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Abstract

This thesis realizes the first existing automatic system for simultaneous
speech-to-speech translation. The focus of this system is the automatic
translation of (technical oriented) lectures and speeches from English to
Spanish, but the different aspects described in this thesis will also be help-
ful for developing simultaneous translation systems for other domains or
languages.

With growing globalization, information exchange between people from
different points of origin increases in importance. In the case of the Euro-
pean Union or the United Nations often Arabic, Chinese, English, Russian,
Spanish or French is used as common communication language, but not
all people are able to speak fluently in these languages. Therefore, often
simultaneous or consecutive interpretations are necessary to overcome this
language barrier. But the costs for such interpretation services are increas-
ing continuously — about 1 billion Euros are spent per year within the
European Union.

Hence, it is not surprisingly that the governmental funding of research
in the domain of spoken language translation is increasing. Large research
projects have been launched like TC-STAR in the EU and GALE in the
USA. In contrast to the system proposed in this thesis, the main focus is
to achieve high quality translation of text and speech wherefore systems are
required which run at multiples of real-time.

This thesis deals with the question on how a simultaneous translation
system can be built and determines whether satisfactory quality can be
achieved with state-of-the-art components. A main focus is to increase the
performance of the speech recognizer and the interface between the speech
recognition and machine translation components.

It will be shown how the performance can be increased by using speaker
adaptation techniques. With an amount of 15 minutes of speech, the error
rate was increased by 5.6% relative using supervised adaptation techniques
and by 2.1% using unsupervised adaptation techniques. Furthermore, the
importance of online adaptation during decoding was shown.

Since topics between lectures and speeches may greatly vary, a domain
adaptation framework is proposed, which is able to automatically adapt
the system towards a new domain by using language model adaptation.
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The adaptation level and expected performance improvement from 3-4%
relative in WER and 12-22% relative in BLEU depends on the information
available prior to the presentation. Solutions are proposed for information
ranging from the speakers name to past publications of the speaker through
to the presentation slides. Relevant data for language model adaptation was
collected by querying a search engine and retrieving the web pages which
were returned as the result of the query. A ¢f — idf based heuristic was
developed for generating suitable queries.

Besides recognition and translation quality, high speed and short latency
are important for a simultaneous translation system. Therefore, speed-up
techniques like search-space pruning and Gaussian selection are explored.
To reduce the latency, a streaming approach was implemented, in which
the recognizer returns steadily partial hypotheses for a continuous input
stream of speech. A resegmentation component was introduced to chunk
the continuous stream of partial hypotheses in semantic segments; short
enough to keep the latency low, but long enough to not degrade translation
quality. By using the proposed techniques, decoding speed could be reduced
by 27% to a real-time factor of 0.78 and latency could be reduced to 2-3
seconds, both with only minor decrease in translation quality.

For delivering the output of the simultaneous translation system to the
audience several promising technologies such as targeted audio loudspeakers
will be explored.

Compared to a human interpreter, the automatic system was judged in
a human end-to-end evaluation in the category of fluency to 2.3, and the
interpreter to 3 on a scale ranging from 1 (bad) to 6 (very good). Further-
more, with the help of an questionnaire, it could be shown that about 50%
of the questions could be answered by the judges in case of the automatic
system and about 75% in case of the human-interpreter.



Kurzzusammenfassung

Die vorliegende Arbeit realisiert das erste existierende automatische Uber-
setzungssystem, das fiir die Simultaniibersetzung von (technischen) Vortra-
gen oder Reden von Englisch nach Spanisch geeignet ist.

Die zunehmende Globalisierung erfordert den Fluss von Information zwi-
schen Personen unterschiedlicher Herkunft und Muttersprache. Beispielswei-
se besteht die Européische Union aus 27 verschiedenen Staaten und die Ver-
einten Nationen ist ein Zusammenschluss von sogar 192 Staaten. Zwar dient
oft Arabisch, Chinesisch, Englisch, Russisch, Spanisch oder Franzosisch als
Kommunikations- bzw. Amtssprache, jedoch werden diese Sprachen nicht
von allen gleichermafien gut gesprochen. Gerade jedoch in wichtigen Gespra-
chen, Debatten, oder Verhandlungen méchte kaum jemand darauf verzichten
diese in der eigenen Muttersprache zu fithren, in der er sich am sichersten
fiihlt. Insofern werden z.B. im Européischen Parlament alle Debatten simul-
tan in zur Zeit 23 Amtssprachen interpretiert — ein erheblicher Kostenfaktor.
Fir kleinere Veranstaltungen wie z.B. Forschungskonferenzen sind solche
Kosten nicht tragbar, weshalb man davon ausgehen kann, dass manche Vor-
trage aufgrund dieser Kommunikationsbarriere einfach nicht stattfinden. In
den USA ist Sprachiibersetzung vor allem bei der Pravention von Terror-
anschldgen und aufgrund der Konflikte mit anderen Léndern wie dem Irak
immens wichtig geworden. Da jedoch die Datenmengen, die iiber Fernseh-
stationen oder im Internet in fremden Sprachen verfiigbar gemacht werden,
riesig sind, sind diese nur noch durch automatische Methoden analysierbar.

Insofern ist es nicht tiberraschend, dass gerade in letzter Zeit zunehmend
Forschungsgelder in Sprachiibersetzungsprojekte in der EU (TC-STAR) und
in den USA (GALE) investiert wurden. Das Ziel solcher Projekte, ist es auf
groflen Doménen eine hochstmogliche Sprachiibersetzungsqualitéit zu erlan-
gen. Deshalb besitzen solche Systeme Verarbeitungsgeschwindigkeiten von
mehreren zig Echtzeitfaktoren. Es gibt jedoch auch Systeme, die sehr viel
kiirzere Antwortzeiten haben und sogar schon auf mobilen Plattformen funk-
tionieren, sich jedoch aber meist nur auf kleine Doménen, wie z.B. Termin-
absprachen oder touristische Phrasen beschranken.

Mit dem in dieser Arbeit vorgestelltem Simultaniibersetzers lasst sich
nun erstmals die Kommunikationsbarriere auch in kleineren Veranstaltungen
wie z.B. Vorlesungen an Universitdten iiberwinden. Da die Performance,
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d.h. die Ubersetzungsqualitit und die Latenz zwischen Vortragendem und
Ubersetzung von groBter Bedeutung sind, beschiftigt sich diese Arbeit mit
den Problemen beim Aufbau eines solchen Systems und deren Losungen.

Sprecheradaption

Es wird gezeigt, wie stark sich die Performance des Systems durch ver-
schiedene Ansétze zur {iberwachten und uniiberwachten Sprecheradaption
verbessern ldsst. Bei einer verfiigharen Datenmenge von etwa 15 Minuten,
konnte die Fehlerrate um 5.6% durch iiberwachte und immerhin noch um
2.1% durch uniiberwachte Sprecheradaption reduziert werden. Es konnte
auch die Wichtigkeit einer fortlaufenden Adaption wihrend des Vortrags
gezeigt werden.

Domaéanenadaption

Es werden verschiedene Ansétze zur Doménenadaption in Abhéngigkeit der
zur Verfiigung stehenden Adaptionsdaten untersucht. Angefangen mit dem
Namen des Vortragenden, iiber mehr oder weniger verwandte Publikationen
bis hin zu den Vortragsfolien wird gezeigt wie solche Informationen effek-
tiv genutzt werden kénnen. Hierzu wurde ein Framework entwickelt, in dem
in Abhéngigkeit der zur Verfligung stehenden Information dhnliche Daten
aus dem Internet geladen werden, um damit automatisch die Sprachmodelle
von Spracherkennung und Sprachiibersetzung zu adaptieren. Um relevante
Webseiten mit Hilfe von Suchmaschinen wie Google zu finden, wurde ei-
ne tf — idf basierte Heuristik zur Generierung der Anfragen entwickelt. Es
konnte gezeigt werden, dass die Webseiten, die mit Hilfe dieser Heuristik ge-
sammelt wurden, themenverwandte Informationen enthalten. In Abhéngig-
keit des Hintergrundsprachmodells konnte durch die Adaption die Fehlerrate
der Spracherkennung um 3-4% und der BLEU-Score der Sprachiibersetzung
um 12-22% verbessert werden. Ferner wurde untersucht, inwieweit sich auch
das Vokabular des Spracherkennungssystem mit Hilfe dieser Daten auf die
neue Doméne adaptiert werden kann.

Geschwindigkeit und Latenz

Im Gegensatz zu anderen Arbeiten im Bereich der Sprachiibersetzung ist
das in dieser Arbeit vorgestellte System das erste, das auch in Echtzeit in
groferen Doménen wie Vortrdge und Reden arbeitet. Insofern beschéftigt
sich diese Arbeit auch mit dem Einfluss von verschiedenen Parametern wie
ModellgroBe (akustisches Modell, Sprachmodell), Suchraumbeschrinkung
(Pruning), und anderen Beschleunigungstechniken auf die Geschwindigkeit
und Qualitdt von Spracherkennung und Sprachiibersetzung. Neben der Ge-
schwindigkeit ist auch eine geringe Latenz sehr wichtig, da sie die Kom-
munikation zwischen Publikum und Vortragendem aber auch innerhalb des
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Publikums beeinflusst. Die Latenz entsteht durch die Serialisierung in der
Abarbeitung der Eingaben, da der Sprachiibersetzung moglichst semantisch
abgeschlossene Einheiten iibermittelt werden miissen, um eine gute Uberset-
zungsqualitidt zu gewéhrleisten. Insofern wird in dieser Arbeit gezeigt, wie
eine solche Schnittstelle zwischen Spracherkennung und Sprachiibersetzung
realisiert werden kann und wie dadurch die Ubersetzungsergebnisse beein-
flusst werden. Die Geschwindigkeit des Spracherkenners konnte um 27% auf
einen Echtzeitfaktor von 0.78 bei einer Verschlechterung der Fehlerrate von
nur 2% reduziert werden. Ferner konnte die Latenz des Simultaniibersetzers
auf 2-3 Sekunden mit nur geringen Einbuflen in der Ubersetzungsqualitit
reduziert werden.

System und Ubertragungsmedien

Des Weiteren wird die in dieser Arbeit entwickelte Gesamtarchitektur des
Systems vorgestellt und verschiedene Ubertragungsmedien im Hinblick auf
ihre Eignung in verschiedenen Szenarien analysiert. Verschiedene vielver-
sprechende Technologien wie z.B. Ubersetzungsbrillen und gerichtete Ultra-
schalllautsprecher werden im Detail beschrieben.

Humanevaluation

Da es im allgemeinen sehr schwierig ist, die Qualitit des Simultaniiberset-
zers mit Hilfe von automatisch berechenbaren Giitemaflen zu beurteilen,
wurde eine Humanevaluation durchgefiihrt. Die beiden wichtigsten Kriteri-
en hierbei waren syntaktische Korrektheit, d.h. Fliissigkeit und semantische
Korrektheit, d.h. Eignung der Ubersetzung. Mit Hilfe eines Fragebogens und
im Vergleich mit einem menschlichen Interpreter konnte gezeigt werden, dass
mit Hilfe der automatischen Simultaniibersetzung iiber 50% aller Fragen be-
antwortet werden konnten, wihrend es bei der menschlichen Interpretation
75% waren. Die Fliissigkeit der Ubersetzung wurde auf einer Skala von 1
(schlecht) bis 6 (besser) im Falle des menschlichen Interpreters mit einer 3
und im Falle des automatischen Systems mit einer 2.3 bewertet. Zusammen-
fassend ist zu sagen, dass gerade bei technisch anspruchsvollen Vortragen
auch menschliche Simultandolmetscher nicht in der Lage sind, diese korrekt
zu ibersetzen und dass ein automatisches System mindestens in der Lage
ist dem Zuhorer den Kontext des Vortrags zu vermitteln — oftmals schon
ausreichend, um jemandem genug Wissen zu vermitteln, der die Sprache
des Vortragenden nicht versteht.
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Chapter 1

Introduction and Motivation

Estimates for the number of existing languages today range from 4000 to
6000. At the same time, the phenomenon of globalization requires an active
flow of information among people speaking a wide variety of languages. Lec-
tures are an effective way of performing this dissemination. Personal talks
are preferable over written publications because they allow the speaker to
tailor his or her presentation to the needs of a specific audience, and at
the same time allow the listeners to access information relevant for them
through interaction with the speaker. Currently, many lectures simply do
not take place because no matter how intensively one studies a foreign lan-
guage, one will always be more expressive, more fluent, and more precise in
one’s native tongue, and human translators are too expensive. The use of
modern machine translation techniques can potentially provide affordable
translation services to a wide audience, making it possible to overcome the
language barrier for almost everyone.

So far, speech translation research has focused on limited domains, such
as the scheduling of meetings, basic tourist expressions, or the pre-arrival
reservation of hotel rooms. The development of these recognition and trans-
lation systems has happened in phases. At first, only single, isolated phrases
could be recognized and translated. The phrases had to be spoken in a clean
and controlled manner adhering to a predetermined grammar, and only pre-
viously seen phrases could be translated. In the next phases, the restrictions
on the speaking style were lifted, leading to the emergence of recognition
systems for conversational and spontaneous speech. At the same time, the
allowed discourse in terms of vocabulary and sentences increased. Large
vocabulary continuous speech recognition systems became reality. Similar
developments have been observed in the field of machine translation.

This thesis realizes the first existing automatic system for simultane-
ous speech-to-speech translation. The focus of this system is the automatic
translation of lectures and speeches from English to Spanish, but the dif-
ferent aspects described in this thesis will also be helpful for developing
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simultaneous translation systems for other domains or languages. Several
different components including automatic speech recognition (ASR), ma-
chine translation (MT), and text-to-speech synthesis (T'TS) are involved in
such a system, and this thesis examines end-to-end performance require-
ments and how they can be met. Two performance aspects are of particular
interest: translation quality and system latency. Both performance aspects
rely on the performance of the sub-components and their interaction with
one another.

To improve the performance of speech recognition or machine transla-
tion, system adaptation is the most common technique. This work inves-
tigates the different levels of topic adaptation for speech recognition and
machine translation, dependent on the amount and type of data available
prior to a specific lecture. Possibilities are the speaker’s name, more or less
related research papers up to presentation slides. It is shown how this in-
formation can be effectively used to improve the performance of the system.
This work also demonstrates how the performance of the system can be
improved by supervised or unsupervised speaker adaptation.

In contrast to other work focusing on speech-to-speech translation, this
system is the first one which operates in real-time. Typically, speech recogni-
tion is performed in several consecutive steps of decoding and unsupervised
adaptation followed by sentence-based machine translation to achieve the
best possible translation quality. However, this is accompanied by a major
increase in real-time and therefore unsuitable for simultaneous translation.
An important aspect of this thesis is its focus on an analysis of model size,
pruning parameter, or other speed-up techniques influencing the processing
speed of speech recognition and machine translation.

In addition to processing speed, latency is also an important attribute
of real-time systems. The reason of this is that the inter-communication
between the lecturer and the audience or between people in the audience is
negatively affected, if the latency is to high. This work demonstrates how
a low-latency interface between speech recognition and machine translation
can be designed, and how latency-related problems occurring especially dur-
ing machine translation can be solved.

Since it is difficult to judge the quality of such a system using exclusively
automatic measures, the translation quality of the automatic system was
evaluated by humans and compared with the quality of a human interpreter
of the same lectures.

Last but not least, this thesis explores translation delivery in ways other
than using traditional head-phones. Since head-phones hinder communica-
tion between people in the audience, possibilities were explored of delivering
a target oriented translation, but without disturbing other people in the
audience. Several innovative technologies such as heads-up display goggles
or beam-steered ultrasound loudspeakers will be described in more detail
and compared. Note that although a TTS component is essential in a si-
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multaneous translation system, the development and optimization of such a
component is not part of this thesis. Instead, a TTS system from Cepstral®
was used.

The remainder of this chapter presents the goals and contributions of
this work, and gives an overview of the structure of this thesis.

1.1 Goals

The major goal of this thesis is easily formulated: To develop an automatic
speech-to-speech translation system which is able to simultaneously trans-
late lectures and speeches at satisfactory quality. But what is a satisfactory
translation quality?

To answer this question, possible applications of the proposed system
have to be defined. While specialized automatic systems exist for text trans-
lation, able to achieve reasonable translation results in a specific domain,
it is clear that current automatic simultaneous translation systems are un-
able to achieve the same performance as a human interpreter. But in the
author’s opinion an automatic system become useful the moment that if
people not understanding the language of the speaker at all are at least able
to understand the rough content of the speech or lecture correctly. This
means that, in situations where a human interpretation is simply too costly,
automatic translation systems may be preferred. For the purpose of this
thesis, “satisfactory quality” is achieved when the rough content of a lecture
or speech is correctly transferred.

A goal of this thesis is to determine whether satisfactory quality can be
achieved with current state-of-the art technologies, and to what extent.

Another goal of this thesis is to explain the problems involved in building
such a system and to identify and describe several solutions to them.

1.2 Outline

This work can be divided into three parts. The first part comprises Chapters
2 to 4 and compares the advantages and disadvantages of human simulta-
neous interpretation with those of automatic simultaneous translation. Fur-
thermore, it introduces the lecture scenario and a first baseline system. In
the second part, Chapters 5 to 8, the main issues of a simultaneous trans-
lation system are discussed, namely speaker adaptation, topic adaptation,
latency and real-time, as well as the chunking of the speech recognizer’s
hypotheses for optimal use in machine translation. Although some of the
developed techniques are applied to the machine translation as well, the
main focus of this thesis is improving the speech recognition. The simulta-
neous translation system itself together with some delivery aspects as well

http://www.cepstral.com
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as its end-to-end evaluation is presented in the third part, Chapters 9 and
10.

More specifically, Chapter 2 clarifies the differences between the term
Translation and Interpretation and describes the challenges in human in-
terpretation. In contrast thereto, Chapter 3 points out the advantages of
an automatic simultaneous translation system compared to human inter-
preters and defines some demands on an automatic translation system. In
addition, the application scenario, i.e. lectures on which this thesis focus is
introduced.

Chapter 4 introduces the data available for system training, i.e. acoustic
model, language model, and translation model training, and describes the
lecture data used as development and evaluation sets. Furthermore, the
speech recognition and machine translation systems used as a baseline for
the experiments in the following Chapters are introduced.

The next Chapter 5 deals with speaker adaptation in the simultaneous
translation system. First, the adaptation techniques used are introduced
and the differences between online and offline as well as supervised and
unsupervised adaptation are described. After this, the results achieved by
using the introduced techniques and applying them to the acoustic model
of the speech recognizer are presented.

In Chapter 6 a framework for topic adaptation is introduced. Depending
on the information available for a particular talk or speaker, different levels
of adaptation can be applied to a language model. For language model
adaptation a topic dependent adaptation schema is presented, which base
on linear language model interpolation with components build on relevant
data retrieved from the Internet. Therefore, a #f-idf based method will
be proposed, which extracts topic related queries out of the given data for
querying a search engine.

The focus of Chapter 7 are the latency and real-time issues of the simul-
taneous translation system. First, the search space pruning within the used
speech recognizer, Ibis is analyzed and after that the performance of different
Gaussian selection techniques are compared. While the search space prun-
ing and Gaussian selection are mainly responsible for reducing the decoding
speed, the necessary changes for a standard speech recognizer to reducing
the latency will be explained as well.

Chapter 8 concentrates on the interface between speech recognition and
machine translation and deals with the question how a continuous stream of
words delivered from the speech recognition can be optimally segmented in
order to keep the latency of the simultaneous translation system low but the
translation quality high. Therefore, an algorithm will be presented which
tries to identify semantic boundaries.

The developed prototype of a system for simultaneous translation will
be presented in Chapter 9 in more detail. Furthermore, it is reflected about
different output or delivery technologies for the system.
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Chapter 10 presents the results of the end-to-end evaluation. Besides an
automatic evaluation also a human end-to-end evaluation was carried out.
Chapter 11 concludes the work. The questionnaires used for the human
end-to-end evaluation are presented in Appendix A.

This thesis will not give an introduction to the fundamentals of speech
recognition and machine translation. Instead, readers not familiar with
signal processing, acoustic modeling using Hidden Markov Models, statisti-
cal language modeling (LM), or statistical machine translation (SMT) are
referred to | , | for speech recognition and | , | for
machine translation.
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Chapter 2

Human Simultaneous
Interpretation

Everybody who speaks at least two languages knows that translation and
especially simultaneous interpretation are very challenging tasks. One has
to cope with the special nature of different languages such as terminol-
ogy and compound words, idioms, dialect terms or neologisms, unexplained
acronyms or abbreviations and proper names, but also stylistic differences
and differences in the use of punctuation between two languages. Transla-
tion or interpretation is not a word-by-word rendition of what was said or
written in a source language; instead, the meaning and intention of a given
sentence has to be transferred in a natural and fluent way.

In this chapter, the differences between the terms Interpretation and
Translation, especially in the context of this thesis, namely automatic si-
multaneous translation, are clarified in Section 2.1. Section 2.2 presents the
world’s largest employer for translators and interpreters, the European Com-
mission, and the costs incurred by their services. Section 2.3 concentrates on
the challenges in human interpretation and describes some techniques and
compensatory strategies used by interpreters, as well as some factors and
stylistic aspects responsible for the quality of simultaneous interpretation.

2.1 The Differences between Interpreting and
Translating

Although the terms translation and interpretation are used interchangeably
in everyday speech, they vary greatly in meaning. Both refer to the transfer-
ence of meaning between two languages; however, translation refers to the
transference of meaning from text to text with time and access to resources
such as dictionaries, glossaries, et cetera. On the other hand interpreting
is the intellectual activity that consists of facilitating oral or sign language
communication between two or among three or more speakers who are not

7
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Figure 2.1: Translation booths in the European Parliament’s hemicycle at
Brussels (from [Wik07a, Eur]).

speaking the same language. [Wik07h]

Both interpreting and interpretation can be used to refer to this activity,
but the word interpreting is commonly used in avoiding the other meanings
of the word interpretation.

The practitioner who orally translates for parties conversing in different
languages or in sign language is called an interpreter. Interpreters must con-
vey not only all elements of meaning, but also the intentions and feelings of
the original, source language speaker. In fact, the end result is an interme-
diate stage of spoken communication, which aims to allow target language
listeners to hear, perceive, and experience the message in a way that is as
close as possible to the experience of those who understand the original,
source language. [Wik(07h]

Translators and interpreters are trained in entirely different manners.
Translators receive extensive practice with representative texts in various
subject areas, learn to compile and manage glossaries of relevant termi-
nology, and master the use of both current document-related software (for
example word processors, desktop publishing systems, and graphics or pre-
sentation software) and computer-assisted translation software tools. In-
terpreters, by contrast, are trained in precise listening skills under taxing
conditions, memory and note-taking techniques for consecutive interpreting,
and split-attention for simultaneous interpreting. [Wik07¢]

The industry expects interpreters to be more than 80% accurate; that
is to say that interpretation is an approximate version of the original. By
contrast, translations should be over 99% accurate. [Wik07¢]

2.1.1 Simultaneous and Consecutive Interpreting

There are two modes of interpretation: simultaneous and consecutive.

Simultaneous interpreting: In simultaneous interpreting, the interpreta-
tion occurs while the source language speaker speaks, as quickly as the
interpreter can formulate the spoken message in the target language.
At the European Parliament, for example, simultaneous interpretation
occurs while the interpreter sits in a sound-proof booth, while listening
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with earphones to the speaker’s source language message (see Figure
2.1). The interpreter then relays the message in the target language
into a microphone to the target language listeners. Simultaneous inter-
preting is the most common mode used by sign language interpreters,
as there is no audible language interference while both languages are
being expressed simultaneously.

Consecutive interpreting: In consecutive interpretation, the interpreter
speaks after the source-language speaker has finished speaking; the
speech may be divided into sections. The interpreter is listening and
taking notes as the speaker progresses. When the speaker finishes
speaking or pauses, the interpreter consecutively renders the message
in the target language, in its entirety, as though he or she were mak-
ing the original speech. Frequently, an experienced consecutive in-
terpreter prefers interpreting phrase by phrase, or shorter sentence
portions, so as to approximate simultaneous interpretation. Because
of this strategy, consecutive interpretation allows the full meaning to
be understood before the interpreter renders the message into the tar-
get language. This often affords a more accurate and fully accessible
interpretation than simultaneous interpreting.

2.1.2 Simultaneous Translation

Simultaneous interpreting sometimes is incorrectly referred to as simultane-
ous translation and the interpreter as the translator. However, in computer
science, the terms machine translation (MT) or automatic translation are
commonly used for systems translating text or speech from one language to
another. The reason for that is that in the past, the main focus of machine
translation was the translation of text, and spoken language translation
(SLT) is only recently attracting a wider interest. Furthermore, the tech-
niques used for text translation are almost identical to those used for spoken
language translation nowadays. Therefore, throughout this thesis, the terms
simultaneous speech translation or simply simultaneous translation are used
for the automatic interpretation of spoken language.

2.2 Translating and Interpreting for the European
Commission

The majority of interpreters work for international organizations like the
United Nations, the European Union, or the African Union, whereas the
world’s largest employer of translators and interpreters is currently the Eu-
ropean Commission (EC), with its two Directorate Generals for Translation'

"http://europa.eu.int/comm/dgs/translation/index_en.htm
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and Interpretation?.

The Directorate General for Translation (DGT) mainly provides trans-
lations of written text in and out of the 23 official languages of the European
Union. There are more than 1800 translators working full-time on translat-
ing documents and on other language-related tasks, accompanied by some
600 support staff. In 2006, the DGT translated more than 1.5 million pages;
72% of the original texts were drafted in English, 14% in French, 2.7% in
German, and 10.8% in the other 20 EU languages. English and French pre-
dominate, because they are the principal drafting languages in the European
Commission. | ]

To support the translators, information technology, such as translation
memory and machine translation technology, is often used. With transla-
tion memory technology, translators can avoid re-translating what has al-
ready been translated. At present, the central translation memory contains
more than 84 million phrases in all official EU languages. Machine trans-
lation technology (currently available for around 18 language pairs) is used
when rapid access to a large amount of information in different languages is
needed, or when some officials would like to draft a document in a language
other than their mother tongue. Machine translation systems are used also
as a basis for an eventual translation of a document. The amount of cor-
recting required varies according to the document type. Speech recognition
technology is used as well (currently for only 9 EU languages) for dictating
text directly in a natural, continuous way, achieving a high degree of accu-
racy and efficiency. The ergonomic an health benefits are also obvious, as
adverse physical effects associated with intensive typing and mouse use are
reduced. | ]

The Directorate General for Interpretation (DG Interpretation) is the
FEuropean Commission’s interpreting service and conference organizer, and
provides interpreters for about 50 - 60 meetings per day in Brussels and
elsewhere. The language arrangements for these meetings vary considerably
— from consecutive interpreting between two languages, for which one in-
terpreter is required, to simultaneous interpreting into and out of 23 or more
languages, which requires at least 69 interpreters. At present, the Council
of the Union accounts for around 46% of the interpreting services provided,
followed by the Commission with around 40%. There are more than 500
staff interpreters, accompanied by 2700 accredited freelance interpreters.

[ ]

When working for the European Commission, translators or interpreters
must have a university-level education, a perfect knowledge of the target
language (usually their mother tongue), and a thorough knowledge of at
least two other official languages.

http://scic.cec.eu.int /europa,/
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In 20062, the European Parliament has spent approximately 300 million
Euro, i.e. 30% of its budget, for the interpretation and translation of parlia-
ment speeches and EU documents. In total, an amount of approximately 1.1
billion Euros are spent per year for the translating and interpreting services
within the European Union, which is around 1% of the total EU budget.

[VS06]

2.3 Challenges in Human Interpretation

According to | |, researchers in the field of psychology, linguis-
tics and interpretation, like Henderson | |, Hendricks [ ] and
Seleskovitch [ |, seem to agree that simultaneous interpretation is a

highly demanding cognitive task involving a difficult psycholinguistic pro-
cess. These processes require the interpreter to monitor, store and retrieve
the input of the source language continuously in order to produce the oral
rendition of this input into the target language. It is clear that this type of
difficult linguistic and cognitive operation will force even professional inter-
preters to resort to a kind of groping for words, a kind of lexical or synthetic
search strategy.

2.3.1 Fatigue and Stress

Fatigue and stress affecting the interpreter negatively, leading to a decrease
in simultaneous interpretation quality. In a study of the fatigue factor and
behavior under stress during extended interpretation turns by Moser-Mercer
and her colleagues | |, professional interpreters were told to work
until they could no longer provide acceptable quality. It was shown that:
(1) during the first 20 minutes, the frequency of errors rose steadily; (2)
the interpreters, however, appeared to be unaware of this decline in quality;
(3) at 60 minutes, all subjects combined committed a total of 32.5 meaning
errors; and (4) in the category of nonsense, the number of errors almost
doubled after 30 minutes on the task. Following Moser-Mercer, it can be
concluded “that shorter turns do indeed preserve a high level of quality, but
that interpreters cannot necessarily be trusted to make the right decision
with regard to optimum time on performing this task (interpreting)”.
Besides extended interpretation turns, other factors influence the inter-
pretation quality. In a study by Mcllvaine Parsons | ], factors rated by
interpreters as stressful are: speakers talking very fast, the lack of clarity
or coherence by the speaker, the need for intense concentration e.g. in TV-
shows, the inexperience with the subject matter, a speaker’s accent, long
speaker utterances between pauses, background noise, and poor positioning
of the speaker’s microphone relative to the speaker. The stress factor was

3Until that time, only 20 official languages were available.
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also compared between experts and novices in | |. She came to the con-
clusion that “conference interpreters have learned to overcome their stage
fright with experience and have developed more tolerance for the stress in-
volved in simultaneous interpretation, while student interpreters still grapple
with numerous problems”.

In | ], the conclusion was drawn that interpreters should work in
teams of two or more and be exchanged every 30 minutes. Otherwise, the ac-
curacy and completeness of simultaneous interpreters decrease precipitously,
falling off by about 10% every 5 minutes after holding a satisfactory plateau
for half an hour.

2.3.2 Compensatory Strategies

In experiments with students and professional interpreters Al-Khanji
[ | found that the most frequent compensatory strategies are —
in the order of occurrences — skipping, approximation, filtering, compre-
henston omission, and substitution. In order to get a deeper insight to the
challenges of simultaneous interpretation for humans the strategies found
during the experiments in | | are summarized shortly.

Skipping: This strategy was used when: (1) the input is incomprehensi-
ble for the interpreter; (2) the interpreter decided that the input is
repetitive; or (3) the interpreter was lagging behind the speaker.

Approximation: When there was no time for details, the interpreters at-
tempted to reconstruct the optimal meaning by giving a less precise
meaning of a word or an expression in the target language instead of
the required lexical expression in the source language. Since enough
semantic components were given in most cases, the meaning of the
intended message was not negatively influenced.

Filtering: This strategy was used when the interpreter tried to compress
the length of an utterance in order to find an economic expression. In
so doing, interpreters seemed to preserve the semantic content of the
message. Filtering is different from skipping in that interpreters are
not necessarily facing a problem with the difficulty of economizing by
reducing the length of an utterance.

Incomplete Sentences: Unlike skipping, the provision of incomplete sen-
tences was used when interpreters omit larger units of speech, which
may have resulted from a failure in text comprehension. In such cases,
the interpreter initially made an attempt to start interpreting units of
speech, which caused comprehension problems, but then gave up and
cut short by stopping in mid-sentence.
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Substitutions: This strategy was employed when interpreters used a lexi-
cal item in the target language which did not communicate the desired
concept nor did it basically retain the meaning of the item in the source
language.

2.3.3 Fluency and the Ear-Voice-Span

Since a audience is only able to evaluate the simultaneously interpreted dis-
course by its form, the fluency of an interpretation is of utmost importance.
According to a study by Kopczynski | ], fluency and style was third
on a list of priorities of elements rated by speakers and attendees that con-
tribute to quality, after content and terminology. Following the overview in
[ |, an interpretation should be as natural and as authentic as possible,
which means that artificial pauses in the middle of a sentence, hesitations,
and false-starts should be avoided | | and the tempo and intensity of
the speaker’s voice should be imitated [ ].

Another point to mention is the time span between a source language
chunk and its target language chunk, which is often referred to as ear-voice-
span, delay, or lag. Following the summary in | |, the ear-voice-span
is variable in duration depending on some source and target language at-
tributes, such as speech delivery rate, information density, redundancy, word
order, syntactic characteristics, etc. Nevertheless, the average ear-voice-span
for certain language combinations has been measured by many researchers,
and varies largely from two to six seconds | , |, depending on the
speaking rate. Short delays are usually preferred for several reasons. The
audience is for example irritated when the delay is too large and is soon
asking whether there is a problem with the interpretation. Another reason
is that a short delay facilitates the indirect communication between the au-
dience and the speaker but also between people listening to the interpreter
and to the speaker. Therefore, interpreters tend to increase their speaking
rate when the speaker has finished.

2.3.4 Techniques for Simultaneous Interpretation

Seleskovitch | |, a professional interpreter and instructor for interpreters,
advocates retaining the meaning of the source language utterance, rather
than the lexical items, and argues that concepts (semantic storage) are far
easier to remember than words (lexical storage). Semantic storage also al-
lows the interpreter to tap into concepts already stored in the brain, which
allows the interpreter to hitch a “free ride” on the brain’s natural language-
generation ability, by which humans convert concepts to words seemingly
automatically. For this reason, preparation before a conference, by talking
to the speaker and by researching the domain of the talk, is vital for inter-
preters. But Seleskovitch admits that concept-based interpretation may not
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always be possible. If the interpreter is unable to understand the concept
being translated, or is under particular stress, they may resort to word-for-
word translation. According to Moser-Mercer | ], also a professional
interpreter and teacher and active in interpretation research, simultaneous
interpretation must be as automatic as possible — there is little time for
active thinking processes. The question is not avoiding mistakes — it is
rather correcting them and moving on when they are made. Another sug-
gestion for interpreters from Honig | | is that interpreters, who must
keep speaking in the face of incomplete sentences, must either “tread water”
(stall while waiting for more input) or “take a dive” (predict the direction
of the sentence and begin translating it). He suggests that “diving” is not
as risky as it sounds, provided the interpreter has talked with the speaker
beforehand, and has what he calls a “text map” of where the talk is headed.

[Loeds]



Chapter 3

Automatic Simultaneous
Translation

A speech translation system consists of two major components: speech recog-
nition and machine translation. Words in the recorded speech input are rec-
ognized and the resulting hypothesis is transmitted to the machine transla-
tion component, which outputs the translation. While this sounds relatively
easy, especially for simultaneous translation which require real-time and low
latency processing with good translation quality, several problems have to
be solved. Furthermore, automatic speech recognition and machine trans-
lation, which have evolved independently from each other for many years,
have to be brought together.

Recognizing speech in a stream of audio data is usually done utterance
per utterance, where the utterance boundaries have to be determined with
the help of an audio segmenter before they can be recognized. Especially
when the audio data contains noise artifacts or even cross-talk!, this strat-
egy can be extremely useful, because such phenomena can be removed in
advance, leading to an improvement in ASR performance. However, the
techniques used in such audio segmenters often require global optimization
over the whole audio data and are therefore infeasible for a simultaneous
translation system. On the other hand, even a simple speech/ non-speech
based audio segmenter will introduce additional latency, since the classifica-
tion of speech/ non-speech frames has to be followed by a smoothing process
to remove mis-classifications.

Almost all machine translation systems currently available were devel-
oped in the context of text translation and have to cope with differences
between a source and target language such as different amount and usage
of word ordering, morphology, composita, idioms, and writing style, but
also vocabulary coverage. Only recently has spoken language translation

"With cross-talk, speech from others in the background, which is recorded by the
speaker’s microphone is defined.

15
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attracted wider interest. So, in addition to the differences between a source
and target language, spoken language differs from written text in style.
While text can be expected to be mostly grammatically correct, spoken lan-
guage and especially spontaneous or sloppy speech contains many ungram-
maticalities, including hesitations, interruptions, and repetitions. In addi-
tion, the choice of words and the amount of vocabulary used differ between
text and speech. Another difference is that utterances are demarcated in
written text, using punctuation, but such demarcation is not directly avail-
able in speech. This is a problem, because traditionally almost all machine
translation systems are trained on aligned bilingual sentences, preferably
with punctuation, and therefore are expecting sentences as input utterances
in the same style. But when a low latency speech translation system is
required, sentences are not an appropriate unit, because especially in spon-
taneous speech they tend to be very long — up to 20-30 words. To cope with
this problem, a third component is introduced, which tries to reduce the la-
tency by resegmenting the ASR hypotheses into smaller chunks without a
degregation in translation quality. Chapter 8 describes this component in
more detail.

Figure 3.1 gives a schematic overview of the simultaneous translation ar-
chitecture treated in this thesis together with required databases and mod-
els. From the continuous input stream of speech, the ASR component is
producing a continuous stream of partial first-best hypotheses, which are
resegmented into appropriate chunks for the SMT component. The SMT
component translates each of these source language chunks into the target
language. By using multiple SMT components translation can be done in
parallel into different target languages at the same time. For delivering
the translation output, different technologies may be used among which the
most prominent are either subtitles or speech synthesis. A more detailed
description will be given in Chapter 9.

In the next section, some related research projects will be described.
Compared to the previous chapter, the advantages of automatic simultane-
ous translation over human interpretation will be discussed in Section 3.2.
The demands on such a system will be formulated in Section 3.3. Finally,
in Section 3.4, an overview of some application scenarios in which such a
system could be of use are described.

3.1 Related Research Projects

In the past, systems developed within research projects and consortia such as
C-Star?, Verbmobil®, Nespole?, Enthusiast, Digital Olympics, and Babylon

2Consortium for Speech Translation Advanced Research, http://www.c-star.org
3http://verbmobil.dfki.de
*Negotiating through Spoken Language in E-Commerce, http://nespole.itc.it
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Figure 3.1: Schematic overview of the simultaneous translation architecture
treated in this thesis. Boxes represent the components of the system, and

ellipsis the models used by the components. As databases, dictionaries and
vocabularies are used.

Translation
Vocabulary

were able to support two-way communication, i.e. speech recognition and
translation in limited application scenarios such as humanitarian aid, health
care, tourism, government, etc., where the advantages of such a system
outweigh the domain limitations. For these first systems, users had to speak
in a well-behaved manner and the system was able to understand only a fixed
number of phrase patterns. In almost all systems an interlingua | ]
approach was used for translation and some of these systems were even
able to run on handheld devices. Recently, in the DARPA-financed project
Transtac®, statistical-based machine translation systems were applied for
use in a handheld device. Limited domain systems, available today, achieve
a translation performance comparable to humans and are able to support
human-human communication.

Nowadays, modern machine translation techniques can potentially pro-
vide affordable translation services to a wide audience, making it possible to
overcome the language barrier for almost everyone. Thus speech-to-speech
translation is attracting more and more attention. As a result of this, two
major research projects were launched in Europe and USA focusing on open
domain spoken language translation, TC-STAR and GALE.

TC-STAR — Technologies and Corpora for Speech-to-Speech- Translation
[ |, a European Commission-financed project, started in April 2004 and
ended in April 2007 within the 6th Framework Program. It was envisaged as
a long-term effort to advance research in all core technologies for speech-to-
speech translation, including automatic speech recognition, spoken language
translation and text-to-speech. The objective of the project was to make a
breakthrough in speech-to-speech translation that significantly reduces the
gap between human and machine translation performance. The focus was

5Spoken Language Communication and Translation System for Tactical Use, http:
//www.darpa.mil/ipto/programs/transtac/Transtac.asp



18 CHAPTER 3. AUTOMATIC SIMULTANEOUS TRANSLATION

on the development of new algorithms and methods. The project targeted
a selection of unconstrained conversational speech domains — speeches and
broadcast news — and three languages: European English, European Span-
ish, and Mandarin Chinese. Project partners, mainly involved in speech
recognition and/ or machine translation, were the Bruno Kessler Founda-
tion (formerly ITC-IRST), the RWTH Aachen, LIMSI-CNRS, the Universi-
tad Politecnica de Catalunya (UPC), Universitét Karlsruhe (TH), and IBM.

The goal of the DARPA GALE — Global Autonomous Language Ezploita-
tion [ | program is to develop and apply computer software technolo-
gies to absorb, analyze and interpret huge volumes of speech and text in
multiple languages. Automatic processing engines will convert and distill the
data, delivering pertinent, consolidated information in easy-to-understand
forms to military personnel and monolingual English-speaking analysts in
response to direct or implicit requests. In difference to TC-STAR, the out-
put of each engine is English-translated text only and no speech synthesis is
used. Instead, a distillation engine is responsible for integrating information
of interest to its user from multiple sources and documents. The input to the
transcription engine is speech, currently with a main focus on Arabic and
Chinese. Military personnel will interact with the distillation engine via
interfaces that could include various forms of human-machine dialog (not
necessarily in natural language).

GALE evolved from two other past projects, EARS and TIDES. The
goal of the EARS — Effective, Affordable, Reusable Speech-to-Text program
was to “produce powerful new speech-to-text (automatic transcription) tech-
nology whose outputs are substantially richer and much more accurate than
currently possible. The program focused on natural, unconstrained human-
human speech from broadcasts and telephone conversations in a number of
languages. The intent was to create core enabling technology suitable for a
wide range of advanced applications, but not to develop those applications.
Inputs and outputs will be in the same language.” The TIDES — Translin-
gual Information Detection, Extraction and Summarization program instead
developed robust technology for translingual information processing. The
goal was “to revolutionize the way that information is obtained from hu-
man language by enabling people to find and interpret needed information,
quickly and effectively, regardless of language or medium.” TIDES tasks
included information detection, extraction, summarization and translation
focusing mainly on English, Chinese and Arabic.

Another project to mention is CHIL — Computers in the Human In-
teraction Loop. CHIL aimed in making significant advances in the fields
of speaker localization and tracking, speech activity detection and distant-
talking automatic speech recognition. Therefore, in addition to near and
far-field microphones, seminars were also recorded by calibrated video cam-
eras. The long-term goal was the ability to recognize speech in a real rever-
berant environment, without any constraint on the number or distribution
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Figure 3.2: Comparison of automatic translation and human interpretation
performance judged by humans in the project TC-STAR. | ]

of microphones in the room nor on the number of sound sources active at
the same time.
Parts of this thesis evolved within the two projects CHIL and TC-STAR.

3.2 Advantages of Automatic Simultaneous Trans-
lation

Given the explanations in the previous chapter of human interpretation in
general and in the European Commission in particular, one has to weigh two
factors when considering the use of simultaneous translation systems: cost
and translation quality. The comparative results of TC-STAR in Figure 3.2
[ | between human interpretation and automatic speech translation
show that automatic translation was judged worse than human interpreta-
tion in most categories, but when it comes to the transfer of content both
were judged nearly equally good. The reason why human interpretation
does not reach “perfect” results is because often interpreters make use of
the above mentioned compensatory strategies. On the other hand, even the
automatic translation system can be of great help, especially for people not
understanding the speaker’s language at all. Furthermore, an automatic
system can easily make use of additional information available about the
speaker or the topic of the speech by using adaptation techniques to im-
prove its perfomance. Note that the automatic TC-STAR system used for
the comparison above was not working in real-time. This means that for a
simultaneous translation system which has to deliver the translations with
a latency as small as possible, a degregation in translation quality can be
expected.

Another advantage of a simultaneous translation system compared to
a human interpreter is that memorizing is not a problem for the system.
Therefore the compensatory strategies skipping, approrimation, or incom-
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plete sentences described in Section 2.3 will not be needed, independently
of the speaking rate of the speaker. However, depending on the system’s
translation speed it might be possible that the latency will rise. While it
might be possible for humans to compress the length of an utterance with-
out destroying the meaning, i.e. filtering or summarization, it is still a very
challenging task for automatic systems [ , .

Another argument is that simultaneous interpretation at 300 to 400 Eu-
ros per hour, is quite expensive. The reason for that is that usually two inter-
preters are necessary and that the time for preparation and postprocessing
must be considered additionally. Furthermore, simultaneous interpretation
requires a soundproof booth with audio equipment, which can be rented, but
this incurs additional costs which may be in most cases unsuitable for small
events. On the other hand, a simultaneous translation system needs time
and effort for preparation and adaptation towards the target application,
language and domain. Depending on the required translation quality, the
costs therefore can exceed those for a human interpretation. However, the
major advantage of an automatic system is that once it is adapted, it can be
easily re-used in the same domain, language etc. A single laptop together
with a microphone is sufficient.

To some extent even generalization should not be a problem for auto-
matic systems. Due to the way such systems are trained, expressions not
directly within the required domain but closely related to it are already
covered by the system. Furthermore, adaptation techniques can be used to
extend the coverage and quality.

Especially in situations where a simultaneous translation into multiple
languages is required, an automatic system is advantageous, because only
the translation has to be extended to a new target language, while the source
side recognition and resegmentation component of the system can be kept
unchanged.

Another advantage is that the transcript of a speech or lecture is pro-
duced for free by using an automatic system in the source and target lan-
guages. In the European Union, for example, these transcripts can be used
as an initial version of the protocols which have to be prepared anyway.

3.3 Demands on Automatic Simultaneous Trans-
lation

In comparison to other translation systems, and also given the observations
regarding human interpretation in the previous chapter, four main demands
on an automatic simultaneous translation system can be formulated:

e correct content

e correct syntax



3.4. APPLICATION SCENARIOS — THE LECTURE SCENARIO 21

e high fluency
e low latency

Obviously, a correct content is the most important demand on a simultane-
ous translation system. In connection to this, syntax also plays an important
role, because the wrong syntax can destroy the content of a sentence. Nev-
ertheless, to understand the content, a translation need not be completely
correct. Instead, it may be sufficient if the words carrying the content or
meaning of a sentence are correctly translated and no misleading content do
exist.

Fluency on the other hand, requires that a simultaneous translation sys-
tem produce a translation which is as natural as possible. Both content and
syntax contribute to naturalness to some extent, but hesitations, false-starts,
and other disfluencies, all characteristics of spontaneous speech, should also
be removed either in advance or during translation | ]. Imitating the
speaker’s tempo also contributes to higher fluency, but also influences the
latency. As already clarified in Section 2.3, it is important to keep the la-
tency, i.e. the ear-voice-span of the whole system, as short as possible. In
English, a latency of about two to six seconds is equivalent to a delay of
about 4 to 12 words, since the average speaking rate is about 120 words per
minute [ , ].

A comparable simultaneous translation system should therefore be able
to produce speech translations of sufficient quality in real-time with a low
latency.

3.4 Application Scenarios — The Lecture Scenario

Given the limitations of the recognition and translation capabilities of cur-
rent speech translation systems, and the system development costs compared
to human interpreters, possible application scenarios for simultaneous trans-
lation are restricted to domains to which a system can be well adapted and
applications in which a system can be re-used and modified or customized
with less effort. Therefore, the lecture scenario is selected as target sce-
nario for this thesis, in which a single speaker is talking about a specific
topic to a larger audience (see Figure 3.3). Small talks, student seminars or
parliamentary speeches also belong to this scenario.

Other environments in which such a system could be of great use are
telephone conversations and meetings. In both situations, it would allow
people to communicate with each other independently of the language bar-
riers. Telephone conversations and meetings are highly spontaneous dialogs
and discussions between two or more people focusing on different topics and
therefore difficult for both speech recognition and machine translation. Fur-
thermore, a very low-latency simultaneous translation system is required
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Figure 3.3: The lecture scenario. The speaker in front of the audience is
recorded with the help of a microphone. The speech is transferred to the
simultaneous translation system running on a PC or laptop and translated.
The figure shows also different possibilities of how the translation output
can be delivered to the audience: as subtitles on the projection screen, by
using loudspeakers, or projected into heads-up display goggles.
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because otherwise direct communication between the participants will be
hindered. Thus, automatic simultaneous translation in these environments
will remain challenging for several years.
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Chapter 4

A First Baseline System

This chapter introduces a first baseline system for spoken language trans-
lation of lectures and speeches. This system will be suitable for consecu-
tive translation only; the necessary techniques for supporting simultaneous
translation will be presented later in Chapters 5 — 8. Starting from speech
recognition and machine translation systems developed and used successfully
in the context of the NIST RT-06S Rich Transcription Meeting Evaluation
on lecture meetings and of the 2007 TC-STAR Evaluation on European Par-
liamentary Speeches, it will be shown how a first baseline spoken language
translation system was built. It will be analyzed how both, the lectures
recorded within CHIL and the speeches recorded within TC-STAR compare
to the lectures on which we focus in this thesis with respect to recognition
and translation quality.

The NIST Rich Transcription Meeting Evaluation series focused on the
rich transcription of human-to-human speech, i.e. speech-to-text and meta
data extraction with the goal to develop recognition technologies that pro-
duce language-content representations (transcripts) which are understand-
able by humans and useful for downstream analysis processes. The eval-
uation in 2006 (RT-06S') was supported by two European projects, AMI
— Augmented Multi-party Interaction’ and CHIL — Computers in the Hu-
man Interaction Loop | ]. Therefore, two data tracks were available
on which a system could be evaluated: Conference Meetings and Lecture
Meetings. In both data tracks, the speakers were recorded with close and
far-field microphones, i.e. table-top microphones and microphone arrays.
Conference meetings (supported by AMI) are goal-oriented small confer-
ence meetings like group meetings and decision-making exercises involving
4-9 participants, who are usually sitting around a table. In contrast, lec-
ture meetings (supported by CHIL) are educational events, where a single
lecturer is briefing an audience on a particular topic.

"http://www.nist.gov/speech/tests/rt/2006-spring/
http:/ /www.amiproject.org/

25
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The European Parliament Plenary Speech (EPPS) task within TC-STAR
focuses on transcribing speeches in the European Parliament in English and
Spanish, and translating and synthesizing them into the other language.
For the speech-to-text task, the data has been recorded from the Euro-
pean Union’s TV Information service Europe by Satellite (EbS) *, which
broadcasts the sessions of the European Parliament live using separate au-
dio channels for the speaker as well as for the simultaneous interpretations
into all official EU languages | ]. Thus, the audio recordings contain
speech from the politicians at their seats and at the podium using stand
microphones, and speech from the interpreters using head-sets. For spoken
language translation, the final text editions from the European Parliament
are available through the EuroParl web site *.

Since lectures and speeches are usually given in rooms with a large au-
dience, microphones with a small distance to the speaker’s mouth, such as
head-worn or directional stand microphones are preferred over far-field mi-
crophones which are more sensitive to background noise. Therefore, the
speech recognition systems were developed and optimized with respect to
close-talk recording conditions. Since this thesis evolved in the context of
the European projects CHIL and TC-STAR, European accented English was
of particular interest.

In Section 4.1 lectures and speeches are characterized by their spontane-
ity and difficulty for speech recognition and spoken language translation and
compared to other speech data such as recordings of read speech, broadcast
news and meetings. After describing the training, test and evaluation data
used for the speech recognition and machine translation systems and exper-
iments in Section 4.2, the development of a first baseline speech-to-speech
translation system is shown. For this purpose, a first speech recognition
system is presented in Section 4.3 and, second, a first statistical spoken lan-
guage translation system is introduced in Section 4.4. The performance, i.e.
the recognition and translation quality and speed is measured and compared.

4.1 Characterization of Lectures and Speeches

In comparison to speeches given in parliament plenary sessions such as those
in the European Parliament, lectures or talks are generally more difficult for
speech recognition. The reason for that is that although potentially prac-
ticed in advance, lectures or talks are usually given freely and are therefore
more spontaneous, thus containing more disfluencies and ungrammatical-
ities. In contrast, the speeches given in parliament plenary sessions are
well prepared and often read. Furthermore, while the speeches given in
parliament plenary sessions must be understandable for all politicians, the

3Europe by Satellite, http://europa.eu.int/comm/ebs/index_en.html
“The European Parliament Online, http://www.europarl.europa.eu
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Figure 4.1: NIST benchmark comparison (from [/A07]). The speech recog-
nition quality on tasks was measured in word error rate (WER).

level of detail in lectures or talks can be targeted to the audience, ranging
from general understandable to very specific. E.g. the lectures recorded in
CHIL are very technical oriented. On the other hand, when compared to
meetings, both lectures and speeches are less spontaneous, more focused,
and are mainly monologues with only small amounts of discussion, i.e. the
question-and-answer part.

Figure 4.1 shows the evolution of word error rates over the years in speech
recognition for several NIST-organized benchmarks. The results on Euro-
pean English lectures and parliament speeches were added from the projects
CHIL and TC-STAR. From the figure, it can be observed that speech recog-
nition quality decreases with an increasing amount of spontaneity in the
speaking style and with domain complexity. The higher word error rates
(see Section 4.2.5) for lecture meetings compared to meetings can be ex-
plained by the higher amount of research effort spent on meetings.

In an internal technical report [WB01], Burger analyzed the speaking
style characteristics in the Translanguage English Database (TED), talks
recorded at the Eurospeech Conference in 1993. Out of the corpus 51
speeches, between 5 to 22 minutes long, spoken by 48 individual speak-
ers (37 male, 11 female) who originate from 14 different countries was used.
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The speeches were categorized according to the English skill of the speaker
and whether the speech was spontaneous or read. She observed that speak-
ing rates decrease with English skill and are lower for read speech than for
spontaneous presentations. Furthermore, the percentage of filled pauses, i.e.
hesitations, and the percentage of corrections, i.e. fragments, repetitions,
and false starts, were analyzed. The results showed that read speeches con-
tained a lower frequency of filled pauses and corrections when compared to
spontaneous ones, and that the amount of filled pauses and corrections in-
creases with decreasing English skill. For average non-native English speak-
ers, there were approximately 8% filled pauses and 6% corrections in the
words spoken, while for native speakers the respective amounts were about
4% in both cases.

Unfortunately, there is no benchmark comparison available for (statis-
tical) machine translation, since extensive benchmarking between different
research sites for MT is relatively new, and differences in MT results are
more due to the target language than the domain. However, a huge system-
atical analysis was done by Koehn for European languages on a corpus of
European Parliament Plenary Sessions [ ]. He compared the transla-
tion scores for SMT systems for all language pairs of 11 different languages.
Figure 4.2 shows some of the results for translation from and into English.
It can be seen that for the language pair English-Spanish, which is used
for the simultaneous translation system in this thesis as well, almost the
best translation scores could be achieved. One reason for that is certainly
that this language pair has been most heavily investigated by the research
community.

4.2 Training, Test and Evaluation Data

In this section, the data used for training the acoustic, translation and lan-
guage models of the speech recognition and machine translation systems is
described. Furthermore, the details of the development data as well as the
evaluation data used to tune the systems and for performing the experiments
described in the following chapters are given.

4.2.1 Acoustic Model Training Data

As already mentioned in the introduction to this chapter, spontaneous, close-
talk, European accented English is the focus of this thesis. Based on some
experiments ([ ) ]) for acoustic model training, recordings
from meetings, European Parliament Speeches, lectures and student semi-
nars were selected.

ICSI 72h of meetings recorded by the International Computer Science Insti-
tute (ICSI) with head-mounted and far-field microphones. The corpus
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Figure 4.2: Machine translation results on European Parliament Plenary
Sessions for translation between English and other European languages
(from [Koc05]). Machine translation quality was measured automatically
and are given in BLEU scores (see Section 4.2.5).
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Type Meetings Speeches Lectures
ICSI NIST | EPPS uEPPS | TED Seminars
Duration [hrs] | 72 15 80 167 10 10
Speakers 53 61 1894 2982 52 67
Recordings 75 19 63 74 39 17

Table 4.1: Summary of the data used for acoustic model training.

contains a significant portion of non-native English speakers, varying
in fluency from nearly-native to challenging-to-transcribe | ]

NIST 13h of meetings recorded by the National Institute of Standards
and Technology (NIST) with head-mounted and far-field micro-
phones. This corpus contains mostly native American English speakers

[ J

EPPS-S 80h of European parliament plenary sessions (EPPS) recorded
within the TC-STAR project containing mostly non-native European
English speakers [ .

EPPS-U 80h of European parliament plenary sessions (EPPS) recorded
and transcribed automatically by RWTH Aachen within TC-STAR

[ I

TED 10h of lectures recorded at FEurospeech 1993. The Translanguage
English Database (TED) audio recordings have non-native English

speakers presenting academic papers for approximately 15 minutes
each [ ) ].

SMNR 10h of mostly student seminars recorded within the CHIL project
with head-mounted and far-field microphones, most of which were pre-
sented by non-native European English speakers | ].

The most suitable data for lecture recognition are the lectures and sem-
inars collected in the CHIL project (SMNR) and the Translanguage English
Database (TED). Since the amount of data is insufficient to train acoustic
models which perform well in large vocabulary speech recognition tasks such
as lecture recognition, other data has to be used as well. The meeting data
consists of recordings of highly spontaneous meeting speech from mostly
native English speakers collected at three different sites: ICSI, NIST and
CMU. In contrast, the European Parliament data covers non-native, usually
well prepared speeches. An overview of the details of the several training
corpora is given in Table 4.1.
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English  Spanish
Sentences 1,162,176

Words 27.7TM 28.9M
Vocabulary | 93,157 130,473
Singletons 34,543 45,400

Table 4.2: Summary of the bilingual data used for training the machine
translation system.

4.2.2 Translation Model Training Data

The baseline translation system was trained on a corpus of sentence-aligned,
parallel final text editions from the European Parliament, available through
its web site. The data was crawled, pre-processed and sentence-aligned
automatically by RWTH Aachen | ]. The corpus statistics of the
pre-processed EPPS training corpora are shown in Table 4.2.

4.2.3 Language Model Training Data

The language models for the baseline speech recognition systems were
trained on the corpora used for the RT-06S and 2007 TC-STAR evalua-
tion systems | , ]. Three different types of data were used:
speech transcripts, written text, and text data collected from the world wide
web”. Altogether, the following English corpora were available:

EPPS-S 750k words of EPPS transcriptions in non-native English

[ ]

EPPS-T 33M words of EPPS final text editions | ]
EPPS-U 1.4M words of automatically transcribed speech data | ]

MTG 1.1M words of meeting transcriptions (ISL, ICSI, NIST, LDC) mostly
in non-native English [ ]

AMI 200k words of meeting transcriptions from the AMI project of mostly
non-native English [ ]

TED 98k words of transcriptions from the Translanguage English Database
containing talks held at Eurospeech 1993 in non-native English

[ ]

SMNR 45k words of seminar transcriptions from the project CHIL in non-
native English | ]

5More details on the web-collection will be given in the Chapters 4 and 6
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SWB 4M word of transcriptions from Switchboard [(1.D]
BN 131M words of broadcast news written text data | ]

UN 42M words of the English part of the United Nations Parallel Text
Corpus v1.0 | ]

HNSRD 48M words of text data consisting of U. K. parliament debates

[Conc]

GWRD 167M words of text data extracts from the Gigaword corpus [ ]

PROC 23M words out of recent speech and translation related conference
proceedings from 2002 until 2005

UW-M 147M words of data collected from the web by the University of
Washington related to ISL, ICSI, and NIST meetings

UKA-M 124M words of data collected from the web by ourselves related
to MTG and PROC

UKA-L 146M words of data collected from the web by ourselves related to
SMNR

UKA-LP 130M words of query-based filtered data collected from the web
by ourselves related to SMNR and PROC

UKA-MP 124M words of query-based filtered data collected from the web
by ourselves related to MTG and PROC

For the machine translation systems, the same parallel data for language
model training was used as described above in Section 4.2.2.

4.2.4 Development and Evaluation Data

For development and evaluation, an amount of 19 lectures and talks on
different topics of a single non-native speaker were collected in different
environmental conditions. This data is further referred to as lectures. Table
4.3 gives an overview of the data.

While lectDev and lectFval were used for system development and eval-
uation, lectOther was used for adaptation experiments. IDs referring to
talks start with a ’t’ and to lectures with an ’I’. All lectures are given as
part of a course related to the field of speech and language processing at
the university. The talks instead were given for different reasons such as
keynotes, press conferences, project reviews, or just an overview about the
work done at our research lab. Therefore, the talks are more general and do
not have the same level of detail as compared to the lectures. An exception
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Talk/ Lecture Duration [min] Words Translation
1003 77 12316
t012 44 7833
lectDev t032 71 11566
t035 32 59519 SPA
1041 12 1979 SPA
1042 7 1192 SPA
5 243 40405
1048 44 7745 SPA
t036 32 4824 SPA
lectEval t037 16 2339 SPA
038 51 4673 SPA
1044 29 4523
> 172 24104
1005 69 11049
t010 64 11169
t011 11 1931
lectOther t033 49 7507
t034 80 12539
t039 7 1128 SPA
t040 8 1356 SPA
1043 7 1072 SPA
> 295 47751

33

Table 4.3: Partitioning of the available lectures/ talks into development and
evaluation data, as well as a comparison of the duration and number of word
per lecture. Lectures for which a translation into Spanish was available are

tagged with SPA.
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constitutes the longer talks t032, t033, and t034 which were part of a course
about speech and language processing for which the lecturer was invited.

As can be seen in Table 4.3, human translations were available for a
limited amount of talks and lectures only. In addition, the amount of trans-
lations per sentence were restricted to only one. Therefore, the machine
translation was developed and evaluated on a subset of lectDev, lectEval,
and lectOther only. To limit the necessary effort for the human evaluation
this set was reduced even more to t036, t037 and t038 summing up to 92
minutes and 14,908 words. Due to the fact that t036 and t037 were given
after another, the combination of both is often referred to as t036+.

Since there was a recording problem in ¢010, this talk was not used for
acoustic model adaptation.

In addition, some speech recognition experiments were performed on the
official development and evaluation sets of the TC-STAR-07 EPPS evalua-
tion, further referred to as parliamentary speeches, and the lecture meeting
data track of the NIST RT-06S evaluation, further referred to as lecture
meetings. Especially the lecture meetings are well suitable as an additional
development set because of their similarity in speaking style and focus on a
particular topic. However, the level of detail is even higher than the average
in lectDev and lectFEval, and many of the recorded speakers have a strong
foreign accent. Compared to the talks and lectures introduced above, both
characteristics are responsible for a more difficult recognition.

Moreover, prior to decoding all lecture meeting and EPPS data have to
be automatically segmented. As a result of this, segment boundaries do not
necessarily match with sentence breaks and depending on the segmentation
algorithm and recordings, the segmentation algorithm might fail and clas-
sifies speech as non-speech or vice versa. Both might result in additional
recognition errors. A special care has also to be taken with cross-talk. If
this is classified as speech belonging to the current speaker, the recognized
speech will count as errors. The question-and-answer part also included in
the lecture meeting data makes this even more difficult. As will be seen
later, this explains the much higher word error rates for the lecture meet-
ings compared to the talks and lectures. For the details of the different
segmentation approaches used, we refer to | , , ]. The
details of the different development and evaluation data are presented in
Table 4.4.

4.2.5 Performance Measures

The overall performance of a simultaneous translation system always de-
pends on the performance of its sub-components, i.e. speech recognition,
resegmentation, machine translation, and speech synthesis. Furthermore,
since the components are connected in series, errors introduced by one com-
ponent are usually amplified by subsequent components.
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ID Duration [min] Words Speakers Recordings
Dev  RT-06Sdev 150 22258 24 67

EPPSdev 192 28976 44 7
Eval RT-06Seval 190 21243 70 70

EPPSeval 180 30362 41 )

Table 4.4: Additional development data. RT-06Sdev is identical to the
RT-05S evaluation data, EPPSdev is identical to the 2006 TC-STAR de-
velopment set, and EPPSeval is identical to the 2007 TC-STAR evaluation
set.

The system’s performance can always be judged by humans. However,
human evaluations are very time-consuming and costly, and, especially for
technical oriented lectures, the results often depend on the background
knowledge of the evaluators. As a result automatically computable per-
formance measures are preferred especially during system development, to
accelerate the turn-around-time of the necessary experiments. Furthermore,
they provide a convenient way for comparing different systems.

In the following, some automatically computable performance measures
will be described. They are used in this thesis to judge the quality and
speed of the sub-components of the simultaneous translation system, as well
as the system’s overall latency. It should be noted that, besides the below-
mentioned performance measures, also other measures exist in the literature.

PPL The perplexity is a measure of language model performance and is
based on the entropy, a measure of uncertainty associated with a ran-
dom variable in the field of information theory [ ]. Given a se-
quence of words wy, we, ..., w, from a vocabulary V, the entropy H
is defined as

H:—liml Z (P(wy, ..., wp)logy P(wy,...,wy)). (4.1)

n—oo m,

The summation over all possible word sequences can be discarded un-
der the assumption that the source is ergodic and given a large enough
value of m, H can be approximated by

A 1
H = ——log, P(w1,wa, ..., Wn). (4.2)
m

Using this approximation, the perplexity of a language model can be
defined as R )

PPL =2 = P(wy,wy, ..., wy)m, (4.3)
where P(wl,wg, ..., Wy,) is the probability estimate of the word se-
quence by the language model.
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OOV-Rate Given a vocabulary V and a text corpus C, the OOV-Rate
is defined as the percentage of word occurrences in C which are not
covered by the vocabulary V

1 ,wégV
> # .
vwec |0, otherwise
>l

Ywel

OO0V =100 *

(4.4)

WER The word error rate (WER) is the standard metric to measure the
quality of a speech recognition system. It is derived from the Leven-
shtein or minimum edit distance and is defined as the minimum edit
distance between a given hypothesis and its reference transcription
normalized by the length N of the reference transcription in words.
The minimum edit distance is defined as the minimum number of
substitutions S, deletions D, and insertions I of words required to
transform the hypothesis into the reference transcription.

S+D+1

ER =
WER N

(4.5)

BLEU The BLEU score | | together with the NIST score | ]
are the standard metrics for automatically measuring the quality of a
machine translation system. Both are based on the idea of a modified
n-gram precision based on n-gram co-occurrence statistics. BLEU is
defined as the geometric mean of modified n-gram precision scores p,,
multiplied by a brevity penalty. By rearranging the original published
formula [ |, BLEU can be formulated as

BLEU 3 ] Lrey 1,0 4.6
= exp an og (pp) — max 7L , (4.6)

n—1 SYs

where uniform weights w, = 1/N and n-grams up to length N are
usually used. L7, ¢ Is the number of words in the reference translation
that is closest in length to the translation being scored — which becomes
important when the scoring is done against multiple references — and
Lgys is the number of words in the translation being scored. The
modified n-gram precision p,, is defined as

the number of n-grams in segment ¢, in the
> | translation being evaluated, with a matching
reference co-occurrence in segment 1

Zi: in the translation being evaluated

p =
" (the number of n-grams in segment z)
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NIST Compared to the BLEU score, the NIST score | ] mainly differs
in two characteristics. First, it uses an information criterion via which
n-grams that occur less frequently, and are therefore more informative,
are weighted higher. Second, it differs in the brevity penalty factor
insofar that the impact of small variations in the translation length is
minimized. The formula for calculating the NIST score is

Z 10g2 (# of occurrences of wl...wnfl)

# of occurrences of wy...wn

N all wy...wp
NIST = that co-occur
5 0
in sys output (4.8)

LS S
exp <ﬁlog2 (min <_ Y ,1))) ,
Lref

where N = 5, and (3 is chosen to make the brevity penalty factor
= 0.5 when the number of words in the system output is 2/3 of the
average number of words in the reference translation. I_/ref is the
average number of words in the reference translation, averaged over
all translations, and L,y is the number of words in the translation
being scored.

RTF The real-time factor describes the ratio between the duration d of an
input and the time p necessary to process that input:

RTF = gl (4.9)

p
The real-time factor is always machine dependent and is always com-
puted in this thesis on an Intel Pentium D with 3GHz and 4GB of
memory running under SuSE Linux 10.0. The Janus executable was
compiled with the Intel C++ Compiler v9.1 using auto-vectorization.

LAT The latency describes the delay of a system between the input at time
1 and the processed output of the given input at time o:

LAT =0 —i. (4.10)

In this thesis, the latency describes the delay until a given speech
segment is recognized, translated, and output, and will be measured
in words or seconds.

PRC, RCL, and F-Measure Precision (PRC) and recall (RCL) are two
measures widely used to evaluate the quality of information retrieval
systems. In this context, recall describes the completeness of a search
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result and precision its accuracy. In the context of speech recognition,
precision and recall can be defined as

C C
PRC = —=_—_——~ 4.11
Ro M C+S+I (411)
rer = < ¢ (4.12)

N C+S+D’

where C' is the number of correctly recognized words, S the number of
substitutions, D the number of deletions, and I the number of inser-
tions. M and N correspond to the number of words in the hypothesis
or reference, respectively.

In the interest of having a single performance measure, the f-measure
is used, which is defined as the weighted harmonic mean of PRC and

RCL: PRC - RCL
= i <a<l. 4.1
(1—a)PRC + aRCL' " == (4.13)

Usually an o = 0.5 is used | ]

It is known from the literature [ ] that there is a positive almost
linear correlation between PPL and WER. The WER also depends on the
OOV-Rate. As a rule of thumb, it can be said that an occurrence of an
OOV word is average responsible for 1.5 — 2 errors | .

From results obtained within TC-STAR and from our studies in
[ ] it can be seen that there is an almost negative linear correla-
tion between the WER and machine translation quality. In addition the
resegmentation component between speech recognition and machine trans-
lation has an influence on the machine translation quality. This dependency
will be analyzed in Chapter 8.

Although it was shown in | | that automatic measures for machine
translation quality correlate with human judgment, current automatic mea-
sures are only to some extend able to judge semantic differences. This means
that errors produced by the MT as well as ASR which affect a few words
only, but destroy the semantic meaning of the whole sentence, are underes-
timated by all automatically computable performance measures. Therefore,
the end-to-end performance of the simultaneous translation system, will be
also judged by humans in Chapter 10.

4.3 Speech Recognition

In this section, a first baseline speech recognition system for lectures and
speeches is introduced. As a starting point the evaluation systems build for
RT-06S and TC-STAR-07 were used. Therefore, in the Sections 4.3.2 to 4.3.6

the differences and similarities of the systems components are described and
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compared with respect for their usefulness for lecture recognition. Section
4.3.7 presents a first baseline system using the results of the preliminary
sections.

From an acoustic model point of view, optimization was done with re-
spect to the word error rate on the lecture meeting data track of RT-06S, the
parliamentary speeches of the 2007 TC-STAR evaluation mentioned in Sec-
tion 4.2.4, and the lecture development data used in this thesis. In contrast,
the language models were tuned with respect to the specific domain. This
development strategy allows for a direct comparison to existing evaluation
systems within the research community.

Acoustic model training was done with the help of the Janus Recognition
Toolkit (JRTK) | |, which was jointly developed at Carnegie Mellon
University, Pittsburgh, USA and Universitat Karlsruhe (TH), Germany. For
decoding and lattice generation the single-pass Ibis decoder [ ], also
part of the JRTk, was used. The language models used for decoding and
lattice rescoring were built using the SRI Language Modeling Toolkit | ]

4.3.1 Related Work

Research in the domain of the automatic transcription of lectures and
speeches has gained interest, especially in the last couple of years. To
date, several research groups and projects across the world deal with this
topic. Within the European Commission-financed project CHIL, interna-
tional evaluations on lecture meetings were carried out in the context of the
NIST Rich Transcription Evaluation 2006 [ , , ]
Besides this, also other research has been conducted, e.g. on the TE
corpus | , |. The focus of the European-funded project TC-
STAR was the transcription of European Parliament Plenary Sessions
[ ) ) ) ]

LECTRA was a national Portuguese project focusing on the production
of multimedia lecture content for e-learning applications, which implies tak-
ing the recorded audio-visual signal and adding the automatically produced
speech transcription as captions | ]. The goal of the MIT Spoken
Lecture Processing Project | | is to improve the access to on-line
audio/visual recordings of academic lectures by developing tools for the pro-
cessing, transcription, indexing, segmentation, summarization, retrieval and
browsing of this media.

In the Liberated Learning Consortium, the goal is to provide real-time,
high-quality automatic speech transcription to aid hearing-impaired stu-
dents. Research is conducted not only on improving the recognition quality,
but also on the delivery aspect [ |. Real-time processing is also re-
quired for | |, where a lecture and presentation tracker is presented.

The biggest research effort on a single spoken lecture corpus has been in
Japan using the Corpus of Spontaneous Japanese, which consists of about
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1st pass 2nd pass 3rd pass
VTLN-AM VTLN-AM SAT-AM
online adaptation offline adaptation offline adaptation

Figure 4.3: A typical multi-pass (here 3 passes) decoding strategy using two
differently designed speech recognition systems (MFCC and MVDR). The
final hypotheses are those of the last confusion network combination (CNC)
pass.

700hrs of speech | .

4.3.2 Decoding Strategies

The appropriate decoding strategy plays an important role in a time-
unlimited speech recognition system. To achieve the best recognition ac-
curacy am offline system decodes a given utterance multiple times with
different systems; whereas the acoustic models of one system are adapted
in an unsupervised way on the output of a preliminary system. In addition,
system combination techniques like ROVER | | or Confusion Network
Combination [ | are used to fuse the outputs of several different sys-
tems. An example of such a strategy used with minor modifications for the
RT-06S and TC-STAR-07 evaluations is shown in Figure 4.3. The systems
used, differ in the front-end (MFCC, MVDR) and in differently adapted
acoustic models | ) , ].

In contrast, simultaneous translation requires that all components run
in real-time with low latency. Thus, for the following experiments, decoding
was restricted to a single pass only, using one of the available front-ends and
acoustic models.

Note that for the decoding results in this chapter incremental adaptation
during decoding (online adaptation) is used, as it is the case for the first pass
of the multi-pass strategy. Chapter 5 describes the type of adaptation used
in more detail.

4.3.3 Front-End

In the front-end 13 Mel-scaled cepstral coefficients (MFCC) using a 16msec
Hamming window with a frame shift of 10msec on 16kHz/16bit audio data
are computed. After cepstral mean subtraction and variance normalization,
which is updated per utterance taking speech frames only into account, seven
adjacent frames to the left and to the right are stacked together to form a
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195 dimensional feature vector. This vector is reduced to 42 dimensions
using linear discriminant analysis (LDA).

4.3.4 Acoustic Models

The acoustic models for the two evaluations differ in the amount and type
of training data, but the training procedure is more or less the same in both
cases. For RT-06S, audio data from meetings (ICSI, NIST), lectures (TED)
and seminars (SMNR) were used; for TC-STAR-07 parliamentary speeches
(EPPS-S, EPPS-U) and lectures (TED) were used.

To simplify and speed-up the training procedure, fixed state alignments
(labels) were used. In past experiments | |, it was shown that using a
context-dependent system with a smaller acoustic model for label generation
is advantageous than using a larger one. This was attributed to a better
generalization capability of the small system. Moreover, systems trained
according to these labels also outperformed those using Viterbi or forward/
backward training.

The context-dependent models were created using an entropy-based clus-
tering procedure. First mixture weights for all polyphone models were
trained. This was followed by a top-down clustering procedure using a set
of phonetic context- and position-dependent questions. Initially, the poly-
phone models rely on the context-independent models, but were consecu-
tively split using a context of £3 phonemes until 4000 context-dependent
septa-phone models were reached. For the semi-continuous (SC) models, the
decision tree of the fully continuous (FC) system was further split down un-
til a maximum of 16000 mixture weights was reached, whereas the number
of codebooks were kept fixed. A set of 87 questions was used, defined over
a phoneme set with 45 phonemes and 7 noises (mono- and multi-syllabic
fillers, breath, laughter, general human and non-human noise, and silence).
Only the phonemes (not the noises) were modeled context dependently. For
each model, a left-to-right 3-state HMM topology with self-loops was used.
The exception to this was silence, where only the last state had a self-loop.
Transition probabilities were globally set to 0.3 for all transitions and kept
fixed throughout the training.

The training procedure from | | was extended by adding a sec-
ond step of incremental growing of Gaussians after the diagonalization of
the feature space (semi-tied covariances). Although the amount of improve-
ment in WER is inconsistent over different evaluations, it was observed that
for RT-06S the extended training procedure outperforms the unextended
variant. The overall training procedure therefore consists of the following
steps:

1. Generation of fixed state alignments

2. Linear Discriminant Analysis
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3. Sample Extraction

4. Incremental Growing of Gaussians

5. Semi-Tied Covariance Training | ]

6. Sample Extraction

7. Incremental Growing of Gaussians

8. Viterbi Training

9. Discriminative Training using MMIE | ]

10. Speaker Adaptive Training (SAT) | ]

Steps 2 to 7 all work on the same fixed state alignments produced in
the first step and allows for a fast training procedure. Starting with step 8,
Viterbi training is performed to compensate for the sometimes misaligned
labels. The last step is optional and will be described on more detail in
Chapter 5..

Lectures

In a first set of experiments, we analyzed the impact of different acoustic
model training data on the WER of the different development sets: RT-
06Sdev, EPPSdev, and lectDev. The results for these experiments are shown
in Table 4.5. The language model for the experiments on lectDev was taken
from the RT-06S system, because of the lower perplexity of 163 compared
to 255 of the TC-STAR-07 language model on lectDev. From the results, it
can be clearly seen that for RT-06S5dev the meeting data is of utmost impor-
tance and for EPPSdev the EPPS data. While for TC-STAR-07 adding the
automatically transcribed EPPS data improves the WER by almost 0.5%
absolutely it is unsuitable for RT-06Sdev and lectDev. Overall, relatively
good results on all development sets could be achieved when using SMNR,
ICSI, NIST, TED, and EPPS-S for acoustic model training.

4.3.5 Vocabulary and Dictionary

For RT-06S, the dictionary contained 58.7k pronunciation variants over a
vocabulary of 51.7k. The vocabulary was derived by using the corpora BN,
SWB, meetings (MTG, AMI), TED and SMNR. After applying individual
word-frequency thresholds to the corpora, the resulting list was filtered with
ispell | ] to remove spelling errors, and extended with a few man-
ually checked topic words from a set of topic bigrams. The OOV-rate on
RT-065dev was 1.09%. | , ]
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RT-06Sdev EPPSdev lectDev

Past Experiments

SMNR, EPPS-S 40.3% 20.8%
+ TED 38.7% 20.1%
+ TED, ICSI, NIST 34.1% 20.6%
Recent Experiments
SMNR, TED, ICSI, NIST 31.9% 14.4%
+ EPPS-S 31.9% 14.5% 13.6%
TED, EPPS-S 39.3% 14.2% 15.6%
+ EPPS-U 39.9% 13.4% 15.7%

Table 4.5: The impact of different acoustic model training data on WER.
The “past experiments” were done using a less advanced acoustic and lan-
guage model.

For TC-STAR-07, a British English vocabulary was built using all words
from the EPPS transcripts (EPPS-S) and all words with more than three
occurrences from the EPPS final text editions (EPPS-T'). This led to a vo-
cabulary of 40k words and a case-sensitive OOV-Rate of 0.60% on EPPSdev,
where hyphenated words were split into their constituent pairs. The pro-
nunciation dictionary had a size of 46.1k. The mapping from American to
British English spelling was done with the help of respell | ].

In both cases, pronunciations were either derived from already exist-
ing dictionaries, from the CMU dictionary v0.6 [ | or automatically
generated using Festival | ]. Although the automatic generation of pro-
nunciations using Festival is sometimes inconsistent and not perfect, e.g.
especially proper names and acronyms are often pronounced incorrectly and
pronunciation variants cannot be generated, a small experiment showed that
the degradation in WER is not that large. A new system was trained us-
ing pronunciations from Festival only and the results were compared to an
identically trained system using a pre-existing dictionary. The absolute dif-
ference in WER was only 0.6%.

Lectures

The comparative results in Table 4.6 show that the OOV-Rate for the RT-
06S vocabulary on lectDev of 0.47 is much lower than that obtained with
the TC-STAR-07 vocabulary. It should be noted that in advance to the
OOV-Rate computation, the spelling of the vocabularies was normalized
to either American English for RT-06S or British English for TC-STAR-
07, using the afore-mentioned respell. Therefore the OOV-Rates differ
slightly from the numbers mentioned in the system descriptions above or in

[ ) : I
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RT-06S TC-STAR-07

OOV PPL OOV PPL

RT-06Sdev ~ 1.09 153  2.42 283
EPPSdev 1.35 276 0.60 84
lectDev 047 163 194 255

Table 4.6: In- and across-domain perplexity and OOV-Rate comparison of
the vocabularies used for the RT-06S or TC-STAR-07 evaluation on different
development sets (RT-06Sdev, EPPSdev, lectDev).

4.3.6 Language Model

For both evaluations a 4-gram mixture language model was used, with com-
ponents trained on different corpora using Chen and Goodman’s modified
Kneser-Ney discounting and also an interpolation of the discounted n-gram
probability estimates with lower-order estimates | ]. Pruning was per-
formed after the interpolation of the language model components, using a
fixed threshold of 1072, The language models will be only described briefly,
a more detailed discussion is given in Chapter 6.

For RT-06S, the language model components were trained on the follow-
ing corpora: meeting data transcripts (MTG, AMI), transcripts of lectures
and seminars (SMNR, TED), text data (BN, PROC), and several corpora
collected from the web (UW-M, UKA-LP, UKA-MP). The mixture weights
for each language model were optimized on a held out set with a size of 30k
words. The final language model is further referred to as LM6.

For TC-STAR-07 separate 4-gram language models were trained on each
of the following corpora: the EPPS corpora (EPPS-S, EPPS-T, EPPS-
U) and the text corpora (BN, UN, HNSRD, GWRD). The final language
model was the result of interpolation of all separate 4-gram language models,
with the interpolation weights tuned on the 2006 EPPS evaluation data by
minimizing perplexity.

Lectures

As can be seen in Table 4.6, the perplexity on the lecture data of the language
model for RT-06S (163) is much lower than the perplexity of the language
model for TC-STAR-07 (255). The reason is the technical nature of the
RT-06S, data which is more similar to the lectures used in this thesis.

4.3.7 Baseline System

In summary, the baseline system was trained on almost 190 hours of speech
data from seminars, lectures, meetings and European Parliament plenary
sessions, leading to a fully continuous acoustic model with approximately
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RT-06S TC-STAR-07 lectures
dev eval dev eval dev eval
SC WER 30.4% 16.6% 15.5%
RTF 1.47 1.27 1.43
FC WER 29.3% 16.2% 15.1%
RTF 1.34 1.16 1.14

FC-MMIE WER 279% 35.6% 15.8% 14.3% 14.3% 15.7%
RTF 1.28 1.46 1.12 1.20 1.04 1.21

Table 4.7: Word error rates (WERs), after language model rescoring, and
real-time factors of the first baseline system on the different development
and evaluation sets. SC stands for a semi-continuous and FC for a fully
continuous acoustic model.

234k Gaussians divided amongst 4000 context dependent models in a 42
dimensional feature space. As described above, the features were extracted
from the audio signal using MFCCs followed by a stacking of 15 consecutive
frames and an LDA.

Table 4.7 compares the WERs and RTFs for different acoustic models
on the development and evaluation sets. The rows marked with SC' show
the WERs and RTFs when using semi-continuous acoustic models. The
semi continuous acoustic model was trained by splitting the 4000 context-
dependent distributions further down to 16000 and leaving the number of
codebooks fixed. The rows marked with FC' show the WERs and RTFs
for the systems based on fully continuous acoustic models. MMIFE refers
to an acoustic model which was trained using four additional iterations of
discriminative training.

As already mentioned, for RT-06S and TC-STAR-07, the audio data was
automatically segmented into speech and non-speech regions and clustered
in homogenous speaker intervals. For the lectures, manual segmentation and
true speaker labels were used. For the results on TC-STAR-07, the British
English language model and vocabulary were used; for decoding the RT-
06S and lecture data, the American English language model and vocabulary
were used (both described in Section 4.3.6). During decoding, incremental
adaptation as mentioned above was employed.

Since simultaneous lecture translation requires a system running in real-
time, system design decision have to be made early. Therefore, compared
to the RT-06S and TC-STAR-07 evaluation systems, decoding was speed-up
by tightening the search beams so that the systems marked with SC and FC
in Table 4.7 are running at comparable speed. With this constraint, it can
be observed, that a fully continuous system outperform a semi-continuous.
The WER drops for all development and evaluation sets. Furthermore, it
can be seen that using a more sophisticated acoustic model leads to lower
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Figure 4.4: Comparison of WERs for the FC-MMIFE acoustic model on the
different development and evaluation sets before and after language model
rescoring. Also shown are RTFs computed with language model rescoring.
Lines within the WER boxes mark the mean WER and its standard de-
viation (sdev) per speaker in a lecture meeting, parliamentary speech, or
lecture.

WERs and, because of this, also to lower RTFs. In this case the same beam
settings were used as for the FC system. Using discriminative training
improves WERSs on all conditions by approximately 1% absolute, leading to
a relative average speed-up of 5.8%.

In Figure 4.4, the WERs for the FC-MMIFE acoustic model are compared
and set in relation to the corresponding real-time factors. Furthermore, the
impact of language model rescoring on the WER is analyzed, and the mean
WER and its standard deviation per speaker in a lecture meeting, parliamen-
tary speech, or lecture are shown. It can be seen that while parliamentary
speeches and lectures can be recognized with an almost equal recognition
accuracy and speed, the lecture meetings are much more difficult. Since the
lectures were collected only from a single speaker, the variance in terms of
WERs are very low compared to the variance for the parliamentary speeches
and lecture meetings. Especially for TC-STAR-07, a significant number of
speakers with WERs lower than those obtained on the lectures exists. It
should be noted that for the lectures the mean WER and its standard de-
viation was computed across different lectures of the same speaker. For
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RT-06S and TC-STAR-07, this was done across different speakers and lec-
ture meetings or parliamentary speeches.

4.4 Statistical Machine Translation

In this section, we discuss the approach for developing the statistical machine
translation component in our lecture translator that was used to translate
lectures and speeches from English to Spanish. The initial purpose of the
underlying phrase-based SMT system developed within TC-STAR was to
translate speeches from the European Parliament Plenary Sessions in an of-
fline scenario (that is, translating without constraints with respect to some
parameters which are critical in a simultaneous translation scenario, such as
processing time, resource usage, and latency). As described earlier, parlia-
mentary speeches, while covering a relatively broad discourse domain, are
usually prepared speeches given by well-trained speakers. Lectures, on the
other hand, can go into much more detail on any given topic, and, as an
aggregate, cover a practically unlimited domain; a system suitable for trans-
lating general lectures must be able to cope with much more variable and
more spontaneous speaking styles. At the same time, the machine transla-
tion component can make use of the additional information about the topic,
which is known in advance in a typical lecture translation scenario, and offer
acceptable speed and latency in real-time operation. We therefore needed
to develop a considerably different system from the one built and optimized
for traditional batch-mode operation and well-controlled speech. In our ex-
periments, we used loose coupling, passing the first-best hypothesis from
the recognizer to the translation component. All MT scores were calculated
using case-insensitive scoring and one set of reference translations per test
set.

4.4.1 Phrase Alignment

Phrase-to-phrase translations are critical for the performance of state-of-
the-art statistical machine translation systems, and our lecture translation
system builds upon this foundation. Methods used for the extraction of
phrase translation candidate pairs from bilingual corpora are generally run
during a training phase, prior to the decoding of unseen test sentences. For
real-world tasks such as EPPS, broadcast news or lecture translation, these
methods produce huge, multi-Gigabyte phrase translation tables containing
hundreds of millions of translation alternatives, each with multiple feature
annotations used for scoring and selection. Such raw phrase tables cannot
normally be used directly for decoding.

In batch translation processing, the set of test sentences is small and
known beforehand, so these phrase tables can be pruned to the specific test
set in question. In a simultaneous translation scenario, however, this is not
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feasible if the system is to be able to translate on demand any conceivable
input in a large or even unlimited domain.

Therefore, Vogel developed a novel approach to phrase alignment and
extraction (PESA) which is particularly well-suited for efficiently providing
phrase translation alternatives on-the-fly [ |. This method, based on
optimizing a constrained word-to-word alignment for an entire sentence pair,
can be used to extract phrase translation candidates of arbitrary length from
the training corpus at decoding time | ].

For the experiments reported in this paper, we used a classic phrase
table constructed by training IBM Model-4 word alignments in both direc-
tions, and extracting phrase-to-phrase translation pairs which are consistent
with these word alignments. This significantly improve translation quality.
The GIZA++ toolkit | | and the implementation of the grow-diag-final
heuristic provided by the University of Edinburgh | | were used for
training word and phrase alignments, respectively. In addition, we applied
modified Kneser-Ney discounting to the raw relative frequency estimates of
the phrases as described by [ ]. Finally, the phrase table was pruned
to the top 10 phrase translations for each source phrase using the combined
translation model score as determined by Minimum Error Rate (MER) op-
timization on a development set.

4.4.2 Decoder

The beam search decoder combines all model scores to find the best trans-
lation. In these experiments, the different models used were:

1. The translation model, i.e. the word-to-word and phrase-to-phrase
translations extracted from the bilingual corpus according to the PESA
alignment method.

2. A trigram language model. The SRI language model toolkit | ]
was used to train the models.

3. A word reordering model, which assigns higher costs to longer distance
reordering. | ]

4. Simple word and phrase count models. The former is used to compen-
sate for the tendency of the language model to prefer shorter transla-
tions, while the latter can be used to give preference to longer phrases.
For each model, a scaling factor can be used to modify the contribution
of this model to the overall score.

The decoding process is organized into two stages: first, the word-to-
word and phrase-to-phrase translations (and, if available, other specific in-
formation such as named entity translation tables) are inserted into a trans-
lation lattice. In the second step, we find the best combinations of these
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NIST BLEU
1036+, text input 5.72 23.4
t036+, ASR input  5.06 17.9
1043, text input 5.27 19.6
1043, ASR input 4.80 16.6

Table 4.8: Machine translation results on text as well as on ASR input on
the talks/ lectures t036+ and 1043.

partial translations such that every word in the source sentence is covered
exactly once. This amounts to performing a best path search through an
extended translation lattice to allow for word reordering. Decoding pro-
ceeds essentially along the source sentence. At each step, however, the next
word or phrase to be translated may be selected from all words lying or
phrases starting within a given look-ahead window from the current posi-
tion | ]. The use of a local reordering window in the lecture translation
system captures most of the benefits of improved target word order while
keeping search complexity low for real-time operation.

4.4.3 Baseline System

For training the baseline translation system, the parallel EPPS corpus de-
scribed in Section 4.2.2 was used. Although speech recognition is unable to
deliver punctuation marks with its hypotheses, they were left in the corpus
but separated from the words. The reason for this is that they help in find-
ing useful split points for phrase alignment training. Misalignments in the
corpus and other “noises” such as document references were discarded. Fur-
thermore, abbreviations were expanded and dates and number expressions
spelled out. In conformity with speech recognition, all data was lower-cased.

All punctuation marks were later removed from the source side of the
phrase alignments to keep the interface between ASR and MT as simple as
possible. As explained in Chapter 8, developing an additional punctuation
annotation module with reasonable performance is quite challenging, and
according to [ |, the performance of SMT is affected only slightly.

For training the initial language model, the target side (i.e. Spanish) of
the same corpus was used. Modified Kneser-Ney discounting and interpola-
tion of discounted n-gram probability estimates were applied. This resulted
in a 3-gram language model covering 131k words, with a perplexity on the
Spanish side of lectDev of 631.

Table 4.8 summarizes the translation results of the baseline system on the
development and evaluation data for the lectures and TC-STAR-07. As ex-
pected, performance on ASR output is worse than on manually transcripts.
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4.5 Conclusion

In this chapter, the speech recognition and machine translation components
of the baseline system were presented. Starting from existing evaluation
systems for RT-06S and TC-STAR-07, it was shown, how these systems can
be combined to form a system suitable for lecture recognition and transla-
tion. Currently, both components operate independently. The next step is
to focus on improving the components with respect to quality, speed, and la-
tency. Overall, system recognition and translation quality is addressed with
the help of speaker and topic adaptation techniques (Chapters 5 and 6), im-
proving the overall system speed by limiting the size of the search space or
number of parameters to be evaluated (Chapter 7), and limiting the system
latency requires streamlining the interface between ASR and SMT (Chapter
7 and 8).



Chapter 5

Speaker Adaptation

In Chapter 4, a baseline speech translation system was developed. It was
trained on a large amount of data, covering different speaking styles, speaker
characteristics, spontaneous speech and topics in lectures and speeches
recorded using different close talking microphones. However, such a gen-
eral simultaneous translation system for lectures and speeches often does
not work as well as a more specialized system.

On the other hand, lectures and speeches are particularly suited for
adaptation, because usually the speaker and also the topic of a lecture is
known in advance. This makes it possible to perform adaptation before
the lecture starts either by using existing data or by collecting new data
matching the speaker and/ or the topic. For example, one could use audio
data of the same speaker for unsupervised acoustic model adaptation, select
relevant text data out of existing data for language model adaptation, or
crawl the World Wide Web for new matching data.

Adaptation can be performed on different levels or with respect to dif-
ferent models of a simultaneous translation system:

Acoustic Model Variations in the audio signal like ambient noise, different
recording channel characteristics, or the speakers voice can be normal-
ized at the signal level with respect to a specific acoustic model. On
the other hand, also an acoustic model can be adapted to new input
conditions.

Source Language Model Language model adaptation can be used to
adapt a language model to a specific talk or lecture, but also to the
speaker’s speaking style, which can differ in the degree of spontaneity
as well as in the selection of phrasing.

Translation Model Translation model adaptation can improve the trans-
lation quality in all situations where the training data does not match
the new conditions, and is therefore used mainly for topic adaptation
especially when new, unseen phrases or words have to be translated.

o1
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Target Language Model The target language model is used by the ma-
chine translation system and can be adapted for the same reasons and
in the same way as the source language model.

Adaptation is not particular to automatic systems — human interpreters
also adapt. Especially for simultaneous interpretation, human interpreters
interview the speaker and familiarize themselves with the topic beforehand
through e.g. literature research. Thereby, the translation of special phrases
can be memorized in order to allow for a more fluent interpretation when
required.

The remainder of this chapter will focus on speaker adaptation in the
context of speech recognition only; topic adaptation will be treated in Chap-
ter 6. First, some commonly used techniques suitable for speaker adaptation
are described in detail in Sections 5.1 and 5.2. After this, the techniques
described are applied to the current system either online during decoding in
Section 5.3 or offline in advance to decoding in Section 5.4. The improve-
ments due to both strategies separately and in combination is compared
on the lecture data. Finally, in Section 5.5, the results of this chapter are
summarized and concluded.

5.1 Adaptation Techniques

In general, adaptation techniques fall into two categories: normalization of
the input to match the model and model adaptation techniques in which the
parameters of the model are adjusted to better match the input. This section
will describe some commonly used adaptation techniques, but concentrates
on speaker adaptation in the context of a speech recognition system, where-
fore the input is of a specific speaker only and the model is the acoustic
model of the speech recognizer. An important issue with both approaches
is how effective they would be with a limited amount of adaptation data
relative to the size of the acoustic model.

A further distinction can be made between supervised adaptation, where
the adaptation parameters are estimated with respect to reference tran-
scriptions, and unsupervised adaptation, where system hypotheses are used
instead. Some of the techniques can be used during acoustic model training
only, others also during decoding for incremental adaptation.

5.1.1 Vocal Tract Length Normalization

Vocal tract length normalization (VTLN) is a feature transform which at-
tempts to normalize the shift of the formant frequencies of different speakers
caused by their different vocal tract lengths. The basis of this technique is
the assumption that the positions of the formants in frequency are inversely
proportional to the length of the vocal tract, and can therefore be scaled
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with the length of the vocal tract | ]. In our case, a piece-wise linear
function f(w) is used to warp the frequency axis:
—1 .
a”tw if w < wyg
w) = - _ - 5.1
fw) {l_ﬁﬁlﬁw + O‘liglwo if w > wo, (5:1)

where « is the speaker-specific warping factor, wg = (- ws/2 and w; is
the sampling frequency; the edge § is empirically set to 0.8. Speakers with
longer vocal tracts, have warping factors of @ < 1, and for speakers with
shorter ones an o > 1 can be observed.

In | | a maximum likelihood approach was introduced to estimate
the warping factors a of a specific speaker. Given a reference transcript or
a recognizer hypothesis, the score of a Viterbi pass can be computed and
compared for different ov. Often a Brent search is utilized over an interval of
warping factors to speed-up the search process. Since formants are observed
for voiced phonemes only, for computing Viterbi scores only voiced frames
are taken into account; however, the frequency warping afterwards is applied
to all frames.

5.1.2 Maximum A-Posteriori Estimation

Given a model A (parameter vector) and an observation z (input vector) the
Maximum Likelihood method (ML) attempts to optimize the observation
probability p(z|\). In difference thereto, the Maximum A-Posteriori esti-
mation (MAP) [ | aims to optimize the parameter probability p(A|z),
so that we get

~

A= arginaxp(x])\) -p(A) (5.2)

with the priors p(A). MAP distinguishes itself from ML by only these priors.
In our case, we use a simplified count-based version of MAP, where the

priors are defined over the relation of the number of speech training samples

between each model multiplied with an additional weighting factor.

5.1.3 Maximum Likelihood Linear Regression

In the Maximum Likelihood Linear Regression (MLLR) framework, the
Maximum Likelihood criterion is used to estimate a linear transform of the
model parameters. This transform can be either applied to the models
[ ] or to the features | .

MLLR in the Model Space

In the context of mixtures of Gaussians, an adaptation of the means of
Gaussians can be represented by probability density functions (PDFs) such
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as
p(ols, V) = Z wi N (0; Api, 3i) (5.3)

with the observation vector o, the state s, and the acoustic model parameters
U = u;, X;, w; with the distribution weight w;, the mean u;, and the covari-
ance matrix Y; of a Gaussian mixture component ¢. Keeping the Gaussian
parameters fixed, the Kullback Leibler statistics

QA A”) == > mit)(ci + (0 — Ap) TS o — Ap))  (5.4)

it

can be used to estimate the linear transform A. The state probabilities
7i(t) are computed using the initial parameter A°. Terms not relevant for
the optimization are denoted by ¢ and ¢;. The maximization of () requires
solving

%Q(A, A% =0 (5.5)

Differentiating @ with respect to A leads to a set of linear equation systems,
which can be solved row by row:

> v)E o =D vi(t) S Apig (5.6)
i

,J

MLLR in the Feature Space

Applying the linear transform in the feature space instead has some com-
putational advantages over the model adaptation since combinations with
adaptive training schemes and Gaussian selection algorithms are easy to re-
alize. When transforming the features, it is not possible to transform means
and covariances differently as is the case when transforming models, which
is why this approach is also called “constrained MLLR” (cMLLR).

Given a PDF p(z) and a feature transform f(x), an appropriate PDF
with respect to f would be p(z) = p(f(x))L f(x). This ensures that the
probability mass is conserved:

[tz = [pwyiv= [ o) ar= [ o)L= [y

(5.7)
When f : £ — ¢ is a vector function, the corresponding substitution rule
is extended to the functional determinant or Jacobian. The corresponding
Kullback-Leibler statistics for a linear transform f(x) = Az are:

QA A%) = ¢+ 3 (1) o |A] — s — 5 (Ao, — ) S (Ao — ) (5.8)
1,J
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The Jacobian |A| term complicates the optimization process. However, the
Laplace development for a row j results in the following representation of
the Jacobian:

‘A| = Zijdjk (59)
ik
ar = (=177 Ay (5.10)

where @), denotes the adjunct of A, given j and k. This allows for the im-
plementation of an iterative row-by-row optimization scheme. The adjuncts
ajj, are kept fixed when optimizing row j.

5.2 Speaker Adaptive Training

Speaker adaptive training (SAT) | | is a technique which is used
to estimate the parameters of continuous density HMMs for speaker-
independent speech recognition in a way that integrates speaker adaptation
in the common speaker-independent training paradigm | ]. The dif-
ferences amongst the speakers in the training data, which lie e.g. in the
anatomy of the vocal tract, the speaking style, or accent of the speaker,
may result in a diffused acoustic model with reduced discriminative capa-
bilities. The reason for this is a higher variance in the spectral distribution
as compared to a speaker-dependently trained system. Cepstral mean and
variance normalization [ | is the simplest feature space-based nor-
malization method to counteract channel effects; the above mentioned vocal
tract length normalization is another one. In general, feature space-based
normalizations, which are often based on linear transformations, are pre-
ferred over model space-based normalizations because they can be applied
more easily and are usually computationally less expensive. For example the
above-described constrained MLLR is the most commonly used technique
for speaker adaptive training and can also be used together with other nor-
malization techniques, either in the feature or model space. When applying
more than one normalization technique, the question arises, in which or-
der the normalization parameters have to be estimated to achieve the best
performance.

A speaker adaptively trained system requires that the same speaker nor-
malization techniques are applied during decoding. Without such normal-
ization, systems will perform worse than compared to a speaker-independent
system. The following section analyzes this problem in more detail.

5.3 Online Adaptation

With online adaptation, the application of adaptation during decoding is
referred. Because of their simplicity, cepstral mean and variance normal-
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ization, vocal tract length normalization, and constrained MLLR are par-
ticularly well for online speaker and channel adaptation. For the following
experiments, the adaptation is performed in the same way as for the first
pass decoding of the evaluation systems for RT-06S and TC-STAR-2007.
Briefly,

e The normalization parameters are initialized with their default values
each time a speaker change is detected.

e The first utterance of the current speaker is decoded with some general
adaptation parameters.

e The resulting hypothesis is used to compute a Viterbi alignment, which
is then used to adapt the normalization parameters for VILN and
cMLLR as described above. The adaptation parameters for cMLLR
have to be estimated after VILN optimization. CMS and CVN are
applied after VILN.

e The updated normalization parameters are used for decoding the next
utterance. The first utterance is also re-decoded.

e Depending on the situation, incremental adaptation either stops once
a sufficient number of frames has been collected for robust estimation,
or it continues indefinitely and a history weighting factor is applied
instead. The second method is especially advantageous if the channel
changes over the time and far-field microphones are used for recording.

As can be seen in Table 5.1 using either incremental cMLLR or VTLN
leads to almost the same improvements in WER, except for Lectures. This
can be explained by the fact that the speaker’s VILN warping factor is
almost identical to the default one, i.e. no warping. As can also be seen,
applying both VTLN and cMLLR at the same time gives some further im-
provements. Note that the results when applying both VITLN and cMLLR
are identical to the “FC-MMIE” results from Table 4.7. To sum up, a relative
gain of more than 12% can be achieved on Lectures by using online adapta-
tion, and on all tasks the difference in WER for VTLN-AM and cMLLR-AM
is insignificant.

Another insight into the behavior and improvements of online adaptation
is shown in Figure 5.1. On the right axis, the average WER over time, using
incremental adaptation during decoding is plotted. From this function, it
can be seen that the WER decreases continuously over time, although there
seems to be a slight increase in WER at the end. A possible explanation
for this phenomenon could be the increasing fatigue of a speaker leading
to more sloppy speech at the end of a lecture. On the left axis, the WER
ratio between VILN-AM and cMLLR-AM is plotted as a function of the
amount of speech used so far for incremental adaptation. For both acoustic
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Dev Eval
VTLN-AM c¢MLLR-AM VTLN-AM c¢cMLLR-AM
RT-06S
no adaptation 33.3% 33.0% 42.1% 42.6%
incr. VTLN 28.9% 29.0%
incr. cMLLR 29.1% 28.7%
both 27.9% 27.7% 35.6% 35.6%
TC-STAR-07
no adaptation 20.3% 21.1% 18.3% 18.7%
incr. VTLN 16.6% 16.9%
incr. cMLLR 16.5% 16.7%
both 15.8% 15.7% 14.3% 14.3%
Lectures
no adaptation 16.4% 16.1% 19.9% 19.8%
incr. VTLN 15.8% 15.6%
incr. cMLLR 14.5% 14.5%
both 14.3% 14.1% 15.7% 15.5%

Table 5.1: Comparison of the improvements due to incremental adaptation
during decoding for systems using a VILN or a cMLLR acoustic model.

models, VILN and cMLLR parameters were updated incrementally on a
per-utterance basis. For ratios smaller than one, VTLN-AM performs better
than cMLLR-AM and for values grater than one vice versa. It should be
noted that a difference of 0.01 in the WER ratio correspond to an absolute
difference of about 0.15 in WER. From the ratio function over all lectures
in lectDev it can be seen that a sufficient amount of speech for adaptation
must be available before cMLLR-AM outperforms VTLN-AM. According to
the figure, this happens at about 10-15 minutes of speech. By analyzing the
results in more detail, it can be seen that this behavior is not true for all
lectures. Mostly responsible for this behavior is t012 for which cMLLR-AM
is considerably better almost from the very beginning. For all other lectures,
this is not the case. Furthermore, it can be observed, that there is a high
fluctuation in the ratio when the amount of adaptation data is small.

One might assume that an optimal strategy would be to switch the
acoustic models at a specific point of time, i.e. in this case after 10-15
minutes. But due to the inconsistent behavior of the lectures in lectDev
and due to the insignificant difference of the final WERs for VITLN-AM and
cMLLR-~AM, no significant improvement could be achieved in this way.

Another strategy is to start each lecture with some pre-computed adap-
tation parameters. While this is relatively easy for VI'LN, because of the
smaller number of paramters to estimate, it is more complicated for cM-
LLR. In this case, a common technique is to cluster the speakers in the
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Figure 5.1: The right axis is for the average WER by using incremental
adaptation plotted as a function of amount of data available for estimating
the adaptation parameters. The left axis is for the evolution of WER ratios
between VTLN-AM and cMLLR-AM as well as a function of the amount of
adaptation data. All results are achieved on lectDev.
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training data into several classes and to compute for each class adaptation
parameters over all speakers in that class. After decoding the first utterance,
the resulting hypothesis is used to select the best class. For each class the
likelihoods are computed using a forced Viterbi alignment with the given
hypothesis. After selection, the pre-computed parameters are mixed with
the current estimate using a history weighting factor. For decoding the first
utterance, some default parameters obtained either on the full training data
or on a representative subset can be used. For clustering the speakers of the
training data, two different techniques were explored (the number of classes
where determined empirically beforehand to be 25):

e The VTLN parameters were used to cluster all speakers in the training
data into 25 classes. For decoding the first utterance, the parameters
of the class of the default warping factor of 1.0 were used.

e The similarity between adaptation parameters (i.e. for cMLLR the ro-
tation matrix and translation vector) are used to cluster all speakers
in the training data into 25 classes. Similar to | ], this was done
by (1) vectorizing for each speaker the rotation matrix by append-
ing all matrix columns to the translation vector, (2) normalizing each
dimension over all speakers to have zero mean and unit variance, (3)
using principal component analysis to reduce the dimensionality of the
vectors, and (4) clustering the vectors of all speakers into 25 classes
using k-means. For the third step, different dimensionality reduction
methods were compared.

When comparing the WER ratio on all lectures between Figure 5.1,
where no pre-computed adaptation parameters were used, and Figure 5.2, it
can be seen that for both clustering techniques the performance on the first
few utterances improved. This is recognizable in the vertical shift of some
of the curves towards the top. However, this is not true for all lectures. But
overall it can be observed that using the similarity of cMLLR parameters
as clustering criterion performs better than using VILN parameters, and
compared to not using any pre-computed adaptation parameters at all, the
overall WER could be reduced by 1.3% on lectDeuv.

5.4 Offline Adaptation

In contrast to online adaptation, offline speaker adaptation is performed only
prior to decoding. Therefore, in addition to VILN and cMLLR, also more
computationally expensive techniques such as model space MLLR or MAP
can be used. In the following experiments, the improvements obtained using
supervised or unsupervised adaptation with different amounts of adaptation
data of the same speaker will be analyzed. For this purpose, utterances from
the lectOther (see Table 4.3) set were randomly selected across the different
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(a) The adaptation parameters were obtained for each cluster after clustering the training
speakers according to their VILN parameters.
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(b) The adaptation parameters were obtained for each cluster after clustering the training
speakers according to their similarity in cMLLR parameters.

Figure 5.2: Evolution of WER ratios for VTLN-AM and cMLLR-AM on
lectDev using pre-computed adaptation parameters.
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talks until a specific amount of speech was reached. This was done to reduce
the influence of a specific lecture and the order in which the lectures were
used for adaptation. Since the random generator was always seeded with
the same value, a larger set always contains the utterances of the smaller
set as a prefix. Altogether, almost 240 minutes of speech were available.
Similar studies have been published on other tasks e.g. in | .

For unsupervised adaptation, confidence-annotated hypotheses produced
with the VILN system described above, using incremental adaptation, were
used. From the result of experiments in the past, using only words receiving
a confidence value higher than 0.5 for adaptation was the best. For super-
vised adaptation, the manual reference transcripts were used. In both cases,
adaptation parameters were estimated for VTLN, cMLLR, and model-based
MLLR for each speaker in the following way:

1. The VTLN warping factor is estimated by optimizing a maximum
likelihood-based criterion along fixed state alignments using a Brent
search over an interval of warping factors.

2. A global cMLLR matrix is estimated along Viterbi alignments in the
vocal tract length normalized feature space.

3. In this normalized feature space, the statistics for model space MLLR
are collected using Viterbi alignment and are applied to the acoustic
model.

4. Steps 1 - 3 are repeated a second time in the already normalized feature
space and with the MLLR~adapted acoustic models to improve the
adaptation parameters and models.

As can be seen in Figure 5.3, for both supervised and unsupervised
adaptation, the WERSs decrease as the amount of adaptation data increases.
The difference in WER between supervised and unsupervised adaptation
grows as more adaptation data becomes available. Furthermore, the addi-
tional gain due to incremental online adaptation using the pre-computed
offline adaptation parameters as a starting point can be seen as well. At a
reasonable amount of adaptation data of 15 minutes — a common talking
time of a single talk, a relative improvement in WER on lectDev of almost
5.7% after supervised adaptation and 2.1% after unsupervised adaptation
could be achieved. When using the full set, the relative improvement in-
creases to 12.8% after supervised adaptation and to 10% after unsupervised
adaptation. In another experiment, it was analyzed whether the difference
in WER between supervised and unsupervised adaptation can be preserved
when the adaptation parameters and acoustic models are seeded with that of
the supervised adapted system. Starting from a supervised adapted system
using 15 minutes of speech data, unsupervised adaptation was performed.
Unfortunately, the difference in WER could not be preserved, as can be seen
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Figure 5.3: Comparison of supervised and unsupervised adaptation with
respect to the amount of available data. For the curves marked with in-
cremental, online adaptation was performed during decoding, while for the
curves marked with fized the pre-computed offline adaptation parameters
were used instead and no online adaptation was performed. For the mized
curve, the unsupervised adaptation was seeded with a supervised adapted
system.
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Figure 5.4: MAP with incremental adaptation during decoding using 240
minutes of adaptation data.

from the mized curve in Figure 5.3. Another interesting observation from
the experiments is that, when using no online adaptation during decoding,
a system adapted with a small amount of adaptation data performs actu-
ally worse when compared to an unadapted system using online adaptation.
With online adaptation during decoding, even a small amount of adaptation
data results in an improvement in WER for the adapted system.

Due to the way the adaptation parameters are estimated and the Gaus-
sian mixture models are updated, MAP is more sensitive to the amount of
adaptation data than model-based MLLR. As can be seen in Figure 5.4, su-
pervised adaptation is always about 1% absolute better than unsupervised
adaptation and the optimum weight is around 0.6. But when comparing
these results, which were achieved by using the whole 240 minutes of adap-
tation data, with those presented in Figure 5.3 it can be seen that MAP
performs significantly worse than MLLR.

5.5 Conclusion

In this Chapter, different speaker adaptation techniques were compared with
respect to their improvement in WER on lectures. For online adaptation
using VTLN and ¢cMLLR, a relative improvement of about 12% could be
achieved compared to using no adaptation at all (Table 5.1). In another
comparison, the improvement of online adaptation over time was analyzed
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between a system using an acoustic model trained with VTLN and another
one trained with cMLLR in addition to VILN. From Figures 5.1 and 5.2,
it was seen how important pre-computed adaptation parameters are, espe-
cially for the first few utterances, if a cMLLR trained acoustic model is used
for decoding. In advance to decoding, a set of adaptation parameters was
obtained by clustering the training speakers, from which appropriate entries
were selected during decoding. Two different speaker clustering techniques
were developed, one using VILN parameters and the other one using the
similarity between cMLLR parameters. It was shown that significant im-
provements on the first few utterances could be achieved for both.

Furthermore, it was shown how available audio data of the same speaker
can be used for supervised and unsupervised adaptation using model-based
MLLR (Figure 5.3). In this context, it was shown that the results obtained
with a supervised adapted acoustic model can also be improved using online
adaptation. A relative improvement of about 3-5% could be obtained almost
independently of the amount of data used for supervised adaptation. In
addition, it was seen that the WER can be significantly improved even with
a few minutes of data used for supervised or unsupervised adaptation. A
relative improvement of about 5.7% and 7%, for unsupervised and supervised
adaptation, respectively, compared to an unadapted system can be expected
with about 10-15 minutes of audio data of the same speaker — a common
speaking time for a talk. When using all available data (almost 4 hours), a
relative improvement of 12.8% and 17.7%, for unsupervised and supervised
adaptation, respectively, over the baseline of 14.1% was obtained, i.e. a final
WER of 12.3%, respectively 11.6%.

Figure 5.5 compares the WER improvements due to the different adap-
tation techniques and the amount of data used to estimate the adaptation
parameters on the evaluation data. Starting with a system using no adap-
tation at all, the WER could be reduced by 21% to 15.5% when using
online adaptation (incr-SA). When 15 minutes of audio data of the same
speaker becomes available, the WER could be further reduced by 4.5% for
unsupervised (unsup-incr-15) and by 7.1% for supervised adaptation (sup-
incr-15), in addition to online adaptation. Using all available data results
in an improvement of about 11% for unsupervised and 16% for supervised
adaptation, i.e. a final WER of 13.8%, respectively 13.0%.
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Figure 5.5: Comparison of the different speaker adaptation techniques on
the evaluation data.
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Chapter 6

Topic Adaptation

Depending on the amount of information available prior to simultaneous
translation, different techniques can be applied to adapt the models of the
system towards a specific speaker, topic, or even a special talk. Speaker
adaptation was already discussed in the preliminary chapter. This chapter
will concentrate on describing the topic adaptation framework. As in the
previous chapters, the descriptions and experiments focus more on the adap-
tation of the speech recognition component of the system, i.e. the language
model and vocabulary, rather than the translation component. Nevertheless,
at the end of this chapter, it is shown that some adaptation techniques can
easily be applied to the target language model in the translation component
as well.

6.1 The Adaptation Framework

Figure 6.1 gives an overview of the adaptation framework developed in this
thesis. This flowchart is processed by the lecture translation system prior
to each lecture.

o If neither the lecturer nor the title or topic of a lecture are known
in advance, the system loads general speaker-independent acoustic,
language, and translation models.

e If only the name of the speaker is known, and the speaker has already
given a lecture on which the system has adapted its models, the system
is able to load speaker-adapted acoustic models. Since the topic is
unknown, it has to load general adapted language and translation
models. If there is no information about the speaker stored in the
database, speaker independent models have to be loaded. In both
cases, the information about the speaker can be used to query the
Internet for previously given lectures or other publications by the same
speaker to adapt the language and translation models.

67
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Figure 6.1: The adaptation framework. Flow-chart of the different adapta-
tion granularities in a lecture translation system.

e If the title or the slides of the talk are additionally available in advance,
this information can be used to search the Internet for even more
specific material. Therefore, topic-related keywords or n-grams have
to be extracted from the title or slides.

The more information about a speaker or topic is known in advance, the
better the models can be adapted and the better the system might perform
ultimately. The information can either be given manually or retrieved au-
tomatically from the Internet. For adaptation, the material collected must
first be filtered and normalized in order to interpolate it with the other
more general background models. Although not shown in the figure, it also
makes sense to adapt the vocabulary of the speech recognizer by extending
it with missing topic words or proper names. Section 6.4 deals with this
issue separately. The next Section describes techniques for language model
adaptation.

6.2 Language Model Adaptation

The main adaptation technique used is the so-called model interpolation,
in which several language model components LM; are linearly interpolated
to form a mixture model. The probability for a word w following the word
history h is then computed as follows:

P(wlh) = > APy(wlh), with> X =1 (6.1)
LM, i

The mixture coefficients or interpolation weights A; may be a function of
the word history h and are typically estimated with the help of the EM al-
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gorithm so that the perplexity of the mixture model on some held-out data
is optimized. Language model adaptation is performed by updating the in-
terpolation weights with the help of additional held-out data and/ or by
exchanging or adding some language model components which better cover
the desired topics. Adding new components can be done either by interpo-
lating them with the already existing language model, or by re-estimating
all mixture coefficients. While in the first case the existing (background)
language model is kept unchanged, in the second case the interpolated lan-
guage model has to be computed from scratch. The first method is preferred
because of its smaller computationally effort, and used for most of the exper-
iments in this thesis, but as will be seen later, better results can be obtained
by using the second approach.

Other techniques used for language model adaptation include dynamic
cache language models | ], minimum discriminant information (MDI)
[ |, or latent semantic analysis (LSA) | |, but are not further in-
vestigated in this thesis. A more detailed overview of statistical language
model adaptation techniques can be found in the journal article by Belle-
garda [ ].

6.2.1 Useful Data for Adaptation

But what kind of data is useful for adaptation and where can that data be
obtained? This section deals with these two questions and describes the
problems and advantages of different types of data.

Manual or Automatic Transcripts

The best data for language modeling for speech recognition are transcripts of
speech data. This data is preferred over text data because spoken language
differs in style from text, due to spontaneous effects like word reorderings,
word repetitions, breaks, hesitations and other disfluencies. Since speech
recognizers have to recognize word-by-word, well-estimated transitions cov-
ering these kinds of disfluencies are essential.

Transcribing speech data can be done manually, or automatically if a
good enough speech recognition system is available. Initially during system
development, this is not the case, and, due to recognition errors manual
transcripts are usually preferred over automatic ones. On the other hand,
manually transcribing data is very costly and many occurrences of disflu-
encies further complicate this process. Therefore, different approaches to
spontaneous language modeling have already been investigated in the liter-
ature. A good introduction to the problem can be found in the article by
Stouten | .

Often, the estimation of the probabilities for inserting disfluencies is
treated separately from statistical n-gram language modeling. For example,
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in [ ], a so-called hidden event language model was used. In | ], a
weighted finite state transducer for speaking style translation was proposed
instead. However, the success of such approaches, in comparison to modeling
them directly in the n-gram language model, depends on the transcribed
spontaneous speech already available.

The recognition system used in this thesis models some disfluencies, such
as word repetitions or breaks, directly, with the help of the language model.
In contrast, so-called filler words which are allowed to occur between any
other two regular words are handled differently. Their language model prob-
abilities are not computed by the language model. Instead, a fixed filler
penalty optimized on some held-out data is used. The category of filler
words covers hesitations as well as human and non-human noises.

Topic-Related Text Data

For topic adaptation, data related to a particular topic is necessary. Again,
transcripts are preferred over text data, but are more difficult to find than
spontaneous speech transcripts. In the literature, one can distinguish be-
tween approaches for selecting data related to a particular topic out of a

large corpus | ], approaches for further collecting related text data by
querying a search engine and retrieving resulting web pages from the World
Wide Web | , , |, or a combination of both. Using the

huge amount of data available in the Internet has increased in popularity
over the last years because of the higher quality of search engines. Writ-
ten data which is similar to spontaneous speech can be found in many chat
rooms [ ].

As already introduced during the explanation of the adaptation frame-
work, the approach used in this thesis is to query the Internet. Therefore,
queries have to be generated for retrieving relevant documents by using web
search engines.

6.2.2 Query Generation using TF-IDF

The procedure for query generation presented here was developed for the
RT-06S evaluation. For web text collections used for training the LM6
language model, two different web query strategies were employed. For the
UKA-L collection, the same web text collection framework as proposed in
[ ] was followed, where frequently spoken 3-grams and 4-grams from
the target task training data are combined to form queries. For the other
collections, a more sophisticated approach was used. Frequent n-grams from
different lecture or conference meeting transcripts were combined with topic
bigrams from the conference proceedings PROC to form queries. The goal
was to obtain text reflecting a broad variety of topics, some of which are not
represented in the training set, as well as data covering the desired speaking
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style. Note that the n-grams were put in quotes before being transmitted to
the search engine (Google). All in-house collected web data was perplexity
filtered to roughly match the size of the UW-M web collection.

For computing topic phrases, a technique known from the field of In-
formation Retrieval and similar to | | was used. With term frequency
- inverse document frequency (tf-idf), a weight is defined which is a statis-
tical measure of how important a word is to a document in a collection of
documents. The weight wy for a word or term k is defined as

I | — (6.2)
V2 (gk)?
= tf log<N) =tfi - idf (63)
9k k T k ks .

where t f;, is the term frequency, i.e. the number of occurrences of the term
k in the current document, N is the number of documents in the collection,
and fi is the number of documents which contain the term k. The term
weight g increases proportionally to the number of times a word appears in
the document but is offset by the frequency of the word in the collection. To
obtain wy, the term weight g is normalized to the length of the document.

In contrast to the approach used in | |, which computes tf-idf weights
for words only, bigrams are used as single terms. Since not all bigrams are
relevant, a selection algorithm was developed.

1. For each document in the proceedings data PROC, the tf-idf weight
is computed for all bigrams.

2. All weights but the top 10% are zeroed.

3. The obtained weight vectors are averaged over the collection, and the
top 1400 bigrams excluding any with stop-words or numbers are se-
lected.

4. The topic bigrams are mixed randomly with general phrases until the
desired number of queries, i.e. in this case 14k are generated.

The second step reduces the list to the most relevant bigrams. In the third
step, all non-topic bigrams are removed with the help of a stop word list
containing 1500 high frequency function words. The last mixing step ensures
that the data collected from the Internet also matches the speaking style.
The top ranked topic bigrams are, e.g.

language model, speech recognition, time frequency, speaker
recognition, vocal tract, clean speech, channel estimation, au-
dio visual, space time, acoustic models

A frequency-based approach would select the following top ranked bigrams
instead:
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language model, speech recognition, error rate, acoustic models,
natural language, proposed method, training data, clean speech,
acoustic model, broadcast news

While some of the bigrams between both approaches are identical, it can
be seen that by using ¢f-idf more specialized bigrams are preferred over the
more general ones.

For the adaptation framework, the topic information has to be extracted
for a single talk only, instead of a collection of documents. However, tf-
idf weights can only be computed with respect to a collection of docu-
ments. Therefore, the data from which the components for the baseline
(background) language model were built is used as a background corpus.

The above-presented algorithm has the problem that for some n-grams,
tf-idf weights could not be computed because the corresponding n-gram
in the background corpus was missing. Furthermore, the hard thresholds
defined in the selection algorithm makes it unsuitable for changing data
sizes. Therefore, the selection algorithm has to be further refined, and,
instead of bigrams only, also trigrams were considered. Given some data
related to the current talk, like presentation slides or publications the topic
n-grams are selected according to the following heuristic:

1. Compute bigram and trigram tf-idf weights on the relevant data with
respect to the background corpus.

2. All n-grams with a weight higher than 10% of the highest weight are
selected.

3. In addition, all n-grams with no ¢f-idf weight and a higher occurrence
count than the square of the average occurrence n-gram count are
selected.

The count and tf-idf thresholds are defined for each n-gram category sepa-
rately.

6.3 Language Model Adaptation Experiments

In the following experiments, the different adaptation levels of the proposed
adaptation framework are evaluated with respect to improvements in speech
recognition.

In Section 6.3.1, a detailed description of differently adapted language
models used as baseline language models for the following experiments are
given. Section 6.3.2 analyzes to which extent the language model can be
adapted, if the speaker’s identity is known. Therefore, the homepage of the
speaker as well as the speaker’s publications are retrieved from the web. In
Section 6.3.3, this data was used to retrieve other related data, similar in
topic, and the relevance of this data is analyzed in more detail.
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So far, only data related to the interests of the speaker was collected.
In the next step, it was analyzed if the adaptation could be improved by
data related to the talk or lecture the speaker is given. Therefore, in Section
6.3.4, information on the presentation slides was used to retrieve relevant
data from the web, and the results when using this data for language model
adaptation prior to decoding are presented.

Sections 6.3.5 and 6.3.6 analyzes the improvements possible if more data
from the speaker becomes available such as recorded lectures. Depending
on the type of the transcripts available, manually transcribed or automatic,
the improvements in WER by using this data for LM adaptation is studied.

6.3.1 Baseline Language Models

We analyze in more detail the language model used for the baseline ASR sys-
tem. As described in Section 4.3.6, this language model (LM6) is a mixture
language model consisting of nine different language model components; it
evolved over several evaluations | , ]. The main improve-
ments were made prior to the RT-06S evaluation when a huge amount of
additional data was collected from the Internet with the technique described
in Section 6.2.2.

For the experiments within this chapter, LM6 was modified to better
handle disfluencies. As described above, instead of estimating their transi-
tion probabilities by the language model, a fixed penalty was used instead.
This was done for only those disfluencies which seem to occur independently
from their surrounding word context. As a result, the perplexities as well
as the WERs given in this chapter differ from those presented in Section
4.3. Due to this change, the PPL improves by 17% on RT-06Sdev and 8%
on lectDev, and the WER improved by 3.2% and 2.8%, respectively. The
improvement is not only because of the changed modeling; the penalty ap-
plied is also much smaller than compared to the average language model
probability estimate of a disfluency transition in LM6, making it more likely
for disfluencies to be recognized. The same normalization was applied to
all other LMs in this chapter. It should be noted that, throughout all lan-
guage model adaptation experiments, the language model vocabulary was
kept fixed to the one described in Section 4.3.5.

Figure 6.2 shows the mixture coefficients for LM6, and Table 6.1 gives the
corresponding perplexities and word error rates on different development and
evaluation sets. For LMG6, the mixture coeflicients were tuned on a held-out
set related to the RT-06S evaluation and different from the development and
evaluation sets. As can be seen, the most relevant data are the transcripts of
recorded seminars SMNR, followed by the proceedings data. The fact that
the proceedings data are only second in importance shows the technical
relatedness of the held-out data.

As mentioned above, due to the use of language model components built
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Figure 6.2: Mixture coefficients of the training corpora tuned on different
development sets. Components for which the coefficients are smaller than
0.2 are not shown in the figure and also not used for the estimation of the

interpolated LM.

RT-06Sdev lectDev
PPL WER PPL WER
LM6 127 27.0% 150 13.9%
rt06Sbase 136 28.2% 162 14.5%
rt06Sdev 124 26.9% 145
lectDev 127 144 13.5%

Table 6.1: In- and across-domain perplexity (PPL) and word error rate
(WER) comparison of mixture LMs. rt06Sbase was tuned on RT-06S held-
out data, lectBase on the held-out set lectOther, and rt06Sdev and lectDev
on the corresponding development sets instead.
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from proceedings data, as well as from large amounts of web data related
to technical presentations, LM6 is already highly adapted towards the lec-
tures which are considered in this thesis. As a result of this, the potential
of the developed adaptation framework is hard to assess because obtained
improvements on top of the results achieved with LM6 — if any — are rather
small. To overcome this problem, a new unadapted baseline language model
rt06Sbase was created, for which the allowed corpora were restricted to all
audio transcripts, as well as the text data not collected in the context of
RT-06S, i.e. UW-M, HNSRD, GWRD, UN, and BN. As a held-out set
for computing the mixture coefficients, the RT-06S held-out data was used.
This corresponds to the realistic situation of applying the lecture translation
system, for the first time for a specific speaker and a particular topic, given
that the system had been already used in a similar situation for another
speaker. Besides some related transcripts and additional held-out data, no
other corresponding data is available.

As can be seen in Figure 6.2, the most relevant corpora for rt06Sbase are
UW-M, SMNR, MTG, and TED. And Table 6.1 shows that on RT-06Sdev, a
perplexity of 136, and 162 on lectDev can be achieved. The WERs obtained
on RT-06Sdev and lectDev are 28.2%% and 14.5%, respectively.

For comparison reasons two other language models were created. The
rt06Sdev language model was tuned with respect to the RT-065dev data,
and the lectDev language model with respect to the lectDev data, rather
than with respect to the corresponding held-out data sets. Compared to
LM6, some differences can be observed. The proportions between different
components are modified, the TED language model is not important any-
more, and the FPPS-S language model is added with a small weight. While
for rt06Sdev the meeting transcripts are the most important, for lectDev the
web data based on meeting transcripts and proceedings is the most relevant.
Due to this difference, the perplexities on the corresponding data set are also
reduced by 3 and 6 for RT-06Sdev and lectDev respectively, relative to LM6.
Only a slight WER reduction for rt06Sdev of 0.4% to a WER of 13.5% was
observed.

The language models lectBase and lectAdapt will be described later in
Section 6.3.5. To reduce the size in memory, all language models were pruned
with an entropy-based criterion using a threshold of 1079 | ].

6.3.2 Using the Speaker’s Identity

With the help of the speaker’s identity, the Internet can be queried for
additional information about the speaker. Ideally, the homepage, along with
the speaker’s publications can be found. Although querying a search engine
with the speaker’s name is possible, a better method is to search manually
for the necessary information, since the name might not be unique. If the
homepage is found, a web crawler can be used to retrieve the necessary
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pages recursively, i.e. together with linked pages up to a specified linking
depth. All the found pages as well as the publications can now be filtered,
normalized and merged. Note that for this adaptation level, no topic n-
grams have to be extracted.

Filtering removes unnecessary information such as HT'ML code, tables,
formulas, special characters, etc. After this, sentence boundaries or para-
graphs are detected. Additional filters are applied to remove sentences,
paragraphs or documents if they have a worse ratio of real words to out-of-
vocabulary words, of numbers to words, or of number of characters to words.
Out-of-vocabulary words are identified with the help of a large background
vocabulary with about 500k entries. The normalization step writes out ab-
breviations and numbers, tags acronyms, and removes punctuation. The
normalized pages and documents can now be merged into a single corpus.

Experiments

The following experiments were conducted on the lecture task as well as on
the RT-06S data. Due to the lack of held-out and evaluation data with addi-
tional speaker information, it was necessary to partition the RT-06Sdev set
randomly into a development (RT-06Sdev-dev) and evaluation (RT-06Sdev-
eval) set. All word error rates are given after language model rescoring, with
the language model parameters optimized on the development data.

Data: Table 6.2 gives an overview of the amount of data collected per
speaker as well as the adaptation results. As mentioned above, rt06Sbase was
used as a baseline, and as the background language model for interpolation
with the foreground language models built from the data collected. Since
some of the speakers are students, no additional information or publications
were found about them on the Internet, and the data found about their
supervisor was used instead. As a result, for two speakers with the IDs
evsmbd and robdkz, as well as for the two speakers pgaftk and qgzhyn, the
same data is used. As can be seen in the second column of Table 6.2, the
amount of data found per speaker varies largely from about 3k to 555k.

The relevance of the collected data: For measuring the relevance of
the collected data with respect to different speakers, a language model build
on a speaker’s data only. The perplexities were computed on all speakers’
reference transcripts of the development set and compared. Table 6.3 shows
the results. As can be seen, the perplexities for the matched condition are
usually amongst the top two lowest for a single speaker. This is not the
case for only those speakers for which the data used is identical to that of
another speaker, and for evsmbd. An analysis of the transcripts for evsmbd
shows that this speaker employs more general language than others.



6.3. LANGUAGE MODEL ADAPTATION EXPERIMENTS 7

speaker 1D # words PPL-b WER-b weight PPL-i WER-
RT-065dev development set

bpdnpq 17,409 165 28.6% 027 118  25.1%
evsmbd 155,378 101 14.9% 0.14 97 13.4%
ksb 425,853 154 24.7% 0.33 124  23.8%
mlspsf 3,280 103 21.0% 0.05 101 20.4%
ouarkw 234,014 119 28.2% 0.17 110 26.8%
pgaftk 5,100 132 25.6% 0.02 132 25.9%
qezhyn 5,100 157 23.3% 009 145 24.1%
robdkz 155,378 117 30.3% 0.10 104 29.5%
spipaa 201,074 182 224% 037 141 20.0%
Overall 1,202,586 135 25.1% 0.17 122 24.2%
+ threshold 0.23 24.0%
RT-065dev evaluation set
jjabpr 155,378 166 41.3% 0.17 40.5%
kesysg 188,524 143 29.0% 0.17 27.7%
kuvvqe 336,840 137 44.7% 0.17 42.8%
ojtlvn 2,925 157 25.6% 0.17 26.5%
owm 555,209 130 23.6% 0.17 22.5%
pev 103,269 124 234%  0.17 922.3%
ristxa 74,375 123 26.5% 0.17 27.2%
tbvstt 5,344 126 32.2% 0.17 32.1%
xboxkz 20,468 129 29.8% 0.17 29.6%
Overall 1,442,332 30.3%  0.17 30.0%
-+ threshold 0.23 29.9%

Table 6.2: Amount of data collected per each speaker on the RT-06Sdev
set together with the mixture weights and resulting perplexities (PPL) and
word error rates (WER). PPL-b and WER-b are the results computed with
the baseline language model rt06Sbase, and PPL-i and WER-i are the results
after language model adaptation using the collected data. WERs are given
after language model rescoring.

data\ref bpdnpq evsmbd ksb mlspsf ouarkw pgaftk qgzhyn robdkz spipaa
bpdnpq 440 584 1794 1486 1562 2242 1892 1342 2068
evsmbd 406 320 1030 904 987 1480 1209 1132 1284
ksb 629 184 234 368 572 694 528 769 649
mlspsf 2096 1166 2264 1029 2995 3001 2837 3205 3461
ouarkw 322 179 596 539 450 1023 712 772 782
pgaftk 2902 1399 2436 1752 3482 2569 1480 4142 3495
qgzhyn 2902 1399 2436 1752 3482 2569 1480 4142 3495
robdkz 406 320 1030 904 987 1480 1209 1132 1284
spipaa 654 242 459 335 467 604 545 572 258

Table 6.3: Perplexities of different speaker’s data on different speaker’s ref-
erence transcripts restricted to RT-065-dev-dev. In bold, the two lowest
perplexities per row are marked.
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It could be shown, that the data retrieved for a specific speaker is corre-
lated in terms of perplexity with the presentation of the speaker. In the next
two experiments it is analyzed, if this relationship carries over to improve-
ments in WER. In the first experiment (A), lecture meetings are explored,
and in the second experiment (B), lectures.

(A) Lecture meetings: In the third and fourth column of Table 6.2, the
perplexities (PPL-b) and word error rates (WER-b) achieved with the base-
line language model are given. Overall, a perplexity of 135 together with a
WER of 25.1% is obtained on the development set. For each speaker, the
language model component built on the speaker’s collected data is interpo-
lated with the background language model. The optimized mixture weights
obtained on the speaker’s reference transcripts are given in the fifth column
(weight), and the resulting perplexity on the same references in the sixth
column (PPL-i). Due to the fact that speaker-dependent mixture weights
cannot be estimated on the evaluation set, a single average mixture weight
was computed. For the decoding experiments, this weight was used for
the interpolation of the language model components for all speakers. This
means that the word error rates given in the last column are obtained with
the speaker adapted mixture models using a weight of 0.17 for the fore-
ground language model component. As can be seen, the overall baseline
WER can be improved by 3.5% to 24.2% on the development set. Although
the improvement is not as large as on the development set, an improvement
from 30.3% down to 30.0% could also be observed on the evaluation data.
Another observation is that the adaptation typically works better for speak-
ers for whom more data is available. Therefore, the result can be further
improved slightly when the speaker-adapted language model is used only
if the collected data amounts to more than e.g. 10,000 words. The WER
could be improved to 24.0% on the development set and to 29.9% on the
evaluation set.

Unfortunately, the random partition of the RT-06S5dev speakers into the
two sets was not ideal. The development set is much easier to recognize than
the evaluation set. Moreover, the mixture weights obtained on the develop-
ment set are overestimated compared to those which would be achieved on
the evaluation set. The average optimal weight on the evaluation set is 0.14
— much lower than the computed 0.23.

(B) Lectures: The above-described adaptation strategy was also applied
to the lecture task. Since all data was recorded from a single speaker a
single corpus with an amount of 607,097 words was collected. The language
model component built on this data was then interpolated with a weight
of 0.15 with the background language model rt06Sbase, with the mixture
coefficient optimized on RT-06Sdev-dev. As can be seen in Table 6.4, the
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ID PPL-b WER-b PPL-i WER-i || WER-b® WER-{’
1035 164 14.7% 152 14.5% 14.7% 14.3%
1003 154 14.6% 150  14.3% 14.5% 14.3%
1012 168 17.4% 156  17.1% 17.3% 17.1%
1032 148 12.6% 142 12.4% 12.5% 12.3%
1041 196 14.3% 194 14.6% 14.2% 14.3%
1042 192 12.1% 175 12.5% 12.1% 12.1%
Overall 162 14.5% 156 14.3%

Table 6.4: Word error rates and perplexities on lectDev before and after
language model adaptation. While WER-b and WER-i are those obtained
with the global best language model parameters, WER-b’ and WER-i’ shows
the word error rates with the local best language model parameters. The
mixture coefficient was optimized on the above introduced RT-06Sdev de-
velopment set to 0.15.

overall perplexity was reduced from 162 (PPL-b) to 156 (PPL-i), and the
word error rate from 14.5% (WER-b) to 14.3% (WER-i). However, this
reduction is not obtainable for all lectures. Although the perplexity was
reduced for all lectures, the word error rate for t041 and t042 increased.
The reason for this behavior is due to the way in which the results after
language model rescoring are obtained. The WERs presented in the WER-i
column are those achieved with the language model parameters achieving
the overall best WER. However, these language model parameters might not
be optimal for all lectures. Therefore, in the WER-b’ and WER-i’ columns,
the WERs achieved with the best language model parameters per lecture
are given. As can be seen, these WERs correlate better with the presented
perplexities. However, unless otherwise specified, the tables which follow
give only WER-b and WER-i.

Conclusion

In this Section, it was shown that data retrieved from the homepage of a
speaker together with the speaker’s publications contains useful information
relevant to a speaker’s presentation. Using this data for language model
adaptation by linear interpolation with a background language model im-
proves perplexity as well as word error rate. On lecture meetings, the WER
could be improved by 3.5% and 1% relative on the development and eval-
uation data, respectively. On lectures, the WER could be improved from
14.5% to 14.3%. Although consistent, the improvements are relatively small.
Therefore, the next section investigates, if the results can be improved, if
this data is used as a seed corpus for collecting additional data.
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Stopic Sseed+Stopic
speaker 1D # words PPL-i WER-i PPL-i WER-i
RT-065dev development set
Overall 118 23.7 115 23.4
RT-06Sdev evaluation set
jjabpr 9,343,834 147 39.5 148 38.6
kesysg 16,804,860 122 28.7 119 27.5
kuvvqe 26,717,728 135 43.2 134 42.4
ojtlvn 5,875,099 161 26.3 164 26.1
owm 26,518,836 136 23.1 137 24.1
pgv 10,196,691 113 22.1 107 21.4
ristxa 17,432,369 126 26.7 123 27.3
tbvstt 7,398,801 123 30.3 127 31.2
xboxkz 1,755,515 125 30.5 117 29.7
Overall 29.8 29.8

Table 6.5: Results for language model adaptation by interpolation of the
background LM with the Stopic LM component only and with the Sseed
LM component in addition. The results are given in perplexity and word
error rate.

6.3.3 Speaker Related Web Data

For the experiments in this section, the data collected in the section above is
used as a seed corpus for extracting topic n-grams, using the proposed tf-idf
based query generation technique. The seed corpus or language model built
using this corpus is referred to as Sseed and the corpus or language model
built using the corpus collected with the help of Sseed is referred to as Stopic
(with S for speaker). As above, this adaptation strategy is applied to both
lecture meetings and lectures. The WERs achieved with two-fold and three-
fold interpolation will be compared. in case of the two-fold interpolation,
the Stopic LM is interpolated with the background LM alone, and, in case
of the three-fold interpolation in conjunction with the Sseed LM.

Lecture meetings: For lecture meetings, the mixture coefficients for
the two- and three-fold interpolation were optimized on the speaker’s corre-
sponding reference transcripts in RT-06Sdev-dev and averaged. The average
mixture coefficient was used to compute the speaker-dependent language
models for the development and evaluation sets. In the first case, a mixture
coeflicient of 0.35 for the Stopic LM was computed. In the second case, 0.26
and 0.11 were computed for Stopic and Sseed, respectively.

In Table 6.5, the amount of data automatically collected per speaker is
given. It can be observed, that the number of words correlates with the
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number of words in the Sseed corpus, because the number of queries gener-
ated automatically depends on the size of the Sseed corpus. Furthermore,
compared to Table 6.2, the perplexity and word error rate can be further
reduced on the development set. On the evaluation set, the WER decreases
only slightly for the two-fold interpolation with the Stopic LM to 29.8%,
but no further when the Sseed LM is added. A correlation of the numbers
of words collected and the WER achieved as compared to Table 6.2 was not
observed.

Lectures:  When using the same technique for the lectures an amount of
34,116,715 words was collected for the single speaker. Bigrams and trigrams
were extracted from the Sseed corpus as search queries for the Stopic corpus.
Altogether, 1242 bigrams and 1922 trigrams were extracted. The top ranked
bigrams are:

user registration, n-best lists, n-gram language, hand color,
speech-to-speech translation, Toolkit JRTk, CallHome Spanish,
human-robot interaction, speaker initiative, human-human com-
munication, close-talking microphone, cross-language transfer

while the top-ranked trigrams are:

Recognition Toolkit JRTk, GE EN JA, EN JA SP, CH GE EN,
n-gram language models, discriminant analysis LDA, multimodal
user registration, n-gram language model, vectorized nontermi-
nal symbols, machine translation SMT, hand color model

As can be seen, several specialized n-grams are mixed with general ones.
The n-grams similar to “GE EN JA” are common abbreviations for language
pairs in machine translation. But also the lowest ranked n-grams seem to
be relevant, as can be seen in the following trigrams:

speech recognition error, extract signs robustly, recognition error
rates, Ibis single pass, distant microphone conditions, bilingual
Basic Travel, individual person activity, global STC transforms,
Language Adaptive Acoustic, Sixth Framework Programme

The mixture coefficients were again optimized on the RT-06Sdev-dev
development corpus. For the two-fold interpolation of the background LM
with the Stopic LM, a coefficient of 0.31 for the Stopic was obtained, and,
after additionally applying the Sseed LM, 0.08 and 0.24 for the Sseed and
Stopic LM, respectively.

Conclusion

In this section, the Sseed corpus was used as a seed corpus for extracting
topic n-grams, using the proposed tf-idf based query generation technique.
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Stopic Sseed+Stopic
1D PPL-i WER-i PPL-i WER-i
t035 147 14.5% 144 14.6%
1003 147 14.3% 145 14.4%
t012 156 17.1% 152 16.6%
t032 137 12.4% 136 12.1%
t041 181  14.6% 181  14.1%
1042 163 12.5% 160  11.9%

Overall 154 14.2% 151  14.1%

Table 6.6: Word error rates and perplexities on lectDev obtained with lan-
guage models adapted by interpolation with the Stopic LM and with the
Sseed LM in addition.

The resulting queries were used for retrieving additional data forming the
Stopic corpus. Compared to the results of Section 6.3.2 perplexities as well as
word error rates improved further when both corpora, Sseed and Stopic were
used for a three-fold interpolation with the background language model lect-
Base. Compared to results obtained with the background language model,
the WER was improved by 1.7% and 2.8% on lecture meetings and lectures,
respectively.

So far, the experiments focused on general data related to the speaker
and was not specific to a presentation. In the following section, it will be
investigated, if data specific to a presentation can be retrieved from the web
by using information extracted from the presentation slides.

6.3.4 Using Presentation Slides

In this section, additional information about the presentation is used for
collecting data from the Internet. Examples of suitable information include
presentation slides or manuscripts. Unfortunately, additional information in
the form of presentation slides was not available for the RT-06S data; the
following experiments were therefore carried out on the lecture data only.

As in Section 6.3.2, after describing the collected data per lecture in
more detail, its relevance for the corresponding lecture is shown. The ex-
periments are following afterwards. It will be investigated if (A) relevant
data can be collected with the proposed tf-idf based query generation and
web data collection strategy, (B) perplexities as well as word error rates im-
prove when this data is used in conjunction with Stopic, and (C) by merging
this topic-specific data into a single corpus to increase its relevance, further
improvements can be achieved.
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1D # bigrams # trigrams # words

1035 221 88 5,057,056
1003 1150 388 24,266,155
t012 237 72 6,055,540
t032 317 433 9,943,847
t041 166 145 5,387,185
t042 324 174 10,438,130

Table 6.7: Number of queries extracted automatically from the presentation
slides together with the number words collected per lecture on lectDev.

Ltopic Stopic+Ltopic
1D PPL-i WER-i PPL-i WER-i
t035 154 14.6% 146 14.7%
1003 144 14.2% 144  14.4%
t012 164  17.3% 156  16.7%
t032 140  12.3% 137 12.2%
1041 178 13.8% 179 13.7%
t042 174 12.0% 163 11.9%
Overall 14.2% 14.1%

Table 6.8: Results achieved with language model adaptation using web data
collected from presentation slides on lectDev. The mixture coeflicients were
optimized on the RT-06Sdev development set.

Data: Table 6.7 shows the number of queries extracted from the presenta-
tion slides and the amount of data collected from these queries per lecture.
Again, the amount of data collected depends on the number of queries ex-
tracted. The language model or corpus extracted in this way is referred to
as Ltopic (with L for lecture dependent).

(A) The relevance of the collected data: To verify the relevance of the
collected data with respect to the different lectures, Table 6.9 compares the
perplexities of different topic data collected for a specific lecture computed
on different reference transcripts. Except for t012 and t041, the correspond-
ing reference transcripts can be found under the two lowest perplexities. In
comparison with the Stopic data, it can be seen that the perplexity is not
always lower.

In summary, the tf-idf-based query generation and web data collection
strategy collects relevant data, with the relevance increasing as the corpus
grows in size. The data retrieved for a specific lecture is correlated in terms of
perplexity with the lectures reference transcripts. However, a large speaker-
dependent corpus, general in topic (Stopic) may be often more suitable
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data\ref t035 1003 t012 t032 t041 t042

1035 203 296 258 210 243 240
1003 201 199 229 182 260 221
1012 230 265 262 214 271 260
1032 195 259 234 186 235 196
1041 210 296 266 218 222 240
1042 219 356 281 220 255 203

Stopic 188 202 212 176 238 197

Table 6.9: Perplexities of different Ltopic data collected for a specific lecture
on different reference transcripts. In addition, the perplexity of the Ltopic
data is compared with the Stopic data. In bold, the two lowest perplexities
are marked per lecture or talk (row). For Stopic, the perplexity is marked
bold if it is lower than the corresponding Ltopic perplexity.

especially if the topic dependent corpus (Ltopic) is relatively small.

In the next two experiments it is analyzed, if this relationship carries over
to improvements in WER. In the first experiment (A) presentation specific
data will be used, in the second experiment (B) the presentation specific
data will be merged to a single corpus.

(B) Presentation specific data: For each Ltopic component, the mix-
ture coefficients were optimized on the RT-06S5dev-dev set, separately. The
mixture coefficient for Ltopic in the case of two-fold interpolation ranges
from 0.06 to 0.12, and if the Stopic LM is used additionally, from 0.006 to
0.01. In terms of WER, no further improvement was achieved compared to
the results presented in Table 6.6. For two-fold interpolation, a WER of
14.2% was achieved, for three-fold interpolation the WER was 14.1% (see
Table 6.8). However, although the mixture coefficients are small, the WERs
for the two-fold interpolations with Stopic or Ltopic are identical, showing
that both corpora are relevant. Again, no correlation between the size of
the Ltopic corpus and WER was observed.

(C) General presentation data: It was observed on Table 6.9 that
sometimes the large speaker-dependent corpus, general in topic Stopic was
more relevant in terms of perplexity than the more specific, topic-dependent
corpora. Therefore, in this experiment it was investigated, if the relevance
of the Ltopic corpora could be increased as well when merged into a single
corpus.

After removing duplicate web pages, this corpus consists of 48,726,560
words. Again, the mixture coefficients for the two-fold and three-fold in-
terpolation with Stopic were optimized on the RT-06Sdev-dev set, with
rt06Sbase serving as a background LM. The results in Table 6.10 show a
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Ltopic Stopic+Ltopic
1D PPL-i WER-i PPL-i WER-
t035 148  14.0% 145  14.6%
1003 148  14.2% 145 14.3%
t012 159  16.9% 155  16.6%
t032 138 11.9% 136 12.1%
t041 173 13.5% 175 13.2%
1042 167  11.3% 162 11.9%

Overall 154  13.9% 152 14.0%

Table 6.10: Results achieved with language model adaptation using web
data collected from presentation slides on lectDev. In contrast to Table 6.8,
the data collected for the different lectures was merged into a single corpus.
The mixture coefficients were optimized on the RT-06Sdev-dev development
set.

slight improvement in WER, compared to Table 6.8. Also, the perplexi-
ties differ slightly. Surprisingly, with two-fold interpolation a slightly better
WER could be achieved, compared to with three-fold interpolation. This
shows that relevant information for some lectures can also be found in the
topic data collected for other lectures, and that the data collected for a
lecture does not cover all the necessary information. Therefore, if enough
lectures are available, merging all data into a single corpus to construct a
general speaker-adapted language model may be a good idea, if the lectures
are at least mildly related.

Conclusion

In this section, corpora specific to the presentation slide were collected using
the proposed tf-idf based query generation technique. It could be shown that
information extracted from the slides with this technique, data related in
topic to the corresponding lectures could be retrieved.

For the three-fold interpolation consisting of the background language
model and the Stopic and Ltopic LMs, the same WER was observed as
when Ltopic is replaced with Sseed. A possible explanation for this is that
the mixture coefficients for both mixture LMs are optimized on the same
held-out set. This might be sub-optimal, because the held-out set differs in
topic from the presentation.

Therefore, in the next section it will be investigated, if the mixture
language model improves further as soon as data from the same speaker or
with the same topic becomes available.
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topic lectOther lectDev  lectEval
keynote t035

courseA 1005 1003 1043
talkA t012

courseB  t011, t033, t034 t032

talkB t039, t040 t041 t036, t037
talkC t043 t042 t038, t044

Table 6.11: Classification of the lecture data into specific topic groups.

6.3.5 Using other Talks of the same Speaker

In this section, it is analyzed how additional data from the same speaker
can be used. Depending on the type of transcripts available, manually tran-
scribed or automatic, and if the data matches the topic or not, it was an-
alyzed how the adaptation results are influenced. Therefore, the lectOther
data as described in Section 4.2.4 was used for supervised (using manual
transcripts) or unsupervised (using automatic transcripts) adaptation.

With the experiments described in the following, it should be investi-
gated if data from the same speaker and topic can be used to improve the
topic-dependent mixture language models. Therefore, the talks and lectures
in lectOther have to first classified into specific topic groups, and, second,
the groups were matched with the talks and lectures in lectDev and lectEval.
In the first experiment (A), this classification will be used to optimize the
mixture coefficients on the data of lectOther corresponding in topic, instead
of using RT-06S5dev-dev.

The next experiments (B) and (C) are going a step further. For both
the background language model will be re-optimized using the lectOther
data instead of using the RT-06S held-out data. In the case of (B), the
same corpora as allowed for rt06Sbase will used, and in the case of (C)
all available corpora could be used. The goal of these experiments is to
investigate, if even already adapted language models can be improved by
the proposed topic adaptation scheme.

The last experiment (D) should prove the assumption that the WER
reduces, if the mixture coefficients will be optimized topic-dependently for
all language model components instead of keeping them fixed for the back-
ground language model.

Topic clustering and interpolation scheme: First of all, the talks and
lectures were manually classified into specific topic groups. As can be seen
in Table 6.11, three different topic groups are present in lectOther. These
groups were then used for optimizing the mixture coefficients individually.
For topics not present in lectOther, the coefficients of the language model
components were optimized on the whole lectOther set. This means that
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for {003 and t042 the mixture weights were optimized on the corresponding
1005 and t043. For t032, the mixture coefficients obtained on t011, t033,
and t034 were averaged. For t041, the mixture coefficients obtained on t059
and t040 were averaged, and, for t035 and t012, the mixture coefficients
were optimized on the whole lectOther set. In all cases, three-fold interpola-
tion between the background language model rt06Sbase and the Stopic and
Ltopic components were used.

(A) Topic dependent mixture coefficients: Using the method de-
scribed above, the overall WER was reduced by 3.4% from 14.5% to 14.0%.
The detailed results are given in Table 6.12 in the section labeled rt06S5base.
The row labeled S+ Ltopic shows the results after adaptation. Although the
amount of data available per topic for optimizing the mixture coefficients is
small, adapting the mixture model on each topic individually is better than
adapting on the whole lectOther set by 0.2 points in WER. Moreover, by
optimizing the mixture coefficients on the topics of lectOther, the WER was
improved by 0.1 compared to optimizing on RT-06Sdev-dev (see Table 6.8).
The most significant reduction in WER, by 5.9%, could be observed for 042,
even though the talk on which the mixture coefficients were optimized has
a duration of seven minutes.

Compared to the results presented in Table 6.10, where the topic data
was merged into a single corpus and the mixture coefficients were optimized
globally on RT-06Sdev-dev, the same WER was achieved. When performing
the same experiment on lectOther but optimizing the mixture coefficients in
a topic-dependent fashion, no further improvement was observed. Overall,
no relation between the amount of topic data collected per speaker, or the
amount of data used for optimizing the mixture coefficients, and the obtained
WER was observed. In addition, the results show that with topic-specific
data for optimizing the mixture coefficients, recognition accuracy improved.

(B) Speaker-dependent language model lectBase: By using the lec-
tOther set for selecting the language model components and optimizing the
mixture coefficients a new language model was built. This model will be
referred to as lectBase. The mixture coefficients presented in Figure 6.2
show that in contrast to the rt06Sbase LM, the language model components
built on FPPS-S and AMI transcripts and the BN text data are taken
into account. Furthermore, the importance of the UW-M data is increased
while for SMNR it is decreased. The perplexity on lectDev is 156. Table
6.12 shows the WERs achieved with this language model in the section la-
beled lectBase. It can be seen, that this new background language model
outperforms the rt06Sbase language model on all talks and lectures.

When applying the topic dependent adaptation scheme as described
above to this language model, it can be seen that the overall WER is re-
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LM t035 1003 t012 t032 t041 t042  Overall
Using manual transcripts
rt06Sbase 14.7% 14.6% 17.4% 12.6% 14.3% 12.1%  14.5%
+ S+Ltopic  14.5% 14.1% 16.7% 12.2% 13.8% 11.2%  14.0%
lectBase 14.2% 14.5% 16.7% 121% 14.1% 11.4%  14.1%
+ S+Ltopic  13.8% 14.3% 16.2% 11.6% 13.5% 11.3% 13.7%
re-estimated 13.9% 14.0% 15.9% 11.5% 13.2% 10.8%  13.5%
lectAdapt 13.9% 13.9% 15.7% 11.5% 132% 11.1%  13.5%
+ S+Ltopic  14.0% 13.8% 15.7% 11.2% 13.3% 10.9% 13.4%
re-estimated 13.6% 13.9% 15.7% 11.2% 13.6% 10.7"%  13.3%
Using automatic transcripts

rt06Sbase
+ S+Ltopic  13.9% 14.0% 15.9% 11.5% 13.2% 10.8% 14.0%
lectBase 14.3% 14.5% 16.8% 12.1% 14.0% 11.4% 14.1%

+ S+Ltopic  13.9% 14.3% 16.1% 11.6% 13.1% 10.7% 13.7%
re-estimated 14.1% 14.1% 16.1% 11.7% 13.4% 10.9% 13.7%
lectAdapt

re-estimated 14.1% 13.7% 15.8% 11.4% 13.5% 11.1%  13.4%

Table 6.12: Results of different language model adaptation experiments by
using speaker related data in the form of manual or automatic transcripts.
The results are given for lectDeuv.

duced by 2.8%, even though lectBase is already adapted by the optimization
of the mixture coefficients on the same data (lectOther). This clearly shows
the relevance of the speaker- and topic-dependent data collected.

(C) Adapted speaker-dependent language model lectAdapt: The
goal of this experiment was to see if it is possible to improve the performance
of an already adapted language model with the topic-dependent adaptation
scheme described above. Therefore, it was necessary to compute an already
adapted language model by using the other corpora described in Section
4.2.3 and used for LM6. This language model is further referred to as lec-
tAdapt. The mixture coefficients given in Figure 6.2 show that compared to
lectBase, the components built on the web data collections UKA-MP and
UKA-LP as well as on the proceedings PROC were added and the compo-
nent built on TED was removed. In terms of WER, Table 6.12 shows an
improvement of 4.3% to 13.5% compared to lectBase. Applying the topic-
dependent adaptation scheme to this language model as a background model
results in a slight decrease in WER by 0.1 points (lectAdapt + S+ Ltopic).

(D) Global optimization: So far, the foreground language models were
always interpolated with a fixed background language model. Therefore,
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it was analyzed if the WER improves when the mixture coefficients of the
background language model were adjusted on the lectOther data as well.
The mixture weights of the background language model and the foreground
language models Stopic and Ltopic were optimized separately for each topic
group. As can be seen in the rows of Table 6.12 labeled with re-estimated,
the WER improved by 0.2 for lectBase and by 0.1 for lectAdapt. While for
lectBase the WER for almost all talks and lectures was improved, for lec-
tAdapt WER increases for (003 and t041. Especially for t041, the mixture
coefficients (which were averaged and optimized on t039 and t040) show a
huge difference compared to the coefficients optimized on t041 itself. In par-
ticular, the Ltopic component should have had a coefficient of 0.21 instead
of 0.05.

Conclusion

Overall, the proposed topic dependent adaptation scheme, described at the
beginning of this section, can be used to adapt an unadapted language model
(lectBase, WER 14.1%), such that an almost identical WER compared to a
highly adapted language model is achieved, i.e. 13.5% (re-estimated lectBase
vs. lectAdapt). Furthermore, even an already adapted language model (lec-
tAdapt), built using huge amounts of collected web data, was improved from
13.5% to 13.3%. The best improvement was obtained, when the mixture co-
efficients for all language model components were re-estimated instead of
using the background language model as a single component.

6.3.6 Using Automatic Transcripts

The most interesting results were achieved when the automatically tran-
scribed data was used instead of the manually transcribed data. The inter-
polation weights for rt06Sbase were kept unchanged, but for lectBase and
lectAdapt the mixture coefficients were re-estimated on ASR hypothesis of
lectOther. As can be seen from the results given in Table 6.12, after S+ Ltopic
is applied to the background language models, the WER improved, but not
by as much as when manually transcribed data is used. The difference
amounts to 0.2 for the re-estimated S+Ltopic lectBase LM, and to 0.1 if
lectAdapt is used as a background LM.

Conclusion

The results in this Section show that automatic transcriptions from recorded
talks and lectures from past uses of the lecture translation system can be
easily used for adaptation. At an automatic transcription word error rate
of less than 15%, a time consuming manual transcription of the recordings
is no longer necessary.
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6.4 Expanding the Vocabulary

For an efficient decoding process in a speech recognizer, a fixed vocabulary
is indispensable, because only then can the search network be precomputed
and optimized for decoding speed. In addition, an increase in the vocab-
ulary size always involves an increase in decoding speed due to the larger
search space, as well as in an increase in memory requirements due to the
increased number of transitions in the n-gram language model. On the other
hand, with a fixed vocabulary, out-of-vocabulary (OOV) words cannot be
recognized, and each occurrence of an OOV word is in average responsible
for 1.5-2 recognition errors [ .

Generally, the recognizer’s vocabulary is selected in order to obtain an
OOV-Rate which is as low as possible on the target task or domain by mini-
mizing the OOV-Rate on a related development set | , ]. Technical
talks and lectures have a narrow vocabulary, but the vocabulary can differ
largely from talk to talk due to the technical terms and expressions. In
addition, correct recognition of especially these technical terms and expres-
sions is very important for the understanding of the context of the talk. The
same is true for proper names which are often missing in the recognizer’s
vocabulary.

As in | ], a method was developed to decrease the OOV-Rate
based on presentation slides and on the Sseed corpus. In order to prevent
misspellings, the selection of words per topic has to be performed semi-
automatically. The developed heuristic is based on the assumption that the
longer the word, the more meaningful and relevant it is:

1. Select all non-singleton words from a given corpus which do not exist
in the baseline vocabulary.

2. Remove all words shorter than three characters.

3. Check all words from four up to six characters manually, and remove
all meaningless words.

4. All words left will be used for vocabulary adaptation.

In order to use the additional words in the speech recognizer, pronun-
ciations have to be generated. Therefore, the pronunciation generator de-
veloped for the RT-06S evaluation [ | was used, which first tries to
find the word in a large background pronunciation dictionary, and, if not
found, uses the Festival [ | speech synthesis system for pronunciation
generation.

We pose the question of how to add the selected words to the language
model. If the frequency of the words in the given corpus is low, using
this corpus as is for language modeling might underestimate their transition
probabilities. While for the large Stopic corpus this might not be a problem,
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talk OO0V WER OOV WER OOV WER OOV WER
baseline general specific both
t035 0.62 13.9% 0.32 13.5% 034 13.6% 0.30 13.6%
1003 0.45 14.0% 0.28 13.6% 025 13.7% 0.22 13.6%
t012 0.45 159% 0.27 16.0% 0.45 158%  0.27 15.8%
1032 037 11.5% 030 11.3% 037 11.2% 0.30 11.2%
t041 1.08 132% 097 13.0% 0.97 12.9% 0.92 12.9%
1042 0.62 10.8% 044 10.9% 0.62 109% 0.44 10.9%
Overall 0.49 13.5% 0.33 13.3% 038 132% 0.30 13.2%
lect Adapt 13.0%

Table 6.13: Comparison of OOV-Rates and WERs for different expansions
of the vocabulary on lectDev. As baseline language model, the re-estimated
S+Ltopic lectBase language model was used for the detailed results. The
result in the last row was achieved with a similar adapted lectAdapt LM.
WERs were obtained after performing language model rescoring.

using the presentation slides for language modeling might not be a good
idea. Furthermore, it cannot be guaranteed that the selected words occur
frequently enough in the collected Ltopic corpus. Therefore, all selected
words were added to a special class in the language model, i.e. the unknown
word class, to which all words not in the vocabulary are mapped during
language modeling. The unigram probability of the unknown word class
for large corpora is typically comparable to the probability of ’a’, which is
rather high. An uniform distribution is used as the intra-class distribution
for the selected words, because the frequency of the selected words in the
corpus does not match real usage.

As shown by Schaaf | | by adding the new words to a single unknown
word class as described above, relatively good recognition accuracy could be
achieved. However, when adding a large number of words, this method may
be disadvantageous because the words are indistinguishable from a language
model point of view. Schaaf investigated also more sophisticated methods
in which several unknown word classes were incorporated in the language
model. Words are then added to one or multiple classes. Therefore, the
experiments described in the following should be seen as a first prove of the
above described selection procedure. It can be expected that improvements
observed by adding the selected words to a single unknown word class carry
over when multiple classes are used.

6.4.1 Experiments

Table 6.13 shows the WERs together with the OOV-Rates achieved with
different expansions of the vocabulary. The re-estimated S+Ltopic lectBase
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language model was used as the baseline language model for the results in
the top part of the table. As can be seen, the baseline vocabulary achieved
an overall OOV-Rate of 0.49 and an overall WER of 13.5%. In the following
three experiments it will be shown that the selected words improve the
recognition results. In the first experiment, words were selected from the
Stopic corpus and in the second experiment from the presentation slides. In
the last experiment both selections were combined.

Extracting words from general speaker related data

The above described heuristic selected 715 words from the Stopic corpus.
As can be seen in the columns labeled as general in Table 6.13, the overall
OOV-Rate was reduced by 33% to 0.33 and the overall WER to 13.3%.
From the detailed results, it can be seen that not all talks or lectures benefit
from the selected words. For t012 and t044 the WER increases slightly
although the OOV-Rate decreased significantly. The reason for this is the
above described problem when adding too many words to a single class using
an uniform intra-class probability distribution.

Extracting words from the presentation slides

In this experiment, the heuristic was used to select words from the presen-
tation slides. The number of words selected, ranged from 2 to 182, with an
average of 40. Although the OOV-Rate is higher than compared to the first
experiment, the overall WER could be reduced to 13.2% (column labeled as
specific in Table 6.13). The reasons for this difference to the first experiment
are that first, the amount of words selected is smaller and therefore better
distinguishable, and, second, the words selected are more relevant.

The combination of both selections

In the last experiment, both selections were combined. As can be seen from
the results in the column labeled as both in Table 6.13 the overall OOV-Rate
was further reduced to 0.30 but the overall WER remained constant.

Conclusion

Overall, the developed vocabulary selection heuristic was able to reduce the
OOV-Rate by 39% and the WER by 2.2% relative. But, as already ex-
pected, adding all selected words to a single class is unsuitably when the
number of words selected is large. If the re-estimated S+Ltopic lectAdapt
language model was used instead of the re-estimated S+ Ltopic lectBase lan-
guage model, the overall WER was reduced by 2.3% relative to 13.0%.
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6.4.2 Handling of foreign words

If a speech recognizer is developed for a single language, the phoneme set typ-
ically covers pronunciations restricted to that language only. This makes it
difficult to model foreign words coming from other languages such as proper
names, because the necessary phonemes do not exist in the recognizer. As
an example, it is difficult to model German umlauts such as in the thesis
author’s last name “Fligen” with an English recognizer. For the recognition
of technical talks or lectures in other languages, this is even more a problem
because many technical terms exist in English only due to the dominance
of English for international communication. Moreover, the pronunciation of
“Filigen” depends on the mother tongue of the speaker and on the speaker’s
experience with foreign languages. An English native speaker might pro-
nounce “Filigen” differently from a German native speaker giving a talk in
English.

The key to a solution is the use of a multilingual acoustic model | ]
instead of a monolingual one. This makes it possible to model foreign words
in other languages with the corresponding phoneme sequence. Moreover,
further pronunciation variants can be added with phonemes of other lan-
guages to support non-native pronunciations of the same word. A disadvan-
tage is that the recognizer increases in size and complexity. Furthermore,
depending on the modeling technique, the introduced pronunciation variants
may cause the recognition accuracy to suffer. Modeling techniques can range
from completely language-independent acoustic models, over cross-language
acoustic models [ |, up to cross-language acoustic and language models
[ , ]. With the latter technique, it is possible to use the same
recognizer for two or more languages.

For the developed prototype of a simultaneous translation system, mul-
tilingual acoustic models were not used because the expected performance
gain was small on the given data set.

6.5 Topic Adaptation for Machine Translation

Adaptation of the MT component of the baseline translation system towards
the more conversational style of lectures and known topics was accomplished
by a higher weighting of the available lecture data in two different ways.
First, for computing the translation models, the small lecture corpora were
duplicated several times and added to the original EPPS training data. This
yielded a small increase in MT scores (see Figure 6.15).

Second, for (target) language model adaptation, web data was collected.
As can be seen in Table 6.14, the baseline EPPS-T language model based
on EPPS text data only has a very high perplexity. Therefore, two different
web data collections were performed. For further adaptation of the language
model to the more conversational style of lectures, common spontaneous
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lectDev lectEval weight

EPPS-T 631 1019 0.9%
WEBO01, common speech web data 342 554 6.7%
WEBO02, topic related web data 217 544  57.2%
lectures 711 35.1%
Interpolated 348

Table 6.14: Comparison of the perplexities for differently adapted target
language models.

speech expressions were extracted out of some speech transcripts following
the approach of [ |, and used as queries. The resulting corpus was
perplexity filtered to increase its impact. The resulting corpus had size of
about 90M words and is referred to as WEBO1.

A second collection was performed in the same manner as above by
using topic related n-grams as queries, where the n-grams were extracted
out of the development data using ¢f-idf. This results in a corpus which we
will refer to as WEB02 of about 45M words. As can be seen from Table
6.14, both corpora yield significantly lower perplexities than EPPS-T. Note
that due to the lack of additional data for system development to the time
when these experiments were made, the query extraction was performed on
lectDev. As a result, the perplexities given in Table 6.14 for WEB02 on
lectDev are biased.

In a third step, additional lecture data (lectDev) was added. On lectEval,
this data achieved a perplexity of 711. From the interpolation weights given
in Table 6.14, which were tuned on other held-out data, it can be observed
that the relevance of the WFEB02 data is much higher than that of the
WEBOQO!1 data. This shows, that by using the developed topic adaptation
technique more relevant data is retrieved than when using queries which
cover spontaneous speech in general. Overall a perplexity of 348 on the
evaluation data was achieved.

The effects of translation and language model adaptation and their com-
bination, are shown in Table 6.15 for English-to-Spanish. In absolute terms,
the translation performance on this difficult task is still quite poor when
compared with tasks for which large amounts of training data, similar in
style, are available, such as the TC-STAR EPPS task. Nevertheless, small
amounts of lecture data were sufficient to significantly improve performance,
especially when amplified by using language model adaptation with similar
web data.
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Unadapted TM-adapt +LM-adapt
NIST BLEU NIST BLEU NIST BLEU
t0364-, text input 5.72 23.4  5.89 25.0 6.33 28.4
t036+, ASR input  5.06 179  5.15 189  5.60 23.0
1043, text input 5.27 19.6  5.35 20.3  5.48 21.6
1043, ASR input 4.80 16.6  4.85 16.9  5.05 19.0

Table 6.15: Translation model and language model adaptation. t036+ is a
merge of t036 and t037.

6.6 Conclusion

In this chapter, an adaptation framework for lectures and speeches was pro-
posed. Depending on the amount of information available for a particular
speaker or topic, different adaptation levels can be used within a simulta-
neous translation system. While the previous chapter’s focus was acoustic
model-based speaker adaptation, this chapter’s main focus was topic adapta-
tion. The proposed technique is the collection of additional speaker-related
or on-topic data which is used for linear interpolation with a background
language model. The data is collected through the Internet by querying a
search engine and retrieving and filtering the resulting web pages. For query
extraction, a tf-idf-based heuristic was developed, which computes tf-idf
weights for n-grams instead of single words and uses these weights together
with frequency-based thresholds. The n-grams were extracted from a seed
corpus, i.e. either manually collected speaker information such as research
papers (Sseed) or presentation slides (Lseed), and each of the extracted n-
grams was used as a single query. The main problem is the optimization
of the mixture coefficients for the mixture language model. The better the
data match in speaking style and topic, the better can the resulting mix-
ture language model be expected to perform. Therefore, several different
data sets were tested for suitability, from data matching in speaking style to
data matching also in topic. Adaptation by using the reference transcripts
and adaptation by using the speech recognizer’s hypotheses was compared.
Significant improvements were observed on RT-065Dev as well as on lectDev.

Using speaker-related information only, three-fold language model inter-
polation improved the word error rate by 3.8% on lectEval. For interpolation,
language models built from the seed corpus (Sseed), the corpus collected
from n-grams extracted from the seed corpus (Stopic), and an unadapted
background language model (7t06Sbase) was used. The mixture coefficients
were optimized globally on some held-out data.

When other talks or lectures of the speaker were available, this data
(lectOther) was used for further language model adaptation. First, the un-
adapted background language model was optimized on lectOther, leading
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lectDev  lectEval

rt06Shase 14.5% 15.8%
+ Sseed-+Stopic 14.1% 15.2%
+ S+Ltopic (ref) 14.1% 15.1%
+ S+Ltopic (hyp) 14.0% 15.0%
lectBase 14.1% 15.4%
+ S+Ltopic re-est. (ref) 13.5% 14.8%

+ new words 13.2% 14.8%
+ S+Ltopic re-est. (hyp)  13.7% 14.6%
lect Adapt 13.5% 14.5%
+ S+Ltopic re-est. (ref) 13.3%  14.4%

+ new words 13.0% 14.4%

+ S+Ltopic re-est. (hyp)  13.4%  14.4%

Table 6.16: Final topic adaptation results in WER on lectDev and lectEval.

to a WER reduction of 2.5% to 15.4% on lectEval. Second, the reference
transcripts of these talks or lectures were used as seed data for collecting
other topic-related data (Ltopic), as well as for optimizing the mixture co-
efficients topic-dependently. This resulted in a further WER reduction of
3.9% to 14.8%. When using ASR hypotheses of the lecture or talks, the
results were mixed. On lectDev, the WER was higher than that achieved
with reference transcripts, but on lectEval the WER is lower.

Furthermore, it was shown that an already adapted language model (lec-
tAdapt), consisting of several language model components for which the in-
terpolation was optimized on lectOther, can be improved with the proposed
topic-dependent adaptation scheme. On lectFval, the WER achieved with
lectAdapt was improved from 14.5% to 14.4%. As for lectOther, the improve-
ments achieved when using ASR hypotheses compared to the use of reference
transcripts for between lectDev and lectEval. On lectEval, the same WERs
were obtained.

In summary, the results show that with the developed topic-dependent
adaptation scheme as well as the tf-idf based adaptation procedure, a gen-
eral background language model can be significantly improved. The most
important result is that in our case ASR hypotheses are as suitable as ref-
erence transcripts for optimizing the mixture coefficients, which allows for
fully automatic processing of the adaptation framework.

In addition to language model adaptation, the vocabulary was extended
with technical expressions or proper names found in the presentation slides
and the speaker-related Sseed data. For extracting the relevant OOV words,
a heuristic was developed which successfully reduced the OOV-Rate on
lectEval from 0.77 to 0.50. On lectDev, the WER was improved signifi-
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cantly, but on lectEval no improvement was observed. An explanation for
this may be the use of a single class in the language model to which all new
words are added. More classes, as proposed in | , |, may need to
be used.

The tf-idf-based query generation and web-data collection technique was
also successfully used for target language model adaptation in the machine
translation component. With four-fold interpolation consisting of the Euro-
pean Parliament Plenary Session-based background language model, some
Spanish lectures from lectDev and two language models build from web data,
the perplexity on lectEval was reduced from 1019 to 348. One web corpus
was collected with common spontaneous speech expressions, the other one
by using the proposed tf-idf-based topic collection technique. As a result of
the perplexity reduction, the translation quality on ASR hypotheses of a sys-
tem in which the translation model is already adapted was further improved
significantly by 21.7% to 23.0% for t036+ and 12.4% for 1043.
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Chapter 7

Latency and Real-Time

As already described in the introductory chapters, simultaneous interpreta-
tion is in contrast to consecutive interpretation defined by an interpretation
of the source speech as quickly as possible. Hereby, the length of the ear-
voice-span or latency depends on the grammatical structure of the source
and target language, but should be as short as possible. Therefore, the
whole system requires high processing speed of the components and a short
latency. On the other hand, a good recognition and translation quality is
required to facilitate a fluent translation. But speed and quality are two sys-
tem attributes, which are orthogonal to each other — increasing the speed
of a system often reduces its quality and vice versa.

This chapter deals with the question on how and to what extent the
speed and latency of the system can be increased without loosing to much
recognition and translation quality. To increase the processing speed, tun-
ing can be done with respect to single components; however, shortening the
latency requires adjustments to the whole framework. To shorten the la-
tency, it is necessary to de-serialize the processing, in which the ASR starts
to decode when the recording is finished and transmits the hypothesis to the
MT not until the decoding has been finished, to an overlapped processing.
Further speed-up can be achieved if the ASR component transmits partial
hypothesis while decoding the current recording as shown in Figure 7.1.
This allows the MT component to start earlier.

To support this kind of processing, incremental adaptation and the lan-
guage model have to be adjusted in the ASR component; the Ibis decoder
used in this thesis already processes the data time-synchronously, i.e. frame-
by-frame. On the other hand, the non-linearity of the translation process,
due to possible re-orderings of words or phrases makes the same changes in
the MT component much more complicated. Therefore, almost all current
machine translation systems require sentence-like units as input which are
then translated as a whole. For this reason a Resegmentation component
was introduced, which is responsible for chunking the continuous output

99
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Figure 7.1: Comparison of serial and overlapping processing.

stream of the speech recognizer into smaller segments for which the trans-
lation quality does not suffer.

The remainder of this chapter focuses on the real-time and latency as-
pects of a simultaneous translation system. The Resegmentation component
will be discussed in Chapter 8. To increase the real-time of a speech recog-
nizer, search-space pruning and Gaussian selection techniques are analyzed
in Section 7.2 and 7.3 using the Ibis decoder. In Section 7.4, methods are
introduced to reduce the latency of the serialization, and their influence on
incremental adaptation and recognition quality are analyzed. Section 7.5
concludes this chapter.

For the following experiments, several different acoustic models were
trained on the same training data as used for the baseline system, which
was described in Section 4.2.1. They differ by the overall number of code-
books (m € 3000, 4000,6000) and the maximum number of Gaussians per
codebook (n € 64,128, 256) and are named with m —n for an acoustic model
with m codebooks and a maximum number of n Gaussians per codebook.
If not otherwise specified, all acoustic models were trained up to step 5 of
the training procedure described in Section 4.2.1. Acoustic model speci-
fiers tagged with MMIFE are trained up to step 9. The acoustic model used
for the baseline system described in Section 4.3.7 is referred to as 4000-64-
mmge. Table 7.1 shows the total number of Gaussians available in each of
the acoustic models together with its word error rate and real-time factor.
If not otherwise stated, the real-time factor of the decoding process itself is
given, without the time necessary for incremental adapting the cMLLR and
VTLN parameters, and is referred to as RTF or RTF decoding. RTF total
refers to the total amount including adaptation.
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acoustic model number of Gaussians WER RTF

3000-64 184254 15.6% 1.34
3000-128 328623 15.3% 1.71
3000-256 497728 14.9% 2.18
4000-64 232046 15.5% 1.25
4000-128 390774 15.1%  1.77
4000-256 539345 14.9% 2.13
6000-64 316917 15.4% 1.34

Table 7.1: Overview of the total umber of Gaussians for each acoustic model
together with its word error rate on lectDev.

[ Input Layer }

Search Layer

[ Gaussian Layer ] [ Grammar Layer }

Execution Layer

Layer Examples
Input Layer Frame-skipping, down-sampling
Search Layer Beam search, search-space pruning

Gaussian Layer  Gaussian selection
Grammar Layer Language model lookahead
Execution Layer SIMD, compiler optimizations

Figure 7.2: A five layer model for the categorization of optimization strate-
gies of a speech recognizer.

7.1 Speed-up Techniques for Speech Recognition

Following | , ], a five-layer model for the categorization of opti-
mization strategies of a speech recognizer is introduced and shown in Figure
7.2. The motivation behind this model is that single optimizations can be
categorized into one level and that optimizations on different levels have
more likely a greater impact in reducing the decoding speed, than compared
to different optimizations on the same level, because they are independent
to each other. In contrast to [ , | the presented model cate-
gorizes the whole decoder into 5 different layers instead of categorizing the
Gaussian mixture model computation only.

The FExecution Layer covers all techniques related to the execution of
the decoding process. This includes manual optimizations such as the use
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of SIMD (single input, multiple data) instructions for matrix operations
and observation probability estimation | ], as well as automatic op-
timizations made by modern compilers. In this thesis, for compiling Ibis,
the following settings were used in combination with Intel’s C++ Compiler
10.1 for Linux on a 64bit CPU: -axW -03 -ip -parallel. This gener-
ates specialized code paths for SSE2 and SSE instructions for Intel proces-
sors (-axW), turns on aggressive optimizations such as loop and memory
access transformation, turns on pre-fetching (-03), enables additional intra-
file inter-procedural optimizations (-ip), and uses the auto-parallelizer to
generate multi-threaded code for loops that can be safely executed in par-
allel (-parallel) | ]. Compared to no optimization at all, the result-
ing speed-up can range from 10%-20%. In another experiment, a manual
optimization of the observation probability computation by using SIMD in-
structions similar to | | was compared to the automatic optimizations
of the Intel compiler, and no difference in performance could be measured
between the two.

Techniques belonging to the Input Layer are responsible for reducing
redundancies in the input stream, i.e. the sequence of observation vectors.
Well-known techniques are the so-called frame-skipping or down-sampling.
While down-sampling | | reduces the amount of data in the input
stream by just taking every n-th observation vector, frame-skipping is more
intelligent. Only those observation vectors are ignored for which the distance
to the preceding vector is smaller than a given threshold [ , .
Another common approach is to use a voice-activity detector to remove
observation vectors which can be classified as non-speech.

In the Search Layer, all techniques are concentrated which focus on op-
timizing the decoding process itself as well as the architecture used for rep-
resenting the search space. Search-space pruning is one technique which
can be categorized in this layer, architectural optimizations such as pro-
nunciation prefix trees together with the linguistic polymorphism used in
Ibis also belongs to it. Both will be explained below. Other architectures
use weighted finite-state transducers (WFST), which allow to efficiently en-
code all the various knowledge sources. The network resulting from the
composition of these WFSTs, after minimization, can be directly used in a
Viterbi decoder | , ]; this approach has been shown to be quite
promising | ]

Closely related to the Search Layer are optimizations categorized in the
Gaussian and Grammar Layer. Two widely used techniques for speeding
up the observation probability computation in the Gaussian Layer, the BBI
algorithm and Gaussian Clustering, will be discussed below. For fast access
to the language model probabilities, the use of a language model lookahead
tree is very common | |. Pruning and smoothing techniques are also
used for language models, but are more related to reducing the size of the
language models instead of accelerating the probability computation. In
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Figure 7.3: A simple pronunciation prefix tree without and with linguistic
morphed instances for a system using context independent acoustic models.
“let” stands for linguistic context.

fact, for the commonly used n-gram back-off language models, pruning can
slow down the probability computation, because the backing-off to lower
n-grams needs additional memory accesses.

Independent of algorithmic improvements are the quality of the acoustic
and language models. The effectiveness of several of the above mentioned
techniques depends on the similarity between training and testing condi-
tions.

7.2 Search-Space Pruning in Ibis

The search-space of the decoder is restricted by the number of pronuncia-
tions in the dictionary and the size of the acoustic model. An elegant way
of representing the search-space of a speech decoder is by using pronunci-
ation prefix trees (PPTs). A pronunciation prefix tree is generated out of
the pronunciation dictionary by merging identical phone sequences of dif-
ferent dictionary entries and convolving them with the acoustic model. A
simple example for context independent acoustic models is given in Figure
7.3. For further compactification of the search-space, Ibis allows compress-
ing the PPT into a search network by removing other redundancies between
different branches with an iterative algorithm.

When reaching the end of a PPT, i.e. its leafs, it becomes necessary to
extend the search to the following word candidates. This can be done either
by creating a copy of the tree or by re-entering the tree and keeping track
of the word history. The idea of the tree copy process | , ,

, | is to create a separate copy for each surviving linguistic
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state' after path recombination. Since the number of different linguistic
states, i.e. tree copies, can be a few hundred for a long-span language
model, efficient pruning is necessary. Ibis uses an alternative approach to
the tree copying process, which is based on a single PPT. Therefore, a
linguistic polymorphism as described in | , | and similar
to [ , | was introduced. In each node of the PPT, a list of
linguistically morphed instances is kept, and each instance stores it’s own
back-pointer and score for the underlying Hidden Markov Model (HMM)
with respect to the linguistic state of this instance. Since the linguistic
state is known, the complete language model information can be applied in
each node of a PPT. The advantage of this search-space organization is that
efficient pruning can be applied, which eliminates the sub-tree dominance
problem of the tree copy approach.

Pruning within the search network can now be performed at different
levels and by using different techniques. To clarify the experiments in the
following sections, the levels will be described shortly. In the description,
the values in parenthesis are the default pruning parameters. Ibis is a time-
synchronous decoder, which means that in each frame all active decoding
paths are expanded and pruned before entering the next frame, and all active
decoding paths end at the current frame. A decoding path is active, if it
will be expanded in the next frame, i.e. was not not pruned. Pruning can
be either done relative to the current best, or by taking the top N best out
of a sorted set of paths.

State Level: All states of the underlying HMM structure belong to the
state level. Pruning at the state level means that transitions from one
state to another state are done only, if the transition score is not ex-
ceeding a specific threshold. This threshold is defined relative to the
score of the best state transition in the current frame. Pruning is per-
formed after all transition scores for the current frame are computed.
(stateBeam=130)

Linguistic Instance Level: All linguistic morphed instances, i.e. all
paths which are in the same HMM state for the current frame, but have
different linguistic contexts, belong to the linguistic instance level. All
instances with the same HMM state are combined in a single PPT
node. Especially, if the path comes to an word-end, i.e. PPT leaf, it is
important to keep the numbers of instances per state as small as pos-
sible to reduce the computational effort due to the fan-out of the right
context models for starting the new words. Therefore, new instances
will not be added if their score exceeds a threshold relative to the best
score in a PPT node. Furthermore, the numbers of instances per node

!The current word represented by the PPT leaf and it’s predecessor words are referred
to as the linguistic state.
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are pruned to a fixed number using topN pruning. (morphBeam=80,
morphN=10)

Word Level: Transitions from the last state of one word to the next state of
another word, is not allowed, if the score exceeds a threshold relative to
the best score of the current frame. Furthermore, the number of these
transitions is reduced with the help of a topN pruning. In contrast
to the pruning at the linguistic instance level, which is done per node
only, the pruning at the word level limits the overall number of words
which can be followed in the next frame. (wordBeam=90, transN=40)

A so called master beam (default mb=1.0) can be used to adjust all
relative pruning parameters by a given factor.

7.2.1 Experiments and Discussion

The goal of the following experiments is to show the relationship of different
pruning and language model parameters and their influence on decoding
speed and error rate. Since the Ibis decoder is a single-pass decoder, another
goal was to evaluate the possible improvement due to a second language
model rescoring pass. As a baseline, the decoding performance using default
pruning (see above) and language model parameters was used. Specifically,
a language model weight of 26 and a word penalty of 6 without any language
model rescoring was used.

First, the relationship of all relative pruning parameters was analyzed.
All language model and topN pruning parameters were kept at the default
values. From Figure 7.4, it can be observed that the state beam has the
largest influence on recognition accuracy. Changes in the word beam only
slightly influence WER down to a value of around 70-80, but values below
this break-point result in a rapid increase of WER. The same is true for the
morph beam, where the break-point is around 50-60. In terms of decoding
speed, it can be seen that there is a almost linear correlation between all
relative pruning parameters and the real-time factor, besides morph beam,
which does not influence the real-time factor at values larger than 50.

Figure 7.5 concentrates on the relationship between all topN pruning
parameters with respect to the WER and RTF. All language model and rel-
ative pruning parameters were kept fixed. Regarding transN, it can be seen
that there is almost no change in WER, down to a value of 12. Below this
break-point WER begins to increase. For morphN, the break-point in WER
is at 3. Decoding speed increases continuously with decreasing transN and
morphN, and the influence is larger for transN than for morphN especially
for small transN. This is clear because the smaller the allowed number of
transitions, the smaller the number of possible linguistically morphed in-
stances. Given these results, by tuning the topN pruning parameters the
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Figure 7.4: The relationship of different relative pruning parameter settings
to word error rate (WER) and decoding speed (RTF) in Ibis. For the base-
line, decoding was done with default pruning and language model parameter
settings.
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Figure 7.5: The relationship of different topN pruning parameter settings to
word error rate (WER) and decoding speed (RTF) in Ibis. For the baseline,
decoding was done with default pruning and language model parameter
settings.



108 CHAPTER 7. LATENCY AND REAL-TIME

WER RTF

baseline 4000-64-mmie  14.3% 1.07
4000-128-mmie 14.4% 1.57
3000-64-mmie 14.4% 1.16
3000-256-mmie 14.6%  2.01

optimized 4000-64-mmie  14.6% 0.89
4000-128-mmie 14.6% 1.22
3000-64-mmie 14.6% 0.88
3000-256-mmie 14.7% 1.51

Table 7.2: Comparison of recognition accuracy and decoding speed between
different acoustic models using default or optimized pruning parameters for
decoding on lectDev. For the optimized results a state beam of 130, word
beam of 80, morph beam of 60, transN of 20, and a morphN of 6 was used.

decoding speed can be increased without significant increase in WER. A
transN of 20 and a morphN of 6 seem to be optimal.

Altogether, with the improved pruning parameter settings, the real-time
factor could be improved by 17% to 0.89 for the baseline system (4000-64-
mmie) with an increase in WER by 2.1% to 14.6%. The optimized pruning
parameters also hold for systems using other acoustic model sizes, as can be
seen in Table 7.2. The improvement for the 3000-64-mmie is even larger;
the RTF is reduced by 24% while the WER increases by only 1.4%.

Language Model Rescoring

In a single pass decoder, all knowledge sources are typically integrated as
early as possible into the score computation. An example for this is the lan-
guage model score, for which the exact score is applied as soon as the word
identity is known. This can be already before a leaf node of the pronun-
ciation prefix tree is reached. Prior to this, the best language model score
given all possible words through the current state is applied. The following
experiments intend to show whether a language model rescoring using the
word lattice produced during decoding can still improve performance, and
if the same improvement with respect to WER and RTF is possible using
different language model and pruning parameters already during decoding,
i.e. without the necessity of a rescoring.

For speech recognition, we seek to find the sequence of words w that max-
imizes the posterior probability for a given sequence of acoustic observation
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where p(o|w) is modeled by the acoustic model and P(w) by the language
model. Due to different model spaces, the variances and means of the acous-
tic and language model probabilities heavily deviate from each other. As a
result of this a language model weight has to be introduced. Additionally, a
word penalty has to be introduced, which depends on the length of the cur-
rent hypothesis to prefer the recognition of longer words over shorter ones
[ ]. With these additional parameters and after transforming all prob-
abilities into the log-domain, the score log P(w|o) is computed as follows

log P(wlo) = log(p(o|w) - P(w)"* - ¢"))
= logp(o|lw) + lzlog P(w) + |w|log q
= logp(o|lw) + Izlog P(w) + |w|lp

with |w| being the length of the word sequence w, [z the language model
weight, and Ip the word penalty.

Given the explanations above, it follows that, given a fixed acoustic and
language model, changes in [z linearly scale the overall score, while changes
in Ip cause an additive shift of the scores depending on the length of the
hypothesis. For single-pass decoding with Ibis, this means that to achieve
the same WER after scaling (z and lp, further referred to as language model
parameters, all relative pruning parameters have to be scaled as well.

This is exactly the behavior which can be observed in the top plot of Fig-
ure 7.6. The figure shows the correlation between different language model
and relative pruning parameters with respect to WER. All topN pruning
parameters were kept unchanged. As expected, if the relative pruning pa-
rameters were kept unchanged as well, the WER increases as [z increases.
However, if the relative pruning parameters are increased as well, the WER
improves as [z increases. The influence of the word penalty on the overall
recognition accuracy is rather small.

On the other hand, the more the relative pruning parameters and [z are
increased, the less the considerations of variations in the acoustic model score
during pruning. As a result, more acoustic model scores will be computed
and decoding is getting slower. The lower plot of Figure 7.6 confirms this. If
lz is increased without changing the relative pruning parameters, the real-
time-factor decreases. If the relative pruning parameters are increased as
well, the real-time factor increases.
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Figure 7.6: The relationship of different pruning and language model param-
eters and their influence on error rate (WER) and decoding speed (RTF) in
Ibis. For the baseline, decoding was done with default pruning and language
model parameter settings.
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When comparing both plots, it can be seen that although the same WER
can be achieved with other values of the relative pruning and language model
parameters, all settings with increased parameters result in an increase in
RTF. Therefore, a two pass approach seems to be advantageous, in which
first, smaller language model parameters are used for the decoding, so that
the acoustic model dominates the search process, and second, based on a
lattice a rescoring is performed with higher language model parameters in
this reduced search space. As can be seen from the results presented in
the figures, after language model rescoring the WER is decreased by 1%
absolute with an immeasurable increase in RTF only.

7.3 Gaussian Selection in Ibis

From the experimental results in the section above, we have seen that there
is a break point in the pruning parameter space from which the relation-
ship between decoding speed and accuracy drastically degrades, i.e. any
additional increase in decoding speed results in a disproportional increase in
WER. Therefore, to further increase the decoding speed other techniques,
which can be used in addition to search-space pruning are necessary.

As already described in Section 4.3.4, in our case the baseline acoustic
model consists of about 4000 context dependent codebooks, each modeled
with a maximum of 64 Gaussians over a 42-dimensional feature space. For
a given input vector o and a single allophone” modeled by an n-dimensional
Gaussian mixture model, the scoring function for computing the observation
probabilities is defined as follows:

1
f(0:017--'70n) :gka

o~ 5 (0—uk) " (0—px)

given that the Gaussian mixture model is represented with k components
and each component with mean uj, a covariance matrix ¥, and mixture
coefficients wy. For the baseline acoustic model, this means that k < 64 and
n = 42. Due to precision problems when multiplying a huge amount of very
small values, the observation probability computation has to be done in the
log-domain and as a first speed-up only diagonal covariances are commonly
used, which results in the following equation:
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k
Since the sum over all components is computationally very expensive, com-
monly only the component for which the Mahalanobis distance to the cur-
rent input vector o is the smallest is evaluated as an approximation (Nearest

2Models for phonemes in the context of one or more adjacent phonemes are called
polyphones. If the same model is used for several similar polyphones, these models are
referred to as allophones.
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Neighbor Approzimation, | ]). This still requires that all Mahalanobis
distances be computed for all k. Since we are interested in only the small-
est one, the question arises if it is possible to limit the number of compo-
nents to evaluate only those which are most likely to achieve the smallest
Mahalanobis distance. For selection, the input vectors can be used. While
search-space pruning reduces the amount of transitions from all active states
of one input vector to all possible states of the next input vector, Gaussian
selection reduces the amount of Mahalanobis distance computations nec-
essary per input vector. In the following sections, two different Gaussian
selection techniques are explained and compared with respect to their WER
vs. speed-up ratio.

Compared to | , ], in which similar studies were presented,
the focus of the following experiments is to analyze the influence of different
acoustic model sizes on Gaussian selection performance. Furthermore, the
current implementation in Ibis for Gaussian clustering was improved, so that
the overhead of this technique was reduced and Bucket Box Intersection
outperformed.

7.3.1 Bucket Box Intersection

The Bucket Box Intersection algorithm | | defines for each Gaussian in
a codebook a rectangular box around the ellipsoid where the value of the
Gaussian distribution falls below a certain threshold ~. If the K-dimensional
input vector o does not fall into the Gaussian box of a codebook, this vec-
tor can be ignored when computing the observation probability for o. All
Gaussian boxes are organized in a K-dimensional space partitioning tree
(K-d tree) [ |, where each question of the decision tree represents a
hyper-plane in a K-dimensional space perpendicular to one axis. Such a
hyper-plane can be described by the intercept of the hyper-plane with this
axis and divides the space into two half-spaces. This means that a tree with
a depth d divides the feature space into 2¢ rectangular regions (buckets).
This allows for any input vector o to easily locate the bucket, i.e. leaf of the
K-d tree with the Gaussians necessary to evaluate by a sequence of d scalar
comparisons.

In the original version of the BBI algorithm, a single tree was built per
codebook. In the generalized version | ], the one which is used in this
thesis, the decision tree is built over the Gaussians of all codebooks. Each
Gaussian is assigned to every bucket with which the Gaussian box intersects.
If a bucket does not contain any Gaussians of a certain codebook, the nearest
Gaussian of the codebook according to an Euclidean distance is assigned to
the bucket. This means that each bucket contains at least one Gaussian of
each codebook as back-off.
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acoustic model (AM) Gaussians per frame percentage of Gaussians

3000-64 35130 19%
3000-128 65812 20%
3000-256 106742 21%
4000-64 36492 16%
4000-128 66177 17%
4000-256 98527 18%
6000-64 37087 12%

Table 7.3: For each acoustic model not using Gaussian selection, the average
number of Gaussians evaluated per frame during decoding of lectDev and
its percentage with respect to the total number of Gaussians of the acoustic
model (see Table 7.1).

Experiments

To analyze the performance of the BBI algorithm, trees with different depths
d and thresholds v computed for different acoustic models were compared.
The performance was measured using the correlation between word error
rate and average number of Gaussians evaluated per frame. The overhead
for finding the bucket for a given input vector, which depends on the tree
depth, is ignored in this analysis, because we were interested in the quality of
the BBI algorithm itself. Later, when comparing different Gaussian selection
approaches, their overhead will be considered.

Table 7.3 shows the average number of Gaussians per frame (GPF) which
need to be evaluated during decoding for different acoustic models without
using BBI. It also shows the proportion of the total number of Gaussians
that this represents. The absolute number of Gaussians evaluated per frame
increases with the number of Gaussians per codebook and, usually, also with
the number of codebooks per acoustic model. The reason why this is not
true for the 4000-256 compared to the 3000-256 AM lies in the training.
With incremental growing of Gaussians, each Gaussian is split into two based
on the number of available training samples per Gaussian, and a threshold
is used to guarantee that each Gaussian is trained on a sufficient amount
of samples. Furthermore, it can be seen that the percentage of Gaussians
evaluated per frame correlate positive with the number of Gaussians per
codebook, but negative with the number of codebooks.

From the results presented in Figure 7.7, it can be seen that increasing
v decreases the number of Gaussians per frame (GPF) for a specific tree
depth, but increases the WER as well. The same is true for an increase in
tree depth, which also results in a decrease in the number of GPF together
with an increase in WER. By comparing the number of GPF of the systems
not using BBI with those in Figure 7.7, it can be seen that as the reduction
gets larger, the number of Gaussians in the acoustic model grows. By using
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different tree depths and thresholds . The depth is shown by the number
beside the curve points. On the right border line, the baseline WERs without
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BBI with a tree depth of 10 and a « of 0.3, the number of GPF is reduced
to 17% of the GPF used without BBI for the 3000-64 AM. For the 3000-
256 AM, the number of GPF is reduced to 13% only. There is only a
minor increase in the WER. For the 3000-6/ AM, the WER increases by
0.4% absolute and for the 3000-256 AM by 0.1% only. At almost the same
number of GPF, i.e. at a tree depth of 14 for the 3000-256 AM and a depth
of 8 for the 3000-6/ AM, the 3000-256 AM is still 3% relative better. The
higher the  threshold and/ or the tree depth, the smaller the difference in
WER between different AMs.

Overall, it can be seen that the performance for systems with 3000 or
4000 codebooks and the same maximum number of Gaussians per codebook
is similar, with the systems with 3000 codebooks tending to perform slightly
better. And when comparing the error rates achieved with different v but
identical acoustic models, with a v of 0.3 the smaller error rates at the same
number of GPF can be achieved.

7.3.2 Gaussian Clustering

The BBI algorithm mentioned above has one major disadvantage especially
on devices where memory is small. Due to the fact that from each codebook
at least one Gaussian has to be present in each bucket, a BBI with a tree
depth of 10 and v = 0.3 requires about 50MB of memory. Since memory
requirement is also a problem for the lecture translation system due to the
many different components, the performance of a low memory consumption
technique was analyzed and compared with the BBI algorithm.

In Gaussian clustering | ) , , |, the feature
space is partitioned into cells, for each of which a centroid is computed. In
computing the observation probabilities, only those Gaussians are evaluated
for which the centroid is closest to the input vector. Existing Gaussian
clustering methods vary in the techniques used for clustering (k-means, top-
down), the distance measure used (Euclidean, Mahalanobis, KL-divergence),
or in the way Gaussians are assigned to clusters (disjoint, overlapping).
Especially this last characteristic influences the number of clusters activated
for a given input vector. During decoding, typically only a fixed number of
clusters are activated for a given input vector. Those codebooks for which
an observation probability is required but for which no Gaussians are in the
activated clusters, a back-off value has to be used.

In our case, we use a k-means-like clustering, in which we start with
a random number of centroids usually i of the final number of clusters.
All clusters are disjoint, i.e. each Gaussian belongs to the closest centroid
only. In each iteration, the largest cluster, i.e. the cluster with the largest
number of Gaussians, is split into two and new centroids are computed.
Furthermore, for all clusters with less then 10% of the average number of
Gaussians over all clusters, the centroid is removed and the Gaussians are
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assigned to the next closest centroid. This is done until the final number
of clusters is reached. The Euclidean distance was used, as the distance
measure for clustering. For decoding, the Mahalanobis distance was used to
select the top N clusters. For backing-off, a fixed value of 256 was used.

Optimizing the probability computation

One advantage of Gaussian clustering is that the amount of memory is much
lower than that needed by BBI. 1.5MB is typically sufficient — even for large
acoustic models. The disadvantage of Gaussian clustering is the overhead of
the distance computation for activating the top IV clusters compared to the
BBI in which only a few scalar comparisons have to be made. On the other
hand, we will see that the quality of Gaussians in the selected clusters is
much higher compared to BBI, and therefore a smaller amount of Gaussians
have to be activated to achieve the same performance.

To further speed-up the observation probability estimation, the code of
the scoring function was optimized with respect to the Gaussian clustering.
For normal observation probability computation, as well as when using BBI,
the allophones for all possible state transitions are collected and given to the
scoring function. The scoring function then loops over the allophones, com-
putes the Mahalanobis distance for all Gaussians in a codebook belonging to
the allophone and computes the observation probability for only the closest
Gaussian given the input vector. When using BBI, only those Gaussians of
a codebook are evaluated which are found in the corresponding leaf node.

This organization is disadvantageous for Gaussian clustering, because,
due to the disjointedness of the clusters, active Gaussians cannot be found for
all necessary allophones. Furthermore, for all Gaussians of a given allophone,
it has to be checked, if the Gaussian is in an active cluster or not, and if
not, a back-off value has to be used. For Gaussian clustering, similar to
[ ], the observation probability computation was reorganized in the
following way.

1. The set of active clusters is determined.

2. The Mahalanobis distances for all necessary allophones are first ini-
tialized with a pre-computed back-off value.

3. For all Gaussians in all active clusters, the Mahalanobis distance is
computed and compared with the back-off value of the allophone to
which the current Gaussian belongs to. If the new distance is smaller,
it is remembered for further comparison.

4. The final observation probabilities are computed for all necessary al-
lophones using the smallest Mahalanobis distances.

As can be seen in Table 7.4, the real-time factor is reduced by 6.25%,
due to the optimized probability computation.
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WER RTF
using Gaussian Clustering (GC)  17.1  0.80
using GC with speed-up 17.1  0.75

Table 7.4: Comparison between the standard and the optimized observation
probability computation on lectDev.

Experiments

As for the experiments for the BBI algorithm, different parameters used
for Gaussian clustering were compared on different acoustic models with re-
spect to their performance, i.e. WER and GPF. The overhead due to the
activation of the clusters is ignored in this first comparison, because we are
interested in the quality of the clustering itself. Later, when comparing dif-
ferent Gaussian selection approaches, the overhead of those will be included.
The total number of clusters to which all Gaussians have to be assigned and
the number of active clusters used during decoding are the two parameters
which we explore.

Since the number of Gaussians per cluster decreases with an increasing
total number of clusters used for clustering (clusterN), it can be seen from
Figure 7.8 that the number of GPF decrease as well. But at approximately
the same level of WER, the number of Gaussians evaluated per frame is
smaller for the systems using 1024 total clusters instead of 2048 clusters,
when comparing the same acoustic models. Furthermore, the gradient in-
creases more with a decrease in the number of active clusters (topN) for
2048 compared to 1024 total clusters.

Compared to the total number of GPF needed to evaluate for the baseline
systems without Gaussian clustering (see Table 7.3), it can be seen that for
the same number of active clusters the number of GPF can be reduced to
almost the same percentage of GPF used without any Gaussian selection
for all tested acoustic models. For example, for 64 active clusters (out of
1024), the number of GPF can be reduced to 11-12% for all tested AMs.
The increase in WER in that case is only about 1-2%. Furthermore, it can
be seen that there is almost no difference in performance for systems with
3000 or 4000 codebooks. When comparing WERs at the same number of
GPF, it can be seen that up to about 7000 GPF the AMs with a smaller
number of Gaussians perform better than those with a higher number of
Gaussians. But after this break-point, the relationship is inverted.

7.3.3 Comparison and Discussion

Figure 7.9 compares the BBI algorithm with Gaussian clustering with re-
spect to their speed-up and real-time performance, i.e. by including the
overhead for identifying the Gaussians to be evaluated for a given frame. As
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Figure 7.10: Comparison of the real-time factor as a function of the numbers
of Gaussians evaluated per frame for different Gaussian selection techniques.

can be seen for both techniques, there is a substantial speed-up compared
to the baseline which does not use any kind of Gaussian selection. At al-
most the same word error rate, a system using Gaussian clustering is about
10%-36% (4000-64, 3000-256) faster; the speed-up is larger the higher the
total number of Gaussians in the AM. For systems using the BBI algorithm,
the maximum speed-up is even as high as 41% (3000-256). However, when
comparing the performance of the BBI algorithm and Gaussian clustering in
general, it can be observed that for most systems slightly better recognition
results can be obtained at the same decoding speed with Gaussian cluster-
ing. Another interesting observation is that the best performance regarding
the relationship between decoding speed and recognition accuracy can be
achieved with the 3000-256 AM using Gaussian clustering with a total of
1024 clusters. The associated curve is the one closest to the bottom right
corner of the bottom plot of Figure 7.9. At a real-time factor of almost
1.0 (1.05), the WER compared to the baseline increases by only 1.9% (from
15.6% to 15.9%). But the distance in terms of WER and RTF to other
acoustic models is getting smaller, the smaller the obtained real-time factor.

Figure 7.10 compares the real-time factor as a function of the numbers
of Gaussians evaluated per frame for different AMs using different Gaus-
sian selection techniques. First of all, it can be seen that for all AMs and
Gaussian selection techniques, this relationship is almost linear, but at the
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Figure 7.11: Comparison of the results for non-discriminatively and discrim-
inatively (MMIE) trained AMs using either Gaussian clustering with 1024
clusters or the BBI algorithm with a v of 0.3.

same number of GPF some techniques have a lower RTF than others. There
exist two explanations for this behavior. First, the techniques may differ in
the quality of Gaussians selected and therefore during decoding a smaller
search space is explored. Second, some Gaussian selection techniques have
smaller overhead than others. While the results using the BBI algorithm
fall along a straight line, the results using Gaussian clustering depend more
on the number of clusters or Gaussians in the AM. Furthermore, it can be
seen that to achieve the same real-time factor, a smaller amount of Gaus-
sians must be evaluated per frame for Gaussian clustering than for the BBI
algorithm. But when comparing this figure with Figure 7.9, it can be seen
that although the amount of Gaussians evaluated per frame for the AMs
using Gaussian clustering with 1024 total clusters is smaller, the WER is
often lower than compared to the BBI algorithm with a tree depth of 0.3
for the same real-time factor. This clearly shows the higher overhead and
the higher quality of Gaussians selected by Gaussian clustering.

So far, all acoustic models used for the experiments above were trained
up to step 5 (see Section 4.3.4). In the following experiments, it was ana-
lyzed if and how the obtained results from above change when discriminative
training (MMIE) is applied. Three observations can be made from Figure
7.11. First of all, better results are now obtained with acoustic models using
a smaller number of Gaussians. The smallest WER  is achieved with $000-
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running slower than real-time.

64 AM. Second, as a result of the improvements due to the MMIE training,
the real-time factor also decreases. And third, the improvements in perfor-
mance by using Gaussian selection for the discriminatively trained AMs are
smaller than compared to those obtained with non-discriminatively trained
AMs, and are smaller for the BBI algorithm than for Gaussian clustering.

7.4 Limiting the Latency

As already stated in the introduction to this chapter, overlapping processing
is necessary to keep the latency as small as possible. For this purpose,
the most common strategy for speech recognition is the so-called run-on
decoding strategy, in which decoding starts before the current utterance is
complete. Figure 7.12 clarifies the difference between an offline and a run-
on decoding strategy. As can be seen in the case of an offline decoding
strategy (A) decoding starts directly after the recording has finished. The
latency is the sum of the recording and the decoding time and therefore
depends on the decoding speed only. For a run-on decoding strategy (B),
the overall latency depends on the amount of time which the recognizer
has to wait until a sufficient amount of data is available, as well as on the
decoding speed, and on additional overhead due to the more complicated
processing. Nonetheless, the latency can be significantly reduced by this
strategy. The most prominent example of run-on decoding are commercial
dictation systems.
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In a basic run-on decoding strategy, the final hypothesis is returned after
the recording as well as the decoding have been finished. If the recording is
short, this is not a problem. For lectures, in which a more or less continuous
stream of speech is recorded, this might be more problematic. Different
solutions for this problem exist:

e A voice activity detector (VAD) is used to partition the recording in
chunks small enough to guarantee short latency.

e In addition to a less sensitive VAD, the decoder is modified to re-
turn partial hypotheses in short intervals while decoding the current
recording.

In the first case, the VAD tries to detect non-speech regions to segment
a recording, so that the recognizer is able to finish the current decoding
and to return the final hypothesis. Therefore, the decoder does not have
to be modified, and decoding time can be saved because non-speech regions
are already skipped by the VAD. However, finding appropriate split points
might be difficult, especially when a speaker speaks fluently and quickly,
and small recording chunks which are necessary to keep the latency low can
not be guaranteed. On the other hand, if break points do correlate well with
sentence or semantic breaks, so that the subsequent resegmentation becomes
superfluous, using a VAD in front of speech recognition would still make
sense. As we will see later in Chapter 8, the segments produced by a VAD
using acoustic features only are worse in terms of translation performance
than when linguistic features are used in addition.

For this reason, the second solutions in which the speech recognizer re-
turns partial hypotheses already during decoding of the current recording
was preferred for the lecture translation system. In this case, only a rough
segmentation is provided by a simple energy based VAD to prevent overflows
in the decoder. Furthermore, a resegmentation component for merging and
resegmenting the partial hypotheses delivered from the speech recognizer,
so that optimal machine translation performance together with low latency
are achieved, is now essential. In the following, the necessary changes will
be described in more detail.

7.4.1 Partial Trace-Back

At a given point in time during decoding, typically more than one active
paths exist in the search-space and will be expanded when processing the
next frame. This poses the question of how to return a partial hypothesis.
For example, one can select the best hypothesis based on the likelihood, but,
due to search-space pruning, even the most likely hypothesis can be pruned
away in the future, and another hypothesis may become the first best. But
this new first-best hypothesis can be different from the old one. In order
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to prevent mis-translations in the simultaneous translation system, one has
to make sure that only those partial hypotheses are returned by the speech
recognizer which will not change in the future.

To support this, a partial trace-back mechanism was implemented in Ibis.
At a given point in time during decoding, all active paths in the search-space
are traced back, and as soon as the trace-backs become unique the words
along the unique path can be returned as a first-best partial hypothesis.
Subsequent partial trace-backs always return the words along the unique
path starting from the end point of the preliminary trace-back, up to the
point where the search path diverges. Since the number of active paths
in each frame is limited — by the transN pruning parameter — the addi-
tional overhead is relatively small. Unfortunately, further optimization of
the speech recognizer’s output through lattice rescoring is no longer possi-
ble. Due to edges added to the lattice after the decoding has been finished,
lattice rescoring is non-linear with time.

7.4.2 Front-End and Online Adaptation

As described in Section 4.3.3, audio offset correction, cepstral mean sub-
traction (CMS), and cepstral variance normalization (CVN) are performed
via global normalization over the whole utterance. But in combination with
the partial trace-back, utterance based normalization is no longer possible.
Instead, normalization parameters have to be estimated from the partial hy-
potheses and have to be updated incrementally. Furthermore, an additional
history weighting was introduced so that the normalization can adapt to
changing environmental acoustic conditions.

In order to judge the amount of data necessary for updating the normal-
ization parameters and the influence on latency of the additional overhead of
the update as well as the partial trace-back, a few experiments with different
interval lengths were performed. As can be seen in Table 7.5, the smaller the
interval, i.e. the more often the parameters are updated based on the partial
trace-back result, the higher the overhead. While for an interval with five
seconds a total real-time factor of 0.93 was measured, for an interval of 0.5
seconds it was 1.05. The total real-time factor includes, in addition to the
decoding, also the time necessary for updating the normalization parame-
ters and for the partial trace-back. Furthermore, the shorter the interval,
the shorter the latency. In terms of WER, it can be seen that there is an
optimum at an interval of three seconds. Unfortunately, because of the la-
tency, only intervals between one or two seconds in duration are possible.
Interesting in the results is that due to the more frequent update of the nor-
malization parameters, leading to a higher sensitivity against changes in the
environmental acoustic conditions, the baseline WER can be outperformed.

The baseline is a system which uses manual segmentation and utterance-
based global normalization in the front-end. No other kind of adaptation
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interval WER LAT RTF RTF
length decoding total
baseline 16.9% 1.10 1.10
0.5 17.3%  3.48 1.01 1.05
1.0 16.7%  3.60 0.97 0.98
2.0 16.6% 5.10 0.95 0.96
3.0 16.4% 6.83 0.94 0.95
5.0 16.6% 10.36 0.93 0.93

Table 7.5: Comparison of the word error rate, latency in seconds, real-time
factor of the decoding itself and the total real-time factor for different audio
interval durations (in seconds) on LectDev.

was performed during decoding and no lattice rescoring was applied, for all
experiments. The baseline system is identical to the one described in Section
5.3, which achieved a WER of 16.4% after lattice rescoring (see Table 5.1,
column VTLN-AM).

The same changes are necessary for online adaptation. For both VTLN
and cMLLR, an additional history-weighting factor has to be introduced.
Table 7.6 compares the results of the baseline system using manual seg-
mentation with systems using partial trace-backs after intervals of 1-2 sec-
onds. As can be seen, the systems’ recognition accuracy suffers only slightly.
VTLN improves the WER, only slightly but does not influence latency or
the real-time factor. In contrast, cMLLR reduces the WER significantly,
but the total RTF increases as well. On the other hand, the decoding is ac-
celerated due to adaptation, which can be observed in the smaller decoding
RTF when cMLLR is applied.

Latencies achieved for the systems using a one second interval are sig-
nificantly lower than those obtained with a two second interval if the total
real-time factor is lower than one. In the case of the system with incre-
mental VTLN and cMLLR using a one second interval, it can be seen what
happens if the total real-time factor is higher than 1.0. The system cannot
keep up with the speaking rate of the input speech leading to high latency.
In such cases, applying additional speed-up techniques as described above
are essential. The results can be seen in the conclusion to this chapter.

7.4.3 Language Model

For language model training, the training corpora are traditionally split at
sentence boundaries in order to be able to estimate transition probabilities
for words at the beginning or end of a sentence. But due to continuous
processing of the input speech, together with a trace-back, this reformatting
no longer makes sense. Therefore, in accordance with | , ]
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WER LAT RTF RTF
decoding total

baseline 16.9% 1.10 1.10
+ VTLN 16.6%

4+ VTLN + cMLLR 15.1%

1.0 16.7% 3.60 0.97 0.98
+ VTLN 16.4% 3.60 0.95 0.98
+ VTLN + cMLLR 15.3% 6.33 0.86 1.18
2.0 16.6% 5.10 0.95 0.96
+ VTLN 16.3% 5.10 0.93 0.95

+ VTLN + cMLLR 15.3% 5.80 0.85 1.08

Table 7.6: Comparison of the baseline system using manual segmentation
with systems using partial trace-back at intervals of 1-2 seconds of input
speech. Results after applying VILN as well as cMLLR are compared in
terms of word error rate (WER), latency (LAT) and real-time factor (RTF)
on lectDev.

sentence LM continuous LM
baseline 16.9% 16.9%
2.0 16.7% 16.3%

Table 7.7: Comparison of the results (WER) obtained by using a sentence
language model and a continuous language model with the baseline system,
i.e. with manual segmentation, and a system using the partial trace-back
mechanism with an interval of two seconds. All experiments were performed
on lectDev.

additional n-grams across sentence boundaries were added to the language
model. Table 7.7 shows the improvement in WER for the continuous lan-
guage model if the partial trace-back mechanism is used.

7.5 Conclusion

In this chapter it was discussed how the real-time and latency requirements
of a simultaneous lecture translation system can be fulfilled. The focus
was to speed-up the computationally most expensive component, the speech
recognition, and to introduce overlapping processing into the framework to
reduce the latency.

First of all, the search space pruning technologies (relative and topN)
implemented for different levels (state, linguistic, and word level) in the Ibis
speech recognition decoder were analyzed in more detail. It was investigated
how the different pruning parameters influence the speed and accuracy of
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WER  LAT RTF RTF

lectDev decoding total
baseline 4000-64 15.1% 1.14 1.20
3000-64 14.9% 1.14 1.20
+ optimized pruning 15.2% 0.88 0.93
+ Gaussian clustering  15.4% 0.65 0.70
1.0 155%  2.16 0.56 0.88
2.0 15.2%  3.61 0.55 0.78

Table 7.8: Final performance results after speeding-up the decoding and
reducing the latency of the speech recognition on lectDev. While for the top
baseline the 4000-64 AM was used, the other results were obtained with the
3000-64 AM. For the experiment with a trace-back at intervals of one or
two seconds, all optimizations from above were used. The results are given
in word error rate (WER), latency (LAT) and real-time factor (RTF).

the decoder and how they depend on each other. Changes in the state beam
influences the ratio between recognition accuracy and decoding speed most,
followed by the word beam. The influence of the topN pruning parameters
is only little. As a result of this analysis, an optimized pruning parameter
combination was determined.

It was shown that although Ibis is a single pass decoder, further lan-
guage model rescoring based on lattices produced during decoding improves
the WER with only a minor increase in overall decoding time. In this
context, the relationship between language model parameters and pruning
parameters was explained. For the 3000-6/ AM, the real-time factor could
be improved by 24% relatively to 0.88 with an increase in WER by 1.4%
relative to 14.6% only.

In the next step, optimizations in the Gaussian Layer of the Ibis decoder
were investigated. Two algorithms, the Bucket Box Intersection (BBI) al-
gorithm and Gaussian clustering, were compared with respect to their per-
formance, i.e. decoding speed vs. accuracy. For both methods, the results
were compared for different acoustic models and with different parameter
settings. It turns out that, with appropriate tuning, Gaussian clustering
outperforms BBI in terms of speed and accuracy. Therefore, the function
for computing the observation probabilities was optimized to reduce the
overhead of the Gaussian clustering. Another observation was made after
discriminative training was applied to the acoustic models. The best results
are now achieved with AMs using a smaller number of Gaussians. Also,
the improvement in performance by using Gaussian selection for the dis-
criminatively trained AMs is smaller than compared to that obtained with
non-discriminatively trained AMs.

Tables 7.8 and 7.9 summarize the results. First, the baseline system us-
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WER  LAT RTF RTF

lectEval decoding total
baseline 4000-64 16.6% 1.21 1.28
3000-64 16.2% 1.23 1.30
+ optimized pruning 16.3% 0.94 1.00
+ Gaussian clustering  16.8% 0.70 0.77
1.0 17.0% 2.95 0.61 0.93
2.0 16.9%  4.30 0.60 0.83

Table 7.9: Final performance results after speeding-up the decoding and
reducing the latency of the speech recognition on lectEval. While for the
top baseline the 4000-64 AM was used, the other results were obtained with
the 3000-64 AM. For the experiment with an trace-back at intervals of one
or two seconds length all optimizations from above were used. The results
are given in word error rate (WER), latency (LAT) and real-time factor
(RTF).

ing the 4000-6/4 acoustic model is compared to the 3000-64 acoustic model.
Both are trained with MMIE and use default pruning parameters, no Gaus-
sian selection, and incremental adaptation during decoding. Second, the
optimized pruning parameters were applied to the 3000-64 AM and then
Gaussian clustering was used in addition. For Gaussian clustering, the best
64 clusters out of 1024 were selected in each frame.

As can be seen, the 3000-64 AM performs slightly better than the 4000-
64 AM at the same speed. When using the optimized pruning parameters
as well as the Gaussian clustering, the real-time factor is almost halved,
with an increase in WER of 3.4% on the development data and only about
4.3% on the evaluation data. Furthermore, by using the partial trace-back
mechanism together with the continuous language model, the latency could
be reduced to 2-3 seconds for a one second interval and to about four seconds
for a two second interval. The latencies on the evaluation data are higher
than those on the development data, which is related to the higher WER
and RTF. Due to the much lower latency, the one second interval is preferred
over the two second one even if the WER is slightly worse.

Overall, a WER of 15.5% with a latency of 2.16 seconds could be achieved
on the development data and a WER of 17.0% with a latency of 2.95 seconds
on the evaluation data. The obtained latencies hold for speech recognition
only. In the next chapter, the interface between speech recognition and
machine translation will be explored.



Chapter 8

Translatable Speech
Segments

In speech translation systems, the combination of automatic speech recog-
nition (ASR) and machine translation (MT) is not always straight forward
when optimal performance is the goal. For the lecture translation system, in
addition to the errors committed by the speech recognition leading to errors
in machine translation, the partial ASR hypotheses have to be resegmented
such that MT performance does not suffer further. Since almost all MT
systems are trained on data split at sentence boundaries, this is commonly
done by resegmenting the hypotheses according to automatically detected
sentence boundaries.

However, automatic sentence boundary detection, or punctuation anno-
tation in general, is, depending on the type of data, still very challenging.
Punctuation annotation is usually done by combining lexical and prosodic
features | ], and the combination is often done with the help of maxi-
mum entropy models | | or CART-style decision trees | ].

Within TC-STAR, Lee et al. | | proposed a system which
inserts commas within a given ASR sentence by using n-gram statis-
tics for commas together with certain thresholds to improve MT quality.
[ ] proposed another solution for inserting commas and periods into
the ASR output, by using a maximum entropy classifier using durational and
language model features. Using this classifiers for each contiguous non-word
sequence, it was decided if it is replaced by a comma or period. They ob-
served on English a 98% correlation for periods and a 70% correlation for
commas.

In [ |, different approaches for automatic sentence segmentation
and punctuation prediction were compared with respect to MT performance.
Punctuation prediction was either done with the help of a hidden n-gram
[ | or by generating them implicitly during the translation process. For
sentence segmentation, an HMM-style search using hidden-events to repre-
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sent segment boundaries was used, extended with an additional sentence
length model. To obtain an optimal segmentation of a document, a global
search, restricted by the sentence length model has to be performed.

Performing a global search is also necessary for the technique described
in | |, where an IBM word alignment model 1 is used, and other ap-
proaches to improve example base MT, where longer sentences do not yield
good translation performance [ ) ]. The approach in [ ]
splits sentences before and during parsing to improve the translation perfor-
mance of an Interlingua-based MT system for Spanish-English. The above
approaches, however, have focused on limited domain tasks only and are not
easily extensible to more difficult domains.

For simultaneous translation systems | |, merging and chunking
of partial ASR hypotheses into useful translatable segments is even more
critical and difficult. Due to the resulting latency, a global optimization over
several ASR hypotheses, as suggested in the approaches described above, is
impossible. Instead, the latency should be kept as small as possible as
described in Chapter 3.

This chapter presents and extends the work, inspired by experiments
done by Cettolo et. al. | | on investigating the impact on transla-
tion performance of different text segmentation criteria, and was published
in [ ]. It addresses the questions of how chunking of ASR hypothe-
ses as well as ASR reference transcripts into translatable segments, usually
smaller than sentences, influences MT performance. Different segmentation
strategies on ASR hypotheses as well as on the reference transcripts are
compared. To measure the usefulness for simultaneous translation, M'T per-
formance was set in relation to the average segment length and its standard
deviation.

Simultaneously with | |, another work was published by Rao
[ ]. This work was aimed to improve the translation performance
by optimizing the translation segment length only, instead of reducing the
segment length to decrease translation system latency. The interesting re-
sult of this work is that the best performance is achieved with segments
smaller than sentences, similar to the observations described here.

In contrast to Chapter 4, other systems and test data were used, because
the translation direction was from Spanish into English instead of vice versa.
The reason for this was that to the time when these studies were made, the
Spanish-English TC-STAR translation system achieved the best translation
results. Therefore, Section 8.1 explains the differences in more detail. The
experimental results of this study and a new segmentation algorithm are
presented and discussed in Section 8.2. Section 8.3 concludes this chapter
and shows that the obtained results can be transferred to translation of
lectures in the other direction, i.e. from English into Spanish.
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8.1 Data and Systems

As test data, the 2006 Spanish-English TC-STAR development data, con-
sisting of 3hrs (14 sessions) of non-native Spanish speech recorded at the
European Parliament, was selected. For this set, ASR hypotheses as well
as reference transcripts and translations were available, while the Spanish
hypotheses were generated with a system trained within TC-STAR on Par-
liament Plenary Sessions | ]. The case-insensitive word error rate

was 8.4%.

8.1.1 Statistical Machine Translation

The Spanish-English machine translation system | | was trained us-
ing minimum error rate training | | on the same parallel EPPS data as
mentioned in Section 4.4, but with the translation direction from Spanish
to English. For decoding, a word reordering window size of four was used.
As will be shown later, the translation quality of this system on the above
mentioned data is much higher than the English-to-Spanish results on lec-
tures. The reason for this is the much better match between the training
and test data in speaking style as well as topic.

8.2 Experimental Results and Discussion

In this section, the translation scores achieved by translating ASR reference
transcripts as well as ASR hypotheses resegmented with different chunk-
ing strategies are compared and discussed. Since punctuation annotation
of ASR hypotheses is a research problem in itself, and not the focus of this
thesis, all punctuation marks in the reference transcripts were removed for
comparison reasons. However, the MT system was trained on complete sen-
tences containing punctuation marks, since punctuation marks can provide
useful alignment boundaries during the word alignment training.

Another problem is the influence of the LM on the translation quality
of different chunking strategies. For language model training, the training
corpora are typically split at sentence boundaries so as to estimate the tran-
sitions at the beginning and end of a sentence; chunking strategies, which
produce segment boundaries with a high correlation to sentence boundaries,
are therefore affected adversely. To mitigate this effect, the language model
training corpora were resegmented accordingly.

For further analysis, in addition to the translation scores and segment
length statistics, precision and recall are computed by aligning the segment
boundaries to punctuation marks in the ASR reference transcripts.
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8.2.1 Scoring MT with Different Segmentations

The commonly used metrics for the automatic evaluation of machine trans-
lation output, such as the Bleu | | and NIST [ | metrics, have
originally been developed for written text, where the input segment bound-
aries correspond to the reference sentence boundaries. This is not the
case for translation of spoken language where the correct segmentation into
sentence-like units is unknown and must be produced automatically by the
system.

In order to be able to use the established evaluation measures, the trans-
lation output of the automatically produced segments must be mapped to
the reference translation segments in advance, before the scoring procedure.
This is done by using the method described in | |, which takes advan-
tage of the edit distance algorithm to produce an optimal resegmentation of
the hypotheses for scoring, and which is invariant to the segmentation used
by the translation component.

The Bleu scores presented in this paper were obtained by using this
method using two reference translations. Since the alignment was performed
on a per-session level, the result is invariant in relation to the number of
segments produced for a single session. The scoring was case-insensitive,
without taking punctuation marks into account.

8.2.2 Baselines

Resegmenting ASR hypotheses at sentences boundaries for MT is the most
common approach for speech translation systems. For this reason, the trans-
lation scores obtained by translating ASR hypotheses, as well as reference
transcripts split at sentence boundaries (sent), serve as one baseline for the
following experiments. As can be seen in Table 8.1, a Bleu score of 37.6%
by translating ASR reference transcripts, and a score of 34.3% for ASR
hypotheses were obtained, which clearly shows the influence of ASR perfor-
mance on MT quality. The average segment length was 30 words with a
standard deviation of 22.

Another baseline is obtained by taking all punctuation marks as split
points (punct). Here, the average segment length can be reduced to nine
words with almost no decrease in the translation score. The reason for this is
that punctuation marks are usually used to represent semantic boundaries.
However, one needs to be careful because, as the use of punctuation marks
differs from language to language, they might be impractical as split points
for languages other than Spanish. Note that, for both baselines, the LM
training corpus was split accordingly.

In the following sections, it will be analyzed how MT performance is
affected by chunking strategies using other features and approaches requiring
a smaller amount of context information for their decision.
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8.2.3 Destroying the Semantic Context

In the following experiments, it was analyzed how MT performance is af-
fected by destroying the semantic context of an utterance independently of
the applicability for simultaneous translation. Following the experiments
in | | the merged utterances of a single session were simply cut every
n words (fized). The results are given in Table 8.1 for n € {7,11,15} and
provide a lower bound for the subsequently explored chunking strategies. As
expected, the decrease in segment size affected the translation scores dra-
matically. The translation results could be significantly improved by just
cutting a sentence into two (sent-0.5) or four (sent-0.25) segments of equal
size and not splitting across sentence boundaries. This clearly shows the
dependency of the MT performance on the segmentation used for training
the MT system.

8.2.4 Using Acoustic Features

Following the studies in [ ] in which pauses were shown to closely corre-
spond to punctuation, the information from non-speech regions in the ASR
hypotheses was used for resegmentation. As non-speech regions, recognized
silences and non-human noises were used, and successive noises and silences
were merged together. For the translation scores (pause) in Table 8.1 differ-
ent non-speech duration thresholds (0.1, 0.2, and 0.3 seconds) were selected.
As expected, the results are significantly better than those obtained with the
chunking strategies in Section 8.2.3. The precision and recall values clearly
validate the studies in [ ], also for Spanish. While a threshold of 0.1
has the best correlation to punctuation marks, the MT score is the worst.

The standard deviations of the segment lengths achieved with the non-
speech chunking strategies are still too large for use in simultaneous trans-
lation. By splitting the ASR hypotheses at the longest non-speech interval
within a region of a maximum number of words (varl5, var20, var25, with
chunks of maximal 15, 20, 25 words), the standard deviation could be signif-
icantly reduced without decreasing the translation quality when comparing
fixed and variable non-speech chunking strategies having a similar average
segment length.

Overall, chunking strategies using non-speech regions are simple and
require no additional context information, but nonetheless achieve relatively
good translation scores. The reason for this seems to be the relatively good
correlation of the split points with sentence boundaries, as can be seen in
the high precision and recall values.

8.2.5 A New Segmentation Algorithm

Given the results above, a new segmentation algorithm, suitable for the lec-
ture translation system, was developed. Only lexical information, such as
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punctuation marks, filled pauses and human noises, was taken into account.
At least for the languages investigated so far, using additional prosodic fea-
tures has shown to be less profitable | ]-

According to | |, a trigram language model was trained, in which all
lexical cues in the training corpus were substituted by a boundary tag BD.
Instead of doing a global optimization over the whole sentence, the decision
was made using local information only, by (1) setting the LM probabilities
Pr(w;—1w; BDw;+1w;i+2) and Pr(w;_jw;w;+1w;+2) in relation to each other;
and (2) using additional thresholds for the non-speech gap in between w;
and w;41, i.e. regions in which the ASR decoder recognized a non-speech
event such as silence, a filled pause, or a human noise. Since the LM training
data does not contain any acoustic information, it was resegmented by using
the lexical cues only.

As can be seen in Table 8.1 (Im) this chunking strategy outperforms all
other strategies using only acoustic features. A precision of 73% and a recall
of 54% were measured. However, a standard deviation of 10 from the average
of 11 words was also found. Therefore, in a second experiment the above
mentioned thresholds were restricted when no split point was found after
ten words (Im-10). Thereby, the standard deviation could be almost halved
with only a minor decrease in Bleu score. Furthermore, both strategies
are slightly better than the baseline computed on sentence boundaries and
almost as good as the baseline computed on punctuation marks.

8.3 Conclusion

In this chapter, the question on how utterance chunking influences machine
translation performance was addressed in an empirical study by comparing
different chunking strategies on ASR hypotheses as well as on ASR refer-
ence transcripts. As can be seen in Figure 8.1, sentence boundaries are a
good criterion for utterance chunking, but are inapplicable for simultaneous
translation because of the high average sentence length. Chunking strategies
based on non-speech regions are simple and require no additional context
information, achieving relatively good translation scores.

Given these results, a more sophisticated approach using lexical features
provided by a LM, in addition to acoustic features, was developed, which
outperforms all chunking strategies using only acoustic features and yields
similar in translation quality as the baselines. Furthermore, by restricting
the thresholds for this heuristic after 10 words (Im-10), a suitable average
segment length for the lecture translation system of 9 with a small standard
deviation of 6 could be achieved.

Table 8.2 shows the results of the experiments, but for the other trans-
lation direction, i.e from English into Spanish. Segmentations based on
sentence boundaries and punctuation marks in general are compared to the
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Chunking SegLength  Correlation Bleu
strategy avg sdev PRC RCL Ref ASR
Baseline
sent 30.1 22.1 985 26.5 37.56 34.28
punct 9.2 6.7 100.0 98.6 38.27 35.47
Destroying the semantic context
fixed-7 70 02 228 26.5 30.13 27.50
fixed-11 11.0 0.7 226 16.8 32.07 29.53
fixed-15 15.0 0.6 23.8 13.0 33.64 30.66

sent-0.5 15.3 11.3 59.0 31.8 35.08
sent-0.25 10.3 85 449 36.1 33.67
Using acoustic features
pause-0.1 8.2 5.7 59.3 583 31.86
pause-0.2 12.1  11.0 66.3 44.5 32.53
pause-0.3 170 196 715 34.0 32.62
pause-varld 7.5 3.1 594 614 31.34
pause-var20 9.8 43 646 53.0 31.87
pause-var25 11.8 5.3 68.3 469 32.36
New segmentation
Im 109 9.8 731 54.1 34.93
lm-10 8.7 56 673 624 34.77

135

Table 8.1: Bleu scores obtained on ASR reference transcripts (Ref) as well as
on ASR hypotheses (ASR) together with the average (avg) segment length
and standard deviation (sdev). Precision (PRC) and Recall (RCL) of seg-

mentation boundaries to punctuation marks are given as well.

avg sdev Bleu Bleu

1043 t036+t037

sent 271 202 177 19.9
punct 11.1 9.6 18.1 19.9
Im-10 10.2 6.0 18.0 20.2
Im-8 8.9 44 18.0 19.9

Table 8.2: Comparison of the language model based segmentation (Im-10,
Im-8) with segmentations at sentence boundaries (sent)and punctuation
marks (punct) for English-to-Spanish lecture translation on lectEval. All

results are obtained on ASR hypotheses.



136 CHAPTER 8. TRANSLATABLE SPEECH SEGMENTS

baselines on ASR hypotheses [Bleu| E====
using ASR hypotheses |Bleu
average, standard deviation [words/ segment| +——+—
36 T T T T T T T T T T L 30
34
1 25
32
.‘ B 2
— 30F ’ 120 o
3 28 | 415
foa 3
% | {0 8
24 | = B .
2+ 1°
S/ ¢ P2 Y o 2 '9‘/6‘@ (/Se /*GO’\J n 2 '9(/36\ n. ¥/ 0 2 eose\ o sl/é‘e\ /’\'eO,\ >
"9/? 4 "9/? 0~1 VQf]
&) 0 8

Figure 8.1: Results obtained by chunking ASR hypotheses sorted descending
according to their average segment length. Bleu scores (left axis) are rep-
resented by boxes, the markers in the middle of the boxes give the average
segment length (right axis) together with the standard deviation.

above-developed language model-based segmentation. As can be seen, the
average segment length as well as the standard deviation can be significantly
reduced with the help of the language model-based segmentation (Im-10),
without any degradation in translation performance. Furthermore, by re-
stricting the thresholds after eight words to reduce the latency further, only
a slight degradation in translation quality was observed. It should be noted
that all results were obtained on ASR hypotheses produced with the system
described in Section 7.5 using 1 second intervals for partial trace-back. This
system achieved a WER of 16.8% on t036, 13.7% on t037, and 16.0% on
1043.



Chapter 9

A System for Simultaneous
Speech Translation

Given the description of the individual components of the simultaneous
translation system in the previous chapters, this chapter introduces the ar-
chitecture of the simultaneous translation system implemented in this thesis.
Figure 9.1 shows the system as deployed in a real lecture scenario.

9.1 Architecture and Information Flow

Figure 9.2 shows a slightly extended version of the schematic overview of
the simultaneous translation system which was given in Chapter 3. The
speech of the lecturer is recorded with the help of a close-talk microphone
and processed by the speech recognition component. The partial hypothe-
ses produced by this component are collected in the resegmentation com-
ponent, for merging and re-splitting at appropriate “semantic” boundaries.
The resegmented hypotheses are then transferred to one or more machine
translation components, at least one per language pair. Different output
technologies may be used for presenting the translations to the audience.
All components of the simultaneous translation system are connected
together in a client-server framework, similar to the one described in
[ ]. Tt is designed such that several consumers can process the output
of one or more producers. Imagine for example a panel discussion instead of
a lecture situation, where multiple people are able to speak at the same time.
For such a situation, the architecture makes it possible to use several speech
recognizers for processing the input signals. The different outputs are then
ordered, merged and resegmented per speaker in different resegmentation
components, and several machine translation systems can then be used to
consume the output of the resegmentation components, and to translate it
into the different required languages. For the identification of the different
streams and for the merging and resegmentation process, unique speaker-
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Figure 9.1: Simultaneous translation of a lecture with the system imple-
mented in this thesis.

M Speech Hypothesis Resegmen— Translatable Machine Translated
—— - -
Recognition tation Segment Translation Output

Outpu

Spoken Text
(Synthesis) (Subtitles)

Figure 9.2: Schematic overview and information flow of the simultaneous
translation system. The main components of the system are represented by
cornered boxes and the models accessed by these components by ellipses.
The different output forms are represented by rounded boxes.
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and segment-related identifiers are used. The different translation streams
are then multiplexed for delivery by the different output technologies. With
this set-up, the overall latency of the system can be significantly reduced in
such situations.

If required, the architecture also allows for combining the hypotheses of
several ASR components given the same input signal in order to improve
the recognition quality, by easily adding another consumer responsible for
the combination. The only problem for the simultaneous translation system
in this case is that the latency of the system not be affected.

9.2 Output Technologies

When offering simultaneous translation services, there is always the question
on how to deliver the translation to an audience. In the case of human
interpreters, the translation has always been delivered in spoken form, and
typically headphones are used. An automatic system has the advantage that
the translation can be delivered in written form also. In the following, the
advantages and disadvantages of the different transmission forms, types, and
output devices are discussed in more detail.

9.2.1 In Written Form

One of the most prominent transmission types is presenting the translation
as subtitles on a projection screen. The advantages of this transmission type
are that it is easy to implement, does not require any additional hardware
and can be presented to several people at the same time. However, as the
number of necessary output languages increases, the clarity of the presen-
tation suffers. In contrast, with display devices assigned to a single person
or a small group of persons of the same mother tongue, it is possible to
deliver target-oriented translations in the required language only, but it is
necessary to purchase additional hardware. The additional cost can be re-
duced significantly by also supporting standard handheld devices like PDAs
or cellphones, which are becoming more and more widely used.

All above mentioned output devices have the major disadvantage that
one is unable to look at the lecturer and presentation slides at the same time
as reading the translations. For this reason, heads-up display goggles (see
Figure 9.3) might be an ideal solution, because they enable the wearer to
see both the lecturer and the translation at the same time. Problematic in
this case is that equipping an audience with such a device is very expensive,
and changing focus from the speaker to the translation device can become
very tiring.
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Figure 9.3: Different output devices: Translation Goggles on the left and
the Targeted Audio device on the right.

9.2.2 In Spoken Form

Another prominent transmission form is delivering the translation with the
help of a speech synthesizer in spoken form. Using standard loudspeakers for
this is only suitable when the whole audience has the same mother tongue.
Otherwise, the different spoken translations and original speech would in-
terfere with each other. Using headphones solves this problem, but requires
additional equipment for the audience. Furthermore, it hinders the audience
from communicating with each other, because it is difficult to speak with a
neighbor without taking off the headphone.

To address these problems, we have explored beam steered sound beams,
which allow for delivering the translation to a desired group of people located
in the beam using a single device only, without disturbing other people
in the audience located outside of the beam [WF08]. With this solution,
the communication between people in the audience is not hindered and the
audience is not forced to wear additional personal devices. Furthermore,
due to the fact that several people can be addresses with a single device, the
additional equipment cost is lower.

For generating the steered sound beams, possible methods include using
a sound transducer with a diameter much larger than the wavelength of the
sound wave to be transmitted, or using standard array signal processing with
multiple loudspeakers. Both have the disadvantage that the overall size of
the device is large and thus unsuitable for a simultaneous lecture translation
system. Therefore, in [OPL06, OL07], another solution was proposed which
uses ultrasound to generate a narrow beam with an acceptable transducer
dimension. The device uses the characteristic that, at high sound pressure
levels, non-linear effects appear and the waveforms become distorted. This
distortion can be calculated and used to advantage, such that the non-
linearity of the air acts as a demodulator. The ultrasound wave is used as
a carrier, which is modulated by an audio signal. Figure 9.3 shows such a
targeted audio device. It consists of several small ultrasound loudspeakers
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Lecture Translation
System /)

Figure 9.4: The lecture scenario.

and outputs audio in a beam of a width of about 1-2 meters.

9.3 Conclusion

Figure 9.4 shows again the lecture scenario already presented in Chapter
3. The lecturer is standing between the projection screen and the audience.
The audio is processed, simultaneously translated by the lecture translation
system and delivered to the audience with the help of targeted audio devices
or heads-up display goggles. Several such targeted audio devices can be
assigned to various languages to accommodate each participant in the lecture
room.

Although several problems could be solved with the help of these devices,
one problem still exists, namely the delivery rate problem. To keep the
latency of the system constant, the system has to consume the input as fast
as it is produced and therefore has to deliver the output with the same rate.
This is especially problematic for language pairs for which an expression
with the same meaning consists of more phonemes in the target language
than in the source language. Figure 9.5 compares the average number of
words in English necessary to phrase a single word of another language. It
can be seen that e.g. a word in Finnish is phrased in almost 1.4 words in
English and a word in French in almost 0.9 words in English. The results
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Figure 9.5: Comparison of the average number of words in English neces-

sary to phrase a single word of another language measured on the Europarl
[[Xoe05] corpus.

do not provide a direct comparison of the duration of a phrase in different
languages, because words also differ in their durations; they are meant to
provide a first impression. Furthermore, the automatic system is not perfect,
and understanding an imperfectly written or spoken translation may not be
an easy task. In such cases, increasing the delivery rate of the translation
to keep up with the lecturer will make this task even more difficult.



Chapter 10

End-to-End Evaluation

By taking the results of the preliminary chapters into consideration, a real-
time, low-latency, speaker and topic adapted English-to-Spanish simultane-
ous speech-to-speech translation system was constructed.

For speech recognition, the MMIE-trained acoustic model with 184M
Gaussians over 3000 codebooks was adapted in a supervised manner on
four hours of speech of the same speaker (3000-64). The lectAdapt lan-
guage model was adapted using a three-fold linear interpolation of (1) a
background language model, (2) a language model computed on general
speaker-dependent topic data collected with the help of the speaker’s past
publications, and (3) a language model computed on specific topic data re-
lated to the current talk or lecture with the help of the presentation slides
(re-estimated S+ Ltopic lectAdapt). Where possible, the mixture weights
were optimized on reference transcripts related to the current talk; other-
wise, all reference transcripts in lectOther were used instead.

To reduce system latency, decoding was performed in one second in-
tervals. Between two successive intervals, incremental VILN and cMMLR
adaptation were used and partial hypotheses were returned. To improve
the real-time performance of the recognizer, Gaussian selection was applied
which is based on clustering all Gaussians into 1024 clusters and selecting
the top 64 clusters for each frame.

The partial hypotheses returned by the speech recognizer were re-
segmented using a language model and likelihood ratio thresholds (Im-10),
and then transmitted to the machine translation component.

For machine translation, the translation model was adapted using a small
number of manually translated lectures. For the target language model, a
web data collection was performed by using topic- and speaking style-related
n-grams as search queries. The language models computed using the web
data as well as manually translated lectures were then interpolated with the
existing background models.

In this Chapter, automatic evaluation results of the simultaneous trans-
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Development Set | Evaluation Set
WER WER
t035 12.4% | t036  12.9%
1003 11.5% | t037  10.3%
t012 13.1% | 1043  13.2%
1032 10.5% | t038  14.8%

1041 12.1% | t044  13.6%
1042 9.0%
Overall 11.9% 13.3%

Table 10.1: Detailed final automatic ASR evaluation results on the develop-
ment and evaluation data.

NIST BLEU
036+  5.60 23.0
1045 5.05 19.0

Table 10.2: Final automatic SMT evaluation results on the evaluation data.
Only one reference translation was used for scoring the results.

lation system will be presented in Section 10.1. Human end-to-end evalu-
ation results will be presented in Section 10.2 and compared in quality to
an offline TC-STAR system for parliamentary speeches as well as a human
interpreter.

10.1 Automatic End-to-End Evaluation

Table 10.1 shows the automatic ASR evaluation results. Overall, WERs
of 11.9% and 13.3% were achieved on the development and the evaluation
set, respectively. Decoding and adaptation on the partial hypotheses have
a real-time factor of 0.93 and provides ample scope for variations in the
speaking rate of the speaker. From the WERs per talk or lecture, it can be
seen that t038 is harder to recognize than the others. The explanation is
traceable to the noisy environmental conditions during this talk.

In Table 10.2 shows the corresponding translation scores for the evalua-
tion set.

10.2 Human Evaluation

The human end-to-end evaluation was carried out with the help of ELDA !
as for the 2007 TC-STAR human end-to-end evaluation | ]. To reduce

'Evaluations and Language resources Distribution Agency, http://www.elda.org/
index.php
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the overall effort and costs, six excerpts were used, three from each of the
two talks t036+ and 1043 of about 6 minutes each. The excerpts focus on
different topics each and represent a total of about 36 minutes and 7,200
words. A professional human interpreter was asked to translate the same
six excerpts, and the synthesized outputs of the automatic system and the
human interpretation were then presented to human judges.

The evaluation was split into two parts. In the component evaluation,
judges were able to directly compare the source excerpts and their transla-
tion. In the end-to-end evaluation, they were able to listen to the spoken
translation of the excerpts only. It should be mentioned that the judges
used for the first part of the evaluation were not used for the second part in
order to prevent biased results. For both parts, the excerpts were evaluated
in two categories: fluency and adequacy.

10.2.1 Component Evaluation

For this evaluation, 10 judges were recruited, of which 5 did not have specific
knowledge of the domain of the lectures. All were Spanish native speakers.
Each judge evaluated all six excerpts, and each segment was thus evaluated
by 10 different judges. The judgments were made on a per-segment level,
with the segmentation carried over from the manual transcriptions of the
excerpts in the source language. As a result, segments could contain more
than one sentence. There were about 247 segments in all.

Fluency was evaluated by judging the quality equated with the syntac-
tical correctness of the segment. Adequacy referred to whether the meaning
of a sentence in the source language was correctly transferred into the target
language. In both cases, judgment was on a five-point scale, with a value of
one for lowest and a value of five for highest quality.

Results

Table 10.3 shows the detailed automatic evaluation results of the translated
output restricted to the excerpts. The overall word error rate of the ASR
component was 11.9% with an OOV-rate of about 0.5%. On this output, the
SMT achieved an overall BLEU score of about 28.94. Compared to the TC-
STAR-07 system, it can be seen that there is a significant difference for both
ASR and SMT performance. However, it should be kept in mind that (1)
European Parliament Plenary Sessions are less difficult to recognize than lec-
tures and (2) the simultaneous translation system runs in real-time, whereas
the TC-STAR-07 translation system process the data offline in many times
slower than real-time. Furthermore, it can be observed that 1043 is more
difficult than t086+. This is due to the differences in topic between the two
lectures, and lower coverage of the language and translation models.
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ASR SMT

WER BLEU NIST
1043-1 14.6%  25.62  6.30
1045-2 14.5%  22.60  6.30
1043-3 9.6% 2873 7.14
t036+1 11.4% 3446 794
1036+2 121% 2941  7.19
t036+38 92% 3517 7.83
Overall 11.9% 2894  7.07

TC-STAR-07  6.9% 40.6  9.19

Table 10.3: ASR and SMT automatic evaluation results restricted to the
excerpts used for human evaluation. Two reference translations were used
to evaluate MT performance. The last row shows the offline results of the
final TC-STAR-07 system on different data.

all judges experts non-experts
Fluency 3.13 2.84 3.42
Adequacy 3.26 3.21 3.31

Table 10.4: Averaged fluency and adequacy results for the human component
evaluation.

Table 10.4 shows the averaged results for the adequacy and fluency judg-
ments over all excerpts. Surprisingly, the results are lower for the experts
than for the non-experts. A possible explanation could be that experts know
the scientific vocabulary and are therefore more exigent. Another observa-
tion is that the adequacy score is higher than the fluency score, i.e. the
simultaneous translation system is better in transferring the meaning than
ensuring syntactic correctness.

10.2.2 End-to-End Evaluation

For this evaluation, 20 judges had to be recruited because of the additional
evaluation of the human interpreter result. Again, the same demands were
made on the judges as for the component evaluations, and each judge eval-
uated either all six automatic or all six human excerpts.

Since judges were able to listen to the audio only, fluency was evaluated
by asking the judges to rate the overall quality of the current audio sample.
It should be noted, that in contrast to the component evaluation, the quality
of the human or synthetic speech was taken into account. The judgment was
on a five-point scale, reaching from one for very bad and unusable up to 5
for very useful. Due to the lack of the source speech, a comprehension
questionnaire was used for evaluating adequacy.
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For each excerpt, the questionnaire consisted of 10 questions. Three
types of questions were asked: simple factual (70%), yes/ no (20%), and list
(10%). This was done in order to diversify the difficulty of the questions
and to test the system on different levels. The questionnaires used for each
excerpt can be found in Appendix A.

The excerpts were presented to the judges via an online interface together
with the following evaluation instructions:

listen to the excerpts only once

answer the comprehension questionnaire

judge the fluency
e go to the next excerpt

After evaluation, an objective verification or validation of the answers
was performed by comparing the judges’ answers with references. In order to
identify where information was lost, the SMT, ASR and interpreter output
was analyzed in more detail. For this purpose the following voting scheme
was used:

0: the information or answer is totally missing
1: the information or answer is partially correct, but clearly incompleted

2: the information or answer is really close, but does not correspond exactly
to the reference

3: the information or answer is undeniably correct

For further processing, the values where mapped to a binary scale, i.e. 0
and 1 was mapped to 0, and 2 and 3 were mapped to 1.

Results

Table 10.5 shows that while the fluency of the simultaneous translation
system was judged to be slightly better than of the TC-STAR-07 system,
the fluency of human interpreters is worse on the Lectures than on the EPPS
task. This is most likely due to the more spontaneous speaking style of
lectures and a higher familiarity of interpreters with the topics and the
typical expressions used in the European Parliament.

Table 10.6 shows the percentage of good answers to the questionnaires
given by judges from the output of interpreters and of the automatic sys-
tems. Both automatic systems perform worse than the interpreters, and the
simultaneous translation system is worse than the TC-STAR system. This
is clearly in accordance with the differences in WER and Bleu between the
TC-STAR-07 and Lecture systems.
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interpreter automatic system
TC-STAR-07 4.03 2.05
Lectures 3.03 2.35

Table 10.5: Human Evaluation, Overall Fluency (1 low - 5 better).

interpreter automatic system
TC-STAR-07 0.74 0.64
Lectures 0.74 0.52

Table 10.6: Human Evaluation, Overall Comprehension (0 low - 1 better).

In addition, an objective verification of the presence of the informa-
tion needed for answering the questions was performed by a native Spanish
speaker. Table 10.7 shows the percentage of answers present or the maxi-
mum number of answers found in the Spanish translation output and in the
intermediate outputs of the ASR and SMT components. The comparison
shows that for the lecture task, the human interpreter was able to retain
85% of the information needed to answer all questions, while the judges,
who could listen to the interpreter output only once, then could answer 74%
of the questions. The automatic system presented 58% of the necessary in-
formation to the judges who then answered 52% of the questions correctly;
the ASR component loses 17% of the information, compared to 3% in the
TC-STAR system.

To objectively compare the translation quality of the automatic system
with the quality of the human interpreter, the results were limited to the
questions for which the answers were included in the interpreter’s speech as
shown in Table 10.8. It can be seen that in this subset the interpreters are
far better than they do over all data (from 0.74 to 0.80); this is also true
to a smaller extent for the automatic systems (from 0.64 to 0.66 and from
0.52 to 0.53). However, as noted earlier there is already a loss of 20% in the
ASR component.

interpreter automatic system SMT ASR
TC-STAR-07 0.91 0.89 0.92 097
Lectures 0.85 0.58 0.65 0.83

Table 10.7: Human Evaluation, Objective Comprehension (0 low - 1 better).
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interpreter automatic system TTS SMT ASR
TC-STAR-07 0.80 0.66 0.91 093 097
Lectures 0.80 0.53 0.60 0.70 0.80

Table 10.8: Human Evaluation, Limited Comprehension (0 low - 1 better).
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Chapter 11

Conclusions

This thesis presented the first available prototype of a simultaneous speech-
to-speech translation system particularly suited for lectures, speeches and
other talks. It demonstrated how such a complex system can be build as well
as the limitations of the current state-of-the-art. It compares and studies
different technologies to meet the given constraints in real-time, latency as
well as translation quality. With the help of this thesis one should be able
to build such a system and to make an informed analysis of anticipated
performance versus cost of the techniques presented.

The proposed simultaneous translation system consists of two main com-
ponents, the automatic speech recognition and the statistical machine trans-
lation component. To meet the given constraints in latency and real-time
without a drop in translation quality, several optimizations are necessary.
The most obvious is to use adaptation. Within the proposed adaptation
framework it is possible to apply adaptation on different levels, depending
on the type of information available. Different speaker and topic adaptation
techniques were studied with respect to the type and amount of data on
hand. To reduce the latency of the system, different speed-up techniques
were investigated. The interface between speech recognition and machine
translation components was optimized to meet the given latency constraints
with the help of a separate resegmentation component.

In the automatic end-to-end evaluation, the system showed an overall
word error rate of 11.9% and a BLEU score of 28.94 on the six excerpts used
for human evaluation. This is still rather low compared to an offline system
for translating European parliament speeches (T'C-STAR-07). However the
offline system had no latency constraints, and parliament speeches are much
easier to recognize and translate than compared to the more spontaneous
lectures on which this thesis focuses. This clearly shows the difficulty of
the whole task. However, the human end-to-end evaluation of the system
in which the system is compared with human interpretation shows that the
current translation quality allows for understanding of at least half of the
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content of a talk.

11.1 Thesis Results

In this thesis, different technologies required for implementing a simulta-
neous translation system are analyzed. The experiments presented in this
thesis show that a satisfactory simultaneous translation system can be de-
veloped with current state-of-the-art technologies. Specifically, the following
results, summarized in Table 11.1 for speech recognition, Table 11.2 for ma-
chine translation, and Table 11.3 for the resegmentation component, were
achieved. Although word error rates are given for lectDev as well, the word
error rates, real-time factors and relative improvements presented in the text
below refer to lectFEval.

Latency and Real-Time: An extensive study of the pruning parameters
available in the Ibis decoder was carried out, which gave valuable in-
sights on the influence of these parameters on recognition accuracy and
decoding speed. Changes in the state beam have the larges impact on
the ratio between recognition accuracy and decoding speed, followed
by the word beam. The influence of the topN pruning parameters is
small.

In addition, it was shown that with an improved implementation,
Gaussian clustering has a better WER-to-RTF ratio than Gaussian
selection using the Bucket Box Intersection algorithm. This is espe-
cially true if discriminative training was used for the acoustic model.
Using these speed-ups, together with a smaller acoustic model, the
real-time factor was reduced from 1.28 by 40% to 0.87 with only a
minor increase in WER of 1.2% (Table 11.1).

To reduce the overall latency, the output of the speech recognition
component was streamed. A partial trace-back mechanism was im-
plemented with which partial hypotheses can be returned in short
intervals of one or two seconds. The overall latency could be reduced
from a few seconds to only about two seconds. Although the overhead
increases with shorter intervals, the speech recognition component has
a real-time factor of 0.93. This gives ample scope for variations in the
speaking rate.

Speaker Adaptation: Speaker adaptation was successfully applied to the
lecture translation system. The impact in WER was analyzed for dif-
ferent amounts of data, either in the form of reference or automatic
transcripts. With 15 minutes of data — a common speaking time for
presentations — the WER could be reduced by 6.5% if reference tran-
scripts were used for updating the parameters of VILN and MLLR. In
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lectDev lectEval
WER  WER total RTF
baseline 4000-64 15.1%  16.6% 1.28
Latency and Real-time
+ AM optimization + speed-ups 15.4%  16.8% 0.77

+ reduced latency (1sec intervals) 152%  16.9% 0.93
Speaker Adaptation

+ unsupervised AM adapt. (15min) 14.3%  16.0%

+ supervised AM adapt. (15min) 14.3%  15.8%

+ unsupervised AM adapt. (4hrs) 13.5%  15.3%

+ supervised AM adapt. (4hrs) 12.8%  14.5%
Topic Adaptation
unsup. AM + lectBase (15min) 14.3%  16.0%
+ re-est. S+Ltopic 14.0% 15.5%
sup. AM + lectBase (15min) 14.4%  15.6%
+ re-est. S+Ltopic 13.8% 15.1%
unsup. AM + lectBase (4hrs) 13.4%  14.9%
+ re-est. S+Ltopic 13.0% 14.6%
sup. AM + lectBase (4hrs) 12.7%  14.0%
+ re-est. S+Ltopic 12.1%  13.7%
unsup. AM + lectAdapt (15min) 13.6%  15.2%
+ re-est. S+Ltopic 13.7%  15.1%
sup. AM + lectAdapt (15min) 13.6%  15.0%
+ re-est. S+Ltopic 13.5% 14.7%
unsup. AM + lectAdapt (4hrs) 12.8%  14.4%
+ re-est. S+Ltopic 12.8%  14.3%
sup. AM + lectAdapt (4hrs) 12.1%  13.6%
+ re-est. S+Ltopic 11.9%  13.3%

Table 11.1: Summarization of different techniques applied to the speech rec-
ognizer in order to reduce the latency and real-time and to increase the recog-
nition quality. In rows labeled with unsupervised (unsup.), ASR hypotheses
were used for offline acoustic model adaptation as well as for optimizing
the language model mixture coefficients. In rows labeled with supervised
(sup.), reference transcripts were used instead. The amount of data used for
adaptation is given in parentheses.
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Unadapted TM-adapt +LM-adapt
NIST BLEU NIST BLEU NIST BLEU
t0364, text input 5.72 23.4  5.89 25.0 6.33 28.4
t036+4, ASR input  5.06 179  5.15 18.9  5.60 23.0
1043, text input 5.27 19.6  5.35 20.3 548 21.6
1043, ASR input 4.80 16.6  4.85 16.9  5.05 19.0

Table 11.2: Summarization of the SMT results obtained by language model
and translation model adaptation.

avg sdev Bleu Bleu

1043 t036+

sent 27.1 202 17.7 19.9
punct 11.1 9.6 18.1 19.9
Im-10 10.2 6.0 18.0 20.2
Im-8 89 44 18.0 19.9

Table 11.3: Summarization of the SMT results for different resegmentation
approaches obtained on ASR hypotheses. In addition the average length of
a segment (avg) together with the standard deviation (sdev) is shown. The
results when hypotheses are manually split at sentence boundaries (sent) or
punctuation marks (punct) are compared with an automatic language model
based resegmentation algorithm (im-10, Im-8).
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the presence of four hours of data, the speed-optimized system could
even be improved by 14.2% (from 16.9% to 14.5%). For the simulta-
neous translation system, the unsupervised adaptation results are of
particular interest. The reason for this is that unsupervised adapta-
tion can be performed automatically by using hypotheses of past talks
from the translation system itself. The WER difference when using
four hours of speech of the same speaker is 0.7% absolute, and 0.2%
absolute for only 15 minutes of speech.

It was shown that even an acoustic model adapted using supervised
methods can be further improved by using additional online adapta-
tion.

A speaker clustering algorithm was presented, which is based on the
cMLLR parameters used during system training, and with which the
adaptation parameters for online cMLLR and VTLN adaptation were
successfully initialized. It was shown that the recognition accuracy
can be significantly improved on the first few utterances of a given
speaker, especially for speaker-adaptively trained acoustic models.

Topic Adaptation: An adaptation framework for lectures and speeches
was presented, which allows for a fully automatic adaptation of the
simultaneous translation system towards specific topics of new pre-
sentations. It was shown that queries generated using a tf-idf based
heuristic, can be successfully used to collect web data related to a spe-
cific talk or lecture. The impact of general data, collected with queries
extracted from several publications of the speaker, was compared to a
more specific collection with queries extracted from presentation slides.
It was shown that both corpora are important and that improvements
in WER up to 4-5% relative can be expected by using both, depending
on the background language model (Table 6.16).

When other lectures of the same speaker become available, they can be
used for a more specific optimization of the language model mixture
coefficients as well as for background language model optimization.
With the proposed adaptation framework, even a highly adapted lan-
guage model (lectAdapt) can be improved by 2.2% in WER. Supervised
adaptation was compared with unsupervised adaptation. When using
with the same acoustic model, the difference in WER is at most 1.3%
(see Table 6.16). When used together with an acoustic model adapted
using unsupervised methods, the overall improvement in WER for the
best-performing systems is 6.2% relative with lectBase and 7% rela-
tive with lectAdapt. Overall, the best word error rate of 13.3% was
achieved with a speech recognizer adapted using supervised methods,
with lectAdapt as a background language model.

The problem of vocabulary adaptation by adding new words extracted
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from the speakers publications or from presentation slides was also
addressed. Although the OOV-Rate was significantly reduced by 35%
relative, these improvements did not materialize in the WER, (Table
6.16).

For machine translation, a system trained mainly on European Parlia-
ment speeches was used and successfully adapted towards the lecture
domain. First, the translation model was adapted by using other lec-
ture data and by adding hand-crafted common expressions, yielding
an improvement of 2%-5% in BLEU. After this, the developed tf-idf-
based web data collection was applied to the target language model.
By using the collected data in addition to other lecture data, the trans-
lation score (BLEU) was improved by an additional 12%-21% (Table
11.2).

Resegmentation: To prepare and optimize the stream of words returned
by the speech recognition component for machine translation, a re-
segmentation component was developed which tries to find semantic
boundaries with the help of a statistical heuristic. It was shown that
with this heuristic, using likelihood ratio thresholds on n-grams, the
average segment length for English-Spanish translation systems can be
kept around nine words with no increase in translation quality (Table
11.3). Nine words typically correspond to an ear-voice-span of around
4.5 seconds, and is similar to the ear-voice-span achieved by human
interpreters for the investigated language pair English-Spanish.

Translation Delivery: Different ways were explored on how text or speech
translation can be delivered to the audience. While head-phones are
the most commonly used technique, innovative devices like targeted
ultra-sound loudspeakers offer interesting alternatives.

Human Evaluation: Human evaluation of the system showed that, in
comparison with the TC-STAR-07 offline system evaluated on par-
liament speeches and the translation results of a human interpreter,
the system implemented in this thesis performs worse, but still quite
well. In fluency, the simultaneous translation system was evaluated
better than the TC-STAR-07 system, but worse than a human in-
terpreter (2.35 vs. 3.03) (see Table 11.4). However, even the latter
is only average on the used scale of 1-5. The reason for this is the
technical nature and spontaneity of the lectures and talks. In terms
of comprehension, the simultaneous translation system was judged to
be 53%, which is smaller than the 66% of the TC-STAR-07 system.
The human interpreters achieved 80%. It was shown that more than
half of the questions could be answered correctly. When the results
of the simultaneous translation system are analyzed in more detail,
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interpreter automatic system TTS SLT ASR
Overall Fluency (1 low - 5 better)

TC-STAR-07 4.03 2.05
Lectures 3.03 2.35

Limited Comprehension (0 low - 1 better)
TC-STAR-07 0.80 0.66 091 093 0.97
Lectures 0.80 0.53 0.60 0.70 0.80

Table 11.4: Summary of the human evaluation results.

20% of the errors are contributed by the speech recognition compo-
nent, an additional 10% by machine translation, and a further 10% to
problems in speech synthesis (Table 11.4). Note that the development
and optimization of a speech synthesis component was not part of this
thesis.

Overall, the WER could be improved by almost 20% for an ASR system
adapted using supervised methods compared to the baseline. For a speech
recognizer adapted using unsupervised methods, the improvement was al-
most 14%. At the same time, the real-time factor was reduced by 27%
relative. The improvement in translation quality was about 17% on aver-
age, compared to an unadapted system. The resegmented partial hypotheses
of the best-performing ASR were used as SMT input.

11.2 Thesis Contribution

The experiments presented in this thesis lead to the following conclusions:

e With the final system, it is possible to understand at least half of
the content of a simultaneously translated presentation. For a listener
who is not able to understand the language of the speaker at all, this
is quite helpful.

e The developed adaptation framework allows the system to automati-
cally adapt to a specific speaker or topic. Performance improves as
speakers continue using the system. Manually added information,
such as publications, special terms and expressions, or transcripts or
manuscripts of the presentation, definitely improve adaptation perfor-
mance. The performance difference between automatically and man-
ually generated information is larger when more data is available.

e The adaptation framework reduces the amount of time necessary for
tailoring the lecture translation system towards a specific domain. A
general domain-dependent language model can be adapted with the
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help of the adaptation schema implemented in this thesis, such that
it performs similarly to a highly adapted language model using huge
amounts of additional data.

e With the help of the studies about different adaptation techniques,
speed-up techniques, and techniques for reducing the latency of the
system, one can make an informed analysis of anticipated performance
versus cost of the techniques presented.

e With respect to a human interpreter, the automatic system has the
advantage that once it is adapted, it can be re-used relative cheaply.

e Interpreting is a very complex task for humans, and it is recommended
to exchange interpreters at least every half an hour. Therefore, the
simultaneous translation system is especially suitable for longer presen-
tations such as lectures, or situations which are stressful for humans,
such as environments with high background noise.

e The automatic system has no memory limitations. This means that
for speakers with a high speaking rate, or when complicated sentence
structures are used, the automatic system can be advantageous over
a human interpreter. In such situations, the automatic system will
definitely not drop information, instead, the latency will increase.

e The developed client-server framework allows to easily add new pro-
ducers or consumers and therefore allows to easily tailor the system
to the needs of different applications. For eaxample, multiple trans-
lations can be produced at the same time by just connecting several
different translation components.

At the current time, automatic simultaneous translation is not used be-
cause it yields lower translation quality than a human interpreter. However,
adoption depends on the cost-benefit ratio. In the authors opinion, in some
situations such as small conferences or at universities such a system may be
useful at the current performance level.

A first version of the system was presented in a press conference in
October 2005 as well as at Interspeech 2006, where it was awarded as the
“Best Presentation”.

11.3 Recommendations for Future Work

The present work represents the first available prototype of a simultaneous
translation system. Several aspects of the system have been analyzed and
discussed, and the available prototype reveals new problems and allows for
further studies.
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e In the author’s opinion, the most important improvement of the si-
multaneous translation system would be to port the streaming ap-
proach used in speech recognition to machine translation. Although
segmentation in the form of inserting punctuation marks would still be
necessary to increase the understandability of the output, a separate
resegmentation component would be superfluous.

One possibility for achieving this is to use systems based on finite
state transducers (FST) such as | ]. The theory of FSTs allows
to merge the different systems into a single one so that global optimiza-
tions with respect to the overall translation quality, real-time behavior
and latency can be applied.

e As seen in the human evaluation results, the performance of the ASR
system is one bottleneck of the simultaneous translation system. To
improve ASR performance common techniques such as lattice rescor-
ing and consensus decoding should be ported to work in the streaming
framework. The result of the ASR should be annotated with confi-
dences to allow for more flexibility in translation.

e The support of multilinguality is another aspect which should be ad-
dressed. Especially in technical talks, many expressions may be in
English while the rest of the talk is given in another language. A mul-
tilingual acoustic model is indispensable for recognizing multilingual
expressions.

e Technical terms cannot be recognized if the corresponding words are
not included in the vocabulary. Although the developed heuristic can
significantly reduce the OOV-Rate, the words are not added in an
optimal manner. The vocabulary adaptation can be improved to allow
for the addition or exchange of even a larger amount of new words.

In this context, it may be a good idea to allow for adaptation of the
machine translation component. New expressions may sometimes be
incorrectly translated with the existing system.

e Currently, the stream of words returned by the speech-recognition
component is translated word-by-word, and only some disfluencies are
filtered out. To improve the translation quality, an additional sum-
marization component prior to translation may be a good idea, which
also removes more complicate disfluencies and simplifies complicated
sentence structures. Moreover, depending on the summarization level,
the latency of the system can also be reduced.

e Unfortunately, an alignment of slides to the recorded presentations
was not available. Motivated by results published by others, the au-
thor believes that this information can improve overall system perfor-
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mance. The recognition of words and expressions found on slides can
be boosted to achieve a better recognition and translation.

e The presented output devices show interesting possibilities in deliver-
ing spoken translation. Further studies and development are necessary
until these devices can exploit their full potential.
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Appendix A

Questionnaires

This chapter presents the questionnaires in Spanish and English used for
the human end-to-end evaluation.

1043-1

PREGUNTAS:

01) ;Cual es el tema de la conferencia?

02) ;Cémo denomina el disertante al aparato humano que produce el discurso
oral?

03) De acuerdo con el disertante, si tuviésemos que inventar una nueva
estrategia de codificacidén para comunicarnos entre nosotros,
;seria idéntica a la que hemos utilizado hasta este momento?

04) ;Cudles son las tres partes que componen el aparato humano que produce
el discurso oral?

05) ;Con qué compara el disertante al funcionamiento de la laringe?

06) ;De qué es responsable la laringe?

07) En lugar de utilizar la laringe, ;se puede estimular el tracto vocal
s6lo con golpes?

08) ;Qué utilizan las personas que perdieron la laringe para poder hablar?

09) ;Qué se necesita para el reconocimiento del discurso oral?

10) ;Para qué es importante el tono?

RESPUESTAS:

01) procesamiento de sefiales/ reconocimiento del discurso oral /
produccién del discurso oral humano

02) con un trozo de carne (grande y costoso)

03) no

04) pulmones, laringe/cuerdas vocales, cavidad articulatoria/tracto vocal

05) producir chirridos con la parte superior de un globo (de goma)

06) por el tono

07) si

08) un vibrador en sus gargantas

09) la forma del tracto vocal

10) para reconocer las emociones (en el discurso oral)

QUESTIONS:

181
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01) What is the topic of the lecture?

02) What does the lecturer call the human apparatus for producing speech?
03) According to the lecturer: If we had to invent a new coding strategy
to communicate with each other, would it be identical to the one

which we use so far?
04) What are the three components of the human apparatus for producing speech?
05) With what does the lecture compare the operation of the larynx?
06) What is the larynx responsible for?
07) Instead of using the larynx, is it possible to excite the vocal tract
by just hitting it?
08) What are people who have lost their larynx using to be able to speak?
09) What is necessary for speech recognition?
10) What is pitch necessary for?

ANSWERS :

01) signal processing/ speech recognition/ human speech production
02) a (big expensive) piece of meat

03) no

04) lungs, larynx/vocal folds , articulatory cavity/vocal tract
05) making squeaking noises with the upper part of a (rubber) balloon
06) for the pitch

07) yes

08) a buzzer on their throat

09) the shape of the vocal tract

10) for recognizing emotions (in speech)

1043-2

PREGUNTAS:

01) ;Qué modelo describe al tracto vocal desde un punto de vista fisico?

02) ;Cémo se denomina a la transformada utilizada para computar un espectro?

03) ;Cuiles son las dos clases de espectros que existen?

04) ;Qué clase de espectro es importante para el reconocimiento del discurso
oral?

05) ;Es posible saber qué se ha dicho con sbélo mirar el espectrograma?

06) ;Cémo se visualizan las frecuencias resonantes en un espectro grafico?

07) ,Cuantas frecuencias resonantes se necesitan para distinguir diferentes
vocales?

08) ;Cuando se llevd a cabo esta investigacién?

09) ,Como se denomina el grafico de las frecuencias formantes de las vocales?

10) De acuerdo con el disertante, ;es posible reconocer el discurso oral con
s6lo identificar las diferentes frecuencias formantes de un espectrograma?

RESPUESTAS:

01) el modelo de tubo

02) la transformada de Fourier

03) el espectro de potencia y el espectro de fase
04) el espectro de potencia

05) si

06) como picos

07) 2

08) en los afios cincuenta y sesenta

09) el triangulo vocalico
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10) no

QUESTIONS:

01) Which model describes the vocal tract from a physical point of view?

02) What is the transform that is used to compute a spectrum called?

03) Which two types of different spectra exists?

04) For speech recognition, which type of spectrum is interesting?

05) Is it possible by just looking at a spectrogram to tell what has been
spoken?

06) How do the resonant frequencies occur in a plotted spectrum?

07) How many resonant frequencies are important to distinguish between
different vowels?

08) When was this research carried out?

09) What is the plot of the formant frequencies of vowels called?

10) According to the lecturer: Can speech recognition be done by
identifying the different formant frequencies in a spectrogram?

ANSWERS:

01) the tube model

02) a Fourier Transform

03) power spectrum and phase spectrum
04) the power spectrum

05) yes

06) as peaks

07) 2

08) in the fifties and sixties
09) the vowel triangle

10) no

1043-3

PREGUNTAS:

01) ;Son 32 kilohertz la tipica frecuencia de muestreo para el
reconocimiento del discurso oral?

02) ;Cual es el objetivo del procesamiento inicial?

03) ;Qué clase de fuentes de conocimiento utiliza el decodificador?

04) ;Qué parte del oido humano transmite las vibraciones desde el timpano
a la cdclea?

05) Desde un punto de vista técnico, ;qué funcién cumple la cdclea en el
oido humano?

06) ;Qué tipo de banco de filtro se analiza?

07) ;Qué regla se utiliza para reformular la formulacién basica del
problema del reconocimiento del discurso oral?

08) ;Se denomina modelo acistico al modelo utilizado para calcular la
probabilidad de una secuencia de palabras especifica?

09) ;Qué representa la variable P?

10) ;Cual sera el tema de la préxima conferencia?

RESPUESTAS:

01) no

02) convertir/ codificar/ comprimir la sefial (en una representacién compacta)
03) un modelo aclstico, un modelo lingiistico/idiomético y un diccionario
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04) el martillo

05) ejecutar la transformada de Fourier con un banco de filtro
06) el banco de filtro en la escala de Mel

07) el teorema de Bayes

08) no

09) la secuencia de palabras

10) los modelos ocultos de Markov

QUESTIONS:

01) Is the typical sampling frequency for speech recognition 32 kilohertz?

02) What is the goal of the front-end processing?

03) Which types of knowledge sources are used by the decoder?

04) Which part of the human ear passes the vibrations from the ear drum to
the cochlea?

05) From a technical point of view, what is the cochlea doing in the human
ear?

06) What type of filter-bank is discussed?

07) Which rule is used to reformulate the basic formulation of the speech
recognition problem?

08) Is the model used to compute the probability of a particular word
sequence called an acoustic model?

09) What does the variable W represent?

10) What will be the topic of the next lecture?

ANSWERS:

01) no

02) to turn/ code/ compress the signal (into a compact representation)
03) an acoustic model, a linguistic/ language model, and a dictionary
04) the hammer

05) performing a Fourier transform with a filter bank

06) Mel-scale filter bank

07) Bayes rule

08) no

09) the word sequence

10) Hidden-Markov models

t0364--1

PREGUNTAS:

01) ;Cual es el motivo de la charla?

02) ;Qué significa la sigla CHIL que le da el nombre al proyecto?

03) ;Cuantos proyectos integrados financié la Comisidén Europea?

04) ;Todos los colaboradores del proyecto CHIL forman parte de la
Unién Europea?

05) ;De cuantos paises provienen los colaboradores del proyecto?

06) ;Qué parte del proyecto dirige Fraunhofer?

07) ;A cuadl de las dos universidades pertenece el disertante de
la charla?

08) ;Cuantos afios dura la primera etapa financiada del proyecto?

09) ;Cual es el presupuesto total para el proyecto CHIL?

10) Conforme a la charla, ;con qué prefieren interactuar los seres
humanos?
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RESPUESTAS:

01) la resefia del proyecto CHIL

02) computers in the human interaction loop

03) 3

04) no

05) 9 paises

06) el aspecto administrativo/ las cuestiones financieras y
presupuestarias

07) Universidad de Karlsruhe y Universidad de Carnegie Mellon

08) 3 afios

09) 25 millones de euros

10) otros humanos

QUESTIONS:

01) What is the occasion for the talk?

02) What does the project name CHIL stand for?

03) How many integrated projects were funded by the European Commission?

04) Are all partners, involved in the CHIL project located in the
European Union?

05) From how many countries do the project partners come from?

06) Which part of the project is Fraunhofer managing?

07) With which two universities is the lecturer of the talk affiliated?

08) How many years is the length of the first funded project phase?

09) What is the total budget of the CHIL project?

10) According to the talk, what do humans prefer to interact with?

ANSWERS :

01) the review of the CHIL project

02) computers in the human interaction loop

03) 3

04) no

05) 9 countries

06) the administrative aspect / the budgetary/ financial issues.

07) University of Karlsruhe and Carnegie Mellon University

08) 3 years

09) 25 million Euro

10) other humans

t036+-2

PREGUNTAS:

01) ;Qué se necesita para desarrollar y evaluar las tecnologias de CHIL?

02) ;Cuales son los dos escenarios de interaccién plurimodales?

03) ;Todos los lugares que participan de CHIL construyeron una sala CHIL?

04) ;Dénde se encuentra ubicado el centro AIT?

05) ;Qué idioma se selecciond para recolectar datos?

06) ;Dénde se registraron y transcribieron las primeras conferencias?

07) ;Quién se ocupa de tomar notas de los datos de videos y discursos?

08) Enumere tres de las tecnologias mencionadas necesarias para crear
servicios exitosos.

09) De acuerdo con la charla, ;son las evaluaciones importantes para el

proyecto?
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10) ;Coémo se denomina en la charla al grado de utilidad de un servicio?

RESPUESTAS:

01) datos

02) reuniones y conferencias

03) no

04) en Atenas, Grecia

05) inglés (europeo)

06) Universidad de Karlsruhe

07) ELDA y otros

08) Las tecnologias mencionadas en la charla son el seguimiento de
personas, la identificacién de personas, la sefializacién y
atencidén, el reconocimiento del discurso oral, los sucesos
acisticos, las respuesta de preguntas, el resumen como asi también
las subareas del seguimiento de personas, la deteccién y el
monitoreo del cuerpo, la deteccién y el monitoreo de la cabeza,
el monitoreo de la mano, la localizacidén de la fuente acistica.

09) si

10) medida de eficacia

QUESTIONS:

01) What is needed for developing the CHIL technologies and evaluating
them?

02) What are the two multi-modal interaction scenarios?

03) Have all sites participating in CHIL built a CHIL room?

04) Where is the AIT located?

05) What language was chosen for data collection?

06) At which site were the first lectures recorded and transcribed?

07) Who is performing the annotation of speech and video data?

08) List three of the mentioned technologies required for creating
successful services.

09) According to the talk, are evaluations important for the project?

10) What is the measure for the usefulness of a service called in the talk?

ANSWERS :

01) data

02) meetings and lectures

03) no

04) in Athens, Greece.

05) (European) English

06) University of Karlsruhe

07) ELDA and others

08) The technologies mentioned in the talk are person tracking,
person identification, pointing and attention, speech recognition,
acoustic events, question answering, summarization as well as the
subareas person tracking, body detection and tracking, head detection
and tracking, hand tracking, acoustic source localization.

09) yes

10) measure of effectiveness
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t036+-3

PREGUNTAS:

01)
02)
03)
04)
05)
06)
07)
08)

09)

10)

;Cuando fue la primera evaluacidén de prueba?

;Dénde se 1llevd a cabo el taller de la primera evaluacién abierta?
En el area de servicios, ;qué les permiten hacer los prototipos o
las demos a los socios?

;Cudntos lugares que participan del proyecto han disefiado
prototipos de demostracidén para los servicios?

;Qué institutos trabajaron en forma conjunta para descubrir las
medidas que formalizan las experiencias y la usabilidad del
servicio para los usuarios?

;Cuantas tecnologias diferentes se han evaluado?

;La demostracidén del andlisis del escenario aciustico funciond
bien durante la charla?

En el reconocimiento del discurso oral en los noticiarios, ;el
porcentaje de reconocimiento de error fue alto o bajo?

Para centrarse en el monitoreo de la atencidn, ;es necesario
monitorear todo el cuerpo?

En comparacién con los proyectos integrados, ;cémo han sido los
ultimos proyectos europeos?

RESPUESTAS:

01)
02)
03)
04)
05)
06)
07)
08)
09)
10)

junio de 2004

en Atenas

comparar y aprender del otro

cuatro

Stanford, Universidad de Eindhoven, IRST
13

no

bajo, menos del 10 por ciento

no

més cortos y de un alcance mas limitado

QUESTIONS:

o)
02)
03)
04)
05)

06)
07)

08)

09)

10)

When was the first dry-run evaluation?

Where was the workshop of the first open evaluation held?

In the area of services, what do the developed demos or
prototypes allow the partners to do?

How many project sites have built demonstration prototypes
for services?

Which institutes worked together to come up with measures
that formalize user experience and usability of services?

How many different technologies have been evaluated?

Did the demonstration of acoustic scene analysis work well
during the talk?

For speech recognition of broadcast news, was the recognition
error rate high or low?

For focus of attention tracking, is it necessary to track the
whole body?

In comparison to the integrated projects, how have the past
European project looked like?
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ANSWERS:

01) June 2004

02) in Athens

03) compare and learn from each other
04) four

05) Stanford, University of Eindhoven, IRST
06) 13

07) no

08) low, under 10 percent

09) no

10) smaller and more limited in scope
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