
NEURAL CODES TO FACTOR LANGUAGE IN MULTILINGUAL SPEECH RECOGNITION

Markus Müller1, Sebastian Stüker1, and Alex Waibel1,2
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ABSTRACT
In the past, we adapted neural network based multilingual
acoustic models using language codes. In this work, we study
the extracted language codes and the language properties they
encode: We use the codes to generate language prototype vec-
tors, which represent the features of a language. Comput-
ing distances between prototype vectors shows that languages
from the same family have smaller distances. This structure
found within the feature representation supports the assump-
tion that language codes do encode language information and
not other properties like, e.g. channel characteristics, and in
addition providing a richer language representation than the
language identity alone.

The network architecture of our system is based on a fac-
torized model, which consists of multiple language dependent
subnets. While we recently demonstrated that this approach
enables multilingual setups to outperform monolingual ones,
we here propose further optimizations. We evaluated using
a) more language dependent subnets and b) wider BiLSTM
layers. Our results indicate that using a larger number of lan-
guage dependent subnets increases the system performance
and renders phonetic pretraining superfluous. In addition, in-
creasing the size of the hidden layers further improved the
performance, with the system now outperforming the mono-
lingual baseline by 6.3% relative.

Index Terms— Neural adaptation, multilingual, end-to-
end, CTC, speech recognition

1. INTRODUCTION

Multilingual speech recognition is a challenging task, as each
language requires its own acoustic model to achieve good
performance. Training systems jointly on data from multi-
ple languages introduces additional ambiguity because of in-
creased linguistic variability. We recently proposed a method
for rapid adaptation of neural networks to languages [1, 2].
By using language codes (LC), applied via neural modula-
tion, we stimulate networks to learn features depending on
language properties.

The work leading to these results has received funding from the Euro-
pean Union under grant agreement No 825460 and the Federal Ministry of
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under grant agreement No 01EF1803B.

In this work, we first discuss LCs in general. We show
that these codes not only enable the rapid adaption of acous-
tic models, but also display similar features for languages
within the same language family. Furthermore, we evaluate
the use of different language combinations, thereby rendering
phonetic pre-training abundant and requiring only training on
graphemic targets. In addition, we evaluate if the use of larger
hidden layers improves the recognition accuracy of our setup.

This paper is organized as follows: In the next Section
2, we outline related work, followed by Section 3, where we
discuss language codes and the properties encoded therein.
The neural adaptation technique is outlined in Section 4. We
describe our experiments in Section 5 and discuss the results
in Section 6. We conclude this paper with Section 7, where
we also outline future work.

2. RELATED WORK

Multilingual speech recognition has been in the focus of re-
search for many years. We here provide an overview of work
that has been done to adapt classical HMM-based setups to
multiple languages and also outline neural adaptation meth-
ods, as well as approaches towards building all-neural speech
recognition systems.

2.1. Multi- and Crosslingual Speech Recognition Systems

Traditional speech recognition systems combine several ex-
plicitly modeled components and are based on a GMM/HMM
or DNN/HMM approach. Explicitly modeled components
are, e.g., the language model, or the pronunciation dictionary.
Training these systems multilingually requires the adaptation
of each of these models to achieve good performance. Sev-
eral methods were proposed to train and/or adapt such sys-
tems to multi- and crosslingual scenarios [3, 4, 5]. One im-
portant step during training of these systems is the clustering
of context-independent targets into context-dependent ones.
This process can also be adapted to account for cross- and
multilinguality [6].



2.2. Neural Network Adaptation

Supplying additional features to the network typically enables
neural adaptation. In the regimen of automatic speech recog-
nition, the use of i-vectors [7, 8] is a common approach for
speaker adaptation. They are a low dimensional representa-
tion of speaker properties. Speaker adaptive networks can be
trained by shifting acoustic features based on these vectors
[9]. An approach alternative to using i-vectors is the use of
bottleneck speaker vectors (BSVs), which are extracted us-
ing a neural network trained to discriminate speakers [10].
We proposed a similar method for adapting DNN acoustic
models (AMs) to languages when trained jointly on multiple
languages. Our first approach uses the language identity, en-
coded via one-hot encoding [11]. We refined it by using Lan-
guage Feature Vectors (LFVs) [12], which encode language
properties as low-dimensional code instead of using the lan-
guage identity only. Similar to BSVs, LFVs are extracted by
a neural network. In comparison to using just the language
identity, LFVs enable better language adaptation, which re-
sults in lower WERs. Alternative methods for language adap-
tation were proposed as well [13].

2.3. RNN Based ASR Systems

Speech recognition systems based entirely on neural networks
gained a lot of research interest in recent years. With the
emergence of increased computing capabilities and special
purpose hardware like GPUs, more complex network archi-
tectures can be trained using larger datasets. One method to
train neural networks for speech recognition without boot-
strapping by a classical GMM/HMM system is the use of
the connectionist temporal classification (CTC) loss function
[14]. Recurrent neural networks (RNNs) are powerful tools
for modeling sequential dependencies. In contrast to tradi-
tional systems, no context-dependent targets need to be mod-
eled as the network learns context implicitly. A variety of
acoustic modeling units can be used. Like in traditional sys-
tems, phones, graphemes, or both can be use to model the
acoustics [15]. In addition, using whole words is also pos-
sible, given enough training data [16]. Recently, the use of
subword units, so-called BPE (byte pair encoding) units were
proposed [17] and do perform better than graphemes.

Another family of systems is based on an approach orig-
inating from the regimen of machine translation: Listen, At-
tend, Spell [18]. It factorizes the model into an encoder, de-
coder and attention. Based on this approach, speech recog-
nition systems can be trained on multiple languages as well
[19]. A more recent approach is using self-attention, com-
bined with CTC [20].

3. LANGUAGE CODES

Key to our proposed language adaptation method are lan-
guage codes (LC), which are used to modulate the acoustic

model of our speech recognition system. To extract LCs, we
train an ancillary feed-forward neural network on the auxil-
iary task of language identification. This network contains
a bottleneck layer as second-to-last layer. As input, we use
multilingual bottleneck features extracted by a typical speech
recognition pipeline using a window size of 32ms with a
frame shift of 10ms. The network for extracting these fea-
tures is trained on log Mel scaled and tonal features, using
data from 5 languages (German, French, Italian, Russian,
Turkish). The language identification network is then trained
on 9 languages (Arabic, French, German, Italian, Polish, Por-
tuguese, Russian, Spanish, Turkish). We use an output layer
with 9 output units, each representing one language.

All layers after the bottleneck are discarded when the
training is done and the output activations of the bottleneck
layer are used as continuous representation of language prop-
erties. We consider the language properties to be stationary,
longer-duration features. Therefore, a large context window
is input into to the language identification network, covering
700ms. This enables the network to capture these longer-
duration properties. For each time step, the network outputs
one language feature vector. To smooth the output and gen-
erate a robust representation, LCs are extracted by averaging
the language feature vectors on utterance level.

3.1. Language Prototype Vectors

To study if LCs do encode language properties instead of
other, non language related differences between recordings of
different languages, we seek to derive higher order language
features. One aspect is the determination of the closeness
of languages. Hence we create language prototype vectors
(LPVs) for each of the training languages we consider for the
acoustic model. For this, we extract LCs on the training data
and average them on a per language basis. Note that we also
extract LCs for English, although this language was not seen
during training of the language code network. To determine
the distances between the LPVs, we used the Euclidean dis-
tance. Figure 1 shows the distances between the prototype
vectors of the various languages. Lower values represent a
smaller difference. The values are normalized to be in the
range of [0, 1].

Except for English, the distances between training lan-
guages are close to 1.0, with Spanish and Italian (both lan-
guages from the Italic-Romance family) showing the highest
closeness with a distance of 0.76. For English, which has not
been seen during training, lower distances for all other lan-
guages are observed. The rationale behind this is that the LC
network attempts to represent the properties of English using
a combination of the source languages. Comparing LPVs,
the distance from English to Russian (a Slavic language) is
the highest, whereas the distance to German (a Germanic lan-
guage like English) is the lowest. This is an indication that
LCs do not only encode the language identity, but higher-
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Fig. 1. Euclidian distances between language prototype vec-
tors (LPVs).

order language related features.

4. LANGUAGE ADAPTED SPEECH RECOGNITION

We recently proposed a novel approach to adapt all-neural
CTC-based ASR systems to languages called “modulation”
[2]. We use LCs to enable language adaptation of the neu-
ral network. The network architecture is shown in Figure 2.
Our system uses a factorized model which is assembled out
of multiple, pre-trained networks. Each subnetwork is trained
on a single language and features 105 BiLSTM cells per layer
and 3 layers in total. The main network is split into two parts
with 2 layers and 420 BiLSTM units per layer. While aux-
iliary features are typically added at the input of networks,
we opted for an approach that incorporates language proper-
ties deeper into the network architecture and in an adaptive
manner using an additional network with 2 BiLSTM layers.

The purpose of this neural language codes (NLCs) subnet-
work is to transform the LCs into a representation that is more
favorable regarding the recognition accuracy of the system: as
part of our combinational superstructure, its parameters will
be updated during the joint training and the extracted codes
will be updated according to the global objective function.
The network consists of 2 BiLSTM layers and is pre-trained
to output the LCs unaltered using BNFs and LCs as input fea-
tures. It will therefore initially learn to ignore the BNFs and to
simply forward LCs. But during the joint optimization, it can
take advantage of the additional features. We added NLCs
after the first BiLSTM part by modulation, this method gates
the outputs of neurons based on external features [1].

5. EXPERIMENTAL SETUP

Our experiments are based on the Euronews corpus [21], con-
taining recordings of TV broadcast news from the Euronews

Pre-trained
subnets

Main
Network

BNF LC

DE FR TR EN NLC

BiLSTM Part 1

*

BiLSTM Part 2

Output Layer

Fig. 2. Combinational superstructure using adaptive neural
language codes (NLC) for network modulation. 4 language
dependent subnets are shown.

TV station. The program of this station is dubbed in many
languages. By using this data, we ensure that the recordings
feature to a large extend the same acoustic conditions across
languages. We use 45h of transcribed acoustic training data
per language. As acoustic features, we use multilingual bot-
tleneck (ML-BNF) features, extracted using a feed-forward
neural network trained on a combination of 5 languages (Ger-
man, French, Italian, Russian, Turkish). To evaluate the per-
formance of our system, we report WERs on English.

5.1. Combination of Languages

While we previously used only 4 language dependent subnets
(English, German, French, Turkish), we here extend the pool
of languages to 7 by adding networks pretrained on Italian,
Russian and Spanish. As target languages, we keep our set
of 4 languages fixed (English, German, French, Turkish). In
case of only 4 language dependent subnets, we pretrained the
networks for German, French and Turkish using phonemic
targets. For the 7-language case, the networks were pretrained
solely on graphemic targets.

Condition Languages

Baseline DE, EN, FR, TR
Enhanced DE, EN, FR, TR, ES, IT, RU

Table 1. Language combinations used for language depen-
dent subnets

5.2. Network training

The training schedule for the combinational superstructure
consists of multiple steps. First, we trained the language de-
pendent subnets, as well as the NLC net. After all subnets
are trained, we combine them and add two BiLSTM blocks,



as shown in Figure 2. This superstructure will then be jointly
trained, allowing updates to the weights of all networks. The
NLC network can thereby take advantage of additional BNF
input to further refine the LCs, enabling better language adap-
tation and higher recognition accuracies.

6. RESULTS

We first evaluate the combination of different language de-
pendent subnets. Based on the best configuration, we then
increase the size of the main network and compare the perfor-
mance.

6.1. Language Dependent Subnets

We start with the evaluation of different subnet combinations,
with results shown in Table 2. Our baseline uses a combi-
nation of subnets from 4 languages, where the networks for
German, French and Turkish are pretrained using phonetic
targets. As the first experiment, we use subnets from the
same combination of languages, but train them using solely
graphemic targets. This results in a drop in performance from
24.2% WER to 25.6% WER. Next, we evaluate using more
subnets by adding subnets from three more languages; all pre-
trained using only graphemic targets.

Using more language dependent subnets yields to the
same performance (24.2% WER vs. 24.3% WER) as using
fewer subnets, but without the need for pretraining them on
phonemic targets.

Condition Languages WER

Baseline DE, EN, FR, TR 24.2%

Grapheme only DE, EN, FR, TR 25.6%
Grapheme only DE, EN, FR, TR, IT, RU, TR 24.3%

Table 2. Language combinations used for language depen-
dent subnets

6.2. Network Size

As last evaluation, we compare different layer sizes of the
main network. Starting with 420 BiLSTM cells per layer as
baseline, we doubled the size to 840. To account for the in-
crease in GPU memory requirements, we reduced the mini-
match size and accumulated the weight updates over several
mini-batches before applying them to keep the number of pa-
rameter updates the same as if the mini-batch size would re-
main unchanged.

Starting with our baseline setup using 420 BiLSTM cells
per layer, our multilingual setup shows an improvement of
3.4% relative to the monolingual target, as shown in Table
3. Doubling the number of BiLSTM cells reduces the WER
of both our adapted setup, as well as the monolingual one.

In comparison, using larger layers improves the relative im-
provement to 6.3%. This shows not only the effectiveness
of our adaptation method, but also that using larger networks
enables better language adaptation. While using even larger
layers should potentially lead to even larger improvements,
practical restrictions regarding training time do require addi-
tional optimization of the network training as in, e.g., the use
of multiple GPUs in parallel. This will be subject of future
work.

BiLSTM Block Size WER

Monolingual 420 24.3%
Multilingual 420 23.5%

Monolingual 840 23.7%
Multilingual 840 22.3%

Table 3. Language combinations used for language depen-
dent subnets

7. CONCLUSION

We introduced a language adaptation method for multilin-
gual, all-neural CTC-based speech recognition systems based
on language codes (LCs) as auxiliary features. In this work,
we analyzed the properties of these codes. We combine ex-
tracted LCs to LPVs (language prototype vectors), which
encode features of languages. Computing distances between
LPVs shows, that languages of the same family have smaller
distances than languages from different families. This is
strong evidence that language codes are a low-dimensional
representation of language features.

Key to our adaptation method is the factorization of the
model by pre-training subnets on different languages. Here,
we further refined our approach by analyzing the importance
of the source languages chosen for a given set of target lan-
guages. While we previously required some language depen-
dent subnets to be trained using phonetic targets, we here
demonstrated that training entirely on graphemic targets is
possible if the pool of source languages is increased. Using
the best combination of languages, we could further show im-
provements by increasing the number of BiLSTM units per
layer.

In total, we achieved an improvement of 6.3% relative (in-
stead of 3.4% in our previous work) over the monolingual
target without the need of phonetic pre-training by increas-
ing both the number of source languages as well as the size
of the hidden layers. Future work includes the optimization
of the training procedure, including the parallelization of the
training using multiple GPUs.
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“Neural language codes for multilingual acoustic mod-
els,” in Interspeech, 2018.

[3] Tanja Schultz and Alex Waibel, “Fast bootstrapping of
LVCSR systems with multilingual phoneme sets.,” in
Eurospeech, 1997.

[4] Tanja Schultz and Alex Waibel, “Multilingual and
crosslingual speech recognition,” in Proc. DARPA Work-
shop on Broadcast News Transcription and Understand-
ing. Citeseer, 1998, pp. 259–262.
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“Language adaptive DNNs for improved low resource
speech recognition,” in Interspeech, 2016.

[13] Ngoc Thang Vu, David Imseng, Daniel Povey, Petr
Motlicek, Tanja Schultz, and Hervé Bourlard, “Multi-
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