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Zusammenfassung

Dialogsysteme kommen heutzutage in einer Vielzahl von Anwendungsgebie-
ten zum Einsatz. Hierzu gehören Navigationssysteme, Call Center, diverse
interaktive Systeme und in den letzten Jahren, verstärkt in der Forschung,
auch Dialogsysteme für die Mensch-Roboter Interaktion. Eine Beschränkung,
die diese Systeme trotz signifikanten Fortschritts in den letzten Jahren noch
innehaben, ist fehlende Adaptionsfähigkeit, da diese Systeme durch statische
Vorgaben, statische Systemkomponenten und statische Wissensmodelle be-
schränkt sind. Im Gegensatz dazu sollte die nächste Generation von Dialog-
systemen in der Lage sein, ihre Strategien und Wissensmodelle zu adaptieren
und dadurch in die Lage versetzt werden, sich an ihre Umgebung anzupas-
sen. Eine derartige Adaptionsfähigkeit ist z.B. für einen humanoiden Roboter
von hohem Nutzen, insbesondere dann, wenn die Adaption durch das Sys-
tem autonom und ohne den manuellen Eingriff eines menschlichen Operators
durchgeführt werden kann.

Diese Arbeit bildet einen Beitrag für das Fernziel, komplett autonome
Systeme zu entwerfen, die sich an ihre Umgebung anpassen können. Hier-
für wird in dieser Arbeit ein Dialog-basierter Lernansatz vorgestellt, um eine
Wissensbasis über einen längeren Zeitraum hinweg zu pflegen, mit neuem
Wissen anzureichern und Fehleinträge zu korrigieren. Der vorgestellte Ansatz
wurde für Personenidentifikation, Soziale Netzwerkmodellierung und Lernen
von Objekten im Bereich der Mensch-Roboter Interaktion untersucht und
evaluiert. Neben robusten und fehlertolerante Lernmethoden werden in die-
ser Arbeit auch Fehlerkorrekturmechanismen eingesetzt, da fehlerhafte Ein-
tragungen in einem autonom lernenden System insbesondere beim Einsatz
über einen längeren Zeitraum in einer realistischen Umgebung unvermeidlich
sind. Diese Arbeit liefert daher einen Beitrag für den Entwurf robuster Lern-
methoden durch fehlertolerante Dialogstrategien für Lernaufgaben, Optimie-
rung durch Reinforcement Learning, enge Kopplung der Systemkomponenten
auf verschiedenen Verarbeitungsebenen des Dialogsystems, Fehlerkorrektur-
dialoge und Untersuchung des Lernverhaltens über einen längeren Zeitraum
hinweg, was die Verbesserung der Qualität der Wissensbasis zur Folge hat.

Im Rahmen dieser Arbeit wurde der interACT Rezeptionsroboter ent-
wickelt, der über einen Zeitraum von elf Monaten im Dauerbetrieb getes-
tet wurde und anhand einer zu lernenden Population von Mitarbeitern zur
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Evaluation des Lernansatzes verwendet wurde. Die Evaluationen belegen,
dass der vorgeschlagene Dialog-basierte Lernansatz Lernergebnisse mit guter
Qualität liefert, dass Personen automatisch modelliert, Objekte und deren
Semantik gelernt werden können, dass durch die Kopplung der Erkennungs-
komponenten und durch multimodale Fusion die Erkennungsergebnisse und
die Dialogführung verbessert werden konnten, und dass Korrekturdialoge si-
gnifikante Verbesserungen der Qualität der Wissensbasis in einem derartigen
autonomen System erzielen.
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Abstract

While there have been various improvements and signification advancements
in spoken dialog systems in recent years, today, dialog systems still have
restricted adaptation abilities as dialog systems are generally being built as
static systems with predefined and static knowledge models. In contrast, the
next generation of dialog systems will be able to adapt their strategies and
knowledge models and thus gaining the ability to adapt to their environment.
Such adaptation abilities can be of great service for humanoid robots, if
adaptation is autonomously conducted by the system and without manual
intervention by a human operator.

This thesis presents a contribution to the far goal of building completely
autonomous systems that can adapt to their environment, by introducing a
dialog-based learning approach for maintaining a knowledge base in a long-
term run including knowledge acquisition and knowledge correction. The
presented approach has been applied to and evaluated on person identifica-
tion, social network models and object learning in the domain of human-robot
interaction. Besides robust and error tolerant learning methods, this thesis
applies error correction mechanisms, as knowledge base errors caused by an
autonomously learning system are inevitable especially when the system is
exposed to a real-life environment over a longer period of time. Thus, further
contributions of this thesis are design of robust error-tolerant learning meth-
ods with error-tolerant dialog strategies for learning tasks, optimization by
Reinforcement Learning, tight coupling of multimodal dialog system compo-
nents, knowledge mending dialogs and analysis of the learning behavior over
a longer period of time, which results in better quality of the knowledge base.

Within this work we have developed the interACT robot receptionist,
which autonomously acquires a model of a research laboratory population
with almost“24/7-availability”and which has been evaluated over a long-term
period of eleven months. Results of this on other evaluations show that the
dialog-based learning approach produces a knowledge base of good quality,
that the learning approach can successfully be applied to automatically model
persons and to learn objects and their semantics, that recognition and dialog
quality can be improved by tight coupling and multimodal fusion and that
knowledge mending can lead to significant improvements of knowledge base
quality in such an autonomous system.
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Vogel, and Matthias Wölfel. The speech recognizer Janus plays a major part
in our dialog systems and I have also been lucky to have colleagues who have
been building great visual processing components, which I could use in my
thesis project. It was in Pittsburgh where I developed the initial idea to
build dialogs for a learning robot. Since then, more and more facets have

Universität Karlsruhe (TH)



viii Acknowledgements

been added to what has finally become the interACT Receptionist Robot.
One of the first supporters of this idea was Thomas Schaaf, whom I would
like to thank for his support and discussions about detecting and learning
new words. I greatly thank Christian Fügen, my first mentor, and Florian
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Chapter 1

Introduction

Dialog systems today are used for a great variety of applications, such as
interactive systems, call centers, navigation systems, and in recent years
human-robot interaction has also become the focus of dialog systems re-
search. The term ’dialog system’ in this sense refers to a system for human-
machine interaction using speech and optionally other modalities for input
and ouput. Various architectural diagrams can be found in the literature.
The common ground of state-of-the art systems is speech input processing
with speech recognition and language understanding, dialog management,
natural language generation and text-to-speech output. Figure 1.1 shows a
diagram with these five components, following the categorization by Pietquin
(2004) including the annotation of processing levels.
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Figure 1.1: Classical speech-based dialog architecture

Each of these components requires specific knowledges sources for opera-
tion. The relevant knowledge sources and their knowledge models are shown
in figure 1.2. The figure depicts the perceptual side of the multimodal archi-
tecture that will be used throughout this thesis and already indicates, how
the knowledge sources are shared between different components. The com-
ponents for multimodal fusion represent general approaches, which also exist
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Figure 1.2: Multimodal dialog architecture with shared knowledge sources

in other state-of-the art multimodal systems, where fusion is conducted at
a symbolic and/or subsymbolic level (e.g. multimodal person identification)
and at the semantic level (e.g. deictic references).

While there have been various improvements and signification advance-
ments in spoken dialog systems in recent years, today, dialog systems are
generally being built as static systems with predefined static knowledge mod-
els. With static knowledge sources, systems have limited adaptation abilities.
And with preprogrammed dialog strategies, also the behavior of the systems
is static. However, the next generation of dialog systems will be able to
adapt to the environment by adapting their knowledge sources and inter-
action strategies. Such adaptation abilities can be of great service, if the
adaptation can happen autonomously by the system itself and without a
human operator who needs to program the system’s database manually.

The focus of this work is a spoken dialog-based interactive learning ap-
proach for extending and creating multimodal knowledge bases. This ap-
proach enables a system to extend its knowledge (i.e. Environment Model,
Grammar, and Ontology) through explicit spoken dialog-based interaction,
and presents tight coupling (i.e. Shared Knowledge Sources and Multimodal
Fusion) and machine learning techniques for dialog strategies (i.e. the Task
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1.1 Problem Definition and Scenarios 3

Model). In contrast to classical learning methods, this approach does not
require a human operator to annotate data manually such as in supervised
learning. Rather, knowledge is extracted from information acquired from
natural interactive spoken dialog (i.e. Dialog Management) in human-robot
interaction scenarios and from background processing of data retrieved from
the World Wide Web (i.e. Data Services).

1.1 Problem Definition and Scenarios

Recent work addresses the development of humanoid robots that in the future
will support everyday life of humans. There, humanoid robots enter an open
environment, where they encounter persons and objects that have not been
known during design time of the system. Therefore, the robot domain offers
a good test environment for this thesis.

A goal posed by this thesis is to study an integrated learning approach
and to examine a complete dialog system for learning. To pursue this goal,
a dialog system for human-robot interaction has been developed and ex-
tended by learning capabilities, which are tested in different scenarios. These
learning capabilities address interactive, autonomous updates of the system’s
knowledge sources. Each of these knowledge sources as depicted in figure 1.2
models important information necessary for the functionality of the dialog
system. Learning processes are necessary to extend, update or delete in-
formation from the knowledge base. The knowledge base must be updated
to adapt to new observations, or it must be extended, e.g. when the robot
acquires information about a previously unkown object. The learning ca-
pabilities studied in this thesis are person identification, social user models,
object representation, and reinforcement learning for acquisition of error tol-
erant dialog strategies. In terms of the above knowledge sources, this might
include adding new words to the Recognition and Understanding Grammar,
to the speech recognizer’s vocabulary (graphemic representation) and to the
speech recognizer’s pronunciation model (phonetic representation), adding
new concepts and relations to the Ontology, adding new entities to the Envi-
ronment Model, and adding new samples to the visual classification models.
Other learning tasks require similar updates of knowledge sources.

For testing these capabilities, the following three scenarios are described
in this thesis. All scenarios are depicted by use case diagrams with pictures
from the settings. Use cases, as shown in the picture, are well applicable to
dialog interaction, and can be interpreted as dialog tasks. The links between
the use cases are shown as <includes> and as <extends> relations, arrows
which are unannotated for better readability represent <includes> relations.
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Figure 1.3: Use case and pictures from interaction with the interACT recep-
tionist, showing person identification and social network modeling

• the interACT robot receptionist, which models persons and their social
relations in the interACT laboratory. Figure 1.3 shows the main use
cases of the interACT robot receptionist with user interaction. The use
cases include person identification, new person learning, social network
modeling and knowledge mending.

• a robot parcel receptionist, which acts as a receptionist in a parcel
delivery task. Figure 1.4 shows the main stages of the dialog interac-
tion with the parcel robot receptionist as use cases including person
identification.
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Figure 1.4: Use case and pictures from interaction with the parcel receptionist

• interaction with the humanoid robot Armar III1 with fetch and bring
services. Dialogs for object learning are tested in this scenario. Figure
1.5 shows the two main use cases that involve user interaction plus a
set of subtasks that need to be conducted in dialog to learn an object.

All three scenarios have in common that they are tested in an open envi-
ronment, where new persons, object, words, etc. occur, which the system
needs to learn to fulfill its task. The robot parcel receptionist and the in-
terACT robot receptionist are similar as both are robot receptionists, and
in their functionality as a receptionist, both get to know new persons. They
are distinguished here, as the robot parcel receptionist is an earlier version
of the interACT receptionist and was mainly used for analysis of interaction
and social studies. The interACT robot receptionist finally is the largest
system among these in terms of the dialog-based learning model and covers

1Armar III is being developed within SFB588:
http://www.sfb588.uni-karlsruhe.de
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Figure 1.5: Use case and pictures from interaction with Armar III, showing
fetch and bring services and object learning

several experiments including user identification, reinforcement learning of
strategies, social network modeling and knowledge maintenance over time.

To measure if the proposed approaches are effective, we employ evalu-
ation criteria which are applied to each capability separately (e.g. dialog
success rates, dialog efficiency and learning success rate), and evaluation cri-
teria which evaluate the success of the interACT receptionist in creating and
maintaining a social database in a long-term study (e.g. knowledge base
quality and subjective user feedback).

So far, the terms ‘knowledge base’ and ‘learning’ have already been used
without further specification. As both terms can have quite different mean-
ings, the following definitions specify how these terms are used in this thesis.
In addition, the term ‘dialog-based learning’ is introduced and the scope of
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1.2 Thesis Statement 7

‘learning’ is further specified.
We use the term knowledge base in this thesis for a model, which rep-

resents certain aspects of the environment. It stores descriptive information
about acquaintances and objects, i.e. representations of real-world entities,
ontological concepts as semantic categories, relations between the entities,
and multimodal recognition models.

We use the term learning process for a process which updates the
knowledge base by adding, modifying or removing information, concepts,
relations and recognition models, with the purpose of applying the updated
models for recognition of entities in the environment (e.g. persons), or to
reason about the stored information.

We use the term dialog-based learning for a learning process which is
realized by a dialog system.

We use the term learning throughout this thesis with different mean-
ings of what and how something is learned, including procedural and declar-
ative knowledge. The term ‘learning’ is used for machine learning techniques
which include training of dialog strategies by reinforcement learning. The
system can ‘learn’ a new word during the dialog, which requires at phonetic
and graphemic representations and semantic categorization (without manual
annotation by a human), or can ‘learn’ the semantic categorization of an
object, which includes modifications of the ontology. The term ‘learning’ is
also used for automatic creation/training of classification models, e.g. for
visual person identification. Finally, we use the term ‘learning’ to describe
the overall system behavior while maintaining a knowledge base including
adding, updating and removing entities from the knowledge base, including
their semantic representation and classification models.

1.2 Thesis Statement

Knowledge acquisition by a humanoid robot can be conducted robustly using
multimodal spoken dialog. The robot can adapt its knowledge base to new
observations in the real world and over a longer period of time. The system
can correct errors in the knowledge base by automatic detection of contra-
dictory information and conduct dialogs to clarify false information. The
impact of the suggested learning technique is measured over a longitudinal
lifetime of the dialog system.

Universität Karlsruhe (TH)
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1.3 Contributions

This thesis introduces a dialog-based learning approach with unsupervised
learning mechanisms for acquiring information and maintaining a knowledge
base. In contrast to supervised learning, such a learning mechanism enables
robots to learn and extend their knowledge autonomously without manual
intervention by a human supervisor. Contributions of this work include

• A dialog-based learning approach for knowledge acquisition using multi-
modal data is introduced. The presented approach advances the state of
the art with the proposed concept of a fully autonomous system which
includes interactive knowledge acquisition and background knowledge
acquisition, which is robust against recognition errors and facilitates
maintenance of a knowledge base over a longer period of time. The
approach includes a modular dialog approach to update a knowledge
base of specific knowledge entities, with adding, updating and deletion
of entities.

• The concept of dialog-based learning has been applied to and evaluated
in several scenarios, such as learning of personal information, name
learning, and object learning, in a more extensive way than other state
of the art systems that facilitate interactive learning. Within these
scenarios, the suggested knowledge model has been tested for learning
of complex entities, object semantics, multimodal data, attributes, and
social networks of persons.

• New approaches are presented for handling development of the knowl-
edge base over time. The system’s learning behavior is evaluated over
time and long-time effects on quality are analyzed. Since such a learn-
ing system produces errors after some time, a knowledge mending ap-
proach is introduced that can effectively detect and solve problems of
the knowledge base using interactive and non-interactive problem de-
tection and resolution methods.

• A fully integrated system for knowledge acquisition in dialog is intro-
duced. In contrast to existing work, the presented system can process a
multitude of knowledge sources and is evaluated with expert users and
naive users in a realistic (real-world) setting. This is facilitated by tight
coupling and multimodal integration, which leads to improvements in
recognition performance (e.g. speech recognition by contextual control
and dynamic vocabulary) and dialog success. A new multimodal fu-
sion approach is presented using confidence-based multimodal fusion
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and Bayes Net theory for integrating multimodal data and dialog fea-
tures for open set person identification.2

• The high requirements for error tolerance and robustness posed to the
dialog strategies by the scenarios are addressed by a combination of
handcrafted dialog design and reinforcement learning for learning opti-
mized dialog strategies. New multimodal user simulation methods are
introduced for training multimodal dialog strategies. For combining
different techniques as handcrafted dialog strategies and reinforcement
learning in a runtime system, a modular dialog approach is utilized.
Similar to an agent-based approach, this allows separating concerns,
implementing modules independently and combining them within one
runtime system.

1.4 Thesis Overview

This thesis is organized as follows. Part I presents a fully integrated frame-
work for human-robot interaction and techniques for robust multimodal di-
alog processing. Part II extends this framework with dialog-based learning
methods for knowledge acquisition.

Part I therefore is focused on error tolerant dialog strategies and inte-
gration aspects. Scenarios for experiments and evaluation in part I reflect
common tasks of a humanoid robot in a household environment and com-
bine ‘standard’ interaction and learning tasks. Effectiveness of the suggested
methods in part I are measured by success rates of dialog tasks, subjec-
tive user feedback, and improvements of the suggested methods over a given
baseline.

Part II focuses on analyzing different aspects of dialog-based learning.
Scenarios for experiments and evaluation in part II are focused on tasks
involving knowledge acquisition. So far, no standard for the evaluation of
dialog-based learning exists and only parts of the techniques can be eval-
uated against a real baseline. To still be able to assess the success of the
proposed methods, gold standards are introduced to measure the success of
different techniques, measure relative improvements when combining differ-
ent techniques, and to evaluate an overall system. Such an overall system
evaluation was conducted for the interACT receptionist in a long-term study
in a realistic environment. With the goal to set up evaluation metrics which
are easy to understand by humans, i.e. one can personally estimate how well

2The dialog system integrates several components developed within SFB588, which are
speech recognition, object recognition, person tracking, face identification, voice identifi-
cation and pointing gesture recognition.

Universität Karlsruhe (TH)



10 Introduction

the system performs, an evaluation scenario was created for the interACT
receptionist. Its performance is measured by how well it can model a group
of persons working in the interACT lab and present the result on a “Who-
is-Who” page. Within this scenario, the learning curves of the system are
plotted over the already mentioned gold standards, subjective user feedback
is assessed and different metrics have been applied to evaluate knowledge
base quality.

Foundations and Related Work:

Chapter 2 includes foundations of the dialog system and related work for dia-
log processing, multimodal human-robot interaction and dialog-based learn-
ing.

Part I:

Chapter 3 presents the dialog manager TAPAS, which has been developed
as a dialog system for a humanoid robot, with dialog architecture and tight
coupling.
Chapter 4 presents a multimodal user model with multimodal fusion tech-
niques on different levels (as sketched in figure 1.2) of the dialog system for
multimodal person identification.
Chapter 5 presents machine learning techniques for training and optimization
of dialog strategies for person identification with reinforcement learning and
multimodal user simulation techniques.

Part II:

Chapter 6 presents a dialog-based learning approach with knowledge model
and realization by dialog modules.
Chapter 7 presents application of the learning approach to multimodal object
learning including semantic categories for unknown objects from the kitchen
and household environment and new words in speech recognition.
Chapter 8 presents the interACT robot receptionist which is used for long-
term evaluation of the dialog-based learning approach and social user models
presented in the following chapters.
Chapter 9 presents acquisition of social user models, which includes offline
information retrieval, information extraction and information acquisition in
dialog.
Chapter 10 presents evaluation of the dialog-based learning approach for
acquisition of personal information in a longitudinal study and evaluation of
knowledge mending.
Chapter 11 concludes this thesis.
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Chapter 2

Foundations and Related Work

This chapter first presents an overview of dialog management approaches
in general and their application to human-robot interaction. Secondly this
chapter describes foundations and work related to dialog-based learning.

In the first part of this chapter, a brief introduction is given into the field
of dialog management for human-robot interaction. The presented methods
for dialog management provide a foundation for the dialog approaches pre-
sented in this thesis, and address human-robot interaction, robustness and
evaluation.

Section 2.4 then describes related work for dialog-based learning for hu-
manoid robots and addresses the problems of learning of new words, learning
of semantic categories, learning of multimodal models and cleaning error-
ful knowledge bases. These problems are described in the context of object
learning and acquiring models of persons.

2.1 State of the Art of Dialog Systems for Human-Robot
Interaction

2.1.1 Dialog Management Approaches

The term dialog manager is generally used for a specific component of a
dialog system. Its basic functionality is to conduct a dialog strategy and
execute dialog actions (often referred to as moves) in reaction to input events.
Depending on the specific system, a few other components are integrated into
the dialog manager, such as discourse management, abstract state modeling,
belief update, and context management.

A categorization of dialog management approaches are given by McTear
McTear (2004, 2002), who categorizes these approaches into three basic
classes: the finite state based, the frame-based and the agent-based approach.
Most of today’s dialog systems can hardly be classified as one of these ap-
proaches. The agenda-based dialog manager Xu and Rudnicky (2000b) di-
rectly models the human’s task, as an expectation of the dialog flow. It has
been extended in Bohus and Rudnicky (2003, 2008), by separating task and
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discourse behavior. A frequently applied pattern is that of a state-based
dialog manager which maintains a belief state of different observations and
information about the dialog flow. This category includes the information-
state update (ISU) approach Lemon et al. (2001) and abstract dialog state
(ADS) based systems Denecke (2002). ADS and ISU approaches have the
same concept of introducing different variables that characterize the cur-
rent dialog state. Especially state-based dialog managers, e.g. the ISU ap-
proach, have shown suitability for combination with reinforcement learning
algorithms, like conducted by Scheffler and Young (2002). Recently, there
has been growing interest in optimizing dialog strategies with a partially ob-
servable Markov decision process (POMDP) Roy et al. (2000). The term
partially observable refers to introducing “hidden variables” into the dialog
manager, e.g. Young et al. (2007). Some of the variables cannot be observed
directly, e.g. the real name of a person, for which the dialog manager only
observes the speech recognition result.

Depending on the task complexity of the dialog system, a decomposition
of the complete system into smaller parts can be of advantage. A decompo-
sition of a dialog architecture is proposed by Turunen and Hakulinen (2003)
or Nakano et al. (2006), who use agents for distributed interaction tasks, and
Bohus and Rudnicky (2003), with a hierarchical task structure and handlers
for specific states.

2.1.2 Dialog Systems for Human-Robot Interaction

Most traditional dialog approaches consider speech-only interactions, and
have focused on phone based interaction, such as flight and train timetable
information systems McTear (2002); Allen et al. (2000); Stallard (2000), call-
routing systems Gorin et al. (2002), weather information systems, Zue et al.
(2000), etc. The next generation of dialog systems has to cope with direct
human-machine interaction from face to face, which exist for example in
human robot dialogs or in smart room environments. This results in new
challenges resulting from the physical environment shared by the user and
the system, the situated and context-dependent communication, the changing
environment, the multimodal interaction, etc.

To address these challenges, different approaches are taken, which often
require the integration of interdisciplinary approaches. The applied dialog
technologies for human-robot dialogs range from finite state systems to more
complex models. Many robots use command-based speech input or simple
dialog control. Some dialog systems for robots are based on finite-state au-
tomata e.g. the robots HERMES and BIRON Bischoff and Graefe (2002);
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Toptsis et al. (2004). Finite-state automata are models, which are easy to
design, and are sufficient in many scenarios. Later, the dialog model on
BIRON has been extended to a more complex interaction management sys-
tem with multimodal dialog capabilities Li (2007). Also Aoyama and Shimo-
mura (2005) use a simple finite state dialog model. In the integrated system,
”Naturalness Support Behaviors”are studied, which include for example nod-
ding, filler insertion, face tracking, and reactions to environmental stimuli
during interaction. In complex environments, often more advanced strat-
egy approaches are necessary, to deal with speech recognition errors, process
multimodal information, and handle the manifold contextual states. Such
advanced approaches are implemented e.g. for the robot Pearl Montemerlo
et al. (2002), which uses a probabilistic approach to cope with recognition
errors. The dialog system WITAS for unmanned vehicle control Lemon et al.
(2001), adopts the information state update (ISU) approach. Also Bos et al.
(2003) adopts the approach to dialog move engines with an information state
model, developed within TRINDI Traum et al. (1999), in an agent-based ar-
chitecture. An agent’s information state is updated on the basis of observed
dialog moves, leading to the selection of a new dialog move to be performed
by the agent.

2.2 Robustness and Learning of Dialog Strategies

In recent years, there have been two main approaches to create dialog strate-
gies, either by manual writing of dialog strategies, or by applying learning
mechanisms for dialog strategy training.

One shortcoming of handcrafting dialog strategies is that it is a time-
consuming and non-trivial task, especially with increasing complexity of the
dialog. Additional problems are robustness on unseen data. One promising
approach to avoid these problems, is to use collected dialog data for automatic
training of dialog strategies. For this task especially reinforcement learning
has become popular. So far, reinforcement learning has successfully been
applied in a couple of dialog scenarios Singh et al. (1999); Levin et al. (1998a,
2000); Walker and Shannon (2000).

One problem of applying this technique to dialog systems is the large
number of data (i.e. dialogs) required for training of the system, so that
training strategies on real data has usually been conducted with a limited
state space and/or action space. More recently, there have also been ap-
proaches to training dialog strategies with a user simulation, which allows
to generate a vast number of dialogs, which are necessary for training more
complex dialog strategies Scheffler and Young (2002); Williams and Young
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(2003); Schatzmann et al. (2006); Pietquin and Renals (2002); Schatzmann
et al. (2007). So far, these approaches do not cover multimodal systems
or approaches for dialog-based learning. Both aspects will be addressed in
chapter 5.

Another aspect besides reducing manual labor by dialog strategy opti-
mization, is to achieve robustness against errors that occur during the dia-
log. In addition to optimizing the dialog strategy itself to achieve robustness
against errors, e.g. Lemon and Liu (2007), other approaches have been ap-
plied successfully, too. Approaches for robust dialog strategies include ex-
plicit error handling Gieselmann (2007); Skantze (2007a). Further approaches
in the field derive robust strategies by using confidence measures from speech
recognition Bohus (2007).

2.3 Evaluation

2.3.1 Evaluation of Human-Robot-Interaction

In the future, more and more robots can be found in environments of typical
human everyday life, i.e. in hospitals, hotels, museums, schools, and house-
holds. The usage of robotic devices in the human world requires appropriate
design of the robot’s interface to the environment and of the robot’s cognitive
skills, thus enabling intuitive interaction between robot and people.

The goal of evaluation is to quantify different aspects of human-robot
interaction (HRI) to improve robot design, increase acceptability and adapt
robots more to the need of humans. As HRI is a relatively young field,
there are still many areas that still need to be explored and many aspects
of human-robot interaction still lack measures that can be quantified. In the
following we want to give an overview over evaluation metrics and evaluation
procedures which are current state of the art including recent achievements.

One common means to assess robot success are benchmarks. A great
variety of benchmarks do exist: some recent examples with a great deal of
public attention are robot soccer competitions in different leagues Bredenfeld
et al. (2006), test course for rescue robots Jacoff et al. (2002), the DARPA
Grand Challenge Thrun et al. (2006) and the DARPA Urban Grand Chal-
lenge DARPA (2007) for autonomous driving of cars. Human-robot interac-
tion is contemplated by the RoboCup@Home league founded in 2007 Nardi
and et al. (2007). The performance measurement is based on a score derived
from competition rules and the evaluation by a jury. However, a transfer of
such competition concepts and evaluation metrics to domains in the human
everyday world can cover only a part of the necessary evaluation procedures.

Besides competitions, various metrics are used by international researchers
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like the preferred direction of approaching in a living room scenario Woods
et al. (2006) or the distance a person feels most comfortable with when in-
teracting with a robot Walters et al. (2007). Others, as proposed by Ste-
infeld et al. (2006) include success rates and number of operator interven-
tions in tele-operated scenarios. Additionally, metrics for performance, world
complexity and information quantification were established for autonomous
mobile robots navigating in a corridor clotted by random obstacles Lampe
and Chatila (2006). In the first category instantaneous velocity, traveled dis-
tance, mission duration, mission success rate and power usage were measured,
whereas global complexity and the vicinity of the robot are taken into ac-
count in the second category. The last metric used is the conditional entropy
measuring the information contained in the internal robot map compared to
the world map.

As soon as communication forms an integral part of human-robot inter-
action additional objective metrics like WER: word error rate (the standard
metric for automatic speech recognition - ASR), CER: concept error rate (er-
ror rate to measure understanding, based on recognized concepts) and TER:
turn error rate (based on number of turns that cannot be transformed to
the correct semantics) can be applied. Current research on spoken dialog
system either uses objective metrics, subjective metrics, or both. The main
advantages of subjective metrics over objective metrics are that the user’s
subjective perception of the system can be included in the evaluation. Most
measurements are based on questionnaires with rating scales such as Likert-
Scales. Approaches exist to build a unified framework for the evaluation of
dialog systems and create comparable scores with the PARADISE framework
Walker et al. (1997) for spoken dialog systems.

In contrast to metrics based on measurable characteristics and typically
used in engineering, Kahn et al. (2006) suggest metrics for human-robot
interaction devised from an psychologist’s point of view which include au-
tonomy, imitation, intrinsic moral value, moral accountability, privacy, and
reciprocity. These contenders are attributed to a robot by the person inter-
acting with it.

Coding of behaviors and deriving rules for interaction are another form
of metrics adopted by some research groups. The problem when applying
this procedure is the objective coding of behavior which actually is a subjec-
tive interpretation of an interaction scene as seen by an observer. In order
to gain valid data the same interaction scenario should be coded by several
independent observers of the experimental staff. So-called micro behaviors
were used by Dautenhahn and Werry (2002) based on criteria like eye gaze,
eye contact, operation and handling, movements, speech, attention, and rep-
etitions. The length of eye gaze was used as a correlation to the subject’s
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level of interest in a robot or toy truck. Behavior-level codes describing the
adjustment of children to the setting of a communicative robot interacting
with children in a primary school were used by Nabe et al. (2006); Kanda
et al. (2004) to analyze the role of their robot.

So far many ideas, methodologies, metrics, and measurement criteria do
exist in order to assess human-robot interaction, but most of the applied
metrics consider mainly technical characteristics of the robot. Even success
rates of interactions do not really picture the manifold ways of human be-
havior and the reasons for a failure of the interaction. The problem is that
human behavior cannot be measured using simple scales. The assessment of
interactions between naive persons and robots actually requires a framework
of different metrics: a combination of objective metrics which can easily be
measured and quantifiable subjective metrics characterizing human behavior.
Here, undue influence of naive subjects as well as biased opinions of observers
has to be taken into account by creating a set-up for sound experimentation
and analysis.

2.3.2 Evaluation of Dialog

The list of different objective metrics which have been applied to dialog sys-
tems is relatively short. Most systems use some kind of recognition accuracy,
dialog length, and dialog success. Recognition accuracy can be represented as
Word-Error-Rate (WER) which is the simplest metric. It has the advantage
that it is usually used for evaluation and comparison of speech recognition
systems and can easily be computed when the transcription of speech input
is given. However, WER is not necessarily the best metric to represent recog-
nition accuracy. For example, it does not distinguish between content words
and non-content words. Sentence-Error-Rate (SER) checks the correctness of
complete sentences. Some evaluations measure correctly recognized seman-
tic concepts, for example (semantic) Concept-Error-Rate (CER) is reported
in Chotimongkol and Rudnicky (2001); Glass et al. (2000); Holzapfel and
Waibel (2006). Differences exist whether CER is defined on fully correct se-
mantic input or regarding the details used to measure correctness. CER is
probably the metric, which is best suited to represent input understanding in
a dialog system, because it is measured by the correctness of the input, which
is actually used by the dialog manager. However, it requires semantic tran-
scription of input, and is not as simple as word-error rate, since it depends
on the type of semantic structure and details of semantic transcription.

Dialog length is usually measured in number of turns to achieve a certain
goal. In task-oriented systems the number of turns is measured to achieve a
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predefined task. Some other metrics have been used, such as the total amount
of time in seconds, or the number of syllables spoken, e.g. by Skantze (2007b).
Glass et al. (2000) uses concept efficiency (CE) which quantifies the average
number of turns necessary for each concept to be understood by the system,
and query density (QD) which measures the mean number of new concepts
introduced per user query. Both metrics relate to the length of the dialog
with respect to how effectively information can be communicated without
the necessity of a task definition.

A widely used metric is dialog success. However, the definition of dialog
success varies among different systems. Most approaches use achievement
rates of dialog goals, e.g. Schatzmann et al. (2005).

Besides the most commonly used metrics, there is a larger number of
different features for detailed analysis of the interactions, e.g. Fraser (1997);
Polifroni et al. (1992); Price et al. (1992); Simpson and Fraser (1993); Danieli
and Gerbino (1995); Walker et al. (1998), most summarized in Möller (2005).
These interactions parameters can be used for detailed analysis of the system,
aspects of the interaction, and different quality aspects Möller et al. (2007).

As a framework for dialog system evaluation, PARADISE introduced by
Walker et al. (1997, 2000) is best known. It offers a prediction model for
quality judgments based on a regression model with interaction parameters
as input. It serves two purposes, one part is the framework for prediction of
quality judgments, and the second part is a set of questions and metrics for
evaluation. The framework has been applied to a number of different systems,
for example Hajdinjak and Mihelič (2006). Since PARADISE has initially
been designed for speech-only interactions, a modified version, PROMISE,
has been suggested by Beringer et al. (2002) to address aspects of multimodal
systems.

Such frameworks apply both, objective and subjective metrics. Subjective
evaluation is usually conducted with the help of questionnaires, which allow
quantitative measurements based on Likert-Scales. A Likert-scale is a one-
dimensional scale with a discrete set of response possibilities, usually a 5-
point, or sometimes a 7-point scale to rate between Disagree and Agree.
Questions are then formulated as statements. Some approaches use different
opposites than agreement or disagreement, such as ‘good’ vs. ‘bad’, ‘very
much’ vs. ‘not at all’. Questions are then formulated as real questions, such
as “How is your overall impression of the interaction?”.

Recent work addresses aspects of how to successfully design systems, by
introducing checklists or design principles, e.g. Niels Ole Bernsen (1996);
Bernsen and Dybkjaer (1997); Dybkjaer and Bernsen (2000); Suhm (2003).
Such design principles are important in the design of spoken dialog systems,
and many design errors can be prevented by following such design principles.
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Similar as there are guidelines for designing a system, there also exist
guidelines for evaluating systems. A good overview over subjective evaluation
according to de-facto standards is given by Möller et al. (2007). Moeller
analyzes different de-facto standards with respect to which aspects of quality
can be measured by these standards, and how reliable the measures are. He
refers to de-facto “standards” as guidelines, which are formulated in terms of
recommendations to the evaluator. A limited number of practical guidelines
are defined, by such a de-facto standard, on how to carry out assessment and
evaluation experiments. Often these guidelines are universally valid, some
are restricted to a specific domain and need to be adapted for other systems.

Guidelines, which are relevant for spoken dialog system, are first gen-
eral recommendations on assessment and evaluation methods, e.g. Fraser
(1997) in the “EAGLES Handbook”. Guidelines for Wizard-of-Oz experi-
ments, which are important parts in the design of dialog systems, are pre-
sented e.g. in Fraser and Gilbert (1991); Dahlbäck et al. (1993). As intro-
duced above, subjective user feedback is important to assess system quality.
Guidelines for collecting quality judgments are presented with the introduc-
tion of the SASSI questionnaire, developed by Hone and Graham (2000,
2001), which has been adapted for usage in this thesis.

2.4 Dialog-Based Learning for Humanoid Robots

Dialog systems usually have static knowledge about the environment, and
static interaction strategies. This can be desirable, and robust dialog strate-
gies can be trained, e.g. by reinforcement learning, to obtain robust and
predictable behavior in a predefined environment. However, some situations
require adaptation of the system during runtime and require the system to
maintain its knowledge over a longer period of time. An autonomous system
has to achieve this without supervision by a system expert.

The field of work which addresses interactive learning in human-robot
interaction can be categorized into the three categories

• acquiring personal information

• object learning

• programming by demonstration for learning of actions

In the following, we first introduce architectures for learning, and then ad-
dress different learning approaches. Programming by demonstration can be
considered as the most advanced area in the above list. Despite the fact
that programming by demonstration is a kind of interactive learning, most
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approaches use no or only very limited dialog capabilities. Therefore, we
concentrate on acquiring personal information and object learning.

When looking at the field of related work it can be seen that most ap-
proaches go into different directions and have different main focuses. How-
ever, when looking more closely at the learning approaches it becomes clear
why this is the case. Learning in the context of human-robot interaction
includes a multi-disciplinary field. Work conducted in this field covers dif-
ferent areas, such as robot control, visual processing, speech recognition,
dialog management, and semantics. When reading the work presented in the
following, this should be kept in mind. These areas also help to classify the
presented approaches. For example, object learning approaches can be distin-
guished by whether the main focus is on visual processing, semantic category
acquisition, dialog management; as well as a combination of these areas. For
example, by combining visual processing and speech recognition, labels can
be associated to new objects, while in another scenario, deep semantics are
acquired for a new object.

2.4.1 Object Learning

The task of learning and memorizing objects is a complex task which in-
cludes different learning approaches. Some learning approaches are similar
to functionality required by other learning tasks, e.g. acquisition of personal
information. Learning of objects in the context of human-robot interaction
has recently seen increasing attention.

Work in the area of object learning for humanoid robots can be classified
by the subtasks of learning that are addressed. These categories are (i)
new words learning in speech recognition (ii) learning visual features of real
world objects (iii) learning of semantics. These categories define a useful
classification scheme since they represent the main categories that form a
typical object learning task for a humanoid robot.

Table 2.1 gives an overview over existing approaches and a classifica-
tion according to the categorization scheme, including relevant work which
addresses single categories of the classification scheme without explicitly ad-
dressing object learning. The first entries directly address object learning,
and the following entries, starting with Schaaf (2004) and Gavalda (2000)
address aspects relevant to object learning. For example, Schaaf (2004) ad-
dresses unknown word detection and new words learning and Gavalda (2000)
addresses learning of semantic grammars.

As can be seen from the classification table, only few approaches address
multiple categories, most addresses only a single category of object learning.
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Authors/Publications Speech Vision Semantic

Roy (1999, 2003) X X X
Dusan and Flanagan (2003, 2002) X X X
Carbonell (1979) - - X
Azad et al. (2007) - X -
Lömker (2004) - X -
Kirstein et al. (2005); Wersing et al. (2006) - X -
Becher et al. (2006) - X X
Schaaf (2004) X - -
Gavalda (2000) - - X
Kaiser (2006) X - -
Choueiter et al. (2007) X - -
Scharenborg and Seneff (2005) X - -

Table 2.1: Work addressing object learning, and coverage of tasks

During the last few years, several approaches have been presented for learning
of unknown objects in the field of visual processing, e.g. Lömker (2004);
Kirstein et al. (2005); Wersing et al. (2006); Kirstein et al. (2008); Azad
et al. (2007). These works present approaches for visual feature extraction,
learning and recognition of objects, and allow the robot to recognize an object
again by vision after it has been learned. The presented approaches should
not be seen as fully integrated learning systems of a robot, i.e. they either do
not work as autonomous systems without a supervisor, who provides labels
via keyboard, or the system is able to process speech input but is restricted
to a fixed set of predefined categories. Such approaches rather fit into more
complex systems, as presented in this thesis and in following descriptions.
In this thesis we present experiments on object learning, which have been
conducted with the integration of the system presented in Azad et al. (2007)
visual object recognition and learning of visual features.

An integrated system for the robot BIRON, which is able to acquire new
information, is published in Wrede et al. (2006), presenting work which has
been conducted within the COGNIRON1 project. A later version of the sys-
tem is presented in Hanheide and Sagerer (2008). The system integrates
different behaviors and is able to switch between standard interaction and
learning mode. They also follow the approach of “learning by interacting”,
by abstracting from particular machine learning techniques and excepting
learning as a general and systemic challenge. The system’s ability to learn
covers interactive learning for objects and locations in an apartment within

1http://www.cogniron.org/
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the so-called “home-tour” scenario. Objects and the environment are repre-
sented in a so-called active memory, which integrates percepts from different
modalities. The active memory can be extended during runtime, and inte-
grates anchors obtained from visual processing with Learning of new objects
and locations is conducted with dialogs, during which labels are provided by
a human Spexard et al. (2007). Learning is restricted to a finite set of seman-
tic labels and a small speech recognition vocabulary, but it is combined with
flexible representation of visual features. To show that the system is accepted
by humans as a social actor, experiments have been conducted with naive
users in an apartment that has been permanently rented. Results show that a
given task of taking the robot around in the apartment (requesting the follow
behavior), teaching two rooms (using the location learning with autonomous
exploration), and showing two objects, could be completed by 22 out of 24
participants within 15 minutes. However, only about 33% of all tries to teach
a room and only about 42% to initiate a follow behavior were successful at
the first try. These numbers show that especially for naive users, robust and
flexible dialog strategies, including error treatment, exception handling, and
informative feedback, are crucial.

The “home-tour” scenario has also been adopted by Kruijff et al. (2007),
and in a similar version by the RoboCup@Home competition2 Nardi and et
al. (2007). Kruijff et al. (2007) describe their approach as human-augmented
mapping, which allows a robot to augment its map, which has been acquired
autonomously with a 3D laser scanner (SLAM), with ontological information
obtained through dialog. The approach extends previous work by introducing
a structured, non-flat ontology, which models locations and objects. Topp
et al. (2006) describe an experimental setup with a Wizard-of-Oz study of
the human-augmented mapping task. Their findings are that individual dif-
ferences in teaching an environment exist, and that the observed diversity
in strategies was quite large, e.g., when introducing the kitchen. Different
labels were given by different persons, such as “this is the coffee machine”
versus “this is the kitchen” – in one case describing important objects that
mark a location, in the other case describing the location itself. One of our
conclusions from these experiments is that labels obtained during such dialog
interactions need to be treated as indirect labels.

Wu and Nevatia (2007) presents an incremental object learning approach
using general shape based part detectors to reduce manual labeling. The sys-
tem uses a two-stage process with an oracle for unsupervised learning, which
is based on a combination of shape based part detectors learned by off-line
boosting. The oracle provides the basis for online learning. In this applica-

2www.robocupathome.org
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tion, the oracle is trained to have high precision to achieve good performance,
while detection rate can be low.

A different approach has been taken by Roy (1999); Roy and Pentland
(2002); Roy (2005), who combines speech processing and visual processing
in a visual grounding mechanism, as a computational model for early lexical
learning in infants, with minimal prior knowledge. The system was able to
observe words which describe shape and color of objects and grounding of
these words in perception. Perceptual input was provided by speech recog-
nition and visual perception from a video camera. In the learning phase,
simultaneous occurrences of those words and observations in video were used
to train the models, which allows to learn corresponding words and visual
observations even in unsegmented video. In contrast to other work, semantic
categories are not predefined, but are learned implicitly. Semantic structure
is shallow and syntax and grammar were not studied in this approach. The
system does not represent words as abstract symbols. Instead, words are
represented in terms of audio-visual associations. This allows the machine to
represent and use relations between words and their physical referents. An
important feature of the word learning system is that it is trained solely from
untranscribed microphone and camera input.

Later work in Roy (2003) presents experiments with the approach in
interactive robotics, and a small robot that can learn objects from a teacher
who describes objects in front of the robot. Also here, the robot starts with no
knowledge, and lexicon and language understanding are learned from scratch
from observations.

Also the approach of Steels and Kaplan (2001) analyzes very early stage
language acquisition, with social learning and grounded communication, for
the robot pet Aibo. Further work on grounded natural language communica-
tion includes event descriptions by Steels and Baillie (2003), in a system for
open-ended communication by autonomous robots about event descriptions
anchored in reality through the robot’s sensori-motor apparatus.

Shibata et al. (2007) presents an approach to also find corresponding ob-
jects and reference in speech. Here, object models are learned automatically
from TV cooking shows, given keywords for speech recognition. Their model
also captures the aspect that objects can change their shape over time, and
so different snapshots are extracted from different images in the video. In
a similar context, the work from Fritz et al. (2007) addresses cross-modal
learning of visual categories. Here, spatial reasoning is applied to associate
visual categories to different objects in one image, for which a description is
given by a human tutor.

One of the first approaches to language acquisition was published by
Gorin et al. (1991), who presented experiments for automated call routing
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based on text input. In this study associations were discovered between
words and meaningful machine actions. Mutual information was used as
a measure to represent the weights in the employed information-theoretic
networks. The extension of this work to spoken input was published later
by Gorin et al. (1994). In these experiments, the acquired linguistic units
(words) were associated with fixed semantics represented by a list of pre-
programmed machine actions, resulting in single-layer information-theoretic
networks. An extension of these experimental studies was later made to a
system for automatically routing telephone calls using the caller’s natural
spoken inquiry, Gorin et al. (1997).

Without considering semantics, a new object which is learned by a robot
is first of all simply a ‘thing’. However, for the robot to make use of an
object, or to discover completely new objects, the robot must be able to
‘understand’ the meaning of an object and ways to use the object. Such
meaning is modeled by semantics. The semantics of an object also deter-
mine how it is referenced in speech, and especially the type of grammatical
constructs. A robot who learns new objects thus should also be able to ac-
quire semantics associated to this object. In contrast to Roy (1999, 2003),
where semantics are learned implicitly, the following approaches use an ex-
plicit model of semantics. Learning of semantics, but not directly addressing
learning of objects, has already been studied outside the context of human-
robot interaction, for example in early work by Carbonell Carbonell (1979)
with the systems FOUL-UP and POLITICS. Both systems were created as
dialog systems for learning semantics of language.

Recent work for learning semantics also in dialog has been presented by
Dusan and Flanagan (2002, 2003) with the spoken dialog system ABILITY,
which is capable of learning new words and phrases during the interaction
with users. After learning, users could use these new words during their fu-
ture interactions with the system. They present an adaptive dialog system,
which can lean new words, phrases, sentences and their meaning. Possible in-
put modalities are speech, drawings, pointing gestures (pen), and video. The
speech understanding component consists in part of a semantic grammar,
and a semantic database, which contains assignments of objects to semantic
attributes from a shallow ontological structure. For recognition of new words,
first, the speech recognition hypothesis must be rejected by the speech un-
derstanding component, then, a second recognition pass is computed with a
larger grammar. With this system it is possible to extend the understanding
component, and learn new words and their association to simple predefined
semantic meanings. Besides objects, also actions can be learned, e.g., by
saying “remove is the same as delete”, which results in

With application of interactive learning to the scenario of a humanoid
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robot in a household environment, it can be necessary to acquire rich semantic
information for object models. Acquisition of rich semantic information is
described in a robot training center by Becher et al. (2006); Kasper et al.
(2007). The approach presents a fully integrated system for teaching a robot
in an interactive manner with supervised data annotation in a training center.
Among various other aspects of teaching the robot, an ontology of objects
can be developed interactively. The ontology describes an object hierarchy;
properties, attributes and actions can be associated with an object. Sensor
feedback is used to detect selected features automatically, these can then be
confirmed by the user. In contrast to the focus of this thesis, here, training
requires a system expert, who conducts training in a training center, which
is not available in the household environment during runtime of the robot.
The approach rather intends to create high-quality initial knowledge models.

The approach presented in this work is rather intended to easily acquire
information about a previously unknown object with comparable short di-
alogs and interaction with ’end-users’ instead of system developers. A deci-
sion for training center or dialog-based learning does not need to be exclusive.
It seems reasonable to start with initial training as described by Becher et al.
(2006); Kasper et al. (2007) and extend the ontology during runtime with
dialog-based learning methods. In addition, while most of the approaches
presented above address only some aspects of object learning, our approach
combines the aspects presented above within one system, namely learning
new words, semantic concepts and properties, and integrates with visual ob-
ject recognition for grounding of the objects in the real world.

2.4.2 Acquiring Personal Information

The main difference of acquisition of personal information to previously in-
troduced approaches, is that usually these dialogs are conducted with persons
about themselves. Some learning can only be conducted if the robots talks
to the target person directly, e.g. for obtaining visual data, and for obtaining
social information, where the person’s opinion is required.

In contrast to object learning, grounding of persons can be conducted with
models that integrate more prior knowledge. For example, state-of-the-art
algorithms can detect faces and their poses in cluttered backgrounds (Viola
and Jones, 2001; Gu et al., 2001; Schneiderman and Kanade, 2000). Ground-
ing algorithms have been successful in detecting which person is speaking
when, by multimodal integration (Lang et al., 2003), and later with the fo-
cus on robust tracking algorithms (Nickel and Stiefelhagen, 2007). These
perceptual technologies provide basic support for the integration of userID
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in a dialog system, which needs to distinguish between speakers or localize
the speaker in the environment.

Modeling user ID in a dialog system in the past has not necessarily been
conducted with the additional challenge of grounding. Earlier work inte-
grates for example face identification, voice identification, or pure spoken
person registration in static settings and fixed environments. Later it was
shown that the time of recording images has significant impact on face ID
classification rate. Images of a single person, recorded during a single session,
are significantly easier to classify than images recorded a few hours later, or
even images recorded months later.

A faceID system that deals with real-life problem has been demonstrated
in Sakaue et al. (2006), where experiments are presented that have been con-
ducted during 15 days in an apartment rented specifically for this purpose.
During that time, the apartment was inhabited by a 3 person family, and five
robots were placed in the apartment to identify the person at different loca-
tions during any time of the day. Another real world challenge is presented in
Ekenel and Stiefelhagen (2007), which describes a publicly available database,
with over 100 persons recorded during February 2005 and from August to
December 2005.

A dialog-based multimodal user registration system is described in Huang
et al. (2000). Goal of the system is to register a user in a multimodal room
during dialog-controlled interactions, with face identification, speech input,
and information fusion in a Bayesian network. After registration, users can
update their profile such as email address and phone number.

A humanoid robot with a person memory is the robot REEM-A and
REEM B. Both robots have been demonstrated in videos3,4 distributed on
internet platforms. The demonstrated capability shows capabilities of open
set face identification. That means a person is identified if stored in the
database. If no models exist for the person, the class unknown should be
detected. Its learning mechanism is quite simple. If faceID reports the un-
known class, a name can be said, which is then associated with the newly
collected data.

Kim et al. (2006) describes a face identification method for a humanoid
robot that uses a combination strategy of several features. Their architecture
also supports interactive enrollment of users. The detection of the unknown
class is based on visual features only, i.e. no dialog strategy is used to identify
persons or train new persons.

3http://www.youtube.com/watch?v=B jllEvrOZQ
4http://www.youtube.com/watch?v=Rb7oU8J-ZV0
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2.4.3 Names and New Words Learning

Another important aspect of knowledge acquisition for a humanoid robot is to
learn the word itself, i.e. to deal with unknown words in speech recognition,
including detection and learning of new words. This is even a crucial aspect, if
object learning is extended to an unrestricted set of objects, which we assume
to be a criterion of real-world environments. Not all words in an open domain
can be covered by a speech recognizer beforehand. For example, the number
of all person names is too large for a standard speech recognizer to contain
all names in its vocabulary. The problem of unknown words is also referred
to as out-of-vocabulary (OOV) problem and it exists in several domains. So
far, different approaches exist that address the OOV problem and the dealing
with large vocabulary sizes, e.g. Young (1993); Slobada and Waibel (1996);
Hetherington (1995); Schaaf (2001); Park and Glass (2006).

The problem of a large vocabulary is that recognition with a large vocab-
ulary is basically slower than recognition with a small vocabulary. Especially,
a problem exists in an interactive system if recognition is significantly slower
than real-time. In addition, recognition accuracy decreases, if the vocabulary
contains too many words. This problem is described in detail, for example,
in Schaaf (2004). Thus, a tradeoff has to be found between a small, efficient
vocabulary, with coverage of the most frequent words, and a large vocabulary
which contains additional words.

Promising approaches, to efficiently deal with a large vocabulary, are
dynamic vocabulary approaches. They basically follow the idea of name
recognition on moderately large vocabularies, which provide good recogni-
tion accuracy, and to use a larger vocabulary when an OOV word occurs.
Approaches that allow dynamic adaptation of the vocabulary are presented
in Chung et al. Chung et al. (2004); Chung (2001), who describe a sys-
tem with a dynamic vocabulary that can be updated according to the given
context. The approach from Scharenborg and Seneff (2005) runs multiple
recognition passes on speech input with a phone-based OOV word-model in
the first step, which is used to constrain the vocabulary in the second step
that best matches the resulting phone graph. Choueiter et al. (2007) present
experiments with a subword modeling approach in a multi stage recognizer,
to obtain spelling and pronunciation of new words. Their experiments show
improvements over a large vocabulary isolated word recognizer. Kaiser (2006)
present an approach for word acquisition in meetings by combining speech
recognition and handwriting from redundant multimodal data, captured by
microphones and whiteboard drawing.

Besides detection of unknown words special attention is required for ob-
taining a phonetic representation of a name which can be used to understand
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the user’s name as well as to allow the system to pronounce the name. Chung
and Seneff (2002) combine phoneme recognition of spoken input to obtain
phonetic representation of names with telephone keypad input to obtain tex-
tual representation of names. Hild et al. combine spelling recognition (Hild
and Waibel, 1995) with spoken names (Meier and Hild, 1997) for fusion of
spoken and spelled names on large vocabularies.

Work presented in this thesis integrates the approach described in Schaaf
(2001, 2004), which uses so-called Head-Tail models for acoustic modeling
of unknown words. It has the advantage that it can be integrated with our
speech recognition grammar, which also gives information about a possible
semantic meaning of the OOV, based on grammatical construction of the
utterance. It allows unknown word detection with a restricted vocabulary in
a first step for efficient decoding in real-time, so that a second recognition can
be performed in a second step with a broader vocabulary, only on utterances
where an unknown word has been detected.

2.4.4 Active Learning and Data Cleansing

Another important aspect of system that can learn over time is to be able
to correct information that has been acquired at some time, for which in
part unsupervised learning mechanisms are relevant to detect problems or
contradictory information. A field that slightly relates to this idea is an
area called ‘active learning’. The idea of active learning is to efficiently
select samples, which are annotated by a human, for training of a classifier.
Efficiency means to reduce the amount of workload of the human as much
as possible. The difference to the dialog-based learning approach is that in
active learning, the human can in fact ‘annotate’ samples, and this kind of
notion does not exist in the dialog-based learning approach, as the ‘samples’
exist only internally and cannot be observed by the human. However, a series
of techniques from active learning are also applicable to the unsupervised
learning approach for problem detection in our approach. The idea which
can be formulated as “samples in the same cluster are likely to have the
same label” is also followed by Chapelle et al. (2002). Data therefore is pre-
clustered and successively the best samples are selected. This approach will
be adopted in this work, namely by pre-clustering data, and successively
selecting the next label which needs clarification. Obviously the selection
algorithm and the dialog interactions are conducted differently.

A second related field is work on deduplication in databases and data
cleansing Maletic and Marcus (2000). The problems can be formulated in a
similar fashion, while deduplication in databases targets at detecting double
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occurrences of entities that have been specified by different entries, e.g. due to
typing errors, different formats, etc., this problem also exists in dialog-based
learning, as objects can be learned twice with different spellings. Differences
are in the treatment of inconsistencies, e.g. one problem in dialog-based
learning are different persons that are stored with the same label, and in the
kind of features that are used, as deduplication in databases is generally based
on textual entries. However, similar algorithms can be applied. Maletic and
Marcus (2000) describes data cleansing as an approach for error resolution
in databases and suggests the following three-stage model:

• define and determine error types

• search and identify error instances

• correct the uncovered errors

All three steps apply also to our problem, though different algorithms might
be applied. When looking more closely at methods applied to step 2, i.e.
searching and identifying error instances, one can find out that among other
approaches, such as pattern-based and association rules, in deed similar
algorithms are applied here, again including clustering and statistical ap-
proaches (e.g. Yang et al. (1999)). The approach presented here cannot use
either approach, active learning or deduplication directly without modifica-
tion. Rather, we have adopted the same ideas and process model and have
applied problem-adequate metrics for clustering, problem detection and res-
olution. Especially the steps of detecting problems and resolve errors require
new methods than what we have seen so far, as the error resolution dialogs
does not follow the idea of annotation of samples, but rather information
must be presented in a way to effectively resolve these errors in dialog.

2.4.5 Conclusion

Several approaches for interactive learning have been compared in this chap-
ter. The different approaches can be distinguished by the main focus of each
approach. What is missing so far, is learning over a longer period of time,
including mechanisms to correct stored information or knowledge. Some
dialog approaches apply only simple predefined dialog strategies or are re-
stricted to labels from a limited vocabulary. One contribution of this thesis
therefore is optimization of dialog strategies for such a learning task. Most
approaches have different main focus, and only few integrated approaches
exist. Therefore, this thesis presents a new integrated approach, with a mul-
timodal knowledge base and integration in a dialog system, which can learn
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during runtime and runs completely autonomous over longer period of time
in social setting. Each aspect of the knowledge base builds on approaches
presented so far, e.g., for modeling of semantics, or learning of new words
in speech recognition. In contrast to work which focuses on learning from
scratch, e.g. Gorniak and Roy (2005), work presented in this thesis can be
understood as an approach which extends existing knowledge structures dur-
ing runtime. For example, the system basically uses predefined knowledge
about how dialogs are conducted. To give a second example, in the case
of object learning, the robot uses an existing ontology of objects which is
extended during runtime. Such a knowledge structure is typically defined
manually or created during design time of the robot in a training center, as
described by Becher et al. (2006).
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Chapter 3

Dialog System Architecture and Speech

Processing

This chapter first introduces the architecture of the dialog toolkit TAPAS
which has been designed specifically for the task of multimodal human-robot
interaction and learning. It is the foundation for the remainder of this the-
sis, and experiments presented in the following have been conducted with
this toolkit. Following the description of the architecture, this chapter de-
scribes how speech is processed within this architecture with a tight coupling
scheme, which allows contextual control of speech recognition and contextual
interpretation.

The following chapters seamlessly continue the description of the dialog
system. Further aspects of the system are the integration of a multimodal
user ID model in the dialog architecture (chapter 4), optimization of dia-
log strategies such as reinforcement learning (chapter 5) for creating robust
error-tolerant dialog strategies, and a modular dialog architecture (chapter
6), which allows mixing handcrafted dialog strategies and dialog strategies
trained by reinforcement learning, e.g. as used in the receptionist robot
(chapter 8).

The dialog toolkit TAPAS has been used to develop various dialog systems
including multimodal multimedia access (Metze et al., 2005; Gieselmann and
Holzapfel, 2005; Holzapfel, 2005) within the EU-project FAME, and several
human-robot interaction scenarios (Stiefelhagen et al., 2007) within the Col-
laborative Research Center SFB588 on humanoid robots, such as a barkeeper
robot (Prommer et al., 2006), a receptionist robot (Holzapfel and Waibel,
2007), dialogs for basic robot control tasks and robot services (Holzapfel,
2008; Fügen et al., 2006). In Gieselmann (2007) the dialog manager was
used for studying and developing error-recovery strategies in multimodal in-
teraction with a humanoid robot and through a web interface.
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Figure 3.1: TAPAS dialog system architecture with tight coupling and mul-
timodal fusion

3.1 System Architecture

The presented scenario of human-robot interaction and learning necessitates
perceptual technologies for different modalities and their integration in the
dialog system. Enabling such kind of interaction requires to overcome vari-
ous challenges, including scientific problems and engineering tasks. A dialog
system to enable such kind of interaction must be implemented efficiently so
that the system can react in real time, must be robust against recognition
errors, must be flexible to adapt to changing environments, and finally it
must be scalable and extensible. We address these challenges and present
results on different levels of the system hierarchy, including tight coupling of
recognition components as presented in this chapter.

3.1.1 System Overview

Figure 3.1 shows this architecture. It highlights the major components and
the data-flow between these components. The diagram is based on figure
1.2, which has already been shown in the introduction, and which highlights
the knowledge sources. The system shows an integrated architecture and an
extended tight coupling scheme with multimodal integration. The general
components on the perceptual side of a dialog system are the recognition
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and understanding components, multimodal fusion, and interpretation. The
output of the contextual interpretation component is fed into the discourse
model, which delivers state information to the dialog strategy. The dialog
strategy decides which actions to take. These actions generate sytem output
with text generation and text-to-speech. The dialog actions can virtually ex-
ecute any kind of functions to communicate with other system components,
for example to update the database or trigger robot actions. But almost every
dialog action also generates text-to-speech output and updates the expecta-
tions model. The dialog manager is the central decision-making component,
controls the strategy and directs all system actions including learning tasks.

Tight coupling is achieved by the generic expectaions model for speech
processing, by multimodal integration and by sharing of knowledge sources.
A generic contextual expectations model supports understanding of words
from a very large vocabulary and learning of new terms in speech recognition,
facilitates contextual weighting of grammar rules, discourse update, resolu-
tion of elliptical utterances, reference resolution and multimodal fusion, and
has access to knowledge sources of different components. The expectations
model for speech recognition has already been published in Holzapfel and
Waibel (2006) and is presented in the following section with slight modifica-
tions to the original publication. Multimodal integration includes multimodal
fusion of speech and 3D pointing gestures, as published in Holzapfel et al.
(2004), and multimodal fusion on different system levels for person identi-
fication with a user model, as described in chapter 4. The dialog system
furthermore is coupled loosely with visual object recognition (chapter 7) and
the robot control architecture for the humanoid robot Armar III.

The traditional dialog architecture is created by sequential processing of
speech recognition, natural language understanding and dialog management.
However, recent approaches show that interconnection of these components
improves system performance in several ways. On the recognition side, valu-
able information is given by the dialog state that can be used to improve
speech recognition in dialog context. Sharing linguistic knowledge sources,
i.e. recognition and understanding grammars, improves processing speed and
robustness, less knowledge sources need to be maintained. Both approaches
are compared in figure 3.2 In previous experiments (Fügen et al. (2004)) we
have shown improvements in recognition accuracy over loose coupling espe-
cially for contextual utterances and distant speech recognition, which con-
firms previous work with contextual weighting schemes such as Stent et al.
(1999), and Lemon (2004), who show improvements by using subgrammars.
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Figure 3.2: Dialog systems architecture with comparison of loose and tight
coupling

3.1.2 Speech Processing with Multilingual Grammars

The interface between dialog manager and speech recognizer is by text and
semantic information in the one way, and context-dependent adaptation of
the speech recognizer in the other way.

Generally, a speech recognizer produces text, which is bound to its lan-
guage model. In up-to-date speech recognition systems the language model
is either an n-gram model, a context free grammar, or recently a hybrid
model. The advantage of the n-gram model is its flexibility to recognize any
kind of input, but a requires large amounts of training data. The output of
an n-gram model is text, and an additional stage is required to convert the
text to semantics with a natural language understanding compontent. The
advantage of the context free grammar (CFG) is that it requires no or only
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little training data as it is a handcrafted model, and that the ouput of the
context free grammar is closer to a semantics, which can be encoded in the
parse tree. A drawback of context free grammars is that the model can only
understand utterances that are covered by the grammar. Both models are
used in current dialog systems, n-gram language models often are preferred
where unrestricted speech is necessary or when large amounts of in-domain
training data are available. Context free grammars are used in restricted
scenarios or where an initial model has to be created with no or only little
in-domain data.

Most dialog systems implemented with TAPAS use context free gram-
mars, and some applications exist which use n-gram models, where recog-
nition of unrestricted speech input is necessary, for example in chapter 9.
The context free grammars used in our system already encode semantic in-
formation and are therefore called semantic context free grammars (Gavalda
(2000)). The grammars are shared by the speech recognizer and the dia-
log system. In fact, the dialog manager generates runtime grammar models,
which are loaded by the speech recognizer, so that both components share the
same models. As described in detail in section 6.3.2, the semantic grammars
define rules for converting the recognition input to semantics. Furthermore,
since the models are shared, the dialog system can update the models during
runtime, e.g. by adding new words or changing rule probabilities depending
on the context. Also the speech recognizer directly outputs a parse-tree, so
that no additional and possibly ambiguous parsing is necessary. The dia-
log manager’s grammars are syntactically specified in JSGF. The generated
grammars can be adapted to the speech recognizer that is being used, and
include SOUP, PHOENIX, JSGF, and Microsoft SAPI grammar formats.

The design of the complete dialog manager is language independent.
When implementing a dialog system for a specific language or porting a
dialog application to a new language, recognition grammars and speech gen-
eration grammars need to be implemented as language specific parts. The
different recognition grammars for language-specific recognition modules, as
shown in figure 3.1, are generated from a joint multilingual grammar resource
using the environment model and database information and will be described
further in chapter 6 in the context of knowledge-acquisition. By using the
language independent design of semantic structures, it is possible to work
with a generic dialog context and expectations model on a semantic level.
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3.1.3 Speech Recognition

For speech recognition, we use the Janus Recognition Toolkit (JRTk) pre-
sented in Finke et al. (1997) with the Ibis single pass-decoder by Soltau et al.
(2001). In combination with the context free grammars generated by the di-
alog manager, the Ibis decoder directly uses these grammars as the language
model for speech recognition. Additional speed up for the interface between
Janus and Tapas is achieved by sending n-best lists of parse-trees instead
of text hypotheses, so that the language understanding component can skip
the parsing step and directly use the result of the speech recognizer. This is
furthermore of advantage, as in case of ambiguous parses, the parse result of
the speech recognizer depends on contextual weighting from the dialog.

For detection of unknown words (OOVs), the speech recognizer provides
head-tail models to detect unknown words on the phonetic level, which have
been introduced by Schaaf (2004). We use these unknown-word models
within a dynamic vocabulary recognition approach for detection of unknown
words (OOVs), adding of new words during runtime, and multi-stage decod-
ing. With multi-stage decoding the recognizer can run with an efficiently
small name vocabulary and if necessary, re-decode speech input with a larger
but slower vocabulary for less frequent names.

3.2 Context Modeling and Tight Coupling with Speech
Recognition

This section presents a generic expectations model for contextual weighting
of speech recognition, which is also used for interpretation of contextual ut-
terances (e.g. resolution of elliptical expressions). The model is designed as
a domain- and language-independent approach. It is integrated in the Tapas
architecture as a generic construct and is applied in all applications in this
thesis. The generic expectations model is part of the tight-coupling scheme,
and it can be shown that the contextual model improves recognition accu-
racy. Part of the work presented this section have already been published in
Holzapfel and Waibel (2006). In contrast to related work, the approach pre-
sented here is generic in a way that for a new system no training is required
to enable contextual weighting. Rather, grammar weights are determined by
correlations of expected information types with grammar rules using ontolog-
ical information. Experiments in a robot-barkeeper scenario as described in
the following with generic contextual weighting show improvements of 33%
(relative) on close-speech and 21% (relative) on distant-speech recordings.
Recognition rates have been measured on semantic concepts at 5.2% error
rate for close-speech and 15.7% error rate for distant-speech.
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3.2.1 Foundations of the Expectations Model

Existing work already makes use of contextual control of the speech recog-
nizer. For example the information state update (ISU) dialog manager Lemon
(2004) uses grammar-switching, based on the assumption that dialogs consist
of adjacency pairs where that answers follow questions, commands are ac-
knowledged, etc. In grammar-switching, the sub-grammars are determined
by the previous dialog action of the system. Most researchers working on
contextual control of a speech recognizer by means of a dialog manager use
different stages and language models: Xu and Rudnicky (2000a); Fosler-
Lusier and Kuo (2001) use a general n-gram language model which is used
at the beginning and in underspecified situations and a specialized language
model which can be an n-gram language model or a grammar-based one and is
used in specific situations based on the preceding system prompt. In Solsona
et al. (2002), the state-independent n-gram language model is also combined
with a state-dependent finite state grammar by comparing the acoustic con-
fidence scores. In this way, perplexity and word error rates can be reduced
significantly.

As in Lemon (2004), our approach makes use of the assumption of adja-
cency pairs, and it extends the context switching model with more detailed
utterance categorization, and the type of requested information from onto-
logical information. The approach can be applied to any semantic grammar
and in contrast to generating different sub-grammars, only a single grammar
is used where the probability of different grammar rules is adapted. Speech
act theory has become common to model and categorize specific actions in
dialog systems (Traum (1999)). Beyond speech acts, Traum and Hinkel-
man (1992) describe conversation acts that cover additional actions in dialog
such as turn taking and grounding. They define four speech act categories,
‘turn-taking’, ‘grounding’, ‘core speech acts’, and ‘argumentation’. Different
annotation and labeling schemes have been developed for speech acts like
DAMSL1, or SWBD-DAMSL. Our dialog system uses a specific speech act
called ‘information request’ that models almost any action or utterance that
expects an answer from the conversation partner. For our analysis a more
detailed classification of information requests is required, e.g. as used in
CLARITY Levin et al. (1998b). The CLARITY annotation scheme is based
on DAMSL and SWBD-DAMSL but provides more details especially for in-
formation requests. The categories for system utterances are similar to those
used in CLARITY. They are described later in this section.

1http://www.cs.rochester.edu/research/cisd/resources/damsl/
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3.2.2 Speech Acts and Utterance Classification

A dialog move is selected by the dialog strategy based on the purpose that it
serves, for example to request new information, generate clarification ques-
tions, give information, or generate confirmations. Each purpose leads to a
different response by the user, which can be predicted if each system utter-
ance is associated to an utterance class, and the classes are well chosen. The
classes that we have analyzed are shown in figure 3.3.

The speech acts shown in figure 3.3 all inherit from a general node ‘info-
request’. The ‘info-request’ is the most general element to describe a question
(or any other kind of action) that expects an answer relating to this question.
The top level node corresponds to the speech act category describing an in-
formation request in DAMSL. However, for our purposes the DAMSL tagging
scheme is not detailed enough, so we extended the scheme to the following
speech acts. ‘qst yesno’ expects ‘yes’ or ‘no’ as answer; ‘qst wh’ is a cate-
gory for all ‘wh’-questions such as who, what, when, where, and questions
asking for numbers, which represent the subcategories of ‘qst wh’; ‘qst or’ is
a question, where the user can select one of the presented alternatives, e.g.
“do you want x or y?”; ‘qst open’ is an open question where the user is free
to answer, and no explicit expectation can be generated based on the speech
act. Here, only the type of requested information determines an expectations
context. The last type ‘qst open’ cannot restrict the expectations, whereas
all others can. Core and Allen (1997) use a category that combines different
actions that influence the addressee’s future action. This category contains
‘open option’ and ‘directive’. Subtypes of ‘directive’ are ‘info-request’ and
‘action-directive’. Our approach goes in-line with this description and refines
the information request category to do more detailed analyses.����������	
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Figure 3.3: Utterance classification with inheritance model for subtypes of
the ‘question’ speech act category used to generate information requests
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3.2.3 Target Types and Contextual Weighting

The system’s utterance class already provides relevant information to predict
the next user utterance. Additional information from the dialog context, the
type of information requested and other information to achieve the active
dialog goal can further specify the expectations more precisely. The the
order of importance of expected information is (i) direct response to question
(ii) indirect response to question that implicitly answers the question (iii)
response to question in combination with repeating information (iv) repairing
previously given information (v) giving information for one of the active
discourse segments.

We call the requested type of information a target. A target is a piece of
information that is described by its semantic type, a reference to the dialog
goal that defines the frame for the target and the TFS path to the desired
information within the specified goal. As dialog goals, as well as the discourse
representation, are modeled with typed feature structures, their structures
define the context for the targeted information. Information required by the
dialog goal, which is not given in discourse is expected to be delivered by the
user. Information that is already given in discourse is either expected to be
repeated, to be confirmed or to be repaired.

When asking for missing information, we expect to be able to extract this
from the user’s answer. The answer can be elliptic, giving directly the de-
sired information, such as ‘two’ in reply to asking ‘how many persons?’. Or,
the answer can be embedded within a complete sentence. The construction
algorithm for generating expectations based on the target information first
picks the target type and then walking up in the TFS path, picks all par-
ents recursively. This results in a list of TFS nodes describing the targeted
information within more or less context of the dialog goal.

A small example illustrates the algorithm. Figure 3.4 shows the required
information for a dialog goal. When executed, it instructs the robot to
serve a cup of coffee, with the options of adding milk or sugar. The path
‘OBJ |MILK’ references the type ‘att milk’ with its sub-feature. To get
information about the type ‘att milk’, the system generates an information
request. The target is defined by the dialog goal and the path ‘OBJ |MILK’
that references the type ‘att milk’. The expected response can be ‘yes’ or
‘no’, which both directly respond to the given question. The answer ‘yes’ is
converted to the following TFS and is then unified with the discourse repre-
sentation with the prefix path ‘OBJ |MILK’.

{att_milk BOOL [base:boolean]}

Note that the expectations model also covers formulations like ‘with milk
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please’ or ‘I would like my coffee with milk and sugar’. The answer ‘with
milk’ is first converted to the above TFS and is then unified with the discourse
with the prefix path ‘OBJ |MILK’. The same applies to the response ‘with
milk and sugar’ which describes a more complex construct than ‘with milk’,
but matches the expected information as well.

[act_bring

OBJ [obj_coffee

MILK [ att_milk

BOOL [base:boolean] ]

SUGAR [ att_sugar

BOOL [base:boolean] ]

]

]

Figure 3.4: A TFS describing the precondition of the ‘make-coffee’ goal.

When a list of possible TFS nodes has been determined, the next step
ist to select grammar rules that can generate the desired semantic repre-
sentation from spoken input. The algorithm to find these grammar rules is
constructive and uses induction to search all conversions of grammar nodes
to a given semantic representation, where the semantic type of the grammar
node matches the desired semantic type.

3.2.4 Experimental Results

We compared the speech recognition results of a system which uses the con-
text dependent weighting of rules to one without it, on human-robot dialogs
in the domain of a household robot. We evaluated the approach on two dif-
ferent interaction sets. Both sets were recorded with close talk and distant
speech microphones.

Set 1 consists of requests for actions by the user (User Commands), re-
sponses by the system including clarification requests or queries for missing
information where necessary, and user replies (Response Set). It contains
eight speakers, all interaction are in English.

Set 2 was recorded in a different setup with different users in multimodal
human-robot interaction, where the robot plays the part of a bartender to
serve different objects from the table in front of him. The user responded to
questions from the robot asking for object properties Prommer et al. (2006).
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set condition baseline improvement
WER SER WER SER

Responses close 29.11% 30.00% 8.87% 8.89%
Overall close 22.74% 31.89% 3.56% 3.88%
Responses distant 36.77% 39.60% 16.45% 11.86%
Overall distant 31.41% 45.33% 6.66% 5.15%

Table 3.1: Set 1: Close and distant talking word and sentence error rates
together with their relative improvements

The full set contains 314 utterances for English and 171 utterances for Ger-
man, each including some segmentation errors (e.g. utterance was recognized
though nothing was said) and out-of-domain utterances that are not covered
by the system. The constrained set excludes out-of-domain utterances and
segmentation errors, which results in a set size of 267 utterances for English
and 152 utterances for German.

Three categories of weights have been used: unexpected, normal and ex-
pected. The grammar weights for these categories have already been trained
in previous work Fügen et al. (2004).

Evaluation details on Set 1 with handcrafted weighting have already been
presented in Fügen et al. (2004), in our experiment the selected rules offer a
marginally broader selection of rules that however, did not have any effect in
word-error rate, presumably because the hand-crafted selection was already
very good. Table 3.1 shows the baseline (no rule weighting) and the relative
improvements achieved on Set 1, measured with word error rate (WER) and
sentence error rate (SER). The evaluation on the Set 2 is shown in table 3.2,
where the figures for German (close-talk) and English (close-talk and distant-
speech) are given. Here, we show the numbers for word-error rate (WER)
and semantic concept error rate (CER) for both close-talk and distant-speech
on the full set (’Overall’) and a constrained set (’In Domain’). The relative
improvements for the numbers are computed in table 3.3. We have chosen
the concept error rate (CER) since it is useful to measure the effects on a
dialog system. It is more informative than word error rate and also ignores
semantically irrelevant errors. It is computed similar to the common word
error rate by simply comparing IDs of semantic concepts. The results for the
German baseline (without rule weighting) are already very good, which we
attribute to the recording conditions with users that are familiar with ASR
systems, which is not the case for the English recordings. As only few errors
remain in the German set which are not due to segmentation errors or noises,
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set condition baseline improved
WER CER WER CER

In Domain close - English 12.8% 7.8% 10.1% 5.2%
Overall close - English 28.3% 15.9% 26.2% 13.7%
In Domain distant - English 32.1% 19.9% 29.2% 15.7%
Overall distant - English 41.9% 26.4% 39.7% 21.7%
In Domain close - German 9.8% 4.6% 9.1% 3.9%
Overall close - German 21.3% 13.1% 20.9% 12.0%

Table 3.2: Set 2: all utterances and in domain utterances (parsable input)
for close and distance talking conditions for English and close talk for Ger-
man. Evaluated on word error rates (WER) and semantic concept error rates
(CER).

set condition impr. impr. rel.impr. rel.impr.
WER CER WER CER

In Domain close - English 2.7% 2.6% 21.1% 33.3%
Overall close - English 2.1% 2.2% 7.4% 13.8%
In Domain distant - English 2.9% 4.2% 9.0% 21.1%
Overall distant - English 2.2% 4.7% 5.3% 17.8%
In Domain close - German 0.7% 0.7% 7.1% 15.2%
Overall close - German 0.4% 1.1% 1.9% 8.4%

Table 3.3: Absolute and relative improvements on Set 2

the improvements are smaller than for the English system. It is interesting to
see that the improvements for the concept-error rate, which is more important
for the dialog system are more significant than the improvement for the word-
error rate.

As the general approach is language independent and operates on a se-
mantic level, uses speech act theory and ontological information, it can be
used in multilingual applications of TAPAS with multilingual or multiple
monolingual speech recognizers, which use different language models, which
is according to Schultz et al. (2003) a typical setting for multilingual speech
recognition. In the experimented multilingual settings, the rule set is the
same for the different languages. Language-specific information are auto-
matically computed by contextual weighting of gammar nodes.

The experimental data set reflects aspects of a typical dialog-based learn-
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ing scenario, which regularly requires confirmation questions, which expect
confirmation or rejection by the user. At the same time the system also needs
to recognize speech input that is not expected by the system, e.g. when the
user reacts with more complex utterances.

3.3 Conclusion

This chapter has presented an overview of how the approaches introduced
in this thesis fit into the dialog system architecture. The chapter also gave
an overview of the interconnection of the dialog system components and pre-
sented experiments for an expectations model with tight coupling of speech
recognition and dialog manager. The results show that the generic approach
for contextual control of the language model improves speech recognition
and especially semantic understanding rates. In a learning system this is an
important achievement, as learning of new words is a hard task. By contex-
tual weighting and by restricting the vocabulary, confirmations by the user
can be recognized with high confidence and on the other hand understand-
ing new words from a large vocabulary can be accomplished. As grammars
are shared by dialog manager and speech recognizer, this model provides a
basis for learning of new words during runtime and for dynamic vocabulary
switching in dialog context. The general approach is language independent,
as it operates on a semantic level, uses speech act theory and ontological
information.
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Chapter 4

Multimodal Person Identification in

Dialog

4.1 Overview

This chapter presents a multimodal user identification model which keeps
track of the user ID during a dialog session, including multi-layer informa-
tion fusion of different modalities and integration of dialog state features.
The approach extends existing work with an integrated method for iden-
tifying and learning persons including unknown person identification with
multi-layer information fusion. As such, the approach extends existing work
with an integrated method for identifying known and unknown persons in
dialog. In this chapter, the following problems are addressed: to achieve
better recognition rates than e.g. single image identification during natural
interaction, to deal with unknown persons for new person learning, and to
provide an estimation of classification reliability for better dialog decisions.
The challenges are addressed by multimodal fusion of recognition results, fu-
sion over time, confidence estimation, integration of dialog state information,
and open set person identification. As the user ID model keeps track of the
user ID in a natural interaction, the method is clearly distinguished from
interactions like “please look directly into camera while I’m taking a picture
of you”.

For the task of identification of a person, the literature distinguishes closed
set identification, where the person to be identified belongs to a set of known
persons for which training data exists, and open set identification, where the
person to be identified is not always represented in the training data. A hu-
manoid robot in a real world environment needs to deal with both, known and
unknown persons. Identifying unknown persons is a prerequisite for learning
persons. This model therefore provides the basis for learning persons, which
includes identifying known and unknown persons, automatically collecting
training data, adding the user to the set of known persons and updating
the classification models. To achieve this learning functionality, appropriate
identification methods must be applied, which are presented in this chapter.

Figure 4.1 gives an overview over the components integrated in the ap-
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Figure 4.1: Components involved in multimodal user identification

proach for person identification in a multimodal user model. The components
on the speech/video layer are not part of this thesis and have kindly been
provided by colleagues. Each component is introduced briefly in the follow-
ing section, and integration of speech recognition has already been described
in detail. The separation of the used components and work conducted for
this thesis is also shown in figure 4.2, which is also presented in more detail
in the next section.

The user ID model keeps track of the person’s ID to represent the per-
son interacting with the robot, and provides ID information for the dialog
manager. As learning of personal data requires high reliability in the user
model, the system’s confidence in its hypotheses can be increased by acquir-
ing additional information from the user, e.g. by initiated an identification
dialog, and let the user confirm the system’s assumption. During the course
of this work, we have designed several dialog strategies to implement this
module’s function, some of which are described in the following chapter(s).
The scenario also requires information fusion on several levels. For exam-
ple, information to identify a person during a dialog session is provided from
speech input, from dialog features (e.g. confirmations), context, face ID and
voice ID. A special consideration is that identification is conducted as an
‘online’ algorithm. ‘Online’ means that classification is performed during
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runtime. For example, as face identification can benefit from the observation
of multiple images, we distinguish between single-image faceID and sequence
faceID, the latter of which is computed from a sequence of images that have
been recorded during the interaction up to the time of classification.

Evaluation of the approach for person identification in dialog with real
data shows high recognition rates in both, closed and open set identifica-
tion, and supports the hypothesis that the approach is suitable for the task
of learning and identifying persons. To show effectiveness of the approach,
different experiments are presented to evaluate the parts in isolation, and dif-
ferent dialog strategies are evaluated to optimize overall identification rate in
dialog. A key aspect of user identification is the use of confidence measures,
which are used in fusion of multimodal ID hypotheses, and also to compute a
correct-classification measure that allows dynamic weighting of classification
results in a belief network. The belief network computes a posterior proba-
bility for each person, including the ‘unknown’ model, which is then used as
a belief state in the dialog system.

This chapter is based on a series of already published articles, with the
initial system design of the author in Holzapfel et al. (2007), and subsequent
experiments for confidence-based fusion in Könn et al. (2007) and Grosse
et al. (2008), and information fusion on the dialog level in Holzapfel and
Waibel (2008b). It should be noted that the latter three publications in-
clude results from three Studienarbeiten at the Universität Karlsruhe (TH)
by Stephan Könn, Philipp Große, and Philipp Hüthwohl, supervised of the
author of this thesis. Section 4.2.1, i.e. description of the faceID component,
has been taken from Holzapfel et al. (2007), and has been written by Hazim
Kemal Ekenel. Section 4.2.3 is taken from Grosse et al. (2008) with minor
modifications, and sections 4.4 and 4.5 are taken from Holzapfel and Waibel
(2008b) with minor modifications.

4.2 Confidence-Based Multimodal User ID

As has already been motivated, confidence measures are an important aspect
of integrating faceID in the dialog. This section presents the approach for
multimodal user ID modeling (with faceID and voiceID), which can be sum-
marized as confidence-based multimodal user ID. The section begins with a
brief overview of the face identification and voice identification components
with references to the original work of these components.

The dialog system is designed as a one-to-one communication system
assuming that one person talks to the robot. Grounding of the speaker in the
real world is done by a (mostly vision-based) person tracking library (Arthur)
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published by Nickel and Stiefelhagen (2007). The system is designed for one-
to-one communication (in contrast to multi-party communication), but in a
real-world scenario additional persons might appear interrupt the visual field
of the robot. Therefore, Arthur provides person tracks, and image data for
face recognition is only extracted from the relevant track.

4.2.1 Face ID Component
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Figure 4.2: System architecture with face recognition system

In order to create an assumption about the person in front of the robot,
several processes have to be passed that interact with and depend on each
other. Figure 4.2 gives an overview of the components involved and logical
categorization of processing units. The box “Arthur/Face ID” corresponds
to the integrated face identification and tracking components which are in-
tegrated through the Arthur tracking library. As the first component of
the chain, the robot camera takes images in regular intervals, which is a
process controlled (including head movement and multi-person tracking) by
the Arthur tracking library. Face identification is then conducted by subse-
quent face detection, eye detection, face alignment and classification. The
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user ID model then integrates these face identification results over time by
constrained-based fusion, track selection and by multimodal fusion and pro-
duces a multimodal user ID hypothesis and a confidence value estimating
the probability of a correct hypothesis. The whole process is performed for
each new image recorded by the robot camera, i.e. sequence hypotheses and
confidences will be updated online for each new frame.

Face classification is conducted with a local appearance-based approach
Ekenel et al. (2007) which first detects face regions in a single image, aligns
and normalizes these segments and then extracts discrete cosine transform
(DCT) features from 8x8 pixel blocks. The extracted feature vector is com-
pared against prototypes stored in a database using a nearest neighbor clas-
sifier. The approach is extensively tested on the publicly available face
databases and compared with the other well known face recognition ap-
proaches. The experimental results showed that the proposed local appear-
ance based approach performs significantly better than the traditional face
recognition approaches. Recognition results from the face recognition grand
challenge (FRGC) version 1 data set for face verification, described in Ekenel
and Stiefelhagen (2005a), and recognition results from the FRGC version 2
data set for face recognition, described in Ekenel and Stiefelhagen (2006),
give an understanding what performance can be expected in the best case in
a scenario as descibed in this thesis. For example, in the conducted experi-
ments on the FRGC version 2 data set with 120 individuals and ten training
and testing images each, 96.8% correct recognition rate is obtained under
controlled conditions and 80.5% correct recognition rate is obtained under
uncontrolled conditions. Further details of the component and video-based
face recognition can be found in Ekenel and Pnevmatikakis (2006); Ekenel
and Jin (2006); Ekenel and Stiefelhagen (2005b).

To support learning of new persons, the face identifier supports extending
the models during runtime, more or less in real-time, by adding new feature
vectors to the model. In this regard, the DCT- and nearest-neighbor-based
model provides another benefit, since new samples can easily be incorporated
into the database, while other methods demand a complete revision of data,
e.g. the PCA approach described by Turk and Pentland (1991). As more
and more feature vectors are added to the model by constant recording, the
nearest neighbor classifier tends to develop a bias towards classes with over-
represented classes. As also the computational efforts increase significantly
and affect the real-time behavior of the system, regular automatic data re-
duction steps have been conducted. In the experimental system, k-means
and random selection, after 10% outlier removal, with a limit of 400 entries
per class, provided good results to maintain a constant quality. Such updates
were conducted during ‘sleep’ phases of the robot, e.g. at night.
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4.2.2 Voice ID Component

Voice identification in this thesis is based on the approach presented in Jin
et al. (2007), with Gaussian Mixture Models (GMM). Voice ID is computed
on close talk microphone input, which is also used for standard dialog in-
teraction. No modifications have been made to the component itself, which
is integrated as a block-box component. Segmentation of utterances is con-
ducted by automatic speech segmentation, a component which is part of the
speech recognition toolkit. Similar as in the face identification approach,
voice identification integrates speech segments iteratively while the dialog
session continues. Experiments in the following integrate the component and
additionally include confidence measures for multimodal fusion.

4.2.3 Confidence-Based Multimodal Fusion

Architecture

The approach to multimodal fusion extends the approach from FaceID and
conforms to the turn-based dialog system architecture. Each turn corres-
ponds to a dialog utterance by the user during which a single audio file is
recorded. Video images are recorded continuously during the dialog. In or-
der to create an assumption about the person in front of the robot several
processes have to be passed. Figure 4.3 gives an overview over the system
architecture and its components. The system is divided into six separate
subsystems (illustrated through dashed lines): the single image layer (1), the
image sequence layer (2), the single turn layer (6), the concatenation turn
layer (5), the audio sequence layer (4) and finally the central multimodal layer
(3). Apart from the single turn layer all other subsystems provide hypotheses
in the form of n-best hypothesis list and a corresponding confidence. The
additional concatenation turn layer has been introduced to provide audio ut-
terances adequate for voice ID. Since data collected with the dialog system
includes many short utterances, most of which are shorter than 1 second, a
concat turn is simply the concatenation of the single audio utterances, which
have been recorded during the dialog.

Confidence-Based Fusion

We use confidence measures as basis of an adaptive weighting for fusion,
which includes fusion of different modalities and per-modality fusion of single
hypotheses to obtain sequence hypotheses. A “single hypothesis” represents
an n-best hypothesis list, i.e. a list of hypotheses with probabilities that
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Figure 4.3: Structure of the multimodal classifier with different classification
layers.

sum up to one. Fusion is realized as summation over n-best lists which are
weighted by confidence estimates. This approach is illustrated in figure 4.3
on several layers, fusion is marked by ⊕. In mathematical terms, calculating
the hypothesis of the next higher layer is described as:

Hnew =
W∑
i=1

conf(Hi) ·Hi (4.1)

where H respectively denotes an n-best list, and conf(Hi) represents the
confidence for this hypothesis. W refers to the sliding windows size, i.e. the
number of accounted hypothesis lists. The fusion method is applied to each
fusion step, including the multimodal integration stage, where only two hy-
pothesis lists are merged. In the multimodal case, the fusion takes over the
part of dynamic wheighting of the two modalities. In general, W denotes
the maximum number of accounted single hypotheses. Since the classifica-
tion approach is designed for a live (online) system, the system initially deals
with small numbers of W which grows until the maximum sequence length is
reached. From there on the sequence is shifted as a sliding window over the
single hypotheses with a fixed size.
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Each fusion step requires that hypothesis lists are normalized. In litera-
ture, different normalization techniques can be found. For the presented sys-
tem we have been using a technique that is robust against different classifier
types, i.e. k-Nearest-Neighbor and GMMs. It preserves the n best scores and
distributes the probability mass over these results as shown in equation 4.2.

s̄i =
si −min∑n

i=1 (si −min)
(4.2)

si denotes the score of the i-th best hypothesis, n denotes the length of the
new hypothesis list, and min denotes the smallest boundary score, i.e. score
with index n + 1 which defaults to 0 if less than n + 1 values exist. In the
presented system we have been working with a list size of ten. If the list size
remains constant during fusion, the normalization function decomposes to a
scalar value for the whole list which only depends on the confidence values
and the number of hypotheses W. The normalization method is also applied
to the outcome of equation 4.1 when a constant list size, e.g. ten, is required.

4.2.4 Confidence Estimation and Confidence Features

The term confidence refers to the reliability of the classification, i.e. the
likelihood that a given classification result is correct. This confidence is ap-
proximated by a logistic regression model (Hosmer and Lemeshow, 1989),
which is used to model the likelihood of an event as a function of predictor
variables. In this case, the binary, dependent variable Y models the event
classification correct (Y = 1) and classification incorrect (Y = 0). In the
multi-tier architecture, for each level, i.e. for each classifier, a separate regres-
sion model needs to be trained. Correspondingly, for each regression model
the features are selected separately.

For face identification we have analyzed features from the vision system,
such as Image: the mean gray value of an image, and Dist : the observed
distance between the subject and the camera, stability measure of the eye-
detection component, which we have presented in Könn et al. (2007). Both
are - more or less directly - derived from the image data, and have been
shown to be effective for confidence estimation.

Since the output of a classifier is an n-best list of hypotheses, another idea
is to use features that exclusively exploit the distribution of the n-best list.
Such features are the entropy of the n-best list (Ent), the difference between
the two highest scores of the n-best list (Diff0 ), as well as two more fine
grained difference-based features (Diff1, Diff2 ). The four n-best list-based
features are suitable as confidence features, because they are directly related
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to the structure of the n-best list, i.e. distance of hypotheses, and reflect the
probability of confusion. They are calculated as follows:

Ent = −
n∑

i=1

ki · log2(ki) (4.3)

Diff0 = k1 − k2 (4.4)

Diff1 =
n∑

i=1

ki − ki+1

i
(4.5)

Diff2 =
n∑

i=1

ki − ki+1

ei−1
(4.6)

where ki denotes the score of the i-th best hypothesis, and N denotes the
length of the n-best list. It can be seen that the two confidence features Diff1
and Diff2 are closely related, and their values are not statistically independ-
ent.

Additional confidence features, which make only sense for sequence hy-
potheses, are agreement (Agre) and stability (Stab), again introduced in
Könn et al. (2007). Agre denotes the number of single image hypotheses,
which are equal to the best hypothesis, divided by the total number of ac-
counted hypotheses (corresponding to the sliding window size). Stab denotes
the number of hypothesis changes relative to the total number of accounted
hypotheses within the sequence.

4.2.5 Experimental Data Corpus

For evaluation of the approach, data was collected during dialog experiments
in the receptionist robot scenario, including audio data and video data for
multimodal person identification, with the tracking library Arthur1. Earlier
experiments, which compare the confidence-based fusion approach for face
ID against other video-based fusion techniques have been presented in Könn
et al. (2007), with an earlier version of the system.

The data has been recorded from a dialog corpus of 38 subjects in 85 ses-
sions. It comprises a collection of single images (recorded at 8 to 15 frames per
second) and single audio utterances. The length of recorded sessions varies
depending on the dialog length. A session on average contains 1019 single
images with 378 face detections and 14 single turns, with a total audio length
of 14 seconds. From the perspective of our proposed multimodal system a
session on average generated 378 single image hypotheses, 377 image squence

1http://isl.ira.uka.de/˜nickel/arthur/
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hypotheses, 14 concatenated turns hypotheses, 13 audio sequence hypotheses
and 390 multimodal hypotheses. Due to practical reasons, additional audio
data was recorded for 11 speakers, as the majority of audio segments in the
initial recordings where ’yes’ and ’no’ utterances, and the voice identifier was
not designed for one-word speech utterances. Training of person-specific voice
models was conducted with 10 seconds of audio, which is the amount of audio
data that can be recorded during one or two sessions with average length.

As for a clean evaluation, independent data sets for training and evalua-
tion of the different layers must be used, the data was split into 5 different
sets, which are obtained by dispersing the video and audio sessions among
the sets. Set 1 was used for face ID and voice ID training, where the face ID
was trained on 25 persons and the voice ID was trained on 8 persons. All
other sets are used as evaluation data for face ID and voice ID and exist as
closed set versions and open set versions. A closed set version contains only
sessions where all subjects are also contained within set 1 and thus belong to
the training set. An open set version contains all sessions from the closed set
version plus further sessions with ‘unknown’ persons. For training and evalu-
ating of logit-coefficients, we used the open set versions, since the recognition
rate is fairly high and we wanted our system to cope with unknown persons
as well. Set 2 is used to train logit-coefficients for single image face ID and
voice ID. Set 3 is used to train logit-coefficients of sequence hypotheses, set
4 is used to train logit-coefficients of multimodal person ID and set 5 finally
is used to evaluate person ID classification on unseen data.

4.2.6 Selection of Confidence Features

To be able to provide confidences within each layer of the system, suitable
confidence features must be selected and logit-coefficients are calculated for
each subsystem.

The confidence classifier of the single image layer is obtained by training
logit-coefficients for different combinations of the confidence features (Diff0,
Diff1, Diff2, Ent, Image and Dist), which are computed on the open set
training data of set 2. Figure 4.4 shows a detailed section of the correspond-
ing ROC graph. ROC graphs are discussed by Fawcett (2003) in detail as
a good way to compare classifiers which can be evaluated with true positive
and false positive rates.

Most confidence features are clustered within the same true positive/false
positive area2, with a rather low false positive rate (<0.1) and a rather high
true positive rate (>0.8), except pure Entropy which has a true positive

2TP: true positive, FP: false positive
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Figure 4.4: ROC graph showing different confidence features for single image
hypotheses (face ID), trained and evaluated on open set data

rate of 0.71. Among the minor differences between the feature combinations,
Diff0Ent produces the lowest false positive rate, while being only slightly
worse than the best feature combination regarding true positive rate, and
thus was used in the final setup. Combinations of different Diff features,
e.g. Diff0Diff1Diff2Ent are problematic for logistic regression, as they are
not statistically independent. The combination of Diff0 and Ent also shows
slightly better results than the single Diff0 (which was used for the CRCM
approach in Ekenel and Jin (2006)). The features used in our previous ex-
periments, presented in Könn et al. (2007), could not fully be transferred to
this approach since tracking and face identification methods differ.

The confidence classifier of the image sequence hypotheses is obtained by
training logit-coefficients for different combinations of the confidence features
(Agre, Stab, Diff0, Diff1, Diff2, Ent) which are computed on the open set
training data of set 3. Figure 4.5 shows a detailed section of the correspond-
ing ROC graph. In this comparison those feature combinations, which took
Agre and Stab into account performed best. Before deciding on the best
feature combination one has to consider different sequence lengths which is
an important aspect of the online system. While it is obvious that with
increasing sequence length, the quality of the hypotheses increases, this is
not necessarily true for confidence classification. We have calculated possible
confidence feature combinations according to the sequence length of 4, 15,
50, 100 and 200, whereof 200 was used in the evaluation. Figure 4.6 shows
the development of the four best feature combinations over these sequence
lengths. On the given data, AgreStabDiff0Ent shows the highest stability
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Figure 4.5: ROC graph showing different confidence features for sequence
image hypotheses (sequence face ID), trained and evaluated on open set data

concerning different sequence lengths.

Figure 4.6: ROC graph of sequence face ID with different sequence lengths

To evaluate the result of the confidence estimation, figure 4.7 shows a plot
of the recognition rate per confidence bin. The confidence bins are denoted
over the y-axis with the intervals 0-5%, 5-15%, ..., 85-95%, 95-100%. The
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confidence classification rates of each bin are denoted over the x-axis. Both
plots, single image confidence and sequence face ID confidence, are relatively
close to the linear regression line of the recognition rates per bin. The plot
shows that the actual correct recognition rate is slightly better than the
estimated confidence, i.e. the plot points are below the diagonal line from
0,0 to 1,1. This is a desirable effect, as this way, the dialog system does not
over-estimate incorrect hypotheses.

Figure 4.7: Confidence classification results per confidence bin

In the following, the results of the system and its subsystems are sub-
sumed based on the evaluations of set 5. Figure 4.8 shows the recognition
rates for the different layers and different subsets. Again, the set was evalu-
ated with open and closed set conditions. Additionally, it was distinguished
between different recording positions in the lab. The ‘fixed’ recording po-
sition has mostly light from the side, but varying light conditions during
the day. The ‘vary’ data set contain additional data recorded at a second
position, where the general direction of light was from the front for testing
of robustness. The category ‘threshold,vary’ additionally conducts unknown
person detection by assigning the unknown category to each hypothesis with
a confidence below 30%.

The figure shows significant improvements at several layers for closed set
person identification (1st and 2nd bars). Classification of the sequence face
ID benefits from competing hypotheses, which in case of false classifications
are spread in the Nearest-Neighbor feature space. In case of voice ID, the
GMM-based classifier tends to produce similar (incorrect) hypotheses. This
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Figure 4.8: Recognition rates of the multimodal identification layers with
closed and open set conditions

can also be seen by the best confidence feature which is Diff0 and does not
include Agre and Stab. Thus, sequence voice ID does not produce better
hypotheses than the concatenated voice ID, but produces better confidence
estimation, which is of great importance to the multimodal fusion.

Improvement of the multimodal ID can be seen best on set ‘closed,vary’,
which has been recorded at more difficult conditions for face identification.
Detailed numbers are shown in table 4.1. On average, the confidences dis-
tinguish between correct and incorrect classifications. An exception is seq-
FaceID, were too few incorrect hypotheses have been seen during confidence
training (>99% correct). It can also be seen that unknown persons receive
very low confidences, which suggests that unknown classification is possi-
ble. The challenge here is to distinguish unknown form incorrect recognition,
which can be addressed e.g. by calculating average confidences over a se-
quence of hypotheses and then applying a threshold. The numbers in figure
4.8 have been computed with an optimal threshold of 0.3 for the multimodal
ID. At this threshold level, 70% unknown was detected correctly, and <0.8%
new errors (known vs. unknown) are made.

4.2.7 Conclusion and Discussion

The presented approach for multimodal ID fusion uses confidence measures
on several layers. Different features and feature combinations have been
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face ID (Diff0Ent)

number mean std. deviation
Set ‘closed,vary’ hypothesis true 4540 0.487 0.36
Set ‘closed,vary’ hypothesis false 2416 0.154 0.212

Unknown 1993 0.119 0.166

sequence face ID (AgreStabDiff0Ent)

number mean std. deviation
Set ‘closed,vary’ hypothesis true 6261 0.491 0.396
Set ‘closed,vary’ hypothesis false 684 0.432 0.254

Unknown 1988 0.029 0.046

voice ID (Diff0)

number mean std. deviation
Set ‘closed,vary’ hypothesis true 214 0.452 0.164
Set ‘closed,vary’ hypothesis false 30 0.336 0.073

Unknown 100 0.315 0.049

sequence voice ID (Diff0)

number mean std. deviation
Set ‘closed,vary’ hypothesis true 197 0.601 0.284
Set ‘closed,vary’ hypothesis false 35 0.167 0.145

Unknown 95 0.265 0.196

multimodal ID (AgreStabDiff0Ent)

number mean std. deviation
Set ‘closed,vary’ hypothesis true 7006 0.804 0.32
Set ‘closed,vary’ hypothesis false 171 0.326 0.452

Unknown 2083 0.094 0.274

Table 4.1: Overview of different confidence classifiers

investigated regarding their suitability for probability estimation with logistic
regression.

All confidence classifiers make use of distributions of the n-best hypothesis
lists. A major benefit of such features is that they can solely be computed
on classifier output, without using ‘internal’ information. The same is true
for the features Agre and Stab which cover sequence characteristics. As the
experimental results show, the confidence-based fusion approach significantly
improves the overall recognition rate.

All confidence approaches generally perform better for face ID than for
voice ID on the given data. On the observed task many short utterances
existed in the system which does not seem to contain enough discrimina-
tive information for robust voice identification. When longer sentences were
recorded, voice identification provided better classification results and showed
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significant improvement in the multimodal fusion.
Together with multimodal hypotheses, on the highest layer, confidences

are calculated that can be passed on to other dialog system components.
The interface to the other components is an n-best list with confidences, in-
dependent of how many samples have been recorded or which modalities are
available. Looking at a sequence of those confidences furthermore allows us
to reliably detect unknown persons, even though a single incorrectly classi-
fied hypothesis may have a low confidence value as well. These confidence
measures of the highest level are used in the following section for user ID
modeling on a dialog level.

4.3 Bayes-Approach to Multimodal User ID in Dialog

Modeling the user’s ID is a typical classification problem, given a set of input
parameters and a classification result. In addition to work presented in the
previous section on multimodal fusion of ID classifiers, additional attributes
can be integrated for identification. For example while the first name of a
person does not solely identify one person it contributes to the identification
process, as can do many other features. Even the time of the day when a per-
son talks to the robot can contribute to the probability of meeting a specific
person. All these aspects can be interpreted in form of Bayesian probability
theory, by modeling probabilities of observations given a true state of nature.
To integrate these different aspects using Bayesian theory, a formalism exists
which is known as Bayesian networks or belief networks. In fact the ap-
proach presented here benefits from work presented in the previous section,
which did not only introduce multimodal fusion, but also confidence estima-
tion for classification output. Such confidence measures for ID classification
have proved valuable for estimating probabilities of correctness which allows
a probabilistic integration in the Bayesian model, as will be shown in the
following.

A typical affordance in an interactive dialog system is that hypotheses
are computed during runtime of the system, i.e. while the dialog continues,
instead of collecting all relevant information and only then applying classi-
fication. In fact, the dialog flow is also influenced by the decisions that are
made by the ID classifier, leading to better results and shorter dialogs, if the
model can generate good hypotheses early in the dialog. The approach pro-
posed here has been examined for human-robot interaction, where the users
engage in explicit identification dialogs. For example, the robot can ask a
user for the name, or use explicit or implicit confirmation strategies given dif-
ferent kind of observations. Perceptual technology used for the experiments
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is based on sensors typically used on a humanoid robot, such as stereo vision
and speech recognition. For simplicity we frequently use the term user model
in the following, which in this paper refers to modeling the user’s ID.

In this section we outline our approach for a user model that combines
information collected during dialog, such as spoken names, spelled names,
confirmations and multimodal ID classification from face ID and voice ID.
Fusion of these modalities is done using Bayesian (belief) networks. A key
aspect is estimating conditional probabilities, such as confidence measures for
multimodal ID hypotheses. Generally speaking, these confidence measures
are necessary to cope with recognition errors. For example, if a first name
has been misrecognized and contradicts the multimodal ID hypothesis, the
system computes the best hypothesis while taking into account probabilities
of misrecognition of each input hypothesis. It can then ignore the incorrect
speech recognition if multimodal ID confidence is high enough.

Bayesian networks are frequently used in data mining, to discover sta-
tistical dependencies on large data sets, with the goal of learning network
structures. In our work, the network structure is created manually and dif-
ferent network structures are analyzed. The following chapter describes some
basic properties, a more detailed overview can be found for example in Heck-
erman (1996). In Huang et al. (2000) a belief network has been used for
multimodal user registration. It is similar to the ‘simple’ network structure
presented in the following and compared to more complex structures.

In contrast to other work our approach takes into account unknown per-
sons, unknown word detection plus name spelling, and features extracted
from the dialog history. Special attention is given to confidence estimates.
The presented approach can generally be extended with other features. For
example on could consider day of time when a person interacts with the sys-
tem and integrate this as a conditional probability. The approach also shows
significant improvement over our previous identification model presented in
Holzapfel and Waibel (2007).

4.4 Belief Networks for Person Identification

A Bayesian network is a directed acyclic graph with nodes and edges. Each
node represents a variable which is either discrete or continuous, and edges
are modeled as conditional probabilities. Depending on the type of variables
the network is either a discrete, continuous, or a hybrid Bayesian network.
In the presented work, we use a discrete network. When some variables
are observed (they are then called evidence variables) other variables in the
network can be queried using probabilistic inference.
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4.4.1 Input Features and Network Structure

In our network we use three categories of observations as evidence for identifi-
cation. Evidence corresponds to information slots filled by the dialog system.
The first observation category is multimodal ID (MMID) classification which
directly classifies the person’s ID. The second type of observation only pro-
vides hints about the person’s ID but does not classify one person exclusively.
Such observation is recognition of the spoken first name. In our model, a per-
son can have only one first name; however, different persons (either known
or unknown) may share the same first name. The third type of observation
is extracted from the dialog flow, such as disconfirmed names.

These types of observation can be modeled in the belief network as the fol-
lowing discussion shows. The structure of the belief network is determined by
the definition of conditional probabilities. A standard ID classifier produces
hypotheses with posterior probabilities, i.e. P (ID|observation). Another
way of modeling, which also describes a causal structure, is the inverted de-
pendency structure P (classification-correct|ID) with a directed edge from
‘ID’ to ‘classification-correct’. Now, the conditional probability models the
probability of a classification being correct given the ID. This probability is
estimated by independent confidence classification which is multiplied by the
n-best list hypothesis score with successive normalization. Confidence esti-
mation for multimodal ID is described in section 4.4.3. Using Bayes theory to
combine different classification results leads to some practical issues with the
extreme values 0 and 1. This is the case, e.g. when IDs are not represented
in the n-best list, thus additional factors and an offset are introduced with
the following formula:

wid = m+ conf ∗ a(2 ∗ scoreid − 1) (4.7)

The values m (offset), the confidence of the classifier, and the scaling factor
a influence the rating of the original ID-score from the hypothesis list. The
desired probability is then obtained by normalizing wid by the sum over all
wid.

In a similar way, spoken name recognition (speech recognition results) is
integrated into the network as evidence. A conditional probability P (name-
correct|name) models first name and last name recognition. An additional
edge P (name|ID) connects names to IDs. It is set to 1 for persons that have
been entered manually and can be set to a smaller value to model uncertainty
in the knowledge base when a person has been learned interactively.

A fourth type of information is not used as evidence in the network, but
influences conditional probabilities in the network. For example confirmation
of a name is a feature that is observed by the dialog model. In this case the
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evidence, i.e. the value of the observed name, does not change, but the
probability of the name being correct increases.

4.4.2 Network Structure

Figure 4.9 shows the structure of a simple belief network integrating mul-
timodal ID, first name and last name recognition. An abstract ID node
represents the ID of a person; other nodes represent evidence as pointed out
above.

�����

������	


���	


���

���	


���


���	

������	

���	

������	

��

Figure 4.9: Simple user ID belief network

The simple network structure works well for many situations with only
known persons. However, some important aspects are missing. For exam-
ple the network does not model the reduced probability of a name after it
has been rejected. For rejected (disconfirmed) names a separate blacklist is
added. It accounts for the fact that also rejections are error prone. A name
on the blacklist is assigned 1/10 of the probability of non-rejected names.
Also the problem of unknown first name / last name combinations is ad-
dressed. An unknown detection node increases the likelihood of an unknown
person by 100 * prior user probability if first name / last name combinations
are observed that don’t match the database of known persons. The factor
100 has been chosen experimentally to ‘compete’ against multimodal user
ID. Figure 4.10 shows the extended network structure.

Some considerations had to be made so that the proposed user ID model
can be used in an online system. The main considerations relate to dynamic
updates in the network. Some parts of the network are static, which are
the structure of the network and the node names. Node values, i.e. person
IDs, first names, last names, etc. are generated automatically from database
entries. Edges in the network, i.e. conditional properties, are also updated
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Figure 4.10: Extended user ID belief network with blacklist and unknown
model

dynamically, e.g. the edge representing correct recognition of multimodal ID
is updated with each new hypothesis according to the confidence value.

4.4.3 Multimodal ID and Confidence Measures

As mentioned before, confidences are very helpful in theory to estimate a
‘trust-level’ of a classifier, especially when hypotheses from different classi-
fiers are combined. In Grosse et al. (2008) we have proposed an approach for
confidence-based fusion of face ID and voice ID, which uses logistic regres-
sion for confidence estimation on several levels (on single hypothesis, sequence
hypothesis and output confidence). We use this approach to model the mul-
timodal ID (’MMID’) node in the belief network, but restrict ourselves to
using video information, leaving out voice segments. The reason for this is
that even though the recognition rates are better with voice information,
no sufficient voice data was available for independent training and evalua-
tion. The belief network uses the hypothesis score (from n-best list) plus the
classification confidences, as described in the beginning of this section.

In the experiments reported here, this approach has been used in two con-
figurations. The first configuration is closed-set person identification, where
the MMID classifier always decides on a label known from training data. The
second configuration is open-set person identification, where there is an ad-
ditional category ‘unknown’ to classify persons which are not in the training
set. To integrate the unknown classification in the n-best list, we estimate
the hypothesis score by 1.0 minus classifier confidence, which produces stable
results on the given corpus.
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4.5 Experiments

4.5.1 Dialog Data Collection

Data used for experiments has been collected during different robot recep-
tionist dialogs with user ID and name learning (Holzapfel and Waibel, 2007).
The dialog manager uses different strategies (a fixed strategy was employed
per scenario) to identify a person’s ID, first name and last name. During
the dialogs, speech and image sequences have been recorded for voice ID and
face ID, speech recognition results have been logged and all interactions have
been transcribed. From this data we obtain a corpus of annotated sessions,
with a timeline of events including all dialog system input.

With this data we have then conducted the evaluation of different user
models. The advantage of the approach is that once data has been collected,
different user models can be compared on the same data. While there is
an effect of the applied user model on the dialog flow, recorded information
can be observed by all models. Thus, a user model that has not been used
for recording will be slightly underestimated. The best comparison can be
drawn by the end of an evaluated dialog session.

4.5.2 Baseline Approach

The baseline or ‘confirmation’ approach uses a rule-based system and a con-
firmation strategy to determine the ID. It uses three slots: MMID, firstName,
lastName with different slot states, and the output slot userID. userID and
MMID have the states EMPTY, SET, CONFIRMED. firstName and last-
Name have the states EMPTY, UNKNOWN, SPOKEN, SPELLED, CON-
FIRMED. A slot is set to EMPTY when the information slot is empty or
when its value has been disconfirmed. The update rule for setting the userID
value takes into account reliability of the slot values. For example CON-
FIRMED has the highest reliability, and spoken name input is preferred over
multimodal ID. The latter only is considered when first name and last name
slots are empty, which happens typically at the beginning of a dialog or after
a name has been rejected.

4.5.3 Evaluation

The evaluation compares different configurations of the Bayesian networks
with each other and against the confirmation approach. The evaluation has
been conducted on two conditions: person is known (i.e. has talked to the
robot before and MMID training data is available) vs. person unknown (no
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training data available). Each condition is evaluated with open set vs. closed
set MMID classification, each with a database of 25 known persons. In the
unknown condition, 46 sessions are available for evaluation; in the known
condition 43 sessions are available. Before evaluation, MMID models have
been trained with independent training data for the two conditions: known
and unknown. The set for the unknown condition includes all sessions from
the known condition, however the respective person was excluded from the
MMID training data and the person database.

To evaluate the approach, different metrics are used. ’UID rows’ is the
percentage of all correct hypotheses, i.e. all input event during the inter-
action. ’UID end’ is the percentage of all correct final hypotheses, i.e. the
last hypothesis of each dialog. ’UID norm’ is a normalized correct rate, i.e.
the average correct rate per dialog. It prevents that long sessions get higher
weight than short sessions. For example, the shortest sessions without face
ID input has only 6 input events, in contrast to the longest session with 250
input events.

set / condition events MMID sessions MMID end

closed / known 1870 84,44% 43 81,4%

closed / unk 2165 0,00% 46 0,0%

open / known 1870 80,53% 43 74,4%

open / unk 2165 89,01% 46 89,1%

Table 4.2: Task overview: number of input events, MMID per event, number
of sessions, MMID at end of the session

Table 4.2 reports recognition rates of the multimodal ID classifier repre-
senting the observations of the MMID node. Table 4.3 shows the numbers
from the evaluation runs with closed set and open set classification. The
user models listed in the tables are the baseline confirm model, the simple
Bayesian model bayes-p without black list, the bayes-bnr model with black
list but without resetting of user names after disconfirm, the bayes-blu model
including black list and unknown person detection, and the bayes-bl model
with black list and resetting of names. The unknown/closed set has been
excluded since models are not suitable for this category, only bayes-blu and
bayes-bl achieve 100% for UID end, the others achieve 0.0%.

The overall best model is the bayes-bl model, which outperforms the
bayes-blu model in the open-set condition, where the unknown detection from
face ID is more reliable than unknown detection from name recognition and
static properties of the bayes-bl network. In the closed-set condition both are
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almost equal. In the closed set/known condition the simple model obviously
performs best, since it does not produce false alarms for unknown.

The ‘UID-norm’ value looks worse than ‘UID rows’ for most conditions.
This is reasonable since some sessions don’t have any face ID at all. These
sessions start without relevant information and only at the end of a session
a good hypothesis can be found by the model. In general this also mirrors
the fact that user ID hypothesis improves with the dialog flow.

Given the kind of evaluation with a static dialog corpus, the effect of
the user model on the dialog flow cannot be measured. Despite the fact
that the dialogs had been recorded with the baseline user model, the results
show that the belief network operates more reliably than the baseline model.
The recognition rates are better especially at the end of the dialog. This
significantly improves the robot’s perception who the robot is talking to and
improves memorizing persons.

condition task UID rows UID end UID norm

known/c confirm 85.94% 83.7% 74.77%

known/c bayes-p 83.74% 95.4% 77.90%

known/c bayes-bnr 75.13% 93.0% 76.52%

known/c bayes-blu 73.32% 93.0% 75.13%

known/c bayes-bl 79.68% 93.0% 76.41%

known/o confirm 77.38% 72.1% 67.19%

known/o bayes-p 80.80% 95.4% 73.54%

known/o bayes-bnr 72.19% 93.0% 72.16%

known/o bayes-blu 69.84% 90.7% 70.59%

known/o bayes-bl 76.58% 93.0% 71.94%

unk/o confirm 91.45% 100.0% 88.20%

unk/o bayes-p 86.00% 58.7% 83.53%

unk/o bayes-bnr 86.33% 60.9% 83.59%

unk/o bayes-blu 91.50% 100.0% 88.11%

unk/o bayes-bl 91.50% 100.0% 88.11%

Table 4.3: User ID evaluation with closed set ‘/c’ and open set ‘/o’ multi-
modal ID

4.5.4 Conclusion

The presented approach to user identification in dialog considers aspects of
an online system where information is delivered and updated sequentially.
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The approach also considers special aspects of a dialog system where infor-
mation is confirmed or rejected during dialog. In this aspect it extends a pure
multimodal ID approach. It is also suitable for open set person identification.

Different belief network structures were compared with each other and
against a baseline model that purely relies on dialog information with confir-
mation and rejection of the best hypothesis. The results show that the best
configuration depends on the task to be fulfilled. Especially, the selection of
the best architecture depends on the expected number of unknown persons,
i.e. if the classifier works in open set vs. closed set mode. In any case, the
best configurations perform better than the baseline model and are suitable
for person identification in dialog. These results also confirm results from
the evaluation of confidence-based multimodal ID.
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Chapter 5

Reinforcement Learning for Person ID in

Dialog

5.1 Introduction

5.1.1 Overview and Problem Definition

This chapter addresses optimization techniques for person identification and
name learning dialogs using reinforcement learning. Writing error tolerant
and robust dialog strategies generally is a tedious and costly effort. In recent
years, reinforcement learning has successfully been applied for approaching
this task by machine learning techniques instead of writing dialog rules manu-
ally. As this technology has produced promising results, it seems promising to
apply this technique also for the task of identifying persons, where the dialog
system has to cope with different recognition errors from speech recognition
and multimodal perception, and where optimal strategies are to be found to
achieve the dialog goal despite possible recognition errors. New challenges
arise when adapting this technique to a multimodal system with the task of
person identification including integration of different modalities, multimodal
user simulation, and multimodal error models.

These challenges are addressed in the following sections, where two ex-
periments are presented. The first experiment, which has already been pub-
lished in Holzapfel and Waibel (2008a), introduces the reinforcement learning
framework with a multimodal user simulation. It is extended in the second
experiment with a multimodal user ID model introduced in chapter 4. The
first experiment presents evaluations of the approach in simulation and in
a real user experiment. The results show that the success of the strategy
strongly depends on success of name recognition.

In the presented system, the reinforcement learning agent does not learn
the strategy for the complete and complex dialog system. Rather, it is re-
stricted to the person identification task, to learn the strategy of a single
dialog module, which can be solved efficiently. As we have demonstrated in
Holzapfel and Waibel (2007), such a modular architecture can combine hand-
crafted modules and modules trained with reinforcement learning to combine
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the advantages of both worlds. The modular dialog design will be introduced
in this thesis in more detail in chapter 6.5. Within the restricted dialog mod-
ule with mostly system initiative, user reactions are adequately modeled by
the simulation, as we have already shown in Prommer et al. (2006), with an
interaction task for a barkeeper robot. In Prommer et al. (2006) we have
also evaluated the system with real users and obtained comparable results
for evaluation in simulation. As the user simulation allows to run a large
number of dialogs (e.g. 100,000 dialogs have been used in this thesis for
evaluation of each strategy), it averages out speech recognition problems for
spoken names which have the largest impact on dialog success when learning
unknown names, and therefore represents a applicable evaluation method for
this task.

5.1.2 Scenario and Dialog Setup

The scenario for the dialog manager is to control interaction in a robot re-
ceptionist scenario. The full robot receptionist is described in more detail in
chapter 8. For now, we want to concentrate on the aspect of person identifi-
cation.

The scenario of person identification was addressed in a series of exper-
iments. A first experiment was conducted as a Wizard-of-Oz experiment,
where the robot acted as a parcel receptionist, where one part of the dia-
log was to identify the person (more details on the experiment are given in
section 8.3.2). The Wizard-of-Oz experiment served as a data collection and
analysis of the dialog task. From this analysis, the receptionist task was de-
composed into the dialog modules greeting, parcel reception, name learning,
directions and goodbye. In further experiments, the Wizard was first replaced
by a handcrafted dialog strategy. Further experiments including experiments
with reinforcement learning were conducted with person identification only
or in combination with social network modeling (chapter 9).

The modularization of the dialog, as motivated in the introduction of
this chapter, allows reinforcement learning to focus only on the strategy of
a single module. Combination of different modules into a complex system is
presented in chapter 6.

5.2 Reinforcement Learning Setup

This section describes a reinforcement learning approach to automatically
acquire a dialog strategy which is optimal with regard to a predefined metric,
the reward function. The design of single modules separates concerns and
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allows training of the name learning module, which can be conducted in
reasonable training time and in isolation of other dialog concerns.

One promising approach for optimization of dialog strategies in general is
with reinforcement learning. The idea of reinforcement learning is that one
cannot define correct and incorrect actions for each state as in supervised
learning, but rather to expose the system (usually referred to as the agent)
to an environment in which it can take a series of actions, where each action
is associated with some reward. The agent is supposed to learn from these
observations and optimize its expected reward. Reinforcement learning in
this definition is a class of learning problems. Various systems exist that
apply reinforcement learning, and several algorithms exist to solve the rein-
forcement learning problem, see Sutton and Barto (1998). One problem of
applying this technique to dialog systems is the large number of data (i.e.
dialogs) required for training of the system. This challenge is nowadays ad-
dresses by training a user simulation and to simulate a large number of dialog
interactions for training.

In Prommer et al. (2006) we have argued for a standardized process model
for training a dialog strategy with reinforcement learning. Figure 5.1 shows
the process model. In step 1, a Wizard-of-Oz experiment is conducted to
analyze the task and collect initial data for statistical model training. In
step 2, a user simulation is created with statistical simulation of user actions
and error models for system components. In step 3, the state model (states of
the Markov decision process - MDP) is defined. In step 4, the dialog strategy
is trained in the simulation. In step 5, the dialog strategy is integrated in the
online system and experiments with real users are conducted. As the initial
Wizard-of-Oz experiment provides only a small amount of data for statistical
models, additional data is collected from the online interactions (step 6), to
update the statistical models of the simulation.

5.2.1 MDP State Model

One important aspect of defining a model for reinforcement learning is the
state model. In theory it has been shown that if the state model fulfills
the Markovian Property, Q-Learning converges to the optimal policy. The
Markovian Property requires that the state transition probability only de-
pends on the current state, which is composed of system state st and the
system action at with the discrete time index t.:

P (st+1|st, at) = P (st+1|st, st−1, ..., s0, at, at−1, ..., a0)
In practicable applications however, and especially in dialog, this property
usually does not hold, but still good policies can be found. A trade-off needs
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Figure 5.1: Process model for reinforcement learning in dialog systems with
multimodal user simulation

to be found between encoding fine grained information and history versus
simple models, to find a model which can be computed with the given data
and in a reasonable amount of training runs.

The MDP state model (st) used in our experiments encodes information
about the information state of semantic slots plus information about the
progress of the dialog. The dialog manager uses the information slots with
associated MDP state values as shown in table 5.1. States representing the
progress of the dialog are shown in table 5.2. The actions (at) which are
available for the dialog strategy are the same for both the handcrafted as
well as the learned strategies. The available actions are listed in table 5.3.

Important for the learned strategy is the chosen reward function. It de-
fines which dialogs are ‘good’. In our scenario, learning correct names is
rewarded (+10), learning wrong names is punished (-10). From experiments
we found that some persons accept names which are almost correct. We try
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Information Slot MDP state MDP state values

ASR name input Name-ASR empty, filled, oov
Spelling input Name-Spelling empty, filled
Voice ID VoiceID empty, filled

VoiceIDConf low, medium, high
Face ID FaceID empty, filled

FaceIDConf low, medium, high

Table 5.1: Dialog information slots and mapping to MDP states

MDP state values description

number of failed attempts

nNameFailed 0,1,2+ to confirm a name

number of successful attempts

nNameConf 0,1+ to confirm a name

number of failed attempts

nASRNameFailed 0,1,2+ to confirm a name from

speech recognition

lastAction action name of the previous action

Table 5.2: Dialog state variables in the MDP state

to quantify this effect with the Levenshtein distance between learned and
correct name (distance = 1 is rewarded +3; distance = 2 is rewarded 0).
Each additional turn is punished with -1, so dialog length is kept moderate;
repeating the same system action is punished with -0.5. Other functions can
be chosen to increase the importance of different factors.

category actions

get information ask name, ask name-spelling
confirm conf name-asr, conf name-spelling

conf faceID, conf voiceID
finish dialog accept-name, abort

Table 5.3: actions available for the reinforcement learning strategy
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5.3 Multimodal User Simulation

To build a user simulation a common approach is to model user actions with
statistics estimated on collected data. In addition to that, (error-) models are
created that describe the behavior of the system’s recognition components,
i.e. a statistical model of errors. The idea behind this approach is that
statistically describing user actions and error models is simpler than directly
learning the system’s strategy.

5.3.1 Multimodal User Models

Existing approaches for training a user model range from simple models,
such as the bi-gram model, to more complex models (Eckert et al., 1997;
Levin et al., 2000; Pietquin and Renals, 2002). In previous work (Prommer
et al., 2006) we have achieved good results using a simple bi-gram model
for statistics on a semantic level. In the addressed restricted task bi-gram
statistics provided good estimations already on a small amount of training
data, which would not suffice to train more complex models.

The quality of the bi-gram model p = P (actuser|actsystem) highly depends
on the defined abstraction granularity of simulated user and system actions
and the task restriction. In our work we have adopted the general bi-gram
model to a more fine-grained model of bi-grams over semantics of user ac-
tions (input speech act + semantic attributes) given the system’s speech act.
Statistics for user actions have been trained on a single dialog goal, i.e. name
learning, in isolation of other dialog goals, from transcribed dialog interac-
tions.

In addition to speech-only interaction our multimodal system models non-
verbal information from voice ID and face ID. Voice ID, like speech input,
is computed turn-wise for each spoken utterance. Inspired by recent work
by Krsmanovic et al. (2006) who concatenate data from speech snippets to
simulate data that is provided for voice ID during runtime, we adopt the
approach and simulate recognition input by taking samples of real recorded
data adapted to multimodal identification and real dialogs.

Face ID at first glance is not turn based. However, since face ID only
updates the dialog state during a new turn, this is imitated in the simu-
lation by grouping ten to twenty images for face recognition per turn. To
produce a variety of hypothesis values, we use real images from one person
taken during data collection at 2 fps, which are cut into sub-sequences of ten
to twenty images. From these, the simulation environment randomly picks
single sequences.

Problematic with this setting are the high computing requirements. Just
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considering face ID, given a database of roughly twenty persons, the face ID
recognizer can process two to four images per second on a standard 3GHz
Pentium processor. A minimum training requirement of 1 million dialogs
then poses an impracticable computational burden. The biggest part in time
consumption is to detect a face within an image and to produce a per-image
ID classification using the nearest-neighbor classifier. Both problems can be
pre-computed given a fixed database of known persons, when the state space
of the classifier remains constant. The combination of pre-computed single-
image hypotheses to a sequence hypothesis is much faster and can adequately
be conducted during simulation. A similar approach using audio snippets has
been applied to voice ID recognition. With these settings, the system runs
a full dialog in simulation (including dialog state update, policy update and
action selection) in 1.2 ms at 3.5 turns per dialog on average, which is roughly
0.3 ms per turn. Note that the chosen setup does not allow direct simulation
of the effects of storing more and more persons in the database, but rather
allows training of a strategy for a fixed database setting of known persons.

5.3.2 Error Models

Simulation of user actions is not sufficient to model the input for the dialog
system. The missing link between user actions and dialog input is described
by error models, which statistically simulate typical errors made by the recog-
nition components. For example, the difference between experiments using
close speech and distant speech is simply a different error model. Face ID
as well as voice ID do not require additional error models since their errors
are implicitly modeled by applying real classifiers (partly pre-computed) to
simulated data. Speech, in contrast, is modeled statistically and requires ad-
ditional error models for speech, phoneme, and spelling recognition. Spoken
name input is modeled as a speech act with semantic parameters. For spoken
name input, the speech act is informName with a semantic parameter NAME.
The error model first statistically models concept confusion and deletion, i.e.
probability for recognizing a wrong concept (confusion) and the probability
for not understanding any concept at all (deletion). Secondly, statistics are
applied to model confusion and deletion of the semantic parameter(s).
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5.4 Simple Integration for First Name Identification in
Dialog

5.4.1 Training and Evaluation in Simulation

Training of the strategy was conducted with the MDP state and action mod-
els described in section 5.2. Training was conducted with the Watkins-Q-
lambda algorithm with exponential cooling of epsilon, and the learning rate
alpha. All models were computed with all combinations of a list of 11 equally
distributed lambda values from 0.0 to 1.0 and a list of 11 equally distributed
discounting factors from 0.0 to 1.0. To test the effect of the number of train-
ing runs we experimented with different dialog numbers per training, using
1 million to 100 million dialogs per model. Reasonable training runs are 10
million (10M) dialogs and more, since training with 1 million (1M) runs still
contains a couple of state-action pairs that have never been visited, espe-
cially in states that occur only seldom. There is still a significant difference
between training sizes of 10M and 100M dialogs, so high numbers of training
dialogs still means improvement of the dialog strategy. On the other hand,
first training runs with 100M dialogs took 32 hours on a Pentium4 3 GHz
processor. After a few code optimizations we could lower the training time
to roughly 5 hours. Considering training time, all models which have been
trained with different configurations, i.e. 121 configurations for all combina-
tions of discount and lambda values per MDP state space, have been trained
with 10M dialogs, single configurations have been trained with 100M dialogs
for comparison of the best models. All evaluation numbers presented here
have been obtained from running 100k dialogs in simulation, which have
shown stable results, from which the average reward is computed.

Training and evaluation requires splitting the data into three parts. The
first part is used to train user ID models for voice ID and face ID, and bi-gram
statistics. A second data set is used as simulation data, for training of the
dialog strategy, and a third set is used for evaluation of the dialog strategy.
Depending on how the set is split, the dialog strategy training and evaluation
sessions include more or less unknown persons. On a set with a large number
of unknown persons, the resulting reward is lower than with a set restricted
to known persons, since unknown persons are harder to recognize and to
register.

5.4.2 Baseline Strategy

The implementation of the handcrafted strategy follows a simple pattern:
Alternatively ask the visitor for his name or for the spelling of his name. If
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either of both is given, try to confirm the name. When speech recognition
reports an unknown name ask for spelling. In the beginning, if face ID
produces a hypothesis, try to confirm the associated name. If neither is set
but voice ID is given try to confirm the associated name. Do not ask for
the same name twice. As soon as the name is confirmed quit the dialog and
store the name. If a predefined threshold of turns is reached e.g. 15 (in
the simulation), or after 3 unsuccessful confirmation questions (in the online
experiment), the dialog is aborted without storing the name.

5.4.3 Evaluation in Simulation

Figure 5.2 shows evaluation results for the close-speech condition of the base-
line strategy in comparison to strategies trained with reinforcement learning
(RL). The categories shown are ‘sim’ for the simulation set which was used
for reinforcement learning, and ‘eval’ for the third held out data set. The
model abbreviations are ‘H’ for the handcrafted model, ‘F’ for RL with face
ID only, ‘V’ for RL with voice ID only and ‘M’ for RL with multimodal input
(face ID + voice ID). Figure 5.3 shows the name-assignment errors made by
the different strategies under close speech condition. An error is an incorrect
assignment of a name at the end of a dialog. Almost correct names were
counted separately, where the learned name differs by only one letter from
the correct name. Both simulation sets included 25% unknown persons. For
roughly six percent of all turns no voice ID information was available. On
the remaining set, the recognition rates for voice ID are 59% and recognition
rates for faceID are 68%.

5.4.4 Experiments with Users and Discussion

The results of the simulation show better performance of the reinforcement
strategy than the handcrafted strategy. An interpretation is that the re-
inforcement learning approach learns more complex rules, when to confirm
multimodal input, in combination with recognition confidence, dialog length,
and failed name recognition. The charts show slight differences between
the sets. The ‘M’ model (multimodal input) performs generally best, which
matches our expectations, because it can choose among different modalities.
All learned models have a higher number of correct dialogs, at a minimal
cost of 0.1 turns more per dialog on average.

To evaluate the system with real users we have deployed the strategy
to a small user study experiment. Since there are high variations in results
depending on the user, the experiment can only be interpreted as a tendency
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Figure 5.2: Evaluation scores for different strategies in the user simulation,
showing reward (first column) plus turn numbers (second column).

Figure 5.3: Incorrect assignments made by the different strategies in the
simulation in % (out of 100k dialogs). The bars indicate: total errors, almost
correct names for known persons, almost correct names for unknown persons,
incorrect names for known persons, incorrect names for unknown persons.

but not be treated as a reliable comparison of strategies. Further and larger
evaluations are necessary for this.

The experimental setup was the same as for the Wizard-of-Oz experiment
with the same microphones and cameras. This time the users were told that
the only purpose of the interaction was the name learning dialog. We con-
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User: Hello [act hello] ; FaceID: Peter

Sys : Am I right that your name is Peter?

User: No, my name is John. [inform name [NAME ”OOV”]]

Sys : Please spell your name!

User: J O H N. [inform spelling [SPELLING ”JOHN”]]

Sys : Have I understood correctly that your name is John?

User: Yes. [yes]

User: Hello [act hello] ; FaceID: John

Sys : Am I right that your name is John?

User: Yes that’s right. [yes]

Table 5.4: Two example dialog interactions in the reinforcement learning
scenario

ducted dialogs with 11 persons, 7 persons using distant-speech, some of them
haven’t used speech recognition before, and 4 persons using close-speech. The
experiments were conducted with two conditions: known and unknown. A
person at first was unknown, and after completing the learning dialog, name
and ID information was stored in the database to conduct further dialogs with
the known condition. To obtain more dialogs with the unknown condition
the ID and name information was removed from the database, to iteratively
conduct dialogs in the unknown and known conditions.

Table 5.4 shows two sample dialogs (original names are replaced by ‘Peter’
and ‘John’). The first dialog shows a sample dialog trained with reinforce-
ment learning. The second dialog shows a simple confirmation dialog with
only one user turn to confirm the correct recognition.

The close-speech experiment produced similar results as evaluation in
simulation. Average dialog length was 4.7 in the unknown condition and 2.6
in the known condition, excluding greeting and goodbye. The distant speech
experiment produced worse results than predicted by the simulation. While
first interactions with speech experts went very well, naive users had more
problems to complete the dialogs. For example, users spelled their names too
slowly, which was not handled correctly by automatic speech segmentation.
After an introduction users could complete the task more easily. Additional
errors were caused by spelling recognition performance which mostly was
not 100% correct. All numbers from the experiment are shown in table
5.5. The problems are rather to be assigned to system conditions than to
the dialog strategy. The numbers also show that the task to register an
unknown person is much harder than identifying a known person. Unknown
persons can neither be recognized by face ID or voice ID, or, if they could be
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recognized, but during previous interactions no name was stored, this cannot
be communicated by the system. So currently the only way to get known by
the system was by spelling one’s name, which was easier to complete when
used to the system.

1 2 3 3 4 5 6 7
unknown 5,3,4 3,7,5 15,15,15 14,4,5 15,15,12 5,4 15,11 15,15,6
known 3,8,1 1,4,2 1,3 1,6 1,3 3

Table 5.5: Number of turns during distant speech dialogs. The columns mark
subjects 1 to 7. 15 turns marks unsuccessful dialogs.

Recognizing an arbitrary name is a challenge for speech recognition, since
there are too many names than can be kept in the recognition vocabulary
at the same time. Experiments in the presented setup have been conducted
with a name vocabulary which was restricted to known persons. Unknown
names could be detected as OOV and can be spelled for learning. In the
following setup we extend this model by modeling recognition of names with
a dynamic vocabulary recognition approach. With this model, recognition
is first conducted on a small set of names from all known persons. In case
an OOV is detected, the speech recognizer automatically switches to a larger
vocabulary including the top 1000 names plus names from the social net-
work. As names from the larger vocabulary are associated to higher speech
recognition error rates, the error model of the speech recognizer is adapted
accordingly.

5.5 Reinforcement Learning with Multimodal User Model

The setting presented in the previous section already integrates different
types of spoken input plus face and voice identification. However, most as-
pects of multimodal integration are left for the dialog strategy. This sec-
tion introduces a further experiment, which integrates the multimodal user
ID model, which has already been introduced in chapter 4. Experiments
presented in chapter 4 show improvements for person identification. Ex-
periments presented in this section also show a better performance of the
dialog strategy, by integrating the multimodal user ID model. In this exper-
iment, the user ID model integrates observations made during the dialog in
a Bayesian network, such as face identification, speech input and dialog-level
observations, e.g. confirmations. It outputs a posterior probability for open
set person identification, i.e. for all persons from the knowledge base plus an
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‘unknown’ person model.

5.5.1 Data Set and Multimodal User Simulation

The experiment presented here extends the experiment from the previous
section by integrating training data for the user simulation from a larger
corpus, collected over a longer time period. The data set for face identification
corresponds to the set used in chapter 4 for multimodal user identification. As
we want to obtain results with external validity, the multimodal identification
part is restricted to face identification, for which a large number of realistic
data could be collected.

The user simulation models correspond to the models used in the previous
experiment with modifications to face ID simulation and speech error models
as follows. The motivation for computing new sequence hypotheses during
simulation from single hypotheses was to create higher variability of the data.
In the present set we already have a large number of interactions, and per
interaction, a large number of available hypotheses. Therefore, we decided
to use the original recognition results and vary the delay of arrival. The
alignment of face ID to turns, i.e. to spoken user input, is shown in figure
5.4. The different delay of arrival is obtained by using a random variable with
equal distribution in [0;5] that selects the number of images of the original
recording to skip (values i,j,k). This has the effect that each dialog can
produce different combinations of face ID hypotheses and speech input. In
addition it has become necessary to introduce an additional variable to model
the probability that face ID produces a hypothesis at all. Note that in the
above example (equal distribution in [0;5] per turn), it is very unlikely that
a complete session has no face ID input at all.
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Figure 5.4: Alignment of face ID hypotheses to spoken input (user turns)

The speech simulation uses the same statistical models as in the previous
experiment. The error model has been modified with an additional level of
variability, to address the aspect that incorrect recognitions of names are not
independent of each other. For example, the name of a specific person is not
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Information Slot MDP state MDP state values

first name FirstName empty, filled, confirmed, oov
FirstNameModality asr, spelling

last name LastName empty, filled, confirmed, oov
LastNameModality asr, spelling

userID userIDconf low,medium,high
max.90,max.95,max.99

Table 5.6: Dialog information slots and mapping to MDP states

covered even by the extended recognition vocabulary and can thus only be
learned by spelling. The probability for recognizing this name correctly from
ASR thus should be 0. We have addressed this aspect in the experiment by
defining the probability of understanding the name correctly as a random
variable which is selected once, at the beginning of each session. In the
experiment we have used the following values as correct recognition of first
name: 0.95;0.9;0.85;0.85;0.75;0.65;0.4;0.0.

5.5.2 MDP State Space

Also the state space of the MDP is built in a similar way as in the previous
experiment, see tables 5.6 and 5.7. The main differences are that now the
model integrates first and last names and user ID model. Both are mod-
eled by the user model, which also decides when to set an information slot,
e.g. each new input overwrites the existing value. The user ID state de-
scribes the probability of the hypothesis with the highest score. The values
max.90,max.95,max.99 correspond to the absolute probability values (e.g.
max.99 corresponds to 0.99 <= value <= 1.0, etc.) the values high and
medium are set when the ratio of the best two hypotheses is higher than
100.0 (high) and 5.0 (medium).

The actions that can be executed by the strategy, are very similar to the
action set described in the previous experiment. Table 5.8 lists the adapted
set of actions.

5.5.3 Experiments and Results

Experiments were conducted with three different state configurations. Model
1 (’FaceID1’) uses face ID input only instead of the user ID model, with the
same granularity of probability scores (6 equally distributed values). Model
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MDP state values description

number of failed attempts

nIDFailed 0,1+ to confirm a user ID

number of failed attempts

nASRFirstNameFailed 0,1,2+ to confirm a name from

speech recognition

number of failed attempts

nASRLastNameFailed 0,1,2+ to confirm a name from

speech recognition

lastAction action name of the previous action

Table 5.7: Dialog state variables in the MDP state

category actions

get information ask name, ask first-name, ask last-name
ask first-name-spelling, ask first-name-spelling

confirm conf first-name, conf last-name, conf ID
finish dialog accept-name, abort

Table 5.8: Set of dialog actions

2 (’BayesID2’) restricts the granularity of the userID model to the values
low, medium and max.90. It acts as a baseline to understand the contribu-
tion of more fine-grained probability levels of the user ID model. Model 3
(’BayesID3’) uses the full MDP state as described in section 5.5.2, i.e. as
BayesID2 it also includes the Bayesian user ID model.

Runtime behavior of the training algorithm was a critical issue in the pre-
vious experiment. Also this experiment needed significant optimization of the
runtime behavior. While the whole RL process has already been implemented
efficiently, the user ID model uses a Bayesian network implementation which
was not adequate for training millions of dialogs in an acceptable amount of
time. Two code optimizations led to a reduction of 99.7% of the runtime to
0.06ms per turn on a 2.1GHz Opteron processor (single threaded). The first
optimization was to reduce calculation costs of n-best lists wherever possible.
For example, output of the Bayesian network only requires the best two hy-
potheses, without creating a full n-best list including time-expensive sorting.
The second optimization was to break the Bayesian network computations
down to the least necessary computations. Since only the probability of the
user ID needs to be computed given the fixed set of observations, this can be
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condition reward

each additional turn -1
action repeated -1
ask for spelling -0.5
dialog aborted -5
dialog end with correct full name 15
dialog end with correct first name 3
dialog end with correct last name 2
dialog end with wrong name -10

Table 5.9: Reward Model

model
training
reward

evaluation
reward

dialog
success

#dialog
turns

FaceID1 14.14 12.88 86.4% 2.99
BayesID2 13.84 12.41 83.8% 2.97
BayesID3 15.05 15.03 91.3% 2.65

Table 5.10: Results of the different models

done very efficiently.
The reward model used in this experiment differs slightly from the pre-

vious model. The different rewards are shown in table 5.9. All reward cate-
gories are accumulated, especially, dialog end with correct full name receives
15+3+2 reward points.

Training was conducted with 10M training runs and 100k evaluation runs
on two different data sets. Table 5.10 shows the results of the three models
by comparing their rewards on training and evaluation sets and dialog suc-
cess rate, i.e. correct identification rate per dialog for known and unknown
persons, and the average number of dialog turns on the evaluation set. It
can be seen that the face ID integration is better than the Bayes model with
restricted model confidences, and that the full state space with probability
levels of the full Bayes model outperforms the other models. This indicates
that the posterior probability scores in fact contain valuable information.
The full Bayes model also generalizes better over different evaluation sets, as
it is the only model that does not degrade from the training to the evaluation
set.
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5.5.4 Discussion of the Results

The evaluation results confirm the initial assumption that the user model
provides additional information which is not captured by the state model in
the first experiment which integrates only face and voice ID in the classi-
fier. The Bayesian user model also shows higher robustness, when observing
the transfer results from training to evaluation conditions. However, this is
only the case, if the output probabilities of the Bayes net are represented in
the MDP state space with a sufficient level of detail. As can be seen from
‘BayesID2’, a lower resolution of the Bayes net output ignores relevant infor-
mation. Thus, a trade-off was found between detailed sampling for accurate
representation of the state space and a small number of sampling points for
efficient computation of reinforcement learning. Improvements in the future
might be to use the presented user model in a POMDP approach and inte-
grate the Bayesian model directly into the POMDP’s belief state. However,
up to date systems are still very limited in the number of dialog slots.

Another aspect which is frequently discussed in reinforcement learning, is
how to obtain a good reward model, as it is responsible for the outcome of the
training. So far, there is no common general approach to define the reward
function with less influence by the person who designs the experiments. As
the reward function defines what is desirable for the system, it merges a
multidimensional state into a scalar value by weighting different aspects.
Therefore, the output depends on the importance given to these aspects by
the human, e.g. to give higher weight to dialog length or to dialog success
rates.

In Prommer et al. (2006) we already have successfully tested reinforce-
ment learning in a multimodal user simulation for a barkeeper robot dialog,
including speech and pointing gestures input, with comparable results for
real-user and simulated user experiments. Also in this experiment, we argue
that the user simulation, due to the type of models, is close to a real human-
computer interaction, with the exception that especially subjective criteria
cannot be measured. Since the real interactions highly depend on the speech
recognition and face identification error rates in each dialog, which have high
variance for unknown persons, and in addition, we have observed a signif-
icant training factor by users, the variance of the results of each dialog is
high compared to other scenarios. For this reason, we prefer the simula-
tion results, where 100,000 dialogs have been conducted to obtain the final
evaluation results and attribute a higher reliability to the results obtained
during simulation. As subjective feedback cannot be assessed in such a sim-
ulation, a separate section is donated to assessment of subjective criteria in
the interACT receptionist in chapter 8.
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5.6 Conclusion

Reinforcement learning in multimodal user simulation produces results com-
parable to a handcrafted strategy with even better results in the conducted
experiments. It furthermore has the advantage that it can be obtained auto-
matically and be retrained for new environments.

Two experiments have been conducted with simple integration of mul-
timodal identification and a multimodal user model based on multimodal
fusion and a belief network. For both experiments, user simulation tech-
niques were presented for multimodal simulation. Significant speed ups have
been proposed for multimodal simulation to achieve realistic training times.

In the simple integration experiment, ID hypotheses from different recog-
nition components are integrated in dialog, and depending on the trained
conditions (error models, distant speech vs. close speech), the strategy se-
lects which hypothesis to trust and thus implicitly implements a confirmation
strategy over multiple modalities. Confidence measures evaluated for face ID
provide additional improvements. The system combines identification and
learning tasks within one dialog.

The second experiment which combines reinforcement learning with a
multimodal user ID model, the user model outperforms the simple integration
scheme especially on unseen data, which we attribute to the higher robustness
of the user model against varying recognition conditions.
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Chapter 6

Dialog-Based Learning for Knowledge

Acquisition

This chapter describes a dialog-based learning approach for knowledge ac-
quisition of a humanoid robot, a generic entity model, and a modular dialog
architecture which implements dialog modules for the realization of learn-
ing tasks. The approach presented here is applied to specific tasks in the
following chapters.

This chapter introduces the model of dialog-based learning, the knowl-
edge model, learning scheme, and dynamic knowledge sources of the dialog
system. Afterwards, the design of dialog modules for different learning tasks
is discussed and a model for knowledge mending is introduced. They are built
upon by the following chapters which describe and evaluate the realization
of the model for different learning tasks. The dialog architecture builds on
the TAPAS dialog manager described in the part I. It is extended here with
additional details of the learning strategies.

The knowledge base, i.e. descriptive knowledge representation, defines
and stores information and knowledge of the system, and provides a struc-
ture that can be updated by the dialog component. After describing the
knowledge model in the following, we introduce the dialog model and the
connection between both components.

6.1 Introduction to Dialog-Based Learning

As motivated in the introduction, especially section 1.1, the system studied
in this thesis uses learning strategies for

• extending the system’s knowledge and verifying knowledge

• correcting or discarding stored information

The setting for learning in this work is a fully developed system that
is extended during runtime (in contrast to work which focuses on learning
from scratch, e.g. early stage language acquisition). The problem defined
in the introduction of this thesis furthermore specifies that the goal is to
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acquire information about persons and objects in real-world scenarios, and
that these are represented in a knowledge model which combines semantic
information, properties and multimodal identification models. With the fully
developed dialog system, it will be possible to extend an existing environ-
ment model of objects (as described in the chapter on object learning) or to
build a model from scratch (as in the experiments with the interACT robot
receptionist and person modeling). The knowledge model presented in the
following therefore must be able to combine these representations, and must
be expendable by the dialog. Further challenges must be considered for the
conversational system, which must be able to deal with new words, recognize
new semantic constructs and detect unknown entities. Learning of a new
entity therefore must consider detecting where models must be updated and
updating speech vocabulary, recognition and understanding grammars, and
semantics and multimodal identification models on the fly. These require-
ments, and especially the aspect of long-term maintenance through dialog,
exceed the current state of the art, as laid out in section 2.4, and require a
new integrated approach for dialog-based learning.

In this chapter we argue how these aspects are covered by the learning
model. Evaluation of the approach is conducted in the following chapters
by testing single learning tasks (e.g. objects, semantic categories, person
models) and finally in a long term study of the interACT robot receptionist.

In contrast to (standard) supervised learning, dialog-based learning is
conducted autonomously by the robot without manual assignment of cor-
rect labels by annotation. The learning process is restricted to knowledge
provided by other agents - persons - and to kind of knowledge that can be
communicated by the chosen style of communication. The system, which im-
plements the dialog-based learning approach, has been studied in the context
of a humanoid robot, and is restricted to speech communication and visual
perception. As a consequence, the style of communication is restricted to
these modalities and their characteristics.

Still, a complex dialog system is required which can collect information
required to conduct task-specific operations on the knowledge base. To be
able to address separate issues separately, the dialog system is broken down
into separate interaction patterns implemented by dialog modules. Each
dialog module implements a separate learning task, e.g. identification of a
person, or learning a new word as a property of an object, which has a well-
defined dialog goal, has a reduced implementation complexity, and can be
combined with other modules for a complex dialog system. The design of the
knowledge model and dialog strategies considers an error-sensitive interaction
style and possible restrictions of the communication channels.
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6.2 Knowledge Model and Learning Scheme

6.2.1 General Object Entity Model

The general object entity model is a generic model for representing any ob-
ject or person in the knowledge base. Figure 6.1 displays the generic entity
model of the knowledge base. The model is tailored to capture the specific
requirements of multimodal representation, such as integration of semantic
models, multimodal classification data and reference to speech recognition
grammars, but it is also general enough to cover the learning tasks addressed
by this thesis. In the following sections, specialized models are used, as dif-
ferent entity classes have different sets of attributes, e.g. a person entity
has an attribute representing the first name, while a DVD has an attribute
representing the title of a DVD.

Every entity represents an object, which is a complex data structure.
Each object is associated with four main types of information.

• ID: Each object is associated with a unique identifier. The Objects-
Database contains all known objects with their identifier as primary
key for reference. Learning of a new ID corresponds to learning a new
object entity and storing the object in the database with a generated
ID.

• MMID: MMID represents multimodal classification data. For real
world objects, visual features are extracted from an image of the ob-
ject. In case of persons, MMID classifiers exist for face identification,
and voice identification. Learning of MMID information corresponds
to collecting classification data and either creating a new entry or ex-
tending existing MMID information.

• CLASS: The class of an object defines its semantic representation as a
concept in the ontology. Semantic grounding defines different types of
real world objects and distinguishes, e.g. a cup from a DVD. Learning
of CLASS corresponds to semantic grounding, to associate the object
with an ontological concept.

• ATTRIB: The ATTRIB represents a list of properties. The object’s
class can define which properties are available. Properties are impor-
tant also for spoken reference, e.g. a person’s name, or an object’s
color. Each attribute thus is described by a label, which is a textual
representation that can be uttered either by the user or by the sys-
tem. Learning of an attribute can include detection and learning of
new words in speech recognition.
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Figure 6.1: Knowledge entity model

Arrows which are painted as dashed lines in figure 6.1 represent connection
to the dialog system’s knowledge sources for speech recognition and under-
standing. While the connection between the label and the vocabulary can
easily be interpreted in terms of the label belonging to the speech recognizer’s
vocabulary, the other connections are more complex. Connections with the
grammar indicate that the grammar is automatically generated in part from
database information, utilizing the object entries’ property structure, and
generating grammar productions using general syntactic rules, in a way that
allows a user to refer to the object. This automatic generation of grammar
allows dynamic updates of recognition and understanding components of di-
alog manager and speech recognizer during runtime, as explained in section
6.3.2.

6.2.2 Learning with the Entity Model

Dialog-based learning is conducted incrementally, and updates of the knowl-
edge base are performed stepwise. A learning step is defined by a sequence
of dialog turns during a dialog session with a user, after which one or more
knowledge base update operations are performed. A dialog session is un-
derstood as a conversation between the system and a user and consists of a
sequence of consecutive dialog turns. The dialog system used here identifies
sessions by segmenting observed events by time constraints and explicit ses-
sion ending, such as saying “goodbye”. When creating a new entity in the
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knowledge base, a complex structure is created, with information from at
least one of the three categories MMID, CLASS and ATTRIB. Upon the cre-
ation of a new entity, a new ID is immediately associated with the entity. A
question, which depends on the specific scenario, is what kind of information
is necessary to associate with a new entity. The lower bound of necessary
information is defined by the requirement of recognizing and identifying the
object in further interactions. If possible, the system should also have lexical
information to refer to the object during a communication with the user.
However, this depends on the type of the object. For example, a person can
be stored with first name and last name only. MMID and other information
can then be added later, incrementally.

Besides the complex object structure, learning can be applied to single
categories. For example, a strategy to learn a spoken word can be used to
learn a new attribute of an object, and similarly to learn the name of a
person. A modular definition of dialog strategies is designed for this purpose
and is described with a detailed analysis in the following sections.

6.2.3 Identification with the Entity Model

It is clear that identification of an object is important to update the model in-
crementally with new information. This entity model allows different ways to
identify an object. Pure classification is possible using MMID only. But ad-
ditional steps are necessary to communicate the result. The speech modality
provides information about ATTRIB and CLASS, and allows flexible formu-
lations to describe an object. For example, to distinguish between a coke
bottle and a book, the user could say “the book”. In this example, the user
refers to the class of the object, according to some ontological model. To
distinguish two books, more details about the desired book are used. Such
information can also be provided by other modalities, for example by 3D
pointing gestures as deictic reference (Holzapfel et al. (2004)). Structured
semantic information (CLASS), and location in the environment (ATTRIB),
are provided by the model for deictic resolution. To distinguish persons, the
system requires first and last name, which in most cases are unique and suf-
ficient for identification, also for unknown persons. Similarly, different pieces
of information can be combined to identify an object.

6.2.4 Entity Model for Persons

For representation of persons the generic object entity model is specified as
follows. Figure 6.2 shows the more specific entity model with a set of sample
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attributes. Differences to the generic object entity model are that the ID is
now called UserID, the CLASS is now fixed as the semantic concept person,
and ATTRIB and MMID are specified. The MMID contains two models,
face identification and voice identification. The ATTRIB contains a sample
set of attributes which is first name and last name, and two attributes of a
social user model, the role within an organization and the research interest.
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Figure 6.2: Adapted entity model for persons

6.3 Dialog Knowledge Resources

In addition to the knowledge base, which stores information collected by the
system, the dialog manager uses further knowledge sources as communication
knowledge for dialog behavior and knowledge sources for recognition and
understanding.

The dialog knowledge resources comprise representation knowledge and
interaction knowledge. Representation knowledge defines the aspects of the
knowledge, which the system can talk about, and which it can extend by
acquiring new information. Interaction knowledge tells the system how to
obtain the knowledge via a communication process, i.e. the dialog strategy
for acquiring new information.

6.3.1 Object Model

The (representation) knowledge sources are shown in the generic object entity
model, figure 6.1, as an ObjectsDatabase, an Ontology of semantic concepts,
a Grammar, Classifier Models and Vocab.
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The ObjectsDatabase contains information about the environment includ-
ing real world objects, persons and social relations. Each real world object
is represented by a database entry which includes an ID (unique label), and
contains information about its properties, semantic category (type), values
for object properties, and an association to a list of observed textual descrip-
tions. And as such, it implements the data structure of the knowledge base,
presented in the previous chapter. The ID of an object is associated to the
label of the object recognizer, for example granini juice 0001 ; respectively
hartwig holzapfel 0001 as an example of a person. The type values asso-
ciates an object instances with ontological concepts, for example the object
‘granini juice’ is associated with the concept obj juice. Values of object prop-
erties store additional information about the object instance, such as brand
‘granini’ or color ‘yellow’. Observed textual descriptions could be ‘granini
juice’.

Type information and semantic categories of objects are modeled in the
Ontology. The object ontology provides inheritance information (isA hier-
archy of concepts with multiple inheritance) and defines properties that can
be associated with objects. To be able to talk about object types, e.g. refer
to the concept obj juice by using the word ‘juice’, an additional mapping
file is defined which is used for grammar creation in speech recognition and
understanding and for spoken output. Besides representations of objects, the
ontology also models speech act information and object properties. The on-
tology formalism follows an object oriented approach, introduced in Denecke
(2000), which also allows multiple inheritance. Thus, a concept can inherit
type classes and functional classes at the same time.

The Grammar resource represents lexical and grammatical information
of the objects for spoken interaction including speech recognition and under-
standing. The grammar describes how objects are embedded in grammatical
constructs, i.e. their lexical representation and how the objects are refer-
enced in speech. In the following example: “please open the granini juice
for me”, the term ‘granini juice’ is a description of an object which is stored
in the database. The lexical tokens — here ‘granini juice’ — are read from
the database and dynamically update the grammar at a predefined posi-
tion defined by semantic categories. The lexical tokens are modeled by the
Vocabulary, a resource mainly maintained by the speech recognizer with or-
thographic and phonetic models of words.

Finally, Classifier Models encode information for multimodal classifica-
tion. The models used during runtime correspond to commonly used clas-
sifiers, such as visual person identification, object recognition etc. These
models can be derived from data collected during interactions or be com-
puted from manually labeled data through a training process.
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6.3.2 Language Understanding and Grammars

The definition of grammars in our system follows the approach and formalism
of semantic context free grammars, see Denecke (2000). This formalism de-
fines a grammar based on semantic categories, in addition to syntactic infor-
mation with the formalism of vectorized grammar nodes. A grammar node
is a 3-dimensional vector of semantic category (SEM), syntactic category
(SYN), and subcategory (SUB), and is represented by <SEM,SYN,SUB>.
With this construction, the grammars inherently carry semantic information
in their grammatical structure. The grammar’s syntax is defined in the Java
Speech Grammar Format (JSGF)1.

The grammar is shared by the speech recognizer, which uses a context free
grammar as a language model, and by the dialog manager, which uses these
grammars for natural language understanding and contextual weight adap-
tation. In the presented approach, parts of the grammar are generated auto-
matically from database and ontological information. Rule generation from
database information makes use of semantic categories and rule inheritance,
which is defined in the following way. A non-terminal symbol that is defined
on the right hand side of a rule, e.g. <obj openable,NP, >, is automatically
extended to its descendants, e.g. <obj juice,NP, >, if <obj openable,NP, >
is not defined in the rule set. Such inheritance approaches are applied to
functional object categories, e.g. openable, portable, eatable, etc. These func-
tional categories are used throughout the grammar to integrate actions /
speech acts with objects that are applicable to these actions. For example
“please open the granini juice for me” is covered by a grammar rule that
interrelates the speech act act open with an object of type openable. The
simplified rule looks as follows:

public <act_open,VP,_> =

<please> <open,V,_> <obj_openable,NP,_> <recv_me>;

The syntactic categories used in the example are VP for verb-phrase, V for
verb, and NP for noun-phrase. Subcategories are not used here, but are used
in the grammar, e.g. for singular and plural rules or contextual utterances.

The actual generation of grammar rules from database information is
realized with the following approach. So called ‘import’ statements which
are specified as the right-hand side of a grammar rule, define grammar rule
generation with database content. The presented grammar generation ap-
proach from database information extends previous work on a multimedia
access dialog system in Gieselmann and Holzapfel (2005), by the definition
of more complex import statements to match object descriptions, and sup-

1http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/
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porting interactive extension of the models. The left hand side of the rule is
a standard non-terminal symbol, e.g. <obj juice db>, the right hand side of
the rule is started with a VOID element, which conforms to the JSGF syntax
specification. The import definition includes DB connection, imported fields
and semantic conversion rules with the syntax import DB-ref entry1 entry2
.. entryn. Each entry consists of a table-field pair with an optional list of se-
mantic values in the form of table field { sem type1 sem value1 ... sem typek
sem valuek }. For example, the following rule with import statement

public <obj_juice,N,_> =

<VOID> { import exampleDB

objects_juice brand \{ BRAND objects_juice:brand \}

objects_juice type \{ TYPE import \} };

updates the right-hand side of the rule and generates the following produc-
tions

public <obj_juice,N,_> =

granini { BRAND granini } juice { TYPE juice }

| valensina { BRAND valensina } juice { TYPE juice } ;

from the database entries

type flavor brand onto type
juice apple granini obj juice
juice orange granini obj juice
juice orange valensina obj juice

To allow understanding of any known property in combination with any
known object type, for example ‘red cup’, ‘blue DVD’, or unobserved com-
binations such as ‘green juice’, can be parsed by combining two independent
rules for properties and object types. The latter example is necessary to
understand assignment of yet unobserved properties. If one wants to restrict
grammar coverage to only known property-object combinations, the import
statement is specified accordingly with more than one imported field, as done
in the example above.

As mentioned above, the grammars are shared by the dialog manager and
the speech recognizer. For the purpose of using the grammars as language
models, the grammars are converted to a self-contained standard context
free grammar. This is done by the Tapas dialog tools in a compilation step
at system startup. During system runtime the speech recognizer’s grammar
and the dialog system’s grammar share the same structure, but are differ-
ent instances. Automatic updates to the grammar, which result from the
learning method, are always modifications to the database rather than to
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the grammar structure. The learning step updates the database and modi-
fies the runtime objects of speech recognizer and dialog manager accordingly
during runtime, by adding new entries to the corresponding grammar rules.
With this approach, the grammars of dialog manager and speech recognizer
are always kept synchronized, a prerequisite for tight coupling of both com-
ponents. The advantage of tight coupling is that speech recognition output
already represents a parse-tree, and no additional parsing is necessary, to
initiate language understanding, which maps grammar nodes to TFS nodes.
Another advantage of tight coupling is that the dialog manager can maintain
a generic expectations model. For example when the system asks the user
to name the color of an object, the expectations model contains ontological
concepts that can describe a color, and subsequently the speech recognizer’s
grammar rules are adapted to better fit the expected input. Since the expec-
tations model contains (among others) speech acts such as inform color and
property descriptions such prp color which are mapped to grammar rules
<inform color,VP, >, <prp color,A, >, <prp color,AP, >, the presented
learning approach does not interfere with this model and works in combina-
tion with this approach as well. As it has been shown previously, contextual
weighting improves speech recognition accuracy significantly Holzapfel and
Waibel (2006), especially for short responses, such as ‘yes’, ‘red’, or ‘yellow’.
It offers a benefit especially for large grammars, e.g. to prevent incorrect
recognition of an object type, when a color has been said.

6.3.3 Specified Object Ontology

The robot’s knowledge about objects is represented in a specific object model.
The model specifies object classes, properties and views (visual classification
models) of the object. Classes and properties are modeled in an ontology,
where a real object can be associated with multiple properties and classes.
This allows different attributes to be associated with one object. Examples
for properties are color, name, and title of an object.

Figure 6.3 shows an excerpt from the system’s ontology, which is used for
object learning experiments presented in chapter 7. Properties are listed at
the lower part of the figure. The middle section shows object classes (also
referred to as types). The upper section shows functional concepts that model
how an object can be used.

The ontology defines object classes hierarchically. General objects are
displayed at the top; more specific (inheriting) objects are displayed further
down in the ontology. Each object can inherit from one or more functional
concepts. Each child of an object inherits the parent’s functional classes.
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Figure 6.3: Ontology organization with functional concepts, type hierarchy
and properties; example extracted from ontology for object learning experi-
ments

This inheritance relation is used in the definition of semantics. As mentioned
in the system overview, typed feature structures (TFS) Carpenter (1992)
are used to represent semantics in the dialog system. The definition of TFS
allows types from a hierarchy, including multiple inheritance.

For example, an object instance of a kitchen object has the semantic
concept kitchen object, and all inheriting concepts, such as crockery, drink
and food, are kitchen objects as well. In further inheritance, the concept
drink is split into the concepts hot drink and cold drink.

The ontology’s functional concepts describe what can be done with an
object. For example, all objects which are described in the presented ontology
are portable. However, only a bottle is openable whereas coffee is drinkable.
These functional classes are used to refer to objects in the semantic grammar
for speech recognition and understanding. For example, if the user tells the
robot to open something, the concept which is used in the grammar is of type
openable. All objects that inherit from openable are automatically inserted
into the grammar and can be referenced by the user. The complete list of
functional classes used in the experiments covers nine categories: cook, drink,
eat, fill, open, play, carry, switch on, and watch.
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6.4 Functions for Knowledge Base Update

Updating the knowledge base is conducted by the dialog manager with a
small number of update functions. In this section we introduce the update
functions and their implementation via background and interactive tasks. We
refer to update as any modification of the knowledge base. The different up-
date functions are insert, modify, and delete. With respect to the special
requirements of the multimodal knowledge base, it is necessary to describe
the update functions and describe which information must be obtained to
execute each function.

Following the knowledge entity model, an update function is defined for
each of ID, CLASS, MMID and ATTRIB. Each function thus is implemented
with a different granularity level. To insert a new ID, a complex entity is
inserted. For example, a person as a complex entity is inserted with an
ID, a class, a set of attributes, and optionally faceID information. A lower
information bound is used to insert the entity, to ensure that the entity can be
identified afterwards during dialog interactions. For example, we can defined
a lower information bound for a person-ID by the first and last name of a
person. A new person-ID can only be inserted with the first name and the
last name; other information, such as faceID and other personal information,
is optional. Inserting a new CLASS corresponds to creating a new class in the
ontology. The CLASS category is especially useful during interactive learning
of new objects, but plays a minor role in learning person IDs. Inserting a new
MMID mainly updates the classifier (i.e. faceID, voiceID, object recognition)
for which a one-to-one association exists of classifier output and ID. Inserting
a new ATTRIB is implemented on two levels. On the vocabulary level,
new words are learned and added to the vocabulary of knowledge base and
speech recognizer, and are associated to existing semantic attributes (e.g.
first name). On the semantic level, new attributes are inserted, e.g. semantic
properties of an object.

The modify function has the same characteristics as the insert function,
with the difference that additional information is necessary what to modify.
The delete function can potentially be implemented for all categories. It
is usually executed by a confirmation dialog or by offline processing, and
requires only the information which entry to remove from the knowledge
base. In case of complex entries, relations are deleted as well. Examples
for using modify are to change the first name of a person (ATTRIBUTE)
or to merge to person entities (ID). Examples for using delete are to delete
labels (ATTRIBUTE), delete complete entities (ID), or to delete MMID data.
Among these examples, deleting MMID data is only conducted during offline
processing.
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knowledge
acquisition acquisition task description

type

init phase initialization of knowledge base through
information retrieval and information
extraction

background interaction active while the conversation is going on
acquisition obtain background information

offline reconfiguration of the knowledge base removing
deprecated entries adding new and updated
information

words and names new words are learned and update speech
vocabulary

semantics semantic grounding and learning of new object’s
interactive relations
acquisition objects complex real world objects

person-ID real persons as instances of complex knowledge
entities

social information obtaining and affirming information about
social networks of persons and social user models

Table 6.1: Terminology and Classification of Knowledge Acquisition in the
Dialog System

Update functions are implemented by interactive knowledge acquisition,
but also by background processing tasks. Table 6.1 lists a set of knowledge
acquisition tasks.

6.5 Dialog Modules for Interactive Knowledge Acquisition

Updates during the interaction are executed by the dialog strategy. For this
purpose, a modular dialog strategy approach has been chosen, which offers
benefits in comparison to a unified dialog strategy. Other existing modular
approach to dialog systems are agent-oriented dialog systems, e.g. Turunen
and Hakulinen (2003); Nakano et al. (2006), or interaction sequences Denecke
(2002), which allow to define module-like building blocks of a dialog strategy
in a generic approach.

A dialog module can be a small module to learn a new word, e.g. a
person’s name or an object property, including word acquisition by spelling
and confirmation questions to verify pronunciation. A dialog module can
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also simply be used to identify a person. A module, which is associated
with update functionality, can execute one or more update functions after
successful completion.

Following up on the discussion in the previous section (section 6.4), table
6.1 lists the main tasks that are implemented by dialog modules. These
tasks represent the most challenging problems that the dialog system has to
solve, to collect information necessary to execute the update functions. At
the same time, they cover all aspects discussed so far, which are to insert
or update a new ID, CLASS, MMID, ATTRIB and attribute labels, and are
executed by dialog modules. Each of these tasks is fairly complex, so in the
following, separate chapters are devoted to some of the tasks including the
task’s detailed implementation, experiments and evaluation.

The challenge of the top level of the modular dialog approach is to decide
which module to activate for processing and reacting to the current input.
In this work, the active module is determined by a score function, which is
executed each time when qualifying events are observed. The module with
the highest score is selected for preferred execution and conducts its strategy.
The score (equation 6.1) of each module m is defined by the score that m
can generally handle the input, the score that the input matches the current
module’s expectation, and by a penalty for switching to m from module mt−1.
The switching penalty also depends on the current state, because the penalty
is different if the module mt−1 has been completed.

scorem(input, state) = (6.1)

scorem(input) + expectm(input, state)− penalty(m,mt−1, state)

Application of the modular approach allows separation of concerns. For ex-
ample, each single module can be optimized individually. It is even possible
to develop different implementations of a single module, for example a hand-
crafted strategy and a strategy trained by reinforcement learning, and switch
between different implementations of the same module. By separate mod-
ule implementations, this approach also offers to mix dialog approaches. For
example, strategy optimization with reinforcement learning or POMDP mod-
els has been successful mostly on small dialog tasks. This way, small tasks
are created by training single modules, while other modules can be created
manually.

Figure 6.4 shows the architecture of the modular dialog approach. It high-
lights the components relevant to the selection and execution of the modules.
An example of the modular dialog is shown in table 6.2. After the greeting
has been conducted, the userID module is started to identify the person. In
this example, this is initiated by simply asking the user for his name. By the
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Figure 6.4: Modular dialog architecture

interaction speech act system goal module score
U: hello greeting greeting hello 0.9
S: Hi, what’s your name? ask name identify userID
U: my name is Peter inform name identify userID 0.8
S: is your first name Peter? ask confirm identify userID
U: yes confirm identify userID 0.8
... ... social talk social 0.5

Table 6.2: Example dialog with module selection

end of the userID module, the user has confirmed his name. The confidence
now is high enough to end the module and execute an update function. Note
that only for the purpose of simplicity of the example, the last name has been
omitted. If the user already exists in the database, i.e. the system identifies a
known person, only the MMID data is updated with newly collected data. If
the user is unknown to the system, a new ID is created with newly collected
MMID data, and the given name as the initial attribute. Furthermore, the
system’s user model now contains the ID of the user. Information that is
collected in the following, e.g. by the social talk module, can then be used
to update attributes of this person’s model.
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6.6 Dialog Module for Learning Person Entities

With the newly introduced knowledge entity model and update functions,
we can now discuss the userID dialog module, which can insert or update a
complex person entity model. This module builds on multimodal processing
and user identification as introduded in chapters 3 and 4. Execution of
the dialog module can either be initiated by the system (i.e. on system
initiative), or by the user, e.g., the user states an explicit request such as “do
you recognize me?”.

The userID module implements the insert function (ID, MMID, LABEL)
and modify function (MMID). The CLASS and ATTRIB categories are fixed,
and are not modified. Execution of the insert function(s) is conducted when
the goal of the dialog modules has been reached, which is defined in different
ways for handcrafted and reinforcement learning modules implementations.
In any case, acquisition of first and last name is the lower bound of infor-
mation, before an ID is updated. In case of a handcrafted dialog strategy,
the condition is achieved, when the user confirms his first and last name.
In case of a dialog strategy trained by reinforcement learning, the goal con-
dition is implicitly defined in the state-action space of the strategy. When
the reinforcement learning strategy is designed appropriately, the effect is
very similar, and usually finalizes the strategy after confirmation or high
classification confidence.

One question is how to built a dialog that can handle known and un-
known persons. In the present system both cases are addressed by a joint
module, as the system does not know in advance whether the person exists
in the knowledge base or not, and unknown person classifiers, such as face
identification, have not provided reliable estimates by the beginning of the
dialog. The system can therefore only tell if the person is known or unknown
when the person has been identified by the module. The insert(ID) function
is applicable, when the person is identified as unknown. In this case, the
system obtains the user’s name, and after finalizing the module, a new ID is
created in the database, with CLASS person, collected MMID data, and the
attributes first name and last name. However, initialization of the MMID
data is not as straight forward as it seems at first glance. To complicate
things, the system runs in a real-life environment and different persons can
pass the robot while someone is talking to the system. Recording of MMID
data is thus performed continuously by a person tracker to obtain a con-
tinuous track of the user (robustness issues have been discussed in detail in
chapter 4). When the dialog session has ended, the system needs a a little
while to reconfigure the vision and voice ID models with newly collected data
and store the new models with modified parameters on the hard drive. In
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the tested system this took roughly 10 seconds, depending on the size of the
user database.

Updating MMID data for a known person is conducted by the same dia-
log module. Usually, the module finalizes much faster than for an unknown
person, for example, because the person’s name is already known, or when
the person is recognized immediately by faceID. The purpose of updating
the MMID data for a known person, is to adapt the models and gain more
robustness, e.g., against different light conditions, and different characteris-
tics of the person. Note that additional robustness can be gained by offline
processes, which can optimize ID models with (data-)age-based weighting of
collected MMID data, when the system is in ‘sleep’ mode.

�����������	
�����

�����������	
������


����������	
������


����������	
������


��������

��	
��

���
��

����������

��
�������

Figure 6.5: Confirmation states of the person identification module and as-
sociated learning functions

The dialog module can also learn new words during the interaction. A
state diagram, which shows the module’s confirmation states is shown in
figure 6.5. Once the user’s first name is confirmed during the dialog, the
system enters the state first name confirmed. If the name is new to the sys-
tem, the associated name learning function is called (as described in section
7.2), which updates the speech recognizer’s vocabulary, dictionary, language
model classes and grammar. A sample dialog with name learning is shown in
table 6.3. The last name of the person does not exist in the vocabulary of the
speech recognizer, and thus it is recognized as an OOV. To learn the name,
the dialog strategy asks for spelling to obtain the grapheme representation.
After confirmation of the name, the new name is learned. After confirma-
tion of the full name, a new ID is created in the database, and MMID data,
CLASS, and ATTRIB are created as described above.
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speech speech act state space update

S: I am Robbi Robinson, ask name FIRST: empty
what is your name? LAST : empty
U: My name is Hartwig inform name [ FIRST: spoken
Holzapfel FIRST ”Hartwig” LAST : OOV

LAST ”OOV”
]

S: Did you say, your ask confirm FIRST: spoken
first name is Hartwig? LAST : OOV
U: yes confirm name FIRST: confirmed

LAST : OOV
S: However, I didn’t get ask confirm FIRST: confirmed
your last name, LAST : OOV
can you please repeat it?
U: my last name inform name [ FIRST: confirmed
is Holzapfel LAST ”OOV” LAST : OOV

]
S: could you ask spelling FIRST: confirmed
please spell that? LAST : OOV
U: H O L Z A P F E L inform spelling FIRST: confirmed

LAST : spelling
S: Did you say, your ask confirm FIRST: confirmed
last name is Holzapfel? LAST : spelling
U: yes confirm name FIRST: confirmed

LAST : confirmed insert(LABEL)
S: nice to meet you,
Hartwig

module finalized insert(ID)

Table 6.3: Sample dialog between system and ‘unknown’ user. Last name is
not covered by speech vocabulary and is learned during the dialog

6.7 Dialog Modules for Knowledge Mending

As the learning processes deal with uncertain information, another important
aspect for maintaining a knowledge base is to deal with incorrect entries in
the knowledge base by deleting information. This task is accomplished by
the knowledge mending dialog module. The knowledge mending module can
resolve errors as incorrectly learned names or multiple entities for a single
person. Also dynamics of the real world lead to errors in the knowledge base,
e.g. the status of an employee changes, or one-time visitors are registered by
the system.

This section and the respective evaluation in chapter 10 include results
from the Diplomarbeit of Philipp Große, which he has written at the Univer-
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sität Karlsruhe (TH), supervised by the author of this thesis. In particular,
design on the clustering approach and experiments with the dialog-based in-
teraction have been joint work, details on confidence estimation are described
in greater detail in Grosse (2009).

6.7.1 Error Types

Figure 6.6 depicts the four errors that occur in the knowledge base, after
incorrect updates by the learning dialogs. They categorize errors of person
ID entries, which we understand as the most relevant errors, as these have
the highest influence on the quality of the knowledge base and multimodal
classification models. Other errors can also occur, but are not addressed
here. Error (1) occurs if one person is modeled by two different IDs, but
the names of the person are phonetically equivalent, e.g. ‘Stephan’ and ‘Ste-
fan’. This error can happen if the person speaks his/her name, and the
system chooses the correct pronunciation, but incorrect word model. Er-
ror (2) occurs if one person is modeled by two different IDs, but the names
of the person are not phonetically equivalent, e.g. ‘Stephan’ and ‘Skrefan’.
Such errors mostly happen when the user confirms an incorrect name, e.g.
after incorrect spelling recognition and the user is not completely sure if
the system got the name right, or the users accept a slight mispronuncia-
tion. This error is enforced by the text-to-speech pronunciation, as some
names sound a bit ‘weird’ (quoted user feedback), and users cannot tell
if the name is pronounced correctly. Error (3) occurs if the ground truth
changes over time, e.g. a person was relevant only in the past. Error (4)
occurs if two different persons are represented by the same ID. This error
mostly happens due to communication problems and sometimes insufficient
understanding. The following short dialog excerpt demonstrates the prob-
lem. System: Hello, you’re Philipp, right? (meaning: system has a
hypothesis from face identification and wants to confirm it) User: Yes?

(meaning: ‘hello’? and user did not understand what the system said)

6.7.2 Dialog Tasks

As all other modules, this module is restricted to information that can be
communicated verbally. This is a strong restriction, because the system
cannot select any image and obtain a label for this image from the user, as
is the case in standard active learning, e.g. Guo and Schuurmans (2007).

In contrast, dialog-based learning must rely on means of communication.
Table 6.4 lists tasks that are implemented by dialog modules to conduct
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Figure 6.6: Incorrect database entry types of person identification

task treated error

is-valid incorrect name has been learned

i.e. no person exists with learned name

up-to-date deprecated entry or
incorrect name has been learned

merge one person has several entries
e.g. Stephan and Stefan

Table 6.4: Tasks for error resolution with interactive dialogs

knowledge mending with interactive dialogs. Obviously, an entity is referred
to indirectly, for which the system can use the entity’s attributes. Thus,
the first task from table 6.4 – is-valid – checks, if a given name can be
considered as a valid entry. Note that this does not directly imply that the
corresponding entity is valid. To improve the likelihood of speaking about
the right entity and to interpret the dialog result correctly, different ways
of pronouncing a name are considered (especially foreign names), the risk of
not understanding a name correctly (for example bad pronunciation of the
text-to-speech system), and differences in grapheme representation with the
same pronunciation (e.g. ‘Stephan’ is pronounced the same way as ‘Stefan’).

A similar question targets at finding out, whether an entry is up to date,
for example by asking something like“does Stephan still work here?”or“have
you seen Stephan lately?”.

A more complex operation targets at merging two entities with different
names. For this purpose unsupervised clustering is conducted with proba-
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bility estimation that two clusters including different sessions represent the
same person. The dialog task is to obtain the right label (usually one of the
two entities). This operation makes sense if the session with the incorrect
label contains other valuable information. Otherwise, the knowledge base
error can also be resolved with the is-valid task.

The list could be extended by more tasks, for similar and extended func-
tionality. Thus we do not claim that the list is extensive. For example, a
correct task would be a promising extension to solve mispronunciation, as a
combination of identifying the incorrect entity and then replacing the data.

It can easily be imagined that the number of possible questions that can
be asked to improve the knowledge base is larger than the number of questions
that can be posed in a realistic setting without overburdening the user. Thus
the user is a valuable but ‘limited resource’. Similar to work done in active
learning, it is important to provide a ranking of critical entries. These critical
entries are the first in line to be checked by the mending dialogs. We present
a ranking method, which produces a highly informative ranking. The rank
computation is the result of a clustering and label mapping process, which
implicitly already generates an assumption about incorrectly learned sessions
and suggests corrections.

6.7.3 Mending Dialog Process

The objective of the presented knowledge mending approach is to model pro-
active error correction by the robot, with support from humans. At this
point, it should be reminded that the learning method differs from state-of-
the art active learning methods, where samples can be labeled with direct
associations. That means that in our system, the user does not interact
with a graphical user interface, where the user can label images of persons
or respectively reject or accept names learned by the robot.

Figure 6.7 shows the integration of the mending dialogs and offline pro-
cesses with clustering and mapping steps. The knowledge base is the database
of persons collected during interactive learning dialogs, as indicated by the
Learning Dialogs node. In regular time intervals, the system conducts offline
processing, during which a cluster analysis is performed on the current state
of the database to identify sessions that potentially have incorrect labels.
During this process, a mapping table of person IDs (label mapping) is cre-
ated and consecutive ranking is conducted, to rank problematic labels. The
purpose of the clustering is to find sessions that represent the same person,
but might be labeled incorrectly. Initially each cluster is associated with a
single session. Clusters are merged by agglomerative clustering.
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Figure 6.7: Knowledge Mending Architecture

As the original recordings in the corpus is already pre-segmented as ses-
sions, the clustering algorithm treats a single sessions as the smallest unit,
and clustering is conducted on sessions. However, the association of a session
to a person ID label cannot directly communicated to the user, but the user
can be asked for example about the name of a person, etc. Steps which are
conducted after the clustering of sessions generally deal with labels, and also
problem detection includes e.g. confusion of labels. The evaluation in chapter
10 shows significant reduction of the knowledge base errors by both, auto-
matic clustering and dialog approaches. Chapter 10 also compares clustering
parameters and corresponding quality improvements.
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6.7.4 Cluster Analysis

The features used by the clustering process are extracted from recorded face
identification data. As an agglomerative clustering approach, a distance mea-
sure is used for merging the two closest clusters in each step, until a stopping
criterion is met. Ideally, the distance measure expresses a probability that
two clusters represent the same person, where clusters are merged until the
probability exceeds a predefined error level. In statistical analysis, signif-
icance tests, e.g. a t-test, are conducted to test if two sample sets differ
significantly. In many machine learning applications, however, the given
data do not fulfill the requirement of normal distribution of the t-test. Ad-
ditionally, variation of the features is more dominated by different recording
sessions (inter session variation) than by variations during one session (intra
session variation). Figure 6.8 depicts the different variation aspects. As the
inter session variation cannot solely be described by intra session variation,
a specific data set is necessary to estimate this variation. We achieve such
a model by training a confidence measure by logistic regression, where the
input features express distance (of cluster centroids) and data variation met-
rics, which roughly compares to the idea of mean value and variance in a
t-test.
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Figure 6.8: Pictorial example of intra-cluster variation, inter-cluster variation
and inter-person variation
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The distance measure is defined for pairs of clusters, and estimates the
probability that both clusters represent the same person. We have chosen
to use a confidence measure, as it represents a probability estimate. There-
fore, the stopping criterion (e.g. confidence exceeds the 5% error level) has
a meaningful interpretation and the threshold can be defined as a probabil-
ity level (e.g. 5% error tolerance). The confidence measure is obtained by
training a logistic regression model on a held-out data set.

6.7.5 Clustering Confidence

The data used for evaluation is the corpus data which was automatically
recorded by the robot receptionist, which will be described in the follow-
ing chapters. From the automatically recorded corpus, 59 sessions have been
used for training and evaluation of the offline clustering approach, the remain-
ing 106 sessions were used for evaluation of the clustering and dialog-based
mending approaches.

As has been determined in Grosse (2009), the best features for confidence
estimation on the given task are cluster mean distance (mean Euclidian dis-
tance of face identification coefficients) and cluster size measured by the
number of sessions in the cluster. To evaluate the benefit of the clustering
confidence measure, we take a look at the clustering plot. An error plot of the
clustering approach is shown in figure 6.9. It shows four lines representing
the fusion error rate, session rewrite rate, error rate of session ID labels, error
level of the confidence estimation (i.e. 1 minus confidence) and the correct
fusion detection rate. The error rates are calculated as follows. The fusion
error rate is the percentage of sessions that are clustered incorrectly (i.e. if
the cluster contains a label that does not match). The session rewrite rate
is calculated the same way as the fusion error rate, with the exception that
the ground truth is not the human annotation but the labels acquired by the
system. The session ID label error rate is the number of sessions with incor-
rect labels that are not clustered together with the correct label, divided by
the number of all sessions. The correct fusion rate is the number of correctly
fused sessions divided by the number of all sessions. A session is counted as
fused correctly if the sessions cluster contains more than one session, and all
sessions are from the same person.

The figure also shows that the confidence, trained by logistic regression
with cluster mean distance as input features, provides a reliable measure of
when to stop clustering. The critical area, when the confidence increases
is marked red. Most knowledge base errors with a low reverse confidence
happen because of incorrect assignment of labels during learning.
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Figure 6.9: Analysis of automatic clustering of sessions and evaluation plot
of clustering confidence

In most cases, these errors can be resolved completely by the system,
as can be seen in the following evaluation. For example, when a person has
spoken multiple times with the system, labels which have falsely been learned
but fall into the same cluster with correctly learned labels might simply be
overruled. Just to remind: In some situations it is safer to discard data
from the problematic sessions (instead of re-labeling problematic sessions
with the overruling label of a cluster), as to prevent vision models from
getting corrupted by false samples. Many of the remaining errors match the
type of errors that can be resolved by the dialog interactions. For example,
some errors are due to incorrect name spelling, which is predominant in the
visitor category, but infrequent in the employee category due to good prior
vocabulary models.

6.7.6 Offline Problem Detection

The second step during offline processing is a per-cluster ‘label mapping’. It
represents a weighted list of labels per cluster, where weights are computed
as defined in equation 6.2, where a cluster is a set of sessions and the label
of a session is the personID label, which has been assigned to the session by
the system.

Universität Karlsruhe (TH)



116 Dialog-Based Learning for Knowledge Acquisition

weightj(A) =
freqj(A)

|clusterj|s
(6.2)

where

clusterj = clusterwithindexj (6.3)

|clusterj|s = numberofsessionsinclusterj (6.4)

freqj(A) = |{sid|label(sid) = A, sid ∈ clusterj}| (6.5)

The final step of creating a list of problematic labels is to calculate scores,
which are now independent of the clusters and sessions. To rank the prob-
lematic labels, different problem detection scores are used as defined in the
following, which are then combined by standard rank-list fusion (low ranks
indicate problems). Rank list fusion was chosen as the scores address sep-
arate problems, and the scales of these scores are not directly comparable.
The rank-session score (equation 6.6) gives a low rank to labels which are
recognized in a small number of sessions, as a large number of sessions in-
dicates that the name has often been confirmed. The rank-entropy score
(equation 6.7) gives a low rank to labels which occur in clusters with high
variation of labels without dominance of a single label. The rank-entropy for
a label is only calculated on the cluster which contains the largest number of
sessions of that label, i.e. for the label’s main cluster, as otherwise the metric
is diluted by influence of other clusters. The rank-confusion score (equation
6.9) gives a low rank to labels which can be confused with a large number of
other labels. The rank-time score (equation 6.10) gives a low rank to labels
which have recently been added.

ranksessions(A) = |Sessions(A)| (6.6)

rankentropy(A) = entropy(argmaxjfreqj(A))−1 (6.7)

= −(
∑

L∈labelsj

weightj(L) ∗ log2weightj(L))−1 (6.8)

rankconfusion(A) = |LabelMap(A)|−1l (6.9)

ranktime(A) = lastseen(A)−1 (6.10)

The function LabelMap refers to a global label mapping, computed over
those clusters, which contain a session that is annotated with the desired
label. The remaining functions are defined as follows:

Sessions(A) = {sid|label(sid) = A} (6.11)

labelsj = {L ∈ labels|freqj(L) > 0} (6.12)

LabelMap(A) = {L ∈ labels|∃j : freqj(A) ∗ freqj(L) > 0} (6.13)
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task treated error

merge two person entries one person has several entries:
e.g. Stephan and Stefan

discard old entry deprecated entry:
e.g. visitor who does not return
or employee who has left the lab

Table 6.5: Tasks for error resolution with offline processing

The resulting per-cluster label mapping can be interpreted as automatic er-
ror correction, if the dominant label in a cluster is signed over to the other
sessions in the cluster or if conflicting sessions are removed. In this case the
offline processing is a fully autonomous error correction approach. Experi-
ments, presented in the evaluation chapter 10, show that with pure offline
processing, indeed a significant number of errors can be fixed, but even bet-
ter and more reliable results are obtained by combining the offline processing
with interactive mending dialogs. Examples of problems that can be solved
without interaction are shown in table 6.5.

6.8 Background Knowledge Acquisition

Background acquisition of new information fulfills three purposes (see also
table 6.1). The first purpose is creating an initial knowledge base (‘init’
phase). It is based on manually predefined information and as such it de-
scribes a controlled search task or data mining task and implements the insert
function. The second purpose is to acquire information during an active in-
teraction with the user. Information is provided during dialog, which exceeds
information from the knowledge base, and a search task or data mining task
is triggered to obtain information which can be used directly in dialog. It
does not necessarily implement any of the update functions of the knowledge
base. More importantly, it provides background information for the interac-
tive learning task. The third purpose, here referred to as the ‘offline’ part,
is to conduct background updates of the knowledge base, while the dialog
is inactive. It acquires new information (insertion) by similar methods as
the init phase with modified query data collected during interactive learning.
Different results than during init can also be due to modified searchable in-
formation, e.g. modified web sites or updated data corpora. It also modifies
or deletes knowledge base entries. Information collected during interactions
and knowledge base structure is analyzed to detect superfluous, incorrect or
contradictory information. The practicable usage of this is that incorrectly
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stored persons can be deleted from the database, or information which is
not required any more but harms overall interaction quality can be removed.
The criterion how the knowledge base is modified depends on the specific
metric. Different metrics can emphasize for example knowledge base quality,
interaction quality, or user satisfaction.

6.9 Evaluation Metrics for an Autonomous Learning System

This chapter should be completed with a few notes on how to evaluate such
a learning system and to give an overview of evaluation metrics that can be
derived from the previous sections. Specific metrics will be described in the
following sections, where applied. It is obvious that evaluation metrics are
important to measure the success of an autonomous learning system. Since
a system usually is developed to optimize a specific metric, such a metric ob-
viously influences its behavior and functionality. The approach presented in
this work applies a holistic approach, i.e. besides evaluation of single compo-
nents, and evaluation of the system is conducted as a so-called “end-to-end”
evaluation. In accordance to existing evaluation efforts in dialog systems,
interaction-specific aspects need to be evaluated, i.e. quality of the dialog.
To measure the success of learning, it is necessary to assess the quality of
the knowledge base. Interaction-specific metrics inform about efficiency (e.g.
“dialog success”) and subjective perception (e.g. “user friendliness”) of di-
alogs conducted with users. Metrics about the quality of the knowledge base
inform about quality of the learning result. Both metrics cannot be opti-
mized independently. Optimizing dialog success does not necessarily mean
to also optimize knowledge base quality. Within an evaluation over time it
can be shown what kind of effect a single dialog has on the development of
the knowledge base. A holistic approach thus has to consider both categories.

6.10 Conclusion

This chapter has introduced a knowledge model for representing multimodal
information, dialog modules, and background learning methods for updating
the knowledge model. Objects are represented as complex entities, and it
has been shown, how speech descriptions and semantics are defined for rep-
resentation and learning. The dialog modules implement knowledge update
functions for extending the knowledge model or to support knowledge mend-
ing. A knowledge mending approach has been presented as an unsupervised
approach to detect problems in the knowledge base, which can be resolved
automatically or through pro-active interactions with a human user.
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Chapter 7

Knowledge Acquisition in Dialog: Objects

and Semantics

This chapter describes learning of objects and related semantics in a human-
robot interaction scenario. The system which is presented has been deployed
to and tested on the humanoid robot Armar III. Also, the experiments pre-
sented in the following sections have been conducted on the same robot.
The scenario for the system is a household environment for the humanoid
robot Armar III, in which the robot is confronted with different everyday-
life objects. Some of these objects that the robot encounters are unknown
to the robot. The robot shall detect the unknown objects, acquire informa-
tion about the object, store information in the knowledge base and recognize
these newly learned objects in further encounters. The learning tasks are con-
ducted during standard task execution of the robot, which are for example
requests from a human to bring a specific object to someone.

The learning scenario and learning dialog resembles other learning tasks
presented in this work in many ways. The robot needs to learn visual in-
formation about the object. The robot needs to acquire verbal information,
including object names and properties, also in combination with new words
learning. Visual information is required to recognize the object again in the
environment. Verbal information is required to understand when the object
is referenced by the user, or to produce spoken output by the robot. Different
from the learning dialogs presented so far, a new dialog approach for learn-
ing semantics is presented here, which addresses the special requirements of
acquiring object semantics.

The presented approach and experiments have been conducted with an
integrated dialog system including several learning modules for acquiring se-
mantic knowledge, learning new words in speech recognition, and integration
with visual object recognition and learning.

The experiments for learning objects are organized in this chapter as fol-
lows: Section 7.1 describes system architecture, integrated components, and
overview of the knowledge model for interactive learning of objects. Section
7.2 describes detection of unknown information and new words acquisition in
dialog. Section 7.3 presents an algorithm to symbol grounding for assigning

Universität Karlsruhe (TH)



120 Knowledge Acquisition in Dialog: Objects and Semantics

a semantic category to an unknown object in dialog. Section 7.4 describes
experiments, evaluation and results.

The experiments presented here have already been published in Holzapfel
et al. (2008b), this chapter is slightly modified from the original publication.
The publication has been written together with Daniel Neubig during his
Diplomarbeit at the Universität Karlsruhe (TH), which has been supervised
by the author of this thesis. The parts on new words acquisition have partly
been published in Holzapfel et al. (2007) in cooperation with Thomas Schaaf
and the speech recognition part has further been developed in a Diplomarbeit
at the Universität Karlsruhe (TH) by Stefan Ziesemer, also supervised by the
author of this thesis.

7.1 System Overview

Our approach for interactive learning of objects integrates several knowledge
sources with the following aspects:

• semantic information about the object is acquired in dialog. Semantic
information covers the type of the object and several properties.

• verbal information and descriptions for spoken reference can be ac-
quired for a new object, which includes introduction of new words.

• visual information is acquired during dialog for grounding of internal
object models in the real world.

In contrast to existing work, as laid out in section 2.4, the presented approach
addresses an integrated system and covers all of these aspects within one sys-
tem, also allowing new words and deep semantics from a structured ontology.
Though this chapter does not intend to provide a fully developed theory of
how objects should be learned over a longer time period by a humanoid robot,
it rather intends to study a first integrated system and test application of
the more generic dialog-based learning approach to object learning, includ-
ing an algorithm for acquiring semantic concepts for object types, usage and
properties.

The learning scenario is Armar III in a household environment, with ob-
jects from the kitchen and more general household items. Before explicit
learning by ‘learning dialogs’ can be initiated, certain triggers are used to
determine when an unknown object has been found, e.g. by the object recog-
nition component, or when unknown words occur. Such a ‘learning dialog’
can acquire information for known or unknown objects, and clarify informa-
tion. Learning covers new semantic categories, new descriptions for existing
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Figure 7.1: Integration of the objects recognition system in the dialog system

objects including new words, learning of object properties, and association
with visual object IDs. These tasks implement the insert and modify func-
tions, for complex knowledge entities, CLASS, MMID, new labels for existing
attributes, and new attributes.

Experiments reported later in this chapter have been conducted on the
humanoid robot Armar III, which is described by Asfour et al. (2006). Con-
ducting the experiments with the humanoid robot Armar III, leads to a typ-
ical human-robot interaction scenario, which defines the type of interaction,
and defines the perceptual system for our approach. While from a techni-
cal point of view, the humanoid robot is only used as a perceptual system
which can go to and look at different places, users reported that interactions
with the humanoid robot is fun, and the robot represents a communication
partner they can talk to. Using the humanoid robot also serves as a proof of
concept that the approach works on the target platform.

Figure 7.1 shows the integration of the different components within the
dialog system. Dialog management is handled by the Tapas dialog tools as
introduced in the first part of this thesis. In comparison to other multimodal
fusion approaches presented so far, this setting uses a loose coupling scheme
for object recognition, where recognition results are interpreted as high level
events by the dialog manager. The central component for this approach is the
dialog manager which conducts the learning strategy and interaction with the
user. The dialog system setup is similar in all learning scenarios. The main
difference here is the integration of an object recognizer. As in other scenarios
studied in this thesis, the system setup includes speech recognition, unknown
word detection and new words learning with the Janus speech recognizer.
The unknown word model is integrated into the context-free grammar, which
also gives information about a possible semantic meaning of the OOV, based
on grammatical construction of the utterance. The models for recognizing
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new words for objects and new person names are identical, and both can
use dynamic vocabulary approaches, as described for name recognition in
section 8.1. The speech recognizer is embedded in the Tapas dialog system
as described in chapter 3.

Visual processing uses stereo vision from the robotic head’s cameras. For
visual processing, detection and recognition of objects, we have integrated
an object recognizer provided by Azad et al. (2007) and the software toolkit
IVT1. Though visual object recognition is not the main focus of this work, we
want to give a brief description of the recognizer’s functionality to the extent
that is necessary to follow the experiments. It can recognize textured objects
using SIFT features (Lowe, 1999), and untextured objects using 3D shape
models and color. Because learning of 3D shape models requires complex
modeling and scanning of the object from different angles to observe its
structure, this approach is currently not realistically applicable for interactive
learning in real-time. Rather, the use of SIFT features allows to learn an
object from features extracted from a single image taken from the scene with
stereo vision, during the learning dialog and in real-time. Another advantage
of this approach, is that the object’s features are mostly independent of
scaling, angle of view, rotation, light conditions and their position in the
input image.

The object recognizer is able to recognize objects and detect unknown
objects in real-time, which is triggered by the dialog system. For learning of
new objects, the object recognizer can store acquired visual features, together
with a given label during runtime, such that the object can be recognized
immediately after learning. The label is generated by the dialog system
and represents an internal ‘ID’ that is used to identify an object instance.
The visual features are automatically segmented from a scene, using stereo
vision, depth information and occurrence of visual features. The features for
unknown object detection are kept in memory, until a decision is provided by
the dialog manager to store the unknown object or to discard the features.
More details regarding the visual object recognizer can be found in Azad
et al. (2007).

7.2 Learning in Dialog and New Words Acquisition

7.2.1 Detecting Deficient Information

A dialog for learning is initiated by the system during normal interaction,
when the system detects deficient information. In the scenario addressed by

1Integrating Vision Toolkit - IVT: http://ivt.sourceforge.net
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our system, the goal of most dialogs is to instruct the robot to do a specific
task. A typical task-oriented dialog is conducted when the user instructs the
system to bring a specific object, serve something to drink, or put something
into the dishwasher. Within such dialogs we have extracted two categories
of deficient information.

• the user input cannot be understood correctly by the system given
verbal information

• the specified object cannot be found, or an unknown object is detected

The first case addresses speech recognition and understanding, the second
case addresses visual processing of objects in the environment. Both cases
can serve as so-called “deficiency detectors”.

Deficient information in vision occurs when the object specified by the
user cannot be found, or when an unknown object is detected by the sys-
tem. In either case, the system first needs to detect an unknown object, i.e.
obtain visual features for an object which is referred to by the user. If the
system does not detect an unknown object, it cannot store any features, and
therefore cannot learn information about the object. Thus the detection of
features and, together with that, segmentation of the object’s shape are pre-
requisites for the learning process. In addition to feature detection, the object
recognizer uses 3D information for object segmentation. Thus the robot can
learn the object when it is held in front of the robot’s camera, as shown in
figure 7.2 in the leftmost image. The object can also be learned from visual
features only, when no 3D segmentation is possible and the background does
not have rich texture, as is shown in figure 7.2 in the rightmost image. For
the experiments described in this chapter, objects have been put at a specific
location, next to the sink. This way the test subjects did not have to pay
attention to where to put the object so that the robot can find it again and
comparable dialogs could be produced. The objects where put on a black
surface, with a standard kitchen background, e.g. parts of a cupboard and
the sink can be seen in the pictures taken by the robot. In the experiments,
the objects’ shapes could be segmented reliably from feature clusters only.

Deficient information in speech recognition occurs when the user produces
input that cannot correctly be recognized by the system. Gieselmann and
Stenneken (2006) describe different error situations that occur in human-
robot interaction, for which data from text-based interactions and interac-
tions with the real robot have been analyzed. The largest number of mis-
communication errors occurs due to new syntactic and semantic concepts,
i.e. new formulations, new objects, new goals, and meta-communication. In
cases of unknown objects, user input typically leads to sentences that are not
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Figure 7.2: Snapshots taken from the robot camera. From left to right: object
held in front of the robot’s camera, multiple objects recognition, unknown
object recognition during the experiment with feature extraction and shape
segmentation.

covered by the grammar. As described earlier in this chapter, the grammar
is created automatically from database entries, so that only attributes de-
scribing known objects are covered by the grammar. This has the advantage
that speech recognition performs well for known utterances, but the disad-
vantage that new formulations are not covered by the grammar. To prevent
this problem, the standard approach in speech recognition would be to ex-
tend the vocabulary until all words which have to be covered are contained
in the vocabulary. However, in case of object names it is not clear which
words need to be covered by the vocabulary in advance, since unpredictable
words can occur. In speech recognition evaluation this effect is typically very
small, since the standard word-error-rate (WER) is hardly affected, if once
in a while, a word cannot be recognized. For the robot in turn, exactly these
words can be very important. To show the effect of WER let us consider the
example “please open the granini juice for me” which has been used previ-
ously. If the word ‘granini’ (let this be an unknown word) is misrecognized,
the WER is affected in the same way, as if the word ‘please’ was not under-
stood. However, in the first case, the main information for disambiguating
the object in the environment is lost. Extending the vocabulary with a very
large number of possible words is not a good option, since speech recognition
rates for known objects would drop drastically. However, approaches are
known to detect unknown words in speech. We use out-of-vocabulary words
(OOVs) which are recognized by the system when an unknown word has been
spoken. Our approach uses an implementation of so called Head-Tail mod-
els from Schaaf (2001) for detection of unknown words. Given an example
sentence, which contains the command to switch on an unknown object, the
grammar might recognize: “please open the OOV juice for me”. Here, speech
recognition detects an unknown word, which is encoded as OOV. For the
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detection, both language model scores (defined by the grammar) and acous-
tic scores (acoustic speech recognition models) are considered. The example
sentence also gives us a first hint about the semantic category of the un-
known word by observing verb-object subcategorization information, by the
semantic frame given through the grammatical construct. Using OOV mod-
els has originally been studied for n-gram models. In Holzapfel et al. (2007)
this approach is also described for usage with context free grammars for the
recognition of unknown names. The same approach has been adopted for
the present system. Following this approach, unknown words can only occur
at specific positions in the grammar. The used grammar formalism defines
OOV (‘oov’) symbols in the grammar in the following way. For example a
noun phrase describing an object can be formulated as

public <obj_object,NP,_> =

oov |

<obj_juice_db>|

<prp_juice,A,_> <obj_juice_db>;

Here, ‘oov’ replaces a full noun phrase. In analogy, the OOV can also replace
a property, syntactically represented as an adjective or a noun.

7.2.2 New Words Learning

Once unknown words have been detected in the utterance, these words can
be learned by the system in dialog. During the experiments, these words are
either properties of objects, object types, or part of the object names. In
addition to the dialogs to obtain semantic information of the object, which
is described in the next section, the system needs to acquire spelling and
phonetic information of the word and update the speech recognizer’s vo-
cabulary, dictionary and language model. A pronunciation for a new word
is generated with a grapheme-to-phoneme converter, which is available with
text-to-speech tools, such as Festival or Cepstral. Both a grapheme represen-
tation, which is obtained e.g. from spelling, and the phoneme representation
are needed to update the speech recognizer’s dictionary. In addition to the
dictionary, the shared recognition and understanding grammars of speech
recognizer and dialog manager are updated. Both can be extended on the
fly, and are updated during dialog, once the new word has been confirmed
by the user.
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7.3 Interactive Learning of Semantic Categories for Objects

7.3.1 Learning Object Properties

The algorithm for learning properties and semantics of an unknown object
includes obtaining a description from speech and clarifying properties with
their values and semantic types, which is done in a dialog with the human.
The dialog for learning properties allows the user to formulate any property
of the object which he thinks is useful. The system already understands
different values, such as color and size. Other properties, such as title or
name (e.g. a DVD has usually been referenced by its title), are restricted
to names stored in the database. When the user formulates a description
which is not covered by existing property values, the speech recognizer can
detect this as unknown words and reports an OOV detection to the dialog
manager. In the case of OOV detection, the user is asked again to say only
the property of the object, since additional repeats increase the chance of
understanding the word correctly. If the word cannot be understood correctly,
which is determined by obtaining feedback from the user, the unknown word
can also be spelled by the user. The user is only asked for spelling, if the
OOV-part of utterance is relatively short (which is determined by phoneme
recognition on the utterance). For spoken output, standard grapheme-to-
phoneme rules of the text-to-speech synthesis component are used. If the
user confirms the word, it is then learned by the system, by adding the
word to the speech recognizer’s dictionary, and to the speech recognition
and understanding grammars. The new word can then immediately be used
within the same dialog. For better understanding of several words which
form the title of an object e.g. ‘a book on advances in robot control’ an
additional speech recognition module with n-gram language model and a
large vocabulary can be used.

A new word learning dialog is also initiated when the user refers to an
object, e.g. “bring me the red cup”and an OOV is detected for the utterance.
In this case the system first needs to find out whether the unknown word
is part of the object’s type description or if it represents a property. The
learning dialog then is conducted as described above.

7.3.2 Learning an Object’s Categories

Learning of object types is conducted with an approach that combines open
input by the user, who can name a category, and a prompted mode which
implements browsing through the ontology. In the open input mode, the user
can name a category which he would use to classify the object. The open
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Figure 7.3: Learning scheme to acquire semantic categories for an object and
dialog flow

input mode is also referred to as one shot learning, since one input by the
user is enough to describe the category. A simple one shot learning dialog
follows the example:

system: What type of object is this? open question
user: It is a juice type is set to juice
system: Did you say that the object is a juice? confirmation
user: Yes type confirmed

One shot learning has the advantage of quickly obtaining a hypothesis
for a category. Drawbacks are that it is not necessarily obvious to the user,
how the robot’s internal object hierarchy is structured and the user does not
know what the system can understand. For example, it was observed that
functional categories pose even stronger problems to the one shot learning
approach than object types. As a reply to the question“what can you do with
this object” some persons replied with very complex statements, and some
had to think for some time before they could come up with an answer. Thus,
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in the present experiments, open questions are only asked regarding the type
of the object, and functional classes can be queried by system initiative only.
For example the system can ask “can you eat this?” or “is this edible?” when
asking for the functional concept eatable. Thus, the dialog is improved, when
the system can choose the wording. The browsing mode addresses exactly
this problem, and can choose from questions for object types and functional
classes for disambiguation. It starts at a base category and iteratively tries
to classify the object as one of the subclasses of the current category. This
way, the structure of the ontology can be communicated and input by the
user is restricted to a smaller set of possible meanings than in the open input
case. Drawbacks of the browse mode are that this mode can be tiring for
users, and that for large ontologies, descending the hierarchy can even take
too many turns to be practically applicable. An example of the browsing
mode is as follows:

system: is the item a kitchen object? ask type
user: yes type: kitchen object
system: can you eat this object? ask function
user: no type: kitchen object
system: can you drink this object? ask function
user: yes type: drink
system: is this a hot drink? ask type
user: no type: drink
system: is this a juice? ask type
user: yes type: juice

The combined approach begins with a single one shot approach and then
gives the opportunity to refine the category be browsing the neighborhood.
The dialog to conduct this strategy begins with a question to specify the
class of the object (open input). The input is confirmed. If no children of
the class are found in the hierarchy, the dialog ends here. Otherwise the
robot switches to the browsing mode until a leaf node has been found in the
hierarchy, or no further refinement is given by the user. The questions in
browsing mode address children of the selected type or functional concepts
to disambiguate subclasses and are formulated as yes/no questions. Figure
7.3 depicts this algorithm in a flow diagram. The start-node named “find ini-
tial class” represents the one-shot learning node. After the one-shot learning,
the learned class can be refined by browsing the ontology’s type hierarchy or
functional concepts. After posting one question to the user and a confirma-
tion response (bottom node in the flow diagram), the loop is entered again.
The combined approach makes sense because of several aspects. (i) Due to
speech recognition and understanding problems the desired category cannot
be understood. (ii) The user does not know the category description used by
the system. (iii) The user communicates a category that is too general, e.g.
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‘drink’. This general category can then be refined to obtain a better model.

7.4 Experiments and Evaluation

7.4.1 Experimental Setup

For evaluation of the approach, experiments were conducted with the robot
in the kitchen environment. The users could, for example, command the
robot to bring a specific object from a location, or report which objects he
can see at a specific location. The robot knows about several locations from
its environment model, such as the sink, sideboard, stove, cupboard, fridge,
etc. The robot can also understand directions such as “next to the sink”,
“left side of the sideboard”, “in the middle of the sideboard”, “in the fridge”,
etc. For identifying a requested object (grounding), the robot can ask for the
location, which can be given by speech or using pointing gestures. If multiple
objects are found at a location the robot conducts a simple dialog listing all
known objects to clarify which object is unknown. If there is more than
one unknown object, the user would have to move the object and present
the object to the robot e.g. by holding the object in his hand as shown
in figure 7.2 in the leftmost image. For the sake of obtaining comparable
dialogs during the presented experiments, the setting was restricted to the
sink location, with at most one unknown object and grounding restricted to
speech. In case there is an unknown object at the given location, the robot
ideally would ask the user to help him to learn the object and identify the
object’s properties. If an unknown object or unknown words occur during
the interaction, learning dialogs are initiated by the system as described in
the previous section.

The experiments comprise 52 dialogs which were conducted with six naive
users - who have not interacted with a robot before. The goal of these dialogs
was to have the robot serve a specific object or get information from the robot
which objects he can see at a predefined position in the kitchen. Each of these
dialogs includes detection of objects at the sink location. When an unknown
object or an unknown word is detected, the learning dialogs were initiated.
This way, a dialog could be very short (if only known object), in this case
these dialogs are used to evaluate detection rates. Or, the dialogs took as
long as required to reach the learning goal. For example, learning an object’s
property does not always include learning a new word. In this case, these
dialogs are used to evaluate the different learning tasks of properties and
concepts.

The users did not know in advance, which objects were known to the
robot, and which objects were unknown. The interaction started after a
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total category 1 category 2 comment

dialog condition unknown known dialogs with known

#dialogs: 52 40 12 and unknown objects

unknown detection correct failed interaction by the user

#detections: 40 39 1 in 5 cases

known detection correct failed interaction by the user

#detections: 12 10 2 in 2 cases

detection summary correct failed
#detections: 49 3

Table 7.1: Overview of the experiment and recognition rates of visual object
recognition

brief introduction about the scenario and the robot’s task. No details were
given about how the robot performs its learning strategies to prevent biasing
of the users. The dialog started with a greeting or directly with a request
from the user to either serve a specific object, or to report which objects the
robot could see. The following evaluation section describes results, success
rates and recognition rates from these dialogs.

7.4.2 Evaluation

Meaningful numbers for the experimented scenario of interactions and learn-
ing dialogs are success rates (number of successful dialogs) and dialog length
(measured in number of turns). The first metric is important to measure
the effectiveness of the approach. The second metric is important to mea-
sure the efficiency and burden for the user. Numbers are reported here for
learning object categories and object properties for unknown objects. Also,
a comparison of different learning strategies for object categories is made.

An overview of the experiment conditions and conducted dialogs is shown
in table 7.1. The table shows a total number of 52 conducted dialogs, the
separation into known (12) and unknown (40) objects conditions, and de-
tection rates of known and unknown objects. A closer look at the different
categories shows that out of 39 objects that could correctly be detected as
unknown objects, five objects required interaction by the user. The same
situation happened in the known condition, where two objects required in-
teraction by the user. Interaction by the user means that the object could
not be detected upon the first try, e.g. because the object was completely or
partly out of the robot’s field of view. The users then turned the objects into
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task #dialogs success avg turns

learn object property 40 83% (33) 1.8
- with known words 25 87% (22) 1.4
- with spelling 15 74% (11) 2.6

Table 7.2: The three learning tasks and successful completion rates in the
experiment.

the robot’s field of view after which in all these cases, the object was classified
correctly. To further analyze the errors that were made by the system, one
can look at the failed attempts, which sum up to 3 out of 52. The reasons for
failure were that in one case, visual features were not sufficient for detection,
and in two cases, known and unknown categories were confused.

These requests provided the basis for the evaluation of the learning algo-
rithm in dialog. Learning of an object according to the algorithm described
above includes learning of the object description for reference in speech, prop-
erties of the object, and the type of the object. The description of the object
however, is a combination of object properties and the type of the object.
For example, the ‘red cup’ is an example of combining the type of the object
(the cup) with a property of the object (red) to create a description that can
be used in speech (see section 6.3.2 for details). The first part was to under-
stand properties of the object. In the second step the type of the object was
narrowed down in more detail. The two parts are addressed by the different
learning dialogs described earlier, and are evaluated separately. Table 7.2
shows the number of dialogs, success rates and average number of turns of
dialogs conducted for learning of object properties. Learning of a property
value was possible in two ways. Either the word was known (25 dialogs) or
the word was recognized as unknown, in which case the word could be spelled
(15 dialogs).

The more complex learning task was to learn the semantic category of an
object, for which 34 dialogs were conducted. In 82% of these cases, the dialog
could be completed successfully with the learning algorithm that applies the
combined approach. The combined approach was applied in all 34 dialogs.
From the conducted dialogs, comparison can be drawn with the one shot
learning approach and the browsing strategy. The combination of different
possibilities, how a class can be learned by the system, resulted in different
combinations of one shot learning and browsing. In 47% of the dialogs, the
class was specified directly by the user, and could be learned directly as a
pure one shot learning. After the one shot attempt, the dialog was stopped by
the user. The same number of dialogs (additional 16 dialogs) was conducted,
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task #dialogs success avg turns

One Shot Learning (47%) 16 81% (13) 2
Browse (6%) 2 100% (2) 10.5
Combined (47%) 16 81% (13) 4.2
all one shot (100%) 34 68% (23) 2
all combined (100%) 34 82% (28) 3.6

Table 7.3: Application of one shot learning, browsing and the combined
approach during the experiments for acquisition of the semantic category.

where the class was refined after the one shot learning step. The remaining
6% of the dialogs was conducted as pure browsing of the ontology, after the
one shot learning approach did not result in a recognized type that could be
used for browsing. The browsing dialog then started with the most general
class in the hierarchy. This way, the user could complete the dialog quickly
with one shot learning within only two turns, if it was clear to him how to
categorize the object.

Table 7.3 shows the figures and results from the learning dialogs for ac-
quisition of the semantic category. The top three rows give the numbers
for the three approaches as conducted in the experiment. The table shows
the number of dialogs conducted for each strategy, the rates and numbers
of successful dialogs and the average number of turns per successful dialog.
Since the combined approach starts with a one shot learning hypothesis and
then refines the class in further step with a browsing strategy, comparison
can be drawn between one shot learning and the combined approach on all
34 samples. The number of all successful dialogs with the combined strategy
is the sum of all successful dialogs. In case of the one shot learning approach,
the two cases which could be learned only with the browsing strategy are
classified as failures for the one shot learning approach, since no category
could be identified. In addition, 3 samples of the remaining dialogs would
not report an acceptable result after the one shot learning step.

7.5 Results and Discussion

The presented approach for object learning is able to detect deficient infor-
mation in dialogs, and initiate a learning strategy to acquire information
for learning unknown objects. The experiments show that acquisition of
the semantic category is an important but non-trivial task and significant
improvements can be achieved by intelligent strategy design. It can be con-
cluded from the evaluation that the approach is adequate for learning of
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unknown objects, both for the learning phase and recognition accuracy of
the learned objects. The dialog modules for learning integrate with the ar-
chitecture presented previously and shows extensibility of the approach also
to object learning and semantic category acquisition.

The approach has been tested with speech recognition experts and naive
users, and has been evaluated with naive users, who are not familiar with
speech recognition. Especially during the experiments with naive users it can
be observed that simple dialog structures are more successful than complex
dialog structures, which seem to require too much prior knowledge by the
user about how the system processes information internally. The dialogs in
these experiments have been purely task oriented, and the modules for object
learning were not integrated with strategies for social interaction. In these
experiments this was accepted by the users, mostly because they mainly were
interested in achieving the learning goal. Other experiments conducted for
this thesis suggest that when a system is used more often, the users wish for
variability and social interaction.

In comparison to related work, the approach presented here implements
a full learning system that covers the three categories new words learning,
visual features learning for real objects, and learning semantics. However, it
should be noted that the approach presented here does not intend to build a
knowledge base completely from scratch, e.g. as the approach by Roy (2003).
Rather, the approach is used to extend an existing knowledge base with
new information and categorize unknown objects within a mostly predefined
knowledge structure.

The system is able to learn new words, properties and types of objects.
Both, properties and types of objects are important to learn since both con-
tribute to the description of an object, which is used by users to reference an
object. During reference to objects, different properties are specified by the
users. The speech recognition and understanding grammar thus supports a
variable combination of different properties and types for each object. Since
objects are categorized with different levels of abstraction, it is necessary to
model functionalities as separate concepts in the ontology. The robot can
then distinguish different functionalities of an object, which can be given
from context in speech or from the description of the user.

The combined approach for learning of object classes has shown better
success rates than pure one shot learning. It requires only little more interac-
tion with the user (in terms of number of turns), but it produces significantly
better results in categorizing the object according to error rates and accu-
racy. These first results show that the algorithm provides an accurate means
to categorize unknown objects in terms of semantic categories within an on-
tology.
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In contrast to pure recognition output of the object recognizer, employing
dialog capabilities significantly improves the final recognition results after
confirmation. The dialog uses implicit and explicit confirmation strategies,
which both give the user the opportunity to interrupt the robot and correct
the recognition hypothesis in the case of errors.

The evaluated system is able to categorize and learn new objects in dialog
with the user. The resulting knowledge base allows the system to recognize
the detected object, talk about the object and understand when the user
refers to the new object in speech. However, there are also restrictions of the
approach, and there are different directions for future research in this field.
Further work could be directed at combining understanding approaches, such
as the one presented here, with knowledge acquisition how the robot can ma-
nipulate the object. To do so, first, additional perceptual information needs
to be collected, e.g. to better segment the object’s shape with 3D informa-
tion acquisition. Integration with vision currently requires that segmentation
of an object is possible, e.g. by 3D or feature-based segmentation, and that
grounding has already been done, when the learning dialog is initiated.

Limitations of the presented approach, are that currently all object types
and properties are modeled statically. To some extent, dynamic changes in
the environment are reflected as properties that change over time, which is
already covered by the ability to associate one object with different cate-
gories. Also different verbal representations can be associated with objects.
However, the system does not cover dynamics in a way that a cup of tea
only is associated with tea if it is filled with tea, and that it would be as-
sociated with coffee, if it were filled with coffee. Modeling such information
requires extending the approach with a state model that keeps track of object
properties, such as ‘dirty’, ‘full’, etc. Some other properties make only sense
if they are interpreted as user-specific properties. For example a person’s
most favorite cup cannot be generalized as being the most favorite cup of
everybody. But this generalization is indeed appropriate for some proper-
ties. For example, a red cup remains to be a red cup, or a book continues
to have the same title, which does not change over time. For user specific
properties, user ID information could be integrated as an additional variable
to relate user specific properties to specific users. Another approach can be
to correct wrongly stored information or discard information that leads to
contradictions in the knowledge base but is not necessary for interaction with
the user. To assess how the system evolves over time additional experiments
are required, e.g. to quantify effects of storing objects at a wrong position in
the ontology.

Another limitation is the restriction to variability of speech input using
complex constructions. While the presented approach has aimed at building
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flexible understanding based on generic grammar constructions, the way that
humans communicate with each other can include more variability. To give an
example, in a pre-study to find out what kind of information can be obtained
from the user, a human-human interaction experiment was conducted. One
of the questions about a spoon was “what can you do with it?”. The answer
to this question was “you can spoon something with it.”. Other answers to
other questions ended in longer story telling that were too complex for state
of the art language understanding and interpretation methods, which still
require the system designer to build dialogs that restrict the user to conform
to some kind of interaction style that can be understood by the system.

7.6 Conclusion

An approach for object learning by means of dialog-based learning has been
presented, including detecting deficient information and conducting a dialog
for learning unknown objects using a generic entity model, which incorpo-
rates multimodal knowledge sources. It can be concluded from the evaluation
that the approach offers the user a method to teach the system new objects,
which can then be used immediately afterwards in the communication. The
usage of the new objects is more flexible than other approaches as the sys-
tem acquires structured semantic information about the object during the
learning phase. The presented combined approach of one-shot learning and
browsing for semantic category acquisition achieves better results than ap-
plying one-shot learning or browsing, as one-shot learning leads to inaccurate
results and browsing is too inefficient. Aspects that have been brought up
in this work but are still open questions are how to best handle different
user preferences, how to address contradictory understanding of ontological
structures by humans and fuzzy categorization of objects. Furthermore, the
presented approach focuses on persistent properties rather than automatic
recognition of dynamic properties, e.g. the fill state of a cup.

Though object learning is still an open task, the presented work demon-
strates advancements and allows to interactively acquire not only labels but
structure information about objects and generic description of properties and
use the newly created models for recognition. The experiments show that ac-
quisition of the semantic category is an important but non-trivial task and
significant improvements can be achieved by intelligent strategy design. The
dialog modules for learning integrate with the architecture presented previ-
ously and have shown extensibility of the approach also to object learning
and semantic category acquisition.

Universität Karlsruhe (TH)





137

Chapter 8

The interACT Robot Receptionist

This chapter introduces a fully integrated receptionist robot that serves as
the evaluation scenario of the studied dialog-based learning approach for
learning over time in a social environment. The purpose of the receptionist
robot is to automatically build and maintain a knowledge base of persons
and model employees of the interACT lab, interACT students, and visitors.
For this purpose, it is located in the corridor of the interACT lab building
and engages in interactions with persons passing by and are willing to talk
to the robot. The result is stored in a database and can be visualized on a
Who-is-Who web page. This chapter describes the system setup and presents
analyses of dialog interactions with the robot.

The general data-flow of dialog interactions, knowledge base updates and
visualization as a Who-is-Who web page is sketched in figure 8.1. It facil-
itates proactive interactions to initiate dialogs and system initiative dialog
strategies to obtain information from persons to improve the knowledge base.

Besides the technical introduction of the receptionist robot, this chapter
presents user studies that have been conducted during the design time of
the system to analyze social aspects and to analyze subjective user feedback.
For the purpose of analysis and evaluation of the dialog interactions, single
interactions are analyzed and user responses are assessed with quantifiable
subjective feedback and a qualitative analysis of social aspects of the in-
teraction. Analysis of single interactions can be used for evaluations of the
system and its strategies. It can also be used to understand more closely how
the interactions are perceived by the users, and to detect and solve possible
problems of the system. As already introduced in the related work chapter
(section 2.3.2), evaluation of a dialog system for learning involves a variety
of different aspects, including objective measures, subjective measures and
knowledge base quality. Objective evaluation of dialog success and dialog
length has extensively been described in the previous chapters to evaluate
different dialog strategies and user model approaches in the receptionist sce-
nario, where already a few subjective measures have been included. Section
8.4 focuses in more detail on analysis of subjective user feedback. Analysis
and evaluation of knowledge base quality are presented in chapter 10.
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Figure 8.1: Overview of data-flow with dialog interactions, database and
presentation on website

8.1 System Overview

8.1.1 System Architecture

The receptionist robot’s system architecture comprises several components
which contribute to its main purpose, to learn and maintain a database of
persons in a social environment. The core of the system is the learning al-
gorithm and the dialog system, which conducts the learning strategies and
social interaction with users. Figure 8.2 shows a more detailed system and
components diagram than shown in the introduction, and lists the main sys-
tem components, knowledge models, processing levels and the general flow
of data processing. As most of these components have already been intro-
duced in previous chapters, the TAPAS dialog manager in chapter 3, face
identification, voice identification, and multimodal user ID in chapter 4, un-
known words detection and new words learning in chapter 7, dialog modules
for dialog-based learning in chapter 6, here, we want to describe their inte-
gration and data handling. Input basically is asynchronously processed by
the recognition components, and synchronized on higher levels of integration.
Speech input is segmented by automatic segmentation as utterances, which
are then processed by speech recognition and voice identification. Video input
from a stereo camera head is processed by the Arthur multi-person tracking
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Figure 8.2: Component diagram with connection between the main compo-
nents and main knowledge sources

software, as described in chapter 4, including face identification for each per-
son track. Though the system is designed for a single person interacting with
the system, additional persons appear in the field of view as well, e.g. when
passing by. The multi-person tracker provides a robust method to filter out
background persons by creating tracking hypotheses and face identification
for each person. The continuous track of the person interacting with the
system is locked by the Multimodal User ID component, which receives all
track messages.

The interpretation layer contains natural language understanding, multi-
modal fusion of user identification events, where face identification and voice
identification and track messages are synchronized, session handling, and
response generation. The Session Handling component is necessary to seg-
ment input events on an interaction level, and create a notion of sessions. As
already introduced in section 6.2, a dialog session is understood as a conversa-
tion between the system and a user and consists of a sequence of consecutive
dialog turns. The session model is used for session-specific dialog variables,
e.g. tracking of the user ID during the interaction, which affects updates of
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the knowledge base, and for recording and logging of session-specific data.
The highest level of integration is the dialog layer. The User ID Model

integrates information from the Multimodal User ID component and infor-
mation extracted from the dialog flow and provides a probabilistic model of
user identification for the current session. The Dialog Strategy (as a gen-
eral term of dialog module selection and execution of the module’s strategy)
decides on the next action and initiates knowledge base updates.

8.1.2 Database Setup

The Person Database in figure 8.2 represents the main knowledge base, which
is maintained by the receptionist robot. Figure 8.3 shows the data struc-
ture of the database to represent personal information and social network
structure. All entries are connected to the Person table, which contains
the person’s ID, first name and last name. The database model is shown
as two main blocks labeled as speech vocabulary and social network model.
The speech vocabulary block represents information that can be talked about
using spoken interaction. The social network model block represents social
network information, which is introduced in chapter 9. The session corpus
block shows the connection of a dialog session with the identified person, ac-
quired information, database updates and recorded data. It forms a history
of all interactions and is used, for example, by offline processing steps such
as knowledge mending, for which we present experiments in chapter 10.

8.1.3 Model Initialization and Spoken Name Recognition

The receptionist robot is started from scratch with an empty set of persons
and an empty set of sessions in the database, as well as empty face identifi-
cation and voice identification models. Information to initialize these models
is obtained during runtime. Background models, e.g. speech recognition vo-
cabulary and pronunciation dictionary, are initialized from the publications
website of the interACT lab. Also social network analysis is conducted from
publications information (discussed in chapter 9). Figure 8.4 depicts the ini-
tialization of the vocabulary models from website and telephone book for
large vocabulary name recognition.

As laid out in chapter 2, recognition of names is a hard problem for speech
recognition, as the number of possible names is significantly larger than the
number of words that can be used in a speech recognizer for efficient and
real-time recognition. If more and more names are added to the vocabulary
without preprocessing, processing speed decreases and recognition rates get
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Figure 8.3: Data structure for personal information and social network struc-
tures in the database

worse, as confusion of hypotheses increases. We have addressed this prob-
lem by vocabulary selection using prior information and dynamic vocabulary
recognition in a multi-stage recognition process, which improves both, pro-
cessing speed for in-vocabulary names and recognition of out-of-vocabulary
names with dynamic vocabulary switching. Experiments for the system have
been conducted in a Diploma thesis by Ziesemer (2007). It could be shown
that, depending on the probability of unknown persons, a two stage ap-
proach, which uses only names of known persons and OOV-detection in the
first stage, and a large vocabulary in the second step provides better results
than decoding directly on a large vocabulary.

Figure 8.5 shows a simplified example for grammar and language model
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Figure 8.4: Vocabulary initialization from publications website
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Figure 8.5: Dynamic vocabulary switching for name recognition

classes for demonstration of the vocabulary switching approach. Language
model classes are often used in speech recognition, where the probability of
a single word is hard to estimate, but a class of words can be estimated
from data. A frequent example are navigation system and the problem of
modeling probabilities of street names. Each single street name occurs too
infrequently to provide good language model probabilities, and therefore the
class of street names is used to estimate the probability. We apply this
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technique for person names, as the grammatical construct does not depend on
the name, ‘John’ but only on the class, @first name@. In addition, depending
on the speech decoder implementation, speech recognition can be conducted
more efficiently, as the language model probability is calculated only once for
the name class.

The language model class @first name@ in figure 8.5 is reset dynamically
during runtime by the respective vocabulary set. It shows one possible setup
with three different sets of names from known persons (∼ 30 names), names
from social network analysis (∼ 200 names), and the list of generally most
frequent names (∼ 1000 names), with OOV-detection on each layer, and re-
decoding on the same utterance with the next set in case of OOV detection.
A second solution is to merge the set of social names and the set of the
generally most frequent with different language model weights into one set.
This approach leads to the best recognition results if the system is confronted
with a more or less balanced set of known persons and visitors, which are
not covered by the social network results, e.g. students.

8.2 Dialog Setup

The dialog strategy is controlled by a modular dialog strategy with system
initiative-based state switching. Dialog modules are understood as modular
elements of the dialog strategy, as introduced in chapter 6.5. A state model
is used to advance the dialog to the next state on system initiative, once a
module has been completed, by executing a dialog move which leads over to
the next module. For example, the PersonID state is entered by asking for
the user’s name or by trying to confirm the hypothesis from the user model.

Figure 8.6 shows the dialog state diagram of the receptionist robot. The
initial state is the Idle state. Once the system spots a person walking towards
the robot, or speech input is observed, the system enters the greeting state.
Next, the PersonID state is entered to identify the person. During several
experiments, we have used different strategy implementations of the dialog
module for identifying the user ID, including handcrafted models (chapter
9) and strategies trained by reinforcement learning (chapter 5). The Social
User Info state is entered once the user’s ID is determined. The strategy
of this module and experiments for social network analysis are presented in
chapter 9. Any state can lead over to the Goodbye state, when the user wants
to abort the dialog or wants to leave, e.g. by saying “i have to go now”, and
after a short goodbye ‘handshake’, the system enter the idle state. Any other
state can also lead over to the Idle state, when no relevant speech input
events are observed, which happens, e.g., if the user simply walks away from
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the system.
The PersonID state is a crucial state for the interaction. The interaction

only affects the knowledge base, if the person who interacts with the system
can be identified correctly. Once the ID of a person is obtained, it is stored
in the user model, and once the Idle state is reached again, all model updates
are executed, i.e. updating the database and updating voice ID and face ID
models with new data from the current interaction.
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Figure 8.6: Dialog states of the interACT receptionist

8.3 Social Studies with the interACT Receptionist

8.3.1 Overview

This section presents social analyses of dialog interactions, which were con-
ducted in a controlled experiment during the design time of the system. The
purpose of the experiment was to better understand social aspects of the
system and to reveal possible problems of the system design, which provided
helpful insights for improvement of the dialog strategy and system compo-
nents. The methods to analyze such kind of interactions have been published
as the Interaction Analysis Tool (IAT).

Current ongoing discussions in the Human-Robot-Interaction (HRI) field
address the issue which metrics and evaluation measures should best be ap-
plied to evaluate a system. For example, the recent workshop about Eval-
uation Metrics 2008 was held in conjunction with the HRI conference 2008.
It addressed basic questions about which metrics should be applied to HRI
and how to evaluate such systems. The current state of the art suggests a
combination of different metrics, including objective metrics and subjective
metrics, but also analysis of social behavior.
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So far, evaluations in this thesis have mostly been conducted with ob-
jective metrics, e.g. WER. Subjective metrics are assessed with question-
naires. The social aspect addresses the human factor in the interaction, and
analyzes the user’s behavior and the user’s reactions. Evaluation of these
aspects includes video transcription, interviews and questionnaires. So far,
such analysis cannot be automated and requires a lot of manual labor, which
is very time consuming (the current tool requires manual labor for video tran-
scription with an effort of roughly 120x real-time). It results in a qualitative
analysis, which provides helpful insights, for example, what kind of problems
arise in which situation, and observations how humans react to the system.

A common problem in the design of a novel interactive system is the cross-
dependency of system design and user feedback. It is almost impossible to
design a perfect system before assessing user feedback. At the same time
it is almost impossible to assess user feedback before a system has been
designed. A design cycle of several loops, often starting with a Wizard-of-Oz
experiment, is the best known method to resolve these cross-dependencies.

In such a development cycle, qualitative user feedback can be used by the
system developer to improve the system, and gain a deeper understanding
of the flow of communication. For such analysis, a tool for close analysis
of human-robot interactions (the Interaction Analysis Tool - IAT) has been
developed in a multi-disciplinary team and introduced in Burghart et al.
(2008). This section is based on two publications (Burghart et al., 2007;
Holzapfel et al., 2008a).

Analysis with the IAT uses a multi-methodological mixture of quantita-
tive and qualitative methods from empirical social science. Focus of these
methods for close analysis of recorded video data has been activities of the
users, and the interaction itself. While the quantitative video analysis reveals
the “what”, “when”, “where”, (represented as a transcription of the video se-
quence), the qualitative video analysis describes the “why”, and “how”. The
quantitative analysis can be conducted as an objective analysis, and it is gen-
erally annotator-independent. The qualitative analysis however is influenced
by the annotator’s perception, and the resulting interpretation is annotator-
dependent. Therefor, it should generally be conducted by groups of anno-
tators, where interpretations of short sequences are commonly agreed upon
with the principle of best argument.

8.3.2 Experimental Setup

The experiment was set up as Wizard-of-Oz experiment with the interACT
receptionist acting as a parcel receptionist. The subjects had to interact with
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the robot to obtain information necessary to complete their task to deliver
a parcel, the robot in turn was interested in registering the person, i.e. to
understand the first name of the subject, before it could provide the infor-
mation. By adopting a Wizard-of-Oz experiment, it was possible to control
the interaction by a human operator who acts as a wizard and can decide
which actions are taken by the system. As beforehand no detailed experi-
ments had been conducted so far in this scenario for the dialog structure, the
Wizard-of-Oz setup led to more reliable and comparable behavior. During
the Experiment the wizard has some limited control of the system’s behav-
ior. While most parts of the system are implemented and run autonomously,
the wizard replaces the dialog strategy, i.e. which (spoken output) actions
to apply. Figure 8.7 gives an overview of the components and sketches the
data-flow of the system.
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Figure 8.7: Architecture of the multimodal dialog system operated by the
wizard

The conducted experiments comprised a robotic system and 16 naive
subjects, eight of them social scientists, the other eight computer scientist
majoring in robotics. Each subject in turn was handed a parcel, and was told
the name of the recipient, but not where to find the recipient. In the aisle
they could meet the robot and ask for information, which they did not know
beforehand. Both groups of students were split into two: with four subjects
of each group the robot acted in an empathic manner, the other times the
robot adopted a rational manner. The experiments were repeated on three
consecutive days with slight variations: During the second experiment, the
recipient’s name was different and the room was changed as well. During the
third experiment, the recipient was the same as during the first day, but this
time the room was locked.
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8.3.3 Interaction Analysis

Once interactions between human subjects and robot are coded by IATs,
several possibilities to analyze and compare data do exist, including close
analysis of single interactions, analysis of communication problems, differ-
ences between different trials by a single person or differences of interaction
styles between different persons. In contrast to earlier studies, we did not
find any difference in the behavior of social science students and computer
science students. During the experiments, some persons could easily and
successfully interact with the robot, others encountered needed longer trials
or could not achieve their goal. The analysis of these problems with the IAT
provided the basis for preventing such problems in the final system of the
interACT receptionist.

Figure 8.8: Section of IAT with layers 1, 3, 4, 5 of first trial of a subject

Typical problems that arose during first interaction by naive subjects
were often accompanied by the users being uncertain how to speak to the
system. This is manifested in extreme cases by checking the microphone and
test-speaking into the microphone. Figure 8.8 shows an IAT excerpt of such
a case. The excerpt encodes that the user repeats a statement that, from
a system point of view, could not be understood as the utterance was not
covered by the grammar. After repeated misunderstanding, the user checks
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Figure 8.9: Section of IAT with layers 1, 3, 4, 5 of third trial of a subject

possible reasons of failure such as malfunction of the microphone, shows the
parcel to the robot, checks the name on the parcel again. Though an extreme
case, the selected IAT section is typical for naive subjects interacting with a
robot the first time. This subject uses different strategies in order to find out
why the interaction does not proceed as desired and in order to get out of
the loop. Although on the third day the subject still tends to examine both,
microphone and parcel, just to make sure, she achieves her goal without ado.
The same IAT section as before, this time during the third day, is shown in
figure 8.9.

Contemplating all trials of the presented subject, a definite adaptation
of the user to the robotic system can be found. This can be seen by the
following quantified data: In the first trial, 31 user utterances were needed
to achieve the goal, 13 of which belong to loops, where information was
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simply repeated. Five turns showed a break of coherence and six times there
was an omission of an answer. High redundancy existed in 18 turns, which
complicated language understanding, and ten times the subject took over
the dialog initiative in inadequate situations. In the third trial, only nine
turns were needed to achieve the goal and no loops were detected. There
were no breaks of coherence, no omissions and no changing of the initiative.
The dialog recorded 11 turns, 0 turn errors. Also they way of spelling the
name was changed during the third day, so that the speech recongizer could
perfectly recognize the spoken input.

8.3.4 IAT Summary and Conclusion

By analyzing multiple single interactions of different subjects, as well as con-
secutive trials of the same subject within a specific scenario, one can reveal
critical states in the interaction. By analyzing the context of these states,
strategies could be developed to get the person back on track or even how to
avoid such situations. At present, the tool ties a lot of labor as all recorded
video data and log-files have to be transcribed and incorporated in the IAT.
The second time consuming step is to fill out the different categories by
hand. Prerequisite for a sound evaluation naturally is that subjects are not
biased by the presence of team members or other subjects. However, as there
is ongoing research in analyzing human-robot interactions, we assume that
future research will lessen the high cost of manual labor required for the
experiments, by automating parts of the annotation, and allow a broader
application of such analysis tools. Furthermore, if larger amounts of data
can be processed, it seems to be a promising approach, to introduce addi-
tional quantitative categories, and predict such categories in a similar way, as
subjective evaluation is predicted from objective evaluation measures, detect
problem situations, or use these categories to predict strategies of the user.

The experiments show how important it is to provide users with infor-
mative help to understand and adapt to the system’s capabilities, especially
when comparing successive trials of naive users. Though it is desired that
the system adapts to the human, and today’s systems achieve this goal more
and more, there are still many aspects which require the user to understand
the system’s capabilities, even if they seem simple, such as how to use the
microphone, or the capabilities of the robot’s vision system. By closely ana-
lyzing such interactions and assessing the user’s reactions, several problems
could be uncovered and prevented in the final interACT receptionist system.
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8.4 Subjective Evaluation of Dialog Interactions

8.4.1 Questionnaires

Subjective factors are typically assessed by questionnaires that are filled out
by users after interacting with the system. The questionnaires designed for
the presented system are based on 7-point Likert-Scales. We have used two
types of questionnaires in subsequent experiments. Both questionnaires orig-
inate from the SASSI questionnaire described in Hone and Graham (2000,
2001) and have been adapted to the interACT receptionist scenario. The first
questionnaire adopts the question style of the SASSI questionnaire with state-
ments that are rated by users on a scale from strongly disagree to strongly
agree. It was used in experiments presented in chapter 9 on acquisition of
social user models. Subsequently, the questionnaire was further optimized
for an experiment person identification dialogs and modified regarding ques-
tion style, question order, wording, and question selection. The wording now
avoids strong statements with negative emotions. The question style has
been changed from statements with a disagree/agree-scale to real questions
and question-specific scales, also on a 7-point rating scale. For example, this
version uses scales that range from ’no fun at all’ to ’very much fun’ as se-
mantic opposites. If not explicitly stated otherwise, the analyses reported
here have been conducted with the optimized questionnaire. A full list of
key questions is given in table 8.2, and the translation to English is given in
table 8.3.

8.4.2 Factor Analysis

Analysis of a questionnaire can be conducted by evaluating every response
separately or by a factor analysis. A factor analysis provides a means to dis-
cover underlying ’hidden’ factors that represent the subjects’ attitudes, which
constitute the observed responses. Single questions represent the desired in-
formation only in parts. We have conducted a standard factor analysis with
Varimax rotation, which led to a good separation of factors with clear inter-
pretations. For the analysis and interpretation of the factors we have used
methods described by Möller et al. (2007), see also chapter 2.3.2. Though
the scenario is different than the scenarios studied by Moeller the analysis
reveals some similarities in the interpretation and some of the factors can be
related to the qualiy aspects described by Moeller.

Table 8.1 shows the results of the factor analysis and the loadings of the
questions on the most important factors. During the analysis, we have itera-
tively removed questions with the highest loading of 0.4 or less on any factor,

Hartwig Holzapfel



8.4 Subjective Evaluation of Dialog Interactions 151

Qst-key Factor1 Factor2 Factor3 Factor4 Factor5

QST1 0.56 0.51 0.35 0.23 -0.04
QST3 0.84 0 -0.27 -0.09 0.03
QST4 0.15 0.72 0.26 0.17 0.25
QST5 -0.1 0.02 0.79 0.01 -0.1
QST7 0.4 0.81 0.17 0.17 -0.02
QST9 0.21 0.63 -0.28 -0.1 0.32
QST10 0.12 -0.51 -0.14 -0.56 -0.05
QST11 0.74 0.45 0.14 0.07 0.12
QST12 0.68 0.23 0.37 0.23 0.24
QST13 1 0.54 0.54 0.44 0.23 0.09
QST13 2 0.62 0.51 0.38 0.29 0.03
QST13 3 0.49 0.28 0.58 0.11 0.23
QST13 4 0.33 0.14 0.71 0.01 0.25
QST14 0.67 0.37 0.2 0.18 0.17
QST15 1 0.1 -0.02 0.16 0.6 0.62
QST15 2 0.68 0.05 0.16 0.51 0.13
QST15 3 0.16 0.21 0.59 0.17 0.54
QST15 4 0.27 0.15 -0.05 0.72 -0.01
QST16 0.11 0.19 0.03 -0.03 0.85

Table 8.1: Factor loadings of selected questions

which eliminated questions 8 and 13 5. We have also removed questions that
had a shared loading with values between 0.4 and 0.5 on different factors,
which eliminated question 2. Afterwards on only questions with loading >0.5
remain in the set. The factor analysis produced 5 factors that correspond to
an eigenvalue larger than 1.0. The total variance that is explained by these
factors is 73.81%. Factor 1 explains 22.73% of the total variance, factor 2 ex-
plains 17.04%, factor 3 explains 14.79%, factor 4 explains 9.70%, and factor
5 explains 9.55%.

8.4.3 Factor Interpretation

The factors can be interpreted by analyzing the loadings of the questions on
the factor. The question with the highest loading is considered as the most
important aspect of this factor. Usually, the interpretation of what these
factors represent, can be ambiguous. Therefore, the following interpretation
has been discussed by the author with peers to find commonly acceptable
interpretations.
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• Factor 1: “overall impression and acceptance”.
The key questions of this factor are QST3 (0.84), QST11 (0.74), QST12
(0.68), QST15 2 (0.68), QST14 (0.67), QST13 2 (0.62), QST1 (0.56),
QST13 1 (0.54). Comparison with the work from Moeller shows a good
correlation with Moeller’s category “acceptance”.

(shows statistical correlation with Moeller’s quality aspect acceptance)

• Factor 2: “communication flow”.
Comparison with the work from Moeller shows a good correlation with
Moeller’s category “interaction efficiency”.

(shows statistical correlation with Moeller’s quality aspects interaction
efficiency, transparency and cognitive demand)

• Factor 3: “conversational control”.
Comparison with the work from Moeller shows a moderate correlation
with Moeller’s category “symmetry”.

(does not show statistical correlation with any of Moeller’s quality as-
pects)

• Factor 4: “user friendliness and usability”.
Comparison with the work from Moeller shows a moderate correlation
with Moeller’s category “ease of use”.

(does not show strong statistical correlation with any of Moeller’s qual-
ity aspects, but shows highest correlation with dialog success)

• Factor 5: “responsiveness and system response”.
Comparison with the work from Moeller shows a slight correlation with
Moeller’s category “cooperativity”.

(shows some statistical correlation with Moeller’s quality aspects inter-
action efficiency and cognitive demand)

8.4.4 Results

The factor analysis reveals important aspects for evaluation and the cor-
relation of each question with each factor. The overall impression of the
receptionist was rated as good (“overall impression and acceptance” = 0.39).
That means, the receptionist is generally accepted by the users. Most users
also rated the system to have good communication flow (“communication
flow” = 0.34), be rather monotonous (“conversational control” = -0.50), very
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friendly and usable (“user friendliness and usability” = 0.70), and responsive
(“responsiveness and system response” = 0.36).

In addition to averaged numbers, the subjective questionnaire also pro-
vides insights into specific aspects, usually problems that exist, where the
feedback of a single user differs from the averaged result. They reveal that
in some cases users were misled by the system, or that the system was some-
times hard to understand. Problems with the flow of communication exist
for example due to problems to understand the English Text-To-Speech com-
ponent (mostly students, without English as native language), or that names
are mispronounced by the Text-To-Speech component. This is not surpris-
ing, as the users had different expectations of how German names would be
pronounced by the English-speaking system.

Speech recognition and especially name recognition accuracy has strong
effects on the outcome of the questionnaires. This is reflected by generally
better scores in all categories for dialogs that complete successfully. In con-
trast to analyses from Moeller, not all aspects where also discovered in the
present system. We interpret this fact that in the given scenario not all these
aspects are important to the user, and that these aspects also depend on the
scenario.

8.5 Conclusion

This chapter has introduced the interACT robot receptionist and analysis of
dialog interactions with the robot. Interaction analysis using video transcrip-
tion requires a large amount of manual labor but provides a detailed analysis
of the interaction and reveals communication problems of prototype versions
of the system that can be solved by improving the dialog system. Analysis
of subjective user feedback with the final system provides insights into the
user’s perception of the dialog, shows different quality aspects, and shows
that users generally accept the system.
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Table 8.2: Questions and extreme values of the rating scale. Original version
in German.
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Table 8.3: Questions and extreme values of the rating scale. Translated
English version.
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Chapter 9

Social User Models and Interactive

Learning of Social Networks

This chapter describes a learning scenario where the task of learning is the
acquisition of a social user model. The term social user model is derived from
a system’s perspective on a social network structure, which is observed and
reproduced by the robot. The experiments presented here have already been
published in Putze and Holzapfel (2008), this chapter is slightly modified from
the original publication. Research for this publication has been conducted in
a Diplomarbeit at the Universität Karlsruhe (TH) by Putze (2008) and has
been supervised of the author of this thesis.

9.1 Introduction

Today’s humanoid robots are intended to integrate into the daily life of their
owners. They still lack social awareness to gain a full understanding of human
behavior and interaction. According to Drury et al. (2003), social awareness
(and group-structural awareness) requires knowledge in terms of a person’s
role and responsibilities, its status, and group processes. This chapter intro-
duces an approach to equip a robot or any other cognitive system with social
user models. This knowledge will enable the robot to better predict and un-
derstand human behavior and to offer a more natural dialog experience for
its users.

The system presented here is termed the ‘IslEnquirer’. It is a predecessor
of the interACT robot receptionist and acquires user models that represent
social structures like roles, personal ties and cohesive groups within a com-
puter science lab. To this end, we combine two complementing components:
An offline step processes a corpus of publications using methods from social
network theory and information retrieval. The result of this step is an initial
social model that is then verified and extended during spoken human-robot
interactions in which the robot interviews the user about social information.
Figure 9.1 demonstrates this process. This extension and verification through
a combination of offline and online acquisition is the main contribution of this
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paper.
Most existing approaches to collecting social user data are based on (au-

tomatic or manual) offline analysis, e.g. Terrill L. Frantz (2006) and Newman
(2001), by studying connectivity, centrality or other properties in social net-
works built from existing data. In Newman (2001) for example, information
from existing publication databases is used to create a social network based
on co-authorship. The author then uses various measures from graph theory
to investigate this network, e.g. by studying the node degrees, connected
components, node distances or the number of small subgroups. This allows
the author to draw conclusions about the structure of the different networks.
Other works, like Terrill L. Frantz (2006) focus more on the different roles of
single actors within a network.

Arnetminer (Yao et al., 2007) is a web site presenting automatically gath-
ered information on members of the worldwide scientific community. This
information includes the person’s affiliation, the research interest and a list
of associated researchers. The system searches the web for data and employs
a combination of several classifiers and heuristics to extract the relevant in-
formation. Based on co-authorship, the system builds a social network to
identify cooperation within the community. The scope of this work is much
wider than the one of the IslEnquirer scenario but it is based solely on infor-
mation retrieval and does not report research groups or social roles.

To our best knowledge, our work presents the first attempt to create so-
cial user models using spoken interaction, which augments the classic offline
approach by gathering data directly from the subjects and thus adding com-
plementary information. We do this by using a speech interface installed on
a robot to minimize the required initiative and effort on the user’s side (e.g.
compared to a text based interface).

The remainder of this chapter is organized as follows: Section 9.2 pre-
sents the general structure of our social user models. Section 9.3 explains
how information is extracted in the offline step and section 9.4 contains a
description of the dialog component. Section 9.5 describes the experimental
setup and presents the results.

9.2 Social User Models

We acquire social user models in the context of a medium sized scientific
community. The attribute types which are contained in the models reflect
this domain. However, they can easily be adapted to all social contexts.
The modular design of our system allows a convenient replacement or addi-
tion of attribute types for other domains. We collect the following attributes:
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Importance reflects the relevance of other people for the subject. Re-
search groups refer to membership in a group of specialists for a shared
research area or in an interdisciplinary group working on a common goal. A
Role is the position a person occupies within the institute hierarchy. The
Research interest describes the general subject the user is currently work-
ing on.

The social data gathered during both the offline network analysis and
interactive learning is prone to noise. On the one hand, there is noise due
to mistakes of the network algorithms or the automatic speech recognition
(ASR) component. On the other hand, there is noise which is induced by
wrong or outdated information and inherent ambiguity. The design of the
IslEnquirer accounts for these observations with a user model which supports
multiple hypotheses and confidence scores for single attribute values and
collections of hypotheses. The updating algorithm regards the reliability of
the incorporated information, for example based on the learned efficiency and
effectivity of the used information channel.����������	
���
��������
������� ������
������������� ����������������������� ��	��������
���������� �
���	�	��������	�
����
Figure 9.1: Data flow within the social user modeling system: Offline and
online processing work together to build a common social user model

9.3 Offline Network Analysis

To initialize the social user models, we introduce an offline step. Here, we
process a publication corpus gathered from the official institute web site.
We use several algorithms, which are described in the following, to generate
hypotheses for importance, research groups and roles from this data.

In the first step, we build a social network from publication co-authorships.
A social network is a (directed) graph, where every node represents one per-
son in the database. The nodes are connected by weighted edges. The weight
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of an edge depends on the frequency of joint publications of the connected
people, weighted by age. After normalization, we can interpret the weight of
the edge from A to B as the importance of B for A.

importance(A,B) =

∑
p∈Pub(A,B)

1
agep+1∑

B′
∑

p∈Pub(A,B′)
1

agep+1

(9.1)

We can now use this graph to derive other attributes: Cohesive sub-
groups are a classical higher-order structure that can be identified in social
networks. In our application, we interpret them as research groups as their
members are working closely together. A usual way of finding groups in a
social network is by searching for cliques. However, this approach alone is too
restrictive for finding all relevant groups and it does not offer a possibility to
compare two similar group hypotheses. In Putze (2008) we therefore propose
an alternative procedure, starting with all cliques as tentative group set, iter-
atively merging groups similar in composition and associated research topics.

To automatically identify and assign roles, we want to form clusters of
people with a similar social position. Social network theory offers multiple
measures for calculating role similarity. To integrate different approaches,
we calculate a Euclidian distance in a multidimensional feature space, where
each dimension represents one similarity measure. This approach allows easy
integration of new features and flexible combination of multiple criteria. Ex-
amples of features we used are: Regular Equivalence, which measures how
well the neighbors of two actors correspond to each other, computed using
the REGE algorithm described by Wasserman and Faust (1997). Pres-
tige (Wasserman and Faust, 1997), which is a measure of relevance in social
networks, i.e. an actor is assigned a high prestige value if it has strong ties to
other actors with high prestige (solved as eigenvalue problem). Entropy of
the importance relation distribution, which measures whether the person’s
relations focus on a small group of coworkers or are scattered around the
whole institute. The other criteria are number of associated groups, in- and
out-degree and an activity indicator.

Additionally, we employ TF-IDF scoring and part-of-speech tagging to
create attribute labels and a speech recognition vocabulary from the available
publication abstracts.
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9.4 Online Robot-Initiated User Interview

The data generated during the offline step is written in a user model. The
same data structures are used by the IslEnquirer to validate and extend the
social user models by using a spoken dialog system. This system interviews
each user on the data stored in the user model. To this end, we used the
TAPAS dialog manager on a robot located in the hallway of the institute
as described earlier in this thesis. This system tries to attract, identify and
then interview bypassing people.

robot: I am Robbi, the new ISL webmaster. Do you have time
to update my database?

user: Sure!
robot: You are Hartwig Holzapfel, right?
user: That’s right.
robot: I just talked to Maria. She was very helpful!
robot: Ok, let’s start with the first question!
robot: The research interest of Hazim Kemal Ekenel is face recognition.

What is your general research interest?
user: I am working on dialog management.
robot: You told me that you are researching on dialog. Is that right?
user: That’s correct.
robot: Now it’s clear to me. Thank you!

Table 9.1: Example dialog excerpt

The dialog consists of several modules. At the beginning of each session,
the multimodal user ID module identifies the user (see also chapter 4, es-
pecially section 4.2). This task is simplified by the fact that most names
of interest are already in the database before the person interacts with the
robot the first time due to the already described offline vocabulary initializa-
tion from research papers. After identification, the dialog enters the social
user model acquisition module.

The social user model acquisition module consists of several question sub-
dialogs. Every subdialog concentrates on a single attribute in one social user
model (although it can indirectly influence many other entries). Each ques-
tion subdialog has a similar structure. The subdialog may begin with an
optional example to introduce the next topic to the user. Then, the user is
asked a specific question concerning the social user models. If no suitable
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answer is received, the system uses a repetition question, which can contain
a different wording of the same question or the request to repeat or rephrase.
When input is received, the system can ask for confirmation, depending on
the agreement of the answer with the belief of the system. Between subdi-
alogs, transitions are marked by an acoustic progress bar (“Just one more
question.”) and chit chat snippets.

The following paragraphs describe important aspects of the question sub-
dialog in greater detail.

9.4.1 Social User Model Questions

All questions concerning social user models are generated from generic ques-
tion models, which are represented in an attribute independent way to allow
convenient addition of new questions. There are two main dimensions along
which questions are categorized: open vs. closed questions and direct vs.
third person questions.

Open questions ask the user to formulate a free answer which is then
parsed by the NLU to extract a label. Closed questions propose a label
hypothesis which the user can either confirm or reject. Open questions are
intended to acquire new information in an unbiased way, while confirmation
questions validate existing knowledge. At first glance, closed questions are
more restrictive and less informative than open questions. They can however
propose attribute values that the user would not come up with by himself.
They also include the benefit of better speech recognition performance.

While direct questions deal with the current user himself, third person
questions ask the user on information about another institute member. The
reason for the latter is to get additional sources of information and to acquire
information on people who do not regularly visit or talk to the robot.

open closed
direct Who is your most Are you researching

important coworker? on [label]?
third What is [subjects]’s Is [subject] in the
person role at the I S L institute? [label] research

group?

Table 9.2: Examples for questions of all four basic types
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9.4.2 Question Selection

Every user can only spend limited time talking to the system. Therefore, we
cannot pose every question that is available but we have to choose the “best”
questions, based on certain criteria. Foremost, we need to pose questions
which give us as much information as possible. Usually, this means choosing
attributes with a low confidence. Additionally, we want questions that are
known for high success rates, which means that they are easily understood
by the user and the responses are most probably covered by our grammar.
Another important goal is not to bore the user by repeating the same ques-
tions and topics over and over again. Concerning third person questions, we
weigh them according to the importance of the question target for the user.
Finally, we have some requirements on the global dialog flow, e.g. when a
question is aborted, we want the next question to stick to the same topic
(see also table 9.3). To cope with these different, often adversarial goals
during question selection, we use a flexible, modular scoring approach: For
each question q and criterion ci, a score si,q in the interval [0, 1] is calculated.
These scores are weighted by wi according to their desired influence on the
selection process. For each question we calculate the product of these scores
and select the one with the overall highest score.

q̂ = argmaxq∈Q

∏
i

swi
i,q (9.2)

score calculation explanation

1− conf(A) when Q is an open question
(promises high information gain)

0.5− |0.5− conf(A)| when Q is a closed question
(same, avoids asking for low quality values)

reliability(Q) based on avg. duration
and success rate of Q

importance(U, T ) when Q is a third person question

1− frequency(Q,U) for variable dialog and broad coverage

c1 < 1 when A was already covered successfully
during this session (constant)

c2 < 1 when A is a topic change and last topic
was not covered successfully (constant)

Table 9.3: Examples for criteria for scoring question Q on attribute A for
user U on target T
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9.4.3 Improving the Interaction

The system makes ample use of examples as they are an unobtrusive way of
communicating its capabilities and limitations. This takes place on two levels:
On the first level, the user is implicitly informed what degree of complexity
the system is able to process. He will also adopt the proposed formulations
for open questions, where many responses are valid. This helps to reduce
recognition errors. On the second level, we counter varying levels of gran-
ularity which otherwise would lead to ambiguities. Giving examples at an
early stage will lead to a more consistent database. As an additional benefit,
a better guidance for open questions results in reduced cognitive load and a
more comfortable dialog experience.

Examples are automatically generated from the set of all attribute val-
ues and their labels and represented in a form which is independent of the
attribute type. Examples are selected based on the association and label
scores. We prefer examples on well-known people for which we have a clear
attribute assignment. Based on this scoring, we do a randomized selection
to support a broad variety of examples.

The IslEnquirer dialog strategy uses confirmation questions that reduce
the likelihood that incorrect information is stored in the models. For the
decision whether information needs to be confirmed, we try to find a balance
between dialog length and correctness: Confirmation is requested if the con-
cept extracted from the user’s reply is not in accordance with the belief of the
system. For closed questions, this is the case if the user rejects the hypothesis
of the system. For open questions, this decision is made by determining the
maximal score of the label in question over all associated attributes of the
inferred type. When this maximum exceeds a fixed threshold, no confirma-
tion is requested.

When recognition of one label consecutively fails several times, the dialog
manager switches to the learning module. Here, the user is asked to repeat
only the used term to ensure grammar coverage for known words. If this fails,
the user is asked to spell the label. As spelling of long words is tedious and
error-prone, we only trigger the learning module if the number of phonemes
in the OOV term does not exceed a certain threshold.

9.5 Experiments and Evaluation

For the evaluation of the offline step, we processed a total of 225 publica-
tions of which 177 came with an abstract. Of those, 142 were automatically
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classified as English texts and used for keyword extraction. To evaluate the
dialog component of the IslEnquirer, we recorded a total of 39 sessions with
a total of 19 participants.

9.5.1 Dialog Evaluation

The IslEnquirer system depends on users that are willing to share their knowl-
edge with the robot. This makes it necessary to evaluate the subjective qual-
ity of the dialog system. We handed out an evaluation questionnaire after
each interaction. It lists statements which are to be ranked on a seven point
Likert scale from strong rejection (−3) to strong accordance (+3). 27 state-
ments were selected and presented to the users directly after their interaction
with the robot. We collected a total of 18 completed questionnaires.

The average standard deviation is comparably high (σ = 1.67 on a seven
point scale). We ascribe this to the different expectations people face the
robot with and the fact that people succeed differently well in adapting to the
capabilities of the system. The average overall impression is +1.0 with σ =
1.21. Most negative feedback, e.g. that some users did not feel understood
well (−0.6, σ = 1.58), can be accounted to the rudimentary learning of OOV
terms which has to be extended for future implementations. On the positive
side, we find that most users rate the system to be very friendly (+1.73, σ =
1.0) and fun (+1.2, σ = 1.56) and rejected the statements that the dialog is
too long (−1.71, σ = 1.44), that the interaction is boring (−1.33, σ = 1.81) or
that they felt tense during the interaction (−0.88, σ = 2.05). Those are very
important results as they promise long term acceptance of a dialog system
acquiring social user models through interactive learning. They indicate that
our efforts to keep the system interesting were successful and pay off by having
willing users.

9.5.2 Social User Model Evaluation

To evaluate the social user models attributes, we perform a qualitative anal-
ysis. This is supported by our observation that even official sources are not
always in accordance with the judgment of the participants of a pre-study and
the experiments. They therefore cannot offer a baseline for evaluation. Ask-
ing the concerned people for their judgment is another evaluation approach
and can at least offer a sanity check of the collected data. Note however, that
the expressed opinion might be biased and does not reflect the real situation.

For every social attribute, we study two aspects: Are all corresponding
attributes from the real world represented in the created set of attribute
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values and do all entries in the attribute set represent reasonable concepts in
the real world? We exemplarily show this analysis for research groups but
the results carry over to other attribute types, e.g. roles Putze (2008).

To get an understanding of the existing groups, we rely on the following
cues: We regard all groups that were mentioned during the pre-study, dur-
ing recording sessions and in interviews afterwards. This is complemented by
checking the group candidates for spatial coherence (i.e. all members working
in a limited number of places), temporal coherence (i.e. regular meetings),
thematic coherence (i.e. shared research interests) and organizational coher-
ence (e.g. a separate web site). The analysis shows that all main groups are
represented in the social user models with perfect recall (while still containing
some former members). The offline step contributed a starting vocabulary
and initial knowledge used in the reliable closed question (91% success rate).
It also found a group which was not mentioned by the users but supported
strongly by the criteria listed above. This strengthens our assumption on the
absence of a baseline. The contribution of the dialog on the other hand was
to find more general attribute labels not present in the offline corpus and to
add new groups which were not found by the offline algorithms.

To analyze the acceptance of our models by the concerned researchers,
we performed a study among all institute members to determine the average
approval of the extracted research interests. In total, we collected ten data
sets. Each participant was presented a list of research interest labels (from
the IslEnquirer and the Arnetminer website) associated to him. He was
then asked to rank each item in terms of how well it describes his general
field of study on a seven point scale from −3 to +3. As the IslEnquirer
provides a ranking for its label assignment, we calculate a weighted average.
The results are given in table 9.4. It shows that the results improve when
dialog information is included (relative improvement of 16% resp. 33% for the
average and the best result). The Arnetminer can only compete regarding the
best hypothesis only (which usually is not enough due to the complexity of
research interests) and only due to the fact that people without a Arnetminer
page were excluded completely: less than half of all institute members had
an Arnetminer page and those were ‘easy’ because of their large number of
publications.

9.6 Conclusion

The approach to social user modeling is performed with a two-step approach
using both offline sources and spoken dialog, which complement each other.
Using methods of social network analysis and information retrieval, we auto-
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Approach Avg Top1

Arnetminer* 0.48 2.5
IslEnquirer [offline] 1.05 1.8
IslEnquirer [offline+online] 1.22 2.4

Table 9.4: Evaluation results for research interest attributes: Averaged over
all hypotheses for all users (Avg) and averaged over the best hypothesis for
all users (Top1) (* = only calculated on available entries)

matically extract an initial social user model. Secondly, this model is verified
and extended by human-robot dialog. The dialog strategy is designed to
choose questions that promise a high information gain and a high success
rate.

It is a first attempt to provide a humanoid robot with social awareness as
part of interactive learning. This is achieved by building social user models,
which store information on the relations between people, the groups they
belong to and their roles within the community. Social user models are
modeled to be robust against noise and able to handle multiple hypotheses.

By evaluating the collected data, we validate our hypothesis that social
user modeling is possible using this combined approach. We see that both
components contribute to the final model. A user study indicates that the
dialog system is accepted by its users.
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Chapter 10

Long-Term Evaluation of the interACT

Robot Receptionist

While previous chapters address evaluation of single interactions, this chapter
addresses evaluation of the knowledge base quality over time. Since the dialog
system learns a knowledge base and updates the knowledge base over time,
evaluation metrics, which assess the quality of the knowledge base, also reflect
the effectiveness of a learning strategy and show superiority of a learning
strategy with knowledge mending over pure information adding. In the role
of the interACT Receptionist, the system learns a pre- structured knowledge
base from scratch, and development of the knowledge base can be observed
over a period of time, during which different people talk to the system. The
system was installed in January 2008 and is still online at the date of writing.
The time period of the presented evaluation was roughly eleven months, from
January 2008 to November 2008, during which the system was online on
workdays, with short maintenance breaks.

Successively the metrics for evaluation of the knowledge base and knowl-
edge base quality are introduced, and the evaluation results are presented.
Section 10.1 introduces evaluation metrics for assessing the knowledge base
quality. Section 10.2 analyzes the development of the knowledge base over
time according to the introduced evaluation metrics. It also analyzes dif-
ferent errors produced by the dialog strategies and compares the strategies
with respect to their influence on the knowledge base. Section 10.3 presents
experiments and evaluation with the knowledge mending approach.

10.1 Evaluation Metrics

The following evaluation paradigms are used as ground truth of person ID.
The ground truth set is manually defined, and represents an optimal knowl-
edge base that the system’s knowledge base is evaluated against.

• static (closure) - all persons of a target set are added to a static
knowledge base.

• dynamic - includes dynamic adding and removing of persons from the
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ground truth set, which mirrors the real dynamics of a society/group
structure.

• onvisit - persons are added to the ground truth set when they first
visit the robot. In contrast to closure and dynamic, this category is
suited to evaluate how good the system is with respect to persons that
actually talked to the system.

Depending on the evaluation paradigm, different aspects are reflected.
The static paradigm mirrors how well the system’s knowledge represents

a ground truth set of persons, and describes how well the system represents
each person that could talk to the system.

The dynamic paradigm mirrors how well the system’s knowledge repre-
sents a real population at any given point in time, and also models the effect
of persons changing their status, e.g. when leaving the institute. Therefore
it is restricted to persons working at the institute and excludes visitors, since
visitors would be represented in the ground truth set for a short period of
time only and thus obfuscate the result.

The onvisit paradigm mirrors knowledge base quality with respect to
persons who actually spoke to the system. And therefore, it highlights the
errors that have been done by the system and not what has been learned so
far. This paradigm is especially useful to measure the errors made by the
system. It also does not immediately benefit from unseen persons talking to
the system, but therefore it is not obfuscated by the time variability when
persons first talk to the system. For this reason it also uses error metrics as
explained in the following.

precision =
#truepositives

#truepositives+ #falsepositives
(10.1)

recall =
#truepositives

#representatives
(10.2)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(10.3)

EER = 1− precision (10.4)

SER =
#incorrectlylabeledsessions

#allsessions
(10.5)

F1ER = 1− F1 (10.6)

The evaluation measures used for the three paradigms originate from infor-
mation retrieval. There, precision (10.1), recall (10.2), and their harmonic
mean, the f-measure (F1) (10.3), have become popular to measure retrieval
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abbr. long name description values

EER Entry Error Rate measures the precision of

entries

EER [%] ranges from 0%

(best) to 100% (worst)

F1ER F1 Error Rate relates to the f-measure
(F1) and is the harmonic
mean of EER and error of
recall

F1ER [%] ranges from 0%

(best) to 100% (worst)

SER Session Error Rate incorrect session labels

divided by all sessions

F1ER [%] ranges from 0%

(best) to 100% (worst)

Table 10.1: Overview of the main evaluation metrics

and classification results. These measures are also appropriate for an eval-
uation of the knowledge base, by evaluating how many persons of a ground
truth set are covered by the knowledge base and how many persons were
learned incorrectly. The same measure can also be applied to correct recog-
nition of names and other attributes. An overview of the metrics EER (10.4),
SER (10.5), and F1ER (10.6) is shown in table 10.1. Since in our scenario a
person is always learned with first and last names, the precision/recall mea-
sure is equivalent to computing the error rate of names. The name error rate
is shown in the following equation (10.7).

nameER =
wrongnames

wrongnames+ correctnames
(10.7)

The error measures used for the onvisit paradigm, represent the error equiv-
alent to the precision, recall and f-measure, and are computed as shown in
equations 10.4 to 10.6. In contrast to the static and dynamic paradigms, the
f-measure for the onvisit paradigm starts at 100%, which corresponds to an
F1 error rate (1 minus f-measure) of 0%.

When evaluating the improvements that are made by the mending di-
alogs, not only the improvements of the knowledge base should be measured.
As the improvements are largely obtained through interaction with a user,
there is also a relevant question of how much the human ‘information source’
may be used. In general, a high number of unsuccessful dialogs can be con-
sidered as bad, and we consider disturbing the user without positive outcome
an annoyance factor. However, if the dialogs result in improvements, these
dialogs have a large benefit, which is good. Both aspects are combined in
the benefit rate in equation 10.8. It relates the obtained corrections to the
number of questions necessary to obtain these corrections. A benefit rate of
100% can be obtained by one correction and one question, but also by ten
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corrections with ten questions. Note that the benefit rate theoretically can
be larger than 100% if more than one correction is made with a single ques-
tion, and that the benefit rate can be negative if the dialogs produce more
errors than corrections.

benefitRate =
correctchanges− incorrectchanges

#questions
(10.8)

In relation with the benefit rate, it is also relevant to measure how many
labels are checked by the dialogs, as only a large number of dialogs can check
all labels at least once and a small number of dialogs relies on a good benefit
rate. This is measured by the labelClarificationRate in equation 10.9.

labelClarificationRate =
#questions

#labels
(10.9)

10.2 Analysis of Learning Results

10.2.1 Analysis of the interACT Robot Receptionist

The result of applying the evaluation measures to the learned knowledge base
is shown in figure 10.1. It shows an evaluation over time of the knowledge base
of the interACT receptionist. It displays three graphs with different evalua-
tion paradigms and metrics. The first graph considers all persons including
visitors and evaluates against the closure, i.e. the static paradigm. The sec-
ond graph considers only lab persons and evaluates the dynamic paradigm.
It also shows the same measures applied to the website. The third graph
also considers only lab persons and evalutes the onvisit paradigm. A person
entry is counted as a correct entry, if the person confirms the learning result
as being correct and the robot has created an entry, by which it can identify
the person again. This does not necessarily mean that each name spelling is
correct. For example if a person is called ‘Stephan’ and an entry is created
with the name ‘Stefan’ (which is a typical error if the system does not have
a prior model of possible names), this counts as a correct entry. However, if
two entries are created, ‘Stephan’ and ‘Stefan’, then one of them is counted
as an error. An evaluation including correct spelling of first and last names
is presented later in this section.

The evaluation charts show stable development of the knowledge base
over time, with a tendency of obtaining worse results after longer periods of
runtime. However, as some of the charts show, there’s room for improve-
ment regarding incorrectly learned persons. In fact, these plots evaluate only
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Figure 10.1: Evaluation of the knowledge base over time, displaying static,
dynamic and onvisit paradigm evaluations of the knowledge base learned by
the interACT receptionist

adding persons to the knowledge base. Knowledge mending, generally speak-
ing, serves two purposes. First, inaccurate learning results can be removed
from the database, which is important to remove persons that have been
learned with incorrect names, or even persons that have been learned twice

Universität Karlsruhe (TH)



174 Long-Term Evaluation of the interACT Robot Receptionist

with different names. Second, changes of the ground truth set can be incorpo-
rated, e.g. a research assistant has left the institute. Before we evaluate the
knowledge mending approach, the follwing section assesses the contribution
of the dialog setup by comparing the learning curve of the dialog approach
against a classification approach without dialog usage.

10.2.2 Comparison against FaceID Learner

To get a rough understanding, how the dialog-based learning approach com-
pares against a classification approach without dialog, we have conducted
an experiment with evaluation over time using face identification output for
learning decisions. The model is simplified as it simulates a learning curve
over the complete data corpus, for which it uses confusion rates of the classi-
fier from the receptionist scenario. The experiment rather produces a qual-
itative than a quantitative comparison between both approaches, and may
provide indications with some restrictions. The faceID learner reproduce the
knowledge base update functions to add a new entry to the database or to
update an existing entry to the database. Therefore both approaches can be
compared by the recall and precision-based metrics. As the faceID learner
cannot obtain the name of a person, the knowledge base update functions
must be adapted to ID-classification without name information. In contrast
to the dialog scenario, the faceID learner has the advantage to apply offline
learning, i.e. the complete set of images can be seen before a decision is made,
and that sessions without face recognitions are ignored as no faceID hypothe-
ses are generated during these sessions. Still it is an interesting comparison,
as the related work, as described previously, uses similar learning methods
with successive labeling, and this analysis shows the difference of a dialog sce-
nario with real user interactions versus a pure classification approach, where
a supervisor labels each unknown class.

The basic design of the learning component is that the face identifier
either classifies a person as known with a certain ID, or as unknown. This
is done successively for each recorded session in the data corpus. In case the
person is classified as unknown, a new entry is added to the database with the
correct label. In case the person is classified with an ID, the corresponding ID
model would be updated, which has no effect, except in case where the wrong
ID is classified, which increments a corrupted-models counter. We imply that
labeling of new entries is perfect, e.g. it is done manually after the learning
has been conducted, while the dialog approach deals with recognition errors.
The classification output is simulated by applying a probabilistic confusion
model, which is shown in table 10.2.
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real state correct confuse with known ID confuse with unknown

unknown 0.8901 0.1099 0
known 0.8053 0.1155 0.0788

Table 10.2: Confusion model of face identification

An evaluation plot, which shows the learning curve on the same session
data as the interACT receptionist evaluation is shown in figure 10.2. The
charts show evaluation plots of the static and the onvisit paradigms. This
learning mechanism has some specifics regards the errors. An error for a
known person can either be that the person is identified as unknown (a
person is invented) or that the person is mixed with a different person (then
the face ID model is updated with mixed data and thus gets corrupted).
A special “corrupted” category is also evaluated for the onvisit paradigm,
which does not count corrupted IDs as errors, and thus shows better results
than the standard evaluation. The “corrupted” category also illustrates the
problem of the faceID learner, and why the dialog approach is superior. More
persons are misrecognized in the faceID approach either as another person or
as a new person, which has a negative effect for the knowledge base. While
the f-measure in the static paradigm for the interACT receptionist steadily
increases and achieves a maximum of over 80%, the f-measure of the faceID
learner decreases interim and ends at below 70%. The effect is even more
obvious in the onvisit paradigm, where the f-measure steadily decreases after
an initial learning phase.

The results are even more encouraging, as the faceID learner assumes
that each session contains enough face images of a person, which is not the
case for the real interactions of the interACT receptionist where some of the
dialogs are conducted without face recognition.

10.2.3 Discussion: Dialog Success and Knowledge Base Quality

The first to sections of this chapter have analyzed the long term development
of the interACT receptionist. Analyzing the development over time shows
generally stable learning results of the system. But after some time, the error
rate (knowledge base) increases, even though the dialog success is unchanged
and even increases as the identification models are adapted to the modeled
persons. Three evaluation paradigms, static, dynamic, and onvisit, were an-
alyzed and each paradigm shows different aspects. The dynamic paradigm
motivates the necessity of knowledge corrections, as here it becomes obvi-
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Figure 10.2: Evaluation figures for the FaceID learner simulation

ous that the knowledge base quality decreases after some time. While the
dynamic and static paradigms are strongly influenced by events in the en-
vironment and when – or if at all – persons talk to the system, the onvisit
paradigm is most helpful to analyze errors that are induced by the dialogs.

There is also a question of when to count a person as ”has been learned
correctly”, i.e. is an entry correct if the name is pronounced correctly, if the
person agrees that the name is pronounced correctly, or if the name is written
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correctly. In the first part of this chapter an entry was counted as being
correct, when the person intentionally confirmed the learned name as being
correct. As described before there are slight differences to correct spelling,
especially visitors, whose names have not been in the vocabulary before the
interaction and who had to teach the robot their name by spelling, sometimes
confirmed a name which sounds correct but does not have the right spelling.
Especially the spelling part was hard to complete and sometimes tedious
for some persons, as almost all visitors are non-native English speakers and
not comfortable with spelling words in English. In addition, the spelling
recognizer is a part of the system which needs improvements, as we did not
have an up-to-date spelling recognizer at hand and therefore used a prototype
system with acoustic models from standard speech recognition from Ziesemer
(2007). The system could be improved by acoustic models trained specifically
on spelling data, as has been done in system which achieve higher recognition
accuracy.

A further point of improvement is pronunciation by the text-to-speech
system. As many names have been German names, and the language during
the interaction was English, the German names were pronounced with En-
glish letter-to-sound rules. In addition, the synthesis was not always clear to
understand, as some people stated in their questionnaires. Therefore, a few
initially correct names were rejected at first, and some names were accepted
by the persons as they could not tell that the name was not pronounced
fully correctly. Interestingly, no one of the users asked the robot to spell the
learned name, which would have been the only way to tell if the name was
learned correctly.

Another interesting analysis shows the effect of a dialog success rate on
the development of knowledge base quality. The outcome of the dialog-based
identification module is one of four cases: Correct identification (corr), no
identification (noid), wrong identification and confusion with other person
(corrupt), false learning and creating a nonexistent person (invent). Thus,
there are three different error categories. Risk calculation of which errors have
worse effects on the knowledge base, requires to look at how often persons talk
to the system. A histogram of visiting persons is shown in figure 10.3. The
y-axis denotes the frequency of a person visiting the system and the x-axis
denotes the rank of the frequency. The diagram shows three other functions
to approximate the histogram by common statistics. The function 70/rank
is a simple estimate of 1 divided by the rank of the person multiplied by
a constant factor. The functions Zipf,s=1 and Zipf,s=1.1 follow Zipf’s law,
which was originally designed to model the statistics of common words in
texts Zipf (1965), and is described by equation 10.10, where r is the rank, N
is the total number of entries, s is the value of the exponent characterizing
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Figure 10.3: Person histogram of visits, and Zipf’s law

the distribution1. In the classic version of Zipf’s law, the exponent s is 1.
Figure 10.3 shows Zipf’s law for s=1 and s=1.1.

f(r, s,N) =
1

rs
∗ 1∑N

n=1 1/ns
(10.10)

To give an example how Zipf’s law can influence decisions of the dialog
strategy, we looked at the frequency statistics. Persons who talked to the
system very infrequently, e.g. only once or twice, are mostly visitors. As the
task of the interACT robot receptionist is to model only a network of persons
working at the interACT lab, it can qualitatively be inferred that the ‘noid’-
error is not as severe as the corrupt and invent errors, which both decrease the
quality of the knowledge base. And therefore during dialog strategy training,
it should be given more weight to getting the correct name of a person and
rather abort a dialog than to conducting short dialogs with a higher risk of
obtaining incorrect names. However, as subjective user feedback shows that
users prefer short and successful dialogs, both aspects should be balanced,
and we can imagine working with different confidence levels of user ID for
different knowledge base operations in the future. A tradeoff between correct
identification and short dialogs had also been chosen in the reward function
for the training of dialog strategies in chapter 5. However, this tradeoff
between different error categories is shifted again, when we consider that
some error categories can be resolved better by the system, which is discussed
in the next section.

1http://en.wikipedia.org/wiki/Zipf’s law
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Figure 10.4: Plot of dialog success, resulting knowledge base modifications
and f-measure representing knowledge base.

With the data studied in this chapter, we can further analyze the ef-
fects of dialog errors on the long term results of the knowledge base qual-
ity. From the results of the dialog strategy in the interACT receptionist in
identifying persons we can estimate the expected error categories as follows.
P(noid|error)=0.70, P(corrupt|error)=0.1 and P(invent|error)=0.2. The par-
tition of an error into these three error categories remained fixed, and the
probability of error P(error) was used as a variable from 0.0 to 0.9. Figure
10.4 shows the plots of knowledge base errors obtained from a dialog sim-
ulating which replays the recorded corpus with the given the dialog error
configuration. It can be seen that there is more or less linear correlation
between the dialog success rate and the f-measure. The analysis however is
kept quite simple and represents a lower bound of expected errors, as the
error simulation does not include that the person identification rate might
get worse with more knowledge base errors. These results are not surprising,
as they show that better dialog design leads to better knowledge base quality.
But they provide an estimate to understand what kind of improvements of
the knowledge base can be expected when improving the dialog strategy by
a certain degree.
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10.3 Knowledge Mending Results

Evaluation of the knowledge mending approach has been conducted by ap-
plying the already defined knowledge-base quality metrics. Three approaches
are compared with each other, the ‘noClustering’, the ‘offline’ and the ‘on-
line’ approach. The baseline approach, i.e. the standard learning behavior
without knowledge mending, is labeled as ‘noClustering’. Following the de-
scription of the mending approach in section 6.7, two knowledge mending
approaches are evaluated. The ‘offline’ clustering approach conducts a pure
non-interactive mending strategy by clustering. Each cluster is assigned the
label which occurs most frequently in the cluster, on a balanced set of sam-
ples. The clustering step is executed once per day. Two different error levels
for the stopping criterion of the agglomerative clustering algorithms have
been chosen for evaluation. As we have seen during clustering confidence
training, an error level of 5% induces only little errors, while at a level of
10% more severe errors can occur, which corresponds to our intuition. At a
low error level, a small amount of correctly labeled sessions are expected to
be merged incorrectly. At an error level of 5% we expect this error category
to be rather insignificant, especially since most persons have interacted with
the system more than once. In this case, a single discarded session does not
influence the evaluation result. This kind of fusion error can be resolved
by the online approach in some cases. However, when the error level is too
high, i.e. larger than 10%, we expect that such errors occur more frequently,
which would then form clusters of existing persons and thus should degrade
the clustering result. Therefore, we generally favor an error level of 5%.

The online clustering approach is a combination of the offline cluster-
ing with dialog interaction for existence checks with a trusted person, as
described in section 6.7. Evaluation was conducted by automatic day-wise
clustering and conducting mending dialogs with the author of this thesis as
the trusted person.

The evaluation set includes 106 sessions from the automatically recorded
corpus, which have been left out from the confidence training.

10.3.1 Mending Results for All Interactions

Due to the obviously higher error rates in the visitor category, i.e. mostly
incorrect spelling of names, evaluations are shown separately for the full
interaction set including visitors and the set restricted to persons from the
interACT lab (i.e. employees and students), who have significantly lower
error rates. Each figure shows a graph of
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Table 10.3: Legend for evaluation plots: noClustering baseline, offline and
dialog with single-question dialog (1Q) and single-cluster dialog (nQ), and
confidence levels of 90% and 95%

• ‘noClustering’ — learning over time without mending

• ‘offline’ — learning over time with offline clustering for 90% and 95%
confidence levels and automatic label correction

• ‘dialog’ — learning over time with offline clustering for 90% and 95%
confidence levels and interactive mending dialogs

and the two dialog conditions

• ‘1Q’ — dialog is restricted to only 1 clarification question, i.e. prob-
lematic label

• ‘nQ’ — dialog is restricted to only 1 cluster, i.e. ‘n’ questions to clarify
contradictory labels in problematic cluster

Table 10.3 shows the legend for the coding of these categories in the following
figures. The knowledge base quality plots for the full evaluation data set is
shown in figures 10.5 (Entry Error Rate), 10.6 (F1 Error Rate), and 10.7
(Session Error Rate).

The index of the graphs is incremented by 1 for each interaction, mending
dialogs have odd numbers, e.g. 7.5. Thus, the total number is a counter for
interactions. The set includes 23 mending intervals and the plots show char-
acteristic spikes (mostly downward), were the mending takes place. It can
be seen that the number of errors significantly decreases (shown by the entry
error rate). The improvement of the F1 measure can mostly be explained
by the improved precision of the entries. The recall changes insignificantly,
as the mending approach does not improve the recall. Note: a recall below
100% means that some persons are not modeled by the database. These
would be added by the learning dialogs, not by the mending approach.

The figures also show comparison of the dialogs restricted to one question
(1Q) and the dialogs restricted to one cluster (nQ), to evaluate if even the
strong restriction provides improvements to sorting of the problematic labels.
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Figure 10.5: EER – mending results full corpus – baseline, offline and dialog
approaches with confidence levels of 90% and 95% – legend in table 10.3

Figure 10.6: F1ER – mending results full corpus – legend in table 10.3

Figure 10.7: SER – mending results full corpus – legend in table 10.3
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dialog.95 1Q dialog.95 nQ dialog.90 1Q dialog.90 nQ

92,0% 74,3% 84,0% 70,3%

Table 10.4: Benefit rate for the full corpus

At the final stage, the baseline has 51.1% EER, the ‘nQ’ and single-question
dialog tasks (1Q) have 9.1% EER and 19.2% EER for a 95% confidence level
and 9.1% and 20.0% EER for a 90% confidence level. Correspondingly, we
can look at the benefit rate and at the label clarification rate (equation 10.9).
The label clarification rate is 78% for nQ with 95% confidence level, 82% for
nQ with 90% confidence level and 56% for 1Q dialogs, meaning that for the
1Q dialogs, 54% of the labels have not been checked at all during the dialogs.
From the results we conclude that problem selection provides a good selection
of problematic labels. The corresponding benefit rate is shown in table 10.4.

10.3.2 Mending Results for In-Domain Set

Even better results, especially in terms of the f-measure, are obtained when
looking only at the set of persons that were entered into the database correctly
at least once, termed ‘in-domain’ persons. The set includes all persons from
the interACT lab plus some of the visitors. The numbers in this analysis
are significantly better than the results obtained for all persons including
visitors. This is mostly due to better prior name models, i.e. better speech
recognition vocabulary, which are obtained from social network analysis for
members of the interACT.

The results for the 90% and 95% confidence intervals are shown in figure
10.8, figure 10.9, and in figure 10.10. Table 10.5 and table 10.6 give an
overview of the final results. The corresponding benefit rates are shown in
table 10.7. The significant improvement of the entry error rate shows that
the entries are very precise after the mending, along with more than 50%
reduction of the F1 error rate, as the recall remains constant. Also the
offline approach alone achieves significant improvements.

10.3.3 Summary and Discussion

The presented approach enables a robot to proactively detect and correct in-
formation stored in its database with significant improvement over the base-
line system. The highest improvement is achieved by the dialog approach
which solves all labels in a cluster per dialog (tagged ‘nQ’) with relative im-
provements of 92.7% SER from 17.8% to 1.3% and 88.3% EER from 40.5%
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conf
metric

results improvements
level learner offline dialog offline dialog

95%
/1Q

Session Error Rate 17.8 12.2 3.9 31.3% 78.1%
F1 Error Rate 25.4 16.7 11.1 34.4% 56.3%
Entry Error Rate 40.5 23.1 13.0 43.1% 67.8%

90%
/1Q

Session Error Rate 17.8 12.2 2.6 31.3% 85.2%
F1 Error Rate 25.4 16.7 9.1 34.4% 64.2%
Entry Error Rate 40.5 23.1 9.1 43.1% 77.6%

Table 10.5: Mending results for in-domain persons and relative improvements
for the offline and dialog 1Q approaches

conf
metric

results improvements
level learner offline dialog offline dialog

95%
/nQ

Session Error Rate 17.8 12.2 1.3 31.3% 92.7%
F1 Error Rate 25.4 16.7 7.0 34.4% 72.5%
Entry Error Rate 40.5 23.1 4.8 43.1% 88.3%

90%
/nQ

Session Error Rate 17.8 12.2 0.0 31.3% 100.0%
F1 Error Rate 25.4 16.7 4.8 34.4% 81.3%
Entry Error Rate 40.5 23.1 0.0 43.1% 100.0%

Table 10.6: Mending results for in-domain persons and relative improvements
for the offline and dialog nQ approaches

to 4.8% with the 95% confidence level, and relative improvements of 100%
SER from 17.8% to 0% and 100% EER from 40.5% to 0% with the 90%
confidence level. The configuration of the clustering approach with 90% and
95% confidence levels produce comparable results, and when looking at the
full set of all interactions, the results are even identical. However, the 90%
confidence level has higher variation, and due to taking higher risks, some
errors can be solved earlier in the dialog, but also irrecoverable errors are
more likely to occur than with a confidence level of 95%.

To measure how many dialogs are necessary to obtain a certain level of
improvement of the knowledge base, the benefit-annoyance ratio, or short

dialog.95 1Q dialog.95 nQ dialog.90 1Q dialog.90 nQ

54.2% 46.9% 58.3% 48.5%

Table 10.7: Benefit rate for the in-domain corpus
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Figure 10.8: EER – mending results in-domain – baseline, offline and dialog
approaches with confidence levels of 90% and 95% – legend in table 10.3

Figure 10.9: F1ER – mending results in-domain – legend in table 10.3

Figure 10.10: SER – mending results in-domain – legend in table 10.3
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Figure 10.11: benefit rate with mending at once; left: in-domain, right: full
corpus

the benefit rate, was introduced in equation 10.8. It relates a measure of
improvement (the benefit) to the number of dialogs conducted (the annoy-
ance). As the benefit rate is high for a small number of dialogs, i.e. 92% for
dialog.95 1Q, and gets smaller for a larger number of dialogs, i.e. 74% for di-
alog.95 nQ, we conclude that the problem detection mechanism does a good
job in finding problems in the data set, and that this helps to restrict the
interactions to a small number without annoying the user, i.e. 25 questions
were posed for the full data set in dialog.95 1Q.

To analyze the benefit rate in further details, it would be desirable to
analyze the plot not only for two values, but for a varying number. A plot
over the ‘online’ system, i.e. the same evaluation method as just reported
with mending dialogs during the learning phase, has only limited explanatory
power, as with new interactions, new errors are induced. But, a meaningful
plot can be created with ‘mending at once’ where all mending dialogs are
conducted in a single session after the learning dialogs. Figure 10.11 shows
these plots for the in-domain set and for the full corpus with a confidence
level of 95%. Both plots, and especially the in-domain set which contains
corresponding correct entries for almost all incorrect entries, show a peak
in the beginning and then a decrease in benefit rate, which indicates that
most errors are resolved early and therefore the problem detection algorithm
offers adequate pre-selection. The plot over the full corpus does not decrease
as strongly as the plot over the in-domain entries. The interpretation for
this is that the full corpus does not contain correct entries for each person.
Therefore, the clustering step does not group together sessions from the same
person with different information. For example, the slight increase of the
benefit rate at the end happens because one person interacted with the system
frequently but each time confirmed the same incorrect name. The clustering
step now could group together different sessions, but all containing consistent
information. Therefore, from the system’s point of view, these sessions cannot
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Figure 10.12: EER plot with annotations where mending dialogs have been
conducted, based on figure 10.8

be distinguished from a person who interacts several times with the system
and is identified by the right name. A possible solution could be to use
additional features extracted from the dialogs, e.g. measuring uncertainty
of having learned the name correctly, instead of pure database information.
In case of the in-domain set, the ranking of errors are better, as for the in-
domain set, incorrectly labeled sessions are grouped together with correctly
labeled sessions leading to contradictory information which can be solved in
dialog. The results are a strong peak of the benefit rate followed by rapid
decrease.

Another way to interpret the success of the mending approaches quali-
tatively in the online system is by looking at the improvements achieved by
each mending interval. Figure 10.12 shows the annotation of the mending
intervals in the Entry Error Rate plot. It can be seen that drops of the error
rates co-occur with mending dialogs, and that quite often errors that are
made by the system can mostly be corrected by the next mending dialog.
This is most obvious between interactions (i.e. evaluation index) 67 and 75.

Another conclusion is that the mending dialogs can either be conducted
during the runtime of the system or as a final run ‘at once’. The advantage
of conducting mending dialogs during the lifetime of the system is that the
quality of the knowledge base is better throughout the system’s lifetime,
and it can be argued that the recognition components can be trained with
cleansed data.

Already by using automatic agglomerative clustering, 30% - 50% of the
errors can be either solved or at least detected, before the clustering produces
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the first fusion errors. As clustering with modifications of the database can
lead to irrecoverable errors, the database states before and after clustering are
maintained, and stored in a background model, so that dialog interactions for
mending are conducted with the unmodified database. Also as more persons
are added to the database the clustering approach gets more reliable and
stable than during initialization phase, which is another reason to maintain
the original model without early hard error correction.

When looking at the errors that exist after application of the offline clus-
tering approach, it can be seen that most of these originate from the system
incorrectly creating an arbitrary person entry (which has been termed “in-
venting a person”) – which is addressed by interactive error resolution in
dialog. Some errors are due to incorrect name spelling, which is predominant
in the visitor category, but infrequent in the employee category due to good
prior vocabulary models. In case of the invented entries, almost 80% of the
errors have been resolved by mending dialogs, which conduct a clarification
strategy, e.g. by asking a trusted person if the person with the label in ques-
tion exists, and if so, if the person is employed at the institute, is a student,
or a frequent visitor.

The mending dialogs are conducted with a trusted person who has to have
some knowledge about the population, as otherwise, information cannot be
confirmed. The presented approach enables a robot to proactively detect
and correct information stored in its database. It is not the intent of this
approach to provide a speech interface for a human operator who modifies
the database via speech instead of keyboard input. Therefore, the interaction
is initiated by the robot only. By restricting the type of interaction to this
style, the recall is not improved significantly, as it is left to the learning dialog
to acquire this information from interaction with the user. When we take a
look at how humans solve such a task, there is still room for improvement by
other types of mending dialogs, e.g. to correct the pronunciation of a name
if the user can assume who the robot refers to but recognizes that the name
is not fully correct.

We also assume that further potential exists in improving the offline clus-
tering approach. Though the benefit rates show that problematic labels are
detected early, a few potentially problematic clusters remain undetected,
which likely originate from different light conditions due to the long term
of recording and moving of the platform. As this is in general a challenge
of current face identification works, and the applied feature extraction meth-
ods are already robust against partial occlusion and different light conditions
up to a certain degree, we can expect additional improvements by new al-
gorithms and robust feature extraction, e.g. for images with and without
shadow, light from the front or from the side, etc. In the course of this
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thesis, only a limited set of clustering methods could be tested. Additional
distance features or clustering methods could improve the offline clustering
and the benefit rate.

10.4 Conclusion

This chapter has presented an evaluation of the interACT receptionist in
a long term study in a real-life environment. It could be shown that the
system can acquire information about a population and maintain this model
over a longer period of time including error correction. While single dialog
interactions have shown high success rates and initially the learning curve of
the system increases, the system reaches a point of saturation at some point
with optimal knowledge base quality. After this point, the knowledge base
quality decreases due to the accumulation of errors that happen during the
interaction and due to real-life conditions such as severe background noise
or unpredicted kinds of interaction. By knowledge mending, a successful
approach has been presented which significantly improves the knowledge base
quality by offline clustering and interactive dialogs.

In contrast to approaches such as active learning or data cleansing in
databases, the presented approach is not intended to allow a human to ‘hand-
label’ some kind of data set. A learning system such as studied here has
internal knowledge about which it can communicate, but which does not
allow direct access by a human annotator. Such a system could in the future
be applied to a humanoid robot to proactively acquire information about its
environment, and as it could be shown here, also has the ability to extend
this learning process over a longer period of time and correct induced errors.
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Chapter 11

Conclusion

11.1 Summary

This thesis has introduced a dialog-based learning approach with unsuper-
vised learning mechanisms for acquiring information and maintaining a knowl-
edge base. In contrast to supervised learning, such a learning mechanism
enables robots to learn and extend their knowledge autonomously without
manual intervention by a human supervisor, which is an important ability
when used in an open set real-world environment. It could be shown that
the approach can be realized for effective knowledge acquisition with robust
dialog strategies and for different learning tasks, and that the approach can
be applied in a realistic task over a longer period of time through ongoing
automatic knowledge maintenance with offline processes and dialog interac-
tion.

In part I, a fully integrated framework for human-robot interaction has
been presented, including techniques for robust multimodal dialog processing
and a novel framework for user identification in dialog including dialog strat-
egy optimization. It could be shown that the presented techniques improve
recognition accuracy by tight coupling of recognition components and pro-
duce reliable user identification results in a natural interaction. It could also
be shown that the presented multi-layer user identification approach improves
identification accuracy with confidence estimation, sequence hypotheses and
multimodal fusion, and that additionally, the dialog achieves significant im-
provements over non-interactive identification. Furthermore it was shown
that a multimodal user simulation can be used to train dialog strategies by
reinforcement learning and that dialog strategies trained this way lead to
better dialog results on independent data sets and in real user experiments.

In part II, a dialog-based learning approach has been presented with a
modular dialog concept and dialog strategies for acquiring information and
maintaining a knowledge base. The dialog-based learning approach com-
prises a complex system which builds on the framework presented in part I.
It could be shown that knowledge acquisition and maintenance is possible in
a real-world setting in a long term study, as information can be added reliably
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and that errors, which result from long term usage of the system, can be de-
tected with high precision. Erroneous entries can autonomously be detected
and be removed by the system, which leads to precision of knowledge base
entries of over 95%, and in advantageous situations of 100%. It could also be
shown that knowledge acquisition is possible with a generic knowledge entity
model in a complex system, which comprises learning of multimodal knowl-
edge sources of recognition components, i.e. speech recognition vocabulary,
grammar, face identification, and voice identification, semantic models, i.e.
natural language understanding grammar, ontology, and environment model,
i.e. objects, persons, and associated attributes and relations, e.g. social net-
works.

11.2 Discussion

11.2.1 Evaluation

In part I and part II different evaluation methods have been applied to mea-
sure the success of the systems. Evaluations in part I are based on well
defined metrics used in the dialog systems community, which allows to assess
subjective and objective measures in a quasi standard way. Both, subjec-
tive and objective metrics have been used to assess the system performance,
and especially objective measures can demonstrate the improvements by ap-
proaches such as tight coupling, multimodal user identification and dialog
strategy learning.

Part II focuses on analyzing different aspects of dialog-based learning,
for which less standardized metrics or evaluation standards exist. In case of
social network modeling it was possible to compare the dialog-based learning
approach against other publicly accessible services and demonstrate better
results by the dialog-based learning approach. To be able to assess the behav-
ior of the proposed methods, gold standards are introduced to measure the
success of different techniques, measure relative improvements when combin-
ing different techniques, and to evaluate an overall system. Such an overall
system evaluation was conducted for the interACT receptionist in a long-
term study in a realistic environment. With the goal to set up evaluation
metrics which are easy to understand by humans, i.e. one can personally
estimate how well the system performs, an evaluation scenario was created
for the interACT receptionist. Its performance is measured by how well it
can model a group of persons working in the interACT lab and present the
result on a “Who-is-Who” page. For such kind of evaluation we could apply
known metrics from other areas, namely adopt the precision/recall measure,
to define a metric for knowledge base quality. With the assessment of knowl-
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edge base quality, a learning curve of the system can be plotted to study
its learning behavior over time. By using the same evaluation metrics, the
dialog-based approach for knowledge mending has significantly reduced er-
rors in the knowledge base to a minimum of less than 5%, in optimal cases
to 0%.

11.2.2 Outlook

This thesis has the intent to study a complete multimodal dialog-based learn-
ing system and to realize learning functionality on all relevant system levels.
Therefore, not all learning aspects are fully exploited and new challenges
have been determined during the studies. It was shown that good knowledge
mending ability is necessary to avoid polluting the database and knowledge
models when applying dialog-based learning in a realistic system over longer
period of time. In this thesis it could be shown that already by simple
questions about which person is known, the knowledge base quality can be
improved significantly. Further ideas have come up to extend the presented
task for example by allowing a user to correct the name of a person if he
thinks that there might be for example simply a mispronunciation. To fur-
ther improve information that has been collected person-specific, one might
want to re-evaluate information that has been collected if the session’s label
is corrected and assigned to a different person ID. Another idea is to use
probabilistic labeling of the models, as one can estimate the likelihood that
the dialog updates data correctly, and use the associated probabilities dur-
ing the clustering approach, but also to influence the way that recognition
models, e.g. face identification are trained.

In contrast to approaches such as active learning or data cleansing in
databases, the presented approach is not intended to allow a human to ‘hand-
label’ some kind of data set. A learning system such as studied here has
internal knowledge about which it can communicate, but which does not
allow direct access by a human annotator. Such a system could in the future
be applied to a humanoid robot to proactively acquire information about its
environment, and as it could be shown here, also has the ability to extend
this learning process over a longer period of time and correct induced errors.
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Burghart, C., Holzapfel, H., Häußling, R., and Breuer, S. (2007). Coding inter-
action patterns between human and receptionist robot. In Proceedings of Hu-
manoids, Pittsburgh, PA, USA. (145)

Burghart, C., Mikut, R., Holzapfel, H., and Häußling, R. (2008). Modulare sub-
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