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Abstract

Machine listening is an area of study which is rapidly insieg in importance. The prolif-
eration of massive sensory corpora, together with the pawaéneeds of smart computa-
tional devices and smart spaces has lead to this increasghiméddistening provides both
a computationally cheap alternative to machine vision, arsurce of information that
is complementary to visual information; hence, percepsyatems which lack the abil-
ity to process auditory information will in general perfotess well than those which can
process auditory information. Machine listening is alseliesting in its own right, as re-
search into computational auditory processing can helpéd fight on general principles
of perception, and on how our own perceptual systems woris thisis describes machine
listening research designed to solve real-world problengerceptual and context-aware
computing.

This thesis makes two claims. First, it claims that machistehing technologies are
well-suited to the task of providing context awarenessatveorld computational systems,
whether these systems are intended to provide operatiagalto smart devices or spaces,
or to segment, summarize, or select segments of interestitinmedia corpora to make

them more useful to human users. Second, it claims that thefuhe core principle of



perception, redundancy reduction, can guide the desigracfipal systems to provide con-
text awareness in this way. The validity of these claims ppsuted by evidence from three
application areas: multimedia gisting, acoustic envirentrrecognition, and estimation of

user interruptibility for the CHIL Connector service, a smadbile telephone.



Acknowledgments

The acknowledgments page is typically the place where pais@ Ph.D.s aver in the
strongest terms that any aspirations they had of finishieg thtegrees would never have
been realized without the help and sacrifices — or at leastahwlicity — of others. And
so here | mention these others by name, heaping praise uponas | go.

| first thank my advisor, Alex Waibel, for everything | havecamplished at CMU,
including this thesis. Alex had the foresight to encouraggearch into the relatively un-
explored field of non-speech acoustic analysis, and prdvide guidance and first-rate
research environment required to make it a success. | asi the rest of my committee;
Mike Lewicki, Rich Stern, and Jie Yang, for providing the sopgpand advice | needed to
finish this work.

The “sacrifices” portion of this acknowledgment comes néxiannot thank my wife
Katya enough for supporting me in this work for lo these maagrg. It has become cliche
to state that one’s thesis is as much one’s spouse’s as ome;sbot it is largely true. It
also belongs to my daughters, Emma Jane and Hannah Elizatwethl suppose also to
the Malkin-to-be-named-later.

| am of course indebted to the rest of my family for all they éaone for me. My



parents, Gary and Rosemary, gave me and my brother David regltame in which to
grow and learn. My grandparents Walt, Mary, W.K., and Sytichmore for me than | am
aware, and | am saddened that only one of them will get to t@adKatya’s mother Cindy
also deserves a spot in these acknowledgments for all stdohado help us with the kids;
this help has made a huge difference.

| mentioned earlier the quality of the research environnibat Alex has created; |
thank all of my colleagues at the Interactive Systems Labaes at CMU and UKA for
their friendship, collaboration, and support. Those whoadeserving of specific mention
include Sondra Ahlen, Markus Baur, Michael Bett, Susi Burgeari®Danninger, Matthias
Denecke, Michael Finke, Gopi Flaherty, Isaac Harris, Demidl, Florian Kraft, Kornel
Laskowski, Thomas Schaaf, Tanja Schultz, Rainer Stiefelhalylinh Tue Vo, Hua Yu,
and Torsten Zeppenfeld. Kornel, Isaac, and Denise in pdatiget extra praise for their
efforts to collect interesting databases for me to work witaac also gets special notice
for taking on the position of systems administrator herensrACT and sparing me the
agony of dealing with yet another stale NFS filehandle. Dg@hen, Andrey Temko, and
Christian Zieger also deserve mention as valued researl@boahtors.

Before | was a graduate student at CMU, | had to survive beingnalenrgraduate at
CMU. Eight people were instrumental in ensuring that | did:k&Andrew, Alan Horn,
Jeff Jesensky, Ron Masztak, Patrick McGrath, Alex RutkowBkive Saylor, and Trevor
Smith. Completely unironic thanks also must go to the natiofi@e of the AT fraternity
for revoking our charter.

Finally, there are the people who, without conscious intbetped make this thesis
possible by influencing my earlier life decisions. Rich Laekrthe CMU head football
coach, convinced me to enroll here instead of at the Uniyeddi Chicago. His advice
in this matter was absolutely correct, and so in a sense thidenthing is his fault. Two
high school teachers of mine, Bob Trifone and Joe Schnejrlead an immense effect

on my early development, for which | am very grateful. Lasll aertainly close to least,



Vi

Eugene DiPasquale, the proprietor of the Panther Hollowdtso influenced my career in

a number of interesting ways.



1

Table of Contents

Introduction

1.1 ThesisOVerview . . . . . . . . . . it

1.2 Motivation. . . . . . . .

1.3 Machine Listening for Context Awareness . . . . . . .. .. . .......
1.3.1 Machine ListeningTheory . . . . .. .. ... ... .......
1.3.2 Applications of Machine Listening . . . . . ... ... ... ..

1.4 ThesisStatement . . . .. .. ... .. ...

1.5 ThesisOrganization . . . . . . . . . . . . ... e

Machine Listening Theory

2.1 ChapterOverview . . . . . . . . . ot e
2.2 TheAudioSignal . . . . . . . . . . . ..
2.3 Audio Signal Analysis . . . . .. .. . ... e
2.4 Perceptual Theory and Computational Audition . . . . . . ...... . ..

2.4.1 Prior Work in Perceptual Theory and Computational Aadi . . .

Vil



Table of Contents viii

2.4.2 Redundancy Reduction as an Organizing Principle for Qtenp

tional Audition . . . . ... 20
25 FeatureSelection . . . . .. . ... .. 3 2
2.5.1 Feature ExtractionforASR . . . . ... ... ... L. 24
2.5.2 Feature Extraction for Machine Listening . . . . ... ..... 26
2.6 Time Series Modeling forAudio . . . . .. ... ... .. ........ 32
2.7 ChapterSummary . . . . . . . . . e 34

3 Auditory Gisting for Summarization and Stream-of-Intere st Selection in Mul-

timedia 36

3.1 ChapterOverview . . . . . . . . . . e 36

3.2 Multimedia Summarization . . . . . .. ... ... 37

3.3 Blind Segmentation and Value Assignment . . . ... ..... ... 38

3.4 PriorWork. . . . . 39

3.5 A Metric for Blind Value Assignment . . . . . .. ... ......... 46

3.6 Evaluating The Auditory BVA Approach . . . . . ... ... ... ... 48
3.6.1 DataCollection . . . . . ... ... . . ... ... 49
3.6.2 Feature Extraction and Data Modeling . . . . .. ... .. ..... 49
3.6.3 The Evaluation Procedure . . . ... ... ... .. ........ 53

3.7 Application: Multimedia Summarization for After-Aot Review Generation 54

3.7.1 HumanValueJudgments . . . . .. ... ... ... ........ 57
3.7.2 ExperimentalResults . . . . .. ... ... ... ... .. ..., 57
3.8 Application: Stream-of-Interest Selection for OnliAggregate Remote
Sensing . . ... e e 63
3.8.1 HumanValueJudgments . . . . .. ... ... .. ... ... ... 66
3.8.2 ExperimentalResults . . . . ... ... ... .. ... ... .... 68

3.9 ChapterSummary . . . . . . . . . e e 70



Table of Contents

4 Auditory Environment Recognition for User State Modeling

4.1
4.2
4.3
4.4

4.5

4.6

4.7

Chapter Overview . . . . . . . . . . e
EnvironmentandUser State . . . . . ... ... .. ... .. ... ..
PriorWork . . . . . . . .
Gestalt EnvironmentModeling . . . ... .. ... .. ... ......
441 AGMM/HMMApproach . .. ... ... ............
4.4.2 A Redundancy Reduction Approach . . . ... ... ... ...

Experimental Evaluation . . . . ... ... ... ... .. ... ...

451 DataCollection . . . . . . . . . . . . ..

452 Human Performance . .. . .. . .. . . ... ... . ...
Experimental Results: GMM/HMM Approach . . . . . .. .. ... ..
46.1 GMM Feature Selection . . . .. ... ... ... ... ....

4.6.2 GMM Model Order Selection . . . . .. ... ... ... ....

46.3 GMM Feature Transformations . . . ... ... . ... ....
4.6.4 GMM Temporal FeatureContext. . . . . ... ... ......

4.6.5 HMM Topology Selection . . . . ... ... ... ........

4.6.6 Additional Experiments . . . . . ... ... .

4.6.7 GMM/HMM ResultSummary . . ... ... ... ... .....
Experimental Results: Optimal Coding Approach . . . . . . ...... ..
4.7.1 ICAFeatureSelection . . ... ... ... ... ........
4.7.2 ICAModel Complexity . .. ... ................

4.7.3 MLP Autoencoder Feature Selection . . . . .. . ... ... ..

47.4 MLP Autoencoder Model Size . . . . . . . ... .. ... ...
475 MLP AutoencoderTrees . . . . . . . . . . . o
4.7.6 Optimal Coding Result Summary . ... ... .........

4.8 Comparison of Human and Automatic Performance . . . . . . . . . .

4.9 AdaptationtoUnseenlLocales . ... .. ................



Table of Contents X
4.10 ChapterSummary . . . . . . . . . e e e 119
5 Auditory Scene Learning for Multiresolution Context Awareness 121
5.1 ChapterOverview . . . . . . . . . . 121
5.2 Multiresolution Indexing and Awareness . . . . . . .. .. . .. ... 122
53 PriorWork. . . . .. 123
5.3.1 Low-LevelContextCues . . . . . ... ... .. ... ... .... 124
5.3.2 Scene Learning and Recognition . . . . .. ... ... ..... 261
5.4 Structure Learning In HHMMs via Redundancy Reduction . ...... . . 134
5.5 Example Application: Interruptibility Estimation fene CHIL Connector
Service . . . . 139
5.5.1 Prior Work on Interruption . . . . . ... ... .......... 411
5.5.2 AnlInterruptibility Model . . . . .. .. ... ... ... ... 143
5.6 Interruptibility Experiments Using High-Quality Awgi. . . . . . ... .. 145
5.6.1 DataCollection . . . . . ... ... . . ... ... 145
5.6.2 Feature Extraction . . ... ... ... ... ... ... ... ... 146
5.6.3 Model Initialization. . . . . . ... ... oL 41
5.6.4 Scenelearning . . . . . . ... ... 151
56.5 Results . ... ... . ... 153
5.7 Interruptibility Experiments Using Low-Quality Audio . . . . .. .. .. 156
5.7.1 DataCollection . . . . . . ... .. .. ... 157
5.7.2 Feature Extraction . . . .. ... .. ... ... ... ... 158
5.7.3 Model Initialization . . . . . .. .. ... ... ... L. 59
574 Scenelearning . . . .. . . . . . e 160
575 Results . . .. ... 161
5.7.6 IncrementalLearning . . . . .. ... ... ... ... ...... 916
5.7.7 Effects of Cross-User Mismatch . . . ... ... .. ....... 701



Table of Contents Xi

5.8 ChapterSummary . . . . . . . . . . . e 174
6 Conclusions 176
6.1 ChapterOverview . . . . . . . . . . e 176
6.2 Contributions . . . . . . . .. 176
6.2.1 An Auditory Blind Value Assignment System for Multimadist-
ing Applications . . . . . ... 177
6.2.2 An Environment Recognition System for User State Madel . . 178
6.2.3 A Theory of Hierarchical Structure Learning . . . .. .. .. .179
6.2.4 A System for Estimating User Interruptibility for Mitdo Applica-
tONS . . . . . e 180
6.3 FutureWork . . . . . . ... 181
6.3.1 Questions in Multimedia Gisting . . . . ... .. ... .. ... 181
6.3.2 Questions in Environment Recognition . . . . .. .. ... ... 182
6.3.3 AQuestioninSceneLearning . . . ... .. .. ... ...... 418
6.3.4 A Question in Interruptibility Modeling . . . . . .. .. .... .. 184
6.4 Challenges for Machine Listening . . . . . .. .. ... ... ... ... 185
6.5 ThesisSummary . .. . .. . . . . . ... 188

References 201



List of Figures

2.1 AHidden Markov Model (HMM) . . . . . ... .. ... ... . ..... 32
2.2 HMMDependencies . . . . . . . . . . . e 33
2.3 DBN Representation of HMM Dependencies . . . . . ... .. .. 33
3.1 LogPower SpectraExample . . .. .. ... ... ... .. . .. ... Q 4
3.2 Temporal Structure of Log Power Spectra, Example peteFoo. . . . 41
3.3 Scene Change KernelperFoote. . . . . ... ... ... ... ..... 42.
3.4 Scene Change Kernel per Foote, Slant Domain . 43
3.5 Scale-Space Delta Sums of Log Power Speeatr@;100, per Slaney . . . . 45
3.6 Scale-Space Delta Sum Peaks)-100, perSlaney . . . . . . . ... ... 46
3.7 Visitingan ATM . . . . . . e 50
3.8 Mailingaletter . . . .. ... ... . .. .. 50
3.9 PurchasingaSoda. ... ... ... ... .. .. ... ... .. .0 50
3.10 Purchasing Lunch from a MobileVendor . . . . . ... ... ...... bl
3.11 Filling the Carwith Gasoline . . . . . ... ... .. ......... 51
3.12 The AARG Gist ConstructionTool . . . . . . ... ... ... . ..... 56

Xii



List of Figures Xiii
3.13 Human AARG Summary Segment Counts, Stream1 . ... ... ... 58.
3.14 Human AARG Summary Segment Counts, Stream2 . . . . ... ... 59.
3.15 Human AARG Summary Segment Counts, Streeam3 . . ... ... .. 59.
3.16 Human AARG Summary Segment Counts, Stream4 . . ... ... .. 60 .
3.17 The Four-Window OARS JudgmentDisplay . . . . .. ... ... ..... 65
3.18 The OARS Value Elicitation Tool . . . . . . . ... ... ... ... 66
3.19 Agreement Coefficients Among Human Subjects per Segment . . . . 67
4.1 Thek-variablek-means algorithm . . . . . . . ... ... ... ... ... 77
4.2 Round-Robin Error Rates per Recording . . . . . .. ... .... 116.
4.3 Round-Robin Error Rate Histogram . . . . ... .. ... ..... 171
5.1 Layered HMM Dependencies . . . . . . . . . . . .. ... ... .. 281
5.2 Graphical Representation of Layered HMM Dependencies. . . . . 129
5.3 Hierarchical HMM Dependencies . . . . . .. ... ... ..... 131
5.4 Graphical Representation of Hierarchical HMM Depende=nc . . . . 132
5.5 Structure Learning through Redundancy Reduction . . . . . . .. 137
5.6 The Segmentdl-Means Algorithm . . . . .. ... ... ... ...... 148
5.7 The Agglomerative Segment Clustering Algorithm . 149
5.8 TheK-SegmentK-Means Algorithm . . . . .. ... .. ... ...... 150
5.9 Subject A Incremental Learning Performance . . ... .. ...... ... 170
5.10 Subject A Incremental Learning Time 171
5.11 Subject B Incremental Learning Performance 171
5.12 Subject B Incremental Learning Time 172



3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5

List of Tables

Number of 10-second Segments per Stream

Human AARG Match Percentages Per Stream . . . . . . ... ...

Audio AARG BVA Match Rates per Stream: Basic Features

Audio AARG BVA Match Rates per Stream: Augmented Features. . .
Video AARG BVA Match Rates per Stream . . . . . ... ... ...

AARG BVA match rates at selected human agreement levels .. .. ... .
Human match rates persubject . . . . . .. ... ... ... ....
Audio OARS BVA match rates, all test conditions . . . . . . . .. ...
Video OARS BVA match rates, all test conditions . . . . . . . .. ...

OARS BVA match rates at selected human agreement levels ..... . .

Human Performance on Environment Recognition Task . . . . . . .
Environmental Confusions, Precision, and Recall: Humdnests . . . .
HumanF; Scores . . . . . . . . . . o e e e e

Top 10 Human Confusions as Percentage of Total Answers .. .. ... . .

GMM Feature Selection — 100 Gaussians Per Class

Xiv

... 62



List of Tables XV

4.6 GMM Feature Selection — Effects of reducing short-teemporal structure 87

4.7 Effects of GMM Parameter Size . . . . . . . .. ... ... L 39
4.8 Effects of Feature Transformations, 125 Gaussians pesCL . . . . . . . 90
4.9 Effects of Context+LDA, 125 GaussiansPerClass. . . . . . ... .. 91
4.10 HMM States Per Environment . . . . . . . .. . ... ... 93
411 HMMErrorRates . . . . . . . . . . . 94
4.12 GMM/HMM Error Rate Summary . . .. .. .. .. .. ... ...... 95

4.13 HMM Environmental Confusions, Precision, and RecalérSéondition . 96
4.14 HMM Environmental Confusions, Precision, and Recallséém Condition 96
415 HMM F] SCOreS . . . . v v i e e e e e e e e e e e e s e e e e 97
4.16 Top 10 HMM Confusions as Percentage of Total Answers) Seadition . 97
4.17 Top 10 HMM Confusions as Percentage of Total Answerseem€ondition 98

4.18 ICA Feature Selection, 10 codingunits . . . . . . ... ... ...... .. 99
4.19 ICAModel Complexity . . . . . . . . . . .. . 100
4.20 MLP Feature Selection, 8 Hidden Units . . . . . ... ... . ...... . 101
4.21 MLP Hidden UnitSelection . . . . ... ... .. ... ........ 102
4.22 MLP vs. GMM with Similar Parameter Spaces . . .. ... .. ...... 103
423 MLP TreeDepth . . . . . . . . . . . 104
4.24 Depth-7 MLP Tree Environmental Confusions, Precisami, Recall: Seen
Condition . . . . . . . . 105

4.25 Depth-7 MLP Tree Environmental Confusions, Precisaml, Recall: Un-

seenCondition . . . ... 106
4.26 MLP TreeF; SCOres . . . . . . . . o i i i it i e d d e e e e e 106
4.27 Top 10 MLP Tree Confusions as Percentage of Total Ans\8een Con-

dition . . .. 107

4.28 Top 10 MLP Tree Confusions as Percentage of Total Answémseen
Condition . . . . . . . .. e 107



List of Tables XVi

4.29 Error Rates on Human-Evaluated Subset . . . . . ... ... .. ...109

4.30 Environmental Confusions, Precision, and Recall: HMMmdn Seen

Subset . . ... 109
4.31 Environmental Confusions, Precision, and Recall: HMMtdn Unseen
Subset . . ... 109

4.32 Environmental Confusions, Precision, and Recall: D-@PMkee, Human
SeenSubset . . . ... 110

4.33 Environmental Confusions, Precision, and Recall: D-@Mltee, Human

UnseenSubset. . . . . . . . . . 110
4.34 I, ScoresonHumanSubset . . . . ... ... 111
4.35 Environment Difficulty Ranked B¥; Scores on Human Subset . . . . . . 112
436 FyScoresonAllData . . . . . . . . . . 113
4.37 Environment Difficulty Ranked B¥; ScoresonAllData . . . . ... . .. 113
4.38 Per-Environment Round-Robin Miss Rates and Difficulty Reggk . . . . 118

4.39 Per-Environment and Per-Country Round-Robin Miss Rat€annts . . 118
4.40 Adaptation to Unseen Locales, GMM System . . . ... ... ... .119

5.1 Top structures found in English text by reducing tempbmgtual information138
5.2 Top structures found in English text by reducing Shamedrnndancy . . . 140
5.3 Evaluation Corpus. . . . . . . . . . . .. 614
5.4 Average Event Length in Seconds Per Transition PenatlyFaames Per

State Allocation . . . . . . . .. 149
5.5 Average Scene Length Per HMM Level and Transition PgrfakM Scene

Learning . . . . . . . . . e 152
5.6 Scenes Learned, and Average Scene Length in SLRR-Trained HHMM . . 153
5.7 Mutual Information Between States and Interruptibiligbels . . . . . . . 154
5.8 Average Miss Rates, All Conditions . . . ... ... .. ........ 155



List of Tables Xvii

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

Miss Rates by Time: Image-based Gaussians . . . . .. ... ... .157
Data Collected Per Subject . . . . . .. ... ... ... ........ 158
Initial Segmentation Results Per Subject . . . . . . ... ... ... .159
Baseline low-quality audio interruptibility results . .. . . . .. .. .. .. 160
Average Scene Length per Model Level, SKM-Trained LHMM.. . . . . 161
Average Scene Length per Model Level, SLRR-Trained LHMM ... . . 162
Miss Rates, SKM-Trained LHMM . . . . . ... ... ... ... .... 631
Miss Rates, SLRR-Trained HHMM, SubjectA . . .. ... ... ... 164
Miss Rates, SLRR-Trained HHMM, SubjectB . . . . . . .. ... .. 165
Miss Rate Summary . . . . . . . . . 166
Image Results for Low-Quality Audio Corpus, Two-GausSgstem . . . 167
Image Results for Low-Quality Audio Corpus, Full Intgatibility Models . 168
Same-user and Cross User Segmentation Results . . . . . . ... .173
Subject Mismatch Results, Round-Robin Evaluation. . . . .. ... . 174



Chapter 1

Introduction

1.1 Thesis Overview

Machine listening is an area of study which is rapidly insieg in importance. The prolif-
eration of massive sensory corpora, together with the p&waéneeds of smart computa-
tional devices and smart spaces has lead to this increasghiméddistening provides both
a computationally cheap alternative to machine vision,@asdurce of information that is
complementary to visual information; hence, perceptusiesys which lack the ability to
process auditory information will in general perform lessdldhan those which can process
auditory information. Machine listening is also interagtin its own right, as research into
computational auditory processing can help to shed lighgemeral principles of percep-
tion, and on how our own perceptual systems work. This tltessribes machine listening

research designed to solve real-world problems in pereépamputing.
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1.2 Motivation

Massive corpora of multimedia data are every day becomiegér and easier to create
and store. Capture and storage devices, once expensivg, &atkof limited capacity, are
now inexpensive, lightweight, and can store scores of hoiumsidiovisual data. As a result
of this continuing trend, large multimedia corpora consgentirely ofspontaneouslata
— that is, data which is largely unscripted, as opposed tq Slporting events, or broad-
cast news — are rapidly proliferating. The sources and piaiarses of these spontaneous
corpora are many. They can be produced by individuals wistuircapture personal experi-
ences to construct multimedia diaries. They can be prodogdadimanoid robots learning
to interact with humans in real-world situations. They canpboduced by surveillance
apparatus to monitor patients in hospitals or nursing home® enhance the security of
an indoor or outdoor space. They can be produced by smaresmaiadevices learning
how to respond to the needs of humans who use them. They caodhecpd by individ-
uals engaged in team activities such as search and rescuétarynoperations, and used
as after-action review or training material. Finally, tregn be produced by intelligence-
gathering apparatus and used to build or maintain aware@figgeopolitical situations.

Several common threads join all of these types of multimedrpora. First, they are
spontaneous. This means that they are unscripted and léshtlyaobvious state-change
cues like blank screens. Second, they are often sparsemigaiss that the vast majority of
spontaneous data is uninteresting for any particular ma&pohird, they are large. Coupled
with their sparseness, this means that it is difficult for hasior machines to find what
they are looking for. This difficulty places a hard limit orethtility of large, spontaneous
multimedia databases. In order to fulfill the promise of ¢hesrpora, some automatic
means of indexing and querying them is needed.

The problem of indexing these corpora is cast as a probleroesfesanalysis. That is,

we can attempt to find certain features of the corpus whiokeses concise explanations of
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the data. These features include scene boundaries, mdiirmemmaries or gists, labels
describing specific events and environments, and multirgésa structures. Each of these
features serve a slightly different purpose, but all arpsteward making large multimedia
corpora more useful.

For human users, scene boundaries can be used to find aregestale change,
which are in theory the most informative regions of the coapdviultimedia summaries
help users explore the main actions of the corpus, determirether or not it contains
anything of interest, and quickly construct a story for peed consumption of sharing.
Environment and event labels allow users to quickly find Bpeareas of interest, if they al-
ready know what they are looking for. Finally, multiresadut structures help users quickly
explore corpora in detail, first by browsing at low levels etall, and then drilling down
into areas of interest.

Machine users of these corpora can also benefit from thegs tyjpanalysis. Scene
boundaries and summaries can help robots and smart spaasntdy those regions
which, when deeply analyzed, will yield the most informati@bout their surroundings.
Environment and event tags can help robots, smart spaaesnaart devices to understand
the social context of the humans they are trying to serve,tandake better decisions
about how to interact with them. Finally, multiresolutianugtures can help robots, smart
spaces, and smart devices to predict future events andssaarabling them to anticipate

rather than just react to the needs of the humans they angtiyiserve.

1.3 Machine Listening for Context Awareness

In this thesis, “machine listening” is defined as the prooésteriving from the audio signal
information that is useful for some computational or humarppse, examples of which are
described above. Analysis of the audio signal is well-sltitethese kinds of context aware-

ness problems for many reasons. First, the signal is relgttsompact. This means that
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storage and and computation are relatively cheap compargdéo?®. Broadcast-quality
audio only takes up 109 megabytes per hour, and audio featypecally used for high-
resolution analysis typically use less than 18 megabytetiar. Further, the processing
required to derive these features from the raw signal, baedtie fast Fourier transform
(FFT), is very inexpensive. Second, sensors are for the paosstheap and robust. Quality
stereo microphones can be had for less than $100 and arg higiidtant to damage from
rough handling. Third, omnidirectional microphones pigk sound from all directions,
meaning that the signals they record are unaffected bytatien. One does not have to
rely on exact sensor placement, or ask humans to alter taeiral behavior in order to use
onboard audio sensors. Fourth, the audio signal is impesvio changes in lighting con-
ditions. Fifth, the audio signal is not affected by occlusio a perceptually relevant way;
an audio signal can pass through walls and around obstauddsthe most part retain its
perceptually relevant features. Sixth, and perhaps mgsbitant, events that occur in the
real world which are relevant context cues very often leararx acoustic evidence which
can be identified by humans and discovered with techniques frattern recognition and
machine learning. Finally, the audio signal is often compatary, if not orthogonal, to
the video signal, which has been extensively used for co@erreness. Adding audio
to video-based systems should be a cheap way to improverpeniae or speed or both.
See for instance the work of Chen et. al. [12], [13], in whicldiauisual data collected
in a nursing home environment is first processed with audentdetection techniques
and only subsequently by video event classification teclesq This work demonstrates
that cheaper audio processing can save a significant ambwudeo processing for certain
tasks.

It should be emphasized again, though that this is not the pmfpose of machine

listening. Indeed, there are many context awareness agpipls where audio is the best

1Though recent results in machine vision suggest that cenigh-level image analysis procedures can be

performed quite cheaply; see for example work by Torrallth@liva [103].
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modality, and vision, if appropriate for use at all, playsoanplementary role. Perhaps the
best example of such an application is automatic speeclynéamn (ASR), which yields
detailed context information from audio, and only undetaierconditions can be helped
by visual analysis (i.e., lipreading in adverse noise comas).

Taken individually, these are all good arguments for cotidgcresearch into using
auditory information to inform context-aware computingst®ms. Taken together, they
constitute a very powerful argument for such research. ffasis helps to validate these
arguments by giving multiple examples of applications\deg context awareness from

audio.

1.3.1 Machine Listening Theory

The theory of machine listening is largely the theory of petmn, adapted to the special
demands of processing the audio signal. The underlying amesim of perception in bio-
logical systems is by now well-established. Organisms gpesed to a highly redundant
input signal with high dynamic range in real time. After caiegsing this signal into some
smaller dynamic range via saturation, they analyze theabggoontents in order to achieve
environmental awareness and plan appropriate actions.

The analysis step is the focus of perceptual theory. Theysisastep can be viewed
as a decomposition into feature extraction and patterrgration steps. In computational
systems this decomposition is literal, and very differewicpdures are used for each step.
In organic systems, though, the distinction is much lesarcl@erganic systems process the
input signal, find specific patterns, and produce new, loesolution signals, which are in
turn used by higher levels of processing. Much of the prangsione by organic systems
is concerned with finding and eliminating redundancies pamadences that are present in
the input signal. The act of redundancy reduction, whichamto signal compression, is

widely viewed to be the essence of perception. Speech rémyis an excellent example
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of this phenomenon; digital broadcast-quality audio hag sake of 62.5 kb per second,
yet the total amount of information present in one secondpeksh is much less than
this figure: two or three bytes worth of words, and perhapsaaligtes worth of meta-
information dealing with speaker identity, emotional stand similar features. Humans
perform this compression with the greatest of ease; cortipntd systems designed to
perform similar tasks are very complex and computationatiyensive.

Listening presents special challenges to a perceptuamylsased on redundancy re-
duction. First, the audio signal retains perceptual iraraze under environmental condi-
tions that can radically alter the observed values of theadiglrhe signal is altered by vari-
ations of the medium of transmission, and by the shape anerialadf objects in the path
between source and listener, and the resulting amplituale®e quite different depending
on the exact conditions. The fact that perceptual invagdmids under these conditions
means that the redundancies exploited by the auditoryrayate independent of the actual
frequencies or amplitudes in the audio signal, and they msgtad relate to the relation-
shipsbetweenfrequencies and amplitudes. Second, the audio signal isliomensional
and changes very rapidly. This means that, unlike the vidoiadain, the listener never has
a complete picture of a sensory object at any particulaamstinstead, the listener must
maintain a sensory buffer over which to find redundanciesther words, redundancies in
the audio signal are temporal rather than spatial redunelsihough the audispectrum
contains temporal, spatial, and spatiotemporal redundsncThird, the audio signal is
factorial in nature. The signal reaching the listener issh of many signals emanating
independently from many sources, all modified by the medifitnamsmission, environ-
mental objects, and each other. Organic systems are abép#wate these sources, or at
least to extract one source at a time from the din for anglgsigrocess exemplified by
the cocktail party effect. This ability to separate a singpeirce from a mixture without
additional cues implies that the relevant redundancieslaaeacteristic of one source or

another, and can be identified and tracked over time.
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The principle of redundancy reduction applies to orgamstehers in a straightforward
way; the neural coding apparatus seeks ever-lower resolutpresentations of the input
signal and stores, uses, or forgets them as appropriate.mapeing of redundancy re-
duction to machine listeners is somewhat less clear. Ergimg realities mean that one
often does not seek to implement listening systems whiclparkect models of the mam-
malian auditory periphery and cortex; different types ofdels are typically used for each
stage of processing called for by the application: featxteaetion, acoustic modeling,
and application of prior knowledge all are handled separat¢onetheless, the principle
of redundancy reduction can be a useful guide to the engimeelnoices one makes when

building real-world listening applications.

1.3.2 Applications of Machine Listening

Applications of machine listening that provide context esveess to smart devices, spaces,
and media archives are compelling both for theoreticalmesiand because the applications
they permit are of value to users. In this thesis, the focos iree such applications. First
is user state modeling for mobile devices and smart spad@shvis cast as a problem
of acoustic environment recognition. Second is sensomyngisind report generation for
multimedia skimming, mining, and summarization, which @stcas a problem of acous-
tic blind value assignment. Third is activity recognitiomdgprediction, which is cast as a
problem of learning and identification of multiresolutidnugtures using acoustic informa-
tion. These applications have some overlap in that teclesigtnich are useful for one area
could sometimes useful in another; for example, the redlah@ between user environment
and user activities can be strong. It is logically expedibotvever, to present them sepa-
rately, as they make use of different techniques of impldéatem and evaluation. These

technologies are now introduced in turn.
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User State and Environment Modeling

User state encompasses any number of factors that can icdluwgmat demands a human
user makes of a computational system, and how the user exffexte demands to be
fulfilled. In well-defined, enclosed spaces like offices cfieevents can be detected which
serve as important context cues. In mobile applicationsjeler, there is a potentially
enormous set of events which could yield context infornratieurther, acoustic conditions
can vary drastically from locale to locale, making specifterds hard to detect. These
two features of the mobile application space present anrtyoty as well as a problem.
While it may be difficult to detect specific events in a mobilétiag, it should not in
principle be difficult to detect what kind of environment thger is in based on auditory
data. It seems intuitively plausible that certain typesaifrgl fields are characteristic of
certain environment types. For instance, the sound fieldaitfysstreet will be dominated
by turbulent noise from automobiles, while the sound fieldwfffice will be dominated
by speech, typing, and other typical office sounds. The dw@mngess or reverberance of
the sound field can be an important cue as well. If, as intuloggests, environments do
have characteristic sound fields, then environment dete@itdbm audio should be possible.
The two most compelling uses of environment modeling ararfobile devices and
autonomous robots. Mobile devices are often used by hunmagather information; as
wireless broadband becomes more prevalent, the numbentdisiusing PDAs or smart-
phones to seek information over the world wide web in mobéitisgs will increase. In
order to improve latency, environment information couldpimciple be used to predict
user behavior and pre-fetch relevant information. Thispss could be performed with
simplistic common-sense relationships; for instance, A Rich can detect that its user
is in an airport might seek and pre-cache updated flight médion. It could also be per-
formed by learned, user-specific preferences; for instaan&DA might learn that its user

often seeks stock quotes on a morning bus ride. Autonomd@saould use environ-
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ment information to help maintain an awareness of apprtgpbahavior independent of
actual locale (as reported, for instance, by a GPS recei@eme of this information could
be obtained through visual processing, as one would assuaeh@ mobile robot, unlike a
PDA, is equipped with appropriate visual sensors. In thggecaudition makes sense as a
complementary sensor modality, as there may be many ements which are confusable
in one modality but not the other.

In this thesis, environment recognition is viewed as a digatacess. That is, no attempt
is made to explicitly detect or model known characteristiergs; rather, a self-organizing
model is selected and learned for each environment. Notetiveonment recognition is
not the same problem as locale recognition; the system miexsén this thesis seeks to
achieve generality where locale recognition systems sirsgék to learn the characteristic

sound fields of specific locations.

Multimedia Sensory Gisting

Multimedia sensory gisting is the process by which streahmutimedia data are sum-
marized by selecting sets of segments of those streamsliresway that the selected seg-
ments contain an overview, or the gist, of the activitiesespnted therein. This procedure
amounts to automatically deciding which segments in a strage the most interesting,
for some possibly application-dependent definition ofreséing. Applications of this type
generally fall into two categories: knowledge extractiarich is inherently an offline
process, and remote aggregate sensing, which is inhe@ntyline process. While it is
possible to pursue approaches to these problems based antgeanalysis of the source
data; i.e., approaches in which certain classes of evemtgwaivna priori to be interesting,
the same difficulties hold as for user state modeling. The sfzhe event space is pos-
sibly unbounded, and unstable acoustic conditions may makiicult to detect familiar

sounds in unfamiliar environments. For these reasonstlibsss explores the use bfind
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techniques which make re priori assumptions regarding the contents of the signals un-
der analysis, either in terms of environments or events.dBechniques thus make heavy
use of analysis of the statistics of the signals in a mannesistent with the principles of
perception.

Knowledge extraction encompasses many different kindpli@tions, including per-
sonal experience distillation and storytelling, sunagitte, data mining, and after-action
report generation. The gists created for these kinds ofiggijuins can take one of two
forms. The first form emphasizes detection and presentafiscene changes, which often
involve a marked change in acoustic texture in such a waythiesaudio is heterogeneous
across the change and homogeneous on either side of theech@ihgre are theoretical
reasons to prefer this kind of summary. Scene changes ae guints in the signal where
redundancy breaks down; in other words, they represent nesmation which can be
seen as by definition interesting. An algorithm for prodgdinis form of gist might seek
the n strongest scene changes, wheres the desired number of segments in the gist. A
second form emphasizes short-term events (which can beasescene changes over a
short timescale). In this form of gist, a collection of seguises selected such that their
contents are maximally mutually dissimilar, irrespectfevhether or not they contain a
large scene change.

Remote aggregate sensing encompasses applications nytdams of individuals co-
operating to perform some task, either collocated or notpmsdibly coordinated by some
central authority. Applications of this type include firdfiqng, search and rescue, mulit-
party gaming, and other multiparty tactical scenarios.eH#re participants and planning
authority would like to have real-time awareness of theestaff the entire group in order
to better inform their decision-making processes. Verbahmunication in these problem
spaces may be impractical either for safety reasons or beaduhe possibility of channel
saturation or noise. Broadcasting of multimedia data cagtinom wearable sensors is a

better solution. However, this solution has the potenbatduse cognitive overload; the
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more real-time streams are added to the broadcast, therhabd®eomes to know which
ones merit attention. This problem is quite similar to thiéred knowledge extraction prob-
lem discussed above. Here, though, the goal is to rank iriinre@leach signal according to

how much attention it merits, or equivalently, how inteiregit is.

Multiresolution Scene Identification and Structure Learning

As noted above, acoustic events and environments can wipartant clues to user state. In
stationary environments with known usage patterns, a mdess complete set of acoustic
events can be identified and used as state cues. In smarssptaeled to support some
activity, like meetings, presentations, or daily work iaas, these events can help identify
what kind of activity is currently taking place. The goalasuse this information tantici-
patethe needs of the humans in the space and thus spare themdaheanence of having
to ask. For example, at the beginning of a meeting, a smadespaght automatically
show an attendance list; at the end, it might display autmalft-generated minutes or ac-
tion items. Context cues that are useful for identifying éhkisids of states can be related
to vision and speech; human identities can be visually aoefi, and humans often talk
about what they are doing as they are doing it. However, thexsome cues that are both
auditory and non-verbal, and machine listening can helpetedl these. These kinds of
cues include events like door slams, telephone rings, appldyping, footsteps, electrical
noises, presence or absence of speech, babble noise, ansl difany of these events are
the result of actions that have important implications rdyey the state of the space and
thus the kinds of requests the space should expect.

However, simply using point events as state-change triggery be problematic in sys-
tems intended for long-term use, such as an always-on sparésa personal diary system,
or a smart mobile device. Here, in addition to point evemsger-term activities and pat-

terns of activities are also of interest. These patternscenes, can be used in three ways.
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First, knowledge of high-level scene context can help gexjgectations of what events
are likely or unlikely to occur; this knowledge could in priple improve event detection
performance. Second, having a high-level scene label fdr stant in a sensory record
might make it easier to browse and extract knowledge fromréberd, either manually or
automatically. If multiresolution scene labels are ald#éahuman or machine consumers
of the sensory record can browse at low levels of temporalldetd drill down into areas of
interest. Third, high-level representations might imgraontext-dependent performance
for specific applications; for example, a context-aware iheolelephone like the CHIL
Connector [25] might be better able to make decisions ab®usir’s interruptibility given
a high-level activity representation than given a low-leepresentation.

In this thesis, multiresolution scene learning is seen adtatmm-up, unsupervised clus-
tering problem. Structures, or scenes, are defined in tefrosnopositional relationships.
That is, scenes are composed of more or less well-defineegsegs or groups of events
which can themselves be part of longer and larger pattemsn loffice application, for
example, there are many patterns of activity which happea namber of timescales. A
typical workday in an office setting, for example, might ashef five main activity cycles;
arrival, quiet morning work, lunch, afternoon meetingsd aeparture. Each of these ac-
tivities can itself be broken down into smaller subscenessanon down to atomic events
like opening the door or typing on a keyboard. The typicalkdaly is also part of larger
patterns, like the 5-day workweek or annual activity cycl&ke ability to identify these
short and long patterns is a potentially tremendous souncéarmation for context aware
settings.

The work in this thesis focuses on learning scenes from efdabdata in a mobile
setting, and using these scenes to perform a specific cemteteness task; namely, de-
tecting whether or not the user of a smart mobile device &rinptible in the sense of
being able to accept an incoming phone call independenteoidigntity of the caller. An

approach to scene learning based on redundancy reductmwassnted and used to build
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an interruptibility detection system.

1.4 Thesis Statement

This thesis makes two claims. First, it claims that machistething technologies are well-
suited to the task of providing context awareness in realdvoomputational systems,
whether these systems are intended to provide operatiaealto smart devices or spaces,
or to segment or summarize multimedia data in order to made tmore useful to human
users. Second, it claims that by adapting general prircipteoerception to the auditory
domain, practical systems can be built which provide thigllof context awareness. Ev-
idence for these claims is provided by measuring the pedooa of these systems on
real-world sensory data for three specific tasks: gistinghoftimedia data, environment

recognition, and scene learning for mobile interruptipiéstimation.

1.5 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2, Machine Listening Theoryprovides the relevant theoretical background on
machine listening, audio processing, and machine peareptigeneral. It also contains a

brief review of hidden Markov models.

Chapter 3, Auditory Gisting for Summarization and Stream-of-Inte&slection in Mul-
timedig shows how very simple perceptually motivated measuresabfevcan be used
to perform gist-creation tasks in multimedia data usingi@ushly. The resulting value

judgments are shown to be broadly similar to human valuemedys.
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Chapter 4, Auditory Environment Recognition for User State Modelstgpws how user
environment can be inferred automatically from the audgmal in a way that could be

exploited by mobile context-aware applications.

Chapter 5, Auditory Scene Learning for Multiresolution Context Awarenshows how

hierarchical structures can be inferred from audio dataiaresupervised manner.

Chapter 6, Conclusionssummarizes the important contributions of this thesis satd

out a plan for future exploration.



Chapter 2

Machine Listening Theory

2.1 Chapter Overview

This chapter contains the bulk of the background requireshtierstand the material in this
thesis. It begins with a discussion on the nature of the asidioal (mostly drawn from

Yost [115]) and basic audio analysis before presentingvaeleresults from theoretical
machine perception in general and machine audition inqdati. The chapter concludes

with background material on feature extraction and timeesanodeling.

2.2 The Audio Signal

The signal that listeners experience as sound is causecehyltfations of objects in the
environment. These vibrations are propagated through aumedypically air, as waves.
The distance between peaks in the wave function is calledéivelength of a sound and

is inversely proportional to the sound’s frequency. The lgongte of the wave affects the

15
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pressure generated by the wave and is related to perceptkidss.

As a sound wave propagates outward from its source, it is freddin several ways.
First, the amplitude decays with the square of the distaageled from the source, limiting
the effective range of a sound. This decay is dependent uppepies of the medium
of transmission. Second, sound waves can encounter olojettte environment. These
objects, depending on their shape, composition, and siagvesto the wavelength of the
sound, can to varying degrees absorb, transmit, or reflectdbnd.

When the interfering object is large compared to the wavéteofthe sound, the sound
is reflected. When the wave reflects back on itself, there anégpohere two peaks collide,
and points where a peak will collide with a trough. When peahlfide, the result is
constructive interference; i.e., the sound at that poititinérease in amplitude. When a
peak collides with a trough, the result is destructive fiet@nce; i.e., the sound at that point
will decrease in amplitude. Constructive and destructiterfarence are not limited to the
case of sound reflection; different sounds can collide is #my and interfere with each
other.

When the interfering object is at most as large as the waviiesighe sound, different
effects can occur. If the object is much smaller than the Veaggh of the sound, the
sound wave will pass the object largely unmodified. If theeabjs nearly as large as the
wavelength of the sound, a sound shadow will be created Behaobject whose shape
and size depend on the shape and size of the object. In tldswhtne sound is inaudible;
beyond this shadow the sound is audible This process isasitalvisual occlusion; in
practice, however, it is much less of a barrier to omnidiog@l sensory awareness.

The summation of all the sound sources, objects, and sounelswa a given environ-
ment interacting with each other in complex ways, is callsgdand field. It is the sources

in this field and the field itself that are of interest in thiegls.
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2.3 Audio Signal Analysis

The signal that reaches a biological or mechanical listeness stated above, the sum of all
the sound waves produced by all the sources in the listesmuisd field, possibly modified
by the medium and objects in the environment, including tbieher. We now address
how a listener can turn this signal into useful informatiés. acoustic energy reaches the
listener, it is absorbed and transduced by a membranetfieegardrum) into mechanical
energy. This mechanical energy is further transduced iettirécal energy whose intensity
is proportional to the intensity of the acoustic signal.

In digital listeners, the continuous amplitude stream nbstliscretized. This process
is called analog-to-digital conversion, or ADC. Accordighe Nyquist theorem, the sig-
nal must be sampled at a rate twice the highest frequencwthate interested in analyzing
to avoid aliasing. The discretized audio signal is refetaeds the waveform or the time
signal. The time signal is a complex function which is not aaige to easy analysis. How-
ever, it is possible to represent any function as a weightedaf simpler functions which
are easier to analyze. In audio signal analysis, it is caemerio work with sinusoidal
functions which have fixed frequency; signals representadis way are said to be in the
frequency domain. Representing the time signal as a weighit@dbf sinusoids allows us to
observe the intensities of all frequencies present in theedi This collection of intensities
is called the power spectrum, and can be computed by meahs &gt Fourier transform
(FFT). Since the audio signal changes rapidly, and thesegasaare often semantically
relevant, it is additionally necessary to compute not jushgle spectrum over a given sig-
nal, but many spectra over time. This representation,d#fie spectrogram, is computed
by sliding an analysis window of fixed length, usually reéerto as a frame, over the time
signal and computing a separate power spectrum for eaclefraims process is referred
to as the Short Time Fourier Transform (STFT). Choosing there frame size for the

STFT involves balancing accuracy in time and in frequenognd-frames result in high
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frequency acuity and low temporal acuity; short framesltesuow frequency acuity and
high temporal acuity. ASR systems typically use frames 2A0seconds long, overlapping
by 10 milliseconds.

Biological listeners perform a similar decomposition of three-domain signal into a
set of simpler, easier-to-analyze functions. Unlike oandard machine approaches, they
do not seem to use pure sinusoids; rather, they use functionsraapacially adapted to
optimize the functionality of their listening systems. TWway in which they do this, and
indeed the way in which all organisms perform all perceptaaks, is addressed in the

following sections.

2.4 Perceptual Theory and Computational Audition

There has been interest in organic perception in the psggiall community for many
decades. In the last 50 years, a great amount of progressdtowantifying organic per-
ceptual processes has been made by a host of researchees.| Hiee a brief overview
of some of this work, followed by an introduction to the basancepts of redundancy

reduction as the organizing principle of both organic anthjgotational perception.

2.4.1 Prior Work in Perceptual Theory and Computational Audition

As described in Paris Smaragdis’ Ph.D. thesis [93], muchefarly work on perception
focused on vision; nonetheless, even the earliest peraeptrk by Barlow ([4], [5]), At-
teneave ([3]), and others were exploring the now-accepddmof redundancy reduction
as a core principle of perception.

Much early research on audio processing focused on codeegrhdor telephone trans-
mission [62] and on ASR (see [106], [81], [52]). An unrelatedearch track, auditory

scene analysis (ASA), sought to explicitly model and repoadthe means by which hu-
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mans perform stream segregation — that is, the separatidndantification of specific
sound sources over time in complex sound fields. Bregman'ssémork [10] contains
an excellent overview of the main results of psychologieakarch into auditory phenom-
ena. Computational auditory scene analysis (CASA) was amawmtly of Bregman’s work
which sought to directly implement many of the heuristicsggnan described. The Ph.D.
theses of Cooke [22], Brown [11], and Ellis [28] all succedsgfirhplemented source sep-
aration in some real-world tasks. Wang, Terman, and Liu é@mgnted an alternate ap-
proach [108] based on neural oscillator networks [109].

The similarity of the auditory scene analysis problem to lthed source separation
problem led many researchers to again begin to view audititeBrms of redundancy reduc-
tion. Comon [21] introduced the idea of independent compbaealysis (ICA), a means
of decomposing data into simpler functions in a data-depenhanner such that the new
functions were statistically independent. Soon afterclAfR] proposed (or re-proposed)
the idea of using information theory as an organizing pplecfor sensory processing in
general. Other researchers soon began to explore and uset@Arhputational models
of perception. Bell and Sejnowksi in [6] presented ithi@maxalgorithm as a method for
addressing problems of blind source separation and dekdiora Infomax was based
on maximizing the joint entropy of the coded feature spadais Work was followed by
demonstrations of infomax used for basis decompositiorotti Bounds ([7]) and images
([8]). The work on images was particularly enlighteningjtahowed that the optimal im-
age encoding was based on visual edges, long believed teledst informative regions
of images. Hyarinen and Oja presented a new approach to ICA based on maxgntie
non-gaussianity of the coded feature space in [49], anth @&, have since demonstrated
that maximizing sparsity and temporal coherence leadsidasibasis decompositions as
maximizing non-gaussianity ([44], [45], [46]). In [47],alprovided a framework for video
coding which unified independence, temporal coherencetagoadjraphy into a single uni-

fied model. In [58], Lewicki showed that the optimal set ofibdanctions for audio were
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dependent on the specific kinds of sounds in the sensory.igpetifically, the basis func-
tions learned for non-harmonic environmental sounds wiendas to wavelets; they were
localized in time but not in frequency. Conversely, the basistions learned for animal
vocalizations resembled sinusoids similar to Fourier dgmusitions; they were localized
in frequency but not in time. Finally, the basis functionarfeed for human speech —
which contains both harmonic and non-harmonic sounds — Veeadized in both time
and frequency; further, the degree to which they were Iredlin time was dependent on
frequency. The set of basis functions learned from humaacpeesembled gammatone
functions, long used in phsychoacoustically-motivateditany research. More recently,
Lewicki and Smith ([95], [96], [96]) have worked extensiyadn learning efficient rep-
resentations of auditory phenomena using spike timing £o&@ally, Smaragdis’ Ph.D.
thesis,Redundancy reduction for computational audition, a unifyapproach [93] fo-
cused exclusively on using redundancy reduction as theprareiple of audition and sig-
nificantly, was able to demonstrate how computational systéor grouping and scene

analysis / source separation could be built using this #texa framework.

2.4.2 Redundancy Reduction as an Organizing Principle for Compu-

tational Audition

As these and other researchers have demonstrated, redynddaction as an organizing
principle for perception in general and audition in patacus motivated by computational
efficiency and can be observed in biological systems. Alanigms which are capable of
perception face a daunting task: how to extract informaftiom the environment in such a
way that their likelihood of survival is enhanced. The psxcef information extraction can
be thought of as a coding problem: one signal type is repteddsy an activation of one
group of neurons, while another signal type is representeshlactivation of some different

group of neurons. Each group responds optimally to a cesgmnulus, often referred
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to as abasis functionin signal space. The activations of the many groups of meuro
dedicated to sensory coding are used to learn and recognatant stimuli. Making
the coding task difficult is the fact that organisms mustyc#rout with limited dynamic
sensor range and limited processing bandwidth compardteteange of natural signals.
Limited sensor range means that sensors must be capabkeiattseay in order to limit the
dynamic range of the input signal. Limited bandwidth medret brganisms must code
the range of natural signals efficiently. Efficiency here nssthat the coding process must
make maximal use of all coding resources, or equivalertlt system throughput must
be maximized. Resources that are not used maximally are @messvasted, a situation
to be avoided. Mathematically, for all resources to be usagimally, they must be used
with approximately equal frequency. That is, if there aoe,dxample;: binary neurons
which can be used to encode events observed in some real-swnal, each neuron must
be activated approximatelélof the time, no two neurons should be active at the same time,
and there should be no observable correlations betweerctivataons of one neuron and
another.

The reason that this kind of efficiency can be achieved isrthiral signals are highly
redundant in both time and space. In vision, if a certain fpwirspace (relative to the
viewer) and time is a certain color, it is very likely that gleboring points in space will
be the same color, and very likely that the point will be theeaolor in the next instant
in time. Thus, it is of vital importance for a coding systemuse more resources on
locating and representing the visual edges in an image,enthesse redundancies do not
hold. Audition is similar to vision in this regard. Since d@ody events have temporal
extent, intensities from instant to instant at a given feggry tend to be similar; likewise,
there are often correlations between intensities at @iffefrequencies at the same instant.
These correlations are sometimes non-local. As with vjsida thus imperative to locate
and represent regions where the redundancies do not holdsetffsets, and disruptions

in non-local frequency correlations.



Chapter 2. Machine Listening Theory 22

Coding natural signals in the same way that they are receegd, pixel-for-pixel in
video, or frequency-for-frequency in audio, would thus befficient; many neurons will
encode information which could have been inferred from Imleaging neurons. Organic
sensory systems are therefore largely concerned with firmbdes which will allow these
redundancies to be reduced and efficiency to be achieveddén to emulate these accom-
plishments in computational systems, researchers tumféonnation theory, which pro-
vides measures which can help to formalize notions of effeyjeand redundancy. These
measures make statements about the information contetatistisal distributions of ran-
dom variables; if we view sensory inputs and outputs as nandariables, we can use
information theory to guide the search for optimal codes.

The most basic measure in information theory is the infoilonaf of an event, or
specific valueg of a random variabl& with respect to some probability distributidty as
shown in Equation 2.1. The information of an event is prapael to the log of the inverse
of its probability; the rarer an event, the more informati®provided when it occurs. The
average information over all events of a random variabl&ésentropy, denoted/ »(X)
and given in Equation 2.2. The closer a distribution is tdami, the higher the entropy.
The maximum-entropy distribution over &hrelement set of discrete events is the uniform
distribution, whose entropy i®g N. The Shannon redundanci »(X), measures the

degree to which the entropy of differs from the uniform distribution, and is given in

Equation 2.3.
Ip(z) = log ng) = —log P(z). (2.1)
Hp(X) = - P(x)log P(x). (2.2)
zeX

(2.3)
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The Shannon redundancy can be used as an objective funotigefceptual coding;
i.e., a code which minimizes redundancy will be an optimateptual code in the sense
of efficiency when we considemly those basis functions which are maximally activated
by a sensory stimulus. In reality, many different basis fioms could be activated by the
same sensory stimulus; if one function were consistentlivated by a stimulus which
activated some other function more strongly, these less-thaximal activations would
be wasteful. An optimal code must thus be designed not oniypitomize redundancy
in the Shannon sense; it must ensure that basis functiorsctivated either strongly or
not at all. This requirement is embodied by another inforomatheoretic measure called
mutual information. The mutual information of two randonrig@les X andY’, denoted
I(X;Y), measures the statistical dependence between those twblear 7(X;Y) is
symmetric, nonnegative, and equal to zero whérand Y are statistically independent.
Mutual information is defined as shown in Equation 2.4, arsdsl®own in Equations 2.5
and 2.6 can be interpreted as either the difference betvireeindividual entropies and the
joint entropy, or as the reduction in the entropy of one \@eajiven that the value of the

second variable is known.

[(X;Y) = Y Plz,y)log %, (2.4)
= HPZX> + HP(Y> - HP(Xv Y)v (25)
— Hp(X) — Hp(Y]X). (2.6)

2.5 Feature Selection

The principle of redundancy reduction states that a sersmiting system should seek to
represent the sensory inputs in such a way that the senstpyts@re statistically indepen-

dent from each other. The implications of this principle fiesture selection are discussed
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here. It is instructive to first consider feature selectiostimds used by the automatic
speech recognition (ASR) community. ASR is a research fielithwvhas produced sys-
tems capable of converting audio inputs into useful outpansl as a class of problems,
bears more similarity to machine listening than a pure auglianalysis field like Com-

putational Auditory Scene Analysis (CASA) or Blind Source &gion (BSS). We hence
describe in detail a typical ASR feature selection schemlafing it to the principles of

redundancy reduction where appropriate, before consigiéeature selection for machine

listening.

2.5.1 Feature Extraction for ASR

State-of-the-art ASR systems today typically use one ofvebigsic feature extraction tech-
niques. The most popular is based on mel-frequency cepsteflicients (MFCCs). The

procedure for extracting MFCCs from audio involves the follogvsteps:

Analog-to-Digital Conversion (ADC) ADC is the process of discretizing the continuous
signal produced by the microphone. In ASR, ADC is typicallyfpened at a sample rate
of 16 kHz with 16-bit samples. This sample rate allows ASReays to represent and
analyze frequencies up to 8kHz, which is sufficient to capthe range of human speech.
By contrast, some low-quality ADCs, such as telephone spdenle sample rates of 8
kHz with 8-bit samples, which is sufficient to captum@stof the relevant range of human

speech. Some cellular telephones use an 8 kHz sample raté6vliit samples.

Short-Time Fourier Transform (STFT) The Fourier transform is typically applied to
sample windows of the ADC which have been passed through artfagrwindow to avoid
edge effects. A typical window size for ASR is 20 millisecenaith 10 millisecond over-
lap. This window size is chosen as a tradeoff between fregguesolution (which is better

with longer window sizes, particularly for energy in the Emfrequencies) and temporal
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resolution (which is better with shorter window sizes). BIEFT process produces both
a power spectrum and @hasespectrum for each sample window. The power spectrum
represents the power of a signal at some frequency, whilghlse spectrum represents
relative timings within the sample window. In ASR and othedi® applications, the phase
spectrum is typically discarded. With a 16 kHz sample rdie, gower spectra are 257

dimensional; the 20 ms / 10 ms window size results in a frarreeaf100 Hz.

Melscale Filterbank The melscale filterbank is a set of filters which was desigioed t
crudely model the frequency responses of human percemspbnses. Each filter in a
melscale filterbank is a bandpass filter whose width variesctly with the center fre-
guency; that is, low-frequency filters have narrow passbavitile high-frequency filters
have wide passbands. In typical ASR systems, a 13-filteraakedilterbank is applied
to power spectra from the STFT, reducing feature dimenstgriay a factor of 20 while

retaining important perceptual characteristics.

Mel-Frequency Cepstral Coefficients Cepstral coefficients are coefficients of the Fourier
transform of the log power spectrum. They are used in ASR gmilsnbecause they lead
to better performance than other features, and they are@tsist across speakers, in part
because they do not represent pitch information. In practitFCCs derived from mel
spectra are typically used. The mel spectra are passedgtiheologarithmic nonlinearity,
and then the discrete cosine transform (DCT) is applied. Wéhaspecially interesting
about the DCT is that, for speech and speech-like signal®@1eis adecorrelatingtrans-
form. This means that the MFCCs are mutually decorrelatedgoivalently, that their
covariance matrix: is diagonal. If the distributions over these features aresSian (i.e.,
the values of moments of third order and higher are zero)prdelation is equivalent to
statistical independence. As such, if the Gaussian assumipblds for a given dataset,

MFCCs are optimal in a redundancy reduction sense, if not agreton performance
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sense.

Context In speech and other auditory phenomena, signals changtyrapih time, and
they often do so in predictable and characteristic ways. Ut sit is an attractive propo-
sition to capture in each frame not just some theoreticaltynwal set of features, but also
thetrajectory of features from frame to frame. Adding context can take drtevo forms:
derivatives of the MFCCs can be explicitly computed, or windaf MFCC frames can
be stacked together. In general, more context is bettemreamy ASR researchers stack 13
frames of MFCCs into a single feature vector. This stackingdgia feature space of 169
dimensions. This high dimensionality can lead to data gpeess problems which can be

partially addressed with dimensionality reduction tegiess.

Linear Discriminant Analysis Linear discriminant analysis (LDA) is one of a class of
data transformation techniques which seek to project Higtensional data onto some
lower dimensional space in an optimal fashion. There areyndafinitions of “optimal”

to consider; LDA seeks a transform in which data labeled &mnligeng to different classes

are maximally linearly separable in the low-dimensionalcg In the case of ASR, sub-
phoneme level labels are available to guide the LDA procé@gpical ASR systems use

LDA transforms which bring the final feature vector to a fewzeo features.

Normalization The above steps represent the naesicASR feature extraction process.
Typically, there are many normalization steps involvedahiaim to remove the differences

between speakers, microphones, and environments as mpoksble.

2.5.2 Feature Extraction for Machine Listening

In machine listening, the optimal feature set is not cleaom& applications have suc-

cessfully employed MFCCs, while others have made use of matergs features. It is
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likely that the optimal feature set in terms of system pemi@nce is strongly application-
dependent. It is worthwhile to first explore the use of tiadél ASR features for machine
listening tasks for a number of reasons. Melscale spect&ravarth considering mainly
because they approximate human frequency response; isetée they theoretically con-
tain all the information needed to perform all the listentagks that humans can perform.
MFCCs are worth considering because they represent a dextorgetransform; under a
Gaussian assumption they are thus optimal in a redundadagtien sense. In addition,
they are very useful for speech recognition. As Lewicki pedhout in [58], speech is made
up of both harmonic and non-harmonic sounds (i.e., vowedscamsonants) and exploits
the entire range of human hearing. Non-speech environisiads are also made up of
harmonic and non-harmonic sounds; as such, MFCCs should @lagbod general rep-
resentation of arbitrary environmental sounds. They mayrmptimal in a performance
sense for some machine listening tasks, however, maingusechey do not preserve pitch
information which may be important in some listening tagks fjeneral sound recognition.
In addition to melscale spectra and MFCCs, we consider a nuohleditional features

in this thesis. These features have sometimes been referrasl “perceptual”’ features,
though they do not necessarily correspond to features hsinsnin perceptual tasks. Many
of them are simply convenient summaries of gross specteabckeristics, some of which
should intuitively be useful for certain listening task$i€Be features are described below.
In what follows,p;t refers to the™ of M power spectral coefficients in framga;t refers
to thej*" of N sample points in thé” sample window in the time signal, arids a generic

threshold value.

Loudness Changes in perceptual loudness are often indicative of @sainghe auditory
scene; e.g., event onsets or offsets and changes of enaminRerceptual loudness can be
grossly approximated by measuring signal energy. One casune energy in either the

time domain or the frequency domain. A time-domain energgsuee, power, is given in
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Equation 2.7, while a frequency-domain energy measuré¢jmean square energy, is given

in Equation 2.8.

N
POW (t) = % > ay(t)> (2.7)
RMSE(t) = % > (2.8)

Bandwidth Bandwidth is a measure of the extent of a sound in the frequdamyain.
Tonal sounds often have relatively narrow bandwidth, whib@-tonal sounds like tran-
sients often have relatively wide bandwidth. Sound fielasadao have characteristic band-
widths. Bandwidth, measured in Hz, is calculated as the rdiffee between the highest
frequency exceeding some energy and the lowest frequernegding the same threshold,
as shown in Equation 2.9.

BW/(1,9) = arg uiix(pi(1) > 9) — argmin(p(t) > ). (2.9)

Spectral Diffusion Spectral diffusion is, like bandwidth, a measure of the eixtd a
sound in the frequency domain. However, whereas bandwsdéhsimple difference be-
tween two frequencies, diffusion measures the actual dpkanergy among all frequen-
cies. This difference can be illustrated by consideringunddield consisting of two pure
tones, one at a low frequency and one at a high frequency. sbhisd field will have a
high bandwidth value, but low spectral diffusion. Diffusies similar to a discrete entropy

measure of the energy over frequency space and is shown atiBqw.10.
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Spectral Centroid Spectral centroid is a measure of spectral location; itesakighted

mean frequency of the spectral energy, measured in Hz. Gen¢roelated to the zero-
crossing rate (ZCR) measure which is used for speech detdotisome ASR systems.
Centroid also corresponds loosely with the perceptual éxpes of brightness; sounds
with a high spectral centroid tend to stand out in the sound. fleurther, noisy or chaotic
sound fields (e.g., traffic) tend to dampen the overall specentroid; hence it can be a
useful measure for both sound recognition and for envirarimexognition. The spectral

centroid is shown in Equation 2.11.

SC(t) = w (2.11)
> iz Pilt)
Band Energy Ratio Band energy ratio measures the relative spectral energyebatw
frequency bands up to some threshold frequency and fregurmmzls above the threshold.
This feature has been used to distinguish between voiceudsqiiie., vowel portions of
speech) and non-voiced sounds and is thus ideal for idemifypeech and sound fields
made up primarily of babble noise. A threshold at 1.5 kHz goreedly optimal for this
task; other thresholds could potentially be useful foridgtishing between other broad

sound classes. Band energy ratio is shown in Equation 2.12.

J—1 2
BER(t,J) = ZZJV:[l—p() (2.12)
i=J Pi t)2

Signal-to-Noise Ratio Signal-to-noise ratio measures the relative strength tsfynand

non-noisy sound components in a given analysis frame. SNRad&n in Equation 2.13.
Here, the STFT is computed and estimates of the noisy corm®re. signal-containing
components of the power spectra are made using a technajuésjphraim and Malah [31],
also used by Westphal [110], [111] to estimate and removsenioi real-time for ASR in

automotive environments.
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POWsignal (t)

N =101 )
SNR(t) 0log POWora ()

(2.13)

Component Analysis

We also consider context in some applications; as in ASR,dhdace often results in
feature spaces which are inconveniently large. We thus teeedplore dimensionality-
reducing feature space transformations like LDA. Howeter,general listening tasks,
we often lack detailed labels of the type ASR researchersusarto produce good LDA
transformations. We thus focus on techniques which seegtimally representhe high-
dimensional data in the sense of reconstructing the ofigiata with minimal error. The
two transformations we use in this thesis are principal comept analysis (PCA) and in-
dependent component analysis (ICA). Both PCA and ICA assume alrimogthich some
underlying signak is modified by some filteA, resulting in an observable signalas

shown in Equation 2.14.

x = As. (2.14)

The filter A is usually referred to as thmixing matrix The task of PCA and ICA is to find
an estimatéV of theunmixing matrixA~! such that we can recover an estimataf the

original signals as shown in Equation 2.15.

§ = xW. (2.15)

Theoreticallys is an estimate of the underlying sources in the sound fietnt foithe effects
of mixing. The rows of the unmixing matriW are referred to as tHeasis functionsf the
transform; the values @éfare taken to be coefficients of the relative strength of easisb

function.
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PCA and ICA define optimality in different ways. These defim8and their conse-

guences are discussed below.

Principal Component Analysis Principal Component Analysis seeks an unmixing ma-
trix W for which the following three properties hold. First, thevagance matrix of the
new feature set should be diagonal; that is, the featugshould be mutually decorre-
lated. Second, the basis functions should be ordered bgneai Third, each basis function
should be orthogonal to neighboring basis functions. Adiam of this type can be calcu-
lated by computing the eigenvectors of the covariance matithe observed feature space,
Y., each eigenvector is a basis function. The eigenvaluesso$yistem correspond to vari-
ance in the new feature spagand can be used to order the basis functions, and also to
reduce the dimensionality éf i.e., by omitting basis functions with small eigenvalu¥e.
can also be estimated using the singular value decompo$&\dD) directly on the (non-
square) observed features In SVD, a matrixM is factored advf = UXV*; the matrix
U contains the orthonormal basis functionsif, while ¥ contains the singular values,
which can be used in a manner similar to the eigenvalues digevalue decomposition.
A final, non-analytical method for estimatig is to train an autoencoding multilayer per-
ceptron (MLP). When such a neural network is trained with tipait data as the target and
a mean-squared error metric, the hidden layer weights wiil’erge to a matrix spanning
the same subspace as the analytical PCA solution, up to #rotat

Using any of the above approaches, PCA will leartiegorrelatingtransform. If the
underlying data are Gaussian, decorrelation is equivadentdependence; hence PCA can

be viewed as a redundancy reduction transform under theaagtditions.

Independent Component Analysis Independent Component Analysis seeks an unmix-
ing matrix W for which the features in the transformed feature spaeee mutually inde-

pendent; i.e./(§) = 0. No analytical algorithm exists to recover an unmixing rixatrhich
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Figure 2.1: A Hidden Markov Model (HMM)

fulfills this requirement; all ICA approaches rely on itevatoptimization techniques and
none are guaranteed to find a globally optimal solution. Ase@bove, many different
criteria and algorithms have been suggested for ICA;&fyen and Oja’s FastlICA pack-

age [48] implements their popular approach, which is usedigthesis.

2.6 Time Series Modeling for Audio

Given some feature set, a common task in this thesis, andlin guocessing in general, is
how to convert the audio signal into useful symbolic infotima. Many pattern recognition
techniques exist which can make this conversion. The damhmadel for ASR and audio
in general, however, is the hidden Markov model (HMM) [81heTHMM is a finite-state
machine in which each hidden state emits observable vadithey discrete symbols (which
can be modeled by simple discrete probability distribugjaor real-valued vectors (which
are typically modeled by mixtures of Gaussian distribuglonEach state corresponds to
some symbolic value. For example, in ASR, each state migihesept a phoneme. Then,
given a set of audio feature vectors, using HMMs, one is abli@afer the sequence of
phonemes which is most likely to have produced that sequehextors. An 3-state HMM
with a forward topology, the kind most frequently used in A&shown in Figure 2.1.

It can also be instructive to view HMMs in terms of dependes@mong random vari-

ables; under this viewpoint an HMM is just a specific kind ohdgnic Bayesian network
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Sy Si-1, (2.16)

Figure 2.2: HMM Dependencies
@ @
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Figure 2.3: DBN Representation of HMM Dependencies

(DBN). An HMM has two variables: the state and the outputD. In HMMs, the state
at timet, S;, is dependenbnly on the state at timé — 1, and the output at time, Oy,
is dependent only on the state at timeThese dependencies are shown more formally in
Figure 2.2 and graphically in Figure 2.3. For more detaiféddrmation on the benefits of
viewing HMMs as DBNSs, as well as an excellent overview of DBNgémeral, the reader
is referred to Murphy’s Ph.D. thesis. [71].

In order to apply HMMs to some pattern recognition task, éreme three problems to

consider:

1. Given an observation sequerfdeand an HMMM, how can the probability of the

observation given the modef,(O|M), be estimated?

2. Given an observation sequenfeand an HMMM, how can the state sequenge

most likelyto have generate@ be estimated?
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3. How can the parameters of the HMM be adjusted to maximiz8(O|M)?

The first two problems, probability estimation and inferenare solved by dynamic
programming procedures: the forward procedure and thebvidgorithm. The third prob-
lem is solved by the Baum-Welch procedure, an expectationmization (EM) procedure
in which expected counts for all states and all outputs dira# steps are accumulated us-
ing the forward and backward procedures and subsequenti)etted to probabilities. An
alternate optimization procedure in common use involvdstuting forward and back-
ward expectations with Viterbi expectations. The readeeisrred to the classic HMM
tutorial by Rabiner [80], as well as ASR texts by Rabiner anahgy81] and Jelinek [52]
for more information on these procedures.

There is a fourth problem for HMMs which is not typically casesred by most ASR
researchers, but which is vital for general audio modelihbis problem is how to infer
the structure of the HMM from data, in the absence of detgléar knowledge. Structure
learning is often not a problem in ASR and similar applicasidbecause domain knowledge
allows researchers to make informed decisions about theppate topologies to use. In
general audio modeling, it is often not clear what kinds gologies are appropriate to
model the phenomena of interest. Hence, one must seek nsefitroéarning topologies,
as well as parameters, from unsegmented data. Approachexeotoward this goal in-
clude Stolcke and Omohundro’s model merging method [97]n&8sgparameter extinction
method [9], Frietag and McCallum’s stochastic optimizatioathod, and Reyes-Gomez

and Ellis’ leader-follower clustering method [83].

2.7 Chapter Summary

| presented in this chapter an overview of the theoreticekpeound of machine listening,

covering the nature of the audio signal, basic audio arabsil feature extraction, and the
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organizing principles of general machine perception. lcbated with an introduction to
the main tool for modeling time series in audio, the hidderrkda model. The material

presented here constitutes sufficient background to utashet$he remainder of this thesis.



Chapter 3

Auditory Gisting for Summarization and

Stream-of-Interest Selection in Multimedia

3.1 Chapter Overview

This chapter describes theoretical and practical work ottimedia summarization and
stream-of-interest selection using audio data. Spedifjcaiemonstrates how the relative
value of segments of multimedia can be estimated using odymation theoretic mea-
sures of the information content of the audio streams. | stiaw this approach, called
blind value assignment (BVA), can be used to produce valugmehts that are broadly
similar to human value judgments in two specific tasks — &dteion review generation
generation (AARG), a summarization task, and online aggeeganote sensing (OARS),
a stream-of-interest selection task. | begin the chaptdr avdiscussion of the motivation
for this work, and why BVA is so well-suited for applicationktbis kind. After discussing

prior work on the closely-related field of blind segmentafib present the BVA metrics

36
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used in this thesis, followed by experiments on the AARG andRSAroblems which

demonstrate the effectiveness of the approach.

3.2 Multimedia Summarization

As noted in Chapter 1, there has recently been a rapid pratiéer of inexpensive devices,
both stationary and portable, which are able to collect aoksnassive amounts of mul-
timedia sensory data. As a result, the ability to constnett, detailed accounts of human
activity has also grown. This capability continues to growl ghe pace of growth will only
accelerate as time passes. One can easily imagine a stakgcim these massive corpora
can be used to collect intelligence, augment human menegtories, and share experi-
ences. One can equally easily imagine a state in which tlegpera are rendered unwieldy
by their size and sparseness with respect to interestingisaftil events. Much of daily
human life is spent on repetitive, boring tasks that are nmtlwreviewing or reporting;
truly interesting and useful events are relatively rare.midas are largely incapable of
finding them in large databases, and machines which needte$s large collections of
multimedia corpora could also benefit from some form of ppepssing so they can focus
their resources on areas of genuine interest. For this meagstems capable of providing
a low-resolution means for humans and machines to condpbbratory data analysis is
needed. In the case of multimedia data, this summarizatiocegs is often referred to as
skimming or gisting.

A multimedia summarization system produces, from someimattia corpus, a se-
lection of segments that in some way captures the integestépects of the corpus. In
this way, a human or machine user can rapidly peruse theigigblof the corpus and
achieve a high-level understanding of the events, enviesmg) and activities that it con-
tains. Further, the summary can itself serve as a platforrddeper analysis. Upon finding

a particularly interesting scene, the user can query thesy discover other, similar
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scenes. In practice, a summary to be used in this mannerdssbonsist of an ordering over
all segments, such that the user can select an absolutatveedummary size.

This kind of summarization is distinct from query-specificrsnarization in that it does
not rank segments according to their utility compared toesoser-supplied specification.
It is instead completely undirected and thus not dependergpecific event or activity
models. This mode of operation is complementary to modséthanalysis and relies on

the statistics of the signal to estimate value.

3.3 Blind Segmentation and Value Assignment

The process of creating the kind of general summary of istémehis work is often referred
to as a value assignment problem. That is, the process of aumation can be viewed as
the process of finding those segments in a multimedia streimhigh value, for some
definition of value. In some applications, the definition afue is quite specific, and
certain classes of events are known to be of inteagstiori. In this case, if enough data
are available, relevant models can be trained and valugrassnt becomes a detection
problem. Examples of this situation include broadcast ngvegch recognition (in which
speech regions have value, while music regions do not) drwk @ctivity recognition (in
which specific sounds or events can be important contexj cues

In the applications envisioned here, however, there isgdlgeno such prior expecta-
tion of the kinds of events which might be of interest, anddeemo models can be built to
recognize and detect these events. For this reason, thededi applications are referred
to asblind segmentation or value assignment problems. While blindmesss that there
is no way to bias value assignments toward specific classesarits or scenes, it does
provide robustness to noisy or unseen conditions underwdgmantic models may break
down. Since the statistics of the signal are all that a blirdhmd has to work with, these

concerns simply do not matter. Furthermore, methods badely ®n the statistics of the
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signal rather than potentially complex semantic event risoae fast, making them well-
suited to real-time operation, exploratory data analyeig] deployment on devices with
limited computational power.

In this work, audio data is the focus of value assignmentn ewecases where video
data is available. This is a reasonable choice for many ofg¢asons given in Chapter 1.
To reiterate these reasons, the audio signal has low batidasdi processing costs, it is
omnidirectional, and it is immune to occlusion, sensor ormtiand changes in lighting
conditions. Finally, events which are of import in the realrld often leave behind clear

acoustic evidence which is easy to detect even with blindhoo.

3.4 Prior Work

There is a large body of work on video-based segmentatiorsamumarization of multi-
media data, much of it focused on rather esoteric, appbioagpecific features like scene
breaks in film and televised news and sporting events. Sesutivey by Lienhart ([60])
for general information on this topic. Gaborski et. al. mbedemonstrated results on
blind novelty detection in video; see [105] and [37]). Alsbimterest is the work of Itti
and colleagues. Their work ([51], [50], [86]) demonstrateid tracking of human sac-
cade behavior when exposed to video, that humans prefetatmntion to those regions
where local entropy and local surprise are high. By estirgadimd tracking these regions
of high interest using information theoretic constructitike saliency and relative entropy,
Itti et. al. can construct a visual gist of a scene. ltti'siootof gist shares some features
with the blind value assignment approach developed belpecigcally, the metrics are
quite similar. However, the focus on visual regions rath@nttemporal regions shows a
quite different application goal. Also related to the gazfi$his thesis is work from Oliva,
Torralba, and collaborators. Their focus on low-level glbstatistics of images in [102],

[103], [76], and [104] allows for extremely efficient capgunf relevant characteristics of
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Figure 3.1: Log Power Spectra Example

an image, or a sequence of images. In addition to applicatike environment or locale
recognition, these methods could also in principle apptnéogisting domain.

In the audio domain, Foote proposed in [34] and [35] a metodlind segmentation
based on self-similarity, and also showed, with Cooper et. iral[23] that this method
could be used for shot boundary detection in video. In thi@gch, for a giver’-length
sequence of feature vectdss a7 x T self-similarity matrix A is created in which each

element4;; is the similarity between frameS; and.S;. Foote used the cosine measure,

S;-S;
1Sl 1115511

yields an easily visible representation of rhythm and regmbaubstructures, making it es-

to measure similarity. The resulting matrix has many edéng properties and

pecially well-suited to music representation. By way of epéam Figure 3.1 shows the
power spectra (in log space for ease of viewing) for 5 secohdsvironmental audio; the
corresponding self-similarity matrix is shown in Figur@.3.

The main use of the self-similarity matrix is for scene chadgtection. To detect scene
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Figure 3.2: Temporal Structure of Log Power Spectra, Examppl Foote
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Figure 3.3: Scene Change Kernel per Foote

changes in this framework, Foot suggested the use of a stemgie kernek, a matrix
encoding a perfect scene change. This matrix has four sguaregions whose values are

given as:

Ky (N) = L if(i<f)=0<3) 3.1)
—1 otherwise
In practice, this matrix is smoothed by a Gaussian functidod¢us on the center of the ker-
nel; an example of this kernel is shown in Figure 3.3. Alsog¢sithis matrix is symmetric,
it can be represented more efficiently in what Foote calls'stent domain,” which con-
siders only the values above the diagonal. A slant-doma&neschange kernel is shown in

Figure 3.4.
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Figure 3.4: Scene Change Kernel per Foote, Slant Domain
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The scene change kernel can be used to detect scene changpestiplying it with
a given segment’s self-similarity matrix; the resultingvalty measure for segmestis

given as:

Nov(S) =Y A Ky, (3.2)
]

whereA is the self-similarity matrix oS. Foote suggested that hierarchical segmentations
could be produced by computing novelties with varying kesieges. He also suggested
that auditory summaries could be produced by first, givenesaovelty threshold, seg-
menting an audio recording, and then, for each segmenttsgdhe subsegment that is
most similar to the segment as a whole. This approach to suizatian was proposed
in the musical domain, where it is important to summarizeex@iwith one of its more
recognizable structures. It is not clear that this apprasciseful when dealing with less-
structured, more event-sparse data — a given segment iruansed real-world audio is
likely to be dominated by silence or unidentifiable noise.

Slaney, in [92] and [91], presented the scale-space defieoaph to multimedia seg-
mentation. This work, like Foote’s, presented a hieraahitind segmentation method.
This method first involved computing smoothed, or scaleespaersions, of the input fea-

turesS. These smoothed featurés,are computed as:

5o — / R (3.3)
whereo is a smoothing factor. In Slaney’s approadhdifferent values otr are used, and
for eacho, the first derivatives\S® are computed and summed. The result is the scale-
space delta featurdS. Using the same example power spectra above, the scale-gpka
feature is shown in Figure 3.5.

After the scale-space delta feature has been computeds peakfound for each of

the NV values ofs, as shown in Figure 3.6. Peaks for small values aforrespond to
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Figure 3.5: Scale-Space Delta Sums of Log Power Spectf@,100, per Slaney

short-term scene changes, while peaks for large valuesofrespond to long-term scene
changes. By using dynamic programming techniques, long-eaks can be tracked back
to indices in the deltas of the unsmoothed feature, and heneaal time indices. Slaney
showed that this method was effective for segmentation dfimedia news broadcasts and
documentaries.

Chen et. al. used the Bayesian information criterion (BIC) tppse in [14] theA-BIC

method for blind segmentation. The BIC, computed as

BIC(X) = —2In L(X) + kIn|X], (3.4)

where L(X) is the likelihood of the data given some modeljs the number of model
parameters, and | is the number of observations, is a measure of model qualitgtwe-

wards good data fit but penalizes many parameters. IMB3$C approach, for a proposed
segmentation point in a data set, the BIC of representing aite with a single model is
compared to the BIC of representing it with two models, ondtttee side of the segmen-

tation point.
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Figure 3.6: Scale-Space Delta Sum Peak€)-100, per Slaney

Finally, Siegler et. al. proposed in [87] the KL2, or symngdd relative entropy
metric, to segment broadcast news data for automatic speeoignition. This method
was shown effective for this segmentation task, and is ihtfex basis for the blind value

assignment method discussed below.

3.5 A Metric for Blind Value Assignment

As in the works cited above, we consider information-thgommetrics for BVA. In that
these kinds of metrics can be of use in finding events whichmaaeeor highly informative
in some technical sense, it is possible in principle to usentis proxies for the more in-
tuitive senses of interesting or informative. The inforimatcontent of a random variable
in isolation can be estimated be calculating its entropg Gkapter 2). However, in mul-
timedia summarization applications, the goal is to prodetative rankings of value, and
to use these rankings to produce concise summaries of ¢orntes@gments were simply
to be ranked by entropy, it is possible that many very sinslegments might be ranked

highly and included in the summary. This kind of redundareyoi be avoided both on
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practical and theoretical grounds. Practically speakimgjost cases, humans interested in
exploring a large dataset are more interested in expenigribe full breadth of scenes and
events rather than a sequence of identical or similar scdimenretically speaking, a sum-
mary with many similar segments is redundant and so wastesajbacity of the summary
channel. It is thus important to view multimedia summar@agas a redundancy reduction
problem.

Given this view, the proper way to assign value is in such a thay the entropy of

the summaryis maximized, or, equivalently, that the segments incluidethe summary

n
are maximally mutually statistically independent. As thare = n%?'n, possible
m

m-element summaries of ansegment stream, it is impractical to search the entireespac
for the one which maximizes entropy. Instead, a greedy amprecan be implemented in
which, k segments already ranked in the summaryjithel** segment is the segment that
is maximally surprising. One measure of surprise, or edentyy, of model quality, is the

cross entropy, given in Equation 3.5.

Hyo(X) == p(z)logq(z). (3.5)

zeX
Cross entropy can be interpreted as the cost of encodingsefrent one distributiong,

with theincorrectdistributionp. If p is the model used to generate theegments already
ranked in the summary, andis the model used to generate segment 1, then cross
entropy can be used as a ranking metric. One issue with thisanleowever, is that the
inherent difficulty of coding segmerit+ 1 is not considered. That is, it is possible that

H

».q¢(Xk+1) is high largely becaus&; itself has high entropy. In order to account for

this fact, we instead normalize the cross entropy by sutitiga¢che entropy of the can-
didate segment; the resulting measure is called the relatiéropy, or Kullback-Liebler
divergence, and is given in Equation 3.6. Relative entropybsainterpreted as the coding

effort that iswastedby assuming that the dafé was generated by distributigninstead of
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the correct distribution [24].

Dol = X plo)los™, (3.6)
= :;{p,q(X)_Hp(X>‘ (3.7)

A further problem with relative entropy is that it is not syratrc; this difficulty can be
repaired by considering the symmetrized version given inaiqn 3.8. This measure,
which first appeared in [87], is just the sum of the relativeeuies D (p||q) and D(q||p).
One added normalization which can be made is to divide tla¢ivelentropies by the cross
entropy as shown in Equation 3.10; the resulting metricnshio Equation 3.11, is always
between 0 and 1 and is interpreted as the average percerftagding cost wasted by
assuming an incorrect distribution. This metri¢?, or normalized, symmetrized relative

entropy (NSRE), is used as the main metric in all followingueadssignment exercises .

D*(pllq) = D(pllg) + D(qllp), (3.8)
Hp,q(X) + qu(X) - Hp(X) - Hq(X)- (3-9)
DQ(qu) _ D(pHQ) + D(QHP) (310)

Hp7q(X) HQ,P(‘X)’
Hy(X)  Hy(X)

2T (X)) Hypl(X)

(3.11)

3.6 Evaluating The Auditory BVA Approach

To evaluate the auditory BVA approach for multimedia sumasion and stream-of-

interest selection, experiments were designed in whidrareiovisual data were collected
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and human judgments for both tasks were elicited. Thesanedts were used as a base-
line against which to evaluate automatic value judgmensedan the metrics described

above and the specific application-dependent proceduseastied below.

3.6.1 Data Collection

Data for this evaluation were collected using a Hitachi MPE@&deo camera attached to
the author’s backpack while he carried out a number of egamdand around the CMU

campus. These tasks included:
Stream 1 Visiting an ATM to make a withdrawal. See Figure 3.7.

Stream 2 Mailing a letter and purchasing a soda from a vending macltee Figure 3.8 and

Figure 3.9.
Stream 3 Buying lunch from a mobile vendor. See Figure 3.10.
Stream 4 Taking a car to a gas station for a fillup. See Figure 3.11.

The streams ranged in length from 10 to 15 minutes. An extenraophone was not
used for this study, as the onboard microphone was judgee wf Bufficient quality to
capture the relevant sounds. Audio was extracted from thEGAR video with a sample

rate of 16 kHz and a sample depth of 2 bytes.

3.6.2 Feature Extraction and Data Modeling

Three separate audio feature sets were used in this ewaduakbng with two sets of video
features for comparison. All audio features were computedfeame rate of 100 per sec-
ond. The audio features used included a 16-dimensionalf seelscale spectra (MEL),
a set of 16 MFCCs derived from those spectra, and a set of foutrapsummary fea-

tures (SPEC) including spectral centroid (see Equation) 2c@&t mean square energy (see
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Figure 3.7: Visiting an ATM

Figure 3.8: Mailing a Letter

Figure 3.9: Purchasing a Soda
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Figure 3.10: Purchasing Lunch from a Mobile Vendor

Figure 3.11: Filling the Car with Gasoline
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Equation 2.8), signal-to-noise ratio (see Equation 2.48), a band energy ratio at 200 Hz
(see Equation 2.12). In these experiments, the two 20-difopal feature sets MEL+SPEC
and MFCC+SPEC were evaluated. The first video feature used setsoh color features
(COLOR) made up of 128 histogram values in the hue, saturatadne (HSV) color space,
sampled at a rate of 30 frames per second. The second videogfesed was a set of mo-
tion features (MOTION). The motion features consisted dof fralues: energy, horizontal
motion mean, vertical motion mean, horizontal motion wace and vertical motion vari-
ance. These features were intended to characterize bdihlglamera motion and local
object motion. These features were computed based on bfitisaoutliers every three
video frames using the Lucas-Kanade algorithm [61], resgliin a frame rate of 10 per
second.

After feature extraction, the data in this study was represkas a set of real-valued
vectors, and not sequences of discrete values as implielti twe anetrics discussed so far.
Real-valued versions of information theoretic measureeifaermedifferential entropy,
etc.) do existt; however, unlike in the discrete case, the distributiomust be known
in order to compute these measures correctly. In practice work uses the simplifying
assumption that all random variables were generated byidiménsional Gaussian dis-
tributions with diagonal covariance matrices. This assionps clearly false; however,
it can be shown that for any given covariance mafixthe Gaussian distribution is the
maximal-entropy distribution with that covariance ma{®]. In other words, employing
this assumption amounts to calculating upper bounds onatheus metrics given the data.

In order to compute the NSRE for data modeled in this way, iesessary only to be
able to compute the entropy of a Gaussian distribution witladance matrix 4’| and the
cross entropy between two Gaussian distributions with canee matrice$i | and|Kp|.

The Gaussian differential entropy is given in Equation 3tti& Gaussian differential cross

These real versions generally have strange propertiestiffieeential entropyh (X)), for instance, can

be negative!
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entropy in Equation 3.13.

hp(X) = %m(zmmm. (3.12)

1 ) _
hpo(X) = S[In(2me)" | Kol + KpKg' + (pp — 1) Ko (np = no)l- - (3.13)

3.6.3 The Evaluation Procedure

For each application, a simple value judgment interfacedeagyned which allowed human
subjects to either rank all the segments in each streamyfonsrization) or to select, for
each possible segment index, which of the four streams was imeresting at that time.
The subjects were told that their goal was in the realm ofdioating a group activity in
which each group member had a specific task which was pareajvérall group aim but
were not explicitly told about the contents of each streaiffei2nt instructions applied to
each task. Subjects in the summarization experiment wéddhat they were to create a
summary of each stream such that other human users couldiveaw and rapidly attain
familiarity with their contents. Subjects in the streamiterest selection experiment were
told that they were to monitor the events in real time and tect¢he one stream at each
time index that most impacted their understanding of theeenperation.

Agreement with human judgments was used as the evaluatiticnmethis work. This
metric was chosen in lieu of eliciting direct human evaloiasi of BVA judgments for two
reasons. First, a notion like “quality of summary” is extedynhard for humans to describe
guantitatively or measure. Second, humans may have prei@a notions about the abil-
ity of computational systems to pick out important aspetteasory data; biases in either
direction in this way could make the responses hard to inteégnd could possibly require
double-blind studies in which some subjects were given mipraduced gists and others

computer-produced gists. Simply asking humans to produgie dwn value assignments
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sidesteps most of these problems. Under this regime, mattelsran easy-to-interpret met-
ric. Further, since humans are not asked to grade the peafarenof some other entity, the
ability to consciously or unconsciously exhibit bias inithhesponses never presents itself.
One issue that does present itself is that humans themsualgés not agree in their value
judgments. One might expect a certain amount of disagregimainone might also expect
that certain segments wouddwaysbe rated highly valuable by humans, simply because it
was patently obvious that they contained useful infornmatibhe segment where the au-
thor actually gets cash from the ATM, for example, shouldlh@sen by everyone. Finally,
the ability to measure inter-human agreement allows onpedoically consider machine
performance on those segments about which hurdahagree, which one could argue is

more important than matching human judgments in the abs#rm®ad agreement.

3.7 Application: Multimedia Summarization for After-Action
Review Generation

The goal of a summarization application is simply to presesihortened version of some
multimedia stream which captures the information neededitéon an understanding of the
important actions in the stream, given some limited chanaphcity. In this thesis, such
applications are referred to as after-action review geaimeréAARG) applications.

Given a multimedia stream, the target summary is an orderirsggments from most
valuable to least valuable, assuming the information+iso definitions of value given
above. In practice, the summary is kept in temporal ordehtwnan perusal. To construct
this ordering, a greedy algorithm is used. The summary isdeeded with the segment
which has the highest entropy; subsequent segments ard althee summary in order of
descending NSRE between candidate segments and segmeattyair the summary.

In addition to this greedy algorithm, an alternate apprdzaged solely on scene changes
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Stream | Segments

1 71
2 69
3 90
4 89

Average| 79.8

Table 3.1: Number of 10-second Segments per Stream

was tested. In this approach, the NSRE was us&snally on each segment to estimate
to what degree that segment contained a scene change; pintsaap is similar to the blind
segmentation work discussed in Section 3.4. In this exparipfive scene change mea-
surements were taken per segment and the maximum was udeglscehe change value.
In order to create a summary using this technique, the segmeme ranked by strength of
scene change alone, with no consideration given to sinyilariother segments.
Experiments were carried out by first eliciting human valuggments and then com-
paring BVA judgments against this standard. In order to simploth the value elicita-
tion process and the evaluation process, all streams wétensp 10-second segments;
the number of segments per stream is shown in Table 3.1. $nwtay, value elicitation
proceeded at a faster pace, and deciding whether a machigsm@nt matched a human
judgment became a matter of checking whether or not segmeices matched. In order
to actually elicit these judgments, the streams were ctendo RealMedia format using
the RealProducer and RealMedia Editor packages [82] in cohumwith the SMIL multi-
media markup language [94]. A tool, shown in Figure 3.12, emasstructed which allowed
humans to play any segment at any time, and to populate a synusiag these segments.
The summary was also playable at any time, allowing humaaddand remove segments

and evaluate the effects in real time.
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Subjects were asked to view each stream in its entirety at teace, and then to con-
struct a summary of 10 segments such that some other huméhwatch the summary
and obtain an operational knowledge of the important eviatisoccurred in each stream.

The results of these experiments are discussed next. B&cHdl presents the results
of human value judgment elicitation and levels of human agwnt; Section 3.7.2 gives

detailed experimental results and discussion.

3.7.1 Human Value Judgments

Human match percentages for each of the ten subjects endpiloyhis study are shown
in Table 3.2. These figures were computed by removing eageduibom the reference
set and averaging, for each segment in the test human’s siyyimoay many other humans
included that segment. For example, Subject 1's summansfaam 1 contained, on
average, only 6.7% of the segments included in other humaaped summaries. Over
all humans and streams, the average human match rate faotigs is 38.6%, which can
be compared to the match rate of a random summarizatioegyat.2%, or a temporally
uniform sampling of segments, 13.5%.

It is additionally worthwhile to examine the distributior imatches for each stream.
Figures 3.13 - 3.16 show, for each segment, how many humahsled that segment in
their summary. As expected, the distribution of segmentkided in summaries is quite

peaky.

3.7.2 Experimental Results

Given the human judgments shown above, 8 different audsed®BARG systems were
tested, along with 4 different video-based AARG systems.idsgstems tested included
MEL, MFCC, MEL+SPEC, and MFCC+SPEC feature sets, using both thenmian en-

tropy and maximum scene change algorithms. Video systestexitencluded COLOR and
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Subject Stream

Stream 1| Stream 2| Stream 3| Stream 4| Average

hl 6.7% 42.2% | 33.3% | 31.1% | 28.3%
h2 344% | 43.3% | 42.2% | 31.1% | 37.8%
h3 48.8% | 41.1% | 54.4% | 16.7% | 40.3%
h4 27.8% | 46.7% | 22.2% | 30.0% | 31.7%
h5 30.0% | 47.8% | 46.7% | 26.7% | 37.8%
h6 43.3% | 47.8% | 46.7% | 26.7% | 41.1%
h7 46.7% | 46.7% | 48.9% | 43.3% | 46.4%
h8 46.7% | 53.3% | 45.6% | 33.3% | 44.7%
h9 37.8% | 46.7% | 36.7% | 27.8% | 37.2%
h10 46.7% | 35.6% | 45.6% | 35.6% | 40.8%

Average|| 34.9% | 45.1% | 42.2% | 30.2% | 38.6%

Table 3.2: Human AARG Match Percentages Per Stream
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Figure 3.13: Human AARG Summary Segment Counts, Stream 1
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Figure 3.16: Human AARG Summary Segment Counts, Stream 4

MOTION features using both the maximum entropy and maximeens change algo-
rithms. Note that, since the MOTION features only had a fraate of 3 per second, only
one scene change value per segment was computed, whildadlfeatures used five val-
ues. Audio results are shown in Tables 3.3 and 3.4; videdtsasuTable 3.5. Both sets
of results are shown with match rates for random summaoizatnd temporally uniform
summarization for comparison.

There are several results of interest in the audio expetsné&irst, note that in all cases,
the scene change metric appears to perform better than thienoma entropy metric. This
result seems to imply that humans cannot or do not keep englaffal information in
mind to reproduce a summary that is optimal in an informatleoretic sense; rather,
they look for highly informative regions (i.e., boundaji@nd choose those, independent
of other choices. Second, the best-performing systemdbasehe MEL+SPEC feature
set, achieves a match rate of 27%, which is more than halfwayden temporal random
sampling and average human performance, a reasonablegeeu the simplicity of the

approach. Finally, while adding spectral summary featto¢se MEL feature set appears
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MEL MFCC Random| Uniform

Stream Gist Type Gist Type Gist Gist

Max Entropy | Scene Changeé Max Entropy| Scene Changé

Stream1 18.0% 21.0% 13.0% 16.0% 1.4% 7.0%
Stream?2 9.0% 32.0% 9.0% 4.0% 1.4% 27.0%

Stream3 12.0% 27.0% 5.0% 33.0% 1.1% 8.0%
Stream4 14.0% 25.0% 5.0% 10.0% 1.1% 12.0%
Average|  13.2% 26.2% 8.0% 15.7% 1.2% | 13.5%

Table 3.3: Audio AARG BVA Match Rates per Stream: Basic Features
Feature

MEL+SPEC MFCC+SPEC Random| Uniform

Stream Gist Type Gist Type Gist Gist

Max Entropy | Scene Changé Max Entropy| Scene Changé

Streamil|  18.0% 23.0% 15.0% 19.0% 1.4% | 7.0%
Stream?2 9.0% 32.0% 14.0% 31.0% 1.4% 27.0%
Stream3 19.0% 27.0% 13.0% 34.0% 1.1% 8.0%
Stream4 11.0% 26.0% 14.0% 19.0% 1.1% 12.0%
Average 14.2% 27.0% 14.0% 25.7% 1.2% 13.5%

Table 3.4: Audio AARG BVA Match Rates per Stream: Augmented et
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Feature
COLOR MOTION Random| Uniform
Stream Gist Type Gist Type Gist Gist
Max Entropy | Scene Changé Max Entropy| Scene Changé
Stream1 14.0% 20.0% 13.0% 14.0% 1.4% 7.0%
Stream?2 24.0% 18.0% 6.0% 17.0% 1.4% 27.0%
Stream3 4.0% 9.0% 12.0% 11.0% 1.1% 8.0%
Stream4 2.0% 18.0% 1.0% 6.0% 1.1% 12.0%
Average 11.0% 16.2% 8.0% 12.0% 1.2% | 13.5%

Table 3.5: Video AARG BVA Match Rates per Stream

to help only a little, adding these features to the MFCC fesati@t helps a lot, improving
performance using the scene change algorithm from 15.7%.#%9@ This result suggests
that while the spectral summary features carry a lot of mition that could be useful in
summarization applications, it is largely redundant giaespectral feature representation
like the melscale filterbank.

The video results are similar to the audio results in thatsitene change algorithm
outperforms the maximum entropy algorithm, however, pennce overall is worse than
for audio. The best system achieves a match rate of only 1,6a2fi6h is not much better
than temporally uniform sampling, and 10% worse than thé dgdio system.

The final experiment conducted in the AARG evaluation wassdtrict scoring to those
segments on which humans demonstrated high levels of agréennder the intuitive
assumption that it is more important to match human judgmén it is largely uniform
than when human opinions diverge. Table 3.6 shows the sftdchigreement restriction
on the best audio system, MEL+SPEC using the scene changdtlaby. As anticipated,

performance increases with the degree of human agreemaoite degree, reaching a
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Stream Human Agreement Level
1 2 3 4 5 6 7 8

Stream 1 || 23.0%| 26.7%| 23.7%| 26.4%| 26.4%| 29.2%| 22.2% | 100.0%
Stream 2 || 32.0% | 37.3%| 39.1%| 40.9% | 50.0% | 56.1% | 48.6%| 35.7%
Stream 3 || 27.0%| 31.3%| 30.1%| 31.1% | 38.8% | 43.2%| 21.9%| 0.0%
Stream 4 | 26.0%| 29.1%| 32.8%| 39.5%| 37.1% | 53.3%| 53.3%| 100.0%

Average | 27.0%| 31.2%| 31.7%| 34.5%| 37.7%| 43.2%| 33.9%| 41.9%

Sample Size| 318 81 53 37 27 20 15 7

Table 3.6: AARG BVA match rates at selected human agreemegislev

peak of 43.2% on segments included in at least 6 human suesn&erformance falls off
above this point; however, the sample size above this levela small to make general

statements.

3.8 Application: Stream-of-Interest Selection for Online
Aggregate Remote Sensing

The goal of a stream-of-interest selection applicatiogiign a set of streams presented in
real time, to select the one stream that is most informatig®@me sense. In this thesis, such
applications are referred to as online aggregate remosggp(OARS) applications. These
applications are characterized by the presence of mukigtiers, possibly not co-located,
collaborating in the real world to perform some task and gditdy a central authority
whose job it is to monitor the field actors and update the téek pn case the actors are able
to transmit live video to the central authority, it is impant to filter out the uninteresting

information and focus on the streams likely to yield usefifibrmation. This application
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lends itself well to the BVA approach.

There are two ways in which a stream could be consideredirdtive in an information
theoretic sense in OARS applications. First, a stream atengdimne segment can contain
information that is different from the other streams. Theatlire is termedniqueness
Second, a stream at a given time segment can contain infiomidiat is different from
that stream inprevioustime segments. This feature is termealelty In practice, novelty
can be computed either as a comparison between the curggnesefor a given stream
and past segments for that stream, or as a measure of thgtbta#rscene change within
the current segment. These two types of novelty are reféoreghistorical novelty and
scene changeovelty. In this evaluation, the NSRE metric was used to measuiqueness
and both forms of novelty.

As with AARG, experiments were carried out by first elicitingrhan value judgments
and then comparing BVA judgments against this standard ttiBglithe streams into 10-
second segments was performed exactly as per the AARG exgrdgnexcept that since
the task is to select one stream of many, the number of segrhadtto be clipped at 69,
the length of the shortest stream. The four streams wereaign time and displayed in
four-up format using RealPlayer and the SMIL markup languddes four-up display is
shown in Figure 3.17. A rather simple value judgment tool e@sstructed for this task,
as shown in Figure 3.18. This tool allowed subjects to vieehgame segment’s streams
either in parallel (as would occur in real-world deploynmesttin sequence. The subjects
were allowed to view each segment as many times as necessamngear to make a value
judgment and were told that their goal was to select the aearst in each segment that
was most important with the task of maintaining situaticeabreness over all streams in

mind.
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Figure 3.17: The Four-Window OARS Judgment Display
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Figure 3.18: The OARS Value Elicitation Tool

3.8.1 Human Value Judgments

In many cases, there was little agreement among humans abazlt streams were most
important. In fact, there were many segments in which nothmfcanything was hap-
pening inany stream; in those cases, it appeared that subjects simpsednatream at
random or according to some esoteric preference. Howewae tvere a number of seg-
ments where agreement was significant. These segments vestdy itihose which con-
tained clearly valuable information; e.g., the segmentreitiee author ordered his lunch or
started pumping gas. Human agreement levels were measuocesriputing the Shannon
redundancy (see Equation 2.3). A value of 1 indicates un@nimhile a value of 0 indi-
cates a uniform distribution of human responses. Humareaggat levels calculated using
Shannon redundancy are shown in Figure 3.19. The averageragnt level was 0.35; in
18 segments the agreement level was 0.5 or greater.

As with the AARG evaluation, match rates were computed fohdamman subject.
These rates are shown in Table 3.7. Even the best-performingn does not achieve a
match rate of 50%; the average human match rate is 41%. Thiefig only 16% better

than the chance result of 25%.
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Figure 3.19: Agreement Coefficients Among Human SubjectSpgment

Segment

Human Performance

Subject| Match Rate|| Subject|| Match Rate
hl 42.19% h6 33.97%
h2 46.85% h7 39.45%
h3 42.35% h8 42.99%
h4 39.29% h9 41.22%
h5 42.02% h10 39.61%

Average 40.99%

Table 3.7: Human match rates per subject
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Feature
Novelty Weight MEL+SPEC MFCC+SPEC
Novelty Type Novelty Type
History | Scene Change History | Scene Change

1 23.53% 36.32% 25.44% 33.08%
0.75 25.44% 32.94% 25.58% 30.00%
0.5 23.23% 26.32% 24.11% 20.14%
0.25 20.44% 23.97% 22.05% 20.73%

0 23.08% 20.73%

Table 3.8: Audio OARS BVA match rates, all test conditions

3.8.2 Experimental Results

In this study, 18 different audio-based BVA systems and 1fewdint video-based BVA
systems were tested. For the MEL+SPEC, MFCC+SPEC, and COLORdes#ts, five
different linear weightings of novelty and uniqueness wexsted, and for those experi-
ments in which novelty is given a non-zero weight, histdrivavelty and scene change
novelty were evaluated separately. For the MOTION featardy the historical novelty
variant was evaluated. Audio results are shown in Tablevéd&p results in Table 3.9.
Table 3.8 reveals that the best audio-based BVA system aszh@emnatch rate of 36.3%,
which is only 5% worse than the average human subject’s miatehand 12% better than
chance. As with AARG, the feature set based on mel spectreedatmed the MFCC-
based feature set, but in this application the differene®isas pronounced; in fact, when
using historical as opposed to scene change novelty, MFC@sped slightly better. In-
terestingly, though, for both the MFCC+SPEC and MEL+SPEGifeadets, scene change
novelty outperformed historical novelty; further, optinp@rformance was achieved when

unigueness was not considered at all. As with the AARG resilitsve, this result can be
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Feature
Novelty Weight COLOR MOTION
Novelty Type Novelty Type
History | Scene Change  History
1 26.61% 16.91% 21.76%
0.75 24.41% 23.38% 18.38%
0.5 26.03% 23.38% 15.58%
0.25 22.94% 23.38% 15.29%
0 23.38% 15.00%

Table 3.9: Video OARS BVA match rates, all test conditions

interpreted as a human preference for local scene bousdahien searching for relevant
information.

Table 3.9 shows that overall, performance when using vieaalires was not as good as
when using audio features, and was in fact very close to éhdnke the AARG task, this
result can be taken as evidence that audio may be superiatdo for applications where
BVA can be used. In this set of results, however, the samaaesitips between historical
and scene change novelty did not hold; the optimal resultagageved by a system using
historical novelty.

The final experiment conducted in the OARS evaluation, ast@lAARG evaluation,
was to restrict scoring to those segments on which humanemgnated some high level of
agreement. Table 3.10 shows the effects of agreementtesiron match rate. Apart from
the MOTION feature set, all systems show steady improvemat increasing human
agreement level; the optimal result of 61.1% match rate @catia human agreement level
of 0.5. Above this level, there are too few candidate segsmentdraw any conclusions;

however, the trend, particularly using the MEL+SPEC feaset, is clear.
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System Agreement Level
0 0.25 0.5 0.75 1.0

MEL+SPEC | 36.32%| 48.78%| 61.11%| 48.33%| 50.00%
MFCC+SPEC|| 33.08%| 39.09% | 39.44% 35.00%| 50.00%
COLOR 26.61%| 28.18%| 33.33%| 22.78%| 50.00%
MOTION 21.76%| 25.00%| 16.67%| 21.67%| 22.42%

Sample Size 70 34 18 6 4

Table 3.10: OARS BVA match rates at selected human agreenvetd le

3.9 Chapter Summary

This chapter presented a theory of auditory blind valuegassent for multimedia summa-
rization and stream-of-interest selection based on tmejple of redundancy reduction. It
contained a discussion of two experiments designed to ateabhe theory on a summa-
rization application (AARG) and a stream-of-interest aqgion (OARS) by comparing
automatic value judgments with human value judgments otimedlia data.

In the AARG evaluation, the auditory BVA method achieved a hotjualgment match
rate of 27%, compared to 13% for temporal uniform samplind 38% for the average
human in the study. Restricting the match percentage cailoutato those segments on
which humans exhibited strong agreement resulted in ingat@erformance. Specifically,
when only those segments selected by 60% or more of the ssibyece considered, the
auditory BVA system’s match rate improved to 43%.

In the OARS evaluation, the auditory BVA method achieved a myudgment match
rate of 36%, compared to 25% for chance and 41% for the avdragmn in the study.
As with AARG, restricting the match percentage calculatitmthose segments on which

humans exhibited strong agreement resulted in improvedmpeance. Specifically, when
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only those segments with a human agreement coefficient afrlhigher were considered,
the auditory BVA system’s match rate improved to 61%.

For both AARG and OARS systems, melscale spectra proved supeiMFCCs and
video features employed for comparison. More interesfingding strength of scene change
within each segment was a much more reliable indicator ofdrupreference than either
maximizing summary entropy in the AARG case or maximizingiislarity to other seg-
ments in the OARS case. This is an interesting result whicmsede indicate that local
measures of interestingness were much more important tamsitrying to complete value
assignment tasks than were more global measures. It remaiopen question whether
local or global measures result in summaries which are mseéulto human users.

These experiments demonstrate that auditory BVA can be aatie# method for both
fast exploratory analysis of unstructured multimedia datd for selecting streams of in-
terest in real-time remote awareness applications. Coupitttdlthe modest processing
requirements of audio compared to video, these results st®@g argument in favor of

blind, audio-first processing of multimedia in advance ofendetailed analysis.



Chapter 4

Auditory Environment Recognition for

User State Modeling

4.1 Chapter Overview

This chapter describes theoretical and practical work a@litaty environment recognition
for user state modeling. The discussion begins with theoresthat environment is a poten-
tially useful aspect of user state to consider for certapliegtions, and moves on to prior
work in environment recognition from audio. After presegtiwo possible approaches to
environment modeling, one based on GMM/HMMs, the other dimtd coding, | present
experimental results on a large corpus of environmental idatuding comparisons to hu-

man performance.

72
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4.2 Environment and User State

Environment is an important aspect of user state. Humaumitesi and social norms are
strongly interrelated with environment. For example, thiesof activities typically pur-
sued while in an office is radically different from those tgly pursued in a park or auto-
mobile. As these activities inform the willingness of hured@n engage in other attention-
demanding tasks, like answering a cellular telephone ddhgpup information, environ-
ment is a useful source of information which can be exploligdtontext-aware mobile
applications in order to make their behavior more sensttiveuman social preferences.
Using the cellular telephone example, it is typically caesed socially inappropriate to
accept a telephone call while in a theater or meeting unlesgall is urgent. Likewise,
accepting a call while driving could be distracting, whilgeanpting to accept a call at
a loud construction site might be futile. Aside from avoidarof inappropriate human-
machine interactions, context-aware systems might betal&arn associations between
environments and information-seeking behaviors. For gtana user might often look
up stock quotes while riding the bus or train to work; a systemch learns to associate
this behavior with the bus or train environment might be ablaenticipate the user’s needs
and appear to be more responsive. In order to achieve thdsokioontext-aware behavior,

though, mobile devices need some meandatéctingenvironmental types.

4.3 Prior Work

There has been a moderately-sized body of prior work on retiog of specific locales,
as opposed to environments, from audio data in both sugeheisd unsupervised settings.
As these two problems are intuitively similar, it is worthiehto explore the techniques
previously used for locale recognition.

Clarkson used both audio and video data, clustered with laygtied HMMs, to record,
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segment, and access long-term recordings of day-to-dgyskfe [17], [20], [18], [19], and
[16]. The earliest of these works focused mainly on audid, fanind that it was difficult

to distinguish between locales which sounded similar uirgymodality; for example, it

was hard to tell a lab lounge from the author’s office. For tieigson, Clarkson’s later
work added features from additional modalities, speciffcafisual and orientation fea-
tures. Note however, that the difficulty in making this kinddistinction makes perfect
sense and suggests that the more general problem of endammeatognition using only
auditory information is possible.

In [30] and [29], Ellis and Lee used auditory information tluster long personal
recordings into coherent scenes, which corresponded mt@esao specific locales. In [30],
a spectral clustering algorithm due to Ng, Jordan, and Wé#&svas applied to audio seg-
ments produced by a BIC segmentation method; the overallgwacof this clustering
based on 16 labeled classes was 61%. In [29], an exploratioptional features for seg-
menting long personal recordings was made. This studyaelitthat the best features for
this task were minute-long metafeatures based on Bark-spaletra; specifically, the av-
erage log energy, average entropy, and entropy deviatishart-term Bark-scale spectra
were most useful.

In [54], Kapoor and Basu demonstrated the use of an auditaigiore of epitomic
image representation (due to Jojic [53]) to model and diassfew basic audio classes,
and speculated that this feature representation could éflusr auditory environment
recognition.

A coding approach teisualscenes due to Oliva, Torralba, and collaborators is related
to the auditory coding approach presented in this chapthis method can be used for
high-level analysis of environment or locale and can be daar{102], [103], and [76].

The author performed two pilot studies, reported in [63] §&]. The first study in-
volved a 6-class test with one recording per environmeng. &itvironments tested included

office, atrium, car, lecture, street, and CMU campus. Usiigdbrpus, one autoencod-
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ing neural network was trained for each environment usinlECCs, spectral centroid,
spectral rolloff, zero-crossing rate, and power sampleal feahme rate of 5 Hz. This sys-
tem achieved an error rate of 1.7% on the test data. By congparfisur human subjects
achieved error rates of 21% on a cold test and 12% after béiogea to listen to the

training data. Note that since there was only one recordergepvironment, though, this
was in reality another locale recognition system.

The second pilot study used 11 classes; apartment, halédeyator, lecture, meeting,
office, outside, raining, restaurant, theater, and vehididike the previous study, multiple
locales per environment were used; however, the corpusatetl was unbalanced. Using
this corpus, one autoencoding neural network and one GMM wained per environment;
64 MFCCs plus spectral centroid were compressed using PCA ton8ndions at a frame
rate of 100 Hz. Both systems achieved error rates of 22%; aichgystem improved
performance to less than 20%. This system, unlike the fitst pystem, was in fact an
environment recognition system capable of performing soreasure of generalization.

More recently, Chu et. al. reported experiments on envirgrimeeognition for mobile
robots using a variety of audio features and classifiers. [Ty obtained a recognition
error of approximately 6% on their dataset usingriaearest neighbor classifier and a mix-
ture of MFCCs, zero-crossing rate, standard deviation of-zewssing rate, and standard
deviation of spectral rolloff. Their dataset consisted @ fenvironmental types; hallway,
cafe, lobby, elevator, and outside. It should be noted, kiewéhat like many studies of this
type, there was only one locale studied per environmenthiarovords, these experiments
described a locale recognition task rather than the mucle ghiffrcult general environment

recognition task.
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4.4 Gestalt Environment Modeling

As prior work demonstrates, it is possible in principle toagnize environment types from
acoustic data. This is the case both because differentoemagnts tend to contain charac-
teristic events and because they tend to have charaatagisss background features like
noisiness, reverberation, and the like. Taking both faregd and background features to-
gether, different environments often have charactesstind fields. Rather than attempt to
consider the foreground and background characteristiessound field separately, which
would require some form of source separation, one migheatwstiew the entire sound
field as an entity to be modeled.

This kind of gross or Gestalt modeling of the environment lsardone using conven-
tional generative or discriminative methods, e.g., GMMdMss or MLPs. The perceptual
principle of redundancy reduction, however, suggestsdhalternate approach based on
environment-specific optimal coding might be possible. §beerative approach and the

optimal coding approach are discussed below.

4.4.1 A GMM/HMM Approach

The GMM/HMM approach to environment recognition involvas use of rather standard
machine learning techniques. For each environmental @dgsan acoustic model/; is
trained using the Expectation Maximization (EM) algoritH&¥]. During testing, for each
data segment;, the hypothesis is taken asg;;, max P(S;|M;).

The main implementation issues of this approach are isstiesodel structure. If
GMMs are used, the main issue is how to choose the appropmistder of Gaussians.
If HMMs are used, the main issues are how to select a topologyh®mw many Gaus-
sians to use in each state. For GMMs, the BIC, given in Equatibms3 useful measure
for model order selection. One can iteratively test the BI@hwain increasing number of

Gaussians and select the model order which maximizes ttegiori. For HMMs, several
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topology induction methods have been proposed as discus&attion 2.6. In this work,
the k-variable k-means algorithm due to Reyes-Gomez and Ellis [83] (a motibicaf
an algorithm used by Zhang and Kuo in [116]) is used. Thisrilgm, which is in the

leader-follower class of clustering algorithms, is defiasdshown in Figure 4.1.

k-Variablek-Means
1 Given: F, at-length sequence of-dimensional feature vectors,
z, the minimum number of samples per model,
0, the generality threshold;5 <= 0 <= 1.
2 Compute:mn, the average distance between vectorg'jn
s, the standard deviation of distances between vectaoFs in
0,, — m — sb
0, — m + sb
Initialize modelc, with frame having highest norm.
repeat until V.= 3", (z;x — ¢;)? is minimized:
for each unassigned franié
d — min(d;;(Fj, ¢;)).
ifd <86,
10 then add F; to ;.
11 elseifd > 6,

© 00 N o o1 b~ W

12 then make new clustet,, with F; as center.
13 Remove clusters with fewer tharsamples.

14 Assign all unclassified frames to closest cluster.

Figure 4.1: The:-variablek-means algorithm
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4.4.2 A Redundancy Reduction Approach

The redundancy reduction approach to environment redogniésts on the fact that the
optimal code for a suite of signals depends only on the sitatief that suite of signals. If
one suiteS, varies substantially from some other suig then the optimal codes for these
suites will also differ substantially.

If one posits that different environments in fact contaiffiedlent kinds of acoustic sig-
nals, then this difference in optimal codes can be used widisate between environ-
ments in the following way. For each environmentan optimal coding matrix’, can
be derived. ApplyingV, on some set ofi-dimensional feature vectors drawn fromy
yields a coded representatiéf(.X ),. A decoding matrixD, can be derived fronX and

C, in the following way:

D, = (H'H)'H'X, (4.1)
= (XCY'(XCY)THXCYX. (4.2)

The decoding matrix can then be appliedHd.X ), to yield an estimate of the original

input, X,,. The difference betweel and X, computed as:

IX] n

AX, Xy ) =YY (X(i,j) — X\ (4,4) (4.3)

i=1 j=1
and is referred to as the coding error &f given y. If X was in fact drawn from en-
vironmenty, one would expect thaf\ (X, XX) would be smaller than the coding error
of X given the optimal coding and decoding matrices from someratimvironmenty;
ie., A(X, XX) < A(X, EX)w)- Given this expectation, one can construct optimal coding
and decoding matrices for each environmergnd, during testing, take as the hypothesis

arg, min A(X, X,).
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As with the GMM/HMM approach, there are engineering issweaddress. First is
the order of the coded model. This order must be smaller thardimensionality if the
original feature vectot; one would assume that the more features the coded signahkas
more faithful the reconstruction of the original signal wabe. Conversely, the closer the
dimensionality of the coded signal to the original signalk evould assume that the coding
matrix would approach the unit matrix, reducing discrintiiitdy. The second issue to
address is the method for deriving the coding matrix. PCA @&#ldre obvious candidates;
however, a numerical method using autoencoding multilpgeceptrons (MLPS) is also a
possibility. Autoencoding MLPs are those trained usingnipeit as the target output; when
the mean squared error function is used as the trainingiontethe hidden weights will
approximate the PCA solution [26]. More specifically, the Mapproach will learn the
PCA solution up to a rotation. While analytical PCA is fasterrairt and always gives
an exact solution, the MLP approach has the advantage of ladile to converge on the
specific rotation of the PCA solution which is optimal in terai€oding error with a given
number of coding units.

It is also possible to extend the optimal coding approachrpleying a mixture of
coders. In this approach, data are fragmented and multgalers are trained in the hope
that each group of coding elements will model a specific apaliister of the given class.

In this work, trees of MLP autoencoders are used to test ti&unei of coders approach.

4.5 Experimental Evaluation

In order to evaluate the validity of the proposed methodsygel representative database
covering typical environments encountered by the targetsus the CHIL Connector sce-
nario [25] was developed. Environments such as office, tecand meeting were left out,

as the assumption of the CHIL project is that these enviromsneould be instrumented

lUnless we are using an overcomplete representation, erg.gwicki and Sejnowski [59]
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in such a way as to make environment recognition redundaatCHIL-equipped space
would simply notify the Connector device of the user’s locale

This section describes in detail the data collected and imsdtlie environment recog-
nition evaluation, as well as results of a small study on hupexformance on the acoustic
environment recognition task designed to provide a baselgainst which to judge ma-

chine performance.

45.1 Data Collection

The database used in this work consists of approximately@éstof audio data recorded in
14 different kinds of environments in 10 different courdgras 4 continent& The data were
recorded in ten-minute chunks using a Sony minidisc recavdth a Sony ECM-717 stereo
microphone and converted to mono 16-bit, 16 kHz raw formate @ata collector was
instructed to remain stationary during recording, and teagbk use identical microphone
placement and recording settings.

From this database, nine environments were selected fy.stinese environments are
airport, bus, gallery, park, plaza, restaurant, streaintrand train platform. These envi-
ronments were selected to be representative of the envaotsnencountered in the CHIL
Connector scenario. Most are self-explanatory. “Gallegféers to any crowdeddoor
space not covered by the other environments, e.g., a mdzéPrefers to any crowded
outdoorspace not covered by the other environments; e.g., a cigreaur piazza with no
significant vehicle traffic. “Train platform” refers to thetaal area with train tracks, where
passengers board and disembark from subway cars or higla-$i@@ns. “Train” refers to
subways, high-speed trains, and street trolleys.

From each environment, 7 recordings were selected at randodhdivided into two

pools. The first pool consisted of 6 recordings from eachrenment and was labeled the

2Thanks again to Kornel Laskowski for creating this datatshseng his travels in 2004 and 2005.
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“seen” pool. The second pool, made up of the remaining réilegfdom each environment,
was labeled the “unseen” pool. Each 10-minute recordingtwas divided into 120 5-
second segments; the test set was constructed from the E2@musegments, plus 120
segments from the seen pool. The remaining segments wegaeddo the training set.
The training set thus consisted of a total of 5400 5-secogdsats, and the test set of
2160 5-second segments, evenly split between seen andnuceditions. Additionally,
108 segments from the test set were used to evaluate humimmnpa@nce. This human
evaluation subset consisted of 12 segments per environ@dram the seen pool and 6
from the unseen pool. This data assignment was the same eddarsthe 2006 NIST
CLEAR evaluation [64].

4.5.2 Human Performance

Establishing a human performance level in this researclesdwo purposes. First, human
performance serves as a benchmark for machine listeniogtgs. Traditionally, human
performance has been used as a gold-standard for progreggsaeptual tasks like ASR,
speaker identification, and image analysis. Second, onexamine the types of errors
that humans make, and, if systematic errors are found, tesbe compared to the types
of errors made by machine listeners in hopes of gaining sosight into the differences
between human and machine perception.

In order to evaluate human performance, the human subsbedest set, described
above, was used. Ten human subjects were first briefed oratiieenof the task and the
environments in the test, and then given a 108-questionprautthoice test. The subjects
were not told that the corpus was balanced, nor were theyhtmhidmany different record-
ings were present for any environment. They were not giveesscto previous answers, or
allowed to change previous answers; they were, howeveryeadl to listen to any segment

as many times as they liked before giving an answer.
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Subject || Total Error| Seen Error Unseen Error
1 72.22% 70.37% 74.07%
2 75.00% 75.92% 74.07%
3 70.37% 75.92% 64.81%
4 75.92% 66.67% 85.15%
5 76.85% 81.48% 72.22%
6 70.37% 72.22% 68.51%
7 73.15% 77.78% 68.51%
8 76.85% 79.62% 74.07%
9 76.85% 74.07% 79.62%
10 73.70% 74.44% 68.51%

Average| 73.70% 74.44% 72.96%

Table 4.1: Human Performance on Environment Recognitiok Tas

A summary of human performance is shown in Table 4.1. Pedoo®m was on average
poor, and the difference between the best performance anddhst was only 6.5% abso-
lute, a fairly small margin given the magnitude of the errdrise average performance was
only 15% better than chance.

The types of errors made by humans are illuminating. Sigmticonfusions existed
between several pairs of classes that would seem to beivetyitlose acoustically. Bus
and train, train platform and street, and restaurant anérgadre members of this class
of confusion. Particularly interesting is the confusioriviieen park and plaza; here, it
seems, human listeners latched onto a particular cue whiftequent in both classes —
the sound of birds chirping — and interpreted this as a stpang cue. Finally, there are a
number of other confusions in which it seems that humangdooot even tell whether the

environment was indoors or outdoors — airport and plazdeyednd street, and restaurant
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Reference Hypothesis

airpt [ bus [ galry [ park [ plaza [ restr [ strt [ trn [ platf “ RECALL

airpt 12 3 22 14 21 16 14 5 13 10.00%
bus 1 24 3 1 3 20 11 42 15 20.00%
1 19 2 10 14 20 3 32 15.83%
park 0 7 7 91 6 1 4 4
plaza 4 3 21 44 20 8 10 0 10 16.67%
1 3
4 5

galry 19

0 75.83%

restr 12 27 4 27 39 5 2 32.50%
16 10 38 9 23 9 19.17%
trn 14 27 16 1 5 8 10 34 5 28.33%

platf 11 11 20 4 11 7 23 11 22 18.33%

strt 6

[ PrecisiON || 15109 | 2063% | 12.58% | 53.220 | 14.18% | 31.97% | 10.17% | 31.78% | 20.37%

|

Table 4.2: Environmental Confusions, Precision, and Rekllinan Subjects

and plaza were all in this class. This confusion would seemdizate that humans are in
fact listening for specific sound cues rather than tryingdosider the characteristics of
the entire sound field, such as noisiness or reverberabamake their decisions. This is
an appealing hypothesis, as it is often difficult for unteairhumans to describe a sound
field as anything other than a collection of specific sound @ntire confusion matrix is
shown in Table 4.2. Per-clagsscores are shown in Table 4.3, while the top confusions by
percentage of response are shown in Table 4.4.

As the confusion matrix and; score table show, no class was truly easy for humans,
though their best performance came on the park class, with, @atore of 62.54. Other
relatively easy classes for humans included park, restaurant, trathpas; conversely,
plaza, gallery and airport were the hardest. This resulttisitively appealing in that the
classes one might think of as the most distinctive in termsoaind field are the easiest
for humans to distinguish. Likewise, the more nebuloussdasare the hardest. That
airport should be the hardest class for humans is surpraiffigst blush; however, when
one considers all the different sub-environmental typesemt in an airport; e.g., checkin
areas, departure gates, skymalls, baggage claim, passptrdl, customs, etc., it is much
easier to understand why humans should have such a hard timthes class.

The top 10 human confusions are dominated by the train / duscpafusions between
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Environment | F; Score
park 62.54
restaurant 32.23
train 29.95
bus 23.88
train_platform | 19.29
street 19.17
plaza 15.32
gallery 14.01
airport 12.06

Table 4.3: Humar, Scores

Rank| Ref Hyp Pct | Rank Ref Hyp Pct
1 Plaza Park | 4.07%| 5T | Restaurant Gallery| 2.5%
2 Bus Train | 3.88%| 7 Platform | Street | 2.12%
3 Street | Plaza | 3.51%| 8 Airport | Gallery | 2.04%
4 | Gallery| Platform| 2.96%| 9T Plaza | Gallery| 1.94%
5T Train Bus 25% | 9T Airport Plaza | 1.94%

Table 4.4: Top 10 Human Confusions as Percentage of Total &rssw
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these two classes account for 6.5% of the total responseganly 9% of the total errors
made. Except for platform / street, the remainder of the @pors were confusions

between the three most ill-defined classes: airport, gakerd plaza.

4.6 Experimental Results: GMM/HMM Approach

Here experiments using the GMM/HMM approach are descriimetlyding studies on ba-
sic feature selection, GMM model order, and HMM topologyes&bn. After discussing
each experiment in turn in Sections 4.6.1 - 4.6.6, a summatkiese results and error

analysis are presented in Section 4.6.7.

46.1 GMM Feature Selection

The first experiment was on feature selection using diagomedriance GMMs with 100
Gaussians per class. Four feature sets were considereshnatiuted at 100 frames per

second:

MEL A set of 14 melscale spectra.
MFCC A set of 14 MFCCs derived from 64 melscale spectra.

MEL+ A set of 11 melscale spectra, plus SNR, spectral centroid,spedtral energy

diffusion.

MFCC+ Asetof 11 MFCCs derived from 64 melscale spectra plus SNR, ispeentroid,

and spectral energy diffusion.

The spectral summary features SNR, spectral centroid, aewdrapenergy diffusion were
chosen for their presumed applicability to the environnmresbgnition problem; that is,

each of these features should vary across environmentsedicpable ways. All these
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Feature Sef Total Error| Seen Errorf Unseen Error

MFCC 18.93% 8.24% 29.63%

MEL 41.04% 38.61% 43.42%
MFCC+ 17.36% 8.33% 26.39%
MEL+ 33.65% 31.85% 35.46%

Table 4.5: GMM Feature Selection — 100 Gaussians Per Class

features were normalized to zero mean and unity variance@mputed over a uniform
sampling of the entire training corpus.

In order to evaluate these features, a set of 100-Gaussidvi3Nére trained, one per
environmental class. These GMMs were initialized usingrtberal gas algorithm, a soft
variant of thek-means algorithm [69], and trained for 10 iterations usiig Results are
shown in in Table 4.5.

Several results in this table are noteworthy. First, MFCGetdsature sets performed
significantly better than MEL-based feature sets, whiclmset® indicate that the DCT as
an optimizing transform of spectral coefficients is useduldound field modeling. Second,
the augmented feature sets MEL+ and MFCC+ both achieved Ipetttarmance than the
unaugmented feature sets; in the MFCC case by 8% relativenahe MEL case by 18%
relative. This result indicates that using the spectralrmany features SNR, centroid, and
diffusion is better than having three more basic coeffiggnteaning that these features
are indeed useful for environment recognition. Third, tkeefgrmance improvement for
MFCC+ over MFCC is entirely due to an 11% relative improvementh@nunseen data,
meaning that the spectral summary features are in some weg characteristic of envi-
ronments than basic MFCCs. Fourth, there is a consideraldierpeamce gap between the
seen locales and the unseen locales. While the performangeseen locales is still much

better than chance (an 88.9% error rate) and hence potentsaful, it is clear that actu-
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Frame Rate Smoothing|| Total Error| Seen Error Heldout Error
100 fps no 17.36% 8.33% 26.39%
100 fps yes 21.01% | 4.16% 37.87%

10 fps no 26.80% 12.50% 41.11%

Table 4.6: GMM Feature Selection — Effects of reducing stemin temporal structure

ally generalizing to new locales is much more difficult than@y recognizing locales that
were seen in training. Finally, note that note that theséopmances are much better than
human performance, a subject that will be explored in motailda Section 4.8 below.

In addition to this basic feature selection experimentstdssigned to remove the ef-
fects of short-term feature variability were also conddct8ome researchers, notably El-
lis [29], have used very long analysis windows for environbrecognition on the basis of
the fact that environments themselves are slow-changmig, short-term temporal struc-
tures might in fact be misleading. One way to reduce shont-tructure is to lower the
frame rate. Another is to employ feature smoothing, for gplanthe scale-space smooth-
ing approach discussed in Chapter 3. Both of these approadresewaluated using the
MFCC+ feature set; note that, since the reduced frame rateagpcompresses the set of
training examples by an order of magnitude, the number ofs&auns per class is corre-
spondingly reduced from 100 to 10. Further, the smoothiotpfar was set equal to 2 for
this work. Results of these experiments are shown in Table 4.6

Neither smoothing nor reduction of frame rate improvesqrennce overall. However,
it is noteworthy that smoothing causes performance on sEahes tamproveby 50% rel-
ative, while performance on unseen locales is degraded #yréBtive. This result would
seem to indicate that smoothing somehow impairs the abiliggeneralize while improving
the ability to recall previously seen locales. A similamuigh much less dramatic result

is seen in the slow frame rate condition. Here, performamceeen locales degrades by
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50% relative, but performance on unseen locales degra@esmeare, by 56% relative. It
is likely that the overall worse performance of the slow fearate system is simply due to
fewer parameters. However, the fact that in both experisyg@rformance degrades more
on unseen locales would seem to indicate that while moresgragitory characteristics are
important for locale recognition, it is the short-term teorad structures which are impor-
tant for generalization. This is a somewhat counter-iimeiitesult. However, insofar as
specific sound types are often characteristic of environsnether than locales (i.e., the
sound of a train pulling up to a train platform, or birds clmigpin a park), it is reasonable.
Note that the choice between specificity and generalizaitamgely application-dependent.
Hence, it is possible that in some applications smoothirgilshbe employed in order to
recognize specific locales with high accuracy. Howevergesthe goal of this thesis is to
learn something about the properties of environmental ddtds in general, the use of

smoothing is not indicated for further experimentation.

4.6.2 GMM Model Order Selection

The next experiment involved varying the number of Gausspen class using the MFCC+

feature set in order to measure the effect of parameter sizeedormance. One might

expect that, as the number of parameters increases, parioenon seen locales would in-
crease, possibly at the expense of performance on unsesdedodo measure this effect,

a number of GMM sizes were evaluated. Each environmentasdiad 300,000 training

examples; if each parameter requires 100 samples to addgeatimate, then the maxi-

mum number of Gaussians per class is 107 (disregarding raimtaights). Systems using

25 Gaussians per class through 125 Gaussians per classestrd;tthe 125-Gaussian
case was intended to investigate in fact whether 100 samplgzarameter were adequate,
inadequate, or more than adequate. Results are shown indl@ble

While performance on seen locales does indeed improve wite parameters, so does
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Gaussians / Class Total Error| Seen Error Heldout Error
25 23.33% 13.05% 33.61%
50 19.54% 10.18% 28.89%
75 17.41% 8.33% 26.48%
100 17.36% 8.33% 26.39%
125 16.99% 8.05% 25.92%

Table 4.7: Effects of GMM Parameter Size

performance on unseen locales. By using 125 Gaussians gerictiead of 100, overall
performance improves. Though the improvement is mostiytdbetter locale recognition,
generalization does not suffer; in fact, the gap betweeremand seen performance drops
monotonically from 20.5% with 25 Gaussians to 17.8% with ja&ssians. This result is
rather straightforward to interpret. First, 100 samplagpeameter appears to be more than
enough; the 125-Gaussian system had only 82 training exanpar parameter. Second,
though additional parameters do help locale recognitiogy help close the gap between
locale recognition and generalization. In other words,ekiea models being learned are

in fact, at least to some degree, broad environmental models

4.6.3 GMM Feature Transformations

The MFCC+ feature set, as shown above, achieves reasonafdenpance levels on the
environment recognition task. Here, various “optimal’tiea space transformations are
tested. Specifically, PCA, ICA, and LDA are evaluated in ordetd@termine whether or not
these transforms can be of use for environment recogni#d@mnoted in Chapter 2, PCA
and ICA attempt to transform the feature space in such a wajhthanput features are most
faithfully representedwhile creating output features that are, respectivetizeeidecorre-

lated or statistically independent. LDA, by contrast, seakransformation such that the
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Transform|| Total Error| Seen Error Unseen Error
None 16.99% 8.05% 25.92%
PCA 21.71% 10.37% 33.05%
ICA 23.93% 11.29% 36.57%
LDA 20.18% 9.72% 30.65%

Table 4.8: Effects of Feature Transformations, 125 Gansgar Class

output features are maximally linearly separable givenesolass labels. For this experi-
ment, output feature space dimensionality was kept at 1dthar words, full transforms
were used. The ICA transform was produced with the deflatiosianbof FastiCA [48]
with the tanh nonlinearity. Given the goals of these transformationgias expected that
LDA would improve performance over the baseline, that LDAwdoperform better than
either of the other two methods, and that ICA would perforntdsehan PCA. Results are
shown in Table 4.8.

In fact, only one of the expectations of this experiment he&inely, that LDA outper-
formed PCA and ICA. Conversely, LDA didot perform better than the baseline MFCC+
feature set, nor did ICA outperform PCA. Examining the LDA fesumore detail, note
that most of the degradation comes in the unseen conditiorce & is apparent that the
differences between the seen and unseen data are not $risleasonable that a linear
transformation bent on linear separability in the seen patd might cause a performance
degradation on unseen data. This conjecture does not explay performance on the
seen data is worse. It may be the case that there is littlarliseparability between sound
field classes as a whole. That is, the discriminability betwesound field classes may rest
in small components of the sound fields, i.e., in individualired cues. This contention
is similar to the one made to explain the failure of smoothigove. In ASR systems,

LDA is typically applied at the level of HMM states, which imgztice means context-
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Context Size| Total Error| Seen Error Unseen Error

0 Frames 16.99% 8.05% 25.92%
3 Frames 23.33% 10.00% 36.67%
5 Frames 23.65% 8.98% 38.51%

7 Frames 22.17% 8.42% 35.92%
9 Frames 22.36% 8.24% 36.48%
11 Frames 23.56% 8.14% 38.98%

Table 4.9: Effects of Context+LDA, 125 Gaussians Per Class

dependent sub-phone units. These are very small structuieskely that any attempt to
introduce LDA at a higher level, e.g., the phone level, migttually hurt, as is the case
with environment-level LDA in this experiment. This is notgay that LDA is useless for

environment recognition; merely that it cannot be appliea laigh level.

4.6.4 GMM Temporal Feature Context

Temporal context is widely used in modern ASR systems, atigwrajectories of features
over time to be tracked and modeled. Temporal context hadaksn used in other general
audio modeling applications; see work by Slaney [90], MallG6], [67], and Kraft [56],
[55] for examples. In this work, consecutive frames in tharee feature set are stacked
to create much longer feature vectors which are then preddsg some dimensionality
reducing transformation in order to avoid the problems oégy\igh dimensional feature
set. In this experiment, following the results shown in #ec#.6.3, LDA transforms
were learned at the environment level; these transformscestithe feature space to 14
dimensions. Keeping the number of Gaussians per class fixé#5a the context width

was varied between 3 and 11 frames. Results are shown in T&ble 4
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As these results demonstrate, use of context in the fegbaeesdoes not help perfor-
mance, at least when using an LDA transformation. Interghti there is a clear trend of
improving performance on the seen data from shorter cantextonger contexts, while
this trend is not present in the unseen data. This resultdvseem to indicate that the fea-
ture trajectories learned by LDA improve with length fordbe recognition, but that these
trajectories are not especially useful for generalizatitm fact, they are all worse than
single-frame LDA, meaning that if temporal context is usébn environment recognition

at all, the feature space is not the proper place to implement

4.6.5 HMM Topology Selection

HMMs are widely used in general audio recognition systenasmaerit investigation for the
environment recognition problem. A major issue, howevenated above, is that it is not
cleara priori what kind of topologies are appropriate for this task. Regesaez and Ellis’
k-variablek-means algorithm, shown in Figure 4.1 is able to learn HMMbtogies from
data in a principled way. In this work, a minimum of 100 traigiexamples per parameter
were required, which amounts to 2800 training examples pa¥i$tate. Additionally, the
BIC was used to determine the number of Gaussians per stagz than fixing the number
of Gaussians based on the number of training examples. Asult,rthe HMM topology
selection procedure in this work eliminates many more stttan the version described
by Reyes-Gomez and Ellis. After selecting the HMM topologydach environment and
the number of Gaussians per state, the GMM parameters éigdizedd using the neural
gas algorithm and the HMMs are trained using 10 iteration¥itdrbi training. HMM
transition parameters were not optimized during training left at their initially-observed
values from thek-variable k-means procedure. As the transition probabilities are much
smaller than the acoustic probabilities, they do not havemimnpact on Viterbi decoding.

Five different generality thresholds were used to buildfeedent HMMs per environ-
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Environment Generality Threshold
05075 1 |1.25]| 15
airpt 33| 28 | 22| 18 | 11
bus 31| 35 | 22| 16 | 11
galry 34| 32 | 22| 18| 7
park 15| 11 | 7 7 3
plaza 27 | 24 | 22| 15 | 9
restr 33| 32 | 28] 23 | 21
strt 35|23 20| 16 | 6
trn 32 | 28 | 24 | 18 5
platf 23| 18 | 19 | 18 | 13
Total States 263| 231 | 186| 149 | 86
Total Gaussians | 765 | 848 | 850 | 844 | 834
Gaussians Per Stafe2.9 | 3.7 | 45| 5.6 | 9.7

Table 4.10: HMM States Per Environment

mental class using the MFCC+ feature set. The resulting nuoftsates per class, total
states per system, total Gaussians per system, and nuntbauss$ians per state, are shown
in Table 4.10.

On average, the number of states per class decreases wghrtaelity threshold, and
the number of Gaussians per state increases with the giydredshold. The total number
of Gaussians, however, appears to be relatively constaintestholds 0.75 and higher. All
of these HMMs were evaluated on the seen and unseen dataResslts, together with
the best GMM system for comparison, are shown in Table 4.140 shown in this table
is a hybrid HMM system which consists of a linear interpaatof all £-variablek-means

HMM scores.
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KVKM Threshold || Total Error | Seen Error Unseen Errof

0.5 19.17% 5.00% 33.33%

0.75 16.80% 5.83% 27.79%

1 15.41% 5.46% 25.37%

1.25 17.13% 5.74% 28.51%

1.5 16.85% 7.13% 26.57%
Hybrid 16.06% 6.02% 26.38%
GMM 16.99% 8.05% 25.92%

Table 4.11: HMM Error Rates

The best HMM system, using a generality threshold of 1, aeltiean error rate of
15.41%, some 9% better, relative, than the best GMM systems improvement comes
almost entirely from a 32% relative improvement on the sesta;dhe improvement on the
unseen data is only 2% relative. It is important to note, h@rehat this HMM system had
a total of 850 Gaussians and 186 HMM states for a total of ZBpésameters; by contrast,
the GMM system had a total of 1,125 Gaussians for a total d2® parameters. The
HMM system’s performance gain comes in spite of having iyeb2Po fewer parameters
than the GMM system, which is a fairly strong indication tktNIMs are a much better
tool for environment recognition than GMMs, even if the tmgies must be estimated
from data. Note also that the single best HMM on seen dataei®th threshold HMM,
which has 32,849 parameters, even more than the GMM systéns. mfodel appears to
have learned to recognize specific locales at the cost ofglexability. Finally, the hybrid
system’s error rate is smaller than the average componstgrayerror, but is not better

than the single best system.
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System Params| Total Error| Seen Error Unseen Error

100-GMM-MFCC 26,100 18.93% 8.24% 29.63%
100-GMM-MFCC+ 26,100 17.36% 8.33% 26.39%

125-GMM-MFCC+ 32,625, 16.99% 8.05% 25.92%
1-HMM-MFCC+ 28,756| 15.41% 5.46% 25.37%
1-HMM-MFCC+-Train20| 28,756 15.18% 5.09% 25.27%

Table 4.12: GMM / HMM Error Rate Summary

4.6.6 Additional Experiments

Training the 1-threshold HMM for an additional 10 Viterberaitions yielded a small im-
provement to 15.18% total error, with 5.09% error on the s#etia and 25.27% on the
unseen data. A final experiment involved pruning HMM transg with less than 1%
probability; this experiment removed 2000 of the 4106 titéorss in the model, but re-
sulted in a performance degradation to 15.78% total erntin, 5%27% on the seen data and

26.29% on the unseen data.

4.6.7 GMM/HMM Result Summary

Table 4.12 shows a summary of results for the GMM/HMM systeihe best result,
15.18% total error with 5.09% seen error and 25.27% unseen, vas acheived by 20
iterations of Viterbi training on a set of HMMs whose topakegwere initialized using the
k-variable k-means algorithm with a generality threshold of 1. This eystepresents a
substantial improvement over the best GMM system whilequéwer parameters, indi-
cating that it is a better choice for modeling environments.

Confusion matrices for both the seen and unseen conditienshawn in Tables 4.13

and 4.14 F; scores per environment in Table 4.15, and top confusionslote$ 4.16 and
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Reference Hypothesis
airpt [ bus [ galry [ park [ plaza [ restr [ strt [ trn [ platf “ RECALL
airpt 107 1 8 0 2 2 0 0 0 89.17%
bus 0 119 0 0 0 0 0 1 0 99.17%
galry 0 0 119 0 1 0 0 0 0 99.17%
park 0 0 0 119 0 0 1 0 0 99.17%
plaza 2 0 3 0 115 0 0 0 0 95.83%
restr 0 0 0 0 0 119 0 0 1 99.17%
strt 6 0 0 0 4 1 107 2 0 89.17%
trn 2 3 0 0 1 1 2 111 0 92.50%
platf 5 0 1 2 2 4 1 0 105 87.50%

[ PrecisioN [ 87.70% | 96.75% | 90.84% | 98.35% | 92.00% | 93.70% | 96.40% | 97.37% | 99.06% [| ‘

Table 4.13: HMM Environmental Confusions, Precision, anddle&een Condition

Reference Hypothesis
airpt [ bus [ galry [ park [ plaza [ restr [ strt [ trn [ platf “ RECALL
airpt 53 0 0 0 0 11 48 0 8 44.17%
bus 4 110 0 0 1 0 0 5 0 91.67%
galry 0 4 116 0 0 0 0 0 0 91.67%
park 0 0 0 120 0 0 0 0 0 100.0%
plaza 0 0 0 0 107 5 7 1 0 89.17%
restr 0 0 2 0 0 118 0 0 0 98.33%
strt 22 0 0 0 18 2 75 0 3 62.50%
trn 0 33 0 0 10 0 0 75 2 62.50%
platf 0 8 80 0 0 0 0 0 32 26.67%

[ PrecisioN [ 67.00% | 70.97% | 58.50% | 100.0% | 78.68% | 86.76% | 57.60% | 92.50% | 71.11% || ‘

Table 4.14: HMM Environmental Confusions, Precision, anddietinseen Condition

4.17.

As these confusion summaries show, there were no signift@aritision issues on the

seen data; with such a small overall error rate, this is toxdpeaed. On the unseen data,

however, several confusions are significant. The platfgathery confusion, which ac-

counted for 7.47% of the total answers and nearly 30% of tta éorors, is an interesting

one in that one would presume that when an actual train isibiel process of pulling up

or leaving, the platform might not in fact be distinguisteabilom a gallery. The train-bus,

street-plaza, airport-restaurant, plaza-street comfigsare also understandable in an intu-

itive way. The remaining significant confusions airporest and street-airport, are less

easy to understand. It is possible that some specific logaksme specific environments
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Environment | Total F; Score| SeenF; Score| UnseenF; Score
park 99.37 98.75 100.0
restaurant 94.26 96.35 92.18
bus 88.96 97.94 80.00
plaza 88.73 93.87 83.59
train 84.74 94.87 74.62
gallery 83.15 94.82 71.48
street 76.31 92.64 59.99
airport 70.84 88.42 53.26
train_platform 65.85 92.92 38.79

Table 4.15: HMMF, Scores

Rank Ref Hyp Pct | Rank| Ref Hyp Pct

1 Airport Gallery | 0.74%| 6T | Train| Bus | 0.27%
2 Street Airport | 0.55%| 6T | Plaza| Gallery| 0.27%
3 | Platform| Airport | 0.46%| 8T | 8tied 0.18%
4T | Platform| Restaurant 0.37%
4T | Platform Plaza | 0.37%

Table 4.16: Top 10 HMM Confusions as Percentage of Total AnsvEeen Condition
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Rank Ref Hyp Pct | Rank Ref Hyp Pct

1 | Platform| Gallery | 7.47%| 6 Airport | Restaurant 1.01%

Airport | Street | 4.44%| 7 Train Plaza | 0.92%
Train Bus | 3.05%| 8T | Platform Bus 0.74%
Street | Airport | 2.03%]| 8T | Airport | Platform | 0.74%

o b~ N

Street Plaza | 1.67%| 10 Plaza Street 0.65%

Table 4.17: Top 10 HMM Confusions as Percentage of Total Answénseen Condition

do in fact sound like city streets; however, this confusisreiss intuitive and likely an
indication of a real modeling inadequacy than any true sintyl.

The F; scores shown above measure the overall difficulty of eacddsclAs with hu-
mans, park and restaurant are the easiest classes. lmgiyestain platform is the hardest
class, owing mainly to the very poor performance in the unsiaset. Also interestingly,
while airport is hard, the other more ill-defined classeazaland gallery, are not among
the hardest classes. This is a real difference between hamé&machine environment

recognition systems that will be explored in more detail @ct®n 4.8 below.

4.7 Experimental Results: Optimal Coding Approach

Here experiments using the optimal coding approach areribesl¢ including studies on
basic feature selection and model complexity for both ICA BidP autoencoder trees.
After discussing each experiment in turn in Sections 4.7417-5, a summary of these

results and error analysis are presented in Section 4.7.6
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Feature| Total Error | Seen Erron Unseen Error

MFCC 70.64% 71.67% 69.62%
MFCC+ | 79.17% 74.72% 83.61%

Table 4.18: ICA Feature Selection, 10 coding units

4.7.1 ICA Feature Selection

Given the nearly 50% relative difference in performanceveen MEL-based features and
MFCC-based features demonstrated in the experiments on Gltdréeselection above,
the initial ICA experiment dealt only with the MFCC and MFCC+ igat sets. For this
experiment, 10-dimensional ICA solutions were sought fahef@ature set using the de-
flation variant of the Fastlca algorithm withtanh nonlinearity, a stopping criterion of
0.001, and a maximum of 5000 iterations per component. lardalcarry out the Fastlca
procedure, the data were first whitened by applying PCA fadldy multiplication by
the inverse of the square root of the eigenvalue matrix. rAdtecarding all but the first
10 dimensions of the whitened matrix, the Fastica proceda® carried out to estimate
the optimal coding matrixC, for each environment. The decoding matfix, was then
estimated per Equation 4.1. Performance is shown in Tab& 4.

The main result of note in this experiment is that perfornearscoverall quite poor
compared to the GMM/HMM systems above; the MFCC system is abhbut 3% better
absolute than the average human. Oddly, this system actuadl alower error rate on
unseen data than seen data. This result would seem to iadictthe MFCC-based ICA
system is doing a good job of generalizing compared to rezognseen locales; however,

in an absolute sense the error rates are sufficiently badraake this feat useless.
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Coding Units|| Total Error| Seen Error, Heldout Error
2 75.50% 66.20% 84.81%
4 65.92% 58.33% 73.51%
6 68.47% 59.72% 77.22%
8 68.37% 62.22% 74.53%
10 70.64% 71.67% 69.62%
12 79.95% 78.98% 80.92%

Table 4.19: ICA Model Complexity

4.7.2 ICA Model Complexity

The next experiment measured the effects of model complexitperformance. Using
the MFCC feature set, the model complexity was varied betvZzeand 12 with the same
procedure noted above. Results are shown in Table 4.19.

As these results show, optimal performance is achievedfuaiitly low model complex-
ity; the best system uses only a 4-dimensional coded feapaee. Performance degrades
with additional coded features, reaching its worst poirthvili2 coded features. At first
glance, this result would appear to be due to overfitting;dwas, note that performance on
the unseen dataset actually has two troughs, at 4 and 10 testedes, instead of a single
trough as one might expect if overfitting were a problem. i ase, the poor overall per-
formance of the ICA approach means that this technique isnulatated for environment
recognition.

It is likely that the poor performance of the ICA model is duetlte fact that the com-
ponents that are being learned are directions in multidgiosal space, rather than spatial
clusters in multidimensional space as with HMM/GMM systenfikis deficiency can be

seen if we consider a case in which two clusters of data p&ioms two different classes
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Feature| Total Error| Seen Erron Heldout Error

MFCC 37.03% 28.33% 45.74%
MFCC+| 39.90% 31.29% 48.51%

Table 4.20: MLP Feature Selection, 8 Hidden Units

lie along the same vector with respect to the origin, but epasated by a large distance.
In this case, the two classes would be linearly separablecande discriminated with a
single Gaussian. However, since both clusters lie at theesargle from the origin, there
is no way for a simple ICA model to discriminate between themisTeficiency could in
theory be addressed using an ICA mixture model, in which toes from many different
origin points are learned. As seen below, however, singlé®Mutoencoders outperform
single ICA autoencoders using this data set and so ICA mixtareslispreferred in this

work in favor of MLP mixtures.

4.7.3 MLP Autoencoder Feature Selection

As noted above, an alternate means of producing an optimabement-specific code is
to train an autoencoding MLP. The initial MLP experiment @ared the MFCC feature
set to the MFCC+ feature set using 8 hidden units. After whitgrithe training data,
the MLPs were trained using error backpropagation with teamsquared error criterion.
Each network weight was initialized at random with a valuedeen -0.05 and 0.05, and
the weights had independent, adaptive learning ratesafiméd to 0.05) and momentum
terms (initialized to 0.045). Each network was trained fOy0D0 iterations in batches of
10,000 sample frames. Results are shown in Table 4.20.

These results, while still worse than the GMM/HMM resultg much better than both
the human and ICA results. Like the ICA results, the MFCC feasateyielded better

results than the augmented MFCC+ feature set, and was used fesathure set for future
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Hidden Units|| Total Error| Seen Error Heldout Error
2 37.87% 30.64% 45.09%
4 37.31% 25.18% 49.44%
6 36.57% 26.85% 46.29%
8 37.03% 28.33% 45.74%
10 44.16% 32.50% 55.83%
12 53.47% 47.50% 59.44%

Table 4.21: MLP Hidden Unit Selection

experiments.

4.7.4 MLP Autoencoder Model Size

The second MLP experiment tested the effects of model oi8ieradditional MLPs per
environment were trained with varying numbers of hidderisufiom 2 to 12. Results are
shown in Table 4.21.

The overall optimal system is the 6-unit system. This sysgebest at neither seen lo-
cale recognition nor generalization. However, it appdaas the systems which generalize
well do dot recognize seen locales (2 units, 8 units), whigeconverse is also true (4 units).
The 6-unit system appears to yield the best tradeoff betwesse two concerns. It is very
interesting, however, that the best generalizer has ordyhidden units. The overall poor
performance makes it impossible to conclude that two umésal that are needed to cap-
ture the essential features of an environment; however cieglar thatddingunits beyond
this level does not help generalization performance usirsgnodel. Conversely, itis to be
expected that the worst performance is achieved by the kZystem. In the autoencoder
approach, the closer the number of hidden units is to theab@jmensionality, the closer

the coding matrix will be to the unit matrix, which cannot ksed to discriminate between
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System Params| Total Error| Seen Error Heldout Error

6-Unit MLP 1,512 | 36.57% 26.85% 46.29%
6-Gaussian GMM| 1,566 | 31.94% 24.62% 39.25%
HMM 28,756 | 15.18% 5.09% 25.27%

Table 4.22: MLP vs. GMM with Similar Parameter Spaces

different classes of phenomena at all.

4.7.5 MLP Autoencoder Trees

One issue with MLP autoencoders is that the number of pamsistlimited by the dimen-
sionality of the data. The optimal system above, a 6-unit MiaB only 168 parameters per
class for a total of 1,512. By contrast, the optimal HMM systaohieving an error rate of
15.18%, has 3,195 parameters per class for a total of 28,75@arly 20 times as many
parameters as the best MLP. More importantly, MLP autoeaoduffer from the same
flaw as ICA models — each hidden unit is modeling a directioheathan a spatial clus-
ter. What is not clear is whether or not allowing the MLP to seteore directions would
result in a decrease in the performance gap between HMM/GyBiems and MLPs. To
help answer this question, a GMM system was trained with ényaussians per class.
Results of this experiment are shown in Table 4.22.

This result indicates that the difference between MLP andvHperformance is due
largely, though not completely, to the larger parametecsghat can be employed with
HMMs. The 6-Gaussian GMM system still performs better thaa @-unit MLP, but the
difference is not enormous. It is possible that by allowing MLP to model more direc-
tions, performance could approach HMM performance.

In order to test this assertion, a mixture of MLPs was comstd for each class as
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System Params| Total Error| Seen Error Unseen Errof

Single MLP 1,512 34.7% 26.4% 43.1%
Depth-2 MLP Tree| 3,024 37.6% 26.4% 48.8%
Depth-3 MLP Tree| 6,048 36.6% 25.5% 47.8%
Depth-4 MLP Tree| 12,096, 37.1% 23.8% 50.4%
Depth-5 MLP Tree| 24,192| 32.6% 21.2% 44.1%
Depth-6 MLP Tree| 48,384 32.1% 21.0% 43.1%
Depth-7 MLP Tree| 96,768 | 30.1% 18.9% 41.4%

Table 4.23: MLP Tree Depth

described in Section 4.4.2. This approach allows the trgidiata to become segmented
into pools of similar kind, or equivalently, to create mplé origins in feature space from
whence to learn directions. The mixtures were arrangedrespirees in order to more
easily compare results between levels. Binary trees of aotmkéng MLPs were trained
down to 7 levels; these models had 64 MLPs at the leaves. HEaehWwas evaluated;
results of this experiment are shown in Table 4.23.

After degrading in levels 2, 3, and 4, performance improvesubsequent levels and
reaches a maximum at depth 7, with an error rate of 30.1%. Bzeh &cale recogni-
tion and generalization are optimized at this level. As expd, seen locale recognition
improves monotonically with increasing number of paramsetélowever, generalization
degrades before finally improving, suggesting that dagnfientation helps generalization
as well as locale recognition by allowing some networks twfoon very fine details of the
sound field. One issue with the level 7 networks, howevehas data fragmentation may
lead to poor modeling. Specifically, with 2.7 million tramgj frames per environment, there
are only on average 250 training examples per parameter. &eahpo the optimal HMM

system, which has 845 training examples per parameterstaismall figure. It is possible
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Reference Hypothesis

airpt [ bus [ galry [ park [ plaza[ restr [ strt [ trn [ platf “ RECALL

0 71.67
99.17
95.83
96.67
69.17
95.00
75.00
67.50

airpt 86 2 14 0 4 13 1

119 1 0 0 0 0

0 115 0 0 3 0

0 0 116 0 0 4

3 16 83 3 10
0

0

bus
galry
park

plaza

0 0 114 2

0 6 11 920
trn 15 0 0 10 2 81

trnp 9 3 9 3 8 5 3 72 60.00

restr

~AlO|lO|O|r|O|O

strt

alals~|M|lO|F|O
o|lr|lO|O|O|O|O

0N |w O]

[ PrecisioN || 7544 [ 8380 | 74.10 [ 85.93 | 86.46 | 7037 [ 78.95 | or01 [ o863 || ‘

Table 4.24: Depth-7 MLP Tree Environmental Confusions, Brea, and Recall: Seen

Condition

to extend the MLP tree to another level and employ 128 leaf Mpér class, but further
data fragmentation might lead to some very poorly-trainetivorks; further, the perfor-
mance trend does not seem to indicate that the added dieatiould allow the MLP tree
to achieve performance levels comparable to the best HMMesys The main conclu-
sion that can be drawn from this experiment is that, in fé&,dptimal coding approach is

inferior to a more standard GMM/HMM approach for the envir@nt recognition task.

4.7.6 Optimal Coding Result Summary

Confusion matrices for both seen and unseen conditions avensin Tables 4.24 and

4.25, F; scores per environment in Table 4.26, and top confusionglite® 4.27 and
4.28.

As these confusion summaries show, the seen condition had s@nificant confu-
sions. Many of these were understandable, e.g., train / digsort / gallery, airport /
restaurant, and plaza / street. The top confusion, plazhetgas somewhat disappoint-
ing, as this confusion is an indoor / outdoor confusion. Gnuhseen data, there were 3
confusions which were particularly damaging to systemagrernce. The plaza / park,

platform / gallery, and airport / street confusions togetiecounted for over 40% of the
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Reference Hypothesis
airpt [ bus [ galry [ park [ plaza [ restr [ strt [ trn [ platf “ RECALL
airpt 18 0 0 2 0 31 69 0 0 15.00
bus 0 119 0 0 0 0 0 1 0 99.17
galry 0 8 109 0 0 0 0 0 3 90.83
park 0 0 0 115 0 0 3 0 2 95.83
plaza 1 0 0 107 2 0 10 0 0 1.67
restr 0 0 1 0 1 117 1 0 0 97.50
strt 10 0 0 0 6 13 89 0 2 74.17
trn 0 13 1 0 20 0 9 54 23 45.00
trnp 0 22 88 0 0 0 0 0 10 8.33

[ PrecisioN || 6207 [ 73.46 | 5477 | 5134 [ 6.90 [ 7267 [ 49.17 | 9818 [ 25.00 || ‘

Table 4.25: Depth-7 MLP Tree Environmental Confusions, Biee, and Recall: Unseen

Condition
Environment | Total F; Score| Seenl’ Score| UnseenF; Score
bus 87.90 90.83 84.99
restaurant 82.06 80.85 83.27
park 78.92 90.98 66.86
gallery 75.97 83.63 68.33
train 69.60 77.51 61.71
street 68.02 76.92 59.13
airport 48.82 73.50 24.16
train_platform 43.55 74.61 12.49
plaza 40.76 78.85 2.68

Table 4.26: MLP Tred"; Scores
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Rank| Ref Hyp Pct | Rank| Ref Hyp Pct

1 Plaza | Gallery | 1.48%| 6T Plaza Street | 0.92%
2 Train Bus 1.38%| 6T Train | Restaurant 0.92%
3 | Airport | Gallery |1.29%| 8T | Platform| Airport | 0.83%
4 | Airport | Restaurant 1.20%| 8T | Platform| Gallery | 0.83%
5 Street | Restaurant 1.01% | 10T | 2 Tied 0.74%

Table 4.27: Top 10 MLP Tree Confusions as Percentage of Totsvars, Seen Condition

Rank Ref Hyp Pct || Rank| Ref Hyp Pct

1 Plaza Park 9.90% 6 Platform Bus 2.03%

Platform| Gallery | 8.14%/| 7 Train Plaza | 1.85%
Airport Street | 6.33%| 8T Train Bus 1.20%

Airport | Restaurant 2.87%| 8T Street | Restaurant 1.20%
Train Platform | 2.12%| 10T | 2 Tied 0.92%

a | |l |N

Table 4.28: Top 10 MLP Tree Confusions as Percentage of Tatsiva&rs, Unseen Condi-

tion
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total errors made in the unseen condition. The platformlégabnd airport / street confu-
sions were problematic for the HMM system as well, but plagark was not. In fact, the
F; score for the park class was 100 in the unseen condition foMdMut only 67 in the
MLP system. This modeling failure is a large source of théed#nce between HMM and
MLP performance. Many of the other top MLP confusions are aighe set of top HMM
confusions, meaning that there are only a few classes whstiaatly different types of
confusions are being made. Were the error types vastlyrdiffea hybrid HMM / MLP
system could be considered; given these results, togeitiethe overall performance gap
between the two system types, it is unlikely that such anagadr would yield substantial

improvements.

4.8 Comparison of Human and Automatic Performance

Results shown above indicate that on average, machine penfae far exceeds human
performance on the acoustic environment recognition telgkwever, it could be the case
that the human subset of the evaluation data was partigutard or easy, which would
skew the results. In order to avoid misinterpretation, thenan subset was used to test
both the HMM and Depth-7 MLP tree systems. These resultslayersin Table 4.29,
together with complete evaluation set results for comparis

As these results show, the human subset was significanttieh&or the machine sys-
tems than the remainder of the evaluation set. Both the HMMNIE lost 14% absolute
overall. While the HMM lost 17% on seen locale recognition 44&b6 on generalization,
the MLP lost 11% on seen locale recognition and 17% on gemrati@n. Confusion matri-
ces andF; scores for seen and unseen data with both HMM and MLP systesrshawn
in Tables 4.30 - 4.34.

The confusions and; scores on the human subset are in some ways revealing; how-

ever, the reader is cautioned that since this subset onhpic@d 12 example segments per
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System Total Error| Seen Error Unseen Error
Humans 73.7% 74.4% 72.9%
HMM 29.6% 22.2% 37.0%
Depth-7 MLP Tree| 44.4% 29.6% 59.2%
HMM - All Eval 15.2% 5.1% 25.3%
MLP - All Eval 30.1% 18.9% 41.4%

Table 4.29: Error Rates on Human-Evaluated Subset

Reference Hypothesis

airpt [ bus [ galry [ park [ plaza [ restr [ strt [ trn [ platf [ [ RECALL

airpt 3 0 2 0 0 1 0 0 0 50.00
bus 0 6 0 0 0 0 0 0 0 100.00
galry 0 0 6 0 0 0 0 0 0 100.00

park 1 0 0 1 1 0 2 0 1 16.67

plaza 1 0 0 0 5 0 0 0 0 83.33
restr 0 0 0 0 0 6 0 0 0 100.00

strt 1 0 0 0 0 1 4 0 0 66.67
trn 0 0 0 0 0 0 0 6 0 100.00

trnp 0 0 0 1 0 0 0 0 5 83.33

l PRECISION H 50.00 [ 100.00 [ 75.00 [ 50.00 [ 83.33 [ 75.00 [ 66.67 [ lOOAOOI 83.33 H

Table 4.30: Environmental Confusions, Precision, and ReddIM, Human Seen Subset

Reference Hypothesis

airpt [ bus [ galry [ park [ plaza [ restr [ strt [ trn [ platf H RECALL
airpt 3 0 0 0 0 0 3 0 0 50.00
bus 0 4 0 0 2 0 0 0 0 66.67
galry 0 0 4 0 0 0 0 2 0 66.67
park 0 0 0 6 0 0 0 0 0 100.00
plaza 0 0 0 0 5 0 1 0 0 83.33
restr 0 0 0 0 0 6 0 0 0 100.00
strt 2 0 0 0 0 1 1 2 0 16.67
tm 0 3 0 0 1 0 0 2 0 33.33
trnp 1 1 1 0 0 0 0 0 3 50.00

[ Precision [ 50.00 [ 50.00 [ 80.00 | 100.00 [ 6250 | 85.71 [ 20.00 [ 33.33 | 100,00 ]|

Table 4.31: Environmental Confusions, Precision, and RaddlM, Human Unseen Sub-

set
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Reference Hypothesis

airpt [ bus [ galry [ park [ plaza [ restr [ strt [ trn [ platf [ [ RECALL

airpt 3 0 2 0 0 1 0 0 0 50.00
bus 0 6 0 0 0 0 0 0 0 100.00
galry 0 0 6 0 0 0 0 0 0 100.00

park 1 0 0 4 0 0 1 0 0 66.67

plaza 0 0 1 0 5 0 0 0 0 83.33
restr 0 0 0 0 0 6 0 0 0 100.00

strt 2 0 0 0 0 1 3 0 0 50.00

trn 1 1 0 0 0 1 0 3 0 50.00

trnp 0 0 2 2 0 0 0 0 2 33.33

[ Precision [ 4286 | 8571 [ 54.55 | 66.67 [ 100.00 | 66.67 | 75.00 [ 100.00 | 100.00 ] ‘

Table 4.32: Environmental Confusions, Precision, and Relbal MLP Tree, Human Seen

Subset

Reference Hypothesis
airpt [ bus [ galry [ park [ plaza [ restr [ strt [ trn [ platf H RECALL

airpt 0 0 0 0 0 1 5 0 0 0.00

bus 0 5 1 0 0 0 0 0 0 83.33
galry 0 0 4 0 1 0 0 1 0 66.67
park 0 0 0 5 0 0 0 0 1 83.33
plaza 0 0 3 3 0 0 0 0 0 0.00
restr 0 0 0 0 0 5 1 0 0 83.33

strt 2 0 0 0 0 2 2 0 0 33.33

trn 0 4 0 0 1 0 0 1 0 16.67
trnp 2 0 3 0 0 1 0 0 0 0.00

l PRECISION H 0.00 [ 55.56[ 36.36[ 62.50[ 0.00 [ 55.56[ 25.00[ 50.00[ 0.00 H ‘

Table 4.33: Environmental Confusions, Precision, and Re@6 MLP Tree, Human

Unseen Subset
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Environment|| Human HMM Depth-6 MLP Tree

Total F; || Seenl) | UnseenF; | Seent) | Unseenk;
airport 12.06 50.00 50.00 46.15 0.00
bus 23.88 100.0 57.14 92.30 66.67
gallery 14.01 85.71 72.73 70.59 47.05
park 62.54 25.00 100.0 66.67 71.42
plaza 15.32 || 83.33 71.42 90.90 0.00
restaurant | 32.23 85.71 92.30 80.00 66.67
street 19.17 66.67 18.18 60.00 28.57
train 29.95 || 100.0 33.33 66.67 25.00
platform 19.29 83.33 66.67 66.67 0.00

Table 4.34:F, Scores on Human Subset

environment (6 seen, 6 unseen), the specific figures are nafiable as figures drawn
from the entire test set. Conversely, the scores shown in Table 4.36 compare human
results on the human subset to machine results on the essirsdt, which is not a direct
comparison. With this warning in mind, the environmentssirewn ranked by difficulty
on the human subset in Table 4.35.

While some classes are similarly difficult for humans and rreed) there are signif-
icant ordinal differences in environmental difficulty rags. Though overall performance
is much worse for humans, relative difficulty is worth exjphgr. There are large differ-
ences in relative difficulty for several environment clasbetween human performance
and HMM performance. Galley and plaza are more difficult fomans than for HMMs,
while park, train, and street are more difficult for HMMs. Asted above, however, these
machine results are not necessarily representative ofpgtfermance, as they are based

(like the human results) on only 5% of the test data. Heneg sibmewhat difficult to draw
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Difficulty Human HMM MLP Tree
Rank Env | F; Env | F Env | F

[EEN

Airp | 12.06|| Strt | 42.42| Airp | 23.07
Gall | 14.01| Airp | 50.00| Plat | 33.33
Plaz | 15.32| Park| 62.50| Strt | 44.28
Strt | 19.17| Trn | 66.67| Plaz| 45.45
Plat | 19.29| Plat | 75.00|| Trn | 45.83
Bus | 23.88| Plaz| 77.37| Gall | 52.82
Trn | 29.95| Bus | 78.56| Park| 69.04
Rest| 32.23| Gall | 79.21| Rest| 73.33
Park| 62.54 || Rest| 89.00| Bus | 79.48

O o | N Oyl W|DN

Table 4.35: Environment Difficulty Ranked By; Scores on Human Subset

conclusions based on these results. For a comparison basdidest data, see Tables 4.36
and 4.37.

These full comparisons still show systematic differencetsveen human and machine
performance. Compared to HMMs, humans have less relatitieudiy with train and plat-
form, and more relative difficulty with gallery and plaza. @ersely, humans, like HMMs,
perform best on the park and restaurant classes. As noted atite might expect humans
to perform relatively poorly on such ill-defined classes z@ and gallery. Further, one
might expect HMMs to perform relatively poorly on a classelikkain platform, simply
because when there is no train present, a train platformdsouery much like a generic
gallery. Humans might not be tricked as easily by this coodjtespecially if certain kinds
of speech are present in the signal that one might associtit@wain station: announce-
ments of train arrival, for instance, are easily recognizgtdumans, while to a very simple

HMM like the one used here, such announcements might betimgiisshable from an air-
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Environment|| Human HMM Depth-6 MLP Tree

Total F; || Seenl) | UnseenF; | Seenl) | Unseenk)
airport 12.06 88.42 53.26 73.50 24.16
bus 23.88 97.94 80.00 90.83 84.99
gallery 14.01 94.82 71.48 83.63 68.33
park 62.54 98.75 100.0 90.98 66.86
plaza 15.32 93.87 83.59 78.85 2.68
restaurant | 32.23 96.35 92.18 80.85 83.27
street 19.17 92.64 59.99 76.92 59.13
train 29.95 94.87 74.62 77.51 61.71
platform 19.29 92.92 38.79 74.61 12.49

Table 4.36:F; Scores on All Data

Difficulty Human
Rank Env | F

HMM

MLP Tree

Env| F

Env | F;

[EEN

Airp | 12.06

Plat | 65.85

Plaz | 40.76

Gall | 14.01

Airp | 70.84

Plat | 43.55

Plaz | 15.32

Strt | 76.31

Airp | 48.82

Strt | 19.17

Gall | 83.15

Strt | 68.02

Plat | 19.29

Trn | 84.74

Trn | 69.60

Bus | 23.88

Plaz | 88.73

Gall | 75.97

Trn | 29.95

Bus | 88.96

Park | 78.92

Rest| 32.23

Rest| 94.26

Rest| 82.06

Ol o N OO 0|~ T W|DN

Park| 62.54

Park| 99.37

Bus | 87.90

Table 4.37: Environment Difficulty Ranked By; Scores on All Data
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port announcement. Relative difficulty aside, this resutiarscores exactly how much
more difficult the acoustic environment recognition taskoishumans than for machines
— the human subjectgs; score on their best class, park, is still lower than the HMM’s
score on it’s worst class, train platform. As most humangpairearily conditioned to use
the audio channel for full-field danger detection and spemrhmunication, they are ill-
equipped to attempt to distinguish between the environahéyyies studied here. Different
results might obtain were a different class of human suldgsted; those humans who are
either visually impaired or specially trained might penfobetter. In the small pilot study
described in [63], exposing the human subjects to the saamertg data that the machines
used decreased overall error rate from 21.2% to 11.8%, ththig was still much worse

than the best machine error rate of 1.7% in that study.

4.9 Adaptation to Unseen Locales

The performance gap between segments from locales seennimgy and those unseen in
training — 5.1% for the former versus 25.3% for the latterhia best system — suggests
that while there is some capacity for generalization, inegahthe penalty for straying
outside of known locales is stiff. Further, as shown abadwve range off; scores is much
narrower for seen locales than for unseen locales. For thteHdMM system, for instance,
the I range for the seen condition is approximately 88 - 98, whike/; range for the
unseen condition is 38 - 100. Since only one recording wassde per environment
for the unseen condition, it is possible that these figureg nw represent the average
case unseen condition performance. To help determine whethot this was the case,
an additional round-robin experiment was carried out usinly the GMM system with
model order ranging from 12 to 125 Gaussians. For this expgari, each recording was
held out in turn for testing while all the remaining data wased for training. Recall that

the best GMM system had an overall error rate of 17% using tiggnal data assignment
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into training, seen evaluation, and unseen evaluatiorh 8t error on seen locales and
26% on unseen locales.

The best result for this experiment was obtained using 10@s§8ans; the error rate
was 50.8%. In addition, the range of results was excepiipnakrow; the worst system,
using 25 Gaussians, had an error rate of 52.8%. This figuigngisantly worse than the
25% error rate reported for the unseen condition of the 200BAR. evaluation. While
it is still much better than chance, and much better than muypeaformance, this level of
performance does not suggest readiness for applicatiorfui@rer inspection, though, it
appeared that the results were essentially bimodal. Assiwigure 4.2 and Figure 4.3,
there were a large number of recordings with error ratesatar zero, and another, smaller
but still large contingent of recordings with error ratesnene.

There are two ways to further examine these figures: first,iWr@ment; second,
by locale or country. Table 4.38 shows, for each environigiet miss rates both in the
round-robin condition and in the unseen portion of the oagexperiment. The fact that
these systems used different classifiers is less impofitant the fact that the miss rates
track reasonably closely between the two conditions, at iearelative terms. That is, the
ordering of environments from hard to easy is quite similde results shown in this table
indicate that, on average, previous assessments regatwngelative difficulty of each
environment type were reasonably accurate. Results braken Oy country are found in
Table 4.39. Note that for some environments, cases in whietetis only one recording
from a country have high error rates, and for others, the sipps true.

Given the miss rates in the round-robin test condition, ikesasense to ask next how
much data is required to improve performance to acceptabkdd. In order to answer
this question, a new round-robin test was carried out in hadter initial training and
testing, data from the test recording was added to the h@ithdta a minute at a time. This
data was used to update the parameters of the acoustic nurdbleftest environment.

After each minute of adaptation data was added to the mduelkemaining data in the
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Environment Round-Robin Original Unseen
GMM Miss Rate| Rank | HMM Miss Rate| Rank
Airport 54.16 5 55.83 2
Bus 20.11 9 8.33 6
Gallery 17.97 8 8.33 6
Park 39.78 6 0.00 9
Plaza 68.69 3 10.82 5
Restaurant 37.38 7 1.67 8
Street 62.22 4 37.50 3
Train 76.25 2 37.50 3
Train Platform 80.71 1 73.33 1

Table 4.38: Per-Environment Round-Robin Miss Rates and Diffiekankings

Environment Country
FRA | GER | GRE | ITA JAP | SAF | KOR UK USA

Airport -0 146932831 -0 -0 | 5751|1001 -0 |5251
Bus -0 |2054) -0 911 -0 -0 [129.21] -0 -0
Gallery -0 8.34 -0 042 1001| -0 -0 -0 -0
Park -0 | 4577 -0 -0 -0 411 -0 -0 -0
Plaza 501 -0 -0 | 371282427331 -0 -0 -0
Restaurant | 0.81 | 6793 -0 -0 |13.72] -0 -0 |2411] -0
Street 66.71/ 6542 -0 -0 14831/6501 -0 |6251] -0
Train 60.01|73.74| -0 -0 | 73.72] -0 -0 -0 -0
Train Platform|| 1001 | 72.95 -0 -0 | 1001, -O -0 -0 -0

Table 4.39: Per-Environment and Per-Country Round-Robin Raes and Counts
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Adapt Minutes Number of Gaussians
12 25 50 75 100 | 125

52.07| 52.81| 51.85| 52.12| 50.86| 52.25
46.89| 44.41| 43.49| 41.67| 41.61| 41.05
43.43| 40.05| 37.07| 35.79| 35.39| 35.26
40.17| 36.85| 32.79| 31.74| 30.01| 31.08
37.79| 32.66| 30.56| 28.73| 27.29| 27.95
35.37| 30.42| 28.28| 26.59| 24.79| 25.37
34.47| 28.94| 26.59| 25.46| 24.39| 25.75
33.00| 27.26| 24.96| 23.22| 22.71| 23.90
30.67| 25.01| 22.71| 21.59| 20.72| 22.58
31.40| 25.37| 22.82| 22.24| 22.13| 22.24

O 0N OO0 |~ W|DN| L, |O

Table 4.40: Adaptation to Unseen Locales, GMM System

test recording was evaluated. This experiment was caruéfoo GMMs ranging in size
from 12 Gaussians to 125 Gaussians. Results are shown inZdBleAfter five minutes
of adaptation, the average error rate is down from 50.86%#13%®%; indicating that in
practice not much data is needed to bring performance to @ptable level. After eight
minutes, error rates are down to 20.72%, which is certainlp@erationally useful figure
— especially considering that this approach usely acoustic information and can be

coupled with user-specific priors and transition modelsrtprove performance.

4.10 Chapter Summary

This chapter presented two different methods for recoggianvironmental type from

audio; one based on conventional GMM/HMM modeling, the pthean optimal coding
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/ redundancy reduction modeling approach. The two maintsegiven here are first, that
the GMM/HMM approach appears to be superior to the optimalirgp approach, and
second, that the machine approaches appear to be supehamian performance by a
wide margin. The best system trained achieved an error f&8e1% on seen locales, and
25.2% on unseen locales as measured using the 2006 NIST CL&fRagon data. This

performance handily eclipsed the average human perforenaing3.7% error. While it is

likely the case that specially-trained humans might improwm this result substantially, it
is an open question as to whether they might approach 75%acuEven if they can,

there are certain applications, e.g., signals analysighngtill might be better handled by
machines, which do not suffer from common problems seen lithan annotators, like
bias or fatigue.

The considerable performance gap between machine periceta data from locales
seen in training and locales not seen in training indicdtas is one might expect, gener-
alization performance lags behind locale recognition. Rletabin experiments confirmed
that in fact the generalization gap is much larger than isaegrt from the CLEAR eval-
uation data. Performance on unseen data using the rouimdeadluation was still much
better than chance and much better than human performamtéhas one can claim that
some form of generalization is still taking place. Howeveg bimodality of results in this
experiment leads to a slightly different conclusion: nam#iat some environments are
easier to extract general features from than others, edjyewhen the data are drawn from
different countries and continents. This claim is intuétivplausible; for instance, airports
should be and in fact are hard to recognize in this frameweoktunately, supervised adap-
tation results demonstrate that one does not need a tremeadwount of adaptation data
to bring performance to acceptable levels. In practice,roight imagine that most of an
individual's time is spent in familiar rather than new loes| and so, from an application

point of view, these deficiencies need not be crippling.



Chapter 5

Auditory Scene Learning for

Multiresolution Context Awareness

5.1 Chapter Overview

This chapter describes theoretical and practical work alit@aty scene learning and iden-
tification for multiresolution indexing and awareness.dglms by motivating multiresolu-
tion indexing, and describing how machine listening cap beprovide it. After discussing
prior work in this area, including a brief discussion of léewel acoustic event detection
and recognition, the presentation moves on to methods fdetimg, learning, and identify-
ing high-level structures, or acoustic scenes. Experisard presented which demonstrate
the ability to learn these high-level scenes from unlabdkgd, and to use them for a spe-
cific context awareness goal motivated by the requiremdrikedCHIL Connector service:
the ability of smart mobile telephones to determine fromiautgformation whether or not

the user is interruptible.
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5.2 Multiresolution Indexing and Awareness

Multiresolution awareness is something that humans dotkfésly. We recognize short-
term events in the sensory stream, such as passing a persoa stneet, hearing a knock
on the door, or listening to another person speak. Yet thistishe only level of awareness
we have; we recognize that these events are part of largetstes which we also easily
recognize. Passing people on the street is park of going tk, e knock at the door is
part of a typical workday and a sign that a meeting is aboutatid, she words coming from
another person’s mouth are part of a conversation thataff part of a series of conver-
sations about some topic of shared interest. Further, thislbvel awareness, in addition
to helping us navigate through the day, also helps to gurddwoel sensory recognition
systems; recent research has indicated [find citation]ttieaflow of sensory information
is far from a one-way street. In addition to the expectedrmttion flow from the sen-
sory periphery to processing areas of the brain, the brams#nds a tremendous amount
of informationbackto the sensory periphery. This means that to some presurtaigky
degree, our high-level knowledge and memory are guiding asir most basic perceptual
tasks. Just as high-level knowledge is exploited by bi@algsystems, so too can it be
exploited by computational systems by allowing these syst® make better predictions
about which short-term events are likely to occur.

This observation has tremendous implications for per@@omputing in general and
for context-aware smart spaces and devices in particularenGhat it is important for
these systems to appropriately react to changes in cothexthese context cues are often
short-term events, and that these short-term events ae pfedictable from high-level
knowledge, it is crucial for these systems to attain mudtlplels of awareness, from short-
term and concrete to long-term and abstract. For multimealaexing applications, the
same requirement holds; in order to effectively index adamultimedia collection for

easy human browsing, one cannot simply divide up the stretoran unending sequence
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of low-level events. High-level structures, presented imiugh slower rate are a necessity
for usability.

As with other sensory applications, and for reasons stadglicein this thesis, the
audio signal is a rich source of information which can be eitptl to attain multiresolu-
tion context awareness. Just as, for instance, neamyonment$ave characteristic sound
fields, manyactivitieshave characteristic, acoustically detectable events avidommen-
tal conditions. Concentrated work in an office environmeat,ifistance, often sounds
quite different from informal discussions in the same amwment. The former is typically
dominated by the sounds of keyboard and mouse clickinggvithd latter is typically dom-
inated by speech and other non-speech human noises. While/@orenent recognition
system might correctly classify both of these situationsffise scenarios, a multiresolu-
tion activity detection system might be able to distinguisém based on short-term and
medium-term acoustic cues and use this information to geothie appropriate services.
One might, for instance, prefer different office lightingdés for programming work and
conversation, or typically make coffee or tea for conveosest, or like to listen to music
while programming. To the extent that these activities @arelsognized, and that sufficient
preference-learning algorithms are available, theseepgates can potentially be met by a
smart space acting autonomously. Given the immense pravh@eh smart applications,

multiresolution auditory scene learning is an extremetsaative area to address.

5.3 Prior Work

Much of the prior work on context awareness from sensory fd&iases on either low-level
audio context cues or multimodal inputs. Examples of loveleaudio context systems
include work on speech activity detection or acoustic ewdagsification and detection.
Examples of multiresolution, multimodal context systemdude audiovisual personal di-

ary or broadcast television segmenters. More specific ebengb these kinds of systems
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are given below.

5.3.1 Low-Level Context Cues

There is a fairly large body of work on classifying non-sgeacoustic events in controlled
settings; e.g., for content-based information retrieval.this application, recordings of
isolated sounds are classified or clustered into one of aEkeown classes.

The systems presented by Slaney in [90] and [89] use MFCCs anblisGid build
hierarchical clusters of sounds for retrieval. In this wa&IGMM ©,, representing a cluster

C;, is trained for each recording. Clusters are then mergeddaiocpto the criterion

®(C1, Ca) = L(C1|O2) + L(C2|0y), (5.1)

where L(|-) is the likelihood of the data given the model. Clustering pexts until
some stopping criterion is reached (e.g., a specific numbdusters, all clusters merged,
high @, etc.). The model can then be used to classify future example

Reyes-Gomez and Ellis presented in [83] an HMM-based apprtwanodeling general
audio events in the MuscleFish database (introduced by \&l@l. in [112] for classi-
fication. This work dealt with the problem of selecting an HMittucture for a generic
audio class. This is actually a very important area to addras, unlike ASR, it is not
cleara priori what kind of model structure is appropriate for any givenrgbalass. Two
basic approaches were explored: #igariable k-means algorithm, given in Figure 4.1,
and a GMM-EM approach in which ever more complex models weratively grown and
trained until some stopping criterion was reached. Threera were tested in the GMM-
EM framework. The low entropy criterion halts when any detip probability falls below
some threshold value. The low state occupancy criteriots dien the number of frames
assigned to any state falls below some threshold value. T8endthod selects the sin-

gle model which maximizes the BIC. Optimal results were oladinsing the low entropy
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criterion, though combining scores from multiple differénvariablek-means models re-
sulted in similar performance.

Feature selection in general audio modeling is also an opestigpn. Many researchers
have had success with MFCCs, but in some domains other featisrgisld improvements.
One example is work done on general sound recognition initbkdn environment, due
to Kraft et. al. [56], [55]. In this work, temporal ICA is used improve performance over
single-frame ICA features and raw MFCCs. Temporal ICA involvestiire stacking as
described in Section 2.5.1, following which the featurecgpia reduced in dimensionality
by using PCA. The new features are then whitened and used tputeran ICA solution.
As shown in [55], ICA tended to learn multi-frame structuri&s lonsets and offsets which
were useful for kitchen sound classification.

Another issue raised by Reyes-Gomez and Ellis was the rolésofichinative train-
ing. Noting that while approaches based on purely disciatne methods like support
vector machines (SVMs), for example, Guo and Li’'s work ([3@]0]), often provided
performance superior to generative models on classificaéisks, these approaches were
ill-suited for online detection of acoustic events in reaieonments. The reason for this
poor fit is that SVMs rely on pre-segmented data, which is natlable in online appli-
cations. Temko et. al. reported on isolated sound clasgdican real environments in
the context of the CHIL project in [66], [101] and [100]. Theystem used a sequence
of two-class SVMs, each with an optimally-derived featue¢, $o distinguish between
acoustic events found in seminar and meeting settings. effyetems, though relying on
presegmented data, were important in that they were usaatt@ssfully classify acoustic
events produced by spontaneous human activity in real@mwients. Further work, de-
scribed in [99], demonstrated the ability to detect acoustents in online streams using
new CHIL data. Unfortunately, neither Temko’s SVM system the HMM systems pro-
duced by Zieger and Malkin were able to perform much bettan tt00% error due to an

astonishing number of insertion errors. This problem wastduhe acoustic similarity be-
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tween sounds which had task-relevant semantics and thask did not, and also because
there was a large amount of speech which tended to confusketeetion systems. For this
reason, future work in this domain will likely be integrateith speaker activity detection

(SAD) systems.

Finally, as shown in work by Chen et. al. ([12], [13]), evenergmlly anonymous
acoustic event detection — that is, specifying that an eigptcurring without identi-
fying it — can be useful as a preprocessing step for more cexngbdeo-based activity
detection systems. In their work, a very simple power-basmalistic event detector was
used to pre-select regions of interest in nursing home gidibe@se regions of interest were
then evaluated for human activity using visual featuresngganonymous acoustic event
detection as a preprocessing step in this applicationtegbul many fewer regions being

processed with more expensive visual algorithms.

5.3.2 Scene Learning and Recognition

There is a large body of work on finding meaningful temporaigras in all types of data.
Phrase finding, word clustering, variable-length languageleling, text topic detection,
ASR punctuation insertion, and word unit finding in textsnfronpunctuated languages
can all be viewed as structure or scene learning problemmultimedia data, the emphasis
has been on finding multiresolution structures in, for exi@ggports video, personal diary
recordings, and similar large, relatively unstructurethdases. Much of this research has
used multimodal inputs including audio, video, and evereothore esoteric information
sources. Several models and methods have been proposdisftask; two of the most
popular approaches involve the use of HMM variants. Thesana are now discussed in

turn.
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The Layered HMM

A classic example of this type of scene learning is found enrttany works by Clarkson
([17], [20], [18], [19], [16]) and collaborators. The firsttd of these works addressed ex-
tracting context information in a mobile setting from wdaeaaudio sensors only; specif-
ically, he used MFCCs sampled at a slow frame rate (5 Hz). Clarkset with limited
success with this approach, as many of the locales that henteassted in modeling were
very similar acoustically. In later work, he thus added s@m®ple video and acceleration
information, fused at the feature level. These additiopatdres improved performance
considerably.

In early work, Clarkson trained a single HMM using the segrakimeans algorithm,
found in [81]. In practice, this approach required that thenber of states be selectad
priori, though in principle the HMM topology could be learned dibedrom data using,
e.g., one of the approaches found in [83]. In later work, GGarkmade use of multires-
olution structures to represent and learn high-level aes; He used the layered HMM
(LHMM) to model these structures.

The LHMM consists of a series of HMMs interoperating in théddaing way. The
bottom layer HMM produces discrete symbols or real-valuedtars in the usual way;
inference involves estimating the most likely state segaegiven observable data. This
state sequence, represented either as a real-valued gétitoe-dependent state posteriors
or discrete state indices, is then used as the observall®gathigher-level HMM, and so
on. These models are trained with the standard EM procediy@sally either forward-
backward training or Viterbi training. Inference is cadieut in a bottom-up fashion; the
Viterbi procedure is first used on the bottom layer in ordeptoduce a state sequence
which is used for inference on the next higher level.

The main advantages of the LHMM are simplicity and adapitgbilThe model is

trained with standard procedures, and assuming that kigh-$tatistics are similar across
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00 — 89 (5.2)
Oi «— S8 (5.3)
S, — Sli (5.4)

(5.5)

Figure 5.1: Layered HMM Dependencies

locales, a model trained in one locale is easily adapted ¢than locale by simply re-
training the bottom-level acoustic parameters. Therelagetmain disadvantages with the
LHMM. First, the Viterbi procedure must be executed mu#tifimes in sequence, mean-
ing that decoding time for &-length sequence using a-level LHMM with N states
per level on averag®(M N?T) time. Second, there is no principled way to ensure that
high-level state changes are less frequent than low-l¢std shanges. Even dramatically
reducing the number of states from one level to the next maysuffice to ensure this
condition. Onecan introduce a state transition penalty to enforce a slower oatstate
change, but it is difficult to implement this scheme in preetione often must derive the
correct penalty empirically, and it is sometimes difficolestablish the correct rate of state
change. Finally, the dependencies expressed by the LHMMira e sense, backwards.
Denoting the state at leveéland time slicet as.S;, and the observable at leveand time
slicet asO;, the dependencies in the LHHM are:

Graphically, this set of dependencies can be representatbas in in Figure 5.2.

Note that the staté’ is not dependent on stat€/ ™' as one might expect. The only inter-
action between levels is in the observables; specificileyobservabl®:! is dependent on
both S;{~! and S!. Put another ways; " and S! are mutually conditionally independent
given O:. It would be preferable to have a model in which low levelesadre dependent

on high level states; i.e., one in whidi~' « S?. To illustrate this principle, consider an
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Figure 5.2: Graphical Representation of Layered HMM Depanigs
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office setting in which the main audible sound is a human tyjpin a keyboard. Here, the
typing is theevidencehat there is a human doing work on a computer, and the room is
in the typing statdecausedhere is a human typing on a keyboard. If there happens to be
evidence that there is a human in the office, there is no walgar.HMM framework to
express the fact that typing is now more likely than if theexevno human present in the
office absent construction of sub-models which can be tsader

Another project of note using LHMMs is due to Oliver et. alhmin [77] demonstrated
an LHMM system for recognizing human activities in an offietting. Their work, like
Clarkson’s, used both audio and video information and shawadusing both modalities
together was superior to using either alone. They also stholeability to adapt models
learned in one office to other offices by retraining only th&doa layer of the LHMM. Fi-
nally, they showed that there was essentially no differdreteveen using the full posterior

matrix and using only a set of discrete symbols for inteetagommunication.

The Hierarchical HMM

A model which addresses all the problems with the LHMM is therdrchical HMM
(HHMM). In the HHMM, first described by Fine et. al. in [32], &astate can emit ei-
ther an observabler a sequence of substates. Structures can be shared in the Hthisit\M
iS, a given substate can appear as a child of multiple higél-Eates. In addition to states
@ and output®), the HHMM introduces an extra multilevel variablg, which controls the
rate at which high-level states change by permitting suemghs only when child HMMs
reach an accepting state. The dependencies between albiesrin the HHMM are:
where/ is the total number of levels in the HHMM. A graphical reprasgion of these
dependencies is given in Figure 5.4. In this model, multiplels of states can influence
the observables, though in practice, dependencies fromlgigl states to observables

are frequently omitted. Unlike the LHMM, each state is diedependent on the state
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Figure 5.3: Hierarchical HMM Dependencies

immediately above it in the hierarchy, an arrangement mefleative of reality than the
independence that obtains in the LHMM. Finally, decoding ba accomplished in one
reasonably efficient Viterbi pass, as described below. fdke features are exactly those
which match an intuitive sense of a multiresolution modetha real world, making the
HHMM an attractive choice for implementation.

The naive approach to inference in the HHMM was given by Finea. in [32].
Their inference algorithm was a straightforward adaptatibthe inside-outside algorithm
for parsing with statistical context-free grammars. Tiference algorithm, like inside-
outside, is cubic in the observable sequence lefig{see [57] and [68]), making it too
inefficient to use in practice. In [73] and [72], Murphy pressl an exact inference al-
gorithm for HHMMs which used the junction tree algorithmigimally developed for in-
ference in dynamic Bayes networks. This algorithm was lineaime; specifically, for a
D-level HHMM with () states, inference on’&-length observable sequence was given as
O(TDQ'5P). Murphy further noted that by using approximate DBN infeeneethods,
inference time could be reduced@®7'DQ?). Xie et. al., in [113] and [114] suggested an
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alternate approach. They advocated compiling the HHMM dmtma standard HMM by
representing each possible configuration of HHMM statessasgle meta-state, allowing
for use of the standard Viterbi algorithm with time comptex®(N?T), whereN is the
total number of states in the flattened HMM. One issue with #pproach is thaV may

be larger in practice thaRQ'>". Xie et. al. found that inference in practice with the flat-
tening method wa®(7'DQ?P); in other words, the total number of states in the flattened
HMM was proportional taDQ”.

Murphy specifically disrecommended flattening in [73]. Thasons given were:

A flat HMM cannot provide a multi-scale interpretation of theta.

Flattening loses modularity, since the parameters of sMidAd get combined in a

complex way.

Training HMMs separately and combining requires segmetiéeal.

A flat HMM may have more parameters. It is the ability to re-ss&-models in
different contexts that makes HHMMs more powerful than déad HMMSs, since

the parameters of such shared sub-models only need to pedeance.

Xie's method seems to address these objections in the fiolipway. First, each flat-
tened HMM state specifically represents one possible HHMMarstate; hence, multi-
scale interpretation is still possible. Second, the depecés between observables and
high-level states are removed, meaning that sub-modelstdhbe trained and reused in
the standard way.

An open question is how to learn hierarchical structuresfdata. Murphy suggested a

piecemeal approach in which horizontal structures coulédéeed by methods commonly



Chapter 5. Auditory Scene Learning for Multiresolution Comt#&wvareness 134

used for standard HMM structure learning; he specificalfgmred to Brand’s work ([9]),
in which model structures started out with a large numbertaties fully connected and
parameters were removed according to some optimalityricnite Work by Freitag and
McCallum ([36]) and Stolcke and Omohundro ([97]) was alsectin this context. Murphy
suggested that vertical relationships could be learnedhimjes methods, but cautioned that
it was not clear how to detect when substructures shoulddedhXie et. al. used a Monte
Carlo approach starting with a single state in which, at etarlation, an operation from
the set{spl i t _st at e,ner ge_st at es,swap_chi | dren,run_em} was selected at
random; the resulting model was either kept or discardedrdowy to a BIC ratio. Xie
et. al. used this approach to learn 2-level models of soddeng whose segmentation
performance exceeded that of models manually construsied expert knowledge.
Tangentially related to the problem of structure learnm¢itHMMs is Pfleger’'s work
([78], [79]), which sought to learn hierarchical structi@nline without storage of mas-
sive amounts of data. Pfleger's work was aimed at symbolimile@ of structure for au-
tonomous, real-world systems with limited storage; hisisoh involved the estimation of
true structure probabilities based on a limited number seokations. His method relied
on probabilistically adding structures to the model whesesteed more than once, and
subsequently eliminating rare models, where rarity wagguadusing Hoeffding bounds.
In this work, structures which occur frequently are lesslijko lose a Hoeffding race and

thus more likely to be kept.

5.4 Structure Learning In HHMMs via Redundancy Re-
duction

All of the previous approaches given for learning the streestof HHMMs noted above

were essentially maximum likelihood approaches; thathisy texplicitly seek the model
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which maximizes the likelihood of the training data. In soo@ses, this maximization
is subject to constraints dealing with model complexitige lthe BIC ratio of Xie et. al.
However, maximizing likelihood is not necessarily the ol metric for organizing a per-
ceptual system. Rather, according to perceptual theoryslooeld seek an organization in
which the redundancy of the system is minimal. In terms ohedearning, the preference
for minimal redundancy amounts to finding those sequencegaups of symbols such
that by modeling these sequences or groups as coherenttbaitedundancy of the data is
decreased. This approach is similar to one employed by Ral.eh [85] and by Ries et.
al. in [84] for structure learning in natural language, whie goal of improving statistical
language models.

Given the Markov assumption, there are two ways to minimekindancy. First, one
can seek to minimize the zeroth-order redundancy of the dditigh amounts to minimiz-
ing the Shannon redundancy (or equivalently, maximiziregehtropy) of the data. Shan-
non redundancy, originally shown in Chapter 2, is repeated he Equation 5.13. The
second way in which redundancy can be minimized is at thedndr. That is, the re-
dundancy of the next symbol given the current symbol can theaed. One minimizes this
temporal redundancy by seeking those structures whichmzeithe average mutual infor-
mation between symbols at consecutive time indices. Thisiengiven in Equation 5.14,
can be divided by the entropy of the symbol sequence as sho®quation 5.15 in order

to yield a normalized figure.

Hp(X)

Re(X) =1 - o (5.13)
Ip(Xi1; Xy) = Hp(X) — Hp(Xy| X¢ ). (5.14)
Fp(Xey X,) = 1 = APl Xe) (5.15)

Hp(X)
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In what follows, the metridp(X;_1; X;) will be abbreviated »(X'). Given one of these
metrics, one can learn a hierarchical structure in a greaslyidn by iteratively proposing
symbol merges and accepting the one yielding the largesttied in redundancy. A num-
ber of constraints can be built into this process, includimiting the number of children
a symbol can have, limiting the number of levels in the modkbwing mutable sequence
order or requiring fixed sequence order, and forcing therdlgo to exhaust all possible
level n possibilities before moving on to level+ 1. Collectively, these constraints can
have a rather large impact on the final structure that is &gBras shown below, proper
choice of constraints is quite important to achieve fithesssbme particular task. This
learning algorithm, Structure Learning through RedundaReguction (SLRR), is given
in Figure 5.5.

By way of example, the metriép(X ) was used to learn hierarchical letter sequences
from the English Gigaword corpus produced by Graff for thaduistic Data Consor-
tium [38]. For this experiment, 100,000 words were seleetechndom from the corpus
and case-normalized. After removing spaces and punctydkie scene learning approach
was tested at the character level; there were 413,450 todighcters in the data set. There
were no constraints placed on the learned structures. Babkhows the first 50 structures
learned, along with their counts in the corpus.

There are several things to note about these structurest, Raite the convention that
repeated characters are merged into a single symbol; h&ltteexpertsay” is actually a
learned structure representing the phrase “all the expayt% Second, note that the struc-
tures are hierarchical in that some small structures ausee-in multiple larger structures.
For instance, “thexp” is used in both “all the experts sayd &mnd the explosion.” Third,
note that, even though the first several structures are \@nnon, the remaining struc-
tures on the list have relatively small counts. Given thatdbrpus segment in question is
roughly half the length of Melville’s Moby Dick [70], this ia somewhat surprising result.

However, recall that the goal is not necessarily to learmtlest frequent structures or to
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Structure Learning through Redundancy Reduction

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Given: Corpug’, set of symbolsS, constraints), metric M, set of structures H:
Initialize: ComputeV/(C).
repeat
A—{},C" —C, M(C*) — M(C).
for each symbol paifS;, S;) :
if ¢(S;,Sj) = TRUE:
then
Create new symbdi,.
C' 58+ 5;+ S,
Computel/ (C").
if M(C") < M(C*):
then
A (S;,8;),C* —C,
1(C*) — I(C").
if 1(C*) < I1(C):
then
AddAto H,
C — C*, I(C) — I(C*).

else return

Figure 5.5: Structure Learning through Redundancy Reduction
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Rank| Structure | Count| Rank Structure Count
1 t+h 5697 | 26 althexptert+s 1
2 th+e 2,209 || 27 althexpterts+a| 1
3 v+e 1,446 | 28 | althexptertsaty 1
4 cth 647 29 ve+xp 1
5 w+h 625 30 I+vexp 1
6 VI 483 31 | etalthexpertsay 1
7 v+a 168 32 sh+exp 2
8 s+h 825 33 nthexp+e 1
9 j+u 126 | 34 v+ 2

10 X+p 95 35 0+Vj 2
11 e+xp 81 36 g+ovj 1
12 the+xp 6 37 X+ju 1
13 n+thexp 2 38 a+xju 1
14 d+thexp 2 39 axju+s 1
15 n+dthexp 1 40 VitV 1
16 a+andthexp 1 41 Viv+o 1
17 andthexp+l 1 42 Vivo+r 1
18 | andthexpl+o 1 43 r+vivor 1
19 | andthexplo+s| 1 44 u+rvivor 1
20 | andthexplos+i 1 45 s+urvivor 1
21 [+thexp 1 46 survivor+s 1
22 lthexp+e 1 47 thexp+e 1
23 atlthexpe 1 48 Xp+r 1
24 althexpe+r 1 49 Xp+ 1
25 althexper+t 1 50 gt+exp 1

Table 5.1: Top structures found in English text by reducermgporal mutual information
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maximize the likelihood of the data given some model; ratihés to discover structures in
such a way that the dependency between adjacent symbothisad For this reason, rare
structures can be selected provided that they have verypneghctive power. Compared to
a uniform distribution of letters, even the rare structwesfantastically over-represented.
For instance, consider ti#* structure, “ealthexpertsay.” The expected count of this se
quence in a 413,000 character uniformly distributed texpproximatelyl x 10!6; the
actual count ofl could thus be considered extremely large. Nonethelessefveere to
propose these structures as the core structures of Engkslohe would have a hard time
defending such a position. Use of the Shannon redundancycirteiwever, results in a set
of structures that fits this description much better. Tabfeshows the first 50 structures
learned by reducing the Shannon redundancy metric, alotigtiagir counts in the corpus.
These structures look more like what one would expect; theeethirteen common
short words in addition to many common prefixes and suffixe€rglish text, it is clear
that the Shannon redundancy approach is a better way to difiolt structures than the
temporal mutual information approach. It is unclear whethrenot this result holds for

sensory data.

5.5 Example Application: Interruptibility Estimation for
the CHIL Connector Service

An example application which could benefit from multiresmn scene identification is
interruptibility estimation for mobile telephones. Standl mobile telephones provide a
constant, instant communications channel, allowing huosers to stay connected with
one another and achieve tremendous levels of efficiencytimamational and social set-
tings. However, by virtue of the fact that they are always afess explicitly switched

off, they also present opportunities for annoyance, unggiiterruption, and distraction.
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Rank| Structure| Count || Rank| Structure, Count
1 e+r 3,722 || 26 o+m 1,079
2 i+n 4,039 27 i+d 891
3 t+h 5,697 | 28 in+g 1,517
4 e+s 3,261 | 29 e+t 788
5 a+n 3,346 | 30 an+d | 1,347
6 t+o 2,449 31 at+c 793
7 e+a 1,817 32 t+s 649
8 e+n 2,582 | 33 e+w 769
9 e+d 2,264 | 34 a+m 700
10 a+t 1,897 35 a+y 698
11 o+r 2,010\ 36 er+s 621
12 i+s 1,705 37 t+i 569
13 a+s 1,665 38 e+m 636
14 th+e 2,209| 39 p+r 589
15 o+n 2,453 | 40 c+h 647
16 a+l 1,881 41 o+l 683
17 a+r 1,597 | 42 u+r 600
18 i+t 1,301| 43 o+w 660
19 o+u 1,316 44 i+r 502
20 i+C 1,114\ 45 a+d 591
21 e+l 1,212 || 46 0+s 509
22 e+c 1,005| 47 u+s 508
23 S+t 888 48 e+f 527
24 o+f 1,336 49 i+g 528
25 i+ 1,304 || 50 t+r 446

Table 5.2: Top structures found in English text by reducihgrgon redundancy
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Many users find incoming calls disruptive under certain @boas: during meetings or
seminars, while driving, while attending theatrical penfi@nces, or during meals. Further,
under certain adverse conditions, such as in the proxinfity @nstruction site, partici-
pating in a conversation may be physically difficult. Tow#nd goal of alleviating these
problems, researchers have begun to apply context-awarputing techniques to the mo-
bile telephone platform. This alleviation is the specifiabuaf the CHIL Connector service;
introductions to this service can be found in [107], [1], §29].

Ideally, a smart mobile telephone should be able to condidér social factors (i.e.,
known relationships between contactor and contactee) mvicbemental factors (i.e., the
contactee’s current locale and activity) when deciding boWwandle an incoming request
for communication — by ringing, vibrating, taking a messagjeing or withholding in-
formation about the contactee’s state, or even schedulmgra convenient time for the
communication to take place.

In this thesis, the focus is on modeling and detecting enwirental and activity factors
affecting interruptibility. Using hierarchical models ofer state learned in an unsuper-
vised fashion from raw sensory data, we estimate whetheotdhe contactee is interrupt-
ible. Combined with social information and a means of integgathese two information
sources to form a call-handling logic, this approach mowestd the goal of a smart mo-

bile telephone.

5.5.1 Prior Work on Interruption

In [88], Siewiorek et al. used a simple interruptibility meddnvolving only a few sensory
features; notably two audio signal power levels (one fromi@ephone capturing mainly
contactee speech, the other capturing mainly ambient hamsgvisual light levels. This
model, while useful, does not capture some important aspéctser state. First, the audio

features focus mainly on conversation; the assumptionasubers do not want to be in-
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terrupted while they are already involved in face-to-factetephone conversations. While
this assumption appears to hold on average, it may not alb@agtse case. Second, specific
patterns of activity and interruptibility, including thesvhich are stable and repeated over
time, are not accounted for. These patterns, when identhedper-user basis, can be used
to improve interruptibility assessments.

Hudson, Fogarty, et al. focused in [43] on the predictive @owf high-level sensors,
such as “talking on telephone” and “sitting at monitor” in &@fd-of-Oz study in an office
environment and achieved promising results in this domdihey further demonstrated
in [33] that real sensors were able to perform quite well unéal conditions using a
combination of audio, visual, and computer interactiortdess. Horvitz and Apacible
also demonstrated in [42] the use of audiovisual sensorsdiimating interruptibility in
the office domain; their model explicitly attempted to motied cost of an interruption as
another information source.

These previous studies focused on a stationary settin@5[n Danninger et. al. mod-
eled user state in a mobile setting given ambient acoudiicnmation solely in terms of
environments. As shown in work by Ellis and Lee ([29], [30hdain this thesis, a low-
resolution approach can be used to model environments.atruger context depends on
environment, and that environment and activity are mupuddpendent, this approach does
to some extent capture the relevant information. One mighieg though, that it is really
useractivitiesthat matter in this application. For example, a user simpdjkimg down a
city street might be interruptible while a user walking dosvnity street while engaged in
a conversation might not. A low-resolution environmensdxi context model might cor-
rectly spot the city street, but miss the conversation auns thil to make the interruptibility

distinction.
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5.5.2 An Interruptibility Model

The interruptibility model proposed here encompassesdat@nfing variables and sets of
dependencies represents interruptibility. In principle, humans cangadheir own inter-
ruptibility as either a real-valued or a binary-valued shte, while a computational system
will always represent as a probability. In this study, human-reported intertipty levels
are binary.Cy represents directly observable context features; thesade the identity of
the contactor and contactee activities that the system &raiwut from calendar entries,
for example, meetingsCy represents hidden context information; this informatiounsin
be inferred from the observable acoustic evideAge In some cases, there may also be
available observable visual evidenEg; in this thesisty, was used by humans for labeling
and so was also considered for modeliog; is composed of two variable§;; represents
the contactee’s immediate environment (e.g., office ordgdityet), whileC' 4 represents the
contactee’s current activity (e.g., preparing a reportailiimg a cab). The dependencies

among these variables are shown in Equations 5.16 - 5.20.

Cg < Cy, (5.16)

Ea — Cg,Ca, (5.17)
Ey < Cg,Chy, (5.18)
Cu < Ea, By, (5.19)
I — Cy,Co. (5.20)

In this work, only the hidden user state informati@p is considered. Both continuous
audio data and sequences of still images are used in this Wirkse two modalities are
preferable to a more detailed modality like video for twos@as. First, the task is to detect
interruptibility in a mobile environment. As such, it is important to recognize that both

sensory capacity and computational power available areramtly limited. Most users
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would reject a system that required any equipment other ghamartphone; it is thus
necessary to forgo full video and focus on audio plus stifigms, which are much cheaper
to collect, store, and process. Second, it has been deratetsby many of the researchers
noted above that continuous audio is a rich source of infaomdor activity recognition.
Adding still images to audio may not enrich the sensory stremthe same degree that full
video would, but provided images are captured often enough hore often than human
activities change), the gain from adding full video wouldrb@imal.

Given a method for learning scenes from data, and henceftarimg state sequences
from data, we consider how to turn this information into atineate of user interruptibility.
That is, if some state sequen6é is inferred from data, the task is to estimate the value
of I. More specifically, since this interruptibility estimatelivultimately be combined
with estimates from non-sensory modalities, the probigihiti( /|5*) must be estimated for
all values of/. Using Bayes’ rule and borrowing from ASR the engineeringveotion of
weighting the prior and the likelihood, the procedure fdireating P(i|S*) for some value

1 € Iisshown in Egns. 5.21 - 5.24.

P(i|S*) o P(S*|i)P(i), (5.21)
= [ Pesii) PG, (5.22)
= TP@) [[ P(Sii). (5.23)
:1T
~ &P(z)éHP(Stlz) (5.24)

Both the interruptibility modeP (S*|7) and the interruptibility prio?’() can by learned
by simple frequency counting of inferred states combinetth wser-supplied interruptibil-
ity labels.

As noted above, visual information was considered in agidlito auditory information.
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Rather than attempting to merge auditory and visual featatesa single feature vector,
separate estimations éfare carried out for each modality, allowing for late fusidrhe
fusion procedure is shown in Equation 5.25. This proced@stsion the assumption that the
auditory and visual information are independent. This agion does not always hold; as
shown in the dependency model above, both are related tcoenvent and activity. The

independence assumption is made in the interest of sinmgjityhe model.

P(i|S%, S5) = AP(i|S%) + (1 — N P(i] S). (5.25)

5.6 Interruptibility Experiments Using High-Quality Au-
dio

In [65], experiments on interruptibility estimation usihggh-quality audio are described.
These experiments, which used audio signals collectedanptirtable audio device in con-
junction with images collected periodically with a smaxpk camera, show two results:
first, that it is possible to estimate user interruptibilitymobile settings using audio, and
second, that using the scene learning approach preserteel iafproves performance over

both an event-level baseline and an LHMM scene learningoambr.

5.6.1 Data Collection

The data used in this study were collected by a single useeasatried acoustic and
visual sensors during normal daily activities. Audio waptoeed using the Neuros Il
personal audio computer in conjunction with a Sony ECM-7#9est microphone and a
portable, battery-powered preamplifier from SoundPradesds. Audio was captured at
2-byte sample depth at 48kHz and later downsampled to 16kMe channel was used.

Visual information was captured by periodic VGA-qualityagshots from the camera on a
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Subcorpus Audio Time | Images| Min. / Image
1 7836s 20 6.5
2 19320s 44 13.0
3 22282s 30 12.3
Total 49438s 94 114

Table 5.3: Evaluation Corpus

Nokia 6600 mobile telephone. Pictures were taken, on agemagry 11 minutes, though
the rate of photos varied with activity; more shots were takben the scene was changing
rapidly and fewer were taken during those periods where thieoa was mainly sitting
at his desk. We collected nearly 14 hours of data and 100 isyatgtails are shown in
Table. 5.3. In addition to serving as visual input, the inggere also used to label the

corpus for interruptibility.

5.6.2 Feature Extraction

From the audio signal, 11 MFCCs were extracted signal at a fat®@Gframes per sec-
ond. Three additional features were extracted to suppletherMFCCs. These additional
features included spectral centroid (a measure of the perak“brightness” of the sig-
nal), spectral diffusion (which measures the spread oftsglegnergy in frequency space),
and signal-to-noise ratio (which helps to distinguish p@svironments from merely loud
ones). After merging these features into a single 14-dimeas acoustic feature vector,
they were filtered with a Gaussian smoothing window. Finach feature was normalized
globally to zero mean and unity variance.

Visual information was characterized for these experiméytlocal features and the

correlations among local features. Three types of locaufea were extracted from 4
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x 3 = 12 regular granularities of each image. In each local enaatch, the mean of
grayscale values, the means of R, G, and B values (the reduimiarmation here is to
emphasize grayscale values), and the 12-bin color histogr&l SV color space were used.
Since there are 12 patches in each image, the grayscale retor tias 12 dimensions
represented by column vectors. The mean of RGB values is represented as a 12
matrix V,,, and the color histogram is denoted £212 matrixV},.

The correlations among the local features characterizeddwal patches were similar
to each other. For each type of local feature, self-coimiahatrices were computed using

the definitions of the grayscale mean correlation matfjx

My =V, V|, (5.26)

the RGB mean correlation matri, .,

Mrgb = %gb%ﬁby (527)
and the color histogram correlation matiix,:
My, =V, VL. (5.28)

The final visual feature vector for an image is the combimatbthe local features and

their correlations, which is formally defined as:

FU = [‘/97‘/7"gb7vh7MgaMrgb7Mh]- (529)

5.6.3 Model Initialization

The scene learning approach presented here is bottom-upg hthe data must first be

segmented into some base or event-level sequence of staiese manual labeling or
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SegmentaK -Means

1 Given:k,n,t, f:

2 Initialize: choosé samplesS to initialize M.

3 repeat until convergence

4 Build grammary from M.

5 Segmenyf usingg.

6 EM training until parameters converge.

Figure 5.6: The Segmental-Means Algorithm

general audio is a cumbersome, expensive, and error-process, an unsupervised ap-
proach is required. There are a number of possible methoalstéan an initial clustering
and segmentation given a set of audio data. Three candideddbe segmentat-means
(SKM), agglomerative clustering, and a segmental varidist kKM, k-segment-means
(KSKM). SKM, shown in Figure 5.6, requires the size of thdesigpace to be selected
priori, agglomerative clustering, shown in Figure 5.7 requiresfahselection of a stop-
ping criterion, and KSKM, a variant of KVKM shown in Figure&.is a leader-follower
algorithm which requires careful selection of the modeMgpag threshold. All of these
methods require an initial data segmentation, which careb®pned either by some form
of change detection (see Chapter 3) or by temporally unif@iecsion.

For simplicity and speed, SKM is the best choice. In this w&@KM was used with
32 models and 3 states per model. Two additional parametes set in order to control
average event duration after segmentation; the numbeawigfs assigned to initialize each
model, and the transition penalty between states. A vaoéfyarameter settings were
tested for initial segmentation; the resulting averagaehangths are shown in Table 5.4.

As this table shows, event length per state is much moretsent transition penalty
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Agglomerative Segment Clustering
1 Given:in,t, f,
0, a merging threshold.
Initialize: train modelV/; for each segmert;.
repeat
for each model paif)M;, M;) :
@, ; — L(S;|M;) + L(S;|M,).
if ®; ; > 0 for best paireturn
Build new model\/,, with datasS), = (.S;, 5;).
Remove);, M; from M.

o N o o b~ w DN

Figure 5.7: The Agglomerative Segment Clustering Algorithm

Transition Initial Frames Per State
Penalty 33 | 66| 100 | 133 | 166

0 06 06| 0.7 ] 0.6 | 0.6
62.5 16 (18| 18| 1.7 | 1.8
125 28 26| 29| 2.7 | 29
250 52 |46| 52| 49|49
500 10.6| 9.3 | 10.9| 10.0| 9.9

Table 5.4: Average Event Length in Seconds Per TransitiorBeand Frames Per State

Allocation
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K-Segment-Means
1 Givenin,t, f,
0.,, a merging threshold,
6, a spawning threshold,
z, the minimum number of samples per model.
2 Initialize: choose segmenst, train model)M.
3 repeat until likelihood P(S|M) converges:
4 for each unassigned samgle
5 Find model)/; with highestP(S;| ;).
6 it P(S;|M;) > 0,,:
7 then Add S; to M;.
8 elseif P(S;|M;) < 6, :
9 then create new model/; using.s;.
10 UpdateP(S|M).
11 Remove models/; with fewer thanz samples.

12 repeat until convergence

13 Build grammauy from M.
14 Segmenjf usingg.
15 EM training until parameters converge.

Figure 5.8: The{-Segment-Means Algorithm
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than to initial frame assignment. An intuitive understangdof the length of acoustic events
led to the selection of the model with a transition penaltg®6 and initial frame assign-
ment of 166. Using these settings, SKM produced a segmenthir the entire dataset

consisting of 27,432 tokens.

5.6.4 Scene Learning

Using the event-level segmentation as the baseline canpulslevel HMMs were built us-
ing both the multilevel SKM approachand the SLRR approach using the temporal mutual
information metric/p(X). Using both SKM and SLRR, 4 levels of scenes were learned.
In the SKM approach, the number of models per level was hakwed various transition
penalties were tested. The resulting average scene leagthshown in Table 5.5. Note
that the transition penalties tested are much smaller thagettested in the event segmen-
tation tests above. This is because the input space for $eameng is monodimensional
and discrete rather than multidimensional and continuloeisce, the emission probabilities
are roughly the same order of magnitude as the transitiobgibties and the transition
penalties need not be as high. As this table shows, scerth)diikg event length, is heavily
dependent on the transition penalty. The penalty 0.125éghthe smoothest increase in
scene duration and was chosen for evaluation.

For the SLRR test, sequential merging with ti)f{X) metric was used with the fol-

lowing set of constraints:

1. Amerge is legal if :

(a) The two states being merged are both on the same HHMM daxkthis level

is lower than the current HHMM levar

INote that multilevel SKM does not produbésrarchicalmodels, as there is no sense of shared substruc-

ture.
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Model | Number of|| Transition Penalty

Level | Models 0 | 0.125| 0.25
1 16 3.0 538 17.6
2 8 3.3| 115 | 1147
3 4 3.9| 49.7 | 737.9
4 2 7.7| 61.0 | 1098.6

Table 5.5: Average Scene Length Per HMM Level and Transi#enalty, SKM Scene

Learning

(b) The two states being merged awa on the same HHMM levednd

I. The higher-level state isoton the current levebr

ii. The higher-level states on the current levedndit has less than three chil-

drenandthe lower-level state is not already a child.

2. A low-level state sequence must appear at least 10 timé® icorpus to be consid-

ered for merge.

3. A minimum of two new merges per level is required; if no preed merge lowers

the redundancy metric, then accept the merge than minirttizes

The number and average duration of scenes learned, as Weti@asures at each level,
is shown in Table 5.6.

There are several results to note in this table. First isttiete were only a total of
23 scenes learned. This rather low total would seem to itelitat there was actually
not much short-term predictability in the source corpus ithaaptured by strict sequential
relationships. Second is that most of the scenes learnezltivemselves very short — the

average time spent in any state increases only about 15%tlfre@imottom level to the top.
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Model Level | Scenes Learned [ Avg Scene Length
0 0 0.163 1.80
1 16 0.138 2.04
2 2 0.138 2.05
3 3 0.138 2.06
4 2 0.139 2.07

Table 5.6: Scenes Learneld,and Average Scene Length in SLRR-Trained HHMM

Third is that the temporal mutual information is quite lowstart and does not decrease
much, which supports the contention that not much shomt-temporal structure is present
in the corpus. Finally, we note that, unlike a LHMM trainedm&KM, an HHMM trained
with SLRR exhibits arincreasein the number of states in the model as more levels are
added. There were 48 states in the highest level of the moai@lpared with only 2 in the
LHMM.

5.6.5 Results

One measure of how well the model states should be able tacpreterruptibility is to
compute the mutual information between interruptibilapéls and model states. These fig-
ures for the SKM-trained LHMM and the SLRR-trained HHMM are whan Table 5.7.
The single best relationship between interruptibility amatlel state is actually exhibited by
the event-level HMM initialized with SKM. However, note tithe strength of the relation-
ship between interruptibility and state deteriorates mmaine rapidly in the SKM-trained
LHMM than in the SLRR-trained HHMM.

After learning these two kinds of multilevel structurese thterruptibility priorsP (1)

and per-state interruptibility likelihood3(.S|7) were trained and tested using a round-robin
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Learning Model Level
Method 0 1 2 3 4

SKM 0.260| 0.129| 0.195| 0.178| 0.093
SLRR || 0.260| 0.203| 0.204| 0.199| 0.200

Table 5.7: Mutual Information Between States and Interhiliti Labels

procedure. Each day’s audio was successively set asidesfiong while the other two days
were used for training. A prior-only model was tested aloriigpan event-level model and
each HMM level. For tests in which both priors and likelihsagere considered, they were
considered with equal weight. Results are shown in Table As8Bimages, hence labels,
were available at unequal intervals, results are indexeddbly number of segments and
by time. Total miss rate is the sum of the false interrupt eate the false rejection rate.
Note also that an actual user experience would differ froesétresults, as they reflect the
implicit assumption that exactly one call is arriving dyyieach test segment.

Using priors only yields an average miss rate of 11.4% by tafi¢alse interrupts. The
situation improves by considering likelihoods at the evewrel; the per-second miss rate
is decreased to 8%, balanced between false interrupts edrégects. Using the SKM-
trained LHMM, performance degrades steadily, though a &ieefinterrupt rate at level 3
represents an anomaly in this trend. Best results are obtayesing the level 4 SLRR-
trained HHMM, which has an overall miss rate of 6.5%. Thisswate represents a 43%
relative improvement over the prior-only baseline and a% X8lative improvement over
the event-level HMM. This result indicates that SLRR-trair#4MMs can learn structures
that are useful for a specific context-awareness task, atdhbse structures are superior
for this task to an SKM-trained LHMM. More importantly fronrmapplication point of

view, the notion that interruptibility is inferable from @astic evidence is validated.
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Model Model || Miss Rates (Seg) || Miss Rates (Time)
Type Level || False Int| False Rej| False Int| False Rej
Prior - 30.8% 0.0% 11.4% 0.0%
Events 0 6.4% 13.8% 4.1% 3.9%
SKM-LHMM 1 9.4% 32.9% 5.9% 26.9%
SKM-LHMM 2 37.4% 23.3% 19.4% 17.6%
SKM-LHMM 3 3.7% 32.0% 2.7% 20.7%
SKM-LHMM 4 37.4% 28.2% 19.3% 19.1%
SLRR-HHMM 1 6.4% 12.7% 4.1% 3.9%
SLRR-HHMM 2 6.4% 12.7% 4.1% 3.9%
SLRR-HHMM 3 4.2% 12.7% 3.1% 3.9%
SLRR-HHMM 4 4.2% 11.7% 2.9% 3.6%

Table 5.8: Average Miss Rates, All Conditions
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Image-Based Results

After conducting experiments using audio information gnrigual information was con-
sidered. This use of visual information for this task is matumany smartphones have
onboard cameras with relevant APIs exposed. Further, th@hwsubjects labeled the cor-
pus for interruptibility using the images as activity reshémns and in many cases, visual
information can be enough to determine user environmentaatvdity. Finally, in many
applications, the failure modes of audio and video can beptementary. Image-based in-
terruptibility models were thus trained and evaluatedgitfie same round-robin procedure
used for audio.

The visual context modeP(|Sy ) was represented by a set of diagonal-covariance
Gaussian densities. Since the feature space was 768-danahsand there were only
94 images in the database, the most detailed possible madehveingle Gaussian per
class. Even his model was severely undertrained, meanaigtta results which follow
are almost certainly not a useful measure of the utility stral information for the mobile
interruptibility estimation task. Results are shown in EbI9. The overall miss rate of
52.7% by time is many times worse than the best audio-basssl naies, and even many
times worse than the prior. As noted above, though, the ladikta was certainly a serious

problem; hence, it is difficult to draw any conclusions frdmstresult.

5.7 Interruptibility Experiments Using Low-Quality Au-
dio

While the high-quality audio results shown above are exgjtihey are not necessarily re-
flective of the capabilities of a portable cellphone. Datas wallected for the prior study
using several extra pieces of equipment: a personal audavdimg device with, on aver-

age, poor battery life, an external microphone which musivbe in a prominent loca-
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Test Miss Rates
Subcorpus| False Interrupt False Reject Total Miss
1 0.7% 66.7% 67.5%
2 52.7% 6.1% 58.8%
3 0.2% 38.0% 38.3%
Average 28.4% 24.4% 52.7%

Table 5.9: Miss Rates by Time: Image-based Gaussians

tion on the user’s clothing, and a portable battery-powgmedmp. Setting aside for the
moment the issue of cost — which is not trivial — the sociagsta of appearing to be
recording audio and snapping photos in public is difficulbéar for any reasonable length
of time. An alternative to this very visible, expensive, anttomfortable mode of data
collection is to use the portable cellphone itself. Thigisecdescribes experiments using
a real cellphone with low recording quality for fully-auteted audiovisual data collection
with two human subjects. Other experimental enhancemediisded the evaluation of the
Shannon redundancy metriep(X) in addition to the temporal mutual information met-
ric, evaluation of strictly sequential versus non-segiaéstene learning, and a number of
different SLRR constraints on the symbol merging procedureaddition to the straight-
forward miss rate evaluations as given for the high-qualiiglio condition, an analysis of

incremental learning and cross-user adaptation is given.

5.7.1 Data Collection

As noted above, data collection in this experiment was edmut using a real cellphone.
The Nokia 6600 Smartphone [75] was used for this purposes mbidel uses the Symbian
S60 operating system [98], for which a Python library expgsinost of the telephone’s
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Subject| Total Seconds Total Images Total Hours| Recording Hours Recording Days

A 64970 3460 18.04 26 6
B 31898 1695 8.86 13 2
Total 96868 5155 26.89 39 8

Table 5.10: Data Collected Per Subject

functions is available. This APl was used to write a dataemibn script which captured
a 160x 120 jpeg-encoded image every 20 seconds while recordingz3 k6tbit audio
in 20-second chunks, a total data rate of less than 1 MB peutmirAt this rate, a 1 GB
MMC or SD card costing less than $50 can hold over 16 hourstaf da

Two subjects were recruited to collect data using this tedee. Worn around the user’s
neck on a lanyard, the device was inconspicuous and allograthfural human interaction.
Subjects were instructed to warn others of the recordingniersation occurred and offer
to turn the device off. A summary of data collected in thidhfas is shown in Table 5.10.
Note that the total time columns refer to actual temporagmixof the recordings, while
the recording columns refer to clock hours or calendar daygich recording took place.

The round-robin evaluations were organized around recgrdours.

5.7.2 Feature Extraction

For this study, two different audio feature sets were testde first feature set consisted
of 11 MFCCs extracted at a rate of 100 frames per second fromutttie aignal and nor-
malized to zero mean and unity variance on a per-subjecs.b@bie second set consisted
of a 14-dimensional feature vector containing 11 MFCCs plusgroal, diffusion, and snr,
exactly as for the high-quality audio experiment. Visualtiees were extracted as noted

above, except that the source images were only>1 Q0 pixels.
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Subject Feature Space
11d MFCCs 14d MFCCs+

Tokens| Event Duration| Tokens| Event Duration

32,634 1.99s 64,632 1.00s
B 20,035 1.59s 38,556 0.82s

Table 5.11: Initial Segmentation Results Per Subject

5.7.3 Model Initialization

The same model initialization approach was used for thidystis for the high-quality audio
study. A 32-model, 3-states-per-model HMM was trained émtesubject using SKM with
an insertion penalty of 62.5 and an initial frame assignnoéd66 frames per state. After
10 iterations of SKM, the resulting initial segmentatioostboth subjects and both feature
sets are shown in Table 5.11.

As with the high-quality audio experiment, a baseline penfance measure was estab-
lished using a round-robin procedure for training and ngsstate conditional interruptibil-
ity models. These results, together with the mutual infdromabetween model states and
interruptibility states, are shown in Table 5.12.

These results indicate that on average, the enhanced MFCGrdeat leads to better
performance than the standard MFCC feature set; the averageate for the MFCC set
is 24.06% versus 19.70% for the MFCC+ set. For both subjectshrmofithe improvement
came from a decrease in false interrupts: a 60% relativeedserfor subject A and a 20%
relative decrease for subject B. Interestingly, for eachjesutponly 24 states using the
MFCC+ feature set were actually present in the final segmentativen these results,
scene learning experiments were carried out using the MFC@#hesetation as the event-

level corpus.
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Subject| Feature| I(I;S) | Miss Rate| False Reject Rate False Interrupt Rate
A Prior —_— 31.67% 0.00% 31.67%
A MFCC || 0.293| 21.06% 13.51% 7.55%
A MFCC+ || 0.324| 16.07% 13.03% 3.03%
B Prior — | 43.72% 0.00% 43.72%
B MFCC || 0.242| 30.18% 9.21% 20.97%
B MFCC+ || 0.299| 27.12% 10.23% 16.89%

Table 5.12: Baseline low-quality audio interruptibilitystdts

5.7.4 Scene Learning

A number of scene learning experiments were carried ougusith the Shannon redun-
dancy metric and the temporal mutual information metricwirious sets of constraints.
As in the high-quality audio study, the resulting HHMMs were@mpared to an SKM-
trained LHMM. In this study, reduction of states in the LHMMg/much less pronounced;
instead of halving the number of states with each level eseeit was reduced by 6. In
both the LHMM and HHMM, only 3 levels of scenes were learnederage scene lengths
and tokens per level in LHMMs for both subjects are shown inld®.13.

A number of HHMMs were also trained using the SLRR method. Bbéhtémporal
redundancy and Shannon redundancy metrics were used. Bemtht gtate was allowed
to have a maximum of three children, and both ordered anddened sequences were
learned. In ordered sequence learning, structures of tne f6b™ — a + b are learned,
while in unordered sequence learning, structures of tha fafa|b)*)|(b(alb)™) — a + b
are learned. In these learning experiments, a minimum af¢enes were learned for each
of three HHMM levels. Thus, for each subject, four threeelddHMMSs were learned for a

total of 12 different state segmentations with which tortiand test interruptibility models.
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Subject| Model | States| Tokens| Avg Scene Length
A HMM 24 | 64,632 1.00s
A LHMM-1 18 | 33,246 1.95s
A LHMM-2 12 | 48,323 1.34s
A LHMM-3 6 18,484 3.51s
B HMM 24 | 38,556 0.82s
B LHMM-1 18 | 19,090 1.67s
B LHMM-2 12 | 10,817 2.94s
B LHMM-3 6 6,711 4.75s

Table 5.13: Average Scene Length per Model Level, SKM-TdibHMM

For each subject, the number of tokens and states, alongawgttage scene length, are

shown for each segmentation in Table 5.14.

5.7.5 Results

Interruptibility results for all models were obtained ugithhe same round robin procedure
detailed above. Results for the event-level HMM and LHMMssdrewn for both subjects
in Table 5.15. As is the case in earlier experiments, botlstdugstical relationship between
model state and interruptibility and the miss rate degradduglly with increasing model
level. For subject A, the level 3 LHMM'’s performance degradie such a degree that the
bare prior achieved a better miss rate than the full stateliional interruptibility model.
HHMM results are shown for subject A in Table 5.16 and for eabP in Table 5.17; a
summary of the best-performing models using all approahsisown in Table 5.18. The
results shown here are quite interesting. First, note thabth cases, the best-performing

learned model outperforms the prior by a large margin — 15%okite, 49% relative for
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Subject| Model | Metric | Ordered| States| Tokens| Avg Scene Length
A HMM 24 | 64,632 1.00s
A HHMM-1 I yes 32 | 56,970 1.14s
A HHMM-2 I yes 36 | 52,955 1.22
A HHMM-3 I yes 35 | 49,085 1.32
A HHMM-1 I no 27 | 58,788 1.10s
A HHMM-2 I no 23 | 51,932 1.25s
A HHMM-3 I no 21 | 38,966 1.67s
A HHMM-1 R yes 28 | 57,829 1.12s
A HHMM-2 R yes 29 | 54,643 1.18s
A HHMM-3 R yes 29 | 52,075 1.24s
A HHMM-1 R no 26 | 59,058 1.10s
A HHMM-2 R no 28 | 55,378 1.17s
A HHMM-3 R no 31 | 51,287 1.26s
B HMM 24 | 38,556 0.82s
B HHMM-1 I yes 25 | 34,759 0.91s
B HHMM-2 I yes 23 | 29,666 1.07s
B HHMM-3 I yes 21 | 27,220 1.17s
B HHMM-1 I no 29 | 32,414 0.98s
B HHMM-2 I no 34 | 31,952 0.99s
B HHMM-3 I no 36 | 31,930 0.99s
B HHMM-1 R yes 26 | 34,080 0.93s
B HHMM-2 R yes 30 | 30,975 1.03s
B HHMM-3 R yes 30 | 30,069 1.06s
B HHMM-1 R no 24 | 36,310 0.87s
B HHMM-2 R no 23 | 34,450 0.92s
B HHMM-3 R no 21 | 33,419 0.95s

Table 5.14: Average Scene Length per Model Level, SLRR-Tdali¢MM
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Subject| Model I(1;S) | Total Miss | False Reject False Interrupt
A PRIOR —_ 31.67% 0.00% 31.67%
A HMM-0 | 0.324| 16.07% 13.03% 3.03%
A LHMM-1 || 0.258| 19.68% 14.12% 5.56%
A LHMM-2 | 0.188| 21.10% 11.34% 9.75%
A LHMM-3 || 0.107| 31.67% 0.00% 31.67%
B PRIOR —_— 43.72% 0.00% 43.72%
B HMM-0 | 0.299| 27.12% 10.23% 16.89%
B LHMM-1 || 0.250| 29.32% 1.22% 28.09%
B LHMM-2 || 0.146| 29.56% 10.52% 19.04%
B LHMM-3 || 0.116| 31.11% 8.27% 22.84%

Table 5.15: Miss Rates, SKM-Trained LHMM

subject A, and 18% absolute, 42% relative for subject B. Sé&ctor both subjects, an
HHMM system was either the best performer or indistinguiedibom the best perfor-
mance, suggesting that the SLRR scene learning approactidedruseful for this task.
Third, note that for both subjects, the result of learnirtgiiruptibility using only the event
level HMM is within 2% of the best system. This result suggehkat, even though multi-
level HMMs yielded the optimal results for this task, it midie advisable to use simpler
models in practice if computational resources are scarte difference in error type is
also of interest. One might expect that false interruptsldvoacur in proportion to subject
uninterruptibility, and that in fact is exactly what was ebged in this experiment. Subject
A, uninterruptible less tha@ of the time, suffered only 3% false interrupts. Conversely,
subject B, uninterruptible more th%’mf the time, suffered nearly 17% false interrupts.
Finally, note that the best results on this corpus were mumisevon average than for the

high-quality experiment. One might immediately attribthes performance drop to a loss
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Model I(I;S) | Total Miss | False Rej| False Int
Shannon Redundancy, Ordered
HHMM-1 || 0.384| 17.40% | 11.88% | 5.51%
HHMM-2 || 0.371| 19.67% | 14.67% | 5.00%
HHMM-3 || 0.368| 19.17% | 13.05% | 6.12%
Shannon Redundancy, Unordered
HHMM-1 || 0.335| 17.52% 9.53% 7.98%
HHMM-2 || 0.313| 16.10% 8.26% 7.84%
HHMM-3 || 0.327| 24.37% 4.65% | 19.71%
Temporal Mutual Information, Ordered
HHMM-1 || 0.142| 25.90% | 16.86% | 9.04%
HHMM-2 || 0.102| 27.13% 6.66% | 20.47%
HHMM-3 | 0.043| 30.04% | 0.04% | 29.60%
Temporal Mutual Information, Unordered

HHMM-1 || 0.062| 28.87% 7.91% | 20.90%
HHMM-2 || 0.018| 31.67% 0.00% | 31.67%
HHMM-3 || 0.006| 31.67% 0.00% | 31.67%

Table 5.16: Miss Rates, SLRR-Trained HHMM, Subject A
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Model I(I;S) | Total Miss | False Rej| False Int
Shannon Redundancy, Ordered
HHMM-1 || 0.310| 27.95% 9.26% | 18.68%
HHMM-2 || 0.344| 26.13% 9.46% | 16.67%
HHMM-3 || 0.350| 25.30% 9.05% | 16.25%
Shannon Redundancy, Unordered
HHMM-1 || 0.251| 28.98% | 11.85% | 17.13%
HHMM-2 || 0.194| 34.99% | 10.97% | 24.01%
HHMM-3 || 0.199| 40.16% | 14.18% | 25.97%
Temporal Mutual Information, Ordered
HHMM-1 || 0.185| 27.10% | 11.69% | 15.40%
HHMM-2 || 0.149| 28.74% | 10.56% | 18.18%
HHMM-3 || 0.150| 28.92% | 10.62% | 18.29%
Temporal Mutual Information, Unordered

HHMM-1 || 0.143| 28.67% | 13.12% | 15.55%
HHMM-2 || 0.038| 43.48% | 26.65% | 15.82%
HHMM-3 || 0.037| 38.75% | 25.47% | 13.28%

Table 5.17: Miss Rates, SLRR-Trained HHMM, Subject B
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Subject| Model Type | I(I;S) | Total Miss | False Rej False Int
A Prior S —_ 31.67% 0.00% | 31.67%
A HMM-0 —- 10.324| 16.07% | 13.03% | 3.03%
A LHMM-1 —- 1 0.258| 19.68% | 14.12% | 5.56%
A HHMM-2 | R-uno| 0.313| 16.10% 8.26% 7.84%
B Prior — — 43.72% 0.00% | 43.72%
B HMM-0 —- 1 0.299| 27.12% | 10.23% | 16.89%
B LHMM-1 | — ] 0.250] 29.32% 1.22% | 28.09%
B HHMM-3 | R-ord | 0.350| 25.30% 9.05% | 16.25%

Table 5.18: Miss Rate Summary

of audio quality; it is intuitively plausible that with lowauality audio the acoustic model
on which the interruptibility model is based would be lesgeab cluster the audio into
truly perceptually similar states. However, note that thergerror rate for the high-quality
audio experiment was only 11.4% by time, and the final err& was approximately half
that figure. The relative reduction from prior error to finalog is similar across experi-
ments: 49% relative for subject A in the low quality expenmel2% relative for subject A
in the low quality experiment, and 42% relative for subjectiie high quality experiment.
This consistency of result suggests that the real drivemaf &rror rate may not be audio

quality, but the user’s prior interruptibility rate.

Image-Based Results

As with the high-quality audio experiments, image resulesevconsidered in this set of
experiments. Unlike the high-quality experiments, a largamber of images was available
for study. There were, on average, 132 images availableragiirtg hour. Subject A

thus had, on average, 3300 training images and Subject Byrig&00. This is still not a
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Subject Full Feature Space Compressed Feature Space
False Int.| False Rej.| Total Miss || False Int.| False Rej.| Total Miss
A 12.29% | 15.10% 27.40% 20.39% | 15.88% 36.28%
B 13.28% | 16.23% 29.51% 29.12% | 12.04% 41.14%
Avg. 12.62% | 15.47% 28.09% 23.26% | 14.62% 37.88%

Table 5.19: Image Results for Low-Quality Audio Corpus, TwaeGsian System

tremendous amount of data however; assuming a 35% intdseiptior, this means that,
for example, Subject A had 1155 sample points for 1536 paensiéa mean and a variance
for each feature) in the interruptible state and 2145 samppiets for 1536 parameters in
the non-interruptible state (the numbers for subject B wdnd 593 and 1102). The visual
feature space, after eliminating symmetric values fromcihreelation matrices, had 426
dimensions. After removing those features with O variaribes space was reduced to
390 dimensions. With this large a feature space, the ratigaaiples per parameter is
still well short of what would be required for a single welkihed diagonal covariance
Gaussian density. For this reason, in addition to repediegingle Gaussian experiment
from the high-quality audio experiment, another experitweas carried out in which, after
normalizing each visual feature to zero mean and unity magacross the entire training
set, PCA was used to reduce the feature set to a more manafjgalbde 25 dimensions.
This much smaller feature space ensures that the Gaussiaitydparameters are much
more well-trained at the cost of a loss of expressivenedsifdature space. However, this
loss of expressiveness is on average small: for both sgbjeetr 95% of the eigenvalue
mass was retained. Table 5.19 shows, for each subject, énage/miss rates in both the
uncompressed and the compressed feature space with usimgjeaGaussian density per
class.

The miss rates shown here are worse than those for low-gaaidio, though the bal-
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Subject Full Feature Space Compressed Feature Space
False Int.| False Rej.| Total Miss || False Int.| False Rej.| Total Miss
A 26.58% 4.95% 31.54% 17.95% 6.52% 24.47%
B 31.21% 5.87% 37.09% 34.52% 2.25% 36.78%
Avg. 28.10% 5.25% 33.36% 23.40% 5.11% 28.51%

Table 5.20: Image Results for Low-Quality Audio Corpus, Faterruptibility Models

ance between false interrupts and false rejects is botkrcdosl more stable than for audio.
Further, for both subjects this performance is an improveraeer the prior and in subject
B’s case, performance is actually competitive with the evevel audio HMM. In order
to determine if these results could be improved upon, artiaddi set of experiments was
undertaken in which the visual feature space was clustesieg) the SKM algorithm and
used to construct a full conditional interruptibility mdde(S|/) just as in the audio ex-
periments. This experiment was carried out for both the3al-dimensional feature space
and the PCA-compressed feature space with six single-Gaustites. As with the audio
experiments, state clustering was carried out using theeetitaset and a separate con-
ditional interruptibility model was constructed for ea¢hsin the round-robin evaluation.
Results of these experiments, with prior and conditionabes set optimally, are shown
in Table 5.20.

These results indicate a 25% relative improvement in missfoa the PCA system, but
a degradation for the full feature space system. The latrltis likely due to severe un-
dertraining; there were not enough samples available iB9edimensional feature space
to adequately estimate the parameters of one Gaussialgrietsix. The PCA-compressed
6-state HMM has performance comparable to the two-Gaugslafeature space system
with a miss rate of approximately 28%. This figure does notr@ggh audio-based per-

formance; it is likely that in order to improve further, anage-based system would re-
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guire much more data to train color-based models. Alterabtiit might be appropriate
to abandon color-based models entirely and attempt somedbbasic object recognition.
Neither alternative is very attractive; collecting the tvasiounts of data required to train
these models well would be cumbersome and expensive, whigetorecognition is very
computationally demanding. One might thus infer that auslia better choice for this

application, even in low-quality conditions.

5.7.6 Incremental Learning

In the experiments shown above, there was a relatively langeunt of audio data from
which to learnP(I) and P(S|I) for each test. In deployment, it is unlikely that these
amounts of data would be availakdepriori; hence it is useful to explore how to learn
incrementally during use and how fast performance appeselkceptable levels. In or-
der to answer these questions, an incremental learningeg@uoe was devised using only
the event-level HMM segmentations. In this procedure, thia dvere partitioned intdv
recording hours, and for each hauthe miss rate for hourst 1 through/N was computed
with an unadapted model — in this case, a model in which trerpand likelihoods were
all uniform and the tiebreaking procedure is to hypothesizi@aterruptibility. After com-
puting these unadapted miss rates as a baseline, incrdr@amtang was carried out. For
each hout, segments from hours 0 through- 1 were selected at random for adaptation
according to a call schedule and learning policy, the model® adapted, and then hours
1 through N were tested using the updated model. The segments chosenddepon a
call schedule which states the probability of receiving lhaaring any given 20 second
period and on the learning policy which states whether otlm®model adapts only when
the system makes an error or if it can adapt regardless ofutteme.

This incremental learning procedure was carried out 10@4gifor each subject and

results averaged. Three call schedules were used, witbggenent call probabilities of
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Figure 5.9: Subject A Incremental Learning Performance

.01, 0.005, and 0.001. These figures amount to 40 calls, 26, eald 4 calls per 24-

hour period. Combined with the two learning policies, thesensix incremental learning
conditions evaluated per subject. The resulting adaptatiomves are shown in Figure 5.9
and Figure 5.11; the average amounts of adaptation timeyged and condition are

shown in Figure 5.10 and Figure 5.12. Note that subject Asptation curve starts to
level out after approximately 15 hours of available adaptator 300 seconds of actual
adaptation data. Subject B’s adaptation performance ddegppooach round-robin result;
however, there were only 13 total hours in this dataset. fdsalt would seem to indicate

that at least 15 hours are needed to approach round-rodorpance.

5.7.7 Effects of Cross-User Mismatch

A natural question to ask, given the results above, is howthwelgiven approach estimates
interruptibility when there is a mismatch between user aodeh i.e., how well will the
a model trained using subject A's data perform when testesubiect B’'s data and vice-

versa? There are actually three kinds of mismatch to condiist is a total mismatch, in
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Figure 5.12: Subject B Incremental Learning Time

which both the acoustic model and the interruptibility mioale trained on one user and
tested on another. Second is an acoustic mismatch, in wihechdoustic model is trained
on one user and used for segmentation on another user. TWwisegmentation is now
used with the test subject’s labels in order to train a matehterruptibility model. Third
is an interruptibility mismatch. In this case, a subjectsgadis segmented with the correct
acoustic model, but another user’s interruptibility modalsed.

In order to evaluate the degree to which performance degrandéger these mismatch
conditions, cross-user adaptation experiments wereechort using subject A and subject
B. The first step was to segment each subject’s data usingitbesatbject’s acoustic model.
The resulting segmentations are compared to the correctesggtions in Table 5.21. Note
that for both users, there are many fewer tokens and low&s staropy for the cross-
subject case than for the same-user case. This result nraldgive sense; while there may
be some states which are broadly similar across users,ikely that there may be some
fine details which are well-represented in one subject’a 8at not in the other’s. In this

case, a same-user model will tend to change states to captse fine details, while a
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Train Subject| Test Subject| Tokens| Avg. Event Length| Entropy
A A 64,632 1.00 2.98
B A 63,403 1.02 2.78
B B 38,556 0.82 3.07
A B 33,545 0.95 2.64

Table 5.21: Same-user and Cross User Segmentation Results

cross-user model might not.

Each possible mismatch mode was then tested using the HM&lI-$egmentations
with the same round-robin method used above. The resultiékperiment are shown
in Table 5.22, together with the matched-condition resiaitscomparison. These results
are very interesting. For both users, the worst result isst the correct acoustics but
a mismatched interruptibility model. For subject A, thigpegach did not even beat the
prior, while for subject B it beat the prior by only 5% abselui his result makes perfect
sense; a cross-user interruptibility model not only reflefifferent user preferences, but is
trained using a totally different segmentation of the atiowspace. More interesting than
this result is what happens when a cross-user acoustic nedsked. When the cross-
user interruptibility model is useibgetherwith a cross-user acoustic model, performance
degrades, but not very much — 6.5% absolute for subject A, @¥6lbject B. When a
cross-user segmentation is used to train a new interrliptiolodel, the results are more
impressive still. In this case, subject As results degrhgldess than 2% absolute while
subject B’s degrade by approximately 0.5%. These resultstevagly suggestive of the
idea that if an acoustic model is sufficiently broad, it careb#loyed for more than one
user, provided there is some mechanism for producing orteddginterruptibility models

online.
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Acoustic| Interrupt| Test| Miss Rate| False Rej| False Int
A A A 16.07% | 13.03% | 3.03%
A B A 31.67% 0.00% | 31.67%
B B A 22.63% 8.61% | 14.01%
B A A 18.01% 9.94% 8.06%
B B B 27.12% | 10.23% | 16.89%
B A B 38.84% 0.24% | 38.64%
A A B 29.35% 2.98% | 26.37%
A B B 27.72% | 11.13% | 16.59%

Table 5.22: Subject Mismatch Results, Round-Robin Evaluation

5.8 Chapter Summary

This chapter presented an information-theoretic methodefrning multilevel structures
from audio data in an unsupervised fashion. This methodssdan the perceptual prin-
ciple of redundancy reduction, and was demonstrated to feetiee for a real context
awareness task. From an application point of view, a modattefruptibility based on
environmental, activity, social factors, and observed aampreference was presented. Ex-
periments considering only environmental and activitydes demonstrated that, for high-
quality audio, a pleasing level of performance was achievabd that use of the proposed
scene learning technique led to a significant improvemem¢rformance compared to both
a single-level HMM and a layered HMM. Results on low-qualitylao showed a large over-
all performance degradation compared to high-quality @autihe proposed scene learning
technique showed an improvement for one subject in thisystfidpproximately the same
absolute magnitude as for the high-quality study. For theeosubject, the difference

between the single-level HMM and the learned HHMM was esalntizero. For both
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subjects, however, the proposed learning technique eskintbetter performance than us-
ing a layered HMM. Further, the degree to which interrufitipimodels can be learned
incrementally was quantified for a number of combinationsaif schedules and learning
policies. Given a relatively modest number of calls, thailtsssuggest that at least 15
hours of active use with a cooperative user are requiredtrobeasonable performance.
Finally, the effects of cross-user model mismatch were tifii@h The results of this ex-
periment seem to indicate that interruptibility model maah is a more serious problem
than acoustic model mismatch. This is a desirable resuity psactice it should be much
easier to collect and make use of a simple learning sigral for incremental learning
of the interruptibility model) than to collect and clusterdéo from a user in the field. In
principle, this result means that as long as one can colleaff@iently large sample of rep-
resentative audio from a wide sample of experience typespaght to be able to deploy a

real system whose only concern is to learn an interrupigtiiodel online.



Chapter 6

Conclusions

6.1 Chapter Overview

The contributions of this thesis are both theoretical arsdtfzal. These contributions are

summarized here, along with a discussion of future direstia machine listening.

6.2 Contributions

This thesis has focused on exploiting auditory informatiororder to achieve context
awareness for real-world computational systems. Usingdbks of theoretical machine
perception together with engineering paradigms develdpedSR, context awareness
systems for three areas of perceptual computing were gegsanultimedia gisting, envi-
ronment recognition, and multiresolution scene learnargriobile interruptibility estima-

tion. These three areas are discussed in turn below.
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6.2.1 An Auditory Blind Value Assignment System for Multimedia
Gisting Applications

Chapter 3 presented a method for using acoustic informadi@stimate multimedia seg-
ment value for gisting applications without prior knowledgf segment contents or any
semantic models of events of interest. Using an informatih@oretic measure of signal
content as a proxy for value, systems were demonstratediéospecific applications that
displayed value judgments broadly similar to those madeumygdn subjects.

Specifically, a system built for after-action review getieraachieved a human judg-
ment match rate of 27%, compared to 38.6% for the average igmigect. This perfor-
mance handily exceeds 13.5% for temporally uniform samgplin2% for random sam-
pling, and 16.2% for a video-based system. Further, on segnselected by a large pro-
portion of human subjects, the match rate increased, negetd.2% on segments selected
by at least 60% of the humans in the study, indicating thatesyperformance on the
segments which are more important to match is better tharalbyerformance.

A similar system built for stream-of-interest selectionain online aggregate remote
sensing application achieved a human judgment match ra®é.886, compared to 41%
for the average human subject. This performance excee@$%hehance performance, as
well as the 26.6% performance achieved by a video-basedmsydturther, for segments
on which humans broadly agreed, the match rate increasachirg 61.1% on segments
with a human agreement level of 0.5 or higher. As with the AARGtam above, this
result indicates that system performance on segments valn&cmore important to match
is better than overall performance.

For both after-action review generation and online aggeegamote sensing, it ap-
peared that human subjects strongly preferred segmentsgimig strong local scene changes.
This preference suggests that humans find it difficult to keagk of the entire sensory

pastiche and cannot hope to produce value judgments wheabpdimal in an information-
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theoretic sense. Given this interesting observation,ntaies an open question whether
or not human produced gists convey more information to huoasisumers than the more

theoretically correct automatically generated gists.

6.2.2 An Environment Recognition System for User State Modeling

Chapter 4 presented methods for inferring user environmment acoustic evidence. Us-
ing a corpus of environmental audio collected in 9 environtaktypes on 4 continents,
a standard HMM/GMM system was compared to a perceptuallgvated system based
on binary trees of linear autoencoding neural networks.n@y¢he 2006 NIST CLEAR
evaluation campaign dataset, the best HMM/GMM system aebi@an average misclas-
sification rate of 15%; 5% for segments from locales seemduraining, and 25% for
segments from locales not seen during training. By contthetbest autoencoder tree
system achieved an average misclassification rate of 309algv20% on segments from
locales seen during training and 41% for locales not seengltnaining. Even though the
autoencoding method used more than three times as many gteraras the HMM/GMM
system, overall performance was not close.

In addition to this performance comparison, human subjsete evaluated as a base-
line. On a small subset of the testing corpus, humans aahmveverall misclassification
rate of nearly 74%. The HMM/GMM system had a misclassificatiate on this subset
of 29.6%; 22.2% on segments from seen locales and 37% on ségimem unseen lo-
cales. While the HMM/GMM performance degradation was unetgae(but also seen for
the autoencoding method), performance was still far sap&sihuman performance. This
result was not surprising; pilot studies had indicated thahans performed poorly com-
pared to automatic systems on a much more limited task. ike$ylthat this gap is due
largely to a lack of experience in listening tasks, and thegieed oddness of trying to

determine environment from auditory rather than visuadlence. Nonetheless, the results
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of these environment recognition experiments suggestttimtype of system might be
useful not only for robot and mobile device context awarenbst also for applications in
which human analysts attempt to categorize and extraatnrgtion from data of unknown
origins.

An additional round-robin experiment was conducted in Wla&MM system achieved
a rather poorer misclassification rate of 50%; it appeared tte data partition in the
CLEAR evaluation campaign was particularly easy. To querki& degree to which la-
beled data is required to bring performance to acceptabédslean adaptation experiment
was conducted using this round-robin system as a baselime réult of this experiment
was that misclassification rates could be roughly halveti witly five minutes of adapta-
tion data, and brought to about 20% with eight minutes in aloeale. This result indicates
that, while the ability of the trained system to generalzgeaker than the CLEAR cam-
paign results would indicate, in practice, not much datanfeogiven locale is needed to

improve performance.

6.2.3 A Theory of Hierarchical Structure Learning

Chapter 5 presented a theory of structure learning from efgabaudio based on the per-
ceptual principle of redundancy reduction. Two forms of ggpproach were presented; one
based on reducing the Shannon redundancy (i.e. the unig@dumadancy) of the set of sym-
bols in a sensory corpus, the other on reducing the temparalahinformation (i.e. the
bigram redundancy). At the core of this approach is the ctitte that when one symbol
is predictable given a previous symbol, these two symbadsilshibe merged into a higher
level structure; when all such structures in a corpus haea lbeund, the resulting high
level state sequence will exhibit very little redundanchisimethod is contrasted with the
more standard approach of learning layered HMMs using tedespplication of the seg-

mentalk-means algorithm. An empirical evaluation of this learnmethod was conducted
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in an indirect fashion, as in general it is difficult to asssssacture quality independent
of some application. Specifically, this theory of structlgarning was used to inform an
application intended to estimate user interruptibiligrfraudio for a context-aware mobile
telephone task. Experiments carried out in this scenagic&ted that hierarchical structure
learning is superior to the standard multiresolution appho This result is largely because
the hierarchical learning method does not reqaitdow-level events to be merged into
high-level scenes as the standard approach does. As agttult relaxed requirement, a
hierarchical structure learned in this fashion may acpudslvemoresymbols at high levels
of modeling, meaning that there is more granularity in tteéesspace and a richer set of
possible associations between acoustic states and huatas. gin two of three cases, the
hierarchical learning method also produced superior tes$althe baseline of a standard
one-layer HMM; in the third case results were essentiaintatal except that the HHMM
results were better balanced between false interrupts ase fejections. Finally, it ap-
peared that Shannon redundancy was a better metric fomguiittHMM structure learning
than temporal mutual information; examples of structuegreng in text using these two

metrics given in Chapter 5 provide insight as to why this isdage.

6.2.4 A System for Estimating User Interruptibility for Mobile Appl i-

cations

In addition to the theoretical contribution of a method fagrhrchical structure learning,
Chapter 5 also presents a model and system for estimatingniseuptibility for mobile

applications. This system, which estimates interruptibily considering observed condi-
tional acoustic state probabilities given interruptiyilstates,P(S|7), achieved an overall
miss rate of 6.5% on a single-subject, high-quality audi@ase, with a false interrupt
rate of 2.9% and a false rejection rate of 3.6%, both meadwydine. On a two-subject,

low-quality audio database, the system achieved a misiitad®n rate of approximately



Chapter 6. Conclusions 181

19%; one subject had more false interrupts than rejectib®2%% vs. 9.05%), while the
other subject had a more balanced performance profile (8faB®interrupts, 7.84% false
rejections).

The effects of incremental learning were investigated,ienwds demonstrated that with
a cooperative user, preferences can be learned with idiafew calls. Further, the effects
of cross-user acoustic mismatch and interruptibility modesmatch were measured. It
was demonstrated that the interruptibility model, whictb&sed on user preference, is
much more important than the acoustic model. This obsenvdéid to the conclusion that
as long as the acoustic model is sufficiently broad, it cangpdied to multiple users and

incremental learning procedures used to estimate an unptigoility model.

6.3 Future Work

While this thesis presented many interesting results, @ ised several interesting ques-
tions which could be investigated in a relatively short tap@n. Arranged by topic, some

of these questions follow.

6.3.1 Questions in Multimedia Gisting

e Is there a more objective measure of gist quality than humatcimrate? While
attempting to match human performance in gist creation éaaanable first step, in
that it avoids subjective judgments of gist quality, we rtforget that the real goal
of gisting is to allow humans to perform some task more edkéy they otherwise
could. One way to measure gist quality taking this goal irtcooaint might be to
design some question-answering scenario in which humames gntire recordings
are scored against humans given gists created with varietisotls. While it seems

clear from the results in this thesis that humans prefeiltsttaies using local scene
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change, it isnot at all clear that their preference is actually operatignaieful or

correct.

e Can this method be expanded to cover more structured typeslbimadia artifacts?
One reason this method works well is that naturally occgrdata streams are event-
sparse. For much of the time in real experience, not muchgdsaor happens.
As such, when somethingoeschange or happen, it can almost automatically be
assumed interesting. On the other hand, in more structuudtthmedia artifacts, like
sports or films, the data are much less sparse. Worse, thivguelvidence is often
divorced from the events depicted in the multimedia strearsarticularly in films
which are heavily scored with music. Preliminary, inforragplorations indicate that
blind value assignment could potentially be used to autmalat generate movie
trailers, but it is clear that the richness of informatiorthis media type compared to

the sparseness in natural media warrants additional ige¢isin.

e Can prior knowledge in some cases be brought to bear in giagiplications? In text
summarization, one is often able to “center” the summaryoomesset of key words or
phrases. Likewise, one ought to be able to provide some tuwesiultimedia gisting
system in order to more easily find the information one wabBtficulties abound
for this approach; for instance, how does one describe asersent of interest,
and how does a computational system interpret that deseriptTwo possibilities
are verbal descriptions and exemplars; both methods coyddove the utility of a

multimedia data exploration system.

6.3.2 Questions in Environment Recognition

e To what degree are environments really similar or diffePefihe work in this thesis

seems to suggest that some environments are harder to ise@gnenvironments
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than others. Specifically, airport and train platform seémise a very difficult envi-
ronment to recognize computationally, while environmédikts bus, gallery, restau-
rant and park seem easy to recognize even across contir@ivsn this apparent
dichotomy, can one characterize in a more formal way whichrenments can be

learned in the general case, and which require particutaidebased knowledge?

e What are the correct features for environment recognitiom® work used a combi-
nation of MFCCs and a handful of spectral summary features. /i feature set
proved superior to competing feature sets, the featur@a&xin experiments were
far from exhaustive. Intuitively, one might expect that lifaséive descriptions of the
sound field could be useful for this task. For example, exipemans often charac-
terize sound fields along axes like dry vs. reverberant,ynass ordered, loud vs.
quiet, open vs. enclosed, etc. Capturing some of these ésatnight prove comple-
mentary to the features used in this thesis and might alsb strae light about how

humans guide their sensory expectations.

e How can personal or universal priors and transitional modbel used to improve
environment recognition? The system presented in thissghmakes use of five-
second segments of audio, presented in isolation. In ye#tere will always be
more information at hand than this. Previous work by Ellis @ and Clarkson
seemed to indicate that, even when unsupervised clusteasgised, knowledge of
priors and likely transitions could help to identify specifocales frequently visited
by a user. One might imagine the ability to estimate in fasthprt order a transition
model between environments which could be built by expeoiwtedge but whose

parameters could be learned online for each user.
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6.3.3 A Question in Scene Learning

e What is the proper degree of temporal association for scemaitey? In text, it is
quite clear that pairs of adjacent words or letters shoulthbdirst place to look for
structure. Longer-range associations, such as distgnams, article-based triggers,
or topic associations clearly exist, but much of the usesbaiations from an en-
gineering point of view still involve adjacency. It is notalt clear that this is the
case in sensory data; acoustically detectable events dzappptemporal clusters
but often there is some stretch of silence separating thenthét, the events present
in these temporal clusters are not always — or perhaps even ef fixed in order.
For example, one might consider a typical “working in theaafiscene. There are
a number of events one might expect to encounter in such asceryping at a
computer, talking to a person in the office, talking on thepbne, and the like. But
to tie recognition of the scene “working in the office” to a fpaxlar order or tempo-
ral extent of these events is nonsensical. The scene lgaafgorithm presented in
this thesis, which relied on temporal adjacency, could ingiyple be improved for
sensory data by relaxing the adjacency requirement whiletaiaing the same basic

redundancy reduction approach.

6.3.4 A Question in Interruptibility Modeling

e What is the proper policy for information integration? In tm@del presented in
this thesis, the policy is late fusion and independence fofmation sources. That
is, auditory information is considered independently @il information, of social
information, and of other ancillary data sources like tilhday or GPS coordinates.
It is assumed that some executive process is collectingutthility estimates from
all these sources and integrating them in some sane way. \ldavugh, these

information sources are not at all independent. One canimeafpr instance, a case
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in which a user will accept a call from a funding agent whilwitig, but from no one
else. Conversely, that same user might not accept a call ffomdéng agent while in
an important meeting, but would accept a call from the ped&ivering pizza to the
meeting. In these cases, late fusion would typically faljlesrmore tightly coupled

models might make the correct estimates.

6.4 Challenges for Machine Listening

This thesis represents only a few small steps toward fulloggtion of the audio stream
for context awareness. Many specific areas still need to deeasged in order to improve
the utility of machine listening for context-aware apptioas. In no particular order, some

of the more important of these are:

Acoustic Event Detection in Real Environments As noted in Chapter 5, automatic sys-
tems for classification of isolated acoustic events in kn@mmironments have achieved
reasonable performance levels; error rates are typicallhe order of 5% or less. How-
ever, the problem afletectingacoustic events in an unsegmented acoustic stream remains
difficult. None of the participants in the 2006 CLEAR acoustent detection campaign
submitted systems which achieved any sort of acceptablerpgnce; all were in the
neighborhood of 100% error, or higher. This increase inrgate is largely to to insertion
errors rather than substitutions. There were two reasarthifofailure. One was a system
design problem; the other a potentially more serious proble

The engineering issue was that no fielded system was in fattlsua set of isolated
detectors. That is, models were trained for every soundclasluding nominal silence.
These models were connected into a full grammar and usedda fifiterbi path through
the entire test recordings. In fact, due to phenomena likedoverlap, speech, and the

acoustic-semantic mismatch, this approach has a realdegmftom the beginning. A more
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sensible approach would be to evaluate each model on agldimdow of audio and hy-
pothesize an event only when the model posterior exceeds soeshold. Unfortunately,
these thresholds can only be learned using heldout datahwias in very short supply
during the CLEAR campaign.

The second issue is that in many cases, insertion errors eattitbuted to the fact
that there are many sounds in real environments which arestically similar to sounds of
interest, but perceptually or semantically different. Fastance, ikeys_j i ngl i ngisan
important acoustic class for a specific application, it iy\fficult to build a system which
can detect this event in real timethoutfalsely detecting jingling coins as a relevant event.
Speech is a particular problem, as it contains both harmarmdmon-harmonic sounds, and
thus often produces spectra which, on short timescaleselgleesemble real sounds of
interest. One possible solution to this problem is a tightempling between acoustic event
detection, speaker activity detection, and ASR; such a aoyiphight help to alleviate the
problems presented by speech. At the same time, this agpnoagnot help to alleviate the
problems associated with acoustically similar but sensatiyi distinct non-speech sounds,
and such coupling would actually require some sort of fagkonodeling, as presumably,
acoustic events in the environment are relatively indepahdf speech activity. For these

reasons, this area should remain fertile ground for newareke

Discovery of Acoustic Invariants All state-of-the-art ASR systems are based not on
words, but on subunits such as phonemes. Each word can lkedivito a sequence of
phonemes, which can in turn be decomposed into sub-phonanmasven further into bun-
dles of speech-specific features representing the positibimne speech organs, voicedness
or unvoicedness, tone, and the like. In state-of-the-adhine listening systems, however,
modeling below the symbol level is still largely ignored.li€lconcepts of noise cloud,
transient, and weft [28] were an early attempt to provide eséonm of basic acoustic al-

phabet for the source separation task, but while these thasie sound types shed some
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light on that problem, they are largely unused in machinerigsg systems because they
are computationally difficult to detect and they do not pdevenough detailed information
to distinguish between, say, a gunshot and a hand clap. tdadsa set of real-world sub-
sound units were to be produced, then modeling real-woddd® could in theory become
much easier. As with ASR, data could be shared across higthdgmbols, meaning that
models would have much more training data and could in gladie more detailed, pos-
sibly leading to better performance. As Handel indicatefditj, much of the information
that humans use to identify sounds is actually bound ug@mmporalrather than spectral
relationships; in other words, it is the rhythms of sound timatter more than specific
frequencies. Some attempts have been made to learn tengponadtic invariants using
unsupervised methods; see for example work by Kraft anddtisagues in [56] and [55].
In this work, ICA was used over long windows of analysis fraraed the basis functions
learned tended to represent temporal auditory phenomienathisets, offsets, steady state
energy, and transients. Use of these bases improved ttsfficiatson of sounds in a kitchen
environment compared to standard acoustic features; ik @ould be revisited in order

to make further progress toward useful acoustic event tietec

Multi-Sensor Audition  All the experiments described in this thesis, and by mangroth
researchers, use only a single audio channel. Biologidehkss often exploit stereo lis-
tening in order to make distinctions that cannot be made witfingle channel. Source
localization is one result of a two-sensor strategy; comtiwith knowledge about loca-
tions of sources in a room or other environment, this kindédrimation can be a powerful
cue as to the identity of a sound. Multi-sensor input can bésased to estimate reverber-
ations, which could be a useful feature for environmentgad®n, and to track moving

sources.
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Marriage of Factorial and Hierarchical Modeling The acoustic signal reaching any
sensor is the result of the interactions of the sources ame@lkironment. In any envi-
ronment, there are potentially many sources emitting damugormation at any given
time. Most of these sources are independent of each otlwerglthsome are onlgondi-
tionally independent given the environment. For example, in an offifteronment, the
sound of a telephone ringing and the sound of a keyboardictjcke independent of each
other, though there are strong dependencies between thiests end the office setting.
A hierarchical acoustic model can capture the conditiondépendence of events given
environment, but fails to capture their temporal indep&igde Source separation is one
possible avenue of advance, but factorial modeling is alsmmising area, provided the
concept of hierarchical dependencies is maintained. Ossilpbty is a context-switching
factorial model in which each context is represented by & st&ich can emit not just a
sequence of subordinate states (i.e. a sub-HMM) as in an HHMNpotentially many
sequences of subordinate states (i.e. a sub-FHMM). Infergrarameter estimation, and
structure learning for such a model would be at least as loauttiis type of model as for an

FHMM, making it a potentially interesting problem for theaghical modeling community.

6.5 Thesis Summary

This thesis began with the twin claims that machine listgméthnologies can provide con-
text awareness in real-world computational systems, aaidtiie design of these systems
could be informed by adaptation of general principles otpption, namely redundancy
reduction, to specific problem areas. The systems and expets presented within con-
stitute strong support for these claims.

The first claim, that machine listening technologies candeluo provide context in-
formation for real (or potentially real) applications, igpported by the results shown for

environment classification, multimedia gisting, and usgerruptibility estimation. The
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second claim, that redundancy reduction can be used sfaitgss a general design prin-
ciple for real (or potentially real) applications in the rhate listening area (as opposed to
more CASA-like systems), is supported by the results showmiatimedia gisting and
user interruptibility estimation. Taken together, thedevice presented in this thesis consti-
tutes a strong argument for the overarching claim that soeeesore of context awareness
can be achieved in the real-world applications of the netaréuby exploiting auditory in-
formation using systems combining basic concepts fromgptual theory with traditional

engineering approaches.
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