

form.
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training corp. dev06 eval07

type, WER Sp→En En→Sp Sp→En En→Sp

translations, 0% 44.5 48.0 43.9 40.9

pSp, ∼ 9% 35.1 39.7 34.3 31.2

pSp, ∼16% 33.5 34.5c 33.5 27.0c

pSp, ∼33% 29.1 31.1c 30.1 23.3c

Table 10.5: Training corpus dependent MT performance in BLEU. Results are
shown for using a translation model training corpus of manual translations (first
data row) or a training corpus of parallel speech (pSp). The pSp corpus was auto-
matically transcribed at three different Spanish word error rate levels (9/16/33%).

The results show degraded translation performance for training translation

models from pSp, compared to using a bilingual text corpus of manual transla-

tions for training. Using our best-performing ASR systems, the absolute degra-

dation amounts to approximately 10 BLEU points for both translation directions.

This degradation in performance results from (a) word errors introduced by au-

tomatically transcribing English and Spanish speech (b) the mismatch between

translation and interpretation, and (c) errors when aligning the interpreter speech.

Nevertheless, we are able to report surprisingly high BLEU scores of up to 34.3

for Sp→En at WER levels of approximately 9% for Spanish ASR and 12-14%

for English ASR. As already noted at the end of Section 10.3, we observe only a

relatively small degradation in MT performance when introducing a strong degra-

dation in Spanish ASR performance from approximately 9% to 33% WER.

In Section 7.3, we estimated the ‘translation’ quality, in terms of BLEU,

of dev05 parallel speech by comparing the manual transcription of this parallel

speech with the two reference translations available for dev05. The BLEU scores

were 18.2 when comparing English pSp with the two Spanish→English reference

translations, and 14.4 when comparing Spanish pSp with the two English→Spanish

reference translations. Our best pSp-trained translation models achieve BLEU

scores of 43.5 and 34.8 for Spanish→English and English→Spanish, respectively.

These scores are 2 to 3 times higher than the scores of the pSp given in dev05.
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Therefore, our pSp-trained translation models, while being trained on parallel

speech, are able to achieve automatic translations that are significantly more

similar to manual translations than parallel speech itself.

The highest achieved Sp→En translation performance of 34.3 BLEU is on

the same level as the translation performance of a translation model trained on

100k English words of sentence aligned translations. We approximate the num-

ber of English words in the pSp corpus to be 954.4k. This suggests that, at

the considered WER level, translation models trained on pSp audio of En/Sp

simultaneous interpretation require 10 times more data (measured in number of

translated/interpreted words) than translation models trained on manual trans-

lations, to reach similar BLEU performance. Figure 10.3 depicts the development

of BLEU score depending on a successively increased training corpus size in 100k

word increments, using either a training corpus of translations or our pSp cor-

pus transcribed at a Spanish WER of 16%. The absolute difference between the

BLEU scores of both types of translation models is higher for smaller training

corpus sizes. At a corpus size of 100k English words, the difference is 15.7 points

(a 46.2% relative degradation) and levels out at 500k words to approximately

10.5 to 11 points (a 24.0% to 26.4% relative degradation). Further, we observe

that the corpus-size dependent development of BLEU score of the pSp-trained

TM mirrors the development of BLEU score seen for the traditionally trained

TM, just at a lower level.

Table 10.6 lists the speech translation results on eval. The word error rate

on the respective eval source text is shown in the second row. BLEU scores

marked with c were achieved using the constrained Spanish LM. We used the

same decoder weights found via minimum error rate optimization on the dev06

verbatim transcriptions, as we had good experience in the past with this approach

on the very same development and test sets. For this reason, we do not provide

speech translation results for dev06. Compared to translation models trained on

a similarly sized bilingual text corpus of translations, we observe a degradation

of approximately 8 BLEU points when using parallel speech trained translation

models. This degradation in performance is almost 2 BLEU points less than
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Figure 10.3: BLEU score (y-axis) dependent on training corpus type (parallel
speech vs. manual translation) and training corpus size in steps of 100k running
words.

in the case of MT (compare Table 10.5). In general, the relative degradation

in BLEU caused by recognition errors in the input text is smaller for parallel

speech trained translation models (compare Figure 10.4). For example, a WER

of 16.5% in the Spanish input to the translation system causes the BLEU score to

degrade by 18%, from 43.9 to 36.0, if the system is trained on manual translations.

However, the BLEU score of the system trained on pSp audio degrades only by

13.1%, from 33.5 to 29.1. This smaller relative degradation due to word errors in

the source input can be observed for all three investigated Spanish WER levels.

We apply the same ASR systems used for transcribing the pSp corpus when

we automatically transcribe the source speech of the evaluation set for speech

translation. The smaller degradation in BLEU score indicates that the parallel

speech trained translation models are able to compensate for word errors in the

source ASR by incorporating mappings between source word errors and correct

target translation. This ability to compensate for source word errors helps to

attenuate the loss in speech translation performance experienced by using parallel

speech of simultaneous interpretation instead of manual translation for translation

model training.
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training corp. Sp→En En→Sp

type, WER 9.0% 16.5% 33.1% 12.2%

translations, 0% 40.0 36.0 27.8 33.8

pSp., ∼ 9% 31.5 - - 26.1

pSp., ∼16% - 29.1 - 22.8c

pSp., ∼33% - - 21.0 19.8c

Table 10.6: Training corpus dependent ST performance in BLEU. The word
error rate of the ASR first-best hypotheses used as machine translation input are
shown in bold font. Translation model training is either based on a training corpus
of manual translations (first data row) or on a training corpus of automatically
transcribed parallel speech (pSp). The pSp corpus was automatically transcribed
at three different Spanish word error rate levels (9/16/33%).

10.5 Chapter Summary & Discussion

We created a MT training corpus from non-transcribed parallel speech of simul-

taneous interpreters by automatically transcribing and aligning source language

and target language speech. This enabled us to build MT systems and speech

translation systems from simultaneous interpretation, thus eliminating the need

for a manually created text corpus of sentenced aligned translations. Our ex-

periments show that in the case of speech translation, parallel speech trained

translation models profit from an ability to compensate for word errors in the

source ASR. Further, we have shown that training translation models from par-

allel speech is robust towards low transcription performance on one side of the

automatically transcribed speech corpus.

We achieve surprisingly strong translation results with our parallel speech

trained translation models. Based on these results, we argue that interpreter

speech can present a valuable resource for training MT and speech translation

in the context of resource-deficient languages. However, our experiments remain

limited to simultaneous interpretation. We believe that the prevailing form of

interpretation in the context of resource-deficient languages is consecutive inter-

pretation, as simultaneous interpretation typically demands considerable amounts
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Figure 10.4: Relative degradation in BLEU (Sp→En), dependent on Spanish
input word error rate and training corpus type (parallel speech, pSp vs. manual
translations).

of expensive equipment (sound proof booths, etc.). For this reason, we investi-

gate the training of translation models from the parallel speech of consecutive

interpretation in Chapter 12.
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Interpretation as Speech

Translation Training Data

In the previous chapter, we demonstrated that statistical translation models can

be trained in a fully automatic manner from audio recordings of simultaneous

interpretations. In this chapter, we extend the use of parallel speech audio as a

data resource for unsupervised and lightly supervised training of all major models

involved in statistical speech translation: the ASR acoustic model and ASR lan-

guage model as well as the MT translation model and MT target language model.

Specifically, we explore techniques for training acoustic models, language models

and translation models from automatically transcribed parallel speech [57]. The

parallel nature of pSp audio does not only allow us to train translation models,

as described in detail in the previous chapter, but it also allows us to introduce

light supervision for model training, as explained in detail in this chapter. We

conduct our experiments on a subset of the English/Spanish parallel speech cor-

pus from Chapter 10. To simulate the setting of speech translation between a

resource rich and a resource-deficient language, we limit the supervised training

data for the Spanish models to 10h of manually transcribed Spanish audio and

to a parallel text corpus of sentence-aligned, manual translations that comprises

100k of Spanish words translated into English. Similar to previous experiments,

we also consider the situation where only parallel speech audio and no parallel

text data of sentence-aligned manual translations is available.
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11.1 System Architecture
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Figure 11.1: Extracting speech translation training data from parallel speech.

In the proposed scenario of speech translation between a resource rich language

LRR and a resource-deficient language LRD, we seek to improve the statistical ST

models that suffer from the resource deficiency, by automatically creating training

data from pSp audio. Figure 11.1 shows our system architecture. The overall sys-

tem consists of two ST sub-systems, each featuring an ASR component and a MT

component. The ASR systems accept pre-segmented speech utterances; we use a

HMM-based, language-independent speech/non-speech audio segmentation. The

models affected by the resource deficiency are highlighted in color in the diagram.

The core components necessary to create ST training data from pSp audio are

the two ASR systems. Together with the input audio, automatic transcriptions

for LRD can be used for unsupervised AM training. The transcriptions can also

be used as additional LM training data. Further, the hypotheses of both ASR

systems can be tied together in a parallel training corpus suitable for TM train-

ing. As we have demonstrated in Chapter 8, it is possible to exploit the parallel

information given in the respective other language audio stream to bias the ASR
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systems for improved transcription performance. In the proposed context, the

resulting improved ASR performance directly affects the quality of the extracted

training data. In the following, we speak of lightly supervised training or pSp

supervised training whenever we apply biased ASR systems to create training

data from pSp audio.

11.2 Data and Baseline Systems

We use the same En/Sp development and evaluation sets as in Chapter 10; dev05,

dev06 and eval07. The pSp audio corpus is a subset of the pSp audio corpus from

Chapter 10, consisting of 67 sessions from the time period 08Sep05-01Jun06. The

supervised Spanish ST training data is limited to 10h of manually transcribed

Spanish audio and to a parallel text corpus comprising 100k Spanish words, man-

ually translated into English. Detailed data statistics for the training sets are

shown in Table 11.1.

transcriptions parallel text pSp

sent./utt. [k] 6.5 3.9 52.3

words [k] 79.6 100.0 751.8

audio [h] 10.0 N/A 91.7

Table 11.1: Data statistics: Spanish speech translation training data.

The MT decoder, MT training procedure and English ASR are identical to

the ones described in Chapter 10. For training translation models from pSp audio

of simultaneous interpretation, we rely on the more simple utterance alignment

strategy of padding the target parallel speech snippets with 2 seconds. The

baseline Spanish ASR system uses sub-phonetically tied three-state HMMs and

features a single, speaker-independent decoding pass. The AM is trained on

10h Spanish EPPS data via three iterations of Viterbi training1. The 3-gram

LM is estimated on 179.6k running words from the AM training data reference

1The training is bootstrapped with labels from the context-independent system SPc1 de-
scribed in Chapter 10
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transcriptions and the Spanish side of the parallel text corpus used for supervised

TM training. In order to avoid high out-of-vocabulary rates, we use a large

recognition dictionary with 74.2K pronunciation entries. This resource-limited

Spanish ASR system yields WERs in the range of 26-27% on our data sets as

shown in Table 11.2.

English-to-Spanish Spanish-to-English

dev05 dev06 eval07 dev05 dev06 eval07

base WER 13.1 13.9 12.2 26.1 26.9 27.1

Table 11.2: English and Spanish baseline system word error rates.

11.3 Parallel Speech Audio for ASR Model Train-

ing

Unsupervised acoustic model training relies on automatic transcriptions created

with an initial ASR system. The success of unsupervised AM training usually

depends strongly on the ability to exclude erroneous transcriptions from train-

ing. The common approach is to use word confidences for selecting transcriptions

suitable for training. Lightly supervised AM training [37] refers to the case where

some imperfect human transcriptions, for example closed-captions provided dur-

ing television broadcasts, can be used to either bias the initial ASR system for

improved transcription performance or to filter erroneous ASR hypotheses. We

examine unsupervised AM training and lightly supervised AM training. We in-

troduce light supervision with the help of pSp audio of simultaneous interpreters,

as we introduced in Chapter 9.

To introduce light supervision based on English pSp audio for Spanish AM and

LM training, we automatically translate the English parallel speech into Spanish

and bias the Spanish ASR LM to prefer n-grams seen in the automatic translation.

We distinguish between two different types of LM bias; a ‘session bias’ and an

‘utterance bias’. Session bias refers to the case where we first automatically
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translate the English audio of one complete European Parliament session into

Spanish, and we then interpolate the baseline Spanish LM with a LM built on

the automatic translation. Utterance bias, on the other hand, refers to the case

where we bias the Spanish LM for each Spanish speech utterance. We achieve

this by first translating the 6 seconds word padded English speech snippet. We

then prefer the uni-grams found in the translated speech snippet, by boosting the

baseline Spanish LM probability of these uni-grams, similar to a cache LM. The

boosting of the uni-gram probability is realized by subtracting a discount value

d from the (positive) LM log score of the current ASR hypothesis. The discount

value d for a uni-gram u is estimated as follows:

d(u) =
{ w ∗ LMscore(u) for LMscore(u) ≥ t

0 for LMscore(u) < t

with LMscore(u) being the baseline LM score for the uni-gram u and weight

w and threshold t estimated on dev05 via a grid search. Table 11.3 shows the

influence of the session LM bias and the combination of utterance LM bias and

session LM bias on the Spanish WER on dev05; the WER is reduced by 6%

relative from 26.1% to 24.5%.

baseline session bias session & utterance bias

26.1 25.4 24.5

Table 11.3: Biasing ASR with parallel speech; Spanish word error rates on dev05.

For unsupervised and lightly supervised AM training, we utilize ASR word

confidences in the following manner: speech frames associated with words that

have an ASR word confidence of c < 0.8 are ignored; all other speech frames

contribute to the training with a weight of 1. The value of c is estimated on our

dev set. Training is realized via three iterations of Viterbi training. All iterations

include 10h of manually transcribed audio plus 92h of automatically transcribed

audio. Results obtained with the re-trained AMs are listed in Table 11.4, along
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with results for unsupervised LM training. The first two columns of Table 11.4

specify if the baseline AM/LM was used or a model trained with the additional

92h of automatically transcribed Spanish speech. The case of light supervision

during ASR decoding via a session+utterance bias is marked with a subscript

b. For example, the last row in the table refers to the case where we used the

biased baseline ASR system to create additional AM and LM training data. The

values shown in brackets represent the WER on dev05, when biasing the ASR

with knowledge from the English parallel speech. Since we do not have English

pSp available for dev06 and eval07, such a bias is not possible on these data sets.

The results show that light supervision during training benefits ASR performance.

AM LM dev05 dev06 eval07

base base 26.1 [24.5b] 26.9 27.1

+92h base 24.0 [23.0b] 24.9 25.5

base +92h 24.5 [23.3b] 25.7 25.5

+92h +92h 22.5 [21.5b] 24.0 24.2

+92hb +92hb 22.0 [21.6b] 23.5 23.8

Table 11.4: Re-raining the Spanish acoustic model and language model with
additional 92h of automatically transcribed parallel speech: influence on word error
rate. Results marked with b were achieved by applying light supervision (session
& utterance bias) during decoding.

In contrast to AM training, we do not utilize ASR word confidences during

LM training. We estimate a LM on the Spanish ASR first-best hypotheses and

interpolated this LM with the baseline LM. The interpolation weight is chosen

to minimize the LM perplexity (PPL) on the dev set. Table 11.5 lists the PPL

of the baseline LM and of the interpolated LMs, using transcriptions from the

baseline and biased baseline Spanish ASR during training. The LM used to

compute the dev05 PPLs (marked by *) does not include automatic transcriptions

of dev05 itself. We found that, while the PPL decreases much more if ASR first

best hypotheses of the same session are included in the LM, ASR transcription

performance does not benefit due to an overly strong bias towards transcription
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Figure 11.2: Combining parallel speech (pSp) training data with our baseline
parallel text training corpus. The baseline training corpus of manual translation
receives a higher weight by repeating it x times. Results are shown for Sp→En
text translation on dev06.

errors made by the initial ASR. Therefore, whenever we automatically transcribe

our pSp corpus with an ASR system that includes a re-trained LM, we use session-

specific LMs that exclude ASR transcriptions of the very same session.

LM dev05 dev06 eval07

base 182 269 276

+92h 129* 202 206

+92hb 127* 200 204

Table 11.5: Language model (LM) re-training with additional 92h of automati-
cally transcribed Spanish parallel speech: influence on perplexity.

11.4 Parallel Speech Audio for MT Model Train-

ing

When traditional MT training data is available, it is necessary to determine how

traditionally trained translation models can benefit most from additional pSp

audio. By simply extending our parallel text corpus of 100k manually translated

words with the automatically transcribed pSp training data, and re-training the

TM on this extended training corpus, we observe only small improvements on

107



11. INTERPRETATION AS SPEECH TRANSLATION TRAINING
DATA

dev06 of 0.7 BLEU points from 35.1 to 35.8. We therefore examine if a higher

weighting of word alignments that stem from the supervised part of the combined

corpus is helpful. The main idea is to aid the GIZA++ word alignment process

on the pSp part. We achieve this higher weighting by simply duplicating the

supervised training corpus x times. Figure 11.2 gives an overview of the Sp→En

text translation (0% WER of the Spanish input) results on the dev set for x ∈
{1, 2, ..., 7, 8}. The figure also lists translation performance numbers in BLEU

for the baseline TM, trained only on supervised training data, and for a TM

trained only on the automatically transcribed and aligned pSp corpus. The best

translation results are achieved by adding the supervised parallel text corpus of

manual translations 5 times to the combined training corpus. However, it should

be noted that the BLEU score variations observed for adding the pSp training

data 3–8x times to the supervised training corpus are statistically not significant.

Tables 11.6 and 11.7 list the achieved text translation results for both translation

directions. The presented results are obtained with ASR transcriptions created

with the baseline ASR systems.

TM dev05 dev06 eval07

base 41.1 35.1 35.2

+92h 44.5 37.9 37.8

Table 11.6: Translation model (TM) re-training with additional 92h of auto-
matically transcribed Spanish parallel speech: Sp→En text translation results in
BLEU.

11.5 Speech Translation Results

In this section, we present our results for the complete ST chain of ASR and

subsequent MT on the ASR first best hypotheses. We also pay special attention

to the case of strong resource limitation, in which only 10h of transcribed Spanish

AM data is available, but no baseline MT.
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LM TM dev05 dev06 eval07

base base 26.0 27.2 25.7

+92h base 27.9 29.1 27.5

base +92h 27.7 28.3 27.6

+92h +92h 30.5 30.6 29.6

Table 11.7: Translation model (TM) and language model (LM) re-training with
additional 92h of automatically transcribed Spanish parallel speech: En→Sp text
translation results in BLEU.

Table 11.8 lists the speech translation results for En→Sp. We compare results

of the baseline ST system with a ST system that includes unsupervised training

data created with the baseline Spanish ASR. The eval set BLEU score increases

by 3.2 points from 21.6 to 25.2 for the re-trained ST system. The case where no

baseline automatic translation is possible due to the lack of parallel text data,

is shown in the last row. With a TM trained solely on 92h of pSp audio, we

achieve a translation performance of 19.9 BLEU points. In Table 11.9 we show

speech translation results for Sp→En. Here, we examine two additional scenar-

ios: first, we examine the effect of lightly supervised AM and LM training on the

ST end result (row 3, entries marked with b) and second, we address the effect

of the improved transcription performance on TM training (last row). Specif-

ically, the results in the last row of the table refer to the case where the pSp

automatic transcriptions used for TM training came from the already re-trained

ASR. All other listed results are achieved by using models that were re-trained

with pSp transcriptions from either the baseline ASR or the biased baseline ASR.

Re-training the ST models with baseline ASR transcriptions improves the eval

BLEU score by 3.0 points from 25.3 to 28.3. Using ASR hypotheses from the

biased Spanish ASR does not improve the overall speech translation result on

our evaluation set, although ASR transcription performance is slightly improved,

as shown in Section 11.4. In the scenario where no parallel text data for TM

training is available, we achieve an eval BLEU score of 24.9—only slightly be-

low the translation performance of the baseline system that is based on parallel

text data. The translation performance of the pSp-only system can be further
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increased by 0.7 BLEU points, when using the re-trained Spanish ASR system to

transcribe the pSp corpus, instead of only using the baseline ASR system. This

result suggests to introduce at least one iteration in the proposed training scheme,

where ST models are first re-trained with transcriptions from the baseline ASR

systems, and then, subsequently trained with transcriptions from systems that

already benefit from re-trained models.

LMMT TM dev05 dev06 eval07

base base 24.0 22.4 21.6

+92h +92h 28.5 25.7 25.2

+92h 92h 23.8 20.4 19.9

Table 11.8: Re-training with additional 92h of automatically transcribed Spanish
parallel speech: En→Sp speech translation results in BLEU. The last row shows
results achieved with a translation model purely trained from parallel speech (no
baseline parallel text corpus).

AM LMASR TM dev05 dev06 eval07

base base base 31.2 25.1 25.3

+92h +92h +92h 34.8 28.0 28.3

+92hb +92hb +92hb 35.7 28.8 28.4

+92h +92h 92h 31.8 24.2 24.9

+92h +92h 92hi=1 32.7 25.2 25.6

Table 11.9: Re-training with additional 92h of automatically transcribed Spanish
parallel speech: Sp→En speech translation results in BLEU. Results marked with b

were achieved by applying light supervision (session & utterance bias) during ASR
decoding. The last two rows of the table list results achieved by only using parallel
speech for translation model training (no baseline parallel text corpus). The results
of the last row were achieved by applying the re-trained Spanish ASR system to the
parallel speech audio for translation model training. All other results are based on
parallel speech training data transcribed with the Spanish baseline ASR system.
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11.6 Chapter Summary & Discussion

In previous chapters, we developed and examined approaches for (a) biasing ASR

and MT with parallel speech audio and (b) training ASR and MT models with

the help of parallel speech audio. With the framework introduced in this chap-

ter for creating acoustic model, language model and translation model training

data from parallel audio, we successfully tied the developed approaches together

to significantly improve all major models involved in statistical speech transla-

tion. Specifically, we considered the scenario of ST between a resource-rich and

a resource-limited language, and we reported significant performance improve-

ments for the resource-limited ST models by enriching the limited training data

resources with training data that was automatically created from parallel speecg

audio.
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Speech Translation from

Consecutive Interpretation

In the previous chapters we explored parallel speech audio as a novel data resource

for training speech translation systems. We argue that the presented approaches

are of special interest in the context of limited data resources. We consider the

result that translation models can (a) be trained from scratch with parallel speech

audio, and (b) be improved with parallel speech audio as additional training data,

as one of our most important findings, as parallel text data is one of the ST train-

ing resources that is especially hard to acquire. However, our experiments remain

limited to parallel speech audio of English/Spanish simultaneous interpretation.

As we believe that consecutive interpretation is the prevailing from of interpreta-

tion in situations that ask for a rapid development of ST systems, we examine in

this chapter if our findings regarding parallel speech trained translation models

remain valid in the context of consecutive interpretation between English and the

resource-limited language Pashto.

12.1 Previous Results & Chapter Outline

The experiments presented in Chapter 10 suggest that pSp-trained translation

models mirror the training corpus size-dependent performance of parallel text

trained translation models, just at a lower level. We estimated the ‘yield’ of

English/Spanish SI audio to be around n · 10−1, meaning that we observed a pSp

113



12. SPEECH TRANSLATION FROM CONSECUTIVE
INTERPRETATION

corpus of n interpreted words to yield a similar translation performance in BLEU

as a parallel text corpus of n · 10−1 translated words. In general, the yield of

pSp audio certainly depends on different factors, as for example the type and

‘quality’ of used interpretation (CI vs. SI, as explained in Chapter 7), language

pair and WERs of the ASR systems used to transcribe source and target language

speech. However, assuming WER ranges as thus far considered, we hypothesize

the general yield of parallel speech to be within the same order of magnitude as

for English/Spanish SI, that is, somewhere in the range of n · 10−1, but certainly

not n · 10−2. To further support this hypothesis, we examine the development of

Pashto→English speech translation on the basis of pSp audio from consecutive

interpretation. Specifically, we explore English/Pashto pSp audio as (a) the sole

data source for TM training in Section 12.3, and (b) as additional training data,

that is to be mixed with parallel text (Section 12.4).

12.2 Experimental Setup

12.2.1 US Darpa’s TransTac project

Our experiments are based on data resources provided within US Darpa’s TransTac

project. The stated mission of TransTac is ‘to demonstrate capabilities to rapidly

develop and field two-way translation systems that enable speakers of different

languages to spontaneously communicate with one another in real-world tacti-

cal situations’. One requirement of the program is to support new languages in

less than 100 days. TransTac concentrates of languages of interest to national

security. In different phases of the program, two-way ST was developed between

(a) English and (b) languages like Iraqi, Farsi and Dari. The latest phase of

the program concentrates on Pashto—a language spoken mostly in Afghanistan

and western Pakistan. Typical scenarios considered within TransTac are in the

form of interviews, where for example an English-speaking soldier interviews a

Pashto-speaking Afghani.

During the course of the project, it became strongly apparent that the most

pressing bottleneck in terms of rapid ST development and system performance is
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the time-consuming (and costly) progress of transcribing and translating foreign

language recordings. For a minimal domain mismatch, these recordings are col-

lected from typical communication scenarios as they already occur in the field.

Without ST solutions available, cross-lingual communication is typically achieved

with the help of consecutive interpreters. An example for such a cross-lingual di-

alog is depicted in Figure 12.1. Each native speech utterance is accompanied by

its CI utterance in the example. Further, a manual translation of the non-English

parallel speech is provided.

what is it that you wanted to speak with me about today
تشکر   زه ښه یم
thanks I am fine

تاسو نن زما سر ه د څه شي په باره کښې خبرې کولي
what do you want to talk about with me today

ما غوښتل تاسو سر ه وغږېږم دلته بعضې شیان دې دلته د تېلو ځای دي د
I wanted to talk to you -- 
there are some things here in the oil station that I want to talk to you about

I just want to talk with you about -- there is a -- a gas station
I would like to talk about that with you
okay and what is the importance of this gas station
بېخي صحیح ده د دې په هکله تا څه غوښتل چې زما سر ه ووایې
it is okay - what do you want to tell me about this

Interviewer:

Interpreter:

Interpreter:

Respondent:

Interviewer:

Interpreter:

Figure 12.1: Consecutive interpretation example.

12.2.2 Data and Scoring

Only very limited amounts of data resources are available for English/Pashto ST

development. Table 12.1 lists the statistics of our English/Pashto parallel speech

corpus. It shows the amount of native speech (English interviewer, Pashto respon-

dent) and interpreter speech in hours of audio and number of uttered words. In

contrast to our English/Spanish pSp corpus, we have manual reference transcrip-

tions available. Further, we have manual reference translations for each native

speech utterance available. In addition to the pSp corpus, we make use of a ‘tradi-

tional’ English/Pashto parallel text corpus of manual translations. This parallel

text corpus has 12.4k translated Pashto respondent utterances. The Pashto part
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Native Interpr.

En Pa En Pa

audio [h] 23.0 25.2 26.7 29.5

words [k] 358 374 333 399

Table 12.1: English/Pashto parallel speech audio statistics.

Pa→En

dev eval

audio [min] 45.8 24.0

words [k] 6.7 3.6

Table 12.2: Pashto→English development and test set.

comprises 260k words; the English part has 214k words. Table 12.2 lists the

statistics of the Pashto→English development and test sets. Both sets are based

on native Pashto respondent speech and feature only one reference translation for

scoring (IBM BLEU).

12.2.3 Sentence Segmentation

In order to utilize the English/Pashto parallel speech audio corpus in our stan-

dard TM training setup, we have to create a sentence-aligned bilingual text corpus

first. We can exploit the fact that each speaker takes turns in consecutive inter-

pretation, with each speaker producing only a few utterances in each turn. To

introduce speaker-turn-based sentence alignment, we rely on the manual utter-

ance segmentation and the role description (interviewer, respondent, interpreter)

found the transcription files. As the interviewer speech is recorded on a different

audio channel from the interviewer/respondent speech, we argue that an algo-

rithm that is based on automatic utterance segmentation and automatic speaker

identification will provide a very similar performance. All of our training runs

are based on aligned speaker turns, even when manual translations are used for

model building. This is possible, since each speech utterance is accompanied with
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a manual translation in the corpus. Our decoding/scoring runs on the develop-

ment and evaluation sets observe the speech utterance segmentation.

12.3 Consecutive Interpretation as Only Data

Source

In a situation where only untranscribed parallel speech audio is available, the

minimal requirement for speech translation development are two ASR systems to

enable the automatic transcription of source and target language speech. In the

case of ST development between a resource-rich and a resource-deficient language,

ASR systems for the resource-rich language may already be available. In our case,

we have an in-domain English ASR system from previous phases of the TransTac

project available1, as previous phases considered ST between (a) English and (b)

Iraqi, Farsi and Dari. However, we have no pre-existing Pashto ASR at hand.

To enable Pashto→English speech translation and to be able to automatically

transcribe additional parallel speech audio, we train a Pashto ASR system on the

25.2h of Pashto respondent speech found in our pSp corpus. For AM and LM

training, we rely on the manual transcription of this respondent speech (374k

words). Table 12.3 lists the English and Pashto WER and LM perplexity for

the automatically transcribed parts of the pSp corpus. The interpreter speech

frequently suffers from a heavy foreign accent, explaining the significantly higher

WER on interpreter speech compared to native speech. The Pashto WER on the

Pashto→English development and test set is 33.7% and 33.9%, respectively. The

LM perplexity is 157 and 148, respectively.

To examine our hypothesis that n interpreted Pashto words yield approxi-

mately the same translation performance, measured in BLEU, as n · 10−1 trans-

lated words, we examine three different systems estimated on the parallel speech

corpus. System A uses translation models trained on the manually transcribed

1English and Pashto ASR both feature only one decoding pass and small models tuned to
the real-time requirements of TransTac evaluations. Both systems were developed by the author
using a training setup similar to the one described in Chapter 5. The English ASR includes
discriminative AM training in the form of boosted MMI training [59].
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Native Interpr.

En Pa En Pa

PPL 68 - 75 196

WER 16.3 - 30.7 44.9

Table 12.3: Parallel speech audio: language model perplexity (PPL) and word
error rate.

and translated Pashto respondent speech that is present in the parallel speech

corpus. In System B the English translations are replaced by the manual tran-

scription of the interpreter speech. System C finally uses the English automatic

transcription (30.7% WER) of English interpreter speech. While system C does

not suffer from word errors on the Pashto side (we use the Pashto reference tran-

scription), the English word error rate is on the same level as the worst WER

level we considered English/Spanish parallel speech audio. Table 12.4 lists the

text and speech translation performance in BLEU for all three systems. Table

12.5 lists the English type and token coverage of the training corpora A and

B in regard to dev, showing that corpus coverage does not play an important

role. As we expect system B and C to perform on the same level as a system

that is trained on approximately 40k manually translated words, we compute the

corpus-size dependent text translation performance of system A for increments

of 10k words, until system A meets the performance of system B. The result is

depicted in Figure 12.2. It shows that our prediction was accurate. Another im-

portant hypothesis is that the translation performance of parallel speech trained

translation models mirrors the translation performance of parallel text trained

translation models, just at a lower level. While only a very limited amount of

English/Pashto parallel speech audio is available, we still can observe the same

trend as observed for English/Spanish parallel speech audio, when we compute

the corpus-size dependent text translation performance of system A and B in

increments of 90k words, compare Figure 12.3.
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text speech

dev eval dev eval

A 17.6 17.8 14.6 15.2

B 11.8 13.0 10.5 10.0

C 10.9 10.5 9.4 10.2

Table 12.4: Pashto→English text and speech translation performance for systems
A, B and C. The Pashto part of the parallel translation model training corpus con-
sists of manually transcribed Pashto respondent speech. The English part consist
of (A) manual English translations; (B) manually transcribed interpreter speech or
(C) automatically transcribed (30.7% word error rate) interpreter speech.

token type

A 98.8 92.9

B 98.1 90.0

Table 12.5: Vocabulary and corpus coverage for systems A and B.

12.4 Consecutive Interpretation as Additional

Source

To further examine the value of pSp audio as TM training data in addition to

parallel text, we estimate a TM on the parallel text corpus of 260k translated

Pashto words. We refer to the system using this TM as system D. We then in-

crease the parallel text corpus with the training corpus of system A, B or C and

estimate new translation models, resulting in systems D+A, D+B and D+C. Ta-

ble 12.6 gives an overview of the text and speech translation performance of these

systems. With English and Pashto ASR available, it is possible to automatically

transcribe more pSp audio, promising further gains in translation performance at

a relative low cost. For example, we can automatically transcribe the part of the

pSp corpus formed by English interviewer speech (16.3% WER) and respective

Pashto interpretation (44.9% WER)—referred to in the following as training data

F. Despite the very high Pashto WER, we achieve further gains in text and speech

translation performance by adding training data F to D+C, as shown in the last
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10k 20k 30k 40k 50k 60k
6
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10

12

6.6

9.4
10.2

11.0
11.4 11.7

System C

System B

Figure 12.2: Corpus-size dependent BLEU score on dev of system A (trained on
manual translation).

90k 180k 270k 374k
7

11

15

19

12.2

16.7
17.4 17.6

9.2

11.0 11.4 11.8

System A

System B

Figure 12.3: Corpus-size dependent BLEU scores on dev of system A (trained on
manual translation) and B (trained on manually transcribed interpretation).

row of Table 12.6. The observed improvements for system D+C+F compared

to system D are statistically significant (p < 0.05). Similar to the experiment

described in Section 11.4, these results are achieved by weighting training data

D+C and training data F differently. In the case of text (speech) translation,

D+C was repeated 3 (4) times in the final training corpus D+C+F.

12.5 Chapter Summary & Discussion

In this chapter we have shown that our findings regarding parallel speech trained

translation models, made in the context of English/Spanish simultaneous in-
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text speech

dev eval dev eval

D 12.3 12.3 11.2 10.0

D+A 18.4 17.5 16.0 14.2

D+B 14.6 14.7 12.7 12.2

D+C 13.8 13.4 11.6 12.0

D+C+F 14.7 14.9 12.5 12.4

Table 12.6: Increasing translation performance by adding more training data.
Baseline parallel text training corpus (D) plus (A) more manual translations; (B)
manually transcribed parallel speech audio or (C) automatically transcribed par-
allel speech audio. Training corpora A, B and C consist of either translated or
interpreted Pashto respondent speech. Training corpus F consists of automatically
transcribed parallel speech formed by interpreted English interviewer speech.

terpretation, remain valid in the context of consecutive interpretation between

English and the resource-limited language Pashto. We observed a similar yield

of interpretation audio compared to parallel text in terms of BLEU score for En-

glish/Pashto consecutive interpretation. Further, we reported statistically signif-

icant improvements in BLEU metric by enhancing parallel text with the parallel

speech audio of consecutive interpretation for translation model training. These

results further support our hypothesis that automatically transcribed parallel

speech audio can present a valuable, low-cost data resource for speech translation

development.
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Results and Discussion

Despite the continuously increasing demand for automatic solutions that support

cross-lingual, verbal communication between myriad languages, the development

of deployable speech translation systems continues to be viable for a mere handful

of languages. A combination of unsolved research challenges in speech transla-

tion (ST), including insufficient quality of output and high development cost, are

responsible for this undesirable situation. This thesis has described several con-

tributions aimed to resolve this situation.

First, we introduced a sentence segmentation and punctuation recovery scheme

for speech translation. This scheme helps to improve automatic translation of spo-

ken language by targeting the mismatch between automatic speech recognition

(ASR) system output and ‘traditional’ machine translation (MT) training data

(presented in the form of sentence-aligned bilingual text of manual translations).

By applying this sentence segmentation and punctuation recovery scheme, we

showed significant improvements in translation performance, measured in BLEU,

for three very different spoken language translation tasks: English→Spanish

translation of speeches given in the European Parliament as well as Chinese→English

and Arabic→English translation of broadcast news.

Further, we introduced an approach that supports the cost-effective develop-

ment of automatic speech recognition systems in the various languages of the Eu-

ropean Union. This approach exploits the freely available data resources given in
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the context of European Parliament Plenary Session: the live broadcast speeches

along with their simultaneous interpretations, and the Parliamentary proceedings,

published on the Parliament’s web pages. By exploiting these data resources, the

presented approach enables the training of acoustic models without having costly

verbatim transcriptions available.

Finally, we introduced a new, cost-effective way of training speech transla-

tion systems from parallel speech (pSp) audio: audio recordings of interpreter-

mediated communication. We developed various approaches that enable: (a) the

automatic extraction of ST training data from such audio recordings; and (b)

successful exploitation of this ST training data. Thus, we are able to significantly

reduce the amount of costly human supervision that has typically character-

ized speech translation system development. Specifically, we have shown that all

major statistical models involved in state-of-the-art speech translation (acoustic

models, language models and translation models) can benefit from parallel speech

audio by applying unsupervised and pSp-supervised training techniques. In par-

ticular, we have also shown that translation models can be trained from scratch,

without any parallel text data of sentence-aligned manual translations, by using

automatically transcribed parallel speech. In our experiments, we covered both

forms of (speech) interpretation: simultaneous interpretation (SI) and consecu-

tive interpretation (CI). While we developed our approaches in the context of a

resource-rich task, we payed special attention to the situation of data resource

limitation, as we argue that training ST from interpretation is of special value

in the context of resource limitation. Our results have shown that the approach

is robust against low automatic transcription performance, confirming the ap-

proach’s feasibility in the context of resource limitation. We consider the result

that parallel speech audio can replace as well as enhance parallel text data as a

training resource for translation model development as one of our most important

findings, as domain specific parallel text is especially hard to come by and costly

to create.

One problem that was omitted by us is the fact that additional parallel speech

potentially includes high amounts of out-of-vocabulary words. The magnitude of
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the out-of-vocabulary problem depends strongly on the domain and the ASR sys-

tem vocabulary size, as for example shown by Hetherington [27]. Optimizing the

vocabulary size to the current domain is one solution, but this may be hard to

accomplish in the context of ASR in resource-limited languages. Approaches that

automatically identify unknown words and use phoneme or grapheme represen-

tation of these words are another possibility. A somewhat related problem is the

question of how to address ST development in the context of languages that do not

have an acknowledged written form. Besacier et al. [6] propose an interesting so-

lution to this problem. They propose to apply phone-based ST where translation

models are learned on a parallel corpus of foreign phone sequences and corre-

sponding English translation. It is also possible to utilize such a parallel training

corpus of English word sequences and foreign phoneme sequences for the task of

automatically discovering new word units for ASR, as shown by Stüker et al. [73].

We believe that the specific mixing strategy for optimally combining training

data with parallel speech data, at an acceptable cost level deserves more attention.

For example, one could ask if it makes more sense to manually transcribe higher

amounts of speech data for reduced word error rate on the resource-deficient

language or if it is more helpful to manually translate data. In this context,

approaches that automatically identify interpretation ASR hypotheses that are

problematic in terms of word error rate or content are of special interest.

We further believe that future work has to address larger amounts of parallel

speech audio and more language pairs, to further support our hypotheses regard-

ing the translation performance of pSp-trained translation models. While the

attached collection effort of additional parallel speech audio may be considered

the biggest obstacle, one has to realize that: (a) interpretation happens daily

on a massive scale; (b) simultaneous interpretation typically involves consider-

able amounts of equipment (sound proof booths, etc.) that directly enable the

recording of parallel speech audio; and (c) that huge amounts of money flow into

the development of ST systems for CI-like situations. The latter point implies

that there are many consecutive interpretation situations in which the recording

of source and target language speech is feasible. Therefore, our results promise
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substantial improvements in automatic translation of text and speech, achieved

at a relatively low additional cost, by collecting more parallel speech audio.
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Appendix A

Kurzfassung in Deutscher

Sprache

A.1 Automatische Sprachübersetzung

Automatische Sprachübersetzung basiert auf der Kombination zweier Technolo-

gien: automatische Spracherkennung (automatic speech recognition, ASR) und

maschinelle Übersetzung (machine translation, MT) von geschriebenem Text.

Sprachübersetzung kann hierbei als das Problem betrachtet werden, ASR und

MT in einer mit der Leistung heutiger Computer machbaren Art und Weise

zu kombinieren, so dass eine bestmögliche Übersetzungsleistung auf der fehler-

behafteten Ausgabe automatischer Spracherkennungssysteme erzielt wird. Ein

Problem bei der Intergration von ASR und MT ist die Diskrepanz zwischen der

Ausgabe automaticher Spracherkennung und dem Format der Trainingsdaten die

überlicherweise zum Trainieren maschineller Übersetzungssysteme zur Verfügung

stehen. Die Ausgabe von ASR Systemen beinhaltet Erkennungsfehler, ist nicht

mit Satzzeichen versehen und unerliegt überlicherweise einer Segmentierung die

auf Regionen im Sprachsignal beruht, in denen keine Sprache detektiert werden

kann. Letzteres hat insbesondere zur Konsequenz, dass die Segmentierung der

Spracherkennerausgabe einer Segmentierung auf Satzgrenzen hin nicht ähnlich

ist. Trainingsdaten maschineller Übersetzungssysteme hingegen bestehen typ-

ischerweise aus manuell übersetzten Texten geschriebener Sprache (im Gegen-

satz zu gesprochener Sprache) mit korrekten Satzsegmenten und Satzzeichen.
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Im Rahmen dieser Dissertation wird ein Verfahren zur automatischen Satzseg-

mentierung und Punktuation für Sprachübersetzungsysteme eingeführt, welches

diese Diskrepanz in Angriff nimmt. Indem wir (a) modifizierte Übersetzungsmod-

elle zum impliziten Einfügen von Kommata während der Übersetzung einführen

und (b) ein auf einem Entscheidungsbaum basierendes Verfahren zur Satzseg-

mentierung von Spracherkennungsausgabe entwickeln, erzielen wir signifikante

Verbesserungen in der Übersetzungleistung von Sprachübersetzungssystemen für

drei sehr unterschiedliche Sprachenpaare.

A.1.1 Statistische Modelle in der Sprachübersetzung

Automatische Spracherkennung und maschinelle Übersetzung werden heutzutage

von statistischen Modellierungsansätzen dominiert. Während diese statistischen

Modellierungsansätze hauptsächlich zu den beachtlichen Leistungssteigerungen

automatischer Sprachübersetzungsysteme in den letzten Jahrzehnten beigetra-

gen haben, sind die enormen Ansprüche an Trainingsdaten (und die damit ver-

bundenen Kosten) dieser Verfahren einer der Hauptgründe weshalb die Entwick-

lung von einsatzfähigen Sprachübersetzungssystemen auf nur eine handvoll von

Sprachenpaaren begrenzt bleibt. Betrachtet man die statistischen Modelle die an

automatischer Sprachübersetzung beteiligt sind—akustisches Modell und Sprach-

modell der Quellsprache für die ASR sowie Übesetzungmodell und Sprachmod-

ell der Zielsprache für die MT—so lässt sich das Übesetzungsmodell als das

kostenintensivste Modell identifizieren. Während domänenspezifische monolin-

guale Ressourcen—transkribierte Sprachaufnahmen zum Trainieren akustischer

Modelle sowie Textkorpora zum Trainieren von Sprachmodellen—schwer beschaff-

bar sein können, sind domänenspezifische bilinguale Textdaten, bestehend aus

satzalignierten manuellen Übersetzungen, noch seltener und kostenintensiver zu

erstellen. Diese Arbeit hat zum Ziel die kostspielige menschliche Überwachung,

welche sich durch die Trainingsdatenanforderungen modernen Sprachübersetzungs-

systeme ergeben, mit Hilfe einer oftmals zur Verfügung stehenden, jedoch bislang

ignorierten Ressource zu limitieren. Im Detail wird angestrebt, automatische
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und Menschliche Interpretation

Sprachübersetzung mit Hilfe von Audioaufnahmen menschlicher Interpre-

tationsszenarien zu trainieren.

A.2 Moderne Sprachübersetzungsysteme

und Menschliche Interpretation

Mit dem Ziel Anwendungsszenarien zu identifizieren und Methoden zu entwickeln

die es erlauben menschliche Interpretation für automatische Sprachübersetzung

auszunutzen, betrachten wir zunächst die Entwicklung eines modernen Sprach-

übersetzungsystems und dessen Kerntechnologien im Kontext von Sitzungen des

europäischen Parlamentes. Im Detail betrachten wir die Entwicklung von au-

tomatischer Spracherkennung und maschineller Übersetzung (und deren Kombi-

nation) für den enormen Transkriptions- und Übersetzungsaufwand der für die

Erstellung der Sitzungsprotokolle (“final text editions”), in den verschiedenen

Sprachen der Europäischen Union notwendig ist; vergleiche auch Abbildung A.1.

L
1

L
2

L
3 . . .

pol. int. . . .

int. pol. int. . . .

int. pol. . . .

n audio channels provided 
during live broadcast 

final text editions
available after ~2 
months in all 
official languages

FTE

transcribers

rainbow edition
transcript of 
politician speech

Hello good 
morning I give 
the floor  to Mr. 
Mueller.
Meine Damen 
und Herren, ich 
spreche heute ...

interpreters

live

off-line→ ASR?

→ MT?

translators

L
1
:

L
2
:

L
n
:

politicians speaking in different languages L
n

Figure A.1: Sitzungen des Europaparlaments und der damit verbundene
Transkriptions- und Übersetzungsaufwand.

Indem wir die während der Sitzungen im Europaparlament angebotenen men-
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schlichen Simultanübersetzungen (Interpretationen) ausnutzen um die den ASR

und MT Systemen unterliegenden statistischen Modelle zu adaptieren, erzie-

len wir eine gesteigerte Erkennungs- und Übersetzungleistung dieser Systeme.

Die Übersetzungsleistung der MT kann hierbei direkt durch automatische Tran-

skriptionen von Interpretationen in der jeweiligen Zielsprache gesteigert wer-

den. Die Adaption der ASR Modelle in der jeweiligen Quellsprache wird mit

Hilfe von automatischen Sprachübersetzungen von Interpretation(en) in einer

(oder mehreren) Zielsprache(n) zurück in die Quellsprache bewerkstelligt. Die

Leistungssteigerungen werden trotz der fundamentaler Unterschiede (Abbildung

A.2) die zwischen Interpretation (“paraller Sprache”) und Übersetzung herrschen,

erzielt.

Simultaneous Interpretation Consecutive Interpretation
SPANISH UTTERANCE: “trataremos de que todo el 
personal tenga”

TRANSLATION: “we shall try that all the staff will get”

PARALLEL SPEECH: “... in addition to that we are 
going to try to make sure that members of staff from 
different members states of the european union will be 
granted an equal status ...”

ENGLISH UTTERANCE: okay and what is the 
importance of this gas station

PARALLEL SPEECH: بېخي صحیح ده د دې په هکله تا څه 
غوښتل چې زما سر هووایې

TRANSLATION: it is okay - what do you want to tell me 
about this

Figure A.2: Unterschiede zwischen Übersetzung (translation) und Interpretation
(“parallel speech”).

A.3 Trainieren von Sprachübersetzungsystemen

aus Audioaufnahmen Menschlicher Inter-

pretation

Das in Abschnitt A.2 beschriebene Anwendungsszenario beruht auf (a) signifikan-

ten Mengen von überwachten Trainingsdaten um ASR und MT Systeme trainieren

zu können und (b) der Tatsache, dass Sprachaufnahmen von menschlichen In-

terpretern parallel zu exakt denselben Sprachaufnahmen der Quellsprache zur

Verfügung stehen, für die Transkriptionen und Übersetzungen erzeugt werden
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sollen. Jedoch sind viele der realen Anwendungsszenarien für Sprachüberset-

zung von einem Mangel an überwachten Trainingsdaten gekennzeichnet. Auch

ist es für die meisten Anwendungsszenarien unwahrscheinlich anzunehmen, dass

Sprachübersetzung angewandt werden soll wenn bereits menschliche Interpre-

tation zur Verfügung steht. Aus diesem Grund entwickeln wir Methoden um

Sprachaufnahmen von “paralleler Sprache” (Audioaufnahmen des Sprecher in

der Quellsprache zusammen mit Audioaufnahmen des menschlichen Interpreters

in der Zielsprache) für das Trainieren der an der automatischen Sprachüberset-

zung beteiligten statistischen Modelle auszunutzen. Solche trainierten Modelle

ermöglichen letztendlich automatische Sprachübersetzung in Situationen in de-

nen keine menschlicher Interpreter zur Verfügung stehen.

A.3.1 Trainieren von Akustischen Modellen im Kontext

von Sitzungen des Europaparlaments

Obwohl enorme Mengen an Datenressourcen im Zusammenhang von Sitzungen

des Europaparlaments zur Verfügung stehen zeigt sich auch schon hier ein gewisser

Mangel an überwachten Trainingsdaten. Zwar stehen Unmengen an manuell

übersetzten Textdaten in der Form von Sitzungsprotokollen der vergangenen

Jahre in den verschiedenen Sprachen der Europäischen Union zur Verfügung,

jedoch gibt es nur begrenzte Mengen an wortgetreuen Transkriptionen die sich

für das Trainieren von akustischen Modellen eignen. Die manuell erstellten

Sitzungsprotokolle weichen zum Teil erheblich von wortgetreuen Transkriptionen

der im Parlament gehaltenen Reden ab. Zum einen werden die Sitzungsprotokolle

mit dem Ziel einer bestmöglichen Lesbarkeit erstellt, zum anderen ist es den Red-

nern erlaubt, die Sitzungsprotokolle im Nachhinein abzuändern. Des weiteren

werden keinerlei manuellen Transkriptionen/Protokolle der Simultanübersetzun-

gen im Parlament erstellt. Inbesondere bleibt hierdurch die Entwicklung von

Sprachübersetzungsystemen auf das Sprachenpaar Englisch/Spanisch begrenzt,

da es nur hierfür signifikante Mengen an wortgetreuen Transkription gibt1.

1Englische und spanische Transkriptionen wurden im Zusammenhang mit dem europäischen
Projeckt TC-STAR erstellt

131



A. KURZFASSUNG IN DEUTSCHER SPRACHE

Um die Entwicklung von automatischen Sprachübersetzungsystemen in all

den Sprachen der Europäischen Union zu unterstützen werden im Rahmen dieser

Dissertation Verfahren zum Trainieren von akustischen Modellen untersucht, die

lediglich mit einer “leichten” menschlichen Überwachung auskomment (‘light su-

pervision’). Das Training der akustichen Modelle basiert hierbei auf Audioauf-

nahmen von den für Europarlamentssitzungen live per Satellit übertragenen Au-

diospuren (siehe Abbildung A.1, oben rechts), sowie auf Informationen die aus

bereits vorhandenen Sitzungsprotokollen automatisch extrahiert werden können.

Leicht überwachtes Training von akustischen Modellen für die Sprache Li und

dazugehörigen Audioaufnahmen von Rednern im Parlament sowie von den Simul-

tanübersetzern wird durch eine Adaption des ASRi Sprachmodells mit Informa-

tionen erreicht, welche automatisch extrahiert werden aus (a) den Sitzungspro-

tokollen in der Sprache Li, und (b) aus der parallelen Sprache die sich in den

Audiokanälen für die Sprachen Lj 6=i finden lässt.

A.3.2 Trainieren von Übersetzungsmodellen mit Hilfe von

Interpretationen

Um parallele Sprache für das Trainieren von phrasen-basierten Übersetzungsmod-

ellen verwenden zu können ist es zunächst notwendig die Sprache des Sprech-

ers in der Quellsprache sowie die Sprache des Interpreters in der Zielsprache zu

transkribieren. Wir verwenden hierfür automatische Spracherkennungssysteme.

Die Hypothesen der Spracherkenner müssen dann aligniert werden, damit diese

in einem standard Trainingssetup für phrasen-basierte Übersetzungsmodelle ver-

wendet werden können. Hierfür entwickeln wir im Rahmen dieser Dissertation

spezielle Verfahren die auf paralleler Sprache von Simultanübersetzungen oder

konsekutiven Interpretationen zugeschnitten sind.

Da das Trainieren von Übersetzungsmodellen mit Hilfe von Interpretatio-

nen speziell für die Entwicklung von Sprachübersetzungsystemen im Kontext

von Sprachen mit nur wenigen Ressourcen von Interesse ist, untersuchen wir

dieses Verfahren zunächst auf den für die Sitzungen im Europaparlament zur
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Verfügung stehenden Englisch/spanischen Simultanübersetzungen. Dies erlaubt

es uns künstlich verschiedene Grade einer Ressourcenlimitation einzuführen und

deren Effekt auf Übersetzungsmodelle die aus paraller Sprache trainiert wur-

den zu untersuchen. Die auf diese Art und Weise entwickelten Methoden zum

Trainieren von Übersetzungsmodellen aus paraller Sprache werden erfolgreich im

Zusammenhang einer echten Ressourcenlimitation angewandt. Konkret werden

Übersetzungsmodellen aus der parallen Sprache von konsekutiven Interpretation-

sszenarien für das Sprachenpaar English/Pashto trainiert.

Unsere Experimente zeigen dass sich überraschend gute automatische Überset-

zungresultate mit aus paraller Sprache trainierten Übersetzungsmodellen erre-

ichen lassen. Im Zusammenhang von Englisch und spanischen Simultanüberset-

zungen zeigen wir zum Beispiel dass lediglich ein um den Faktor 10 grösserer

Trainingskorpus aus automatisch transkribierter paraller Sprache notwendig

ist, um dieselbe Übersetzungsleistung wie mit Modellen zu erzielen, die aus

parallen, manuell übersetzten Texten trainiert wurden. Des weiteren zeigen

unsere Experimente, dass sich parallele Sprache erfolgreich mit traditionellen

Trainingskorpora, d.h. manuell übersetztenTexten, kombinieren lässt um eine

gesteigerte Übersetzungsleistung zu erzielen.

A.3.3 Parallele Sprache als Trainingsressource für automa-

tische Sprachübersetzung

Die entwickelten Methoden zum (a) adaptieren von ASR (und MT) Systemen

mit Hilfe von paraller Sprache und (b) trainieren von akustischen Modellen und

Übersetzungsmodellen aus paralleler Sprache lassen sich nun kombinieren um den

enormen Aufwand an kostspieliger menschlicher Überwachung, welcher bisher für

das Trainieren von Sprachübersetzungsystemen notwendig war, zu reduzieren.

Abbildung A.3 zeigt unser System für das vollautomatische Extrahieren von

Trainingsdaten aus paralleler Sprache. Wir untersuchen dieses Setup im Zusam-

menhang von Sprachübersetzung zwischen Sprachenpaaren in denen einer der

beiden Sprachen durch einen Ressourcenmangel gekennzeichnet ist. Ziel ist es

zusätzliche Trainingsdaten aus paralleler Sprache zu extrahieren, so dass die
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statistischen Modelle, welche unter dem Ressourcenmangel leiden (in Abbildung

A.3 farblich gekennzeichnet), verbessert werden können.

 L
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 LM TM L
RR

 LMsegmented

audio
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L
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transcript translationresource-def. ASR L
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Figure A.3: Extrahieren von Trainingsdaten aus paralleler Sprache.

Die Kernkomponenten in dem Setup sind die beiden Spracherkennungssys-

teme. Es werden nur sehr kleine, auf wenigen Daten trainierte, anfängliche

Spracherkennungssysteme benötigt. Insbesonderen kann ebenfalls mit nur kleinen

anfänglichen maschinellen Übersetzungssystemen gearbeitet werden oder aber

auch ganz auf anfänglichen Übersetzungssysteme verzichtet werden. Die Hy-

pothesen der Spracherkennungssysteme, zusammen mit der Audioeingabe, lassen

sich zum unüberwachten Trainieren von akustischen Modellen nutzen. Die Hy-

pothesen sind desweiteren nützlich für das unüberwachte Trainieren von Sprach-

modellen. Mit Hilfe der Methoden zum Trainieren von Übersetzungsmodellen

aus paralleler Sprache lassen sich aus den Spracherkennerhypothesen letztendlich

auch Übersetzungsmodelle erstellen. Die parallele Information die in dem Sprach-

signal der jeweils anderen Sprache vorzufinden ist wird ausgenutzt, um die beiden

Spracherkennungssysteme für eine gesteigerte Erkennungsleistung zu adaptieren.
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Die gesteigerte Erkennungsleistung beeinflusst damit direkt die Qualität der auf

diese Art und Weise automatisch erstellten Trainingsdaten.
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