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Abstract

Machine listening is an area of study which is rapidly increasing in importance. The prolif-

eration of massive sensory corpora, together with the perceptual needs of smart computa-

tional devices and smart spaces has lead to this increase. Machine listening provides both

a computationally cheap alternative to machine vision, anda source of information that

is complementary to visual information; hence, perceptualsystems which lack the abil-

ity to process auditory information will in general performless well than those which can

process auditory information. Machine listening is also interesting in its own right, as re-

search into computational auditory processing can help to shed light on general principles

of perception, and on how our own perceptual systems work. This thesis describes machine

listening research designed to solve real-world problems in perceptual and context-aware

computing.

This thesis makes two claims. First, it claims that machine listening technologies are

well-suited to the task of providing context awareness in real-world computational systems,

whether these systems are intended to provide operational cues to smart devices or spaces,

or to segment, summarize, or select segments of interest in multimedia corpora to make

them more useful to human users. Second, it claims that the use of the core principle of
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perception, redundancy reduction, can guide the design of practical systems to provide con-

text awareness in this way. The validity of these claims is supported by evidence from three

application areas: multimedia gisting, acoustic environment recognition, and estimation of

user interruptibility for the CHIL Connector service, a smartmobile telephone.
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Chapter 1

Introduction

1.1 Thesis Overview

Machine listening is an area of study which is rapidly increasing in importance. The prolif-

eration of massive sensory corpora, together with the perceptual needs of smart computa-

tional devices and smart spaces has lead to this increase. Machine listening provides both

a computationally cheap alternative to machine vision, anda source of information that is

complementary to visual information; hence, perceptual systems which lack the ability to

process auditory information will in general perform less well than those which can process

auditory information. Machine listening is also interesting in its own right, as research into

computational auditory processing can help to shed light ongeneral principles of percep-

tion, and on how our own perceptual systems work. This thesisdescribes machine listening

research designed to solve real-world problems in perceptual computing.

1
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1.2 Motivation

Massive corpora of multimedia data are every day becoming cheaper and easier to create

and store. Capture and storage devices, once expensive, bulky, and of limited capacity, are

now inexpensive, lightweight, and can store scores of hoursof audiovisual data. As a result

of this continuing trend, large multimedia corpora consisting entirely ofspontaneousdata

— that is, data which is largely unscripted, as opposed to film, sporting events, or broad-

cast news — are rapidly proliferating. The sources and potential uses of these spontaneous

corpora are many. They can be produced by individuals wishing to capture personal experi-

ences to construct multimedia diaries. They can be producedby humanoid robots learning

to interact with humans in real-world situations. They can be produced by surveillance

apparatus to monitor patients in hospitals or nursing homes, or to enhance the security of

an indoor or outdoor space. They can be produced by smart spaces or devices learning

how to respond to the needs of humans who use them. They can be produced by individ-

uals engaged in team activities such as search and rescue or military operations, and used

as after-action review or training material. Finally, theycan be produced by intelligence-

gathering apparatus and used to build or maintain awarenessof geopolitical situations.

Several common threads join all of these types of multimediacorpora. First, they are

spontaneous. This means that they are unscripted and lack patently obvious state-change

cues like blank screens. Second, they are often sparse. Thismeans that the vast majority of

spontaneous data is uninteresting for any particular purpose. Third, they are large. Coupled

with their sparseness, this means that it is difficult for humans or machines to find what

they are looking for. This difficulty places a hard limit on the utility of large, spontaneous

multimedia databases. In order to fulfill the promise of these corpora, some automatic

means of indexing and querying them is needed.

The problem of indexing these corpora is cast as a problem of scene analysis. That is,

we can attempt to find certain features of the corpus which serve as concise explanations of
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the data. These features include scene boundaries, multimedia summaries or gists, labels

describing specific events and environments, and multiresolution structures. Each of these

features serve a slightly different purpose, but all are steps toward making large multimedia

corpora more useful.

For human users, scene boundaries can be used to find areas of large-scale change,

which are in theory the most informative regions of the corpora. Multimedia summaries

help users explore the main actions of the corpus, determinewhether or not it contains

anything of interest, and quickly construct a story for personal consumption of sharing.

Environment and event labels allow users to quickly find specific areas of interest, if they al-

ready know what they are looking for. Finally, multiresolution structures help users quickly

explore corpora in detail, first by browsing at low levels of detail, and then drilling down

into areas of interest.

Machine users of these corpora can also benefit from these types of analysis. Scene

boundaries and summaries can help robots and smart spaces toidentify those regions

which, when deeply analyzed, will yield the most information about their surroundings.

Environment and event tags can help robots, smart spaces, and smart devices to understand

the social context of the humans they are trying to serve, andto make better decisions

about how to interact with them. Finally, multiresolution structures can help robots, smart

spaces, and smart devices to predict future events and scenes, enabling them to anticipate

rather than just react to the needs of the humans they are trying to serve.

1.3 Machine Listening for Context Awareness

In this thesis, “machine listening” is defined as the processof deriving from the audio signal

information that is useful for some computational or human purpose, examples of which are

described above. Analysis of the audio signal is well-suited to these kinds of context aware-

ness problems for many reasons. First, the signal is relatively compact. This means that



Chapter 1. Introduction 4

storage and and computation are relatively cheap compared to video1. Broadcast-quality

audio only takes up 109 megabytes per hour, and audio features typically used for high-

resolution analysis typically use less than 18 megabytes per hour. Further, the processing

required to derive these features from the raw signal, basedon the fast Fourier transform

(FFT), is very inexpensive. Second, sensors are for the mostpart cheap and robust. Quality

stereo microphones can be had for less than $100 and are highly resistant to damage from

rough handling. Third, omnidirectional microphones pick up sound from all directions,

meaning that the signals they record are unaffected by orientation. One does not have to

rely on exact sensor placement, or ask humans to alter their natural behavior in order to use

onboard audio sensors. Fourth, the audio signal is impervious to changes in lighting con-

ditions. Fifth, the audio signal is not affected by occlusion in a perceptually relevant way;

an audio signal can pass through walls and around obstacles and for the most part retain its

perceptually relevant features. Sixth, and perhaps most important, events that occur in the

real world which are relevant context cues very often leave behind acoustic evidence which

can be identified by humans and discovered with techniques from pattern recognition and

machine learning. Finally, the audio signal is often complementary, if not orthogonal, to

the video signal, which has been extensively used for context awareness. Adding audio

to video-based systems should be a cheap way to improve performance or speed or both.

See for instance the work of Chen et. al. [12], [13], in which audiovisual data collected

in a nursing home environment is first processed with audio event detection techniques

and only subsequently by video event classification techniques. This work demonstrates

that cheaper audio processing can save a significant amount of video processing for certain

tasks.

It should be emphasized again, though that this is not the only purpose of machine

listening. Indeed, there are many context awareness applications where audio is the best

1Though recent results in machine vision suggest that certain high-level image analysis procedures can be

performed quite cheaply; see for example work by Torralba and Oliva [103].
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modality, and vision, if appropriate for use at all, plays a complementary role. Perhaps the

best example of such an application is automatic speech recognition (ASR), which yields

detailed context information from audio, and only under certain conditions can be helped

by visual analysis (i.e., lipreading in adverse noise conditions).

Taken individually, these are all good arguments for conducting research into using

auditory information to inform context-aware computing systems. Taken together, they

constitute a very powerful argument for such research. Thisthesis helps to validate these

arguments by giving multiple examples of applications deriving context awareness from

audio.

1.3.1 Machine Listening Theory

The theory of machine listening is largely the theory of perception, adapted to the special

demands of processing the audio signal. The underlying mechanism of perception in bio-

logical systems is by now well-established. Organisms are exposed to a highly redundant

input signal with high dynamic range in real time. After compressing this signal into some

smaller dynamic range via saturation, they analyze the signal’s contents in order to achieve

environmental awareness and plan appropriate actions.

The analysis step is the focus of perceptual theory. The analysis step can be viewed

as a decomposition into feature extraction and pattern recognition steps. In computational

systems this decomposition is literal, and very different procedures are used for each step.

In organic systems, though, the distinction is much less clear. Organic systems process the

input signal, find specific patterns, and produce new, lower resolution signals, which are in

turn used by higher levels of processing. Much of the processing done by organic systems

is concerned with finding and eliminating redundancies, or coincidences that are present in

the input signal. The act of redundancy reduction, which amounts to signal compression, is

widely viewed to be the essence of perception. Speech recognition is an excellent example
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of this phenomenon; digital broadcast-quality audio has a bit rate of 62.5 kb per second,

yet the total amount of information present in one second of speech is much less than

this figure: two or three bytes worth of words, and perhaps a few bytes worth of meta-

information dealing with speaker identity, emotional state, and similar features. Humans

perform this compression with the greatest of ease; computational systems designed to

perform similar tasks are very complex and computationallyexpensive.

Listening presents special challenges to a perceptual system based on redundancy re-

duction. First, the audio signal retains perceptual invariance under environmental condi-

tions that can radically alter the observed values of the signal. The signal is altered by vari-

ations of the medium of transmission, and by the shape and material of objects in the path

between source and listener, and the resulting amplitudes can be quite different depending

on the exact conditions. The fact that perceptual invariance holds under these conditions

means that the redundancies exploited by the auditory system are independent of the actual

frequencies or amplitudes in the audio signal, and they mustinstead relate to the relation-

shipsbetweenfrequencies and amplitudes. Second, the audio signal is one-dimensional

and changes very rapidly. This means that, unlike the visualdomain, the listener never has

a complete picture of a sensory object at any particular instant. Instead, the listener must

maintain a sensory buffer over which to find redundancies; inother words, redundancies in

the audio signal are temporal rather than spatial redundancies (though the audiospectrum

contains temporal, spatial, and spatiotemporal redundancies). Third, the audio signal is

factorial in nature. The signal reaching the listener is thesum of many signals emanating

independently from many sources, all modified by the medium of transmission, environ-

mental objects, and each other. Organic systems are able to separate these sources, or at

least to extract one source at a time from the din for analysis, a process exemplified by

the cocktail party effect. This ability to separate a singlesource from a mixture without

additional cues implies that the relevant redundancies arecharacteristic of one source or

another, and can be identified and tracked over time.
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The principle of redundancy reduction applies to organic listeners in a straightforward

way; the neural coding apparatus seeks ever-lower resolution representations of the input

signal and stores, uses, or forgets them as appropriate. Themapping of redundancy re-

duction to machine listeners is somewhat less clear. Engineering realities mean that one

often does not seek to implement listening systems which areperfect models of the mam-

malian auditory periphery and cortex; different types of models are typically used for each

stage of processing called for by the application: feature extraction, acoustic modeling,

and application of prior knowledge all are handled separately. Nonetheless, the principle

of redundancy reduction can be a useful guide to the engineering choices one makes when

building real-world listening applications.

1.3.2 Applications of Machine Listening

Applications of machine listening that provide context awareness to smart devices, spaces,

and media archives are compelling both for theoretical reasons and because the applications

they permit are of value to users. In this thesis, the focus ison three such applications. First

is user state modeling for mobile devices and smart spaces, which is cast as a problem

of acoustic environment recognition. Second is sensory gisting and report generation for

multimedia skimming, mining, and summarization, which is cast as a problem of acous-

tic blind value assignment. Third is activity recognition and prediction, which is cast as a

problem of learning and identification of multiresolution structures using acoustic informa-

tion. These applications have some overlap in that techniques which are useful for one area

could sometimes useful in another; for example, the relationship between user environment

and user activities can be strong. It is logically expedient, however, to present them sepa-

rately, as they make use of different techniques of implementation and evaluation. These

technologies are now introduced in turn.
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User State and Environment Modeling

User state encompasses any number of factors that can influence what demands a human

user makes of a computational system, and how the user expects these demands to be

fulfilled. In well-defined, enclosed spaces like offices, specific events can be detected which

serve as important context cues. In mobile applications, however, there is a potentially

enormous set of events which could yield context information. Further, acoustic conditions

can vary drastically from locale to locale, making specific events hard to detect. These

two features of the mobile application space present an opportunity as well as a problem.

While it may be difficult to detect specific events in a mobile setting, it should not in

principle be difficult to detect what kind of environment theuser is in based on auditory

data. It seems intuitively plausible that certain types of sound fields are characteristic of

certain environment types. For instance, the sound field of acity street will be dominated

by turbulent noise from automobiles, while the sound field ofan office will be dominated

by speech, typing, and other typical office sounds. The overall dryness or reverberance of

the sound field can be an important cue as well. If, as intuition suggests, environments do

have characteristic sound fields, then environment detection from audio should be possible.

The two most compelling uses of environment modeling are formobile devices and

autonomous robots. Mobile devices are often used by humans to gather information; as

wireless broadband becomes more prevalent, the number of humans using PDAs or smart-

phones to seek information over the world wide web in mobile settings will increase. In

order to improve latency, environment information could inprinciple be used to predict

user behavior and pre-fetch relevant information. This process could be performed with

simplistic common-sense relationships; for instance, a PDA which can detect that its user

is in an airport might seek and pre-cache updated flight information. It could also be per-

formed by learned, user-specific preferences; for instance, a PDA might learn that its user

often seeks stock quotes on a morning bus ride. Autonomous robots could use environ-
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ment information to help maintain an awareness of appropriate behavior independent of

actual locale (as reported, for instance, by a GPS receiver). Some of this information could

be obtained through visual processing, as one would assume that a mobile robot, unlike a

PDA, is equipped with appropriate visual sensors. In this case, audition makes sense as a

complementary sensor modality, as there may be many environments which are confusable

in one modality but not the other.

In this thesis, environment recognition is viewed as a gestalt process. That is, no attempt

is made to explicitly detect or model known characteristic events; rather, a self-organizing

model is selected and learned for each environment. Note that environment recognition is

not the same problem as locale recognition; the system presented in this thesis seeks to

achieve generality where locale recognition systems simply seek to learn the characteristic

sound fields of specific locations.

Multimedia Sensory Gisting

Multimedia sensory gisting is the process by which streams of multimedia data are sum-

marized by selecting sets of segments of those streams in such a way that the selected seg-

ments contain an overview, or the gist, of the activities represented therein. This procedure

amounts to automatically deciding which segments in a stream are the most interesting,

for some possibly application-dependent definition of interesting. Applications of this type

generally fall into two categories: knowledge extraction,which is inherently an offline

process, and remote aggregate sensing, which is inherentlyan online process. While it is

possible to pursue approaches to these problems based on semantic analysis of the source

data; i.e., approaches in which certain classes of events are knowna priori to be interesting,

the same difficulties hold as for user state modeling. The size of the event space is pos-

sibly unbounded, and unstable acoustic conditions may makeit difficult to detect familiar

sounds in unfamiliar environments. For these reasons, thisthesis explores the use ofblind



Chapter 1. Introduction 10

techniques which make noa priori assumptions regarding the contents of the signals un-

der analysis, either in terms of environments or events. Blind techniques thus make heavy

use of analysis of the statistics of the signals in a manner consistent with the principles of

perception.

Knowledge extraction encompasses many different kinds of applications, including per-

sonal experience distillation and storytelling, surveillance, data mining, and after-action

report generation. The gists created for these kinds of applications can take one of two

forms. The first form emphasizes detection and presentationof scene changes, which often

involve a marked change in acoustic texture in such a way thatthe audio is heterogeneous

across the change and homogeneous on either side of the change. There are theoretical

reasons to prefer this kind of summary. Scene changes are those points in the signal where

redundancy breaks down; in other words, they represent new information which can be

seen as by definition interesting. An algorithm for producing this form of gist might seek

then strongest scene changes, wheren is the desired number of segments in the gist. A

second form emphasizes short-term events (which can be seenas scene changes over a

short timescale). In this form of gist, a collection of segments is selected such that their

contents are maximally mutually dissimilar, irrespectiveof whether or not they contain a

large scene change.

Remote aggregate sensing encompasses applications involving teams of individuals co-

operating to perform some task, either collocated or not andpossibly coordinated by some

central authority. Applications of this type include firefighting, search and rescue, mulit-

party gaming, and other multiparty tactical scenarios. Here, the participants and planning

authority would like to have real-time awareness of the states of the entire group in order

to better inform their decision-making processes. Verbal communication in these problem

spaces may be impractical either for safety reasons or because of the possibility of channel

saturation or noise. Broadcasting of multimedia data captured from wearable sensors is a

better solution. However, this solution has the potential to cause cognitive overload; the
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more real-time streams are added to the broadcast, the harder it becomes to know which

ones merit attention. This problem is quite similar to the offline knowledge extraction prob-

lem discussed above. Here, though, the goal is to rank in realtime each signal according to

how much attention it merits, or equivalently, how interesting it is.

Multiresolution Scene Identification and Structure Learning

As noted above, acoustic events and environments can offer important clues to user state. In

stationary environments with known usage patterns, a more or less complete set of acoustic

events can be identified and used as state cues. In smart spaces intended to support some

activity, like meetings, presentations, or daily work routines, these events can help identify

what kind of activity is currently taking place. The goal is to use this information toantici-

patethe needs of the humans in the space and thus spare them the inconvenience of having

to ask. For example, at the beginning of a meeting, a smart space might automatically

show an attendance list; at the end, it might display automatically-generated minutes or ac-

tion items. Context cues that are useful for identifying these kinds of states can be related

to vision and speech; human identities can be visually confirmed, and humans often talk

about what they are doing as they are doing it. However, thereare some cues that are both

auditory and non-verbal, and machine listening can help to detect these. These kinds of

cues include events like door slams, telephone rings, applause, typing, footsteps, electrical

noises, presence or absence of speech, babble noise, and others. Many of these events are

the result of actions that have important implications regarding the state of the space and

thus the kinds of requests the space should expect.

However, simply using point events as state-change triggers may be problematic in sys-

tems intended for long-term use, such as an always-on smart space, a personal diary system,

or a smart mobile device. Here, in addition to point events, longer-term activities and pat-

terns of activities are also of interest. These patterns, orscenes, can be used in three ways.
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First, knowledge of high-level scene context can help guideexpectations of what events

are likely or unlikely to occur; this knowledge could in principle improve event detection

performance. Second, having a high-level scene label for each instant in a sensory record

might make it easier to browse and extract knowledge from therecord, either manually or

automatically. If multiresolution scene labels are available, human or machine consumers

of the sensory record can browse at low levels of temporal detail and drill down into areas of

interest. Third, high-level representations might improve context-dependent performance

for specific applications; for example, a context-aware mobile telephone like the CHIL

Connector [25] might be better able to make decisions about its user’s interruptibility given

a high-level activity representation than given a low-level representation.

In this thesis, multiresolution scene learning is seen as a bottom-up, unsupervised clus-

tering problem. Structures, or scenes, are defined in terms of compositional relationships.

That is, scenes are composed of more or less well-defined sequences or groups of events

which can themselves be part of longer and larger patterns. In an office application, for

example, there are many patterns of activity which happen ona number of timescales. A

typical workday in an office setting, for example, might consist of five main activity cycles;

arrival, quiet morning work, lunch, afternoon meetings, and departure. Each of these ac-

tivities can itself be broken down into smaller subscenes and so on down to atomic events

like opening the door or typing on a keyboard. The typical workday is also part of larger

patterns, like the 5-day workweek or annual activity cycles. The ability to identify these

short and long patterns is a potentially tremendous source of information for context aware

settings.

The work in this thesis focuses on learning scenes from unlabeled data in a mobile

setting, and using these scenes to perform a specific context-awareness task; namely, de-

tecting whether or not the user of a smart mobile device is interruptible in the sense of

being able to accept an incoming phone call independent of the identity of the caller. An

approach to scene learning based on redundancy reduction ispresented and used to build
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an interruptibility detection system.

1.4 Thesis Statement

This thesis makes two claims. First, it claims that machine listening technologies are well-

suited to the task of providing context awareness in real-world computational systems,

whether these systems are intended to provide operational cues to smart devices or spaces,

or to segment or summarize multimedia data in order to make them more useful to human

users. Second, it claims that by adapting general principles of perception to the auditory

domain, practical systems can be built which provide this kind of context awareness. Ev-

idence for these claims is provided by measuring the performance of these systems on

real-world sensory data for three specific tasks: gisting ofmultimedia data, environment

recognition, and scene learning for mobile interruptibility estimation.

1.5 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2, Machine Listening Theory, provides the relevant theoretical background on

machine listening, audio processing, and machine perception in general. It also contains a

brief review of hidden Markov models.

Chapter 3, Auditory Gisting for Summarization and Stream-of-Interest Selection in Mul-

timedia, shows how very simple perceptually motivated measures of value can be used

to perform gist-creation tasks in multimedia data using audio only. The resulting value

judgments are shown to be broadly similar to human value judgments.
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Chapter 4, Auditory Environment Recognition for User State Modeling, shows how user

environment can be inferred automatically from the audio signal in a way that could be

exploited by mobile context-aware applications.

Chapter 5, Auditory Scene Learning for Multiresolution Context Awareness, shows how

hierarchical structures can be inferred from audio data in an unsupervised manner.

Chapter 6, Conclusions, summarizes the important contributions of this thesis andsets

out a plan for future exploration.



Chapter 2

Machine Listening Theory

2.1 Chapter Overview

This chapter contains the bulk of the background required tounderstand the material in this

thesis. It begins with a discussion on the nature of the audiosignal (mostly drawn from

Yost [115]) and basic audio analysis before presenting relevant results from theoretical

machine perception in general and machine audition in particular. The chapter concludes

with background material on feature extraction and time series modeling.

2.2 The Audio Signal

The signal that listeners experience as sound is caused by the vibrations of objects in the

environment. These vibrations are propagated through a medium, typically air, as waves.

The distance between peaks in the wave function is called thewavelength of a sound and

is inversely proportional to the sound’s frequency. The amplitude of the wave affects the

15
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pressure generated by the wave and is related to perceptual loudness.

As a sound wave propagates outward from its source, it is modified in several ways.

First, the amplitude decays with the square of the distance traveled from the source, limiting

the effective range of a sound. This decay is dependent upon properties of the medium

of transmission. Second, sound waves can encounter objectsin the environment. These

objects, depending on their shape, composition, and size relative to the wavelength of the

sound, can to varying degrees absorb, transmit, or reflect the sound.

When the interfering object is large compared to the wavelength of the sound, the sound

is reflected. When the wave reflects back on itself, there are points where two peaks collide,

and points where a peak will collide with a trough. When peaks collide, the result is

constructive interference; i.e., the sound at that point will increase in amplitude. When a

peak collides with a trough, the result is destructive interference; i.e., the sound at that point

will decrease in amplitude. Constructive and destructive interference are not limited to the

case of sound reflection; different sounds can collide in this way and interfere with each

other.

When the interfering object is at most as large as the wavelength of the sound, different

effects can occur. If the object is much smaller than the wavelength of the sound, the

sound wave will pass the object largely unmodified. If the object is nearly as large as the

wavelength of the sound, a sound shadow will be created behind the object whose shape

and size depend on the shape and size of the object. In this shadow, the sound is inaudible;

beyond this shadow the sound is audible This process is similar to visual occlusion; in

practice, however, it is much less of a barrier to omnidirectional sensory awareness.

The summation of all the sound sources, objects, and sound waves in a given environ-

ment interacting with each other in complex ways, is called asound field. It is the sources

in this field and the field itself that are of interest in this thesis.
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2.3 Audio Signal Analysis

The signal that reaches a biological or mechanical listeneris, as stated above, the sum of all

the sound waves produced by all the sources in the listener’ssound field, possibly modified

by the medium and objects in the environment, including the listener. We now address

how a listener can turn this signal into useful information.As acoustic energy reaches the

listener, it is absorbed and transduced by a membrane (i.e.,the eardrum) into mechanical

energy. This mechanical energy is further transduced into electrical energy whose intensity

is proportional to the intensity of the acoustic signal.

In digital listeners, the continuous amplitude stream mustbe discretized. This process

is called analog-to-digital conversion, or ADC. According to the Nyquist theorem, the sig-

nal must be sampled at a rate twice the highest frequency thatwe are interested in analyzing

to avoid aliasing. The discretized audio signal is referredto as the waveform or the time

signal. The time signal is a complex function which is not amenable to easy analysis. How-

ever, it is possible to represent any function as a weighted sum of simpler functions which

are easier to analyze. In audio signal analysis, it is convenient to work with sinusoidal

functions which have fixed frequency; signals represented in this way are said to be in the

frequency domain. Representing the time signal as a weightedsum of sinusoids allows us to

observe the intensities of all frequencies present in the signal. This collection of intensities

is called the power spectrum, and can be computed by means of the fast Fourier transform

(FFT). Since the audio signal changes rapidly, and these changes are often semantically

relevant, it is additionally necessary to compute not just asingle spectrum over a given sig-

nal, but many spectra over time. This representation, called the spectrogram, is computed

by sliding an analysis window of fixed length, usually referred to as a frame, over the time

signal and computing a separate power spectrum for each frame. This process is referred

to as the Short Time Fourier Transform (STFT). Choosing the optimal frame size for the

STFT involves balancing accuracy in time and in frequency. Long frames result in high
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frequency acuity and low temporal acuity; short frames result in low frequency acuity and

high temporal acuity. ASR systems typically use frames 20 milliseconds long, overlapping

by 10 milliseconds.

Biological listeners perform a similar decomposition of thetime-domain signal into a

set of simpler, easier-to-analyze functions. Unlike our standard machine approaches, they

do not seem to use pure sinusoids; rather, they use functions that are specially adapted to

optimize the functionality of their listening systems. Theway in which they do this, and

indeed the way in which all organisms perform all perceptualtasks, is addressed in the

following sections.

2.4 Perceptual Theory and Computational Audition

There has been interest in organic perception in the psychological community for many

decades. In the last 50 years, a great amount of progress toward quantifying organic per-

ceptual processes has been made by a host of researchers. Here, I give a brief overview

of some of this work, followed by an introduction to the basicconcepts of redundancy

reduction as the organizing principle of both organic and computational perception.

2.4.1 Prior Work in Perceptual Theory and Computational Audition

As described in Paris Smaragdis’ Ph.D. thesis [93], much of the early work on perception

focused on vision; nonetheless, even the earliest perceptual work by Barlow ([4], [5]), At-

teneave ([3]), and others were exploring the now-accepted notion of redundancy reduction

as a core principle of perception.

Much early research on audio processing focused on coding speech for telephone trans-

mission [62] and on ASR (see [106], [81], [52]). An unrelatedresearch track, auditory

scene analysis (ASA), sought to explicitly model and reproduce the means by which hu-
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mans perform stream segregation — that is, the separation and identification of specific

sound sources over time in complex sound fields. Bregman’s seminal work [10] contains

an excellent overview of the main results of psychological research into auditory phenom-

ena. Computational auditory scene analysis (CASA) was an outgrowth of Bregman’s work

which sought to directly implement many of the heuristics Bregman described. The Ph.D.

theses of Cooke [22], Brown [11], and Ellis [28] all successfully implemented source sep-

aration in some real-world tasks. Wang, Terman, and Liu implemented an alternate ap-

proach [108] based on neural oscillator networks [109].

The similarity of the auditory scene analysis problem to theblind source separation

problem led many researchers to again begin to view auditionin terms of redundancy reduc-

tion. Comon [21] introduced the idea of independent component analysis (ICA), a means

of decomposing data into simpler functions in a data-dependent manner such that the new

functions were statistically independent. Soon after, Atick [2] proposed (or re-proposed)

the idea of using information theory as an organizing principle for sensory processing in

general. Other researchers soon began to explore and use ICA for computational models

of perception. Bell and Sejnowksi in [6] presented theinfomaxalgorithm as a method for

addressing problems of blind source separation and deconvolution. Infomax was based

on maximizing the joint entropy of the coded feature space. This work was followed by

demonstrations of infomax used for basis decomposition of both sounds ([7]) and images

([8]). The work on images was particularly enlightening, asit showed that the optimal im-

age encoding was based on visual edges, long believed to be the most informative regions

of images. Hyv̈arinen and Oja presented a new approach to ICA based on maximizing the

non-gaussianity of the coded feature space in [49], and, with Oja, have since demonstrated

that maximizing sparsity and temporal coherence leads to similar basis decompositions as

maximizing non-gaussianity ([44], [45], [46]). In [47], the provided a framework for video

coding which unified independence, temporal coherence, andtopography into a single uni-

fied model. In [58], Lewicki showed that the optimal set of basis functions for audio were
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dependent on the specific kinds of sounds in the sensory input. Specifically, the basis func-

tions learned for non-harmonic environmental sounds were similar to wavelets; they were

localized in time but not in frequency. Conversely, the basisfunctions learned for animal

vocalizations resembled sinusoids similar to Fourier decompositions; they were localized

in frequency but not in time. Finally, the basis functions learned for human speech —

which contains both harmonic and non-harmonic sounds — werelocalized in both time

and frequency; further, the degree to which they were localized in time was dependent on

frequency. The set of basis functions learned from human speech resembled gammatone

functions, long used in phsychoacoustically-motivated auditory research. More recently,

Lewicki and Smith ([95], [96], [96]) have worked extensively on learning efficient rep-

resentations of auditory phenomena using spike timing codes. Finally, Smaragdis’ Ph.D.

thesis,Redundancy reduction for computational audition, a unifying approach, [93] fo-

cused exclusively on using redundancy reduction as the coreprinciple of audition and sig-

nificantly, was able to demonstrate how computational systems for grouping and scene

analysis / source separation could be built using this theoretical framework.

2.4.2 Redundancy Reduction as an Organizing Principle for Compu-

tational Audition

As these and other researchers have demonstrated, redundancy reduction as an organizing

principle for perception in general and audition in particular is motivated by computational

efficiency and can be observed in biological systems. All organisms which are capable of

perception face a daunting task: how to extract informationfrom the environment in such a

way that their likelihood of survival is enhanced. The process of information extraction can

be thought of as a coding problem: one signal type is represented by an activation of one

group of neurons, while another signal type is represented by an activation of some different

group of neurons. Each group responds optimally to a certainstimulus, often referred
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to as abasis function, in signal space. The activations of the many groups of neurons

dedicated to sensory coding are used to learn and recognize important stimuli. Making

the coding task difficult is the fact that organisms must carry it out with limited dynamic

sensor range and limited processing bandwidth compared to the range of natural signals.

Limited sensor range means that sensors must be capable of saturating in order to limit the

dynamic range of the input signal. Limited bandwidth means that organisms must code

the range of natural signals efficiently. Efficiency here means that the coding process must

make maximal use of all coding resources, or equivalently, that system throughput must

be maximized. Resources that are not used maximally are in essence wasted, a situation

to be avoided. Mathematically, for all resources to be used maximally, they must be used

with approximately equal frequency. That is, if there are, for example,n binary neurons

which can be used to encode events observed in some real-world signal, each neuron must

be activated approximately1
n

of the time, no two neurons should be active at the same time,

and there should be no observable correlations between the activations of one neuron and

another.

The reason that this kind of efficiency can be achieved is thatnatural signals are highly

redundant in both time and space. In vision, if a certain point in space (relative to the

viewer) and time is a certain color, it is very likely that neighboring points in space will

be the same color, and very likely that the point will be the same color in the next instant

in time. Thus, it is of vital importance for a coding system touse more resources on

locating and representing the visual edges in an image, where these redundancies do not

hold. Audition is similar to vision in this regard. Since auditory events have temporal

extent, intensities from instant to instant at a given frequency tend to be similar; likewise,

there are often correlations between intensities at different frequencies at the same instant.

These correlations are sometimes non-local. As with vision, it is thus imperative to locate

and represent regions where the redundancies do not hold — onsets, offsets, and disruptions

in non-local frequency correlations.
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Coding natural signals in the same way that they are received,e.g., pixel-for-pixel in

video, or frequency-for-frequency in audio, would thus be inefficient; many neurons will

encode information which could have been inferred from neighboring neurons. Organic

sensory systems are therefore largely concerned with finding codes which will allow these

redundancies to be reduced and efficiency to be achieved. In order to emulate these accom-

plishments in computational systems, researchers turn to information theory, which pro-

vides measures which can help to formalize notions of efficiency and redundancy. These

measures make statements about the information content of statistical distributions of ran-

dom variables; if we view sensory inputs and outputs as random variables, we can use

information theory to guide the search for optimal codes.

The most basic measure in information theory is the information I of an event, or

specific value,x of a random variableX with respect to some probability distributionP , as

shown in Equation 2.1. The information of an event is proportional to the log of the inverse

of its probability; the rarer an event, the more informationis provided when it occurs. The

average information over all events of a random variable is the entropy, denotedHP (X)

and given in Equation 2.2. The closer a distribution is to uniform, the higher the entropy.

The maximum-entropy distribution over anN -element set of discrete events is the uniform

distribution, whose entropy islogN . The Shannon redundancy,RP (X), measures the

degree to which the entropy ofX differs from the uniform distribution, and is given in

Equation 2.3.

IP (x) = log
1

P (x)
= − logP (x). (2.1)

HP (X) = −
∑

x∈X

P (x) logP (x). (2.2)

RP (X) = 1−
HP (X)

logN
. (2.3)
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The Shannon redundancy can be used as an objective function for perceptual coding;

i.e., a code which minimizes redundancy will be an optimal perceptual code in the sense

of efficiency when we consideronly those basis functions which are maximally activated

by a sensory stimulus. In reality, many different basis functions could be activated by the

same sensory stimulus; if one function were consistently activated by a stimulus which

activated some other function more strongly, these less-than-maximal activations would

be wasteful. An optimal code must thus be designed not only tominimize redundancy

in the Shannon sense; it must ensure that basis functions areactivated either strongly or

not at all. This requirement is embodied by another information theoretic measure called

mutual information. The mutual information of two random variablesX andY , denoted

I(X;Y ), measures the statistical dependence between those two variables. I(X;Y ) is

symmetric, nonnegative, and equal to zero whenX andY are statistically independent.

Mutual information is defined as shown in Equation 2.4, and, as shown in Equations 2.5

and 2.6 can be interpreted as either the difference between the individual entropies and the

joint entropy, or as the reduction in the entropy of one variable given that the value of the

second variable is known.

I(X;Y ) =
∑

x∈X,y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
, (2.4)

= HP (X) +HP (Y )−HP (X,Y ), (2.5)

= HP (X)−HP (Y |X). (2.6)

2.5 Feature Selection

The principle of redundancy reduction states that a sensorycoding system should seek to

represent the sensory inputs in such a way that the sensory outputs are statistically indepen-

dent from each other. The implications of this principle forfeature selection are discussed
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here. It is instructive to first consider feature selection methods used by the automatic

speech recognition (ASR) community. ASR is a research field which has produced sys-

tems capable of converting audio inputs into useful outputs, and as a class of problems,

bears more similarity to machine listening than a pure auditory analysis field like Com-

putational Auditory Scene Analysis (CASA) or Blind Source Separation (BSS). We hence

describe in detail a typical ASR feature selection scheme, relating it to the principles of

redundancy reduction where appropriate, before considering feature selection for machine

listening.

2.5.1 Feature Extraction for ASR

State-of-the-art ASR systems today typically use one of a few basic feature extraction tech-

niques. The most popular is based on mel-frequency cepstralcoefficients (MFCCs). The

procedure for extracting MFCCs from audio involves the following steps:

Analog-to-Digital Conversion (ADC) ADC is the process of discretizing the continuous

signal produced by the microphone. In ASR, ADC is typically performed at a sample rate

of 16 kHz with 16-bit samples. This sample rate allows ASR systems to represent and

analyze frequencies up to 8kHz, which is sufficient to capture the range of human speech.

By contrast, some low-quality ADCs, such as telephone speech,have sample rates of 8

kHz with 8-bit samples, which is sufficient to capturemostof the relevant range of human

speech. Some cellular telephones use an 8 kHz sample rate with 16-bit samples.

Short-Time Fourier Transform (STFT) The Fourier transform is typically applied to

sample windows of the ADC which have been passed through a Hamming window to avoid

edge effects. A typical window size for ASR is 20 milliseconds, with 10 millisecond over-

lap. This window size is chosen as a tradeoff between frequency resolution (which is better

with longer window sizes, particularly for energy in the lower frequencies) and temporal
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resolution (which is better with shorter window sizes). TheSTFT process produces both

a power spectrum and aphasespectrum for each sample window. The power spectrum

represents the power of a signal at some frequency, while thephase spectrum represents

relative timings within the sample window. In ASR and other audio applications, the phase

spectrum is typically discarded. With a 16 kHz sample rate, the power spectra are 257

dimensional; the 20 ms / 10 ms window size results in a frame rate of 100 Hz.

Melscale Filterbank The melscale filterbank is a set of filters which was designed to

crudely model the frequency responses of human perceptual responses. Each filter in a

melscale filterbank is a bandpass filter whose width varies directly with the center fre-

quency; that is, low-frequency filters have narrow passbands while high-frequency filters

have wide passbands. In typical ASR systems, a 13-filter melscale filterbank is applied

to power spectra from the STFT, reducing feature dimensionality by a factor of 20 while

retaining important perceptual characteristics.

Mel-Frequency Cepstral Coefficients Cepstral coefficients are coefficients of the Fourier

transform of the log power spectrum. They are used in ASR primarily because they lead

to better performance than other features, and they are alsorobust across speakers, in part

because they do not represent pitch information. In practice, MFCCs derived from mel

spectra are typically used. The mel spectra are passed through a logarithmic nonlinearity,

and then the discrete cosine transform (DCT) is applied. What is especially interesting

about the DCT is that, for speech and speech-like signals, theDCT is adecorrelatingtrans-

form. This means that the MFCCs are mutually decorrelated, or equivalently, that their

covariance matrixΣ is diagonal. If the distributions over these features are Gaussian (i.e.,

the values of moments of third order and higher are zero), decorrelation is equivalent to

statistical independence. As such, if the Gaussian assumption holds for a given dataset,

MFCCs are optimal in a redundancy reduction sense, if not a recognition performance
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sense.

Context In speech and other auditory phenomena, signals change rapidly with time, and

they often do so in predictable and characteristic ways. As such, it is an attractive propo-

sition to capture in each frame not just some theoretically optimal set of features, but also

the trajectoryof features from frame to frame. Adding context can take one of two forms:

derivatives of the MFCCs can be explicitly computed, or windows of MFCC frames can

be stacked together. In general, more context is better, andmany ASR researchers stack 13

frames of MFCCs into a single feature vector. This stacking yields a feature space of 169

dimensions. This high dimensionality can lead to data sparseness problems which can be

partially addressed with dimensionality reduction techniques.

Linear Discriminant Analysis Linear discriminant analysis (LDA) is one of a class of

data transformation techniques which seek to project high-dimensional data onto some

lower dimensional space in an optimal fashion. There are many definitions of “optimal”

to consider; LDA seeks a transform in which data labeled as belonging to different classes

are maximally linearly separable in the low-dimensional space. In the case of ASR, sub-

phoneme level labels are available to guide the LDA process.Typical ASR systems use

LDA transforms which bring the final feature vector to a few dozen features.

Normalization The above steps represent the mostbasicASR feature extraction process.

Typically, there are many normalization steps involved which aim to remove the differences

between speakers, microphones, and environments as much aspossible.

2.5.2 Feature Extraction for Machine Listening

In machine listening, the optimal feature set is not clear. Some applications have suc-

cessfully employed MFCCs, while others have made use of more esoteric features. It is
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likely that the optimal feature set in terms of system performance is strongly application-

dependent. It is worthwhile to first explore the use of traditional ASR features for machine

listening tasks for a number of reasons. Melscale spectra are worth considering mainly

because they approximate human frequency response; in thissense they theoretically con-

tain all the information needed to perform all the listeningtasks that humans can perform.

MFCCs are worth considering because they represent a decorrelating transform; under a

Gaussian assumption they are thus optimal in a redundancy reduction sense. In addition,

they are very useful for speech recognition. As Lewicki pointed out in [58], speech is made

up of both harmonic and non-harmonic sounds (i.e., vowels and consonants) and exploits

the entire range of human hearing. Non-speech environmental sounds are also made up of

harmonic and non-harmonic sounds; as such, MFCCs should also be a good general rep-

resentation of arbitrary environmental sounds. They may not be optimal in a performance

sense for some machine listening tasks, however, mainly because they do not preserve pitch

information which may be important in some listening tasks like general sound recognition.

In addition to melscale spectra and MFCCs, we consider a numberof additional features

in this thesis. These features have sometimes been referredto as “perceptual” features,

though they do not necessarily correspond to features humans use in perceptual tasks. Many

of them are simply convenient summaries of gross spectral characteristics, some of which

should intuitively be useful for certain listening tasks. These features are described below.

In what follows,pit refers to theith of M power spectral coefficients in framet, ajt refers

to thejth ofN sample points in thetth sample window in the time signal, andϑ is a generic

threshold value.

Loudness Changes in perceptual loudness are often indicative of changes in the auditory

scene; e.g., event onsets or offsets and changes of environment. Perceptual loudness can be

grossly approximated by measuring signal energy. One can measure energy in either the

time domain or the frequency domain. A time-domain energy measure, power, is given in
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Equation 2.7, while a frequency-domain energy measure, root mean square energy, is given

in Equation 2.8.

POW (t) =

√

√

√

√

1

N

N
∑

j=1

aj(t)2. (2.7)

RMSE(t) =

√

√

√

√

1

M

M
∑

i=1

pi(t)2. (2.8)

Bandwidth Bandwidth is a measure of the extent of a sound in the frequencydomain.

Tonal sounds often have relatively narrow bandwidth, whilenon-tonal sounds like tran-

sients often have relatively wide bandwidth. Sound fields can also have characteristic band-

widths. Bandwidth, measured in Hz, is calculated as the difference between the highest

frequency exceeding some energy and the lowest frequency exceeding the same threshold,

as shown in Equation 2.9.

BW (t, ϑ) = arg
M

max
i=1

(pi(t) > ϑ)− arg
N

min
i=1

(pi(t) > ϑ). (2.9)

Spectral Diffusion Spectral diffusion is, like bandwidth, a measure of the extent of a

sound in the frequency domain. However, whereas bandwidth is a simple difference be-

tween two frequencies, diffusion measures the actual spread of energy among all frequen-

cies. This difference can be illustrated by considering a sound field consisting of two pure

tones, one at a low frequency and one at a high frequency. Thissound field will have a

high bandwidth value, but low spectral diffusion. Diffusion is similar to a discrete entropy

measure of the energy over frequency space and is shown in Equation 2.10.

SD(t) =
M

∑

i=1

pi(t)
∑M

j=1
pj(t)

log
pi(t)

∑M

j=1
pj(t)

. (2.10)
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Spectral Centroid Spectral centroid is a measure of spectral location; it is the weighted

mean frequency of the spectral energy, measured in Hz. Centroid is related to the zero-

crossing rate (ZCR) measure which is used for speech detectionin some ASR systems.

Centroid also corresponds loosely with the perceptual experience of brightness; sounds

with a high spectral centroid tend to stand out in the sound field. Further, noisy or chaotic

sound fields (e.g., traffic) tend to dampen the overall spectral centroid; hence it can be a

useful measure for both sound recognition and for environment recognition. The spectral

centroid is shown in Equation 2.11.

SC(t) =

∑M

i=1
ipi(t)

∑M

i=1
pi(t)

. (2.11)

Band Energy Ratio Band energy ratio measures the relative spectral energy between

frequency bands up to some threshold frequency and frequency bands above the threshold.

This feature has been used to distinguish between voiced sounds (i.e., vowel portions of

speech) and non-voiced sounds and is thus ideal for identifying speech and sound fields

made up primarily of babble noise. A threshold at 1.5 kHz is reportedly optimal for this

task; other thresholds could potentially be useful for distinguishing between other broad

sound classes. Band energy ratio is shown in Equation 2.12.

BER(t, J) =

∑J−1

i=1
pi(t)

2

∑M

i=J pi(t)
2
. (2.12)

Signal-to-Noise Ratio Signal-to-noise ratio measures the relative strength of noisy and

non-noisy sound components in a given analysis frame. SNR isshown in Equation 2.13.

Here, the STFT is computed and estimates of the noisy components vs. signal-containing

components of the power spectra are made using a technique from Ephraim and Malah [31],

also used by Westphal [110], [111] to estimate and remove noise in real-time for ASR in

automotive environments.
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SNR(t) = 10 log
POWsignal(t)

POWnoise(t)
. (2.13)

Component Analysis

We also consider context in some applications; as in ASR, thischoice often results in

feature spaces which are inconveniently large. We thus needto explore dimensionality-

reducing feature space transformations like LDA. However,for general listening tasks,

we often lack detailed labels of the type ASR researchers canuse to produce good LDA

transformations. We thus focus on techniques which seek to optimally representthe high-

dimensional data in the sense of reconstructing the original data with minimal error. The

two transformations we use in this thesis are principal component analysis (PCA) and in-

dependent component analysis (ICA). Both PCA and ICA assume a model in which some

underlying signals is modified by some filterA, resulting in an observable signalx as

shown in Equation 2.14.

x = As. (2.14)

The filterA is usually referred to as themixing matrix. The task of PCA and ICA is to find

an estimateW of theunmixing matrixA−1 such that we can recover an estimateŝ of the

original signals as shown in Equation 2.15.

ŝ = xW. (2.15)

Theoretically,̂s is an estimate of the underlying sources in the sound field prior to the effects

of mixing. The rows of the unmixing matrixW are referred to as thebasis functionsof the

transform; the values of̂s are taken to be coefficients of the relative strength of each basis

function.
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PCA and ICA define optimality in different ways. These definitions and their conse-

quences are discussed below.

Principal Component Analysis Principal Component Analysis seeks an unmixing ma-

trix W for which the following three properties hold. First, the covariance matrix of the

new feature set̂s should be diagonal; that is, the featuresŝi should be mutually decorre-

lated. Second, the basis functions should be ordered by variance. Third, each basis function

should be orthogonal to neighboring basis functions. A transform of this type can be calcu-

lated by computing the eigenvectors of the covariance matrix of the observed feature space,

Σx; each eigenvector is a basis function. The eigenvalues of this system correspond to vari-

ance in the new feature spaceŝ and can be used to order the basis functions, and also to

reduce the dimensionality of̂s; i.e., by omitting basis functions with small eigenvalues.W

can also be estimated using the singular value decomposition (SVD) directly on the (non-

square) observed featuresx. In SVD, a matrixM is factored asM = UΣV∗; the matrix

U contains the orthonormal basis functions ofM, while Σ contains the singular values,

which can be used in a manner similar to the eigenvalues of theeigenvalue decomposition.

A final, non-analytical method for estimatingW is to train an autoencoding multilayer per-

ceptron (MLP). When such a neural network is trained with the input data as the target and

a mean-squared error metric, the hidden layer weights will converge to a matrix spanning

the same subspace as the analytical PCA solution, up to a rotation.

Using any of the above approaches, PCA will learn adecorrelatingtransform. If the

underlying data are Gaussian, decorrelation is equivalentto independence; hence PCA can

be viewed as a redundancy reduction transform under the right conditions.

Independent Component Analysis Independent Component Analysis seeks an unmix-

ing matrixW for which the features in the transformed feature spaceŝi are mutually inde-

pendent; i.e.,I (̂s) = 0. No analytical algorithm exists to recover an unmixing matrix which
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S1 S2 S3

Figure 2.1: A Hidden Markov Model (HMM)

fulfills this requirement; all ICA approaches rely on iterative optimization techniques and

none are guaranteed to find a globally optimal solution. As noted above, many different

criteria and algorithms have been suggested for ICA; Hyvärinen and Oja’s FastICA pack-

age [48] implements their popular approach, which is used inthis thesis.

2.6 Time Series Modeling for Audio

Given some feature set, a common task in this thesis, and in audio processing in general, is

how to convert the audio signal into useful symbolic information. Many pattern recognition

techniques exist which can make this conversion. The dominant model for ASR and audio

in general, however, is the hidden Markov model (HMM) [81]. The HMM is a finite-state

machine in which each hidden state emits observable values,either discrete symbols (which

can be modeled by simple discrete probability distributions) or real-valued vectors (which

are typically modeled by mixtures of Gaussian distributions). Each state corresponds to

some symbolic value. For example, in ASR, each state might represent a phoneme. Then,

given a set of audio feature vectors, using HMMs, one is able to infer the sequence of

phonemes which is most likely to have produced that sequenceof vectors. An 3-state HMM

with a forward topology, the kind most frequently used in ASR,is shown in Figure 2.1.

It can also be instructive to view HMMs in terms of dependencies among random vari-

ables; under this viewpoint an HMM is just a specific kind of dynamic Bayesian network
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St ← St−1, (2.16)

Ot ← St. (2.17)

Figure 2.2: HMM Dependencies

S1

O1

S2

O2

Figure 2.3: DBN Representation of HMM Dependencies

(DBN). An HMM has two variables: the stateS and the outputO. In HMMs, the state

at time t, St, is dependentonly on the state at timet − 1, and the output at timet, Ot,

is dependent only on the state at timet. These dependencies are shown more formally in

Figure 2.2 and graphically in Figure 2.3. For more detailed information on the benefits of

viewing HMMs as DBNs, as well as an excellent overview of DBNs ingeneral, the reader

is referred to Murphy’s Ph.D. thesis. [71].

In order to apply HMMs to some pattern recognition task, there are three problems to

consider:

1. Given an observation sequenceO and an HMMM, how can the probability of the

observation given the model,P (O|M), be estimated?

2. Given an observation sequenceO and an HMMM, how can the state sequenceq

most likelyto have generatedO be estimated?
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3. How can the parameters of the HMMM be adjusted to maximizeP (O|M)?

The first two problems, probability estimation and inference, are solved by dynamic

programming procedures: the forward procedure and the Viterbi algorithm. The third prob-

lem is solved by the Baum-Welch procedure, an expectation maximization (EM) procedure

in which expected counts for all states and all outputs at alltime steps are accumulated us-

ing the forward and backward procedures and subsequently converted to probabilities. An

alternate optimization procedure in common use involves substituting forward and back-

ward expectations with Viterbi expectations. The reader isreferred to the classic HMM

tutorial by Rabiner [80], as well as ASR texts by Rabiner and Juang [81] and Jelinek [52]

for more information on these procedures.

There is a fourth problem for HMMs which is not typically considered by most ASR

researchers, but which is vital for general audio modeling.This problem is how to infer

the structure of the HMM from data, in the absence of detailedprior knowledge. Structure

learning is often not a problem in ASR and similar applications, because domain knowledge

allows researchers to make informed decisions about the appropriate topologies to use. In

general audio modeling, it is often not clear what kinds of topologies are appropriate to

model the phenomena of interest. Hence, one must seek methods for learning topologies,

as well as parameters, from unsegmented data. Approaches ofnote toward this goal in-

clude Stolcke and Omohundro’s model merging method [97], Brand’s parameter extinction

method [9], Frietag and McCallum’s stochastic optimizationmethod, and Reyes-Gomez

and Ellis’ leader-follower clustering method [83].

2.7 Chapter Summary

I presented in this chapter an overview of the theoretical background of machine listening,

covering the nature of the audio signal, basic audio analysis and feature extraction, and the
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organizing principles of general machine perception. I concluded with an introduction to

the main tool for modeling time series in audio, the hidden Markov model. The material

presented here constitutes sufficient background to understand the remainder of this thesis.



Chapter 3

Auditory Gisting for Summarization and

Stream-of-Interest Selection in Multimedia

3.1 Chapter Overview

This chapter describes theoretical and practical work on multimedia summarization and

stream-of-interest selection using audio data. Specifically, it demonstrates how the relative

value of segments of multimedia can be estimated using only information theoretic mea-

sures of the information content of the audio streams. I showthat this approach, called

blind value assignment (BVA), can be used to produce value judgments that are broadly

similar to human value judgments in two specific tasks — after-action review generation

generation (AARG), a summarization task, and online aggregate remote sensing (OARS),

a stream-of-interest selection task. I begin the chapter with a discussion of the motivation

for this work, and why BVA is so well-suited for applications of this kind. After discussing

prior work on the closely-related field of blind segmentation, I present the BVA metrics

36
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used in this thesis, followed by experiments on the AARG and OARS problems which

demonstrate the effectiveness of the approach.

3.2 Multimedia Summarization

As noted in Chapter 1, there has recently been a rapid proliferation of inexpensive devices,

both stationary and portable, which are able to collect and store massive amounts of mul-

timedia sensory data. As a result, the ability to construct rich, detailed accounts of human

activity has also grown. This capability continues to grow and the pace of growth will only

accelerate as time passes. One can easily imagine a state in which these massive corpora

can be used to collect intelligence, augment human memory, tell stories, and share experi-

ences. One can equally easily imagine a state in which these corpora are rendered unwieldy

by their size and sparseness with respect to interesting anduseful events. Much of daily

human life is spent on repetitive, boring tasks that are not worth reviewing or reporting;

truly interesting and useful events are relatively rare. Humans are largely incapable of

finding them in large databases, and machines which need to process large collections of

multimedia corpora could also benefit from some form of preprocessing so they can focus

their resources on areas of genuine interest. For this reason, systems capable of providing

a low-resolution means for humans and machines to conduct exploratory data analysis is

needed. In the case of multimedia data, this summarization process is often referred to as

skimming or gisting.

A multimedia summarization system produces, from some multimedia corpus, a se-

lection of segments that in some way captures the interesting aspects of the corpus. In

this way, a human or machine user can rapidly peruse the highlights of the corpus and

achieve a high-level understanding of the events, environments, and activities that it con-

tains. Further, the summary can itself serve as a platform for deeper analysis. Upon finding

a particularly interesting scene, the user can query the system to discover other, similar
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scenes. In practice, a summary to be used in this manner should consist of an ordering over

all segments, such that the user can select an absolute or relative summary size.

This kind of summarization is distinct from query-specific summarization in that it does

not rank segments according to their utility compared to some user-supplied specification.

It is instead completely undirected and thus not dependent on specific event or activity

models. This mode of operation is complementary to model-based analysis and relies on

the statistics of the signal to estimate value.

3.3 Blind Segmentation and Value Assignment

The process of creating the kind of general summary of interest in this work is often referred

to as a value assignment problem. That is, the process of summarization can be viewed as

the process of finding those segments in a multimedia stream with high value, for some

definition of value. In some applications, the definition of value is quite specific, and

certain classes of events are known to be of interesta priori. In this case, if enough data

are available, relevant models can be trained and value assignment becomes a detection

problem. Examples of this situation include broadcast newsspeech recognition (in which

speech regions have value, while music regions do not) and office activity recognition (in

which specific sounds or events can be important context cues).

In the applications envisioned here, however, there is generally no such prior expecta-

tion of the kinds of events which might be of interest, and hence no models can be built to

recognize and detect these events. For this reason, these kinds of applications are referred

to asblind segmentation or value assignment problems. While blindnessmeans that there

is no way to bias value assignments toward specific classes ofevents or scenes, it does

provide robustness to noisy or unseen conditions under which semantic models may break

down. Since the statistics of the signal are all that a blind method has to work with, these

concerns simply do not matter. Furthermore, methods based solely on the statistics of the
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signal rather than potentially complex semantic event models are fast, making them well-

suited to real-time operation, exploratory data analysis,and deployment on devices with

limited computational power.

In this work, audio data is the focus of value assignment, even in cases where video

data is available. This is a reasonable choice for many of thereasons given in Chapter 1.

To reiterate these reasons, the audio signal has low bandwidth and processing costs, it is

omnidirectional, and it is immune to occlusion, sensor motion, and changes in lighting

conditions. Finally, events which are of import in the real world often leave behind clear

acoustic evidence which is easy to detect even with blind methods.

3.4 Prior Work

There is a large body of work on video-based segmentation andsummarization of multi-

media data, much of it focused on rather esoteric, application-specific features like scene

breaks in film and televised news and sporting events. See thesurvey by Lienhart ([60])

for general information on this topic. Gaborski et. al. recently demonstrated results on

blind novelty detection in video; see [105] and [37]). Also of interest is the work of Itti

and colleagues. Their work ([51], [50], [86]) demonstrated, via tracking of human sac-

cade behavior when exposed to video, that humans prefer to pay attention to those regions

where local entropy and local surprise are high. By estimating and tracking these regions

of high interest using information theoretic constructions like saliency and relative entropy,

Itti et. al. can construct a visual gist of a scene. Itti’s notion of gist shares some features

with the blind value assignment approach developed below; specifically, the metrics are

quite similar. However, the focus on visual regions rather than temporal regions shows a

quite different application goal. Also related to the goalsof this thesis is work from Oliva,

Torralba, and collaborators. Their focus on low-level, global statistics of images in [102],

[103], [76], and [104] allows for extremely efficient capture of relevant characteristics of
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Figure 3.1: Log Power Spectra Example

an image, or a sequence of images. In addition to applications like environment or locale

recognition, these methods could also in principle apply tothe gisting domain.

In the audio domain, Foote proposed in [34] and [35] a method for blind segmentation

based on self-similarity, and also showed, with Cooper et. al. in [23] that this method

could be used for shot boundary detection in video. In this approach, for a givenT -length

sequence of feature vectorsS, aT × T self-similarity matrixA is created in which each

elementAij is the similarity between framesSi andSj. Foote used the cosine measure,
Si·Sj

||Si||||Sj ||
, to measure similarity. The resulting matrix has many interesting properties and

yields an easily visible representation of rhythm and repeated substructures, making it es-

pecially well-suited to music representation. By way of example, Figure 3.1 shows the

power spectra (in log space for ease of viewing) for 5 secondsof environmental audio; the

corresponding self-similarity matrix is shown in Figure 3.2.

The main use of the self-similarity matrix is for scene change detection. To detect scene
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Figure 3.2: Temporal Structure of Log Power Spectra, Example per Foote
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Figure 3.3: Scene Change Kernel per Foote

changes in this framework, Foot suggested the use of a scene-change kernelK, a matrix

encoding a perfect scene change. This matrix has four squaresubregions whose values are

given as:

Kij(N) =







1 if (i < N
2
) = (j < N

2
)

−1 otherwise
(3.1)

In practice, this matrix is smoothed by a Gaussian function to focus on the center of the ker-

nel; an example of this kernel is shown in Figure 3.3. Also, since this matrix is symmetric,

it can be represented more efficiently in what Foote calls the“slant domain,” which con-

siders only the values above the diagonal. A slant-domain scene-change kernel is shown in

Figure 3.4.
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Figure 3.4: Scene Change Kernel per Foote, Slant Domain
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The scene change kernel can be used to detect scene changes bymultiplying it with

a given segment’s self-similarity matrix; the resulting novelty measure for segmentS is

given as:

Nov(S) =
∑

ij

AijKij, (3.2)

whereA is the self-similarity matrix ofS. Foote suggested that hierarchical segmentations

could be produced by computing novelties with varying kernel sizes. He also suggested

that auditory summaries could be produced by first, given some novelty threshold, seg-

menting an audio recording, and then, for each segment, selecting the subsegment that is

most similar to the segment as a whole. This approach to summarization was proposed

in the musical domain, where it is important to summarize a piece with one of its more

recognizable structures. It is not clear that this approachis useful when dealing with less-

structured, more event-sparse data — a given segment in unstructured real-world audio is

likely to be dominated by silence or unidentifiable noise.

Slaney, in [92] and [91], presented the scale-space delta approach to multimedia seg-

mentation. This work, like Foote’s, presented a hierarchical blind segmentation method.

This method first involved computing smoothed, or scale-space versions, of the input fea-

turesS. These smoothed features,S̄, are computed as:

S̄σt =

∫ ∞

τ=−∞

Sτe
−τ2

2σ2 , (3.3)

whereσ is a smoothing factor. In Slaney’s approach,N different values ofσ are used, and

for eachσ, the first derivatives∆S̄σ are computed and summed. The result is the scale-

space delta feature∆S̄. Using the same example power spectra above, the scale-space delta

feature is shown in Figure 3.5.

After the scale-space delta feature has been computed, peaks are found for each of

theN values ofσ, as shown in Figure 3.6. Peaks for small values ofσ correspond to
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Figure 3.5: Scale-Space Delta Sums of Log Power Spectra,σ=0-100, per Slaney

short-term scene changes, while peaks for large values ofσ correspond to long-term scene

changes. By using dynamic programming techniques, long-term peaks can be tracked back

to indices in the deltas of the unsmoothed feature, and henceto real time indices. Slaney

showed that this method was effective for segmentation of multimedia news broadcasts and

documentaries.

Chen et. al. used the Bayesian information criterion (BIC) to propose in [14] the∆-BIC

method for blind segmentation. The BIC, computed as

BIC(X) = −2 lnL(X) + k ln |X|, (3.4)

whereL(X) is the likelihood of the data given some model,k is the number of model

parameters, and|X| is the number of observations, is a measure of model quality which re-

wards good data fit but penalizes many parameters. In this∆-BIC approach, for a proposed

segmentation point in a data set, the BIC of representing the data with a single model is

compared to the BIC of representing it with two models, one to either side of the segmen-

tation point.
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Figure 3.6: Scale-Space Delta Sum Peaks,σ=0-100, per Slaney

Finally, Siegler et. al. proposed in [87] the KL2, or symmetrized relative entropy

metric, to segment broadcast news data for automatic speechrecognition. This method

was shown effective for this segmentation task, and is in fact the basis for the blind value

assignment method discussed below.

3.5 A Metric for Blind Value Assignment

As in the works cited above, we consider information-theoretic metrics for BVA. In that

these kinds of metrics can be of use in finding events which arerare or highly informative

in some technical sense, it is possible in principle to use them as proxies for the more in-

tuitive senses of interesting or informative. The information content of a random variable

in isolation can be estimated be calculating its entropy (see Chapter 2). However, in mul-

timedia summarization applications, the goal is to producerelative rankings of value, and

to use these rankings to produce concise summaries of content. If segments were simply

to be ranked by entropy, it is possible that many very similarsegments might be ranked

highly and included in the summary. This kind of redundancy is to be avoided both on
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practical and theoretical grounds. Practically speaking,in most cases, humans interested in

exploring a large dataset are more interested in experiencing the full breadth of scenes and

events rather than a sequence of identical or similar scenes. Theoretically speaking, a sum-

mary with many similar segments is redundant and so wastes the capacity of the summary

channel. It is thus important to view multimedia summarization as a redundancy reduction

problem.

Given this view, the proper way to assign value is in such a waythat the entropy of

the summaryis maximized, or, equivalently, that the segments includedin the summary

are maximally mutually statistically independent. As there are





n

m



 = n!

n−m!
possible

m-element summaries of ann-segment stream, it is impractical to search the entire space

for the one which maximizes entropy. Instead, a greedy approach can be implemented in

which,k segments already ranked in the summary, thek + 1th segment is the segment that

is maximally surprising. One measure of surprise, or equivalently, of model quality, is the

cross entropy, given in Equation 3.5.

Hp,q(X) = −
∑

x∈X

p(x) log q(x). (3.5)

Cross entropy can be interpreted as the cost of encoding events from one distribution,q,

with the incorrectdistributionp. If p is the model used to generate thek segments already

ranked in the summary, andq is the model used to generate segmentk + 1, then cross

entropy can be used as a ranking metric. One issue with this metric, however, is that the

inherent difficulty of coding segmentk + 1 is not considered. That is, it is possible that

Hp,q(Xk+1) is high largely becauseXk+1 itself has high entropy. In order to account for

this fact, we instead normalize the cross entropy by subtracting the entropy of the can-

didate segment; the resulting measure is called the relative entropy, or Kullback-Liebler

divergence, and is given in Equation 3.6. Relative entropy can be interpreted as the coding

effort that iswastedby assuming that the dataX was generated by distributionp instead of
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the correct distributionq [24].

D(p||q) =
∑

x∈X

p(x) log
p(x)

q(x)
, (3.6)

= Hp,q(X)−Hp(X). (3.7)

A further problem with relative entropy is that it is not symmetric; this difficulty can be

repaired by considering the symmetrized version given in Equation 3.8. This measure,

which first appeared in [87], is just the sum of the relative entropiesD(p||q) andD(q||p).

One added normalization which can be made is to divide the relative entropies by the cross

entropy as shown in Equation 3.10; the resulting metric, shown in Equation 3.11, is always

between 0 and 1 and is interpreted as the average percentage of coding cost wasted by

assuming an incorrect distribution. This metric,D̂2, or normalized, symmetrized relative

entropy (NSRE), is used as the main metric in all following value assignment exercises .

D2(p||q) = D(p||q) +D(q||p), (3.8)

= Hp,q(X) +Hq,p(X)−Hp(X)−Hq(X). (3.9)

D̂2(p||q) =
D(p||q)

Hp,q(X)
+
D(q||p)

Hq,p(X)
, (3.10)

= 2−
Hp(X)

Hp,q(X)
−

Hq(X)

Hq,p(X)
. (3.11)

3.6 Evaluating The Auditory BVA Approach

To evaluate the auditory BVA approach for multimedia summarization and stream-of-

interest selection, experiments were designed in which real audiovisual data were collected
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and human judgments for both tasks were elicited. These judgments were used as a base-

line against which to evaluate automatic value judgments based on the metrics described

above and the specific application-dependent procedures discussed below.

3.6.1 Data Collection

Data for this evaluation were collected using a Hitachi MPEG-1 video camera attached to

the author’s backpack while he carried out a number of errands on and around the CMU

campus. These tasks included:

Stream 1 Visiting an ATM to make a withdrawal. See Figure 3.7.

Stream 2 Mailing a letter and purchasing a soda from a vending machine. See Figure 3.8 and

Figure 3.9.

Stream 3 Buying lunch from a mobile vendor. See Figure 3.10.

Stream 4 Taking a car to a gas station for a fillup. See Figure 3.11.

The streams ranged in length from 10 to 15 minutes. An external microphone was not

used for this study, as the onboard microphone was judged to be of sufficient quality to

capture the relevant sounds. Audio was extracted from the MPEG-1 video with a sample

rate of 16 kHz and a sample depth of 2 bytes.

3.6.2 Feature Extraction and Data Modeling

Three separate audio feature sets were used in this evaluation, along with two sets of video

features for comparison. All audio features were computed at a frame rate of 100 per sec-

ond. The audio features used included a 16-dimensional set of melscale spectra (MEL),

a set of 16 MFCCs derived from those spectra, and a set of four spectral summary fea-

tures (SPEC) including spectral centroid (see Equation 2.11), root mean square energy (see
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Figure 3.7: Visiting an ATM

Figure 3.8: Mailing a Letter

Figure 3.9: Purchasing a Soda
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Figure 3.10: Purchasing Lunch from a Mobile Vendor

Figure 3.11: Filling the Car with Gasoline
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Equation 2.8), signal-to-noise ratio (see Equation 2.13),and a band energy ratio at 200 Hz

(see Equation 2.12). In these experiments, the two 20-dimensional feature sets MEL+SPEC

and MFCC+SPEC were evaluated. The first video feature used was aset of color features

(COLOR) made up of 128 histogram values in the hue, saturation,value (HSV) color space,

sampled at a rate of 30 frames per second. The second video feature used was a set of mo-

tion features (MOTION). The motion features consisted of five values: energy, horizontal

motion mean, vertical motion mean, horizontal motion variance, and vertical motion vari-

ance. These features were intended to characterize both global camera motion and local

object motion. These features were computed based on optical flow outliers every three

video frames using the Lucas-Kanade algorithm [61], resulting in a frame rate of 10 per

second.

After feature extraction, the data in this study was represented as a set of real-valued

vectors, and not sequences of discrete values as implied by all the metrics discussed so far.

Real-valued versions of information theoretic measures (often termeddifferentialentropy,

etc.) do exist1; however, unlike in the discrete case, the distributionP must be known

in order to compute these measures correctly. In practice, this work uses the simplifying

assumption that all random variables were generated by multidimensional Gaussian dis-

tributions with diagonal covariance matrices. This assumption is clearly false; however,

it can be shown that for any given covariance matrixK, the Gaussian distribution is the

maximal-entropy distribution with that covariance matrix[24]. In other words, employing

this assumption amounts to calculating upper bounds on the various metrics given the data.

In order to compute the NSRE for data modeled in this way, it is necessary only to be

able to compute the entropy of a Gaussian distribution with covariance matrix|K| and the

cross entropy between two Gaussian distributions with covariance matrices|KQ| and|KP |.

The Gaussian differential entropy is given in Equation 3.12; the Gaussian differential cross

1These real versions generally have strange properties; thedifferential entropyhP (X), for instance, can

be negative!
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entropy in Equation 3.13.

hP (X) =
1

2
ln(2πe)n|K|. (3.12)

hP,Q(X) =
1

2
[ln(2πe)n|KQ|+KPK

−1

Q + (µP − µQ)TK−1

Q (µP − µQ)]. (3.13)

3.6.3 The Evaluation Procedure

For each application, a simple value judgment interface wasdesigned which allowed human

subjects to either rank all the segments in each stream (for summarization) or to select, for

each possible segment index, which of the four streams was most interesting at that time.

The subjects were told that their goal was in the realm of coordinating a group activity in

which each group member had a specific task which was part of the overall group aim but

were not explicitly told about the contents of each stream. Different instructions applied to

each task. Subjects in the summarization experiment were told that they were to create a

summary of each stream such that other human users could viewthem and rapidly attain

familiarity with their contents. Subjects in the stream-of-interest selection experiment were

told that they were to monitor the events in real time and to select the one stream at each

time index that most impacted their understanding of the entire operation.

Agreement with human judgments was used as the evaluation metric in this work. This

metric was chosen in lieu of eliciting direct human evaluations of BVA judgments for two

reasons. First, a notion like “quality of summary” is extremely hard for humans to describe

quantitatively or measure. Second, humans may have pre-conceived notions about the abil-

ity of computational systems to pick out important aspects of sensory data; biases in either

direction in this way could make the responses hard to interpret and could possibly require

double-blind studies in which some subjects were given human-produced gists and others

computer-produced gists. Simply asking humans to produce their own value assignments
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sidesteps most of these problems. Under this regime, match rate is an easy-to-interpret met-

ric. Further, since humans are not asked to grade the performance of some other entity, the

ability to consciously or unconsciously exhibit bias in their responses never presents itself.

One issue that does present itself is that humans themselvesmight not agree in their value

judgments. One might expect a certain amount of disagreement, but one might also expect

that certain segments wouldalwaysbe rated highly valuable by humans, simply because it

was patently obvious that they contained useful information. The segment where the au-

thor actually gets cash from the ATM, for example, should be chosen by everyone. Finally,

the ability to measure inter-human agreement allows one to specifically consider machine

performance on those segments about which humansdid agree, which one could argue is

more important than matching human judgments in the absenceof broad agreement.

3.7 Application: Multimedia Summarization for After-Action

Review Generation

The goal of a summarization application is simply to presenta shortened version of some

multimedia stream which captures the information needed toattain an understanding of the

important actions in the stream, given some limited channelcapacity. In this thesis, such

applications are referred to as after-action review generation (AARG) applications.

Given a multimedia stream, the target summary is an orderingof segments from most

valuable to least valuable, assuming the information-theoretic definitions of value given

above. In practice, the summary is kept in temporal order forhuman perusal. To construct

this ordering, a greedy algorithm is used. The summary is first seeded with the segment

which has the highest entropy; subsequent segments are added to the summary in order of

descending NSRE between candidate segments and segments already in the summary.

In addition to this greedy algorithm, an alternate approachbased solely on scene changes



Chapter 3. Auditory Gisting for Summarization and Stream-of-Interest Selection in
Multimedia 55

Stream Segments

1 71

2 69

3 90

4 89

Average 79.8

Table 3.1: Number of 10-second Segments per Stream

was tested. In this approach, the NSRE was usedinternally on each segment to estimate

to what degree that segment contained a scene change; this approach is similar to the blind

segmentation work discussed in Section 3.4. In this experiment, five scene change mea-

surements were taken per segment and the maximum was used as the scene change value.

In order to create a summary using this technique, the segments were ranked by strength of

scene change alone, with no consideration given to similarity to other segments.

Experiments were carried out by first eliciting human value judgments and then com-

paring BVA judgments against this standard. In order to simplify both the value elicita-

tion process and the evaluation process, all streams were split into 10-second segments;

the number of segments per stream is shown in Table 3.1. In this way, value elicitation

proceeded at a faster pace, and deciding whether a machine judgment matched a human

judgment became a matter of checking whether or not segment indices matched. In order

to actually elicit these judgments, the streams were converted to RealMedia format using

the RealProducer and RealMedia Editor packages [82] in conjunction with the SMIL multi-

media markup language [94]. A tool, shown in Figure 3.12, wasconstructed which allowed

humans to play any segment at any time, and to populate a summary using these segments.

The summary was also playable at any time, allowing humans toadd and remove segments

and evaluate the effects in real time.
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Figure 3.12: The AARG Gist Construction Tool
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Subjects were asked to view each stream in its entirety at least once, and then to con-

struct a summary of 10 segments such that some other human could watch the summary

and obtain an operational knowledge of the important eventsthat occurred in each stream.

The results of these experiments are discussed next. Section 3.7.1 presents the results

of human value judgment elicitation and levels of human agreement; Section 3.7.2 gives

detailed experimental results and discussion.

3.7.1 Human Value Judgments

Human match percentages for each of the ten subjects employed in this study are shown

in Table 3.2. These figures were computed by removing each subject from the reference

set and averaging, for each segment in the test human’s summary, how many other humans

included that segment. For example, Subject 1’s summary forStream 1 contained, on

average, only 6.7% of the segments included in other human-produced summaries. Over

all humans and streams, the average human match rate for thiscorpus is 38.6%, which can

be compared to the match rate of a random summarization strategy, 1.2%, or a temporally

uniform sampling of segments, 13.5%.

It is additionally worthwhile to examine the distribution of matches for each stream.

Figures 3.13 - 3.16 show, for each segment, how many humans included that segment in

their summary. As expected, the distribution of segments included in summaries is quite

peaky.

3.7.2 Experimental Results

Given the human judgments shown above, 8 different audio-based AARG systems were

tested, along with 4 different video-based AARG systems. Audio systems tested included

MEL, MFCC, MEL+SPEC, and MFCC+SPEC feature sets, using both the maximum en-

tropy and maximum scene change algorithms. Video systems tested included COLOR and
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Subject Stream

Stream 1 Stream 2 Stream 3 Stream 4 Average

h1 6.7% 42.2% 33.3% 31.1% 28.3%

h2 34.4% 43.3% 42.2% 31.1% 37.8%

h3 48.8% 41.1% 54.4% 16.7% 40.3%

h4 27.8% 46.7% 22.2% 30.0% 31.7%

h5 30.0% 47.8% 46.7% 26.7% 37.8%

h6 43.3% 47.8% 46.7% 26.7% 41.1%

h7 46.7% 46.7% 48.9% 43.3% 46.4%

h8 46.7% 53.3% 45.6% 33.3% 44.7%

h9 37.8% 46.7% 36.7% 27.8% 37.2%

h10 46.7% 35.6% 45.6% 35.6% 40.8%

Average 34.9% 45.1% 42.2% 30.2% 38.6%

Table 3.2: Human AARG Match Percentages Per Stream
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Figure 3.13: Human AARG Summary Segment Counts, Stream 1
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Figure 3.14: Human AARG Summary Segment Counts, Stream 2

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50  60  70  80  90

H
um

an
 S

um
m

ar
ie

s 
In

cl
ud

in
g

Segment Index

Segment Summary Count

Figure 3.15: Human AARG Summary Segment Counts, Stream 3
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Figure 3.16: Human AARG Summary Segment Counts, Stream 4

MOTION features using both the maximum entropy and maximum scene change algo-

rithms. Note that, since the MOTION features only had a framerate of 3 per second, only

one scene change value per segment was computed, while all other features used five val-

ues. Audio results are shown in Tables 3.3 and 3.4; video results in Table 3.5. Both sets

of results are shown with match rates for random summarization and temporally uniform

summarization for comparison.

There are several results of interest in the audio experiments. First, note that in all cases,

the scene change metric appears to perform better than the maximum entropy metric. This

result seems to imply that humans cannot or do not keep enoughglobal information in

mind to reproduce a summary that is optimal in an information-theoretic sense; rather,

they look for highly informative regions (i.e., boundaries) and choose those, independent

of other choices. Second, the best-performing system, based on the MEL+SPEC feature

set, achieves a match rate of 27%, which is more than halfway between temporal random

sampling and average human performance, a reasonable result given the simplicity of the

approach. Finally, while adding spectral summary featuresto the MEL feature set appears
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Feature

MEL MFCC Random Uniform

Stream Gist Type Gist Type Gist Gist

Max Entropy Scene Change Max Entropy Scene Change

Stream1 18.0% 21.0% 13.0% 16.0% 1.4% 7.0%

Stream2 9.0% 32.0% 9.0% 4.0% 1.4% 27.0%

Stream3 12.0% 27.0% 5.0% 33.0% 1.1% 8.0%

Stream4 14.0% 25.0% 5.0% 10.0% 1.1% 12.0%

Average 13.2% 26.2% 8.0% 15.7% 1.2% 13.5%

Table 3.3: Audio AARG BVA Match Rates per Stream: Basic Features

Feature

MEL+SPEC MFCC+SPEC Random Uniform

Stream Gist Type Gist Type Gist Gist

Max Entropy Scene Change Max Entropy Scene Change

Stream1 18.0% 23.0% 15.0% 19.0% 1.4% 7.0%

Stream2 9.0% 32.0% 14.0% 31.0% 1.4% 27.0%

Stream3 19.0% 27.0% 13.0% 34.0% 1.1% 8.0%

Stream4 11.0% 26.0% 14.0% 19.0% 1.1% 12.0%

Average 14.2% 27.0% 14.0% 25.7% 1.2% 13.5%

Table 3.4: Audio AARG BVA Match Rates per Stream: Augmented Features
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Feature

COLOR MOTION Random Uniform

Stream Gist Type Gist Type Gist Gist

Max Entropy Scene Change Max Entropy Scene Change

Stream1 14.0% 20.0% 13.0% 14.0% 1.4% 7.0%

Stream2 24.0% 18.0% 6.0% 17.0% 1.4% 27.0%

Stream3 4.0% 9.0% 12.0% 11.0% 1.1% 8.0%

Stream4 2.0% 18.0% 1.0% 6.0% 1.1% 12.0%

Average 11.0% 16.2% 8.0% 12.0% 1.2% 13.5%

Table 3.5: Video AARG BVA Match Rates per Stream

to help only a little, adding these features to the MFCC feature set helps a lot, improving

performance using the scene change algorithm from 15.7% to 25.7%. This result suggests

that while the spectral summary features carry a lot of information that could be useful in

summarization applications, it is largely redundant givena spectral feature representation

like the melscale filterbank.

The video results are similar to the audio results in that thescene change algorithm

outperforms the maximum entropy algorithm, however, performance overall is worse than

for audio. The best system achieves a match rate of only 16.2%, which is not much better

than temporally uniform sampling, and 10% worse than the best audio system.

The final experiment conducted in the AARG evaluation was to restrict scoring to those

segments on which humans demonstrated high levels of agreement, under the intuitive

assumption that it is more important to match human judgmentwhen it is largely uniform

than when human opinions diverge. Table 3.6 shows the effects of agreement restriction

on the best audio system, MEL+SPEC using the scene change algorithm. As anticipated,

performance increases with the degree of human agreement tosome degree, reaching a
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Stream Human Agreement Level

1 2 3 4 5 6 7 8

Stream 1 23.0% 26.7% 23.7% 26.4% 26.4% 29.2% 22.2% 100.0%

Stream 2 32.0% 37.3% 39.1% 40.9% 50.0% 56.1% 48.6% 35.7%

Stream 3 27.0% 31.3% 30.1% 31.1% 38.8% 43.2% 21.9% 0.0%

Stream 4 26.0% 29.1% 32.8% 39.5% 37.1% 53.3% 53.3% 100.0%

Average 27.0% 31.2% 31.7% 34.5% 37.7% 43.2% 33.9% 41.9%

Sample Size 318 81 53 37 27 20 15 7

Table 3.6: AARG BVA match rates at selected human agreement levels

peak of 43.2% on segments included in at least 6 human summaries. Performance falls off

above this point; however, the sample size above this level is too small to make general

statements.

3.8 Application: Stream-of-Interest Selection for Online

Aggregate Remote Sensing

The goal of a stream-of-interest selection application is,given a set of streams presented in

real time, to select the one stream that is most informative in some sense. In this thesis, such

applications are referred to as online aggregate remote sensing (OARS) applications. These

applications are characterized by the presence of multipleactors, possibly not co-located,

collaborating in the real world to perform some task and guided by a central authority

whose job it is to monitor the field actors and update the task plan. In case the actors are able

to transmit live video to the central authority, it is important to filter out the uninteresting

information and focus on the streams likely to yield useful information. This application
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lends itself well to the BVA approach.

There are two ways in which a stream could be considered informative in an information

theoretic sense in OARS applications. First, a stream at a given time segment can contain

information that is different from the other streams. This feature is termeduniqueness.

Second, a stream at a given time segment can contain information that is different from

that stream inprevioustime segments. This feature is termednovelty. In practice, novelty

can be computed either as a comparison between the current segment for a given stream

and past segments for that stream, or as a measure of the strength of scene change within

the current segment. These two types of novelty are referredto ashistorical novelty and

scene changenovelty. In this evaluation, the NSRE metric was used to measure uniqueness

and both forms of novelty.

As with AARG, experiments were carried out by first eliciting human value judgments

and then comparing BVA judgments against this standard. Splitting the streams into 10-

second segments was performed exactly as per the AARG experiments, except that since

the task is to select one stream of many, the number of segments had to be clipped at 69,

the length of the shortest stream. The four streams were aligned in time and displayed in

four-up format using RealPlayer and the SMIL markup language. This four-up display is

shown in Figure 3.17. A rather simple value judgment tool wasconstructed for this task,

as shown in Figure 3.18. This tool allowed subjects to view each time segment’s streams

either in parallel (as would occur in real-world deployment) or in sequence. The subjects

were allowed to view each segment as many times as necessary in order to make a value

judgment and were told that their goal was to select the one stream in each segment that

was most important with the task of maintaining situationalawareness over all streams in

mind.
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Figure 3.17: The Four-Window OARS Judgment Display
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Figure 3.18: The OARS Value Elicitation Tool

3.8.1 Human Value Judgments

In many cases, there was little agreement among humans aboutwhich streams were most

important. In fact, there were many segments in which not much of anything was hap-

pening inany stream; in those cases, it appeared that subjects simply chose a stream at

random or according to some esoteric preference. However, there were a number of seg-

ments where agreement was significant. These segments were mostly those which con-

tained clearly valuable information; e.g., the segment where the author ordered his lunch or

started pumping gas. Human agreement levels were measures by computing the Shannon

redundancy (see Equation 2.3). A value of 1 indicates unanimity, while a value of 0 indi-

cates a uniform distribution of human responses. Human agreement levels calculated using

Shannon redundancy are shown in Figure 3.19. The average agreement level was 0.35; in

18 segments the agreement level was 0.5 or greater.

As with the AARG evaluation, match rates were computed for each human subject.

These rates are shown in Table 3.7. Even the best-performinghuman does not achieve a

match rate of 50%; the average human match rate is 41%. This figure is only 16% better

than the chance result of 25%.
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Figure 3.19: Agreement Coefficients Among Human Subjects perSegment

Human Performance

Subject Match Rate Subject Match Rate

h1 42.19% h6 33.97%

h2 46.85% h7 39.45%

h3 42.35% h8 42.99%

h4 39.29% h9 41.22%

h5 42.02% h10 39.61%

Average 40.99%

Table 3.7: Human match rates per subject
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Feature

Novelty Weight MEL+SPEC MFCC+SPEC

Novelty Type Novelty Type

History Scene Change History Scene Change

1 23.53% 36.32% 25.44% 33.08%

0.75 25.44% 32.94% 25.58% 30.00%

0.5 23.23% 26.32% 24.11% 20.14%

0.25 20.44% 23.97% 22.05% 20.73%

0 23.08% 20.73%

Table 3.8: Audio OARS BVA match rates, all test conditions

3.8.2 Experimental Results

In this study, 18 different audio-based BVA systems and 14 different video-based BVA

systems were tested. For the MEL+SPEC, MFCC+SPEC, and COLOR feature sets, five

different linear weightings of novelty and uniqueness weretested, and for those experi-

ments in which novelty is given a non-zero weight, historical novelty and scene change

novelty were evaluated separately. For the MOTION feature,only the historical novelty

variant was evaluated. Audio results are shown in Table 3.8;video results in Table 3.9.

Table 3.8 reveals that the best audio-based BVA system achieved a match rate of 36.3%,

which is only 5% worse than the average human subject’s matchrate and 12% better than

chance. As with AARG, the feature set based on mel spectra outperformed the MFCC-

based feature set, but in this application the difference isnot as pronounced; in fact, when

using historical as opposed to scene change novelty, MFCCs performed slightly better. In-

terestingly, though, for both the MFCC+SPEC and MEL+SPEC feature sets, scene change

novelty outperformed historical novelty; further, optimal performance was achieved when

uniqueness was not considered at all. As with the AARG resultsabove, this result can be
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Feature

Novelty Weight COLOR MOTION

Novelty Type Novelty Type

History Scene Change History

1 26.61% 16.91% 21.76%

0.75 24.41% 23.38% 18.38%

0.5 26.03% 23.38% 15.58%

0.25 22.94% 23.38% 15.29%

0 23.38% 15.00%

Table 3.9: Video OARS BVA match rates, all test conditions

interpreted as a human preference for local scene boundaries when searching for relevant

information.

Table 3.9 shows that overall, performance when using visualfeatures was not as good as

when using audio features, and was in fact very close to chance. Like the AARG task, this

result can be taken as evidence that audio may be superior to video for applications where

BVA can be used. In this set of results, however, the same relationships between historical

and scene change novelty did not hold; the optimal result wasachieved by a system using

historical novelty.

The final experiment conducted in the OARS evaluation, as withthe AARG evaluation,

was to restrict scoring to those segments on which humans demonstrated some high level of

agreement. Table 3.10 shows the effects of agreement restriction on match rate. Apart from

the MOTION feature set, all systems show steady improvementwith increasing human

agreement level; the optimal result of 61.1% match rate occurs at a human agreement level

of 0.5. Above this level, there are too few candidate segments to draw any conclusions;

however, the trend, particularly using the MEL+SPEC feature set, is clear.
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System Agreement Level

0 0.25 0.5 0.75 1.0

MEL+SPEC 36.32% 48.78% 61.11% 48.33% 50.00%

MFCC+SPEC 33.08% 39.09% 39.44% 35.00% 50.00%

COLOR 26.61% 28.18% 33.33% 22.78% 50.00%

MOTION 21.76% 25.00% 16.67% 21.67% 22.42%

Sample Size 70 34 18 6 4

Table 3.10: OARS BVA match rates at selected human agreement levels

3.9 Chapter Summary

This chapter presented a theory of auditory blind value assignment for multimedia summa-

rization and stream-of-interest selection based on the principle of redundancy reduction. It

contained a discussion of two experiments designed to evaluate the theory on a summa-

rization application (AARG) and a stream-of-interest application (OARS) by comparing

automatic value judgments with human value judgments on multimedia data.

In the AARG evaluation, the auditory BVA method achieved a human-judgment match

rate of 27%, compared to 13% for temporal uniform sampling and 38% for the average

human in the study. Restricting the match percentage calculations to those segments on

which humans exhibited strong agreement resulted in improved performance. Specifically,

when only those segments selected by 60% or more of the subjects were considered, the

auditory BVA system’s match rate improved to 43%.

In the OARS evaluation, the auditory BVA method achieved a human-judgment match

rate of 36%, compared to 25% for chance and 41% for the averagehuman in the study.

As with AARG, restricting the match percentage calculationsto those segments on which

humans exhibited strong agreement resulted in improved performance. Specifically, when
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only those segments with a human agreement coefficient of 0.5or higher were considered,

the auditory BVA system’s match rate improved to 61%.

For both AARG and OARS systems, melscale spectra proved superior to MFCCs and

video features employed for comparison. More interestingly, using strength of scene change

within each segment was a much more reliable indicator of human preference than either

maximizing summary entropy in the AARG case or maximizing dissimilarity to other seg-

ments in the OARS case. This is an interesting result which seems to indicate that local

measures of interestingness were much more important to humans trying to complete value

assignment tasks than were more global measures. It remainsan open question whether

local or global measures result in summaries which are moreusefulto human users.

These experiments demonstrate that auditory BVA can be an effective method for both

fast exploratory analysis of unstructured multimedia dataand for selecting streams of in-

terest in real-time remote awareness applications. Coupledwith the modest processing

requirements of audio compared to video, these results are astrong argument in favor of

blind, audio-first processing of multimedia in advance of more detailed analysis.



Chapter 4

Auditory Environment Recognition for

User State Modeling

4.1 Chapter Overview

This chapter describes theoretical and practical work on auditory environment recognition

for user state modeling. The discussion begins with the reasons that environment is a poten-

tially useful aspect of user state to consider for certain applications, and moves on to prior

work in environment recognition from audio. After presenting two possible approaches to

environment modeling, one based on GMM/HMMs, the other on optimal coding, I present

experimental results on a large corpus of environmental data including comparisons to hu-

man performance.

72
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4.2 Environment and User State

Environment is an important aspect of user state. Human activities and social norms are

strongly interrelated with environment. For example, the suite of activities typically pur-

sued while in an office is radically different from those typically pursued in a park or auto-

mobile. As these activities inform the willingness of humans to engage in other attention-

demanding tasks, like answering a cellular telephone or looking up information, environ-

ment is a useful source of information which can be exploitedby context-aware mobile

applications in order to make their behavior more sensitiveto human social preferences.

Using the cellular telephone example, it is typically considered socially inappropriate to

accept a telephone call while in a theater or meeting unless the call is urgent. Likewise,

accepting a call while driving could be distracting, while attempting to accept a call at

a loud construction site might be futile. Aside from avoidance of inappropriate human-

machine interactions, context-aware systems might be ableto learn associations between

environments and information-seeking behaviors. For example, a user might often look

up stock quotes while riding the bus or train to work; a systemwhich learns to associate

this behavior with the bus or train environment might be ableto anticipate the user’s needs

and appear to be more responsive. In order to achieve this kind of context-aware behavior,

though, mobile devices need some means ofdetectingenvironmental types.

4.3 Prior Work

There has been a moderately-sized body of prior work on recognition of specific locales,

as opposed to environments, from audio data in both supervised and unsupervised settings.

As these two problems are intuitively similar, it is worthwhile to explore the techniques

previously used for locale recognition.

Clarkson used both audio and video data, clustered with multilayered HMMs, to record,



Chapter 4. Auditory Environment Recognition for User State Modeling 74

segment, and access long-term recordings of day-to-day life; see [17], [20], [18], [19], and

[16]. The earliest of these works focused mainly on audio, and found that it was difficult

to distinguish between locales which sounded similar usingthis modality; for example, it

was hard to tell a lab lounge from the author’s office. For thisreason, Clarkson’s later

work added features from additional modalities, specifically, visual and orientation fea-

tures. Note however, that the difficulty in making this kind of distinction makes perfect

sense and suggests that the more general problem of environment recognition using only

auditory information is possible.

In [30] and [29], Ellis and Lee used auditory information to cluster long personal

recordings into coherent scenes, which corresponded more or less to specific locales. In [30],

a spectral clustering algorithm due to Ng, Jordan, and Weiss[74] was applied to audio seg-

ments produced by a BIC segmentation method; the overall precision of this clustering

based on 16 labeled classes was 61%. In [29], an exploration of optimal features for seg-

menting long personal recordings was made. This study indicated that the best features for

this task were minute-long metafeatures based on Bark-scalespectra; specifically, the av-

erage log energy, average entropy, and entropy deviation ofshort-term Bark-scale spectra

were most useful.

In [54], Kapoor and Basu demonstrated the use of an auditory version of epitomic

image representation (due to Jojic [53]) to model and classify a few basic audio classes,

and speculated that this feature representation could be useful for auditory environment

recognition.

A coding approach tovisualscenes due to Oliva, Torralba, and collaborators is related

to the auditory coding approach presented in this chapter. This method can be used for

high-level analysis of environment or locale and can be found in [102], [103], and [76].

The author performed two pilot studies, reported in [63] and[66]. The first study in-

volved a 6-class test with one recording per environment. The environments tested included

office, atrium, car, lecture, street, and CMU campus. Using this corpus, one autoencod-
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ing neural network was trained for each environment using 17MFCCs, spectral centroid,

spectral rolloff, zero-crossing rate, and power sampled ata frame rate of 5 Hz. This sys-

tem achieved an error rate of 1.7% on the test data. By comparison, four human subjects

achieved error rates of 21% on a cold test and 12% after being allowed to listen to the

training data. Note that since there was only one recording per environment, though, this

was in reality another locale recognition system.

The second pilot study used 11 classes; apartment, hallway,elevator, lecture, meeting,

office, outside, raining, restaurant, theater, and vehicle. Unlike the previous study, multiple

locales per environment were used; however, the corpus collected was unbalanced. Using

this corpus, one autoencoding neural network and one GMM were trained per environment;

64 MFCCs plus spectral centroid were compressed using PCA to 35 dimensions at a frame

rate of 100 Hz. Both systems achieved error rates of 22%; a hybrid system improved

performance to less than 20%. This system, unlike the first pilot system, was in fact an

environment recognition system capable of performing somemeasure of generalization.

More recently, Chu et. al. reported experiments on environment recognition for mobile

robots using a variety of audio features and classifiers [15]. They obtained a recognition

error of approximately 6% on their dataset using ak-nearest neighbor classifier and a mix-

ture of MFCCs, zero-crossing rate, standard deviation of zero-crossing rate, and standard

deviation of spectral rolloff. Their dataset consisted of five environmental types; hallway,

cafe, lobby, elevator, and outside. It should be noted, however, that like many studies of this

type, there was only one locale studied per environment; in other words, these experiments

described a locale recognition task rather than the much more difficult general environment

recognition task.
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4.4 Gestalt Environment Modeling

As prior work demonstrates, it is possible in principle to recognize environment types from

acoustic data. This is the case both because different environments tend to contain charac-

teristic events and because they tend to have characteristic gross background features like

noisiness, reverberation, and the like. Taking both foreground and background features to-

gether, different environments often have characteristicsound fields. Rather than attempt to

consider the foreground and background characteristics ofa sound field separately, which

would require some form of source separation, one might instead view the entire sound

field as an entity to be modeled.

This kind of gross or Gestalt modeling of the environment canbe done using conven-

tional generative or discriminative methods, e.g., GMMs/HMMs or MLPs. The perceptual

principle of redundancy reduction, however, suggests thatan alternate approach based on

environment-specific optimal coding might be possible. Thegenerative approach and the

optimal coding approach are discussed below.

4.4.1 A GMM/HMM Approach

The GMM/HMM approach to environment recognition involves the use of rather standard

machine learning techniques. For each environmental classEi, an acoustic modelMi is

trained using the Expectation Maximization (EM) algorithm. [27]. During testing, for each

data segmentSj, the hypothesis is taken asargEi
maxP (Sj|Mi).

The main implementation issues of this approach are issues of model structure. If

GMMs are used, the main issue is how to choose the appropriatenumber of Gaussians.

If HMMs are used, the main issues are how to select a topology and how many Gaus-

sians to use in each state. For GMMs, the BIC, given in Equation 3.4 is a useful measure

for model order selection. One can iteratively test the BIC with an increasing number of

Gaussians and select the model order which maximizes the criterion. For HMMs, several
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topology induction methods have been proposed as discussedin Section 2.6. In this work,

the k-variablek-means algorithm due to Reyes-Gomez and Ellis [83] (a modification of

an algorithm used by Zhang and Kuo in [116]) is used. This algorithm, which is in the

leader-follower class of clustering algorithms, is definedas shown in Figure 4.1.

k-Variablek-Means

1 Given:F , a t-length sequence ofn-dimensional feature vectors,

z, the minimum number of samples per model,

θ, the generality threshold;0.5 <= θ <= 1.

2 Compute:m, the average distance between vectors inF ,

s, the standard deviation of distances between vectors inF .

3 θm ← m− sθ

4 θs ← m+ sθ

5 Initialize modelc0 with frame having highest norm.

6 repeat until V =
∑

jk(xjk − ck)
2 is minimized:

7 for each unassigned frameFi

8 d← min(dij(Fi, cj)).

9 if d < θm

10 then addFi to cj.

11 elseifd > θs

12 then make new clustercα with Fi as center.

13 Remove clusters with fewer thanz samples.

14 Assign all unclassified frames to closest cluster.

Figure 4.1: Thek-variablek-means algorithm
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4.4.2 A Redundancy Reduction Approach

The redundancy reduction approach to environment recognition rests on the fact that the

optimal code for a suite of signals depends only on the statistics of that suite of signals. If

one suiteSx varies substantially from some other suiteSy, then the optimal codes for these

suites will also differ substantially.

If one posits that different environments in fact contain different kinds of acoustic sig-

nals, then this difference in optimal codes can be used to discriminate between environ-

ments in the following way. For each environmentχ, an optimal coding matrixCχ can

be derived. ApplyingWχ on some set ofn-dimensional feature vectorsX drawn fromχ

yields a coded representationH(X)χ. A decoding matrixDχ can be derived fromX and

Cχ in the following way:

Dχ = (HTH)−1HTX, (4.1)

= ((XCχ)
T (XCχ)

T )−1(XCχ)
TX. (4.2)

The decoding matrix can then be applied toH(X)χ to yield an estimate of the original

input,X̂χ. The difference betweenX andX̂χ, computed as:

∆(X, X̂χ) =

|X|
∑

i=1

n
∑

j=1

(X(i, j)− X̂χ(i, j))
2. (4.3)

and is referred to as the coding error ofX given χ. If X was in fact drawn from en-

vironmentχ, one would expect that∆(X, X̂χ) would be smaller than the coding error

of X given the optimal coding and decoding matrices from some other environmentψ;

i.e., ∆(X, X̂χ) < ∆(X, (̂X)ψ). Given this expectation, one can construct optimal coding

and decoding matrices for each environmentα and, during testing, take as the hypothesis

argαmin ∆(X, X̂α).
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As with the GMM/HMM approach, there are engineering issues to address. First is

the order of the coded model. This order must be smaller than the dimensionality if the

original feature vector1; one would assume that the more features the coded signal has, the

more faithful the reconstruction of the original signal would be. Conversely, the closer the

dimensionality of the coded signal to the original signal, one would assume that the coding

matrix would approach the unit matrix, reducing discriminability. The second issue to

address is the method for deriving the coding matrix. PCA and ICA are obvious candidates;

however, a numerical method using autoencoding multilayerperceptrons (MLPs) is also a

possibility. Autoencoding MLPs are those trained using theinput as the target output; when

the mean squared error function is used as the training criterion, the hidden weights will

approximate the PCA solution [26]. More specifically, the MLPapproach will learn the

PCA solution up to a rotation. While analytical PCA is faster to train and always gives

an exact solution, the MLP approach has the advantage of being able to converge on the

specific rotation of the PCA solution which is optimal in termsof coding error with a given

number of coding units.

It is also possible to extend the optimal coding approach by employing a mixture of

coders. In this approach, data are fragmented and multiple coders are trained in the hope

that each group of coding elements will model a specific spatial cluster of the given class.

In this work, trees of MLP autoencoders are used to test the mixture of coders approach.

4.5 Experimental Evaluation

In order to evaluate the validity of the proposed methods, a large representative database

covering typical environments encountered by the target users in the CHIL Connector sce-

nario [25] was developed. Environments such as office, lecture, and meeting were left out,

as the assumption of the CHIL project is that these environments would be instrumented

1Unless we are using an overcomplete representation, e.g., per Lewicki and Sejnowski [59]
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in such a way as to make environment recognition redundant; the CHIL-equipped space

would simply notify the Connector device of the user’s locale.

This section describes in detail the data collected and usedfor the environment recog-

nition evaluation, as well as results of a small study on human performance on the acoustic

environment recognition task designed to provide a baseline against which to judge ma-

chine performance.

4.5.1 Data Collection

The database used in this work consists of approximately 20 hours of audio data recorded in

14 different kinds of environments in 10 different countries on 4 continents2. The data were

recorded in ten-minute chunks using a Sony minidisc recorder with a Sony ECM-717 stereo

microphone and converted to mono 16-bit, 16 kHz raw format. The data collector was

instructed to remain stationary during recording, and to always use identical microphone

placement and recording settings.

From this database, nine environments were selected for study. These environments are

airport, bus, gallery, park, plaza, restaurant, street, train, and train platform. These envi-

ronments were selected to be representative of the environments encountered in the CHIL

Connector scenario. Most are self-explanatory. “Gallery” refers to any crowdedindoor

space not covered by the other environments, e.g., a mall. “Plaza” refers to any crowded

outdoorspace not covered by the other environments; e.g., a city square or piazza with no

significant vehicle traffic. “Train platform” refers to the actual area with train tracks, where

passengers board and disembark from subway cars or high-speed trains. “Train” refers to

subways, high-speed trains, and street trolleys.

From each environment, 7 recordings were selected at random, and divided into two

pools. The first pool consisted of 6 recordings from each environment and was labeled the

2Thanks again to Kornel Laskowski for creating this databaseduring his travels in 2004 and 2005.
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“seen” pool. The second pool, made up of the remaining recording from each environment,

was labeled the “unseen” pool. Each 10-minute recording wasthen divided into 120 5-

second segments; the test set was constructed from the 120 unseen segments, plus 120

segments from the seen pool. The remaining segments were assigned to the training set.

The training set thus consisted of a total of 5400 5-second segments, and the test set of

2160 5-second segments, evenly split between seen and unseen conditions. Additionally,

108 segments from the test set were used to evaluate human performance. This human

evaluation subset consisted of 12 segments per environment, 6 from the seen pool and 6

from the unseen pool. This data assignment was the same one used for the 2006 NIST

CLEAR evaluation [64].

4.5.2 Human Performance

Establishing a human performance level in this research serves two purposes. First, human

performance serves as a benchmark for machine listening algorithms. Traditionally, human

performance has been used as a gold-standard for progress onperceptual tasks like ASR,

speaker identification, and image analysis. Second, one canexamine the types of errors

that humans make, and, if systematic errors are found, thesecan be compared to the types

of errors made by machine listeners in hopes of gaining some insight into the differences

between human and machine perception.

In order to evaluate human performance, the human subset of the test set, described

above, was used. Ten human subjects were first briefed on the nature of the task and the

environments in the test, and then given a 108-question multiple choice test. The subjects

were not told that the corpus was balanced, nor were they toldhow many different record-

ings were present for any environment. They were not given access to previous answers, or

allowed to change previous answers; they were, however, allowed to listen to any segment

as many times as they liked before giving an answer.
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Subject Total Error Seen Error Unseen Error

1 72.22% 70.37% 74.07%

2 75.00% 75.92% 74.07%

3 70.37% 75.92% 64.81%

4 75.92% 66.67% 85.15%

5 76.85% 81.48% 72.22%

6 70.37% 72.22% 68.51%

7 73.15% 77.78% 68.51%

8 76.85% 79.62% 74.07%

9 76.85% 74.07% 79.62%

10 73.70% 74.44% 68.51%

Average 73.70% 74.44% 72.96%

Table 4.1: Human Performance on Environment Recognition Task

A summary of human performance is shown in Table 4.1. Performance was on average

poor, and the difference between the best performance and the worst was only 6.5% abso-

lute, a fairly small margin given the magnitude of the errors. The average performance was

only 15% better than chance.

The types of errors made by humans are illuminating. Significant confusions existed

between several pairs of classes that would seem to be intuitively close acoustically. Bus

and train, train platform and street, and restaurant and gallery are members of this class

of confusion. Particularly interesting is the confusion between park and plaza; here, it

seems, human listeners latched onto a particular cue which is frequent in both classes —

the sound of birds chirping — and interpreted this as a strongpark cue. Finally, there are a

number of other confusions in which it seems that humans could not even tell whether the

environment was indoors or outdoors — airport and plaza, gallery and street, and restaurant
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Reference Hypothesis

airpt bus galry park plaza restr strt trn platf RECALL

airpt 12 3 22 14 21 16 14 5 13 10.00%

bus 1 24 3 1 3 20 11 42 15 20.00%

galry 19 1 19 2 10 14 20 3 32 15.83%

park 0 7 7 91 6 1 4 4 0 75.83%

plaza 4 3 21 44 20 8 10 0 10 16.67%

restr 12 1 27 4 27 39 5 3 2 32.50%

strt 6 4 16 10 38 9 23 5 9 19.17%

trn 14 27 16 1 5 8 10 34 5 28.33%

platf 11 11 20 4 11 7 23 11 22 18.33%

PRECISION 15.19% 29.63% 12.58% 53.22% 14.18% 31.97% 19.17% 31.78% 20.37%

Table 4.2: Environmental Confusions, Precision, and Recall:Human Subjects

and plaza were all in this class. This confusion would seem toindicate that humans are in

fact listening for specific sound cues rather than trying to consider the characteristics of

the entire sound field, such as noisiness or reverberation, to make their decisions. This is

an appealing hypothesis, as it is often difficult for untrained humans to describe a sound

field as anything other than a collection of specific sounds. The entire confusion matrix is

shown in Table 4.2. Per-classF -scores are shown in Table 4.3, while the top confusions by

percentage of response are shown in Table 4.4.

As the confusion matrix andF1 score table show, no class was truly easy for humans,

though their best performance came on the park class, with anF1 score of 62.54. Other

relatively easy classes for humans included park, restaurant, train, and bus; conversely,

plaza, gallery and airport were the hardest. This result is intuitively appealing in that the

classes one might think of as the most distinctive in terms ofsound field are the easiest

for humans to distinguish. Likewise, the more nebulous classes are the hardest. That

airport should be the hardest class for humans is surprisingat first blush; however, when

one considers all the different sub-environmental types present in an airport; e.g., checkin

areas, departure gates, skymalls, baggage claim, passportcontrol, customs, etc., it is much

easier to understand why humans should have such a hard time with the class.

The top 10 human confusions are dominated by the train / bus pair; confusions between
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Environment F1 Score

park 62.54

restaurant 32.23

train 29.95

bus 23.88

train platform 19.29

street 19.17

plaza 15.32

gallery 14.01

airport 12.06

Table 4.3: HumanF1 Scores

Rank Ref Hyp Pct Rank Ref Hyp Pct

1 Plaza Park 4.07% 5T Restaurant Gallery 2.5%

2 Bus Train 3.88% 7 Platform Street 2.12%

3 Street Plaza 3.51% 8 Airport Gallery 2.04%

4 Gallery Platform 2.96% 9T Plaza Gallery 1.94%

5T Train Bus 2.5% 9T Airport Plaza 1.94%

Table 4.4: Top 10 Human Confusions as Percentage of Total Answers
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these two classes account for 6.5% of the total responses, ornearly 9% of the total errors

made. Except for platform / street, the remainder of the top 10 errors were confusions

between the three most ill-defined classes: airport, gallery, and plaza.

4.6 Experimental Results: GMM/HMM Approach

Here experiments using the GMM/HMM approach are described,including studies on ba-

sic feature selection, GMM model order, and HMM topology selection. After discussing

each experiment in turn in Sections 4.6.1 - 4.6.6, a summary of these results and error

analysis are presented in Section 4.6.7.

4.6.1 GMM Feature Selection

The first experiment was on feature selection using diagonal-covariance GMMs with 100

Gaussians per class. Four feature sets were considered, allcomputed at 100 frames per

second:

MEL A set of 14 melscale spectra.

MFCC A set of 14 MFCCs derived from 64 melscale spectra.

MEL+ A set of 11 melscale spectra, plus SNR, spectral centroid, andspectral energy

diffusion.

MFCC+ A set of 11 MFCCs derived from 64 melscale spectra plus SNR, spectral centroid,

and spectral energy diffusion.

The spectral summary features SNR, spectral centroid, and spectral energy diffusion were

chosen for their presumed applicability to the environmentrecognition problem; that is,

each of these features should vary across environments in predictable ways. All these



Chapter 4. Auditory Environment Recognition for User State Modeling 86

Feature Set Total Error Seen Error Unseen Error

MFCC 18.93% 8.24% 29.63%

MEL 41.04% 38.61% 43.42%

MFCC+ 17.36% 8.33% 26.39%

MEL+ 33.65% 31.85% 35.46%

Table 4.5: GMM Feature Selection — 100 Gaussians Per Class

features were normalized to zero mean and unity variance as computed over a uniform

sampling of the entire training corpus.

In order to evaluate these features, a set of 100-Gaussian GMMs were trained, one per

environmental class. These GMMs were initialized using theneural gas algorithm, a soft

variant of thek-means algorithm [69], and trained for 10 iterations using EM. Results are

shown in in Table 4.5.

Several results in this table are noteworthy. First, MFCC-based feature sets performed

significantly better than MEL-based feature sets, which seems to indicate that the DCT as

an optimizing transform of spectral coefficients is useful for sound field modeling. Second,

the augmented feature sets MEL+ and MFCC+ both achieved betterperformance than the

unaugmented feature sets; in the MFCC case by 8% relative and in the MEL case by 18%

relative. This result indicates that using the spectral summary features SNR, centroid, and

diffusion is better than having three more basic coefficients, meaning that these features

are indeed useful for environment recognition. Third, the performance improvement for

MFCC+ over MFCC is entirely due to an 11% relative improvement onthe unseen data,

meaning that the spectral summary features are in some way more characteristic of envi-

ronments than basic MFCCs. Fourth, there is a considerable performance gap between the

seen locales and the unseen locales. While the performance onunseen locales is still much

better than chance (an 88.9% error rate) and hence potentially useful, it is clear that actu-
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Frame Rate Smoothing Total Error Seen Error Heldout Error

100 fps no 17.36% 8.33% 26.39%

100 fps yes 21.01% 4.16% 37.87%

10 fps no 26.80% 12.50% 41.11%

Table 4.6: GMM Feature Selection — Effects of reducing short-term temporal structure

ally generalizing to new locales is much more difficult than simply recognizing locales that

were seen in training. Finally, note that note that these performances are much better than

human performance, a subject that will be explored in more detail in Section 4.8 below.

In addition to this basic feature selection experiment, tests designed to remove the ef-

fects of short-term feature variability were also conducted. Some researchers, notably El-

lis [29], have used very long analysis windows for environment recognition on the basis of

the fact that environments themselves are slow-changing; thus, short-term temporal struc-

tures might in fact be misleading. One way to reduce short-term structure is to lower the

frame rate. Another is to employ feature smoothing, for example, the scale-space smooth-

ing approach discussed in Chapter 3. Both of these approaches were evaluated using the

MFCC+ feature set; note that, since the reduced frame rate approach compresses the set of

training examples by an order of magnitude, the number of Gaussians per class is corre-

spondingly reduced from 100 to 10. Further, the smoothing factorσ was set equal to 2 for

this work. Results of these experiments are shown in Table 4.6.

Neither smoothing nor reduction of frame rate improves performance overall. However,

it is noteworthy that smoothing causes performance on seen locales toimproveby 50% rel-

ative, while performance on unseen locales is degraded by 43% relative. This result would

seem to indicate that smoothing somehow impairs the abilityto generalize while improving

the ability to recall previously seen locales. A similar, though much less dramatic result

is seen in the slow frame rate condition. Here, performance on seen locales degrades by
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50% relative, but performance on unseen locales degrades even more, by 56% relative. It

is likely that the overall worse performance of the slow frame rate system is simply due to

fewer parameters. However, the fact that in both experiments, performance degrades more

on unseen locales would seem to indicate that while more gross auditory characteristics are

important for locale recognition, it is the short-term temporal structures which are impor-

tant for generalization. This is a somewhat counter-intuitive result. However, insofar as

specific sound types are often characteristic of environments rather than locales (i.e., the

sound of a train pulling up to a train platform, or birds chirping in a park), it is reasonable.

Note that the choice between specificity and generalizationis largely application-dependent.

Hence, it is possible that in some applications smoothing should be employed in order to

recognize specific locales with high accuracy. However, since the goal of this thesis is to

learn something about the properties of environmental sound fields in general, the use of

smoothing is not indicated for further experimentation.

4.6.2 GMM Model Order Selection

The next experiment involved varying the number of Gaussians per class using the MFCC+

feature set in order to measure the effect of parameter size on performance. One might

expect that, as the number of parameters increases, performance on seen locales would in-

crease, possibly at the expense of performance on unseen locales. To measure this effect,

a number of GMM sizes were evaluated. Each environmental class had 300,000 training

examples; if each parameter requires 100 samples to adequately estimate, then the maxi-

mum number of Gaussians per class is 107 (disregarding mixture weights). Systems using

25 Gaussians per class through 125 Gaussians per class were tested; the 125-Gaussian

case was intended to investigate in fact whether 100 samplesper parameter were adequate,

inadequate, or more than adequate. Results are shown in Table4.7.

While performance on seen locales does indeed improve with more parameters, so does
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Gaussians / Class Total Error Seen Error Heldout Error

25 23.33% 13.05% 33.61%

50 19.54% 10.18% 28.89%

75 17.41% 8.33% 26.48%

100 17.36% 8.33% 26.39%

125 16.99% 8.05% 25.92%

Table 4.7: Effects of GMM Parameter Size

performance on unseen locales. By using 125 Gaussians per class instead of 100, overall

performance improves. Though the improvement is mostly dueto better locale recognition,

generalization does not suffer; in fact, the gap between unseen and seen performance drops

monotonically from 20.5% with 25 Gaussians to 17.8% with 125gaussians. This result is

rather straightforward to interpret. First, 100 samples per parameter appears to be more than

enough; the 125-Gaussian system had only 82 training examples per parameter. Second,

though additional parameters do help locale recognition, they help close the gap between

locale recognition and generalization. In other words, theextra models being learned are

in fact, at least to some degree, broad environmental models.

4.6.3 GMM Feature Transformations

The MFCC+ feature set, as shown above, achieves reasonable performance levels on the

environment recognition task. Here, various “optimal” feature space transformations are

tested. Specifically, PCA, ICA, and LDA are evaluated in order to determine whether or not

these transforms can be of use for environment recognition.As noted in Chapter 2, PCA

and ICA attempt to transform the feature space in such a way that the input features are most

faithfully represented, while creating output features that are, respectively, either decorre-

lated or statistically independent. LDA, by contrast, seeks a transformation such that the
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Transform Total Error Seen Error Unseen Error

None 16.99% 8.05% 25.92%

PCA 21.71% 10.37% 33.05%

ICA 23.93% 11.29% 36.57%

LDA 20.18% 9.72% 30.65%

Table 4.8: Effects of Feature Transformations, 125 Gaussians per Class

output features are maximally linearly separable given some class labels. For this experi-

ment, output feature space dimensionality was kept at 14; inother words, full transforms

were used. The ICA transform was produced with the deflation variant of FastICA [48]

with the tanh nonlinearity. Given the goals of these transformations, itwas expected that

LDA would improve performance over the baseline, that LDA would perform better than

either of the other two methods, and that ICA would perform better than PCA. Results are

shown in Table 4.8.

In fact, only one of the expectations of this experiment held; namely, that LDA outper-

formed PCA and ICA. Conversely, LDA didnot perform better than the baseline MFCC+

feature set, nor did ICA outperform PCA. Examining the LDA result in more detail, note

that most of the degradation comes in the unseen condition. Since it is apparent that the

differences between the seen and unseen data are not small, it is reasonable that a linear

transformation bent on linear separability in the seen datapool might cause a performance

degradation on unseen data. This conjecture does not explain why performance on the

seen data is worse. It may be the case that there is little linear separability between sound

field classes as a whole. That is, the discriminability between sound field classes may rest

in small components of the sound fields, i.e., in individual sound cues. This contention

is similar to the one made to explain the failure of smoothing, above. In ASR systems,

LDA is typically applied at the level of HMM states, which in practice means context-
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Context Size Total Error Seen Error Unseen Error

0 Frames 16.99% 8.05% 25.92%

3 Frames 23.33% 10.00% 36.67%

5 Frames 23.65% 8.98% 38.51%

7 Frames 22.17% 8.42% 35.92%

9 Frames 22.36% 8.24% 36.48%

11 Frames 23.56% 8.14% 38.98%

Table 4.9: Effects of Context+LDA, 125 Gaussians Per Class

dependent sub-phone units. These are very small structures; it is likely that any attempt to

introduce LDA at a higher level, e.g., the phone level, mightactually hurt, as is the case

with environment-level LDA in this experiment. This is not to say that LDA is useless for

environment recognition; merely that it cannot be applied at a high level.

4.6.4 GMM Temporal Feature Context

Temporal context is widely used in modern ASR systems, allowing trajectories of features

over time to be tracked and modeled. Temporal context has also been used in other general

audio modeling applications; see work by Slaney [90], Malkin [66], [67], and Kraft [56],

[55] for examples. In this work, consecutive frames in the source feature set are stacked

to create much longer feature vectors which are then processed by some dimensionality

reducing transformation in order to avoid the problems of a very high dimensional feature

set. In this experiment, following the results shown in Section 4.6.3, LDA transforms

were learned at the environment level; these transforms reduced the feature space to 14

dimensions. Keeping the number of Gaussians per class fixed at 125, the context width

was varied between 3 and 11 frames. Results are shown in Table 4.9.
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As these results demonstrate, use of context in the feature space does not help perfor-

mance, at least when using an LDA transformation. Interestingly, there is a clear trend of

improving performance on the seen data from shorter contexts to longer contexts, while

this trend is not present in the unseen data. This result would seem to indicate that the fea-

ture trajectories learned by LDA improve with length for locale recognition, but that these

trajectories are not especially useful for generalization. In fact, they are all worse than

single-frame LDA, meaning that if temporal context is useful for environment recognition

at all, the feature space is not the proper place to implementit.

4.6.5 HMM Topology Selection

HMMs are widely used in general audio recognition systems and merit investigation for the

environment recognition problem. A major issue, however, as noted above, is that it is not

cleara priori what kind of topologies are appropriate for this task. Reyes-Gomez and Ellis’

k-variablek-means algorithm, shown in Figure 4.1 is able to learn HMM topologies from

data in a principled way. In this work, a minimum of 100 training examples per parameter

were required, which amounts to 2800 training examples per HMM state. Additionally, the

BIC was used to determine the number of Gaussians per state rather than fixing the number

of Gaussians based on the number of training examples. As a result, the HMM topology

selection procedure in this work eliminates many more states than the version described

by Reyes-Gomez and Ellis. After selecting the HMM topology for each environment and

the number of Gaussians per state, the GMM parameters are initialized using the neural

gas algorithm and the HMMs are trained using 10 iterations ofViterbi training. HMM

transition parameters were not optimized during training,but left at their initially-observed

values from thek-variablek-means procedure. As the transition probabilities are much

smaller than the acoustic probabilities, they do not have much impact on Viterbi decoding.

Five different generality thresholds were used to build 5 different HMMs per environ-
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Environment Generality Threshold

0.5 0.75 1 1.25 1.5

airpt 33 28 22 18 11

bus 31 35 22 16 11

galry 34 32 22 18 7

park 15 11 7 7 3

plaza 27 24 22 15 9

restr 33 32 28 23 21

strt 35 23 20 16 6

trn 32 28 24 18 5

platf 23 18 19 18 13

Total States 263 231 186 149 86

Total Gaussians 765 848 850 844 834

Gaussians Per State2.9 3.7 4.5 5.6 9.7

Table 4.10: HMM States Per Environment

mental class using the MFCC+ feature set. The resulting numberof states per class, total

states per system, total Gaussians per system, and number ofGaussians per state, are shown

in Table 4.10.

On average, the number of states per class decreases with thegenerality threshold, and

the number of Gaussians per state increases with the generality threshold. The total number

of Gaussians, however, appears to be relatively constant atthresholds 0.75 and higher. All

of these HMMs were evaluated on the seen and unseen data sets.Results, together with

the best GMM system for comparison, are shown in Table 4.11. Also shown in this table

is a hybrid HMM system which consists of a linear interpolation of allk-variablek-means

HMM scores.
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KVKM Threshold Total Error Seen Error Unseen Error

0.5 19.17% 5.00% 33.33%

0.75 16.80% 5.83% 27.79%

1 15.41% 5.46% 25.37%

1.25 17.13% 5.74% 28.51%

1.5 16.85% 7.13% 26.57%

Hybrid 16.06% 6.02% 26.38%

GMM 16.99% 8.05% 25.92%

Table 4.11: HMM Error Rates

The best HMM system, using a generality threshold of 1, achieved an error rate of

15.41%, some 9% better, relative, than the best GMM system. This improvement comes

almost entirely from a 32% relative improvement on the seen data; the improvement on the

unseen data is only 2% relative. It is important to note, however, that this HMM system had

a total of 850 Gaussians and 186 HMM states for a total of 28,756 parameters; by contrast,

the GMM system had a total of 1,125 Gaussians for a total of 32,625 parameters. The

HMM system’s performance gain comes in spite of having nearly 12% fewer parameters

than the GMM system, which is a fairly strong indication thatHMMs are a much better

tool for environment recognition than GMMs, even if the topologies must be estimated

from data. Note also that the single best HMM on seen data is the 0.5 threshold HMM,

which has 32,849 parameters, even more than the GMM system. This model appears to

have learned to recognize specific locales at the cost of generalizability. Finally, the hybrid

system’s error rate is smaller than the average component system error, but is not better

than the single best system.
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System Params Total Error Seen Error Unseen Error

100-GMM-MFCC 26,100 18.93% 8.24% 29.63%

100-GMM-MFCC+ 26,100 17.36% 8.33% 26.39%

125-GMM-MFCC+ 32,625 16.99% 8.05% 25.92%

1-HMM-MFCC+ 28,756 15.41% 5.46% 25.37%

1-HMM-MFCC+-Train20 28,756 15.18% 5.09% 25.27%

Table 4.12: GMM / HMM Error Rate Summary

4.6.6 Additional Experiments

Training the 1-threshold HMM for an additional 10 Viterbi iterations yielded a small im-

provement to 15.18% total error, with 5.09% error on the seendata and 25.27% on the

unseen data. A final experiment involved pruning HMM transitions with less than 1%

probability; this experiment removed 2000 of the 4106 transitions in the model, but re-

sulted in a performance degradation to 15.78% total error, with 5.27% on the seen data and

26.29% on the unseen data.

4.6.7 GMM/HMM Result Summary

Table 4.12 shows a summary of results for the GMM/HMM system.The best result,

15.18% total error with 5.09% seen error and 25.27% unseen error, was acheived by 20

iterations of Viterbi training on a set of HMMs whose topologies were initialized using the

k-variablek-means algorithm with a generality threshold of 1. This system represents a

substantial improvement over the best GMM system while using fewer parameters, indi-

cating that it is a better choice for modeling environments.

Confusion matrices for both the seen and unseen conditions are shown in Tables 4.13

and 4.14,F1 scores per environment in Table 4.15, and top confusions in Tables 4.16 and
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Reference Hypothesis

airpt bus galry park plaza restr strt trn platf RECALL

airpt 107 1 8 0 2 2 0 0 0 89.17%

bus 0 119 0 0 0 0 0 1 0 99.17%

galry 0 0 119 0 1 0 0 0 0 99.17%

park 0 0 0 119 0 0 1 0 0 99.17%

plaza 2 0 3 0 115 0 0 0 0 95.83%

restr 0 0 0 0 0 119 0 0 1 99.17%

strt 6 0 0 0 4 1 107 2 0 89.17%

trn 2 3 0 0 1 1 2 111 0 92.50%

platf 5 0 1 2 2 4 1 0 105 87.50%

PRECISION 87.70% 96.75% 90.84% 98.35% 92.00% 93.70% 96.40% 97.37% 99.06%

Table 4.13: HMM Environmental Confusions, Precision, and Recall: Seen Condition

Reference Hypothesis

airpt bus galry park plaza restr strt trn platf RECALL

airpt 53 0 0 0 0 11 48 0 8 44.17%

bus 4 110 0 0 1 0 0 5 0 91.67%

galry 0 4 116 0 0 0 0 0 0 91.67%

park 0 0 0 120 0 0 0 0 0 100.0%

plaza 0 0 0 0 107 5 7 1 0 89.17%

restr 0 0 2 0 0 118 0 0 0 98.33%

strt 22 0 0 0 18 2 75 0 3 62.50%

trn 0 33 0 0 10 0 0 75 2 62.50%

platf 0 8 80 0 0 0 0 0 32 26.67%

PRECISION 67.09% 70.97% 58.59% 100.0% 78.68% 86.76% 57.69% 92.59% 71.11%

Table 4.14: HMM Environmental Confusions, Precision, and Recall: Unseen Condition

4.17.

As these confusion summaries show, there were no significantconfusion issues on the

seen data; with such a small overall error rate, this is to be expected. On the unseen data,

however, several confusions are significant. The platform-gallery confusion, which ac-

counted for 7.47% of the total answers and nearly 30% of the total errors, is an interesting

one in that one would presume that when an actual train is not in the process of pulling up

or leaving, the platform might not in fact be distinguishable from a gallery. The train-bus,

street-plaza, airport-restaurant, plaza-street confusions are also understandable in an intu-

itive way. The remaining significant confusions airport-street and street-airport, are less

easy to understand. It is possible that some specific localesin some specific environments



Chapter 4. Auditory Environment Recognition for User State Modeling 97

Environment TotalF1 Score SeenF1 Score UnseenF1 Score

park 99.37 98.75 100.0

restaurant 94.26 96.35 92.18

bus 88.96 97.94 80.00

plaza 88.73 93.87 83.59

train 84.74 94.87 74.62

gallery 83.15 94.82 71.48

street 76.31 92.64 59.99

airport 70.84 88.42 53.26

train platform 65.85 92.92 38.79

Table 4.15: HMMF1 Scores

Rank Ref Hyp Pct Rank Ref Hyp Pct

1 Airport Gallery 0.74% 6T Train Bus 0.27%

2 Street Airport 0.55% 6T Plaza Gallery 0.27%

3 Platform Airport 0.46% 8T 8 tied 0.18%

4T Platform Restaurant 0.37%

4T Platform Plaza 0.37%

Table 4.16: Top 10 HMM Confusions as Percentage of Total Answers, Seen Condition
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Rank Ref Hyp Pct Rank Ref Hyp Pct

1 Platform Gallery 7.47% 6 Airport Restaurant 1.01%

2 Airport Street 4.44% 7 Train Plaza 0.92%

3 Train Bus 3.05% 8T Platform Bus 0.74%

4 Street Airport 2.03% 8T Airport Platform 0.74%

5 Street Plaza 1.67% 10 Plaza Street 0.65%

Table 4.17: Top 10 HMM Confusions as Percentage of Total Answers, Unseen Condition

do in fact sound like city streets; however, this confusion is less intuitive and likely an

indication of a real modeling inadequacy than any true similarity.

TheF1 scores shown above measure the overall difficulty of each class. As with hu-

mans, park and restaurant are the easiest classes. Interestingly, train platform is the hardest

class, owing mainly to the very poor performance in the unseen dataset. Also interestingly,

while airport is hard, the other more ill-defined classes, plaza and gallery, are not among

the hardest classes. This is a real difference between humanand machine environment

recognition systems that will be explored in more detail in Section 4.8 below.

4.7 Experimental Results: Optimal Coding Approach

Here experiments using the optimal coding approach are described, including studies on

basic feature selection and model complexity for both ICA andMLP autoencoder trees.

After discussing each experiment in turn in Sections 4.7.1 -4.7.5, a summary of these

results and error analysis are presented in Section 4.7.6
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Feature Total Error Seen Error Unseen Error

MFCC 70.64% 71.67% 69.62%

MFCC+ 79.17% 74.72% 83.61%

Table 4.18: ICA Feature Selection, 10 coding units

4.7.1 ICA Feature Selection

Given the nearly 50% relative difference in performance between MEL-based features and

MFCC-based features demonstrated in the experiments on GMM feature selection above,

the initial ICA experiment dealt only with the MFCC and MFCC+ feature sets. For this

experiment, 10-dimensional ICA solutions were sought for each feature set using the de-

flation variant of the FastIca algorithm with atanh nonlinearity, a stopping criterion of

0.001, and a maximum of 5000 iterations per component. In order to carry out the FastIca

procedure, the data were first whitened by applying PCA followed by multiplication by

the inverse of the square root of the eigenvalue matrix. After discarding all but the first

10 dimensions of the whitened matrix, the FastIca procedurewas carried out to estimate

the optimal coding matrixCχ for each environment. The decoding matrixDχ was then

estimated per Equation 4.1. Performance is shown in Table 4.18.

The main result of note in this experiment is that performance is overall quite poor

compared to the GMM/HMM systems above; the MFCC system is onlyabout 3% better

absolute than the average human. Oddly, this system actually has alower error rate on

unseen data than seen data. This result would seem to indicate that the MFCC-based ICA

system is doing a good job of generalizing compared to recognizing seen locales; however,

in an absolute sense the error rates are sufficiently bad as tomake this feat useless.
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Coding Units Total Error Seen Error Heldout Error

2 75.50% 66.20% 84.81%

4 65.92% 58.33% 73.51%

6 68.47% 59.72% 77.22%

8 68.37% 62.22% 74.53%

10 70.64% 71.67% 69.62%

12 79.95% 78.98% 80.92%

Table 4.19: ICA Model Complexity

4.7.2 ICA Model Complexity

The next experiment measured the effects of model complexity on performance. Using

the MFCC feature set, the model complexity was varied between2 and 12 with the same

procedure noted above. Results are shown in Table 4.19.

As these results show, optimal performance is achieved withfairly low model complex-

ity; the best system uses only a 4-dimensional coded featurespace. Performance degrades

with additional coded features, reaching its worst point with 12 coded features. At first

glance, this result would appear to be due to overfitting; however, note that performance on

the unseen dataset actually has two troughs, at 4 and 10 codedfeatures, instead of a single

trough as one might expect if overfitting were a problem. In any case, the poor overall per-

formance of the ICA approach means that this technique is not indicated for environment

recognition.

It is likely that the poor performance of the ICA model is due tothe fact that the com-

ponents that are being learned are directions in multidimensional space, rather than spatial

clusters in multidimensional space as with HMM/GMM systems. This deficiency can be

seen if we consider a case in which two clusters of data pointsfrom two different classes
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Feature Total Error Seen Error Heldout Error

MFCC 37.03% 28.33% 45.74%

MFCC+ 39.90% 31.29% 48.51%

Table 4.20: MLP Feature Selection, 8 Hidden Units

lie along the same vector with respect to the origin, but are separated by a large distance.

In this case, the two classes would be linearly separable andcan be discriminated with a

single Gaussian. However, since both clusters lie at the same angle from the origin, there

is no way for a simple ICA model to discriminate between them. This deficiency could in

theory be addressed using an ICA mixture model, in which directions from many different

origin points are learned. As seen below, however, single MLP autoencoders outperform

single ICA autoencoders using this data set and so ICA mixturesare dispreferred in this

work in favor of MLP mixtures.

4.7.3 MLP Autoencoder Feature Selection

As noted above, an alternate means of producing an optimal environment-specific code is

to train an autoencoding MLP. The initial MLP experiment compared the MFCC feature

set to the MFCC+ feature set using 8 hidden units. After whitening the training data,

the MLPs were trained using error backpropagation with the mean squared error criterion.

Each network weight was initialized at random with a value between -0.05 and 0.05, and

the weights had independent, adaptive learning rates (initialized to 0.05) and momentum

terms (initialized to 0.045). Each network was trained for 10,000 iterations in batches of

10,000 sample frames. Results are shown in Table 4.20.

These results, while still worse than the GMM/HMM results, are much better than both

the human and ICA results. Like the ICA results, the MFCC featureset yielded better

results than the augmented MFCC+ feature set, and was used as the feature set for future
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Hidden Units Total Error Seen Error Heldout Error

2 37.87% 30.64% 45.09%

4 37.31% 25.18% 49.44%

6 36.57% 26.85% 46.29%

8 37.03% 28.33% 45.74%

10 44.16% 32.50% 55.83%

12 53.47% 47.50% 59.44%

Table 4.21: MLP Hidden Unit Selection

experiments.

4.7.4 MLP Autoencoder Model Size

The second MLP experiment tested the effects of model order.Six additional MLPs per

environment were trained with varying numbers of hidden units from 2 to 12. Results are

shown in Table 4.21.

The overall optimal system is the 6-unit system. This systemis best at neither seen lo-

cale recognition nor generalization. However, it appears that the systems which generalize

well do dot recognize seen locales (2 units, 8 units), while the converse is also true (4 units).

The 6-unit system appears to yield the best tradeoff betweenthese two concerns. It is very

interesting, however, that the best generalizer has only two hidden units. The overall poor

performance makes it impossible to conclude that two units are all that are needed to cap-

ture the essential features of an environment; however, it is clear thataddingunits beyond

this level does not help generalization performance using this model. Conversely, it is to be

expected that the worst performance is achieved by the 12-unit system. In the autoencoder

approach, the closer the number of hidden units is to the signal dimensionality, the closer

the coding matrix will be to the unit matrix, which cannot be used to discriminate between
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System Params Total Error Seen Error Heldout Error

6-Unit MLP 1,512 36.57% 26.85% 46.29%

6-Gaussian GMM 1,566 31.94% 24.62% 39.25%

HMM 28,756 15.18% 5.09% 25.27%

Table 4.22: MLP vs. GMM with Similar Parameter Spaces

different classes of phenomena at all.

4.7.5 MLP Autoencoder Trees

One issue with MLP autoencoders is that the number of parameters is limited by the dimen-

sionality of the data. The optimal system above, a 6-unit MLP, has only 168 parameters per

class for a total of 1,512. By contrast, the optimal HMM system, achieving an error rate of

15.18%, has 3,195 parameters per class for a total of 28,756 —nearly 20 times as many

parameters as the best MLP. More importantly, MLP autoencoders suffer from the same

flaw as ICA models — each hidden unit is modeling a direction rather than a spatial clus-

ter. What is not clear is whether or not allowing the MLP to select more directions would

result in a decrease in the performance gap between HMM/GMM systems and MLPs. To

help answer this question, a GMM system was trained with only6 Gaussians per class.

Results of this experiment are shown in Table 4.22.

This result indicates that the difference between MLP and HMM performance is due

largely, though not completely, to the larger parameter space that can be employed with

HMMs. The 6-Gaussian GMM system still performs better than the 6-unit MLP, but the

difference is not enormous. It is possible that by allowing the MLP to model more direc-

tions, performance could approach HMM performance.

In order to test this assertion, a mixture of MLPs was constructed for each class as
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System Params Total Error Seen Error Unseen Error

Single MLP 1,512 34.7% 26.4% 43.1%

Depth-2 MLP Tree 3,024 37.6% 26.4% 48.8%

Depth-3 MLP Tree 6,048 36.6% 25.5% 47.8%

Depth-4 MLP Tree 12,096 37.1% 23.8% 50.4%

Depth-5 MLP Tree 24,192 32.6% 21.2% 44.1%

Depth-6 MLP Tree 48,384 32.1% 21.0% 43.1%

Depth-7 MLP Tree 96,768 30.1% 18.9% 41.4%

Table 4.23: MLP Tree Depth

described in Section 4.4.2. This approach allows the training data to become segmented

into pools of similar kind, or equivalently, to create multiple origins in feature space from

whence to learn directions. The mixtures were arranged as binary trees in order to more

easily compare results between levels. Binary trees of autoencoding MLPs were trained

down to 7 levels; these models had 64 MLPs at the leaves. Each level was evaluated;

results of this experiment are shown in Table 4.23.

After degrading in levels 2, 3, and 4, performance improves in subsequent levels and

reaches a maximum at depth 7, with an error rate of 30.1%. Both seen locale recogni-

tion and generalization are optimized at this level. As expected, seen locale recognition

improves monotonically with increasing number of parameters. However, generalization

degrades before finally improving, suggesting that data fragmentation helps generalization

as well as locale recognition by allowing some networks to focus on very fine details of the

sound field. One issue with the level 7 networks, however, is that data fragmentation may

lead to poor modeling. Specifically, with 2.7 million training frames per environment, there

are only on average 250 training examples per parameter. Compared to the optimal HMM

system, which has 845 training examples per parameter, thisis a small figure. It is possible
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Reference Hypothesis

airpt bus galry park plaza restr strt trn platf RECALL

airpt 86 2 14 0 4 13 1 0 0 71.67

bus 0 119 1 0 0 0 0 0 0 99.17

galry 1 0 115 0 0 3 0 1 0 95.83

park 0 0 0 116 0 0 4 0 0 96.67

plaza 4 3 16 1 83 3 10 0 0 69.17

restr 4 0 0 0 0 114 2 0 0 95.00

strt 5 0 0 3 6 11 90 4 1 75.00

trn 5 15 0 7 0 10 2 81 0 67.50

trnp 9 3 9 8 3 8 5 3 72 60.00

PRECISION 75.44 83.80 74.19 85.93 86.46 70.37 78.95 91.01 98.63

Table 4.24: Depth-7 MLP Tree Environmental Confusions, Precision, and Recall: Seen

Condition

to extend the MLP tree to another level and employ 128 leaf MLPs per class, but further

data fragmentation might lead to some very poorly-trained networks; further, the perfor-

mance trend does not seem to indicate that the added directions would allow the MLP tree

to achieve performance levels comparable to the best HMM systems. The main conclu-

sion that can be drawn from this experiment is that, in fact, the optimal coding approach is

inferior to a more standard GMM/HMM approach for the environment recognition task.

4.7.6 Optimal Coding Result Summary

Confusion matrices for both seen and unseen conditions are shown in Tables 4.24 and

4.25,F1 scores per environment in Table 4.26, and top confusions in Tables 4.27 and

4.28.

As these confusion summaries show, the seen condition had some significant confu-

sions. Many of these were understandable, e.g., train / bus,airport / gallery, airport /

restaurant, and plaza / street. The top confusion, plaza / gallery, is somewhat disappoint-

ing, as this confusion is an indoor / outdoor confusion. On the unseen data, there were 3

confusions which were particularly damaging to system performance. The plaza / park,

platform / gallery, and airport / street confusions together accounted for over 40% of the
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Reference Hypothesis

airpt bus galry park plaza restr strt trn platf RECALL

airpt 18 0 0 2 0 31 69 0 0 15.00

bus 0 119 0 0 0 0 0 1 0 99.17

galry 0 8 109 0 0 0 0 0 3 90.83

park 0 0 0 115 0 0 3 0 2 95.83

plaza 1 0 0 107 2 0 10 0 0 1.67

restr 0 0 1 0 1 117 1 0 0 97.50

strt 10 0 0 0 6 13 89 0 2 74.17

trn 0 13 1 0 20 0 9 54 23 45.00

trnp 0 22 88 0 0 0 0 0 10 8.33

PRECISION 62.07 73.46 54.77 51.34 6.90 72.67 49.17 98.18 25.00

Table 4.25: Depth-7 MLP Tree Environmental Confusions, Precision, and Recall: Unseen

Condition

Environment TotalF1 Score SeenF1 Score UnseenF1 Score

bus 87.90 90.83 84.99

restaurant 82.06 80.85 83.27

park 78.92 90.98 66.86

gallery 75.97 83.63 68.33

train 69.60 77.51 61.71

street 68.02 76.92 59.13

airport 48.82 73.50 24.16

train platform 43.55 74.61 12.49

plaza 40.76 78.85 2.68

Table 4.26: MLP TreeF1 Scores
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Rank Ref Hyp Pct Rank Ref Hyp Pct

1 Plaza Gallery 1.48% 6T Plaza Street 0.92%

2 Train Bus 1.38% 6T Train Restaurant 0.92%

3 Airport Gallery 1.29% 8T Platform Airport 0.83%

4 Airport Restaurant 1.20% 8T Platform Gallery 0.83%

5 Street Restaurant 1.01% 10T 2 Tied 0.74%

Table 4.27: Top 10 MLP Tree Confusions as Percentage of Total Answers, Seen Condition

Rank Ref Hyp Pct Rank Ref Hyp Pct

1 Plaza Park 9.90% 6 Platform Bus 2.03%

2 Platform Gallery 8.14% 7 Train Plaza 1.85%

3 Airport Street 6.33% 8T Train Bus 1.20%

4 Airport Restaurant 2.87% 8T Street Restaurant 1.20%

5 Train Platform 2.12% 10T 2 Tied 0.92%

Table 4.28: Top 10 MLP Tree Confusions as Percentage of Total Answers, Unseen Condi-

tion
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total errors made in the unseen condition. The platform / gallery and airport / street confu-

sions were problematic for the HMM system as well, but plaza /park was not. In fact, the

F1 score for the park class was 100 in the unseen condition for HMMs, but only 67 in the

MLP system. This modeling failure is a large source of the difference between HMM and

MLP performance. Many of the other top MLP confusions are also in the set of top HMM

confusions, meaning that there are only a few classes where distinctly different types of

confusions are being made. Were the error types vastly different, a hybrid HMM / MLP

system could be considered; given these results, together with the overall performance gap

between the two system types, it is unlikely that such an approach would yield substantial

improvements.

4.8 Comparison of Human and Automatic Performance

Results shown above indicate that on average, machine performance far exceeds human

performance on the acoustic environment recognition task.However, it could be the case

that the human subset of the evaluation data was particularly hard or easy, which would

skew the results. In order to avoid misinterpretation, the human subset was used to test

both the HMM and Depth-7 MLP tree systems. These results are shown in Table 4.29,

together with complete evaluation set results for comparison.

As these results show, the human subset was significantly harder for the machine sys-

tems than the remainder of the evaluation set. Both the HMM andMLP lost 14% absolute

overall. While the HMM lost 17% on seen locale recognition and11% on generalization,

the MLP lost 11% on seen locale recognition and 17% on generalization. Confusion matri-

ces andF1 scores for seen and unseen data with both HMM and MLP systems are shown

in Tables 4.30 - 4.34.

The confusions andF1 scores on the human subset are in some ways revealing; how-

ever, the reader is cautioned that since this subset only contained 12 example segments per
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System Total Error Seen Error Unseen Error

Humans 73.7% 74.4% 72.9%

HMM 29.6% 22.2% 37.0%

Depth-7 MLP Tree 44.4% 29.6% 59.2%

HMM - All Eval 15.2% 5.1% 25.3%

MLP - All Eval 30.1% 18.9% 41.4%

Table 4.29: Error Rates on Human-Evaluated Subset

Reference Hypothesis

airpt bus galry park plaza restr strt trn platf RECALL

airpt 3 0 2 0 0 1 0 0 0 50.00

bus 0 6 0 0 0 0 0 0 0 100.00

galry 0 0 6 0 0 0 0 0 0 100.00

park 1 0 0 1 1 0 2 0 1 16.67

plaza 1 0 0 0 5 0 0 0 0 83.33

restr 0 0 0 0 0 6 0 0 0 100.00

strt 1 0 0 0 0 1 4 0 0 66.67

trn 0 0 0 0 0 0 0 6 0 100.00

trnp 0 0 0 1 0 0 0 0 5 83.33

PRECISION 50.00 100.00 75.00 50.00 83.33 75.00 66.67 100.00 83.33

Table 4.30: Environmental Confusions, Precision, and Recall: HMM, Human Seen Subset

Reference Hypothesis

airpt bus galry park plaza restr strt trn platf RECALL

airpt 3 0 0 0 0 0 3 0 0 50.00

bus 0 4 0 0 2 0 0 0 0 66.67

galry 0 0 4 0 0 0 0 2 0 66.67

park 0 0 0 6 0 0 0 0 0 100.00

plaza 0 0 0 0 5 0 1 0 0 83.33

restr 0 0 0 0 0 6 0 0 0 100.00

strt 2 0 0 0 0 1 1 2 0 16.67

trn 0 3 0 0 1 0 0 2 0 33.33

trnp 1 1 1 0 0 0 0 0 3 50.00

PRECISION 50.00 50.00 80.00 100.00 62.50 85.71 20.00 33.33 100.00

Table 4.31: Environmental Confusions, Precision, and Recall: HMM, Human Unseen Sub-

set
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Reference Hypothesis

airpt bus galry park plaza restr strt trn platf RECALL

airpt 3 0 2 0 0 1 0 0 0 50.00

bus 0 6 0 0 0 0 0 0 0 100.00

galry 0 0 6 0 0 0 0 0 0 100.00

park 1 0 0 4 0 0 1 0 0 66.67

plaza 0 0 1 0 5 0 0 0 0 83.33

restr 0 0 0 0 0 6 0 0 0 100.00

strt 2 0 0 0 0 1 3 0 0 50.00

trn 1 1 0 0 0 1 0 3 0 50.00

trnp 0 0 2 2 0 0 0 0 2 33.33

PRECISION 42.86 85.71 54.55 66.67 100.00 66.67 75.00 100.00 100.00

Table 4.32: Environmental Confusions, Precision, and Recall: D-6 MLP Tree, Human Seen

Subset

Reference Hypothesis

airpt bus galry park plaza restr strt trn platf RECALL

airpt 0 0 0 0 0 1 5 0 0 0.00

bus 0 5 1 0 0 0 0 0 0 83.33

galry 0 0 4 0 1 0 0 1 0 66.67

park 0 0 0 5 0 0 0 0 1 83.33

plaza 0 0 3 3 0 0 0 0 0 0.00

restr 0 0 0 0 0 5 1 0 0 83.33

strt 2 0 0 0 0 2 2 0 0 33.33

trn 0 4 0 0 1 0 0 1 0 16.67

trnp 2 0 3 0 0 1 0 0 0 0.00

PRECISION 0.00 55.56 36.36 62.50 0.00 55.56 25.00 50.00 0.00

Table 4.33: Environmental Confusions, Precision, and Recall: D-6 MLP Tree, Human

Unseen Subset
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Environment Human HMM Depth-6 MLP Tree

TotalF1 SeenF1 UnseenF1 SeenF1 UnseenF1

airport 12.06 50.00 50.00 46.15 0.00

bus 23.88 100.0 57.14 92.30 66.67

gallery 14.01 85.71 72.73 70.59 47.05

park 62.54 25.00 100.0 66.67 71.42

plaza 15.32 83.33 71.42 90.90 0.00

restaurant 32.23 85.71 92.30 80.00 66.67

street 19.17 66.67 18.18 60.00 28.57

train 29.95 100.0 33.33 66.67 25.00

platform 19.29 83.33 66.67 66.67 0.00

Table 4.34:F1 Scores on Human Subset

environment (6 seen, 6 unseen), the specific figures are not asreliable as figures drawn

from the entire test set. Conversely, theF1 scores shown in Table 4.36 compare human

results on the human subset to machine results on the entire test set, which is not a direct

comparison. With this warning in mind, the environments areshown ranked by difficulty

on the human subset in Table 4.35.

While some classes are similarly difficult for humans and machines, there are signif-

icant ordinal differences in environmental difficulty ratings. Though overall performance

is much worse for humans, relative difficulty is worth exploring. There are large differ-

ences in relative difficulty for several environment classes between human performance

and HMM performance. Galley and plaza are more difficult for humans than for HMMs,

while park, train, and street are more difficult for HMMs. As noted above, however, these

machine results are not necessarily representative of trueperformance, as they are based

(like the human results) on only 5% of the test data. Hence, itis somewhat difficult to draw
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Difficulty Human HMM MLP Tree

Rank Env F1 Env F1 Env F1

1 Airp 12.06 Strt 42.42 Airp 23.07

2 Gall 14.01 Airp 50.00 Plat 33.33

3 Plaz 15.32 Park 62.50 Strt 44.28

4 Strt 19.17 Trn 66.67 Plaz 45.45

5 Plat 19.29 Plat 75.00 Trn 45.83

6 Bus 23.88 Plaz 77.37 Gall 52.82

7 Trn 29.95 Bus 78.56 Park 69.04

8 Rest 32.23 Gall 79.21 Rest 73.33

9 Park 62.54 Rest 89.00 Bus 79.48

Table 4.35: Environment Difficulty Ranked ByF1 Scores on Human Subset

conclusions based on these results. For a comparison based on all test data, see Tables 4.36

and 4.37.

These full comparisons still show systematic differences between human and machine

performance. Compared to HMMs, humans have less relative difficulty with train and plat-

form, and more relative difficulty with gallery and plaza. Conversely, humans, like HMMs,

perform best on the park and restaurant classes. As noted above, one might expect humans

to perform relatively poorly on such ill-defined classes as plaza and gallery. Further, one

might expect HMMs to perform relatively poorly on a class like train platform, simply

because when there is no train present, a train platform sounds very much like a generic

gallery. Humans might not be tricked as easily by this condition, especially if certain kinds

of speech are present in the signal that one might associate with a train station: announce-

ments of train arrival, for instance, are easily recognizedby humans, while to a very simple

HMM like the one used here, such announcements might be indistinguishable from an air-
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Environment Human HMM Depth-6 MLP Tree

TotalF1 SeenF1 UnseenF1 SeenF1 UnseenF1

airport 12.06 88.42 53.26 73.50 24.16

bus 23.88 97.94 80.00 90.83 84.99

gallery 14.01 94.82 71.48 83.63 68.33

park 62.54 98.75 100.0 90.98 66.86

plaza 15.32 93.87 83.59 78.85 2.68

restaurant 32.23 96.35 92.18 80.85 83.27

street 19.17 92.64 59.99 76.92 59.13

train 29.95 94.87 74.62 77.51 61.71

platform 19.29 92.92 38.79 74.61 12.49

Table 4.36:F1 Scores on All Data

Difficulty Human HMM MLP Tree

Rank Env F1 Env F1 Env F1

1 Airp 12.06 Plat 65.85 Plaz 40.76

2 Gall 14.01 Airp 70.84 Plat 43.55

3 Plaz 15.32 Strt 76.31 Airp 48.82

4 Strt 19.17 Gall 83.15 Strt 68.02

5 Plat 19.29 Trn 84.74 Trn 69.60

6 Bus 23.88 Plaz 88.73 Gall 75.97

7 Trn 29.95 Bus 88.96 Park 78.92

8 Rest 32.23 Rest 94.26 Rest 82.06

9 Park 62.54 Park 99.37 Bus 87.90

Table 4.37: Environment Difficulty Ranked ByF1 Scores on All Data
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port announcement. Relative difficulty aside, this result underscores exactly how much

more difficult the acoustic environment recognition task isfor humans than for machines

— the human subjects’F1 score on their best class, park, is still lower than the HMM’s

score on it’s worst class, train platform. As most humans areprimarily conditioned to use

the audio channel for full-field danger detection and speechcommunication, they are ill-

equipped to attempt to distinguish between the environmental types studied here. Different

results might obtain were a different class of human subjecttested; those humans who are

either visually impaired or specially trained might perform better. In the small pilot study

described in [63], exposing the human subjects to the same training data that the machines

used decreased overall error rate from 21.2% to 11.8%, though this was still much worse

than the best machine error rate of 1.7% in that study.

4.9 Adaptation to Unseen Locales

The performance gap between segments from locales seen in training and those unseen in

training — 5.1% for the former versus 25.3% for the latter in the best system — suggests

that while there is some capacity for generalization, in general the penalty for straying

outside of known locales is stiff. Further, as shown above, the range ofF1 scores is much

narrower for seen locales than for unseen locales. For the best HMM system, for instance,

theF1 range for the seen condition is approximately 88 - 98, while theF1 range for the

unseen condition is 38 - 100. Since only one recording was setaside per environment

for the unseen condition, it is possible that these figures may not represent the average

case unseen condition performance. To help determine whether or not this was the case,

an additional round-robin experiment was carried out usingonly the GMM system with

model order ranging from 12 to 125 Gaussians. For this experiment, each recording was

held out in turn for testing while all the remaining data wereused for training. Recall that

the best GMM system had an overall error rate of 17% using the original data assignment
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into training, seen evaluation, and unseen evaluation, with 8% error on seen locales and

26% on unseen locales.

The best result for this experiment was obtained using 100 Gaussians; the error rate

was 50.8%. In addition, the range of results was exceptionally narrow; the worst system,

using 25 Gaussians, had an error rate of 52.8%. This figure is significantly worse than the

25% error rate reported for the unseen condition of the 2006 CLEAR evaluation. While

it is still much better than chance, and much better than human performance, this level of

performance does not suggest readiness for application. Onfurther inspection, though, it

appeared that the results were essentially bimodal. As shown in Figure 4.2 and Figure 4.3,

there were a large number of recordings with error rates at ornear zero, and another, smaller

but still large contingent of recordings with error rates near one.

There are two ways to further examine these figures: first, by environment; second,

by locale or country. Table 4.38 shows, for each environment, the miss rates both in the

round-robin condition and in the unseen portion of the original experiment. The fact that

these systems used different classifiers is less important than the fact that the miss rates

track reasonably closely between the two conditions, at least in relative terms. That is, the

ordering of environments from hard to easy is quite similar.The results shown in this table

indicate that, on average, previous assessments regardingthe relative difficulty of each

environment type were reasonably accurate. Results broken down by country are found in

Table 4.39. Note that for some environments, cases in which there is only one recording

from a country have high error rates, and for others, the opposite is true.

Given the miss rates in the round-robin test condition, it makes sense to ask next how

much data is required to improve performance to acceptable levels. In order to answer

this question, a new round-robin test was carried out in which, after initial training and

testing, data from the test recording was added to the training data a minute at a time. This

data was used to update the parameters of the acoustic model for the test environment.

After each minute of adaptation data was added to the model, the remaining data in the
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Environment Round-Robin Original Unseen

GMM Miss Rate Rank HMM Miss Rate Rank

Airport 54.16 5 55.83 2

Bus 20.11 9 8.33 6

Gallery 17.97 8 8.33 6

Park 39.78 6 0.00 9

Plaza 68.69 3 10.82 5

Restaurant 37.38 7 1.67 8

Street 62.22 4 37.50 3

Train 76.25 2 37.50 3

Train Platform 80.71 1 73.33 1

Table 4.38: Per-Environment Round-Robin Miss Rates and Difficulty Rankings

Environment Country

FRA GER GRE ITA JAP SAF KOR UK USA

Airport - 0 46.9 3 28.3 1 - 0 - 0 57.5 1 100 1 - 0 52.5 1

Bus - 0 20.5 4 - 0 9.1 1 - 0 - 0 29.2 1 - 0 - 0

Gallery - 0 8.3 4 - 0 0.4 2 100 1 - 0 - 0 - 0 - 0

Park - 0 45.7 7 - 0 - 0 - 0 4.1 1 - 0 - 0 - 0

Plaza 5.0 1 - 0 - 0 37.1 2 82.4 2 73.3 1 - 0 - 0 - 0

Restaurant 0.8 1 67.9 3 - 0 - 0 13.7 2 - 0 - 0 24.1 1 - 0

Street 66.7 1 65.4 2 - 0 - 0 48.3 1 65.0 1 - 0 62.5 1 - 0

Train 60.0 1 73.7 4 - 0 - 0 73.7 2 - 0 - 0 - 0 - 0

Train Platform 100 1 72.9 5 - 0 - 0 100 1 - 0 - 0 - 0 - 0

Table 4.39: Per-Environment and Per-Country Round-Robin MissRates and Counts
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Adapt Minutes Number of Gaussians

12 25 50 75 100 125

0 52.07 52.81 51.85 52.12 50.86 52.25

1 46.89 44.41 43.49 41.67 41.61 41.05

2 43.43 40.05 37.07 35.79 35.39 35.26

3 40.17 36.85 32.79 31.74 30.01 31.08

4 37.79 32.66 30.56 28.73 27.29 27.95

5 35.37 30.42 28.28 26.59 24.79 25.37

6 34.47 28.94 26.59 25.46 24.39 25.75

7 33.00 27.26 24.96 23.22 22.71 23.90

8 30.67 25.01 22.71 21.59 20.72 22.58

9 31.40 25.37 22.82 22.24 22.13 22.24

Table 4.40: Adaptation to Unseen Locales, GMM System

test recording was evaluated. This experiment was carried out for GMMs ranging in size

from 12 Gaussians to 125 Gaussians. Results are shown in Table4.40. After five minutes

of adaptation, the average error rate is down from 50.86% to 24.79%; indicating that in

practice not much data is needed to bring performance to an acceptable level. After eight

minutes, error rates are down to 20.72%, which is certainly an operationally useful figure

— especially considering that this approach usesonly acoustic information and can be

coupled with user-specific priors and transition models to improve performance.

4.10 Chapter Summary

This chapter presented two different methods for recognizing environmental type from

audio; one based on conventional GMM/HMM modeling, the other on an optimal coding
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/ redundancy reduction modeling approach. The two main results given here are first, that

the GMM/HMM approach appears to be superior to the optimal coding approach, and

second, that the machine approaches appear to be superior tohuman performance by a

wide margin. The best system trained achieved an error rate of 5.1% on seen locales, and

25.2% on unseen locales as measured using the 2006 NIST CLEAR evaluation data. This

performance handily eclipsed the average human performance of 73.7% error. While it is

likely the case that specially-trained humans might improve on this result substantially, it

is an open question as to whether they might approach 75% accuracy. Even if they can,

there are certain applications, e.g., signals analysis, which still might be better handled by

machines, which do not suffer from common problems seen withhuman annotators, like

bias or fatigue.

The considerable performance gap between machine performance on data from locales

seen in training and locales not seen in training indicates that, as one might expect, gener-

alization performance lags behind locale recognition. Round-robin experiments confirmed

that in fact the generalization gap is much larger than is apparent from the CLEAR eval-

uation data. Performance on unseen data using the round-robin evaluation was still much

better than chance and much better than human performance, and thus one can claim that

some form of generalization is still taking place. However,the bimodality of results in this

experiment leads to a slightly different conclusion: namely, that some environments are

easier to extract general features from than others, especially when the data are drawn from

different countries and continents. This claim is intuitively plausible; for instance, airports

should be and in fact are hard to recognize in this framework.Fortunately, supervised adap-

tation results demonstrate that one does not need a tremendous amount of adaptation data

to bring performance to acceptable levels. In practice, onemight imagine that most of an

individual’s time is spent in familiar rather than new locales, and so, from an application

point of view, these deficiencies need not be crippling.



Chapter 5

Auditory Scene Learning for

Multiresolution Context Awareness

5.1 Chapter Overview

This chapter describes theoretical and practical work on auditory scene learning and iden-

tification for multiresolution indexing and awareness. It begins by motivating multiresolu-

tion indexing, and describing how machine listening can help to provide it. After discussing

prior work in this area, including a brief discussion of low-level acoustic event detection

and recognition, the presentation moves on to methods for modeling, learning, and identify-

ing high-level structures, or acoustic scenes. Experiments are presented which demonstrate

the ability to learn these high-level scenes from unlabeleddata, and to use them for a spe-

cific context awareness goal motivated by the requirements of the CHIL Connector service:

the ability of smart mobile telephones to determine from audio information whether or not

the user is interruptible.

121



Chapter 5. Auditory Scene Learning for Multiresolution Context Awareness 122

5.2 Multiresolution Indexing and Awareness

Multiresolution awareness is something that humans do effortlessly. We recognize short-

term events in the sensory stream, such as passing a person onthe street, hearing a knock

on the door, or listening to another person speak. Yet this isnot the only level of awareness

we have; we recognize that these events are part of larger structures which we also easily

recognize. Passing people on the street is park of going to work, the knock at the door is

part of a typical workday and a sign that a meeting is about to start, the words coming from

another person’s mouth are part of a conversation that is itself part of a series of conver-

sations about some topic of shared interest. Further, this high-level awareness, in addition

to helping us navigate through the day, also helps to guide low-level sensory recognition

systems; recent research has indicated [find citation] thatthe flow of sensory information

is far from a one-way street. In addition to the expected information flow from the sen-

sory periphery to processing areas of the brain, the brain also sends a tremendous amount

of informationback to the sensory periphery. This means that to some presumablylarge

degree, our high-level knowledge and memory are guiding us in our most basic perceptual

tasks. Just as high-level knowledge is exploited by biological systems, so too can it be

exploited by computational systems by allowing these systems to make better predictions

about which short-term events are likely to occur.

This observation has tremendous implications for perceptual computing in general and

for context-aware smart spaces and devices in particular. Given that it is important for

these systems to appropriately react to changes in context,that these context cues are often

short-term events, and that these short-term events are often predictable from high-level

knowledge, it is crucial for these systems to attain multiple levels of awareness, from short-

term and concrete to long-term and abstract. For multimediaindexing applications, the

same requirement holds; in order to effectively index a large multimedia collection for

easy human browsing, one cannot simply divide up the stream into an unending sequence



Chapter 5. Auditory Scene Learning for Multiresolution Context Awareness 123

of low-level events. High-level structures, presented at amuch slower rate are a necessity

for usability.

As with other sensory applications, and for reasons stated earlier in this thesis, the

audio signal is a rich source of information which can be exploited to attain multiresolu-

tion context awareness. Just as, for instance, manyenvironmentshave characteristic sound

fields, manyactivitieshave characteristic, acoustically detectable events and environmen-

tal conditions. Concentrated work in an office environment, for instance, often sounds

quite different from informal discussions in the same environment. The former is typically

dominated by the sounds of keyboard and mouse clicking, while the latter is typically dom-

inated by speech and other non-speech human noises. While an environment recognition

system might correctly classify both of these situations asoffice scenarios, a multiresolu-

tion activity detection system might be able to distinguishthem based on short-term and

medium-term acoustic cues and use this information to provide the appropriate services.

One might, for instance, prefer different office lighting levels for programming work and

conversation, or typically make coffee or tea for conversations, or like to listen to music

while programming. To the extent that these activities can be recognized, and that sufficient

preference-learning algorithms are available, these preferences can potentially be met by a

smart space acting autonomously. Given the immense promiseof such smart applications,

multiresolution auditory scene learning is an extremely attractive area to address.

5.3 Prior Work

Much of the prior work on context awareness from sensory datafocuses on either low-level

audio context cues or multimodal inputs. Examples of low-level audio context systems

include work on speech activity detection or acoustic eventclassification and detection.

Examples of multiresolution, multimodal context systems include audiovisual personal di-

ary or broadcast television segmenters. More specific examples of these kinds of systems
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are given below.

5.3.1 Low-Level Context Cues

There is a fairly large body of work on classifying non-speech acoustic events in controlled

settings; e.g., for content-based information retrieval.In this application, recordings of

isolated sounds are classified or clustered into one of several known classes.

The systems presented by Slaney in [90] and [89] use MFCCs and GMMs to build

hierarchical clusters of sounds for retrieval. In this work, a GMMΘi, representing a cluster

Ci, is trained for each recording. Clusters are then merged according to the criterion

Φ(C1, C2) = L(C1|Θ2) + L(C2|Θ1), (5.1)

whereL(·|·) is the likelihood of the data given the model. Clustering proceeds until

some stopping criterion is reached (e.g., a specific number of clusters, all clusters merged,

highΦ, etc.). The model can then be used to classify future examples.

Reyes-Gomez and Ellis presented in [83] an HMM-based approach to modeling general

audio events in the MuscleFish database (introduced by Woldet. al. in [112] for classi-

fication. This work dealt with the problem of selecting an HMMstructure for a generic

audio class. This is actually a very important area to address, as, unlike ASR, it is not

cleara priori what kind of model structure is appropriate for any given sound class. Two

basic approaches were explored: thek-variablek-means algorithm, given in Figure 4.1,

and a GMM-EM approach in which ever more complex models were iteratively grown and

trained until some stopping criterion was reached. Three criteria were tested in the GMM-

EM framework. The low entropy criterion halts when any self-loop probability falls below

some threshold value. The low state occupancy criterion halts when the number of frames

assigned to any state falls below some threshold value. The BIC method selects the sin-

gle model which maximizes the BIC. Optimal results were obtained using the low entropy
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criterion, though combining scores from multiple different k-variablek-means models re-

sulted in similar performance.

Feature selection in general audio modeling is also an open question. Many researchers

have had success with MFCCs, but in some domains other feature sets yield improvements.

One example is work done on general sound recognition in the kitchen environment, due

to Kraft et. al. [56], [55]. In this work, temporal ICA is used to improve performance over

single-frame ICA features and raw MFCCs. Temporal ICA involves feature stacking as

described in Section 2.5.1, following which the feature space is reduced in dimensionality

by using PCA. The new features are then whitened and used to compute an ICA solution.

As shown in [55], ICA tended to learn multi-frame structures like onsets and offsets which

were useful for kitchen sound classification.

Another issue raised by Reyes-Gomez and Ellis was the role of discriminative train-

ing. Noting that while approaches based on purely discriminative methods like support

vector machines (SVMs), for example, Guo and Li’s work ([39], [40]), often provided

performance superior to generative models on classification tasks, these approaches were

ill-suited for online detection of acoustic events in real environments. The reason for this

poor fit is that SVMs rely on pre-segmented data, which is not available in online appli-

cations. Temko et. al. reported on isolated sound classification in real environments in

the context of the CHIL project in [66], [101] and [100]. Theirsystem used a sequence

of two-class SVMs, each with an optimally-derived feature set, to distinguish between

acoustic events found in seminar and meeting settings. These systems, though relying on

presegmented data, were important in that they were used to successfully classify acoustic

events produced by spontaneous human activity in real environments. Further work, de-

scribed in [99], demonstrated the ability to detect acoustic events in online streams using

new CHIL data. Unfortunately, neither Temko’s SVM system northe HMM systems pro-

duced by Zieger and Malkin were able to perform much better than 100% error due to an

astonishing number of insertion errors. This problem was due to the acoustic similarity be-
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tween sounds which had task-relevant semantics and those which did not, and also because

there was a large amount of speech which tended to confuse thedetection systems. For this

reason, future work in this domain will likely be integratedwith speaker activity detection

(SAD) systems.

Finally, as shown in work by Chen et. al. ([12], [13]), even essentially anonymous

acoustic event detection — that is, specifying that an eventis occurring without identi-

fying it — can be useful as a preprocessing step for more complex video-based activity

detection systems. In their work, a very simple power-basedacoustic event detector was

used to pre-select regions of interest in nursing home videos; these regions of interest were

then evaluated for human activity using visual features. Using anonymous acoustic event

detection as a preprocessing step in this application resulted in many fewer regions being

processed with more expensive visual algorithms.

5.3.2 Scene Learning and Recognition

There is a large body of work on finding meaningful temporal patterns in all types of data.

Phrase finding, word clustering, variable-length languagemodeling, text topic detection,

ASR punctuation insertion, and word unit finding in texts from unpunctuated languages

can all be viewed as structure or scene learning problems. Inmultimedia data, the emphasis

has been on finding multiresolution structures in, for example, sports video, personal diary

recordings, and similar large, relatively unstructured databases. Much of this research has

used multimodal inputs including audio, video, and even other more esoteric information

sources. Several models and methods have been proposed for this task; two of the most

popular approaches involve the use of HMM variants. These variants are now discussed in

turn.
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The Layered HMM

A classic example of this type of scene learning is found in the many works by Clarkson

([17], [20], [18], [19], [16]) and collaborators. The first two of these works addressed ex-

tracting context information in a mobile setting from wearable audio sensors only; specif-

ically, he used MFCCs sampled at a slow frame rate (5 Hz). Clarkson met with limited

success with this approach, as many of the locales that he wasinterested in modeling were

very similar acoustically. In later work, he thus added somesimple video and acceleration

information, fused at the feature level. These additional features improved performance

considerably.

In early work, Clarkson trained a single HMM using the segmental k-means algorithm,

found in [81]. In practice, this approach required that the number of states be selecteda

priori , though in principle the HMM topology could be learned directly from data using,

e.g., one of the approaches found in [83]. In later work, Clarkson made use of multires-

olution structures to represent and learn high-level activities. He used the layered HMM

(LHMM) to model these structures.

The LHMM consists of a series of HMMs interoperating in the following way. The

bottom layer HMM produces discrete symbols or real-valued vectors in the usual way;

inference involves estimating the most likely state sequence given observable data. This

state sequence, represented either as a real-valued vectorof time-dependent state posteriors

or discrete state indices, is then used as the observable data by a higher-level HMM, and so

on. These models are trained with the standard EM procedures; typically either forward-

backward training or Viterbi training. Inference is carried out in a bottom-up fashion; the

Viterbi procedure is first used on the bottom layer in order toproduce a state sequence

which is used for inference on the next higher level.

The main advantages of the LHMM are simplicity and adaptability. The model is

trained with standard procedures, and assuming that high-level statistics are similar across
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O0
t ← S0

t , (5.2)

Oi
t ← Si−1

t , Sit , (5.3)

Sit ← S0
t−1. (5.4)

(5.5)

Figure 5.1: Layered HMM Dependencies

locales, a model trained in one locale is easily adapted to another locale by simply re-

training the bottom-level acoustic parameters. There are three main disadvantages with the

LHMM. First, the Viterbi procedure must be executed multiple times in sequence, mean-

ing that decoding time for aT -length sequence using anM -level LHMM with N states

per level on averageO(MN2T ) time. Second, there is no principled way to ensure that

high-level state changes are less frequent than low-level state changes. Even dramatically

reducing the number of states from one level to the next may not suffice to ensure this

condition. Onecan introduce a state transition penalty to enforce a slower rate of state

change, but it is difficult to implement this scheme in practice: one often must derive the

correct penalty empirically, and it is sometimes difficult to establish the correct rate of state

change. Finally, the dependencies expressed by the LHMM are, in a sense, backwards.

Denoting the state at leveli and time slicet asSit , and the observable at leveli and time

slicet asOi
t, the dependencies in the LHHM are:

Graphically, this set of dependencies can be represented asshown in in Figure 5.2.

Note that the stateSit is not dependent on stateSi+1
t as one might expect. The only inter-

action between levels is in the observables; specifically, the observableOi
t is dependent on

bothSi−1
t andSit . Put another way,Si−1

t andSit are mutually conditionally independent

givenOi
t. It would be preferable to have a model in which low level states are dependent

on high level states; i.e., one in whichSi−1
t ← Sit . To illustrate this principle, consider an
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Figure 5.2: Graphical Representation of Layered HMM Dependencies
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office setting in which the main audible sound is a human typing on a keyboard. Here, the

typing is theevidencethat there is a human doing work on a computer, and the room is

in the typing statebecausethere is a human typing on a keyboard. If there happens to be

evidence that there is a human in the office, there is no way in the LHMM framework to

express the fact that typing is now more likely than if there were no human present in the

office absent construction of sub-models which can be traversed.

Another project of note using LHMMs is due to Oliver et. al., who in [77] demonstrated

an LHMM system for recognizing human activities in an office setting. Their work, like

Clarkson’s, used both audio and video information and showedthat using both modalities

together was superior to using either alone. They also showed the ability to adapt models

learned in one office to other offices by retraining only the bottom layer of the LHMM. Fi-

nally, they showed that there was essentially no differencebetween using the full posterior

matrix and using only a set of discrete symbols for inter-layer communication.

The Hierarchical HMM

A model which addresses all the problems with the LHMM is the hierarchical HMM

(HHMM). In the HHMM, first described by Fine et. al. in [32], each state can emit ei-

ther an observableor a sequence of substates. Structures can be shared in the HHMM; that

is, a given substate can appear as a child of multiple high-level states. In addition to states

Q and outputsO, the HHMM introduces an extra multilevel variable,F , which controls the

rate at which high-level states change by permitting such changes only when child HMMs

reach an accepting state. The dependencies between all variables in the HHMM are:

whereI is the total number of levels in the HHMM. A graphical representation of these

dependencies is given in Figure 5.4. In this model, multiplelevels of states can influence

the observables, though in practice, dependencies from high-level states to observables

are frequently omitted. Unlike the LHMM, each state is directly dependent on the state
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Figure 5.3: Hierarchical HMM Dependencies

immediately above it in the hierarchy, an arrangement more reflective of reality than the

independence that obtains in the LHMM. Finally, decoding can be accomplished in one

reasonably efficient Viterbi pass, as described below. All these features are exactly those

which match an intuitive sense of a multiresolution model ofthe real world, making the

HHMM an attractive choice for implementation.

The naive approach to inference in the HHMM was given by Fine et. al. in [32].

Their inference algorithm was a straightforward adaptation of the inside-outside algorithm

for parsing with statistical context-free grammars. This inference algorithm, like inside-

outside, is cubic in the observable sequence lengthT (see [57] and [68]), making it too

inefficient to use in practice. In [73] and [72], Murphy presented an exact inference al-

gorithm for HHMMs which used the junction tree algorithm, originally developed for in-

ference in dynamic Bayes networks. This algorithm was linearin time; specifically, for a

D-level HHMM with Q states, inference on aT -length observable sequence was given as

O(TDQ1.5D). Murphy further noted that by using approximate DBN inference methods,

inference time could be reduced toO(TDQD). Xie et. al., in [113] and [114] suggested an
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alternate approach. They advocated compiling the HHMM downinto a standard HMM by

representing each possible configuration of HHMM states as asingle meta-state, allowing

for use of the standard Viterbi algorithm with time complexity O(N2T ), whereN is the

total number of states in the flattened HMM. One issue with this approach is thatN may

be larger in practice thanDQ1.5D. Xie et. al. found that inference in practice with the flat-

tening method wasO(TDQ2D); in other words, the total number of states in the flattened

HMM was proportional toDQD.

Murphy specifically disrecommended flattening in [73]. The reasons given were:

• A flat HMM cannot provide a multi-scale interpretation of thedata.

• Flattening loses modularity, since the parameters of sub-HMMs get combined in a

complex way.

• Training HMMs separately and combining requires segmenteddata.

• A flat HMM may have more parameters. It is the ability to re-usesub-models in

different contexts that makes HHMMs more powerful than standard HMMs, since

the parameters of such shared sub-models only need to be learned once.

Xie’s method seems to address these objections in the following way. First, each flat-

tened HMM state specifically represents one possible HHMM meta-state; hence, multi-

scale interpretation is still possible. Second, the dependencies between observables and

high-level states are removed, meaning that sub-models canstill be trained and reused in

the standard way.

An open question is how to learn hierarchical structures from data. Murphy suggested a

piecemeal approach in which horizontal structures could belearned by methods commonly
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used for standard HMM structure learning; he specifically referred to Brand’s work ([9]),

in which model structures started out with a large number of states fully connected and

parameters were removed according to some optimality criterion. Work by Freitag and

McCallum ([36]) and Stolcke and Omohundro ([97]) was also cited in this context. Murphy

suggested that vertical relationships could be learned by similar methods, but cautioned that

it was not clear how to detect when substructures should be shared. Xie et. al. used a Monte

Carlo approach starting with a single state in which, at each iteration, an operation from

the set{split state,merge states,swap children,run em} was selected at

random; the resulting model was either kept or discarded according to a BIC ratio. Xie

et. al. used this approach to learn 2-level models of soccer videos whose segmentation

performance exceeded that of models manually constructed using expert knowledge.

Tangentially related to the problem of structure learning in HHMMs is Pfleger’s work

([78], [79]), which sought to learn hierarchical structures online without storage of mas-

sive amounts of data. Pfleger’s work was aimed at symbolic learning of structure for au-

tonomous, real-world systems with limited storage; his solution involved the estimation of

true structure probabilities based on a limited number of observations. His method relied

on probabilistically adding structures to the model when observed more than once, and

subsequently eliminating rare models, where rarity was judged using Hoeffding bounds.

In this work, structures which occur frequently are less likely to lose a Hoeffding race and

thus more likely to be kept.

5.4 Structure Learning In HHMMs via Redundancy Re-

duction

All of the previous approaches given for learning the structure of HHMMs noted above

were essentially maximum likelihood approaches; that is, they explicitly seek the model
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which maximizes the likelihood of the training data. In somecases, this maximization

is subject to constraints dealing with model complexity, like the BIC ratio of Xie et. al.

However, maximizing likelihood is not necessarily the optimal metric for organizing a per-

ceptual system. Rather, according to perceptual theory, oneshould seek an organization in

which the redundancy of the system is minimal. In terms of scene learning, the preference

for minimal redundancy amounts to finding those sequences orgroups of symbols such

that by modeling these sequences or groups as coherent units, the redundancy of the data is

decreased. This approach is similar to one employed by Ron et.al. in [85] and by Ries et.

al. in [84] for structure learning in natural language, withthe goal of improving statistical

language models.

Given the Markov assumption, there are two ways to minimize redundancy. First, one

can seek to minimize the zeroth-order redundancy of the data, which amounts to minimiz-

ing the Shannon redundancy (or equivalently, maximizing the entropy) of the data. Shan-

non redundancy, originally shown in Chapter 2, is repeated here as Equation 5.13. The

second way in which redundancy can be minimized is at the firstorder. That is, the re-

dundancy of the next symbol given the current symbol can be reduced. One minimizes this

temporal redundancy by seeking those structures which minimize the average mutual infor-

mation between symbols at consecutive time indices. This metric, given in Equation 5.14,

can be divided by the entropy of the symbol sequence as shown in Equation 5.15 in order

to yield a normalized figure.

RP (X) = 1−
HP (X)

log |X|
. (5.13)

IP (Xt−1;Xt) = HP (X)−HP (Xt|Xt−1). (5.14)

ÎP (Xt−1;Xt) = 1−
HP (Xt|Xt−1)

HP (X)
. (5.15)
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In what follows, the metricIP (Xt−1;Xt) will be abbreviatedIP (X). Given one of these

metrics, one can learn a hierarchical structure in a greedy fashion by iteratively proposing

symbol merges and accepting the one yielding the largest reduction in redundancy. A num-

ber of constraints can be built into this process, includinglimiting the number of children

a symbol can have, limiting the number of levels in the model,allowing mutable sequence

order or requiring fixed sequence order, and forcing the algorithm to exhaust all possible

level n possibilities before moving on to leveln + 1. Collectively, these constraints can

have a rather large impact on the final structure that is learned; as shown below, proper

choice of constraints is quite important to achieve fitness for some particular task. This

learning algorithm, Structure Learning through RedundancyReduction (SLRR), is given

in Figure 5.5.

By way of example, the metriĉIP (X) was used to learn hierarchical letter sequences

from the English Gigaword corpus produced by Graff for the Linguistic Data Consor-

tium [38]. For this experiment, 100,000 words were selectedat random from the corpus

and case-normalized. After removing spaces and punctuation, the scene learning approach

was tested at the character level; there were 413,450 total characters in the data set. There

were no constraints placed on the learned structures. Table5.1 shows the first 50 structures

learned, along with their counts in the corpus.

There are several things to note about these structures. First, note the convention that

repeated characters are merged into a single symbol; hence,“althexpertsay” is actually a

learned structure representing the phrase “all the expertssay.” Second, note that the struc-

tures are hierarchical in that some small structures are re-used in multiple larger structures.

For instance, “thexp” is used in both “all the experts say” and “and the explosion.” Third,

note that, even though the first several structures are very common, the remaining struc-

tures on the list have relatively small counts. Given that the corpus segment in question is

roughly half the length of Melville’s Moby Dick [70], this isa somewhat surprising result.

However, recall that the goal is not necessarily to learn themost frequent structures or to
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Structure Learning through Redundancy Reduction

1 Given: CorpusC, set of symbolsS, constraintsψ, metricM , set of structures H:

2 Initialize: ComputeM(C).

3 repeat

4 A← {}, C
′

← C,M(C∗)←M(C).

5 for each symbol pair(Si, Sj) :

6 if ψ(Si, Sj) = TRUE :

7 then

8 Create new symbolSq.

9 C
′

← sSi + Sj + Sq.

10 ComputeM(C
′

).

11 if M(C
′

) < M(C∗) :

12 then

13 A← (Si, Sj), C∗ ← C
′

,

14 Î(C∗)← Î(C
′

).

15 if Î(C∗) < Î(C) :

16 then

17 AddA toH,

18 C ← C∗, Î(C)← Î(C∗).

19 else return

Figure 5.5: Structure Learning through Redundancy Reduction
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Rank Structure Count Rank Structure Count

1 t+h 5,697 26 althexptert+s 1

2 th+e 2,209 27 althexpterts+a 1

3 v+e 1,446 28 althexptertsa+y 1

4 c+h 647 29 ve+xp 1

5 w+h 625 30 i+vexp 1

6 v+i 483 31 e+althexpertsay 1

7 v+a 168 32 sh+exp 2

8 s+h 825 33 nthexp+e 1

9 j+u 126 34 v+j 2

10 x+p 95 35 o+vj 2

11 e+xp 81 36 g+ovj 1

12 the+xp 6 37 x+ju 1

13 n+thexp 2 38 a+xju 1

14 d+thexp 2 39 axju+s 1

15 n+dthexp 1 40 vi+v 1

16 a+andthexp 1 41 viv+o 1

17 andthexp+l 1 42 vivo+r 1

18 andthexpl+o 1 43 r+vivor 1

19 andthexplo+s 1 44 u+rvivor 1

20 andthexplos+i 1 45 s+urvivor 1

21 l+thexp 1 46 survivor+s 1

22 lthexp+e 1 47 thexp+e 1

23 a+lthexpe 1 48 xp+r 1

24 althexpe+r 1 49 xp+l 1

25 althexper+t 1 50 g+exp 1

Table 5.1: Top structures found in English text by reducing temporal mutual information
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maximize the likelihood of the data given some model; rather, it is to discover structures in

such a way that the dependency between adjacent symbols is reduced. For this reason, rare

structures can be selected provided that they have very highpredictive power. Compared to

a uniform distribution of letters, even the rare structuresare fantastically over-represented.

For instance, consider the31st structure, “ealthexpertsay.” The expected count of this se-

quence in a 413,000 character uniformly distributed text isapproximately1 × 10−16; the

actual count of1 could thus be considered extremely large. Nonetheless, if one were to

propose these structures as the core structures of English text, one would have a hard time

defending such a position. Use of the Shannon redundancy metric, however, results in a set

of structures that fits this description much better. Table 5.2 shows the first 50 structures

learned by reducing the Shannon redundancy metric, along with their counts in the corpus.

These structures look more like what one would expect; thereare thirteen common

short words in addition to many common prefixes and suffixes. In English text, it is clear

that the Shannon redundancy approach is a better way to thinkabout structures than the

temporal mutual information approach. It is unclear whether or not this result holds for

sensory data.

5.5 Example Application: Interruptibility Estimation for

the CHIL Connector Service

An example application which could benefit from multiresolution scene identification is

interruptibility estimation for mobile telephones. Standard mobile telephones provide a

constant, instant communications channel, allowing humanusers to stay connected with

one another and achieve tremendous levels of efficiency in both vocational and social set-

tings. However, by virtue of the fact that they are always on unless explicitly switched

off, they also present opportunities for annoyance, unwanted interruption, and distraction.
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Rank Structure Count Rank Structure Count

1 e+r 3,722 26 o+m 1,079

2 i+n 4,039 27 i+d 891

3 t+h 5,697 28 in+g 1,517

4 e+s 3,261 29 e+t 788

5 a+n 3,346 30 an+d 1,347

6 t+o 2,449 31 a+c 793

7 e+a 1,817 32 t+s 649

8 e+n 2,582 33 e+w 769

9 e+d 2,264 34 a+m 700

10 a+t 1,897 35 a+y 698

11 o+r 2,010 36 er+s 621

12 i+s 1,705 37 t+i 569

13 a+s 1,665 38 e+m 636

14 th+e 2,209 39 p+r 589

15 o+n 2,453 40 c+h 647

16 a+l 1,881 41 o+l 683

17 a+r 1,597 42 u+r 600

18 i+t 1,301 43 o+w 660

19 o+u 1,316 44 i+r 502

20 i+c 1,114 45 a+d 591

21 e+l 1,212 46 o+s 509

22 e+c 1,005 47 u+s 508

23 s+t 888 48 e+f 527

24 o+f 1,336 49 i+g 528

25 i+l 1,304 50 t+r 446

Table 5.2: Top structures found in English text by reducing Shannon redundancy
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Many users find incoming calls disruptive under certain conditions: during meetings or

seminars, while driving, while attending theatrical performances, or during meals. Further,

under certain adverse conditions, such as in the proximity of a construction site, partici-

pating in a conversation may be physically difficult. Towardthe goal of alleviating these

problems, researchers have begun to apply context-aware computing techniques to the mo-

bile telephone platform. This alleviation is the specific goal of the CHIL Connector service;

introductions to this service can be found in [107], [1], and[25].

Ideally, a smart mobile telephone should be able to considerboth social factors (i.e.,

known relationships between contactor and contactee) and environmental factors (i.e., the

contactee’s current locale and activity) when deciding howto handle an incoming request

for communication — by ringing, vibrating, taking a message, giving or withholding in-

formation about the contactee’s state, or even scheduling amore convenient time for the

communication to take place.

In this thesis, the focus is on modeling and detecting environmental and activity factors

affecting interruptibility. Using hierarchical models ofuser state learned in an unsuper-

vised fashion from raw sensory data, we estimate whether or not the contactee is interrupt-

ible. Combined with social information and a means of integrating these two information

sources to form a call-handling logic, this approach moves toward the goal of a smart mo-

bile telephone.

5.5.1 Prior Work on Interruption

In [88], Siewiorek et al. used a simple interruptibility model involving only a few sensory

features; notably two audio signal power levels (one from a microphone capturing mainly

contactee speech, the other capturing mainly ambient noise) and visual light levels. This

model, while useful, does not capture some important aspects of user state. First, the audio

features focus mainly on conversation; the assumption is that users do not want to be in-
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terrupted while they are already involved in face-to-face or telephone conversations. While

this assumption appears to hold on average, it may not alwaysbe the case. Second, specific

patterns of activity and interruptibility, including those which are stable and repeated over

time, are not accounted for. These patterns, when identifiedon a per-user basis, can be used

to improve interruptibility assessments.

Hudson, Fogarty, et al. focused in [43] on the predictive power of high-level sensors,

such as “talking on telephone” and “sitting at monitor” in a Wizard-of-Oz study in an office

environment and achieved promising results in this domain.They further demonstrated

in [33] that real sensors were able to perform quite well under real conditions using a

combination of audio, visual, and computer interaction features. Horvitz and Apacible

also demonstrated in [42] the use of audiovisual sensors forestimating interruptibility in

the office domain; their model explicitly attempted to modelthe cost of an interruption as

another information source.

These previous studies focused on a stationary setting. In [25], Danninger et. al. mod-

eled user state in a mobile setting given ambient acoustic information solely in terms of

environments. As shown in work by Ellis and Lee ([29], [30]) and in this thesis, a low-

resolution approach can be used to model environments. In that user context depends on

environment, and that environment and activity are mutually dependent, this approach does

to some extent capture the relevant information. One might argue, though, that it is really

useractivitiesthat matter in this application. For example, a user simply walking down a

city street might be interruptible while a user walking downa city street while engaged in

a conversation might not. A low-resolution environment-based context model might cor-

rectly spot the city street, but miss the conversation and thus fail to make the interruptibility

distinction.
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5.5.2 An Interruptibility Model

The interruptibility model proposed here encompasses the following variables and sets of

dependencies:I represents interruptibility. In principle, humans can judge their own inter-

ruptibility as either a real-valued or a binary-valued variable, while a computational system

will always representI as a probability. In this study, human-reported interruptibility levels

are binary.CO represents directly observable context features; these include the identity of

the contactor and contactee activities that the system knows about from calendar entries,

for example, meetings.CH represents hidden context information; this information must

be inferred from the observable acoustic evidenceEA. In some cases, there may also be

available observable visual evidenceEV ; in this thesisEV was used by humans for labeling

and so was also considered for modeling.CH is composed of two variables;CE represents

the contactee’s immediate environment (e.g., office or citystreet), whileCA represents the

contactee’s current activity (e.g., preparing a report or hailing a cab). The dependencies

among these variables are shown in Equations 5.16 - 5.20.

CE ↔ CA, (5.16)

EA ← CE, CA, (5.17)

EV ← CE, CA, (5.18)

CH ← EA, EV , (5.19)

I ← CH , CO. (5.20)

In this work, only the hidden user state informationCH is considered. Both continuous

audio data and sequences of still images are used in this work. These two modalities are

preferable to a more detailed modality like video for two reasons. First, the task is to detect

interruptibility in a mobileenvironment. As such, it is important to recognize that both

sensory capacity and computational power available are inherently limited. Most users
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would reject a system that required any equipment other thana smartphone; it is thus

necessary to forgo full video and focus on audio plus still images, which are much cheaper

to collect, store, and process. Second, it has been demonstrated by many of the researchers

noted above that continuous audio is a rich source of information for activity recognition.

Adding still images to audio may not enrich the sensory stream to the same degree that full

video would, but provided images are captured often enough (i.e., more often than human

activities change), the gain from adding full video would beminimal.

Given a method for learning scenes from data, and hence for inferring state sequences

from data, we consider how to turn this information into an estimate of user interruptibility.

That is, if some state sequenceS∗ is inferred from data, the task is to estimate the value

of I. More specifically, since this interruptibility estimate will ultimately be combined

with estimates from non-sensory modalities, the probability P (I|S∗) must be estimated for

all values ofI. Using Bayes’ rule and borrowing from ASR the engineering convention of

weighting the prior and the likelihood, the procedure for estimatingP (i|S∗) for some value

i ∈ I is shown in Eqns. 5.21 - 5.24.

P (i|S∗) ∝ P (S∗|i)P (i), (5.21)

=
T

∏

t=1

P (St|i)P (i), (5.22)

= TP (i)
T

∏

t=1

P (St|i), (5.23)

≈ αP (i)
β

T

T
∏

t=1

P (St|i). (5.24)

Both the interruptibility modelP (S∗|I) and the interruptibility priorP (I) can by learned

by simple frequency counting of inferred states combined with user-supplied interruptibil-

ity labels.

As noted above, visual information was considered in addition to auditory information.
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Rather than attempting to merge auditory and visual featuresinto a single feature vector,

separate estimations ofI are carried out for each modality, allowing for late fusion.The

fusion procedure is shown in Equation 5.25. This procedure rests on the assumption that the

auditory and visual information are independent. This assumption does not always hold; as

shown in the dependency model above, both are related to environment and activity. The

independence assumption is made in the interest of simplifying the model.

P (i|S∗
A, S

∗
V ) = λP (i|S∗

A) + (1− λ)P (i|S∗
V ). (5.25)

5.6 Interruptibility Experiments Using High-Quality Au-

dio

In [65], experiments on interruptibility estimation usinghigh-quality audio are described.

These experiments, which used audio signals collected witha portable audio device in con-

junction with images collected periodically with a smartphone camera, show two results:

first, that it is possible to estimate user interruptibilityin mobile settings using audio, and

second, that using the scene learning approach presented above improves performance over

both an event-level baseline and an LHMM scene learning approach.

5.6.1 Data Collection

The data used in this study were collected by a single user as he carried acoustic and

visual sensors during normal daily activities. Audio was captured using the Neuros II

personal audio computer in conjunction with a Sony ECM-719 stereo microphone and a

portable, battery-powered preamplifier from SoundProfessionals. Audio was captured at

2-byte sample depth at 48kHz and later downsampled to 16kHz.One channel was used.

Visual information was captured by periodic VGA-quality snapshots from the camera on a
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Subcorpus Audio Time Images Min. / Image

1 7836s 20 6.5

2 19320s 44 13.0

3 22282s 30 12.3

Total 49438s 94 11.4

Table 5.3: Evaluation Corpus

Nokia 6600 mobile telephone. Pictures were taken, on average, every 11 minutes, though

the rate of photos varied with activity; more shots were taken when the scene was changing

rapidly and fewer were taken during those periods where the author was mainly sitting

at his desk. We collected nearly 14 hours of data and 100 images; details are shown in

Table. 5.3. In addition to serving as visual input, the images were also used to label the

corpus for interruptibility.

5.6.2 Feature Extraction

From the audio signal, 11 MFCCs were extracted signal at a rate of 100 frames per sec-

ond. Three additional features were extracted to supplement the MFCCs. These additional

features included spectral centroid (a measure of the perceptual “brightness” of the sig-

nal), spectral diffusion (which measures the spread of spectral energy in frequency space),

and signal-to-noise ratio (which helps to distinguish noisy environments from merely loud

ones). After merging these features into a single 14-dimensional acoustic feature vector,

they were filtered with a Gaussian smoothing window. Finally, each feature was normalized

globally to zero mean and unity variance.

Visual information was characterized for these experiments by local features and the

correlations among local features. Three types of local features were extracted from 4
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× 3 = 12 regular granularities of each image. In each local image patch, the mean of

grayscale values, the means of R, G, and B values (the redundant information here is to

emphasize grayscale values), and the 12-bin color histogram in HSV color space were used.

Since there are 12 patches in each image, the grayscale mean vector has 12 dimensions

represented by column vectorsVg. The mean of RGB values is represented as a 12× 3

matrixVrgb and the color histogram is denoted 12× 12 matrixVh.

The correlations among the local features characterized how local patches were similar

to each other. For each type of local feature, self-correlation matrices were computed using

the definitions of the grayscale mean correlation matrixMg:

Mg = VgV
T
g , (5.26)

the RGB mean correlation matrixMrgb:

Mrgb = VrgbV
T
rgb, (5.27)

and the color histogram correlation matrixMh:

Mh = VhV
T
h . (5.28)

The final visual feature vector for an image is the combination of the local features and

their correlations, which is formally defined as:

Fv = [Vg, Vrgb, Vh,Mg,Mrgb,Mh]. (5.29)

5.6.3 Model Initialization

The scene learning approach presented here is bottom-up; hence, the data must first be

segmented into some base or event-level sequence of states.Since manual labeling or
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SegmentalK-Means

1 Given:k, n, t, f :

2 Initialize: choosek samplesS to initializeM .

3 repeat until convergence

4 Build grammarg fromM .

5 Segmentf usingg.

6 EM training until parameters converge.

Figure 5.6: The SegmentalK-Means Algorithm

general audio is a cumbersome, expensive, and error-prone process, an unsupervised ap-

proach is required. There are a number of possible methods toobtain an initial clustering

and segmentation given a set of audio data. Three candidatesare the segmentalk-means

(SKM), agglomerative clustering, and a segmental variant of KVKM, k-segmentk-means

(KSKM). SKM, shown in Figure 5.6, requires the size of the state space to be selecteda

priori , agglomerative clustering, shown in Figure 5.7 requires careful selection of a stop-

ping criterion, and KSKM, a variant of KVKM shown in Figure 5.8, is a leader-follower

algorithm which requires careful selection of the model spawning threshold. All of these

methods require an initial data segmentation, which can be performed either by some form

of change detection (see Chapter 3) or by temporally uniform selection.

For simplicity and speed, SKM is the best choice. In this work, SKM was used with

32 models and 3 states per model. Two additional parameters were set in order to control

average event duration after segmentation; the number of frames assigned to initialize each

model, and the transition penalty between states. A varietyof parameter settings were

tested for initial segmentation; the resulting average event lengths are shown in Table 5.4.

As this table shows, event length per state is much more sensitive to transition penalty
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Agglomerative Segment Clustering

1 Given:n, t, f ,

θ, a merging threshold.

2 Initialize: train modelMi for each segmentSi.

3 repeat

4 for each model pair(Mi,Mj) :

5 Φi,j ← L(Si|Mj) + L(Sj|Mi).

6 if Φi,j > θ for best pairreturn

7 Build new modelMk with dataSk = (Si, Sj).

8 RemoveMi,Mj fromM .

Figure 5.7: The Agglomerative Segment Clustering Algorithm

Transition Initial Frames Per State

Penalty 33 66 100 133 166

0 0.6 0.6 0.7 0.6 0.6

62.5 1.6 1.8 1.8 1.7 1.8

125 2.8 2.6 2.9 2.7 2.9

250 5.2 4.6 5.2 4.9 4.9

500 10.6 9.3 10.9 10.0 9.9

Table 5.4: Average Event Length in Seconds Per Transition Penalty and Frames Per State

Allocation
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K-SegmentK-Means

1 Given:n, t, f ,

θm, a merging threshold,

θs, a spawning threshold,

z, the minimum number of samples per model.

2 Initialize: choose segmentS0, train modelM0.

3 repeat until likelihoodP (S|M) converges:

4 for each unassigned sampleSi:

5 Find modelMj with highestP (Si|Mj).

6 if P (Si|Mj) > θm :

7 then Add Si toMj.

8 elseifP (Si|Mj) < θs :

9 then create new modelMi usingSi.

10 UpdateP (S|M).

11 Remove modelsMi with fewer thanz samples.

12 repeat until convergence

13 Build grammarg fromM .

14 Segmentf usingg.

15 EM training until parameters converge.

Figure 5.8: TheK-SegmentK-Means Algorithm
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than to initial frame assignment. An intuitive understanding of the length of acoustic events

led to the selection of the model with a transition penalty of62.5 and initial frame assign-

ment of 166. Using these settings, SKM produced a segmentation for the entire dataset

consisting of 27,432 tokens.

5.6.4 Scene Learning

Using the event-level segmentation as the baseline corpus,multilevel HMMs were built us-

ing both the multilevel SKM approach1 and the SLRR approach using the temporal mutual

information metricIP (X). Using both SKM and SLRR, 4 levels of scenes were learned.

In the SKM approach, the number of models per level was halved, and various transition

penalties were tested. The resulting average scene lengthsare shown in Table 5.5. Note

that the transition penalties tested are much smaller than those tested in the event segmen-

tation tests above. This is because the input space for scenelearning is monodimensional

and discrete rather than multidimensional and continuous;hence, the emission probabilities

are roughly the same order of magnitude as the transition probabilities and the transition

penalties need not be as high. As this table shows, scene length, like event length, is heavily

dependent on the transition penalty. The penalty 0.125 exhibits the smoothest increase in

scene duration and was chosen for evaluation.

For the SLRR test, sequential merging with theÎP (X) metric was used with the fol-

lowing set of constraints:

1. A merge is legal if :

(a) The two states being merged are both on the same HHMM leveland this level

is lower than the current HHMM levelor
1Note that multilevel SKM does not producehierarchicalmodels, as there is no sense of shared substruc-

ture.
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Model Number of Transition Penalty

Level Models 0 0.125 0.25

1 16 3.0 5.8 17.6

2 8 3.3 11.5 114.7

3 4 3.9 49.7 737.9

4 2 7.7 61.0 1098.6

Table 5.5: Average Scene Length Per HMM Level and TransitionPenalty, SKM Scene

Learning

.

(b) The two states being merged arenot on the same HHMM leveland

i. The higher-level state isnot on the current levelor

ii. The higher-level stateis on the current leveland it has less than three chil-

drenand the lower-level state is not already a child.

2. A low-level state sequence must appear at least 10 times inthe corpus to be consid-

ered for merge.

3. A minimum of two new merges per level is required; if no proposed merge lowers

the redundancy metric, then accept the merge than minimizesit.

The number and average duration of scenes learned, as well asÎ measures at each level,

is shown in Table 5.6.

There are several results to note in this table. First is thatthere were only a total of

23 scenes learned. This rather low total would seem to indicate that there was actually

not much short-term predictability in the source corpus that is captured by strict sequential

relationships. Second is that most of the scenes learned were themselves very short — the

average time spent in any state increases only about 15% fromthe bottom level to the top.
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Model Level Scenes Learned Î Avg Scene Length

0 0 0.163 1.80

1 16 0.138 2.04

2 2 0.138 2.05

3 3 0.138 2.06

4 2 0.139 2.07

Table 5.6: Scenes Learned,Î, and Average Scene Length in SLRR-Trained HHMM

Third is that the temporal mutual information is quite low tostart and does not decrease

much, which supports the contention that not much short-term temporal structure is present

in the corpus. Finally, we note that, unlike a LHMM trained with SKM, an HHMM trained

with SLRR exhibits anincreasein the number of states in the model as more levels are

added. There were 48 states in the highest level of the model,compared with only 2 in the

LHMM.

5.6.5 Results

One measure of how well the model states should be able to predict interruptibility is to

compute the mutual information between interruptibility labels and model states. These fig-

ures for the SKM-trained LHMM and the SLRR-trained HHMM are shown in Table 5.7.

The single best relationship between interruptibility andmodel state is actually exhibited by

the event-level HMM initialized with SKM. However, note that the strength of the relation-

ship between interruptibility and state deteriorates muchmore rapidly in the SKM-trained

LHMM than in the SLRR-trained HHMM.

After learning these two kinds of multilevel structures, the interruptibility priorsP (I)

and per-state interruptibility likelihoodsP (S|I) were trained and tested using a round-robin
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Learning Model Level

Method 0 1 2 3 4

SKM 0.260 0.129 0.195 0.178 0.093

SLRR 0.260 0.203 0.204 0.199 0.200

Table 5.7: Mutual Information Between States and Interruptibility Labels

procedure. Each day’s audio was successively set aside for testing while the other two days

were used for training. A prior-only model was tested along with an event-level model and

each HMM level. For tests in which both priors and likelihoods were considered, they were

considered with equal weight. Results are shown in Table 5.8.As images, hence labels,

were available at unequal intervals, results are indexed byboth number of segments and

by time. Total miss rate is the sum of the false interrupt rateand the false rejection rate.

Note also that an actual user experience would differ from these results, as they reflect the

implicit assumption that exactly one call is arriving during each test segment.

Using priors only yields an average miss rate of 11.4% by time, all false interrupts. The

situation improves by considering likelihoods at the eventlevel; the per-second miss rate

is decreased to 8%, balanced between false interrupts and false rejects. Using the SKM-

trained LHMM, performance degrades steadily, though a low false interrupt rate at level 3

represents an anomaly in this trend. Best results are obtained by using the level 4 SLRR-

trained HHMM, which has an overall miss rate of 6.5%. This miss rate represents a 43%

relative improvement over the prior-only baseline and an 18% relative improvement over

the event-level HMM. This result indicates that SLRR-trainedHHMMs can learn structures

that are useful for a specific context-awareness task, and that these structures are superior

for this task to an SKM-trained LHMM. More importantly from an application point of

view, the notion that interruptibility is inferable from acoustic evidence is validated.
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Model Model Miss Rates (Seg) Miss Rates (Time)

Type Level False Int False Rej False Int False Rej

Prior - 30.8% 0.0% 11.4% 0.0%

Events 0 6.4% 13.8% 4.1% 3.9%

SKM-LHMM 1 9.4% 32.9% 5.9% 26.9%

SKM-LHMM 2 37.4% 23.3% 19.4% 17.6%

SKM-LHMM 3 3.7% 32.0% 2.7% 20.7%

SKM-LHMM 4 37.4% 28.2% 19.3% 19.1%

SLRR-HHMM 1 6.4% 12.7% 4.1% 3.9%

SLRR-HHMM 2 6.4% 12.7% 4.1% 3.9%

SLRR-HHMM 3 4.2% 12.7% 3.1% 3.9%

SLRR-HHMM 4 4.2% 11.7% 2.9% 3.6%

Table 5.8: Average Miss Rates, All Conditions
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Image-Based Results

After conducting experiments using audio information only, visual information was con-

sidered. This use of visual information for this task is natural; many smartphones have

onboard cameras with relevant APIs exposed. Further, the human subjects labeled the cor-

pus for interruptibility using the images as activity reminders and in many cases, visual

information can be enough to determine user environment andactivity. Finally, in many

applications, the failure modes of audio and video can be complementary. Image-based in-

terruptibility models were thus trained and evaluated using the same round-robin procedure

used for audio.

The visual context modelP (I|SV ) was represented by a set of diagonal-covariance

Gaussian densities. Since the feature space was 768-dimensional, and there were only

94 images in the database, the most detailed possible model was a single Gaussian per

class. Even his model was severely undertrained, meaning that the results which follow

are almost certainly not a useful measure of the utility of visual information for the mobile

interruptibility estimation task. Results are shown in Table 5.9. The overall miss rate of

52.7% by time is many times worse than the best audio-based miss rates, and even many

times worse than the prior. As noted above, though, the lack of data was certainly a serious

problem; hence, it is difficult to draw any conclusions from this result.

5.7 Interruptibility Experiments Using Low-Quality Au-

dio

While the high-quality audio results shown above are exciting, they are not necessarily re-

flective of the capabilities of a portable cellphone. Data was collected for the prior study

using several extra pieces of equipment: a personal audio recording device with, on aver-

age, poor battery life, an external microphone which must beworn in a prominent loca-
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Test Miss Rates

Subcorpus False Interrupt False Reject Total Miss

1 0.7% 66.7% 67.5%

2 52.7% 6.1% 58.8%

3 0.2% 38.0% 38.3%

Average 28.4% 24.4% 52.7%

Table 5.9: Miss Rates by Time: Image-based Gaussians

tion on the user’s clothing, and a portable battery-poweredpreamp. Setting aside for the

moment the issue of cost — which is not trivial — the social stigma of appearing to be

recording audio and snapping photos in public is difficult tobear for any reasonable length

of time. An alternative to this very visible, expensive, anduncomfortable mode of data

collection is to use the portable cellphone itself. This section describes experiments using

a real cellphone with low recording quality for fully-automated audiovisual data collection

with two human subjects. Other experimental enhancements included the evaluation of the

Shannon redundancy metricRP (X) in addition to the temporal mutual information met-

ric, evaluation of strictly sequential versus non-sequential scene learning, and a number of

different SLRR constraints on the symbol merging procedure.In addition to the straight-

forward miss rate evaluations as given for the high-qualityaudio condition, an analysis of

incremental learning and cross-user adaptation is given.

5.7.1 Data Collection

As noted above, data collection in this experiment was carried out using a real cellphone.

The Nokia 6600 Smartphone [75] was used for this purpose. This model uses the Symbian

S60 operating system [98], for which a Python library exposing most of the telephone’s
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Subject Total Seconds Total Images Total Hours Recording Hours Recording Days

A 64970 3460 18.04 26 6

B 31898 1695 8.86 13 2

Total 96868 5155 26.89 39 8

Table 5.10: Data Collected Per Subject

functions is available. This API was used to write a data collection script which captured

a 160× 120 jpeg-encoded image every 20 seconds while recording 8 kHz, 16-bit audio

in 20-second chunks, a total data rate of less than 1 MB per minute. At this rate, a 1 GB

MMC or SD card costing less than $50 can hold over 16 hours of data.

Two subjects were recruited to collect data using this telephone. Worn around the user’s

neck on a lanyard, the device was inconspicuous and allowed for natural human interaction.

Subjects were instructed to warn others of the recording if conversation occurred and offer

to turn the device off. A summary of data collected in this fashion is shown in Table 5.10.

Note that the total time columns refer to actual temporal extent of the recordings, while

the recording columns refer to clock hours or calendar days in which recording took place.

The round-robin evaluations were organized around recording hours.

5.7.2 Feature Extraction

For this study, two different audio feature sets were tested. The first feature set consisted

of 11 MFCCs extracted at a rate of 100 frames per second from the audio signal and nor-

malized to zero mean and unity variance on a per-subject basis. The second set consisted

of a 14-dimensional feature vector containing 11 MFCCs plus centroid, diffusion, and snr,

exactly as for the high-quality audio experiment. Visual features were extracted as noted

above, except that the source images were only 160× 120 pixels.
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Subject Feature Space

11d MFCCs 14d MFCCs+

Tokens Event Duration Tokens Event Duration

A 32,634 1.99s 64,632 1.00s

B 20,035 1.59s 38,556 0.82s

Table 5.11: Initial Segmentation Results Per Subject

5.7.3 Model Initialization

The same model initialization approach was used for this study as for the high-quality audio

study. A 32-model, 3-states-per-model HMM was trained for each subject using SKM with

an insertion penalty of 62.5 and an initial frame assignmentof 166 frames per state. After

10 iterations of SKM, the resulting initial segmentations for both subjects and both feature

sets are shown in Table 5.11.

As with the high-quality audio experiment, a baseline performance measure was estab-

lished using a round-robin procedure for training and testing state conditional interruptibil-

ity models. These results, together with the mutual information between model states and

interruptibility states, are shown in Table 5.12.

These results indicate that on average, the enhanced MFCC+ feature set leads to better

performance than the standard MFCC feature set; the average miss rate for the MFCC set

is 24.06% versus 19.70% for the MFCC+ set. For both subjects, much of the improvement

came from a decrease in false interrupts: a 60% relative decrease for subject A and a 20%

relative decrease for subject B. Interestingly, for each subject, only 24 states using the

MFCC+ feature set were actually present in the final segmentation. Given these results,

scene learning experiments were carried out using the MFCC+ segmentation as the event-

level corpus.
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Subject Feature I(I;S) Miss Rate False Reject RateFalse Interrupt Rate

A Prior —– 31.67% 0.00% 31.67%

A MFCC 0.293 21.06% 13.51% 7.55%

A MFCC+ 0.324 16.07% 13.03% 3.03%

B Prior —– 43.72% 0.00% 43.72%

B MFCC 0.242 30.18% 9.21% 20.97%

B MFCC+ 0.299 27.12% 10.23% 16.89%

Table 5.12: Baseline low-quality audio interruptibility results

5.7.4 Scene Learning

A number of scene learning experiments were carried out using both the Shannon redun-

dancy metric and the temporal mutual information metric with various sets of constraints.

As in the high-quality audio study, the resulting HHMMs werecompared to an SKM-

trained LHMM. In this study, reduction of states in the LHMM was much less pronounced;

instead of halving the number of states with each level increase, it was reduced by 6. In

both the LHMM and HHMM, only 3 levels of scenes were learned. Average scene lengths

and tokens per level in LHMMs for both subjects are shown in Table 5.13.

A number of HHMMs were also trained using the SLRR method. Both the temporal

redundancy and Shannon redundancy metrics were used. Each parent state was allowed

to have a maximum of three children, and both ordered and unordered sequences were

learned. In ordered sequence learning, structures of the form a+b+ → a + b are learned,

while in unordered sequence learning, structures of the form (a(a|b)+)|(b(a|b)+) → a + b

are learned. In these learning experiments, a minimum of tenscenes were learned for each

of three HHMM levels. Thus, for each subject, four three-level HHMMs were learned for a

total of 12 different state segmentations with which to train and test interruptibility models.
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Subject Model States Tokens Avg Scene Length

A HMM 24 64,632 1.00s

A LHMM-1 18 33,246 1.95s

A LHMM-2 12 48,323 1.34s

A LHMM-3 6 18,484 3.51s

B HMM 24 38,556 0.82s

B LHMM-1 18 19,090 1.67s

B LHMM-2 12 10,817 2.94s

B LHMM-3 6 6,711 4.75s

Table 5.13: Average Scene Length per Model Level, SKM-Trained LHMM

For each subject, the number of tokens and states, along withaverage scene length, are

shown for each segmentation in Table 5.14.

5.7.5 Results

Interruptibility results for all models were obtained using the same round robin procedure

detailed above. Results for the event-level HMM and LHMMs areshown for both subjects

in Table 5.15. As is the case in earlier experiments, both thestatistical relationship between

model state and interruptibility and the miss rate degrade gradually with increasing model

level. For subject A, the level 3 LHMM’s performance degraded to such a degree that the

bare prior achieved a better miss rate than the full state-conditional interruptibility model.

HHMM results are shown for subject A in Table 5.16 and for subject B in Table 5.17; a

summary of the best-performing models using all approachesis shown in Table 5.18. The

results shown here are quite interesting. First, note that in both cases, the best-performing

learned model outperforms the prior by a large margin — 15% absolute, 49% relative for
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Subject Model Metric Ordered States Tokens Avg Scene Length

A HMM —— ——- 24 64,632 1.00s

A HHMM-1 I yes 32 56,970 1.14s

A HHMM-2 I yes 36 52,955 1.22

A HHMM-3 I yes 35 49,085 1.32

A HHMM-1 I no 27 58,788 1.10s

A HHMM-2 I no 23 51,932 1.25s

A HHMM-3 I no 21 38,966 1.67s

A HHMM-1 R yes 28 57,829 1.12s

A HHMM-2 R yes 29 54,643 1.18s

A HHMM-3 R yes 29 52,075 1.24s

A HHMM-1 R no 26 59,058 1.10s

A HHMM-2 R no 28 55,378 1.17s

A HHMM-3 R no 31 51,287 1.26s

B HMM —— ——- 24 38,556 0.82s

B HHMM-1 I yes 25 34,759 0.91s

B HHMM-2 I yes 23 29,666 1.07s

B HHMM-3 I yes 21 27,220 1.17s

B HHMM-1 I no 29 32,414 0.98s

B HHMM-2 I no 34 31,952 0.99s

B HHMM-3 I no 36 31,930 0.99s

B HHMM-1 R yes 26 34,080 0.93s

B HHMM-2 R yes 30 30,975 1.03s

B HHMM-3 R yes 30 30,069 1.06s

B HHMM-1 R no 24 36,310 0.87s

B HHMM-2 R no 23 34,450 0.92s

B HHMM-3 R no 21 33,419 0.95s

Table 5.14: Average Scene Length per Model Level, SLRR-Trained LHMM
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Subject Model I(I;S) Total Miss False Reject False Interrupt

A PRIOR —– 31.67% 0.00% 31.67%

A HMM-0 0.324 16.07% 13.03% 3.03%

A LHMM-1 0.258 19.68% 14.12% 5.56%

A LHMM-2 0.188 21.10% 11.34% 9.75%

A LHMM-3 0.107 31.67% 0.00% 31.67%

B PRIOR —– 43.72% 0.00% 43.72%

B HMM-0 0.299 27.12% 10.23% 16.89%

B LHMM-1 0.250 29.32% 1.22% 28.09%

B LHMM-2 0.146 29.56% 10.52% 19.04%

B LHMM-3 0.116 31.11% 8.27% 22.84%

Table 5.15: Miss Rates, SKM-Trained LHMM

subject A, and 18% absolute, 42% relative for subject B. Second, for both subjects, an

HHMM system was either the best performer or indistinguihable from the best perfor-

mance, suggesting that the SLRR scene learning approach is indeed useful for this task.

Third, note that for both subjects, the result of learning interruptibility using only the event

level HMM is within 2% of the best system. This result suggests that, even though multi-

level HMMs yielded the optimal results for this task, it might be advisable to use simpler

models in practice if computational resources are scarce. The difference in error type is

also of interest. One might expect that false interrupts would occur in proportion to subject

uninterruptibility, and that in fact is exactly what was observed in this experiment. Subject

A, uninterruptible less than1
3

of the time, suffered only 3% false interrupts. Conversely,

subject B, uninterruptible more than2
5

of the time, suffered nearly 17% false interrupts.

Finally, note that the best results on this corpus were much worse on average than for the

high-quality experiment. One might immediately attributethis performance drop to a loss
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Model I(I;S) Total Miss False Rej False Int

Shannon Redundancy, Ordered

HHMM-1 0.384 17.40% 11.88% 5.51%

HHMM-2 0.371 19.67% 14.67% 5.00%

HHMM-3 0.368 19.17% 13.05% 6.12%

Shannon Redundancy, Unordered

HHMM-1 0.335 17.52% 9.53% 7.98%

HHMM-2 0.313 16.10% 8.26% 7.84%

HHMM-3 0.327 24.37% 4.65% 19.71%

Temporal Mutual Information, Ordered

HHMM-1 0.142 25.90% 16.86% 9.04%

HHMM-2 0.102 27.13% 6.66% 20.47%

HHMM-3 0.043 30.04% 0.04% 29.60%

Temporal Mutual Information, Unordered

HHMM-1 0.062 28.87% 7.91% 20.90%

HHMM-2 0.018 31.67% 0.00% 31.67%

HHMM-3 0.006 31.67% 0.00% 31.67%

Table 5.16: Miss Rates, SLRR-Trained HHMM, Subject A
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Model I(I;S) Total Miss False Rej False Int

Shannon Redundancy, Ordered

HHMM-1 0.310 27.95% 9.26% 18.68%

HHMM-2 0.344 26.13% 9.46% 16.67%

HHMM-3 0.350 25.30% 9.05% 16.25%

Shannon Redundancy, Unordered

HHMM-1 0.251 28.98% 11.85% 17.13%

HHMM-2 0.194 34.99% 10.97% 24.01%

HHMM-3 0.199 40.16% 14.18% 25.97%

Temporal Mutual Information, Ordered

HHMM-1 0.185 27.10% 11.69% 15.40%

HHMM-2 0.149 28.74% 10.56% 18.18%

HHMM-3 0.150 28.92% 10.62% 18.29%

Temporal Mutual Information, Unordered

HHMM-1 0.143 28.67% 13.12% 15.55%

HHMM-2 0.038 43.48% 26.65% 15.82%

HHMM-3 0.037 38.75% 25.47% 13.28%

Table 5.17: Miss Rates, SLRR-Trained HHMM, Subject B
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Subject Model Type I(I;S) Total Miss False Rej False Int

A Prior —- —– 31.67% 0.00% 31.67%

A HMM-0 —- 0.324 16.07% 13.03% 3.03%

A LHMM-1 —- 0.258 19.68% 14.12% 5.56%

A HHMM-2 R-uno 0.313 16.10% 8.26% 7.84%

B Prior —- —– 43.72% 0.00% 43.72%

B HMM-0 —- 0.299 27.12% 10.23% 16.89%

B LHMM-1 —- 0.250 29.32% 1.22% 28.09%

B HHMM-3 R-ord 0.350 25.30% 9.05% 16.25%

Table 5.18: Miss Rate Summary

of audio quality; it is intuitively plausible that with lower-quality audio the acoustic model

on which the interruptibility model is based would be less able to cluster the audio into

truly perceptually similar states. However, note that the prior error rate for the high-quality

audio experiment was only 11.4% by time, and the final error rate was approximately half

that figure. The relative reduction from prior error to final error is similar across experi-

ments: 49% relative for subject A in the low quality experiment, 42% relative for subject A

in the low quality experiment, and 42% relative for subject in the high quality experiment.

This consistency of result suggests that the real driver of final error rate may not be audio

quality, but the user’s prior interruptibility rate.

Image-Based Results

As with the high-quality audio experiments, image results were considered in this set of

experiments. Unlike the high-quality experiments, a larger number of images was available

for study. There were, on average, 132 images available per training hour. Subject A

thus had, on average, 3300 training images and Subject B nearly 1600. This is still not a
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Subject Full Feature Space Compressed Feature Space

False Int. False Rej. Total Miss False Int. False Rej. Total Miss

A 12.29% 15.10% 27.40% 20.39% 15.88% 36.28%

B 13.28% 16.23% 29.51% 29.12% 12.04% 41.14%

Avg. 12.62% 15.47% 28.09% 23.26% 14.62% 37.88%

Table 5.19: Image Results for Low-Quality Audio Corpus, Two-Gaussian System

tremendous amount of data however; assuming a 35% interruptible prior, this means that,

for example, Subject A had 1155 sample points for 1536 parameters (a mean and a variance

for each feature) in the interruptible state and 2145 samplepoints for 1536 parameters in

the non-interruptible state (the numbers for subject B would be 593 and 1102). The visual

feature space, after eliminating symmetric values from thecorrelation matrices, had 426

dimensions. After removing those features with 0 variance,this space was reduced to

390 dimensions. With this large a feature space, the ratio ofsamples per parameter is

still well short of what would be required for a single well-trained diagonal covariance

Gaussian density. For this reason, in addition to repeatingthe single Gaussian experiment

from the high-quality audio experiment, another experiment was carried out in which, after

normalizing each visual feature to zero mean and unity variance across the entire training

set, PCA was used to reduce the feature set to a more manageablefigure: 25 dimensions.

This much smaller feature space ensures that the Gaussian density parameters are much

more well-trained at the cost of a loss of expressiveness in the feature space. However, this

loss of expressiveness is on average small: for both subjects, over 95% of the eigenvalue

mass was retained. Table 5.19 shows, for each subject, the average miss rates in both the

uncompressed and the compressed feature space with using a single Gaussian density per

class.

The miss rates shown here are worse than those for low-quality audio, though the bal-
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Subject Full Feature Space Compressed Feature Space

False Int. False Rej. Total Miss False Int. False Rej. Total Miss

A 26.58% 4.95% 31.54% 17.95% 6.52% 24.47%

B 31.21% 5.87% 37.09% 34.52% 2.25% 36.78%

Avg. 28.10% 5.25% 33.36% 23.40% 5.11% 28.51%

Table 5.20: Image Results for Low-Quality Audio Corpus, Full Interruptibility Models

ance between false interrupts and false rejects is both closer and more stable than for audio.

Further, for both subjects this performance is an improvement over the prior and in subject

B’s case, performance is actually competitive with the event-level audio HMM. In order

to determine if these results could be improved upon, an additional set of experiments was

undertaken in which the visual feature space was clustered using the SKM algorithm and

used to construct a full conditional interruptibility model P (S|I) just as in the audio ex-

periments. This experiment was carried out for both the full390-dimensional feature space

and the PCA-compressed feature space with six single-Gaussian states. As with the audio

experiments, state clustering was carried out using the entire dataset and a separate con-

ditional interruptibility model was constructed for each step in the round-robin evaluation.

Results of these experiments, with prior and conditional weights set optimally, are shown

in Table 5.20.

These results indicate a 25% relative improvement in miss rate for the PCA system, but

a degradation for the full feature space system. The latter result is likely due to severe un-

dertraining; there were not enough samples available in the390-dimensional feature space

to adequately estimate the parameters of one Gaussian, let alone six. The PCA-compressed

6-state HMM has performance comparable to the two-Gaussianfull feature space system

with a miss rate of approximately 28%. This figure does not approach audio-based per-

formance; it is likely that in order to improve further, an image-based system would re-
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quire much more data to train color-based models. Alternatively, it might be appropriate

to abandon color-based models entirely and attempt some form of basic object recognition.

Neither alternative is very attractive; collecting the vast amounts of data required to train

these models well would be cumbersome and expensive, while object recognition is very

computationally demanding. One might thus infer that audiois a better choice for this

application, even in low-quality conditions.

5.7.6 Incremental Learning

In the experiments shown above, there was a relatively largeamount of audio data from

which to learnP (I) andP (S|I) for each test. In deployment, it is unlikely that these

amounts of data would be availablea priori; hence it is useful to explore how to learn

incrementally during use and how fast performance approaches acceptable levels. In or-

der to answer these questions, an incremental learning procedure was devised using only

the event-level HMM segmentations. In this procedure, the data were partitioned intoN

recording hours, and for each houri, the miss rate for hoursi+1 throughN was computed

with an unadapted model — in this case, a model in which the priors and likelihoods were

all uniform and the tiebreaking procedure is to hypothesizeuninterruptibility. After com-

puting these unadapted miss rates as a baseline, incremental learning was carried out. For

each houri, segments from hours 0 throughi − 1 were selected at random for adaptation

according to a call schedule and learning policy, the modelswere adapted, and then hours

i throughN were tested using the updated model. The segments chosen depended on a

call schedule which states the probability of receiving a call during any given 20 second

period and on the learning policy which states whether or notthe model adapts only when

the system makes an error or if it can adapt regardless of the outcome.

This incremental learning procedure was carried out 100 times for each subject and

results averaged. Three call schedules were used, with per-segment call probabilities of
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Figure 5.9: Subject A Incremental Learning Performance

.01, 0.005, and 0.001. These figures amount to 40 calls, 20 calls, and 4 calls per 24-

hour period. Combined with the two learning policies, there were six incremental learning

conditions evaluated per subject. The resulting adaptation curves are shown in Figure 5.9

and Figure 5.11; the average amounts of adaptation time per subject and condition are

shown in Figure 5.10 and Figure 5.12. Note that subject A’s adaptation curve starts to

level out after approximately 15 hours of available adaptation, or 300 seconds of actual

adaptation data. Subject B’s adaptation performance does not approach round-robin result;

however, there were only 13 total hours in this dataset. Thisresult would seem to indicate

that at least 15 hours are needed to approach round-robin performance.

5.7.7 Effects of Cross-User Mismatch

A natural question to ask, given the results above, is how well the given approach estimates

interruptibility when there is a mismatch between user and model; i.e., how well will the

a model trained using subject A’s data perform when tested onsubject B’s data and vice-

versa? There are actually three kinds of mismatch to consider. First is a total mismatch, in
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Figure 5.10: Subject A Incremental Learning Time
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Figure 5.11: Subject B Incremental Learning Performance
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Figure 5.12: Subject B Incremental Learning Time

which both the acoustic model and the interruptibility model are trained on one user and

tested on another. Second is an acoustic mismatch, in which the acoustic model is trained

on one user and used for segmentation on another user. This new segmentation is now

used with the test subject’s labels in order to train a matched interruptibility model. Third

is an interruptibility mismatch. In this case, a subject’s data is segmented with the correct

acoustic model, but another user’s interruptibility modelis used.

In order to evaluate the degree to which performance degrades under these mismatch

conditions, cross-user adaptation experiments were carried out using subject A and subject

B. The first step was to segment each subject’s data using the other subject’s acoustic model.

The resulting segmentations are compared to the correct segmentations in Table 5.21. Note

that for both users, there are many fewer tokens and lower state entropy for the cross-

subject case than for the same-user case. This result makes intuitive sense; while there may

be some states which are broadly similar across users, it is likely that there may be some

fine details which are well-represented in one subject’s data but not in the other’s. In this

case, a same-user model will tend to change states to capturethese fine details, while a
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Train Subject Test Subject Tokens Avg. Event Length Entropy

A A 64,632 1.00 2.98

B A 63,403 1.02 2.78

B B 38,556 0.82 3.07

A B 33,545 0.95 2.64

Table 5.21: Same-user and Cross User Segmentation Results

cross-user model might not.

Each possible mismatch mode was then tested using the HMM-level segmentations

with the same round-robin method used above. The results of this experiment are shown

in Table 5.22, together with the matched-condition resultsfor comparison. These results

are very interesting. For both users, the worst result is to use the correct acoustics but

a mismatched interruptibility model. For subject A, this approach did not even beat the

prior, while for subject B it beat the prior by only 5% absolute. This result makes perfect

sense; a cross-user interruptibility model not only reflects different user preferences, but is

trained using a totally different segmentation of the acoustic space. More interesting than

this result is what happens when a cross-user acoustic modelis used. When the cross-

user interruptibility model is usedtogetherwith a cross-user acoustic model, performance

degrades, but not very much — 6.5% absolute for subject A, 2% for subject B. When a

cross-user segmentation is used to train a new interruptibility model, the results are more

impressive still. In this case, subject A’s results degradeby less than 2% absolute while

subject B’s degrade by approximately 0.5%. These results arestrongly suggestive of the

idea that if an acoustic model is sufficiently broad, it can beemployed for more than one

user, provided there is some mechanism for producing or adapting interruptibility models

online.
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Acoustic Interrupt Test Miss Rate False Rej False Int

A A A 16.07% 13.03% 3.03%

A B A 31.67% 0.00% 31.67%

B B A 22.63% 8.61% 14.01%

B A A 18.01% 9.94% 8.06%

B B B 27.12% 10.23% 16.89%

B A B 38.84% 0.24% 38.64%

A A B 29.35% 2.98% 26.37%

A B B 27.72% 11.13% 16.59%

Table 5.22: Subject Mismatch Results, Round-Robin Evaluation

5.8 Chapter Summary

This chapter presented an information-theoretic method for learning multilevel structures

from audio data in an unsupervised fashion. This method is based on the perceptual prin-

ciple of redundancy reduction, and was demonstrated to be effective for a real context

awareness task. From an application point of view, a model ofinterruptibility based on

environmental, activity, social factors, and observed human preference was presented. Ex-

periments considering only environmental and activity factors demonstrated that, for high-

quality audio, a pleasing level of performance was achievable and that use of the proposed

scene learning technique led to a significant improvement inperformance compared to both

a single-level HMM and a layered HMM. Results on low-quality audio showed a large over-

all performance degradation compared to high-quality audio. The proposed scene learning

technique showed an improvement for one subject in this study of approximately the same

absolute magnitude as for the high-quality study. For the other subject, the difference

between the single-level HMM and the learned HHMM was essentially zero. For both
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subjects, however, the proposed learning technique resulted in better performance than us-

ing a layered HMM. Further, the degree to which interruptibility models can be learned

incrementally was quantified for a number of combinations ofcall schedules and learning

policies. Given a relatively modest number of calls, the results suggest that at least 15

hours of active use with a cooperative user are required to obtain reasonable performance.

Finally, the effects of cross-user model mismatch were quantified. The results of this ex-

periment seem to indicate that interruptibility model mismatch is a more serious problem

than acoustic model mismatch. This is a desirable result, asin practice it should be much

easier to collect and make use of a simple learning signal (i.e., for incremental learning

of the interruptibility model) than to collect and cluster audio from a user in the field. In

principle, this result means that as long as one can collect asufficiently large sample of rep-

resentative audio from a wide sample of experience types, one ought to be able to deploy a

real system whose only concern is to learn an interruptibility model online.



Chapter 6

Conclusions

6.1 Chapter Overview

The contributions of this thesis are both theoretical and practical. These contributions are

summarized here, along with a discussion of future directions in machine listening.

6.2 Contributions

This thesis has focused on exploiting auditory informationin order to achieve context

awareness for real-world computational systems. Using thetools of theoretical machine

perception together with engineering paradigms developedfor ASR, context awareness

systems for three areas of perceptual computing were presented: multimedia gisting, envi-

ronment recognition, and multiresolution scene learning for mobile interruptibility estima-

tion. These three areas are discussed in turn below.

176
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6.2.1 An Auditory Blind Value Assignment System for Multimedia

Gisting Applications

Chapter 3 presented a method for using acoustic information to estimate multimedia seg-

ment value for gisting applications without prior knowledge of segment contents or any

semantic models of events of interest. Using an information-theoretic measure of signal

content as a proxy for value, systems were demonstrated for two specific applications that

displayed value judgments broadly similar to those made by human subjects.

Specifically, a system built for after-action review generation achieved a human judg-

ment match rate of 27%, compared to 38.6% for the average human subject. This perfor-

mance handily exceeds 13.5% for temporally uniform sampling, 1.2% for random sam-

pling, and 16.2% for a video-based system. Further, on segments selected by a large pro-

portion of human subjects, the match rate increased, reaching 43.2% on segments selected

by at least 60% of the humans in the study, indicating that system performance on the

segments which are more important to match is better than overall performance.

A similar system built for stream-of-interest selection inan online aggregate remote

sensing application achieved a human judgment match rate of36.3%, compared to 41%

for the average human subject. This performance exceeds the25% chance performance, as

well as the 26.6% performance achieved by a video-based system. Further, for segments

on which humans broadly agreed, the match rate increased, reaching 61.1% on segments

with a human agreement level of 0.5 or higher. As with the AARG system above, this

result indicates that system performance on segments whichare more important to match

is better than overall performance.

For both after-action review generation and online aggregate remote sensing, it ap-

peared that human subjects strongly preferred segments containing strong local scene changes.

This preference suggests that humans find it difficult to keeptrack of the entire sensory

pastiche and cannot hope to produce value judgments which are optimal in an information-
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theoretic sense. Given this interesting observation, it remains an open question whether

or not human produced gists convey more information to humanconsumers than the more

theoretically correct automatically generated gists.

6.2.2 An Environment Recognition System for User State Modeling

Chapter 4 presented methods for inferring user environment from acoustic evidence. Us-

ing a corpus of environmental audio collected in 9 environmental types on 4 continents,

a standard HMM/GMM system was compared to a perceptually-motivated system based

on binary trees of linear autoencoding neural networks. Using the 2006 NIST CLEAR

evaluation campaign dataset, the best HMM/GMM system achieved an average misclas-

sification rate of 15%; 5% for segments from locales seen during training, and 25% for

segments from locales not seen during training. By contrast,the best autoencoder tree

system achieved an average misclassification rate of 30% overall; 20% on segments from

locales seen during training and 41% for locales not seen during training. Even though the

autoencoding method used more than three times as many parameters as the HMM/GMM

system, overall performance was not close.

In addition to this performance comparison, human subjectswere evaluated as a base-

line. On a small subset of the testing corpus, humans achieved an overall misclassification

rate of nearly 74%. The HMM/GMM system had a misclassification rate on this subset

of 29.6%; 22.2% on segments from seen locales and 37% on segments from unseen lo-

cales. While the HMM/GMM performance degradation was unexpected (but also seen for

the autoencoding method), performance was still far superior to human performance. This

result was not surprising; pilot studies had indicated thathumans performed poorly com-

pared to automatic systems on a much more limited task. It is likely that this gap is due

largely to a lack of experience in listening tasks, and the perceived oddness of trying to

determine environment from auditory rather than visual evidence. Nonetheless, the results
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of these environment recognition experiments suggest thatthis type of system might be

useful not only for robot and mobile device context awareness, but also for applications in

which human analysts attempt to categorize and extract information from data of unknown

origins.

An additional round-robin experiment was conducted in which a GMM system achieved

a rather poorer misclassification rate of 50%; it appeared that the data partition in the

CLEAR evaluation campaign was particularly easy. To quantify the degree to which la-

beled data is required to bring performance to acceptable levels, an adaptation experiment

was conducted using this round-robin system as a baseline. The result of this experiment

was that misclassification rates could be roughly halved with only five minutes of adapta-

tion data, and brought to about 20% with eight minutes in a newlocale. This result indicates

that, while the ability of the trained system to generalize is weaker than the CLEAR cam-

paign results would indicate, in practice, not much data from a given locale is needed to

improve performance.

6.2.3 A Theory of Hierarchical Structure Learning

Chapter 5 presented a theory of structure learning from unlabeled audio based on the per-

ceptual principle of redundancy reduction. Two forms of this approach were presented; one

based on reducing the Shannon redundancy (i.e. the unigram redundancy) of the set of sym-

bols in a sensory corpus, the other on reducing the temporal mutual information (i.e. the

bigram redundancy). At the core of this approach is the contention that when one symbol

is predictable given a previous symbol, these two symbols should be merged into a higher

level structure; when all such structures in a corpus have been found, the resulting high

level state sequence will exhibit very little redundancy. This method is contrasted with the

more standard approach of learning layered HMMs using repeated application of the seg-

mentalk-means algorithm. An empirical evaluation of this learningmethod was conducted
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in an indirect fashion, as in general it is difficult to assessstructure quality independent

of some application. Specifically, this theory of structurelearning was used to inform an

application intended to estimate user interruptibility from audio for a context-aware mobile

telephone task. Experiments carried out in this scenario indicated that hierarchical structure

learning is superior to the standard multiresolution approach. This result is largely because

the hierarchical learning method does not requireall low-level events to be merged into

high-level scenes as the standard approach does. As a resultof this relaxed requirement, a

hierarchical structure learned in this fashion may actually havemoresymbols at high levels

of modeling, meaning that there is more granularity in the state space and a richer set of

possible associations between acoustic states and human states. In two of three cases, the

hierarchical learning method also produced superior results to the baseline of a standard

one-layer HMM; in the third case results were essentially identical except that the HHMM

results were better balanced between false interrupts and false rejections. Finally, it ap-

peared that Shannon redundancy was a better metric for guiding HHMM structure learning

than temporal mutual information; examples of structure learning in text using these two

metrics given in Chapter 5 provide insight as to why this is thecase.

6.2.4 A System for Estimating User Interruptibility for Mobile Appl i-

cations

In addition to the theoretical contribution of a method for hierarchical structure learning,

Chapter 5 also presents a model and system for estimating userinterruptibility for mobile

applications. This system, which estimates interruptibility by considering observed condi-

tional acoustic state probabilities given interruptibility states,P (S|I), achieved an overall

miss rate of 6.5% on a single-subject, high-quality audio database, with a false interrupt

rate of 2.9% and a false rejection rate of 3.6%, both measuredby time. On a two-subject,

low-quality audio database, the system achieved a misclassification rate of approximately
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19%; one subject had more false interrupts than rejections (16.25% vs. 9.05%), while the

other subject had a more balanced performance profile (8.26%false interrupts, 7.84% false

rejections).

The effects of incremental learning were investigated, andit was demonstrated that with

a cooperative user, preferences can be learned with relatively few calls. Further, the effects

of cross-user acoustic mismatch and interruptibility model mismatch were measured. It

was demonstrated that the interruptibility model, which isbased on user preference, is

much more important than the acoustic model. This observation led to the conclusion that

as long as the acoustic model is sufficiently broad, it can be applied to multiple users and

incremental learning procedures used to estimate an interruptibility model.

6.3 Future Work

While this thesis presented many interesting results, it also raised several interesting ques-

tions which could be investigated in a relatively short timespan. Arranged by topic, some

of these questions follow.

6.3.1 Questions in Multimedia Gisting

• Is there a more objective measure of gist quality than human match rate? While

attempting to match human performance in gist creation is a reasonable first step, in

that it avoids subjective judgments of gist quality, we mustnot forget that the real goal

of gisting is to allow humans to perform some task more easilythan they otherwise

could. One way to measure gist quality taking this goal into account might be to

design some question-answering scenario in which humans given entire recordings

are scored against humans given gists created with various methods. While it seems

clear from the results in this thesis that humans prefer to tell stories using local scene
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change, it isnot at all clear that their preference is actually operationally useful or

correct.

• Can this method be expanded to cover more structured types of multimedia artifacts?

One reason this method works well is that naturally occurring data streams are event-

sparse. For much of the time in real experience, not much changes or happens.

As such, when somethingdoeschange or happen, it can almost automatically be

assumed interesting. On the other hand, in more structured multimedia artifacts, like

sports or films, the data are much less sparse. Worse, the auditory evidence is often

divorced from the events depicted in the multimedia streams— particularly in films

which are heavily scored with music. Preliminary, informalexplorations indicate that

blind value assignment could potentially be used to automatically generate movie

trailers, but it is clear that the richness of information inthis media type compared to

the sparseness in natural media warrants additional investigation.

• Can prior knowledge in some cases be brought to bear in gistingapplications? In text

summarization, one is often able to “center” the summary on some set of key words or

phrases. Likewise, one ought to be able to provide some cluesto a multimedia gisting

system in order to more easily find the information one wants.Difficulties abound

for this approach; for instance, how does one describe a sensory event of interest,

and how does a computational system interpret that description? Two possibilities

are verbal descriptions and exemplars; both methods could improve the utility of a

multimedia data exploration system.

6.3.2 Questions in Environment Recognition

• To what degree are environments really similar or different? The work in this thesis

seems to suggest that some environments are harder to recognize as environments
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than others. Specifically, airport and train platform seemsto be a very difficult envi-

ronment to recognize computationally, while environmentslike bus, gallery, restau-

rant and park seem easy to recognize even across continents.Given this apparent

dichotomy, can one characterize in a more formal way which environments can be

learned in the general case, and which require particular locale-based knowledge?

• What are the correct features for environment recognition? This work used a combi-

nation of MFCCs and a handful of spectral summary features. While this feature set

proved superior to competing feature sets, the feature extraction experiments were

far from exhaustive. Intuitively, one might expect that qualitative descriptions of the

sound field could be useful for this task. For example, experthumans often charac-

terize sound fields along axes like dry vs. reverberant, noisy vs. ordered, loud vs.

quiet, open vs. enclosed, etc. Capturing some of these features might prove comple-

mentary to the features used in this thesis and might also shed some light about how

humans guide their sensory expectations.

• How can personal or universal priors and transitional models be used to improve

environment recognition? The system presented in this thesis makes use of five-

second segments of audio, presented in isolation. In reality, there will always be

more information at hand than this. Previous work by Ellis et. al. and Clarkson

seemed to indicate that, even when unsupervised clusteringwas used, knowledge of

priors and likely transitions could help to identify specific locales frequently visited

by a user. One might imagine the ability to estimate in fairlyshort order a transition

model between environments which could be built by expert knowledge but whose

parameters could be learned online for each user.
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6.3.3 A Question in Scene Learning

• What is the proper degree of temporal association for scene learning? In text, it is

quite clear that pairs of adjacent words or letters should bethe first place to look for

structure. Longer-range associations, such as distantn-grams, article-based triggers,

or topic associations clearly exist, but much of the useful associations from an en-

gineering point of view still involve adjacency. It is not atall clear that this is the

case in sensory data; acoustically detectable events do appear in temporal clusters

but often there is some stretch of silence separating them. Further, the events present

in these temporal clusters are not always — or perhaps even often — fixed in order.

For example, one might consider a typical “working in the office” scene. There are

a number of events one might expect to encounter in such a scenario: typing at a

computer, talking to a person in the office, talking on the telephone, and the like. But

to tie recognition of the scene “working in the office” to a particular order or tempo-

ral extent of these events is nonsensical. The scene learning algorithm presented in

this thesis, which relied on temporal adjacency, could in principle be improved for

sensory data by relaxing the adjacency requirement while maintaining the same basic

redundancy reduction approach.

6.3.4 A Question in Interruptibility Modeling

• What is the proper policy for information integration? In themodel presented in

this thesis, the policy is late fusion and independence of information sources. That

is, auditory information is considered independently of visual information, of social

information, and of other ancillary data sources like time of day or GPS coordinates.

It is assumed that some executive process is collecting interruptibility estimates from

all these sources and integrating them in some sane way. Clearly, though, these

information sources are not at all independent. One can imagine, for instance, a case
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in which a user will accept a call from a funding agent while driving, but from no one

else. Conversely, that same user might not accept a call from afunding agent while in

an important meeting, but would accept a call from the persondelivering pizza to the

meeting. In these cases, late fusion would typically fail, while more tightly coupled

models might make the correct estimates.

6.4 Challenges for Machine Listening

This thesis represents only a few small steps toward full exploitation of the audio stream

for context awareness. Many specific areas still need to be addressed in order to improve

the utility of machine listening for context-aware applications. In no particular order, some

of the more important of these are:

Acoustic Event Detection in Real Environments As noted in Chapter 5, automatic sys-

tems for classification of isolated acoustic events in knownenvironments have achieved

reasonable performance levels; error rates are typically on the order of 5% or less. How-

ever, the problem ofdetectingacoustic events in an unsegmented acoustic stream remains

difficult. None of the participants in the 2006 CLEAR acousticevent detection campaign

submitted systems which achieved any sort of acceptable performance; all were in the

neighborhood of 100% error, or higher. This increase in error rate is largely to to insertion

errors rather than substitutions. There were two reasons for this failure. One was a system

design problem; the other a potentially more serious problem.

The engineering issue was that no fielded system was in fact built as a set of isolated

detectors. That is, models were trained for every sound class, including nominal silence.

These models were connected into a full grammar and used to find a Viterbi path through

the entire test recordings. In fact, due to phenomena like sound overlap, speech, and the

acoustic-semantic mismatch, this approach has a real handicap from the beginning. A more
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sensible approach would be to evaluate each model on a sliding window of audio and hy-

pothesize an event only when the model posterior exceeds some threshold. Unfortunately,

these thresholds can only be learned using heldout data, which was in very short supply

during the CLEAR campaign.

The second issue is that in many cases, insertion errors can be attributed to the fact

that there are many sounds in real environments which are acoustically similar to sounds of

interest, but perceptually or semantically different. Forinstance, ifkeys jingling is an

important acoustic class for a specific application, it is very difficult to build a system which

can detect this event in real timewithoutfalsely detecting jingling coins as a relevant event.

Speech is a particular problem, as it contains both harmonicand non-harmonic sounds, and

thus often produces spectra which, on short timescales, closely resemble real sounds of

interest. One possible solution to this problem is a tightercoupling between acoustic event

detection, speaker activity detection, and ASR; such a coupling might help to alleviate the

problems presented by speech. At the same time, this approach may not help to alleviate the

problems associated with acoustically similar but semantically distinct non-speech sounds,

and such coupling would actually require some sort of factorial modeling, as presumably,

acoustic events in the environment are relatively independent of speech activity. For these

reasons, this area should remain fertile ground for new research.

Discovery of Acoustic Invariants All state-of-the-art ASR systems are based not on

words, but on subunits such as phonemes. Each word can be divided into a sequence of

phonemes, which can in turn be decomposed into sub-phonemes, and even further into bun-

dles of speech-specific features representing the positions of the speech organs, voicedness

or unvoicedness, tone, and the like. In state-of-the-art machine listening systems, however,

modeling below the symbol level is still largely ignored. Ellis’ concepts of noise cloud,

transient, and weft [28] were an early attempt to provide some form of basic acoustic al-

phabet for the source separation task, but while these threebasic sound types shed some
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light on that problem, they are largely unused in machine listening systems because they

are computationally difficult to detect and they do not provide enough detailed information

to distinguish between, say, a gunshot and a hand clap. If instead a set of real-world sub-

sound units were to be produced, then modeling real-world sounds could in theory become

much easier. As with ASR, data could be shared across high-level symbols, meaning that

models would have much more training data and could in principle be more detailed, pos-

sibly leading to better performance. As Handel indicated in[41], much of the information

that humans use to identify sounds is actually bound up intemporalrather than spectral

relationships; in other words, it is the rhythms of sound that matter more than specific

frequencies. Some attempts have been made to learn temporalacoustic invariants using

unsupervised methods; see for example work by Kraft and his colleagues in [56] and [55].

In this work, ICA was used over long windows of analysis framesand the basis functions

learned tended to represent temporal auditory phenomena like onsets, offsets, steady state

energy, and transients. Use of these bases improved the classification of sounds in a kitchen

environment compared to standard acoustic features; this work could be revisited in order

to make further progress toward useful acoustic event detection.

Multi-Sensor Audition All the experiments described in this thesis, and by many other

researchers, use only a single audio channel. Biological listeners often exploit stereo lis-

tening in order to make distinctions that cannot be made witha single channel. Source

localization is one result of a two-sensor strategy; combined with knowledge about loca-

tions of sources in a room or other environment, this kind of information can be a powerful

cue as to the identity of a sound. Multi-sensor input can alsobe used to estimate reverber-

ations, which could be a useful feature for environment recognition, and to track moving

sources.
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Marriage of Factorial and Hierarchical Modeling The acoustic signal reaching any

sensor is the result of the interactions of the sources and the environment. In any envi-

ronment, there are potentially many sources emitting acoustic information at any given

time. Most of these sources are independent of each other, though some are onlycondi-

tionally independent given the environment. For example, in an officeenvironment, the

sound of a telephone ringing and the sound of a keyboard clicking are independent of each

other, though there are strong dependencies between those events and the office setting.

A hierarchical acoustic model can capture the conditional independence of events given

environment, but fails to capture their temporal independence. Source separation is one

possible avenue of advance, but factorial modeling is also apromising area, provided the

concept of hierarchical dependencies is maintained. One possibility is a context-switching

factorial model in which each context is represented by a state which can emit not just a

sequence of subordinate states (i.e. a sub-HMM) as in an HHMM, but potentially many

sequences of subordinate states (i.e. a sub-FHMM). Inference, parameter estimation, and

structure learning for such a model would be at least as hard for this type of model as for an

FHMM, making it a potentially interesting problem for the graphical modeling community.

6.5 Thesis Summary

This thesis began with the twin claims that machine listening technologies can provide con-

text awareness in real-world computational systems, and that the design of these systems

could be informed by adaptation of general principles of perception, namely redundancy

reduction, to specific problem areas. The systems and experiments presented within con-

stitute strong support for these claims.

The first claim, that machine listening technologies can be used to provide context in-

formation for real (or potentially real) applications, is supported by the results shown for

environment classification, multimedia gisting, and user interruptibility estimation. The
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second claim, that redundancy reduction can be used successfully as a general design prin-

ciple for real (or potentially real) applications in the machine listening area (as opposed to

more CASA-like systems), is supported by the results shown for multimedia gisting and

user interruptibility estimation. Taken together, the evidence presented in this thesis consti-

tutes a strong argument for the overarching claim that some measure of context awareness

can be achieved in the real-world applications of the near future by exploiting auditory in-

formation using systems combining basic concepts from perceptual theory with traditional

engineering approaches.
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