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Abstract

NLP researchers face a dilemma: on one side, it is unarguably accepted that languages have

internal structure rather than strings of words. On the other side, they �nd it very di�cult and

expensive to write grammars that have good coverage of language structures.

Statistical machine translation tries to cope with this problem by ignoring language structures

and using a statistical models to depict the translation process. Most of the translation models

are word-based. While the approach has achieved surprisingly good performance comparable

to the best commercial systems, many questions remain in the machine translation community.

Can the statistical word-based translation still perform well on language pairs with radically

di�erent linguistic structures? How would it function with less training data or with spoken

languages?

The thesis work investigated these questions. In summary, word-based alignment model is a

major cause of errors in German-English statistical spoken language translation. To account

for this problem, a structure-based alignment model is introduced. This new model takes

advantages of a bilingual grammar inference algorithm, which can automatically acquire shal-

low phrase structures used by the model. The structure-based model can directly depict the

structure di�erence between English and German spoken languages. It also results in focused

learning of word alignment, therefore it can alleviate the sparse data problem. The structure-

based model achieved 11 percent error reduction over the state-of-the-art statistical machine

translation models.





Acknowledgements

When the disastrous Culture Revolution ended 20 years ago, I just graduated from primary

school in China. Education was ignored then. Many good teachers were still in the countryside

to be \re-educated" by peasants; no reading materials were available for young students. It

was my parents who taught me the importance of education; found for me good teachers for

tutoring. My father even hand-copied many books for me to read. I always feel that I have

no excuse for not doing my best in the pursuit of excellence. My parents are proud of their

children. And I would like to tell them that we are so proud and lucky to have them as our

parents.

I wish to thank my advisor, Dr. Alex Waibel for his support, encouragement and advice

during my graduate studies. Although he is a busy director of a huge research group, he is

always available for discussion. I am also grateful to John La�erty, from whom I learned a lot

about statistical language processing and the IBM machine translation system. He also made

detailed comments on my thesis draft. I also wish to thank the other members of my committee,

Dr. Jaime Carbonell, Dr. Wayne Ward and Dr. Allen Gorin, for their insightful analysis and

valuable comments concerning my work.

I would like to thank my colleagues and friends in the Language Technolodgies Institute and

the Interactive Systems Laboratories. I would like to speci�cally thank Klause Ries, Marsal

Gavald�a, Klause Zechner, Bernhard Suhm, Laura Tomokiyo, Jie Yang and Weiyi Yang for their

help. I also whsh to thank Debbie Clement, Radha Rao, Sharon Burks and Cathy Morrow for

their help.

Most importantly though, I would like to thank my wife Xuebo, and my daughter Susan, for

their love, understanding, support and encouragement; for accompanying me through all these

di�cult but happy years. The life as a graduate student's family is hard. I can still remember

that Susan didn't want to talk to me because I failed to be home when she needed me in her

sick night. I was so moved and encouraged later when she told her teacher: \I want to be

a computer scientist when I grow up, just like my dad." I cannot forget that Xuebo cooked

delicious foods and waited for me home until 2AM for many times. My family made my life

i



these years happy and joyful, but I owed a lot to them. This thesis is dedicated to them.

ii



Contents

1 Introduction 1

1.1 Background: Rationalist vs. Empiricist Language Technologies : : : : : : : : : : 2

1.2 Statistical Machine Translation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.2.1 Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.2.2 Parameter Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.2.3 Decoding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.3 Thesis Contribution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

1.4 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

1.4.1 Statistical Analysis of Language Structures : : : : : : : : : : : : : : : : : 8

1.4.2 Semantic Parser and Translator : : : : : : : : : : : : : : : : : : : : : : : : 9

1.4.3 Language Learning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

1.4.4 Corpus-Based Statistical Machine Translation : : : : : : : : : : : : : : : : 11

1.5 Overview of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

2 Statistical Translation for Spoken Language | The Challenges 13

2.1 Spoken Language Translation: The Domain of Appointment Scheduling : : : : : 13

2.1.1 The Corpus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.1.2 Why Statistical Machine Translation : : : : : : : : : : : : : : : : : : : : : 15

2.2 The Challenges : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

2.2.1 Long Utterance Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2.2.2 Sparse Data Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2.2.3 Modeling Problem: Structure Di�erence : : : : : : : : : : : : : : : : : : : 18

iii



2.3 Solutions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2.3.1 Long Utterance Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2.3.2 Modeling Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

2.3.3 Sparse Data Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

3 System Overview 30

3.1 Resources : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

3.2 Preprocessing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

3.2.1 Canonization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

3.2.2 Proper Noun Replacement : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

3.2.3 Compound Word Decomposition : : : : : : : : : : : : : : : : : : : : : : : 33

3.2.4 Language Speci�c Preprocessing : : : : : : : : : : : : : : : : : : : : : : : 34

3.2.5 Repetition Deletion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

3.2.6 Removing Low Frequency Words : : : : : : : : : : : : : : : : : : : : : : : 34

3.2.7 Preprocessing Outcome : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

3.3 Language Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

4 Segmenting Long Utterances | A Bracketing Model 36

4.1 Dialogue Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

4.1.1 Dialogue and Bracketing Scheme : : : : : : : : : : : : : : : : : : : : : : : 36

4.1.2 Bracketing Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

4.1.3 Parameter Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

4.2 Algorithms for the Bracketing Model : : : : : : : : : : : : : : : : : : : : : : : : : 39

4.3 Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

4.4 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

5 Finding Structures for Statistical Machine Translation 45

5.1 Shallow Phrase Structures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

5.1.1 Language Structures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

5.2 Grammar Inference with Clustering and Structuring : : : : : : : : : : : : : : : : 47

5.3 Bilingual Grammar Inference : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

iv



5.3.1 Bilingual Word Clustering : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

5.3.2 Bilingual Phrasing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

5.4 Two Languages are More Informative than One : : : : : : : : : : : : : : : : : : : 56

5.5 Phrase Structure Parsing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

6 The Structure-based Alignment Model 60

6.1 The Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

6.1.1 Constraints on the Model : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

6.2 Parameter Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

6.3 An Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

7 Decoding Algorithms 71

7.1 IBM Stack Decoder : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

7.1.1 IBM Stack Decoder : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

7.1.2 IBM Decoder for Structure-Based Model : : : : : : : : : : : : : : : : : : : 74

7.2 Hypothesis Reshu�ing for Structure-Based Model : : : : : : : : : : : : : : : : : 75

7.3 Fast Stack Decoder for Model 1 and Simpli�ed Model 2 : : : : : : : : : : : : : : 79

7.3.1 Simpli�ed Model 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

7.3.2 Fast Stack Decoder: Scoring a Hypothesis : : : : : : : : : : : : : : : : : : 82

7.3.3 A* Search: Scoring a Hypothesis : : : : : : : : : : : : : : : : : : : : : : : 84

7.3.4 Performance Comparison: A* vs. Best-First Stack Decoder : : : : : : : : 86

7.3.5 Decoding Speed : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

7.3.6 Fast Stack Decoder with Reshu�ing for Structure-Based Model : : : : : : 88

7.4 Performance Comparison: IBM Stack Decoder vs. Best-First with Reshu�ing : : 90

8 Performance Evaluation 93

8.1 Evaluation Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93

8.2 Structure-base vs. Word-based Alignment : : : : : : : : : : : : : : : : : : : : : : 96

8.2.1 Translation Accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

8.2.2 Word Order and Alignment Distributions : : : : : : : : : : : : : : : : : : 100

8.2.3 Model Complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100

v



8.2.4 How Structure-based Model Outperforms Word-based Models : : : : : : : 102

8.3 Statistical vs. Symbolic Machine Translation : : : : : : : : : : : : : : : : : : : : 113

8.3.1 Statistical Machine Translation is More Robust : : : : : : : : : : : : : : : 113

8.3.2 Statistical Machine Translation is More Accurate : : : : : : : : : : : : : : 116

8.3.3 Statistical Machine Translation is More Natural : : : : : : : : : : : : : : : 116

8.4 Monolingual Grammar Inference vs. Bilingual Grammar Inference : : : : : : : : 116

8.5 Hand-Made vs. Automated Utterance Segmentation : : : : : : : : : : : : : : : : 116

8.6 Error Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118

9 Summary 121

9.1 Contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122

9.2 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123

9.3 Future Directions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

A Translation Models 127

A.1 IBM Translation Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 127

A.1.1 Model 1 and Model 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 127

A.1.2 Model 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 128

A.1.3 Model 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 130

vi



Chapter 1

Introduction

In his recent survey article (Knight, 1997) on knowledge acquisition for machine translation,

Kevin Knight noted:

\This system (the IBM statistical machine translation system CANDIDE) performs as well

as the best commercial systems, with no handbuilt knowledge bases! That's the good news.

Where to go from here? It is unclear whether the outstanding problems can be addressed

within word-for-word framework, via better statistical modeling or more training data. It is

also unclear how this method would perform on language pairs like Vietnamese/English, with

radically di�erent linguistic structure and less bilingual data on line."

While acknowledging the great success of statistical machine translation, here Knight also

raised three questions about statistical machine translation:

1. How far can the word-for-word statistical machine translation go? | Strictly speaking,

statistical machine translation is not word-for-word translation. Although the translation

models are more or less based on word/cept alignments, at least language models introduce

context constraints into translations. So from now on I will use word-based translation

model instead of word-for-word translation.

2. What performance can we expect from a statistical translator if the language pair has

radically di�erent structures?

3. What kind of performance can we expect if there is less training data?

1



This thesis investigates these questions about statistical machine translation raised in the

machine translation society. It also investigates an additional question about the performance

of the word-based translation models for spoken language. Before I go to detailed analysis of

the problems, designing of models, description of experiments, and evaluation of performance,

I will �rst review the statistical machine translation approach in the background of di�erent

language technologies.

1.1 Background: Rationalist vs. Empiricist Language Tech-

nologies

Rationalism and empiricism are two rival approaches in computational linguistics. The philo-

sophical controversy between the two lies in di�erent ways of linguistic knowledge acquisition.

The former argues that a signi�cant part of human language knowledge is innate (presumably

inherited genetically), while the latter argues that language knowledge derives solely from sen-

sory input and a few elementary operations of association and generalization. As re
ected in

language technology, the rationalist approach tries to extract human language knowledge and

model it formally with the expertise of language engineers. The models are usually expressed

with rules in a symbolic system. The empiricist approach, on the other hand, suggests that

models of language can be obtained simply by examining a large amount of language data and

using procedures (usually statistical or connectionist) of association and inductive generaliza-

tion.

Because of the philosophical divide, the two approaches di�er in the following aspects:

1. The rationalist approaches are generally theory-based. The models (grammars) are based

on linguistic theories, such as GB, LFG, GPSP, or HPSG. The empiricist approaches are

corpus-based or more speci�cally statistics-based. By observing a great amount of language

data, a model can associate a language construction with a real number representing its

likelihood.

2. Since grammar theories generally focus on language competence, the rationalist approaches

are therefore competence-oriented. On the other hand, the empiricist approaches deal with

the performance data directly. Therefore they are intrinsically performance oriented.

2



3. The models in rationalist approaches are generally engineered by formally representing

human expertise. The models in the empiricist approaches are generally learnable from

corpora.

Empiricism was dominant in computational linguistics before the 1960's. Between the 60's

and the middle of the 80's, the rationalist approach has dominated the �eld. This was due to

the widespread acceptance of Noam Chomsky's theory of innate language faculty. From the late

80's, the empiricist approach resurged as an important language technology, powered by the

skyrocketing capacity of modern computers and the increasing availability of large, machine-

readable corpora. An example of the resurgence of empiricist approach is statistical machine

translation. Although Warren Weaver suggested that the translation problem be attacked with

an information theoretic approach as early as 1949, it was not feasible with the computational

and storage power of computers at that time. Symbolic machine translation approach thus

dominated in the �eld of machine translation. In recent years, with the increasing availability of

on-line corpora and growing computational powers, statistical machine translation is becoming

a reality (Brown et al., 1990; Brown et al., 1993; Wang and Waibel, 1997a; Tillmann et al.,

1997). Compared to the traditional rationalist approach, statistical machine translation does

not require expertise in language knowledge engineering, and it is robust to noise, which is often

observed in spoken language data.

1.2 Statistical Machine Translation

Statistical machine translation is based on a channel model. Given a sentence T in one language

(German) to be translated into another language (English), it considers T to be the target of

a communication channel, and its translation S to be the source of the channel. Hence the

machine translation task is to recover the source from the target. Basically every English

sentence is a possible source for a German target sentence. If we assign a probability Pr(S j T)

to each pair of sentences (S, T), then the problem of translation is to �nd the source S for a

given target T, such that Pr(S j T) is the maximum. According to the Bayes rule,

Pr(S j T) =

Pr(S) Pr(T j S)

Pr(T)

(1.1)

3



Since the denominator is independent of S, the translation of T is therefore

^

S = argmax

S

Pr(S) Pr(T j S): (1.2)

There are three subproblems in statistical machine translation:

� Modeling Problem: How can the process of generating a sentence in a source language

be depicted, and what process is used by the channel to generate a target sentence upon

receiving a source sentence? The former is the problem of language modeling, and the

latter is the problem of translation modeling. They provide a framework to calculate

Pr(S) and Pr(T j S) in (1.2).

� Learning Problem: Given a statistical language model Pr(S) and a statistical translation

model Pr(T j S), how can the parameters in these models be estimated from a bilingual

corpus of parallel sentences? Moreover, it there a way to automatically learn the structure

of the translation model?

� Decoding Problem: With a fully speci�ed (framework and parameters) language and

translation model, given a target sentence T, how can the source sentence

^

S that satis�es

(1.2) be most e�ciently identi�ed.

Remark 1 Throughout this thesis I will use \source language/sentence" for the language/sentence

at the source end of the channel, and use \target language/sentence" for the language/sentence

at the target end, i.e., the source language is the one that we are translating to, and the target

language is the one that we are translating from. Unfortunately this terminology in statistical

machine translation is somewhat confusing: it is opposed to what source/target means in the tra-

ditional usage of machine translation. When it is necessary, I will use \input/output language"

to refer to the \source/target language" in the traditional machine translation terminology.

1.2.1 Modeling

Most statistical machine translation systems use ngram (Jelinek, 1990) for language modeling.

Translation models rely on the concept of alignment. Many alignment translation models as-

sume that a target sentence is generated from a source sentence word by word. Here a word

may di�er from what \word" traditionally means. It does not necessarily to be a dictionary

4



entry. Often parallel sentences are preprocessed or transduced, so the source and target sen-

tences may look similar. The transduced sentences may contain a \word" that could be several

source words in the original sentence. For example, in the IBM system, do not is treated as a

word rather than two separate words in English, and pairs like ne ... pas, ne ... rien, etc., are

combined into single words in French (Brown et al., 1992b). A target sentence word can be

aligned with the source sentence word that produces it. In an alignment, each target word can

align with only one source sentence word. So far, most of the statistical machine translation

systems use word-based alignment model (Brown et al., 1993; Vogel, Ney, and Tillman, 1996;

Wang and Waibel, 1997a), and no structure is involved in the alignment. (Brown et al., 1993)

introduced �ve di�erent word-based alignment models for translation modeling. The detailed

description of the models can be found in Appendix A. One of the major contributions in this

thesis is a structure-based alignment model. Figure 1.1 sketches the di�erence between di�erent

IBM models and the structure-based model.

1.2.2 Parameter Estimation

Since the alignment between a paired source/target sentence is not marked in a parallel training

corpus, the maximum likelihood (ML) estimator cannot be directly applied. EM algorithm

(Dempster, Laird, and Rubin, 1977) is an e�ective ML estimator for statistical models with

hidden variables, which can be applied to the translation models, where alignments are the

hidden variables. (Brown et al., 1993) described how to use the EM algorithm to estimate the

parameters in the �ve translation models in the IBM statistical machine translation system.

1.2.3 Decoding

The decoding algorithm is another crucial part in statistical machine translation. Its per-

formance directly a�ects translation quality and e�ciency. Without a reliable and e�cient

decoding algorithm, a statistical machine translation system may miss the best translation of

an input sentence even if it is perfectly predicted by the model. (Berger et al., 1996) described

the stack decoder used by the IBM statistical machine translation system. (Wang and Waibel,

1997a) described a faster stack decoding algorithm for the IBM translation model 2 as well as

a simpli�ed model. (Tillmann et al., 1997) used a dynamic programming search algorithm for

5
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decoding, which imposes monotonic assignment on alignments.

1.3 Thesis Contribution

The thesis investigated the questions about statistical machine translation raised in the machine

translation community. A major criticism to the IBM statistical machine translation system is

its requirement of language parallelism | it translated from French to English, two languages

that have similar structure, and furthermore, the source/target languages are transduced so

the two intermediate languages have even more similar structure (Brown et al., 1992b). This

poses a question on the generality of the approach, as questioned by Knight in his survey paper.

Actually, we have found that the word-based alignment models used by IBM caused many errors

in statistical spoken language translation between a language pair with di�erent structures and

with less parallel training data.

The thesis work reported here takes one step forward towards relaxing the parallelism re-

quirement of statistical machine translation. It demonstrates that more sophisticated statisti-

cal model is available to account for the structure di�erence between languages (English and

German, which have very di�erent word orders). I consider this to be the most important con-

tribution of this thesis, and I hope that this can clarify some of the questions about statistical

machine translation. In the e�ort towards this major goal, the following detailed contributions

were made:

1. Introduction of a new structure-based translation model that improves the performance

of spoken language translation between language pairs with di�erent structures.

2. Investigation of novel approaches to grammar inference and bilingual grammar inference

that facilitate the structure-based translation model.

3. Statistical dialogue analysis that can divide dialogues and long utterances into basic

(shorter) semantic units, which enables a statistical machine translation system to process

unsegmented outputs from speech recognizer.

4. Development of e�cient decoding algorithms for statistical machine translation. This

makes statistical machine translation more practical.
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1.4 Related Work

1.4.1 Statistical Analysis of Language Structures

Dialogue Structure Analysis

Dialogue structure provides important information for spoken language understanding. This

structure comprises the current topic, discourse state, and speech act, etc. Many researchers

use topic information to reduce the perplexity of a task (Young, 1993; Kneser and Steinbiss,

1993). Dialogue analysis segments a dialogue into smaller units and labels the functionality

of the units in their contexts. While knowledge-based approaches are widely and successfully

used in dialogue structure analysis (Grosz and Sidner, 1986; Litman and Allen, 1990), they

require intensive human e�ort to de�ne linguistic structures and develop grammars to detect

the structures.

(Woszczyna and Waibel, 1994) used a statistical approach for dialogue analysis. They

modeled dialogue structure with a 6-state Hidden Markov Model. Each state represents a

speech act, and it emits words to produce sentences in that speech act. The transition and

emission probability can be obtained from labeled data with maximum likelihood estimation:

a

ij

= Pr(q

t

= S

j

j q

t�1

= S

i

) =

number of transitions from S

i

to S

j

number of transitions from S

i

b

i

(k) = Pr(v

k

at t j q

t

= S

i

) =

number of times observing v

k

in S

i

number of times in S

i

Given a new dialogue, its (linear) dialogue structure can be obtained with the Viterbi search

algorithm of the Hidden Markov Model.

One de�ciency of this model is that it treats words as unrelated items randomly emitted

from a state. It does not take into account a much stronger constraint that words must form a

legitimate sentence of a speech act. Because of this, the model is inclined to shift among states

too often so that the probability of individual word is maximized. In this thesis, I will present

a model that uses ngram language models to constrain the word sequences that can be emitted

from a dialogue state.
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Hidden Understanding Model

(Miller et al., 1994) introduced a statistical understanding model. A sentence is understood

by a machine if it can assign a semantic role to each part of the sentence. In (Miller et al.,

1994), this was modeled with statistical �nite state machines. The statistical model consists

of two parts: a semantic language model used for the transitions among semantic roles, and a

lexical realization model that speci�es the word generation process for each semantic role. Both

the semantic language model and the lexical realization model were context dependent ngrams,

and both of them were trained with the ML estimator from hand-labeled data. To understand

a test sentence, the Hidden Understanding Model carried out Viterbi search for the semantic

role sequences that are hidden behind the sentence. This hidden understanding model is very

similar to the bracketing model used for dialogue analysis, which is introduced in Chapter 4.

1.4.2 Semantic Parser and Translator

The basic premise for semantic parsing and translation is that the structure of the information to

be transmitted is largely independent of the language used to encode it. In semantic parsing like

the Phoenix Parser (Ward, 1990), there was no syntactic analysis; instead, speaker utterances

were parsed into semantic chunks, which could be strung together without grammatical rules.

(May�eld et al., 1995) used the Phoenix parser to generate language independent interlingua

representation from an input sentence. In the interlingua representation, the semantic speech

act of a semantic unit was labeled, together with the semantic roles that constitute the speech

act. For example, the sentence \I have a meeting on Friday afternoon" can be represented by

something like

([my unavailability] ([temporal] Friday afternoon))

Translation or paraphrasing can be easily produced from the interlingua representation with

template-based text generation. Continuing from the above example, paraphrasing of the sen-

tence can be generated by �lling the [my unavailability] template \I couldn't do [temporal]"

with the appropriate paraphrasing of the temporal expression in the original sentence. This

results in the sentence \I couldn't do Friday afternoon."

In chapter 8 I will compare the performance of the semantic translation with my statistical

translator.
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1.4.3 Language Learning

Many di�erent algorithms have been designed, either to acquire linguistic structures automat-

ically from corpora or interactively from users, or to learn the meaning of a sentence by the

automatically association between the sentence and the action related to the meaning of the

sentence. Here I review just a few of them, which I believe are representative.

(Stolcke and Omohundro, 1994) have described a new technique for inducing the structure

of Hidden Markov Models (HMM) from training data. The process begins with a maximum

likelihood HMM that directly encodes the training data. Successively more general and compact

models are produced by merging HMM states. The method is characterized as follows:

� Data incorporation: Given a body of data X, build an initial model M

0

by explicitly

accommodating each data point such that M

0

maximizes the likelihood Pr(X jM). The

size of the initial model will thus grow with the amount of data, and will usually not

exhibit signi�cant generalization.

� Structure merging: Build a sequence of new models, obtaining model M

i+1

from M

i

by

applying a generalization or merging operator that coalesces substructures in M

i

.

The merging operation accounts for the data points previously \explained" by separate

model substructures with a single, shared structure. The merging process thereby gradually

moves from a simple, instance-based model toward one that expresses structural generalizations

about the data. The choice of what to merge and when to stop is governed by the Bayesian

posterior probability of the model given the data:

Pr(M jX) =

Pr(M) Pr(X jM)

Pr(X)

(1.3)

The learning procedure is a heuristic search for the HMM structure with the highest

Pr(M) Pr(X jM).

This algorithm, together with the other algorithms in �nite state machine induction (Fu

and Booth, 1975a; Fu and Booth, 1975b), reveal the gist of grammar inference. Almost every

grammar inference algorithm is ful�lling two tasks: data explanation and generalization. In
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the case of Bayesian model merging, data incorporation ful�lls the data explanation task, and

structure merging ful�lls the generalization task.

Information-Theoretical Grammar Induction

Another approach to grammar inference is based on information theoretic iterative clustering

and sequence �nding procedures of words and phrases. (McCandless, 1994) and (Ries, Bu�, and

Wang, 1995) independently used a similar approach in grammar inference. The idea behind this

is that through clustering, the inferred grammar is generalized, and through sequence �nding,

new structures are introduced into the grammar.

Association-based Understanding

Instead of grammar inference, (Gorin et al., 1991) described a language learning approach along

another line. This approach argues that when the language data is vast and semantics of a task

are very limited, the traditional grammar parsing might be not as helpful as word/phrase-

meaning association. (Gorin et al., 1991) and (Gorin, 1995) introduced information theoretic

algorithms for automatic acquisition of the associations and discovery of salient words/phrases

that are most important in language understanding. The algorithms were successfully used in

tasks like automatically directing incoming telephone calls to appropriate departments. One of

their interesting �nding is that including the automatically acquired phrases in the association

signi�cantly improved the performance. It comports with my observation that automatically

acquired phrases can help to improve statistical NLP performance | in my case, statistical

machine translation.

1.4.4 Corpus-Based Statistical Machine Translation

(Brown et al., 1993) introduced 5 di�erent models that translated French sentences to English

sentences. Of these, Model 2, 3 and 4 were reviewed in detail in Appendix A.

(Tillmann et al., 1997) introduced the monotonic assumption into a translation model to

speed up the decoding process in statistical machine translation. While this may work for

translation between Spanish and English, (which have similar word orders,) the assumption

causes problems when attempting to model the translation between languages with very dif-

11



ferent word orders, such as English and German. They proposed to moderate the problem by

writing grammars to preprocess sentences in order that they would have similar word orders.

This greatly curtails the advantages of statistical machine translation.

1.5 Overview of the Thesis

The thesis is organized as follows. In Chapter 2, the task of spoken language translation in

the domain of appointment scheduling is described, and the challenge it brings to machine

translation is analyzed. Additionally, how the algorithms in the thesis meet the challenge is

discussed. The chapters after that are mostly detailed descriptions of the algorithms and models.

Chapter 3 gives an overview of the system architecture. In Chapter 4, an algorithm of statistical

dialogue analysis is presented. A side-product of the algorithm is the automatic utterance

segmentation, which is particularly important in spoken language translation. In Chapter 5,

a bilingual grammar inference technique that is able to acquire shallow phrase structures is

illustrated. The structures will be used in Chapter 6, where I introduce a novel structure-

based alignment model for statistical machine translation. In Chapter 7, decoding algorithms

for di�erent translation models are presented. In Chapter 8, performance is evaluated and

discussed. And thesis conclusions are presented in Chapter 9.
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Chapter 2

Statistical Translation for Spoken

Language | The Challenges

2.1 Spoken Language Translation: The Domain of Appoint-

ment Scheduling

With the rapid growth of information services and language technology applications in daily

life, spoken language processing becomes more appealing. Recently there are intense research

activities in speech-to-speech translation (Morimoto and et al, 1994; Roe et al., 1992; Hatazaki

et al., 1992; Wahlster, 1993; Kay, Gawron, and Norvig, 1994; Suhm et al., 1995; Waibel, 1996).

Janus (Suhm et al., 1995) and Janus II (Waibel, 1996) are speech-to-speech machine transla-

tion systems in the domain of appointment scheduling. The projects aim at multilingual speech

recognition and understanding, speech translation for human-to-human communication. The

project had collected German/English parallel corpus, which were used as part of the training

data for the work reported in this thesis. In the mean time, the Verbmobil Project (Wahlster,

1993; Kay, Gawron, and Norvig, 1994) has collected a larger set of parallel sentences in the same

domain, and that was another source of the training data for my system. Approximately 15%

of my data were from the Janus Projects, and about 85% of the data were from the Verbmobil

Project.
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2.1.1 The Corpus

The scheduling parallel corpus consists of 569 dialogues in the domain of appointment schedul-

ing. There are around 8,400 English/German parallel utterances in these dialogues. The size

of the corpus is around 446,500 (224,000 English + 222,500 German) words. The following is a

typical English dialogue with its German translation:

Example 2.1.1 A segment of scheduling parallel corpus

Hello Dr. Noah

Hi Tor let's set up a meeting for a couple hours in the next two weeks when's good for you

Hmm that's a good question um let's see pretty busy um how about Friday the second in the

morning

Monday the twenty ninth how about at two thirty I could do it

No I'm only free on mornings of Monday let's see ...

...

Sounds good Tuesday morning nine AM on the thirtieth how's your wife

She's �ne why do you ask

Yeah I thought so too well see you then bye

|||||||||||||||||{

Hallo Dr. Noah

Hallo Tor lassen Sie uns ein Meeting von ein paar Stunden in den n�achsten zwei Wochen

vereinbaren wann w�are es ihnen recht

Hmm das ist eine gute Frage schauen wir mal ich bin ziemlich besch�aftigt wie w�are es denn

mit Freitag dem 2 morgens

Wie w�are es mit halb drei am Montag den 29 das ginge bei mir

Nein Montags kann ich nur morgens schauen wir mal ...

...

Dienstag den 30 um neun Uhr morgens h�ort sich gut an wie geht es denn ihrer Frau

Es geht ihr gut warum fragen Sie

Ja denke ich auch also bis dann tsch�us

14



The Verbmobil part of the data contains hints for segmenting long utterances into smaller

units, while the Janus part does not have that information. The segmentation algorithm de-

scribed in Chapter 4 was used to presegment the long utterances in the Janus training corpus.

The char align alignment algorithm (Church, 1993) was implemented to align the sentences

in the parallel corpus.

2.1.2 Why Statistical Machine Translation

Learnability

Symbolic approaches to machine translation take great human e�ort in language engineering.

In knowledge-based machine translation, for example, designers must �rst �nd out what kinds

of linguistic, general common-sense and domain-speci�c knowledge are important for a task.

Then they have to design an interlingua representation for the knowledge, and write grammars

to parse input sentences into and generate output sentences from the interlingua representation.

All of these require expertise in language technologies and tedious and laborious work.

The biggest advantage of statistical machine translation is its learnability. As long as a

model is set up, it can learn automatically with well-studied algorithms for parameter estima-

tion. Therefore parallel corpus replaces the human expertise for the task.

Coverage and Robustness

Due to its competence-orientation, symbolic approach has encountered great di�culties for

spoken language translation. The theory-based approach is good at describing human language

competence. However, we are actually processing human language performance when we work

with spoken languages.

The di�culties are two-fold. First, it is not realistic to require that a language system

designer be able to enumerate all possible language constructions and encode them in his

grammar, given the richness of language constructions in spoken language. Therefore the

coverage of grammar is a serious problem. (Black, Garside, and Leech, 1993) reported three

experiments with several parsers for \general English" sentences taken from the AP newswire,

Brown Corpus and Wall Street Journal text. With a very liberal and forgiving standard, they

found that \the state of the art in parsing general English is so modest that one could not
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even expect a typical parsing system to get a correct analysis for half the sentences input to

it | perhaps not even for a third of them." Although the experiment in (Black, Garside, and

Leech, 1993) was conducted with parsers for \general English", the performance of parsers is

not encouraging with domain-speci�c tasks either. When I applied the Janus semantic parser

and translator to some of my test data, I found that the performance was surprisingly poor.

One reason, as suggested by one of the symbolic system developers, was that the borrowed word

\Meeting" occurred 6 times in 69 German utterances, but it was not covered in the grammar.

As a matter of fact, the translator failed on all the sentences containing the word \Meeting".

The second issue is the robustness. Unlike written languages, spoken languages are hardly

ever well-formed. They contain dis
uencies, hesitations, repetitions, and false starts. A speech

translation system cannot assume any rigid syntactic constraints in an input language. It is

also not possible to model the noise with grammar rules due to its unpredictability. A common

practice to handle this problem is to write a grammar that does not model the noisy data at all,

and build a parser that is able to skip the segments that are not covered by the grammar. This

is dangerous, since it will also ignore semantically meaningful segments that are not covered by

grammar, like the aforementioned \Meeting" example.

Therefore, to process spoken languages, or language performance, an empirical, frequency-

based, data-driven and performance-oriented approach is more desirable. Statistical machine

translation is a good candidate that meets these criteria. It can learn to have a good coverage

as long as the training data is representative enough. It can statistically model the noise in

spoken language, so it does not have to make a binary keep/abandon decision and is therefore

more robust to noisy data.

2.2 The Challenges

Our parallel data of spoken language poses many new challenges to statistical machine trans-

lation too. The major di�culties, as I perceive them, are related to the questions raised by the

machine translation community. As I quoted Kevin Knight's AI magazine survey article at the

beginning of this thesis, the di�culties include

1. Language pair with di�erent structures
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2. Less training data, or sparse data problem

Besides these, other di�culties are related to spoken language. For example, the long

utterance problem is speci�c in our spoken language corpus. Spoken language may also intensify

the structure di�erence between languages. In this section, I discuss these di�culties in detail.

2.2.1 Long Utterance Problem

A spoken dialogue does not consist of sentences in the classical sense. Instead, each utterance

(speaker's turn) contains multiple unsegmented sentences. The unsegmented utterances are

typically very long. This may cause severe problems for statistical machine translation. First,

since the alignment parameters depend on sentence length, the number of alignment parameters

is quadratic or cubic in the maximum length of utterances. Therefore a restriction on the

acceptable sentence length has to be imposed to limit the number of free parameters. In

the IBM translation system, the maximum sentence length is limited to 25. This will be too

restrictive for our task if we use utterances as the unit in translation, since the average utterance

length of the scheduling data is 24.87. On the other side, our data is much less than the Hansard

Corpus used by the IBM system. With longer parallel unit size in the training data, we get

much fewer number of parallel units for model training. This will greatly reduce the number

of examples per parameter, and make it unrealistic to build a reliable model. The second

di�culty lies in decoding algorithms. The longer an utterance is, the more di�erent choices

there are in the hypothesis space. In my experience with stack decoder (Wang and Waibel,

1997a), the searching time increases dramatically with the length of utterances. To make the

problem tractable, we are forced to keep the searching beam very narrow. This greatly limits

the possibility of �nding optimal solutions.

2.2.2 Sparse Data Problem

Compared to the IBM statistical machine translation system, which used over 1.7 million pairs

of sentences, our database has only 8,400 utterances comprising about 200,000 words in each

language. Although an utterance may contain several sentences, sentence boundaries in an

utterance are not directly available from speech recognition (see the about long utterance prob-

lem). Even after the statistical dialogue analysis model is used to segment long utterances
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Figure 2.1: Corpus Size vs. Lexicon Size (English)

(Chapter 4), we have only around 30,000 parallel sentences, which is still much less than the

amount that IBM had used.

Figure 2.1 and Figure 2.2 show the growth rate of lexicon size in relation to the corpus size.

The statistics were collected from monolingual English and German corpora in the scheduling

domain. As we can see, at the size of 200,000 words (our parallel corpus size), both corpora still

have very high lexicon growth rate. Therefore the parallel corpus is hardly enough to estimate

the translation distributions for a stable set of source words.

2.2.3 Modeling Problem: Structure Di�erence

The languages in our parallel corpus, English and German, have quite di�erence structures.

While the structure di�erence is not as radical as the di�erence between English and Viet-

namese, it has already caused problems with the word-based alignment model.

The structure di�erences are contributed mostly by two factors: di�erent word orders and

deletions in translation.

Word Order

Unlike English and French in the IBM machine translation system, English and German have

very di�erent word orders. This observation was also made by another research group in
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Figure 2.2: Corpus Size vs. Lexicon Size (German)

statistical machine translation (Tillmann et al., 1997). As a typical example shown in Example

2.2.1, time expressions, which most frequently occur in the scheduling data, often appear at

di�erent positions in English and German.

Example 2.2.1 Di�erent word (phrase) orders in parallel sentences

I could o�er you Wednesday the twenty �fth for the second date in May

F�ur der zweiten Termin im Mai k�onnte ich den Mitwoch den f�unfundzwanzigsten

anbieten.

The word order di�erence is even more common in spoken language. Since people care less

about word orders when they speak, the word order in spoken language is more 
exible. The

following example shows six English sentences with di�erent word orders to express the same

meaning. Each of these sentences may be a translation of the German sentence \Ich k�onnte

mich mit Ihnen so um zwei Uhr nachmittags am Mittwoch den dritten tre�en."

Example 2.2.2 Flexibility of word orders in spoken language

I could meet with you at about two PM on Wednesday the third.

I could meet with you on Wednesday the third at about two PM.

On Wednesday the third I could meet with you at about two PM.

At about two PM I could meet with you on Wednesday the third.
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At about two PM on Wednesday the third I could meet with you.

On Wednesday the third at about two PM I could meet with you .

Deletions in Translation

Another contributor to the structure di�erence between the languages in our corpus is deletions

in translation. It seems that human translators tend to ignore unimportant parts when they

translate spoken languages. As an example of this at extreme, a Japanese interpreter once

translated an American diplomat's lengthy joke to \This gentleman just told a very funny joke,

please laugh." Deletions in translation can also be a result of erroneous sentence alignment.

Word-based Alignment Model

By far, most (if not all) of the statistical machine translation systems employ a word-based

alignment model (Brown et al., 1993; Vogel, Ney, and Tillman, 1996; Wang and Waibel, 1997a),

which treats words in a sentence as independent entities and ignores the structural relations

among them. While this independence assumption works well in speech recognition, it poses a

major problem in our experiments of spoken language translation, with less training data and

di�erent structures between source and target languages.

Let's take IBM alignment Model 2 for example. A majority of the parameters in Model 2

is the translation parameters. Because we have sparse data problem, it is likely that the trans-

lation parameters get under-trained. On the other side, the number of alignment parameters is

much fewer than the number of translation parameters, therefore the alignment parameters can

relatively get over-trained. If this happens, then the model will tend to align a target position

to a similar position in the source sentence, regardless of what word appears at that source

position. Figure 2.3 shows the Viterbi alignment between a pair of parallel English/German

sentences made by IBM Alignment Model 2 (henceforth Model 2), and the `ideal' alignment

between the sentence pair is shown in Figure 2.4. Here the alignment parameters penalize the

alignment of English words to their correct German translations, because the translations are

far away from those words due to the di�erent phrase orders in the translation. The same

alignment problem also happens when there are deletions in translation. Figure 2.5 shows an

example of an erroneous Viterbi alignment (again, made by Model 2) between a pair of parallel
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Figure 2.3: Word Alignment of translation with di�erent phrase order: the alignment made by

IBM Alignment Model 2.

21



I

could

o�er

you

Wednesday

the

twenty

�fth

for

the

second

date

in

May

f�ur

der

zweiten

Termin

im

Mai

k�onnte

ich

den

Mittwoch

den

f�unf

und

zwanzigsten

anbieten

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

@

@

@

@

@

@

@

@

@

@

@

@

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A�

�

�

�

X

X

X

X

c

c

c

c

c

c

c

c

c

c

c

c

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2.4: Word Alignment of translation with di�erent phrase order: the `ideal' alignment.
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Figure 2.6: Word Alignment with deletions in translation: the `ideal' alignment.
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Figure 2.7: Word Alignment with Model 1 for one of the previous examples. Because no

alignment probability penalizes the long distance phrase movement, it is much closer to the

\ideal" alignment.
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sentences with deletions. Figure 2.6 shows the `ideal' alignment.

From these two examples, we can see that Model 2 tends to make mistakes in the Viterbi

alignment between parallel sentences when the correct, ideal alignment contains long distance

word-to-word correspondence. To see how often this kind of long distance alignment happens

in our English/German scheduling conversation parallel corpus (Wang and Waibel, 1997a),

an experiment was conducted. The experiment was based on the following observation: IBM

Alignment Model 1 (henceforth Model 1, where the alignment distribution is uniform) and IBM

Alignment Model 2 (henceforth Model 2) found similar Viterbi alignments when there were no

word order di�erences or deletions; they predicted very di�erent Viterbi alignments when there

were many long distance word-to-word alignments between a sentence pair, since the alignment

parameters in Model 2 penalized the long distance alignments. Figure 2.7 shows the Viterbi

alignment made by Model 1 for the sentences in Figure 2.3 and 2.4. Compared to the alignment

made by Model 2, it is much closer to the `ideal' alignment

1

.

I measured the distance between a Model 1 alignment a

1

and a Model 2 alignment a

2

with

P

jgj

i=1

ja

1

i

�a

2

i

j, where a

k

i

is the source position aligned to the i

th

target word in a

k

(k = 1 or 2),

and jgj is the target sentence length. To estimate how often long distance alignments happen in

our parallel corpus, I collected the statistics about the percentage of sentence pairs (with at least

�ve words in a sentence) with the distance between Model 1 and Model 2 alignments greater

than 1=4; 2=4; 3=4; � � �10=4 of the target sentence length. By checking the Viterbi alignments

made by both models, it is almost certain that there is either a word order di�erence or a

phrase deletion or both in a sentence pair whenever the distance is greater than 3/4 of the

target sentence length. Figure 2.8 plots the statistics | around 30% of the sentence pairs in

our training data contain some degree of long distance alignments. In other words, Model 2

tends to make alignment errors with around 30% of our training data.

The mistakes in alignments between parallel sentences make the translation model confused

about the correct translations of source words. Table 2.1 shows the translation distribution of

the English word \I" learned by Model 2. Here only the �rst word \ich" is a correct translation

for \I". It is interesting to note that all the German words in the table often appear at the

1

The better alignment on a given pair of sentences does not mean that Model 1 is a better model. Non-

uniform alignment distribution is desirable. Otherwise, language model would be the only constraint that is used

to determine the source sentence word order in decoding.
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t

M2

(*j I)

ich 0.708

da 0.104

am 0.024

das 0.022

dann 0.022

also 0.019

es 0.011

Table 2.1: The translation distribution of \I". The biased alignments between parallel sentences

forced the association between \I" and those unrelated German words.

beginning of a German sentence, the same position where \I" often appears in English sentences.

It is thus clear now that the biased alignments forced the association between \I" and those

unrelated German words.

2.3 Solutions

2.3.1 Long Utterance Problem

I have developed a statistical dialogue analysis system. It segments utterances in a dialogue and

labels each segment with a speech act (Wang and Waibel, 1997b). It was used as a preprocessor

of the machine translation system.
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2.3.2 Modeling Problem

Starting from Model 4, the IBM statistical machine translation system replaced the alignment

distributions with the displacement distributions. In this case, the distribution of the aligned

position of a source word w does not depend on the position of w. Instead, it depends on

the distance between that position and the average position of those target words aligned

to the source word that precedes w. Because of this, a long distance phrase movement in

translation only gets penalized once for the �rst words in the phrase. Hence the probability for

the alignment will not get hurt too much.

While this alleviates the symptom, it is not a cure to the disease. It still discourages long

distance alignment, since at a phrase boundary, the displacement probability can still get too

small. Besides, it does not distinguish the context where w and its preceding word appear. A

major contribution of the thesis is a structure based model that �nds the important phrases,

models the structure di�erence directly with a rough alignment between phrases, and then

aligns the words in the corresponding phrases via detailed alignment. The detailed alignment

aligns source/target words together with the knowledge of the context (phrase) where the words

appear, such that the placement of a target word depends on the positions of the other words

in the same phrase.

2.3.3 Sparse Data Problem

As for the sparse data problem, there is not much for us to do with the data itself, since

the collection of parallel corpus is expensive. A common practice is to simplify the statistical

model to reduce its complexity. Normally the complexity is measured by the number of free

parameters, therefore the per-parameter data increases. However, we cannot go much farther

along this line either. IBM Model 1 is probably the simplest model | no translation model can

describe the translation process successfully without knowing the probability of the translation

from a source word to a target word. All the rest models do not have much more parameters

than Model 1, since the translation parameters compose a major part of the parameters in

those models.

However, the number of free parameters is not the only measure of model complexity.

By reducing the model complexity according to information theoretic measures, we can still
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alleviate the sparse problem. Here the idea is to reduce the uncertainty of the translation of a

source word by guiding the training procedure to focus on the correct alignments. The structure-

based model achieves this by focusing on the alignment between words inside the roughly aligned

phrases, so the words outside the aligned phrases will not \distract the attention" of a source

word.

Additionally, the segmentation algorithm produces more basic parallel translation units,

therefore supplies more data for the training of alignment parameters.
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Chapter 3

System Overview

Figure 3.1 illustrates the architecture of the statistical machine translation system described in

this thesis. The hollow arrows show the data 
ow of the training process, while the solid arrows

display the data 
ow of the test process.

In the training phase, training data is �rst manipulated by the preprocessor. It is then

passed to the bracketing model for sentence segmentation. The parallel corpus of utterance

segments (for the sake of simplicity, I will call \utterance segments" sentences from now on if

it does not cause confusion.) are then aligned at sentence level with the char align algorithm

(Church, 1993). The source language part of the parallel data is used for the training of language

model, and the aligned parallel sentences are �rst used for grammar inference, and then used

together with the inferred phrase structures to build the translation model.

In the test phase, a test target utterance is �rst preprocessed and segmented, and then each

segmented sentence is sent to the decoder as a target. The decoder uses the translation model

and language model built in the training phase to �nd the translation of the target that has

the maximum product of language model score and translation model score.

The di�erent processing modules are discussed throughout this thesis. In this chapter I will

describe the data preprocessor and the language model. Utterance segmentation is discussed

in Chapter 4; grammar inference in Chapter 5; translation model in Chapter 6; decoders in

Chapter 7.
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Figure 3.1: System Architecture: the hollow arrows show the data 
ow of the training phase,

the solid arrows show the data 
ow of the testing phase.
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3.1 Resources

The preprocessor and other modules in the system use the following resources of the translation

system:

� Lexicons: English and German lexicons have been built from the parallel training corpus.

They consist of a list of words, and each word is associated with its frequency in the

corpus.

� German Dictionary for the Verbmobil Project: a German dictionary has been developed

by the Verbmobil Project. It includes the part-of-speech, pronunciation and compositional

(pre�xes and su�xes, compound nouns, etc.) information for around 42,500 German

words.

� Proper Name List: a list of 84,000 proper nouns, including personal, geographic and

holiday names, has been compiled from a variety of internet sources.

3.2 Preprocessing

The purposes of preprocessing include:

1. remove obvious noise in spoken language (Repetition Deletion, Canonization).

2. make two languages in question more similar, so more one-to-one correspondences can be

established in word alignments between parallel sentences (Compound Word Decomposi-

tion, Language Speci�c Preprocessing).

3. �nd the commonality among words to abate the sparse data problem (Proper Noun Re-

placement, Canonization).

3.2.1 Canonization

This part of the preprocessor is used to standardize the orthography of the transcribed words,

as well as correcting common spelling errors. Because the transcription was made by several

transcribers, there were many di�erent orthographic forms for the same words, such as (Mr,
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Mr., Mister), (dreissigsten, drei"sigsten), (a.m., AM, A.M.), (hmm, hm, /hm), (okay, ok, OK,

o.k.). There are also common spelling errors, like \ninteenth" for \nineteenth", \MacDonald's"

for \McDonald's" and \zwanzigt" for \zwanzigst".

The canonization preprocessing also decapitalizes the initial word in a sentence if its lower-

case form is in the lexicon and it is not in the list of proper names.

3.2.2 Proper Noun Replacement

A great proportion of unseen words includes proper names. For training sentences, if a capital-

ized word appears in both English and German sentences, then the preprocessor will search for

it in the proper name list. It is replaced with a special word \#PROPER#" if a match is found

in the list. For test data, if a capitalized word is not in the German lexicon, the preprocessor

will search for it in the proper name list and replace it with \#PROPER#" if a match is found.

Additionally, sequences of capital letters are replaced with the special word \#SPELLING#".

3.2.3 Compound Word Decomposition

Compound words are very common in German. This may cause problems in our alignment

model. For example, compound words like \Januarwoche" and \sechsundzwanzigsten" should

be aligned with their translation \week of January" and \twenty sixth" respectively. However,

in an alignment between source and target, each target word is limited to be aligned with at

most one source word. Therefore it is desirable to decompose the compound words, so that

the above examples can be converted into German word sequences \Januar (January) Woche

(week)" and \sechs (six) und (and) zwanzigsten (twentieth)."

The preprocessor decomposes all the compound numbers and uses heuristics to decompose

compound nouns. The heuristics work in the following way: if the length of a noun exceeds

a threshold (8 was used in my experiment), the preprocessor tries to break it into the form

(word

1

)(word

2

) or (word

1

)s(word

2

) at any breakable position. The breakable positions can be

obtained from the German dictionary of the Verbmobil Project. If both word

1

and word

2

are

words in the German dictionary, the original word is then decomposed into word

1

and word

2

.
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3.2.4 Language Speci�c Preprocessing

I found the following two language speci�c preprocessing steps are particularly helpful in im-

proving the system performance:

1. Words like \sechsundzwanzigsten" has been decomposed into \sechs (six) und (and)

zwanzigsten (twentieth)" in the previous decomposition step. However, the expression is

still not in conformity with the English expression \twenty sixth". Therefore we rewrote

\sechste (six) und (and) zwanzigsten (twentieth)" as \sechs (sixth) und (and) zwanzig

(twenty)." This procedure was applied to all similar expressions.

2. German expresses the time expressions like \two thirty" as \halb (half) drei (three)".

This makes translation models confused about the translation of the English word \two."

Therefore we rewrote \halb (half) drei (three)" as \halb (half) zwei (two)", \halb (half)

vier (four)" as \halb (half) drei (three)", etc.

3.2.5 Repetition Deletion

Repetitions are very common in spoken language, as a form of hesitation. The following is an

example taken from the corpus.

Example 3.2.1 Repetition in Spoken Language

I forgot to to mention that that my Fridays are are relatively free.

The repetitions are often ignored in translations, since they are not meaningful in the original

sentence. However, this may result in di�culties in alignment models | the repeated part may

not have a counterpart in another language, therefore it will be incorrectly aligned with some

other parts.

The preprocessor removes any sequence of up to 4 words that exactly duplicates the words

before it, with one exception, when the sequence is a list of numbers. This ensures that it will

not incorrectly remove a number sequence like a telephone or room number.

3.2.6 Removing Low Frequency Words

Words that occur only once in the corpus were replace with the token #UNKNOWN#.
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Language Original Canonization Proper Noun Comp. Word Rm Low Freq.

English 2782 2746 2422 2422 1372

German 4792 4765 4441 4359 2202

Table 3.1: Lexicon Sizes After Each Step of Preprecessing

3.2.7 Preprocessing Outcome

Table 3.1 shows how the preprocessing a�ects the lexicon sizes. After preprocessing, all the low

frequency words that occur only once in the training corpus were discarded from the lexicon,

and they were treated as unknown words.

3.3 Language Modeling

Bigram (Jelinek, 1990) was used for language modeling in the system. The English language

model was trained on a monolingual corpus as well as on the English part of the parallel

training data. The training data for language modeling consists of 420,000 tokens. The words

that appear in the corpus but not in the lexicon were treated as unknown words in language

model training.

Deleted Interpolation (Jelinek and Mercer, 1980) was used to smooth the language model

with unigram and the uniform distribution.

The bigram perplexity of the text data is 42.2. I also conducted experiments with a class-

based bigram for language modeling. Although the class-based language model reduced the

test data perplexity slightly to 40.4, it had no noticeable in
uence on translation performance.

Therefore if not mentioned speci�cally, the language model used in the experiments reported

in this thesis was the standard bigram with deleted interpolation for smoothing.
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Chapter 4

Segmenting Long Utterances | A

Bracketing Model

In this chapter, I introduce a statistical model that copes with the long utterance problem in

statistical machine translation. The model can segment a long utterance into small pieces of

sentences/clauses/phrases that are dialogue units with their own speech acts. Actually, with

this capability, it is a simple dialogue analysis model that can do more than just segmentation.

The model parameters can be estimated with supervised learning.

4.1 Dialogue Model

4.1.1 Dialogue and Bracketing Scheme

A dialogue consists of a sequence of utterances. An utterance consists of a dialogue participant's

turn-taking. It may consist of several segments. A speech act is associated with each segment

that represents the segment functionality. A segment can be a sentence, a clause or a phrase

with its own speech act.

In an unmarked dialogue, no segment boundary or speech act information is labeled. Only

utterance boundaries are available. An example of unmarked dialogue is shown below:

A: hello Dr. Noah

B: hi Tor let's set up a meeting for a couple hours in the next
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two weeks when's good for you

A: let's see how about Friday the second in the morning

B: I'm busy that morning

......

A bracketing scheme B breaks long utterances in a dialogue into sequences of segments, and

labels each segment with its speech act. Below is an example of a bracketing scheme for the

previous dialogue:

Example 4.1.1 Bracketing Scheme

[nicety] (Hello Dr. Noah)

[nicety] (Hi Tor)

[suggest-meeting] (Let's set up a meeting for a couple hours)

[temporal] (in the next two weeks)

[your-availability] (when's good for you)

[interject] (let's see)

[suggest-time] (how about Friday the second in the morning)

[my-unavailability] (I'm busy that morning)

......

This is not the only bracketing scheme for the dialogue. For example, the second utterance

could also be bracketed as follows:

[nicety] (Hi Tor)

[suggest-meeting] (Let's set up a meeting for a couple hours)

[your-availability] (in the next two weeks when's good for you)

In a bracketing scheme B for a dialogue D, B

i

denotes the i

th

segment of B, and A

i

represents the speech act label for B

i

. jBj is the number of segments in B, jB

i

j is the number

of words in B

i

, and jDj is the number of words in dialogue D. B

i

's form a partition of B: there

is no overlapping between B

i

and B

i+1

for i = 1; � � � ; jBj, and

P

jBj

i=1

jB

i

j = jDj.
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4.1.2 Bracketing Model

The generation of a dialogue D can be depicted by the following process:

1. At time 0, the dialogue is at a null segment with the speech act <d>, the start of the

dialogue. For i = 1; 2; � � �, do the following:

2. At time i, generate the speech act A

i

according to a distribution Pr(A

i

j A

i�1

0

; B

i�1

0

). If

A

i

= </d>, which is the end of dialogue speech act, then the dialogue generation is

complete. Otherwise the next step should be taken.

3. Generate a segment of words B

i

with the speech act A

i

according to a distribution Pr(B

i

j

A

i

0

; B

i�1

0

).

We can make the following independence assumptions in this model:

1. Pr(A

i

j A

i�1

0

; B

i�1

0

) = Pr(A

i

j A

i�1

).

2. Pr(B

i

j A

i

0

; B

i�1

0

) = Pr(B

i

j A

i

).

And Pr(B

i

j A

i

) can be modeled with a speech act dependent ngram model:

Pr(B

i

j A

i

) = �(B

i

)

jB

i

j+1

Y

j=1

Pr(b

ij

j b

j�1

i(j�N+1)

; A

i

) (4.1)

here b

i0

= <s> and b

i(jB

i

j+1)

= </s>. The function �(B

i

) = 1 when there is no utterance

boundary between b

ij

and b

i(j+1)

for j = 1; � � � ; jB

i

j� 1, otherwise �(B

i

) = 0. �(B

i

) guarantees

that the bracketing scheme B respects the natural utterance boundaries | no segment can

cross the boundary between two utterances.

Hence we can get the likelihood of a dialogue D, which is the sum of the probabilities of

generating D over all possible bracketing schemes:

Pr(D;B) =

jBj

Y

i=1

Pr(A

i

j A

i�1

) Pr(B

i

j A

i

)� Pr(</d> j A

jBj

) (4.2)

Pr(D) =

X

B

Pr(D;B): (4.3)

here A

0

= <d>.
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4.1.3 Parameter Estimation

In the bracketing model, there are two types of parameters: a speech act transition distri-

bution Pr(A

i

j A

i�1

) depicts the likelihood of switching from one speech act to another; for

each speech act A, the speech act dependent ngram distribution P

A

(w

i

j w

n�1

i�N+1

) = Pr(w

i

j

w

i�N+1

; : : : ; w

n�1

; A) models the likelihood of generating a sentence under speech act A. The

parameters can be estimated with ML, with a training data set hand-labeled in the format of

Example 4.1.1. The speech act sequence in the labeled data can be used to estimate the speech

act transition parameters, and the texts for each speech act can be used to train the ngram for

that speech act.

4.2 Algorithms for the Bracketing Model

Given a bracketing model, we face two problems. The �rst is how the likelihood of a dialogue

D = d

1

d

2

:::d

n

; Pr(D), can be e�ectively computed; the second is how the most probable

bracketing scheme, i.e., the most probable structure of a dialogue, can be identi�ed. Both

problems can be solved with dynamic programming algorithms.

We de�ne Q

ij

(A) to be the likelihood that d

i

d

i+1

: : :d

j

is a complete segment generated in

speech act A, regardless of its context. Q

ij

(A) can be computed with

Q

ii

(A) = P

A

(d

i

j <s>)P

A

(</s> j d

i

)

Q

ij

(A) =

Q

i(j�1)

(A)P

A

(d

j

j d

j�1

)P

A

(</s> j d

j

)

P

A

(</s> j d

j�1

)

� �(d

j�1

d

j

)

To solve the �rst problem, we de�ne �(k; A) to be the probability that d

k

� � �d

n

starts with

a segment of speech act A (here n = jDj) in all possible bracketing schemes. Then

Pr(D) =

X

A

Pr(A j <d>)�(1; A):

�(k; A) has the following recursive relation that licenses the use of dynamic programming:

�(n;A) = Q

nn

(A) Pr(</d> j A)

�(k; A) = Q

kn

(A) Pr(</d> j A) +

X

k�j<n;C2S

�(j + 1; C)Q

kj

(A) Pr(C j A)
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Here S is the set of speech acts.

In the second problem, we would like to bracket a dialogue D = d

1

d

2

:::d

n

into a sequence of

segments labeled with their speech acts. The bracketing scheme should be the most probable

one:

^

B = argmax

B

Pr(D;B) (4.4)

where Pr(D;B) is de�ned in (4.2). We call bracketing scheme

^

B the Viterbi bracketing. It can

be found with dynamic programming.

Let 
(k; A) be the maximum probability that d

k

� � �d

n

starts with a segment of speech act

A in a bracketing scheme. Then


(n;A) = Q

nn

(A) Pr(</d> j A)


(k; A) = maxfQ

kn

(A) Pr(</d> j A); max

k�j<n;C2S


(j + 1; C)Q

kj

(A) Pr(C j A)g

�(k; A) =

8

>

>

<

>

>

:

(n;A) when 
(k; A) = Q

kn

(A) Pr(</d> j A)

argmax

(k<j�n;C2S)


(j + 1; C)Q

kj

(A) Pr(C j A) otherwise

here �(k; A) = (j; C) is used to remember the end position j of the �rst bracket and the speech

act of the second bracket that follows the �rst A bracket. in the bracketing scheme for d

k

� � �d

n

that starts with the speech act A and maximizes 
(k; A). By choosing

^

A = argmax

A

Pr(A j

<d>) � 
(0; A) as the speech act of the �rst bracket and backtracking with � (starting from

�(0;

^

A)), the optimal bracketing and labeling of the whole dialogue can be recovered.

The time complexity of the dynamic programming algorithms is O(n

2

� jSj

2

), where n is the

length of a dialogue.

4.3 Performance

The bracketing algorithm was applied to the Janus scheduling data with 19 di�erent speech

acts, exclusive of <d> and </d>.

A data set of 96 dialogues was hand bracketed. The dialogues contain 1400 utterances or
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Subject # of Segments # of Common Segments Precision Recall

Human 1 417 343 82.3% 86.2%

Human 2 398 343 88.9% 82.3%

Table 4.1: Human Bracketing Performance: each subject's performance was evaluated with the

other's bracketing as reference.

Subject # of Segments # of Common Segments Precision Recall

Human 1 417 307 | |

Machine 377 307 81.4% 73.6%

Table 4.2: Machine Bracketing Performance with the Reference Made by Subject 1

around 40,000 words. The data were segmented into around 6900 segments and each was labeled

with a speech act. A speech act bigram model and 19 speech act dependent word bigram models

were trained with the data set. The speech act dependent bigram models were smoothed with

a speech act independent model with deleted interpolation (Jelinek and Mercer, 1980). The

speech act independent bigram model was trained with a corpus of around 420,000 tokens in

the same domain, which is the same language model used in statistical machine translation.

A test set of 8 dialogues (117 utterances) was bracketed with the Viterbi dynamic program-

ming algorithm. It was also bracketed by two human subjects. Here the precision/recall score

was used to evaluate the performance of the algorithm. Since dialogue bracketing is a subjec-

tive task, di�erent people may come up with di�erent bracketing schemes. The �rst experiment

compared the bracketing made by two human subjects. In doing so, we were able to estimate

the performance upper bound of the bracketing algorithm. Table 4.1 shows the precision/recall

scores of a human subject, with the other's bracketing as reference.

Table 4.2 and Table 4.3 show the performance of the bracketing algorithm, with the brack-

eting made by human subject 1 and subject 2 as references.

Since the major purpose of the model is to cope with the long utterance di�culty in ma-

chine translation, we are more interested in the segmentation (without speech act labeling)

Subject # of Segments # of Common Segments Precision Recall

Human 2 398 302 | |

Machine 377 302 80.1% 75.9%

Table 4.3: Machine Bracketing Performance with the Reference Made by Subject 2
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Subject # of Boundaries # of Common Boundaries Precision Recall

Human 1 417 365 87.5% 91.2%

Human 2 398 365 91.7% 87.5%

Table 4.4: Human Segmentation Performance: each subject's segmentation was evaluated with

the other's segmentation as reference.

Subject # of Boundaries # of Common Boundaries Precision Recall

Human 1 417 351 | |

Machine 377 351 93.1% 84.2%

Table 4.5: Machine Segmentation Performance with the Reference Made by Subject 1

performance. In this case, mislabeling a segment was not considered an error, since we were

only interested in how an utterance could be correctly segmented into smaller units. Table 4.4

shows the precision/recall scores of a human subject's performance on segmentation with the

other's segmentation as the reference.

Table 4.5 and Table 4.6 show the segmentation performance of the bracketing algorithm,

with the segmentations made by human subject 1 and subject 2 as references. It is clear that

segmentation performance is close to human performance.

Another experiment was conducted to check if the dialogue model was helpful in language

modeling. The perplexity of a 20 dialogue test set with around 2,400 words was calculated

with three di�erent models: a speech act independent bigram model; a bracketing model that

computed dialogue probability with (4.4); and a Viterbi bracketing model that computed the

probability of a dialogue with its Viterbi bracketing scheme only. Table 4.7 shows the per-

plexities of these three models. In the Viterbi Bracketing Model, the dialogue likelihood was

calculated with only one bracketing scheme, hence it was underestimated. While the test data

perplexity was higher, it was very close to the performance of the speech act independent model.

The Bracketing Model calculated the dialogue likelihood over all possible bracketing schemes,

and it reduced test data perplexity.

Subject # of Boundaries # of Common Boundaries Precision Recall

Human 2 398 346 | |

Machine 377 346 91.8% 86.9%

Table 4.6: Machine Segmentation Performance with the Reference Made by Subject 2
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Model Perplexity

SA Independent Bigram 42.2

Bracketing Model 39.6

Viterbi Bracketing Model 43.7

Table 4.7: Test Data Perplexities of Di�erent Models.
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Figure 4.1: Training Data and Bracketing/Segmentation Precision

4.4 Discussion

The bracketing algorithm requires hand made training samples. Although the simplicity of the

dialogue structure and a special Emacs editing mode make hand-labeling much easier, it is still

a tedious and time-consuming task. However, data labeling can proceed with bootstrapping.

We can start with labeling a few hundred utterances, train a system with these initial data,

use the trained system to bracket more data, �x the errors in the newly bracketed data, and

use them for further training. Figures 4.1 and 4.2 respectively show the relations between the

precision/recall scores and the amount of training data. The algorithm was able to achieve

adequate performance after the �rst few hundred samples.
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Figure 4.2: Training Data and Bracketing/Segmentation Recall
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Chapter 5

Finding Structures for Statistical

Machine Translation

As discussed in Chapter 2, the structure-based alignment model is a promising solution for the

di�culties in statistical machine between a language pair with di�erent structures. However, it

is of little interest if we have to manually �nd the language structures and write a grammar for

them, since the primary merit of statistical machine translation is to reduce human labor. In

this chapter I describe a grammar inference technique that �nds the shallow phrase structures

to be used in the structure-based alignment model for statistical machine translation.

5.1 Shallow Phrase Structures

Before introducing the grammar inference algorithm, it is important to know what kind of

structures should be acquired, i.e., what kind of structures will facilitate the alignment model

without over-complicating the model and thus making it ine�cient. The criteria for good

structures are:

Simplicity: The structure should be very simple. It can be easily incorporated into an align-

ment model, and the resulting model should be simple too | we cannot a�ord a com-

plicated model with too many free parameters or a model that makes source language

decoding very ine�cient.

45



Coverage: The structures should have a good coverage of the corpus. If a majority part of

the corpus is not covered by these structures, then the structure-based alignment will

degenerate to a mostly word-based alignment model.

Learnability: The structures can be easily acquired from a corpus with automatic learning

algorithms.

5.1.1 Language Structures

I adopt a very practical de�nition of language structures. A language structure is a construction

that is

1. common enough to be observed frequently in a language

2. general enough to cover multiple instances.

We say that S! NP VP is a language structure in English because NP VP is a frequently

observed sequence, and it is general enough to cover multiple instances like \David laughed"

or \Time 
ies like an arrow."

The example indicates that a structure can be represented as a sequence of nonterminals.

The sequence speci�es the components in the structure, while the nonterminals generalize struc-

tures to cover multiple instances.

To make structures more suitable for statistical machine translation, I used a simpli�ed def-

inition of structures. Here structures are still sequences of nonterminals, but they are \shallow"

ones | they don't allow recursive de�nition of nonterminals. A nonterminal can only represent

a set of terminals (in other words, a word class). No substructures are allowed in the de�nition

of a nonterminal. A sentence is a linear ordered list of structures. This can be illustrated with

the following example:

Example 5.1.1 Shallow Phrase Structures

Suppose that we have the following shallow phrase structures | sequences of word classes.

The brackets mark the word classes: words inside a pair of brackets have similar meanings or

grammatical functions and thus form a class. Word classes can be referred to with nonterminals.
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[on at ...] [Sunday Monday...] [afternoon morning...]

[I we ...] [can could ...] [meet get ...]

then the sentence \I could meet on Wednesday afternoon" can be parsed into an ordered

list of two phrases:

(I could meet) (on Wednesday afternoon)

The simplicity of structures enables us to e�ectively build a structure-based alignment

model. (See Chapter 6.)

5.2 Grammar Inference with Clustering and Structuring

As mentioned in Chapter 1, the gist of grammar inference algorithms lies in the two tasks they

ful�ll: data explanation and generalization. The grammar inference algorithms introduced here

are based on the work in (Ries, Bu�, and Wang, 1995), which performed the two tasks with the

following two operators:

1. Clustering: Word/phrases with similar meanings/grammatical functions were clustered

into equivalent classes. The mutual information clustering algorithm (Brown et al., 1992a)

was used for this purpose. The clustering operator ful�lls the generalization task of gram-

mar inference. For example, if we know that \Monday" and \Tuesday" behave similarly

and put them into the same equivalent class, then we can generalize from the observation

of the phrase \Monday morning" in the corpus to infer that \Tuesday morning" is also a

legitimate language construction.

2. Phrasing: The equivalent class sequence c

1

; c

2

; � � �c

k

forms a phrase if

Pr(c

1

; c

2

; � � �c

k

) log

Pr(c

1

; c

2

; � � �c

k

)

Pr(c

1

) Pr(c

2

) � � �Pr(c

k

)

> �; (5.1)

where � is a threshold. By changing this threshold, we can obtain a di�erent number of

phrases. The phrasing operator ful�lls the data explanation task. It \explains" why the

components of a phrase, like \Monday" and \morning" can be put together in a sentence,

while an arbitrary word like \it" is not often put together with \Monday" in a sentence.
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These two operators are applied to the training corpus in alternative steps. The clus-

tering operator puts words or non-terminals (word classes) having similar usage in the same

equivalent class, and label that class with a new nonterminal node. Rewriting rules are then

introduced to rewrite each element in the class as its non-terminal label. For example, if the

words Sunday Monday :::Saturday are clustered into a class, and the class is labeled as D O W,

then the rules D O W ! Sunday , ... , D O W ! Saturday are introduced into the grammar,

and all the occurrences of Sunday Monday :::Saturday in the training corpus are replaced with

D O W. The phrasing operator �nds \sticky" sequences of words or nonterminals with mutual

information criterion, and formulate new structural production rules to generate the sequence.

As an example of sequence rules, Temporal! D O W T O D means that the sequence D O W T O D

is a meaningful unit and will be rewritten as a new nonterminal, representing a new concept

or phrase, say Temporal. The structure Temporal can decompose into terminal strings like

Friday Morning, Tuesday Afternoon, etc. For each newly introduced sequence production,

the corresponding sequences in the training corpus are also replaced by the left hand side non-

terminal of the production rule. This clustering/phrasing procedure iterates until all sentences

in the training corpus are reduced to a starting node. Figure 5.1 shows a grammar part that

has emerged from this training algorithm for the scheduling database. The algorithm produces

structures that frequently correspond to meaningful entities, such as prepositional phrases,

semantic concepts or fragments, etc.

The rules obtained in this way are combinations of syntactic and semantic regularities.

They re
ect domain-speci�c word usage. As we can see from the previous example, the word

\lunchtime" is clustered in the same class as numerals, because those numerals are mostly used

in time expressions in the scheduling domain.

When we use this approach to �nd structures for statistical machine translation, we only

apply each operator once to acquire shallow phrase structures.

5.3 Bilingual Grammar Inference

Since the algorithm only uses a monolingual corpus, it often introduces some language-speci�c

structures resulting from biased usage of a speci�c language. For example, when we applied
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Figure 5.1: Inferred Rules. Ovals represent cluster nodes, their children are words/phrases in

the cluster. Rectangles are phrase nodes, their children are the components of the phrase, and

the dashed arrows indicate the sequential relations among the phrase components.
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the clustering algorithm in (Brown et al., 1992a) to the scheduling data, we found many cases

like the class fcouple few lot messageg, in which the word message is out of place. This is

due to the fact that the clustering algorithm is based on local information from word bigrams,

and each word in this class typically follows the word a and precedes the word of or to in the

training corpus.

Instead of language-speci�c structures, we are more interested in cross-linguistic structures

in machine translation. This is similar to the case of interlingua that represents cross-linguistic

knowledge in knowledge-based MT. To �nd structures that are common in two languages, I have

to take constraints from both languages. For this purpose, we have introduced the bilingual

clustering and bilingual phrasing operators.

5.3.1 Bilingual Word Clustering

To obtain structures that are common in both languages, a bilingual mutual information clus-

tering algorithm (Wang, La�erty, and Waibel, 1996) was used as the clustering operator. Com-

pared to a clustering algorithm based on a monolingual corpus, a clustering algorithm that takes

constraints from a parallel corpus potentially has several advantages. First, training samples in

another language provide indirect evidence for a classi�cation. Second, constraints from both

languages may help to \wash out" biased language-speci�c usage, resulting in classes of better

quality.

The bilingual clustering algorithm described here is based on the mutual information clus-

tering algorithm (Brown et al., 1992a). It is one of the maximum likelihood classi�cation

algorithms (Brown et al., 1992a; Kneser and Ney, 1993), which seeks a classi�cation C such

that Pr(W jC), the class-based language model likelihood of corpus W , is maximized. It was

shown in (Brown et al., 1992a) that maximizing the log-likelihood of a corpus with a class-based

bigram is equivalent to maximizing the average mutual information I(C

1

; C

2

) between adjacent

classes in text:

1

n� 1

log Pr(W jC) � �H(W ) + I(C

1

; C

2

) (5.2)

where H(W ) is the entropy of the corpus, which is independent of the clustering. A greedy

algorithm was then introduced to �nd classes that maximize the average mutual information.
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Initially each word is assigned to a distinct class and the average mutual information between

adjacent classes is computed. The algorithm then iterates to merge classes. Each class merge

will cause the loss of mutual information between adjacent classes. At each step in the iteration,

the loss in average mutual information that results from merging each candidate pair of classes

is computed, and the merge is then carried out for the pair a�ecting the smallest loss.

The bilingual clustering algorithm described here is based on this mutual information clus-

tering technique. To employ the constraints from a parallel corpus, alignments between pairs of

sentences (Brown et al., 1993) were used as a \bridge" between the languages. To be concrete,

suppose we have an English corpus E and its parallel German corpus G, and we want to cluster

the English words appearing in E. Instead of maximizing the log-likelihood log Pr(E jC) , we

seek to maximize the joint log-likelihood of the parallel corpus:

1

n� 1

log Pr(E;G j C) =

1

n � 1

(log Pr(E jC) + log Pr(G jE;C))

� �H(E) + I(C

1

; C

2

) +

1

n � 1

log Pr(G jE;C) (5.3)

where

Pr(G jE;C) =

L

X

i

X

A

Pr(G

i

; A jE

i

; C) (5.4)

Here E

i

and G

i

are the i

th

pair of utterances in the parallel corpus, L is the number of sentences

in the corpus, and A is an alignment between E

i

and G

i

.

We can initially assign each word to a separate class, and incrementally merge classes using

a greedy search algorithm. At the k

th

step in the algorithm, the decrease in likelihood (5.3)

resulting from a merge of classes c

1

and c

2

can be expressed as a sum of two terms: L

k

(c

1

; c

2

),

the loss of average mutual information between adjacent classes, and D

k

(c

1

; c

2

), the change in

the likelihood of the German corpus when c

1

and c

2

are merged. With clever bookkeeping, one

can e�ciently �nd the smallest L

k

(c

1

; c

2

) in time O(V

2

), where V is the lexicon size (Brown et

al., 1992a). In the following section I describe a method to e�ciently calculate D

k

(c

1

; c

2

) using

a class-based translation model.
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Implementation and Complexity

To model the change in likelihood of the German corpus, I employ a slight modi�cation of IBM

Alignment Model 1. This model generates the German corpus from the English corpus using a

simple alignment between word pairs:

Pr(G

i

; A jE

i

) =

�

(jE

i

j+ 1)

jG

i

j

jG

i

j

Y

j=1

t(g

j

j e

a

j

): (5.5)

Equation (5.5) can be interpreted as follows: Given English sentence E

i

, the length of its

German translation G

i

; jG

i

j, is �rst picked according to a �xed probability �: Then the source

position a

j

corresponding to a position j in G

i

is determined by a uniform distribution, i.e., j

is aligned to any position in its English translation E

i

with the equal likelihood (jE

i

j+ 1)

�1

.

The German word at position j, g

j

, is then generated from the English word e

a

j

at the position

aligned to j according to the translation probability t(g

j

j e

a

j

). The parameters cab be estimated

with EM algorithm.

By \tying" the translations probabilities so that t(g

j

j e

a

j

) = t(g

j

j c

e

a

j

), where c

e

is the class

of English word e, the model can be expressed as

Pr(G

i

jE

i

; C) =

X

A

Pr(G

i

; A jE

i

; C)

=

�

(jE

i

j+ 1)

jG

i

j

jE

i

j

X

a

1

=0

� � �

jE

i

j

X

a

jG

i

j

=0

jG

i

j

Y

j=1

t(g

j

j c

e

a

j

)

=

�

(jE

i

j+ 1)

jG

i

j

jG

i

j

Y

j=1

jE

i

j

X

k=0

t(g

j

j c

e

k

) : (5.6)

Therefore,

D

k

(c

1

; c

2

) =

L

X

i

log Pr(G

i

jE

i

; C(c

1

+ c

2

))�

X

i

log Pr(G

i

jE

i

; C)

=

L

X

i

jG

i

j

X

j=1

log

0

@

jE

i

j

X

k=0

t

0

(g

i

j c

0

e

k

) =

jE

i

j

X

k=0

t(g

i

j c

e

k

)

1

A

(5.7)

where C is the classi�cation before the merge of c

1

and c

2

, C(c

1

+ c

2

) is the classi�cation after

the merge, c

e

is the class of e in C, c

0

e

is the class of e in C(c

1

+c

2

), and t

0

is the new translation

probability after the merge of c

1

and c

2

.
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Although (5.7) can be used to calculate the likelihood change of the second language corpus,

it is not practical for implementation. To estimate the likelihood change of the German corpus

after a merge, we would in principle need to know the new parameters t

0

. Since they are

estimated with EM training, and all of the parameters could be a�ected by a single merge, the

bookkeeping method that works for monolingual clustering is not applicable in the bilingual

case.

To reduce the computational demands, the following approximating assumptions have been

made:

1. The merge of classes c

1

and c

2

will not a�ect the translation distributions for classes other

than c

1

and c

2

. That is, t(g j c) will remain unchanged, for c 6= c

1

;and c 6= c

2

. For the

merged class c1+c2, its translation distribution can be approximated without re-training:

t(g j c1 + c2) � t(g j c1) Pr(c1 j c1 + c2) + t(g j c2) Pr(c2 j c1 + c2)

=

t(g j c1) Pr(c1) + t(g j c2) Pr(c2)

Pr(c1) + Pr(c2)

(5.8)

2. The translation distributions will not change signi�cantly for at least M merges.

3. The best potential merge pair c

1

; c

2

is within the top N merge candidates with lowest

L

k

(c

1

; c

2

) identi�ed by the monolingual clustering algorithm.

With approximation 1, we do not need to retrain the parameters for each potential merge.

Similarly, with approximation 2, we can avoid reestimating the parameters after each merge is

actually carried out. With approximation 3, we only have to calculate D

k

(c

1

; c

2

) for N pairs.

Figure 5.2 illustrates the average percentage of agreement between the Viterbi alignments of

the parallel corpus with the approximated parameters and with the re-estimated parameters,

as a function of the number of merging steps. It shows that approximation (1) and (2) are

reasonable up to M = 5.

With these simplifying assumptions, we obtain the following algorithm:

Algorithm 5.3.1 Bilingual Clustering

1. Initialization: assign a distinct class to each word e. Compute L

V

(c

1

; c

2

) and the other

variables used in monolingual clustering for all pairs of English classes c

1

; c

2

.
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Figure 5.2: The average agreement of the Viterbi alignments of the parallel corpus with the

approximated parameters and the re-trained parameters.

2. Alignment: Train the parameters t(g j c) of the class-based translation model using the

EM algorithm.

3. Set no-reestimation-count to 0.

4. Repeat the followings:

(a) With the monolingual clustering technique, �nd the N pairs c

1

; c

2

with the smallest

L

k

(c

1

; c

2

).

(b) For each pair c

1

; c

2

of the N merge candidates, compute D

k

(c

1

; c

2

). Re-score the

pair c

1

; c

2

with L

k

(c

1

; c

2

) + D

k

(c

1

; c

2

)=(n � 1), where n is the number of words in

the English corpus.

(c) Merge the pair c

1

; c

2

with the lowest score.

(d) Increase no-reestimation-count by 1.

(e) If no-reestimation-count> M , reestimate the translation probabilities with EM

algorithm, and set no-reestimation-count to 0.

Pragmatic Issues

The performance of clustering relies heavily on the amount of training data. Since we have

a larger monolingual corpus available in addition to the parallel corpus, I modi�ed the above
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algorithm to select a pool of merge candidates with the monolingual corpus, i.e., �nd the top

N merge candidates that will result in the smallest loss of mutual information. The bilingual

constraints were then used to pick the best pair from the pool.

An additional constraint was used in clustering to get around with the sparse data problem.

The constraint required that words in the same class have at least one common potential part-

of-speech.

I also manually pre-classi�ed four classes of words | 12 month names, 7 weekday names,

ordinal numbers and cardinal numbers. Those words appear frequently in the scheduling cor-

pus. Normally the automatic clustering algorithm can group these words together, maybe into

several di�erent classes. For example, one of my experiments found two classes for weekday

names: fMonday, Thursday, Saturdayg and fTuesday, Wednesday, Friday, Sundayg. By

manually assigning them into a unique equivalent class, the resulting structures become more

compact.

Words that occur fewer than 5 times did not participate in the mutual information clustering.

They were classi�ed in the following way:

1. Low frequency words were classi�ed into di�erent classes according to their morphological

su�xes. For example, words ended with \-able" were put into the same class, and words

ended with \-ness" were put into another class;

2. The rest of the low frequent words were classi�ed according to their part-of-speeches.

5.3.2 Bilingual Phrasing

Bilingual heuristics were used to �lter out the sequences obtained by the phrasing operator that

may not be common in multiple languages. The heuristics include:

1. Average Translation Span: Given a phrase candidate, its average translation span is

the distance between the leftmost and the rightmost target positions aligned to the words

inside the candidate, averaged over all Model 1 Viterbi alignments of sample sentences.

A candidate is �ltered out if its average translation span is greater than the candidate's

length multiplied by a threshold. Basically this criterion states that the target words in

the translation of a phrase must be close enough to form a phrase in another language.
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[Sunday Monday...][afternoon morning...]

[Sunday Monday...][at by...][one two...]

[Sunday Monday...][the every each...][first second third...]

[Sunday Monday...][the every each...][twenty depending remaining]

[Sunday Monday...][the every each...][eleventh thirteenth...]

[Sunday Monday...][in within...][January February...]

[January February...][first second third...][at by...]

[January February...][first second third...]

[January February...][the every each...][first second third...]

[I he she itself][have propose remember hate...]

[eleventh thirteenth...][after before around][one two three...]

Figure 5.3: Example of Acquired Phrases.

2. Ambiguity Reduction: A word occurs in a phrase should be less ambiguous than in

other random contexts. Therefore a phrase should reduce the ambiguity (uncertainty) of

the words inside it. The ambiguity or uncertainty of word translations can be measured

with translation entropy: for each source language word class c, its translation entropy is

de�ned as

P

g

t(g j c) log(g j c). The average per source class entropy reduction induced

by the introduction of a phrase P is therefore

1

jP j

X

c2P

Pr(c)[

X

g

t(g j c) log t(g j c)�

X

g

t(g j c; P ) log t(g j c; P )] (5.9)

which is the amount of uncertainty taken away by the introduction of P: A threshold was

set up for minimum entropy reduction.

Figure 5.3 shows some of the phrases learned with the bilingual grammar inference algo-

rithm.

5.4 Two Languages are More Informative than One

Several experiments were carried out with the bilingual grammar inference algorithm.

The �rst experiment was conducted with the bilingual clustering algorithm. I built two class-

based bigram models, with classes obtained from monolingual and bilingual mutual information

clustering algorithm

1

. The perplexity of the language model with monolingual classi�cation

1

The experiment was conducted without manual pre-classi�cation of month and weekday names.
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was 36.9, while the perplexity of the bilingual trained model was 35.2 (measured with the

training data). While this improvement was not signi�cant, it appeared that the new clustering

algorithm found classes of higher quality. Table 5.1 and Table 5.2 list some of the classes

discovered by the monolingual and bilingual algorithms.

say +re

are unless days times

fact May January November July having department case Wean

after around before between

or +ah+ afternoons

out fine

free clear available open

and however otherwise idea Patty through

day weekend right Mark

good perfect space nice great better away

pretty completely totally real

half m date conference cream bit

what afterwards why

couple few lot message

Table 5.1: Example Word Classes Discovered with Monolingual Mutual Information Clustering

are +re

January May November July fact

one noon

it early

or through

after before between

hours weeks days times

all

still had certainly may completely totally

well yeah unfortunately John Patty Mark

fine great better perfect nice

what when where

third sixteenth eleventh lounge thirtieth fifteenth

couple little bit lot half

Table 5.2: Example Word Classes Discovered with Bilingual Mutual Information Clustering

In Table 5.1, the \month name" class ffact May January November July having department
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case Weang is mixed with what might be considered \noise" words, which appear because of

various biased, language-speci�c usage of words | in this speci�c case, many of those words

frequently follow the preposition in. This is improved in Table 5.2. The same e�ect occurs in

many other classes.

How does bilingual clustering achieve this improvement? This can be explained as follows.

The alignment model will assign some probability mass not only to the correct translations of

the classes, but also to words that appear frequently in the same sentences with the correct

translations. This spreading of the probability is less harmful if the classes contain semantically

similar words. Since semantically similar words usually appear in similar contexts (in this

case, sentences), although the class-based probability may reduce the probability of the correct

translation of a word, it may raise the probability of other words in the context of the correct

translation. If a class contains words of distinct meanings, because those words generally

occur in di�erent contexts, the translation probabilities can become much more spread out over

di�erent contexts, hence the overall sentence translation probability will be reduced signi�cantly.

To be more precise, we de�ne the �-mirror of an input language class C

i

as the set of all

possible translations of C

i

in another language with translation probability greater than �:

C

�

i

= fs : t(s jC

i

) > �g (5.10)

The average size of an �-mirror indicates the extent to which the translation probability is

spread out. With � = 0:05, the bilingual clustering has an average �-mirror size of 3.46 words

for the classes discovered by the mutual information clustering (i.e., classes of words with more

than 5 occurrences in the corpus), while the monolingual clustering has an average size of 4.31.

The spreading of the translation distributions can be also measured with the conditional

entropy

H(G jC

E

) = �

X

c

E

Pr(c

E

)

X

g

t(g j c

E

) log t(g j c

E

) (5.11)

over all classes of words occurred more than 5 times in the corpus. This measure re
ects the

uncertainty of the target German word given a source English class. The conditional entropy

is 2.52 with the bilingual-trained classes, and 2.60 with the monolingual trained classes.
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The third experiment is about the direct impact of the bilingual grammar inference in the

translation performance of the structure-based system. I will discuss this in Chapter 8 after I

introduce the structure-based translation model.

5.5 Phrase Structure Parsing

Given a set of phrases, a sentence can be deterministically parsed into a sequence of phrases by

replacing the leftmost unparsed substring with the longest matching phrase.
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Chapter 6

The Structure-based Alignment

Model

In the previous chapter, I presented an algorithm to �nd the shallow phrase structures from a

corpus. The structures are going to be used in a structure-based alignment described in this

chapter.

6.1 The Model

For German to English translation, we have to use a stochastic process to model the translation

from an English sentence e to a German sentence g, so we can know the probability Pr(g j e),

and then use a decoding algorithm to �nd the English sentence that maximizes Pr(g j e) Pr(e).

In the structure-based translation model, the translation from an English sentence e = e

1

e

2

� � �e

l

to its German counterpart g = g

1

g

2

� � �g

m

can be modeled with the following process:

1. Parse e into a sequence of phrases E, so

E = (e

11

; e

12

; � � � ; e

1l

1

)(e

21

; e

22

; � � � ; e

2l

2

) � � �(e

n1

; e

n2

; � � � ; e

nl

n

)

= E

0

E

1

E

2

� � �E

n

;

where E

0

is a null phrase. The parsing can be performed deterministically with the

algorithm described in the previous section.
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2. With the probability Pr(q j e; E), determine q, the number of phrases in g. Let G =

G

0

� � �G

q�1

represent these q phrases. Unlike English phrases, words in a German phrase

do not have to form a consecutive sequence. So g may be expressed with something like

g = g

11

g

12

g

21

g

13

g

22

� � �, where g

ij

represents the j

th

word in the i

th

phrase of g. At this

moment, the words and their positions in a German phrase are not determined yet.

3. For each German phrase G

i

; 0 � i < q, with the distribution Pr(r

i

j i; r

i�1

0

; q; e; E), align

it to an English phrase E

r

i

. Each source phrase can be aligned to at most one target

phrase. We call r the rough alignment between E and G.

4. For each German phrase G

i

; 0 � i < q, if it is not roughly aligned to the null word

source phrase, determine its beginning position b

i

in g with the distribution Pr(b

i

j

i; b

i�1

0

; r

q�1

0

; q; e; E). Call this position the anchor point of G

i

5. Now it is time to generate the individual words in each of the German phrases through

detailed alignment. For each word e

ij

in phraseE

i

, i > 0, its fertility �

ij

; i.e., the number of

target words that can be aligned to it, has the distribution Pr(�

ij

j i; j; �

i(j�1)

i1

; �

i�1

1

; b

q�1

0

; r

q�1

0

; q; e; E).

6. For each word e

ij

in the phrase E

i

, i > 0, it generates a tablet �

ij

= f�

ij1

; �

ij2

; � � ��

ij�

ij

g

by generating each of the words in �

ij

in turn, with the following probability for the k

th

word in the tablet:

Pr(�

ijk

j �

k�1

ij1

; �

j�1

i1

; �

i�1

1

; �

l

1

; b

q�1

0

; r

q�1

0

; q; e; E): (6.1)

7. For each element �

ijk

in the tablet �

ij

, i > 0, the permutation �

ijk

determines its position

in the target sentence according to the distribution

Pr(�

ijk

j �

k�1

ij1

; �

j�1

i1

; �

i�1

1

; �

l

1

; �

l

1

; b

q�1

0

; r

q�1

0

; q; e; E): (6.2)

8. Determine the fertility and translations of the null word and place the translations in the

target sentence in the way described late in this chapter.

Obviously it is not realistic to use the above probabilities directly, because it would result in

an enormous number of parameters. Instead the following independent assumptions are made:
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1. The number of target sentence phrases depends only on the number of phrases in the

source sentence:

Pr(q j e; E) = p

n

(q j n)

2. Pr(r

i

j i; r

i�1

0

; q; e; E) = a(r

i

j i)�

Q

0�j<i

(1� �(r

i

; r

j

))

i.e., Pr(r

i

j i; r

i�1

0

; q; E) depends on i and r

i

. It also depends on r

i�1

0

with the factor

Q

0�j�i

(1 � �(r

i

; r

j

)) to ensure that each English phrase is aligned with at most one

German phrase.

3. The anchor point of a target phrase depends on its distance from the anchor point of

its preceding phrase, as well as the length of the source phrase aligned to that preceding

phrase:

Pr(b

i

j i; b

i�1

0

; r

q�1

0

; q; e; E) = �(b

i

� b

i�1

j jE

r

i�1

j) = �(�

i

j jE

r

i�1

j)

4. The fertility of a source word depends only on that word:

Pr(�

ij

j i; j; �

i(j�1)

i1

; �

i�1

1

; b

q�1

0

; r

q�1

0

; q; e; E) = n(�

ij

j e

ij

)

5. The translation tablet of a source word only depends on the word:

Pr(�

ijk

j �

k�1

ij1

; �

j�1

i1

; �

i�1

1

; �

l

1

; b

q�1

0

; r

q�1

0

; q; e; E) = t(�

ijk

j e

ij

)

6. The leftmost position of the translations of a source word, henceforth the pin point of the

source word, depends on its distance from the anchor point of the target phrase aligned

to the source phrase that contains that source word. It also depends on the identi�cation

of the source phrase, and the position of the source word in that source phrase:

Pr(�

ij1

j �

j�1

i1

; �

i�1

1

; �

l

1

; �

l

1

; b

q�1

0

; r

q�1

0

; q; e; E) = d

1

(�

ij1

� b

i

j E

i

; j) (6.3)

For a target word �

ijk

other than the leftmost �

ij1

in the translation tablet of the source

word e

ij

; its position depends on its distance from the position of the tablet word �

ij(k�1)

,

the one closest to its left, as well as the class of the current target word:

Pr(�

ijk

j �

k�1

ij1

; �

j�1

i1

; �

i�1

1

; �

l

1

; �

l

1

; b

q�1

0

; r

q�1

0

; q; e; E) = d

2

(�

ijk

� �

ij(k�1)

j G(�

ijk

))(6.4)
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here G(g) is the equivalent class for g, which can be obtained with the bilingual clustering

algorithm described in section 5.

7. The treatment of the hypothetical null word in the source sentence is the same as in Model

3. The fertility for the null word at position 0 of the source sentence, �

0

; is determined

on the assumption that each target word generated from its aligned source word requires

an extraneous word with probability p

1

; and this extraneous word must be aligned to the

null word. The probability that exactly �

0

of the extraneous words are required by the

P

n

i=1

P

l

n

j=1

�

ij

target words that are generated from the non-null source words e

1

e

2

:::e

l

;

can be determined with the binomial distribution:

Pr(�

0

j �

n

1

; e) = n

0

(�

0

j

n

X

i=1

l

n

X

j=1

�

ij

)

=

0

B

@

P

n

i=1

P

l

n

j=1

�

ij

�

0

1

C

A

(1� p

1

)

P

n

i=1

P

l

n

j=1

�

ij

��

0

p

�

0

1

The target word aligned to the null word are placed in the target sentence one by one after

all the other target words have been placed. We assume that the k

th

translation of the null

word is placed at a vacant position with a uniform distribution. Because the 1

st

, 2

nd

... and

(k�1)

th

target words have already be placed at the moment, there are (�

0

�k+1) vacant

positions available, therefore the contribution of the placement of the k

th

translation of

the null word is 1=(�

0

�k+1), and the contribution of the placement of all the target words

aligned to the null source word is 1=�

0

!, which is cancelled in the following equation by the

factor resulting from the �

0

! di�erent permutations of sequentially generating individual

words in the tablet of the null source word.

Therefore we have

Pr(q; r; b; �; � j e; E) = p

n

(q j n)

�

0

B

@

P

jEj

i=1

P

jE

j

j

j=1

�

ij

�

0

1

C

A

(1� p

1

)

P

jEj

i=1

P

jE

j

j

j=1

�

ij

��

0

p

�

0

1

�

�

0

Y

i=1

t(�

0i

j �)

�

q�1

Y

i=0;r

i

6=0

a(r

i

j i)

Y

0�j<i

(1� �(r

i

; r

j

))
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�(1 + (1� �(i; 0))� (�(b

i

� b

i�1

j jE

r

i�1

j)� 1))

�

jEj

Y

i=1

jE

i

j

Y

j=1

n(�

ij

j e

ij

)

�

ij

Y

k=1

t(�

ijk

j e

ij

)

� d

1

(�

ij1

� b

i

j E

i

; j)

�

�

ij

Y

k=2

d

2

(�

ijk

� �

ij(k�1)

j G(�

ijk

))

�(1�

jE

i

j

Y

j=1

(1� �(b

i

; �

ij1

))) (6.5)

Here �(x; y) = 1 if x = y; otherwise �(x; y) = 0: The factor (1�

Q

jE

i

j

j=1

(1��(b

i

; �

ij1

))) guarantees

that the anchor point of each German phrase is actually occupied by a word. Without this

restriction, the anchor point is arbitrary and the translation model is not well de�ned. � is the

(source) null word, �

0

is the tablet for �, and the factors in the second line are the contributions

from the target words aligned to the null word. The factor (1 + (1 � �(i; 0))� (�(b

i

� b

i�1

j

jE

r

i�1

j)� 1)) states that if target phrase i is the �rst phrase of the sentence, then its anchor

point is �xed as the �rst word of the sentence with probability 1, otherwise it is determined by

the � parameters.

Normally for each possible hg; ai (a is a word to word alignment) that aligns positions

between source and target and generates g, there might be many (q; r; b; �; �)

0

s that are in

conformity with hg; ai, since there are tablets that contain the same words in di�erent permu-

tations. So

Pr(a; g j e)=

X

(q;r;b;�;�)2hg;ai

Pr(q; r; b; �; � j E; e) (6.6)

However, in this speci�c structure-based model, since we require that subsequent words from

�

ij

be placed in order | the second word from �

ij

has to lie to the right of the �rst, the third

to the right of the second (not necessarily adjacent) and so on, there is only one arrangement

of the words in �

ij

that is in conformity with hg; ai: With this arrangement we can calculate

P (a; g j e), as will be illustrated in a later example.
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6.1.1 Constraints on the Model

To limit the number of parameters in the model, I added the following constraints to the

structure-based model:

� The maximum number of words in a phrase from grammar inference max phrase len =

6;

� The maximum sentence length max sen len = 20;

� The maximum number of phrases in a sentence max phrase num = 15;

� The maximum fertility of a non-null word max fertility = 3;

� The maximum distance between the anchor points of two adjacent target phrases, i.e.,

the maximum distance allowed in the � parameters, max phrase distance = 2 �

max phrase len = 12;

� The maximum distance between the pin point of a source word s and the anchor point

of the target phrase containing the translation of s (the distance in the d

1

parameters)

max d

1

= 2�max phrase len = 12;

� The maximum distance between positions of two target words aligned to the same source

word (the maximum distance in the d

2

parameter) is max d

2

= 2�max fertility = 6;

6.2 Parameter Estimation

EM algorithm was used to estimate the eight types of parameters: p

n

, p

1

, a, �, n, t, d

1

and d

2

.

It is impossible to used the full-blown EM algorithm, since the number of possible alignments

is exponential in the sentence length. Instead, a subset of probable alignments was used in

the EM learning. To de�ne the subset unambiguously, I follow the terminology in (Brown et

al., 1993): we say that two alignments a and a

0

di�er by a move if there is one and only one

value j for which a

j

6= a

0

j

. They di�er by a swap if a

j

= a

0

j

for every j except at two values,

j

1

and j

2

, for which a

j

1

= a

0

j

2

; a

j

2

= a

0

j

1

. Two alignments are neighbors if they are identical or

if they di�er by a move or a swap. And we use N (a) to denote the set of all neighbors of an
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alignment a. We use b(a) to denote the neighbor of a for which the likelihood P (b(a) j e; g) is

the greatest among the neighbors of a. Suppose that ij is pegged for a, among the neighbors of

a for which ij is also pegged, b

i j

(a) is the one with the greatest likelihood. The sequence of

a; b(a); b(b(a)) ... , converges in a �nite number of steps to an alignment that we write as b

1

(a).

Similarly, a; b

i j

(a); b

i j

(b

i j

(a)); :::; converges to b

1

i j

(a). In other words, b

1

(a), found with

hill-climbing search from a, is the alignment with the locally maximum likelihood, and b

1

i j

(a)

is the ij pegged alignment with the locally maximum likelihood.

Given a sentence pair (e; g); the alignment subset used to accumulate the counts for pa-

rameter estimation, S(e; g), was de�ned as

S(e; g) = N (b

1

(V (g j e; 1)))

[

N (b

1

(V (g j e; 2)))

[

[

ij

N (b

1

i j

(V (g j e; 1)))

[

[

ij

N (b

1

i j

(V (g j e; 2))) (6.7)

which is the union of the neighboring sets of the most probable alignments found with hill-

climbing search from the Model 1 and Model 2 Viterbi alignments between e and g. Here

V (g j e; 1) is the Viterbi alignment between e and g according to IBM Alignment Model 1,

and V (g j e; 2) is the Viterbi alignment according to Model 2. I chose to include the Model

1 Viterbi alignment here because the Model 1 alignment is closer to the \ideal" when long

distance word-to-word alignments exist between a sentence pair.

The expected counts of the parameters from a sample sentence pair (e; g) are shown below,

where r

i

is the source phrase position aligned with the target phrase G

i

. a

i

is the source word

position aligned with the target word g

i

. b

i

is the anchor point of the target phrase G

i

. I

e

(i; k)

is the position of the k

th

word of phrase E

i

in sentence e. A(i; j) is the position of the j

th

target

word aligned with the source sentence word e

i

. G(w) is the equivalent class of which the target

word w is an element.

c

p

n

(j j i; e; g) =

X

a2S(e;g)

P (a j e; g)�(jEj; i)�(jGj; j)
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c

p

1

(0; e; g) =

X

a2S(e;g)

P (a j e; g)(m� 2�

0

) (6.8)

c

p

1

(1; e; g) =

X

a2S(e;g)

P (a j e; g)�

0

(6.9)

c

a

(j j i; e; g) =

X

a2S(e;g)

P (a j e; g)�(r

i

; j) (6.10)

c

�

(� j l; e; g) =

X

a2S(e;g)

P (a j e; g)

jGj�1

X

i=1

�(b

i

� b

i�1

;�)�(jE

r

i�1

j; l)

c

n

(� j w

e

; e; g) =

X

a2S(e;g)

P (a j e; g)

jej

X

i=0

�(w

e

; e

i

)�(�;

jgj

X

j=1

�(i; a

j

))

c

t

(w

g

j w

e

; e; g) =

X

a2S(e;g)

P (a j e; g)

jgj

X

i=1

�(w

g

; g

i

)�(w

e

; e

a

i

)

c

d1

(� j E ; k; e; g) =

X

a2S(e;g)

P (a j e; g)

jGj�1

X

i=0

�(E

r

i

; E)�(argmin

1�x�jgj

(a

x

= I

e

(r

i

; k))� b

i

);�)

c

d2

(� j G; e; g) =

X

a2S(e;g)

P (a j e; g) (6.11)

�

jej

X

i=0

�

i

X

j=2

�(�; A(i; j)�A(i; j � 1))�(G(g

A(i;j)

);G) (6.12)

Here the probability of an alignment is

P (a j e; g) =

P (a; g j e)

P (g j e)

�

P (a; g j e)

P

A2S(e;g)

P (a; g j e)

: (6.13)

where P (a; g j e) can be calculated with (6.6).

With the counts, we can reestimate the parameters with the following formulae:

p

n

(j j i) = �

�1

i

S

X

s=1

c

p

n

(j j i; e

(s)

; g

(s)

) (6.14)

p

1

=

P

S

s=1

c

p

1

(1; e

(s)

; g

(s)

)

P

S

s=1

[c

p

1

(1; e

(s)

; g

(s)

) + c

p

1

(0; e

(s)

; g

(s)

)]

(6.15)

a(j j i ) = !

�1

i

S

X

s=1

c

a

(j j i; e

(s)

; g

(s)

) (6.16)

�(� j l) = 


�1

l

S

X

s=1

c

�

(� j l; e

(s)

; g

(s)

) (6.17)
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d1(� j E ; k) = �

�1

Ek

S

X

s=1

c

d1

(� j E ; k; e

(s)
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d2(� j G) = �

�1
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S

X

s=1

c

d2

(� j G; e
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(s)

) (6.21)

Here S is the number of sentences in the parallel corpus, and �

�1

i

; !

�1

i

; 


�1

l

; �

�1

w

e

; �

�1

w

e

; �

�1

Ek

;and

�

�1

G

are the normalization factors.

6.3 An Example

In this section I provide an example to demonstrate how the learning algorithm works. Suppose

that we have the following sentence pair in the parallel corpus:

Example 6.3.1 Parallel Sentences

e = Tuesday afternoon is totally open

g = Der Dienstag Nachmittag ist noch ganz frei

To collect the expected count, we �rst have to parse the source sentence to obtain the phrase

sequence of the sentence. We get the following for English:

E

0

E

1

E

2

E

3

= (�)(Tuesday afternoon) (is) (totally open).

We then �nd the Model 1 and Model 2 Viterbi alignments for the sentence pair, and they

are both the same as shown in Figure 6.1.

With this alignment a available, we can �nd the phrase sequence of the target sentence:

G

0

G

1

G

2

G

3

= (Der Dienstag Nachmittag) (ist) (noch) (ganz frei)

With both the source and target structures at hand, we can now calculate the probability

of the Model 1 and Model 2 Viterbi alignment according to the structure-based model:

P (a; g j e) = P (a; g j e;E)
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Figure 6.1: The Viterbi Alignments with both model 1 and model 2 for the parallel sentences

= p

n

(4 j 4)�

�

6

1

�
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1

)

5

p

1

� t(noch j �)

�a(1 j 0)

�n(2 j Tuesday)

�t(Der j Tuesday)� d

1

(0 j E(Tuesday afternoon); 0)

�t(Dienstag j Tuesday)� d

2

(1 j G(Dienstag))

�n(1 j afternoon)

�t(Nachmittag j afternoon)� d

1

(2 j E(Tuesday afternoon); 1)

�a(2 j 1)� �(3 j 2)

�n(1 j is)

�t(ist j is)� d

1

(0 j E(is); 1)
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�t(ganz j totally)� d

1
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1

(1 j E(totally open); 1)

We then use a greedy algorithm (Algorithm 6.3.1) to search for the alignment that has the

greatest likelihood according to the structure-based model among those that are reachable from
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a with the neighbor binary relation:

Algorithm 6.3.1 search for the most likely alignment reachable from a.

1. �nd N (a);the set of the neighboring alignments of a;

2. for each a

0

2 N (a); calculate P (a

0

; g j e) with (6.6);

3. a

max

 argmax

a

0

2N (a)

P (a

0

; g j e);

1

4. if (a

max

= a); return a as the alignment with the greatest likelihood;

5. otherwise fa a

max

; goto 1 ;g

With the above example, the greedy algorithm �nds that a itself happens to be the alignment

that has the locally maximum likelihood according to the structure-based model. Therefore,

given the sentence pair (e; g), a and its neighbors in N (a) are the alignments used for collecting

the counts in the EM learning in (6.11).

1

We are actually looking for the alignment with the greatest likelihood P (a

0

j e; g) = P (a

0

; g j e)=P (g j e):

Since the factor P (g j e) is the same for all alignments, we can look for arg max

a

0

2N (a)

P (a

0

; g j e) instead.
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Chapter 7

Decoding Algorithms

Decoding algorithms are crucial in statistical machine translation. Their performance directly

a�ects translation quality and e�ciency. Without a reliable and e�cient decoding algorithm, a

statistical machine translation system may miss the best translation of an input sentence even

if it is perfectly predicted by the model. There are two important issues in decoding:

1. Optimality: Can the decoding algorithm �nd the optimal translation as predicated by

the model?

2. Speed: Can the decoding algorithm identify the optimal translation in a time e�cient

way?

We often have to have some trade-o�s between the optimality and decoding speed. If we

exhaust the hypothesis space, we can certainly �nd the optimal one as predicated by the model.

However, since the hypothesis space is exponential in the maximum sentence length allowed,

it is impractical to enumerate all possible hypotheses. Often we have to prune hypotheses to

speed up the decoder, and this may sacri�ce optimality.

In this chapter, I describe two decoding algorithms for the structure-based model. One is

based on the IBM stack decoder for IBM Model 3, and the other is based on a fast decoder

with best-�rst nature. The �rst decoder is more accurate, but it is slow and it fails on many

long sentences. The second decoder is fast and robust, and its accuracy is lower than the �rst

one on those successfully decoded sentences.

71



das  w"are  prima

NULL  that  is

das  w"are  prima

NULL  that  is

Hypothesis (a) Hypothesis (b)

Figure 7.1: Hypotheses in the IBM Stack Decoder

7.1 IBM Stack Decoder

Stack decoding algorithms are widely used in speech recognition systems. The IBM statistical

machine translation group used stack decoder for their translation system (Berger et al., 1996).

In this section, I brie
y review the algorithm, since the experiments for performance comparison

between IBM Model 3 and the structure-based model were conducted with the decoder, and

the algorithm was originally published in a US patent rather than widely available journals or

conference proceedings.

7.1.1 IBM Stack Decoder

In the IBM Stack Decoder (Berger et al., 1996), a hypothesis is comprised of a source sentence

pre�x string and an alignment between the pre�x string and the target (input) sentence. Each

hypothesis is associated with a score. For example, Figure 7.1 shows two hypotheses with the

same source pre�x string but di�erent alignments between the source pre�x and the target

sentence.

For a given target sentence to be translated, each subset of the words in the target sentence

is associated with a priority queue. A hypothesis is put into a priority queue according to the

target words that have been accounted for by the hypothesis. For example, hypothesis (a) in

Figure 7.1 is put into the queue corresponding to the subset fdas, w"areg, while hypothesis

(b) is put into the queue that corresponds to the subset fdas, w"are, primag. A hypothesis is

open if the last word in the hypothesis is allowed to be aligned to additional target words. A

hypothesis is closed if the last word is not allowed to be aligned to any more target words.

The search proceeds iteratively. In the initial step, an empty source word sequence is entered

into the queue corresponding to the empty subset of the target words. That means, the initial
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hypothesis is an empty string that does not account for any word in the target sentence.

In the following steps, the decoder set up a threshold for each of the priority queues. Then

it looks in each of the priority queues for the hypotheses that scored higher than the threshold

of that queue. A selected hypothesis is then extended by the decoder to account for a target

word t that is not aligned to any source word in the hypothesis | the extension is repeated for

each of the target words that are yet to be accounted for. The extension is carried out in the

following ways:

1. If the hypothesis to be extended is open, then

(a) Aligned the last word of the hypothesis to t, and keep the new extended hypothesis

open.

(b) Aligned the last word of the hypothesis to t, and close the new extended hypothesis.

2. If the hypothesis to be extended is closed, then

(a) Append a source word s to the hypothesis, align s to t, make the new hypothesis

open.

(b) Append a source word s to the hypothesis, align s to t, close the new hypothesis.

(c) Aligned the null word to the target word to be accounted for.

(d) Append two source words s

1

s

2

to the hypothesis, align s

2

to t, make the new hy-

pothesis open.

(e) Append two source words s

1

s

2

to the hypothesis, align s

2

to t, close the new hy-

pothesis.

To speed up the decoding process, we do not have to enumerate over all possible s and s

1

s

2

sequences. Rather we can only pick s and s

1

s

2

sequences that can signi�cantly increase the

likelihood of t; the target word that is to be accounted for, and �t in the current hypothesis

well with a high ngram likelihood. Details about this can be found in (Berger et al., 1996).

The score of a newly extended hypothesis can be incrementally calculated from the score of

its parent hypothesis. Details about score calculation, as well as the threshold calculation for

the priority queues, can be found in (Berger et al., 1996) too.

73



It is clear that the number of stacks in the IBM decoder, i.e., the number of the subsets of

the target words in a target sentence, is exponential in the target sentence length. In practice,

not all the queues have to be created. Instead, the queues can be created on the 
y, i.e., a

queue is created only when a hypothesis accounting for the target word subset corresponding to

that queue is created. In the IBM system, since the English and French data are preprocessed

in such a way that they have similar word order, the model may strongly prefer the hypotheses

that align similar positions in the source/target sentences together. Therefore a hypothesis that

has long distance alignment may never get a chance to have a score high enough to be extended,

hence many queues may not be created by the decoder. However, since our English/German

parallel sentences have radically di�erent word orders, the distortion parameters in Model 3

do not strongly prefer the hypotheses that align similar source/target positions together. This

means that a majority of the exponential number of priority queues may be created. This has

two adversary e�ects:

1. A long target sentence will result in huge number of priority queues, hence too much

memory space. When an input target sentence is longer than 15 words, the decoder can

allocated more than 1 GB memory.

2. Exponential number of priority queues implies that exponential number of hypotheses

being generated by the decoder. Therefore the decoder is extremely slow when the target

sentence is long.

In my experiments, I used the IBM Model 3 decoder to search for the translations of our

test input sentences up to 20 words long. Whenever the decoder allocated more than 750 MB

memory, it stopped searching and registered a failure. Table 7.1 shows the number of sentences

that IBM decoder had failed.

7.1.2 IBM Decoder for Structure-Based Model

The aforementioned IBM decoder for Model 3 can be slightly modi�ed so it can be used for

Model 1, Model 2, and Model 4. The modi�cations are mostly with the computation of hy-

pothesis scores and queue thresholds. Unfortunately, it is not clear how the algorithm can be
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Sentence Total Failed Failure Average Extended

Length Sentence # Sentence # Percentage Hypothesis #

1-4 81 0 0% 16

5-8 128 0 0% 2,705

9-12 101 0 0% 11,660

13-16 41 19 46.3% 63,472

17-20 16 9 56.3% 145,768

All (1-20) 367 28 7.6% |

Table 7.1: Decoding Performance for the IBM Model 3 Decoder: Input target sentences are

grouped together according to their lengths. The �rst column lists these groups. The second

column lists the total number of sentences in each group. The third column lists the number of

sentences failed by the decoder in each group. The fourth column lists the failure percentage.

The �fth column lists the average number of hypotheses being extended by the decoder | The

statistics were collected from those successfully decoded input sentences in each group.

applied to the structure-based model. Unlike the word-based models, in which we can e�ec-

tively compute the score of a hypothesis from the score of its parent hypothesis, the score of a

hypothesis in the structure-based model depends on the words that are yet to be appended to

the current hypothesis. This is mostly due to the following two reasons: (a) the hypothesis may

contain a pre�x of a phrase whose identi�cation is unknown before the phrase is fully extended;

and (b) the likelihood of the alignment between the hypothesis and the target sentence, as well

as the identi�cations of the phrases in the target sentence, depend on the phrases in the source

sentence.

One possible solution to this problem is to make a hypothesis comprise of not only a pre�x

string and an alignment between the pre�x string and the target sentence, but also the number

of source phrases as well as the identi�cation of those phrases. However, this will complicate

the decoding algorithm further and make it even more ine�cient.

To overcome this di�culty, the hypothesis reshu�ing algorithm was introduced for the

structure-based model.

7.2 Hypothesis Reshu�ing for Structure-Based Model

The idea of hypothesis reshu�ing was based on the observation that the IBM Stack Decoder

often found, in the top N translation candidates, the correct translations, or almost correct

translations | translations that have the correct bags of words arranged in wrong orders.
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Sentences M3 Score SM Score

Input Ich habe ein Meeting von halb elf bis um zw"olf | |

Preprocessed ich hab ein Meeting von halb zehn bis um zw"olf | |

Reference I have a meeting from ten thirty to twelve 2.54316e-17 8.03062e-20*

I have a meeting from ten to twelve thirty 3.21979e-17* 3.62686e-24

I have a meeting from ten thirty to twelve 2.54316e-17 8.03062e-20*

I have a meeting from ten thirty until twelve 1.11035e-17 3.29499e-20

I have a meeting from ten thirty till twelve 9.65641e-18 2.94287e-20

I have got a meeting from ten to twelve thirty 3.70554e-18 5.36138e-25

Hypotheses I have got a meeting from ten thirty to twelve 2.42777e-18 1.31520e-20

I have a meeting from twelve thirty to ten 2.61774e-18 3.13659e-24

I have a meeting from ten thirty till noon 2.29252e-18 2.63906e-20

I have got a meeting from ten thirty until twelve 1.05997e-18 5.39632e-21

I have a meeting from ten thirty until noon 1.75381e-18 1.96589e-20

Table 7.2: Top 10 hypotheses from Model 3 Stack Decoder. The hypotheses are followed by

the Model 3 scores and the structure-based model scores. The scores with an attached * are

the highest scores among the hypotheses with respect to the corresponding models.

Table 7.2 lists the top 10 translations for an input German sentence, discovered by the IBM

Stack decoder for Model 3.

The hypothesis reshu�ing algorithm uses the stack decoder to �nd top N hypotheses with

a simple model, say Model 3, and then in the neighborhood of those candidate hypotheses,

search for the translation that has the highest score according to a more advanced model with

a hill-climbing algorithm. We de�ne the following terminology to describe the algorithm:

De�nition 7.2.1 Word move

Two hypotheses H = e

1

e

2

e

3

:::e

n

and H

0

= e

0

1

e

0

2

e

0

3

:::e

0

n

di�er by a word move if there exist

1 � i � j � n such that either of the following holds:

(e

1

:::e

i�1

= e

0

1

:::e

0

i�1

) ^ (e

i

= e

0

j

) ^ (e

i+1

:::e

j

= e

0

i

:::e

0

j�1

) ^ (e

j+1

:::e

n

= e

0

j+1

:::e

0

n

) or

(e

0

1

:::e

0

i�1

= e

1

:::e

i�1

) ^ (e

0

i

= e

j

) ^ (e

0

i+1

:::e

0

j

= e

i

:::e

j�1

) ^ (e

0

j+1

:::e

0

n

= e

j+1

:::e

n

)

De�nition 7.2.2 Phrase move

Two hypotheses H = e

1

e

2

e

3

:::e

n

= E

1

E

2

:::E

m

and H

0

= e

0

1

e

0

2

e

0

3

:::e

0

n

= :::E

0

m

1

di�er by a

phrase move if there exist 1 � i � j � m such that either of the following holds:

(E

1

:::E

i�1

= E

0

1

:::E

0

i�1

)^ (E

i

= E

0

j

)^ (E

i+1

:::E

j

= E

0

i

:::E

0

j�1

)^ (E

j+1

:::E

n

= E

0

j+1

:::E

0

m

) or

1

E

i

and E

0

i

are phrases in H and H

0

.

76



(E

0

1

:::E

0

i�1

= E

1

:::E

i�1

)^ (E

0

i

= E

j

)^ (E

0

i+1

:::E

0

j

= E

i

:::E

j�1

) ^ (E

0

j+1

:::E

0

n

= E

j+1

:::E

m

)

De�nition 7.2.3 Word swap

Two hypotheses H = e

1

e

2

e

3

:::e

n

and H

0

= e

0

1

e

0

2

e

0

3

:::e

0

n

di�er by a word swap if e

k

= e

0

k

holds

for all 1 � k � n except for 1 � i � j � n, for which we have (e

i

= e

0

j

) ^ (e

j

= e

0

i

):

De�nition 7.2.4 Phrase swap

Two hypotheses H = e

1

e

2

e

3

:::e

n

= E

1

E

2

:::E

m

and H

0

= e

0

1

e

0

2

e

0

3

:::e

0

n

= :::E

0

m

2

di�er by a

phrase swap if E

k

= E

0

k

holds for all 1 � k � m except for 1 � i � j � m, for which we have

(E

i

= E

0

j

) ^ (E

j

= E

0

i

):

De�nition 7.2.5 Neighbor hypothesis

Two hypotheses H and H

0

are neighbors i� H and H

0

di�er by a word move, a phrase move,

a word swap or a phrase swap.

The search process can be described with the following algorithm:

Algorithm 7.2.1 Decoding with IBM Stack Decoder and Hypothesis Reshu�ing (IBM+R)

Input: target sentence T = t

1

t

2

� � � t

n

.

Output: source sentence S = s

1

s

2

� � �s

m

.

Data Structures: a priority queue Q for hypotheses.

Models: a base model M

1

using IBM Stack Decoder;

a model M

2

for re-scoring the candidate hypotheses and

their neighbors.

1. Using the IBM Stack decoding algorithm for the base alignment model M

1

, �nd the top

N hypotheses. Score the hypotheses with the alignment model M

2

and then add these

hypotheses to Q.

2. Repeat Step 3-7, until there is no change of the top K hypotheses in Q:

3. For each H in the top K hypotheses in Q

4. N

H

 neighbor set(H);

2

E

i

and E

0

i

are phrases in H and H

0

.
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Model Decoder Total Correct Okay Incorrect Translation

Sentence # Translations Translations Translations Accuracy

Model 3 IBM 339 191 68 80 66.4%

SModel IBM+R 339 202 77 60 70.9%

Table 7.3: IBM Decoder with Reshu�ing. The �rst row is the performance of IBMModel 3 with

stack decoder (without reshu�ing). The second row is the performance of the structure-based

model, with reshu�ing in the decoding algorithm.

5. for each H

0

2 N

H

6. score H

0

with the alignment model M

2

7. Q  H

0

8. Report the hypothesis with the highest score in Q as the translation of T .

The choice of the value N and K is a trade-o� between speed and accuracy. A large N

and K make the hill-climbing search in the hypothesis neighborhood less likely to stop at a

local maximum, while the reshu�ing process takes much more time. In experiments reported

here, N = 12 and K = 6 were selected by trial and error. Table 7.3 compares the performance

between Model 3 using the IBM stack decoder and the structure-based model using the IBM

decoder with reshu�ing.

Two di�erent kinds of errors occur in statistical machine translation. A modeling error

occurs when the model assigns a higher score to an incorrect translation than all correct trans-

lations. We cannot do anything about this with the decoder. A decoding error or search error

happens when the search algorithm fails to identify a correct translation that has a higher score.

When evaluating a decoding algorithm, being able to identify how many errors are caused

by the decoder is useful. Unfortunately, this is not attainable. The following explains the

reason. Suppose that we are going to translate a German sentence g, and we know from the

sample that e is one of its possible English translations. The decoder outputs an incorrect e

0

as

the translation of g. If the score of e

0

is lower than that of e, we know that a search error has

occurred. On the other hand, if the score of e

0

is higher, we cannot decide if it is a modeling

error or not, since there may still be other legitimate translations with a score higher than the

score of e

0

| we just do not know what these better translations are.
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Model Total Errors Score

e

> Score

e

0

Score

e

� Score

e

0

Model 3 148 17 (11.5%) 131 (88.5%)

SModel 137 18 (13.1%) 119 (86.9%)

Table 7.4: Reference Translations vs. Machine-Made Translations. Score

e

is the score of

reference translation, Score

e

0

is the score of the machine made translation. When Score

e

>

Score

e

0

, we know, for sure, that a decoding error has occurred

Although we cannot distinguish a modeling error from a search error, the comparison be-

tween the score of a decoder output and that of a reference translation can still reveal some

information about the performance of the decoder. If we know that the decoder can �nd a

sentence with a higher score than the \correct" reference translation, we will be more con�dent

that the decoder is less prone to cause errors. Table 7.4 shows how many errors are knowingly

caused by the decoder.

7.3 Fast Stack Decoder for Model 1 and Simpli�ed Model 2

While the IBM stack decoder and the reshu�ing decoding algorithm based on it have low

known decoding error rate, (around 5% with preprocessed English/French data and 11.5% with

our English/German data.) its high failure rate and almost intolerably slow speed greatly

limit the applicability of statistical machine translation. In this section, I describe a fast stack

decoding algorithm for IBM Model 1 and a simpli�ed version of Model 2. This algorithm can

later be used as the base decoding algorithm for the reshu�ing algorithm for Model 3 and the

structure-based model.

The high failure rate and the slow speed of the IBM stack decoder were due to the same

reason | retaining the alignment between a source sentence pre�x and the target sentence in

a hypothesis. This is mostly due to the fact that no e�ciently algorithm is available for Model

3 to calculate Pr(T j S); the a posteriori probability of the target sentence given a source

sentence over all possible alignments. Instead, we have to make an assumption about the likely

alignment between a hypothesis and the target and compute the a posteriori probability of

the target sentence with that alignment, Pr(T;A j S); given the source hypothesis. Because

the number of possible alignments is exponential in sentence length, this results in exponential

number of priority queues and hypotheses. Therefore the algorithm is too expensive with

79



respect to both time and space complexities.

On the other side, e�cient algorithms are available for Model 1 and Model 2 to calculate

Pr(T j S) =

P

A

Pr(T;A j S); the a posterior probability of a target sentence T given a

source S; over all possible alignments A between S and T . Therefore we do not have to make

assumptions about the alignment between a hypothetical source sentence pre�x string and the

target sentence. Instead, a hypothesis can be just a pre�x string of the source sentence, whose

score is the likelihood of the target sentence summed over all possible alignments. In doing so,

we greatly reduced the size of hypothesis space and make the decoding more e�cient.

To be speci�c, here I introduce a fast stack decoder for a simpli�ed version of IBM alignment

Model 2. The decoder for Model 1 can be simply derived from it, since Model 1 is a special

case of Simpli�ed Model2 when the alignment distribution is uniform.

7.3.1 Simpli�ed Model 2

In IBM alignment Model 2 (see detailed description in Appendix A), the alignment parameters

depend on the source and target sentence length l and m. This causes the following di�culties:

1. There are too many parameters and therefore too few training data per parameter. This

may not be a problem when massive training data are available. However, in our appli-

cation, this is a severe problem. Figure 7.2 plots the length distribution for the English

and German sentences. When sentences are longer, very few training data are available.

2. The search algorithm has to make multiple hypotheses of di�erent source sentence length.

For each source sentence length, it searches through almost the same pre�x string and

�nally settles on a sentence length. This is a very time consuming process and makes the

decoder very ine�cient.

To alleviate the problems, I introduced a simpli�ed Model 2 in (Wang and Waibel, 1997a),

in which the alignment parameters are independent of the sentence length l and m:

Pr(i j j;m; e) = Pr(i j j; l;m) = a(i j j) (7.1)

Here i; j < L

m

, and L

m

is the maximum sentence length allowed in the translation system. A

slight change to the EM algorithm was made to estimate the parameters.
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Figure 7.2: Sentence Length Distribution
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There is a problem with this model: given a sentence pair g and e, when the length of e is

smaller than L

m

, then the alignment parameters do not sum to 1:

jej

X

i=0

a(i j j) < 1: (7.2)

We handle this problem by using normalized a

l

instead of a for a hypothesis of source

sentence with length l:

a

l

(i j j) =

a(i j j)

P

l

k=0

a(k j j)

(7.3)

A hypothesis in the simpli�ed model can be expressed as H = e

1

; e

2

; � � � ; e

k

, and jH j is used

to denote the length of the sentence pre�x of the hypothesis H , in this case, k.

7.3.2 Fast Stack Decoder: Scoring a Hypothesis

To calculate the probability of a target given a source in Simpli�ed Model 2, (A.1) can be

modi�ed as in (7.4) for Simpli�ed Model 2:

Pr(g j e) = �

l

X

a

1

=0

� � �

l

X

a

m

=0

m

Y

j=1

t(g

j

j e

a

j

)� a

l

(a

j

j j)

= �

m

Y

j=1

l

X

i=0

t(g

j

j e

i

)� a

l

(i j j) (7.4)

Although (7.4) was obtained from the alignment model, it would be easier for us to describe

the scoring method of the fast decoder if we interpret the last expression in the equation in the

following way: each word e

i

in the hypothesis contributes the amount � t(g

j

j e

i

) � a

l

(i j j) to

the probability of the target word g

j

.

Given a target sentence G = g

1

g

2

� � �g

m

, assume that the source sentence length is l at

this moment. The hypothesis H

l

= l : e

1

; e

2

; � � � ; e

k

has hypothesized k words as the pre�x of

the source sentence of length l. Then the probability mass contributed by the source word e

i

(0 � i � k; with e

0

being the null word) to the target word g

j

is �t(g

j

j e

i

)� a

l

(i j j): For the

rest source positions k < i � l; since the source word at that position has not been introduced
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into the pre�x string yet, its contribution to the target word g

j

is averaged over all possible

source words, which is �a

l

(i j j)�

P

jLj

n=0

Pr(w

n

)� t(g

j

j w

n

): Here jLj is the size of the source

word lexicon, w

n

is the n

th

word in the source lexicon, and Pr(w

n

) is the prior probability of

the source word w

n

; which is obtained with maximum likelihood estimator. Therefore, if we

use �

kl

(j j i; H

l

) to denote the contribution of the i

th

source position of H to the probability

mass of the j

th

target word, then we have

�

kl

(j j i;H

l

) =

8

>

<

>

:

�a

l

(i j j)� t(g

j

j e

i

) 0 � i � k

�a

l

(i j j)�

P

jLj

n=0

Pr(w

n

)� t(g

j

j w

n

) k < i � l

(7.5)

The translation model score of the hypothesis H

l

is therefore

�(H

l

) =

m

Y

i=1

l

X

j=0

�

kl

(j j i;H

l

) (7.6)

In practice, since we do not make any assumption of the source sentence length, the score

of the hypothesis H = e

1

; e

2

; � � � ; e

k

has to be averaged over all possible sentence lengths:

�(H) =

L

m

X

i=k

Pr(k j m)� �(H

i

) (7.7)

here Pr(k j m) are source sentence length distributions conditioned on target sentence length,

which are modeled with Poisson distributions. L

m

is the maximum sentence length allowed in

the system.

Because our objective is to maximize P (e; g), we have to include in the score the ngram

language model likelihood of the hypothesis, therefore the score of H is

Score

H

= �(H)�

k

Y

i=1

P (e

i

j e

i�N+1

� � �e

i�1

): (7.8)

Because of the di�erent number of factors in the language score, hypotheses of di�erent

pre�x lengths are not directly comparable. Therefore hypotheses of di�erent pre�x lengths are

stored in di�erent priority queues. This results in the following algorithm:

Algorithm 7.3.1 Fast Stack Decoding for Simpli�ed IBM Model 2 (FSD)

Input: target sentence T = t

1

t

2

� � � t

n

.

Output: source sentence S = s

1

s

2

� � �s

m

.

Data Structures: a collection of priority queues Q

0

Q

1

� � �Q

L

m

for hypotheses. L

m

is the maximum sentence length allowed
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1. Initialize with a null hypothesis (with pre�x string length 0) H

0

, compute S(H

0

) with

(7.5), (7.6), (7.7) and (7.8).

2. Q

0

 H

0

3. For each Q 2 fQ

0

Q

1

� � �Q

L

m

g

4. Set the threshold for Q

5. For each H 2 Q

6. If Score

H

> Threshold(Q)

7. For each promising source word s

8. H

0

= append(H; s)

9. Score H

0

with (7.5), (7.6), (7.7) and (7.8).

10. Q

jH

0

j

 H

0

11. Exit the loop if N complete source sentences are available in Q's.

12. Report the hypothesis with the highest score in Q's as the translation of T .

In the algorithm, a hypothesis is complete if its pre�x string ends with the \end of sentence"

symbol </s>.

7.3.3 A* Search: Scoring a Hypothesis

In the A* algorithm(Nilsson, 1971), the score of a hypothesis H consists of two parts: the

pre�x score for the part that is already in the hypothesis, and the heuristic score that estimates

the potential score improvement introduced by new words that are yet to be appended to

H to complete the source sentence. A good heuristic score is essential for the optimality of

stack decoding. To guarantee an optimal search result, the heuristic function must be an

upper-bound of the potential score improvement introduced by every possible extension to a

hypothesis (Nilsson, 1971). In other words, the bene�t of extending a hypothesis should never
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be under-estimated. Otherwise the search algorithm may prematurely conclude with a non-

optimal hypothesis. However, if the heuristic function over-estimates the merit of extending a

hypothesis too much, the search algorithm will waste a huge amount of time after it hits the

optimal result to safeguard the optimality. On the other side, if we do not use any heuristic

function, then what we get is the Best-�rst algorithm. In that case, the algorithm is much

faster. However, it is very likely for the algorithm to miss the optimal solution.

The aforementioned algorithm actually has the best-�rst nature. Although we use the

average probability mass for the heuristics as the contribution of the future source words to the

target words, this average underestimate the merit of extending a hypothesis. For the sake of

simplicity, I will call the algorithm the BF algorithm. Please bear in mind that this is not the

pure best-�rst algorithm, since we still have heuristics for the future extension to a hypothesis.

The algorithm is some way in between the best-�rst and the A* algorithm.

To make the decoder an A* algorithm, we can make the following modi�cation:

�

�

kl

(j j i;H

l

) =

8

>

<

>

:

�a

l

(i j j)� t(g

j

j e

i

) 0 � i � k

�a

l

(i j j)�max

0<n�jLj

t(g

j

j w

n

) k < i � l

(7.9)

Here we assume that each future (yet to be appended) source word is going to make the

maximum contribution to all the target word simultaneously.

The translation model score of a hypothesis with a hypothetical source sentence length l;

H

l

, is therefore

�

�

(H

l

) =

m

Y

i=1

l

X

j=0

�

�

kl

(j j i;H

l

) (7.10)

And again the score for the hypothesis H = e

1

; e

2

; � � � ; e

k

has to be averaged over all possible

sentence lengths:

�

�

(H) =

L

m

X

i=k

Pr(k j m)� �

�

(H

i

) (7.11)

Including language model contribution, the score of a hypothesis H is

Score

�

H

= �

�

(H)�

k

Y

i=0

P (e

i

j e

i�N+1

� � �e

i�1

): (7.12)

Algorithm 7.3.1 can still be used for this A* version of decoding algorithm, with score

calculation being replaced with (7.9), (7.10),(7.11) and (7.12).
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Decoder Model Total Failed Failure

Sentence # Sentence # Percentage

A* IBM Model 1 367 3 0.8%

BF IBM Model 1 367 2 0.5%

A* Simpli�ed Model 2 367 7 1.9%

BF Simpli�ed Model 2 367 5 1.4%

Table 7.5: Decoding Performance with A* Decoder and Best-First Decoder.

Decoder Model Total Correct Okay Incorrect Accuracy

A* IBM Model 1 364 161 74 129 55.1%

BF IBM Model 1 365 154 79 132 53.0%

A* Simpli�ed Model 2 360 197 46 117 61.1%

BF Simpli�ed Model 2 362 148 68 146 50.3%

Table 7.6: Translation Accuracy with A* Decoder and Best-First Decoder.

7.3.4 Performance Comparison: A* vs. Best-First Stack Decoder

Table 7.5 shows the number of sentences failed by the A* and the Best-�rst stack decoder

for Model 1 and Model 2, which happens after the decoder has extended too many (5,000)

hypotheses.

Table 7.6 compares the performance for the best-�rst stack decoder and the A* stack decoder

for IBM Model 1 and Simpli�ed Model 2. The accuracy was calculated by giving a correct

translation 1 point and an okay translation 1/2 point

3

.

Table 7.7 shows the comparison between the scores of the outputs from the decoder and the

scores of the reference translations when the outputs are not correct translations, i.e., when the

outputs are either okay or incorrect translations.

3

The scoring method will be introduced in chapter 8.

Decoder Model Total Errors Score

e

> Score

e

0

Score

e

� Score

e

0

A* IBM Model 1 203 24 (11.8%) 179 (88.2%)

BF IBM Model 1 211 26 (12.2%) 185 (87.8%)

A* Simpli�ed Model 2 163 15 (9.2%) 148 (90.8%)

BF Simpli�ed Model 2 214 102 (47.7%) 112 (52.3%)

Table 7.7: A* and BF algorithms: Reference Translations vs. Machine-Made Translations.

Score

e

is the score of reference translation, Score

e

0

is the score of the machine made translation.
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Observations

We have the following observations from Table 7.6 and Table 7.7:

1. While switching from the A* stack decoder to the best-�rst search caused a big perfor-

mance drop with Simpli�ed Model 2, the impact was not as serious in Model 1.

2. For IBM Model 1, most of the erroneous translations generated by the best-�rst search

had higher scores than the reference translations; for Simpli�ed Model 2, a majority of the

erroneous translations had lower scores than the reference translations (Known decoding

errors).

The reason for the above observations can be attributed to the di�erent behaviors of the

two models. Assume that for a target sentence, the source word e should appear in position i

of the source (the translation), but the decoder reaches a hypothesis in which e is not at i. For

IBM Model 1, since the only constraint on word order is from the language model, there is a

great chance that e will appear in another position as long as it can signi�cantly increase the

likelihood of a target sentence word and it is in the right context to have a high language model

score. This misplacement of a correct word at a wrong position will not a�ect the translation

model score very much, since in Model 1 the alignment distribution is uniform and independent

of the word position. Because a correct word occurring in the extension of the current hypothesis

can still result in a high heuristic score, it is less likely for the A* decoder to return to another

hypothesis with e at the right position i. Therefore, the A* search behaves similarly to the

best-�rst search, which is consistent with the �rst observation. It also implies that both the

A* decoder and the best-�rst search tend to �nd a correct bag of words, but arrange the words

incorrectly. This is consistent with the second observation that the erroneous translation has

high scores, since in Model 1 the translation model score depends only on the bag of words, and

the placement of the words is irrelevant. On the other hand, in Simpli�ed Model 2, when e is

missing from i, because of the penalty from the alignment parameter a(i

0

j j), it does not help

much to introduce e to another position i

0

in the source sentence. With the stack search, the

decoder will �nally return to a hypothesis with e at the right position. The best-�rst search,

however, due to its hill-climbing nature, is less likely to backtrack to the right hypothesis.

Therefore a big performance gap exists between the A* search and the best-�rst search for
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Figure 7.3: Extended States vs. Target Sentence Length

Simpli�ed Model 2. This also explains why, in the best-�rst search, a majority of the erroneous

translations have lower scores than the reference translations.

I examined the incorrect translations made by the best-�rst and A* search with IBM align-

ment Model 1, and found that around 85% of those translations identi�ed correct or nearly

correct bags of words.

7.3.5 Decoding Speed

Another important issue is the decoder e�ciency. Figure 7.3 plots the average number of states

being extended by the decoders with Simpli�ed Model 2. It is grouped according to input

sentence length. On average the best-�rst search takes only about 1=4~1=3 decoding time of

the stack decoder.

7.3.6 Fast Stack Decoder with Reshu�ing for Structure-Based Model

If we use the fast stack decoder (A* or Best-First) as the base decoder to search for the hypoth-

esis candidates and then apply the reshu�ing procedure, we can get the following algorithm:

Algorithm 7.3.2 Fast Stack Decoding with Hypothesis Reshu�ing (FSD+R)
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Input: target sentence T = t

1

t

2

� � � t

n

.

Output: source sentence S = s

1

s

2

� � �s

m

.

Data Structures: a priority queue Q for hypotheses.

Models: a base alignment model M

1

using FSD to �nd candidate hypotheses;

an alignment model M

2

for re-scoring the candidate hypotheses and

their neighbors. M

1

can be the same model as M

2

:

1. Using the fast decoding algorithm (FSD) for the base alignment model, �nd the top N

source sentence hypotheses of length from bn=2c to d3 � n=2e. Score the hypotheses with

the alignment model M

2

and then add these hypotheses to Q.

2. Repeat Step 3-7, until there is no change of the top K hypotheses in Q :

3. for each hypothesis H in the top K hypotheses in Q

4. N

H

 neighbor set(H);

5. for each H

0

2 N

H

6. score H

0

with the alignment model M

2

7. Q  H

0

In experiments reported here, N = 20 and K = 6 were selected by trial and error.

When we apply the algorithm, we often let M

1

\borrow" the translation parameters from

M

2

, because in general the translation distribution of a source word in a more advanced model

is less ambiguous and more accurate (see next chapter).

Because both BF decoder and A* decoder tended to �nd the correct bag of words with

Model 1 (see the analysis above), and BF and A* performed similarly but BF works faster,

we used BF decoder for Model 1 as the base model decoder in the FSD+R algorithm in the

following experiments reported in this chapter. The decoder is therefore named the BFD+R

decoder.
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Model Decoder Total Failed Corr. Okay Incorr. Accuracy Accuracy*

Model 3 IBM 367 28 191 68 80 66.4% 61.3%

Model 3 BFD+R 367 2 188 74 103 61.6% 61.3%

SModel IBM+R 367 28 202 77 60 70.9% 65.5%

SModel BFD+R 367 2 203 76 86 66.0% 65.7%

Table 7.8: Performance Comparison between IBM (IBM+R) and BFD+R. The �rst row is the

performance of IBM Model 3 with the stack decoder (without reshu�ing). The second row is

the performance of IBM Model 3 with BF decoder and hypothesis reshu�ing algorithm. The

third row is the performance of the structure-based model with the IBM stack decoder and

hypothesis reshu�ing, and the fourth row is the performance of the structure-based model with

BF decoder and hypothesis reshu�ing. The \Failed" column lists the number of sentences for

which the search aborted. \Accuracy" is calculated with respect to the successfully decoded

sentences, and \Accuracy*" is calculated with respect to the total number of input sentences

(367).

7.4 Performance Comparison: IBM Stack Decoder vs. Best-

First with Reshu�ing

Two experiments were conducted to evaluate the performance of the IBM decoder with the

BFD+R decoder. In the �rst experiment, we compared the performance of the BFD+R

algorithm

4

with that of the IBM stack decoder for IBM Model 3. In the second experiment, we

compare the performance of two di�erent reshu�ing algorithms for our structure-based model:

the �rst used IBM Model 1 as based model and applied the Best-�rst decoding algorithm to

�nd the hypothesis candidates (BFD+R) as the starting point for hill-climbing reshu�ing; the

second used IBM Model 3 as the base model and applied the IBM stack decoder to �nd the

hypothesis candidates (IBM+R). Table 7.8 compares the performance: among those success-

fully decoded sentences, the IBM decoder and IBM+R decoder have higher accuracy (Accuracy

column). However, the di�erent algorithms performed similarly if the accuracy was calculated

among all input sentences (Accuracy* column). This is because the IBM decoder failed on more

sentences, and usually those sentences were di�cult ones and likely to result in errors with the

BFD+R algorithm.

For those erroneous (okay and incorrect) translations, Table 7.9 compares their model scores

4

The BFD+R for Model 3 is slightly di�erent from the BFD+R for the structure-based model | only word

move and word swap are used in �nding the neighbors of a hypothesis. The concept of phrase does not exist in

Model 3.
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Model Decoder Total Errors S(e) > S(e

0

) S(e) � S(e

0

)

Model 3 IBM 148 17 (11.5%) 131 (88.5%)

Model 3 BFD+R 177 26 (14.7%) 151 (85.3%)

SModel IBM+R 137 18 (13.1%) 119 (86.9%)

SModel BFD+R 162 28 (17.3%) 134 (82.7%)

Table 7.9: Reference vs. Machine-Made Translations. S(e) is the score of reference translation,

S(e

0

) is the score of the machine made translation. When S(e) > S(e

0

), we know, for sure, that

a decoding error has occurred.
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Figure 7.4: Decoding Time: BFD+R vs. IBM+R

with that of the reference translations. Here the BFD+R decoder had higher known decoding

error rate than the IBM decoder (Model 3) or the IBM decoder with reshu�ing (IBM+R for

the structure-based model) had. However, since BFD+R decoded more sentences, and the

IBM decoder failed on those extra sentences, it was likely that the BFD+R decoder made more

mistakes on these di�cult sentences and resulted in higher decoding error rate.

While the new algorithm did not improve the translation accuracy, its biggest advantage is

its decoding speed. Using fast stack decoder for the base model, we do not have to di�erentiate

hypotheses with the same pre�x string but di�erent alignments. Therefore we reduce the

number of hypotheses dramatically. Although we need extra time in the reshu�ing phase, we

found the new decoder worked 4-5 times faster than the IBM decoder did for Model 3. The

speed advantage was more evident for the structure-based model. Since the IBM decoder was

not directly applicable to this model, it had to be coupled with the reshu�ing algorithm anyway.
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Therefore the time reduction resulting from switching from the IBM decoder to the fast stack

decoder was fully observed. The IBM+R decoder could spend hours on long sentences, while

the BFD+R decoder normally found a translation within 15 minutes (Figure 7.4).

Another advantage of the new decoding algorithm is its generality. Base model decoding plus

reshu�ing according to an advanced model provides a general framework for any complicated

models.
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Chapter 8

Performance Evaluation

In this chapter, I evaluate the performance of the structure-based statistical machine translation

system. The evaluation was conducted to investigate the following:

1. Does the structure-based model improve the translation over the word-based alignment

models?

2. How does the structure-based model perform compared to the semantic-based symbolic

translation?

3. What is the impact of di�erent grammar inference algorithms (monolingual vs. bilingual)

on the translation model?

4. How does segmentation error in
uence translation performance?

8.1 Evaluation Method

Unlike in speech recognition, \accurate translations" is di�cult to de�ne in machine translation.

In speech recognition an output can be compared to the transcription of the test data, and the

word error rate can be used for performance measurement. In machine translation, (Tillmann

et al., 1997) used the same method to evaluate statistical machine translation performance.

However, word error rate is not an appropriate performance measure for machine translation,

since a sentence may have several legitimate translations. It makes little sense to say that one
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of them (the reference) is perfectly correct and the rest are not. Word error rate measure is also

biased against semantic based translations, for the translations made by a semantic translator

are usually non-literal, as shown in the following example:

Example 8.1.1 Semantic Translation

Input Sentence: Wir sehen uns dann

Literal Translation: See you then

Semantic Translation: Wonderful

\Wonderful" is a good translation of \Wir sehen uns dann" in the scheduling domain,

because both of them are used by conversation participants to express their agreement on a

proposed time for an appointment. Since the parallel corpus contains literal translations, the

comparison between semantic translations and the parallel data will greatly underestimate the

performance of semantic-based translators.

Since there is no suitable automatic way to evaluate the machine translation performance,

I used human subjects to judge the machine-made translations. A translation is classi�ed into

one of the following three categories

1

:

1. Correct translations: Translations that are grammatical and preserve the original meaning

of the input.

2. Okay translations: Translations that convey the same meaning but with small grammat-

ical mistakes that do not a�ect correct understanding; or translations that convey most

but not the entire meaning of the input.

3. Incorrect translations: Translations that are ungrammatical or convey little meaningful

information, or the information is di�erent from the input.

Examples of correct, okay, and incorrect translations are shown in Table 8.1. When scoring

translations, a correct translation is given one credit; an incorrect one gets 0 credit; and an

okay translation gets 1/2 credit.

1

This is roughly the same as the classi�cation in IBM statistical translation, except we do not have \legitimate

translation that conveys di�erent meaning from the input" | we did not observe this case in our outputs.
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German ich habe ein Meeting von halb zehn bis um zw�olf

English (reference) I have a meeting from nine thirty to twelve

English (output) I have a meeting from nine thirty to twelve

Correct

German wir sollten es vielleicht mit einem anderen Termin versuchen

English (reference) we might want to try for some other time

English (output) we should try another time

German ich glaube nicht d�as ich noch irgend etwas im Januar frei habe

English (reference) I do not think I have got anything open in January

English (output) I think I will not free in January

Okay

German ich glaube wir sollten ein weiteres Meeting vereinbaren

English (reference) I think we have to have another meeting

English (output) I think we should �x a meeting

German schlagen Sie doch einen Termin vor

English (reference) why don't you suggest a time

English (output) why you an appointment

Incorrect

German ich habe Zeit f�ur den Rest des Tages

English (reference) I am free the rest of it

English (output) I have time for the rest of July

Table 8.1: Examples of Correct, Okay, and Incorrect Translations: for each translation, the �rst

line is an input German sentence; the second line is the human made (reference) translation for

that input sentence; and the third line is the output from a translator.
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Model Decoder Total Fail Corr. OK Incor. Accuracy Accuracy*

S. Model 2 IBM 367 21 169 91 86 61.9% 58.4%

Model 3 IBM 367 28 191 68 80 66.4% 61.3%

Model 4 IBM 367 34 176 71 86 63.5% 57.6%

Str-Based IBM+R 367 28 202 77 60 70.9% 65.5%

Table 8.2: Translation Accuracy: a correct translation gets one credit; an okay translation gets

1/2 credit; an incorrect one gets 0 credit. Accuracy was calculated with respect to those suc-

cessfully decoded sentences, and Accuracy* was calculated with respect to all input sentences.

8.2 Structure-base vs. Word-based Alignment

8.2.1 Translation Accuracy

Table 8.2 shows the end-to-end translation performance of Simpli�ed Model 2, Model 3 and

the structure-based translation model. The structure-based model achieved around 11% error

reduction over Model 3, the best performing word-based model. The result reported here are

for the translation with the IBM stack decoder (plus the reshu�ing algorithm for the structure-

based model). Here I focus on the comparison among di�erence models. The comparison among

di�erent decoding algorithms can be found in Chapter 7.

Why Model 4 underperformed Model 3

Model 4 is a more advanced model than Model 3. However, we found that Model 3 performed

better than Model 4. One reason is that in Model 4, we often get under
ow when we compute the

likelihood of an alignment between parallel sentences. Figure 8.1 shows an alignment example

that was found by Model 4 hill-climbing search | actually it was the same alignment found by

Model 3 that served as the starting point of the Model 4 search. Since Model 4 had under
ow

likelihood for all its neighbors, this one was taken as the \best" alignment for Model 4. Figure

8.2 shows the Model 4 score computation, which gets an under
ow score for the alignment.

In the example, several parameters had value smaller than 10

�8

; and was replaced with 10

�8

in the model. The �rst such parameter is d1(7-2 j A(suggestion),B(k�onnte)). It states that

it is very unlikely to place \k�onnte", the translation of \+d", 5 words away from the center

2

of

2

The center of a source word is the ceiling of the average position of the target words that are aligned to that

source word.
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Figure 8.1: Alignment for a Parallel Sentence. It is the \best" alignment between the sentences

that was found by the Model 4 hill-climbing search.
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NULL word alignment score=0.177569

t(den j NULL)=0.0230913

t(noch j NULL)=0.0286865

t(mach j NULL)=0.01478

n(1 j my)=0.903444

t(ich j my)=0.0780847 d1(4-0 j A(#NULL#),B(ich))=0.0254732

n(1 j only)=0.907803

t(einzigen j only)=0.195031 d1(1-4 j A(my),B(einzigen))=0.023548

n(0 j other)=0.421362

n(1 j suggestion)=0.669533

t(Vorschlag j sugg...)=0.39558 d1(2-1 j A(only),B(Vorschlag))=0.36933

n(2 j +d)=0.00239905

t(k�onnte j +d)=0.0590251 d1(7-2 j A(sugg...),B(k�onnte))= 1e-8

t(w''are j +d)=0.115425 d2(8-7 j B(w''are))=0.908741

n(0 j be)=0.889456

n(1 j January)=0.939069

t(Januar j January)=0.948094 d1(13-8 j A(+d),B(Januar))=0.361803

n(2 j the)=0.00232391

t(den j the)=0.318586 d1(3-13 j A(January),B(den))=1e-8

t(der j the)=0.249571 d2(9-3 j B(der))=1e-8

n(2 j twenty)=0.864041

t(und j twenty)=0.294376 d1(11-6 j A(the),B(und))=1e-8

t(zwanzig j twenty)=0.671504 d2(12-11 j B(zwanzig))=0.985792

n(1 j ninth)=0.954483

t(neunte j ninth)=0.463206 d1(10-12 j A(twenty),B(neunte))=0.6881

Translation Model Score: 0

Figure 8.2: Model 4 Score Calculation for the Previous Alignment.
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Figure 8.3: EM Training Iterations vs.Percentage of Samples with Under
ow Model 4 Score

\suggestion", the word that precedes \+d". In other words, because in English \+d" is close

to \suggestion", it is not likely that their translations in German will be far away. This is

still the e�ect of the long distance alignment problem.

Other small parameters include d1(3-13 j A(January),B(den)), d2(9-3 j B(der)), and

d2(9-3 j B(der)). They demonstrate another problem with Model 4. In English and German,

many function words like \the", \der", \den" may not be translated into the other language. If

a function word in the target sentence does not have its correspondence in the source, a simpler

model like Model 2 or Model 3 may align it to another source function word. In the example

here, the German function word \den" does not have a translation in the source sentence.

Instead of aligning it to the null word, Model 3 aligned it to the English word \the". This

e�ectively shifted the center of \the" from 9 to 6. The problem is that Model 4 is too sensitive

to this kind of alignment errors, since it changes the center of a source word signi�cantly and

results in much di�erent placement likelihood. On one side, this discriminative power is good,

since it can isolate the \bad" alignments. On the other side, an alignment with mistakes will be

so isolated that all its neighbors have under
ow likelihood. If this alignment is the one found

by a simpler model to serve as the starting point of the Model 4 hill-climbing search for the

\best" alignment, then the search will stop at a local maximum at very beginning, since there

is no gradient around the starting point. As an e�ect of this, many parallel sentences have

under
ow scores and do not play any role in model training.
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j 0 1 2 3 4 5 6 7 8 ...

a

M2

(j j 1) 0.04 0.86 0.054 0.025 0.008 0.005 0.004 0.002 3.3�10

�4

...

a

SM

(j j 1) 0.003 0.29 0.25 0.15 0.07 0.11 0.05 0.04 0.02 ...

Table 8.3: The alignment distribution for the �rst German word/phrase in Simpli�ed Model 2

and the structure-based model. The second 
atter distribution re
ects the high possibility of

di�erent phrase orders in translations.

Figure 8.3 shows the percentage of the training data that had under
ow alignment likelihood

in each iteration of EM parameter estimation. With around 10% of data not used for model

training, the trained model is certainly biased and not as reliable as Model 3.

Because Model 4 underperformed model 3, in the following evaluation part we will focus on

the comparison between Model 3 and the structure-based model.

8.2.2 Word Order and Alignment Distributions

Table 8.3 shows the alignment distribution for the �rst German word/phrase in Simpli�ed

Model 2 and the structure-based model. The distribution is much 
atter in the structure-

based model, re
ecting the fact that English and German have di�erent phrase orders. On the

other hand, the word based model tends to align target sentence words with source words at

similar positions, which results in many incorrect alignments, and makes the word translation

probability t distributed over many incorrect target words, as shown in 8.2.3.

8.2.3 Model Complexity

The structure-based model has 3,081,617 free parameters, an increase of about 2% over 3,022,373

free parameters of Simpli�ed Model 2. This small increase does not cause over-�tting, as the

performance on test data suggests. On the other hand, the structure-based model is more

accurate. This can be illustrated with an example of translation probability distribution of the

English words \I" and \that". Tables 8.4 and 8.5 compare the translation distribution for these

two words with probability greater than 0.01, among Model 2, Model 3 and the structure-based

model. It is clear that the structure-based model \focuses" better on the correct translations.

From Table 8.4 and 8.5, we can see that the word-based model is more uncertain about the

correct translations of those two source words. The questions is, is there a way to quantitatively
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t

M2

(*j I) t

M3

(*j I) t

SM

(*j I)

ich 0.708 ich 0.944 ich 0.988

da 0.104 mir 0.023 mich 0.010

am 0.024 also 0.012

das 0.022

dann 0.022

also 0.019

es 0.011

Table 8.4: The translation distribution of \I", learned by Model 2, Model 3 and the structure-

based model. It is more uncertain in the word-based alignment model because the biased

alignment distribution forces the associations between unrelated English/German words.

t

M2

(*j that) t

M3

(*j that) t

SM

(*j that)

das 0.637 das 0.787 das 0.789

da 0.057 da� 0.052 da� 0.068

da� 0.055 diese 0.041 da 0.035

also 0.033 da 0.031 diese 0.014

dann 0.025 also 0.031 so 0.011

ist 0.020 bei 0.010

so 0.014 es 0.010

es 0.014

ja 0.012

der 0.011

Table 8.5: The translation distribution of \that", learned by Model 2, Model 3 and the structure-

based model. It is more uncertain in the word-based alignment model because the biased

alignment distribution forces the associations between unrelated English/German words.
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measure a model's uncertainty of source word translation overall? The answer is yes. Here we

de�ne the average translation entropy as

m

X

i=1

P (e

i

)

n

X

j=1

�t(g

j

j e

i

) log t(g

j

j e

i

): (8.1)

Here m;n are English and German lexicon sizes. The average translation entropy is a direct

measure of word translation uncertainty. The average translation entropy is 3.01 bits per source

word for Simpli�ed Model 2, 2.74 bits per source for IBM Model 3, while it is 2.50 bits per

source word in the structure-based model.

This may explain how the structure-based model alleviates the sparse data problem. Nor-

mally people cope with the sparse data problem by reducing the complexity of a model. The

complexity is often measured with the number of free parameters. For example, in speech recog-

nition, we used class-based ngram to reduce the number of free parameters in language models,

semi-continuous HMM (Huang and Jack, 1989) and triphone clustering (Lee, 1990) to reduce

the number of free parameters in acoustic models. In neural networks, we used weigh sharing,

like the time delay neural networks (Waibel et al., 1989) to reduce the number of parameters.

However, there is not much we can do along this line to solve the sparse data problem in

machine translation, since we have to know the translation distribution of each individual word,

and the translation parameters comprise a majority of parameters in all models. Techniques

like source word clustering will cause the loss of critical information for translation.

Actually the number of free parameters is not the unique measure of model complexity. The

translation entropy here is a information theoretic measure of model complexity. By focusing

the learning of word translation on the roughly aligned phrases, the complexity of the structure-

based model is e�ectively reduced.

8.2.4 How Structure-based Model Outperforms Word-based Models

In this subsection, I use some detailed examples to demonstrate how the structure-based model

avoid the translation errors made by IBM Model 3.

Example 8.2.1 The following table lists an input German sentence, its reference English trans-

lation, and the translation made by Model 3 and the structured-based model.
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Input (T): ich wei"s nicht recht

Reference (R): I do not know

Model 3 (S

M3

): I will not know

Structure-based (S

SM

): I do not know

Figure 8.4 illustrates the parameters involved in computing P

M3

(T; A

1

j S

M3

) with Model

3, and it is compared with Figure 8.5, which shows the parameters involved in computing

P

M3

(T;A

2

j S

SM

) with Model 3. Here A

i

's are the best alignments between the target and

the source sentences that could be found by Model 3 with the hill-climbing search, and they

are shown in the upper part of the two �gures: The number in the parenthesis following a

word shows the index (starting from 0) of the aligned position for that word in the translation.

The lower part of the �gures illustrates the parameters involved in calculating the likelihood

of the alignment. np(y j x) is the fertility probability for the source word x to have fertility y.

t(y j x) is the translation probability for translating the source word x to the target word y.

d(y j x) is the distortion probability for aligning the source position x to the target position y.

Appendix A explains what these parameters are for in detail. The last line shows the product of

the translation model likelihood and the language model likelihood (the channel model score).

The only di�erence in translation model score in Figure 8.4 and Figure 8.5 is the fertility

parameter np(0 j will)=0.623619 versus np(0 j do)=0.728261. Therefore the translation model

slightly prefers the correct translation. However, this preference is o�set by the stronger lan-

guage model preference on the Model 3 translation (7.62136e-06 versus 5.9468e-06.) Therefore

Model 3 picks the wrong translation.

On the other side, Figure 8.6 illustrates the parameters involved in computing P

SM

(T;

A

3

j S

M3

) with the structure-based model, and it is compared with Figure 8.7, which shows

the parameters involved in computing P

SM

(T; A

4

j S

SM

) with the structure-based model.

Again, A

i

's are the best alignments between the target and the source sentences that could be

found by the structure-based model with the hill-climbing search, and they are shown in the

upper part of the two �gures: The number in the parenthesis following a word shows the index

(starting from 0) of its aligned position in the translation. Each word in the German (target)

sentence is preceded by a bracket [x.y]. Here x represents the index of the phrase that the word
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Alignment A

1

:

ich (1) wei''s (4) nicht (3) recht (0)

#NULL# (3) I (0) will () not (2) know (1)

Score:

NULL word alignment score = 0.310632

t(recht j NULL) = 0.000643527

np(1 jI)=0.855647 1!= 1

t(ich j I) = 0.954941 d(0 j 1) = 0.763699

np(0 jwill)=0.623619 0!= 1

np(1 jnot)=0.808492 1!= 1

t(nicht j not) = 0.760451 d(2 j 3) = 0.321565

np(1 jknow)=0.896904 1!= 1

t(wei''s j know) = 0.415161 d(1 j 4) = 0.11319

Translation Model Score: 6.48203e-14

Language Model Score: 7.62136e-06

TMS x LMS = 6.48203e-14 x 7.62136e-06 = 4.94019e-19

Figure 8.4: Model 3 Score for Model 3 Made Translation: the upper part shows the alignment

between the source hypothesis and the target sentence. The number in the parenthesis following

a word shows the index (starting from 0) of the aligned position for that word in the translation.

The lower part of the �gure illustrates the Model 3 parameters involved in calculating the

likelihood of the alignment.

Alignment A

2

:

ich (1) wei''s (4) nicht (3) recht (0)

#NULL# (3) I (0) do () not (2) know (1)

Score:

NULL word alignment score = 0.310632

t(recht j NULL) = 0.000643527

np(1 jI)=0.855647 1!= 1

t(ich j I) = 0.954941 d(0 j 1) = 0.763699

np(0 jdo)=0.728261 0!= 1

np(1 jnot)=0.808492 1!= 1

t(nicht j not) = 0.760451 d(2 j 3) = 0.321565

np(1 jknow)=0.896904 1!= 1

t(wei''s j know) = 0.415161 d(1 j 4) = 0.11319

Translation Model Score: 7.56974-14

Language Model Score: 5.9468e-06

TMS x LMS = 7.56974-14 x 5.9468e-06 = 4.50155e-19

Figure 8.5: Model 3 Score for Structure-Based Model Made Translation: the upper part shows

the alignment between the source hypothesis and the target sentence. The number in the

parenthesis following a word shows the index (starting from 0) of the aligned position for that

word in the translation. The lower part of the �gure illustrates the Model 3 parameters involved

in calculating the likelihood of the alignment.
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belongs to, and y is the index of the word in the sentence (starting from 0). The angle brackets

mark the phrases in the English (source) sentence. The number that immediately follows an

opening angle bracket (starting point of a phrase) is the index of the phrase in the sentence

(starting from 0 for the null word phrase). The number in the bracket preceding a word in the

source sentence is the index of the word position in the sentence (starting from 0 for the null

word). The lower part illustrates the parameters involved in calculating the likelihood of the

alignment. ap(y j x) is the rough alignment probability for aligning target phrase x with the

source phrase y. np(y j x) is the fertility probability for the source word x to have fertility y.

t(y j x) is the translation probability for translating the source word x to the target word y.

alpha(y j x) is the probability for the anchor point of a target phrase to be y words away

from the anchor point of its preceding phrase, provided that the source phrase aligned to the

preceding target phrase is x words long. d1(y j p,x) is the probability for placing the leftmost

translation (pin point) of the x

th

word of the source phrase p at a position that is y words away

from the anchor point of the target phrase roughly aligned to the source phrase p. Here p is the

identi�cation of the source phrase rather than the index of the phrase in the sentence. The last

line shows the product of the translation model likelihood and the language model likelihood

(the channel model score).

Here \I do not know" is treated as a single phrase in the structure-based model, and \I will

not know" is treated as two phrases (\I will not" + \ know") because the grammar inference

algorithm did not �nd that \I will not know" is a frequently observed sequence as \I do not

know". Because of this, more parameters (the rough alignment parameter ap(2 j 1) and the

anchor point parameter alpha(1-0 j 3) for the phrase \know") are involved in computing

P

SM

(T; A

1

j S

M3

) than in computing P

SM

(T; A

2

j S

SM

): Therefore the translation model's

preference on the correct translation is magni�ed to o�set the bias of the language model.

Example 8.2.2 The following table shows another example of an input German sentence, its

reference English translation, and the translation made by Model 3 and the structured-based

model.
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Alignment A

3

:

[0.0] ich (1) [1.1] wei''s (4) [0.2] nicht (3) [2.3] recht (0)

<0:[0] #NULL# (3)><1:[1] I (0) [2] will () [3] not (2)><2:[4] know (1)>

Score:

Target Phrase 0:

ap(1 j 0) = 0.719307

np(1 j I) = 0.860038

tp(ich j I) = 0.94953 d1(0-0 j 305,0) = 0.64144

np(0 j will) = 0.612335

np(1 j not) = 0.799499

tp(nicht j not) = 0.75429 d1(2-0 j 305,2) = 0.263653

Target Phrase 1:

ap(2 j 1) = 0.41841 alpha(1-0 j 3) = 0.313435

np(1 j know) = 0.877584

tp(wei''s j know) = 0.425503

Target Phrase 2:

NULL word alignment score = 0.243

tp(recht j NULL) = 0.00089768

Translation Model Score: 3.91871e-07

Language Model Score: 7.62136e-06

TMS x LMS = 3.91871e-07 x 7.62136e-06 = 2.98659e-12

Figure 8.6: Structure-Based Model Score for Model 3 Made Translation: the upper part shows

the alignment between the source hypothesis and the target sentence. The number in the

parenthesis following a word shows the index (starting from 0) of its aligned position in the

translation. Each word in the German (target) sentence is preceded by a bracket [x.y]. Here

x represents the index of the phrase that the word belongs to, and y is the index of the word

in the sentence (starting from 0). The angle brackets mark the phrases in the English (source)

sentence. The number that immediately follows an opening angle bracket is the index of the

phrase in the sentence (starting from 0 for the null word phrase). The number in the bracket

preceding a word in the source sentence is the index of the word (starting from 0 for the null

word). The lower part illustrates the structure-based model parameters involved in calculating

the likelihood of the alignment.
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Alignment A

4

:

[0.0] ich (1) [0.1] wei''s (4) [0.2] nicht (3) [1.3] recht (0)

<0:[0] #NULL# (3)><1:[1] I (0) [2] do () [3] not (2) [4] know (1)>

Score:

Target Phrase 0:

ap(1 j 0) = 0.719307

np(1 j I) = 0.860038

tp(ich j I) = 0.94953 d1(0-0 j 115,0) = 0.864257

np(0 j do) = 0.725129

np(1 j not) = 0.799499

tp(nicht j not) = 0.75429 d1(2-0 j 115,2) = 0.677895

np(1 j know) = 0.877584

tp(wei''s j know) = 0.425503 d1(1-0 j 115,3) = 0.804824

Target Phrase 1:

NULL word alignment score = 0.243

tp(recht j NULL) = 0.00089768

Translation Model Score: 9.86591e-06

Language Model Score: 5.9468e-06

TMS x LMS = 9.865916-06 x 5.9468e-06 = 5.86706e-11

Figure 8.7: Structure-Based Model Score for Structure-based Model Made Translation: the

upper part shows the alignment between the source hypothesis and the target sentence. The

number in the parenthesis following a word shows the index (starting from 0) of its aligned

position in the translation. Each word in the German (target) sentence is preceded by a bracket

[x.y]. Here x represents the index of the phrase that the word belongs to, and y is the index of

the word in the sentence (starting from 0). The angle brackets mark the phrases in the English

(source) sentence. The number that immediately follows an opening angle bracket is the index

of the phrase in the sentence (starting from 0 for the null word phrase). The number in the

bracket preceding a word in the source sentence is the index of the word (starting from 0 for

the null word). The lower part illustrates the structure-based model parameters involved in

calculating the likelihood of the alignment.
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Input (T): ich hab ein Meeting von elf bis um eins

Reference (R): I have a meeting from eleven to one

Model 3 (S

M3

): I have a meeting from one to eleven

Structure-based (S

SM

): I have a meeting from eleven to one

Figure 8.8 illustrates the parameters involved in computing P

M3

(T;A

5

j S

M3

) with Model 3,

and it is compared with Figure 8.9, which shows the parameters involved in computing P

M3

(T;

A

6

j S

SM

) with Model 3.

The di�erences in translation model score in Figure 8.8 and Figure 8.9 are the distortion

parameters for the alignment between \eleven" and \elf" (d(5 j 8) = 0.148687 versus d(5 j 6)

= 0.20641), and the alignment between \one" and \eins" (d(8 j 6) = 0.0479222 versus d(8 j

8)= 0.108858). Because of the nature of di�erent word order between English and German, the

di�erences in distortion probabilities are not very distinctive. Although the translation model

prefers the correct translation slightly (1.85226e-17 versus 5.84093e-17), the language model

bias (1.49928e-09 versus 4.13439e-10) again makes Model 3 pick the incorrect translation.

On the other side, Figure 8.10 illustrates the parameters involved in computing P

SM

(T;A

7

j

S

M3

) with the structure-based model, and it is compared with Figure 8.11, which shows the

parameters involved in computing P

SM

(T; A

8

j S

SM

) with the structure-based model. In

these two alignments, the placement of the German words \elf" and \eins" has very di�erent

likelihood. In Figure 8.10, which is for the incorrect translation, placing \eins" at a position

four words away from the anchor point (4) of the phrase is quite unlikely (d1(8-4 j 113,1) =

0.00678217), because the corresponding source word, \one", is the second word in phrase 113

(the <from> ... <to> ... phrase). In Figure 8.11, on the other hand, placing \eins" at the

position four words away from the anchor point (4) of the target phrase is very likely (d1(8-4

j 113,3) = 0.603562), since the model learned that the fourth word in source phrase 113 is

often aligned to the position that is four words away from the anchor point of the corresponding

target phrase. For the same reason, the structure-based model penalizes the alignment between

\elf" and \eleven" in the incorrect translation. This results in the huge di�erence in translation

model preference (7.71893e-13 versus 1.39528e-08), which is far more than enough to o�set the

language model bias.
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Alignment A

5

:

ich (1) hab (2) ein (3) Meeting (4) von (5) elf (8) bis (7)

um (0) eins (6)

#NULL# (7) I (0) have (1) a (2) meeting (3) from (4) one (8)

to (6) eleven (5)

Score:

NULL word alignment score = 0.389679

t(um j NULL) = 0.0209076

np(1 j I)=0.855647 1!= 1

t(ich j I) = 0.954941 d(0 j 1) = 0.763699

np(1 j have)=0.72464 1!= 1

t(hab j have) = 0.748826 d(1 j 2) = 0.579236

np(1 j a)=0.631654 1!= 1

t(ein j a) = 0.869895 d(2 j 3) = 0.321565

np(1 j meeting)=0.910993 1!= 1

t(Meeting j meeting) = 0.261291 d(3 j 4) = 0.269056

np(1 j from)=0.885466 1!= 1

t(von j from) = 0.708435 d(4 j 5) = 0.228576

np(1 j one)=0.811801 1!= 1

t(eins j one) = 0.247491 d(8 j 6) = 0.0479222

np(1 j to)=0.313078 1!= 1

t(bis j to) = 0.930271 d(6 j 7) = 0.185022

np(1 j eleven)=0.990371 1!= 1

t(elf j eleven) = 0.935053 d(5 j 8) = 0.148687

Translation Model Score: 1.85226e-17

Language Model Score: 1.49928e-09

TMS x LMS = 1.85226e-17 x 1.49928e-09 = 2.77704e-26

Figure 8.8: Model 3 Score for Model 3 Made Translation: the upper part shows the alignment

between the source hypothesis and the target sentence. The number in the parenthesis following

a word shows the index (starting from 0) of the aligned position for that word in the translation.

The lower part of the �gure illustrates the Model 3 parameters involved in calculating the

likelihood of the alignment.
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Alignment A

6

:

ich (1) hab (2) ein (3) Meeting (4) von (5) elf (6) bis (7)

um (0) eins (8)

#NULL# (7) I (0) have (1) a (2) meeting (3) from (4) eleven (5)

to (6) one (8)

Score:

NULL word alignment score = 0.389679

t(um j NULL) = 0.0209076

np(1 j I)=0.855647 1!= 1

t(ich j I) = 0.954941 d(0 j 1) = 0.763699

np(1 j have)=0.72464 1!= 1

t(hab j have) = 0.748826 d(1 j 2) = 0.579236

np(1 j a)=0.631654 1!= 1

t(ein j a) = 0.869895 d(2 j 3) = 0.321565

np(1 j meeting)=0.910993 1!= 1

t(Meeting j meeting) = 0.261291 d(3 j 4) = 0.269056

np(1 j from)=0.885466 1!= 1

t(von j from) = 0.708435 d(4 j 5) = 0.228576

np(1 j eleven)=0.990371 1!= 1

t(elf j eleven) = 0.935053 d(5 j 6) = 0.20641

np(1 j to)=0.313078 1!= 1

t(bis j to) = 0.930271 d(6 j 7) = 0.185022

np(1 j one)=0.811801 1!= 1

t(eins j one) = 0.247491 d(8 j 8) = 0.108858

Translation Model Score: 5.84093e-17

Language Model Score: 4.13439e-10

TMS x LMS = 5.84093e-17 x 4.13439e-10 = 2.41487e-26

Figure 8.9: Model 3 Score for Structure-Based Model Made Translation: the upper part shows

the alignment between the source hypothesis and the target sentence. The number in the

parenthesis following a word shows the index (starting from 0) of the aligned position for that

word in the translation. The lower part of the �gure illustrates the Model 3 parameters involved

in calculating the likelihood of the alignment.
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Alignment A

7

:

[0.0] ich (1) [1.1] hab (2) [1.2] ein (3) [1.3] Meeting (4) [2.4] von (5)

[2.5] elf (8)[2.6] bis (7) [3.7] um (0) [2.8] eins (6)

<0:[0] #NULL# (7)><1:[1] I (0)><2:[2] have (1) [3] a (2) [4] meeting (3)>

<3:[5] from (4) [6] one (8) [7] to (6) [8] eleven (5)>

Score:

Target Phrase 0:

ap(1 j 0) = 0.719307

np(1 j I) = 0.860038

tp(ich j I) = 0.94953 d1(0-0 j 305,0) = 0.64144

Target Phrase 1:

ap(2 j 1) = 0.41841 alpha(1-0 j 1) = 0.802678

np(1 j have) = 0.717237

tp(hab j have) = 0.736251 d1(1-1 j 283,0) = 0.951571

np(1 j a) = 0.640636

tp(ein j a) = 0.86964 d1(2-1 j 283,1) = 0.348292

np(1 j meeting) = 0.905556

tp(Meeting j meeting) = 0.257002 d1(3-1 j 283,2) = 0.356933

Target Phrase 2:

ap(3 j 2) = 0.25607 alpha(4-1 j 3) = 0.244793

np(1 j from) = 0.874983

tp(von j from) = 0.736739 d1(4-4 j 113,0) = 0.970412

np(1 j one) = 0.806936

tp(eins j one) = 0.231316 d1(8-4 j 113,1) = 0.00678217

np(1 j to) = 0.329776

tp(bis j to) = 0.916636 d1(6-4 j 113,2) = 0.935702

np(1 j eleven) = 0.987117

tp(elf j eleven) = 0.937257 d1(5-4 j 113,3) = 0.00450878

Target Phrase 3:

NULL word alignment score = 0.382637

tp(um j NULL) = 0.0215548

Translation Model Score: 7.71893e-13

Language Model Score: 1.49928e-09

TMS x LMS = 7.718932-13 x 1.49928e-09 = 1.15728e-21

Figure 8.10: Structure-Based Model Score for Model 3 Made Translation: the upper part

shows the alignment between the source hypothesis and the target sentence. The number in

the parenthesis following a word shows the index (starting from 0) of its aligned position in the

translation. Each word in the German (target) sentence is preceded by a bracket [x.y]. Here

x represents the index of the phrase that the word belongs to, and y is the index of the word

in the sentence (starting from 0). The angle brackets mark the phrases in the English (source)

sentence. The number that immediately follows an opening angle bracket is the index of the

phrase in the sentence (starting from 0 for the null word phrase). The number in the bracket

preceding a word in the source sentence is the index of the word (starting from 0 for the null

word). The lower part illustrates the structure-based model parameters involved in calculating

the likelihood of the alignment.
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Alignment A

8

:

[0.0] ich (1) [1.1] hab (2) [1.2] ein (3) [1.3] Meeting (4) [2.4] von (5)

[2.5] elf (6) [2.6]bis (7) [3.7] um (0) [2.8] eins (8)

<0:[0] #NULL# (7)><1:[1] I (0)><2:[2] have (1) [3] a (2) [4] meeting (3)>

<3:[5] from (4) [6] eleven (5) [7] to (6) [8] one (8)>

Score:

Target Phrase 0:

ap(1 j 0) = 0.719307

np(1 j I) = 0.860038

tp(ich j I) = 0.94953

Target Phrase 1:

ap(2 j 1) = 0.41841 alpha(1-0 j 1) = 0.802678

np(1 j have) = 0.717237

tp(hab j have) = 0.736251 d1(1-1 j 283,0) = 0.951571

np(1 j a) = 0.640636

tp(ein j a) = 0.86964 d1(2-1 j 283,1) = 0.348292

np(1 j meeting) = 0.905556

tp(Meeting j meeting) = 0.257002 d1(3-1 j 283,2) = 0.356933

Target Phrase 2:

ap(3 j 2) = 0.25607 alpha(4-1 j 3) = 0.244793

np(1 j from) = 0.874983

tp(von j from) = 0.736739 d1(4-4 j 113,0) = 0.970412

np(1 j eleven) = 0.987117

tp(elf j eleven) = 0.937257 d1(5-4 j 113,1) = 0.915819

np(1 j to) = 0.329776

tp(bis j to) = 0.916636 d1(6-4 j 113,2) = 0.935702

np(1 j one) = 0.806936

tp(eins j one) = 0.231316 d1(8-4 j 113,3) = 0.603562

Target Phrase 3:

NULL word alignment score = 0.382637

tp(um j NULL) = 0.0215548

Translation Model Score: 1.39528e-08

Language Model Score: 4.13439e-10

TMS x LMS = 1.39528e-08 x 4.13439e-10 = 5.76863e-18

Figure 8.11: Structure-Based Model Score for Structure-based Model Made Translation: the

upper part shows the alignment between the source hypothesis and the target sentence. The

number in the parenthesis following a word shows the index (starting from 0) of its aligned

position in the translation. Each word in the German (target) sentence is preceded by a bracket

[x.y]. Here x represents the index of the phrase that the word belongs to, and y is the index of

the word in the sentence (starting from 0). The angle brackets mark the phrases in the English

(source) sentence. The number that immediately follows an opening angle bracket is the index

of the phrase in the sentence (starting from 0 for the null word phrase). The number in the

bracket preceding a word in the source sentence is the index of the word (starting from 0 for

the null word). The lower part illustrates the structure-based model parameters involved in

calculating the likelihood of the alignment.
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Model Decoder Total Failed Correct OK Incorrect Accuracy*

Semantic | 367 4 199 8 156 55.3%

Structure-Based BFD+R 367 2 203 76 86 65.6%

Structure-Based IBM+R 367 28 202 77 60 65.5%

Table 8.6: Translation Accuracy of Semantic-Based Translator and the Structure-Based Statis-

tical Translator: a correct translation gets one credit; an okay translation gets 1/2 credit; an

incorrect one gets 0 credit. Accuracy* was calculated with respect to all input sentences.

8.3 Statistical vs. Symbolic Machine Translation

As mentioned in Chapter 1, a semantic-based symbolic machine translator was developed in

the same domain. I hesitated to do direct comparison between statistical machine translation

with the symbolic one, because it did not seem to be fair: the symbolic translation took several

man-years to develop the grammar and the interlingua representation, while the statistical

translator learned the translation automatically.

It is reported that the semantic translator achieved over 80% translation accuracy. (The

accuracy was calculated by giving full credit to both correct and okay translations.) However,

the �rst experiment with my own test data showed that the statistical machine translator

outperformed the semantic translator. The performance data is listed in Table 8.6.

Unlike in the previous tables, here the accuracy is reported with respect to the total number

of input sentences (367) rather than the number of sentences successfully decoded by a decoder.

8.3.1 Statistical Machine Translation is More Robust

So what was wrong with the semantic translator? By examining the test data and the parsed

interlingua representation with the designer of the semantic translator, it seemed that unknown

words and language constructions were major causes of errors. As stated by the parser designer:

\It's just bad luck that the word `meeting' appears in 6 of the 69 utterances and it's not in the

grammar | I guess the grammar was developed when Germans still spoke German..."

Actually the grammar was developed with the original monolingual Janus scheduling data,

while the test data was drawn from the Verbmobil corpus. Although they are both in the same

domain of appointment scheduling, there are di�erences between the two corpora. One example

was described above | in the Verbmobil data, the English word \meeting" was frequently used
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in the German utterances, while in the original Janus data, the occurrence of \meeting" was

not frequent enough to attract the grammar developers' attention.

While it is legitimate to argue that the performance evaluation was not fair to the semantic

translator, it reveals the disadvantage of the approach: it is not very robust to unseen or noisy

data.

The poor robustness performance can be attributed to the semantic translation algorithm.

The translator tries to �gure out what the speech act of a sentence is, and then uses a template

to generate a target sentence for that speech act, with the necessary arguments of the template

translated from the input sentence. For example, it may guess that \my unavailability" is

the speech act of the sentence \Ich habe n�amlich ein Seminar ab zehn," and use the output

sentence template \I couldn't do + time expression" to generate the output sentence with the

speech act \my unavailability." The argument time expression can be obtained by translating

the time expression \ab zehn", which will result in the translation \I couldn't do after ten."

Normally the parser does very well in parsing time expressions, since a great amount of e�ort

was devoted to frequently-observed time expressions in the scheduling data. On the other hand,

the frequency of time expressions also implies that they can occur in a variety of speech acts.

Therefore a time expression alone is not a good indicator of speech acts. Instead we have to use

other constructions to guess the speech act of sentences. Unfortunately, as discussed in Chapter

2, it is not realistic to have a grammar with good coverage for quite arbitrary oral language.

The strategy, used by the semantic parser to handle this problem, was to skip unparsable

segments. However, this may have disastrous e�ects on the translations it generated: the skip

often caused incorrect guesses about speech acts, and as a result, the sentences were translated

with a wrong template for a di�erent speech act, or translated as a dangling time expression

that could only confuse the listener. This was the most frequently observed type of mistake in

semantic translation, as illustrated in Table 8.7.

The correct/okay/incorrect translation distribution of the semantic translator in Table 8.6

is consistent with the analysis: there were not as many okay translations as the statistical

translator. Most translations are either correct (with correct guess of speech-act or its seman-

tic functionality) or incorrect (with incorrect guess of speech act). As a matter of fact, the

translator failed to accurately translate all sentences containing the word \meeting".
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Input Sentence: Ich habe ein weiteres Meeting von drei bis um vier am Freitag.

Semantic Translation: From three o'clock to four o'clock Friday.

Correct Translation 1: I have another meeting from three o'clock to four o'clock Friday.

Correct Translation 2: I am busy from three o'clock to four o'clock Friday.

Table 8.7: Skip causes incorrect translation: because the sentence translator did not know the

word \meeting", it skipped the beginning part of the input sentence and translated the time

expression only, which is not considered to be incorrect since it is confusing and most listeners

would take it as \suggesting time".

Experiment Total Correct OK Incorrect Accuracy

\Meeting" Control 27 14 9 4 68.5%

Sentences Meeting !unknown 27 10 11 6 57.4%

Table 8.8: Translation Accuracy for sentences with unknown words: a correct translation gets

one credit; an okay translation gets 1/2 credit; an incorrect one gets 0 credit.

To see how the statistical translator performed with unseen data, I replaced the word

\Meeting" in the test sentences with the token for unknown word, and used the statistical

translator to �nd the translations. In the 367 test sentences, there were 27 occurrences of

\Meeting". Table 8.8 shows the performance of the 27 translations.

The result in Table 8.8 shows that the performance of the 27 translations decreased from

64.8% to 57.4%. While evaluating the performance with unknown words, translations with the

correct speech act and appropriate replacements of the unknown words were scored as correct

translations. For example, with the input sentence \Ich habe ein weiteres unknown (Meeting)

von drei bis um vier am Freitag", any translation like \I have another meeting/class/seminar

from three to four on Friday" is given a full credit. Compared to the fact that the semantic

translator failed on all the \meeting" sentences, the statistical translator is much more robust.

Actually for this example, the translator correctly generated the translation \I have another

meeting from three to four on Friday." This is because of the fact that \meeting" often follows

\another" in the corpus, and \another meeting" is a phrase in the phrase structure. Adding the

phrase to the translation would greatly increase the likelihood of \weiteres" and other words in

the sentence.
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Model Total Correct OK Incorrect Accuracy

Semantic 300 164 29 107 59.5%

Structure-Based 300 171 43 86 64.2%

Table 8.9: Translation Accuracy with Balanced Test Data: a correct translation gets one credit;

an okay translation gets 1/2 credit; an incorrect one gets 0 credit.

8.3.2 Statistical Machine Translation is More Accurate

To have a fair performance comparison, I drew another set of test data consisting of 300

sentences, half of which were from the original Janus data and half of which were from the

Verbmobil data. Table 8.9 shows the performance of the semantic and statistical translators.

8.3.3 Statistical Machine Translation is More Natural

Another advantage of the statistical machine translator is that the translations it generates

are more natural or close to the literal translation of the input sentence, while the semantic

translator makes terse translations that lack variations. While it is considered to be correct to

translate \Wir sehen uns dann" to \Wonderful", and the translation receives a full credit in

performance evaluation, it is not very natural to translate everything that expresses agreement

about a proposed appointment time as \Wonderful", as the semantic translator did. Table

8.10 demonstrates some examples of correct translations made by the statistical and semantic

translators.

8.4 Monolingual Grammar Inference vs. Bilingual Grammar

Inference

Table 8.11 shows the performance of the translation model based on structures inferred from

monolingual and bilingual corpora. The decoder used were the BFD+R algorithm.

8.5 Hand-Made vs. Automated Utterance Segmentation

All the above evaluations used the manually presegmented utterances, i.e., every long utterance

had already been manually segmented into smaller semantic units. Although I had developed
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Input Sentence: Ich am Freitag in den Urlaub gehe.

Semantic Translator: I couldn't do Friday.

Statistical Translator: Friday I am on vocation.

Input Sentence: An dem morgen bin ich schon verplant.

Semantic Translator: I couldn't do on that in the morning.

Statistical Translator: I am busy on the morning.

Input Sentence: Ich habe n�amlich ein Seminar ab zehn.

Semantic Translator: I couldn't do starting ten o'clock

Statistical Translator: I have class from ten.

Input Sentence: Das geht bei mir.

Semantic Translator: Wonderful.

Statistical Translator: That suits me.

Input Sentence: Wir sehen uns dann.

Semantic Translator: Wonderful.

Statistical Translator: See you then.

Input Sentence: Das h�ort sich gut.

Semantic Translator: Wonderful.

Statistical Translator: That sounds good.

Table 8.10: Some Corrected Translations Made by the Semantic and Statistical Translators.

The semantic translations are terse and lack variations.

GI Algorithm Total Failed Correct OK Incorrect Accuracy*

Monolingual 367 2 195 73 97 63.1%

Bilingual 367 2 203 76 86 65.6%

Table 8.11: Translation Accuracy vs. Grammar Inference Algorithms: a correct translation

gets one credit; an okay translation get 1/2 credit; an incorrect one get 0 credit.

117



Segmentation Total Failed Correct OK Incorrect Accuracy

Automatic 342 4 177 67 94 61.5%

Hand Made 367 2 203 76 86 65.6%

Table 8.12: Translation Accuracy vs. Segmentation: a correct translation gets one credit; an

okay translation gets 1/2 credit; an incorrect one gets 0 credit.

a segmentation algorithm, the performance of the algorithm is not 100% correct. This exper-

iment tries to answer the question about the impact of incorrect segmentations. Table 8.12

compares the translation performance between the automatic segmentations and the manual

segmentations. The error rate increased by 11.9% relatively with the automatic segmentations.

8.6 Error Analysis

Figure 8.12 shows di�erent causes of translation errors. Here around 37% of target sentences

that had incorrect or okay translations contained words that occurred fewer than 3 times in the

training data [LowFreqW]. Around 28% of the incorrect or okay translations had grammatical

errors [Ungrammatical]. For those grammatical errors, a more powerful language model may

be very helpful. Around 11% of the translations missed some close class words like articles

or prepositions [Missing CCW]. Around 8% sentences contained out of vocabulary words [OOV],

and 7% sentences were out of domain [OOD]. Around 3 percent had incorrectly translated closed

class words [Wrong CCW]. And around 3% of errors were morphology related. Table 8.13 shows

examples of some of those translation errors.

From the above error analysis, we can see that the sparse data problem is still a major

cause of translation errors. LowFreqW, OOV and OOD are directly related to the sparse data

problem. Ungrammatical is indirectly related: we used bigram instead of trigram for language

modeling because we did not have enough training data. Therefore, the language model was

not restrictive enough (compared to the trigram model) to avoid some grammatical errors. It

is interesting to know if more data will be helpful to improve the performance of the structure-

based model. Without actual data, we can not answer this question de�nitely. However, we can

project from history to get some knowledge about the future. Figure 8.13 plots the accuracy of

the translator as a function of the amount of the training data | it recorded the performance

when 10,000, 20,000 and 30,000 parallel sentences were used for model training. Clearly the
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Figure 8.13: Translation Accuracy vs. Amount of Training Data for the Structure-Based Model

Input ich glaub nicht da"s ich das einrichten k"onnen

Ungrammatical Output I guess I can do not possible

Ref I do not think I can do that

Input am Mittwoch hab Sie da Zeit

Missing CCW Output on Wednesday you have time

Ref do you have time on Wednesday

Input das ja ich wei"s liegt genau zwischen zwei Meetings

Wrong CCW Output that I already know is exactly from two meetings

Ref that I know is exactly between two meetings

Input ich hab ein Meeting von drei bis um vier an diese Tag

Morphological Output I have a meeting from three to four days

Ref I have a meeting from three to four that day

Table 8.13: Examples of Di�erent Types of Errors.
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curve did not reach a plateau yet. We can still expect performance improvement with more

training data.
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Chapter 9

Summary

This �nal chapter reviews the accomplishments of the thesis. I have examined the problem of

statistical machine translation for spoken language between a language pair that has di�erent

structures. It is a di�cult task since spoken languages are hardly ever well-formed. A speech

translation system cannot assume any rigid syntactic constraints in an input language. It is

also not practical to model the noise with grammar rules due to its unpredictability. While

the empiricist approach like statistical machine translation is intrinsically advantageous for

spoken languages, the structure di�erence between the language pair (di�erent word orders and

deletions in translations) limited the power of the conventional word-based alignment model

for statistical machine translation.

Is the parallelism/structure similarity a must for statistical machine translation? If so, the

generality of the approach is quite questionable. This is actually the most poignant criticism

towards statistical machine translation.

The thesis work presented here advanced the state of the art statistical machine translation

techniques by applying the approach to a spoken language pair with di�erent structures, and

therefore demonstrated that sophisticated statistical model is available to handle language pairs

with more structure di�erence. Although the structure di�erence between English and German

is moderate, and we still do not know if the model described in this thesis is applicable to

language pairs with more radically di�erence structure, the work reported here is the �rst step

towards the investigation of the generality of statistical machine translation.

The following key ideas are essential in the thesis:
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1. Statistical machine translation is promising for spoken language translation because of its

performance orientation. It is modeled directly from performance data rather than from

human language competence. It is also desirable because of its learnability.

2. We have to tackle the problems speci�c to spoken languages and speci�c to some language

pairs in order to make statistical machine translation generally applicable. These include

noisy data, long unsegmented utterances, structure di�erence, etc. We have to deal with

the sparse data problem that puzzles most empirical approaches.

3. Structure-based statistical machine translation can solve or alleviate some of these prob-

lems. The rough phrase alignment can directly model the structure di�erence between

English and German. It also results in a more focused automatic learning; therefore, it

alleviates the noisy data and sparse data problems.

4. Automatic grammar inference is desirable for the structure-based translation model. If

we have to manually �nd useful structures, then all the advantages of statistical machine

translation will vanish: laborious human involvement is required for language knowledge

engineering; the structure is a re
ection of the designers' understanding of the data rather

than the best �t of the data, so it is not necessarily bene�cial for statistical machine

translation.

9.1 Contributions

In the e�ort towards the achievement of applying statistical machine translation to a spoken

language pair with di�erent structures, the following

contributions were made in the thesis:

1. Introduction of a new structure-based translation model that improves the performance

on spoken language or language pairs with di�erent structures. Including structures

in the statistical machine translation model enables us to directly model the di�erence

word/phrase orders and deletions in translation. It enables a more focused learning and

results in an information-theoretically simpler model.
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2. Investigation of novel approaches to grammar inference and bilingual grammar inference

that facilitate the structure-based translation model. While automatic grammar inference

allows us to stay in the automatic empirical framework, the bilingual grammar inference

algorithm makes the grammar inference techniques more suitable for machine translation.

3. Development of a statistical dialogue analysis model that can divide dialogues and long

utterances into basic (shorter) semantic units, which enables statistical machine transla-

tion systems to process unsegmented speech outputs. While the algorithm was used for

segmentation only, it has potential application to many other di�erent tasks related to

dialogue analysis, such as topic-dependent language modeling. My preliminary experi-

ment has shown that the speech act information can be used to reduce language model

perplexity.

4. Investigation of di�erent decoding algorithms for statistical machine translation and de-

velopment of a faster BFD+R algorithm that fastens the decoding speed without loss of

translation quality.

9.2 Conclusions

We can draw the following conclusions from the experiments in this thesis:

At least in a limited domain, statistical machine translation is promising for spoken language

pairs with more radical structure di�erence than the transduced English and French in the IBM

system.

1. For spoken language translation, especially between a language pair with di�erent word or-

ders, structure information is very important. Statistical machine translation needs struc-

tures, and the structure-based model improves translation performance. The structure-

based statistical machine translation model is more precise than the word-based alignment

models. It reduced the error rate by 11% relatively over the state of the art, best per-

forming word-based alignment model.

2. Compared to semantic-based symbolic translation, structure-based statistical translation

is more robust, accurate and natural. It is more robust to noisy data. It is able to generate
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satisfying outputs when unknown words exist in the input sentences. Its performance

exceeds the performance of the symbolic translator, and the translations made by the

statistical translator are more literal and natural, not like the terse translations made by

the semantic translator.

3. Automatic grammar inference is not only possible, but also very promising for statistical

machine translation. It played a very important role in the structure-based model. The

bilingual grammar inference algorithm was more suitable for machine translation, and it

improves translation performance.

4. Statistical dialogue analysis can achieve close-to-human performance in segmenting long

utterances, while bracketing (segmentation + labeling) performance has room for im-

provement.

5. While statistical machine translation achieved better performance, there are limitations

to the approach: it is data hungry, and to make it worse, it requires parallel corpus. The

decoding speed is still slow. Improvement is necessary for any real time or near real time

applications without sacri�cing accuracy.

9.3 Future Directions

While the structure-based statistical translation has achieved better performance than semantic

translation and word-alignment based statistical translation, there is still much room for perfor-

mance improvement. Several theoretical issues also need to be clari�ed. The future directions

for statistical machine translation, as I perceive them, include

� Combination of statistical and symbolic techniques in machine translation.

While this work is the �rst one that includes language structures into a statistical trans-

lation model, there are many di�erent ways to �nd and use structures. In this thesis the

structure is automatically learned. The shallow phrase structures contain much noise.

Here we found that statistical signi�cance does not imply linguistic signi�cance. It is of

great interest to combine the statistical and symbolic techniques in machine translation,
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especially when we have less training data. For example, we can take advantage of existing

symbolic systems and used statistical approach to smooth the symbolic model.

� Automatic Detection of preprocessing procedures: According to my experience

in this thesis work, the preprocessing procedures played a very important role in trans-

lation performance improvement. Two most important preprocessing steps improved the

performance by almost 5 percent. It is of great interest if the model can detect or sug-

gest promising preprocessing procedures. Some prominent preprocessing steps can be

identi�ed with machine learning techniques. For example, if the model has learned that

the word \one" can be translated to \eins (one)" and \zwei (two)" in German, and it is

translated to \zwei" if and only if when \zwei" follows the word \halb (half)", then it

can introduce the preprocessing step to rewrite \halb zwei" as \halb eins", so \one" can

be consistently translated to \eins" in the model.

� Sophisticated Decoding Algorithms: One of the biggest problem of statistical ma-

chine translation is source sentence decoding. The IBM stack decoder was not e�cient to

handle long input sentences, and it also failed on many long sentences. My best-�rst with

reshu�ing algorithm worked much faster and failed on fewer input sentences. However,

its accuracy on those successfully decoded sentences was lower than that of the IBM de-

coder. Basically the sentence failed by the IBM stack decoder are mostly di�cult ones,

and the faster decoding algorithm often generate incorrect translations for these di�cult

sentences. So the two decoding algorithms had similar accuracy if it was measured with

respect to the total number of input sentences.

A possible and promising approach to speed up decoder is to identify the equivalent pre�x

strings. For example, if we have �nd that \I have a meeting", \I have got a meeting" and \I

have one meeting" are all equivalent, then we can speed up decoding by extending only the

most prominent hypothesis in the equivalent class.

� Incorporating Bilingual Dictionaries: bilingual dictionaries is a very important

source of information that can be used to alleviate the sparse data problem. IBM CAN-

DIDE system used bilingual dictionaries in a weird way. It treated dictionary entries

as data and used them to estimate the parameters in a translation model. As a more
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intuitive way to incorporate dictionary into the model, we can use a bilingual dictionary

to get the prior translation distribution of source words, and then use bilingual data to

estimate the a posteriori translation distribution.

� Application to a larger domain with more data: it is interesting to see how the

algorithms described in the thesis can be scaled up to deal with more complicated tasks.

While this structure-based model is introduced for the scheduling domain, I perceive

nothing that prevents its application to other domains except that the languages in that

domain may contain too many structures that will make the structure-based model too

complicated. Experiments can be conducted to �nd out how big a task can be such that

it can be handled e�ectively by the structure-based model.

� Application to language pairs with more radically di�erent structures. Al-

though the structure-based model is one step forward towards statistical machine trans-

lation for languages with di�erent structure, the structure di�erence between English and

German is moderate. We would like to know how much the structure-based model can

help with languages with more radically di�erent structures, like English and Vietnamese..

We would like to know how the structure di�erence other than di�erent word orders and

deletions in translation might a�ect the performance of statistical machine translation.

� Evaluation method. Last but not least, we need a better evaluation method. The

method should be more objective and ideally automatic or semi-automatic. Of course,

this task is not just for statistical machine translation. It's a task for the whole machine

translation society.
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Appendix A

Translation Models

A.1 IBM Translation Models

Most statistical machine translation systems use ngram (Jelinek, 1990) for language modeling.

Translation models rely on the concept of alignment. An alignment translation model assumes

that a target sentence is generated from a source sentence word by word. A target sentence

word can therefore be aligned with the source sentence word that produces it. In an alignment,

each target word can align with only one source sentence word. So far, most of the statistical

machine translation systems use word-based alignment model (Brown et al., 1993; Vogel, Ney,

and Tillman, 1996; Wang and Waibel, 1997a), and no structure is involved in the word-by-

word alignment. (Brown et al., 1993) introduced �ve di�erent word-based alignment models for

translation modeling, and I brie
y review model 2, 3, and 4 here, because in later chapters I will

heavily analyze the problems of these models, compare the di�erent behavior and performance

between these models and my structure-based alignment model.

A.1.1 Model 1 and Model 2

IBM alignment model 2 is a typical example of word-based alignment. Assume that a sentence

e = e

1

; � � � ; e

l

is at the source of a channel, it picks a length m for the target sentence g

1

with the distribution Pr(m j e) = �; where � is a small, �xed number. Then for each position

1

I use e and g here for source and target sentence because in this thesis the translation is performed from

German (target language) to English (source language).
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i (0 < i � m) in g, it �nds its corresponding position a

i

in e according to an alignment

distribution Pr(a

i

j i; a

i�1

1

; m; e) = a(a

i

j i;m; l): Finally, it generates a word g

i

at the position i

of g from the source word e

a

i

at the aligned position a

i

, according to a translation distribution

Pr(g

i

j a

m

1

; g

i�1

1

; e) = t(g

i

j e

a

i

).

Therefore, the likelihood of generating a target g from a source e, Pr(g j e); is the sum of

the probabilities of generating g from e over all possible alignments A, in which the position i

in g is aligned with the position a

i

in e:

Pr(g j e) = �

l

X

a

1

=0

� � �

l

X

a

m

=0

m

Y

j=1

t(g

j

j e

a

j

)a(a

j

j j;m; l)

= �

m

Y

j=1

l

X

i=0

t(g

j

j e

i

)a(i j j; l;m) (A.1)

The successive models after Model 2 try to incorporate the fact that di�erent source words

may produce di�erent numbers of target words (the fertility of source words in Model 3, 4, and

5), as well as the fact that the multi-word translation of a source word often moves as a whole

unit in the target sentence (Model 4 and 5).

Model 1 is a special case of Model 2, in which the alignment parameters are replaced by

uniform distributions..

A.1.2 Model 3

In Model 3, a fertility distribution n(�

i

j e

i

) is introduced for each source word e

i

in the source

sentence e =e

1

e

2

:::e

l

, so it can be used to statistically determine the number of target words

that can be generated from e

i

. The fertility for the hypothesized null word at the position 0 of

the source sentence, �

0

; is determined di�erently. It is based on the assumption that each target

word generated from its aligned source word requires an extraneous word with probability p

1

;

and this extraneous word must be aligned to the null word. The probability that exactly �

0

of the extraneous words are required by the

P

l

i=1

�

i

target words that are generated from the

source words e

1

e

2

:::e

l

; can be determined with the binomial distribution:
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Pr(�

0

j �

l

1

; e) = n

0

(�

0

j

l

X

i=1

�

i

) =

0

B

@

P

l

i=1

�

i

�

0

1

C

A

(1� p

1

)

P

l

i=1

�

i

��

0

p

�

0

1

(A.2)

Model 3 can be described generatively with the following process to produce g or failure

from e =e

1

e

2

:::e

l

:

1. For each i = 1; 2; :::; l, with the probability n(�

i

j e

i

), determine the fertility �

i

of the

source word e

i

.

2. Choose the fertility �

0

for the hypothesized null word at the position 0 of the source

sentence, according to the distribution n

0

(�

0

j

P

l

i=1

�

i

):

3. Let the target sentence length m = �

0

+

P

l

i=1

�

i

:

4. For each i = 0; 1; 2; :::; l, creates a list of �

i

target words (tablet) �

i

= f�

i1

�

i2

:::�

i�

i

g as

the translations for the source word e

i

. Each of the target word �

ik

in the tablet can be

determined statistically with a translation distribution t(�

ik

j e

i

).

5. For each i = 1; 2; :::; l and k = 1; 2; :::; �

i;

according to a distortion distribution d(�

ik

j

i;m; l); choose a position �

ik

from 1; 2; :::;m; and place the translation �

ik

there in the

target sentence g.

6. If any target position has been chosen more than once then return failure.

7. For each k = 1; 2; :::; �

0;

choose the position �

0k

from the �

0

� k + 1 remaining vacant

positions in 1; 2; :::;m; according to the uniform distribution.

Therefore, the probability for g to be a translation of e, is the sum of the probabilities of

generating g from e with all possible alignments:

Pr(g j e) =

l

X

a

1

=0

� � �

l

X

a

m

=0

m

Y

j=1

Pr(g; a j e)
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=

l

X

a

1

=0

� � �

l

X

a

m

=0

0

B

@

m� �

0

�

0

1

C

A

(1� p

1

)

m�2�

0

p

�

0

1

l

Y

i=1

�

i

!n(�

i

j e

i

)�

m

Y

j=1

t(g

j

j e

a

j

)d(j j a

j

; m; l):

In the equation the factorial �

i

! is introduced because there are �

i

! di�erent sequences to

generate the �

i

target words in the translation tablet for e

i

; and then place them in the target

sentence with di�erent �

ik

. �

0

! is not in the equation because it is cancelled by the probability

of sequentially placing the �

0

target words (that are aligned to the null word) into the vacant

target positions with the uniform distribution, which is 1=�

0

!:

A.1.3 Model 4

Model 4 works similarly to Model 3, except for the placement of the translations of a source

word e

i

in its tablet �

i

: the distortion parameters, d(j j i;m; l), are replaced by two sets of

parameters: one placing the head of �

i

, the words in �

i

for which the position in the target

string the leftmost, and one for placing the remaining words in �

i

.

After determine the fertility and the tablets for each of the source words, the head of a

tablet for the source word e

i

is placed with the distribution

Pr(�

i1

= j j �

i�1

1

; �

l

0

; �

l

0

; e) = d

1

(j � �

i�1

j A(e

i�1

);B(g

j

)): (A.3)

Here �

i�1

is the center of the source word e

i�1;

i.e., the ceiling of the average value of the

positions in the target string of the words in the tablet of e

i�1

. A and B are functions that

respectively map source/target words into the equivalent classes that contain the source/target

words. The equivalent classes are obtained with a mutual information clustering algorithm

(Brown et al., 1992a).

The rest words in the tablet are then placed with the distribution

Pr(�

ik

= j j �

k�1

i1

�

i�1

1

; �

l

0

; �

l

0

; e) = d

>1

(j � �

i(k�1)

j B(g

j

)) (A.4)
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Here the position of a target word is relative to the position of the previously placed target

word in the same tablet. This allows the model to account for the fact that the translations of

a source word often move together in the target sentence.

The target generation precess of Model 4 can be described as follows:

1. For each i = 1; 2; :::; l, with the probability n(�

i

j e

i

), determine the fertility �

i

of the

source word e

i

.

2. Choose the fertility �

0

for the hypothesized null word at the position 0 of the source

sentence, according to the distribution n

0

(�

0

j

P

l

i=1

�

i

):

3. Let the target sentence length m = �

0

+

P

l

i=1

�

i

:

4. For each i = 0; 1; 2; :::; l, choose a list of �

i

target words (tablet) �

i

= f�

i1

�

i2

:::�

i�

i

g as

the translations for the source word e

i

. Each of the target word �

ik

in the tablet can be

determined statistically with a translation distribution t(�

ik

j e

i

).

5. For each i = 1; 2; :::; l and k = 1; 2; :::; �

i;

choose a position �

ik

from 1; 2; :::;m; and place

the translation �

ik

there in the target sentence g. The choice of the position �

ik

is made

according to the following:

(a) If k = 1; the choose �

i1

according to the distribution d

1

(j � �

i�1

j A(e

i�1

);B(�

i1

))

(b) If k > 1; the choose �

ik

according to the distribution d

>1

(�

ik

� �

i(k�1)

j B(�

ik

))

6. If any target position has been chosen more than once then return failure.

7. For each k = 1; 2; :::; �

0;

choose the position �

0k

from the �

0

� k + 1 remaining vacant

positions in 1; 2; :::;m; according to the uniform distribution.

Therefore, the probability for g to be a translation of e, is the sum of the probabilities of

generating g from e with all possible alignments:

Pr(g j e) =

l

X

a

1

=0

� � �

l

X

a

m

=0

m

Y

j=1

Pr(g; a j e)
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� 1)� k

�

a

j

�1

'

j A(e

a

j

);B(g

j

))

+(1� �(argmin

k

(a

k

= a

j

); j))

�d
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(j � argmax
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(a
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= a

j

^ k < j) j B(g
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))] (A.5)

here �(i; j) = 1 if i = j, otherwise �(i; j) = 0: The factor �(argmin

k

(a

k

= a

j

); j) ensures

that position j is the leftmost position in the target sentence for a translation of e

a

j

, and

(1 � �(argmin

k

(a

k

= a

j

); j)) ensures that j is not such a position, so d

>1

, rather than d

1

;

should be used to determine the placement of the translation.

132



References

Berger, A. L., P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, J. R. Gillett, J. D. La�erty,

R. L. Mercer, H. Printz, and L. Ures. 1996. Language Translation Apparatus and Method

Using Context-Based Translation Models. United States Patent No. 5,510,981.

Black, E., R. Garside, and G. Leech. 1993. Statistically-Driven Computer Grammar of English:

The IBM/Lancaster Approach. Rodopi B. V., Amsterdam - Atlanta.

Brown, P. F., J. Cocke, S. Della-Pietra, V. J. Della-Pietra, F. Jelinek, J. D. La�erty, R. L.

Mercer, and P. S. Roossin. 1990. A Statistical Approach to Machine Translation. Compu-

tational Linguistics, 16(2):79{85.

Brown, P. F., S. A. Della-Pietra, V. J Della-Pietra, and R. L. Mercer. 1993. The Mathemat-

ics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics,

19(2):263{311.

Brown, P. F., V. J. Della-Pietra, P. V. deSouza, J. C. Lai, and R. L. Mercer. 1992a. Class-Based

N-gram Models of Natural Language. Computational Linguistics, 18(4):467{479.

Brown, P. F., S. A. Della Pietra, V. J. Della Pietra, J. D. La�erty, and R. L. Mercer. 1992b.

Analysis, Statistical Transfer, and Synthesis in Machine Translation. In Proceedings of

the fourth International Conference on Theoretical and Methodological Issues in Machine

Translation, pages 83{100.

Church, K. W. 1993. Char align: A Program for Aligning Parallel Texts at the Character

Level. In Proceedings of the 31th Annual Meeting of the Association for Computational

Linguistics, pages 1{8.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood from Incomplete

Data via the EM Algorithm. Journal of the Loyal Statistical Society, B. 39.

Fu, King-Sun and Taylor L. Booth. 1975a. Grammatical Inference: Introduction and Survey

| Part I. IEEE Transaction on Systems, Man, and Cybernetics, SMC-5(1):95{111.

133



Fu, King-Sun and Taylor L. Booth. 1975b. Grammatical Inference: Introduction and Survey

| Part II. IEEE Transaction on Systems, Man, and Cybernetics, SMC-5(4):408{423.

Gorin, A. L. 1995. On Automated Language Acquisition. Journal of Acoustical Society of

America, 97(6):3441{3461.

Gorin, A. L., S. E. Levinson, A. N. Gertner, and E. Goldman. 1991. Adaptive Acquisition of

Language. Computer Speech and Language, 5:101{132.

Grosz, B. J. and C. J. Sidner. 1986. Attention, intention, and the structure of discourse.

Computational Linguistics, 12 (3).

Hatazaki, K., J. Noguchi, A. Okumura, K. Yoshida, and T. Watanabe. 1992. INTERTALKER:

An Experimental automatic interpretation system using conceptual representation. In IC-

SLP '92.

Huang, X. D. and M. A. Jack. 1989. Semi-Contiunous Hidden Markov Model for Speech

Recognition. Computer Speech and Language, 3(3).

IEEE. 1995. ICASSP '95.

Jelinek, F. 1990. Self-Organized Language Modeling for Speech Recognition. In A. Waibel and

K-F. Lee, editors, Readings in Speech Recognition. Morgan Kaufmann.

Jelinek, F. and E. L. Mercer. 1980. Interpolated Estimation of Markov Source Parameters

from Sparse Data. In D. Gelsema and L. Kanal, editors, Pattern Recognition in Practice.

North-Holland.

Kay, Martin, Jean M. Gawron, and Peter Norvig. 1994. Verbmobil: A Translation System for

Face-to-Face Dialog. CSLI Lecture Notes; No. 33, Stanford, CA.

Kneser, R. and V. Steinbiss. 1993. On the Dynamic Adaptation of Stochastic Language Models.

In ICASSP '93, volume 2, pages 586{589. IEEE.

Kneser, Reinhard and Herman Ney. 1993. Improved Clustering Techniques for Class-Based Sta-

tistical Language Modelling. In Proceedings of European Conference on Speech Recognition,

volume 2, pages 973{976.

134



Knight, K. 1997. Automating Knowledge Acquisition for Machine Translation. AI Magazine,

18(4):225{242.

Lee, K. F. 1990. Context Dependent Phonetic Hidden Markov Model for Continous Speech

Recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, April.

Litman, Diane J. and James F. Allen. 1990. Discourse processing and commonsense plans. In

Intentions in Communications.

May�eld, Laura, Marsal Gavald�a, Wayne Ward, and Alex Waibel. 1995. Concept-based speech

translation. In ICASSP-95 (ICA, 1995).

McCandless, M. 1994. Automatic acquisition of language models for speech recognition. Mas-

ter's thesis, MIT.

Miller, Scott, Robert Bobrow, Robert Ingria, and Richard Schwartz. 1994. Hidden Under-

standing Models of Natural Language. In Proceedings of the 32nd Annual Meeting of the

Association for Computational Linguistics, pages 25{32, Las Cruces, New Mexico.

Morimoto, T. and et al. 1994. ATR's Speech Translation System: ASURA. In Proceedings of

EUROSPEECH 1993, page 1295.

Nilsson, N. 1971. Problem-Solving Methods in Arti�cial Intelligence. McGraw Hill, New York,

New York.

Ries, Klaus, Finn Dag Bu�, and Ye-Yi Wang. 1995. Improved Language Modelling by Unsu-

pervised Acquisition of Structure. In ICASSP-95 (ICA, 1995). corrected version available

via http://www.cs.cmu.edu/~ries/icassp 95.html.

Roe, D. B., F. C. N. Pereira, R. W. Sproat, and M. D. Riley. 1992. E�cient Grammar

Processing for a Spoken Language Translation System. In ICASSP '92, volume 1. IEEE.

Stolcke, A. and S. M. Omohundro. 1994. Best-�rst Model Merging for Hidden Markov Model

Induction. Technical Report TR-94-003, International Computer Science Institute, Berke-

ley, California.

135



Suhm, B., P.Geutner, T. Kemp, A. Lavie, L. May�eld, A. McNair, I. Rogina, T. Schultz,

T. Sloboda, W. Ward, M. Woszczyna, and A. Waibel. 1995. JANUS: Towards multilin-

gual spoken language translation. In Proceedings of the ARPA Speech Spoken Language

Technology Workshop, Austin, TX, 1995.

Tillmann, C., S. Vogel, H. Ney, and A. Zubiaga. 1997. A DP-based Search Using Monotone

Alignments in Statistical Translation. In Proceedings of the 35th Annual Meeting of the

Association for Computational Linguistics and 8th Conference of the European Chapter of

the Association for Computational Linguistics (ACL/EACL'97), pages 313{320, Madrid,

Spain.

Vogel, S., H. Ney, and C. Tillman. 1996. HMM-Based Word Alignment in Statistical Trans-

lation. In Proceedings of the Seventeenth International Conference on Computational Lin-

guistics: COLING-96, pages 836{841, Copenhagen, Denmark.

Wahlster, W. 1993. First Results of Verbmobil: Translation Assistance for Spontaneous Dia-

logues. In ATR International Workshop on Speech Translation.

Waibel, A., T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. 1989. Phoneme Recognition

Using Time-Delay Neural Networks. In icassp89, May.

Waibel, Alex. 1996. Interactive Translation of Conversation Speech. Computer, 29(7).

Wang, Y., J. La�erty, and A. Waibel. 1996. Word Clustering with Parallel Spoken Language

Corpora. In Proceedings of the 4th International Conference on Spoken Language Processing

(ICSLP'96), Philadelphia, USA.

Wang, Y. and A. Waibel. 1997a. Decoding Algorithm in Statistical Machine Translation. In

Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and

8th Conference of the European Chapter of the Association for Computational Linguistics

(ACL/EACL'97), pages 366{372, Madrid, Spain.

Wang, Y. and A. Waibel. 1997b. Statistical Analysis of Dialogue Structure. In Proceed-

ings of the 5th European Conference On Speech Communication and Technology (EU-

ROSPEECH'97), Rhodes, Greece.

136



Ward, W. 1990. The cmu air travel information service: Understanding spontaneous speech.

In Proceedings of the DARPA Speech and Natural Language Workshop, pages 127{129.

Woszczyna, M. and Alex Waibel. 1994. Inferring Linguistic Structure in Spoken Language. In

ICSLP 1994.

Young, S. 1993. Dialog Structure and Plan Recognition in Spontaneous Spoken Dialog. In

EUROSPEECH 1993, volume 2, pages 1169{1172.

137


