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Abstract

A great deal of research has been done developing parsers for natural language, but ade-
quate solutions for some of the particular problems involved in spoken language are still
in their infancy. Among the unsolved problems are: difficulty in constructing task-spe-
cific grammars, lack of tolerance to noisy input, and inability to effectively utilize com-
plimentary non-symbolic information.

This thesis describes PARSEC—a system for generating connectionist parsing networks
from example parses. PARSEC networks exhibit three strengths:

* They automatically learn to parse, and they generalize well compared 1o hand-
coded grammars.
* They tolerate several types of noise without any explicit noise-modeling.

* They can learn to use multi-modal input, e.g. a combination of intonation, syntax
and semantics.

The PARSEC network architecture relies on a variation of supervised back-propagation
learning. The architecture differs from other connectionist approaches in that it is highly
structured, both at the macroscopic level of modules, and at the microscopic level of
connections. Structure is exploited to enhance system performance.

Conference registration dialogs formed the primary development testbed for PARSEC.
A separate simultaneous effort in speech recognition and translation for conference reg-
istration provided a useful data source for performance comparisons.

Presented in this thesis are the PARSEC architecture, its training algorithms, and
detailed performance analyses along several dimensions that concretely demonstrate
PARSEC’s advantages.
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1

Introduction

1.1

The problem of spoken language processing spans a large number of sub-problems,
each of which is substantial in scope. These range from speech recognition at the lowest
level to language understanding at the highest. One of the critical pieces of a spoken lan-
guage system is its parser. The parser bridges the gap between word sequences and
meaningful structures. It must communicate with the highest and lowest level process-
ing components.

While a great deal of research has been done developing parsers for natural language,
existing solutions for some of the particular problems involved in spoken language are
limited. This dissertation describes PARSEC!, a connectionist parsing system geared
toward the difficulties encountered in spoken language processing. The main testbed for
the parser is a conversational speech translation task.

I am primarily concerned with demonstrating that connectionist computational models
are capable of solving problems in parsing that other more traditional methods are
unable to do. The focus is not on modeling human learning performance or understand-
ing how humans process language. In this thesis, connectionist models are viewed as a
tool 1o solve various problems in parsing.

Why Connectionist?

Traditional methods employed in parsing natural language have focused on developing
powerful formalisms to represent syntactic and semantic structure along with rules for
transforming language into these formalisms. Such systems generally rely on rules or

1. The name PARSEC was derived from pieces of parsing, speech, and connectionist.
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hand-coded programs to perform their tasks, and system designers must accurately
anticipate all of the language constructs that the systems will encounter. Spoken lan-
guage adds complexity to the language understanding problem. It is more strictly
sequential than written language. One cannot look ahead in on-line real-time tasks such
as simultaneous interpretation. Often, output is desired before sentences are complete.
Also, spoken language has a loose structure that is not easily captured in formal gram-
mar systems. This is compounded by errors in word recognition. Phenomena such as
ungrammaticality, stuttering, interjections, and hesitation are possible. Speech signals
also contain a rich variety of currently unexploited non-symbolic information (e.g. pitch
or encrgy patterns). Independent of these factors, systems that can be efficiently pro-
duced for specific linguistic domains are desirable. Parsing methodologies designed to
cope with these requirements are needed.

Connectionist networks have three main computational strengths that are useful in such
domains:
1. They learn and can generalize from examples. This offers a potential solution to the
difficult problem of constructing grammars for spoken language.
2. Connectionist networks tend to be tolerant of noisy input as is present in real
speech.
3.By virtue of the learning algorithms they employ, connectionist networks can
exploit statistical regularities across different modalities (e.g. syntactic information
and prosodic information),

The subject of this thesis is a connectionist parsing system that demonstrates these ben-
efits.

Conference Registration

Conference registration dialogs have been proposed as a testbed for developing real-
time bi-directional speech-to-speech translation systems. A conversational conference
registration task forms the primary development testbed for this work. Here is an exam-
ple conversation:

CALLER: Hello, is this the office for the conference?
OFFICE:  Yes, that's right.

CALLER: I would like to register for the conference.
OFFICE: Do you already have a registration form?
CALLER: No, not yeL.

OFFICE: 1 see. Then, I'll send you a registration form. Could you give me your name
and address?

CALLER: The address is 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15236. The
name is David Johnson.

OFFICE: 1 see. I'll send you a registration form immediately. If there are any questions,
please ask me at any time.

CALLER: Thank you. Goodbye.
OFFICE: Goodbye.




1.3: The PARSEC System

FIGURE 1.1 Example input and output of PARSEC.

| will send you a form.

\b (PARSEC Network

n

([decl statement]

([main-clause
é[agent]

E[.':zctic:m] will send)

recip.] you)

patient] a form)))
The conference registration dialog task (referred to later as the CR task) consists of 12
conversations using a vocabulary of slightly more than 400 words. There are over 200
unique sentences in the corpus. Appendix B contains the full text of the conversations.
In addition to the text of the corpus, recordings of multiple speakers reading the conver-
sations have been made as part of a speech recognition effort.

—
L

1.3 The PARSEC System

The PARSEC system consists of a number of tools for creating connectionist parsing
networks that learn to parse from exposure to training sentences and their desired
parses. A trained PARSEC network takes single sentences (presented word by word) as
input, and produces a case-based syntactic/semantic interpretation as output. Figure 1.1
shows an example of PARSEC’s output for “I will send you a form.”

PARSEC networks are structured, modular, and hierarchically organized. They use a
variant of back-propagation learning (Rumelhart, Hinton, and Williams 1986), and have
been augmented with special non-connectionist mechanisms for processing symbolic
structures. Building a PARSEC network requires four steps:

1.Creating a training parse file.
2.Creating a lexicon.

3. Training the network’s modules.
4. Assembling the modules into a full PARSEC network.

Of these, only the first two steps require substantial human effort, but this effort is less
than that required to write a grammar by hand. Writing a grammar by hand entails defin-
ing a lexicon and deciding on parses for an example set. In addition, the grammar rules
must be written and debugged. The last two steps for creating a PARSEC network
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(training of the modules and assembly into a full PARSEC network) are automated and
require no human supervision. This is possible through the use of a constructive learn-
ing algorithm that progressively increases the power of the networks as required by the
training tasks.

Performance

1.4.1

14.2

I characterize PARSEC's performance along three dimensions:

1. Learning ability: generalization performance on novel sentences and ease of train-
ing.

2. Noise tolerance: performance on noisy sentences (sentences including speech rec-
ognition errors and ungrammaticality).

3. Ability to utilize non-symbolic information: performance on sentence mood disam-
biguation where intonation is the determining factor.

Learning and Generalization

Clearly, any system that learns must be evaluated with respect to generalization, other-
wise table-lookup strategies can masquerade as true learning. I report on several experi-
ments designed to measure the generalization capability of PARSEC’s learning
algorithms,

Straightforward training of PARSEC networks results in very poor generalization per-
formance. However, there are several ways in which knowledge about parsing and about
language structure can be used to improve PARSEC’s generalization performance.
Using these techniques, PARSEC is able to perform well compared with traditional
hand-coded grammars in tests of coverage.

Another critical issue in characterizing learning performance is how difficult it is to
make the system learn well. If a learning system requires a highly specialized expert to
train it, it isn’t much of an improvement over a hand-coded system. This is an especially
important area where connectionist learning algorithms are concerned, since they are
often difficult to control and tend to be slow learners. PARSEC’s learning procedures
are highly automated, and an expert is not required to fine-tune parameters in order to
produce a satisfactory result.

Noise Tolerance

Parsing is an interesting domain in which to consider the effects of noise. One doesn’t
see noise of the same sort as is found in signal processing where it is possible to observe
subtle “smearing” or other non-catastrophic events. In the case of parsing, since the
input is symbolic, the effects of noise tend to be harsh: words are inserted, deleted, sub-
stituted, or are incorrect from a grammatical standpoint. Although there has been some
recent success in making grammar-based parsers more noise tolerant, many are some-
what brittle in the face of noise, and they often fail on slightly deficient input.
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I evaluate PARSEC on three types of noise:

1. Noise from speech recognition errors.
2. Synthetic ungrammaticality.
3. Noise occurring in spontancous speech (e.g. restarts and ungrammaticality).

PARSEC exhibits better noise tolerance than some grammar-based systems, but it is not
an exhaustive solution to the noise problem.

Multl-modal Input

Synergistic combination of multiple input modalities is a desirable goal of speech pro-
cessing systems. An obvious area in which this ability is required is the case of utter-
ances where sentence mood is affected by intonation:

+ “Okay."—a confirmation.
* “Okay?"—a request for confirmation.

I show that PARSEC has the ability to integrate pitch contour information with syntactic
and semantic information to disambiguate mood in short utterances. This is a first step
towards the goal of integrating prosodic and symbolic cues.

Outline of the Thesis

Chapter 2: Related Work

The field of connectionist language processing is fairly young, and despite a recent
explosion in interest, I present a reasonably complete overview. Of course, the entire
field of NLP is related, but I summarize only those systems and results that have partic-
ularly important implications for speech processing.

Chapter 3: Connectionist Parsing

Chapter 3 begins with a discussion of some of the general issues involved in an applica-
tion of connectionist models to the parsing problem. The issues mainly relate to the use
of symbols in a sequential task as opposed to non-symbolic static recognition tasks.
Representation is discussed as it impacts learnability and performance. The methods for
representing sentence structure in this thesis are also introduced. Instead of relying on
recursive objects, 1 develop a system of non-recursive sentence representation that is
more amenable to direct implementation in a connectionist network.

A number of computational issues are also discussed. Simple actions such as assign-
ment, which aren’t issues in modern programming languages, are more complex in con-
nectionist networks. I introduce the idea of adding structure in terms of additional
hardware to a network in order to facilitate better symbol processing.

The last part of the chapier describes an early connectionist parsing architecture that
was the basis for this thesis work. I discuss some of the weaknesses of this early archi-
tecture, and this provides a foundation from which to define the refined PARSEC archi-
tecture.
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Chapter 4: PARSEC Architecture

This chapter introduces the conference registration task, and I describe PARSEC archi-
tecture using the CR task as an example domain. Most of the chapter is a detailed
description of the six modules of the baseline architecture. I also describe enhancements
to the baseline architecture that were made during the course of the work. Lastly, I show
an actual PARSEC network parsing some sentences and discuss its dynamic behavior.

Chapter 5: PARSEC Tralning

I present the Programmed Constructive Learning algorithm that was developed to
enhance PARSEC's generalization ability. PCL is embedded in a three phase training
procedure that controls all learning parameters automatically. This enables non-experts
to train the modules of PARSEC. I summarize the four steps involved in producing a
PARSEC network. I also discuss an experiment in which a non-expert successfully
trained a PARSEC network for a novel task. A successful application of PARSEC to a
new language (German) concludes the chapter.

Chapter 6: Generalization Experiments

This chapter is devoted to describing PARSEC's generalization performance. First, I
describe the evaluation procedure, then analyze the poor performance of the first PAR-
SEC parser for the CR task. I show three additional CR parsers, each with progressively
better performance. By incorporating the techniques described in Chapters 4 and 5, the
final version of PARSEC is shown to produce a network with nearly 70% generalization
performance.

To provide points of comparison, the performance of three hand-coded grammars is
analyzed on the same CR generalization task. Two of the grammars were constructed as
part of a contest with a large cash prize for best generalization. The generalization per-
formance of the hand-coded grammars ranges from 5% to 38%—a favorable result for
the PARSEC system, whose knowledge of English is far more restricted than that of the
human grammar-writers,

Chapter 7: Speech Transiation and Nolse Tolerance

This chapter reports PARSEC’s performance on noisy input. I present an application of
PARSEC to the JANUS speech-to-speech translation system. Using data that include
speech recognition errors, a comparison is made between PARSEC and a hand-coded
grammar implemented using an LR parser. The PARSEC network outperforms the LR
parser on particularly noisy speech recognition output, but it shows an inability to assign
preferences to competing sentence hypotheses. I also cover experiments using synthetic
ungrammatical sentences and a limited experiment involving transcribed spontaneous
utterances,

Chapter 8: Prosodic Information

Here I report on an experiment in which a PARSEC network is augmented to utilize
pitch information from speech signals in order to disambiguate the mood of short utter-
ances in which syntax alone is insufficient.

Chapter 9: Conclusion
I summarize the results and contributions of the thesis. I discuss the shortcomings of

PARSEC, and present some ideas about future work with particular attention to extend-
ing PARSEC to larger parsing tasks.
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Appendix A: Network Formalism
This appendix contains the equations that define the behavior of connectionist units in
the networks used throughout this thesis.

Appendix B: Conference Registration Dialogs
Contains the full text of the CR task’s 12 conversations.

Appendix C: Conference Registration Testing Corpus
Contains sentences used for the generalization tests of Chapter 5.

Appendix D: ATIS Sentences
Contains the sentences of the ATIS task used for the automatic learning test and some
noise experiments,

Appendix E: Pltch Experiment Data
Contains some examples of the data used in the pitch augmentation to PARSEC.
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2 Related Work

2.1

A large body of work is related to this thesis, ranging from other connectionist models
to stochastic approaches to language processing. This chapter reviews the major connec-
tionist work in the area and places the pieces of research in a broad context. In spite of a
recent explosion of interest in connectionist NLP, the coverage is fairly complete. Of
course, many non-connectionist systems have been proposed that address some of the
issues in speech processing that PARSEC targets. I will briefly review some of these
systems as well. The chapter concludes with some remarks about PARSEC’s relation-
ship to the reviewed work.

Early Work In Connectionist Natural Language Processing

211

One of the major thrusts was implementing formal grammar systems in parallel net-
works. Other early work in connectionist NLP was quite diverse, with emphasis on
semantic issues as well as learning.

Connectionist Networks as Implementation Devices

These systems placed strong emphasis on exploiting parallelism and cooperative com-
putation, with little emphasis on learning. They implemented well-known formal gram-
mar systems using parallel connectionist hardware.

Selman (1985; Selman and Hirst 1985) developed a parser based on a Boltzmann-
machine-like connectionist formalism in which grammar rules were directly incorpo-
rated into a connectionist network. The bottom layer of the network contained units that
corresponded to the terminals of a context free grammar. A network representing the
parse trees of all non-terminal strings not exceeding the length of the input was con-
nected to the bottom layer—similar substructures were not redundantly represented.
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2.1.2

Two types of units were present: main units representing the terminal and non-terminal
symbols of the grammar and binder units representing how the main units could be
related. A string was parsed by clamping the appropriate input units and running the sto-
chastic network according to0 an annealing schedule. Selman’s model showed that con-
nectionist systems could implement rule-based processing and offered advantages due
to their parallel nature.

Fanty (1985; 1986) developed a technique for producing a deterministic connectionist
parsing network given any context-free grammar without epsilon productions. A net-
work corresponded to a particular grammar parsed grammatical strings of a fixed (arbi-
trary) length quickly and deterministically, Fanty’s networks contained three types of
interconnected units: terminal units, non-terminal units, and match units. The former
two types corresponded to the symbols of the grammar in each possible position. Match
units essentially implemented the productions in the grammar, A string was presented to
the network by stimulating the appropriate terminal units in the proper positions. After a
fixed number of update cycles (the upper bound was linear in the length of the input),
the active units of the network represented the parse of the input string. Fanty’s system
exploited the leverage of parallelism without requiring a lengthy relaxation process. He
also explored some schemes for disambiguating multiple parses and limited learning of
new grammar productions.

Chamiak and Santos (1987) proposed a parsing system (CONPARSE) that strains the
notion of what is “connectionist. They constructed a parsing network from a context-
free grammar that required neither the length limitation nor the lengthy relaxation pro-
cess of the systems described above. A parser was represented as a table of fixed width
and height with processing units occupying the slots. The parser shified in parts of
speech from the lower right comner of the table. Units representing non-terminals and
bindings between them were updated for a fixed number of cycles for each input token,
The left and top portions of parses of long sentences were shifted out of the table and
were concatenated onto the final parse. The process was deterministic and quite fast,
However, due to the fixed table size, the parser could not properly process all sentences
with center-embedded constructions,

Each of the systems described in this section involved implementing a formal syntactic
grammar system in a connectionist formalism. These systems did not address semantic
language issues nor did they acquire their grammars. However they demonstrated that
parallel networks using simple processing units could provide leverage in syntactic
parsing tasks.

Other Early Connectionist Models of Language

Spreading Activation Models

Cottrell’s work (1989; Cottrell and Small 1983) focused on word sense disambiguation,
He used a spreading activation/lateral inhibition model to combine semantic and syntac-
tic information. There were four components to his system: the lexical level (each word
had an input unit), the word sense level (each word unit from the previous level con-
nected to a number of word senses), the case level (fine-grained semantic case roles),
and the syntax level (intended to interact with the case level, but not well-developed).
After stimulating lexical units, the other units in the network were allowed to react and
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compete for activation. Information spread both laterally within each level as well as
vertically to allow for interaction between different levels. The interactive activation
process eventually led to an interpretation of the appropriate word senses as well as
case-role bindings. This work scratched the surface of possibilities in using connection-
ist models for semantic language tasks.

Waltz and Pollack (1985) followed Cottrell’s work. They agreed with Cottrell that all
aspects of language interpretation should interact at each stage of processing. Using a
similar spreading activation/lateral inhibition paradigm, they constructed a model in
which context, syntax, and semantics were combined to produce semantic interpreta-
tions. For example, the sentence “John shot some bucks” has different meanings in the
context of gambling versus hunting. Their system used activation between related nodes
(e.g. verb category for “shot” was linked to verb senses “fire” and “waste” and hunting
context was linked to “fire”). Inhibitory links were present between the sense nodes for
each word (e.g. “fire” and “waste” inhibit each other). Thus, in the context of hunting,
the sentence was interpreted to mean that John fired a gun at some male deer and struck
them. They proposed that a microfeature representational scheme could be used for the
activation/inhibition processes.

Models that Learned

McClelland and Kawamoto (1986) used semantic feature representations as input and
output for a case role assignment network that processed single sentences. They trained
a two layer network to produce case role assignments for simple single clause sentences
consisting of a subject, verb, object, and an optional prepositional phrase. The network
was trained to perform some lexical ambiguity resolution as well. Despite the simplicity
of the task, the experiment was an important advance for connectionist models of lan-
guage. The networks learned to combine both semantic and syntactic information to
produce interpretations of sentences with some interaction among the constituents.

The introduction of back-propagation (Rumelhart, Hinton, and Williams 1986) offered a
method to train deterministic multi-layer networks to perform very complex mappings.
Hanson and Kegl (1987) developed an auto-associative connectionist model called
PARSNIP. This contrasted with the supervised model of McClelland and Kawamoto.
The input (and output) to PARSNIP were syntactically tagged sentences from the
Brown Corpus. The architecture was a simple three layer back-propagation network that
required a 7:1 compression to encode the input pattern across the hidden units. The
trained network generalized quite well and exhibited a number of interesting features
including: completion of sentence fragments, preference for syntactically correct sen-
tences, and recognition of novel sentences. PARSNIP was also able to reproduce novel
sentences with one level deep center-embedded patterns but had difficulty with deeper
embeddings that trouble human language users. Using a simple architecture with unsu-
pervised training, PARSNIP captured several aspects of English language structure.

Recent Work in Connectionist NLP

This section begins with some extensions to the work above—alteratives to the parallel
network implementation of grammars and further development of the microfeature rep-
resentational scheme. The remainder of the section includes recurrent network architec-
tures and hybrid schemes.
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Extensions of Early Work

Nijholt (1990) further developed Fanty’s style of connectionist parsing. Nijholt defined
mela-parsing as the process of building a connectionist parsing network for a particular
grammar. He showed how to construct a connectionist Earley parser using this idea. He
placed more emphasis on network construction than on parsing, but the resultant net-
works had the same properties as those of Fanty—speed and determinism. Nijholt’s
approach was still subject to a limitation on input length., As with the earlier work,
learning was not the focus in Nijhholt’s work.

Howell’s (1988) work on VITAL was similar to Fanty’s work and that of Selman. How-
ever, Howell's parser dynamically generated a network as needed during the parsing
process. Nodes in VITAL were “templates” containing a single grammar rule plus
pointers to related rules and likelihoods of rule application. An input sentence was pro-
cessed by instantiating highly active terminal nodes corresponding to the words of the
sentence. Additional nodes were added as indicated by the information in the templates.
Activation values varied during a relaxation process where nodes competed for activa-
tion as it spread through a network, both bottom-up and top-down. Early in processing,
networks grew rapidly. Then, nodes were pruned as they lost activation to more plausi-
ble alternatives. Ultimately, VITAL would settle on a single parse. Nakagawa and Mori
(1988) produced a similar model based on sigma-pi units.

Gallant (1990) extended the work of Waltz and Pollack with respect to microfeature rep-
resentations. He supported using feature vectors to represent semantic context instead of
relying on a complex spreading activation process. In Gallant’s model, words in a lexi-
con had some number of integer valued feature numbers representing the extent to
which the words were associated with a particular feature (e.g. human). These features
were entered by hand or from a lexicon. He defined a computationally simple dynamic
context vector for use in word sense disambiguation, Disambiguation was possible
using comparisons of the inner products of word sense feature vectors with the current
dynamic context vector. By virtue of being computationally tractable, Gallant’s scheme
could be of pragmatic importance in a number of language problems.,

Miikkulainen and Dyer (1989) showed how to learn input/output representations of the
sort introduced by McClelland and Kawamoto to represent words in a case-role assign-
ment task. They introduced the FGREP architecture, In FGREP, initially all words had
random real-valued feature values. The representations were modified by extending
back-propagation into the lexicon. The input and output of their networks changed until
the case-role assignment task was learned. The I/0 representations reflected the usage of
words in the task to be learned. Through hierarchical cluster analysis, they showed that
the words formed sensible clusters (e. g. humans formed a cluster and breakable objects
formed a cluster). FGREP offered a method whereby microfeature representations could
be automatically produced. However, FGREP required a large amount of training data
to form useful representations.

Recurrent Networks

Elman (1988, 1990) introduced the Simple Recurrent Network—an innovation that pro-
duced a number of interesting results in connectionist NLP. An SRN is simply a stan-
dard back-propagation network with an augmented input layer that includes the
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previous activation pattern of the hidden layer. An SRN processes sequences of input
tokens, and is able to learn to encode temporal context in its hidden units’ representa-
tions. Elman’s initial experiments were simple prediction tasks, but he showed that the
SRN could learn to encode complex concepts such as lexical classes.

Elman (1989) evaluated the SRN with respect to what types of language phenomena
were learnable. He showed that the SRN could model aspects of sentence processing
that required complex structural representation. For example, an SRN was trained on a
word prediction task for sentences that included relative clauses. The network learned to
encode long-distance dependencies such as subject/verb agreement across relative
clauses. The SRN was a simple, but general, sequential learning architecture. However,
the work of Cleeremans, Servan-Schreiber, and McClelland (1989) pointed out some
potential deficiencies in the memory capacity of the SRN. In particular, in prediction
tasks using simple grammars, the SRN seemed incapable of encoding dependencies
across context independent intervening sequences.

Miikkulainen (1990a) explored the use of the SRN to model script paraphrasing. By
combining the FGREP architecture with the SRN, and adding a module that processed
case-role descriptions of sentences, he was able to teach (in parallel) a set of four sepa-
rate subnetworks to paraphrase simple stories. The system was able to make inferences
about missing events in stories.

Miikkulainen (1990b) also applied the SRN to the problem of parsing embedded
clauses. The system, CLAUSES, was able to learn to process sentences containing
embeddings that were presented as fragments (i.e. clausal boundaries were tagged).
CLAUSES constructed case-role representations of multiple acts, While achieving
interesting results, Miikkulainen suggested that more highly structured learning para-
digms might be necessary to produce satisfactory performance. He pointed out that with
distributed networks, interpolation between familiar examples is natural, but recognition
of an input pattern as a combination of familiar pieces is somewhat beyond them.

Allen (1991) experimented with the SRN using connectionist agents to answer ques-
tions about kinship relations. Networks were trained to answer sequentially presented
questions (e.g. “whois daughterof mary™), and they showed some ability to generalize—
albeit with extremely low ratios of test set size to training set size. The internal represen-
tations of the SRN during processing reflected the semantics of the questions that were
asked. Allen also used Jordan’s (1986) sequential recurrent networks for language tasks
in CLUES (Allen 1990). Here, he trained connectionist agents to answer questions
about a microworld of simple objects.

St. John and McClelland (1990) applied Jordan’s sequential recurrent network to other
language tasks. They trained a two-stage architecture to form “sentence gestalts” of sin-
gle clause sentences and probed the gestalts for information such as case-role assign-
ment. Later, St. John (1990) extended the architecture to process stories. Without using
SRN's, Dolan (1989) developed the CRAM system, a learning system based on tensor
manipulation networks. It sought to unify the symbolic and subsymbolic processing par-
adigms. CRAM learned to read simple one-paragraph stories and could produce a sum-
mary of the story or a plan for a character in the story.
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Wang and Waibel (1991) applied the SRN to the problem of script tracking in the con-
text of dialog understanding. Following the work of Miikkulainen and Dyer, they
trained a modular network to keep track of a script of events for conference registration.
Using limited initial information, networks formed useful intemal representations to
learn the task.

Each of these approaches involved application of a recurrent learning architecture to
some aspect of language processing. While showing some potential, most of the
approaches raise questions about the amount of training data that they require.

Recursive Auto-Assoclative Memory

Pollack’s introduction of the RAAM architecture may prove to be as important as
Elman’s SRN (Pollack 1990). RAAM offers a way to use distributed representations of
fixed width to encode recursive structures such as trees. One constructs 8 RAAM by
simultaneously training encoder and decoder networks that push representations
through a fixed-width bottleneck. One can then use hidden layer activations as new ter-
minal symbols and thereby encode nested structures such as trees within fixed-width
vector representations. This has great potential for natural language applications.

Berg (1991) applied a combination of the RAAM idea and the SRN to parsing in
XERIC. XERIC used phrase templates (composed of a specifier, head, and up to two
complements) to encode syntax. The input to XERIC was a feature-based word repre-
sentation along with the encoding of the left context of the word (the previous activation
of the hidden layer). The hidden layer would sequentially develop a compact representa-
tion of the entire sentence. A decoder module was able to iteratively unroll the full
structure of the parsed sentence as a series of phrase templates. XERIC was unable to
handle a number of constructions (e.g. adjectives in NPs), and it had difficulty remem-
bering and reproducing the features of individual words. However, it was one of the first
connectionist language processors that could handle recursive language structures of
varying length within a fixed architecture.

Hybrid Systems

Kwasny and Faisal (1990) developed CDP, a hybrid extension to Marcus’s PARSIFAL
system (Marcus 1980). They trained a back-propagation network to indicate actions to
be performed on the usual symbolic data structures of a PARSIFAL parser (an input
buffer and a stack). CDP was trained in two ways—deductively and inductively. In the
deductive training scheme, rule-templates were created from a grammar, and the net-
work learned to associate actions with the templates. In the inductive scheme, traces of
grammar-based parses were used, and the network learned to capture the behavioral
characteristics of the rules from the grammar used for the trace. The deductive scheme
generally had higher performance. They showed some noise tolerance in their network-
based parser over that of the purely grammar-based parser, whose actions their network
was trained to reproduce.

Santos (1989) extended his earlier work with Charniak (Charniak and Santos 1987). He
augmented the CONPARSE architecture with PALS (Parsing and Learning System).
PALS adjusted weights associated with rules in CONPARSE. The rules were derived
from a grammar, and PALS learned how to apply the rules. Sentences of arbitrary length
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could be parsed, but some embedded constructions were not parsable due to fixed table
size. As with CDP, the idea was to improve upon a grammar using learning.

Other Non-Traditional Systems

24

The two systems covered in this section are not strictly connectionist, but they are not
traditional approaches to language processing either.

Phi-DmDialog was a parallel marker-passing system that was applied to the conference
registration dialog task (Kitano et al. 1989). It lay somewhere between the symbolic
approach and the connectionist approach. The system was organized into a hierarchy of
levels, beginning with morphophonetics at the bottom and proceeding up to plan hierar-
chies. Information flowed using several types of markers that spread, collided, and com-
bined to produce side-effects. The side-effects processed the input, produced the output,
and integrated predictive information with observed input. The system did not employ
learning, although it showed a new approach to information combination among inter-
acting data sources.

Gorin et al. (1990) developed a system that automatically acquired a language model for
a particular task from semantic-level information. The system had no predefined vocab-
ulary or syntax, but it learned to perform a small number of actions based on interaction
with users. The system was demonstrated on a department store inward-call manage-
ment task where the actions were telephone connections to any of several departments,
Words and phrases were represented in the architecture as nodes. The lowest layer of
nodes corresponded to words, the next level to word pairs (phrases), and the last layer to
the semantic actions that the system could take. Connection weights between nodes
denoted a measure of mutual information. For example, the connection between the
phrasal node “buy dress” and the action “connect to women’s clothing” acquired a
strong weight. Using mutual information for connection weights allowed for single pass
training. Although currently unable to handle complex language constructs, the
approach shows promise as an alternative to both the pure PDP paradigm and traditional
NLP systems.

Symbolic Systems

2.4.1

NLP is a vast field, and there are many current research efforts that target phenomena
relevant to this thesis. However, I will only review a few key approaches here.

MINDS

The MINDS system (Multi-modal INteractive Dialog System) was developed at CMU
(Young et al. 1989). The goal of the research was to incorporate high-level knowledge
sources into speech recognition systems to make them robust and easily usable. MINDS
operated on a resource management task where a user was querying a database verbally.
The system sought to directly reduce the search space for the speech recognition system
by making predictions about utterances based on high-level expectations. By modeling
the current state of an interactive dialog, the system would generate a temporary reduced
lexicon for use by the speech recognition system. In MINDS, predictive models of the
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domain, goal trees, and a user’s state-of-mind were constructed by hand. MINDS
achieved substantial perplexity reductions, and the system enhanced speech recognition
results.

Statistical Models

Statistical augmentations to symbolic systems offer the potential for more robust disam-
biguation, better language modeling, and faster parsing. They also avoid some of the
computational cost of connectionist leaming algorithms. However, they seek to refine
the behavior of hand-coded systems through training, not to eliminate hand-coding.

Fujisaki ef al. (1991) were able to augment a context-free grammar with probabilities.
They devised efficient versions of existing parsing algorithms to perform the probability
estimation and to implement the parser once the probabilities were known. They dem-
onstrated fairly robust parse disambiguation on sentences from several sources using
only probabilistic syntactic rules.

Seneff (1989) developed a different technique in the TINA system. A context-free gram-
mar was converted into a shared network structure. Probabilities were associated with
arcs in the network. The approach described above attached probabilities to the actual
rules of the grammar. By instead attaching probabilities to arcs, different probabilities
could be associated with identical units that were present in different contexts. For
example, the probability of an adjective following a determiner was sensitive to whether
or not the determiner was sentence-initial. The probabilities helped with perplexity
reduction in speech tasks as well as with disambiguation. TINA was quite successful in
its application to the SUMMIT and VOYAGER speech applications (Zue er al.
1990a,1990b).

Church er al. (1991) have proposed that simple collocational constraints should play a
more important role in natural language parsers, and that semantic modeling may not
always be necessary. By computing mutual information statistics between words in syn-
tactically tagged corpora, they show that it is possible to learn, for example, what things
are likely to be objects of “drink.” Interestingly, some of the same types of effects can be
captured in some of the connectionist models discussed so far, albeit on a smaller scale
(e.g. Waltz and Pollack 1985).

Magerman and Marcus (1991) developed a stochastic parser called Pearl. They incorpo-
rated a number of probabilistic components (e.g. a part-of-speech recognition module
and an unknown word module) into a coherent chart-parsing framework. Pearl esti-
mated context-sensitive probabilities from training data and was more sophisticated
than Seneff’s TINA system in its use of probabilities. For example, Pearl took into
account the probabilities of lexical interpretations (e.g. “love” as a verb versus noun) in
addition to other context in calculating the likelihood of a particular interpretation of a
sentence. Magerman and Marcus reported favorable preliminary results using data from
the VOYAGER system.

Prosody

Steedman (1991) introduced Combinatory Grammars as a possible method for making
use of intonational information along with syntax in grammar-based parsers. He fol-
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lowed the notation of Pierrechumbert (1975) for annotating sentences with intonational
information. In many cases, intonational contour is of help in disambiguating multiple
parses. However, as yet, it is not possible to automatically extract the proper intonational
annotations from real speech.

Huber (1989) investigated the use of prosodic information extracted from real speech in
parsing. He showed how prosody could be exploited to benefit an island-driven parsing
strategy. He developed a speech segmentation algorithm to produce intonational units.
From these, he identified areas of prominence that were used as reliable islands from
which further processing spread. The system required extensive programmin g and
design of appropriate segmentation algorithms and information usage strategies, but it
was one of the first significant efforts in using prosodic information in parsing.

Where does PARSEC fit in?

PARSEC is only tangentially related to the early work in connectionist parsing that
recast grammar-based formalisms into parallel networks as a method of implementa-
tion. PARSEC shares the parallelism but places a strong emphasis on learning.

The work of McClelland and Kawamoto (1986) was the basis of my very early experi-
ments in connectionist parsing. I adopted a similar case-role parsing task and extended it
to sequentially parse real sentences (Jain 1989). The current work represents the third
generation of parsing models that I have developed. Each generation brought additional
structure and more complicated tasks. Though PARSEC does not attack the semantic
aspect of language processing with the same vigor as some of the other early connec-
tionist work, it shares the notion of combining syntax and semantics in a unifying
framework.

Kwasny and Faisal’s CDP system is the most closely related to this work in spirit. We
both use symbolic manipulation in combination with subsymbolic computation, but
there is a key difference. CDP requires the existence of a hand-coded grammar from
which to induce (or deduce) a connectionist grammar. PARSEC induces its grammar
from example parses without any existing rule-based grammar to model.

From a philosophical perspective, the work that has sprung from Elman’s Simple Recur-
rent Network is the most distant from PARSEC. PARSEC emphasizes structure and
explicit symbol manipulation/representation to boost performance, but work with the
SRN has emphasized distributed representations using architectures with minimal pre-
defined structure. These paradigms are not irreconcilable, and each will likely begin to
borrow from the other. Miikkulainen’s work using the SRN for processing sentences
with embedded clauses was a step in that direction. The next chapter will discuss the
issue of structure in more detail.

Touretzky (1991) defined a hierarchy of connectionist models based on the types of
mapping they learn:
» Categorizers: these are essentially N class forced-choice recognition machines.

* Associative memories: these models form intemal class-based representations of
patterns.
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* Pattern transformers: these have a very large number of output patterns (exponential
with length of input); most possible output patterns can't be seen in training.

+ Dynamic inferencers: these models exhibit novel intermediate states in response to
novel inputs; they can compose new combinations of information; the structure of
the models reflects the systematicity of the compositionality requirement.

They key difference between pattern transformers and dynamic inferencers is that the
former require an unreasonably large proportion of possible patterns as training exam-
ples because they are not able to break problems down into subparts and reassemble the
solutions. A dynamic inferencer, by virtue of having dealt with the problem of composi-
tionality, requires far fewer training examples. PARSEC may not be a full-fledged
dynamic inferencer, but it does not fall cleanly into the other categories either. The con-
clusion addresses this question in more detail.
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Connectionist Parsing

3.1

This chapter is an introduction to connectionist parsing as implemented in the PARSEC
system. I will introduce some general issues facing connectionist parsing systems and
present the major design choices regarding representation and type of connectionist
computation that were made for this work. A connectionist parser developed for a non-
speech problem will be presented to illustrate the basics of the approach to parsing taken
in this thesis.

A word about the central focus of this work is in order. As mentioned in the introduc-
tion, I am primarily concerned with demonstrating that connectionist computational
models are capable of solving problems in parsing that other more traditional methods
are unable to do. The focus is not on modeling human learning performance or under-
standing how humans process language. Thus, questions about biological plausibility or
comparisons to human performance are not a major concern. In this thesis, connection-
ist models are viewed as a tool to solve various problems in parsing. That they are to an
extent biologically inspired is interesting, but not crucial. In the discussion that follows,
performance concerns will dictate the design choices.

Connectionist Parsing

Parsing is an inherently symbolic and sequential task. Both aspects make it a particu-
larly difficult task to approach using connectionist computational models, which are
more easily applied to static recognition tasks. In particular, several issues arise:

» How should symbols be represented?

* How should symbols be manipulated?

* How should temporal context be captured?

» Is recurrence necessary or beneficial? What kind?
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FIGURE 3.1

Task to network mappings in a connectionist network.
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There are some additional considerations stemming from the problems of training con-
nectionist networks. This work involves relatively small corpora of text (on the order of
hundreds of sentences), but the networks required are quite large (tens of thousands of
connections) relative to our current computational resources. Achieving good generali-
zation from small training sets and minimizing training time for large networks are key
concems of this work.

3.1.1 Representation

In any connectionist network that learns some task through a supervised procedure, one
must decide how to represent the input and output of the network. This involves setting
up bi-directional mappings from the task’s input and output to patterns of activation
across input and output units in a network (see Figure 3.1). The choice of mapping can
have a significant impact on many aspects of network performance (e.g. learning speed
and generalization performance).

In tasks where similar input patterns are to be mapped to similar output patterns, back-
propagation networks will tend to generalize well. Some tasks that do not have this
property can be modified by simply remapping the input patterns. An example will illus-
trate this point. Imagine a simple augmentation to the XOR problem. Instead of two
binary inputs, there are five inputs, each with three possible values: 0, 1, and 0.5. The
first few inputs take on extreme values, and the remaining ones have a value of 0.5. The
task is to produce the XOR of the first value and the rightmost value that is not 0.5. The
intervening values are to be ignored.

Figure 3.2 shows two representations of the problem. In the straightforward representa-
tion, the network must learn to identify the extreme bits, ignore the intervening bits, and
produce the XOR of the first and last bits. One can augment the representation by add-
ing another unit whose value is that of the last non-0.5 unit. With this new representa-
tion, the network need only learn to XOR the two important bits. The second input
representation provides an easier task to learn. This is not a statement about whether or
not it is right (in some sense) to use the augmented representation. This is only an illus-
tration that representational changes can have an impact on the learnability of tasks. The
effects of representational modifications on generalization will be shown in Chapter 6.

In a connectionist parsing network, choices about the input word representation and the
output parse representation are critical to ensure adequate performance.
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FIGURE 3.2

Alternate representations of augmented XOR problem.
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Word Representation

How should words be represented in a connectionist parsing network? The first question
to answer is whether the representation should be learned or should be encoded from
some external lexicon. The answer depends on the parsing task, and in particular how
much data is available. For computationally tractable tasks with a sufficient amount of
training data, it is possible to learn word representations through their usage. Various
approaches have been explored (see Chapter 2 for more details), ranging from simple
recurrent networks to modification of input word representation by extending back-
propagation (Elman 1988; Miikkulainen and Dyer 1989).

If training data is not abundant, one faces a serious problem of undergeneralization. For
example, in any reasonable representation, the words “a” and “an” should have the same
or very similar representations (ignoring the letter-name sense of “a”). Suppose though,
that “a” and “an” do not appear in the same contexts in a training corpus because of its
size. It is likely that a network will arrive at different representations for the two words.
This will adversely affect the performance of the network when it is required to perform
on novel input. By making use of existing lexical knowledge, one can avoid the expense
of acquiring such information through training and ensure that the word representations
are uniform and general.

The tasks that I am interested in are designed for use in spoken language processing.
Consequently, the training corpora are limited in size and vocabulary complexity. This
makes learning good word representations difficult, but it also reduces the burden of
hand constructing lexicons of word representations. For this work, I have used hand-
crafted word representations.
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FIGURE 3.3

Word representation.
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In cases where it is necessary to design and construct a lexicon for the words in a task,
several new issues arise:

* What features should be used?
+ Tight encoding or loose encoding?
* How should multiple word senses be handled?

Figure 3.3 shows the structure of the word representation. The meanings of words are
encoded as prespecified feature patterns (similar to McClelland and Kawamoto 1986),
These can, in principle, contain any type of information, but for now, assume that the
information is primarily syntactic and is encoded as binary patterns. The word patterns
are divided into two parts: the identification part and the feature part. The ID part is an
arbitrary tag, and the feature part encodes the meaning of the word. The network is only
able to “see” the feature parts of the words. This prevents parsing networks from learn-
ing overly specific rules about particular words instead of general rules about major
parts of speech.!

The encoding is fairly “loose”—a single feature bit does not change the meanings of a
number of other feature bits.? The feature bits have both gross features (e.g. noun, verb,
adjective...) and detailed features (e.g. plural, first person, proper...). Multiple word
senses (e.g. “refund” as a verb versus a noun) are handled by superimposing the differ-
ent feature patterns (logical OR). This would not result in meaningful featwre patterns
were it not for the loose encodings. PARSEC networks do not explicitly indicate which
word sense is being used in their output; it is implicit in the parse representation and can
be inferred easily. Of course, in more substantial domains where lexical ambiguity is a
more serious problem than in speech domains, more effort would be required to handle
this problem. (See Chapter 9 for more discussion of lexical ambiguity.)

1. Itis possible to allow the use of ID information, and it might be useful in cases where shades of
muningammtclpmredbyt}wfenmofwrds.?’iﬁshunolbecnuiedinﬂdswork.

2. There is some anecdotal evidence that tight encoding of word meaning in language tasks hurts
generalization (personal communication, Ye-Yi Wang). This is related to the point about the aug-

mented XOR problem. One wants to avoid forcing a network to work very hard to figure out the
meaning of its input representation. The cost of a loose encoding is a larger network.

22



3.1: Connectionist Parsing

Given a particular representation for individual words, there are different ways to repre-
sent sequences of words. For example, a word sequence can be represented spatially
across several sets of word representation units. Alternatively, a word sequence can be
presented o a network by using a dynamically changing activation pattemn across one
group of units that encodes the meanings of single words in a sequence. I have used both
types of input representation in different parsers, and this will be discussed later.

Parse representation

Certain structures are more easily modeled within connectionist networks than others.
For example, nested recursive structures of varied depth (the sort that are favored by lin-
guists in representing syntax) are not easy to represent in connectionist networks.3
“Flat” structures are preferred.

I have chosen a case-based representation (e.g. Fillmore 1968; Bruce 1975) and have
augmented it somewhat. Case representations are appealing for two reasons. They pro-
duce similar representations for syntactic variants like “Mary hit John” and “John was
hit by Mary.” They offer a compact way of representing several of the central semantic
relationships in sentences. In domains such as human-machine interfaces or in speech-
to-speech translation, it is more important to capture information about meaning than
about syntax alone. Also, case representations are easily augmented and specialized for
different domains; one can add a new case-role if there is a need for one.

The work I am reporting here involves real English sentences with complex noun
phrases and verb constructions.* Real sentences require a representation for phrases in
the parse representation, but the traditional linguistic notion of a phrase involves unde-
sirable recursion. The representation used by PARSEC relies on a non-traditional lin-
guistic unit—called a phrase block. In the following sentences, the phrase blocks are
delimited by brackets:

* [The man] [gave] [his dog] [a cookie].
* [The big blue whale] [was swimming] [to the boat].

Phrase blocks are simple English phrases consisting of contiguous sequences of words
(e.g. the piece of a noun phrase from the determiner to the head noun is a phrase block).
They are very similar o what Abney has termed “chunks” (Abney 1991a, 1991b). Fig-
ure 3.4 shows the difference between traditional linguistic phrase structure and phrase
block structure. From the connectionist perspective, the non-recursive nature of phrase
blocks is their key feature. Related phrase blocks can be attached using external labels
instead of using nesting. Abney has compiled psycho-linguistic and other data to sup-
port the notion of non-recursive chunks being a sensible unit of language, but I adopted
phrase blocks primarily because the representation obviates a number of difficult repre-
sentational issues in connectionist parsing.

3. This is not to say that it is impossible. See Chapter 2 for a description of Pollack's RAAM
architecture

4. Much connectionist NLP work has avoided some of the complexity of real language by focus-
ing on content words within single clauses (e.g. “Tarzan love Jane™). In such systems, phrase level
representations are not needed.
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FIGURE 3.4 Two views of phrase structure.

the king||was |putting |his gold | |lunder [the bathtuq'

the king | (was putting || his gold | |under the bathtub

FIGURE 3.5 Alternate parse representations.

the king||was |putting |his gold | |under the bathmb

AGENT ACTION PATIENT LOCATION
the king | fwas putting || his gold | lunder the bathtub

Figure 3.5 shows alternate parses of the sentences from Figure 3.4. The top parse is a
more or less standard parse tree (under-specified to save space). The bottom representa-
tion is an example of the type of output that PARSEC produces. It is a simple non-recur-
sive, semantic representation that is amenable to connectionist implementation.

3.1.2 Computational Issues

A connectionist network is a very different computing engine than LISP. In modern pro-
gramming languages, questions about how to capture temporal context are easily
answered. In connectionist networks, there are several ways to capture temporal context,
and each has important performance consequences. Temporal context may be repre-
sented spatially as in TDNNs for speech recognition (Waibel ef al. 1989). It is also pos-
sible for networks to learn to capture temporal context using recurrent structures (Elman
1990; Cleeremans, Servan-Schreiber, and McClelland 1989).

Consider a simple task: assignment of symbol values to slots. In a programming lan-
guage, there is an assignment operator, but in connectionist networks, even after one
decides how to represent symbols and slots, the notion of “assignment” is still foreign o
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FIGURE 3.6

Conditional symbol assignment: two strategies.
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a simple collection of units with connections. The assignment operator must be learned
by the network unless some mechanism inside the network is able to perform assign-
ment,

Network Formalism

I have developed a network formalism specifically for problems involving sequentially
processed symbols (Appendix A describes the formalism, but for additional details, see
Jain 1989). The major features of the formalism are:

* Well-behaved symbol buffers are constructed using groups of units.

* Units have temporal state; they integrate their inputs over time, and decay toward
ZEro.

* Units produce the usual sigmoidal output value and a velocity output value. Units
are responsive to both the static activation values of other units and their dynamic
changes.

* The formalism supports recurrent networks.”

Learning is done through gradient descent using a mean-squared error measure as with
standard back-propagation learning (Rumelhart, Hinton, and Williams 1986).

Symbol Manipulation

Direct support of symbol manipulation is perhaps the most controversial aspect of the
formalism and deserves an illustrative example of its benefits. Figure 3.6 shows two
solutions to a conditional symbol assignment problem. The pattern of activation over the
input units represents a symbol that is supposed to be atomic. It is to be mapped onto the
output units when a particular condition occurs over the combination of the input and
context units.

5. Recurrence is explored in several parsing networks, but it does not appear in the final PARSEC
architecture.
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3.2

In the first case, the network must learn the condition placed on assignment of the input
pattern to the output units and a complex auto-encoding problem to achieve the proper
output pattern. In the second case, between the input and output units there are fixed-
weight connections. Ignoring the gating unit’s effects, the fixed-weight connections
cause the output units to take on the same pattern as the input units, However, when the
gating unit has low activation, the current pattern across the output units is frozen, and
no activation flows from the input to output units. When the gating unit has high activa-
tion, the output units decay towards low resting values, and activation flows from the
input to output units. The network learns the task through supervised training of the gat-
ing unit’s behavior. Thus, by using the gating unit, the network need only learn the con-
dition placed on assignment, and the symbol assignment results from the effect of the
gating unit.

Training the first version of the module is more difficult, requiring more time and more
data. It also has an additional failure mode. It may learn the appropriate conditions for
the assignment but may undergeneralize the auto-encoding and fail to make the proper
symbol assignment.® By supporting manipulation of symbol patterns directly, it is possi-
ble to simultaneously decrease training time and improve generalization.

Structure: Learned or Engineered

3.3

There are two approaches that lead to task-dependent structure in connectionist net-
works. The first is leaming-based, and the second is explicit inclusion of structure by a
network architect. In the learning approach, structure emerges through training general
purpose architectures such as those used by Elman (1990). While such efforts have met
with some success, the architectures have not been shown to be powerful enough to han-
dle the complexity of the tasks in this work. They also tend to require a great deal of
training data to show any generalization.

Certainly, it is desirable to see connectionist learning algorithms that cause complex
structures to emerge spontaneously from unstructured networks. However, it seems sen-
sible in pursuing such leaming algorithms to first find out what types of structure are
required or desired from a performance perspective. There is also a more pragmatic
issue in building real systems. When useful information is available about a domain, it is
often more efficient to simply provide the information to a network rather than expect a
network to leam it. For example, in image recognition, translation invariance is easy 1o
engineer (use weight-sharing), but it can be very difficult to learn using computationally
tractable training sets.

Early Parsing Architecture

In this section, I will outline the structure of the first substantial connectionist parser that
was developed during this work (Jain 1991). This is intended to make the foregoing dis-

6. This is similar to the effect described in Chapter 2 that Berg experienced with XERIC (Berg
1991). It tended to “forget” detailed features.
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3.3: Early Parsing Architecture

FIGURE 3.7

Parser's output representation of an example sentence.

[Clause 1: [Phrase Block
[Phrase Block

: The dog (RECIPIENT) ]
: was given (ACTION) ]

[Phrase Block 3: a bone (PATIENT) ]]
[Clause 2: [Phrase Block 1l: who (AGENT) ]
[Phrase Block 2: ate (ACTION) ]

WNEHE WN

[Phrase Block 3: the snake (PATIENT)]
(RELATIVE: “who” refers to Clause 1, Phrase Block 1)1

cussion of representation and computation more concrete. The next chapter will
describe PARSEC’s architecture—a generalization of the architecture outlined here.

The three main goals of this early architecture were to show:

1.That connectionist networks could learn to incrementally parse non-trivial sen-
tences.

2. How modularity and structure could be exploited in building complex networks
with relatively little training data.

3. Generalization ability and noise tolerance suggestive of application to more sub-
stantial problems.

The training corpus consisted of a set of sentences with up to three clauses, including
sentences with center-embedding and passive constructions. It contained over 200 sen-
tences.” These sentences were grammatically interesting, but they did not reflect the sta-
tistical structure of common speech. Here are some example sentences:

* Fido dug up a bone near the tree in the garden.
* I know the man who John says Mary gave the book.

* The dog who ate the snake was given a bone.

Given the input, one word at a time, the network’s task was to incrementally build a rep-
resentation of the sentence that included the following information: phrase block struc-
ture, clause structure, case-role assignment, and interclause relationships. Figure 3.7
shows a representation of the desired parse of “The dog who ate the snake was given a
bone.” The sentence is represented as two clauses made up of phrase blocks to which
role labels are assigned. The embedded relative clause is also labeled.

7. These were taken from the example set of a parser based on a left associative grammar devel-
oped by Hausser (1989)
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FIGURE 3.8 Early parsing architecture.
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3.3.1 Network Architecture and Data Flow

Figure 3.8 shows the network architecture. Information flows through the network as
follows, beginning with the lowest level and continuing up the hierarchy. Each of the
modules of this architecture uses recurrent connections between the hidden units and the
output units (similar to Jordan 1986). The detailed internal structure of each module is
not shown in the figure.

The Word level contains all of the information about word meanings that the network
has. A word is presented by stimulating its associated word unit for a short time. This
produces a pattern of activation across the feature units that represent the meaning of the
word. As mentioned in Section 3.1.1, learning adequate word representations from
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3.3.2

small training sets is problematic. Therefore, the connections from the word units to the
feature units, which encode semantic and syntactic information about words, are com-
piled into the network from hand-specified feature representations.

The Phrase module contains gating units that learn the proper conditional assignment
behavior to capture word feature patterns in the phrase blocks (see Figure 3.6 for a
detailed diagram of the conditional symbol assignment task). Phrase blocks are matrices
of units that contain room for up to four words. Each of the word slots in the phrase
blocks (a row of units) has an associated gating unit within the Phrase module. The gat-
ing units are trained to respond to the current input word in the context of the partial
sentence. The proper sequence of gating unit activations produces the following phrase
block structure for the example sentence: “[The dog] [who] [ate] [the snake] [was given]
[a bone].”

The Clause Mapping module assigns phrase blocks to clauses. For example, “[The dog]
[who] [ate] [the snake] [was given] [a bone],” is mapped into “[The dog] [was given] [a
bone]” and “[who] [ate] [the snake].” Each phrase block has three clause mapping units
associated with it. This allows for up to three clauses in an input sentence. The unit with
the highest activation “wins” the phrase block for its clause. The pattern of winners
given by “12 22 1 1” produces the mapping shown in the figure. During the course of
processing, the phrase blocks are remapped into clause-specific phrase blocks by sub-
routine according to the activation of the Mapping units. In the example, the embedded
clause “[who] [ate] [the snake]” is marked as belonging to clause 2, with the remainder
assigned to clause 1.

The Role Labeling module produces labels for the roles and relationships of the phrase
blocks in each clause of the sentence (e.g. Agent, Action, Patient, etc.). For each clause,
there is a matrix of units that represent role labels and attachments (X dimension corre-
sponds to phrase block number, Y dimension corresponds to label). For the example
sentence, the Role Labeling module assigns Recipient/Action/Patient and Agent/Action/
Patient to the phrase blocks of the respective clauses.

The Interclause Labeling module represents the interrelationships among the clauses
making up a sentence. This again is represented using a matrix of units. In the example,
the Interclause module indicates that clause 2 (“[who] [ate] [the snake]™) is relative to
phrase block 1 of clause 1 (“[the dog]™).

Dynamic Behavior

The dynamic behavior of a trained network will be illustrated on the example sentence
from Figures 3.7 and 3.8: “The dog who ate the snake was given a bone.” This sentence
was not in the training set of the network.

Initially, all of the units in the network are at their resting values. The units of the phrase
blocks all have low activation. The word unit corresponding to “the” is stimulated, caus-
ing its word feature representation to become active across the Feature units. The gatin g
unit associated with slot 1 of phrase block 1 becomes active, which in turn causes the
feature representation of “the” to be assigned to the slot. The representation for “the”
(and each subsequent word) is stimulated for 10 network update cycles to allow for ade-
quate processing time within the recurrent modules. The gate closes as “dog” is pre-
sented. As the gate is closing, the gate for slot 2 of phrase block 1 recognizes “dog” as
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FIGURE 3.9

Clause Mapping dynamic behavior.
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part of the current phrase block, and it opens. When “who” is presented, the gate for slot
1 of phrase block 2 recognizes it as beginning a new phrase block. The remaining words
of the sentence are processed similarly, resulting in the final representation shown in
Figure 3.8. While this is occurring, the higher levels of the network are processing the
evolving representation across the phrase blocks.

The behavior of some of the output units of the Clause Mapping module is shown in
Figure 3.9. The figure shows the time-varying activations of a 6x2 subset of the 10x3
Clause Mapping matrix. In the figure, the columns correspond to clause number and the
rows 1o phrase blocks. Early in the presentation of the first word, the activation levels of
the second column of units for phrases 24 rise sharply. The Clause Mapping module is
hypothesizing that the first four phrase blocks will belong to the first clause—reflecting
the dominance of single clause sentences in the training set. After “the” is processed,
this hypothesis is revised. The network then believes that there is an embedded clause of
three (possibly four) phrase blocks following the first phrase block. As a hypothesis is
revised, the clause-specific phrase blocks immediately reflect the new interpretation of
the sentence fragment.

The predictive behavior emerged spontaneously from the training procedure (a majority
of sentences in the training set beginning with a determiner had embedded clauses af ter
the first phrase block). The next two words (“dog who™) confirm the network’s expecta-

tion. The word “ate” allows the network to firmly decide on an embedded clause of
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3.3: Early Parsing Architecture

FIGURE 3.10

Dynamic behavior of Role Labeling units.
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three phrase blocks within the main clause. This is the correct clausal structure of the
sentence and is confirmed by the remainder of the input. The Interclause level (not
shown in Figure 3.9) indicates that the embedded clause is relative to the first phrase
block of the main clause. This happens at the same time that the clause module predicts
the embedded clause.

The Role Labeling module processes the individual clauses as they are mapped through
the Clause Mapping module. The output units for clause 1 initially hypothesize an
Agent/Action/Patient role structure with some competition from a Recipient/Action/
Patient role structure (the role labeling units’ activation traces for clause 1 are shown in
Figure 3.10). This prediction occurs because active constructs outnumbered passive
ones during training. The final decision about role structure is postponed until just after
the embedded clause is presented. The input tokens “was given” immediately cause the
Recipient/Action/Patient role structure to dominate. The network also indicates that a
fourth phrase block (e.g. “by Mary”) is expected to be the Agent (not shown). For clause
2 (“[who] [ate] [the snake]”), an Agent/Action/Patient role structure is again predicted;
this time the prediction is borne out (not shown).
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3.3.3

Discussion of Performance

I have outlined a modular, hierarchical connectionist network architecture that learns to
parse using back-propagation. It is able to parse complex sentences, including passive
constructions and center embedded clauses.

The key features of the dynamic behavior are:

* The network successfully combines syntactic, semantic, and word order informa-
tion.

» The network is predictive.
* The network responds quickly to right context information.

* Uncertainty is manifested by competing units, Units that correspond to different
interpretations of a single constituent show opposing activity, which sometimes
oscillates.

Analysis of generalization performance and noise tolerance for this network were not
detailed, but some suggestive results were obtained. Novel sentences whose feature rep-
resentation corresponded to training sentences (excluding ID bits) were processed cor-
rectly, as expected due to the word representation. In sentences with novel syntax
(overall feature representations not from the training set), performance was not as good.
Substitution of single words in training sentences resulting in meaningful novel sen-
tences was tolerated almost without exception. However, substitution of entire phrase
blocks caused some errors on structural assignment.

The trained network correctly processed sentences in which verbs were made ungram-
matical (e.g. “We am happy.”). More substantial corruptions often produced reasonable
behavior. For example, the sentence, “[Peter] [was gave] [a bone] [to Fido],” received an
Agent/Action/Patient/Recipient role structure. This corresponded to an interpretation of
“was gave” as “gave” or “has given.” Single clause sentences in which determiners were
randomly deleted (to simulate speech recognition errors) were processed correctly 85%
of the time. Multiple clause sentences produced more errors.

This architecture is limited in some respects. The network was extremely difficult to
train. There was no general method that produced robust convergence for each of the
modules. Decisions about number of hidden units and learning rates were made in an ad
hoc fashion, The Phrase module was particularly difficult to train. The gating units had
very complex dynamic behavior, requiring recurrent connections to learn the task. With-
out general methods for reliable convergence, application to additional tasks would be
difficult.

The architecture suffers from an additional computational inadequacy. Using gating
units for assigning words to phrase blocks requires that it is always possible to decide
which phrase block an input word belongs to at the time it is presented. A gating unit
must assign an input word to some phrase block during the time course of its presenta-
tion, and no right context information can be used. For the particular task that the net-
work was trained for, this was not a problem.

32



3.4: Summary

3.4

In general, it is not always possible to decide questions of phrase block membership
without right context. For example, constructions of “[verb + particle]” (e.g. “[fill in]
[the form]”) versus “[verb] + [prepositional phrase]” (e.g. “‘[summarized] [in the
announcement]”) are often more easily disambiguated using the additional information
to the right of the particle/preposition. A more general mechanism for symbol assign-
ment is needed.

Summary

In this chapter, I introduced some of the problems facing connectionist parsing and set
out the major design choices:

* Representation: words are represented as prespecified binary feature pattems;
parses use a case-based representation built on non-recursive sub-units.

* Computation: symbol manipulation primitives are built into the connectionist net-
work formalism, rather than learned.

The preliminary parsing architecture presented in this chapter, while being able to
model complex language, lacks generality in some respects.
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4

PARSEC Architecture

4.1

This chapter covers the PARSEC connectionist parsing architecture. The PARSEC sys-
tem addresses the shortcomings of the connectionist architecture described in the previ-

ous chapter.

Conference Registration Task

Conference registration dialogs form a nice domain for developing speech-to-speech
translation systems. At CMU, there were several parallel efforts on various aspects of
the problem using conference registration. Here is a sample example conversation,
repeated from Section 1.2:

CALLER:
OFFICE:

CALLER:

OFFICE:

CALLER:

OFFICE:

CALLER:

OFFICE:

CALLER:
OFFICE:

Hello, is this the office for the conference?
Yes, that's right.

I would like to register for the conference.
Do you already have a registration form?
No, not yet.

I see. Then, I'll send you a registration form. Could you give me your name
and address?

The address is 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15236. The
name is David Johnson.

I see. I'll send you a registration form immediately. If there are any questions,
please ask me at any time.

Thank you. Goodbye.
Goodbye.
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FIGURE 4.1

High-level PARSEC architecture.

Interclause Mood

Y

Clause Mapping
Module

Module )

&

{

INPUT———»| Preprocessor

The conference registration dialog task corpus consisted of 12 conversations using a
vocabulary of slightly more than 400 words. There were over 200 unique sentences in
the corpus (Appendix B contains the full text of all 12 conversations). In addition to the
text of the corpus, recordings of multiple speakers reading the conversations in an office
environment were made as part of a speech recognition effort.

As with the task described in the previous chapter, the CR task included multiple-clause
sentences, with both active and passive constructions. In addition, it contained ques-
tions, imperatives, conditionals, and conjunctions. It also contained domain-specific lan-
guage such as telephone greetings and American addresses. Overall, the CR task used
substantially more complex and varied language than was used to train the previous
parser, but it did not have substantially more sentences available for training a parser.

4.2 Baseline PARSEC Parsing Architecture

Using the previous parsing architecture as a starting point, with the CR task as a testing
platform, the PARSEC architecture was developed. In this section I will describe the
baseline PARSEC architecture. In the next section, key enhancements to this architec-
ture will be presented. The quantitative effects of the enhancements on generalization
performance are discussed in Chapter 6.

Figure 4.1 is a high-level diagram of the architecture. Each of the modules performs a
subpart of the total parsing task. The design of these modules was guided by a central
principle: a connectionist network should not be required to learn mundane behaviors,
especially if such behaviors are difficult to learn. The network should only be required
to learn those pieces of the problem that can’t be solved by other methods. If » module is
supposed to transform a sequence of words into a set of scparate phrase blocks, the
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FIGURE 4.2

Input representation.
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interesting part is deciding where the phrase block boundaries are, not in performing the
actual transformation from the input units to the output units.

The input to PARSEC is a sequence of words corresponding to an English sentence., The
mapping from word-sequence to network input is shown in Figure 4.2. As with the pre-
vious parsing architecture, the meanings of words are encoded as unlearned feature pat-
terns (in later figures, mock unit activations will be replaced by the actual words that are
being represented across the units). This architecture differs in the way the sequence of
words is represented. Each word is looked up in a lexicon, and the activation pattern that
encodes the word’s meaning is applied to the proper set of input units in sequence. The
input units are arranged in a 2D grid, with each row corresponding to a single slot. This
input representation eliminates the need for the network to make immediate decisions
about the current input word. Since the words are stored in a stable matrix of units, the
network can postpone decisions when necessary by looking ahead in the input buffer.

Each of the modules has the basic structure shown in Figure 4.3. The input units reflect
some intermediate representation of the developing parse. The output units can be
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FIGURE 4.4

Preprocessor module.
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trained 1o either assign a label to a particular set of mput units, or cause a data transfor-
mation to occur. There are recurrent connections from the output units to the hidden
units. The data transformation is carried out by non-connectionist software. This is a
generalization of the gating type of behavior that was described in the previous architec-
ture. Instead of only allowing gating behavior, complex data transformations are possi-
ble through the use of clerical subroutines. PARSEC uses two types of transformation:

* Replacement of marked structures.
* Breaking structures at marked boundaries.

The bottom three modules of the PARSEC architecture (see Figure 4.1) perform data
transformations, and the top three label the transformed result. T will describe the mod-
ules bottom-up.

The first module (called the Prep module) is an optional task-dependent preprocessing
module (see Figure 4.4). It can be trained to perform simple filtering operations on the
incoming text to simplify the operation of the other modules. Input word representations
are placed in slots sequentially (see Figure 4.2). The output units make their decisions
dynamically, and the result of their decisions is a (sometimgs) modified representation
that appears across the input units of the next module. In the CR task, the Prep Module
is used to replace alphanumeric strings (like phone numbers) with a single special word
“alphanum.” This eliminates a potential difficulty in representing arbitrarily long alpha-

numeric strings. Note that this is not always a trivial task since words like “a” and “one”
are lexically ambiguous.
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FIGURE 4.5

Phrase module.
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The Phrase module (Figure 4.5) is responsible for transforming a sequence of words
into phrase blocks (phrase blocks are described in Section 3.3). The input to the Phrase
module is the evolving input sentence as transformed by the Prep module. The input is
essentially the same as that shown in Figure 4.2, except that the words are coming from
the output of the Prep module instead of from the environment. At a given time, the
input matrix of the Phrase module reflects the Prep module’s interpretation of the partial
sentence. The output units of the Phrase module mark phrase block boundaries with
high output, and other inter-word boundaries with low output. The effects of the output
units appear immediately across phrase block representational units. An output value of
0.5 is the transition between non-boundary and boundary. The transformations are car-
ried out by subroutine immediately as transitions are made. The key difference from the
previous architecture is that the Phrase module need not learn complex dynamic behav-
ior. Only the recognition of phrase boundaries is important. For the CR task, phrase
blocks could contain up to five words.

The Clause Mapping module (abbreviated “Clause module™) transforms the sequence of
phrase blocks into separate clauses, similar to the Phrase module transforming the word
sequence into separate phrase blocks (see Figure 4.6). The input is the phrase block rep-
resentation of the sentence as indicated by the Phrase module. In the baseline architec-
ture, the output units of the Clause module have the same structure and function as for
the parser described in Chapter 3. Each phrase block has a set of associated mapping
units that assign the phrase block to a particular clause. If a phrase block belongs 10
clause 1, the first unit in that phrase block’s column of mapping units will have high
activation. The decisions made by the mapping units are implemented by a subroutine in
the simulation program. The transformed output is a new phrase block arrangement
where each clause’s phrase blocks are grouped together. This new representation is used
by the labeling modules. In the CR task, up to four clauses were present, and each had
room for up 1o seven phrase blocks.
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FIGURE 4.6

Clause mapping module.
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The three labeling modules use the output of the Clause Mapping module (the remapped
phrase blocks) as input. The Role Labeling module (abbreviated “Roles module™) must
label the phrase blocks of each clause with the proper case-role or assign an attachment
label that relates a phrase block to another phrase block. There are no side-effects with
this module. The labeling is represented as a matrix of units (one column for each
phrase block of a clause and one row for each label). Note that particular case-roles are
fixed only for a particular parser, not for the general architecture. The choice of labels
(both number and type) depends on the task. For the CR task, there were twelve labels
(see Section 4.4).

The Interclause Labeling module is very similar to the Roles moedule. It performs a
labeling and attachment task at the level of clauses. The output of the Interclause mod-
ule is represented as a matrix of units as with the Roles module (one column for each
clause and one row for each label). Again, note that these labels are specified for a par-
ticular parser in some specific domain.

The Mood Labeling module (abbreviated Mood module) labels the input sentence’s
mood (e.g. declarative, interrogative, imperative...). There is a single output unit for
each possible mood.

4.3 Architectural Enhancements

During the course of development, the PARSEC architecture underwent two major rep-
resentational changes from the baseline architecture just described. Architectural con-
straints on connectivity within the modules were also added. The key principle
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FIGURE 4.7

431

Alternate clause mapping representations.

Sentence: [I] [would like] [to register] [for the conference].

Old representation New representation
O =] T New clause after [ [m
] - End embedding
& Phrase block number
o

Phrase block number

embodied in these enhancements is: wherever possible, incorporate domain knowledge
to make the learning task easier. The impact of these changes on performance will be
discussed in Chapter 6.

Clause Mapping Representation

The representation of the Clause Mapping units was changed from the baseline system,
Instead of being required to produce the clause identity of each phrase (as in Figure 4.6),
the new output representation was required to indicate the inter-phrase points that begin
new clauses and close embedded clauses. This allows for purely local decisions. For
each inter-phrase junction, there are two units in the new representation: one indicating
new clause boundaries, and the other closure of embedded clauses.

Figure 4.7 shows the two representations for “[I] [would like] [to register] [for the con-
ference].” In the baseline representation, the output unit responsible for assigning “[for
the conference]” to its clause needs to leam about what is happening in other previous
phrase blocks in order to identify the number of the clause. In the new representation,
each output unit only has to learn about local areas. For example, the unit that marks the
clause boundary after “[would like]” only needs to look at the phrases “[would like]”
and “[to register]” to make the proper decision. It does not matter where the previous

phrase blocks are assigned.

An interesting effect of the new representation is that center embedding is now more
limited than before. The old representation allowed arbitrary clause membership as long
as one did not exceed the total number of clauses. Thus, “[The dog] [that] [the rat] [that]
[the cat] [chased] [bit] [yelped],” is representable as the column winners “1 223332
17 across the clause mapping units. However, the new representation is incapable of
consistently representing that sentence along with “[The dog] [that] [was] [near the rat]
[that] [the cat] [chased] [yelped]” with column winners under the old representation of
“1222333 1" In the first case, the closure of “the cat chased” returns to “the rat”
(clause 2), but in the second case, “the cat chased” returns to “the dog” (clause 1).

In PARSEC, I have adopted the convention that closure of an embedded clause always
returns to the main clause. This allows for processing of sentences like “[The dog] [that]
[was] [near the rat] [that] [the cat] [chased] [yelped).” But sentences like “[The dog]
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FIGURE 4.8 Alternate phrase representations.
Baseline Representation Enhanced Representation
My number Head
telephone My
number telephone
number

[that] [the rat] |that] [the cat] [chased] |bit] |yelped],” are not representable. This is not
unreasonable behavior considering which of the two sentences is more likely to be
uttered and understood by a human.

4.3.2 Phrase Block Representation

Using the baseline phrase block representation, the task that PARSEC must learn is
needlessly complicated. The main “content word” of a phrase moves around depending
on the phrase. For example, consider “the form” and “the registration form.” In the first
case, “form™ appears in position 2 of the phrase, but in the second case, “form™ appears
in position 3 of the phrase.

Figure 4.8 illustrates the baseline and enhanced phrase block representations. On the left
is the baseline version—simply a sequence of words constituting a phrase block. The
head of the phrase moves around depending on the word sequence (e.g. “My telephone
number” vs. “My number”). Any unit interested in making decisions based on the head
of the phrase must learn to do so for each of the possible positions of the head. On the
right is a modified representation. The last word in the phrase block is mapped into a
canonical position (implemented by subroutine). The modified representation provides
the network with a reliable salient information source.

4.3.3 Architectural Constraints

In addition to the representational changes, two restrictions on network connectivity
were added to some modules of the architecture:

1. Localized input connectivity: to prevent distant context from affecting decisions
that should be made locally.
2. Weight-sharing: to force position insensitivity.

To illustrate the points, consider the unit in the Phrase module responsible for learning
how to mark the boundary between words 3 and 4 of the input. There is no reason to
expect that information about word 9 should be useful in making this decision. How-
ever, if the information is available via connections (as in Figure 4.5), spurious correla-
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4.4

tions might cause the unit for boundary 34 to base decisions in part on word 9, Also,
the boundary detector for 3-4 will only leamn about the constructions it sees ar that posi-
tion. Since each of the phrase boundary detectors is essentially performing the same
task, it is possible to force position invariance by sharing weights in analogous posi-
tions.

Chapter 6 discusses the issues of localized input connectivity and weight-sharing in
more detail in the context of generalization performance. The combination of represen-
tational enhancements and architectural constraints improves the coverage of PARSEC
on novel sentences from less than 20% to nearly 70% on the CR task.

Recurrent Connections

In the baseline architecture, there are recurrent connections from the output units to the
hidden units of each module. In the final PARSEC architecture, this recurrence is elimi-
nated. The recurrent connections are not required to leamn the parsing task (in contrast 1o
the previous architecture), and due to an implementation issue, they hinder efficient net-
work training. Section 6.6 discusses this issue further.

Constructing a Parser
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There are four steps to constructing a PARSEC network:
1.Create a training file containing the target parses of the training sentences.
2.Create a lexicon containing the word features for the full vocabulary.
3. Train the individual modules of the parser.
4. Assemble the modules together to form the full parser.

Chapter 5 will discuss the details of parser construction. Much of the work is automated
and takes little human time.

Example Parses

PARSEC requires example parses to leamn, and they must be produced by hand. The
syntax of the example parses is simple:

([statement]
([clause]
action] send)
recipient] me)
E patient] a registration form)
time] in the morning)))

The opening parenthesis begins a parse for a single sentence. There is a label that indi-
cates the mood of the sentence (e.g. [statement] or [question]). Next is a list of clauses,
each with a label indicating the function of the clause. In this case, the [clause] label
indicates that it is a main clause (see the list of labels for the CR task on page 45).
Within each clause is a list of labeled phrase blocks. The label on a phrase block indi-
cates the semantic (and sometimes syntactic) function of the words in the phrase block.
The parser builder may choose any labels that he wishes to use for the particular 1ask.

43



4: PARSEC Archltecture

The example parse captures the required transformation and labeling information in
PARSEC’s modules.

Here is an example of a two clause sentence:

([statement]
([clause]
action] show)
recipient] me)
patient] all the nonstop flights))
([relative]
action] leaving)
time] in the afternoon)))

The second clause is a reduced relative clause and is understood to modify the phrase
block immediately preceding it in the input. If it isn’t the case that this is true for a par-
ticular task, one can either change the interpretation of the “relative” label to some other
consistent meaning or use multiple labels to indicate relative clause attachment to differ-
ent parts of the main clause.

The parse below shows an example of prepositional modification (marked “mod-1") as
well as an unusual clause label (“greet”). For the CR task, syntactic subjects in existen-
tial constructions were labeled with “agent,” but another label could have been used at
the cost of some additional learning in the Roles module.

([question]
([greet]
([misc] hello))
([clause]
action is)
agent this)
patient the office)
mod-1 for the conference)))
The next parse shows an example of a subordinate clanse (marked “sub-1"):
([statement)
([clause]
aggnt]] )
action would like))
([sub-1]
([action] to register)))

The last example parse shows a typical yes/no question structure with subject/aux inver-
sion (the inverted auxiliary is marked “iaux”). The labels can indicate syntactic struc-
tures as well as semantic relationships:

([question]
([clause]
|auxr]lt do)
u
’[:gt?on]] ayﬁa)ady have)
(Ipatient] a registration form)))

In the CR 1ask, for the Roles module, these were the 12 labels used:

* AGENT: the agent in the sentence that is performing the action, “[T] [gave] [the
form] [to you].”

» ACTION: the action being performed, “[I] [gave] [the form] [to you).”




4.4: Constructing a Parser

442

* PATIENT: the object being acted upon, “[T] [gave] [the form] [to you].”

* RECIPIENT: the recipient of the action, “[I] [gave] [the form] [to youl.”

+ LOCATION: location or destination, “[Meet] [me] [at the conference site].”

* TIME: the time of the action, “[T] [will send] [it) [by March twentieth].”

« STATE: state of being, “[I] [am] [fine].”

* HOW-ACT: the “how” in a how question: “[How] [can] [I] [apply]?”

* ADVERB: modification of verb, “[Thank] [you] [very much].”

* IAUX: auxiliary in subject/aux. inversion—a purely syntactic marker. For example,
“[Can] [I] [help] [you]?”

* MOD-1: modification of the previous phrase block (relative to current phrase
block): “[This] [is] [the office] [for the conference].”

* MISC: miscellaneous role. This is a catch-all for certain very low-frequency and/or
unusual cases, e.g. [Yes], [Hello], [If]. However, most of the phrase blocks that are
labeled with MISC belong to clauses that have special labels that indicate their
function (e.g. a clause containing “hello” receives a GREET label).

For the Interclause module, these were the 8 labels:
* CLAUSE: marks independent or main clauses, “{(I] [would] [like]} ([to register]
[for the conference]).”.

* SUB-1: marks clauses that are subordinate to the previous clause, “([I] [would]
[like]} {[to register] [for the conference]}.”

* COND: marks clauses that are conditions of the main clause, “{[If] [there] [are]
[any questions]} ([call] [me] [at any time]).”

* RELATIVE: means that the current clause is relative to the head of the phrase block
immediately preceding it, “([Send] [me] [the form]} {[1] [should] [fill out]}”

» GREET: marks clauses that function as greetings, “{[Hello]} {[this] [is] [the confer-
ence office]).”

* YES: marks clauses that function as affirmative answers, “{[Yes]} ([you] [can]).”

* NO: marks clauses that function as negative answers, “{[No]} ([the fee] [isn+1]
[refundable]}.”

* OK: marks clauses that function as confirmatory answers, “{[Okay]} ([T] [under-
stand]}.”
In the Mood module, declaratives and interrogatives were distinguished:

* STATEMENT.: marks declarative sentences (also marks imperatives).
* QUESTION: marks interrogatives.

Note that PARSEC is not dependent on a particular labeling scheme. It has no built-in
knowledge about the labels. It simply learns to assign them based on example parses,

A Completed PARSEC Network

The parsing network for the CR task with the best generalization performance had
15,390 non-leaming units (used for the input matrix, Prep module output result, phrase
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TABLE 4.1

4.4.3

Number of units per module in a CR parsing network.

Module Input Rep.  Label/Transform Hidden
Prep 1197 21 63
Phrase 1197 21 B4
Clause 3420 40 10
Roles 9576 336 308
Inter * 32 36
Mood - 2 4

blocks, and Clause Mapping output result), 432 labeling and transtormational units, 505
hidden units, and 63,654 modifiable connections. Note that many of these connections
were shared, and the true number of free connections was much less than this total
(about 6000).

* Words were represented as 57 bit feature patterns (9 ID bits + 48 feature bits). The
input array allowed for up to 21 words per sentence.

* Phrase blocks contained up to five words. The phrase block representation units
allowed up to ten phrase blocks per sentence.

* Clauses contained up to seven phrase blocks. The clause representation arrays
allowed up to four clauses per sentence.

The unit counts are broken down in Table 4.1. An asterisk indicates that the module
shared those units with the previous module.

Example Runs

This section shows example runs of a trained PARSEC network. Each of the figures for
the first example sentence is a screen dump of the PARSEC program’s display during
testing of a sentence. Omitted from the displays are all hidden units, the Preprocessing
module, and the intermediate representational units for all but the first clause. This was
necessary because of space considerations,

The next several figures show PARSEC parsing the sentence, “I will send you a form
immediately.” Each word is presented in sequence, and the network is allowed six
update cycles before the next word is presented. Each of the small black rectangles rep-
resents the activation of a single unit. Block size indicates activation,

Note that the figures show a network using the enhanced architecture, and thus the rep-
resentational changes discussed earlier appear in the figures. The “PARSEC Text Win-
dow” indicates the partial parse of the sentence. It shows words occupying the head slots
of phrase blocks in parentheses.

46



4.4:

Constructing a Parser

The following is an explanation of each of the blocks of units in the figures:

WORD: the set of units that forms the input to the Phrase module. It is the result of
the Prep module (not shown). Each row can hold the feature representation of a sin-
gle word.

PHRASE: the output units of the Phrase module. These are a single column of units
that indicate junctions between phrase blocks.

PHRASER: the n' phrase block representational units. Note that the first row is the
special head slot mentioned earlier. This is the input to the Clause module.
CLAUSE: the output units of the Clause module. They mark beginnings of new
clauses (top row) and closure of embedded ones (bottom row).
CLAUSE-MODn-PHRASEm: the m™ phrase block of the n'® clause in the sen-
tence. Only the first 5 phrase blocks of clause 0 are shown in the figures. These are
part of the input for the labeling modules.

ROLES-MODn: the output units of the Roles module for the n™ clause (columns
correspond to clause-specific phrase blocks and rows correspond to labels).
INTER: the Interclause labeling units (columns correspond to clauses and rows cor-
respond to labels).

MOOD: the Mood labeling units (top unit indicates STATEMENT, bottom indi-
cates QUESTION).
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FIGURE 4.9 Example run.

Cleared netuork, Time = 0
The input sentence 1s:
1 will send you & Form immediately

In Figure 4.9, the PARSEC network has just been cleared. Nearly all of the units have
low activation. Some have learned high bias terms and have high output in the absence

of input stimulation. For example, in the Mood module, the unit that indicates a declara-
tive sentence has high initial activation,
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FIGURE 4.10 Example run.

Irolesaodi [z ai]]

; Hhﬂsntpru, Tine = B

((STRTEMENT 0.32)
({(CLAUSE 1.00) )
CCCRGENT 0.97) ) (1) 4 )
)

...............

Figure 4.10 shows the state of the parse after “I” has been processed. After the features
for the word “T” have been stimulated (and retained) across the proper slot of the Word
units, the network has decided the following:

* “I" ends a phrase block, and the next word probably is part of a two word phrase.

* “I” is an AGENT, and the next phrase block will be an ACTION.

* So far, there is only a single clause (no activity in the Clause Mapping units), and it

is a main clause,
* The mood of the sentence is declarative (a statement).

Representation of words and phrase blocks across the different intermediate units is
instantaneous. As soon as any transformational unit crosses threshold, its effect is trans-
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FIGURE 4.11

Example run.

CC(CLASE 1.00) 3
(((RGENT 0.57) ) (13 { )
, CCORCTION 6.88) ) GwtlD) will )

mitted throughout the network. Note that “I” appears across both the first and second
rows of the phrase block representation because it’s the first element of the phrase block
and it’s also the head. The top row is the remapped head slot. In the printed representa-
tion, head words are indicated in parentheses.

Figure 4.11 shows the state of the parse after “I will” has been processed. The word
“will” is incorporated into the parse in a new phrase block, and it receives an ACTION
label, as predicted from the previous network state.
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FIGURE 4.12 Example run.

liCurrent. parss, Tine = 18

YUY}
; ((CACTION 0.93) ) (send) wil] send )

..........

In Figure 4.12, after receiving “send,” the network predicts another constituent to the
“[will send]” phrase block—perhaps a particle like “in.” This is reflected by the two
consecutive low-activation units in the Phrase module. This expectation will turn out to
be wrong.

In the second phrase block, the head slot now reflects the features of “send” instead of
“will” as in the previous figure. The simulation program responds immediately to new
information, and performs remappings as needed.
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FIGURE 4.13

Example run.

CC(CRCENT 0,98) ) 1) § )
CCLRCTION 0.57) ) Csmnd) will send )
CCCRECIPIENT 0,89) ) (you) you )

]

As seen in Figure 4.13, the word “you” begins a new phrase block, and it is assigned the
RECIPIENT label. The network now seems to expect a two word phrase block to follow
(it’s right, but in the next figure, the expectation changes to a three word phrase block).
Note that the network continues to show a STATEMENT mood and indicates that the
sole clause is a main clause.
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FIGURE 4.14 Example run,

TR

f{Current parss, Time = 30

((STRTEMENT 0,95)

{C(CLAUSE 1,00) )
CCOAGENT 0.98) ) (1) 1)
(C(ACTION 0,99} ) (sand) will send }
((CRECIPTENT 0.89) ) (you) you )
COIPATIENT 0.92) ) (&) &)

When the network processes “a” (Figure 4.14), it believes that the new phrase block it is
constructing should contain three words (e.g. “[a registration form]™), Such construc-
tions were quite common in the training corpus. However, in this case, the prediction
proves false. The network correctly labels the partially built phrase block as the
PATIENT. The network makes a spurious prediction for phrase block 6 (STATE label)
that persists until the end of the parse, but it does not affect the interpretation since the

phrase block is empty.

Initially, the head slot for phrase block 4 contains the representation for “a.” but as with
“will send,” this will change with the next word.
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FIGURE 4.15 Example run.

( .96,
(C(CLAUSE 1,00) )
({(AGENT 0,98) ) (1) 1)
CCCACTION 0,99) ) (send) will send )
(CCRECIPIENT 0.89) ) (you) you )
(((PATIENT 0,93) ) (form) & form )
)

Not much happens with “form” (Figure 4.15), but the network still has not decided that
“form” terminates a phrase block. This is because, as far as the network is able to tell
from its sparse features, “form” might be part of a noun compound with the next word.
If the network knew more about individual words, it would be able to close the phrase
block at this point.
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FIGURE 4.16 Example run.

C(CRCTION 0,98) ) (send) will sand )

(C(RECIPIENT 0.89) ) (you) wou )

C((PRTIENT 0,55} ) (form) a form )}

C({TIHE 0,943 ) {immediately) immediately )
]

In the final figure of the example run (Figure 4.16), “immediately” is mcorporated into
the parse. The figure shows the correct final parse of the sentence.

The previous example was fairly simple. PARSEC networks exhibit more complex
behavior on multi-clause sentences. In what follows, I will discuss the behavior of PAR-
SEC on the sentence “The titles of papers to be presented at the conference are printed
in the second version of the announcement.” Note that there is an embedded relative
clause within a passively constructed main clause. There are also some prepositional
phrases. In the interest of saving space, screen displays will not be shown. The partial
parses of the sentences that the PARSEC network produces contain most of the interest-
ing information.
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Very early in the parse, while processing “the,” the network produces the following par-
tial parse:
((statement 0.81)

((clause 0.98)
((agent 0.30) (the) the)))

Note that there is only partial activation of the AGENT label. The activation patterns are
still settling.

In the following update cycle, the label changes to PATIENT:

((statement 0.80
((clause 0.99)
((patient 0.38) (the) the)))

Within a few more time steps, the network settles on the assignment of AGENT for this
fragment. The assignment is incorrect, but the network will revise this initial guess.

((statement 0.86)
((clause 0.99)
((agent 0.71) (the) the)))

As the next word's representation becomes active, it is incorporated into the first phrase
block, initially with no change of label:

((statement 0.88)
((clause 1.00)
((agent 0.79) (titles) the titles)))

However, the network soon assigns both AGENT and PATIENT labels to the phrase
block:

((statement 0.89)
((clause 0.99)
((agent 0.63)
(patient 0.60) (titles) the titles)))

This is followed by a loss of support for the AGENT label, probably since “titles” is not
animate:
((statement 0.89)

((clause 0.99)
((patient 0.64) (titles) the titles)))

The word “of” is immediately labeled as part of an attached prepositional phrase:

((statement 0.88)
((clause 0.99)
patient 0.81) titles) the titles)
mod-1 0.89) of) of)))

The current representation solidifies with slightly higher activation prior to the next
wor?. The word “papers” does not affect the structure much:

(\si=lement 0.86)

((clause 0.99)
((patient 0.84) (titles) the titles)
((mod-1 0.99) (papers) of papers)))
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“To” begins the embedded relative clause. The new clause is immediately recognized,
but both the label of the new clause and the label of the new phrase block are incorrect
partial activations:

((statement 0.88)

((clause 0.99) S .
&ﬁg‘de?t 39838}} Emlss)rs) ;Pa mt:'rss)))
-10. aj
([clause 0.26]) e i
((patient 0.48) (to) te)))

This changes to a more reasonable interpretation rapidly. Now, the new clause is labeled
as being subordinate (probably because most subordinate clauses begin with “to™). The
new phrase block is labeled as possibly an ACTION or a RECIPIENT—both reasonable
possibilities for “to” if local context dominates.

((statement 0.71&)

((clause 0.9
patient 0.83) itles) the titles)
mod-1 0.98) papers) of papers))
((sub-10.97)
((action 0.52)
recipient 0.63) (to) 10)))

The network settles on the ACTION interpretation of “to” below.
((statement 0.58

((clause 0.99)
patient 0.83) titles) the titles)
mod-1 0.98) papers) of papers))
((sub-1 0.99)
((action 0.69) (to) to)))

The word “be” results in a sequence of shifts:
((question 0.51)

((clause 0.99)
ﬁpatiden;ﬂ 0.9883) titles) } tl;e titias)”
mod-1 0. rs o rs
((sub-1 0.99) ; pape PP
((action 0.56) (be) to be)))
((statement 0.63
((clause 0.99)
patient 0.83) titles) the titles)
mod-1 0.98) papers) of papers))
((sub-1 0.95)
((recipient 0.48)  (be) to be)))
((statement 0.71)
((clause 0.99)
patient 0.83) (titles) the titles)
mod-1 0.98) (papers) of papers))
((rel (of papers) 0.43))
((action 0.86) (be) to be)))

The Mood module responds with a spurious but small fluctuation in the overall sentence
mood. The Interclause module produces the correct label for the embedded clause. The
Roles module produces the correct ACTION label with high confidence after tempo-
rarily labeling “to be” as a RECIPIENT. The network arrives at a stable interpretation of
the sentence fragment in which the second clause is correctly labeled as being relative to

57



4: PARSEC Architecture

“of papers.” The network incorporates “presented” with no difficulty, and it solidifies its
current predicted structure.

((statement 0.92%}

((clause 0.9 )
patient 0.83) titles) the titles)
mod-1 0.98) papers) of papers))
((rel (of papers) 0.85)
(action 0.85) (presented) to be presented)))

After temporarily assigning “at” to a new phrase block labeled RECIPIENT, the net-
work arrives at the proper result.

((statement 0.94)
((clause 0.99) )
((patient 0.83) (titles) the titles)
(mod-1 0.98) (papers) of papers))
((rel (of papers) 0.82)
action l.'J.Q'Q6 presented) to be presented)
ﬁbcation 0.56) at) at)))

The words “the conference” are processed with little revision of network predictions:
((statement 0.92

((clause 0.99)
(patient 0.83) titles) the titles)
(mod-1 0.98) rs) of papers))
((rel (of papars& 0.81)
action 0.96) presented) to be presented)
location 0.70) conference) at the conference)))

The word “are” is initially placed in the wrong phrase block along with “at the confer-
ence.” Then it is properly assigned to its own phrase block and to the proper clause.
Eventually, the correct role label becomes most active as well:

((statement 0.92)
((clause 0.99)
patient 0.83) titles) the titles)
mod-1 0.98) papers) of papers))
((rel (of papers) 0.80)
action 0.95) {presamed) to be presented)
location 0.84) are) at the conference are)))
((statement 0.91
((clause 0.99)
Eépatient 0.67) titles) the titles)
mod-1 0.94) papers) of papers)
(action 0.96) are) are))
((rel (of papers) 0.80)
action 0.96) presented) to be presented)
location 0.82) conference) at the conference)))

The word “printed” solidifies the current partial parse:

((statement 0.91)
((clause 0.99)
patient 0.92) titles) the titles)
mod-1 0.99) papers papers)
action 0.99) printed are printed))
((rel (of papers) 0.80)
((action 0.95) (presented) fo be presented)

((location 0.84) (conference) at the conference)))
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“In" is processed and produces a MOD-1 label initially, which loses out to the LOCA-
TION label very quickly. As “the” is processed, the correct interpretation gains support:

((statement 0.91)

((clause 0.99)
((patient 0.93) (titles) the titles)
((mod-1 0.99) (papers) of papers)
((action 0.99) (printed) are printed)
((location 0.54)
(mod-1 0.52) (in) in))

((rel (of papers) 0.80)
((action 0.95) (presented) to be presented)

((location 0.84) (conference) at the conference)))

((statement 0.91)

((clause 0.99)
((patient 0.93) (titles) the titles)
((mod-1 0.99) (papers) of papers)
((action 0.99) (printed) are printed)
((location 0.90) (in) in the))

((rel (of papers) 0.80)
((action 0.95) (presented) to be presented)

((location 0.84) (conference) at the conference)))

The current phrase block is completed with “second version.”

((statement 0.79)
((clause 0.99)
((patient 0.93) (titles) the titles)
((mod-1 0.98) (papers) of papers)
((action 0.99) (printed) are printed)
((location 0.86) (version) in the second version))
((rel (of papers) 0.80)
((action 0.95) (presented) to be presented)

((location 0.84) (conference) at the conference)))

The last phrase block is also processed with no major shifts in interpretation. The final
parse of the sentence is shown below,

((statement 0.79)
((clause 0.99)
((patient 0.93) (titles) the titles)
((mod-1 0.98) (papers) of papers)
((action 1.00) (printed) are printed)
{(location 0.90) (version) in the second version)
((mod-1 1.00) (announcement) of the announcement))
((rel (of papers) 0.80)
((action 0.95) (presented) to be presented)
((location 0.84) (conference) at the conference)))

The dynamic behavior of the PARSEC network was qualitatively similar to that of the
early parsing architecture as discussed in the previous chapter. It made predictions about
sentence structure based on partial sentences, and it revised them as more information
became available.

59



4: PARSEC Archltecture

4.5

Summary

In this chapter, I described the baseline PARSEC architecture along with some key
enhancements whose performance impact will be discussed in Chapter 6. The two guid-
ing design principles were:

1. To avoid forcing networks to learn mundane transformational operations.

2. To incorporate domain knowledge into the architecture rather than expecting the
architecture to learn it from limited training data.

The architecture is modular. Each module can perform one of two actions: transforma-
tion or labeling. The modules are set up to perform three successive transformations and
then to label the result using another three modules,

The architecture is quite general in principle, since any combination of transformation
and labeling steps are possible. In this work though, only the size of the various modules
and the labels that are applied vary.

The dynamic behavior of trained networks is quite complex. It arises from training
using an incremental parsing paradigm with the requirement that the parsing networks
always attempt to produce the final parse of partial sentences.
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The previous chapter described the PARSEC architecture, but without robust learning
algorithms, the architecture would prove to be of little value, In this chapter, I will
describe the constructive learning technique that PARSEC uses—Programmed Con-
structive Learning (PCL). The techniques used in PARSEC's automatic training algo-
rithm will also be presented.

There were four critical areas in training PARSEC networks:

1. Generalization: learning algorithms to produce networks that generalize well,

2.Learning speed: minimization of network size, algorithms to make “learning to
completion” possible.

3.Robustness: methods to ensure that networks would reliably converge.

4. Automation: a single generalized training algorithm for use by non-experts who
cannot be expected to fine-tune parameters or architectures.

The PCL technique addresses the generalization issue, but does not solve other prob-
lems. Back-propagation learning is a gradient-descent method that is often slow in prac-
tice. There are many factors that influence learning speed in such networks, including:

* Network size: the bigger the network (especially in terms of number of modifiable
connections), the longer it takes to train it.

* Parameter tning: if a lot of human parameter tuning is required, the learning pro-
cess can slow down (sometimes the human makes non-optimal decisions, and the
learning process cannot be constantly monitored).

* Local minima: while generally not considered to be a problem in high-dimensional
input spaces, this can be a problem when one atlempts to train to completion.
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5.1

In early experiments, completely ad hoc solutions were used for each of these problems,
and while I was able to produce acceptable networks, the amount of labor and uncer-
tainty involved were unacceptable.

The next section describes the PCL algorithm. Following that is a discussion of learning
effects that impact back-propagation. Then PARSEC’s overall learning algorithm is
described. The chapter concludes with an experiment in which a non-expert success-
fully trained a PARSEC network for a novel parsing task and an application of PARSEC
to another language: German.

Programmed Constructive Learning

5.2

To address the generalization performance issue, I developed a new form of constructive
learning (similar to Fahlman and Lebiere 1990), which is called Programmed Construc-
tive Learning (PCL). It differs from other constructive techniques in that a specific
sequence of new hidden unit types is used. Hidden unit types are specified by a network
designer based on domain knowledge, and they typically have progressively widening
receptive fields,

The first unit added (from type 0) relies on very local information and leams as much as
it can. More units of the same type are added until no significant improvement is real-
ized. Then, units from the next type are added in a similar manner. This process contin-
ues until the training corpus is exhausted or until no further improvement is desired.
This process is automatic except for the description of the hidden unit types, which must
be done for a particular domain just once.

Figure 5.1 shows some hidden unit types for PARSEC’s Phrase module. Type O units
have input connections from the word units preceding the boundary that their output
units are supposed to detect. Type 1 units receive input from both sides of the word junc-
tion. Type 2 units have an even wider input field. Type 0 units are likely to learn things

Using PCL, generalization performance of the Phrase module increased from 79% to
95%. The impact of PCL on generalization is described in detail in Chapter 6.

Learning Effects

5.2.1

The Herd Effect

Fahlman (1988, 1990) has described a phenomenon called the “herd effect” One sees
this when there are a number of hidden units in a network that all start out with small,
random weights. In a fully connected network, the hidden units tend to change their
weights in the same ways. This results in a herd of hidden units that are all doing the
same thing—attempting to minimize the principal source of error,
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FIGURE 5.1

5.2.2

PCL hidden unit types for the Phrase module.
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I have found three ways to overcome this problem:

L

1.Don’t use full connectivity between the output and hidden units. Give output units
“private” hidden units.

2.Don’t use full connectivity between the input units and the hidden units. Randomly
connect some proportion of the input units to each hidden unit,

3. Use constructive learning techniques where hidden units are added one at a time,
Each hidden unit then sees very different error corrections.

Of these methods, the third one is best. It eliminates the herd effect, and it also solves
the network resource problem. The network size depends on the task at hand, and no ad
hoc decisions need to be made. Usually the networks grow slightly larger than is
required, but not excessively large. An added feature is that much of the learning takes
place with relatively small networks and is thus faster per epoch than for larger net-
works.

The Wasted Hidden Unit Effect

This effect manifests itself when a network’s output units are far from an obvious local
minimum at the beginning of training. Consider a binary task where, most of the time,
the network’s output units are to have the low value, but their initial bias is 0 (and so
their resting output is an intermediate value). There is a local minimum in weight-space
where the network simple produces low values for all outputs. Often, a back-propaga-
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FIGURE 5.2 Typical learning curve in a back-propagation network.
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tion network will move to this minimum early in training by placing negative weights on
the hidden to output connections.

Even though the bias term is modifiable, it is quicker for the output units to modify their
multiple input connections to achieve the local minimum than it is to modify the bias
terms optimally. The simple solution for this is to start the output units off at the obvious
minimum, where their initial resting output values are exactly that of the low binary
value. While this may seem trivial, it does save time and resources.

5.2.3 The Completion Effect and Forgetting

In most instances of back-propagation learning, one does not attempt to train the net-
works to completion. However, the case of learning to parse a corpus of well-formed
sentences is different than the more typical application of back-propagation, where it is
. likely that some of the training exemplars are noisy (e.g. speech recognition or hand-
written digit recognition). It is not unreasonable to expect that a parsing system that
learns should, in principle, be able to learn all of the example parses presented to it.

It is true that generalization performance suffers when training to completion (see Sec-
tion 6.6). However, it is useful to be able to do so in order to make better comparisons to
hand-written grammars, where one can add rules until an example set is covered. In
practice, it is unwise to train parsing networks to completion, since one is more likely to
se¢ novel sentences than training sentences.

In training the networks, the observed learning curve was the familiar asymptote (see
Figure 5.2). The vast majority of training examples could be learned in short order.
However, the last few were usually very stubborn, and this created an interesting gaming
situation. In the obvious strategy of going through the training examples one at a time,
during the final epochs most of the time is wasted on tokens that are learned satisfacto-
rily. However, one cannot force the network to completely concentrate on the unlearned
tokens, because the network would then forget previously learned examples.
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5.3

I tried numerous methods to overcome this problem:

* Skipping learned tokens: each of the tokens that was processed successfully was
skipped a number of times in future epochs depending on the number of times it
had been correctly processed. This focused attention on tokens that were close to
decision boundaries.

* Focusing attention: each of the unlearned tokens received more presentations per
epoch than learned tokens.

* Leamning rate manipulation: by adjusting the learning rate, the idea was to minimize
the damage done to learned tokens while allowing unlearned tokens to be gently
pushed 1o the proper side of the decision boundaries,

+ Weight freezing: weights in trained portions of a partially built network were frozen
to prevent forgetting.

* Combination methods: attempts at combining these methods in various ways were
also attempted.

Unfortunately, most of the methods had problems:
« Skipping tokens: while being effective at focusing attention on unlearned tokens,
the problem of forgetting was magnified unacceptably.

* Focusing attention: it was difficult to control the parameters that adjusted the num-
ber of presentations simultaneously with adjustment of the leamning rate.

* Learning rate adjustment: see above.

* Weight freezing: this was also somewhat effective, however, it produced larger net-
works than needed.

The next section describes the PARSEC leaming algorithm in the context of the effects

enumerated here. The algorithm is a three phase approach that uses learning rate manip-
ulation, attention focusing, and token skipping in different ways in each of the phases.

PARSEC Learning Algorithm

I use several terms in what follows:
* token: a single training example for a single module.
* epoch: a single pass through an entire set of tokens for a single module.

* success: after a forward propagation step, if the output units of the module are
within some epsilon of their target values, it is called a success.

* failure: not a success.

The learning algorithm has three phases:
Phase 1: In this initial phase of leaming, most of the tokens are learned.

Phase 2: Begins when all of the tokens in the trainin g file can be leamed (at least
temporarily) during a single epoch.

Phase 3: Begins when there are very few tokens that are processed incorrectly.
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There are four key parameters that control the learning:

1.learning rate: A multiplicative factor that controls how steep the gradient-
descent is.

2.modify_on_success: If true, modify weights for this token after both success and
failure.

3.max_pres_number:  The maximum number of presentations per training token,

4.failure_proportion:  The fraction of training tokens that are processed incorrectly
by the current network.

5.3.1 Main Learning Procedure

This procedure is responsible for implementing the PCL algorithm. Hidden units are
added one at a time. After adding a unit, the network is trained to quiescence, and an
evaluation of performance is made. If there is improvement, another hidden unit of the
same type is added, otherwise, the next hidden unit type is selected. Here is the algo-
rithm:

Build the initial network (no hidden units).
Loop {
Try to add a hidden unit of the current type (initially 0).
If out of types, terminate.
Read parameters for current hidden unit type.
Call learn_one_unit.
Check performance on the training examples.
If no failures, return.
Check if the current hidden unit i mproved performance significantly.
If not, increment hidden unit type.

The parameters that the procedure reads are specified by the hidden unit type designer.
They include the minimum and maximum number of units to add to a network and the
initial learning rate. These are available 1o allow for additional control of the network
architecture, but in practice, the algorithm does not typically run into the bounds on hid-
den units. Also, for all but the first hidden unit added, the leaming rate comes from
adaptive adjustment during the previous hidden unit’s learning period.

Note that PARSEC keeps the last hidden unit of each type that is added, even though
those hidden units do not appreciably affect performance (as measured after they reach a
plateau). However, there is no weight-freezing in this algorithm, and these units con-
tinue to adapt after units of new types are added. Although no formal comparisons were
done between this algorithm and one in which the units were eliminated, the additional
freedom in the extra units seemed to help leaming. From a generalization performance
perspective, an extra unit of an early more local type is preferable to an additional unit
of a later type.
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5.3.2

5.3.3

Primary Subroutine: learn_one_unit

This subroutine attempts to achieve the best possible performance with the current net-
work. It is called immediately after each new hidden unit is added. No weight freezing
of early hidden units is used.

Check performance.
Set the max_pres_number = 2 / failure _proportion.
For each epoch {
For each token {
For each presentation (up to max _pres_number) {
Process token.
If unsuccessful, or modify_on_success, modify weights.

}

}
If all tokens became successful du ring the epoch, begin Phase 2.

If Phase 2, and all tokens became successful, decrease learning rate.
If Phase 2, and not all tokens became successful, increase rate.
Check the performance of the net (return if 0 failures).
If new best-net, store weights.
If failure_proportion is small, begin Phase 3,

and set modify_on_success to False.
If 3 epochs elapse without improving average error or # failures, break.

}
Restore weights of previous best-net. Return.

Once a phase change occurs, the algorithm will not revert to the previous phase. There is
no interaction between phase changes and changes of hidden units types.

Detalled Explanations

The learning algorithm just presented is robust for the different parsing tasks with which
I have used it, but the focus of this thesis has been on solving problems in parsing, and
not in solving problems with connectionist learning. The rules that are incorporated into
PARSEC's learning algorithm represent heuristics that my experience has supported,
and they seem to be well motivated. Additional experiments would be required to verify
the precise advantages of the various techniques.

Muitiple Token Presentation

This allows the network to concentrate on problem examples without completely skip-
ping learned examples (as in one of the earlier variations of the algorithm). Examples
that have been recently “forgotten™ are releamed with very few presentations. Difficult
tokens require many presentations. Variation of the maximum number of presentations
keeps the number of weights changes nearly constant per epoch.

Learning Rate Adjustment
This allows the network to concentrate the most effort on difficult tokens as compared
with easy tokens. After all tokens can be temporarily learned on-line, generally, most of
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5.4

the tokens have been learned well (i.e. they remain successful even at the end of an
epoch and not just temporarily). By reducing the learning rate, progressively more
weight adjustments are made on non-learned tokens than on learned tokens, On a token
that is processed successfully, on initial presentation, at most a single weight adjustment
is made (during Phase 1 and 2). On an unsuccessful token, many weight adjustments are
made. When the learning rate decreases, it requires more weight adjustments to achieve
success for difficult tokens, and they receive proportionately more weight modifications.

Modification on Success

One might believe that it would be a good idea to never modify weights following a suc-
cessfully processed token. However, an oscillation problem emerges when this is done.
Large classes of correctly processed tokens suddenly become incorrectly processed.
Then, substantial effort pushes them back, but tends to destroy the learning that
occurred before.

However, in Phase 3, there are very few remaining unlearned tokens, and weights are
not modified following successful processing of a token. Since there are very few
unlearned tokens, and since the learned tokens have been repeatedly pushed away from
decision boundaries, the oscillation problem becomes less significant compared with the
benefit of concentrating all of the effort on the last remaining unlearned tokens.

Often, the last few tokens form a leaming sub-problem where higher-order predicates
are involved and where local minima may be a problem. For example, in the Phrase
module, for the CR task, there are very few examples of “[verb + particle]” construc-
tions, but there are numerous “[verb (or noun)] + [prepositional phrase]” constructions.
The network quickly leams that prepositions like “in” begin new phrase blocks. but
there is an infrequent exception when “in” is used as a particle with a verb like “send.”
Phase 3 allows the network to concentrate on the very difficult last tokens while making
the most minimal possible changes to the decision boundaries.

Welght Freezing

As mentioned briefly above, there is no weight freezing in the algorithm. It seemed to
help a little with the problem of forgetting, but it produced larger networks than needed.
In particular, additional hidden units were required at the later stages, where more com-
plex hidden unit types are used. This tended to hurt generalization performance. Also,
with only a single hidden unit participating in leaming, the Syslem was more sensitive to
local minima.

Training a PARSEC Network

The actual process of training a PARSEC network deserves some discussion. Much of
the work is automated by the PARSEC Parser Generator (see Figure 5.3). The four steps
for producing a PARSEC network for a particular task are:

1. Create an example parse file.

2. Create a lexicon.

3. Train the 6 network modules,

4. Assemble the full network.
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FIGURE 5.3

5.4.1

5.4.2

Producing a PARSEC network.
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The majority of human effort is spent in the first two steps, although neither step takes
too much time (approximately 1 day’s work total for a task similar in size to the CR
task). The training step takes the most actual time, but little supervision is required. A
DecStation 3100 has been adequate for the tasks in this thesis.

Example Parses

PARSEC needs to see some parses in order to learn its task. The more parses available,
the better the parser. Section 4.4.1 shows examples of training parses. The main issues
in producing a parse file are consistency and simplicity.

One must avoid parsing similar sentences in different ways if they have acceptable inter-
pretations that are similar. If a particular construct is parsed differently in two places, the
PARSEC network will not be able to leam both examples if there is no distinguishing
information within PARSEC’s contextual boundaries. Excessive numbers of labels
should be avoided. Labels that appear only a few times in the examples can cause under-
generalization. The PARSEC network will not be able to form good decision “rules” for
the labels.

Bullding the lexicon

PARSEC networks require that the words they process be defined as binary feature vec-
tors. For the tasks discussed thus far, these features have been primarily syntactic, with
some semantic features (e.g. animate vs. inanimate nouns). However, any features can
be used. There is a utility program (referred to as “def-lex” below) that aids in the lexi-
con generation process.
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FIGURE 5.4

Lexicon definition utility program window.
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Def-lex looks at a list of the words in the training file along with some information
about how they are used in the task (e.g. the role labels of the phrase blocks in which
word participates). Def-lex is an X11-based program that allows a user to simply click

on buttons to define the words (see Figure 5.4). The job of defining the features is made
easier in three ways:

1. Other words with similar features are displayed as features are selected,

2. To define the current word, one can copy features from an already defined word.
3. Def-lex prints out informational files to help find inconsistencies in a lexicon.

Def-lex is initialized with a core set of 41 features that should be useful for any English
task (see the figure for those features). It also has a core set of words (both very common
function words and some examples of different types of less common words). The user
can also create features. For example, if the user believes that it is critical for PARSEC

70



5.4: Training a PARSEC Network
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to know about a class of objects that can fly (e.g. if a role label depends on this property
of a noun), a feature can be created for that.

As with the example parses, the two critical properties of the lexicon are consistency
and simplicity. Three things should be avoided:

1. Multiple words with different syntactic/semantic function that have identical fea-
tures.

2.Too many features for the number of example parses.

3. Words with different features that have the same function,

Of these, the first is the most important. PARSEC may not be able to learn certain con-
structs very well if it doesn’t have reliable features for the words in the construct.

Tralning the modules

There is a utility to process the parse file and produce the actual training files for each of
the six module. This program also produces architecture description files for the net-
work modules and the PCL hidden unit types.

The most time consuming task is training the actual modules of the PARSEC network.
Fortunately, this is almost completely automated. The user must start up six separate
runs, one for each module, but they tend themselves (as described in the previous sec-
tion). All of the parameters for controlling the learning process are automatically set by
the PARSEC training program.

Bullding the full network

Recall the addition of weight-sharing to the architecture from Chapter 4. During train-
ing, the modules are not trained as full networks, but, for efficiency, they are trained as
single subnetworks. The modules that result from the previous three steps are not in
their final form; they must go through a replication step.

Here are some notes about the structure of the six modules during training for the final
PARSEC architecture (these details are transparent to the user):

1. Preprocessor: trained as a full module with weight-sharing as shown in Figure 5.2.

2.Phrase: trained as a single subnetwork that requires replication following training.
This is a very small network. Only one phrase boundary unit is present, and only
the minimal amount of word context is present. The network is trained by “shifting”
the sentences of the corpus through it. This saves many units during training.

3. Clause: same as the Phrase module.

4.Roles: trained as a single subnetwork. This module requires replication to account
for multiple phrase blocks in a clause, and to account for multiple clauses.

S.Interclause: trained as a full module, no weight-sharing,
6. Mood: same as the Interclause module.
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The replication utility takes care of assembling and replicating all of the structures for
the full parsing network. It builds a network just big enough to accommodate the most
complex training sentences.

With the full network assembled, the user is free to test the PARSEC parser on any sen-
tences that conform to the vocabulary and network size limitations. The lexicon may be
augmented if necessary. It is also possible to generate a network that is larger in some
modules than required for the training corpus. However, one cannot increase the total
number of clauses without causing some difficulty at the Mood level, and one must
retrain the Interclause module.

Ease of Training

5.5.1

To demonstrate that generating a PARSEC network for a new task is not an unreason-
ably difficult task, requiring an expert, I selected a volunteer 1o train a parsing network
for a novel domain—a subset of the sentences from DARPA’s’s Airline Travel Informa-
tion System task.

I provided the user with brief written instructions, along with the PARSEC software.
Each of the directories containing PARSEC software included additional examples and
slightly more detailed usage notes than are presented here.

A set of 125 well-formed sentences was selected—73 sentences for training, and 52 for
testing generalization. The set was split by random selection. Here are some example
sentences:

* Show me all the non-stop flights from Dallas to Denver,
* What does V U slash one mean?
* What do the transport abbreviations mean?

Appendix D lists all of the sentences used.

Training the Network

The volunteer was able to train the network to completion on the training set with little
difficulty. Most of the problems arose from inexperience with computers and English
(the volunteer was an early-year German graduate student in Computational Linguis-
tics). Here is a breakdown of his effort:

* Initial parse file: 3 hours.
= Initial lexicon: 2 hours.
* Evaluation and debugging of parse file and lexicon: 3 hours.
Training of the modules went smoothly, with occasional problems arising from incon-

sistent labeling of sentences or features of words. After fixing inconsistencies, training
runs were completed.
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5.5.2

5.5.3

5.6

Performance

The completed network was evaluated on the test sentences that were reserved out of the
mnitial sentences. Note that the test set contained novel lexical entries. For each of the
new words, PARSEC’s lexicon was augmented, but the new words had not been used
during training. The network achieved 67% correct on the test set (75% including near-
misses). This was very similar to the performance level achieved by an expert network
builder for the CR task (see Chapter 6).

German Language Task

Another volunteer used PARSEC to produce a network for parsing a subset of the CR
task in German. PARSEC’s architecture did not require any changes. The training pro-
cedure followed the same steps used for training PARSEC on a new English task. The
network successfully leamed the training set (the first three German CR conversations),
but no performance evaluations were carried out. Application of PARSEC to non-
English tasks will be an interesting area of future research.

Summary

In this chapter, I presented the algorithms for training PARSEC networks. In addition to
describing the Programmed Constructive Leaming algorithm, general difficulties facing
back-propagation learning were discussed. Learning speed, network size, robust conver-
gence, and algorithm automation were key factors in the development of the three phase
training regime. The four step process of building a PARSEC network for a novel
domain is automated wherever possible and does not require an expert. PARSEC’s
robust training algorithms should facilitate further application to new domains and lan-

guages.
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Generalization Performance

6.1

Achieving good generalization in large connectionist networks is often a difficult task.
The difficulty is compounded by small, statistically unbalanced training corpora in
domains where it is desirable to train to completion.’ This is exactly the case for PAR-
SEC as applied to the CR task.

In this chapter, I will characterize PARSEC's generalization performance in detail. First,
I discuss the evaluation procedure for measuring generalization and analyze the perfor-
mance of the baseline PARSEC parser. Then, the effects of the architectural enhance-
ments and training techniques discussed in the previous two chapters are analyzed on
four parsing networks produced by PARSEC. The chapter concludes with a comparison
of the generalization performance of PARSEC’s best parsing network to an LR parser
using three independently hand-constructed grammars.

Measuring Generalization Performance

In order to assess the generalization performance of PARSEC on the CR task, it was
necessary to obtain a substantial corpus of sentences that were disjoint from the twelve
conversations that define the CR training corpus. Two generalization sets were col-
lected. The sentences for both sets were generated by people who were not familiar with
PARSEC.

1. It is common for grammar writers to be given some corpus of sentences that must be covered
by a grammar. It is their goal to write a grammar that covers the sentences in the corpus in the
most general way possible. In connectionist modeling, training a network to produce perfect per-
formance on a training corpus hurts generalization performance, and this constraint was relaxed
to produce optimal generalization performance (see Section 6.6).
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6.2

For the first set, volunteers were asked to read the twelve conversations of the CR task,
then write down similar sentences that used the same vocabulary, The volunteers were
asked to produce novel sentences using words found only in the CR task. However, they
were not required (o ensure that their sentences were novel or that they did not include
words outside of the CR training vocabulary. This set was used during the development
of the PARSEC system and, in particular, its generalization enhancements. In the sec-
tions that evaluate the different versions of PARSEC, the coverage tests were performed
on this set.

The second set was generated in a less restricted manner and was not collected until
after all parsers to be evaluated had been constructed. A large group of people were
asked to each write down an imaginary conference registration dialog. They were not
restricted in any way. This resulted in over 20 dialogs that included sentences of greater
variety than those collected previously: e.g. sentence fragments, ungrammatical sen-
tences, and some foreign language sentences. This second test set was used to perform a
final comparison of the best PARSEC parsing network and the best hand-written gram-
mar,

The raw sentences were edited for vocabulary. Those sentences that could be coerced
into the restricted CR vocabulary by minimal changes to 2 or fewer words were so mod-
ified, and the remainder were dropped. Then, repeated sentences were eliminated along
with sentences that occurred in the CR training corpus,

The first set had 127 sentences initially, and after correcting vocabulary and eliminating
duplicates, there were 117 sentences. The second set had 253 unique word strings with 2
or fewer out-of-vocabulary words. After eliminating non-sentences, ungrammatical sen-
tences, and those that could not be corrected for vocabulary without significantly dis-
torting syntax, there were 180 sentences.

Both sets are listed in Appendix C along with the parse score for each sentence of PAR-
SEC's best network, and the best hand-coded grammar for the CR task.

Generalization Techniques

In the previous chapters I described the basic structure of PARSEC's architecture and
training algorithms, along with techniques used to improve generalization. These fall
into three categories:

* Representational techniques—methods used to represent symbols and symbol
structures,
* Architectural constraints—restrictions on input receptive fields, weight sharing,
* Training techniques—incremental training, incremental addition of hidden units.
Two techniques for forcing generalization were used in all versions of PARSEC. First,
separation of word representations into identification portions and feature portions was

used throughout. Second, PARSEC’s four Role Labeling modules (one for each possible
clause) shared weights.
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FIGURE 6.1

Basic structure of the six modules (early PARSEC versions).
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6.3 Conference Registration Parser: PARSEC V.1

For the sake of brevity, in what follows, “CRn" should be taken to mean “the PARSEC
Version n parsing network for the Conference Registration task.”

PARSEC Version 1 was the baseline architecture, corresponding to the description in
Section 4.2. Beyond the two techniques described above, no additional attempts were
made to enhance generalization. Each network module had essentially the same struc-
ture, as shown in Figure 6.1. The output units received input from the hidden units. Hid-
den units received input from all input units (exclusive of ID units) and all output units,
This recurrent structure is similar to that described by Jordan (1986).

CR1’s generalization performance was characterized by performance on the 117 sen-
tence testing corpus. Correct parses are those that are perfect in all particulars. Some
small percentage of parses are close enough to warrant a category of near-misses. The
remainder are labeled incorrect. Below are two examples of near-misses.

Here the network failed to label the “please” (no units corresponding to role labels for
that phrase block exceeded an output of 0.5), but it doesn’t make a critical difference in
the interpretation:

([statement]

([clause]
action] give)
recipient] me)
atient] your name)
f’ please)

In the next parse, the network attached “after September thirtieth” to “five hundred dol-
lars™ instead of labeling it TIME:

([statement]
([clause]
agent the fee)
action is)
patient five hundred dollars)
mod-1 after september thirtieth)))

Note that the near-miss category does not make a qualitative difference in the perfor-
mance comparisons between PARSEC and hand-coded grammars.
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TABLE 6.1 CR1 performance.
Number Percentage
Correct 19 16% :| -
Near Miss 8 7%
Incorrect 90 77%
TABLE 6.2 CR1 failures broken down by module.

Ermrors Responsibility Performance

PREP 11 11% 91%
PHRASE 63 65% 41%
CLAUSE 8 8% 81%
ROLES 15 15% 57%
INTERCLAUSE 1 1% 95%
MOOD 0 0% 100%

CR1 generalized poorly (Table 6.1). The overall success rate was 16%. Table 6.2 shows
how the errors were distributed among the modules. Since the architecture is hierarchi-
cal, failures were counted for the first module that failed. In this table, near misses were
counted as failures. For each module, two rates are reported. The first is the percentage
of errors for which the module is primarily responsible. The second is the module’s per-
formance on sentences in which it received correct input from the previous module. For
CR1, the biggest source of failure was from the Phrase module. However, the perfor-
mance of both the Phrase module and the Roles module was substantially worse than
that for the other modules—41% and 57% respectively.

Here are two examples of failures in the Phrase module (asterisk indicates missed
phrase boundaries):

* [Could] [you] [tell] [me * the deadline] [for the conference].

* [Is] [there] [a discount] [for members * of the Information Processing Society].

In these examples, the Phrase module failed to recognize a boundary. This was most
likely caused by position sensitivity acquired during training. The units that failed were
tuned only to recognize those phrasal boundaries that had occurred in those specific
positions in the training set. The unit responsible for marking a phrasal boundary
between words 4 and 5 was not able to recognize that “tell me the deadline” requires a
boundary between “me” and “the.”

There were two basic reasons for the poor result:

1. Too many free parameters in the system given the amount of training data.
2. Output units were given access to unreliable non-local information,
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FIGURE 6.2

Diagram of localized input connections with weight-sharing.

Input Units Hidden Units Output Units

Regarding the first point, back-propagation leaming is opportunistic. If it is possible to
“memorize” a training pattern using excess freedom in its connections, a back-propaga-
tion network will do so. In the baseline architecture, each of the output units of the
Phrase module was responsible only for learning a particular position, but they had
access 1o a large number of hidden units with relatively little training data. Regarding
the second point, the unit responsible for indicating a phrase boundary between word 3
and word 4 was spuriously influenced (through the hidden units) by words at very dis-
tant positions. As mentioned in Chapter 4, architectural constraints in the form of local-
ized receptive fields and weight-sharing were added to PARSEC.

6.4 Conference Registration Parser: PARSEC V.2

There was a great deal of improvement to be made from PARSEC Version 1. Most nota-
bly, failures at the lowest three levels accounted for 84% of the errors for CR1. PARSEC
Version 2 differed from Version 1 in its lower three modules.

To address the performance difficulties experienced in CR1, PARSEC’s Phrase and Prep
modules were modified using local receptive fields and weight-sharing. Each output unit
was given its own set of hidden units that had limited, position-specific receptive fields.
Localized input receptive fields prevent networks from making decisions based on dis-
tant input information that can be unreliable.

In addition, weights were shared among analogous units that differed in position. Figure
6.2 diagrams this structure. The black weights have the same values as the analogous
sets of gray weights. Each output unit is “looking at” a different piece of the input in the
same way as the others. This is similar to weight-sharing in Time-Delay Neural Net-
works (Waibel e al. 1989). In this type of network, each of the decision making mod-
ules is required to use local information. Furthermore, everything learned from one
position is shared among all positions. There is a net reduction in free parameters.
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TABLE 6.3 CR2 performance.
Number Percentage
Correct 32 27% :, .
Near Miss 10 9%
Incorrect 75 64%
TABLE 6.4 CR2 failures broken down by module.

Ermrors Responsibility Performance

PREP 3 4% 97%
PHRASE 24 28% 9%
CLAUSE 2 2% 98%
ROLES 52 61% 41%
INTERCLAUSE 2 2% 94%
MOOD 2 2% 94%

PARSEC's new Clause module was also constructed using these two techniques. In
order to make this possible, the representation of the output units was changed. Recall
the enhanced Clause module architecture from Chapter 4. Instead of being required to
produce the clause identity of each phrase, it was required o indicate the inter-phrase
points that begin new clauses and close embedded clauses. This allowed for local deci-
sions, and hence weight-sharing. See Section 4.3.1 for additional details,

The performance of CR2 (Table 6.3) was nearly twice as good as CR1’s performance
(27% vs. 16%). Replacing CR1's bottom three modules had the effect of reducing the
number of errors from those modules from 82 to 29—a reduction of 65%. The most dra-
matic improvement was in the phrase module. In CR1 , it was 65% responsible for fail-
ures as compared to 28% in CR2. Its performance increased from 41% to 79%. The
dramatic improvement of the early modules shifted the failure responsibility mainly to
the Roles module. In CR1, the Roles module was responsible for 15% of the failures,
but in CR2, it was responsible for 61%. It is interesting 1o note that different modules
tended to fail on the same sets of sentences. Those sentences that caused problems at the
bottom three levels caused problems at the Roles level in CR2.

The example sentences discussed in the previous section were carrectly processed by
the - hrase module of CR2:

* [Could] [you] [tell] [me] [the deadline] [for the conference].
* [Is] [there] [a discount] [for members] [of the Information Processing Society].
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6.5

The first sentence then was correctly processed by the remaining modules. However,
correct processing of the second sentence by the Phrase module exposed an error in the
Roles module (marked by an asterisk):

* [ACTION is] [AGENT there] [PATIENT a discount] [MOD-1 for members]
[*RECIPIENT of the Information Processing Society].

The phrase “of the Information Processing Society” should be labeled with MOD-1 to
indicate attachment to “for members.” The units responsible for performing case-role
labeling had a very difficult job to leam. They had to combine information from many
locations to assign any of several possible labels given relatively few training exemplars.

The task was complicated by the representation of phrase blocks. The main “content
word” of the phrase moved around depending on the phrase. For example, consider “the
form™ and “the registration form.” In the first case, “form” appears in position two of the
phrase block, but in the second case, “form” appears in position three. Without ample
training data, the Roles module became sensitive to head word position without being
able to generally learn head word content.

Conference Registration Parser: PARSEC V.3

6.6

The only change from PARSEC Version 2 to 3 was in the representation for the phrase
blocks in the Roles module. In the baseline phrase block representation, words were
represented as a sequence, with each word in a phrase block occupying a single row of
units. In the augmented representation, the head words of phrase blocks were mapped
into a canonical place. The augmented phrase block representation was introduced in
Section 4.3.2.

Generalization performance in the Roles module of CR3 increased from 41% o 67%
with this simple modification.? The performance of CR3 (Table 6.5) was 44% correct
overall. Table 6.6 shows the performance of CR3 broken down by module. In CR3, all
of the modules performed better than 90% except the Phrase module (79%) and the
Roles module (67%).

The example sentence that caused failure in CR2 (see above) was processed correctly by
CR3, but CR3’s performance still left a good deal of room for improvement. In the final
version of PARSEC, I applied all of the generalization techniques used in CR1-3 plus a
few more—most importantly the PCL technique introduced in Chapter 5.

Conference Registration Parser: PARSEC V.4 (final)

In PARSEC Version 3, the three principal techniques for enhancing generalization were:

2. More elaborate representational changes involving learned mappings from simple phrase
blocks to highly regular phrase structures (e.g. explicit slots for determiners, nouns, main verbs,
auxiliaries, etc.) were not attempted due to computational considerations, although they might
prove useful.

81



6: Generalization Performance

TABLE 6.5 CR3 performance.
Number Percentage
Correct 51 449, 559,
Near Miss 13 11%
Incorrect 53 45%
TABLE 6.6 CRa3 failures broken down by module.

Emors Responsibility Performance

PREP 3 5% 97%
PHRASE 24 36% 79%
CLAUSE 2 3% 98%
ROLES 30 45% 67%
INTERCLAUSE 6 9% 90%
MOOD 1 2% 98%

* Reduction of free parameters through weight sharing in the lower three modules.

* Localized input connections to enhance information reliability in the lower three
modules.

* Representational changes to reduce task complexity for the Roles module.

For the final version of PARSEC, I used each applicable generalization technique for
each module of the parser. In particular, weight-sharing and localized input fields were
used in the lower four modules (including the Roles module), and the augmented phrase
block representation was used in the Clause Mapping module as well as the Roles mod-
ule. Most importantly, the PCL technique was used in PARSEC Version 4.

Another key difference in the final PARSEC architecture is that it uses no recurrence
between output and hidden units, whereas all previous PARSEC versions used recurrent
connections from the modules’ output units to their hidden units. The reasons for drop-
ping recurrence were not related to generalization performance, but rather are related to
an implementation issue.

For efficiency, it is best to train single subnetworks instead of full networks that require
on-line weight sharing. There is a lower memory requirement, and many fewer opera-
tions are wasted on redundant units during processing. For example, in a full Phrase
module network, there might be 20 slots for words, but for most sentences, only the first
few might be used. However, all of the units must be updated anyway. Training on a sin-
gle subnetwork eliminates the possibility for interesting recurrence from a set of output
units to hidden units. The single output unit in the subnetwork does not provide new
information to the hidden units.
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TABLE 6.7 CR4/CR4.com performance.
Number Percentage
Correct 78 (68) 67% (58%) 78% (67%)
Near Miss 13 (10) 11% (9%)
Incorrect 26 (39) 22% (33%)
TABLE 6.8 CR4/CR4.com failures broken down by module.

Errors Responsibility Performance
PREP 0(0) 0% (0%) 100% (100%)
PHRASE 6(10) 15% (20%) 95% (91%)
CLAUSE 11 (16) 28% (32%) 90% (85%)
ROLES 17(18) 449 (38%) 83% (80%)
INTERCLAUSE 3 (4) 8% (8%) 96% (95%)
MOOD 2(1) 5% (2%) 97% (99%)

In PARSEC, as opposed to the parsing architecture described in Chapter 3, recurrence is
not necessary to learn the task. In the previous architecture (in the Phrase module), input
word features were available only for a brief duration, and hidden units had to have
access to the output values of both the gating units and the intermediate representational
units that captured phrase blocks. In PARSEC, input to each module is buffered and sta-
ble. It contains sufficient information for output units to learn their tasks.

In CR4, the modules were not trained to completion. They were trained until they
reached a plateau of performance above a training performance threshold of 90%. This
made a small difference in each module’s performance (e.g. 91% vs. 95% generalization
in the Phrase module), but the cumulative effect was important. Since modules feed into
onc-another, performance rates have multiplicative effects, Another CR parser
(CR4.com) was trained to completion.

Table 6.7 shows the performance of CR4 and CR4.com. Numbers in parentheses are for
CR4.com. A breakdown by module is shown in Table 6.8. The overall performance of
CR4 was 67% (78% including near misses). This was a dramatic improvement over the
performance of CR1 (it had just 16% correct in the generalization test). The perfor-
mance of CR4.com dropped to 58%. Additional failures in the Phrase and Clause Map-
ping module cause most of the additional errors in CR4.com.

The weakest module was the Roles module (44% responsible for failures). It is easy to
understand why this was the case. The complexity of the task relative to the amount of
training data was the most unfavorable among all of the modules. For each phrase block,
there was a choice of several role labels that had to be made. Compared with the Clause
module (two choices per phrase block) and the Phrase module (one choice per word
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FIGURE 6.2

6.7

Plot of generalization performance vs. number of connections.
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boundary and less than three words per phrase block on average), one can see the rela-
tive difficulty in assigning twelve role labels, some of which occur infrequently. Also,
role labels are more context dependent than the boundary decisions.

Discussion of CR Parsing Networks

Figure 6.3 shows a plot of network performance versus number of modifiable connec-
tions (counting shared connections only once). The four dark points are from CRI1-
CR4. As the number of free connections decreases, performance increases. However,
the gray point falls sharply outside the curve. It corresponds to CR4.com (the PARSEC

The errors that CR4 made fell into two categories: undergeneralizations and unavoid-
able errors. Undergeneralizations result from inadequate exposure to such sentences in
the training corpus. Unavoidable errors result from a total lack of exposure to novel con-
structs. An example of the former is “Please fill out the form which I will send you.” In
this case, CR4 failed to properly label the relative clause (it labeled it as an independent
clause). There was only one relative clause introduced by “which” in the training cor-
pus, and such undergeneralizations are expected. A network has no good way of know-
ing exactly what is supposed to be novel about a new construct Any feature that
differentiates a new construct from other ones is picked up by back-propagation. Unless
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6.8

there are a few training examples, a network might just guess wrong. Additional trainin g
examples would correct deficiencies of this kind.

An example of a sentence that uses a novel construct is, “How do I go about this?” The
phrase “go about” uses “about” in a different way than any of the training examples.
One cannot expect PARSEC to get truly novel constructs right. Of course, many gener-
alization failures fall into a gray area, but the distinction between the two types of fail-
ures is useful. In failures of the first type, additional examples of sentences similar 1o
those already in the training corpus would probably solve the problem. In the second
case, the novel sentence falls more completely outside the realm of expertise of the
parser. The failures for CR4 were fairly evenly mixed between the two cases, with 51%
arising from undergeneralizations, and 49% arising from novel constructs.

Comparison to Grammar-Based Parsers

6.8.1

In the previous sections, I described a number of generalization techniques and analyzed
their impact on the performance of parsers generated by PARSEC. The section will
place the generalization performance numbers in context by comparing them to the per-
formance of a parser using three hand-coded grammars for the CR task. The comparison
was made to a Generalized LR parser implemented using Tomita’s algorithm (Tomita
1985, 1991),

The first grammar was written for use in the JANUS speech-to-speech translation sys-
tem (see Chapter 7 for more details about JANUS). The other two grammars were wril-
ten as part of a contest. A large cash prize ($700) was awarded for best coverage of the
117 sentence CR test set (the second place finisher received $300). All grammar writers
were experienced (one a Computational Linguistics graduate student, the other two
were active research staffers in the Center for Machine Translation at CMU).

Grammar 1

A grammar was written in a Lexical Functional Grammar formalism that allowed for
combining syntax and semantics to produce a frame-based output parse (see Chapter 7
for more information about the output representation). Its output was somewhat differ-
ent than that produced by PARSEC. The LR parser with this grammar (LR1) produced
information about tense and detailed analyses of noun phrases. Apart from that, it gener-
ated essentially the same information as PARSEC. It was able to parse only 5% of the
117 test sentences correctly. To be fair, the grammar was created under time-pressure (it
still required many hours of work to complete). Also, it was not constructed specifically
with coverage considerations in mind. It still provides an interesting data point though,
It illustrates that grammar-based formalisms are highly dependent on their grammar-
writers and the conditions under which they are required to work.

3. Often, partial parses contain some useful information, but it can be unreliable. The is a parse
failure heuristic that is fairly good at detecting when a parse should be good (see Sections 6.8.3
and 7.1.3).
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6.8.2

6.8.3

Grammars 2 and 3

The following two grammars were the result of a motivated effort to produce grammars
with good coverage. Each grammar took approximately 8 weeks of effort to produce,
although the grammar writers were not working on them full-time. Note that the gram-
mar writers were not forced to use any particular grammar or parsing formalism; they
were only required to use an existing formal-grammar based parsing system. They made
their choices based on ease of implementation in the CMU environment coupled with a
desire to win the contest.

Grammar 2 consisted of context free pseudo-unification grammar rules. It took approxi-
mately 60 total hours to produce. Rule writing and debugging took the majority of the
time. The LR parser using this grammar (LR2) parsed 25% of the testing sentences cor-
rectly (26% including near misses). Of the incorrect parses, 80% were NIL outputs, and
20% were non-NIL but incorrect in a major way (e.g. sentence mood or major missing
or incorrectly labeled constituent). Fully 60% of the test sentences were rejected as
unparsable.

Grammar 3 was also a context free grammar and took approximately the same amount
of time to produce as Grammar 2. However, it used a slightly different grammar formal-
ism, with some special rules for handling particles. LR3 parsed 38% of the test sen-
tences correctly (39% including near-misses). Of the incorrect parses, 89% were NIL
results, and 11% were non-NIL but deficient. Here again, a large portion of the test set
was rejected as unparsable (54%),

Discussion

The performance comparison is quite clearly in PARSEC’s favor. The large difference
between PARSEC's best performance and the best performance of the hand-coded
grammars deserves some discussion. (Appendix C shows the test sentences along with
the scores CR4 and LR3.)

LR3 agreed to some degree with CR4 on which sentences were “difficult” (i.e. those
that resulted in poor parses). Of the sentences for which CR4 produced poor or near-
miss parses, 72% of them produced POOr Or near-miss parses in LR3. Just 28% of CR4's
problem sentences were processed correctly by LR3. Conversely, CR4 parsed 62% of
LR3’s problem sentences correctly—accounting for the large performance disparity.
Those sentences that caused problems for PARSEC tended 1o cause problems with the
hand-coded grammar, but the reverse did not hold to nearly the same degree.

One key feature of all the hand-coded grammars is that they reject so many sentences as
unparsable. This can occur in two situations:

1. The grammar does not recognize its final state as being a legal sentence termina-
tion,

2.The grammar fails to model some construct in a sentence.

In the both cases PARSEC has systematic advantages. First, PARSEC is trained to
incrementally parse sentences as they develop. That is, PARSEC is trained to try to
parse initial sentence fragments properly. Second, due to the various techniques for
enhancing generalization that cause PARSEC to rely on local information, the decision-
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making units of PARSEC are less likely to become sensitive 1o minor variations in semi-
distant constituents. Localized receptive fields and weight-sharing both act to prevent
PARSEC from ticoming overly s~asitive to irrclevant information,

Another interesting comparison is in the classification of incorrect parses. A critical
issue is how to detect such parses. Of the three grammar-based parsers, the percentage
of easily detectable (NIL) parses ranged from 80% (LR2) to 100% (LR1). Using a sim-
ple heuristic for detecting obviously wrong parses that is based on the output values of
the labeling units of a PARSEC network (see Section 7.1.3), it is possible to reject 81%
of the incorrect PARSEC parses as such. This heuristic also rejects 50% of the near
misses as being incorrect parses. While PARSEC’s ability to reject poor parses is not up
to that of all the hand-coded grammars, it does fall within the range. However, there
must be some trade-off between robust generalization and “tightness.” This will be dis-
cussed in more detail in Chapter 7.

Final Generalization Comparison

6.10

Since the performance comparison in the forgoing section so heavily favored PARSEC,
it seemed possible that the testing set was in some sense “tainted” since it had been
available during PARSEC'’s development. As mentioned in Section 6.2, a second test set
was collected after all of the comparisons had been completed using the initial test set.
This set was both larger (180 sentences) and more diverse.

CR4 achieved 66% correct on this set (73% including near-misses). LR3 achieved 41%

on this set (no near misses). These figures are not significantly different than the earlier
figures. Additional analyses also parallel the foregoing discussion.

Summary

In this chapter, I have analyzed the generalization performance of PARSEC and com-
pared it to more standard parsing methods. In order to improve PARSEC’s baseline gen-
eralization three techniques were used:

1. Representational techniques: augmented phrase block representation.
2. Architectural constraints: localized receptive fields and weight-sharing.
3. Training techniques: programmed constructive learning.

These had an impact on:
* The number of free parameters to train.
= The relative importance of local versus non-local information.
* The types of information available to the network to make decisions.
« The task complexity for each of the modules. '

Table 6.9 1s a summary of generalization performance for each of the parsers described
in this chapter, ordered by type (PARSEC or human generated) and performance on the
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TABLE 6.9

Comparison of all parsers on the 117 sentence set.

Correct Correct+Near Sharing PCL APR  Completion
CR4 67 % 78% Lower4dmods Yes Yes No
CR4.com 58% 67% Lowerdmods Yes Yes Yes
CR3 44% 55% Lower3mods No Yes Yes
CR2 27% 36% Lower3mods No No Yes
CR1 16% 3% None. No No Yes
LR3 38% 39% — —_ — (Yes)
LR2 25% 26% — — — (Yes)
LR1 5% 5% —_ - —-— (Yes)

117 sentence testing set. PCL stands for Programmed Constructive Leaming, and APR
stands for “augmented phrase representation.”

The performance of PARSEC's best parser for the CR task was nearly 70% (discounting
near-misses). This compares very favorably with about 40% for the best of the gram-
mar-based parsers. PARSEC learned its “grammar” from little more than 200 English
sentences whereas the human grammar writers had the full knowledge of English in
addition to the sentences they were required to parse correctly.

A key lesson from this chapter is that each of the enhancements in terms of representa-
tional changes and architectural constraints were facilitated by explicit structure in the
architecture. In a monolithic network, it is difficult to see how one could make a serious
impact on generalization performance. In the structured, modular approach presented
here, it is possible to engineer a connectionist network and produce dramatic perfor-
mance increases.
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Speech Translation and
Noise Tolerance

71

This chapter covers experiments that tested PARSEC's tolerance of various types of
noise, including an application to the JANUS speech-to-speech translation system
(Waibel et al. 1991; Jain et al. 1991). Parsing is an interesting area in which to explore
noise tolerance for two reasons. One, the grammar-based approaches to parsing tend to
be brittle in the face of noise. Simple problems in a sentence such as subject/verb num-
ber disagreement can trip up many grammar-based parsers. Two, the input is symbolic
and atomic—not real-valued and fuzzy. The noise that is encountered often involves
non-subtle changes to input patterns.

PARSEC was tested on three sources of noise:

1. Speech recognition errors in JANUS.
2.Ungrammatical sentences (synthetically generated) from the CR domain.
3. Transcriptions of verbal user interaction from the ATIS corpus.

Traditional grammars tend to reject irregular input, partly by design and partly because
their nature predisposes them 1o regular structures, PARSEC offers some degree of
noise tolerance without any explicit modeling. Some researchers have developed more
noise-tolerant grammar-based systems (e.g. Saito and Tomita 1988, Ward 1990), but the
explicit noise-modeling that they built into their systems can be trained into PARSEC
networks.

PARSEC in Speech-to-Speech Translation

The main goal of PARSEC’s application within JANUS was to compare the perfor-
mance of PARSEC with a grammar-based parser on noisy output from a speech recog-
nizer. A secondary goal was to show a real application of a PARSEC parsing network.
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FIGURE 7.1

High-level structure of the JANUS system.
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JANUS is a speech-to-speech translation system developed at CMU that operates on the
conference registration task. It is built in a modular fashion and allows for evaluation of
components that use alternative computational strategies.

JANUS translates continuously spoken English speech utterances into Japanese and
German speech utterances, Figure 7.1 shows the overall structure of the JANUS system.
It can utilize two processing pathways—one with a PARSEC network as a parsing front-
end, and one with an LR parser.

7.1.1 Speech Recognition and Synthesis

Speech recognition in the JANUS system is provided by a connectionist, continuous,
large vocabulary, Linked Predictive Neural Network (LPNN) system (Tebelskis er al.

(at a substantial cost in processing time). This system, when using the bigram grammar,
produces the correct sentence as one of the top three choices in 90% of the cases, with
additional gains within the top nine choices (for this work, N = 9). However, the system
achieves only about 70% correct on the single best hypothesis.

In single-hypothesis mode (F-best), the parsing component must attempt to process the
best LPNN hypothesis. With multiple hypotheses (N-best mode), the parser passes the
first parsable hypothesis 1o the language generator (or returns failure if there are no par-
sable hypotheses).
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7.1.2

7.1.3

Speech synthesis is provided by two commercially available devices, a Digital DECtalk
DTCO1 system for German output, and the Panasonic Text-to-Speech System EV-3 for
Japanese output. Each of these systems takes a textual or phonetic representation of a
sentence as input, and produces the sounds of the spoken utterance through an audio
speaker. The following section describes the alternative translation modules.

Knowledge Based Machine Translation

JANUS's translation module is based on the Universal Parser Architecture (UPA) (Tom-
ita and Carbonell 1987). It is a knowledge-based machine translation system that is
capable of performing efficient multi-lingual translation. The system consists of a pars-
ing component and a generation component. The parsing component is arbitrary (as
long as it produces output in the appropriate form).

In one version of JANUS, Tomita’s efficient generalized LR parsing algorithm is used as
the basis for the parser (Tomita 1985). After pre-compilation of a grammar, fast table-
lookup operations are all that is necessary to parse utterances. The performance of this
module approaches real-time. Language generation also approaches real-time. It is per-
formed by a system that compiles a generation grammar into LISP functions (Tomita
and Nyberg 1988).

The standard UPA system requires a hand-written grammar for each language to be used
for parsing and generation. The system uses a Lexical Functional Grammar formalism,
and both syntactic and semantic rules are encoded in the grammar. Multi-lingual parsing
is achieved by writing grammars for each of several languages. The universal parser
takes text input in the source language and produces an “interlingual representation”—a
language-independent frame-based representation of the meaning of the input sentence,
The universal generator takes this as input, and uses the generation grammar to make the
transformation into the appropriate text in the target language. Figure 7.2 shows an
example of the input, interlingual representation, and the output of the JANUS system.

Using PARSEC In JANUS
There are two problems in trying to apply PARSEC to the JANUS system:

* PARSEC's output is not suitable for direct processing by the language generation
module.

* PARSEC networks have no internal failure indicator; they will process any sentence
and produce an output.

Transformation of PARSEC's output into the interlingual representation required by the
generation module is accomplished by a separate program. It operates top-down using
simple match rules to instantiate case-frames and their slots. The slots of the case-
frames are then filled using more match rules. The algorithm is opportunistic in that it
atlempls 1o create a reasonable interlingual output representation from any input. Occa-
sionally, the interlingual representation will cause the language generation module to
produce a NIL output. This is reported as a parsing failure.
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FIGURE 7.2 Example of input, interlingua, and output of JANUS.

Input
Hello is this the office for the conference.

Interlingual Representation

((CFNAME *is-this-phone)

(MOOD *interrogative)

(OBJECT ((NUMBER sg) (DET the)
(CFNAME *conf-offce)))

(SADJUNCT1 ( (CFNAME *hello))))

Output

Japanese: MOSHI MOSHI KAIGI JIMUKYOKU DESUKA
German: HALLO IST DIES DAS KONFERENZBUERO

The second problem is more easily solved. A set of simple heuristics are able to reject

many of PARSEC’s bad parses. The four main rules are:

1. All phrase blocks must be legally labeled. A Role labeling unit must have activation

of greater than 0.5 to be considered legal.
2. No phrase block should have multiple labels.

3. Each clause must have a phrase block with either an ACTION or MISC label.
4. Roles requiring an ACTION (e.g. PATIENT as opposed to MISC) must be present

with an ACTION.

I also experimented with real-valued parse metrics derived from output unit activations,

and this is discussed later.

7.1.4 Performance Comparison

The two versions of the JANUS system (each with a different parser) were tested on a
single reading of all 204 sentences of the CR task by the speaker that the system was
trained on. This was a restricted test due to limitations in the LPNN system. Sentences

from outside the twelve conversations were not tested.

JANUS-LR

Table 7.1 shows the performance of JANUS using the UPA parsing/translation compo-
nent (JANUS-LR) on the full database of twelve conversations in F-best and N-best

modes.
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TABLE 7.1

Performance of JANUS using an LR parser.

Correct recognition N: 173
and translation F:140 | N:176 N: 86%
LPNN error N:3| F:143 F: 70%
but OK translation F:3
Incorrect recognition N: 14
and translation F:10 N:28 N: 14%
Incorrect recognition . 5 .
no parsable utterance g %‘;’ F: 61 F:30%

There are four possible outcomes for processing an utterance:

1.Correct recognition and translation: the LPNN produced exactly the right word
sequence as a hypothesis, and it was selected and correctly processed by the parser
and generator.

2. Incorrect recognition, but OK translation: the parser chose an incorrect recognition
hypothesis, but JANUS produced the proper translation anyway.

3. Incorrect recognition and translation: on choosing an incorrect recognition hypoth-
esis, JANUS produced the wrong translation,

4. Incorrect recognition and no parsable utterance: no parsable hypotheses.

The performance was 86% correct translation in N-best mode. This number included a
small number of type two outcomes. The 13% of cases where JANUS-LR failed were
almost evenly split between outcomes of types three and four.

The First-best performance was substantially worse than the N-best performance (drop-
ping from 86% to 70%). In this mode, the parsing/translation components were forced
to use incorrect recognition results quite often, and the performance degradation was
expected. Although, in a real system, one would probably never force the system to use
only the first hypothesis, it was interesting to examine how this affected the different
parsers. In F-best mode, the errors from the LPNN more closely modeled a more realis-
tic testing condition in which either the testing utterances or the speaker would be differ-
ent from the training conditions.

JANUS-NN (JANUS using PARSEC)

Table 7.2 shows the performance of JANUS using PARSEC (JANUS-NN) in the two
operation modes. The network that was used was CR4.com (see Chapter 6 for details
about this particular network). The N-best performance was worse than that for JANUS-
LR. JANUS-NN often returned parses for incorrect hypotheses. These were frequently
rejected as poor candidates by JANUS-LR. Thus JANUS-LR, with its tighter language
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TABLE 7.2

7.1.5

Performance of JANUS using PARSEC.

Correct recognition N: 149
and translation F:140 | N 164 N: 80%
LPNN error N:15| F:157 F:77%
but OK translation F: 15
Incorrect recognition N: 31
and translation E:351 N:40 N: 20%
Incorrect recognition N: 9 F: 47 F:23%
no parsable utterance F 12

model, had a performance edge. It was able to robustly reject initial hypotheses and find
the correct utterance. The PARSEC network was unable to reject incorrect recognition
results as robustly as the LR parser,

However, the performance of JANUS-NN in First-best mode did not degrade nearly as
much as for JANUS-LR. In fact, JANUS-NN outperformed JANUS-LR in First-best
mode (77% versus 70%). The performance difference arose from the number of incor-
rect recognition hypotheses that JANUS-NN parsed and translated correctly,

Discussion

In First-best mode, both systems correctly processed the correct recognition results.
This accounted for 140 tokens, JANUS-NN outperformed JANUS-LR by more often
producing correct translations when the LPNN hypothesis was incorrect. The major dif-
ference between the two systems was that JANUS-NN was more likely to successfully

examples of incorrect recognition that were translated correctly by JANUS-NN but not
JANUS-LR:

* LPNN: Will be expecting you.
ACTUAL: We'll be expecting you.

* LPNN: We have a special forms for the summary,
ACTUAL: We have a special form for the summary,

In both cases, the LR parser failed to return a parse. The flexibility of the PARSEC net-
work is reflected in several ways in Tables 7.1 and 7.2. JANUS-LR reported many more
failures in First-best mode than in N-best mode. When forced 1o use an imperfect utter-
ance, JANUS-LR was more likely to fail to parse it than was JANUS-NN. JANUS-NN
reporied parsing failure much less often in First-best mode—PARSEC was able to
“make do” with imperfect utterances.
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The other side to this behavior occurred in N-best mode. The flexibility of the PARSEC
network in JANUS-NN caused a performance loss because it sometimes did not look far
enough down the hypothesis list to find the correct utterance. It simply stopped and
returned a parse of an incorrect hypothesis. It's possible that more stringent parse-failure
heuristics would allow JANUS-NN to more closely parallel the performance of JANUS-
LR in N-best mode. However, significantly more stringent parse heuristics would begin
to look somewhat task-specific. The set of heuristics that were used were well moti-
vated.

Of course, errors in speech recognition were the root cause of incorrect translations in
this test. It was known a priori that correct hypotheses would be properly parsed and
translated, since each parser was either trained or built specifically for the 12 conversa-
tions. Currently, a number of improvements to the speech recognition component are
being evaluated. These range from enhancements at the acoustic level to better language
modeling (Tebelskis et al. 1991).

Non-Binary Parse Metrics

T attempted to develop non-binary parse evaluation schemes that made use of the con-
nectionist parser’s real-valued outputs. One scoring metric was the average of the activa-
tion values for labeling units whose outputs exceeded 0.5. Higher scores indicated
higher confidence in a parse. The idea was to use a real-valued parse-metric and evalu-
ate all N hypotheses, then choose the best one instead of selecting the first acceptable
hypothesis. Unfortunately, none of the real-valued parse metrics improved JANUS-
NN's performance.

There are several reasons for this. The LPNN system did not produce acoustic scoring
information for its hypotheses, only rankings. This made it very difficult to know when
to throw out a higher ranked hypothesis in favor of a lower one. With acoustic scoring,
in a case where one LPNN hypothesis had very high acoustic score compared to the oth-
ers, one could discount small differences in the parse scoring metric.

Also, since the training corpus was fairly small yet highly diverse, many of the sen-
tences were “outliers” in some characteristic. Therefore, a large number of correct
hypotheses necessarily received quite low parse scores, and lower ranked hypotheses
often yielded better parse scores.

Lastly, the language model used to constrain the LPNN's search was an unsmoothed
bigram grammar that was trained using only the 204 sentences of the CR task. It tended
to produce either correct hypotheses or substantially different hypotheses that happened
to be close to other sentences in the corpus. So, often, incorrect hypotheses would
receive high parse scores. A language model that was less biased to the CR training set
might have produced more divergent incorrect hypotheses, leading to lower parse
scores.

Performance and Grammar Tightness

Recall the generalization performance comparisons of Chapter 5. The grammar used in
the LR parser for JANUS was “Grammar 1.” The PARSEC network used for JANUS
(CR4.com) generalized more than ten times better than the LR parser. Given this, it's
not surprising that JANUS-LR was able to outperform JANUS-NN in N-best mode.
JANUS-LR essentially had a table of the 204 sentences, and it could reject almost any-
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7.2

thing that deviated from the table. Note, however, that it is possible to write grammars
that incorporate techniques that allow them to handle more varied input including noise
(Saito and Tomita 1988). In this case though, the PARSEC network was at a substantial
disadvantage because of the difference in coverage.

Synthetic Ungrammaticality

This section covers an experiment in which PARSEC and its compeling grammars were
evaluated on synthetic ungrammatical sentences from the CR task. Table 7.3 shows 50
ungrammatical sentences. Each is a corrupted version of a sentence from the twelve
conversations of the CR task. I chose to modify sentences from the actual training cor-
pus of the PARSEC network in order to decouple the noise issue and the generalization
issue.

The corruptions ranged from making very minor changes such as replacing “a” for *“an”
(e.g. sentence 1) 10 modifying verb phrases as some foreign speakers tend to (e.g. by
using “to + infinitive verb” instead of “properly conjugated verb” as in sentence 19),
There were no spontaneous language phenomena such as restarts or interjections. Each
of the sentences in the table has a reasonable interpretation that is very close to that of
the original uncorrupted sentence. Some of the sentences may seem silly or artificial,
but some people actually use similar constructions (especially in certain dialects of
American English and the English of non-native speakers).

CR4.com (the PARSEC network used in JANUS) produced reasonable parses for 33 of
the 50 sentences, arguably reasonable parses for 2, and poor parses for 15. Using the
simple parse failure heuristic from Chapter 7, 11 of the 14 poor parses were recognized
as such, 2 of the acceptable parses were labeled as poor, and the near misses were both
rejected. This is fairly robust recognition of parse acceptability (about 90%).

Recall the three hand-coded grammars from Chapter 5. Their performance was:

* Grammar 1: 1 correct parses, 49 NIL outputs.
* Grammar 2: 19 correct parses, 19 NIL outputs, 12 incorrect parses.
* Grammar 3: 17 correct parses, 32 NIL outputs, 1 incorrect parse.

Grammar 1 was able to parse a single sentence whose only change was a replacement of
“a” for “an.” Grammar 2 came closest to PARSEC’s performance, but still fell far short
(38% versus 66% correct). Grammar 3, the best hand-coded grammar from a coverage
standpoint, correctly parsed nearly as many sentences as did Grammar 2. When it failed,
it nearly always failed by producing a NIL output instead of a poor parse. As with the
grammatical coverage experiments from Chapter 5, the hand-coded grammars behaved
in very different ways. This appears to be a problem with the process of hand-writing
grammars. One cannot predict with certainty how such grammars will behave when
stressed, since they depend so heavily on the grammar-writers.

Several seemingly simple grammatical irregularities, which PARSEC parsed well,
caused problems LR2:

* “Yes, that are right.” (subject/verb number disagreement)
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TABLE 7.3

Table of corrupted CR sentences.

1. hello is this a office for the conference
2. yes that are right
3. i would have like to register for the confer-

ence

4. do you already have a registration forms
5. then i+ll sent you a registration form
6. could you to give me your name and

address

7. the address are five thousand forbes ave-

nue pittsburgh pennsylvania one five two
three six
. i+ll send you special form immediately

8
9. if there is any questions please ask me at

any time

10. thanks you

11. this are the office for the conference

12. what should i did

13. first you must register with registration

form

14, do you already got a registration form

15. not yet please send i a form

16. name is judy simpson

17. is a attendance fee required

18. yes two hundred dollars per person is

required as registration fee

19. may i to help you

20. i like attend the conference

21. how can i to apply

22. please fill a registration form

23. do you have a one

24. okay then i send you & registration form
25. name is harry bovic

26. would you spell last name please

27. megotit

30.

31

32,

33.

34.
35.
36.
37.

38.
39.

40.

41.

42,

43.

46.

47,
48.

49.
50.

. hello this is conference office
. could you give me some information

about application fee

how much will it cost if i apply in the con-
ference right now

but if you are apply next month it will cost
you three hundred twenty five dollars

the proceedings and the reception is
included in the application fee

i am member of the information process-
ing society

are there a discount for members

how can i to pay

payment be made by bank transfer

please remit to our bank account which be
mentioned in the announcement
deadline are the end of the year

you is welcome

i would like to contribute a paper to con-
ference

me tell you the topic of the conference
conference covers a wide area of research
related to interpreting telephony

we be expecting linguists and psycholo-
gists as participants

. what is official language of the conference
45,

i don+t to understand japanese at all

yes there be simultaneous interpretation
service into english

that are helpful for me

i would like know details of conference
do you have conference announcement
would you mind tell me your name and
address

* "Do you already have a registration forms?" (plural with determiner)
* “If there is any questions, please ask me at any time.” (object/verb disagreement)

More difficult grammatical irregularities caused problems for both systems. These sen-
tence were incorrectly processed by CR4.com and LR2:

* “Ilike attend the conference.” (instead of “would like to attend”)
* “Would you mind tell me your name and address?” (instead of “telling™)
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There was not much agreement between the various parsers about which sentences were
difficult, in contrast to the coverage tests. There were cases in which PARSEC produced
poor parses, but LR2 produced good parses. For example:

* "“T'll send you special form immediately.” (missing determiner)

* “Not yet, please send I a form.” (instead of “me™)

Note that each of the hand-coded grammars was constructed without irregular input in
mind. However, the PARSEC network was only trained on grammatical sentences (the
same as those that the grammar writers were required to cover). In applications where
one must attempt to process any input with few rejections (e.g. in human-machine inter-
faces), PARSEC’s behavior is desirable.

PARSEC networks show some tolerance for ungrammaticality without explicit noise
modeling. But if one views grammars as models of language, grammars (or grammar-
less parsing networks) that accept ungrammatical input could be considered undesir-
able. Building prescriptive models of language was not the focus of this work.

Spontaneous Speech Effects: The ATIS Task

DARPA’s ATIS task uses a machine interface paradigm where users verbally query an
airline reservation system for information and book flights. Part of the ATIS effort
involves detailed transcriptions of the interaction including spontaneous language phe-
nomena. Whereas in all of the previous experiments with PARSEC, the networks were
trained on grammatical input, this experiment included noisy input in the training and
testing sets.

Another key difference between this and previous PARSEC parsing networks was that
this network was trained to produce primarily semantic domain specific parses instead
of the more general parse structure used previously. This was done to more closely
approximate the SQL queries required for the full ATIS task of database information
retrieval. Here is an example of a training parse for this experiment:

([statement]
([list-flights]
([fly] show me)
(Imode]  nonstop)
([travel] flights)
([arr-time]  arriving at three pm)
([to-loc] to denver)))

The case-role labels reflect the semantics of the constituents that they label. The struc-
ture is amenable to conversion into an SQL query of a database of airline information.




7.4: Summary

This is much different than the parse would have been under the previous parse repre-
sentation (e.g. as used by the novice PARSEC trainer in Chapter 5 for ATIS):

([statement]

([clause]
([action]  show)
([recipient] me)
([patient]  nonstop flights)
(Imod-1]  to denver))

([rel (nonstop flights)]
([action]  arriving)
([time] at three pmy)))

Despite the substantial differences between the parse representations, the PARSEC sys-
tem needed no revision. The parse file and lexicon for the new task simply reflected the
characteristics of the new parse representation. Note that the notion of phrase block is
somewhat different—corresponding to semantic chucks instead of more syntactically
oriented chunks. The parse file had many domain-specific role labels, and the lexicon
had additional lexical features such as “can-fly.”

Currently there are several thousand utterances available in the ATIS corpus. However,
only 100 were used for training the PARSEC network here. The coverage of the trained
network on novel sentences was not particularly impressive (63% adequate’ parses of a
test set that included some novel lexical entries), but the network learned to process the
noisy training sentences without difficulty. In a limited evaluation on novel noisy sen-
tences, the network seemed more sensitive to novel constructs than noise per se. Sub-
stantially more sentences would be needed for training and testing to fully understand
the effects of noise in this domain. However, in principle it is possible to model noise
effects directly within the PARSEC framework.

7.4 Summary

In this chapter, I explored PARSEC’s behavior on three kinds of noisy input. In the first
test, on data including speech recognition errors in the JANUS system, PARSEC was
able to outperform an LR parser on particularly noisy data. But it showed an inability 1o
assign preferences to sets of competing hypotheses, and its performance was worse than
that of an LR parser when each system was given access to multiple candidate hypothe-
ses. However, the LR parser had the advantage of an extremely tight grammar that aided
in robust hypothesis selection.

In the second test, on synthetic ungrammatical sentences from the CR task, PARSEC
was able to outperform three hand-written grammars. In this test, the network was
trained on grammatical input only, but it showed some noise tolerance without any
explicit modeling. The third test suggested that further improvements on parsing noisy
sentences might be possible by explicitly training on noisy examples.

1. This number included parses that were not perfect in all particulars, but were good enough so
that a proper response could be generated within the ATIS paradigm.
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8 Prosodic Information

The utility of prosodic information in speech processing systems is clearly established.
For example, Waibel (1988) showed that speech recognition systems could benefit from
several types of supra-segmental information: e.g. duration, pitch, intensity, and stress.
However, building systems that make effective use of prosody has proved difficult,
Steedman (1991) developed a grammar formalism that made use of intonational annota-
tions 1o aid in parsing, While being an important step, there is still no known method to
automatically extract the intonational information that his system used. In order to begin
to make effective use of prosody, systems must be able to use what is available in the
speech waveform. Huber (1988) made some progress using prosodic information

derived from speech data, but his system was hand-designed.

This chapter describes a limited experiment demonstrating that PARSEC is able to
effectively leam to utilize intonation derived automatically from actual speech wave-

forms,

8.1 Task

In conversations (especially over the phone), it is common for people to intone sen-
tences that are grammatically declarative to indicate that they are seeking confirmation

of the declarative statement. For example, consider this conversation fragment:

Secretary: Hello.
Caller: Hello, my name is Harry Bovic.

Secretary: How can I help you?
Caller: I've registered already, but I haven't received a packet yet.

Secretary: 1 see... Your name is Bovic?
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In the last sentence, in the absence of intonational information (and without dialog-level
context), a parser will assign a declarative mood—this is incorrect. The secretary is
attempting to confirm the name of the caller not trying to tell him his name.

I rained PARSEC to utilize pitch contours extracted from actual speech waveforms so
that trained networks could disambiguate short declarative sentences intoned as state-
ments from those intoned as questions. The network was trained such that in the absence
of any pitch information, it would assume the declarative mood.

Data

8.3

I collected multiple utterances of several short sentences (up to three words) from two
speakers for the majority of the data. The recordings were made under benign condi-
tions with a 16KHz sample rate and 16 bit samples. Each of the utterances was spoken
as a statement and as an intoned question ten times by two speakers (one male and one
female). These were the utterances:

1. “Okay”

2.“Right”

3.“That’s right”

4.“You have one”

5.“That’s okay”

6. “Conference office”

This amounted to 240 utterances. Some other utterances were recorded for additional
testing, and these will be described later,

Signal Analysis

Pitch detection is not a solved problem in speech analysis. It is a very complex percep-
tual phenomenon. A pitch detector must select those peaks in an input waveform corre-
sponding to the primary harmonic signal in voiced regions of the waveform. I was
fortunate to be able to use a neural network based speaker-independent pitch tracker
developed at CMU and at the Oregon Graduate Center (Bamard er al. 1991; Zhou
1991). The pitch tracker was trained using high-quality speech (as was recorded for this
work), but it was trained on a different database (TIMIT data) than was used here,

The input to the pitch tracker is an unprocessed digital waveform, and the output is a list
of waveform sample numbers that correspond to valid pitch pulses. Computation of the
pitch frequencies from this is a simple matter. One nice property of the pitch tracker is
that it indicates no pitch pulses for unvoiced regions of an utterance. This saves an addi-
tional and possibly troublesome step in the pitch calculation. Recognition of voiced
regions is non-trivial,

Figure 8.1 shows an example pitch output for a male speaker on “Okay?” There are
some problems with noisy pitch values, but overall, the pitch contour is quite nice, The
majority of incorrect pitch values come from pitch doubling and from unvoiced regions
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8.3: Signal Analysis

FIGURE 8.1 Example of unsmoothed pitch contour.
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FIGURE 8.2 Example of smoothed pitch contour ("Okay?).

FILE: q.0.0 “Okay?" duration = 377.0 msec, mean freq = 137.3

SMOOTHED

where the pitch tracker failed to suppress pitch peak detection. In Figure 8.1, the area
where there are few pitch points plotted corresponds to the unvoiced “k” in “okay.” Pitch
doubling occurs when peaks in the waveform corresponding to higher order harmonics
are misrecognized as being part of the primary harmonic signal,

I devised a very simple method to process and smooth the pitch contour to make PAR-
SEC’s job a little easier:
* Pitch pulses whose neighbors give very different pitch values are deleted.

* The entire pitch contour is normalized according to the average pitch, and it is
remapped onto a fixed-width one-dimensional vector (length 75),

* The vector is smoothed using a window average. Portions of the vector with no
pitch values receive window average values from the neighboring right and left
areas with pitch values.

Figure 8.2 shows a smoothed contour. Note that the smoothed contours are translated
such that their minimum pitch value is 0. The Y axis of the figure corresponds to the
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FIGURE 8.3 Example of smoothed pitch contour ("Okay.").
FILE: 5.0.0 “Okay." duration = 409.1 msec, mean freq = 113.2
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FIGURE 8.4 Augmented Mood Module.
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value that PARSEC receives as input. Figure 8.3 shows the smoothed contour for
“Okay.” The variation is actually smaller than the somewhat coarse graph indicates.
Appendix E shows additional raw and smoothed pitch contours for two speakers (one
male, one female). Generally, the cleaned pitch contours are visually recognizable as
coming from statements vs. questions.
8.4 Extensions to PARSEC

PARSEC required minimal augmentation. Using the fully trained Mood module (PAR-
SEC Version 4 network) as a starting point, I added an additional set of input units to
represent the time-evolving pitch contour of an utterance (see Figure 8.4). These units
(the Pitch units) corresponded to the fixed-width pitch contour vector (75 units). I also
defined a new PCL hidden unit type for the Mood level that received input connections
from the Pitch units.

The Pitch units” values were simply the smoothed, normalized vector values from the
pitch tracker. The pitch vector varied over the course of processing an input utterance to
simulate an on-line pitch input. At each time step in the processing, the Pitch units were
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updated with a new pitch vector corresponding to the portion of the waveform being
processed.

For each of the following experiments, an augmented Mood module was trained with a
data set that included training data with no pitch information (from the initial pitch-free
training) plus different combinations of the pitch-labeled utterances listed in the Data
section,

Note that it was certainly possible to train a new Mood module from scratch, but the
demonstration that additional information from entirely new modalities could be added
to a pre-existing module is useful. The new information source was utilized to the extent
needed to learn novel training patterns without forgetting old ones.

Experiments

8.5.1

8.5.2

Three experiments were performed which measured PARSEC’s tolerance to different
variations in test conditions,

Novel Gender/Speaker

The training set consisted of 80% of the utterances for the male speaker, and testing was
done on the remaining 20% of the male speaker’s utterances and all of the female speak-
er’s utterances, PARSEC added only one additional hidden unit to the existing Mood
module to leam all of the training tokens. The trained augmented Mood module pro-
cessed 100% of the test tokens correctly.

This result was somewhat surprising given that generally, in speech recognition applica-
tions, performance on new speakers (especially across genders) is substantially lower
than on the speaker that was used for training.

The excellent result arises from a few reasons. First, the pitch contours are normalized
for average pitch and for length. This eliminates a large source of variation between
speakers. Second, the differences between pitch contours for normal declarative state-
ments and declarative statements intoned to be questions are substantial and fairly con-
sistent. Third, since the network was able to see example contours for each of the
utterances, it didn’t really have a very difficult task to learn.

Novel Utterances

For this experiment, the training set consisted of 80% of four utterances for both speak-
ers. The testing set was the remainder—including all of the examples of the two utter-
ances not present in the training set. Note that in this experiment, PARSEC was able to
see examples of both speaker’s utterances. Again, PARSEC added only one additional
hidden unit to the Mood module.

PARSEC processed all of the testing tokens correctly in this case as well. This was

somewhat surprising. The pitch contours for one of the testing utterances (“Conference
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FIGURE 8.5

8.5.3

Different pitch contours for questions.

FILE: q.5.0 “Conference office?” duration = 692.4 msec, mean freq = 225.8

SMDOTHED

R T I S
.
.
.
»
.
.
.
.
.
.
.
.

(LR TR L

Lo - - - - - - -

------ AEssssnanas

o

FILE: g.4.0 “That's okay?" duration = 639.7 msec, mean freq = 221.9

SMOOTHED

sewnn

AESsssTARASETRsEESESE R RN SRR LLLLLT

R L e s r]

FILE: q.3.0 “You have one?" duration = 627.6 msec, mean freq = 273.8

SMDOTHED

L

Coooooco0o0

7
6
5
4
. -~ o
't
.1
.0

B T T T e ST,

office?") appears to be quite different than the others (see Figure 8.5). It is markedly
more step-like, but this variation did not affect the augmented Mood module. The con-
tour was still much different than that of statements, but the network captured the rele-
vant differences without becoming sensitive to the particular question contours observed

during training.

Combination

To test the system under an even more difficult condition, some additional utterances
were collected from two male speakers (intoned as statements and questions, with three

* “Your name is Bovic”

* “You have a form already”
* “Two hundred dollars”

* “Pittsburgh”

* “Is that correct”

* “May I help you™

These sentences are quite different from the earlier sentences in both length and syntac-
tic content. The final two sentences are constrained grammatically to be questions
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FIGURE 8.6 Weakly inflected utterance of male speaker.
FILE: 9.6.0 “Your name is Bovic?" duration = 685.0 msec, mean freq=101.2
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FIGURE 8.7 Normally inflected utterance.
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regardless of intonation, but the speakers were instructed to atempt a very flat intona-
tion in one case, and a natural intonation in another case.

A network was trained to process all utterances of the female speaker—all of these were
different than those listed above. On the first male speaker’s novel utterances, the net-
work had 100% performance. The second male speaker produced weakly inflected
utterances, and the network was able to properly process 72% of the utterances.! All of
the failures were on utterances that were supposed to be recognized as questions. Of
these, a fair proportion cause human listeners to produce incorrect or inconsistent
answers. Figure 8.6 shows an example of one of the more challenging utterances. There
pitch rise is extremely weak as compared with the same utterance of the first male

speaker (Figure 8.7).

To test the hypothesis that it was the weakness of the second speaker’s pitch rises that
caused the failure, the criterion for recognition was modified slightly. Under the new cri-
terion, an utterance was labeled as a statement only if the network’s output was greater
than 0.7 for the Mood module's statement unit. Otherwise, the utterance was labeled as
a question. Using this criterion, the performance of the network on speaker 2 was 97%,
and it remained at 100% for speaker 1. But for the weakness of the second speaker’s
pitch rises, it seems that the network would have achieved excellent performance. Alter-
natively, if the network had seen some examples of weak pitch rises in intoned questions
during training (the female speaker produced sharp rises consistently) it probably would
have achieved high performance.

1. The second male speaker was somewhat ill at the time of the recording. This affected his vocal
ability to a degree.
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8: Prosodic Information

8.6

The last two of these utterances were those that were grammatically constrained 1o be
questions. The network was not trained on any such utterances using any pitch informa-
tion, but these sentences were all recognized correctly as questions. There was a slight
difference in the Mood module’s question unit output value in the two different utter-
ance conditions. In cases where an utterance was intoned “flatly,” the output was less
extreme than in cases where an utterance was intoned with a natural pitch rise.

The network had to distinguish between grammatical statements whose mood could be
affected by intonation and grammatical questions whose mood could not be affected by
intonation. The network learned to combine the syntactic and intonational information
and generalized to a novel case when tested using new speakers of a different gender,

Application to Speech-to-Speech Translation

8.7

Without any additional modification to the existing JANUS system, JANUS using the
augmented PARSEC network was able to produce the proper translations of statements
that had been intoned to be questions (see Figures 9.8 and 9.9 for an example). The fig-
ures show: the network activity, PARSEC parses, and JANUS-produced Japanese trans-
lations for “This is the conference office” intoned as a statement and then as a question.

The layout of the figures is the same as that in Chapter 4, except that there is a group of
units marked “vector.” These units are PARSEC s input representation for the pitch con-
tour of the utterance. The activation patiern in the Mood module of Figure 8.8 shows a
high activation for the top unit (indicating a statement mood). In Figure 8.9, the activa-
tion pattern in the Mood module is inverted, with high activation in the bottom unit
(indicating a question).

The following (correct) translations resulted:

* “This is the conference office.” was translated to “Kaigi jimukyoku desu.”
* “This is the conference office?” was translated to “Kaigi jimukyoku desuka?”

Summary

While being a somewhat modest demonstration in a limited domain, the result is
impressive. Using a straightforward augmentation to an existing trained PARSEC net-
work, it was possible 10 teach the network to utilize an entirely new data source from a
non-symbolic modality. This new data source was immediately useful in the JANUS
system,

PARSEC networks are not affected by their input modality. If the information is consis-
tent, PARSEC can make use of it without the complex schemes required of many sym-
bolic systems. In principle, it should be possible to utilize other types of information
from the speech signal (such as energy patems) 10 aid in different aspects of parsing.
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8.6: Application to Speech-to-Speech Translation

FIGURE 8.8

PARSEC parsefranslation of “This is the conference office.”
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((STRTEMENT 0,81)
(C(CLAUSE 1,0)) (((AGENT 0,98)) (THIS) THIS)
(C(ACTION 0,943 (I5) ISy

(((PATIENT 0.95)) (OFFICE} THE CONFERENCE OFFICE)))
JAPANESE Traerslotion:
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8: Prosodic Information

FIGURE 8.9 PARSEC parsefransiation of “This is the conference office?”

VA A

| Parse:
(COUESTION 0,719999)
CC(CLAUSE 1,0)) (((AGENT 0,98)) (THIS) THIS)
((CRCTION 0,94)) (15) 15
CL(PRTIENT 0,95)) (OFFICE} THE CONFERENCE OFFICE)))

JAPRAESE Translation:
A “KRIGI JIMUKYORL DESUMR*
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9

Conclusion

9.1

The goal of this work was to develop a connectionist parsing system that demonstrated
three central advantages over more traditional parsing systems:

* Ability to learn general grammars from exposure to example parses.
« Tolerance to noise of the kinds found in speech tasks.
* Ability to incorporate multi-modal input.

The PARSEC connectionist parsing system meets these requirements. In this chapter,
first I summarize the primary results of the thesis. I then reintroduce the question
brought up in Chapter 2 regarding where PARSEC fits within the hierarchy of computa-
tional models. Next is a discussion of the contributions of the work to the fields of natu-
ral language processing, connectionism, and speech processing. After that, some of the
shortcomings of the PARSEC system are enumerated. The chapter concludes with some
ideas about future research directions.

Results

9.1.1

The full PARSEC system includes a connectionist parsing architecture, training algo-
rithms, and utility programs to make parser generation relatively efficient. The PARSEC
system was extensively evaluated and compared with grammar-based parsers. This sec-
tion briefly reviews the key features of PARSEC along with a summary of the perfor-
mance results.

Architecture

The architecture is highly structured. The architecture is composed of two stages, a
transformational stage and a labeling stage, each of which are made up of three mod-
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9: Conclusion

ules. The first stage is a series of three transformational modules where PARSEC builds
the basic structure of an input sentence. The second stage is a set of three parallel mod-
ules for labeling the constituents of a sentence. The modules are trained using a variant
of back-propagation learning.

The two central principles in designing the final PARSEC architecture were:

1. Don’t force networks to learn mundane transformations that can be done through
the use of clerical programs.

2. Where possible, inject domain knowledge into the architecture.

The PARSEC architecture is a hybrid of symbolic and sub-symbolic representation and
computation. Words are represented as preprogrammed binary feature patterns, but the
network modules use sub-symbolic hidden representations for making decisions. PAR-
SEC relies on connectionist learning for those tasks where the means of achieving
desired behavior are not obvious.

9.1.2 Learning
The two key aspects of learning are:

1. Generalization: Does the system learn something useful, or has it just memorized
its training examples?

2. Automation: Does it require excessive effort to train for a particular task?

Generalization

If rained in the most straightforward manner, a PARSEC network exhibits poor general-
ization. By incorporating knowledge about language, parsing, and connectionist learn-
ing into the architecture and learning algorithms, PARSEC is able to generalize very
well as compared with traditional hand-written grammar-based parsers. On the CR task,
PARSEC'’s best network achieved 67% generalization, and the best hand-coded gram-
mar achieved 38% (discounting near-misses).

T used four techniques to enhance PARSEC's generalization performance;
1. Weight-sharing in analogous subnetworks: This reduces free parameters and cre-
ates position insensitivity in those modules where it is applicable.
2. Localized receptive fields: This prevents units from using distant, unreliable infor-
mation to make decisions.

3. Programmed constructive learning: This forces PARSEC to learn more general
“rules” initially and less general ones for exceptional cases.

4. Representational conventions: Where possible, internal network representations are
structured so that PARSEC can locate and exploit reliable information sources (e.g.
the augmented phrase block representation with a special head slot).

These techniques are not specific the CR task or even to parsing per se, and some of the
techniques should be applicable to very diverse domains.
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8.2: Is PARSEC a Dynamic Inferencer?

9.14

9.2

Automation

PARSEC’s performance results would be of little practical value without a reliable auto-
mated way for generating trained networks. The training algorithms are highly auto-
mated and robust. A non-expert was able to train a PARSEC network for a novel task
with little difficulty, and the resultant parser performed well. In another experiment,
PARSEC was able to leam a small German parsing task—a surprising result considerin g
that PARSEC was designed only with English in mind.

Nolse Tolerance

PARSEC networks offer a degree of noise tolerance “for free” That is, one can train a
network on a set of well-formed example sentences and expect the trained network 1o
show a degree of noise tolerance. Networks do not become sensitive to fine-grained
grammatical regularities such as subject/verb agreement. This is in contrast to the brit-
tleness of grammar-rule-based parsing systems. Networks also show tolerance to some
speech recognition errors.

In the JANUS speech-to-speech translation system, using the speech recognition sys-
tem’s best hypothesis (often noisy), a PARSEC network was able to increase perfor-
mance from 70% to 77% over a hand-coded grammar. PARSEC was not able to robustly
select from multiple ranked hypotheses, and its performance was worse than that for the
hand-coded grammar in multiple-hypothesis mode (80% vs. 86%). In other experiments
on synthetically generated ungrammatical sentences, PARSEC showed a wider toler-
ance to loose grammar than did traditional systems.

The ATIS task was used as a data source for testing tolerance to real spontaneous speech
effects and ungrammatical input from actual transcriptions. In this experiment, a PAR-
SEC network was trained on a mixed set of sentences that included some noise. The
trained network showed some noise tolerance, but more extensive evaluations using
larger data sets are needed.

Multi-modal Input

A goal in speech processing has been to be able to develop systems that effectively com-
bine textual information with acoustic information. Connectionist learning algorithms
simply respond to statistical regularities in the activation patterns of their input units.
PARSEC is able to use pitch information from a speech signal in order to disambiguate
mood in short utterances where syntax alone is insufficient. This work opens the door
for more ambitious attempts at synergistically combining multiple information sources

in speech processing.

Is PARSEC a Dynamic Inferencer?

I now return to the discussion of whether or not PARSEC fits Touretzky’s notion of a
dynamic inferencer (Touretzky 1991). To review, a dynamic inferencer is a model in
which:

* The number of input patterns is exponential in the length of the input, and in which
the model must have a similar number of internal states.
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8.3

9.3.1

* Training set size is at most polynomial in vocabulary size.
« The model is able to use novel intermediate states in response to novel combina-
tions of input patterns.

PARSEC seems to fall short of being able to deal with involved compositionality of the
sort one would like to see in a true dynamic inferencer. For example, Touretzky shows
an example of a PP attachment problem where a PP attachment influences the attach-
ment of the parent PP:

* the car in the junkyard with the dog
* the car in the junkyard with the dog on the hood

In the first case, the preferred attachment is “the dog” to “the junkyard.” In the second
case, the preferred attachment changes. Attaching “the hood" to “the dog” changes its
preferred attachment to “the car.” PARSEC could certainly leam to perform the proper
attachment for a particular set of cases, but it probably wouldn’t develop the ability to
generalize the behavior to truly novel situations.

Interestingly, each of PARSEC's modules is essentially a categorizer (the simplest of
Touretzky’s models), but through a clever representation of the input words that main-
tains the type/token distinction, and the hierarchical modular structure, PARSEC fulfills
some of the requirements of a dynamic inferencer.

Contributions of the Thesis

This work makes contributions in natural language processing, connectionism, and
speech processing.

Natural Language Processing

This work recasts the parsing problem as a series of pattern recognition subproblems,
and it offers a non-rule-based method to solve the problems. This is in sharp contrast to
traditional grammar-based parsing systems. In traditional systems, decisions about
phrase structure are made by application of rigid rules. In PARSEC, such decisions are
made without rules within a back-propagation hidden layer. Instead of advocating the
elimination of rules or using back-propagation networks exclusively in parsing, I would
interpret PARSEC’s success as an opportunity for more researchers to develop parsers
that rely on softer decisions.

PARSEC networks reliably induce general grammars from exposure to example parses.
With additional work to extend PARSEC to more substantial domains, it may prove to
be more robust than writing grammars by hand. Humans don’t have the capacity to write
rules of the complexity that PARSEC can learn. PARSEC can leamn to combine very
diverse features (syntactic, semantic, statistical, and acoustic) in subtle ways that might
not occur to a human. In large corpora, there might be sufficient regularity to induce
robust complex behavior of a very different nature than has been explored so far,

One aspect of performance that has not been emphasized in the thesis is parsing speed.
PARSEC networks produce parses in linear time with respect to input length, This com-
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9.3.2

pares very well with theoretical bounds on most grammar-based parsers. In the current
implementation, on serial hardware, typical parses take several seconds, as compared
with near real-time speed for the LR parser that was used for performance comparisons.
However, owing to the parallel nature of connectionist networks, it should be possible to
implement real-time versions of PARSEC networks on many types of parallel hardware.

Connectionism

PARSEC is a successful application of connectionist techniques to a real problem. In
such a young field as connectionism that has produced high expectations and few real
demonstrations, this alone is an important contribution. However, there are some addi-
tional areas in which PARSEC makes a contribution.

Structure and Connectionist Engineering

Probably the single most salient feature of the PARSEC architecture is its structure, both
at a macroscopic level in terms of modules and at a finer level in terms of constraints
placed on connectivity within modules. This feature differentiates PARSEC from many
other connectionist architectures for language processing. The contrast is not merely
cosmetic. Imagine an unstructured back-propagation network for parsing. The input and
output could be essentially the same as PARSEC’s, but the network would be required to
leamn the complex transformational and labeling steps with no guidance. Although 1
have not built such a network, I feel confident that it would perform very poorly on
novel sentences.

By using structure in PARSEC, 1 was able to engineer the architecture, In response to
positional sensitivity in the Phrase module, I added weight-sharing and local receptive
fields. In response to poor generalization in the Roles module, I augmented the phrase
block representation with head slots. These types of engineering improvements are diffi-
cult to imagine being learned in an amorphous parsing network. The lesson is that struc-
ture should be viewed as a tool to enhance performance.

Constructive Learning

Constructive learning techniques were very effective in PARSEC. They helped elimi-
nate a variety of thomy learning problems and provided a way lo create an automatic
task-independent PARSEC parser generator. Using fully connected networks with pre-
determined architectures for serious performance oriented tasks may not be a wise
approach to take. Of course, some hand-tuning of automatically generated architectures
might afford performance improvements, but at least the constructive techniques pro-
vide a good starting point.

The Programmed Constructive Learning technique developed during this work brought
a surprisingly substantial improvement in generalization performance. The principle is
simple—to prevent a network from utilizing excess freedom in its hidden units’ input
connections, use hidden units in sequence with progressively wider input connectivity.
The PCL technique should have useful applications in other domains. Any task in which
a network designer has a principled idea (or even just a good hunch) of which input
units have more reliable information than others is a candidate for some version of this
technique.
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9.3.3

9.4

Speech Processing

The two primary contributions of this thesis regarding speech processing are a method
for building task-specific parsers that exhibit noise tolerance and a method for utilizing
acoustic information at the language level. The former problem has traditionally been
left to linguists, and while highly trained linguists can produce very good grammars, the
process is time-consuming and is not without uncertainty as far as the quality of finished

product.

The latter problem of incorporating acoustic information has not been adequately
addressed by earlier work, nor do I claim that this work solves the problem. However,
the augmented PARSEC system that uses pitch information takes an important step. It
was possible for PARSEC to leam 10 use real pitch contours with an extremely straight-
forward augmentation. No complex schemes for knowledge combination were required.

Shortcomings

9.5

PARSEC does not attempt to solve many of the open problems in natural language pro-
cessing. Notably, its method for handling lexical ambiguity would be insufficient for
more substantial domains. Also, no attempt was made to attack anaphora resolution or
other deep problems in NLP.

The restrictions on vocabulary are not too stringent because of the feature representa-
tion, but restrictions on the size of corpora that PARSEC can handle at this time are lim-
iting. More powerful computers or better learning algorithms are probably necessary
before PARSEC can attack substantially larger tasks. To make very strong claims about
PARSEC relative 1o established NLP systems, corpora of thousands of sentences must
be processed.

An undesirable aspect of PARSEC's architecture is the length constraints placed on the
input and intermediate representational structures (e.g. in the CR task, phrase blocks
could contain up to five words). However, many of the constraints can be eliminated
since most of the modules are constructed by replication. Instead of replicating the hard-
ware, it is possible to either dynamically generate needed hardware, or to use single
copies of the small subnetworks and appeal to external hardware 1o manage buffering
and memory. Even so, there are other constraints not so easily relaxed such as the level
of center-embedding possible. This must be predetermined. !

Future Work

There are many possible directions to pursue. Each of the difficulties mentioned in the
previous section opens an avenue of research. Of those problems, I feel that approaching
larger corpora using PARSEC is the most important. It would require better solutions to
the other problems, and it would allow for evaluation of PARSEC with more convincing

1. This aspect of PARSEC’s behavior may not be particularly undesirable since humans seem to
have a fixed center-embedding depth, beyond which they tend to fail to parse properly.
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comparisons to other parsing formalisms. In particular, the problem of lexical ambiguity
is interesting.

I envision a possible extension 1o PARSEC in which words are modeled using multiple
distinct word senses as in some of the early connectionist work in NLP. However, using
the same engineering approach to robust back-propagation as in the rest of PARSEC, it
might be possible to learn to choose proper word senses. The word sense units could be
provided with a number of pieces of information, ranging from direct connections from
other word units to important pieces of the current parse. Lexical priming effects, syn-
tactic constraints, and semantic interactions among words might emerge in a computa-
tionally useful way. The issue of scale is a serious one though. The obvious localist
approach may prove to be computationally intractable for some time.

Another interesting possibility is tighter coupling between PARSEC and speech recog-
nition. The possibility for synergistic interaction is especially hopeful for connectionist
speech systems. The idea of exploring the use of other acoustic information types than
pitch is especially appealing. Virtually any acoustic feature might prove useful to solv-
ing some aspects of the parsing problem, and PARSEC may be able to make use many
types of acoustic information,

In contrast to making stronger links with lower-level processing, it is also possible to
pursue the other direction—that of dialog or conversation level interaction. For exam-
ple, in domains such as Conference Registration, speaker identity (caller or secretary)
contains useful information. In principle, PARSEC should be able to make use of dialog
level information to guide the parse in much the same manner as it made use of acoustic
information,
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A Network Formalism

This appendix contains the equations that define the behavior of units in the networks
used throughout this thesis (for additional details, see Jain 1989). The key features of
the network formalism are:

* Well-behaved symbol buffers are constructed using groups of units.

* Units have temporal state; they integrate their inputs over time, and decay toward
zero.

* Units produce the usual sigmoidal output value and a velocity output value. Units
are responsive to both the static activation values of other units and their dynamic
changes.

* The formalism supports recurrent networks.

Learning is done through gradient descent using a mean-squared error measure as with
standard back-propagation learning.

A network is a collection of arbitrarily connected units. Time (denoted by 1) is discrete,
and units are updated synchronously. For each unit i, the following are defined:

o! = output
vi = velocity
a = activity
b! = bias

d; = decay

A= damping factor
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sEE stimulation

For each connection from unit j 1o unit i, there are two weights:
w:} = output weight to i from j
w}; = velocity weight to i from j

Attime ¢ = 0, the velocity and activity of each unit is zero. The bias and decay of a unit
are not time dependent. The remaining quantities are updated as follows:

o = o(al+b) (1)
v = of-o!™! (2)
a; = a;"'d;+ Als] @)
—1,+2
A= 1 a;'dq 4
= = M t ,
&= Z (0}-1w;+\!;_ lw}}) (5)
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1
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Equations 1 and 2 define the values of a unit i at time ¢ that are externally available via
output connections. Equation 3 shows how a unit behaves as it is updated. The activity
is the sum of two terms: the residual activation and the damped stimulation. The resid-
ual activation is the activity remaining at time ¢ from the activity at time ¢-1. If the decay
value is near one, most of the activity remaining is retained; if the decay is near zero, lit-
tle < the activity is retained. The stimulation comes from a unit’s input connections.
The damping factor prevents activation values from getting very large. Equation 1 adds
in the bias term for the unit—essentially the resting activation value.

The constant M is set large enough to allow activity to be pushed into the flat region of
the sigmoid function (Equation 6), but not too far. This type of unit degenerates into a
standard back-propagation unit if M is infinite, all velocity weights are zero, and the
decay is zero. In this work, M was 20, the decay for learning units was 0.3, and the
decay for input and buffering units was 1.

The standard derivation for back-propagation learning, with some minor modifications
for the temporal factors, produces the weight update equations.
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B Conference Registration Dialogs

This appendix lists the 12 conversations that form the corpus for the CMU/ATR Confer-

ence Registration Task.

Conversation 1

CALLER: Hello, is this the office for the conference?
OFFICE: Yes, that’s right.

CALLER: I would like to register for the conference.
OFFICE: Do you already have a registration form?
CALLER: No, not yet.

OFFICE: 1 see. Then, I'll send you a registration form. Could you give me your name

and address?

CALLER: The address is 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15236. The

name is David Johnson.

OFFICE: I see. I'll send you a registration form immediately. If there are any ques-

tions, please ask me at any time.
CALLER: Thank you. Goodbye.
OFFICE: Goodbye.

Conversation 2

CALLER: Hello.
OFFICE: This is the office for the Conference.
CALLER: I would like to take part in the conference. What should I do?
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OFFICE: First, you must register with a registration form. Do you already have a reg-
istration form?

CALLER: Not yet, please send me a form.

OFFICE: Then, could you give me your name and address?

CALLER: The address is 12 Grant Street, Pittsburgh, Pennsylvania, 15133, The name is
Judy Simpson.

OFFICE: 1 see.

CALLER: Is an attendance fee required?

OFFICE: Yes, $200 per person is required as a registration fee.

CALLER: I see. Thank you very much.

OFFICE: Goodbye.

Conversation 3

CALLER: Hello, is this the conference office?

OFFICE: Yes, that’s right. May I help you?

CALLER: I would like to attend the conference. How can I apply?

OFFICE: Please fill out a registration form. Do you have one?

CALLER: No, not yet. :

OFFICE: OK, then I'll send you a registration form. Would you please give me your
name and address?

CALLER: My address is 114 Beechwood Avenue, Squirrel Hill, Pennsylvania, 15213.
My name is Harmry Bovic.

OFFICE: Would you spell your last name please?

CALLER: It’s B-O-V-I-C.

OFFICE: I've got it. I'll send you the form immediately,

CALLER: Thank you very much. Goodbye.

Conversation 4

OFFICE: Hello, this is the conference office.

CALLER: Could you give me some information about the application fee for the con-
ference? How much will it cost if I apply for the conference right now?

OFFICE: Well, let’s see. It costs $250 per person. But if you apply next month, it will
cost you $325. The proceedings and the reception are included in the appli-

CALLER: 1am a member of the Information Processing Society. Is there a discount for
members?

OFFICE: No, there is no discount this time.
CALLER: I understand. How can I pay?

OFFICE: Payment should be made by bank transfer. Please remit to our bank account
which is mentioned in the announcement. The deadline is the end of the year.

CALLER: OK, thank you very much,
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OFFICE: You're welcome. Please feel free 1o ask if there’s anything you don't under-
stand. Goodbye.

Conversation 5

OFFICE: Hello, conference office.

CALLER: I would like to contribute a paper to the conference. Would you please tell
me the topic of the conference?

OFFICE: This conference covers a wide area of research related to Interpreting Tele-
phony. We are also expecting linguists and psychologists as participants.

CALLER: Fine. By the way, what is the official language of the conference?

OFFICE: English and Japanese.

CALLER: I don't understand Japanese at all. Is there simultaneous interpretation into
English when the presentation is made in Japanese?

OFFICE: Yes, we have simultaneous interpretation service into English,
CALLER: That would be helpful for me. Thank you very much. Goodbye.

Conversation 6

OFFICE: Conference office.

CALLER: I would like to know the details of the conference.

OFFICE: Do you have a conference announcement?

CALLER: No, I don't.

OFFICE: OK, the conference will take place from August 22nd to the 25th at the New
York World Trade Center. The fee for participation is $500. If you intend to
present a paper, please submit a summary by March 20th. I'll send the con-
ference announcement to you today. Would you mind telling me your name
and address?

CALLER: My name is Eric Thompson. My address is 1412 Smithfield Street, Pits-
burgh, Pennsylvania, 15237.

OFFICE: Would you spell your last name for me?

CALLER: Sure, it's T-H-O-M-P-S-O-N.

OFFICE: OK. Could I have your phone number to00?

CALLER: Yes. 372 8418.

OFFICE: 372 8148, is that correct?

CALLER: No, it’s 8418.

OFFICE: 372 8418, right?

CALLER: Yes, it is. Thank you very much, goodbye.

Conversation 7

OFFICE: Hello, conference office.
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CALLER:

OFFICE:
CALLER:
OFFICE:

CALLER:
OFFICE:
CALLER:
OFFICE:

CALLER:

I wonder if you could help me. I sent in the registration form for the confer-
ence. But I can’t attend the conference, so I would like to cancel.

Could you please give me your name?

Yes, this is Dan Cooper from Bell Labs.

Mr. Cooper, you have already paid $400 for your registration fee, haven't
you?

Yes, I have. Is it possible for you to refund the registration fee?

I'am sorry we can’t. As noted in the announcement, cancellation after Sep-
tember 27th precludes a refund. We'll send you the programs and proceed-
ings later,

Will somebody else be able to attend instead of me, then?

Yes, that’s all right. Please let me know in advance who is going to attend
instead of you.

Good, I'll let you know when it's decided. Goodbye.

Conversation 8

OFFICE:
CALLER:

OFFICE:

CALLER:

OFFICE:
CALLER:
OFFICE:
CALLER:
OFFICE:
CALLER:
OFFICE:
CALLER:
OFFICE:

CALLER:
OFFICE:

Hello, conference office.

I've heard that you have a city tour during the conference. Can we still take
part in it?

Yes, you can. We will visit Heinz Hall, Mount Washington, and the Mellon
Museum on the afternoon of August 5th. Would you like to join us?

How much does it cost?

$35, that includes dinner.

Are the speakers also participating?

Some of them are supposed to.

Then I would also like to go.

OK. Please give me your name and the number of people in your party.

My name is Christopher Ohara. My wife will be coming too.

Would you spell your first name for me, Mr. Ohara?

Sure, Christopher, C-H-R-I-S-T-O-P-H-E-R.

We’ll meet in front of the reception desk. Please pay the tour fee there when
you arrive.

OK, thank you very much.

We’ll be expecting you.

Conversation 9

OFFICE:
CALLER:
OFFICE:
CALLER:

Hello, conference office.
I'have a question about topics in the conference.
Yes, what is it?

There is a topic called Machine Translation in the announcement. Specifi-
cally, what is it about?
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OFFICE: I'm sorry. I'm really unable to answer any technical questions. The titles of
papers 10 be presented at the conference are printed in the second version of
the announcement. Would you please take a look at it?

CALLER: Yes, I will. Please mail me the announcement as soon as possible. My
address is 34 Dayton Drive, Edison, New Jersey, 37814. My name is John
Mathis.

OFFICE: 34 Dayton Drive, Edison, New Jersey, 37814, John Mathis, correct?

CALLER: Yes.

OFFICE: Would you spell your last name for me please?

CALLER: Sure, it's M-A-T-H-I-S.

OFFICE: I'll send one as soon as possible. Is there anything else I can help you with?

CALLER: No, that’s all thanks. Goodbye.

Conversation 10

OFFICE: Conference office.

CALLER: Can I ask you a few questions? I would like to contribute a paper to the con-
ference. How can I apply?

OFFICE: First, you should send us a 200 word summary by March 20th. The summary
will be reviewed here and we will send you a reply by May 20th. If your
paper is accepted, we'll also enclose special forms for your paper. Please
send them back to us by June 30th.

CALLER: Fine, what kind of form do I have to write the summary on?

OFFICE: We have a special form for the summary. Please fill it in. Then, we’ll send
you the application form. May I have your name and address please?

CALLER: All right, my name is George VanParis from Al Labs. My address is 34 Park
Avenue, New York, New York, 23415,

OFFICE: Mr. George VanParis from Al Labs, right? Your address is 34 Park Avenue,
New York, New York, 23415. Is that correct?

CALLER: Yes, it is. Please send me an application form.
OFFICE: Sure, I'll send it to you immediately. Goodbye.

Conversation 11

CALLER: Is this the conference office?
OFFICE: Yes, this is the conference office. May I help you?
CALLER: Please tell me how to get to the conference site. I'm at Station Square now,

OFFICE: Please take the subway to the U.S. Steel building, downtown. From there
there is a bus to the conference center. Of course, you’ll also be able to take a
taxi from the downtown area.

CALLER: How much is it from Station Square to the conference center by taxi?
OFFICE: From Station Square it will cost you about $12.
CALLER: And how much does it cost from downtown?
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OFFICE: From downtown, it will cost you approximately $5.
CALLER: OK, thank you very much.
OFFICE: Notat all. You're welcome,

Conversation 12

CALLER: Hello.
OFFICE: Hello, this is the conference office.

CALLER: I would like to ask you about hotel accommodations for the conference. Do
you have a service that can help me find a place to stay?

OFFICE: Yes, we do. The hotels we can help you with are the Hilton Hotel and Crystal
Hotel. A single room will cost you from $80 to $110 per night. A twin room
ranges from $95 to $150 per night.

CALLER: Fine, which hotel is closer to the conference center?
OFFICE: I'm sorry, what did you say?

CALLER: I said “Which hotel is closer to the conference center?”
OFFICE: Oh, the Hilton Hotel is closer to the conference center.

CALLER: Then I would like to make a reservation for the Hilton Hotel. Can I leave the
hotel reservation to you?

OFFICE: Sure. We'll be able to reserve rooms for you at either the Hilton Hotel or the
Crystal Hotel.

CALLER: That’s fine. Well, could you reserve an $80 single room at the Hilton Hotel?
OFFICE: OK. An $80 single room at the Hilton Hotel. Right?

CALLER: Yes. That’s right.

OFFICE: When will you check in?

CALLER: The evening of August 4th. Checking out the morning of the 8th.

OFFICE: OK, please wait a moment. I am going to check to see if there is a vacancy.,
Yes, there is. Please give me your name and address.

CALLER: My name is Joe Bradshaw. The address is 54 8th Avenue, Pittsburgh, Penn-
sylvania, 15238.

OFFICE: Would you spell your last name please?
CALLER: It’s B-R-A-D-S-H-A-W,

OFFICE: And your phone number please?
CALLER: My phone number is 331 2521.

OFFICE: OK. I've reserved a single room at the Hilton Hotel from August 4th to the
8th.

CALLER: Thanks very much. Goodbye.
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C Conference Registration
Testing Sets

This appendix contains the two generalization test sets. The seniences are distinct from
the 12 conversations. These sentences were generated by people not associated with the
development of the connectionist parser. Performance for the best PARSEC network
(CR4) and the best hand-written LR grammar (Grammar 3) are shown in the two col-
umns at right. For CR4 (first column), the markings are: GOOD, CLOSE, and BAD., For
LR3 (second column), the markings are: GOOD, CLOSE, BAD, and NIL (to distinguish

NIL parses from incorrect non-NIL parses).

Test Sentences CR4 LR3
(please send me the summary immediately) GOOD GOOD
(you should send it immediately) CLOSE GOOD
(i will arrive on the twenty second) BAD GOOD
(is there a discount for members of the information pro- GOOD GOOD
cessing society)

(by the way what is the official language) CLOSE GOOD
(how much will it cost) GOOD GOOD
(if i apply now will you send me a form immediately) BAD NIL

(i like to register) GOOD CLOSE
(please register me for the conference) BAD NIL
(who are the linguists) GOOD GOOD
(you must submit a twenty word summary by august) GOOD NIL
(when should i send the summary) GOOD GOOD
(could you tell me the deadline for registration) GOOD NIL
(can i do that) GOOD NIL
(please give me your name) GOOD GOOD
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(i am not sure)

(please fill out the form which i will send you)

(i don+t like registration forms)

(give me your name please)

(how much is the registration fee)

(what is your address)

(please fill out the form i send you)

(please fill the form that i will send you)

(can you mail me an announcement)

(can i join the city tour)

(what papers will be presented on august twenty second)

(can you make a reservation for me)

(i don+t understand)

(how much does the tour cost)

(go to the registration desk to meet your party)

(i would like a registration form for the conference)

(1 would like a hotel room)

(how can i get the proceedings)

(i+m expecting to attend the ai conference but i don+t
have a registration form)

(could you please send me one)

(i would like hotel information)

(do you have the name of hotels)

(what is a possible place to stay)

(are some rooms free)

(when is the first registration deadline)

(have i made it)

(how much do i have to pay if i register later)

(are there any accommodations at this conference)

(how much is it)

(can i register at the desk)

(how can i get the proceedings if i don+t register for it)

(how much do the proceedings cost)

(can you send me a conference announcement)

(when is harry bovic participating)

(do speakers get free registration)

(hello my name is harry bovic)

(1 would like to register for the ai conference)

(i will send you an application)

(what is your name please)

(mynmncishanybovicbovic)

(i also noted your address and phone number)

(my address is five four four two grant street pittsburgh
pennsylvania one five two three two)

(the phone number is five five five five five five five)

CR4

BAD

BAD

GOOD
CLOSE
GOOD
GOOD
BAD

CLOSE
GOOD
GOOD
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GOOD
GOOD
GOOD
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GOOD
GOOD
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GOOD

LR3

NIL
GOOD
GOOD
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(do you have any technical questions about the con-
ference)

(vesido)

(are you able to help me make a reservation at a hotel)

(yesiam)

(there are two hotels the crystal and the hilton)

(i would like a single room in the hotel closer to the
conference)

(fine that would be the hilton)

(that is okay)

(can i give you any information about the conference)

(i would like a discount on the proceedings)

(that will be included in the papers with your applica-
tion)

(what are the possible forms of payment)

(the correct form of payment for the conference is
bank transfer)

(i am also participating in the city tour)

(you can register for that tour on the first afternoon of
the conference)

(tour registration will be accepted during the first
afternoon of the conference)

(is there subway service at the hotel)

(will any speakers be participating in the tour of the
city)

(what is the conference fee)

(i have already paid my fee for the conference)

(i can+1 attend)

(could my wife attend the conference in my place)

(my wife is mentioned in the announcement)

(may i get a summary of the topics)

(1 would like to submit a paper to the conference)

(how do i go about this)

(i will send you the form to fill out)

(you should have included a three hundred word sum-
mary)

(which is that)

(we must get your summary by may twentieth)

(no it is closer)

(can you make the hotel reservation)

(i am a member of the ai society)

(will i get any discount)

(yes there is a discount for members)

(is this the office for conference registration)

(i will take your name and address and send you the
correct forms)
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GOOD
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(what is your phone number please)

(yes how may i help you)

(would you like to register for the conference)

(your summary must arrive soon)

(that hotel is closer to the conference site)

(the hotel mentioned a discount for conference mem-
bers)

(tiles of papers will be included in the information
forms)

(topics to be presented will be included in the forms)

(how do you spell that)

(what is that)

(i said may twentieth)

(the name of the hotel is the hilton)

(pay the fee by bank transfer)

(the fee is three hundred fifty dollars)

(ves that includes the reception)

(no the fee does not pay the city tour)

(that will be made later)

(the fee is five hundred dollars after september thirti-
eth)

(i will send you the application today)

(feel free to ask any special questions)

(i will be able to answer any questions)

(send your application on september thirtieth)
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GOOD
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Testing Sentences (Final Set) CR4 LR3
(i do not understand you) GOOD NIL
(then i would like o have some information about the CLOSE BAD
conference)
(how can i help you) GOOD GOOD
(what is the fee for the registration) GOOD NIL
(the registration fee is three hundred fifty dollars per  GOOD NIL
person)
(can you send me a registration form) GOOD GOOD
(my name is heinz thompson) GOOD NIL
(could you spell your last name please) GOOD GOOD
(i will send you a form immediately) GOOD GOOD
(thank you goodbye) GOOD GOOD
(office for the conference can i help you) GOOD NIL
(i+ve sent a paper but haven+t heard from you) BAD NIL
(could you please wait) GOOD GOOD
(when have you sent your paper) BAD NIL
(oh i see) BAD GOOD
(that+s free) GOOD NIL
(do you have any questions) GOOD BAD
(what will you do now with the paper i sent you) BAD NIL
(i will send your paper right back as soon as i see it) BAD NIL
(am i telling to the office for the conference registra- BAD NIL
tion)
(yes you are) GOOD GOOD
(how can i help you) GOOD GOOD
(what do i have to do) BAD NIL
(you should fill out a conference registration form) GOOD NIL
(can+t we do that right now on the phone) BAD NIL
(i am sorry we can+t) GOOD GOOD
(how can i get a conference application form) GOOD NIL
(i am sure you can send me one) GOOD NIL
(yes of course) GOOD NIL
(if you give me your address) GOOD NIL
(i+11 send you a form and some information about the GOOD BAD
conference)
(is there anything else i can do for you) BAD NIL
(so i would like you to spell very specifically) BAD NIL
(i would like to register for the ai conference) GOOD NIL
(could you say this please) BAD GOOD
(could you please say it) GOOD GOOD
(is there a special discount for the participants of the GOOD GOOD
conference)
(yes it+s ninety dollars) GOOD GOOD
(you have to register soon) CLOSE NIL
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(there is a deadline)

(when is it)

(how can i send you the registration fee)

(fine could you also reserve a room for me)

(do you have the number)

(yesido)

(i am included now)

(yes you are)

(hello can you give me some information about the ai
conference)

(is it still possible to get a hotel room)

(please wait)

(can you reserve a hotel room for me)

(i can make a reservation for you if you give me your
number)

(i would like to register for the conference but i don+t
know how much the fee is)

(it+s two hundred dollars per person if you register
immediately)

(is there any participation discount)

(ves for linguists it+s two hundred dollars per person)

(do you have a registration form)

(if you could give me your name and address then i+l
send you one immediately)

(i+11 spell it for you)

(it+stilosloboda)

(sorry could you please spell the name t00)

(do we have two registration forms)

(can you give me an address please)

(then i+l send you the two forms immediately)

(could you send us some information about rooms
too)

(ves i+ll enclose some hotel information)

(are you a member of the ai society)

(can you spell your last name for me)

(vesit+stebelskis)

(oh i+m sorry)

(is that right)

(what kind of a name is that)

(yes i know)

(let+s see here)

(there will be a registration fee of forty dollars)

(what kind of payment do you have)

(can you give me the number)

(that is eight five seven three four two nine four)

(you-re all right)
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(you should get it in about a month)

(which do you say would be the last)

(are you able to make a reservation there for me)

(no but i can give you the number)

(it+s eight four six eight two two four)

(the hilton is at eight three two four two nine eight)

(is there anything else)

(no i don+t know)

(are you a member of the ai society)

(we+ll send you a registration form as well if you+re
not)

(no thanks)

(i+m already a member)

(send us a check for three hundred dollars in the next
month)

(but i did not)

(okay)

(how should we send the information)

(we+1l get that right out to you)

(is there anything else you would like)

(can you tell me which hotel is closer to the confer-
ence site)

(do you still have rooms)

(thanks i+1l tell them right now)

(hello i would like to register to the ai conference)

(how do you spell mellon)

(have a good one)

(thanks)

(may i help you)

(when is the deadline for a conference registration
please)

(are you a member of the ai society mister)

(i am a member of the information processing society
of the bank)

(let+s see)

(the registration fee is three hundred dollars)

(you get fifty dollars if you register immediately)

(i would like to register)

(please tell me how can i pay)

(will you be able to mail it if i send it by bus this after-
noon)

(could you tell me your name and address please)

(my name is john johnson)

(no)

(my correct address is one two three four forbes ave-
nue)
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(is this correct)

(no thank you very much)

(i would like to register for ai ninety two)

(all right what is your name)

(okay your registration fee is five hundred twelve dol-
lars)

(okay what is your payment number)

(ves i would like to register for the conference)

(can you spell that)

(ai conference office may i help you)

(all of the details will be in the forms we send you)

(hello i would like to get some information on the
conference)

(is this the right number for it)

(okay first i would like to know the deadline for the
registration so that i can get the discount registra-
tion fee)

(sure the deadline is may thirty first)

(by the way what is the conference site)

(the conference site is the heinz center)

(oh is it closer to the museum)

(is there any interpreting in the conference)

(oh really that+s too good)

(is there an office of the conference)

(i would like to attend for the conference)

(are you a member)

(what is your name)

(i+m not sure)

(i said it+s one five two zero six)

(that+s the conference fee)

(you are welcome)

(how much will be in your party)

(we have rooms at the crystal and the hilton)

(which would you like)

(no thank you)

(would you like to pay now or be called)

(please tell me)

(you will be called with information about the confer-
ence)

(that is a fee of four hundred fifty dollars)

(that+s fine then)

(could you send me information on the hotels in the
area)

(would you like to make accommodations there)

(yes that would be fine)
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(i would like to get five rooms with four people to a
room)

(all we have now is your name address and phone
number)

(that+s five four people rooms at the hilton that will be
reserved with your name)

(the number is four one two two six eight three nine
seven)

(if you have any questions please feel free to ask)

(could you give me your fee)

(can i get there by taxi)

(how do you like to be paid)

(can i make a reservation for a room for september
seventh)

(yes can i have your name please)

(thank you i will)

(hello hilton hotel)

(how may i help you)

(i+m expecting a conference today)

(do you have anything that would be possible)

(is there a desk in the hotel)

(your rooms are reserved)

(could i have your phone number please)

(no that+s fine)

(i would like some information from you)

(my number is seven one eight five five five one five
four three)

(today i can be called at seven one eight five five five
seven six five five)

(thanks for your help)
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D ATIS Sentences: Novice User Test

This appendix contains the training and testing sentences that were used by the non-
expert for the ATIS task.

Training Sentences

(what airline is c o)

(show me all the nonstop flights from denver to san francisco leaving about three
o+clock in the afternoon)

(show me the distance from the denver airport to downtown)

(show me the nonstop flights from san francisco to d f w before noon)

(show me the airfares on flights from d f w to denver before nine a m)

(what is restriction a p slash eighty)

(what is restriction v u slash one)

(what is class y)

(what is the fare on american airlines fourteen forty three flight)

(what type of aircraft is flying united airlines flight nine fifty three)

(show me flight nine fifty three+s arrival time and what type of meal it has)

(show me which airline flight leaves from denver to san francisco at eighteen ten)

(show me the flight that leaves san francisco for d f w at nine a m)

(book reservations for five from dallas to baltimore on may twelfth at two hundred and
eighty eight dollars one-way)

(book reservations for five from dallas to baltimore on flight three fourteen on may
twelfth)

(purchase tickets for five from dallas to baltimore on flight three fourteen on may
twelfth)

(make reservations)

(show me all the flights from baltimore to philadelphia on may nineteenth)
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(show me the fares)

(show me all the flights from baltimore to philadelphia on may twenty sixth)

(what does f a mean)

(show me all the flights and their fares from san francisco to boston on Jjune second)

(show me all the flights from boston to d f w on june ninth)

(show me their fares)

(show me all the flights from boston to s f 0 on june second)

(show me all the flights from s f o to d f w on june nine)

(what do the transport abbreviations mean)

(please give me a list of flights from dallas to boston leaving on saturday mornings
before noon)

(i need flight times from boston to dallas leaving on sunday afternoon after three
o+clock)

(what is a y class and what does the d | under f a column mean)

(what does the d 1 under the column f a mean)

(are there any advance purchase fares from dallas to boston for round-trip tickets)

(give me a list of all flights from dallas to boston that only have one stop between dallas
and boston)

(give me all flights from dallas to boston)

(give me a list of all airfares for round-trip tickets from dallas to boston flying on ameri-
can airlines)

(show me a list of all flights from dallas 1o philadelphia)

(give me a list for all round-trip flights flying from dallas to philadelphia on american
airlines)

(give me a list for all round-trip flights flying from dallas to san francisco on american
airlines)

(give me a list of all flights from dallas to san francisco)

(let me see all the information from dallas fort worth 1o atlanta)

(what does a | mean)

(show me flights from dallas to atlanta)

(what does 1 h mean)

(show me the different flights)

(list the days and its meanings)

(show me a list of codes for the meals)

(what does e q p stand for)

(does american have any specials)

(what does restriction v u slash one mean)

(how much does the flight from dallas fort worth to atlanta round-trip cost)

(what does restriction a p slash eighty mean)

(what does class y n mean)

(do you have to take a y n flight only at night)

(list all information about flights from dallas fort worth to atlanta)

(how much does flight number eighty three cost one-way)

(show me the meanings of the classes again)

(show me the fares for each type of ground transportation in atlanta)

(show me all flight information from atlanta to san francisco)

(what+s the price of a one-way ticket on flight number one thirty seven)

(what does restriction a p slash sixty eight mean)

(show me the restrictions on flight number one thirty seven)

(show me ground transportation in san francisco)
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(what type of aircraft is used on flight number one thirty seven)

(show me all information about aircraft type lockheed 1 one zero one one)

(show me all information about aircraft type boeing seven six seven)

(show me all the nonstop flights from boston to atlanta)

(give me a general description of flight number five four seven)

(what type of aircraft is flight number five four seven)

(what is the coach fare for one-way flight on number five four seven)

(what is restriction v u on flight number five four seven)

(what types of ground transportations services are available from the airport in atlanta to
downtown atlanta)

(what is transport 1)

(what is transport r)

Testing Sentences

(show me all the nonstop flights from atlanta to dallas)

(what type of aircraft is flight four four seven)

(what is flight code one zero two one four seven)

(what is the flight day of flight number five four seven)

(what type of ground transportation is available from d f w airport to downtown dallas)

(what is the one-way coach fare on flight number four four seven)

(what is the one-way first class fare on flight number four four seven)

(show me all the nonstop flights from dallas to san francisco)

(what type of aircraft is flight number four five nine)

(what ground transportation is available from the san francisco airport to downtown san
francisco)

(what is the name of the airport in san francisco)

(what is the name of the airport in atlanta)

(show me all the nonstop flights from dallas to denver early in the morning)

(show me all the flights from denver to san francisco between two p m and seven p m)

(show me the distance from san francisco airport to downtown)

(what is the fare on flight eleven forty nine from continental airlines)

(what is the fare on united airlines nine fifty three)

(show me the airfare on flight eight eight zero for united airlines)

(show me the airfares on u a+s flight five one one)

(show me all the flights from dallas to baltimore on may twelfth)

(show me the prices for flights from dallas to baltimore on may twelfth)

(show me the price for flight three fourteen on may twelfth from dallas to baltimore)

(show me all the flights from philadelphia to boston on may twenty sixth)

(what airline is m 1)

(show me the transportation from s f 0 to downtown san francisco)

(i need information on airlines servicing boston flying from dallas)

(is there more than one airport in the boston area that american and delta service)

(are there any excursion fares for round-trip tickets from dallas to boston)

(give me all nonstop flights from dallas to boston)

(describe each of the different classes for airfares)

(show me information that will take me from dallas to atlanta)

(what does d | mean)

(on the days is a one equal to sunday)
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(does american airlines have any special fares)

(show me time tables of fare code seven one zero zero two six two)

(show me flight numbers of american from dallas fort worth to atlanta)

(show me ground transportation types in atlanta)

(show me classes for flight number one thirty seven and restrictions and what they
mean)

(how much is flight number one thirty seven with a class y)

(is five hundred and fifty two dollars the cheapest fare from san francisco to dallas fort
worth)

(show me capacity seatings for the boeing seven sixty seven)

(what is the capacity of flight number five four seven)

(flight five four seven is part of what airline)

(what is restriction a p fifty seven on flight number five four seven)

(under the category ground transportation what is transport a)

(what is the capacity of flight four four seven)

(what types of meals are available on flight number four four seven)

(what types of meals are available on flight number five four seven)

(what is the capacity of flight number four five nine)

(what is the one-way coach fare for flight number four five nine)

(what ground transportation is available from the airport in boston to downtown boston)

(what is the name of the airport in boston)
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E Pitch Experiment Data

This appendix contains some of the data that was used for the experiments discussed in
Chapter 8. Note that the plots tend to accentuate small differences in pitch values since
they are quite coarse. A single example of 6 utierances, pronounced as statements and
as questions, for two speakers (one male and one female) are included.

Speaker 1

These contours are from speaker ANJ (male).
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E: Pitch Experiment Data
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FILE: 5.2.0 “That's right." duration = 416.1 msec, mean freg = 111.0
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E: Pitch Experiment Data
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FILE: q.4.0 “That's okay?” duration = 574.9 msec, mean freq=149.6
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E: Pitch Experiment Data
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Speaker 2

These contours are from speaker TMJ (female). Note the higher mean frequencies for
each corresponding contour. However, the normalized contours are quite similar.
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E: Pitch Experiment Data

FILE: .2.0 “That's right.” duration = 489.7 msec, mean freq = 183.1
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FILE: 8.3.0 “You have one.” duration = 565.6 msec, mean freq = 204.9
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E: Pitch Experiment Data

FILE: 5.4.0 “That's okay.” duration = 594.4 msec, mean freq = 183.3
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FILE: s.5.0 “Conference office.” duration = 703.1 msec, mean freq = 194.3
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E: Pltch Experiment Data
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