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Zusammenfassung

Intelligente Räume, die die sich in ihnen aufhaltenden Personen wahrnehmen
und intelligente, Mensch-zentrierte Dienste anbieten, sind ein aktives Forschungs-
feld. In diesem Kontext spielt das Tracken und Identifizieren von Personen (hier
als “Identity Tracking” bezeichnet) eine wichtige Rolle, da es fundamentales
kontextuelles Wissen liefert, welches für weitergehende Analysen des Verhal-
tens, der Aktivitäten oder der Interaktionen von Menschen verwendet werden
kann. Dabei wird das Ziel verfolgt, mehrere Identitäten simultan zu verfol-
gen, während sie sich in der intelligenten Umgebung bewegen, unter Nutzung
von unauffälligen Sensoren, wie z.B. weit entfernten Kameras und Mikrofonen.
Ferner soll dies in Alltagsszenarien erreicht werden, in Umgebungen wie z.B.
Besprechungsräume, Bürokomplexe, Wohnzimmer, usw., die wenige bzw. keine
Einschränkungen des Verhaltens beobachteter Personen bedingen.

Eins der größten Hindernisse zur Realisierung des “Identity Tracking” in solchen
realistischen Umgebungen ist, dass zuverlässige Merkmale zur eindeutigen Iden-
tifikation von Personen mit den oben genannten Sensoren nur schwer zu beob-
achten sind. Generell beobachtbare Merkmale, die mit dem groben Aussehen
einer Person zusammenhängen, wie die Farbe der Kleidung, die Körpergröße,
etc., sind oft nicht eindeutig oder ändern sich beträchtlich über die Zeit. Auf
der anderen Seite sind invariante, stark personenspezifische Merkmale, wie z.B.
solche, die durch Gesichts- oder Sprachidentifikation extrahiert werden, u.U.
schwer zu erfassen (z.B. nur wenn eine gute frontale Sicht auf das Gesicht ver-
fügbar ist, oder während die Person in einer Diskussion das Wort ergreift).

Der Lösungsansatz, der in dieser Arbeit verfolgt wird, besteht darin, aktiv
und opportunistisch Personen zu identifizieren wenn eindeutige Merkmale er-
fassbar sind, und identifizierte Personen zu tracken bis weitere Beobachtungen
möglich sind. Zwei Schwierigkeiten gilt es zu überwinden: Erstens sind einzelne
Beobachtungen, die durch Gesichts- oder Sprachidentifikation gewonnen werden
können oft unzuverlässig, da sie durch viele Störfaktoren beeinflusst werden.
Es ist deswegen nötig, mehrere einer Person zuzuordnende Merkmale zu akku-
mulieren, um eine höhere Konfidenz bei der Identifikation zu erzielen. Zweitens
kann nicht davon ausgegangen werden, dass das Detektieren und Tracken von
Personen fehlerfrei realisiert werden kann. Personentracks können vertauscht
werden, Tracks können verloren gehen, etc. Deswegen ist es notwendig, die
Identitäten von Personen fortlaufend zu verifizieren und ggf. neu zu ermit-
teln.

Obwohl in der Literatur bereits einige Ansätze vorgestellt wurden, die sich mit
dem Detektieren und Tracken von Personen in Sensornetzwerken, der Identifika-



tion von Gesichtern, der Sprachidentifikation, usw. befassen wurde noch kein
umfassender Ansatz vorgestellt, der alle mit dem “Identity Tracking” in natür-
lichen Umgebungen verbundenen Probleme effizient angeht. Bestehende An-
sätze befassen sich nur mit Teillösungen und sind nur in eingeschränkten Szena-
rien, für einzelne Benutzer oder für bestimmte Sensortypen oder -konfigurationen
anwendbar.

In dieser Arbeit wird eine neue Methodik für das multimodale Tracken und Iden-
tifizieren von mehreren Personen unter Nutzung entfernt platzierter Mikrofone
und Kameras vorgestellt. Im Gegensatz zu bestehenden Methoden integriert
sie alle Teillösungen, die für das uneingeschränkte, audiovisuelle “ID Tracking”
von mehreren Personen benötigt werden: Visuelles Tracking, akustische Quel-
lenlokalisierung, Gesichtsidentifikation, Sprachidentifikation, Datenassoziation,
Konfidenzbasierte Fusion, Erkennung unbekannter Personen, usw. Die Metho-
de integriert sowohl starke, personenspezifische Merkmale zur Identifikation und
Lokalisation, die für einzelne Personen nur spärlich über die Zeit erhältlich sind,
als auch schwächere Merkmale, die zwar weniger eindeutig und akkurat, dafür
aber regelmäßig, wenn nicht sogar kontinuierlich beobachtbar sind. Die Me-
thode fusioniert weiterhin die akustische und die visuelle Modalität, sowohl für
das Tracking als auch zur Identifikation, zur Erhöhung ihrer Flexibilität und
Robustheit. Sie behandelt die Teilaufgaben der Lokalisierung und der Identi-
fikation gleichwertig in einem probabilistischen Rahmenwerk, so dass Fehler in
der Identifikation durch das Tracking ausgeglichen werden, und umgekehrt.

Der vorgestellte Ansatz, der “Joint Identity Tracking” (JIT ) Filter, basiert auf
dem Bayes’schen Filtern einer Vielzahl beobachteter Mermalstypen. Die Merk-
malsextraktion wird mit “state-of-the-art” Algorithmen zur Detektion, Klas-
sifikation und Identifikation realisiert. Die Fusion wird in einem Partikelfil-
teransatz realisiert, der speziell für die Behandlung von unregelmäßig auftre-
tenden Beobachtungen, wie sie typischerweise in den angestrebten Szenarien
auftreten, erweitert wurde. Weiterhin wird eine Methodik eingeführt, bei der
die Identitäten aller bekannten Personen im Raum, und die Konfidenzen in
deren Identifikation, gemeinsam probabilistisch ermittelt werden. Die Leistung
des vorgestellten Verfahrens wurde systematisch evaluiert, auf einer umfangrei-
chen audiovisuellen Datenbank, der “CLEAR Interactive Seminar Database”,
die in 5 verschiedenen intelligenten Räumen aufgenommen wurde. Diese Daten-
bank wurde schon in zwei internationalen Workshops, den CLEAR Workshops
verwendet, um quantitative Benchmarks verschiedener Trackings- und Identi-
fikationsteilaufgaben durchzuführen. Anzumerken ist, dass die schon bei den
CLEAR Workshops verwendeten Metriken fürs Personentracking, sowie die hier
neu vorgestellten Metriken fürs “Identity Tracking” im Rahmen dieser Arbeit
entwickelt wurden.

Es wurde gezeigt, dass die Fusion verschiedener Modalitäten, selbst in schwieri-
gen, unkontrollierten Umgebungen, und mit entfernt platzierten Sensoren, sich



vorteilhaft auf die Gesamterkennungsqualität auswirkt. Dies obwohl akustische
und visuelle Beobachtungen, wie z.B. identifizierte Sprachsegmente und erkan-
nte Gesichter, in der Regel asynchron auftreten und u.U. mit sehr unterschied-
licher Regularität für verschiedene Personen extrahierbar sind. Eine Object
Tracking Accuracy (MOTA) von 77% und eine Identity Tracking Accuracy
(MITA) von 81% konnten für den schwierigen CLEAR Seminar Datensatz
erzielt werden.

Es wurden auch die Vorteile der zeitlichen Fusion von Identifikationsmerk-
malen gezeigt, auch wenn die Assoziation von Beobachtungen zu automatisch
generierten Personentracks unüberwacht und fehlerbehaftet geschieht. Durch
kontinuierliches Tracking konnte die Identifikationsgenauigkeit erhöht werden.
Gleichzeitig konnten durch die Wiedererkennung von Identitäten Fehler in der
Initialisierung von Tracks vermieden werden.

Außerdem wurden die Vorteile einer probabilistischen, einheitlichen Integration
aller Merkmale, lokalisierter sowie nicht-lokalisierter, akustischer sowie visueller,
Trackings- und identifikationsmerkmale, auf globaler Ebene demonstriert. Dies
ist in Hinsicht auf die erzielten Genauigkeiten, aber auch in Hinsicht auf das
Systemverhalten, für den Fall dass einzelne Vorverarbeitungskomponenten, Sen-
soren, oder Modalitäten ausfallen. Es wurde gezeigt, dass die Leistung des JIT
Filteransatzes graduell und relativ kontrolliert abfällt, so dass selbst bei ex-
tremen Ausfällen einzelner Merkmalsextraktionskomponenten, eine hohe Iden-
tity Tracking Accuracy beibehalten werden kann. So sinkt z.B. die MITA bei
Ausfall aller visuellen Detektoren von 81% auf 67%, und bei Totalausfall aller
Kameras auf 48%.

Der vorgestellte “ID Tracking” Ansatz wurde als echtzeitfähiges, verteiltes Sys-
tem in einem intelligenten Raum implementiert, bei dem zusätzlich zu fest fixier-
ten Kameras und Mikrofonen, schwenkbare, automatisch gesteuerte Kameras
verwendet wurden, um gezielte, aktive Gesichtserkennung zu betreiben. Dieses
System stellt die erste Implementierung dar, bei der visuelles Tracking, akus-
tische Quellenlokalisierung, Sprachsegmentierung und -identifikation, und ak-
tive Gesichtssuche und -identifikation für mehrere simultane Nutzer in Echtzeit
integriert wurden. Das System wurde mehrfach im Rahmen des Europäischen
Projekts CHIL demonstriert.





Abstract

Smart spaces and environments that perceive their occupants’ actions and of-
fer intelligent human-centered services are an active topic of research. In this
context, the tracking and identification of persons (referred to as “identity track-
ing”) plays an important role, as it provides fundamental contextual knowledge
upon which further analysis of activities or interactions can be performed. The
overall goal is to simultaneously keep track of multiple identities evolving in
the space using unobtrusive sensors, such as distantly placed cameras and mi-
crophones. Further, this is to be accomplished in everyday scenarios imposing
little or no constraint on the natural behavior of users, such as in meeting rooms,
office areas, living rooms, etc.

One of the main problems facing identity tracking is that in such realistic sce-
narios, reliable cues for person-specific identification are hard to obtain with
the sensors described above. Generally observable features based on a person’s
overall appearance, such as the color of clothing, body height, etc., can be am-
biguous (e.g. when all persons wear black) and may well vary considerably with
time or environmental conditions (e.g. taking off one’s jacket, sitting down).
On the other hand, more invariant and person-specific features such as those
gained by face or voice identification may only seldom be observable (such as
when a good view of the face is available or when the person takes his or her
turn speaking in a conversation).

The main idea followed in this thesis to overcome this problem is to actively and
opportunistically capture reliable identification cues for each occupant whenever
they become available and to keep track of identified persons until further ob-
servations can be made. This involves using focusable sensors such as steerable
cameras to obtain high resolution facial close-ups and microphone arrays to
determine the origin of speech. The difficulties to be dealt with are twofold:
Firstly, single observations gained through face or voice identification are inher-
ently noisy, being influenced by lighting conditions, low resolution, imperfect
facial alignment, environmental noise, crosstalk, etc. This implies that identifi-
cation cues need to be accumulated in time and multiple modalities should be
used to increase the accuracy of identification. Secondly, in realistic scenarios,
the tasks of automatically detecting and tracking persons in the first place can-
not be assumed solved with perfect accuracy. Persons may be missed, tracks
may be confused or lost. This means that person identities need to be correctly
recovered when observations again become available. While some amount of
work has been done on the field of tracking and identification using sensor net-
works with overlapping or even non-overlapping views, none of the approaches
so far tackle all the related problems efficiently. Most integrated approaches



rely on general appearance features, such as color, and build on the assumption
that features for identification are jointly available with features for tracking
with every observation made. While some approaches use person-specific fea-
tures such as provided by face identification, they still rely on the continuous
availability of high resolution face images in very restrictive setups. Approaches
that use acoustic features for identification typically assume that the number of
persons is known a priori, that speakers take frequent turns, and do not keep
track of their locations except in very restrictive setups. More importantly:
Almost all approaches found in the literature that target multiple users are lim-
ited to applications where the detection (and spatio-temporally local tracking)
of persons can be realized flawlessly and build on the results of this step for iden-
tification. A better approach would be to integrate identification and tracking
into one framework, such that errors in tracking are less detrimental to overall
accuracy.

In this thesis, a new methodology is introduced for the multimodal tracking
and identification of multiple persons by seeking and integrating reliable ID
cues whenever they become observable. The method opportunistically inte-
grates person-specific identification cues that can only sparsely be observed for
each person over time and keeps track of the location of identified persons while
ID cues are not available. It also fuses the acoustic and visual modalities to in-
crease its robustness and flexibility and probabilistically integrates tracking and
identification at the same level, such that errors made by one are compensated
by the other. Finally, it represents a general framework for ID-Tracking in that
it supports different types and configurations of sensors, different modalities
with varying reliability or availability, and is scalable to different rooms, sensor
setups, etc. The developed method is a generative approach based on Bayesian
filtering of high level tracking and ID cues. It is implemented as a particle filter
which approximates the probability density of the persons’ presence, locations
and identities by a set of samples or particles. The belief of the particle filter is
propagated in time and updated which each new observation concerning person
locations or identities. In this thesis, a new formulation is developed to rep-
resent the belief of the particle filter about the state of the world (the person
locations and identities), and to keep the state space tractable while avoiding
to rely on flawless detection and tracking results. Moreover, the formulation
allows the integration of sparsely available observations concerning identities
together with tracking-related observations, which arrive at a constant and high
framerate.

The performance of the developed system is evaluated in the context of small
meetings with several users taking place in “smart” rooms, and the effect of
using single or multiple modalities on identification accuracy is investigated.
Experiments have been made using a large multimodal database of recordings
captured in 5 different instrumented rooms. This database, which was used
in two international evaluations, the CLEAR evaluation workshops, allowed a



thorough, quantitative evaluation of the approach. Note that the accuracy met-
rics used in the CLEAR workshops themselves were developed in the course of
this thesis in an effort to provide a clear and generally applicable methodology
for the quantitative evaluation of multiple target tracking performance. Exper-
iments involving real-time identity tracking were also made with a distributed
implementation of the approach using several cameras and microphones in a
smart room. The results show that the integrated approach is robust to track-
ing failures and degrades gracefully with decreasing tracking accuracy. They
also show that the fusion of audio and visual modalities can help achieve no-
ticeable identity tracking accuracies, even in relatively uncontrolled situations
with multiple persons, occlusions, cross-talk, etc., and using available state-of
the art tracking, face and voice identification components.
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1 Introduction

1.1 Motivation

In the context of smart environments, the ability to track and identify persons
is a key factor, determining the scope and flexibility of analytical components
or intelligent services that can be provided. While some amount of work has
been done concerning the camera-based tracking of multiple users in a variety
of scenarios, technologies for acoustic and visual identification, such as face or
voice ID, are unfortunately still subjected to severe limitations when distantly
placed sensors have to be used. Because of this, reliable cues for identification
can be hard to obtain without user cooperation, especially when multiple users
are involved.

In this thesis, a novel technique is presented for the tracking and identification of
multiple persons in a smart environment using distantly placed audio-visual sen-
sors. The technique builds on the opportunistic integration of tracking as well as
face and voice identification cues, gained from several cameras and microphones,
whenever these cues can be captured with a sufficient degree of confidence. A
probabilistic model is used to keep track of identified persons and update the
belief in their identities whenever new observations can be made.

Possible application areas for identity tracking are:

• Meeting summarization

• Lecture browsing

• Smart reactive/proactive environments

• Surveillance and security

1.2 Challenges and Thesis Contributions

One of the main problems on the way to achieving unobtrusive multiple user
identity tracking is that in realistic scenarios, reliable cues for person identi-
fication are hard to obtain with conventional, distantly placed cameras and
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microphones. Even when the detection and tracking of persons can be man-
aged to a satisfactory extent, finding features that allow to identify them or
distinguish them from one another can be problematic.

First of all, generally observable features based on overall visual appearance,
such as the color of clothing, the direction and speed of movement, body height,
etc., are often ambiguous. In a business meeting in which most attendees wear
black suits, for example, the color of clothing will not be of much use for telling
them apart. As for the person height: When tracking with distant cameras, the
uncertainty associated with the estimation of the person height can well exceed
the often small difference in actual height, even assuming persons are standing
perfectly upright. General appearance features may also vary considerably with
time or environmental conditions. The perceived color of clothing can change
dramatically as a person walks through a scene, due to illumination conditions
or, in a much more pragmatic case e.g., when he or she takes off his or her
jacket. It can also be quite different from camera to camera, as differences in the
viewed scene or in the camera sensor itself don’t always allow the assumption of
color constancy. The person height or shape changes dramatically with posture,
for example when a person sits down or stands up. Likewise, features based on
speed and direction of motion build on the assumption of some form of regularity
underlying the dynamics of tracked objects. This is, however, rarely true for
humans. In fact, the converse often holds. A common scenario would show a
person standing or sitting still for long periods of time, suddenly starting to
move around, stop, for example at a door to let someone else in, turn around,
change direction to avoid an obstacle, and so forth.

Compared to general appearance features, with limited constancy and discrim-
inative power, face or voice identification features can be quite invariant and
person-specific. The problem here is that they may only seldom be observable.
A good view of a person’s face, e.g, may be hard to obtain in non-restrictive
scenarios where no fixed person location or general direction of attention can
be assumed. Although much progress has been made on handling the effects
of shadows, uneven illumination or even partial occlusions of the face, today’s
state of the art face identification techniques still specialize on frontal views with
relatively high resolutions [121]. It is easy to see why the application of such
techniques is not straightforward in the scenario, for example, of a small group
meeting observed using a camera mounted on one of the meeting room walls.
Many of the attendees’ faces are likely turned away from view, sometimes for
lengthy periods of time, as they are looking at each other, or even downward at
their notes, making no effort to explicitly look into the observing camera. Even
when a face is visible, it will often be of very low resolution, making an identifi-
cation difficult. Of course, these problems can be overcome e.g. by multiplying
the amount of observing cameras, placing cameras directly on the meeting table
in front of every participant, or even using a panoramic camera placed in the
middle of the table [22]. All these solutions, however, which aim at improving
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the coverage of interesting regions of the observed smart space, come at the cost
of more specialized and expensive installations or more restrictions on the free-
dom of the users. If face identification is to be performed in common meeting
rooms, lecture rooms, offices or living rooms, without large amounts of installed
sensors, predefined seating positions, etc., one has to expect that usable frontal
views of some of the observed persons’ faces can often not be captured.

The limitations of speaker identification in this context come from the nature
of human communication itself. When a small group of persons is engaged in
conversation, they usually take turns speaking, which automatically limits the
availability of acoustic features for any one participant. In extreme cases, a
participant in a small meeting may never say a word at all during the whole
session. Interestingly, the inverse problem may be even more severe: Crosstalk,
which occurs when several persons are speaking at the same time, still represents
a tough problem for state of the art speaker identification techniques. It requires
the use of special techniques, e.g. blind source separation , to separate the
overlapped speaker signals before analysis can be performed. Unfortunately,
crosstalk can be very common in natural scenarios with many users, as several
subgroups often form, each with their individual conversation threads. The
problem is made even more acute through the addition of other noise sources,
such as printers, beamer fans, clapping, laughter, and so forth, which all affect
the speech signal to be analyzed. The result is that a reliable identification for
a given user, based on his speech, may only be possible for a few rare moments
in time, if no dedicated hardware, such as lapel or head set microphones, is to
be used.

Apart from face or voice identification techniques, delivering strong person-
specific information, there is also the possibility of using specialized markers or
devices, such as RFID tags, which are to be worn by the users of the smart
environment. There is quite an amount of research in the domain of ubiquitous
computing, which deals with the localization and identification of multiple users
in wide areas using such wearable devices [39]. The advantage is that, compared
to other techniques, they deliver relatively constant, reliable and user-specific
information. The obvious downside is that users are required to wear these
devices in the first place, which may be perceived as intrusive, and in some
cases is just not practical or even feasible. An example would be a small seminar
organized on-the-fly, involving a presenter and few students. Here, the overhead
of keeping wearable devices ready for each possible participant and the intrusive
requirement to put them on at the start of the session can make this option much
less attractive than observing the scene with a few pre-installed and discretely
placed cameras and microphones.

The goal that is pursued here is to achieve unobtrusive identity tracking us-
ing distantly placed sensors, overcoming the difficulties posed by face and voice
identification in natural, multiple-user scenarios. The main idea followed is to
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opportunistically integrate reliable identification cues for each person whenever
they become available and to keep track of identified persons until further ob-
servations can be made.

The difficulties to be dealt with are twofold: Firstly, single observations gained
through face or voice identification are inherently noisy, being influenced by
lighting conditions, low resolution, imperfect facial detection and alignment,
environmental noise, crosstalk, etc. Therefore, to increase the accuracy of iden-
tification, single observations need to be accumulated for each individual and
their identity estimated using the sequence of observations made so far. In mul-
tiple user scenarios, in which individuals move around freely and change their
location frequently, this can only be accomplished by keeping track of their po-
sitions, such that each new observation can be correctly associated to the right
person. Another consequence is that multiple independent modalities should
be used whenever possible to alleviate the effects of missing or noisy observa-
tions. If a person’s face is not visible for longer periods of time, for example
because he or she is turned away from the camera, we have to rely on his or her
voice alone for identification. In this sense, the two modalities are not simply
fused to increase accuracies when both are available. Rather, they act in a truly
complementary fashion.

The second difficulty is that in realistic scenarios, the tasks of automatically
detecting and tracking persons in the first place cannot be assumed solved with
perfect accuracy. Even using state of the art systems, in natural indoor sce-
narios with a sufficient amount of clutter, persons may be not be accurately
detected, false tracks may be wrongfully initialized, tracks may get confused or
lost, etc. This means that person identities need to be correctly recovered when
observations again become available. This also means that considering tracking
information itself as inherently noisy can help avoid certain types of errors. An
example scenario is one where three different voices have been reliably identi-
fied in the smart space, although only one person track could be initialized. In
this case, using the information gained from voice identification to estimate the
number of persons present leads to the correct result. In many cases, however,
the converse will be true, such that all sources of information, person detection
and tracking, visual and acoustic identification need to be carefully balanced.

While some amount of work has been done on the fields of audio-visual tracking
and identification using sensor networks, none of the approaches so far tackle
all the related problems efficiently. Most integrated approaches rely on general
appearance features, such as color (or on RFID tags and other worn sensors), and
build on the assumption that features for identification are jointly available with
features for tracking with every observation made. Moreover, approaches that
attempt biometric identification of multiple users in smart spaces, using faces
or voices, often neglect the difficult problems of data association and temporal
fusion of identification cues. More importantly: Almost all approaches found in
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the literature that target multiple user tracking and identification are limited
to applications where the detection and tracking of persons can be realized
flawlessly and build on the results of this step for identification.

In this thesis, a novel method is presented for the multimodal tracking and iden-
tification of multiple persons by fusing reliable tracking and ID cues whenever
they become available. The method:

• Opportunistically integrates person-specific identification cues that can
only sparsely be observed for each person over time

• Keeps track of the locations of multiple identified persons while ID cues
are not available

• Combines the acoustic and visual modalities to increase its robustness and
flexibility

• Does not rely on accurate detection and tracking, but rather considers
both a person’s location and identity as attributes to be estimated.

The developed method is a non-parametric approach based on sequential Baye-
sian filtering of various types of tracking and ID cues. It estimates the probabil-
ity densities of a person’s presence, location and identity based on the sequence
of observations made. The proposed approach has been tested on a large anno-
tated audio-visual corpus, the CLEAR Seminar Database [104; 103], comprising
a total of 200 minutes from 20 different recorded small meetings. This database,
captured in smart rooms using distantly placed sensors, features visual streams
from several cameras on which tracking and face identification can be performed,
as well as audio streams from several microphone arrays for speaker tracking
and identification.

The main contributions of this work are the following:

• It presents a novel framework for the simultaneous tracking and identifi-
cation of multiple users in realistic, unconstrained and uncooperative sce-
narios using only distantly placed sensors. This means that no dedicated
cameras on meeting tables, no close talking microphones, no restrictive
setups and no person markers are used. The associated problems of ob-
servability and data association make this a very difficult task which, to
date, has not been tackled to this extent in the literature.

• It presents a method for the opportunistic fusion of observations with vari-
able availability, specificity and accuracy. General appearance features
such as color and upper body shape, as well as more specific features such
as those gained through face and voice identification are integrated in a
general, theoretically sound framework. Most related work on multimodal
fusion assumes observations come in a synchronous way, and are continu-
ously available.
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• It represents the first integrated approach to combine acoustic localization,
visual tracking, face identification and distant speaker identification for
multiple persons in an open set identification scenario. While a lot of
research has been done on the individual components, only partial work
was made on integration, and no fully integrated system, tackling all the
associated problems has been proposed.

• It is a robust, scalable and real-time capable method, which degrades
gracefully with individual modality failure. It is generalizable to different
types of sensors, sensor configurations, smart space sizes, and so forth.

Additional contribution are as follows:

• The presented method combines intelligent fusion with active seeking tech-
niques through the use of automatically steered active cameras

• It is the first to effectively combine acoustic speaker tracking and identi-
fication for multiple persons using only far-field microphones.

• It presents a novel set of metrics for the evaluation of multiple object track-
ing performance. These Multiple Object Tracking (MOT) metrics provide
a clear and generally applicable methodology for quantitative evaluations
on large datasets and were already used in several international evalua-
tions, as well as in a growing number of independent publications.

1.3 Thesis Overview

In the following chapter, an overview of the related work on audio-visual person
tracking, audio-visual identification, identity tracking and performance evalua-
tion is given. Chapter 3 then describes the algorithms and classifiers used to
extract the low-level and high-level features used as inputs for the probabilis-
tic identity tracking. Chapter 4 presents the proposed joint identity tracking
algorithm, the JIT filter, and Chapter 5 explains the newly proposed metrics
used for its evaluation. In Chapter 6, the proposed identity tracking approach is
thoroughly evaluated, as well as compared to a baseline system which performs
fusion in a sequential way, by building on the results of a tracking step to infer
identities. A real-time capable implementation of the JIT filter approach is also
briefly presented. Finally, Chapter 7 gives a summary and an outlook to future
directions of research.
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2 Related Work

This section presents the state-of-the-art in audio-visual person tracking and
identification for smart environments. First, an overview of multi-sensor multi-
person tracking techniques is given. Then, current approaches for visual face
identification, acoustic speaker identification, as well as techniques for their
multimodal fusion are presented. An overview is given on the field of “iden-
tity tracking” for smart environments, i.e. of techniques that combine visual or
acoustic tracking and identification components in order to unobtrusively iden-
tify and keep track of variable amounts of persons. Finally, as one of the main
contributions of this work is the design and evaluation of novel metrics for iden-
tity tracking performance, a short review of the field of tracking performance
evaluation is also given.

2.1 Multi-Sensor Audio-Visual Person
Tracking

The detection and tracking of persons in indoor environments has attracted an
increasing amount of attention in the fields of computer vision and signal pro-
cessing. One of the most influential early works was the PFinder by Wren et
al. [114], but many more approaches were developed in the past decade, using
a wide range of sensors end techniques, for indoor and relatively constrained
outdoor environments [79; 45; 33; 34; 32; 71; 30; 51; 61; 120]. While earlier
techniques were designed to track at most one person in a static, controlled en-
vironment, theoretical and algorithmic advances, as well as the constant increase
in processing performance, have lead to the emergence of techniques for the au-
tomatic detection and simultaneous tracking of a variable amount of persons in
relatively cluttered scenes, through occlusion, etc.

While purely vision-based techniques have been explored for quite some time,
recently approaches that combine acoustic source localization and visual track-
ing have been proposed [123; 111; 25; 27; 85; 21; 40; 57]. Apart from increasing
the robustness of visual trackers in the cases the target person is speaking,
audio-visual localization techniques offer the advantage of exploiting the com-
plementary nature of both modalities, such that tracking can be pursued, e.g.,
using only sound while a person is visually occluded.
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One of the earliest approaches was proposed by Zotkin et al. [123]. The au-
thors use a pair of steerable PTZ cameras and a pair of microphone arrays
to audio-visually track alternating speakers in a frontal setup. They present
a probabilistic framework for the integration of modalities, based on particle
filters. It integrates skin color features, face detections, and Time Delays of
Arrival (TDoAs) from the microphone pairs. It implements a simple occlu-
sion handling mechanism to deal with partial measurements due to occlusion of
the tracked object from one of the cameras, or to missing TDOA estimations
due to noisy or weak audio channels. Though the scene may be populated by
multiple users, the approach performs tracking for one person at a time and
automatically switches to the last active speaker. The authors show that by
integrating both modalities into one probabilistic framework, they can increase
the accuracy of person tracks, bridge gaps in individual modality observations,
and detect alternating speakers, realizing a speaker diarization based on known
person locations.

Similarly, Vermaak et al. [111] also propose the use of particle filters for audio-
visual tracking of speakers in a video telephony scenario. They use one static
camera to extract the silhouette of users’ heads and shoulders and a pair of
omnidirectional microphones for speaker localization. Although their setup is
rather constrained, it allows for multiple user interaction, as tracking automat-
ically switches to the current active speaker. The state of the tracked target
is modeled in each particle by a configuration comprising the image location
and an affine transformation for the head-outline template. The authors note
the advantages of of audio-visual tracking, as tracks that are lost due to fast
movement or occlusion in the visual case are recovered by the audio modality.
The system is still limited to tracking one user at a time, though. Generally,
while single camera setups can be useful for videoconferencing applications, etc.,
multiperson settings, as occur in seminars or meetings require the use of mul-
tiple cameras and microphones to cover an entire observation space (the table,
entrance area, whiteboards, etc.)

Checka et al. [25] present a system that combines multiple audio and visual
sources to track multiple persons in a cluttered scene. In contrast to the pre-
vious approaches, their system uses distantly placed cameras and microphones
observing a large space, a setup which is much closer to the concept of smart
perceptive spaces followed here. Again, a particle filter approach is chosen,
with the state space including the number of persons present, their location,
and whether each person is talking. They use a visual whole body appearance
model based on foreground segmentation and an acoustic model based on the
short time Fourier transforms of the microphone audio signals. The audio-visual
observation likelihood is obtained by multiplying individual likelihoods. They
evaluate their system on short audio-visual sequences involving two to three per-
sons walking on predefined paths with little occlusion, with strict turn-taking
dialogs, and with manual initialization. They obtain good results for track-
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ing and speaker determination and again show the robustness and flexibility of
particle filters in the presence of noise.

In [57], Khalidov et al. present a system for the audio-visual tracking of speak-
ers in meetings, using a human-like perceptual setup. A stereo camera system
and a binaural microphone array are placed on the table, observing a group
of 2-3 participants. The 3D locations and speech activity of participants are
found by clustering of the audio-visual observations, and by an Expectation-
Maximization-like inference mechanism. Here, the system builds on the comple-
mentary nature of the audio and visual modalities to gather sufficient clustering
evidence and utilizes the Bayesian Information Criterion (BIC) to determine
the number of persons present. The limitation of such systems, of course, is the
frontal nature of the sensor setup, which limits the amount and freedom of users
that can be observed.

Gatica-Perez et al. present a much more elaborate setup in [40]. Their ob-
servation space is composed of 3 uncalibrated cameras offering frontal views
of participants seated around a meeting table and of the presentation area.
It also comprises an 8-element circular microphone array. Again, visual and
acoustic observation models are defined using head ellipsoid model fitting, skin
color blobs and the Generalized Cross Correlation (GCC) between signals from
microphone pairs. The observation likelihood is defined as the product of indi-
vidual model likelihoods. Filtering of speaker positions is done using the Markov
Chain Monte Carlo (MCMC) technique. As in the particle filtering technique,
the target state (person locations and speaker activity) is approximated by a
set of samples. In contrast to standard particle filtering, though, the MCMC
sampling technique allows to jointly track several objects in a tractable manner,
while preserving the rigorous joint state-space formulation. The determination
of the number of person present in a camera image is not, as e.g. in [25], made
in the MCMC framework, but in a separate process based on skin color blobs
and creation and deletion regions where new tracks may be initialized. Further,
the approach uses non-overlapping frontal views and tracks only the smart space
occupants which are in the field of view of a camera.

Another dimension in tracking is reached in approaches by Nickel et al. [85],
Brunelli et al. [21], Lanz et al. [63], Bernardin et al. [4] and Ferrer et al. [24]. In
these approaches, speakers in a smart seminar room are tracked using a variety
of audio-visual features such as foreground support, color, shape and appear-
ance, edges, and audio signal correlations from a number of distantly placed
cameras and microphone arrays. They build on the particle filter formulation
to flexibly integrate various types of observations and effectively track in the
presence of noise and clutter. While [85] and [21] are designed for the tracking
of single persons (the seminar presenters) through noise and clutter in the form
of other moving persons in the audience, changing lighting conditions, reverber-
ations, etc., the techniques presented in [63; 19; 24] are able to simultaneously

19



track several users, initialize new tracks automatically and adapt person models
on-the-fly. The difficulty in multi-person tracking under these conditions is that
heavy occlusions in the camera views as well as noise and cross-talk are frequent.
Persons need to be tracked as they move freely around the smart space, sit at the
table, take turns speaking, laugh, pass near each other, etc. A special probabilis-
tic formulation for handling of occlusions under these conditions and for jointly
managing several persons while keeping the state space tractable is presented
in [62; 63]. There, it is shown that specifically modeling the interactions and
occlusions between tracks can greatly improve performance. Although [63; 24]
are visual systems, which integrate the audio features in a post-processing step
to infer the active speaker, their extension to include acoustic features in the
probabilistic estimation is straightforward. These systems were evaluated in the
international CLEAR evaluations [106; 105] on large datasets of realistic record-
ings featuring small interactive meetings. The results presented show that in
the case of single person tracking, in those scenarios, very high accuracies can be
achieved. The fully unconstrained multi-person scenario, in contrast, still poses
great challenges to tracking techniques, though respectable accuracies can al-
ready be reached. These results, as well as a further analysis of the accuracies
obtained in the CLEAR person tracking tasks, show that for such realistic and
challenging scenarios, the flawless detection and tracking of multiple occupants
is still not a realistic prerequisite.

The above presented approaches, just as many others, exemplify why the par-
ticle filter framework has become the method of choice for tracking multiple
targets under extreme conditions. Since the introduction of the Condensation
algorithm by Isard and Blake [52], particle filters have gained a steady increase
in popularity and many variations have been proposed, for application in var-
ious fields [71; 72; 108; 78; 112; 62; 75; 86], to cite just very few examples.
Compared to other sequential Bayesian estimation techniques, the advantage of
particle filters lies in their flexibility with respect to the types and numbers of
features they support, their robustness in the presence of noise, and in the non-
parametric fashion in which they represent the belief about the target state,
which makes them applicable for highly non-linear, non-Gaussian estimation
problems.

2.2 Face Identification, Speaker Identification
and Multimodal Fusion

Zhao et al., in [121] give a comprehensive review of research in the domain of face
recognition. They summarize the face identification task as made up of three
main steps: 1) Face detection and rough normalization, 2) Facial feature ex-
traction and accurate normalization, 3) Identification and/or verification. This
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division also reflects the main problem associated with face identification in
natural, smart environments, when explicit user cooperation can not always be
expected and sensor placement can not always guarantee a good view of faces:
The first two steps in classical face identification become a major challenge for
which no satisfactory solution has yet been proposed. Indeed, while applica-
tions are quite varied, the vast majority of face recognition research and the
major evaluation efforts in this domain have focused on scenarios where faces
are recorded at relatively close distance. Examples are the Face Recognition
Grand Challenge [89], the FERET database [89] or the AR database [73]. For
these conditions, many approaches have been presented, to tackle the still dif-
ficult problems of uneven illumination [10; 42; 110; 26], pose changes [42; 29],
occlusion [74; 38; 115], etc.

In the case of surveillance or smart space applications, the size of faces that
can be observed plays a major role. Face resolutions are typically much lower
(down to 15 × 15 pixels, or less) than in close-up identification tasks, such as
biometric verification, HCI, or videoconferencing (typical sizes are, e.g., 64× 64
or 128 × 128 pixels). At low resolutions, facial features can no longer be accu-
rately determined, such that the alignment step for face identification becomes
difficult. Even the detection itself can pose a problem, especially when unco-
operative users, shadows, low contrasts, partial occlusions by the hands, etc,
render the task more difficult. Standard face detection algorithms, e.g. the
approach proposed by Viola and Jones [113] can typically detect frontal faces
at sizes down to of 24x24 pixels. Beyond this, special techniques have to be
used, involving a combination of features and steps [83]. Finally, the identifica-
tion step itself becomes more difficult, as fewer features can be observed to help
discriminate between persons.

As already proposed in [121], a method to deal with these problems is the use of
video. Using a sequence of observations from, e.g., tracked faces helps alleviate
the detection problem. It also poses an advantage for recognition, as shown
e.g. by Stallkamp et al. in [98]. Here, recognition is performed in an unaware
fashion for individuals entering through the door of a smart space. Features are
extracted through a combination of face detection, skin color-based tracking,
and eye detection and tracking, such that the identification decision is made at
sequence level using all available observations. Frame level identification scores
are summed up using both a simple sum rule and various weighted summa-
tion techniques, based on frame level ID confidences. The authors show that
the temporal fusion of scores in video-based identification brings a dramatic
improvement, compared to frame-based identification.

Methods that build on video-based fusion at extremely low resolutions have
also recently been proposed [101; 20; 68; 36]. In [101], Stergiou at al. present a
system that combines PCA-based nearest neighbor classification, subclass LDA-
based classification and Bayesian face recognition [80]. The observations for
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classification come from four distant video streams of a smart meeting space,
where faces of target persons have been manually labeled beforehand. No facial
feature detection or alignment is performed. Faces are resized to 32× 48 pixels
and fed to the different classifiers. Identification is made at the sequence level
by fusing first in the temporal domain and across cameras for each classifier type
individually, and then at the classifier level, using confidence scores derived from
frame-level identifications. Similarly, Ekenel et al. in [36] present a system for
the temporal fusion of frame level face identifications across cameras. In contrast
to [101], they utilize a classification technique based on the local modeling of
appearance features. Local appearance modeling has shown to be relatively
robust to illumination changes, occlusion, etc, which makes it well suited for
applications in realistic environments. The authors downscale cropped faces
to a size of 20 × 20 pixels, subdivide the resulting patch into a regular grid
of blocks, and locally extract normalized DCT (Discrete Cosine Transform)
coefficients for each block. The classification is made using a nearest neighbor
classifier, with identification confidences, based on the difference between the
two nearest neighbors, used in temporal fusion. In all these cases, the confidence-
based temporal fusion of identification scores has brought great improvements
in performance. It was also shown that recognition accuracies increase with the
length of the observed sequence. Overall, recognition accuracies of over 90%
could be reached in a closed set task with 28 subjects, even at extremely low
resolutions. One must remember, though, that the task of detecting the faces
automatically was not tackled in any of these approaches, and all accuracies are
computed for the case of manually annotated face bounding boxes only.

The automatic identification of speakers based on their voice can be a key fea-
ture of smart environments, and a complementary modality to face identifica-
tion. The advantage of the audio modality is the larger coverage offered, in
contrast to video cameras, as there is no requirement for sensors and observed
subjects to face each other for the extraction of features. However, as for the
visual modality, the difficulty when identifying speakers in an uncooperative,
uncontrolled setting, is that far-field sensors need to be used, such that noise,
cross-talk, room reverberations, low signal-to-noise ratios, etc., make the identi-
fication task incomparably harder. This is in comparison to using close talking
or lapel microphones, which are worn by each room occupant. In the latter case,
both segmentation and identification of a speaker’s voice are easier to achieve.
Usual state-of-the art techniques perform an analysis in the frequency domain,
using features such as Mel Frequency Cepstral Coefficients (MFCCs) of Percep-
tual Linear Predictive (PLP) features in combination with Gaussian Mixture
Model (GMM) classifiers [91].

In the case of far-field speaker recognition for multiple persons, more special-
ized techniques must be employed. The segmentation of speech itself becomes
a larger issue. The task for voice identification becomes that of: 1) Determin-
ing segments of speech as opposed to noise, non-speech sounds or silence, 2)

22



dividing the speech segments into portions belonging to different speakers and
3) identifying the speakers in each segment. The complete process of detect-
ing speaker turns and assigning speech segments to speakers is referred to as
speaker diarization. Performing diarization in a smart environment (as opposed
to telephone channels, for example) offers the advantage that information about
the source of speech, derived through microphone array analysis, can help in the
process of segmenting speech or, through beamforming, to enhance the quality
of the audio signal used in identification. Several methods have been recently
proposed to perform far-field diarization and identification, partly making use
of microphone array localization [92; 13; 17; 88; 36; 69].

In [13], Ajmera et al. present a system that performs speaker segmentation
and clustering without prior knowledge about the number of speakers or their
identities. The algorithm works by first oversegmenting the audio data and
training speaker models for each segment. MFCC as well as LPCC (Linear
Predictive Cepstral Coding) features are extracted from each segment and used
to train individual GMMs. The authors then cluster the trained models and
segments using a modified form of the Bayesian Information Criterion (BIC),
which automatically determines the optimal number of clusters without the need
for any parameter tuning. They present results on the three benchmark datasets
used by NIST (The U.S. National Institute of Standards and Technology) which
show the effectiveness of the approach. The merit of the clustering approach is
that it performs segmentation and speaker association jointly, on difficult and
noisy data. The downside, however, is that it is not a run-on technique. It
performs batch processing of entire audio segments and is therefore not suited
for realtime systems. Another point is, of course, that the true identity of
speakers is not inferred, i.e. since no comparison is made to pre-trained speaker
models, only a separation of the data is achieved and no direct association
to persons is made. In [12], they extend their approach to include also the
information on the time delays of arrival of speech for microphone array pairs
in a meeting situation. The TDoAs are included alongside the MFCC features
in the agglomerative clustering process. The authors show that the localization
information derived from microphone array analysis can substantially improve
the diarization performance.

More recently, Pardo et al. in [88] propose a clustering method similar to that
of Ajmera et al., combining acoustic MFCC-based features with TDoAs from
multiple distant microphones to perform speaker diarization in meeting scenar-
ios. Additionally, the authors use a beamforming technique based on computed
TDoAs to enhance the speech signal before speech/non-speech segmentation
and clustering is performed. Experiments were made on the NIST RT02-RT06
datasets (RT stands for Rich Transcription and is a series of evaluations hosted
by NIST in the acoustic speech recognition and diarization domains). They
show that beamforming, as well as the inclusion of localization information im-
prove diarization performance. They also show that diarization based solely on
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time delay information is also feasible, although results stay below those reached
with fusion. For these experiments, the assumption is made that speaker loca-
tions do not change, as this would disrupt the clustering. This is, of course
a limitation and the authors acknowledge that the general case could involve
the tracking of exact speaker locations. This was not be done, though, as the
information about relative microphone array positions was not available.

The above mentioned approaches realize the detection and segmentation of
acoustic signals, and the association to speakers using multiple sources and
without prior knowledge of the number of present speakers. However, they do
not address the problem of actually identifying the actual speakers, i.e. deter-
mining which of a set of known persons, if any, the speech should be attributed
to. The problem in the identification case is that a correct mapping of segments
to speakers has to be realized e.g. across recordings sessions, though recording
conditions, such as room characteristics, etc. may change. This is typically
realized by training in a set of models (usually GMMs) for known speakers be-
forehand, which will be used to classify extracted speech segments, and applying
normalization and warping techniques to alleviate the effects of changing signal
characteristics. These may be observed in the far-field identification case due to
differing sensors with differing speaker distances, changes in speaker locations,
in room characteristics, such as reverberation, etc.

Barras et al., Luque et al. and Ekenel et al. in [17; 69; 36] present systems
for the identification of speakers in a small meeting scenario using distributed
microphone arrays. MFCC and PLP features, as well as modifications thereof
were used in conjunction with GMM classifiers trained using Expectation Max-
imization. The experiments were made on presegmented audio segments of
varying lenghth for 28 speakers in a closed set identification task. Although
silence, noise, and a small amount of cross talk could be included in the indi-
vidual segments, this means that diarization, i.e. the association of segments to
speakers could be achieved simply by performing sequence level identification for
whole segments using the speaker-dependent models. The results presented in
[17] show that beamforming improves recognition accuracies, compared to single
microphone analysis. The results from the other two approaches, however, show
that a decision-level fusion of identification results from multiple microphones
bring an even greater gain in performance. Finally, all approaches demonstrate
that temporal fusion greatly improves identification performance, with accura-
cies increasing proportionally to the length of examined segments. One must
note though, that this form of temporal fusion can be used most effectively in
cases where speech segments can be unequivocally assigned to specific speakers
(i.e. no diarization needs to be performed). In the opposite case, the use of
lengthy speech segments for identification may actually lead to more errors, as
the chances of accidentally including speech from multiple speakers in the same
segment rise.
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For both the acoustic and the visual modality, state-of-the-art approaches have
shown that a temporal fusion of observations, and fusion of several sensory
sources can lead to improved identification accuracies. In [101; 20; 68; 36], it
is shown that this can also be true of the fusion across modalities, although
this is not always the case. Especially when few observations are available, such
that accuracies for single modalities stay relatively low, a decision-level fusion of
audio-visual results, e.g. based on confidence weights as proposed in [101; 36],
improves accuracies. In cases a single modality dominates the results, however,
for example as the number of observations increases, multimodal fusion can lead
to a degradation in performance. In [68], the problem is circumvented by pre-
defining weighing factors for different observation lengths, based on enrollment
data. This solution, however, is highly dependent on the data used, and cannot
be applied in the general case.

Most of the work on multimodal fusion for identification is made in the domain
of biometric identification or verification where, among others, the problems of
detecting and extracting features, and associating observations to persons are
often implicitly solved beforehand. In biometric verification, one can usually
assume the cooperation of users, such that no data association is necessary and
features from all modalities under consideration can be extracted simultane-
ously. One early example is the approach presented by Choudhury et al. in
[28], where the identities of users operating an ATM machine are verified audio-
visually. Some amount of research has been done in the domain of biometric
identification to determine optimal criteria for multimodal fusion [59; 93; 53]. In
[93; 53], the authors show that a decision level fusion of modality results, based
on confidence scores boosts recognition performance in the general case. Scores
for separate modalities are normalized using min-max normalization, Z-scoring,
Tanh estimators, sigmoid functions, and so forth. The combination of scores
using several methods, such as the sum rule, product rule, maximum rule, etc.,
is investigated for the open set identification case. The authors note that even
after normalization, the scores for genuine and impostor classes are not normally
distributed. In fact, the distributions may differ significantly from one modality
to the next. Due to this, score-based likelihoods should not be used directly in
modality fusion. They propose a Parzen-window estimation method to convert
matching scores into posterior probabilities for the genuine and impostor classes,
based on training data. The resulting probabilities are values in the range [0, 1]
and can be treated as normalized (or warped) scores for fusion. The authors
note that the min-max, Z-score, and Tanh normalization techniques followed by
the sum rule result in the best recognition performance.

Another example of multimodal fusion using score normalization and confidence
weighting is presented in [43]. Here, the confidence scores are used both for
temporal and for modality weighting in an open set identification scenario. The
scenario involves single users engaged in a dialog with a humanoid robot sys-
tem, and the identification is made on sequences of observations using face and
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voice identification. Here again, min-max score normalization is applied and
confidence values are computed by considering the n-best list of scores for the
highest ranking candidate identities. The authors investigate several methods
for the estimation of confidence values, including the distance between the 2
best scores for single ID trials, the agreement of best hypotheses through time
for separate modalities, etc. Their results show that confidence based scoring,
both temporal and multimodal, significantly improves the overall recognition
rate, and that confidence values can further be used to realize open set identifi-
cation using classifiers trained only for the closed set case. As with most other
multimodal fusion approaches, though, the presented system is designed to op-
erate in controlled conditions, in a restrictive setup involving at most one user
and requiring explicit cooperation or interaction (such as the use of a dedicated
microphone, facing the robot head, etc).

2.3 Identity Tracking

As presented in the previous sections, a large amount of research was made
on the individual components usable for open set multiple identity tracking:
Visual, acoustic and audio-visual tracking, speaker diarization, face recognition,
voice recognition, multimodal fusion of classifiers, etc. Not much work was done
so far, though, on methods that combine all of these components in order to
realize the open set identification and tracking of multiple users in unconstrained
environments. This section now presents approaches that follow this higher level
goal and solve the associated problems to some extent.

One of the earlier attempts is presented by Yang et al. in [116]. The authors
present individual components for person and face tracking, face identification
and voice identification and discuss a framework for their integration with the
goal of realizing automatic meeting summaries. The integration is, however, still
made conceptually on a frame level, assuming most cues for fusion are accessible
at every point in time, and does not consider the multiple problems posed by
data association, temporal and multimodal fusion. Further, the observing sen-
sors are assumed placed on the meeting table in a frontal setup, which restricts
the freedom of users. Other approaches that propose conceptual frameworks for
global tracking and identification are presented e.g. by Rudnicky et al. [94] and
Stanford et al. [99]. More recently, Menon et al., in [76], present an identifica-
tion framework for smart indoor environments, based on tracking and face and
voice identification. Only an abstract framework is presented, though, without
actual technical realization or evaluation. The interesting point about their ap-
proach is that the tracking of identities is to be realized based on zones in a
wide, distributed smart space comprised of several rooms. This is in contrast
to most smart environment research involving audio-visual processing, where
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the tracking attempts to estimate actual 3D locations in more restrictive, single
room setups.

Recognizing the difficulties of face recognition using distant cameras, Hampapur
et al. [44] perform 2D and 3D blob tracking on images from two fixed cameras
and steer pan-tilt-zoomable (PTZ) cameras to zoom in on faces. They locate
head regions by analyzing the silhouettes of tracked persons and discuss several
strategies for target selection and active camera assignment to capture good
facial views. They do not, however, address the problem of recognizing users in
the closeup views or of fusing identification results over time.

Similarly, Stillman et al. [107] utilize visual tracking in fixed camera views and
acoustic source localization from microphone arrays to steer active cameras and
perform face detection and recognition of multiple users. They do not, however,
offer a framework for fusion of the identification results or for identity tracking
through time.

You et al., in [118] present a smart interaction environment where multiple
users interact with large displays. A fixed view allows the tracking of multiple
users in front of the display. Frontal views of faces are automatically identified
and associated to user tracks. The authors present no method for identification
confidence estimation or temporal fusion, though. Also, they rely on the flawless
identification results to adapt color models for tracking and on flawless tracking
results to keep identities associated to persons in time. In realistic, natural
scenarios, however, both these prerequisites can seldom be met.

In [50], Huang et al. present a smart room setup, consisting of a combination of
an omnidirectional camera and distributed arrays of PTZ (pan-tilt-zoom) cam-
eras. Persons are tracked using a simple foreground blob analysis in the view
of the omnidirectional camera placed on the table, PTZ cameras are steered at
person locations, faces in individual views are tracked and identified and score-
based temporal fusion is performed. Identification is only performed, though,
for face tracks in single camera views, and identities are not kept as the views
change. Also, no framework for data association and global multi-person iden-
tification is presented.

In [77], Mikic et al. present an identity tracking system for smart meeting
rooms. It performs blob-based 3D tracking of room occupants in fixed camera
views and triangulates 3D person positions. It also performs face identification
and voice identification for person entering the space. When new persons are
detected by the tracking algorithm, the best view for observation of the face is
determined and a snapshot is taken. The user is also required to speak at the
time of face capture such that a combination of face and voice identification
results can be performed. The identities of persons are kept through continu-
ous tracking in the smart space, with subsequent speech identifications serving
only to determine the active speaker. While the system combines tracking and
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multimodal identification, it does not perform temporal fusion of continuous ob-
servations and cannot recover from tracking mistakes. Also, constraints in the
way users behave when entering the smart space (facing the direction of walk,
speaking) reduce the naturalness of the scenario and limit the applicability of
the system.

In [22], Busso et al. present a tracking and identification framework for a similar
scenario. Their approach uses several corner cameras and an omnidirectional
camera on the table to track persons and faces. A 16-channel microphone ar-
ray is also used for source localization, beamforming and speaker identification.
While the system keeps continuous visual track of users, it does not, however
keep track of their identities, as the audio and visual information is used only to
determine the identity of the currently active speaker. The result is a speaker
diarization system, which incorporates visual information to improve accuracies
and infer exact person locations. Temporal fusion of identification results as-
sociated to person tracks, confidence estimation or multimodal fusion are not
performed.

Similarly to the approach by Mikic et al, but much more recently, Salah et al.,
in [95] present a system for the tracking and identification of multiple users in
a smart environment. They perform audio-visual particle filter based person
tracking, source localization, speech segmentation and identification, and face
identification in close up views of the entrance door. They evaluate their method
on two recorded audio-visual sequences and show the advantages of multimodal
fusion for keeping track of identified persons in time, compared to visual analysis
alone. The approach does not, however, perform temporal fusion for acoustic
or visual identification, nor confidence-based multimodal fusion. Facial identi-
fication is performed for each occupant using a single captured face shot at the
room entrance. Similar to [77; 118], the system relies on the perfect identifi-
cation of users upon entrance to build person specific appearance models for
tracking, and relies on flawless tracking to keep correct identities associated to
users in time.

All the approaches presented above tackle the problem of tracking and iden-
tifying multiple users in smart environments. While many of the necessary
components are realized to some degree in each approach, none them jointly
handle all the associated problems of audio-visual tracking, multimodal identi-
fication, temporal score-based fusion, source localization, data association and
open set identification necessary to reliably recognize known persons and ensure
continuous and robust tracking of identities. Additionally, all the approaches
that attempt a continuous identification of multiple users rely on an accurate
detection and tracking of all users and perform identification based on the re-
sults of the tracking step. If the tracking component fails, or mistakes are
made, the accuracy of the overall system degrades and, often, errors can not
be detected and recovered from. As shown in the previous section, though, the
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flawless tracking of all persons in realistic, cluttered smart environments, and
the continuous availability of observations are not realistic prerequisites. For the
development of truly robust systems, failures of individual components should
be considered in the system design and handled efficiently and automatically,
without the need for user intervention or manual tuning.

In this thesis, a method is proposed that integrates all the above described com-
ponents in a joint probabilistic way. Persons are automatically detected and
tracked at any location in the smart space without the need for cooperation or
interaction. Person models are built on-the-fly and continuously adapted during
the whole observation sequence. Person tracks are estimated audio-visually us-
ing a variety of features extracted from multiple cameras and microphone arrays
in a robust, probabilistic filtering framework. Face and voice observations are
automatically captured and probabilistically associated to persons, even in the
presence of severe occlusion, low sensor coverage or missing person tracks. Iden-
tities are derived jointly for all persons using the sequence of associated obser-
vations. Identification is made using temporal and cross-modal fusion, based on
the combination of normalized confidence scores, and for the open set identifica-
tion case. The method is extensively evaluated on a large benchmark database
of realistic recordings using well defined metrics and a systematic evaluation
procedure. Quantitative results allowing to judge the influence of various com-
ponents, or failures thereof, on overall tracking and identification performance
are presented.

The evaluation metrics are also defined in the course of this thesis, which is
why an overview of the state-of-the art in the evaluation domain is given in the
following section.

2.4 Performance Evaluation

In recent years, there has been a growing interest in performing systematic eval-
uations of tracking approaches with common databases and metrics. Examples
are the CHIL [3] and AMI [1] projects, funded by the EU, the U.S. VACE
project [9], the French ETISEO [6] project, the U.K. Home Office iLIDS project
[7], the CAVIAR [2] and CREDS [122] projects, and a growing number of work-
shops, such as e.g. PETS [8], EEMCV [5], and more recently CLEAR [4], to
name just a few. The problem faced by all major evaluation efforts where more
elaborate multiple-target trackers are evaluated is the definition of suitable met-
rics for quantitative measurements and comparative benchmarking. The trend
observed is that new evaluation projects also bring along their own newly cre-
ated multi-target tracking evaluation metrics. Although well defined, commonly
agreed on metrics exist for single object trackers, making benchmarking rather
straightforward, there is still no general agreement on a principled evaluation
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procedure using a common set of objective and intuitive metrics for measuring
the performance of multiple object trackers.

Li et al. in [64] investigate the problem of evaluating systems for the tracking
of football players from multiple camera images. Annotated ground truth for
a set of visible players is compared to the tracker output and 3 measures are
introduced to evaluate the spatial and temporal accuracy of the result. Two
of the measures, however, are rather specific to the football tracking problem,
and the more general measure, the “identity tracking performance”, does not
consider some of the basic types of errors made by multiple target trackers, such
as false positive tracks or localization errors in terms of distance or overlap.
This limits the application of the presented metric to specific types of trackers
or scenarios.

Nghiem et al. in [84] present a more general framework for evaluation, which
covers the requirements of a broad range of visual tracking tasks. The presented
metrics aim at allowing systematic performance analysis using large amounts of
benchmark data. However, a high number of different metrics (8 in total) are
presented to evaluate object detection, localization and tracking performance,
with many dependencies between separate metrics, such that one metric can
often only be interpreted in combination with one or more others. This is for
example the case for the “tracking time” and “object ID persistence/confusion”
metrics. Further, many of the proposed metrics are still designed with purely
visual tracking tasks in mind.

Smith et al., in [97], also attempt to define an objective procedure to measure
multiple object tracker performance. However, a large number of metrics is
introduced: 5 for measuring object configuration errors, and 4 for measuring
inconsistencies in object labeling over time. This makes it hard to get a clear
overview of overall tracking performance [117]. Some of the measures are defined
in a dual way for trackers and for objects (e.g. the MT/MO, FIT/FIO,
TP/OP ). This makes it difficult to gain a clear and direct understanding of
the tracker’s overall performance. Moreover, under certain conditions, some of
these measures can behave in a non-intuitive fashion (such as the CD, as the
authors state, or the FP and FN , as will be demonstrated in Chapter 5).

To remedy the lack of clear and intuitive metrics, a thorough procedure was
developed, allowing to detect the basic types of errors produced by multi-
ple object trackers and two novel tracking metrics are introduced, the Mul-
tiple Object Tracking Precision (MOTP ), and the Multiple Object Tracking
Accuracy(MOTA), that intuitively express a tracker’s overall strengths and are
suitable for use in general performance evaluations.

In addition to providing a novel theoretical framework, some of the proposed
metrics have been used in two international evaluation workshops, which can
be seen as field tests for their applicability. These evaluation workshops, the
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CLEAR – CLassification of Events, Activities and Relationships – workshops,
featured a variety of tracking tasks, including visual 3D person tracking us-
ing multiple camera views, 2D face tracking, 2D person and vehicle tracking,
acoustic speaker tracking using microphone arrays, and even audio-visual per-
son tracking. For all these tracking tasks, each with its own specificities and
requirements, the here introduced MOTP and MOTA metrics, or slight vari-
ants thereof, were employed [102; 103]. The MOT metrics are also employed in
a growing number of publications outside of CLEAR [47; 65; 23; 95; 56].

Additionally, a novel measure for the evaluation of identity tracking performance
was introduced. While the tracking and localization of identities has been at-
tempted for quite some time in various approaches, as presented in the previous
section, the evaluation of performance was up to now realized in a rather ad
hoc way, without clear and well defined metrics that account for all relevant
error factors. To remedy this, a definition of the general identity tracking task
is introduced in Chapter 5, a formal evaluation procedure is defined and a novel
metric for quantitative evaluations is presented. This metric, the Multiple Iden-
tity Tracking Accuracy (MITA), expresses a trackers ability at localizing and
identifying known persons in a larger group, for the open set scenario.

31



32



3 Features for Identity Tracking

In this chapter, the various features used for unobtrusive multiple identity track-
ing are presented. They include both low-level and high-level features for person
detection, tracking, speaker localization, face recognition and voice identifica-
tion. In this context, low-level features represent those which can be more or
less directly extracted from the sensor streams, whereas high-level features are
the results of more complex analysis and express some form of spatio-temporal
relationship or carry a symbolic meaning. These are usually the outputs of
more or less complex classifiers or trackers operating on the lower level features.
Examples for high-level features are detection windows from image-based per-
son detectors, computed 3-dimensional sound source locations, or hypothesized
identities resulting from facial identification.

There are plenty of reasons speaking for the use of a rich variety of features. In
some cases, different features work concurrently to help obtain certain types of
information, in other cases, they work in a complementary fashion:

• As mentioned before, features allowing the identification of faces or voices
may be unobservable for lengthy periods of time. Using both types may
help speeding up the identification of a person. Similarly, it may be hard
to detect persons in the scene using certain camera views or detection
methods. A combination of detection techniques, based on appearance
patterns, motion, foreground segmentation, etc., is necessary to achieve
better results.

• As a continuous identification of all occupants is not feasible, it is necessary
to keep track of already identified persons until features for identification
can again be observed. The features used for tracking are generally much
simpler than those used for identification. They nevertheless help bridging
the gap in higher-level information.

• Single observations about a person’s identity may be inaccurate or noisy,
due to various reasons. For example, face ID accuracies may be influ-
enced by head pose, lighting or resolution, etc., whereas speech identifica-
tion may generate faulty hypotheses due to cross-talk or unknown sound
sources. A way to boost recognition performance is to accumulate all ob-
servations made for a specific person and perform temporal filtering or
fusion. It has been shown that temporal fusion can significantly increase
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the performance of person identification techniques under challenging con-
ditions (just one example are the CLEAR Person Identification evaluations
[106; 105]). In a multiple user scenario, however, observations need first to
be associated to the correct person for accumulation and temporal fusion
to be possible. As the correspondence in our case is not given beforehand,
the data association problem is a non-negligible factor affecting perfor-
mance. This is another example of where tracking features need to be
used concurrently with identification features.

• Even when persons cannot be accurately detected or tracked, their pres-
ence in the smart space may still be correctly inferred from identification
features. This may be the case when the sensors used for identification
differ from those used for tracking (e.g. table top microphones and possi-
bly steerable cameras with limited field of view, as opposed to microphone
arrays or wide-angle cameras overlooking the space). An example scenario
would be one in which 2 voices are recognized in the smart space with high
confidence, while only one persons is tracked and correctly identified. The
logical consequence would be that the second person is present, although
his or her location is unknown. In the context of identity tracking, this
information, although less detailed, is undoubtedly also useful.

• Finally, in the proposed framework, new persons entering the environment
are tracked and data association is performed using automatically learned
in person models that are themselves continuously refined as new observa-
tions come in. In this context, building on a rich set of varied features is
extremely useful. It allows to detect consensus among feature types and
thereby reject faulty observations or associations as outliers.

For extracting the various lower and higher level features, many different algo-
rithms, classifiers, trackers and preprocessing steps may be used. The focus in
this work is not on the concrete techniques or implementations used. Rather,
state-of-the-art techniques are employed whenever possible and the focus is put
on the way these need to be adjusted and fused to serve as inputs to the iden-
tity tracking. The idea is that the ID tracking framework should be generally
applicable using a wide variety of perceptual components, without the need for
specialized techniques designed for specific application scenarios. In the follow-
ing, the techniques used for extraction of the different feature types are only
briefly described, focusing on their algorithmic strengths and weaknesses, and
references to related work, giving detailed explanations, are made when appro-
priate.
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3.1 Overview of Feature Types

The identity tracking features used in this work can be roughly separated into
visual features and acoustic features.

On the visual side, these are:

• Foreground support maps (foreground feature). These are computed in
the individual camera images and serve as rough hints as to where persons
may or may not be.

• Person detection windows, in the following briefly called person detections
(detection feature). They are the outputs of detectors working on the
views of cameras installed in the corners of the observed space. Specifically,
detectors for the upper torso of persons are used here.

• RGB color responses (color feature). RGB color models of the upper torso
of tracked persons are built, based on the output of person detectors, and
used to search for specific persons in the camera images.

• Foreground blob tracks in top-view images (top view feature or “top fea-
ture”). They are the output of a simple tracker operating on the fore-
ground support maps from a ceiling mounted panoramic camera. The
reasons for using such types of features will be explained later on.

• Localized, identified faces in the scene (face ID features). These are the
output of a chain of processing steps performed on the views of corner
cameras: Face detection, 3D-localization and identification.

On the acoustic side, features are:

• Identified voices (speaker ID features). These are obtained by analyzing
the signal from an omni-directional microphone placed in the smart space.
They are the results of speech detection, segmentation and identification.
They are usually accompanied by

• Speech source locations in the scene. These are computed using a number
of microphone arrays placed at the edges of the smart space. When speech
localization was successful, we speak of localized speaker ID features; if
not, “non-localized” speaker ID features are obtained.

The various audio-visual features have quite different characteristics that pro-
hibit their straightforward combination, e.g. in a synchronized, feature-level
fusion scheme. A more detailed categorization reveals strengths and weaknesses
of different feature types in several dimensions:
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• Discriminative power (specificity to a given person). Face ID and speaker
ID features have the strongest discriminative power as they are in principle
specific to a unique person. Features based on the color of clothing are
less specific, as they can be shared by several individuals, yet in many
scenarios with a closed set of persons, they can be very helpful in resolving
ambiguities. Finally, foreground or detection features usually have no
discriminative property.

• Detection accuracy (specificity to persons in general as opposed to other
objects). This characteristic pertains to the usefulness of features when
it comes to detecting persons in the first place. Here, ID features and
detections rank highest. Foreground maps or blob features rank lower, as
they can be caused by shadows, changes in lighting, moved objects, etc.
Color features, finally, can not serve to detect the presence of persons in
general.

• Observability. This characteristic pertains to the frequency or regularity,
with which features can be extracted. Identification features, with high
accuracy and discriminative power, can usually only be extracted on an
irregular basis. Faces are only identifiable when they are turned toward
a camera. Speaker ID features rank very low, as they are only available
when a person speaks, but also torso detections may, depending on the
scenario or the overall body pose, not always be available. This is in
strong contrast to foreground or color features which, save for occlusions,
are observable at video frame rate whenever the concerned person is in
the field of view of the sensor.

• Spatial accuracy. Some features, such as detections, localized speech or
blob tracks can be directly associated with a given 3D location or line
of view in the scene. Others, such as foreground or color features are
presented in the form of support maps and can only indirectly be used
to infer person positions. The former are extracted and input to the
tracking framework in a bottom-up fashion, while the latter are used in a
top-down fashion, to verify hypothesized person locations. Non-localized
speaker ID features, finally, only give an indication of the presence of a
person, without any indication of location.

• Initialization. As opposed to foreground and person detection features,
colors and audio-visual ID features can only be used if specific models of
the persons to be recognized exist. Color models need to be initialized
and updated on-the-fly, based on observations which can only be made
once a person has been detected with high enough accuracy. Face and
voice models, on the other hand, may be trained in beforehand for a set of
known persons. Nevertheless, the identities of the persons actually present
in the scene still needs to be inferred from noisy observations before the
so obtained reduced set of models can be used e.g. in data association.
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Figure 3.1: Overview of features for identity tracking. Foreground and color sup-
port maps can in principle be observed at framerate. They are not
reliable enough, though, to accurately detect the presence of persons
or distinguish them. Face and speaker ID cues are the most discrim-
inative and most accurate features. They are, however, much harder
to observe using distantly placed sensors. No single feature combines
all the advantages of high observability, high accuracy and high dis-
criminative power, such that a combination of features should be
used.

• Constancy. Certain aspects of features, such as those pertaining to iden-
tity, are expected to remain relatively constant in time, whereas others,
such as location, may vary considerably from one moment to the next.

Figure 3.1 shows a coarse qualitative categorization of the various feature types
from the points of view of discriminative power, accuracy and observability.
All the mentioned features are fused in the identity tracking framework. The
following classification into tracking and identification features is therefore by
no means strict (features used for identification can also be used for detection,
which in turn helps tracking). It is motivated by the difference in feature com-
plexity and observability, with simpler tracking features bridging the gaps in
observability for higher-level identification features, and serves only as a rough
functional categorization.
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3.2 Features for Tracking

3.2.1 Foreground features

Foreground support maps are commonly used in tracking applications involving
fixed cameras. In our case, these maps are obtained on gray-scale images, using
a simple procedure: First, a background model is obtained by pixel-wise averag-
ing of a few initialization images. These images depict the smart environment,
preferably without occupants. Then for each time frame, the background model
is subtracted from the input image and the absolute pixel differences are thresh-
olded using a global fixed threshold TFG, resulting in the final support map. To
accommodate for small changes (e.g. due to lighting changes, shadows, or small
moved objects), the background model is continuously adapted with each input
frame using a small learning factor αFG.

Although much more sophisticated foreground segmentation techniques exist,
for example using individual pixel thresholds per pixel, Gaussian mixture mod-
els for adaptation [100], etc., these were not implemented. Even using state-
of-the-art techniques, the obtention of a clean, well segmented foreground map,
depicting only person regions, is only possible in controlled, uncluttered envi-
ronments, by building on strong assumptions about the movement of objects of
interest with respect to the background. As these assumptions can not be guar-
anteed in our case, the foreground feature can only serve as a coarse indicator
anyway, which is why the simple method described above largely suffices for our
needs.

In the case of the CLEAR seminar recordings, a set of background images,
depicting the empty smart environment, is provided for most of the evaluation
sequences. Whenever available, these images are used for initialization of the
background model. In the contrary case, it is initialized using the first few frames
of the recording. As persons are often already present in the space at the start
of recording, this of course reduces the quality of the background model, and
consequently of the obtained foreground maps.

For fast computation of the foreground support in a given subwindow of the
input image, the integral image method [113] is applied. In an integral image,
each pixel represents the sum of all pixels above and to the left of it in the
original image. It can be precomputed efficiently in one pass for the whole image
and later allows to quickly calculate the sum of pixel values in a subwindow of
arbitrary size, using only four table lookups. This is a prerequisite for the
efficient computation of observation models in the subsequent particle filter
framework, as explained in Chapter 4. An example foreground map for one of
the camera view of a CLEAR seminar is shown in Fig. 3.2.
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Figure 3.2: Example foreground support map in a camera view of a CLEAR
Seminar recording. Clean support maps allow for reliable tracking.
Shadows and changes in the environment often perturb the fore-
ground support, though.

3.2.2 Detection features

In the context of this work, the term “detection feature” is used as an abbrevia-
tion to designate the output of an appearance-based person detection process in
a camera view. More specifically, the upper torsos of persons in the smart space
are detected and the resulting detection windows used as inputs to the tracking
process. The choice of the upper torso as the region to detect can be motivated
as follows: Firstly, it is observable in most common situations, as opposed to
e.g. the legs, which are frequently occluded by objects, chairs, or when persons
are sitting at tables, etc. Secondly, it is large enough to be detected reliably in
the views of distantly placed cameras, as opposed to faces, e.g., for which low
resolution and relative orientation still pose a greater challenge.

Accurate person detection is a basic requisite in tracking tasks involving au-
tomatic initialization. Only if we can determine the presence and location of
a person with high enough confidence can we construct person-specific models
and create new person tracks. If the decision is based on unreliable features,
such as motion or foreground segments, which may be caused by shadows or
other objects, we run the danger of learning in faulty models of the background,
chairs, etc., resulting in persistent false tracks. The vast majority of state-of-
the-art appearance-based person detectors in the literature build on a more or
less efficient computation of gradient descriptors in intensity images, and the
automatic training of robust classifiers using large amounts of training data
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Figure 3.3: An upper torso detection in a corner camera view. The larger bound-
ing box represents the actual window returned by the detector. Col-
ors for adaptation of person specific models are extracted from a
much smaller window, though, to avoid mistakenly including back-
ground colors.

[113; 31; 18]. They can usually be adapted to detect any kind of pattern with
relatively stable appearance.

The detectors used here are those introduced by Viola and Jones in [113; 66],
and initially proposed for the task of face detection. They are based on rectan-
gular, box-like approximations of Haar-Wavelet descriptors, which are efficiently
computed using integral images. The detection is performed by shifting a win-
dow of variable size on the input image and classifying the so defined image
regions. The efficient selection of features and training of classifiers is made us-
ing a boosting technique, Adaboost, and the fast classification required by the
exhaustive scanning step is achieved by organizing weak classifiers into cascades
of increasing complexity. Figure 3.3 shows an example bounding box resulting
from an upper torso detection.

In principle, any other realtime-capable detection algorithm, for example the
histogram of gradients (HOG) approach [31], based on Support Vector Machine
(SVM) classification, could be employed at this stage. The result of detection,
in any case, is for each frame a list of bounding boxes representing hypothesized
person locations.

The main difficulty in torso detection is caused by the variable appearance of
upper bodies in the scene. Common detectors are designed to recognize stan-
dardized poses, such as frontal torsos, faces, etc., with the detection of multiple
orientation classes usually associated with a relatively high computational over-
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head. The problem is made worse in natural, unconstrained scenarios by the
posture of observed persons (for ex. leaning back strongly in a chair, bending
over a table, resting on an elbow), by partial occlusion (for ex. in some views
by the backs of chairs). The problem may be alleviated to some degree by the
use of several cameras observing from different angles. Nevertheless, in many
situations, one cannot rely on the frequency of detections to ensure accurate
tracking.

3.2.3 Color features

Colors are widely used for tracking tasks in general as they offer an additional
source of information to discriminate between between objects of interest. They
offer the advantage that the object or person of interest can be easily detected
and tracked as long as its representative colors or “texture” is sufficiently distinct
from others and the background. The downside to using texture or color models
is that they need to be learned in either beforehand, in a separate initialization
step [62], or on-the-fly for each new initialized track. Further, the appearance
of colors may vary considerably from one camera sensor to the next, or even
through time for one same sensor, as it is strongly influenced by ambient or
local changes in lighting. Here, color features are used to describe the upper
torso region of subjects in the smart space. The reason for limiting the color
model to the upper torso is the same as mentioned above for detections: It
is the largest, best visible region and is least subject to occlusion by tables,
chairs, other persons, etc. To automatically learn in color models for a tracked
person, the person region first has to be segmented more or less accurately from
the background. It has been shown that the quality of segmentation can greatly
influence the quality of resulting color models [15]. The approach chosen here to
address this problem is to extract color features only inside the bounding boxes
delivered by the detection step from Section 3.2.2. The chosen representation is
quite simple, and consists of the mean of RGB color values inside the detected
upper torso region, as well as the standard deviation of mean values accumulated
in time. So for a single detection region Rdetin one view, the extracted color
feature

coldet =
∑
p∈Rdet colp
|Rdet|

with colp = (rp, gp, bp), the tuple of RGB values for pixel p and |Rdet| the number
of pixels in Rdet. The color model of an upper torso for one view then consists
of {µcoldet , σcoldet} with

µcoldet = 1
n

n∑
i=1

coldeti

41



(a) (b) (c)

(d) (e) (f)

Figure 3.4: An example of learned upper body color models for multiple sub-
jects. The top row represents the original views from three cameras.
The colored circles represent person tracks. The bottom row shows
the mean color models learned individually in each view for each
person in an unsupervised way.

σcoldet =
√√√√ 1
n

n∑
i=1

(coldeti)2 − µ2
coldet

the mean and standard deviation of color values accumulated for the same torso
in time.

To account for the sometimes large differences in apparent color from one camera
to the next, a separate color model is built for each view using only detections
from that view. Colors models for views where no detection could be made are
computed as the average of color models from other views. As soon as specific
observations for a view become available, though, an individual color model is
again used. Figure 3.4 shows an example of upper torso color models learned in
for multiple tracks in several camera views.

The choice of the mean RGB color as color representation may be seen as sim-
plistic or inaccurate in comparison to other, much more complex representations,
such as color histograms or the MPEG7 dominant color descriptor [15]. Yet,
there are two reasons speaking for this representation in our case: Firstly, the
mean color is less affected by small changes which often occur when a person
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moves or changes its relative orientation to the camera. Secondly, the mean
color can be computed very efficiently for any subwindow of the image, as op-
posed to, for ex., color histograms, by using integral images. The evaluation of
a simple Gaussian color model, represented by its mean and standard deviation,
is also much faster than standard techniques for histogram matching.

The color feature is used in two ways:

• Support maps for the color feature are built in the form of individual
integral images for the R, G and B channels. These support maps are
later used in the tracking framework for the quick computation of mean
color values inside hypothesized person regions, which are compared to
the person models tracks.

• Amean color is computed for each detected upper body in a camera image.
The representation of the detection feature is therefore extended with the
color description: featuredet = {bboxdet, coldet}. This color information
can later be used to learn in and adapt view-dependent color models for
tracks, but also in a data association step, when mapping observations to
tracks in the first place.

Additionally, the color feature is used in a consistency check, to filter out faulty
detections. Owing to the nature of the detection algorithm, which is based
on local image gradients, these sometimes occur in areas of low contrast, on
plane surfaces, etc. This kind of error is difficult to eliminate in the detection
step itself, as a reduction of the amount of false positives is accompanied by
a reduction of the sometimes already quite low recall rate. In this case, color
constitutes a separate source of information which can help reject erroneous
detections. The idea is that a color representation is only useful for tracking a
specific object if it is sufficiently different from that of the surrounding back-
ground. The filtering is accomplished for every detected torso by constructing a
“background” bounding box, centered at the original detection and with three
times the area. Again making use of the color channel integral images, a mean
color is computed exclusively for the outside region and compared to the color
inside the detection box. Only if a sufficient difference exists (measured by the
mean and variance of RGB values inside the detection window) is the detection
feature considered valid and passed on to the tracking step.

3.2.4 Top View Features

These features are the outputs of a simple blob tracker operating in the images
of a top-view panoramic camera mounted under the ceiling of the smart space.
The reasons for using this type of feature in top camera views, as opposed to
other views, are as follows:
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• Panoramic views from a top perspective offer the advantage that persons
are much less likely to be occluded by each other or environmental objects.
For views from wall-mounted cameras, with relatively low downtilt, person
blobs resulting from foreground segmentation often merge when persons
pass behind each other. They are also often cut off by partially occluding
objects. All these factors make an analysis on such views much more
complex. This is the reason why top views are used in a wide range of
practical tracking scenarios involving multiple persons, vehicles etc. [2; 47]

• It is much easier to constrain the reasonable range of person region sizes
in a top view, as distances to the camera are much less subject to change.
This helps distinguish individual persons even in the case adjacent blobs
should merge.

• Standard appearance-based person detection techniques, such as the one
presented in Section 3.2.2 are difficult to apply in the case of arbitrary
rotation of the target pattern. As opposed to wall-mounted, upright views,
the assumption of a dominant (vertical) orientation of torsos can not be
made. From a top perspective, persons may be observed as facing in any
direction. Using a detector for multiple orientations usually comes at the
cost of additional computation time or reduced accuracy. This is why a
simpler method was adopted here, to serve as a “weak” detector operating
on top view. For the purposes of this work, this method proved to be
quite sufficient.

The top view foreground blob tracking algorithm works as follows: On the fore-
ground maps described in Section 3.2.1, morphological filtering and a connected
component analysis are performed to extract a number of possibly fragmented
foreground blobs. These blobs are then mapped to simple circular person models
in a local image-based tracking scheme. A person model in this case is repre-
sented by a center coordinate and a radius in the image. The image radius is
approximated using an assumed average person torso width wtorso, the camera
focal length and its height above the ground. Extracted blobs are associated
to person models based on coverage in an Expectation-Maximization fashion:
First, all blobs that are covered by a circular person model are associated to
this model. Second, the model center is updated as the average location of
all foreground pixels of associated blobs. New person models are initialized for
each uncovered blob, deleted as soon as their blob support disappears, and fused
when the distance between their centers falls below a certain threshold. The
details of the algorithm, though of great practical value, are of limited scientific
relevance and are therefore omitted here. Blob tracking has a long history in
computer vision and a plethora of specific implementations for a great range of
applications, all with their advantages and drawbacks, has already been pro-
posed. The implementation used here should be seen as one of many means to
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Figure 3.5: Examples of features extracted from a top view overlooking the
smart space. The advantage of top views is that they mostly of-
fer unoccluded views of the space and its visitors.

extract the type of feature we are interested in. Figure 3.5 shows an example
output of the top camera blob tracking stage.

The advantage of features gained from top views has been demonstrated, for
ex., in the CLEAR 2006 multiple person tracking evaluations [102]. In these
multiple camera scenarios, systems that could make efficient use of the top
view information outperformed sometimes more complex algorithms that relied
only on other camera views. Although a fusion of all available views increases
performance (see [4]), the top view can still be seen as the most important
individual view.

As for upper torso detections, a color description is extracted from the area
defined by the top view track and added to the top feature description. The
person model’s image center and radius are used to construct a bounding box
from which the mean color is extracted as described in Section 3.2.3. As for
detection features, top view features are filtered by comparing the mean color
of the area inside the bounding box with that of the immediately surrounding
area. For top view features, this proved especially useful to eliminate faulty
tracks caused by small shadows, etc. The use of a bounding box for segmenting
the torso region is of course a very coarse approximation. Because of this,
and owing to the low accuracy of the foreground blob analysis (compared to
the appearance-based detections from Section 3.2.2), a moderate portion of the
background is usually included in the mean color computation, which degrades
the quality of the obtained color models. As a consequence, the color description
associated with top view features is less reliable than that of detection features.
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The advantage of using bounding boxes is that again, integral images can be
used for an efficient computation.

As a final remark, one should note that the top view features (or “top features”)
described in this section are not specific solutions tailored to the sensor setup
being investigated here, to small rectangular rooms, etc. Rather, the use of
top cameras in a tracking framework is common practice, and one can imagine
extracting top features from a network of ceiling-mounted cameras covering a
much larger space than that considered in the evaluations made here.

3.3 Features for Identification

The features considered in this thesis are those gained from face and voice
identification. Consequently, the algorithms used for the recognition of faces
detected in camera images and for the analysis of speech signals captured by
far-field microphones are explained in this section. In the following, a brief
explanation is first given, though, of the identification task itself and of the
used evaluation measures, as these are relevant for understanding the design
choices made in the rest of the section.

3.3.1 Classical Identification Tasks and Metrics

There are two classical tasks in person identification, both for the acoustic and
visual modality: Closed set identification and open set identification.

Closed set identification refers to the task of recognizing a subset of persons from
a closed set of known persons. Only persons which have been previously trained
in are to be recognized and the only possible error is to confuse a known person
with another. The accuracy measure for this kind of recognition task is the
recognition rate, or correct classification rate (or simply recognition accuracy),
which is given by:

ACC = Ncc

Ntot

with Ncc the number of correctly classified persons and Ntot the total number
of persons to be classified.

Open set identification is, in comparison, a much more difficult task. Here, the
objective is to recognize a subset Sknown from a set Stotknown of known persons in
a greater set Stot, containing also unknown persons. The challenge here is that
a number of persons which have never been seen before have to be classified
as well. The recognition algorithm must therefore for each test person decide
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if this person is known, and in the positive case determine his or her identity
from the set of known identities. The subset of known persons to be recognized,
Sknown, is also referred to as “genuines”, and the set of unknown persons in Stot,
also called “impostors”, is denoted here by Sunkn. For each test person, the
recognition system can make one of the following mistakes:

• Wrongfully determining the identity for a known person. This is referred
to as “false classification”.

• Rejecting a known person as unknown. This is called a “false rejection”.

• Wrongfully recognizing an unknown person as known, and assigning it an
identity. This is called a “false acceptance”.

Correctly accepting a known person, and correctly determining his or her iden-
tity is referred to as “correct classification”. From these values, we can infer a set
of performance measures: The correct classification rate (CCR), the false clas-
sification rate (FCR) and the false rejection rate (FRR), which are the ratios of
correct classifications Ncc, false classifications Nfc and false rejections Nfr with
respect to the number of known persons Nknown in the test set. Finally, the false
acceptance rate (FAR), which is the ratio of false acceptances Nfa with respect
to the number of unknown persons Nunknown in the test set (see Eqs. 3.1, 3.2,
3.3, 3.4).

CCR = Ncc

Nknown

(3.1)

FCR = Nfc

Nknown

(3.2)

FRR = Nfr

Nknown

(3.3)

FAR = Nfa

Nunknown

(3.4)

It follows that the sum of the correct classification, false classification and false
rejection rates is equal to one.

CCR = 1− (FCR + FRR) (3.5)

These measures are commonly used in the biometrics literature for identifica-
tion or verification tasks. As a difference to standard terminology, the term
“impostor” will not be used here, because of its negative connotation. Indeed,
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we do not consider occupants which do not belong to the set of known persons
as trying to “deceive” the smart perception system. Rather, they are e.g. guests
which have not previously been seen in the smart space, or do not visit it often
enough for their identities to be permanently stored. Therefore, in the following,
only the term “unknown person” will be used. In the remainder of this thesis,
specifically for the evaluations made in Chapter 6, the task to be tackled is that
of open set identification, which is why more detailed explanations concerning
the problems posed for this task are given here.

There are a number of ways open set classification can be performed:

• Using a closed set classification algorithm with an additional class for
unknown persons. This “unknown” class is trained with a large number
of samples and generalizes the person class itself. The idea is that when
presented with a corresponding test sample, person-specific classes will
output higher scores than the general class, which therefore acts as an
automatic threshold to detect and reject unknown persons.

• Performing verification for multiple classes. In a verification task, a sep-
arate classifier is trained for each person to distinguish only that person
from all other (known and unknown) persons. This can be done by thresh-
olding the output of a one-class classifier, by training a two class classifier
(using samples from the target person for the positive class and all other
samples for the negative class), and so forth. Open set identification is
then made for a test sample by outputting the highest scoring identity for
which verification was successful. The test sample is rejected as unknown
if it could not pass the verification test for any of the known persons.

• Performing closed set classification with additional thresholding of the
classifier outputs. In this case, classification is performed as in the closed
set task, with the difference that the winner class is only accepted if its
classification score is greater than a specified threshold. Otherwise, the
test sample is rejected as unknown.

The main problem when using methods based on an “unknown” class is that
often, sufficient data for training of that class is not available. One could remedy
this in the multiple class verification case by using the data from all remain-
ing known persons as negative samples for a given person or, in the case of a
multi-class classifier with separate unknown class, by using the data from all
known persons for training that class. While this may be practicable for para-
metric methods, such as Gaussian mixture model classifiers, it is not suitable for
non-parametric methods, such as nearest neighbor or Support Vector Machine
(SVM) classifiers. The reason is that these do not approximate a “mean” or
“extension” for the unknown class, but rather more or less learn to classify each
negative (in this case “known”) training sample. As a consequence, test samples
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for known persons score just as high for the unknown class as for person-specific
classes, and no thresholding is longer possible.

The main difficulty of the threshold-based techniques is determining the thresh-
old itself. Indeed, if it is chosen too high, all persons, including known ones, are
eventually rejected. If it is chosen too low, eventually all unknown persons will
be falsely accepted. Usually, no threshold will allow to retain all known test
samples while rejecting all negative ones, and a compromise has to be found. In
many cases, the threshold is chosen such that the false rejection and false ac-
ceptance rates are equal. The then achieved false rejection rate (which is equal
to the false acceptance rate) is called the equal error rate (EER). Although the
equal error rate can give an indication of the overall performance of a classifier,
for many scenarios it may not be its optimal operating point. This can, for ex-
ample, be the case when the number of unknown persons in the test set greatly
outweighs the number of known persons. In this case, it may be desirable to
choose a higher threshold to avoid large numbers of false acceptances, to the
cost of rejecting a few more known persons.

As a consequence, open set classification performance, just as verification per-
formance, is usually evaluated using Receiver Operating Characteristic (ROC)
curves. These diagrams plot the correct and false classification ratios against
that of false acceptances, as the classification threshold is shifted. Figure 3.6
shows an example ROC plot. In this plot, the CCR and FCR are shown as
cumulative curves. This means that for a given FAR, the values of the CCR,
FCR and FRR are successively added to create the respective curves, such that
CCR+FCR+FRR = 1. The EER is shown as a diagonal line intersecting the
CCR and FCR. The higher the intersection point, the better the equal error
rate. The CCR value obtained for maximum false acceptance rate (usually at
FAR = 1) is the accuracy obtained for closed set classification (even though
this is not a “closed set” task, as unknown subjects are present in the test set).
Note that the false rejection rate is not plotted, as it can be easily derived from
the other curves (see Eq. 3.5). It is shown as the area above the FCR.

The following sections describe the algorithms used for face ID and speaker
ID feature extraction, as well as the methods by which confidence measures
are derived, that will later serve for thresholding in the open set identification
task.

3.3.2 Features Extracted from Face Identification

The face recognition algorithm is based on the work of Ekenel et al. [49; 48]. It
is an appearance-based technique using local Discrete Cosine Transform (DCT)
features. It has been shown to provide accurate results under a variety of chal-
lenging conditions, including uneven lighting, shadows, partial occlusion [35]
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Figure 3.6: An example ROC curve for an open set identification case. The light
blue area represents the false rejection rate.

and, perhaps most important in our case, low face resolutions, which is a com-
mon, almost unavoidable problem in an uncontrolled scenario [102; 103]. In the
CLEAR seminar database, which will be used in the evaluations in Chapter 6,
face sizes are as small as 15 × 15 pixels. Face recognition algorithms usually
operate on much higher resolutions.

As for the majority of face recognition algorithms, the technique is designed to
operate on frontal or near frontal views, mainly because of the difficulties in
detecting and in aligning non-frontal faces. Although alignment of the face, for
example by determining the eye regions, can greatly improve recognition perfor-
mance, this is not done here as finding facial features at such low resolutions is
not feasible. Instead, the detection window itself is taken as cropped face image,
without further alignment. The recognition technique is based on local DCT
features, which are extracted in the following way: First, the face area is resized
to 32 × 40 pixels. This cropped image is then divided into a non-overlapping
grid of 8×8 blocks, for a total of 20 blocks. For each block, the Discrete Cosine
Transform is applied and the resulting DCT coefficients are ordered according
to a zig-zag scan pattern. The first coefficient is dropped, as it only expresses
the overall illumination level. From the remaining coefficients, the first 10 are
selected to form the local feature vector for the block. Local feature vectors
are further normalized to unit norm and concatenated to generate the global
feature vector for the detected face (see Fig. 3.7).

Many recent approaches have shown the advantages of using local features,
compared to holistic approaches, as they are more robust to lighting changes,
occlusion, etc. A variety of techniques has been proposed that perform generic
partitioning of the face region and DCT feature extraction [11; 67; 90]. The
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Figure 3.7: Local appearance-based face recognition. The face image is divided
into 8×8 pixel blocks, DCT coefficients are computed for each block,
normalized, and concatenated to a feature vector (Image taken from
[37]).

details of the feature extraction are therefore not the main point of interest here
and the interested reader is referred to [49; 48]. What is of concern to us at this
point are the methods used for classification and for estimation of confidence
measures in the identification, as these affect the way open set identification is
later performed.

In this work, a non-parametric technique is employed. Feature vectors for a de-
tected face are passed to a nearest neighbor classifier which is trained on sample
vectors extracted using the same method as described above. The training vec-
tors are gathered on a separate enrollment set for each of the known individuals,
using labeled faces in multiple camera views. The feature vectors for all views
are accumulated and used jointly for classification. The classification itself is
performed by computing the distance of the test vector to each of the training
vectors using the L1 norm. The set of resulting distances is then used to infer
confidence scores. In the original implementation proposed by the authors for
the CLEAR 2007 evaluations [36], this is done by sorting the distances in as-
cending order and min-max normalizing, such that the closest training vector
has a score of 1 and the furthest a score of 0. The scores are further normalized
to unit sum and the distance x between the best two scores used to compute a
confidence weight:

ω(x;λ) = 1− exp−λx

The authors term this weight the distance-to-second-closest metric. It should be
noted that on various occasions, the difference between the classifier scores for
the best two candidates (or the best n candidates) has been shown to be a valid
means of estimating confidences. This is done e.g. by the same authors also
in [36] for acoustic speaker identification using a-posteriori probabilities from a
Gaussian mixture model classifier, or by Grosse et al. in [43] for temporal and
multimodal fusion using n-best lists.
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In contrast to the method proposed in [36], the confidence estimation here is
done using the k nearest neighbors, as follows: The set of distances from the
test vector to the training samples is sorted in ascending order and only the
k nearest samples are retained. Their distances are min-max normalized, such
that the first (closest) sample has a score of 1 and the kth sample a score of
0. These scores are now used as weights in a voting scheme to determine the
identity of the test person. Each sample i votes for its corresponding identity
ident(i) with a voting weight νi proportional to its score:

νi = 1
k
si, i = 1, 2 . . . k

with si the min-max normalized score for sample i and ident(·) the function that
maps training samples to identities. The result is an n-best list of candidate
identities I = {id1, id2 . . . idn} with n ≤ k. The cumulative normalized scores
for these identities are then computed as:

Sj =
∑

i=1...k,ident(i)=j
νi, j = 1, 2 . . . n

with

∑
j=1...n

Sj = 1

The identity with the highest score is output as the result of identification.
Further, instead of using the distance between the best two scores, the value
of the best score is simply used as confidence measure. This is viable since the
scores sum up to 1. A value greater than 0.5, e.g., means that the score for
the highest ranking identity outweighs that of all others. In the following, we
will simply refer to the value of the cumulative normalized score (CNS) for the
highest ranking identity as the “confidence” for the identification.

The reason for limiting the the min-max normalization and confidence estima-
tion to the k nearest neighbors is that the number of neighbors used has a direct
impact on the open set performance of the classifier. If k is too large, too many
irrelevant samples are included, which decreases the quality of confidence scores.
If k is too small, there are not enough candidate samples to estimate confidences
with in the first place. This will be shown in detail in the evaluations section in
Chapter 6.

As mentioned in Section 3.3, an alternative way to realize open set identification
would be, e.g., to perform verification for multiple identities, or to specifically
discriminate against unknown persons by training an “unknown” class. This
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is however not possible for the CLEAR seminar database. Although the semi-
nars figure both known and unknown persons, and an enrollment set exists for
the known persons, there is no enrollment set of “unseen” persons that could
be used for training of the unknown class. This is one of the reasons why a
threshold-based method is adopted here. The second reason is that the confi-
dence measures will be helpful in modality fusion, and also to some extent in
temporal fusion, as will be shown in Chapter 6.

3.3.3 Features Extracted from Voice Identification

The voice recognition algorithm is based on the work of Jin et al. [54]. It is
based on Mel Frequency Cepstral Coefficients (MFCC) as acoustic features and
Gaussian Mixture Model (GMM) classification. The challenge in an unobtrusive
identity tracking scenario is that recognition is to be made using solely distantly
placed microphones. No close-talking microphones or lapel microphones that
need to be worn by the users, but only omnidirectional microphones placed, e.g.,
on a table or microphone arrays mounted on the walls of the smart space are to
be employed. As with face identification, the difficulties associated with far-field
acoustic identification are multiple. They lie in segmenting speech, separating
multiple speakers, and dealing with low signal to noise ratios, reverberations,
laughter, etc. An additional problem, similar to unobservable faces which are
turned away from cameras, is that identification can only be made while a person
speaks, and also usually only for one person at a time. Crosstalk, which occurs
when speech intervals from several persons overlap, is generally detrimental for
speech segmentation, speaker localization and speaker identification.

The recognition algorithm itself is not designed for automatic speech segmen-
tation or diarization (the process of association speech intervals to different
speakers). It expects pre-segmented speech coming from exactly one speaker
and performs recognition on whole speech segments. Inclusion of silence, cross-
talk, or wrongful concatenation of utterances from alternating speakers into one
segment for recognition decreases performance dramatically. This means that
speech has to be detected and segmented properly beforehand by a different
means, and that speech segments should be kept short, if possible, to reduce the
chance of wrongful concatenation (e.g. because of insufficient pause). There are
several ways to achieve this, including thresholding the audio signal in the power
spectrum, performing explicit diarization [13; 88], filtering in the frequency do-
main to remove non-speech sounds [17], etc. The specific segmentation method
used in this work will be described in the experimental setup section in Chap-
ter 6. It delivers short audio segments of one or two seconds duration which are
passed on for recognition.

The voice recognition algorithm works as follows: First, MFCC features are ex-
tracted from the audio signal. These are further normalized using reverberation
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compensation and feature warping. This is necessary as distant-speech signals
are corrupted by reverberation and background noise. The algorithm uses a
modified version of the Cepstral Mean Subtraction (CMS) algorithm, designed
to cope with the lengthy impulse response of the reverberation. Feature warping
is done using a standard CDF matching technique (CDF stands for “Cumula-
tive Distribution Function”). This transformation warps the distribution of the
cepstral feature stream over a given time interval to a standard distribution
and is useful, for ex., for reducing the non-linear effects occurring when using
different channels. The result is a 13-dimensional warped MFCC feature vector,
with reverberation compensation applied.

The feature vector is passed to a Gaussian mixture model classifier with a fixed
number of mixtures (16 or 32) per speaker. A separate GMM is trained for each
speaker on pre-segmented, labeled speech samples from an enrollment set using
the expectation-maximization (EM) algorithm. For a given test segment, the
log likelihood score for each GMM is computed as the sum of log likelihoods of
all samples in the segment, given the model. The algorithm outputs the identity
corresponding to the GMM with the maximum log likelihood score.

Again, the exact details of the recognition algorithm are not the main point of
concern here and the interested reader is referred to [36]. Using MFCC features
or variations thereof and GMM or SVM classifiers is common practice in the
field of speaker identification[101; 20; 68; 17; 69], such that the proposed algo-
rithm can be seen as a good representative of the current state-of-the-art. The
interesting question is how the confidence measure for the made identification is
derived in our case. Similar to the visual case, the scores of the n highest ranking
identities are used. The difference here, is that parametric models (GMMs) are
employed, such that distances to training samples need not be computed. In-
stead, the GMM log likelihood scores are directly used as scores for an identity.
The k highest scores are first min-max normalized, and subsequently normalized
again to unit sum. Finally, the maximum normalized score value is used as con-
fidence measure for the identification. As for face identification, sufficient data
for training of unknown classes is not available and the open set identification
is realized by thresholding the confidence scores of the closed set classifier.

3.4 Spatial Localization and Composition of
High-Level Features

The previous sections have described how identities and confidences are com-
puted for faces detected in camera views and speech segments extracted from
microphone signals. The identities and confidences are the main components
of the high-level “face ID” and “speaker ID” features introduced in Section 3.1.
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This section now shows how the feature descriptions are extended with infor-
mation about the 3D scene locations of the so “detected” identities. The rea-
son localization is made in 3D-space is to provide a common ground for later
spatio-temporal association to tracks and feature fusion. This is in contrast to
estimating, e.g., azimuths and distances relative to microphone arrays for audio
features, and 2D image coordinates and sizes for visual features.

First of all, speaker and face ID features are tagged with an observation times-
tamp tobs. For face ID features, this is the time of frame capture by the detecting
camera. For speaker ID features, it is the capture time of the last sample in the
considered speech segment. The time tag is necessary as the video and audio
modalities are captured at wholly different rates (usually 15 to 30 frames per
second for the visual case, 44.1 KHz for the audio case) and ID features are
only observed at relatively few, irregular points in time. The synchronization of
frame-level support maps, localized detections, face ID and speaker ID features
is later made using these timestamps.

For face ID features, a color description for the identified person’s upper torso
is also extracted. This is done by defining a rectangular area directly under the
face detection bounding box as a “virtual” upper torso detection (see Fig. 3.8).
The area inside the so defined bounding box can then be used just as for the case
of regular detections to compute the torso’s mean color. The assumption made
here is that the area under a detected frontal or near frontal face will almost
always represent the region of the torso. This assumption may not hold, e.g.,
when the person whose face was detected is partially occluded by other persons,
by laptops or other objects on the table he or she is sitting at, etc. Still, if the
majority of views captured are uncluttered, the occasional outliers produced in
these cases should be dealt with later in the color model building stage.

Finally, the localization information, for both for visual and acoustic cues, is
calculated. It is composed of a 3D location ~x = (x, y, z) in a global reference
frame, as well as a covariance matrix Σloc expressing the uncertainty in the
found location. As observations in both cases are inherently noisy, the location
can usually not be estimated exactly. This will be explained in detail in the
following. In the later tracking stage, the covariance matrix will be used to
perform data association in a probabilistic way and to reject unreliable location
information.

3.4.1 Visual Localization

In the visual case, 3D localization is achieved by exploiting the expected real
scene dimensions of the detected body region and camera calibration informa-
tion. By using the detection bounding box center and width in a camera image,
the line of view and distance from the camera to the object can be estimated
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Figure 3.8: The estimated torso area relative to a detected face. Detected and
identified faces represent very reliable cues for the presence of a
person. They can be used to infer the position of the body and
extract color or texture features in a somewhat more supervised
manner.

and a 3D scene location computed. The explanation is first given for upper
torso detections:

The calibration information for each camera is given relative to a global coor-
dinate frame in the smart space. For each detection, the line of view from the
camera to the detected torso in the scene can be estimated as the line passing
through both the camera center and the detection center in the image plane.
Similarly, the distance from the camera is estimated using the image width of
the detection bounding box and an assumed real upper torso width (Consid-
ering the typical size of bounding boxes output by the detector, a scene width
of 80cm was used here). From the direction and distance, a 3D point in the
global coordinate frame is obtained. As detected upper bodies are not always
tightly bounded, and since their orientation relative to the camera changes their
apparent width in the image, this estimated 3D location comes with a certain
amount of uncertainty, which is modeled in the covariance matrix Σloc. The
eigenvalues of Σloc are the variances σ2

x, σ2
y perpendicular to the line of view,

and σ2
z along the line of view (see Eq. 3.6).

Σloc = RTdiag(σ2
x, σ

2
y , σ

2
z)R (3.6)

In Eq. 3.6, the rotation matrix R expresses the rotation from the global coordi-
nate frame to a detection-specific coordinate frame with its origin at the camera
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(a) (b)

Figure 3.9: The uncertainty in the 3D location of a detected person. Since the
distance from the observing camera is estimated from the size of the
detection bounding box, estimation errors are much larger along the
line of view of the camera.

center, its z-axis being the line of view to the detected object and its y-axis par-
allel to the y-axis in the camera frame. R can easily be computed from the
camera extrinsics and the offset of the detection center to the camera projection
center. The exact computations involve standard methods in computer vision
and projective geometry and will not be elaborated further here. Further details
can be found in [46].

Figure 3.9 shows an example detection, its estimated 3D location and the local-
ization uncertainty.

In the general case, the error in estimated distance is much higher than that
in estimated direction from the camera. This is because small pixel differences
in the detected bounding box can translate to large differences in estimated
distance when the object is not near the camera. Further, the assumed actual
width of the upper torso is, of course, an approximation which does not hold
for all persons under all circumstances. This is even more true as the torso
detector also fires for near frontal views, such that upper bodies may often be
viewed under an angle. The apparent width in the image is then smaller, which
translates to a larger estimated distance from the camera. For all these reasons,
the location uncertainty is much greater along the line of view to the detected
object than in directions perpendicular to the line of view. This is reflected
in Σloc by a large value of σz compared to σx and σy. For the experiments in
Chapter 6, the variances in Σloc are assumed fixed for upper torso detections
and are determined empirically based on actual data.

The localization for detected faces is done using the same procedure and assum-
ing an average scene width of 18 cm. For top view features, the distance from
the camera is not estimated from evidence in the image. Rather, the tracked
person center is assumed at a fixed height of 1m above the ground, such that
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the line of view from the camera need only be intersected with the plane par-
allel to the ground plane at 1m height to obtain the 3D point location ~x. The
uncertainty covariance matrix Σloc is again computed using the same methods
as described above.

3.4.2 Acoustic Localization

The method for localization of acoustic features is likewise more complex. It
involves analyzing the signals from several microphone arrays distributed on the
edges of the smart space. As an audio source can in principle be perceived by all
microphones in the space, it is feasible to fuse the information at feature level
and obtain a robust global estimate. There are several ways to accomplish this,
as demonstrated for example in the CLEAR evaluation workshops [102; 103].
What makes these evaluations especially relevant for our case, is that they
represent the first extensive evaluations of source localization techniques using
distributed microphone networks (DMNs). In contrast to single microphone
arrays setups (with linear arrays, spherical, etc), distributed networks present a
greater challenge to localization techniques, as the far-field assumption does not
hold between pairs of microphone arrays. Nevertheless the use of a distributed
microphone network in a smart environment offers several advantages as it can
cover a much larger space (it is not limited, e.g., to the area surrounding a
meeting table) and allows to triangulate exact 3D positions (as opposed to
relative directions or azimuths). State-of-the-art approaches utilize variations
of the Generalized Cross Correlation function (GCC) to estimate time delays of
arrival (TDoAs) of a signal between array microphones. These are either used in
a filtering framework to infer the direction to the sound source [41], or the sound
source location is directly derived from all observations by computing a Global
Coherence Field (GCF) [96]. The algorithm used here is the one proposed by
Gehrig et al. in [41]. It implements a Joint Probabilistic Data Association Filter
(JPDAF) framework, to fuse the observations from several microphone arrays.
The advantage of the JPDAF is that it is capable of maintaining several sound
source tracks to which observations are associated in a probabilistic way. This,
in principle, allows the filter to switch more quickly between alternating sound
sources, a case which commonly occurs e.g. in conversations. It also makes it
more robust to occasional sources of noise, as these are not associated to and
do not disturb the track of the main target.

The algorithm works as follows: First the TDoAs and corresponding correla-
tion values are calculated for all possible microphone pairs within each array by
calculating the GCC Phase Transform (GCC-Phat) [60; 87] of the frequencies
below 8KHz. The estimation is made 25 times per second and the correspond-
ing correlation values are thresholded using a predetermined threshold. The
JPDAF is then fed with one measurement vector for each time instant and
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microphone array which is made up of the TDOAs of those microphone pairs
of that array with correlation values above the threshold. The measurement
vector is only used for position estimation if it has at least 2 elements. The
algorithm maintains an iterated extended Kalman Filter (IEKF) for each inter-
nally tracked target and evaluates the joint probabilities for associating events
to tracks. The possibly of an observation originating from a target is given by
the target’s innovation covariance matrix. The state update for each target is
then be made separately using the PDAF update rule [16]. The selection of the
active sound source out of the maintained targets is done by choosing the target
with the smallest error covariance matrix volume.

The result of source localization is the 3D scene location of the current most
active sound source, as well as an associated uncertainty covariance matrix. If
the uncertainty in the estimation is too large, the result is immediately regarded
as invalid and discarded. Likewise, if a sound source is estimated for a time
interval where no speech identification could be made, the result is discarded.
This is to avoid tracking noise sources such as dragged feet, printers, etc.

Localization is performed at a much higher rate than identification, as the for-
mer is made every 40ms and the latter is the result of analysis on time intervals
of several seconds. In a final step, the location of the identified speaker is there-
fore taken as the average of all successful localizations within the identification
window, if the variance of estimated locations in this time frame is below a
specified threshold. Otherwise, no location information is given. One should
note this can lead to cases where a speaker identification is possible, but local-
ization is not. In those cases, the speaker ID cue can later not be associated to
a person track based on spatial correlation, but can well serve as a hint that the
concerned person is actually present in the smart space. In the next chapter, we
will see how the integrated tracking approach makes use of this information.

3.4.3 High Level Feature Description

With the information obtained from 3D localization, the composition of high-
level features can now be completed. The description for detection features, as
well as for top view features is composed of a 3D location ~x with associated local-
ization uncertainty Σloc in the global coordinate frame, as well as the mean color
description of the detected or approximated torso region col = (µR, µG, µB).

det = (tobs, ~x,Σloc, col)

top = (tobs, ~x,Σloc, col)
Face ID features carry a large amount of information, being composed of a 3D
location ~x with uncertainty Σloc, an estimated upper body color col, the index
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of the highest ranking identity idV and an associated identification confidence
confV .

fid = (tobs, ~x,Σloc, col, idV , confV )
Speaker ID features are composed of the index of the recognized identity idA,
an identification confidence confA and, if available, the estimated origin in the
scene of the identified speech.

sid = (tobs, ~x,Σloc, idA, confA)

3.5 Summary

This chapter presented the various low-level and high-level features used in
the identity tracking framework. They include less reliable or descriptive but
frequently observable features used mainly to keep track of identified persons, as
well as highly detailed and specific, though harder to observe features used for
accurate detection, color model initialization and identification. The features
are extracted using state-of-the-art algorithms and techniques adapted to smart
environment scenarios involving multiple users. The extraction is done using
only distantly placed cameras and microphones in an unobtrusive, opportunistic
way, without requiring the attention or cooperation of users.

The extracted features are:

• Foreground feature maps in the form of integral images,
fg(x, y)

• Color feature maps in the form of R, G and B-channel integral images,
col(x, y) = (colR(x, y), colG(x, y), colB(x, y))

• Localized detection features,
det = (tobs, ~x,Σloc, col)

• Localized blob tracking features from top view cameras,
top = (tobs, ~x,Σloc, col)

• Localized face ID features,
fid = (tobs, ~x,Σloc, col, idV , confV )

• Localized and non-localized speaker ID features,
sid = (tobs, ~x,Σloc, idA, confA)
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4 Probabilistic Multiple Identity
Tracking using Irregularly
Observable Features

The main idea guiding the design of the identity tracking framework is to op-
portunistically integrate reliable but sparsely available cues for identification
whenever they become available, and to keep tracking recognized persons in the
absence of such. Audio-visual tracking and identification features of varying
accuracy, specificity, frequency and level of abstraction are made available by
the feature extraction steps described in Chapter 3. These features arrive in an
asynchronous and often very irregular way. This raises the need for a flexible
fusion technique that integrates highly varied, partially incomplete and possibly
very sparse information.

The goal is to track and identify multiple persons evolving freely in a smart
space. The identification is to be made for the open set case, which means that
not all persons in the space are known beforehand. Let I = {id1, id2 . . . idn} be
the set of known identities. These are the identities of persons for which voice or
face models have been trained in a priori, for example because they frequently
visit the smart space, belong to a privileged group or are in some form or
another the focus of interest (for example the main speaker in a meeting or the
presenter in a seminar). Let P be the set of persons evolving in the smart space
at a given point in time. Let PF be the subset of persons in P whose identities
are known. They will subsequently be referred to as “focus persons” or simply
“known persons”. Let PU be the set of remaining “unknown” persons. The task
is then to:

1. Detect and track all persons in the smart space. This includes automati-
cally estimating the number of persons, determining their exact locations
and keeping consistent trajectories throughout the duration of their at-
tendance.

2. Distinguish known focus persons from unknown persons.

3. Identify all focus persons.

A person’s state can be seen as comprised of his or her location, color of clothing,
identity, pose (e.g. standing or sitting), body orientation, focus of attention, and
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so forth. For our purposes, the location and identity are of main relevance, with
the color of clothing used as a means to an end. They are considered as hidden
variables to be jointly inferred in a probabilistic estimation process. The state
of a person P ∈ P is therefore defined as

SP = (~x, COL, ID).

The location variable ~x is eventually subject to frequent and fast change, as
the person moves around, and needs to be continuously updated. The color of
clothing COL is not expected to change (at least not in the here considered
time interval), though the appearance of colors may change slightly in time, e.g.
due to illumination changes, or may differ depending on the observing sensor. It
needs to be learned using the sequence of observations associated to the person.
The identity of a person also does not change, although errors in estimation of
the identity are to be expected. This is why it also needs to be estimated using
a sequence of observations. Further, while it is possible for several persons to
wear the same color of clothing, identities are unique and cannot be shared,
such that identity variables ID need to be estimated jointly for all persons.

The performance of the identity tracker will be measured based on two criteria:
One is the accuracy in tracking all persons. The other is the accuracy in deter-
mining the presence, the location and the identity of focus persons. Depending
on the type of application envisioned, the two criteria may not be of equal im-
portance. An example case is that of a smart meeting room which only needs to
perceive the actions of the meeting organizers (to keep protocol, automatically
display presentation slides, etc.) while ignoring the members of the audience.
In this case, the former criterion may be of small interest. Similar requirements
are conceivable for distributed perceptual environments in office buildings or
shopping malls, with large amounts of day-by-day visitors. In such application
scenarios, it may be infeasible or unnecessary to track the movement of all per-
sons. This is one of the reasons the identity tracking framework is designed
specifically to cope with partial or faulty tracking information. The measures
for person tracking and “identity tracking” performance will be discussed in
detail in Chapter 5.

In the following, the proposed algorithm for joint estimation of multiple identi-
ties, the Joint Identity Tracking (JIT) filter, is described. It recognizes the set
of known persons in the smart environment, while considering their locations
as additional information which may or may not be available. The person loca-
tions are inferred in a hybrid Bayesian filtering framework, combining sequential
Monte-Carlo (particle) approximations with grid-based techniques. The deter-
mination of identities present in the smart space and their association to tracked
locations are made by probabilistic filtering in a specially designed joint iden-
tity space. As detection and tracking features as well as inferred information
about identities are considered potentially flawed, all available cues are used to
estimate the number of persons in the scene.
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4.1 Localization

The goal of localization is to detect and track all persons in the smart envi-
ronment. The location ~x of a person is estimated with respect to a global
coordinate frame and represents the (x, y, z) coordinates of the centroid of the
person’s head. The reason for using the head centroid as reference point is that
it is much less ambiguous than, e.g., the body center, which may be hard to
determine depending on the body pose, or the ground location of the feet, which
may be unobservable in many cases. It also makes it easier to evaluate tracking
performance, as the ground truth for evaluation, the 3D head location, can be
easily obtained by annotating the heads in multiple camera views and triangu-
lating. Although the tracking is made in three dimensions, the evaluation of the
tracker will only be made using the (x, y) coordinates on the ground plane, with
information about person height considered of secondary importance. This will
be explained in more detail in Chapter 6.

As inputs to the localization, all features described in Chapter 3 are utilized.
These include foreground and color support maps from one or more cameras,
torso detections, top-view blob tracks, detected and identified faces, as well as
identified and localized speech. The support maps and detections can be con-
sidered “classical” tracking features and are more or less regularly observable as
long as the tracked persons are in a camera’s field of view. Localized face and
speaker ID features, although less frequently observable, are also very useful
for tracking as they represent highly reliable types of detections. Although as
in many visual or audio-visual tracking approaches, using a greater number of
observing cameras increases the tracking accuracy, the algorithm is designed to
function with variable numbers of cameras, with its accuracy degrading grace-
fully as the number of cameras decreases. In the extreme, it “tracks” the lo-
cations of alternating speakers based only on the acoustic modality, using no
camera information at all.

For the probabilistic tracking of persons using multiple camera views, a certain
class of algorithms, particle filters [52], has been shown to be particularly suc-
cessful [112]. Particle filters are Monte Carlo approximations of the Bayesian
filtering framework. Due to their non-parametric nature, they are easily appli-
cable to filtering problems with non-linear, non-Gaussian state dynamics, are
robust to noise or outliers, and can be flexibly used with varying types of sensors
and features [85; 21; 63; 24]. For these reasons, particle filtering has been chosen
as the base of the localization framework, with several extensions proposed to
increase robustness with respect to very low observability of features. Low ob-
servability can manifest itself on several aspects. It is, for example, inherent in
the audio modality as persons take turns speaking, such that features cannot be
extracted for all of them continuously. It is given for the visual modality when
faces that are turned away from cameras or persons regions that are occluded or
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presented in non-standard poses cannot be detected. It is given when coverage
of the smart space is not complete and persons leave the field of view of sensors,
or even when single modalities are wholly unavailable. The proposed exten-
sions are in the form of a special class of “unobserved” particles, a modification
of the sampling proposal distribution, and the incorporation of grid-based ap-
proximation techniques. They will be described later in this section, following
a description of the implemented particle filter and of associated observation
models.

4.1.1 Particle Filter Framework

In Bayesian filtering, the state of a dynamic system is estimated from a sequence
of noisy observations. In the case of person tracking, the system state can be,
e.g., the location of a person, his or her orientation, velocity, height, etc., and
the observations are the features extracted by various sensors. The state of a
person at time t is represented by a random variable xt and the filter estimates
the probability distribution over xt in a recursive process. Let {z1, z2 . . . zt} be
the set of observations up to time t. The filter estimates the posterior density
of xt given all observations

p(xt|z1:t)
Computations are made under the Markov assumption: The probability of the
current state given the previous state is conditionally independent of earlier
states

p(xt|xt−1:1) = p(xt|xt−1)
Similarly, the observation at time t is conditionally independent of all other
states given the current state.

p(zt|xt:1) = p(zt|xt)

Using these assumptions, the probability distribution for xt is recursively esti-
mated as:

p(xt|zt−1) =
∫
p(xt|xt−1)p(xt−1|zt−1) dxt−1 (4.1)

and
p(xt|zt) ∝ p(zt|xt)p(xt|zt−1) (4.2)

Equation 4.1 is referred to as the belief propagation or prediction step. Equa-
tion 4.2 is the filtering or update step [52].

In particle filtering, the probability distribution p(xt|z1:t) is approximated by
a set of weighted samples (the particles),

{
x

(n)
t , w

(n)
t

}N
n=1

, with ∑N
n=1 w

n
t = 1.

Each particle represents a sample of the random variable xt, i.e. a hypothesized
state. The weights are called importance factors and determine the importance
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of each sample. The sequential Bayes filter updates can be realized in a variety
of ways. The most common is through Sampling Importance Resampling (SIR)
[52]. Let

{
x

(n)
t−1, w

(n)
t−1

}N
n=1

be the particles and weights representing the posterior
distribution at time t − 1. The particle set representing the posterior at time
step t is then generated as follows:

• Resampling: particles are sampled N times with replacement from the
set of particles x(n)

t−1 according to the weights w(n)
t−1. This produces a set{

x
(n)′
t−1

}N
n=1

.

• Propagation according to system dynamics: p(xt|xt−1 = xn
′
t−1) is used to

sample each new particle xnt . This corresponds to the prediction step of
Bayesian filtering.

• Observation scoring: Each new particle xnt is assigned a weight propor-
tional to the observation likelihood p(zt|xt = xnt ). This corresponds to the
update step.

In the resampling step, new particles are drawn according to a so-called pro-
posal distribution. In importance resampling, this distribution is given by
p(xt|xt−1)p(xt−1|zt−1). That is, the posterior from time step t − 1, after prop-
agation, is used as prior for the update step at time t. In Section 4.1.6, a
modification of this proposal distribution will be introduced, to account for
cases in which the prior at time t cannot explain the observation zt. Before this,
the implemented observation models p(zt|xt) and dynamic model p(xt|xt−1) are
first explained in Sections 4.1.2 and 4.1.3.

In the following tracking framework, the set of person states is referred to as
S = {S1, S2, . . . , SNP }. As mentioned above, the state vector of one person is
comprised of his or her location, upper torso clothing color and identity

Si = (~xi, COLi, IDi), i = 1, 2 . . . NP

For the purpose of tracking, the location vector ~xi = (xi, yi, zi) is extended with
velocity information (dxi, dyi, dzi)

Si = (xi, yi, zi, dxi, dyi, dzi, COLi, IDi), i = 1, 2 . . . NP

The use of the velocity information will be explained in Section 4.1.3. The first
six parameters of the state vector represent the dynamic part of the person
state and are continuously updated in the particle filtering process. The last
two parameters are static variables which are incrementally estimated from the
sequence of observations {z1, z2, . . . , zt}.

In the multiple person tracking case, the particle filter framework offers the
possibility of performing the estimation for all person in a joint state space

S = (x1, y1, z1, dx1, dy1, dz1, COL1, ID1, x2, y2, . . . , dzNP , COLNP , IDNP ).
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The disadvantage in using joint state spaces, however, is that as the dimen-
sionality of the state space increases with the number of persons, the number of
required particles grows exponentially. To avoid this, special techniques for man-
aging the increased dimensionality are required. These techniques can greatly
increase the complexity of the tracker, which is why a joint state space approach
was not used here. Instead, person locations and clothing colors are estimated
using individual state spaces, which amounts to using a separate particle filter
per person. The advantage is that computations are straightforward and fast.
The disadvantage is that track exclusion has to be achieved by separate means,
to avoid several tracks converging on the same target. This will be described
in Section 4.1.4. Person identities, on the other hand, are estimated in a joint
state space described in Section 4.2.

4.1.2 Observation Models for Scoring

The filtering algorithm maintains a separate track (in fact, a separate par-
ticle filter) for each person in the smart space. Let T = {T1, T2, . . . , TNT }
be the set of tracks. Again, the state vector of a track is defined as Si =
(xi, yi, zi, dxi, dyi, dzi, COLi, IDi). In the update step of the filter, the particles
for each track are scored (their weights are updated) based on the likelihood of
the current observation given the track state p(zt|Si,t). The observation vector
zt is itself composed of the foreground and color support maps, detected up-
per torsos, top view detections and face ID features from the set of observing
cameras, and the speaker ID features for time t. Let

{camm} , m = 1 . . .M

be the set of observing cameras,

fgmt (ix, iy)

colmt (ix, iy)
the foreground and color support maps for camm (Here ix and iy are used to
distinguish image coordinates from world coordinates x, y and z.),

detm,ndt , nd = 1 . . . Ndetmt

topm,ntt , nt = 1 . . . Ntopmt
fidm,nft , nf = 1 . . . Nfidmt

the detection, top view and face ID features for camm and

sidt

the speaker ID feature at time t, if available.
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Then the observation likelihood is defined as the product of the component
likelihoods of individual feature types (in the following, the subscript t is omitted
for simplicity)

p(z|Si) = pfg · pcol · pdet · ptop · pfid · psid · psb

with
pfg =

M∏
m=1

pmfg =
M∏
m=1

p(fgm(ix, iy)|Si)

pcol =
M∏
m=1

pmcol =
M∏
m=1

p(colm(ix, iy)|Si)

pdet =
M∏
m=1

pmdet =
M∏
m=1

Ndetm∏
nd=1

p(detm,nd|Si)

ptop =
M∏
m=1

pmtop =
M∏
m=1

Ntopm∏
nt=1

p(topm,nt|Si)

pfid =
M∏
m=1

pmfid =
M∏
m=1

Nfidm∏
nf=1

p(fidm,nf |Si)

psid = p(sid|Si)

and psb expressing the likelihood given the boundaries of the smart space itself.
This component will be explained in detail further below.

Many particle filter-based tracking approaches in the literature use the sum
of component likelihoods (scores) instead of the product. This helps avoiding
floating point errors due to the multiplication of small decimal numbers. It also
allows to define “weights” for the scores of individual components, which are
used in the computation of a weighted average. The weights then serve to adjust
the importance of specific feature types and are set manually or automatically
[86]. Here, the product of components is taken, with “importance weights”, if
any, realized by a careful definition of the individual conditional probabilities.
An advantage of the product rule is the implementation of penalties for states
inconsistent with (part of) the observation vector, simply by setting one of the
component likelihoods to a small value (in the extreme, to zero). This would be
the equivalent of using “negative” scores in the case of the sum rule, which can
be problematic as the total score may then as well become negative.

Although separate state spaces are employed, the scoring or update step is not
performed independently for each track. This is due to the fact that occlusions
caused by one track can influence the observation likelihood of another track.
Also, the association of localized features to tracks, which directly influences
likelihoods, is made probabilistically based on all current tracks states. The
occlusion model will be discussed in detail in Section 4.1.5.
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The observation models used to derive the observation likelihoods for the dif-
ferent feature types will now be explained in detail.

“Smart Space Boundary” Model

Since the tracking of identities is to be made only inside the smart observation
space, it makes sense to penalize particles that leave its physical boundaries.
This is done here simply by using the bounding cuboid SB of the space. The
upper and lower boundaries of SB are set to sensible values representing the
meaningful area in which person heads are to be found (head locations, which
are approximated by the particles, should e.g. not be below 90cm or above
2m). Apart from eliminating gross errors, this increases computation speed by
reducing the size of the state space. Let Sn = (~xn, ~dx

n
, COLn, IDn) be the state

vector for the nth particle. Particle scores are then updated using the likelihood
function

psb(zt|Snt ) =
1 ~xn ∈SB

0 else

Strictly speaking, the so defined function does not model an observation likeli-
hood, as it is not dependent on zt. Describing it as part of the observation model
is a generalization: One can conceive of much more complex, possibly dynamic
boundary functions, that would also consider the placement of movable objects,
such as tables, desks, etc., forming absolute exclusion zones for person. The
location of these objects may itself be part of the observation vector, such that
the boundary model is again dependent on zt.

In the current form, boundary exclusion could be seen as part of the prediction
step: The prediction for the particle mass is corrected by setting the weights of
particles falling outside the smart space boundaries to zero. Since the compu-
tation is performed directly following the prediction step, this is equivalent to
using a somewhat more elaborate dynamic model.

p(St|zt) ∝ p(zt|St)
∫
p(St|St−1)p(St−1|zt−1) dSt−1

=
∏
feat

pfeat(zt|St)psb(zt|St)
∫
p(St|St−1)p(St−1|zt−1) dSt−1

=
∏
feat

pfeat(zt|St)
∫

[psb(St)p(St|St−1)] p(St−1|zt−1) dSt−1

with pfeat(zt|St) the observation models for actually observed features.
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Figure 4.1: The inner and outer bounding boxes used to estimate the foreground
likelihood score for a particle. The highest score is achieved if there
is full support in the inner box, and no support in the immediately
surrounding region.

Foreground Observation Model

The foreground observation likelihood is computed as the difference of ratios of
foreground pixels inside the person area defined by the particle state, and of
foreground pixels in the immediately surrounding area. To compute pmfg(z|Sn),
a bounding box Bin is first constructed by projecting the estimated location and
size of the person into the corresponding camera view. A second bounding box
Bout is then constructed, centered around Bin and with 5 times its area (see
Fig. 4.1.

The foreground ratio Rin is computed by dividing the number of foreground
pixels inside Bin by the bounding box area. Likewise, the foreground ratio for
Bout, excluding the area occupied by Bin, is computed. This is efficiently done
using the integral image representation of the foreground support. Next, the
ratio difference between the two areas is computed as Rdiff = Rin − Rout. Its
value ranges from −1 to 1. Assuming perfect foreground segmentation, a value
of Rdiff = 1 is achieved when the foreground support in the target region is
exactly constrained to the estimated person region. A value of −1 represents
the worst case: that any location surrounding the estimated region is better
suited to support the track hypothesis. Intermediate values are obtained if the
person region is not well bounded or when other persons are in the immediate
surrounding, making the localization less reliable. Now, let 0 < ceq < 1 be a non-
negative value representing the (non-zero) likelihood that a person is present in
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the target region in the case Rin = Rout. The observation likelihood is then
defined as the piecewise linear function

p(fgm(ix, iy)|Sn) =
ceq +Rdiff (1− ceq) Rdiff ≥ 0

(1 +Rdiff )ceq else

The parameter ceq can be used to weight the importance of the foreground
feature. If ceq is set very high, the lack of adequate foreground support is not
strongly penalized and particle scores are mostly influenced by other features.
When it is set very low, the foreground feature is very restrictive. In any case,
the best and worst case scenarios will result in values of p(fgm(ix, iy)|Sn) of 1
and 0, respectively.

Color Observation Model

The observation likelihood for the color feature pmcol(z|Sn) is computed for each
particle only if a color model is available for the corresponding view. The color
model for the mth view, COLm consists of a mean µmcol and diagonal covariance
matrix Σm

col and is only available if it has been learned in in previous observations
of the track. More details on initializing color models are given in Section 4.1.9.
Similar to the foreground feature, the observation likelihood is computed here
using the projected bounding box Bin of the upper torso into the corresponding
image. Using the integral image representation for each channel, the mean color
µB is quickly computed for the area inside Bin and used to derive a color score

sB = N (µB, µmcol,Σm
col)

with N (·, µmcol,Σm
col) the multivariate Gaussian function centered at µmcol and with

covariance matrix Σm
col. The observation likelihood is then obtained as

p(colm(ix, iy)|Sn) = ceq + sB(1− ceq)

If no color model is available for a specific view, the corresponding observa-
tion likelihood is set to pmcol(z|Sn) = ceq. The reason for enforcing a minimum
value ceq for the color likelihood is that since color models are initialized and
adapted in an unsupervised way, the influence of a failed color match on the
overall observation likelihood should be limited. Here again, ceq can be seen as
a parameter adjusting the importance of the color similarity feature.
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Detection and Top View Observation Models

Localized upper body detections are scored based on spatial proximity and color
similarity. The spatial component Spcorr(n) for the detection feature detm,nd =
(tobs, ~x,Σloc, col) extracted from camm and the particle with location ~xn is given
by

Spcorr(n) = N (~xn, ~x,Σloc)
The color similarity component Colcorr is computed using the track’s color model
for the corresponding view COLm = (µmcol,Σm

col), if available
Colcorr = N (col, µmcol,Σm

col)
The resulting observation likelihood is then

p(detm,nd|Sn) = cobs + (1− cobs)Spcorr(n)Colcorr

with cobs a minimum likelihood value for particles that do not correlate (spatially
or in color space) with the detection feature. In this way, a smooth association of
localized observations to tracks is implemented: For each detection, the particle
scores of tracks that do not coincide with the detection are set to the minimum
non-zero value. Particles that correlate well receive a higher weight. To simplify
the likelihood computation, a gating function is used that immediately sets the
weights of particles with a distance greater than 3σ from the detection center
to cobs.

For top view features, the observation likelihoods p(detm,nd|Sn) are computed
in the same manner.

Face ID Observation Model

Localized face ID features are scored based on spatial proximity and color sim-
ilarity for the associated upper torso region, just as for detection features. The
correlation of the observed identity with the modeled identity, however, is not
used in the scoring stage. The reason for this is that single-frame face ID esti-
mates and single-segment speaker ID estimates are expected to be quite noisy,
especially in the presence of unknown persons. Rather than penalizing par-
ticles based on the identity correlation, effectively modifying the a-posteriori
distribution of track locations, single identity estimates are associated to tracks,
accumulated, and a probability distribution for identity locations is inferred.
This will be explained in detail in Sections 4.2 and 4.3.

In summary, the observation likelihood for face ID features is defined as
p(fidm,nf |Sn) = cobs + (1− cobs)Spcorr(n)Colcorr

with Spcorr(n) and Colcorr defined as above, and the parameter cobs used for the
same reasons.
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Speaker ID Observation Model

Similarly, the observation likelihood relating to localized speaker ID features is
computed based on spatial proximity.

p(sid|Sn) = cobs + (1− cobs)Spcorr(n)

Non-localized speaker ID features are not considered in scoring.

4.1.3 Prediction and Resampling

The resampling of particles is made independently for each track using stan-
dard Sequential Importance Resampling (SIR). A new set of particles is drawn
from the particle set {xn}Nn=1 according to the importance weights given by the
observation likelihoods wn = p(z|Sn). For this, particle weights are first normal-
ized such that ∑N

n=1 w
n = 1. After the resampling step, a new set of particles

{x′n}Nn=1 is obtained, with equal weights w′n = 1/N .

The following propagation (or prediction) step updates the new particle states
(in essence their location) using a simple linear dynamic model: The locations
are deterministically updated using the particle velocities

~xnt+1 = ~x′
n

t + ~dx
n

t+1

while the velocities (initially set to 0) are probabilistically updated using Gaus-
sian noise

~dx
n

t+1 ∝ N ( ~dx′
n

t ,Σdx)
with Σdx = diag(σdx, σdy, σdz) a diagonal covariance matrix. The variances
σdx,dy,dz are parameters for the prediction step and are set to model the rea-
sonable range of velocity change in an indoor environment. In this way, the
dynamics of the state space are effectively constrained to 3 dimensions, dx, dy
and dz, as the location (x, y, z) is deterministically inferred.

4.1.4 Mutual Track Exclusion

Since the prediction and filtering steps described so far are performed indepen-
dently for each track, we must take care that several tracks do not converge on
the same target. This problem is well known in the field of multi-target tracking
and several solutions have been proposed [70]. One solution involves using esti-
mated track centers [23]. In such an approach, the most likely location for each
track is computed, e.g. as the weighted average of its particle locations, and par-
ticles from neighboring tracks are penalized when they lie inside a certain region
around the track center. The problem with such approaches is they assume the
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underlying probability distribution about the person location to be unimodal,
while in the particle filter approach, a non-parametric, possibly multimodal dis-
tribution is modeled. If, e.g., the belief about a person’s location presents two
distinct peaks at opposite ends of the room, the computed track center lies in the
middle of the room and may wrongfully perturb another track. Another track
exclusion method involves the use of Markov Random Fields [58; 62]. These
are employed in an iterative process during the prediction step to gradually ap-
proximate the conditional distribution p(S1

t , . . . , S
NT
t |S1

t−1, . . . , S
NT
t−1). The com-

putations can be relatively complex, as they involve single particles, but offer
the advantage of preserving the non-parametric assumption.

Here, a much simpler method is used, based on grids. Non-parametric Bayesian
filtering using grid-based methods has already been used with success in a num-
ber of applications. The advantage of grid-based methods is that they are simple
to implement and can represent arbitrary distributions over a discretized state
space. The downside is that their computational and space complexity grows
exponentially with the number of dimensions. Here, the complexity problem
is circumvented by applying only 2-dimensional grids to solve specific tasks,
such as mutual exclusion on the ground plane, while the main filtering steps are
accomplished in the particle filter framework.

The method works as follows: First, the ground plane of the smart space is
subdivided into a regular, non-overlapping grid of cells Ci,j. The width wcell of a
cell (which is equal to its height) is a parameter to the algorithm (throughout this
work, a width of 10cm is used, as it provides a fine enough tessellation for person
tracking). Three types of occupancy maps are computed, by accumulating in
each cell the normalized weights of all particles falling inside the cell:

• An individual occupancy map for each track Tk, ocpk(i, j) with

ocpk(i, j) =
∑

n=1...N,xk,n∈Cki,j

wk,n

• The total occupancy map for all tracks, ocptot(i, j) = ∑K
k=1 ocpk(i, j).

• From the former two, the complementary occupancy map for each track,
ocp!k(i, j) = ocptot(i, j)− ocpk(i, j)

Cells with an accumulated weight greater than zero are referred to as active cells.
Only they need to be considered in the track exclusion process. The computed
occupancy maps are used as a means to realize a coarse and fast clustering of
the particle mass, and will be useful also for generation of the tracker output or
for implementation of a fast occlusion mechanism.

Mutual track exclusion is realized as follows: The main constraint to be realized
is that a specific region on the ground plane can only be occupied by one person
at a time. As a consequence, the sum of accumulated normalized weights for
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Figure 4.2: The occupancy maps calculated upon the grid-based discretization
of the smart space. Cells are color coded according to the different
tracks. The higher the occupancy of a cell, the brighter its intensity.

one track inside a certain region around a cell can serve as a penalty term for
other tracks. The exclusion region RC for a cell Ci,j is approximated as the
square with center (i, j) and with a radius Rexcl expressed in numbers of cells .
Region-based occupancy maps Ocpk(i, j) are then computed with

Ocpk(i, j) =
∑

Cx,y∈RC
ocpk(x, y)

This can be done efficiently again by applying the integral image technique
on the previously defined grids. Likewise, the complementary occupancy maps
Ocp!k(i, j) are computed. Figure 4.2 shows example occupancy maps for multi-
ple tracks as seen from various camera views.

In the resampling step of the particle filter, a penalty term exclk,n is defined for
each particle of a track Tk by using Ocp!k(i, j): Let Ci,j be the cell occupied by
particle xk,n. Then

exclk,n = 1−min(1, Ocp!k(i, j))
That is, as the particle mass from other tracks in the region around Ci,j increases,
the penalty term tends toward 0. Before resampling, the exclusion penalty is
multiplied with the particles’ normalized weights, followed by a renormalization
to unit sum. The effect is that single particles from different tracks tend to
repel each other, which prevents the accumulation of their probability mass on
a local scale.

4.1.5 Occlusion Handling

Several approaches in the visual multiple target tracking literature have shown
that specifically modeling occlusions between targets can greatly improve track-
ing performance [70; 62]. This is why an occlusion modeling technique for visual
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observations is also implemented here. It computes a 2.5-dimensional, camera-
relative representation of target-related occlusions in the scene, by using the
above introduced occupancy maps. For each camera camm, a fast, dynamic
programming algorithm derives an occlusion factor occm(i, j) for each active
cell of the previously described grid. These occlusion factors are then used to
modify the observation likelihoods for features extracted from the corresponding
camera view.

Computing probabilistic track occlusion for discretized scene locations is of
course a simplification. Another possibility is to calculate image-based occlu-
sion maps, such as proposed e.g. in [62]. The advantage is that such maps are
much more detailed as the occlusion can be estimated at the pixel level. The
disadvantage is their computational complexity. The advantage of the method
proposed here is that it can be computed very fast and used effectively with
all types of features extracted from the same camera view. A major difference
to the method in [62] is that only one occlusion map is generated for all tracks
per camera, whereas in [62], individual maps are computed for each track. The
method works as follows:

For each camera camm, the occlusion factor for an active grid cell Ci,j (active
meaning that ocptot(i, j) is not zero) is computed using the total occupancy of
cells lying between it and the camera. Let {C1, C2, . . . , CN} be the set of cells
lying on the line of view lov from Ci,j to camera camm and let C0 = Ci,j. Let
0 < oclmn < 1 be a factor expressing the amount of occlusion caused by cell Cn.
Then, oclmn is calculated as the sum of the occupancies of Cn and its neighboring
cells NCn. NCn is defined as the set of cells lying on the line perpendicular to
lov passing through Cn, with distance to Cn smaller than a specified occlusion
radius Roccl. The reason is that due to the size of persons being larger than the
size of a cell, persons hypotheses lying in the neighborhood of Cn also contribute
to occluding the line of view (see Fig. 4.3).

The occlusion factor occm(i, j) = occm(0) for cell Ci,j can then be recursively
computed using

occm(n) = oclm(n) + occm(n+ 1)
occm(i, j) is truncated to values between 0 and 1 and the recursion is broken
off as soon as the accumulated value reaches 1 (once the line of sight is fully
obstructed by one person, it is irrelevant how many more persons still stand
behind him or her). The occlusion factors for all cells are calculated using an
efficient dynamic programming algorithm. The values computed for cells on a
line of view are stored, such that they need not be recomputed for another line
of view that passes through them. This makes for an extremely fast recursive
computation.

The algorithm described up to this point calculates occlusions using a 2D grid
and neglecting completely the height of persons in the scene. When cameras

75



LOV Cam

Roccl

Ci jCi,j

Figure 4.3: The computation of occlusion factors based on grid discretizations.
The occupancies of cells lying on the line of view to the camera are
accumulated in a recursive fashion. The line of view is considered
blocked completely if the cumulative occupancy exceeds a value of
1.

are placed at a sufficient height, however, it is well possible for persons to stand
behind each other, relative to one camera, without occluding each other. The
algorithm is therefore extended to include approximate height information in
the following way: For computation of the occlusion factor occm(i, j), a visibility
cone V is first projected from the camera center to Ci,j, such as to cover the
vertical range of areas potentially occupied by upper torsos at Ci,j (see Fig. 4.4).
For this, upper and lower bounds, bhigh and blow, for the upper body area are
defined (Here, bhigh and blow are set to 2m and 1m, respectively). The reason
generic bounds are used is that occlusion is calculated for a whole cell, and not
for each particle hypothesis (with associated height) inside the cell. This is, of
course, an approximation, which however proves to be sufficiently precise for our
purposes. When performing the recursive computation, V is used to estimate a
correction term fmcorr(n) for the occupancy of each cell Cn on the line of view to
the camera. fmcorr(n) is defined as the percentage of the conic section inside Cn
that lies between bhigh and blow (see Fig. 4.4). The idea is that if the visibility
cone is not intersected, the view on the relevant parts of Ci,j is not occluded
and fcorr = 0. Using the correction term, the recursive formula is redefined as

occm(n) = (fmcorr(n)oclm(n)) + occm(n+ 1)
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Figure 4.4: The extension of the grid-based occlusion model to include height
information. The contribution of cells on the line of sight to the
camera is weighted according to the portion of the visibility cone
they are expected to maximally intersect.

Figure 4.5 shows example occlusion maps generated for several observing cam-
eras in a multiple track scenario.

The algorithm is computationally very efficient for two reasons:

• Occlusion is only computed for active cells. Since the number of active
cells is smaller than or equal to the number of particles, usually only a
fraction of the total grid is considered.

• The dynamic programming algorithm avoids computing the occlusion fac-
tor for the same cell twice. When a cell on the line of sight to the camera
for which the occlusion factor was already computed is reached, the recur-
sion returns.

Using the occlusion map for camera camm, the observation likelihoods for track
Tk are modified as follows: Let Ci,j be the cell occupied by particle xn. Let
further p(featmM(ix, iy)|Sn) with featM ∈ {fg, col} and p(featm,nlL |Sn) with
featL ∈ {det, top, fid} be the observation likelihoods for feature maps and
localized features extracted from camera camm, respectively. The modified ob-
servation likelihood for feature maps is then

p′(featmM(ix, iy)|Sn) = occm(i, j)cobs + (1− occm(i, j))p(featmM(ix, iy)|Sn)
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Figure 4.5: The grid-based occlusion maps for three different corner cameras,
as seen from a same top view point. Lighter cells represent areas
of strong occlusion, while darker ones represent less occluded ones.
Occlusion factors are calculated only for the cells that are actually
occupied by particles in a fast recursive algorithm. The direction of
the occlusion shadows in the separate images indicates the origin of
the observing camera.

and the likelihood for localized features becomes (see Section 4.1.2)

p′(featm,nlL |Sn) = cobs + (1− cobs)Spcorr(n)Colcorr(1− occm(i, j))

That is, in both cases particles that are completely occluded receive a likelihood
score of cobs. The parameter cobs, which has already been introduced in Sec-
tion 4.1.2, can be seen as a base likelihood for particles which cannot be scored
as they are too distant to be associated to localized observations, occluded by
other particles, and so forth. It will be explained in more detail in the next
sections.

4.1.6 The Issue of Observability

First, the concept of “unobserved” particles and tracks is introduced. An unob-
served particle represents a hypothesis about the target state which cannot be
verified by observation because it cannot be detected acoustically and is either
inside the visual occlusion zone of another target, out of view of all sensors,
or outside of the smart space altogether. An unobserved track is a track for
which all particles are unobserved. This can happen, e.g., when camera cover-
age is low and a person clearly passes from a covered to an uncovered area. The
motivation behind the concept is as follows: When tracking multiple targets,
observations may only be available for one of them at a time (e.g. when track-
ing based only on speech). No observation can be made for other tracks during
this time. Yet, we wish to keep track of their positions until new observations
are available. This is common practice when tracking single targets, e.g. us-
ing Kalman filters, or when tracking multiple targets, in conjunction with data
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association techniques such as the Joint Probabilistic Data Association Filter
(JPDAF), graph-based Bayesian belief nets, etc. The problem when using com-
mon particle filter implementations is that they rely on regular state updates
for each target. If there are large gaps in observations of a target, the particle
mass for its track will spread uncontrollably, due to the noise introduced in the
probabilistic resampling step, which may quickly render the prediction given
by system dynamics useless. This is especially true when tracking targets with
highly unpredictable dynamics, such as humans, which may change their direc-
tion, stop moving and pause for lengthy periods of time, unexpectedly start to
move again, walk back and forth, etc. For this reason, the assumption is made
here that when a person cannot be observed, his or her state does not change.
More specifically, we assume the location to be unchanged, with the uncertainty
in this location growing as time passes. When a new observation can be associ-
ated to this person, the update is made based on the last observed location and
velocity. This is common practice when using e.g. the aforementioned filtering
techniques. The difference here is that this mechanism is implemented at the
particle level: For unobserved particles only, the propagation step is skipped
(their locations and velocities are not updated), while states for observed parti-
cles, on the other hand, are propagated as usual. When a localized observation
is later made which is inconsistent with the current distribution of tracks, the
weights and the previously known positions and velocities of their unobserved
particles are used to update the belief in the tracks’ states, effectively sampling
new particles at the location of the observation. This will be explained in detail
in Section 4.1.7.

By doing the data association and update at the particle level, the non-parame-
tric nature of the underling target density is preserved and a hybrid system is
obtained, where each sample of the particle filter acts as separate filter, which
is updated probabilistically using Bayesian inference. As a simplification, we
will speak in the following of the “unobserved particle mass” or “unobserved
probability mass”, meaning the sum of the unobserved particles’ normalized
weights.

A useful application of the concept of a partially unobserved particle mass is in
determining the probability of the presence of a target inside the bounds of the
smart space, i.e. the confidence in the existence of the track itself. Indeed, while
the particles evolving inside the boundaries of the smart space jointly represent
the hypothesis that the target is present, one may also compute a probability for
the opposite hypothesis, that the target is outside of the space. A simple way
to do this is proposed here: The hypothesis that a person is not present in the
space is represented by an additional particle, the “exterior particle” xext with
weight wext, which by definition is unobserved. It is handled similarly to other
unobserved particles: since it has no valid location, it is neither propagated, nor
resampled. In the filter update step, it is scored using a fixed value expressing
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the likelihood of the observation, since the observation could not have been
caused by the exterior particle. The scoring is done as follows:

• For support maps featM ∈ {fg, col}, the observation likelihood is

p(featmM(ix, iy)|Sext) = cobs

and therefore
pfeatM (z|Sext) =

M∑
m=1

cobs

• For localized visual features featL ∈ {det, top, fid}, it is

p(featm,nlL |Sext) = cobs

and
pfeatL(z|Sext) =

M∑
m=1

∑
nl

cobs

• For localized speaker ID features, it is

psid(z|Sext) = cobs

In this way, the score of xext equals that of a completely occluded particle
(see Section 4.1.5). The likelihood score of other particles can therefore only
become smaller than that of xext if they are at least partly unoccluded and are
penalized at some point by a foreground or color support map. After scoring,
wext is normalized jointly with all other particle weights, such that

N∑
n=1

wn + wext = 1

The normalized weight of the exterior particle, the “exterior probability”, can
then be used as a track confidence, representing the overall validity of the track.
If wext > ∑N

n=1 w
n, the visible evidence is not enough to support the existence of

the track in the smart space, and it should be deleted. In the field of person or
object tracking, it is common practice to use confidence thresholds, e.g. based
on the average or the maximum observation likelihood for a track. Here, the
thresholding is achieved in a more elegant and flexible way using the parameter
cobs.
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4.1.7 Correcting the Prior on Uncovered Observations

Two types of features are used in the proposed tracking framework: support
maps and localized features. Evaluating the observation likelihoods for support
maps requires sampling the state space and evaluating the positions hypoth-
esized by the samples. This is done using the usual update rules for particle
filtering. Localized features, such as detections or preprocessed blob tracks, on
the other hand, offer direct hints about the target distribution. They can be
seen as temporary peaks in the observation likelihood which do not need to be
indirectly found by propagating the particle mass, but can be scored directly
based on e.g. proximity or other similarity criteria (see Section 4.1.2). Indeed,
one of the problems inherent in particle filtering is that if the state space is
not sufficiently well sampled or if peaks in the observation likelihood are too
narrow, local maxima may be missed entirely. The use of localized features, i.e.
regions of the state space which have been found to be of interest in a prepro-
cessing step, allows to circumvent this problem (This is the case, e.g., for top
view features, which are coherent peaks in the foreground support map of the
top view camera, found through low-level preprocessing). They can be used to
score the particles in their vicinity, but they can also draw the attention of the
tracker to regions which should, but are currently not being sampled. Localized
features are commonly used e.g. in Kalman filter-based trackers to update the
belief about a target’s state or to initialize new tracks for observations which
do not match any of the current targets. Likewise, spatio-temporally localized
observations are often used in conjunction with Dynamic Bayes Nets (DBNs)
for multi-target tracking under occlusion (see e.g. [119]). Here, the particle
filtering algorithm is extended to offer the advantages of both approaches.

For this, the notion of “coverage” of localized features is introduced. The cover-
age of a localized feature featL ∈ {det, top, col, fid, sid} is computed as the sum
of the normalized weights of all particles that can be associated to it, weighted
by their spatial proximity

cov(featm,ndL ) =
N∑
n=1

Spcorr(n)wn

with Spcorr(n) the spatial proximity score as described in Section 4.1.2.

In the following, we will use the term “covered observations” to refer to local-
ized features for which the coverage exceeds a certain threshold Tcov. Likewise,
“uncovered observations” are those with a coverage lower than Tcov.

Uncovered observations can be caused by one of the following:

• Existing targets that have been temporarily lost or could not be observed
for a certain time, and that got rediscovered. Also, targets that are badly
tracked, and for which the actual observation constitutes a hint at their
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possible true location. In this case, the particle mass of corresponding
tracks is at least partially unobserved.

• New targets entering the smart space. For these targets, new tracks should
be created.

• Errors, noise, faulty detections, etc. If possible these should be recognized
as such and ignored.

The remainder of this section deals with the first of these three cases, while the
others are handled in Section 4.1.8.

The unobserved particle mass of a track represents hypotheses for the track’s
state (its location) which could not be confirmed by observation for at least
the previous time frame t − 1. It also represents the probability for the hy-
pothesis that the tracked target is actually not present in the smart space. In
both cases, there is some uncertainty to the locations hypothesized by the unob-
served particle mass. When an observation is made, which cannot be explained
by the currently hypothesized states, the probability that it originated from un-
observed particles, taking into account their location uncertainty, is computed.
A new particle xη is then sampled at the observed location, with weight wη
proportional to the total probability for the unobserved particle mass. Let xn
be an unobserved particle for track Tk with associated weight wn. Let τ be
the elapsed time since xn was last observed and ~xnt−τ , ~dx

n

t−τ its last observed
position and velocity. Let also ~xobst be the location of the uncovered observation
and ∆~x = ~xobst −~xnt−τ . The probability of xn being observed at ~xobst is estimated
by computing the acceleration ~a required for xn to bridge the distance ∆~x in
time τ , considering its previous velocity

~a = ∆~x− ~dx
n

t−ττ

1/2τ 2

Since the possible values of ~a are limited by the system dynamics expressed by
Σdx = diag(σdx, σdy, σdz) (see Section 4.1.3), the sought probability is given by

matchnobs = p(~xnt = ~xobst |~xnt−τ , ~dx
n

t−τ ) = N (~a,~0,Σdx)

For the “exterior particle” xext from Section 4.1.6, for which the location and
velocity are undefined, it is simply taken as

matchextobs = 0.5

The total probability for the unobserved particle mass of track Tk is then ob-
tained as

matchobs =
N∑
n=1

matchnobsw
n +matchextobsw

ext
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with N the number of unobserved particles. Let Wk be the total weight of un-
observed particles for track Tk. For each uncovered observation obs = featm,ndL ,
a new sample xη is then inserted at location ~xobs, with weight wη = matchobs,k,
and the weights of all unobserved and newly created particles is renormalized
such that their sum equalsWk. The coverage for the observation is also updated
as

cov′(obs) = min(1, cov(obs) +
K∑
k=1

matchobs)

In essence, the above described procedure modifies the belief in the tracked
target’s state prior to the filter update step, by shifting some of the track’s un-
observed particle mass toward uncovered observations. Applying modifications
to the proposal distribution used in resampling, e.g. dependent on the cur-
rent observation vector, is an active topic of research, and many variations have
been proposed in the literature [78; 112]. Here, the idea is taken a bit further by
the introduction of an “unobserved” and therefore “uncertain” probability mass
which allows to modify also the belief p(xt|zt−1) prior to observation scoring.

4.1.8 Track Creation and Deletion

Observations that are still uncovered after the previously described matching
stage, either because the unobserved mass of available tracks is insufficient or
because the matching score is too low, are hints for the presence of a previously
undetected person and trigger the creation of new tracks. On the other hand,
tracks which are not supported by observation evidence for a certain amount of
time are deleted. This section explains the mechanisms for track creation and
deletion in detail.

New tracks are created on uncovered detection, top view, face ID or localized
speaker ID features. As the feature extraction step is error-prone, a temporary
“scout” track is first created, which still has to be validated by further evidence.
The criteria for validating a scout track are as follows:

1. The exterior weight wext of the track, as described in Section 4.1.6, must
smaller than the sum of other particle weights.

2. The average foreground likelihood per view∑N
n=1 p

m
fg(z|Sn)wn must exceed

a threshold Thfg in 60% of available views.

3. The average color likelihood per view ∑N
n=1 p

m
col(z|Sn)wn must exceed a

threshold Thcol in 60% of available views

4. The track’s observability must be high enough throughout all views. Let
om,n be 1 if particle xn is observable using features from camm, and 0 else.
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Then the track observability is given by ∑M
m=1
∑N
n=1 o

m,n and must exceed
a threshold Thobs.

If the above criteria are met for a minimum amount of time τminvalid, the scout
track is validated and its position will subsequently be output by the tracker.
If they are not met before a maximum time limit τmaxvalid, the scout track is
deleted.

Track deletion is accomplished using the same criteria, with the difference that
criteria 2 and 3 must be valid only for 40% of available views. If the criteria
cannot be met by a valid track, it is not immediately deleted, but rather tem-
porarily invalidated and kept alive for a short period of time τsustain. The idea
is that tracks that become unreliable for short periods of time, e.g. due to tem-
porary occlusion, should be allowed to reacquire their target. If the validation
criteria can again be met within τsustain, the track is again validated, otherwise
it is deleted. Note that tracks for persons recognized as known (tracks for which
the accumulated identification confidence exceeds a specified threshold) are kept
alive for a significantly longer period of time τknown. The reason is that they
are much less likely to be spurious tracks caused by false detections, etc., and
should not be dropped as quickly.

4.1.9 Unsupervised Color Model Learning

The color models for the set of tracks {Tk}Kk=1 are updated during the scoring
step of the filter. The color model for each track Tk consists of a set of view-
dependent models {COLm}Mm=1 which are initialized and updated based on the
color description col of localized features extracted in the corresponding camera
views {camm}Mm=1. These view-dependent models are defined as

COLm = (µmcol,Σm
col), m = 1, . . . ,M

with µmcol and Σm
col the mean and variance of mean colors accumulated for view

m. As described in Chapter 3, the color described in the features and modeled
in the tracks is the estimated mean color of a person’s upper torso. Localized
features are mapped to tracks in a probabilistic data association step, in which
each feature is assigned to exactly one track for color adaptation. While localized
features may contribute to the scoring of particles from multiple tracks, color
learning is performed only for the track that best correlates with the observation.
This is because a soft mapping of color observations to several tracks will quickly
lead the degradation of color models. A hard decision, on the other hand, favors
the creation of well defined, discriminative color models.

The association to tracks is made based on spatial coverage and color similarity.
Let {xn}Nn=1 be the set of particles for track Tk with weights wn and location
vectors ~xn. Let also featm,nlL with featL ∈ {det, top, fid, sid} be a localized
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feature originating from camm, COLm be the corresponding color model from
Tk, if available, and Spcorr(n), Colcorr the spatial proximity and color similarity
functions from Section 4.1.2. Then the correlation factor for featm,nlL and Tk
is

corr(featL, k) =
N∑
n=1

Spcorr(n)Colcorrwn

If no color is associated to the observation (as is the case e.g. for speaker ID
features), the value of Colcorr is set to 1 and the correlation is computed based
only on spatial proximity. The association is then made to the track Tκ with
the highest correlation value

κ = argmaxk=1,...,K(corr(featL, k))

The reason why separate color models are used for each view is to avoid making
strong assumptions about color constancy. As no inter-camera color normaliza-
tion is performed, colors may have a substantially different appearance from one
camera to the next. This is especially the case for top view cameras, e.g., where
the ground plane forms the background in most of the image. The appearance
of the upper body is also influenced by other factors, such as lighting, shadows,
(the backs of chairs for sitting persons,) etc. This is why individual models are
preferred.

When observations from a specific view are insufficient to build a dedicated
model, an “average” color model COLavg is used, with mean µavgcol and variance
Σavg
col estimated using all available observations from other views. Though this

model is less accurate than dedicated ones, it is sufficient for an initial, rough
approximation. As soon as observations become available for the concerned
view, a dedicated model is built and subsequently used.

The color models for views from wall-mounted cameras are updated only when
upper torso or face detections are available. The reason is that the detections
offer a reliable, though not always observable cue for estimating the bound-
aries of the torso (as compared to e.g. motion-based segmentation or constant
adaptation at the likeliest target location). This avoids learning in background
colors, which can quickly lead to persistent faulty color models. In compari-
son, color models for top views are updated at a much higher rate, as the top
view features are in fact foreground blob tracks which, in the best case, are
available at framerate. The learned models are less reliable, though, as the top
view features are more error-prone and offer a much less precise segmentation
of the torso region. This is another reason for the color-based feature filtering
described in Chapter 3.

Empirical tests have shown, though, that a constant update of color models in
all views using a very small learnrate can improve the quality of color models.
This update is done by projecting the estimated, most likely upper torso location
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into each view, and computing the mean color from the resulting bounding box.
This is useful, e.g., for views in which no direct detection of the upper body can
be made (e.g. because of an atypical pose), and where its appearance differs
from the calculated mean of other views. If the track location can be maintained
using other features and other views, the color model for this view is eventually
acquired.

One should note that the unsupervised learning of color models, in the absence
of a clear, reliable cue for deciding the relevance of observations, is a very chal-
lenging task [103]. Many sources of error exist:

• Faces can be detected, for which the associated upper torso is partly or
completely occluded by objects or other persons.

• Inaccuracies in distance estimation for localized features can lead to faulty
track associations.

• Inaccurate tracks can also lead to faulty associations in individual views,
etc.

Though the solutions adopted here allow to cope with many of the mentioned
problems, the automatic bootstrapping of classifiers or initialization of models
for person tracking under realistic conditions is a tough problem and constitutes
a still open topic of research.

4.1.10 Output Track Locations

The output of the particle filter localization process are the 3D locations of the
tracked occupants’ heads in the global coordinate frame. The location of a track
Tk needs to be estimated from the locations of its particles. There are several
ways to accomplish this, e.g. by using the weighted mean of particle locations,
by using the location of the highest scoring particle, etc. The problem with the
former method is that it breaks the non-parametric assumption about the target
distribution. If the particle mass is split into two equally important clusters,
more or less the mean of the cluster centers is output, which may not be a valid
location at all. The problem when using the latter method is that the output
location may be highly unstable, as it is based on single samples. Other viable
alternatives involve the clustering of particles, which is what is done here. The
method performs a fast clustering of particle locations, using the occupancy
maps Ocpk(i, j) described in Section 4.1.4. The grid cell Ck,max

i,j occupied by the
maximum weight particle from track Tk is determined and a weighted average
of particle locations is computed using only particles which lie in cells within
the neighborhood of Ck,max

i,j . The neighborhood is taken as the exclusion region
Rexcl for cell Ck,max

i,j , as defined in Section 4.1.4. The method has shown to
provide very stable position estimates while staying usable in the case of highly
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(a) (b)

Figure 4.6: The output of the localization step. Again, track-specific occu-
pancy grids are used to efficiently cluster particles and infer a locally
smoothed average.

clustered output distributions. Figure 4.6 again shows an example of occupancy
maps used to compute output track locations.

4.2 Identification

The previous sections have explained the filtering process by which the loca-
tions of occupants of the smart perceptual space are estimated. This includes
initializing and deleting tracks, estimating track locations and confidences, and
building person-specific color models. This section now describes how models
for the identities of tracked persons are built from the speaker ID and face ID
features gained throughout an observation sequence.

Just as for the case of color features, speaker ID and face ID features are matched
to tracks in a probabilistic association step, and identity models are updated
only for the track with the highest correlation value. Before the correlation
function can be explained, we need to define the identity model of a track and
the information extracted from each feature type.

The identity model ID, referred to in short as the “ID model”, is a discrete, non-
parametric probability density function (pdf) over the space of known identities.
One can consider the values ID(i) for discrete indices i as confidence values for
the respective identities, with ∑Nids

i=1 ID(i) = 1. Neighboring values in ID are
independent of each other, as they represent concrete identities, such that no
“mean” or “variance” for an identity can be inferred. If all values in the ID pdf
are equal, the modeled identity is considered unknown. If a distinct peak in ID
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exists, the identity is assumed known and the height of the peak can be seen as
a measure of the confidence in the identification.

The identity-related information contained in the face and speaker ID features
consists of the index id of the most likely identity and a confidence value conf .
This information is first transformed to the same representation as for a track’s
ID model, namely to a discrete probability density function, before correlation
is made. This is done by building a probability density function idf for the
observation, such as

idf(i) =
conf i = id

1−conf
Nids−1

else

The result is a discrete pdf peaked at the index of the highest confident identity
and with equal confidence for all other identities.

The motivation for computing idf in this way will now be explained further.
In Sections 3.3.2 and 3.3.3, the output of the classification process is given
as an n-best list of identities {id1, . . . , idn} with normalized confidence scores
{conf1, . . . , confn}. The question one could ask is why this array of confidence
scores is not directly used as discrete identity pdf (with confidences for remaining
known identities set to 0). One of the reasons is that the classifiers used are
nearest neighbor and GMM classifiers trained for the closed set case. When
unknown persons are presented for classification, or when the decision for known
persons is not clear, the classifiers typically output several identities with similar
confidence. The n best confidences are then artificially brought to the range [0, 1]
by min-max normalization, and later renormalized. As a result, the values for
the first n best scores are actually dependent on the size of the n-best list (or
better said on the value n) and should not be considered as actual probability
measures for the corresponding identities. When a definite peak in the output
n-best list exists, on the other hand, the 2nd best, 3rd best identities, etc., are
often random and are rather the results of discretization (for example due to
limitations in the amount and type of training data). For these reasons, only
the best scoring identity and its normalized score are further considered.

An additional reason, as will be described later in Section 4.2.1, is that the
chosen method allows us to warp the confidence value of the identification before
performing audio-visual fusion.

After the probability density function idf for an observation has been computed,
the association to tracks is made based on spatial coverage and identity corre-
lation. Let {xn}Nn=1 be the set of particles for track Tk with weights wn and
location vectors ~xn. Let also featI ∈ {fid, sid} be a localized face or speaker
ID feature and, IDk be the ID model for Tk, if available. The spatial prox-
imity component for single particles is again given by Spcorr(n), as defined in
Section 4.1.2, and the identity correlation Idcorr is computed using the Bhat-
tacharyya coefficient BC(p, q) = ∑x∈X

√
p(x)q(x) (the Bhattacharyya coefficient
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is a measure of similarity between two discrete probability density functions. For
details, the reader is referred to [55])

Idcorr = BC(idf, IDk)

The correlation factor for featI and Tk is then

corr(featI , k) =
N∑
n=1

Spcorr(n)Idcorrwn

In the case of non-localized speaker ID features the correlation factor is com-
puted as

corr(sid, k) =
Idcorr Idcorr ≥ τsid

0 else

That is, the correlation is only considered valid if it exceeds the threshold τsid
(here, τsid is empirically set to 0.5). The track Tκ with

κ = argmaxk=1,...,K(corr(featI , k))

is then chosen for ID model adaptation.

The adaptation itself is made using a fixed learnrate α

IDk ′ = αidf + (1− α)IDk

An alternative to using a learnrate-based adaptation would be, e.g., to update
the model in a Bayesian fashion by taking the product of the modeled and
observed densities

p(IDk
t |zt) ∝ p(zt|IDk

t−1)p(IDk
t−1|zt−1)

where the current model IDk
t can be seen as the prior estimated from passed

observations {z1, . . . , zt−1}. The reason this is not done here is that this could
quickly lead to a degenerate prior (a pdf with all but one value set to 0), such
that errors in identification or in data association could not be recovered by later
observations. Another reason is that sequential Bayesian estimation may not be
the best suited method for this task in the first place, as one of its important
assumptions is often not met: The independence of observations. An example
is a scenario where visual identification is performed on one participant’s face
several times in sequence, at the same location, under the same conditions. It
can be argued that these observations should not be considered independent,
and that the whole sequence can be seen more or less as one observation. For
these and other reasons, learnrate-based model adaptation (even using a variable
learnrate) seems more appropriate and is commonly used in the literature.

In the explanations given above, visual and acoustic identity observations are
treated uniformly and accumulated in a joint audio-visual ID model. As will
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be shown later in Chapter 6, modeling acoustically and visually derived iden-
tities separately and fusing the results at the decision level may help increase
identification performance. The reason is that speaker ID and face ID cues may
be observed at quite different rates. Faces may in the best case be captured at
framerate, or may be invisible for long periods of time. Voice identification is
performed at best for 1 second segments and can only be made when the target
person speaks. When updating one same model with both types of observations,
the result may therefore be biased toward one modality based only on observa-
tion frequency. To avoid this, separate identity models IDk

V and IDk
A are kept

for each track Tk and each model is adapted using only the features from the
corresponding modality. The final audio-visual identity model IDk (which is
still used to compute correlations in the data association step) is then obtained
as the product of modality-specific models. This is achieved by component-wise
multiplication of the concerned pdfs, followed by renormalization of the result.

The fusion at decision level could also be done using the weighted sum of IDk
V

and IDk
A. The choice of the product here is justified by the independence of the

audio and visual modalities. Nevertheless, the weighted sum rule for modality
fusion is also investigated and an evaluation of the two techniques as well as
comparison to the single ID model method are given in Chapter 6.

4.2.1 Warping Confidence Values

In this section, a problem is addressed which is commonly encountered when
combining the results of multiple classifiers: The normalization of confidence
scores. Owing to the different nature of the classification algorithms, the derived
confidences for face and voice identification, though bounded to the interval
[0, 1], are not directly comparable. Indeed, the actual confidence values are not
evenly distributed between 0 and 1:

• The lowest possible confidence value γmin is 1/n, with n the number of
hypotheses in the n-best list (Remember that the identification confidence
is the normalized confidence score of the highest ranking identity in an n-
best list output by the classifier).

• The highest confidence value γmax is in principle 1, but for some classifier
types actual confidence values are confined to a much smaller range (this
depends e.g. also on the value n). For the speaker identification pro-
cedure described in Section 3.3.3, e.g., the difference between the top n
confidences is usually very small, owing to the nature of the classifier, such
that after renormalization of the n best confidences (with high enough n)
the highest ranking confidence score is almost always very low.

• The optimum threshold value γthresh to distinguish known from unknown
persons in the open set ID case consequently lies between γmin and γmax.
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As a consequence, the derived confidence scores, as described in Sections 3.3.2
and 3.3.3 cannot be directly used to combine classifier outputs.

To remedy this, a warping function fwarp(·) is applied to the confidence scores.
It is realized as a piecewise linear transformation, which maps the confidence
values between γmin and γmax to the range [ 0, 1] and maps the value γthresh to
0.5

fwarp(conf) =


1
2 + 1

2
conf−γthresh
γmax−γthresh

conf ≥ γthresh
1
2

conf−γmin
γthresh−γmin

else

The parameters γmin, γmax and γthresh can be chosen from the operating points
of the individual classifiers, estimated, e.g., on experimental data. The resulting
warped confidence values fwarp(conf) are normalized to the same range and can
therefore be used directly for comparison or fusion of identification results from
the audio and visual modalities. Further, a common threshold can now be
applied for the acceptance of known identities. In Chapter 6, we will see how
the operating points for the here implemented face and voice recognizers are
determined.

4.3 Joint Identity Filtering

While the previous sections were concerned with the tracking of persons and
their identification on an individual basis, the topic of this section is the track-
ing of Identities in the smart space. This means that the presence of known
persons in the space is to be detected, their locations found if possible, and their
identities jointly derived. Indeed, estimating identities individually for tracks
can lead to unwanted results, such as wrongfully assigning the same identity to
two or more tracks. In the presence of ambiguous measurements, deciding on
which identity to assign to which tracked person, on which person to reject as
unknown in the case of conflict, etc., on a global scale can be a non-trivial mat-
ter. The solution proposed here is a probabilistic filtering approach, that jointly
estimates the probabilities for the presence, location and identity of multiple
known persons. The algorithm, referred to as the Joint Identity Tracking (JIT)
filter, is described in the following.

4.3.1 Assumptions and Task Definition

Two main assumptions are made at this point, that will guide the design of the
identity tracking filter:
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• Information about tracks is inherently flawed. The results of multiple
person tracking in natural, cluttered environments, cannot be expected to
be flawless. False tracks may be generated, persons may not be detected
at all, estimated locations may be erroneous, tracks may be swapped,
etc. Especially in the last case, observations that have been accumulated
for one target person are after the swap wrongfully assigned to another
person. The identity tracking system must be able to recover from such
errors.

• Identification results are inherently flawed. For both modalities, single
identification results, no matter how high the estimated confidence, are
not absolutely trustworthy. This means that observations for one per-
son should be accumulated to increase the accuracy of the result. The
constancy, but also the frequency of accumulated results can serve as in-
dicators for the quality of the identification, especially when unknown
persons or unknown sources of noise are present.

Given these assumptions, the number of persons present in the smart space,
e.g., cannot be reliably estimated using the results of tracking or the number of
recognized identities alone, but should be derived jointly using both sources of
information.

Let us now define the relevant terms used in the description of the identity
tracking task:

• Identities: Here, the term is used in a simplifying way to designate only
“known” identities, i.e. those for which classifiers have been trained be-
forehand. The identities of unknown persons are not considered, i.e. the
task does not include differentiating between unknown persons (this is
the object of general person tracking). The set of identities is denoted
I = {id1, id2 . . . idNids}. Generally, only a small subset of the known iden-
tities is present in the smart space at one time.

• Tracks: These are entities which have been detected in the smart space
and the locations of which are being tracked. Tracks may or may not
represent actual persons. False tracks are often enough generated, caused
by false detections, noisy measurements or estimation errors.

• Persons: The word is used in its common meaning to designate actual
persons evolving in the space. The number of persons present in the space
is variable. They are further divided into known “focus” persons and
unknown persons. Persons are not necessarily tracked. “Tracked persons”
are those whose location coincides with a track hypothesis. This is in
opposition to

• Hidden persons: Those are persons which are found present in the space,
though their location can not be estimated. The presence of such persons
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can be detected, e.g., by the highly confident or repeated recognition of an
identity in the space, for which no track information is available. This may
be because the corresponding track got lost, or could not be initialized in
the first place.

The task of identity tracking consists in detecting the presence of known persons
(identities) in the smart space and determining their location. An important
part of the task is is also not to detect identities which are absent from the
space, due to wrongful recognition of unknown persons. Any of these subtasks
may be accomplished with a more or less high degree of accuracy.

The joint identity tracking filter realizes this by managing a set of person models
P = {P1, . . . , PNP } for the persons present in the space. This set is composed
of tracked persons PT and of “hidden persons” PH

P = PT ∪ PH

Let I be a random variable defined over the set of identities {id1, id2 . . . idNids}
and L be a random variable representing their possible locations. An identity
can be hypothesized as being associated to one of the tracked persons PT , to one
of the hidden persons PH or to be absent from the smart space. L is therefore
defined over the set {P0, P1, . . . , PNP } with P0 representing the hypothesis that
an identity is outside of the smart space. Based on the speaker and face ID cues
observed so far, the filter approximates the joint probability p(I, L|z1:t). The
corresponding marginal distributions p(I|L, z1:t) and p(L|I, z1:t)) are of special
interest. For n = 1, . . . , NP , p(I|L = n, z1:t) represents the belief in the iden-
tity of person Pn. In the case of individual estimation for tracked persons, it is
equivalent to the probability density function IDk modeled in the corresponding
track, as described in Section 4.2. For i = id1, . . . , idn, p(L|I = i, z1:t)) repre-
sents the belief in the location of identity idi. It is a discrete probability function
over {P0, P1, . . . , PNP }. It abstracts from actual spatial coordinates in the scene
by assigning identities to tracked locations, unknown locations inside the smart
space, or undefined locations outside of the smart space. The next section will
show how the joint probability distribution p(I, L|z1:t) is approximated from the
marginal distributions in an iterative estimation process.

4.3.2 Joint Update in Identity Space

When estimating the identities of multiple persons, two conditions must always
be satisfied:
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• One person can be associated at most one identity. This is common sense
and is translated in probabilistic terms by requiring that the probability
distribution modeling the identity of a person normalizes to one.

Nids∑
i=1

p(I = i|L = n, z1:t) = 1, n = 1, . . . , NP

• Two persons cannot share a same identity or, expressed in other terms,
one identity cannot be hypothesized to be present in two places at the
same time. This means that the distribution modeling the location of an
identity must also normalize to one.

NP∑
n=0

p(L = n|I = i, z1:t) = 1, i = 1, . . . , Nids

The problem consists in keeping both constraints met when updating the joint
probability p(I, L|z1:t−1) given a new observation zt. This is done in an iterative
refinement process, as follows:

1. Update: Each time a new observation is associated to a modeled person
Pn, the marginal probability for that person is first updated. Let idf be
the discrete pdf modeling the observed identity. The update is then made
as described in Section 4.2 as

p(I|L = n, z1:t) = αidf + (1− α)p(I|L = n, z1:t−1)

with a fixed learnrate α. Since both distributions were normalized density
functions, the result is also a normalized pdf with values summing up to
1.

2. Location normalization: Since modifying the belief about the identity
of a person also changes the belief about the locations of all identities
modeled by that person, the marginal distributions for identity locations
are renormalized

p(L|I = i, z1:t) = p(L|I = i, z1:t−1)∑NP
n=0 p(L = n|I = i, z1:t−1)

, i = 1, . . . , Nids

3. Identity normalization: Modifying the belief about locations in turn chan-
ges the belief about the identity of each person. The marginal distributions
for identities are therefore renormalized

p′(I|L = n, z1:t) = p(I|L = n, z1:t)∑Nids
i=1 p(I = i|L = n, z1:t)

, n = 1, . . . , NP

Note that no similar renormalization is made for n = 0, as it is not contra-
dictory for any number of identities to be in an undefined location outside
of the space.
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4. Steps 2 and 3 are repeated until the cumulative difference between values
of the marginal distributions from one iteration to the next falls below
a specified threshold Tbreak or a maximum number of iterations Nbreak

is reached. Experiments have shown that a small number of iterations
(generally less than 5) is sufficient to achieve convergence.

After the update step, the value of p(I = i, L = n|z1:t) represents the proba-
bility, given the observation sequence, that identity idi is present in the space,
represented by person Pn, or absent from the space (for n = 0).

The output of the filter is the most likely identity for each of the modeled
persons, as well as the confidence in this identity. This is done for each per-
son Pη by finding the identity ιη which maximizes both marginal distributions:
ιη = argmaxNidsi=1 p(I = i, L = η) and η = argmaxNPn=1p(I = ιη, L = n). First, the
likeliest identity for person Pη is determined. If the found identity does not
represent a maximum of p(L|I) (i.e. the likelihood for assigning it to another
person is higher), the second best identity is taken, and so forth. If no identity
can be assigned to Pη, it is considered an unknown person (ιη = id0). In the
maximum search process, priority is given to tracked persons: If the same max-
imum i is found for a tracked person Pn and a hidden person Pm, the tracked
person is chosen for output and the confidence is taken as the sum of confidences
p(I = i, L = n) + p(I = i, L = m). In this case, it is likely Pm was wrongfully
modeled as a separate person and rather expresses an uncertainty in the location
of Pn. This can happen when localized or non-localized ID features cannot be
mapped directly to tracked persons, as will be explained in the next section.

In this manner, only one identity is output per person, and no two persons
are assigned the same identity. The output of the filter is therefore the set of
assignments

{
(Pη, idιη , conf(η, ιη))

}NP
η=1

, with conf(η, ιη) = p(I = ιη, L = η).

4.3.3 Person Creation, Deletion and Data Association

This section explains the process of creating and deleting person models, as
compared to the creation and deletion of tracks, described in Section 4.1.8.

Person models are created based on two criteria. The first is tracking informa-
tion. When a new track is initialized and validated, as described in Section 4.1.8,
a corresponding person model is automatically created and added to the set of
tracked persons PT . The second is information about recognized identities.
When localized ID features are extracted, they are mapped to tracks in a prob-
abilistic data association process, as described in Section 4.2. If no matching
track is found, however, the observation is hypothesized to originate from a
person present in the smart space for which a track could not be initialized.
Therefore, an association to the set of hidden persons PH is attempted. If this
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association also fails, a new person model is created and added to PH, and its
identity pdf updated based on the observation.

While the association to tracked persons is made using both identity correlation
and spatial coverage, the association to hidden persons is made based only on
identity correlation. For this, the marginal distribution p(I|L = n) for a hidden
person Pn is taken and compared to the density idf given in the observation.
As in Section 4.2, the Bhattacharyya coefficient is used as measure to compute
a correlation coefficient

Idncorr = BC(idf, p(I|L = n)).

The correlation to a uniform pdf over the space of identities Id0
corr = BC(idf, U)

is taken as a threshold, such that association to Pn is only made if Idncorr >
Id0

corr.

For the deletion of person models, two cases must again be considered. The
first is when a person track is lost, as explained in Section 4.1.8. The corre-
sponding person model is then not immediately deleted, but moved to the set
of hidden persons PH: It is hypothesized that the person may still be present,
though not tracked. The question is then when to delete models for hidden
persons, which is the second case. This is done similarly as for the deletion
of identified tracks: Models for hidden persons are kept alive as long as they
are regularly observed. Models for persons hypothesized as unknown (for which
the accumulated identification confidence does not exceed a specified threshold)
are deleted if no observation can be associated to them for a certain period of
time τsustain. Models for persons hypothesized as known are deleted only after a
longer period τknown. The reason is, again, that they are much less likely to be
false hypotheses caused by data association errors, errors in recognition, etc.

4.3.4 Evaluating Identities

Although the proposed Joint Identity Tracking Filter estimates non-parametric
probability distributions for locations and identities, the outputs of the algo-
rithm need to be discretized for comparison to the ground truth in performance
evaluations (see Chapter 5). This means that one discrete identity and one defi-
nite 3D position in the scene have to be computed for each hypothesized person.
Section 4.3.2 already described how marginal distributions are used to derive
a set of output assignments {(Pn, idιn , conf(n, ιn))}NPn=1. The output location
vector ~xn for tracked persons is then taken as the location of the correspond-
ing track. The location vector ~xn is invalidated for hidden persons. Although
the localization subtask is considered failed for these persons, the identification
performance can still be evaluated.
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Figure 4.7: The output of the integrated identity tracking system. The blue
and yellow circles represent the person tracker hypotheses and the
person models, respectively. The identities for recognized persons
are printed on top of the respective models. The green lines indicate
face identification hits for the current frame, in this example made
by two of the four corner cameras for one room occupant.

Finally, the confidence conf(n, ιn) is used to decide if the considered person
is known or unknown. As explained in Section 3.3, the open set identifica-
tion task is realized by thresholding the identification confidence values. If
conf(n, ιn) < Thknown, the person is considered unknown and the index id0 is
output. Otherwise the person is considered known and idιn is output. Different
values for the acceptance threshold Thknown will be investigated in Chapter 6.
In summary, the output of the JIT filter is, for every time point t, a set of
hypothesis identities and locations

{(idιn , ~xn)}
NP
n=1

and the confidence information is not further used.

Figure 4.7 shows an example output of the integrated identity tracking system
on a CLEAR seminar with four known participants.
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5 Performance Metrics

Performance evaluations are an important factor in in the development of algo-
rithms an techniques. Systematic evaluations using large benchmark datasets
and producing quantitative, statistically significant results are essential to com-
pare the strengths and weaknesses of different techniques - and measure progress.
The task of multiple identity tracking with distantly placed sensors, as defined
in this thesis, is a new problem definition, which has, to my knowledge, not
been addressed to such extent and detail in the literature. As a consequence,
the problem of defining metrics to measure the performance of identity tracking
systems and methods has also not been solved satisfactorily. Perhaps the main
reason for the lack of commonly agreed on metrics and evaluation procedures
so far is that large benchmark databases of multimodal, multi-sensory inputs,
recorded in realistic conditions for natural multiple person interaction scenar-
ios were, until the past few years, just not available. The CLEAR evaluation
workshops [106; 105] have changed this situation by providing to the scientific
community databases featuring hundreds of hours of multimodal recordings of
natural meeting and seminar scenarios, captured under realistic and quite var-
ied conditions. The evaluations already provided a forum for the evaluation
of novel multiple person tracking tasks, and some of the metrics used in these
evaluations were developed in the course of this thesis to overcome the lack of
standardized evaluation procedures so far. Here, a new set of metrics is also pre-
sented, complementing the previous ones, for the evaluation of algorithms and
systems performing simultaneous tracking and identification. As a consequence,
two sets of performance evaluation metrics are hereby introduced:

• Multiple Object Tracking (MOT ) Metrics: These are used to measure
the accuracy of person tracking. This includes measuring if the number
of persons present could be correctly determined, if their locations are
correctly estimated, how precise the localization is done, how well track
integrity is kept, etc.

• Multiple Identity Tracking (MIT ) Metrics: These metrics measure the ac-
curacy of identity tracking. The objects of evaluation here are exclusively
known identities, i.e. the identities of known persons. They measure if
the presence of known identities in the smart space is correctly detected,
if identities are correctly determined and how well their locations are es-
timated.
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In addition, the well known measures of correct classification, false classification,
false rejection and false acceptance (as explained in Section 3.3), commonly used
e.g. in the field of biometric verification, are used here to evaluate specifically
open set identification performance. These measures can however not be applied
or interpreted in the standard way, which is why modifications to the standard
evaluation procedure are explained in Section 5.3.

5.1 Performance Metrics for Multiple Object
Tracking

In the course of this thesis, a novel method to systematically evaluate the perfor-
mance of multiple object trackers has been developed. A procedure to detect the
basic types of errors produced by multiple object trackers is presented and two
novel metrics are introduced, the Multiple Object Tracking Precision (MOTP ),
and the Multiple Object Tracking Accuracy(MOTA), that intuitively express
a tracker’s overall strengths and are suitable for use in large-scale performance
evaluations.

To allow a better understanding of the proposed metrics, the qualities we expect
from an ideal multiple object tracker are first explained: It should at all points
in time find the correct number of objects present and estimate the position of
each object as precisely as possible (Note that properties such as the contour,
orientation or speed of objects are not explicitly considered here). It should also
keep consistent track of each object over time: Each object should be assigned
a unique track ID which stays constant throughout the tracking sequence (even
after temporary occlusion, etc). This leads to the following design criteria for
performance metrics:

• They should allow to judge a tracker’s precision in determining exact ob-
ject locations.

• They should reflect its ability to consistently track object configurations
through time, i.e. to correctly trace object trajectories, producing exactly
one trajectory per object.

Additionally, we expect useful metrics

• to have as few free parameters, adjustable thresholds, etc, as possible to
help make evaluations straightforward and keep results comparable.

• to be clear, easily understandable and behave according to human intu-
ition, especially in the occurrence of multiple errors of different types or
of uneven repartition of errors throughout the sequence.
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• to be general enough to allow comparison of most types of trackers (2D,
3D trackers, object centroid trackers or object extension trackers, visual
or acoustic trackers, etc).

• to be few in number and yet expressive, so that they may be used, e.g., in
large-scale evaluations where many systems need to be compared.

Based on the above criteria, a procedure is proposed for the systematic and
objective evaluation of a tracker’s characteristics. Assuming that for every time
frame t a multiple object tracker outputs a set of hypotheses {h1 . . . hm} for a set
of visible objects {o1 . . . on}, the evaluation procedure comprises the following
steps:
For each time frame t,

• Establish the best possible correspondence between hypotheses hj and
objects oi

• For each found correspondence, compute the error in the object’s location
estimation.

• Accumulate all correspondence errors:

– Count all objects for which no hypothesis was output as misses.

– Count all tracker hypotheses for which no real object exists as false
positives.

– Count all occurrences where the tracking hypothesis for an object
changed compared to previous frames as mismatch errors. This could
happen, e.g., when two or more objects are swapped as they pass close
to each other, or when an object track is reinitialized with a different
track ID, after it was previously lost because of occlusion.

Then, the tracking performance can be intuitively expressed in two numbers:
the “tracking precision”, which expresses how well exact person locations are
estimated, and the “tracking accuracy”, which shows how many mistakes the
tracker made in terms of misses, false positives, mismatches, failures to recover
tracks, etc. These measures will be explained in detail in the latter part of this
section.

5.1.1 Establishing Correspondences Between Objects
and Tracker Hypotheses

As explained above, the first step in evaluating the performance of a multiple
object tracker is finding a continuous mapping between the sequence of object
hypotheses {h1 . . . hm} output by the tracker in each frame and the real target
objects {o1 . . . on}. This is illustrated in Fig. 5.1. Naively, one would match

101



t
o2

t

h2

o1

t
h1

h5
t

t

o8 misses

False
Positiveso8 misses

t

Figure 5.1: Mapping tracker hypotheses to objects. In the easiest case, matching
the closest object-hypothesis pairs for each time frame t is sufficient.

the closest object-hypothesis pairs and treat all remaining objects as misses and
all remaining hypotheses as false positives. A few important points need to be
considered, though, which make the procedure less straightforward.

Valid Correspondences

First of all, the correspondence between an object oi and a hypothesis hj should
not be made if their distance disti,j exceeds a certain threshold Thdist. There
is a certain conceptual boundary beyond which we can no longer speak of an
error in position estimation, but should rather argue that the tracker has missed
the object and is tracking something else. This is illustrated in Fig. 5.2(a). For
object extension trackers (i.e. trackers that also estimate the size of objects
or the area occupied by them), distance could be expressed in terms of the
overlap between object and hypothesis and the threshold Thdist could be set to
zero overlap. For object centroid trackers, one could simply use the Euclidian
distance, in 2D image coordinates or in real 3D world coordinates, between
object and hypothesis centers, and the threshold could be, e.g., the average
width of a person in pixels or cm. The optimal setting for Thdist therefore
depends on the application task, the size of objects involved and the distance
measure used, and cannot be defined for the general case . In the following,
correspondences will be referred to as valid if disti,j < Thdist.
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Consistent Tracking

Second, to measure a tracker’s ability to label objects consistently, one has to
detect when conflicting correspondences have been made for a target object
over time. Fig. 5.2(b) illustrates the problem. Here, one track was mistakenly
assigned to 3 different objects over the course of time. A mismatch can occur
when objects come close to each other and the tracker wrongfully swaps their
tracks. It can also occur when a track was lost and reinitialized with a different
track index. One way to measure such errors could be to decide on a “best”
mapping (oi, hj) for every object oi and hypothesis hj, e.g. based on the initial
correspondence made for oi, or the correspondence (oi, hj) most frequently made
in the whole sequence. One would then count all correspondences where this
mapping is violated as errors. In some cases, this kind of measure can however
become non-intuitive. As shown in Fig. 5.2(c), if, for example, the identity of
object oi is swapped just once in the course of the tracking sequence, the time
point at which the swap occurs drastically influences the value output by such
an error measure.

This is why a different approach is followed here: only count mismatch er-
rors once at the time frames where a change in object-hypothesis mappings is
made and consider the correspondences in intermediate segments as correct.
Especially in cases where many objects are being tracked and mismatches are
frequent, this gives us a more intuitive and expressive error measure. To detect
when a mismatch error occurs, a list of object-hypothesis mappings is con-
structed. Let Mt = {(oi, hj)} be the set of mappings made up to time t and let
M0 = {}. Then, if a new correspondence is made at time t + 1 between oi and
hk which contradicts a mapping (oi, hj) in Mt, a mismatch error is counted and
(oi, hj) is replaced by (oi, hk) in Mt+1.

The so constructed mapping functionMt can now help to establish optimal cor-
respondences between objects and hypotheses at time t+1, in the case multiple
valid choices exist. Fig. 5.2(d) shows such a case. When it is not clear, which
hypothesis to match to an object oi, priority is given to ho with (oi, ho) ∈Mt, as
this is most likely the correct track. Other hypotheses are considered false posi-
tives, and could have occurred because the tracker output several hypotheses for
oi, or because a hypothesis that previously tracked another object accidentally
crossed over to oi.

Mapping Procedure

Having clarified all the design choices behind our strategy for constructing
object-hypothesis correspondences, we summarize the procedure:

Let M0 = {}. For every time frame t,
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Figure 5.2: Optimal correspondences and error measures. Fig. 5.2(a): When
the distance between o1 and h1 exceeds a certain threshold Thdist,
one can no longer make a correspondence. Instead, o1 is considered
missed and h1 becomes a false positive. Fig. 5.2(b): Mismatched
tracks. Here, h2 is first mapped to o2. After a few frames, though,
o1 and o2 cross paths and h2 follows the wrong object. Later, it
wrongfully swaps again to o3. Fig. 5.2(c): Problems when using
a sequence-level “best” object-hypothesis mapping based on most
frequently made correspondences. In the first case, o1 is tracked
just 2 frames by h1, before the track is taken over by h2. In the
second case, h1 tracks o1 for almost half of the sequence. In both
cases, a “best” mapping would pair h2 and o1. This, however, leads
to counting 2 mismatch errors for case 1 and 4 errors for case 2,
although in both cases only one error of the same kind was made.
Fig. 5.2(d): Correct reinitialization of a track. At time t, o1 is
tracked by h1. At t + 1, the track is lost. At t + 2, two valid
hypotheses exist. The correspondence is made with h1 although h2
is closer to o1, based on the knowledge of previous mappings up to
time t+ 1.
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1. For every mapping (oi, hj) in Mt−1, verify if it is still valid. If object oi
is still visible and tracker hypothesis hj still exists at time t, and if their
distance does not exceed the threshold Thdist, make the correspondence
between oi and hj for time frame t.

2. For all objects for which no correspondence was made yet, try to find a
matching hypothesis. Allow only one to one matches, and pairs for which
the distance does not exceed Thdist. The matching should be made in
a way that minimizes the total object-hypothesis distance error for the
concerned objects. This is a minimum weight assignment problem, and
is solved using Munkres’ algorithm [82] with polynomial computational
complexity. If a correspondence (oi, hk) is made that contradicts a map-
ping (oi, hj) in Mt−1, replace (oi, hj) with (oi, hk) in Mt. Count this as a
mismatch error and let mmet be the number of mismatch errors for time
frame t.

3. After the first two steps, a complete set of matching pairs for the current
time frame is known. Let ct be the number of matches found for frame t.
For each of theses matches, calculate the distance dit between the object
oi and its corresponding hypothesis.

4. All remaining hypotheses are considered false positives. Similarly, all re-
maining objects are considered misses. Let fpt and mt be the number
of false positives and misses respectively for frame t. Let also gt be the
number of target objects present at time frame t.

5. Repeat the procedure from step 1 for the next time frame. Note that since
for the initial frame, the set of mappingsM0 is empty, all correspondences
made are initial and no mismatch errors occur.

In this way, a continuous mapping between objects and tracker hypotheses is
defined and all tracking errors are accounted for.

5.1.2 MOT Metrics

Based on the matching strategy described above, two very intuitive measures
can be defined.

1. The Multiple Object T racking Precision (MOTP ).

MOTP =
∑
i,t d

i
t∑

t ct

It is the total localization error for matched object-hypothesis pairs over
all time frames, averaged by the total number of matches made. It shows
the ability of the tracker to estimate precise object positions, independent
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of its skill at recognizing object configurations, keeping consistent trajec-
tories, etc.

2. The Multiple Object T racking Accuracy (MOTA).

MOTA = 1−
∑
t (mt + fpt +mmet)∑

t gt

where mt, fpt and mmet represent the number of misses, of false positives
and of mismatches, respectively, for time frame t. The MOTA can be
seen as derived from 3 error rates:

m =
∑
tmt∑
t gt

,

the rate of misses in the sequence, computed over the total number of
objects present in all frames,

fp =
∑
t fpt∑
t gt

,

the rate of false positives, and

mme =
∑
tmmet∑
t gt

,

the rate of mismatches.

Summing up over the different error rates gives us the total error rate
Etot, and 1−Etot is the resulting tracking accuracy. TheMOTA accounts
for all object configuration errors made by the tracker, false positives,
misses, mismatches, over all frames. It is similar to metrics widely used in
other domains (such as the Word Error Rate (WER), commonly used in
speech recognition) and gives a very intuitive measure of the tracker’s per-
formance at detecting objects and updating their trajectories, independent
of the precision with which the object locations are estimated.

Remark on Computing Averages: Note that for bothMOTP andMOTA,
it is important to first sum up all errors across frames before a final average or
ratio can be computed. The reason is that computing ratios rt for each frame t
independently before calculating a global average 1

n

∑
t rt for all n frames (such

as, e.g., for the FP and FN measures in [97]), can lead to non-intuitive results.
This is illustrated in Fig. 5.3. Although the tracker consistently missed most
objects in the sequence, computing ratios independently per frame and then
averaging would still yield only 50% miss rate. Summing up all misses first and
computing a single global ratio, on the other hand, produces a more intuitive
result of 80% miss rate.
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Figure 5.3: Computing error ratios. Assume a sequence length of 8 frames. For
frames t1 to t4, 4 objects o1 . . . o4 are visible, but none is being
tracked. For frames t5 to t8, only o4 remains visible, and is being
consistently tracked by h1. In each frame t1 . . . t4, 4 objects are
missed, resulting in 100% miss rate. In each frame t5 . . . t8, the miss
rate is 0%. Averaging these frame level error rates yields a global
result of 1

8(4 · 100 + 4 · 0) = 50% miss rate. On the other hand,
summing up all errors first, and computing a global ratio yields a
far more intuitive result of 16misses/20objects = 80%.
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Figure 5.4: The different types of errors that can be produced in identity track-
ing. The top rows represent the ground truth an the bottom rows
the tracker hypothesis. The x-axis represents a one-dimensional ab-
straction of locations in the smart space. In the case the ground
truth person represents a known identity (5.4(a)), four types of er-
rors are possible: false localization, false classification, false rejection
and a complete miss. Only if both the location and the identity are
correctly inferred is no error made. Note tha in the case of a pure
localization error, a correct classification is still counted. Likewise,
incorrectly identified persons can still be correctly localized. 5.4(b)

shows the cases where the ground truth represents an unknown person. Two
types of errors can be made: a false acceptance and a false positive hypothesis.
In the case the unknown person is tracked and correctly recognized as such, no
error occurs. All other cases are ignored in the evaluation of identity tracking.

5.2 Performance Metrics for Identity Tracking

The goal of identity tracking is to recognize and localize known focus persons
interacting with several unknown ones in a smart environment. Similarly to
the MOT metrics, we first count the different types of errors made by the
identity tracker in an observation sequence, and then define appropriate error
measures. Possible errors include failing to determine the correct identity of a
known person, failing to correctly estimate his or her location, falsely rejecting
a known person as unknown, falsely recognizing an unknown person as known,
failing to detect the presence of a known identity in the smart space and falsely
hypothesizing the presence of a known person which is absent. Figure 5.4 shows
an illustration of the different error types. The evaluation procedure is now
defined in accordance:

Let P = {P1, . . . , PNP } be the set of persons present in smart space at time t,
divided into focus persons PF and unknown persons PU . Let L = {l1, . . . , lNP }
be the set of ground truth person labels and H = {h1, . . . , hNH} the hypothesis
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output by the identity tracker for time t. Each label and each tracker hypothesis
consist of an identity ι ∈ {id0, id1, . . . , idNids} and a location vector ~x, as defined
in Section 4.3.4:

ln = (ιn, ~xn)
hm = (ιm, ~xm)

with id0 used to denote that the person in question is unknown and ~x = ~0 used
to denote that his or her location is undefined. For the purposes of identity
tracking, an identity is considered correctly localized as long as the distance
error to the ground truth location is below a certain threshold. Here, the same
threshold as for the MOT metrics, Thdist is used. The evaluation of fine local-
ization accuracy is thus considered part of the person tracking task, and is not
repeated here.

For each time frame t:

1. For all labeled focus persons ln = (ιn, ~xn), with ιn 6= id0, try to find a
corresponding hypothesis hm. Four cases may arise:

• Perfect match: If hm can be found with ιm = ιn and dist(~xm, ~xn) <
Thdist, count this as a correct classification.

• Location mismatch: If hm is found with ιm = ιn and dist(~xm, ~xn) >
Thdist, count this also as a correct classification, but additionally
count a localization error.

• Identity mismatch: If, on the contrary, hm is found with matching
location, but differing identity, consider this an identification error.
The error is further refined based on the hypothesized identity. If
ιm = id0, count a false rejection error. Otherwise, count the error as
a false classification.

Let CCt, LEt, FRt and FCt, be the number of correct classifications,
localization errors, false rejections and false classifications made for time
frame t. Let also MSt, be the number of identities missed in frame t.

2. For all labeled unknown persons ln = (ιn, ~xn), with ιn = id0, try to find
a corresponding hypothesis hm, which has not been matched before based
on spatial proximity. If hm can be found with dist(~xm, ~xn) < Thdist, the
decision is made based on the hypothesized identity. If ιm = id0, count
a correct rejection (this is not an error, but will be used later in ratio
computations). Otherwise, count a false acceptance error. If no matching
hypothesis can be found, this is not considered an identity tracking error,
as no known identity is involved. Let CRt and FAt be the number of
correct rejections and false acceptances made for time frame t.
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3. For all remaining unmatched hypotheses hm, decide based on their iden-
tity. If ιm = id0, ignore the hypothesis, as it again does not constitute
an error in the sense of identity tracking (although it is an error under
the aspect of person tracking and is counted in the MOTA score). If
ιm 6= id0, count this as a false positive error and let FPt be the number of
false positives found for time frame t.

4. Repeat the procedure from step 1 for time frame t+ 1.

In this way, all possible error types are accumulated on a frame basis. Let
GTt be the total number of labeled persons and GTFt the number of labeled
focus persons for time t. The accumulated, sequence level scores, GT , GTF ,
CC, FC, FR, FA, CR, MS, FP , are then accumulated by summing up over
corresponding frame-level scores.

5.2.1 Multiple Identity Tracking Accuracy

From the above computed sequence-level scores, the following metrics for iden-
tity tracking performance are computed:

• the Localization Accuracy (LA).

LA = 1− LE +MS

GTF

It measures the performance of the tracker at detecting and localizing
known identities. Swapping identities, hypothesizing them at the wrong
place, as well as missing identities completely (hypothesizing them to be
outside of the smart space) are all considered localization errors.

• The Identification Accuracy (IA).

IA = 1− MS + FR + FC + FA+ FP

GT

It measures the accuracy of the tracker at detecting and recognizing known
identities in the presence of unknown persons. Failing to recognize identi-
ties (either by missing them completely or by rejecting them as unknown),
misclassifying them, as well as falsely stating their presence (either by
falsely recognizing unknown persons or by hypothesizing additional known
persons) are penalized.

• The Multiple Identity T racking Accuracy (MITA).

MITA = LA+ IA

2
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Figure 5.5: Example curves for localization accuracy (LA), identification accu-
racy (IA) and Multiple Identity Tracking Accuracy (MITA). The
values of the measures are plotted as a function of the acceptance
threshold for identification in the open set case. The MITA repre-
sents the average of teh two other scores.

It is calculated over the entire observation sequence and taken as the aver-
age of the localization accuracy and the identification accuracy. Of course,
a weighted average could also be computed instead. As both localization
and identification are considered equally important here, though, equal
weights are taken. Similarly to the MOTA, the MITA allows a quick
assessment of the overall identity tracking performance.

As many of the scores used in the computation of these metrics (CCR, FCR,
FRR, FAR) are dependent on the acceptance threshold Thknown for open set
identification, the LA, IA and MITA are visualized as curves over the range
of possible values of Thknown. The highest point on these curves represents the
best achievable accuracy rate, assuming equal importance of individual errors
(similar to the EER, as described in Section 3.3). Examples of LA, IA and
MITA curves can be seen in Fig. 5.5.

5.3 Evaluating Open Set Identification
Performance

Open set identification performance is usually viewed independently of detec-
tion and localization performance. In the fields of multimodal identification or
biometric verification, commonly used measures to evaluate open set classifiers
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are the CCR, FCR, FRR and FAR (see Section 3.3). To provide an easier
overview of these error rates as the threshold for acceptance of test subjects is
varied, they are usually visualized jointly in Receiver Operating Characteristic
(ROC) plots. Such ROC plots will also be used here to visualize some aspects
of open set identification performance in the case of multiple identity tracking.
Some important differences to the standard evaluation procedure exist, though,
which should be clarified here: ROC curves are usually employed to evaluate
identification or verification tasks, where the detection of the subjects to be
identified plays no role. This is, e.g., the case in image-based face identification,
where a set of test samples containing (genuine and impostor) faces is presented
to a classifier, which then needs to decide only on the identity of the pre-selected
samples. The evaluation conditions are somewhat different in the case of iden-
tity tracking, as defined here, as correctly identifying a person, e.g., also requires
to detect the person in the first place. The MITA metric is designed to reflect
this fact by including misses and false positives in the error computation.

The CCR, FCR, FRR and FAR measures, on the other hand, are computed
for each person using only the subset of frames where the person is detected
(where a corresponding hypothesis is produced). This means that detection
errors directly influence the number of samples presented for identification. An
increase of the miss rate can, e.g., cause a sharp improvement of the correct
classification rate if the set of persons (or frames) which are no longer tracked
coincides with the set of persons (or frames) which are hard to identify, such
that the CCR is computed only for a few well observable test cases. This is
why the ROC curves for open set identification performance are used only as
additional diagnostics and should always be interpreted in conjunction with the
corresponding MIT scores.

Another difference is that the CCR, FCR, FRR and FAR measures are here
computed by averaging accumulated frame level scores, although the output
of the identification algorithm for each frame is not an individual frame-based
decision. Each occurrence of a detected person in each frame is considered a
test sample which is classified using the knowledge about previously observed
samples. This is because the concerned ratios are computed using the CC, FC,
FR and FA scores, as described in Section 5.2, with the ground truths reduced
to only persons and frames which were not missed:

CCR = CC

CC + FC + FR

FCR = FC

CC + FC + FR

FRR = FR

CC + FC + FR

FAR = FA

FA+ CR
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Figure 5.6: An example ROC plot for the CCR, FCR (and implicitly the FRR)
in relation to the FAR in the case of identity tracking. In contrast
to curves obtained, for example, in biometrics evaluations, the FAR
may never reach the value 1, even if the acceptance threshold is set
to 0.

with CC + FC + FR and FA + CR the total number of known and unknown
persons, respectively, for which a corresponding hypothesis was output.

In summary, the consequences for the resulting ROC plots are as follows:

• Misses and false positives are not considered.

• The value of the FAR can stay well below 1, even if the acceptance thresh-
old Thknown is set to 0. This is because identification features for some
unknown persons present in the smart space may not be observable even
once. Since persons are initially hypothesized as unknown, actual un-
known persons in the space are always correctly rejected in such a case.

• The FRR also does not necessarily drop to 0, even if Thknown is set to
0, again because identification features for some of the focus persons may
not be observable at all.

An example of a resulting ROC plot is shown in Fig. 5.6.
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6 Experimental Evaluation

This chapter describes the database used to evaluate combined tracking and
open set identification performance, and presents comparative results for the
Joint Identity Tracking filter approach, under a variety of test conditions.

6.1 Evaluation Database

The Joint Identity Tracking method has been extensively evaluated on the In-
teractive Seminar database used in the CLEAR 2007 evaluations [103; 81]. This
database features recordings of multiple users in realistic small meeting scenar-
ios, captured in a variety of smart rooms equipped with a multitude of audio-
visual sensors (see Figure 6.1). It offers five calibrated and synchronized visual
streams, four from cameras mounted in the room corners and one panoramic
ceiling-mounted camera, as well as synchronized audio streams from a minimum
of four microphone arrays on the room walls. The dataset comprises 20 sem-
inars from five recording rooms with varying audio-visual characteristics, with
two annotated five minute segments per seminar, for a total of 200 minutes of
recordings. In this dataset, a total of 67 individuals take part in small meet-
ings, with typical meeting sizes of three to six persons. Of these 67 identities,
31 are learned in beforehand and constitute the set of known persons: 24 are
trained in audio-visually, three are trained in using only the acoustic modality
and four using only the visual modality. This is because the Interactive Sem-
inar database only offers enrollment data for a limited amount of individuals.
The remaining 36 “unknown” persons are those for which audio and visual data
for enrollment or identification is insufficient. The ratio of known to unknown
persons varies with each meeting, with a slightly greater number, on average,
of unknown persons.

The visual annotations provide the 2D centroids in each camera view of the
heads of each meeting participant, the bounding boxes of visible faces, the 3D
head centroid locations obtained by triangulation, as well as a reference ID for
each participant. These reference IDs stay constant throughout all recordings,
such as a person appearing once in a seminar will have the same identifier as-
signed to it in the next. The audio annotations provide ground truth diarization
information, including speech intervals for all active speakers, noise segments,
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(a) AIT (b) UKA

(c) ITC (d) IBM

(e) UPC

Figure 6.1: Scenes from the CLEAR 2007 Interactive Seminar database.
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and segments of overlapping speech. Visual annotations are provided for each
second of recording (every 15, 25, or 30 frames, depending on the framerate),
and the segmentation accuracy of audio transcriptions is also approximately of
the order of a second.

Although the recording setup was similar, the smart rooms figured in the In-
teractive Seminar dataset have quite differing characteristics, which tracking
systems have to tune to automatically. For some sites, such ITC and IBM,
colors are well distinguishable and offer a good cue for tracking. In others, such
as UKA and UPC, they are quite hard to distinguish. In the UPC recordings,
strong contrast to the smart room’s white walls makes most colors appear as
a nuance of black. In the UKA recordings, low overall illumination and strong
chromaticity changes pose the biggest problem. In some rooms, the upper body
detectors introduced in Section 3.2.2 function very accurately, delivering detec-
tions in at least one camera at almost frame rate for most participants. This is
the case for the ITC room and especially for the UPC room (due to strong con-
trast with respect to the background). In others, upper torsos are only rarely
detected, save for standing speakers. In the IBM room, for example, this is
due to the fact that almost all cameras are placed at a high distance, making
most room occupants appear quite small. For the UKA room, it is due in most
recordings to the very low contrast to the background. In both cases, low res-
olution or weak illumination make visual identification of faces very difficult.
Audio recording conditions also differ greatly. In the UPC room, very strong
reverberations cause a problem for speaker localization and identification. In
the case of the IBM room, the same is true due to a weak signal to noise ratio.
A further important difference is sensor coverage. In the AIT recordings, for
example, the observation space is constrained to a small area such that cameras
are placed very close to occupants and provide a more narrow overview. As a
consequence, most occupants are visible in at most two cameras, while for all
other rooms, they are visible in four to five cameras most of the time. In the
IBM room, the top perspective from the ceiling-mounted panoramic camera is
heavily distorted, such that calibration information becomes inapplicable at the
room edges. While most recordings were made using progressive scan firewire
cameras, some rooms used analog cameras, which introduced interlacing arti-
facts into the views. Resolutions, focal lengths and framerates of the cameras,
as well as the characteristics of recording microphones varied from site to site.
The segments for evaluation were also taken from varying phases of the recorded
seminars. While some recordings start with an empty room, with participants
entering progressively, others start in the middle of the meeting, such that no
controlled initialization in dedicated areas is possible. Trackers are expected
to automatically detect and track multiple persons without any dedicated ini-
tialization phase, clean backgrounds or a-priori knowledge about person colors
or attributes, for standing, sitting or walking persons alike. All these reasons
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make the development of a tracker that functions robustly under all conditions
without manual tuning or adaptation a quite challenging task.

The CLEAR 2007 Interactive Seminar database is used in the following exper-
iments to evaluate the performance of the proposed open set identity tracking
approach. The measures of interest that will be computed are the MOTP and
MOTA, measuring the overall tracking performance, and the MITA, measur-
ing specifically identity tracking performance. The accuracy measures are com-
puted as averages over all segments from all seminars of the Interactive Seminar
database. Aside from providing meaningful statistics, this is also done to allow
a better comparison to the official results of the evaluation workshops.

6.2 Experimental setup

The following experiments were conducted offline in a fully automatic, run-on
fashion. Although some preprocessing steps were undertaken for the extraction
of specific features, no batch processing was made, which means each tracking,
classification or extraction module made only a single pass on the data and, for
each time point, based its decision only on present and past observations. This
is to provide that the results obtained in offline evaluation are still applicable
to an online system.

The input data for the identity tracker consists for each recording of the vi-
sual streams from the room cameras as well as the audio streams from the
wall-mounted microphone arrays. The metadata provided for each recording
comprises:

• A set of background images for each camera view, taken before the start
of the seminar, with no persons present.

• Sensor calibration information. For cameras, this consists of the extrinsic
and intrinsic camera calibration parameters. For microphone arrays, it
consists of their location, orientation and the internal configuration of their
microphones (distance between pairs, etc). This information is necessary
for projective transformation and source localization.

• The dimensions of the recording room. This is to provide reasonable
boundaries for tracking.

Note that although information about sensor calibration or room dimensions
could be used to deduce the recording site (and, e.g., tune detectors, thresholds,
choose room specific classifiers or filter the results of identification), this was
not done here. This also means that persons which only appear in recordings
from one site can wrongfully be recognized in recordings from other sites, which
makes the task more difficult.
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For faster processing, all camera views are downsized to 320×240 pixels resolu-
tion (original resolutions include 640× 480, 768× 576 and 800× 600, depending
on the recording site and camera). In a live version of the identity tracker,
implemented as a distributed system, this is also done to reduce network band-
width requirements. The computation of foreground support maps, as described
in Section 3.2.1 is made on an even lower resolution of 80× 60, again for com-
putational efficiency. This reduction in detail did not impact on the quality of
tracking, and can be seen as a rough smoothing of already coarse and impre-
cise features. The cell size for the occupancy and occlusion grids described in
Sections 4.1.4 and 4.1.5 is set to 10× 10cm (wcell = 100mm) and the exclusion
and occlusion radii, Rexcl Roccl, are set to 6 and 3 cells, respectively. These are
intuitive values, considering an upper body width of 60cm, and have been empir-
ically found to provide good results. The learnrate α for adaptation of identity
models is set to 0.2 and the thresholds Thfg and Thcol from Section 4.1.8 for
creation (and deletion) of tracks are both set to 0.15, again based on empirical
tests. Unless otherwise stated, for all experiments, the number of particles per
track is set to 100. In several preprocessing steps, the localized upper torso de-
tections, top view blob tracks and localized face ID features are extracted from
the video sequences. Likewise, source localization is performed on the micro-
phone array channels and combined with speaker identification results. Some
of the associated details are described below.

6.2.1 Visual Recognition

Face recognition, as described in Section 3.3.2, is based on the approach pre-
sented in [36]. It has been evaluated under very similar conditions on the
CLEAR 2007 Interactive Seminar database, which is also used here. The task
was that of closed set identification for a subset of 28 individuals, using man-
ually labeled face bounding boxes. In these evaluations, the task of aligning
and identifying automatically detected frontal faces under the difficult condi-
tions posed by the seminar recordings was judged too challenging and was not
performed. Instead, separate training and test sequences of varying lengths
with manually annotated face bounding boxes were provided for each target
person. This means that the association of faces to persons was solved before-
hand and the output of the identifier was the sequence level identity derived
from all pre-segmented faces in a test sequence. Under these conditions, the
recognition system achieved 84.6% accuracy for the hardest condition in terms
of data availability (15s training segments, 1s test segments) and 96.4% for the
easiest condition (30s train, 20s test). Those were, incidentally, the best results
achieved in the CLEAR 2007 face identification task. These numbers should,
of course, only be used as a rough orientation as to the accuracies that can be
achieved on this dataset using state-of-the-art techniques.
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For the evaluations done here, the task definition is by far more challenging,
such that accuracies are expected to drop quite a bit: Here the same set of 28
individuals which was used for the closed set task is taken as the set of known
identities and the trained classifiers from [36] are employed. However, the task is
now that of open set identification, with 39 additional unknown faces appearing
in the database. Moreover, the association of faces to persons for confidence
accumulation is no longer known a-priori and has to be derived automatically.
As for the above evaluations, the automatic detection and alignment of faces
for recognition was not tackled. Instead, as before, the manually annotated
face bounding boxes were used. Additionally, the annotated eye regions were
employed to reject non-frontal faces. This is because the combined detection,
alignment and identification of faces at such small resolutions is still an open
research problem for which no satisfactory solution yet exists (see [103]). As
described in [5], though, the problem can be circumvented e.g. by the use of
active cameras that are steered to zoom in on target persons, capturing high
resolution facial shots suitable for alignment and reliable identification. This
could however not be investigated in the here presented offline evaluations, as
no active camera views are available in the CLEAR 2007 database. As we will
see later, even using manual annotations the recognition of faces proves very
difficult. Another consequence is that face ID features, if available, come at a
maximum rate of one face per second, the rate of the visual annotations.

As described in Section 3.3.2, the confidence scores for frame-based identification
are derived from the distance scores of the k nearest neighbors of the test sample.
To determine the optimal value of k and the resulting operating points for the
open set classification case, a set of experimental runs was performed on the
test dataset. These experiments evaluate strictly the identification performance,
regardless of detection accuracy. For each detected face in all frames and camera
views, an individual frame-level identification is made and the cumulative CCR,
FCR, FRR and FAR scores are computed as described in Section 3.3. The
resulting ROC curves are shown in Figs. 6.2 and 6.3.

As can be seen in Fig. 6.2, beyond k = 10 recognition performance decreases
gradually with increasing values of k. This can most probably be explained
by the non-linearity of the feature space in the classifier: Beyond a reasonable
distance boundary, a large number of neighboring feature vectors from differing
classes are included in the computation of the result. As the distance-based
voting scheme is then no longer sufficient to reduce their influence, this decreases
the quality of the computed confidence measure. From Fig. 6.3, we can see
that decreasing the value of k below 10 brings no further improvement. On
the contrary, for very small values of k, there are not enough neighbors for a
meaningful application of the distance-based voting scheme, which makes the
resulting confidence measure less reliable (for k = 1, the confidence measure is
meaningless, as it is always 1).
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Figure 6.2: The ROC curves for the single frame open set face recognition per-
formance, as a function of the number of samples used in k-nearest
neighbor classification (k = 10 to 100). The best performance is
achieved for a relatively small k = 10.

Figure 6.3: The ROC curves for the single frame open set face recognition per-
formance, as a function of the number of samples used in k-nearest
neighbor classification (k = 5 to 10). Decreasing the value of k below
10 does not yield any gain in performance.
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Based on these results, for all following experiments, a value of k = 10 is chosen.
Additionally, from the ROC curve at k = 10, the values γmax and γthresh for
warping of confidence values are determined (see Section 4.2.1). γmax is taken
as the threshold value for which the false acceptance rate drops to 0. The reason
is that any test sample with a confidence value greater than γmax must then be
a positive test sample. As a consequence, γmax represents the maximum value
for which unknown person can still be falsely recognized. In this case, based
on the plot, it is simply γmax = 1 (This is not always the case, though). γthresh
is chosen as the threshold for which at most 5% false acceptances are made.
The reason for giving priority to low false acceptance rates (instead of choosing
e.g. the rate at which FAR = FRR) is as follows: As identification is made
on video sequences, many trials are performed per target person. Therefore,
it makes sense to reject numerous identification attempts for various unknown
persons, at the expense of rejecting a few trials also for a focus person. As
results are accumulated, a few succesful trials are sufficient for a focus person
to be correclty identified in the overall result. In this case, γthresh = 0.8.

6.2.2 Acoustic Recognition

The voice recognition algorithm, as described in Section 3.3.3 is based on the
work of Jin et al., presented in [36]. As for the face recognition approach, it has
been evaluated on the CLEAR 2007 Interactive Seminar database, in a closed
set identification task involving 28 individuals and using pre-segmented intervals
of clean speech. It reached 86.7% accuracy for the hardest testing condition (15s
train, 1s test) and 99.1% for the easiest condition (30s train, 20s test).

Again, for the here presented evaluation, the speaker identification task becomes
much more challenging:

• First of all, the segmentation of speech intervals from different speakers
has to be made automatically. Suitable segments of clean speech must be
detected and periods of silence ignored. In this approach, this is done by
training an additional GMM for the “silence” class, which is used along-
side the person-specific GMMs. Then, “segmentation by classification”
is performed: The audio stream is continuously segmented into equal 1s
intervals and identification is made on each. In this way, a fine-grained
segmentation is achieved, silence periods are detected, and speakers are
identified using one and the same technique. The short length of segments
helps avoiding the accumulation of speech from alternating speakers into
a same identification segment. It also, however, reduces the quality of
results achievable on single segments, a fact which must be compensated
later by accumulating observations belonging to the same speaker.
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• Secondly, the association of speech segments to speakers has to be made
automatically. This is done by calculating association probabilities for
each present person, based on identity correlation and spatial proximity.
For the latter component, the source of speech must be also be estimated
automatically. Here, the system presented in [41] is employed. It was
evaluated on the CLEAR 2007 Interactive Seminar database and reached
an accuracy (MOTA) of 55% and a precision (MOTP ) of 14cm. For the
evaluations presented here, the source localization results from the original
system are used without modification, such that the above numbers can
be seem as directly reflecting the quality of acoustic localization available
in this case.

• Thirdly, the identification task is posed as an open set problem: 27 speak-
ers are trained in (of which 24 are also visually known, i.e. three known
persons can only be identified using their voice). This means that 40
additional individuals occurring in the database are acoustically uniden-
tifiable. As for the visual case, a confidence score is computed for each
identification result by analyzing the n best GMM scores.

As for the visual case, experiments were conducted to determine the optimum
size of n-best lists used in confidence estimation. The CCR, FCR, FRR and
FAR scores were calculated for only identified audio segments which coincide
with manually annotated segments of speech. This is again to avoid evaluating
detection and segmentation quality. The results are shown in Fig. 6.4.

As can be seen, the identification performance rises with the value of n, up to
the maximum number of 31 (the number of known speakers). This is in contrast
to the face identification case, and is due to the different nature of the classifiers
involved. In the following experiments, the value of n is therefore set to 31
and threshold values for confidence warping are chosen from the corresponding
ROC curve. γmax and γthresh are again taken as the threshold values for which
FAR = 0 and FAR = 0.05, respectively. In the audio case, this results in
the actual values γmax = 0.095 and γthresh = 0.075. As can be seen, the normal
range of confidence values here is much smaller, and rarely exceeds 0.1, such that
the use of unwarped confidence values in modality fusion would be detrimental
to the audio modality. As explained in Section 3.3.3, this is due to the nature
of the underlying classification algorithm and depends also to a large part on
the size of the n-best lists used in score normalization.

On a final note, one should consider that the acoustic identification is made here
using just one audio channel from one of the wall-mounted microphone arrays.
As training and test are made under matching conditions, acceptable results can
still be achieved. The Person Identification tasks of the CLEAR evaluations have
shown that using multiple microphones and combining classifier outputs can
further boost performance on this dataset. Such a combination was, however,
not attempted here.
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Figure 6.4: The ROC curves for open set speaker recognition on individual one
second segments. The effect of the number of candidates included
in the n-best list for score normalization is investigated. The best
performance is achieved for the largest possible number of candidates
n = 31.

6.3 Baseline

As a baseline to evaluate the advantages of the integrated ID tracking approach,
a sequential algorithm was implemented which relies on an accurate detection
and tracking step to estimate person identities. As explained in Section 2.3, the
majority of approaches presented in the identity tracking field rely heavily on the
flawless tracking of persons to maintain their identities in time. Identities are
assigned directly to tracks, mostly at the start of the observation sequence, and
are usually lost as soon as the corresponding tracks are terminated. Therefore,
to offer a valid comparison, the baseline system is designed along the same
principles.

The tracking algorithm for the baseline system functions just as for the JIT
approach, using the same features, observation models, exclusion and occlusion
principles, etc., but without its main extensions: No concept of “unobserved”
particles is employed (save for the “exterior” particle, see Section 4.1.6), the
belief in person states is not modified prior to resampling to account for “un-
covered” observations, no “hidden persons” are modeled and identification is
done individually for each tracked person.

The baseline system initializes a person model for each track and uses these
person models as the basis for spatial association of ID cues. Here again, a
person model comprises acoustic, visual and audio-visual pdfs for the modality-
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Track information Localized face ID hits
from multiple cameras

T1 T3T2
from multiple cameras

Localized speaker ID hitsLocalized speaker ID hits
from microphone arrays

(Association using Proximity + Similarity)

Maximum confidence global assignment:
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Maximum confidence global assignment:

Kate (2) 93% John (1) 35%
Anna(2) 75%

John(1) 12%
Anna(1) 40%

12%-40%-Track3
35%12%75%-Track2

Figure 6.5: The process of mapping localized ID cues to person tracks in the
baseline system. T1 to T3 represent the person tracker output. The
blue and red arrows represent irregularly captured face and speaker
ID cues, respectively. A spatio-temporal mapping is made for both
types of cues, confidences are accumulated in time and a global
assignment of IDs to tracks is made that optimizes the overall con-
fidence level.

dependent modeling of identities. In contrast to the joint identity tracking
approach, though, the location of an identity is not estimated probabilistically,
but is directly given by the 3D coordinates of the corresponding track. The
association of localized speaker and face ID features to person models is made
based on spatial coverage and identity correlation. Features are mapped to
the best correlating track. Features which cannot be associated to any of the
available models (such as non-localized speech) are ignored.

After accumulation of observations and adaptation of ID models, the final identi-
fication hypothesis is not determined for each track independently, but rather by
globally optimizing the hypothesis outputs for all tracks: For each model m, the
identification confidence P (id|m) is given by the corresponding audio-visual pdf.
The problem of finding the assignment of distinct identities to person models
that maximizes the overall identification confidence can be seen as a combina-
torial problem (a maximum weight assignment problem), which is solved here
using Munkres’ algorithm [82]. The optimal assignment is recomputed every
time a new identification feature is observed. The advantage of global assign-
ment is that mapping of the same identity to several persons is avoided, as
the system will change the hypothesized identity for one track based on new
information for another track. This global post-processing of identification re-
sults is performed in the baseline system, as it represents a basic consistency
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Data site MOTP miss f.pos. mism. MOTA

AIT data 20cm 14.51% 11.07% 0.43% (28) 74.00%
IBM data 19cm 14.40% 15.73% 0.27% (30) 69.60%
ITC data 14cm 8.61% 3.83% 0.15% (13) 87.41%
UKA data 18cm 24.10% 3.99% 0.45% (50) 71.45%
UPC data 13cm 5.67% 11.40% 0.59% (66) 82.34%
Total 17cm 13.59% 9.35% 0.39% (187) 76.67%

Table 6.1: Person tracking performance for the JIT approach on the CLEAR’07
dataset.

check which helps avoiding simple logical errors. It is by no means common,
though, as the joint estimation of multiple identities has only seldom received
attention in the literature (a recent exception is, e.g., [14]). Even so, designing
a baseline system that performs no consistency check for multiple identities was
not deemed appropriate for the comparative evaluations here. Figure 6.5 illus-
trates the process of data association and global ID assignment. The output
of the baseline system, just as for the joint identity tracking system, are the
hypothesized locations and identities of all persons in the space.

One obvious drawback of the baseline method is that only tracked persons can
be identified and that learned identities are lost when the corresponding person
tracks are lost. Identities and confidences then have to be reestimated as soon
as tracking information is again available, from newly associated ID features.
Additionally, in the baseline approach, ID features that cannot be associated
to tracked persons are not considered, such that the information about the
recognized identities is lost.

6.4 Evaluation Results

First, the tracking performance of the proposed JIT filter is evaluated. Table 6.1
shows theMOTP ,MOTA and associated component scores for individual sites
(with 8 sequences per site), as well as the overall results.

As can be seen, the achieved accuracies are quite high, considering the difficult
conditions of the CLEAR 2007 Interactive Seminar dataset. Tracking precision
stays below 20cm in all cases. Tracking accuracy varies quite a bit for the dif-
ferent sites, owing to their specific difficulties, and a global MOTA of 77.7% is
reached. These results are comparable to the best tracking perfomance of the
CLEAR 2007 evaluations, which were around 78.4% MOTA with an MOTP
of 15cm (note that these are the numbers for the visual subtask in CLEAR,
whereas here, acoustic features are also used for tracking. Note also that for
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Figure 6.6: Multiple identity tracking performance of the JIT approach on the
CLEAR’07 dataset.

the official evaluations, 2 seminars were not evaluated due to the lack of im-
ages for initialization of background models. These seminars are included here,
with foreground segmentation initialized on-the-fly using the first 5 frames of
recording. If these seminars are left out, the MOTA rises slightly to reach
78.5%). The best perfomance is achieved for the ITC and UPC seminar rooms,
which offer relatively good tracking conditions, with respect to colors, clutter,
lighting, coverage and camera distances. The lowest performance is achieved
for the IBM room, which was the only one where the top view from the ceiling
camera was heavily distorted. This fact, and the relatively high distance of
sensors to the observed seminar participants presented a big challenge to the
tracker. What is also worthwhile to note is the relatively low mismatch rate,
compared to the best official CLEAR results (0.79%, 361 absolute). This is due
to a better management of track IDs, which avoids the creation of new tracks,
if given observations can be associated to previously observed ones.

Next, the open set multiple identity tracking accuracy is evaluated in detail.
Figure 6.6 shows the cumulative results for the LA, IA and MITA for all
seminars as a function of the acceptance threshold Thknown.

The highest reached MIT accuracy is 81.3% for a localization accuracy LA =
88.5% and an identification accuracy IA = 74.1. Roughly speaking, this means
that 3 out of 4 known identities were correctly recognized, with no further false
acceptance errors, etc, and that the location of these identities was almost always
correctly found. These results are obtained for an acceptance threshold value
of Thknown=0.3. Note that the LA and IA, taken individually, peak at different
values of Thknown. The IA reaches and earlier peak of 75% for Thknown =
0.25, while the LA steadily rises, finally reaching a value of 93.3. The reason
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Figure 6.7: The MITA obtained with thresholding of identification cues, based
on their normalized, warped confidence scores.

for the steady rise of the localization accuracy is that, as Thknown increases,
more and more focus persons are rejected as unknown, such that the chances
of switching the locations of known identities decrease. Remember that no
localization penalty is given if a focus person is correctly tracked, although not
identified. Tracking all focus persons and rejecting all identities then results in
an LA of 100%. This comes, of course, at the expense of a reduced IA, as seen
in Figure 6.6.

6.4.1 Thresholding Identification Confidence

Section 4.2.1 explained how confidence values for identification are warped to
allow a better fusion of modalities. Before identity tracking performance is eval-
uated in more detail, the use of confidence values is first investigated here with
regard to temporal fusion. The idea is that since many low confidence identifi-
cation results are generated by observations of unknown persons, a filtering of
those may help avoiding the accumulation of errors, reduce the false acceptance
rate, and therefore improve overall accuracy. This is done here by thresholding
the warped face and speaker ID features. All features with confidence values
below the threshold Thconf are rejected entirely. Figure 6.7 shows the achieved
MIT scores for different values of Thconf .

As expected, when using no confidence thresholding at all, a high false accep-
tance rate causes a reduction in overall accuracy for lower values of Thknown.
This effect is, of course, no longer observed when thresholding observations.
What is interesting to notice is that the maximum achievable accuracy across
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Data site LA IA MITA

AIT data 86.0% 77.7% 81.8%
IBM data 88.5% 74.4% 81.5%
ITC data 90.7% 62.6% 76.6%
UKA data 79.5% 84.0% 81.8%
UPC data 91.2% 70.6% 80.9%
Total 88.5% 74.1% 81.3%

Table 6.2: Highest reached site-specific and global identity tracking scores for
an acceptance threshold Thknown = 0.3.

all values of Thknown also increases due to the filtering (Thconf = 0.3, 0.4 and
0.5). When setting the confidence threshold higher (Thconf = 0.6), accuracies
again start to drop. This is an indication that the feature warping, which at-
tempts to normalize the distribution of confidence values to the range [0, 1], with
the value of 0.5 as acceptance threshold, is indeed effective. On average, iden-
tification features with warped confidence values below 0.5 can be considered
as coming from unknown persons, and can therefore be rejected. For this rea-
son, the accuracy curves in Fig. 6.6 as well as all other results presented in the
following have been obtained using confidence thresholding with Thconf = 0.5.

6.4.2 Identity Tracking Accuracy

As shown in Fig. 6.6, the maximum value for the MITA is reached around
Thknown = 0.3. For this value, the individual site-based and overall MIT scores
are computed and presented in Table 6.2.

A few things can be seen from the comparative table. First, the highest local-
ization accuracies, at around 91% are reached for the ITC and UPC recordings,
which also provided for the highest MOTA scores. The values are even signifi-
cantly higher, due to the fact that for the LA, only focus persons are considered
in the computation of the metric. The values for other sites are also quite high,
though (on average, 88.5%), and do not necessarily correlate with their individ-
ual MOTA scores (this is most obvious in the IBM case), for the same reasons.
In contrast to localization, the highest identification accuracy is reached on
UKA recordings. This is because in most of these recordings, of the seminar
participants present, only one or two are focus persons, and these usually oc-
cupy the function of the main presenter, such that they can be easily identified
acoustically. In contrast, the lowest IA score is reached for the ITC recordings,
where the number of focus persons often exceeds that of unknown ones (for 4 of
the 8 recordings, the number of unkown persons is even 0). This makes it easier
to make identification errors, especially in the case some focus persons rarely
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Figure 6.8: The evolution of the MITA as a function of time.

speak or are difficult to observe. Except for the ITC site, all MITA scores are
around 81%.

Next, the evolution of frame-level MIT -scores is shown in Figure 6.8, using the
acceptance threshold Thknown = 0.3. The horizontal axis of the plot represents
the time axis, going from second 0 to second 300. The value for each second
is the average MIT -score for this second over all sites and seminars. This
representation is possible since all evaluation segments have a length of five
minutes. As can be seen, the identity tracker needs a few seconds to initialize
tracks and observe identities. After 60 seconds, a MIT score of 80% is reached,
and the accuracy still rises slowly in the following minutes, reaching at times
87%.

In the last two minutes, one can observe a slight decrease. This is due to the fact
that, as time progresses and noisy observations come in, the chances of falsely
identifying unknown persons increase, causing the FAR to rise. Although this
is accompanied by a parallel increase in the CCR and decrease in the FRR,
the effect of the rising FAR cannot be fully compensated. Throughout the 300
second time window, the average false classification FCR, false positive rate
FPR and, from second 50, also the miss rate MSR stay nearly zero. Figure 6.9
shows the evolution of the relevant non-zero scores on the time axis, assuming
Thknown = 0.3.

Finally, Figure 6.10 shows the ROC curves for correct classification and false
classification averaged over all sequences. These curves are calculated using the
results of identity tracking, as described in Section 5.3.
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Figure 6.9: The evolution of component ratios as a function of time. The FCR
and FPR are close to zero and are not plotted.

Figure 6.10: The ROC curves for the joint identity tracking task on the
CLEAR’07 seminar data.
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As explained in Section 5.3, the false acceptance rate does not exceed a value
of 40%, even when setting Thknown to 0. The equal error rate for the CCR is
reached at around 32%. This is not, however, the operating point chosen for
the computation of absolute scores presented above. For a value of Thknown =
0.3, the actual scores are CCR = 56.3%, FRR = 42.3% and FAR = 7.4%.
This is in line with the projected value of 5% FAR, used for the selection of
parameters in the feature warping step (see Section 6.2). Compared to the frame
level visual and acoustic ROC curves presented in Sections 6.2.1 and 6.2.2, the
curves shown here rise much faster, with the CCR reaching 60% already for an
FAR of 10% (compared to around 27% and 40%, for single frame visual and
acoustic identification, respectively). This shows the advantages of temporal
and modality fusion based on the continuous tracking of identities.

6.4.3 Baseline Comparison

In this section, the proposed JIT filter framework is now compared to the base-
line system described in Section 6.3. Figures 6.11, 6.12 and 6.13 show a com-
parison of identification accuracy, localization accuracy, and identity tracking
accuracy, respectively.

In Fig. 6.11, the first comparative curve (Best) shows the case of undisturbed
tracking results. As could be expected, the two approaches perform equally well
over almost the entire range of values of Thknown, with a very slight advantage
for the JIT approach. Curves for the localization accuracy are also very similar.
The reason is that when tracking results are reliable, such that all focus persons
are localized at all points in time, performing identification based directly on
those results, i.e. only for tracked persons, is a viable option. The true strength
of the JIT filter approach, in comparison, lies in its robustness to detection and
tracking errors.

The second comparative curve (ErrFG) is shown for the case the foreground
feature is heavily perturbed, such that it is unsuited for tracking. This can
happen for a variety of reasons, in realistic scenarios, including e.g. cases where
lights are dimmed during a slide show presentation, where doors, or window
blinds are opened or closed, where many non-human objects are frequently
moved, etc. As the recordings themselves can no longer be changed, it is realized
here artificially by setting the adaptation rate for the background model to an
unreasonably high value. As the foreground feature is an important component
for deciding when to keep tracks alive, the perturbation of the foreground feature
causes a heavy degradation of tracking performance.

The third comparative curve (NoCams) shows the extreme case where all cam-
eras are unavailable, such that visual tracking is wholly impossible (Of course,
this means that the visual modality is unavailable also for identification). Note
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Figure 6.11: Identification accuracies for the JIT and the baseline approach
in the presence of component failure. The identification accu-
racy for the baseline system in the case no tracking is possible
(Base_NoTracks) is always zero, which is why the corresponding
curve is not visible here.

that tracking of multiple persons is still possible using the acoustic modality
alone, by building on the results of 3D sound source localization.

The fourth comparative curve (NoTracks) shows another extreme case where
tracking of person locations can not be realized, both visually or acoustically:
In many natural scenarios, calibration information is simply not available for
the observing cameras and microphones, either because a calibration at global
scale is infeasible, or because the configuration of sensors changes too rapidly.
In such a case, the estimation of 3D tracks, based on 2D image features or
microphone array azimuths is not possible. Here, the extreme case is simulated
by preventing the formation of tracks in the first place, such that ID features
must be accumulated and identities estimated without the spatial correlation
component.

As can be seen in Figure 6.11, as the quality of the foreground support drops
(ErrFG), the difference between the approaches becomes clear. The JIT filter
keeps identities and confidences even through tracking errors, while the baseline
system loses information every time a track is lost and has to be reacquired. This
is partly due to the modeling of “hidden” persons, which are still hypothesized
present although not observed.

When no visual information is available (NoCams), the modeling of “unob-
served” tracks, which are not propagated, allows the JIT approach to maintain
the positions of previously observed person, such that a tracking of multiple
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Figure 6.12: Localization accuracies for the JIT and the baseline approach in
the presence of component failure. The localization accuracy for
both systems in the case no tracking is possible (NoTracks) is
always exactly zero.

alternating speakers is still possible to some extent. This is not possible for the
baseline system, which loses track of individual speaker locations shortly after
each observation. While the main effect is a significant decrease in localization
accuracy, as shown in Fig. 6.12, it also affects identification accuracy, as identi-
ties for focus persons have to be held based only on their speaking frequency. In
the case no cameras are used, The IA curves in both cases reach their maximum
for a lower value of Thknown of around 0.1. This is because the acoustic modal-
ity causes fewer false acceptances, measured in numbers of persons, than the
acoustic one, as it is often observed only for a few main speakers. This means
the acceptance threshold can be set much lower without increasing the FAR
significantly. The highest reachable identification accuracy stays below that for
the multimodal case, though.

Finally, When no tracks can be generated at all, the JIT filter achieves com-
parable identification accuracy as in the presence of heavily flawed foreground
support. The highest reached accuracy is 70.0%, for Thknown = 0.25, although
no spatial information can be used for data association, for multiple persons
in an open set identification scenario. For the baseline system, as no track
information is available, the IA also drops to 0.

In Figure 6.12, the localization performance can be seen in more detail. Both
systems achieve a high accuracy in the absence of tracking perturbations (Best),
with slightly better results for the baseline system. This is in opposition to the
IA scores in the same case, and again comes from the fact that the LA and
IA are in opposition in the case of correctly recognized but badly localized
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Figure 6.13: The MITA scores for the JIT approach and the baseline system
as feature extraction, sensors, or whole modalities fail. Accuracies
for the JIT approach degrade gracefully in the face of component
failure. The MIT accuracy for the baseline system in the case
no tracking is possible (Base_NoTracks) is zero for all values of
the acceptance threshold, such that the corresponding curve is not
visible here.

identities: If the identity is rejected, it results in a decrease of the IA (through
an increase of the FRR), but also in an increase of the LA, in the case the
focus person is still correctly tracked. Both types of errors come to a balance
in the MITA, as can be seen in Fig. 6.13. The effect is even stronger in the
case of erroneous foreground support (ErrFG), although the relative increase
in the IA (for the JIT approach compared to the baseline) is stronger than the
relative decrease in LA. When the visual modality fails completely (NoCams),
the localization accuracy for the baseline system drops considerably while, as
explained above, the JIT approach is able to keep basic estimates for at least a
subset of focus persons. Finally, when no 3D tracks can be generated, the LA
drops to 0 in both cases.

Figure 6.13 sums up the results for the case of degrading tracking performance.
While both approaches initially show comparable performance, the JIT filter
approach already shows a slight advantage in the case of flawed foreground
support. The difference becomes much larger as the video modality fails, and is
largest as tracking information becomes completely unavailable. The advantage
of the JIT approach is that although information about locations becomes
increasingly inaccurate, it is still capable of preserving the information about
identities, while in the baseline approach, both are tightly coupled, such that
accuracies tend toward 0 as tracking degrades.
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Modality MOTP miss f.pos. mism. MOTA

Audio only 23cm 84.15% 12.08% 0.47% (228) 3.30%
Video only 17cm 13.63% 9.81% 0.40% (195) 76.16%
Audiovisual 17cm 13.59% 9.35% 0.39% (187) 76.67%

Table 6.3: Person tracking performance for the purely acoustic, the purely vi-
sual, and for the audiovisual cases.

6.4.4 Modality Fusion

Here, the effects of audio-visual modality fusion, which could already be per-
ceived in the previous section, are evaluated in detail. Table 6.3 shows theMOT
accuracies reached for the single modalities as well as the audio-visual fusion.

TheMOT results for the acoustic only case are obtained by disabling all cameras
completely. The results for the visual only case are obtained by disregarding all
acoustic features. As can be seen, visual tracking clearly outperforms acoustic
tracking, simply because of the constant availability of observations simulta-
neously for all persons. In the acoustic only case, temporary tracks for active
speakers can still be maintained, though, such that accuracies do not drop to
zero. The addition of the acoustic observations to visual tracking still allow a
slight gain in performance.

Figure 6.14 now shows the MIT accuracies reached for audio, visual, or audio-
visual identification. In contrast to the above evaluation, the visual tracking
features are used here in all cases (the cameras are not disabled completely).
The difference lies solely in the inclusion or not of speaker ID or face ID features.
Multimodal fusion is made here using the product rule.

The audio modality clearly outperforms the visual one, reaching a maximum
MIT accuracy of 79.7% for Thknown = 0.2. The result is not surprising, consid-
ering the frame level accuracies reached by both systems (see Sections 6.2.1 and
6.2.2). This is also in line with the observations made in the official 2007 CLEAR
evaluations, concerning the Interactive Seminar dataset [103]. Although the vi-
sual modality offers the advantage of continuously observing all smart space
occupants simultaneously using several overlapping sensors (as opposed to the
acoustic case, where only one person can be identified at one time), this is out-
weighed by the difficulties posed by extremely low face resolutions. Even using
manual annotations for face detection and alignment, the potential of face iden-
tification can not be fully exploited and performance stays below that of the
acoustic case. The lower IA scores are compensated to some extent, though,
by a higher localization accuracy, such that a maximum MIT score of 76.0%
is reached for an acceptance threshold Thknown = 0.25. The fusion of both
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Figure 6.14: MITA scores for single modality acoustic or visual and for multi-
modal identification.

modalities, finally, offers a clear advantage. The multimodal system achieves a
maximum MIT score of 81.3% for Thknown = 0.3.

The advantages of multimodal fusion become even better apparent when con-
sidering the correct and false classification ratios. Figure 6.15 shows the cor-
responding ROC plots. Using both modalities, clearly higher CCR rates can
be achieved than by using any one modality alone. Although the curve for the
audio only case rises very sharply for low values of Thknown, it is soon caught
up with by the multimodal case, with both roughly achieving 60% CCR for
a false acceptance rate of 10%. The additional advantage of the audio-visual
system is that its operating point can also be better adjusted, with an possible
FAR of up to 40%. In the audio case, correct classification rates (as well as
false classification rates) are limited, even when setting Thknown = 0, due to the
fact that persons may never be identified (correctly or falsely) even once, based
on their voice. This is compensated in part, by the visual modality, although
additional errors are also introduced. The audio-visual system achieves an equal
error rate of CCR = FAR = 32%.

The drawback of performing multimodal fusion, which needs to be carefully bal-
anced, is that false acceptance errors (and false positives) from both modalities
are accumulated. Unknown persons that never spoke, e.g., and therefore were
never falsely accepted based on the acoustic modality, are now recognized based
on their faces, and vice versa. This is the reason the difference in accuracies is
not more clearly apparent in the overall MITA score, which weighs all errors
equally. One must remember, however, that this result is dependent on the eval-
uation dataset. For other scenarios, where e.g. the percentage of persons that
are identifiable using both of the two modalities is lower, the complementary
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Figure 6.15: ROC curves for single modality and for multimodal identity
tracking.

nature of face and voice identification may be even more apparent. Figure. 6.16
shows the evolution of the MITA for the audio, the visual and the multimodal
case, as a function of time. This representation is possible as all sequences
in the dataset have a length of 5 minutes. As explained in Section 6.4.2, the
slight decrease in accuracies, on average, in the second half of the recordings is
mainly due to the fact that, as more and more observations become available,
the chances of observing the faces or voices of unknown persons and wrong-
fully identifying them increase. This is reflected by a slight increase of the false
acceptance rate and consequently a decrease of the MITA.

Although this was not the case for the Interactive Seminar dataset, the fusion
of modalities can, in principle, lead to a faster overall identification result for
all occupants. As faces are not observable, voices may be identified, and vice
versa. This may be a great advantage in scenarios with lower sensor coverage,
where certain key identities need to be localized quickly and one cannot wait,
e.g., for a specific participant to face a camera (or to take his turn speaking) to
make an identification. This aspect could be investigated further in the future,
using more balanced datasets.

Next, we will now evaluate the effects of different fusion strategies for multi-
modal identification. Figures 6.17 and 6.18 show the MITA curves and the
CCR - FCR plots, respectively, for 3 different fusion strategies:

1. Using a single audio-visual model to accumulate both speaker and face ID
cues.

2. Using separate models and combining their results using the weighted sum
rule. Here, equal weights of 0.5 are assigned to each modality.
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Figure 6.16: Evolution of the frame-based Multiple Identity Tracking Accuracy
(MITA) in time, averaged over all seminars and segments, for audio,
visual, and audio-visual identification.

3. Using separate models and combining with the product rule.

As can be seen, the sum and the product rule outperform the single-model strat-
egy for a broader range of acceptance thresholds. As explained in Section 4.2,
this can be explained by the fact that when using a single model, results may
be biased toward one modality based on observation frequency, such that the
advantages of fusion are not fully exploited. When using separate models, the
product and the sum rule achieve comparable results. The advantage of the
product rule is that it is the least sensitive to the acceptance threshold Thknown.
This is of course an important point in realtime applications where it is not pos-
sible to determine the optimal threshold for a yet unseen scenario beforehand.

6.4.5 Temporal Fusion

This section analyzes the effects of temporally fusing identification results on
identity tracking performance. For this, the JIT framework is modified such
that the identity of a person (tracked or hidden) is determined based only on
the last associated ID observation (NoTempFusion). All previous observations
for the same person are disregarded. This is realized by setting the learnrate
α for identification to 1. Separate models for the audio and visual modalities
are still kept, though, and the fusion made using the product rule. Figure 6.19
shows the resulting LA, IA and MITA curves, as well as the open set ROC
curves for the standard JIT approach (TempFusion), and the modified ap-
proach (NoTempFusion).
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Figure 6.17: A comparison of MIT scores reached in the multimodal case, when
using the sum rule, the product rule, or without separation of iden-
tity models.

Figure 6.18: The ROC plots for comparison of the single model strategy, the
sum rule and the product rule for multimodal identity tracking.
No significant difference can be observed.

140



(a) (b)

(c) (d)

Figure 6.19: The effects of confidence based temporal fusion on identity tracking
accuracies. Both the MIT scores and the open set ROC perfor-
mance are significantly increased when temporal fusion is made.
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Failure MOTA LA IA MITA

None 76.67% 88.5% 74.1% 81.3%
Color 63.28% 83.5% 73.6% 78.6%
Det+Top 43.22% 60.7% 72.3% 66.5%
Foreground 25.68% 38.8% 69.6% 54.2%
Cam5 60.49% 71.6% 71.8% 71.7%
Only Cam1&2 26.90% 54.1% 74.0% 64.1%
No Cams 3.30% 27.2% 69.4% 48.3%

Table 6.4: Person tracking and Identity Tracking performance in the presence
of individual component failure for the multimodal case.

According to expectations, both the localization and identification accuracies
are clearly higher when performing temporal fusion. From Figs. 6.19(a) and
6.19(c), one can see that the operating point for open set identification (the
acceptance threshold Thknown) has to be set extremely high to achieve the best
performance, when no temporal fusion is made. This is because false acceptance
errors for unknown persons can only be rejected based on the confidence values
for single identification results. They can no longer be averaged out using the
information about possibly conflicting results in an observation sequence. The
ROC curve shows that temporal fusion also yields a superior system with respect
to correct classification rates.

6.4.6 Graceful Degradation

In this section, the performance of the JIT approach is evaluated in the presence
of various types of failures. These include failures in the feature extraction
process, as well as complete failures of observing sensors. For this, several test
runs were performed, by disabling the color feature (Color), by disabling upper
torso detection and top view blob tracking (Det + Top), by perturbing the
foreground support maps as in Section 6.4.3 (Foreground), by disabling the
top view (and all associated features) completely (Cam5), by using only two
cameras (Cam1&2), and by disabling all cameras completely (NoCams). The
results are shown in Table 6.4.

As can be seen, the failure of individual feature extraction components causes a
sensible reduction in theMOT performance. By disabling colors and detections
it drops from 77% to 63% and 43%, respectively. The most important feature
for tracking is still the foreground support. If it fails, accuracies drop further
to around 26%. It should be noticed that the drop in the MIT scores is not
proportional, though. This indicates that as tracking quality decreases, the
tracker is still capable of maintaining relevant information about focus persons,
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Particles MOTA LA IA MITA

300 75.78% 89.1% 74.0% 81.6%
100 76.67% 88.5% 74.1% 81.3%
50 73.95% 86.9% 73.7% 80.3%
25 67.61% 77.5% 73.3% 75.4%

Table 6.5: Person tracking and Identity Tracking performance with varying
numbers of particles per track.

while information about unknown persons is more quickly lost. When disabling
the top view, as well as when using only two cameras, cams 1 and 2, MOT
accuracies also drop considerably, whileMIT scores are less affected. The reason
for evaluating against a loss of the top view is that it offers the best features
for person tracking, showing a mostly unoccluded view of the whole scene. The
evaluation using only two fixed cameras serves only for demostration purposes.
Any other two cameras could have been chosen, or an average of all possible
combinations taken. This was not deemed necessary here, as the effects can be
well exemplified by the investigated case, and should not differ greatly in the
others. In any case, a lower bound is given by the case where all camera views
are unavailable (NoCams). There, a MIT score of 48.3% can still be achieved.
While the LA score gradually decreases with component failure, the IA score
stays relatively unaffected, rarely dropping below 70%. This is one of the main
advantages of the JIT filter framework, which is flexible to feature extraction,
sensor and modality failure. It is capable of providing relevant information
concerning identities in the smart space, as long as some of the underlying tasks
of person tracking, source localization, face recognition, or speaker identification,
can be accomplished with a sufficient degree of accuracy.

Finally, the effect of the particle cloud size on identity tracking performance is
tested. The results are shown in Table 6.5.

The first column in the table stands for the number of particles per track. The
results show that increasing the number of particles to 300 does not yield any
significant improvement. The MOTA values even drop very slightly, due to a
small increase in the false positive rate. Reducing the particle mass by half also
causes only a very slight decrease in accuracies. Even using only 25 particles per
track, scores of 68% MOTA and 75% MITA are reached. Since the number of
particles directly influences the runtime performance of the tracker, being able
to achieve high accuracies with fewer particles can be essential for its deployment
in realtime applications, involving high numbers of users.
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6.5 Discussion

This chapter presented an evaluation of multiple user open set identity tracking
performance on the CLEAR 2007 Interactive Seminar database. The results
show that a multimodal analysis is indeed possible for several simultaneous
smart space occupants using only distantly placed sensors, and that it poses
several advantages compared to unimodal analysis. This is with respect to the
overall accuracies reached, as reflected inMIT accuracies and correct classifica-
tion rates, but also with respect to the flexibility offered when single modalities
are not usable.

The experiments also show that acoustic identification can be a very powerful
source of information, especially when used in conjunction with microphone ar-
ray source localization. High identity tracking accuracies can be achieved for
multiple persons using only the acoustic modality for both tracking and identi-
fication. Even so, the conditions for the acoustic case must still be considered
relatively controlled, as only indoor scenarios with relatively few sources of noise
are evaluated. The potential of the video modality, on the other hand, can still
not be completely exploited, as low resolutions, lighting changes, and limited
sensor coverage still pose severe problems for the detection and identification of
faces. One obvious solution is the use of active cameras that are steered toward
targets of interest and acquire high quality, high resolution views of faces. This
solution was investigated with success in [5] and is also applicable to the JIT
framework proposed here.

It has also been shown that the proposed JIT approach degrades gracefully
with individual modality failure, tracking failures, reduced sensor availability,
and limited amounts of particles. Especially in those cases, it outperforms the
baseline approach, which performs standard SIR particle filtering and builds on
the results of tracking for identification. Even as localization becomes increas-
ingly difficult, the JIT approach maintains important information about focus
persons, with identification accuracies staying above 70% in almost all cases.

6.6 Live System

This section presents a realtime implementation of the JIT approach. It is re-
alized as a live system, with individual processing components distributed over
a network of computers. The system utilizes the input streams from four room
corner cameras, one ceiling-mounted top-view camera, four T-shaped micro-
phone arrays on the room walls, one omnidirectional microphone on a central
meeting table, as well as two steerable SONY EVI-D70P cameras.
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Figure 6.20: Overview of the components of the live multimodal identity track-
ing system.

All components and sensors work together to achieve the goals of high room
coverage, precise localization and quick and accurate identification. Each com-
ponent is designed to be fully automatic and realtime-capable, and is seamlessly
integrated in the overall system. The prime building block is the JIT filter esti-
mating the locations and identities of all persons present in the room. Camera
observation modules preprocess the image information locally and extract up-
per body detection and foreground support maps, which are sent to the fusion
module. Modules for speech detection, segmentation and speaker identification,
coupled with a source localizer using the microphone arrays inputs, deliver pre-
cisely localized ID cues whenever a speaker becomes active. The pan-tilt-zoom
cameras focus in on tracked persons to gain high resolution snapshots usable
for face identification. The faces of target persons are automatically detected
and aligned in the active camera images. This information, together with con-
tinuously updated camera calibration parameters, is used for 3D localization of
the face. The central JIT module analyzes the output of all components and
implements a variety of strategies for target and camera selection. It performs
spatio-temporal association of incoming identification cues to person models,
accumulates statistics in time, and continually optimizes the global scene con-
figuration according to the sequence of observations.

A total of eight Pentium IV, 3GHz machines is used: Five for the visual tracking,
one for the acoustic tracking and identification, and two more for the control of
active cameras and the tracking and identification of faces in closeup views.

Fig. 6.20 gives an overview of the system and of the interaction between its
components.
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6.6.1 Active Camera Face Capture

As opposed to the offline implementation presented in previous chapters, the
live system makes use of active cameras to better exploit the potential of face
identification. Based on the current room occupant configuration, and the confi-
dence in each person’s identity, the fusion module decides on the actual persons
of interest and on the active cameras to be used to acquire frontal face views for
identification. The target persons’ 3D scene positions are sent to the active cam-
era tracking and control modules where several subtasks are accomplished:

• The control of the camera’s pan, tilt, and zoom factors to focus in on the
desired region.

• The detection and alignment of frontal faces whenever available and the
reprojection of detection hits to the 3D scene.

The face acquisition task is accomplished by two SONY EVI-D70P cameras
mounted on the room walls. They are placed such as to offer good views of a
person giving a presentation in front of the projection board or coming in the
door, but also offer good coverage of the audience and the rest of the room.
Each camera is connected to a separate machine running dedicated components
for control, detection, alignment and identification of faces.

Face Alignment and 3D Scene Reprojection

Once an active camera has zoomed in on a target person, high resolution snap-
shots of frontal views of his or her face are taken, aligned for face identification,
and their 3D scene position is estimated. The detection of frontal faces is made
using the cascaded Haar-feature classifiers proposed by Viola et al. in [113].
The inside of the detected face rectangle is scanned in a second pass with Haar-
feature classifier cascades trained to detect eye regions. Only if two eyes can
be detected, reasonably situated inside the face rectangle, is the aligned face
passed on for recognition. Although this may cause some faces to be discarded
because both eyes could not be detected, the two stage approach does guaran-
tees extremely high precision rates with practically no false alarms. Fig. 6.21
shows the face detection and alignment process.

To estimate the 3D scene location of an aligned face from its image coordinates
and size, it is necessary to update the intrinsic and extrinsic parameters of
moving cameras at every point in time. The parameters are updated using the
actual pan, tilt and zoom values read from the cameras through their RS-232
serial interface. An initial calibration is performed for each camera in its rest
position (pan = tilt = 0◦) using standard calibration techniques [109], yielding
initial values for the camera location in the scene Tinit and its base rotation
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Figure 6.21: Face detection and alignment in active camera images. In a first
pass, a frontal face is detected by scanning the region surrounding
the person track. In a second pass, the inside of the face rectangle
is scanned with an eye detector. If two eyes can be found, the face
is aligned and passed on for recognition. The procedure guarantees
extremely low false alarm rates

Rinit, as well as focal length estimates at 9 discrete zoom steps fx,0 . . . fx,8. The
camera rotation matrix is then continuously updated from the latest pan and
tilt information, by multiplying the initial rotation matrix with a “correction
matrix” Rcorr (Eq. 6.1),

Ract = Rinit ·

 cos(β) sin(α) sin(β) − cos(α) sin(β)
0 cos(α) sin(α)

sin(β) − sin(α) cos(β) cos(α) cos(β)

 (6.1)

with α the read camera pan angle and β the tilt angle.

The focal length itself is not directly readable and is interpolated for the cur-
rent camera zoom step from the discrete values fx,0 to fx,8, using a 4th order
polynomial function. Even though interpolation introduces some imprecision,
the maximum observed deviation error comprised only a few pixels, which is
completely sufficient for our purpose.

Using the up to date intrinsic and extrinsic camera parameters, and assuming
a standard eye distance of 7cm, the 3D location of each aligned and identified
frontal face is computed.

Face Recognition

The face recognition algorithm is the same as described in Section 3.3.2. For
training, feature vectors were obtained by automatically capturing sample im-
ages for known subject at different points in the room using the active cameras,
and applying the same detection and alignment techniques described above.
Training was done offline using roughly 70-180 images per person.
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6.6.2 Speech Detection and Recognition

In parallel to face identification, speech localization and speaker identification
is performed on a separate machine. For localization, the four T-shaped micro-
phone arrays installed on the room walls are used. For speaker identification,
only one channel from a table-top microphone is used. Three subtasks are ac-
complished as follows:

• Speech detection and segmentation: In the live system, this is done by
thresholding the power spectrum of the table top audio signal. Speech
segments of more than 1 second length are extracted and fed to the iden-
tification module.

• Speaker Identification: The algorithm for speaker ID is the same as de-
scribed in Section 3.3.3. Speakers are modeled using a 32-component
Gaussian Mixture Model (GMM). The inputs to the GMMs are the MFCC
coefficients computed on the segmented speech from the table top chan-
nel. For each speaker, one GMM is trained offline on a 30 second speech
segment recorded using the same table top microphone. The recognition
itself is made on segments of 1 to 5 seconds, with longer segments being
broken down into smaller ones, to allow for intermediate identification re-
sults and avoid the faulty inclusion of speech from multiple speakers into
a lengthy segment. Cepstral mean subtraction and feature warping are
performed on the audio signal to reduce channel noise and reverberation
effects.

• Speech Source Localization: In contrast to the offline system, localiza-
tion in the live system is performed by simple Kalman filtering of the
GCC-computed time delays between the various microphone pairs. The
details of the Kalman filter source localizer can be found in [41]. It has
been evaluated in the CLEAR 2006 evaluations and reached somewhat
lower scores than the JPDAF approach in the single person tracking case,
with 66%MOTA, as compared to 78% in the JPDAF case. The reason
the Kalman filter is used in the live system is realtime performance, as
accuracies are largely sufficient for demonstration purposes.

6.6.3 Target and Camera Selection Strategies,
Recognition of Standard Events

Based on the actual configuration of persons in the scene and on the recognition
confidence for each, persons of interest are determined and the best active cam-
eras configuration for their observation selected. A variety of camera and target
selection strategies are conceivable, of which a few have been experimented
with:
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• Switching attention of all cameras to the currently active speaker: This
strategy assumes speakers are the most important actors and puts the
priority on achieving high recognition rates for them first.

• Achieving high identification confidence for all room occupants as fast as
possible. This would prioritize participants that have not been identified
yet.

• Trying to refresh all identities of all participants as regularly as possible.
This is a good strategy if e.g. the confidence in the tracker’s accuracy is
low.

• Focusing two cameras on one person increases the chances of getting a
frontal face. Alternatively, split cameras among users, possibly choosing
the best camera for a user based on head orientation estimates.

• In situations where a main speaker can be clearly identified, keep one
camera on the speaker and use the others to examine the audience.

• Define regions of high priority in the room, e.g. the door, to quickly
identify new persons entering the room, etc.

The currently implemented target and camera selection strategy does the fol-
lowing:

• It consecutively scans the locations of all participants using all active
cameras simultaneously to increase the chances of capturing a frontal face.
Targets of attention are switched regularly at 10 second intervals.

• Whenever a person track is near the entrance door, the active camera
offering best views of the door area is immediately steered to capture the
faces of eventual newcomers.

• Whenever a person is found to stay near the whiteboard for a certain
period of time, another active camera, offering best views of the eventual
presenter, is dedicated to following that person.

The recognition of simple events, such as a person entering the room, or a
presenter staying near the whiteboard can be directly inferred from tracking
and speech activity information. Figure 6.22 depicts the two recognized events
“person at door” and “presenter” superimposed on the room’s top view.

6.6.4 Experiments using the Live System

The integrated system was evaluated many times on various sample interaction
scenarios involving several users entering the room and engaging in conversation
in a meeting-like setting. The users were free to sit around the meeting table,
occasionally stand up to give explanations in front of the whiteboard, walk
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(a) (b)

Figure 6.22: Examples of standard events detected using the knowledge about
person locations. In 6.22(a), the event of a person entering the room
is recognized. In 6.22(b), the continuous movement of a person in
front of the whiteboard area prompted the system to detect the
start of a presentation.

around, etc. Figure 6.23 shows an example scenario evaluated using the live
system. The database for identification comprised 7 to 10 users, with some
users known purely through their faces and others only through their voice.
The samples for training of the face recognizer were captured automatically
over the course of several months, whereas training of voices was done on data
from controlled recording sessions.

The ID tracking system was started as diverse points of simulated meetings,
conversations, etc, to prevent it from capturing easy face snapshots, e.g. as users
enter the room. The system automatically initiates and maintains tracks for 3 to
5 users, and gradually recognizes their identities in time. As opposed to the case
of the offline CLEAR recordings, the visual identification modality is much more
accurate, due to the captured high resolution face images. The main drawback
of face recognition, even in the live system, is still the variation in head pose of
the users, such that frontal faces for in some situations can rarely be observed.
A greater camera coverage or a detection and identification on half profile views
would substantially improve performance. Also, it was found that the detection
of eyes in the close-up views is sometimes still problematic, such that other
alignment techniques, such as e.g. Active Appearance Models (AAMs) [29]
should be further investigated. As in the case of the offline evaluations, it was
found that the acoustic localization and identification can be a very powerful
tool in situations with low environmental noise and little crosstalk. The live
implementation runs in realtime on standard hardware at the video framerate
of 15 frames per second.
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Figure 6.23: An example evaluation scenario for the live identity tracking
system.
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7 Conclusion

In this thesis, a novel framework was presented for the tracking and identifica-
tion of multiple persons in a smart environment using distantly placed audio-
visual sensors. The challenges addressed are the limited availability of reliable
cues for person identification as well as the hard problems of tracking and data
association in a noisy, cluttered and uncontrolled environment. The proposed
approach, the Joint Identity Tracking (JIT) filter, builds on the opportunis-
tic capture and joint probabilistic integration of tracking as well as face and
voice identification features, gained from several cameras and microphone ar-
rays, whenever these cues can be captured with a sufficient degree of confidence.
It automatically detects persons at any location in the smart space and initial-
izes tracks without the need for cooperation or explicit interaction. It builds
person models on-the-fly, learns in and continuously adapts person-specific dis-
criminative features in an unsupervised way. It adapts automatically to a wide
variety of smart environments without the need for manual tuning. It estimates
person locations audio-visually based on a variety of features using probabilistic
filtering and robust Monte-Carlo approximations. It degrades gracefully in the
presence of feature extraction errors, sensor or modality failure, and probabilis-
tically associates face and voice observations to persons, even in the event of
severe occlusion, low sensor coverage or missing person tracks. It derives iden-
tities jointly for multiple users based on the sequential probabilistic filtering of
all available observations. It performs temporal and cross-modal fusion of iden-
tification results, based on the combination of normalized, warped confidence
scores. It is designed to operate in the open set identification case, localizing and
identifying subsets of known persons interacting with further unknown person
and continuously adapts the confidences for all made identifications.

7.1 Summary and Discussion

A systematic evaluation procedure with associated performance metrics has
been introduced to measure multiple person tracking and identity tracking ac-
curacies. Using these metrics, the proposed JIT approach was systematically
evaluated on a large database of audio-visual recordings featuring small meet-
ings held in various smart rooms, the CLEAR Interactive Seminar database.
Experimental results have shown:
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• the advantage of fusing multiple modalities, for the unconstrained smart
environment scenario, when using distantly placed sensors. Multimodal
analysis not only allow to increase tracking and identification accuracies, it
also exploits the true complementary nature of the acoustic and visual do-
mains, especially in the case of noisy, infrequent observations, or sensor or
modality failure. It was also shown that the fusion of asynchronous audio-
visual identification features observed with highly varying frequency, can
be achieved with success through appropriate modeling and adaptation
schemes. A person tracking accuracy of 77% and an identity tracking ac-
curacy of 81% could be achieved for the difficult conditions posed by the
CLEAR Interactive Seminars.

• the advantage of confidence-based fusion and filtering of highly confident
information. This is especially the case in the presence of many unknown
persons, when the underlying classification algorithms are trained for the
closed set scenario.

• the advantage of performing temporal fusion, even if automatic association
of observations to persons has to be performed. The temporal fusion is
made possible by the continuous tracking of persons, or management of
untracked person models, until new ID observations become available. In
this sense, it was shown that tracking improves the quality of identification,
but also that identification improves the quality of tracking, e.g. through
the reinitialization of corresponding, previously lost person tracks upon
correlating ID feature observations.

• the benefits of integrating all information, support maps, detections, lo-
calized tracking cues and localized identification cues at the global level.
This is with respect to the overall accuracies that can be reached, but also
with respect to the system behavior as individual components fail. The
perfomance of the JIT filter was shown to degrade gracefully, keeping
high localization accuracies, and almost unchanged identification accura-
cies, even in the presence of severe failures of individual feature extraction
steps.

A realtime implementation of the Joint Identity Tracking approach in a smart
perceptual room was also presented, with processing distributed over a network
of computers. The live system makes use of active steerable cameras to fully
exploit the potential of face identification, keeps track of multiple identities
evolving in the room and recognizes a few standard events, such as ongoing
presentations, or newcomers entering the room.

For the presented quantitative evaluations, a set of novel metrics and a new
definition of the identity tracking task, applicable to the general open set case,
were presented and tested on the CLEAR Interactive Seminar scenario. The
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proposed MOT metrics have already been applied with success in the inter-
national CLEAR evaluations, and are being employed in a growing number of
publications from other research groups [47; 65; 56]. While the MIT metrics
have not yet been employed outside of the frame of this thesis, they also show
the potential for wide-spread application in the future: As steady technological
advances are made in the field of multimodal, multi-user Human Computer In-
teraction, systems that perform open set identity tracking will no doubt become
increasingly available. Similarly, large distributed monitoring systems, that keep
track of many users in wide-spread environments (e.g. office buildings) become
more and more feasible. As in the field of visual multiple target tracking today,
benchmarking and formal evaluation of such identity tracking systems should
play an increasingly important role in the future. In this case, the here pro-
posed MIT metrics could represent a first effort toward standardization and
systematic evaluation in those domains.

7.2 Future Directions

The identity tracking approach presented here still offers many possibilities for
improvement or extension. Future work could include:

• Increasing the performance of face identification. Although the use of
active cameras allows to circumvent the problem of low face resolutions,
they come at the cost of an additional effort in sensor installation and
control. Moreover, in many setups (such as offline surveillance recordings,
for example), steerable cameras may just not be available. Therefore,
further efforts to increase the reliability of detection and alignment of faces
in distant views should be worthwhile. Also, for the recognition of low
resolution faces, perhaps super-resolution methods could be investigated,
in addition to temporal fusion, to increase the quality of obtained face
models.

For both the cases of fixed and steerable cameras, a major improvement
would also be the accurate recognition based on non-frontal views. In
unconstrained scenarios, the pose of observed faces constitutes a great
challenge. The extension of a steerable camera system, e.g., to estimate
head orientations and use pose-specific classifiers could bring a major im-
provement.

• The quality of speaker identification can also be improved, for example
by using beamforming techniques, of by combining the outputs of sev-
eral acoustic classifiers from different microphones. Another point would
be to employ more powerful speaker diarization techniques, allowing the
automatic generation of longer speech segments for identification. The

155



mapping of speaker ID results for long speech segments could then be
made by comparing the short-time history of speech source locations with
the history of person trajectories.

• Another direction could be the development of more sophisticated ac-
tive camera steering techniques. A network of cooperating active cameras
would no longer necessitate the aid of fixed cameras, reducing the amount
of sensors needed. Especially considering the JIT filter’s ability at manag-
ing unobserved tracks outside of the field of view of sensors, it is thinkable
of using only one or two centrally placed steerable cameras that would
periodically refresh their knowledge about the state of the world (the lo-
cations and identities of persons), for example based on criteria of saliency
of observations or information gain provided by certain camera actions.

In application areas such as videoconferencing, this may be very useful,
as a greater number of participating persons may be managed while using
fewer sensors for observation. A few active cameras would then cooperate
in keeping the focus on the relevant persons (for example dominant or
active speakers) while providing to the remote party realtime information
about their identities, e.g. in form of speaker names, roles, affiliations,
etc.

• A natural extension of the JIT approach would be its application to a
network of rooms, equipped with varying types of sensors. Users could be
tracked, e.g., in an office building with some rooms equipped only with
single microphones for speaker identification, some others, such as meeting
rooms, equipped with multiple cameras and microphone arrays, and some
floors equipped only with low coverage camera networks. The flexibility of
the approach with respect to the type of sensors used could be exploited, as
it is not necessary to guarantee full coverage or a full sensor setup in each
part of the space. Owing to the joint estimation procedure, the presence
or absence of persons in specific parts of the space could be inferred from
observations coming from other parts, using wholly different sensors.

• Similarly, the approach may be well suited for application in the domain
of ubiquitous computing. Research in this domain to a large part involves
determining the locations of several users in a larger area, using wear-
able devices, infrared or ultrasound sensors, RFID tags, or a variety of
distributed sensors such as laser range finders, radars, cameras, and so
forth [39]. Although the work in this thesis concentrates on sensors which
do not require the explicit cooperation of users, the developed method is
easily extensible to include the above mentioned sensors as well.

• One more extension would be to relax the requirement of pre-calibrated
sensors. A smart environment could profit from the information given by
visual identification cues gained in separate camera images, or azimuths
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for identified speech segments in individual microphone arrays to infer a
reliable association of observations across sensors and gradually learn the
calibration parameters of the distributed sensor setup. Similarly, tracking
information could be used to accumulate observations for yet unknown
persons and automatically train new classifiers in an unsupervised manner.
In this way, the missing information about the person identity in one
modality could also be completed by knowledge from the other modality.

• Finally, the modeling of more knowledge about the smart space itself,
e.g. the positions of chairs, tables, entrances, noise sources, windows, and
so forth, could greatly improve the quality of detection and localization,
leading also to a better inference of identities. This factor was still rela-
tively neglected in the current work. Modeling of the environment could
be made by recognizing and tracking objects and object states, in addition
to humans. It could just as well come in the form of schedules, modeled
user habits, or preferred user clothing, which could help adjust the priors
for tracking and identification.
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