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ABSTRACT
Estimating a person’s focus of attention is useful for vari-
ous human-computer interaction applications, such as smart
meeting rooms, where a user’s goals and intent have to be
monitored. In work presented here, we are interested in
modeling focus of attention in a meeting situation. We have
developed a system capable of estimating participants’ fo-
cus of attention from multiple cues. We employ an omni-
directional camera to simultaneously track participants’ faces
around a meeting table and use neural networks to estimate
their head poses. In addition, we use microphones to detect
who is speaking. The system predicts participants’ focus of
attention from acoustic and visual information separately,
and then combines the output of the audio- and video-based
focus of attention predictors. We have evaluated the system
using the data from three recorded meetings. The acous-
tic information has provided 8% error reduction on average
compared to using a single modality.

Keywords
Focus of Attention, Gaze Tracking, Meeting Analysis, Intel-
ligent Environments

1. INTRODUCTION
In the last few years there has been a growing interest in
building computerized intelligent environments, which aim
at supporting humans during various tasks and situations.
Research projects include the “digital office” [4], “intelli-
gent house,” which adapts illumination and heating to a
user’s needs [11], “intelligent classroom”, which automati-
cally takes notes and provides students with relevant web
pages [1], and “smart conferencing rooms”, which aim to
support cooperative work and help to document and ana-
lyze the activities that occur in meetings [5, 15].

For many of these applications, tracking a user’s focus of
attention would be helpful: in an interactive living room,
for example, it would be helpful to know whether a user is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PUI 2001Orlando, FL, USA
Copyright 2001 ACM 1-58113-448-7-11/14/01 ...$5.00.

trying to control his/her VCR by voice, or whether he/she is
talking to someone else in the room. To enable interaction
with an intelligent conference room, it would be interesting
to know whether a user is focusing on the whiteboard or on
another person while talking.

In this research, we address the problem of tracking the
visual focus of attention of participants in a meeting; i.e.,
tracking who is looking at whom during a meeting. Such
information can be used to control interaction with a smart
meeting room or to index and analyze multimedia meeting
records.

In our system, an omni-directional camera is used to capture
the scene around a meeting table. Participants are detected
and tracked in the panoramic image using a real-time face
tracker. Furthermore, neural networks are used to compute
head pose of each person simultaneously from the panoramic
image. We then use a Bayesian approach to estimate a per-
son’s focus of attention from the computed head pose. We
model the a-posteriori probability that a person is looking
at a certain target, given the observed head pose. Using this
approach, we have achieved 74 % accuracy in detecting the
participants’ focus of attention on three recorded meetings.

In addition to visual information, we have investigated
whether a person’s focus of attention can be predicted from
other information. We have discovered that focus of atten-
tion is also correlated to sound sources in a meeting. We
can estimate a person’s focus of attention based on the in-
formation of who is talking at or was talking before a given
moment. This is based on the idea that visual attention is
influenced by external events such as noises, movements or
other person’s speech. We have estimated probability dis-
tributions of where participants are looking during certain
“speaking constellations”. We can then use these distribu-
tions to predict the focus of attention using the sound infor-
mation only. We have achieved 54 % accuracy in predicting
the participants’ focus of attention on three recorded meet-
ings. The accuracy of sound-based prediction can be signifi-
cantly improved by also taking a history of speaker constel-
lations into account. We have trained neural networks to
predict focus of attention based on who was speaking dur-
ing a short period of time. Using this approach, sound-based
prediction could be increased to 63 %.

Finally, the head pose based and the sound-based estimate
are combined to obtain a multimodal estimation of the par-
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Figure 1: Panoramic view of the scene around the table. Faces are automatically detected and tracked.

ticipants’ focus of attention. By using both head pose and
sound, we have achieved 76 % accuracy in detecting the
participants’ focus of attention on three recorded meetings.

The novelty of this research lies in estimating focus of atten-
tion from multiple cues. To our knowledge, this is the first
time that predicting a person’s focus of attention based on
who is talking has been reported.

The framework presented in this paper can be applied not
only to intelligent meeting rooms, but also in other intelli-
gent computerized environments.

The remainder of this paper is organized as follows: In Sec-
tion 2 we describe how we detect and track participants si-
multaneously in the view of an omni-directional camera. In
Section 3 we introduce an approach to estimate head poses
of participants using neural networks. In Section 4 we dis-
cuss methods to model the probability distributions of whom
a person is looking at based on his head pose. In Section
4.3 we present the idea of predicting a person’s focus of at-
tention by monitoring who is speaking. We provide details
of how focus of attention can be predicted by knowledge,
who is currently speaking, and how prediction accuracy can
be improved by taking the history of speakers into account.
We also address combination of audio- and head pose-based
focus predictions, and provide experimental results. In Sec-
tion 5 we summarize the paper.

2. TRACKING FACES IN A PANORAMIC
VIEW

To capture the participants of a meeting, we are using an
omnidirectional camera set in the middle of the conference
table. Compared to using multiple cameras to capture all
participants, as described in our previous work [14], this
has the advantage that only one video-stream has to be
captured, which eliminates the need for camera calibration,
synchronization and camera control such as zooming on dif-
ferent participants.

From the view of the camera, we can compute a panoramic
view of the whole scene, as well as perspective views of each
user. Figure 1 shows the rectified panoramic image (with
faces marked) that is computed from the camera view. To
detect and track faces in the panoramic camera view, a
statistical skin color model consisting of a two-dimensional
Gaussian distribution of normalized skin colors is used. The
color distribution is initialized so as to find a variety of face
colors and is gradually adapted to the faces actually found

[16]. To detect faces, the input image is searched for pixels
with skin colors. Connected regions of skin-colored pixels in
the camera image are considered as possible faces. In ad-
dition, some heuristics are used to distinguish hands from
faces; see [14] for details.

Once a face is found in the panoramic view, a perspective
view of the person can be computed, and the face can again
be detected in the perspective view using the face detector.
Perspective views of two participants are shown in Figure 2.
The automatically detected faces are marked in with boxes.
Faces extracted from such perspective views are later used
to estimate each participant’s head pose with neural nets.

Figure 2: Perspective views of two participants.

3. ESTIMATING HEAD POSE USING NEU-
RAL NETS

In our work, we are using neural networks to estimate head
pan and tilt from facial images. Compared to model-based
approaches [7, 13, 9], such an appearance-based approach
has the advantage that no facial landmark points, such as
eyes, nostrils or lip-corners, have to be found in order to
compute head pose.

In our previous work on estimating participant’s focus in
meetings [14], we have used separate cameras to zoom in on
each of the participants in order to obtain the input images
for pose estimation. Using these high-resolution images, we
achieved an accuracy of 7 degrees for pan and 8 degrees for
tilt on a user independent test set in recent experiments.

In the work presented here, however, only the perspective
images generated from the panoramic view were used as in-
put for the neural nets for pose estimation. While the facial
images extracted from the panoramic view are of consider-
ably lower resolution than images taken with close up views,
we could still obtain good accuracy using our approach.
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3.1 Data Collection
To train and evaluate the neural networks, data from 14
users was collected. All the users were male and four of
them had glasses. Hair-styles ranged from almost bold to
shoulder-long hair. None of the subjects had a beard.

During data collection, the user was automatically tracked
in the panoramic view and a perspective view of the user
was generated; see Figure 2. To determine true head pose,
the user had to wear a head band with a Polhemus pose
tracker sensor attached to it. Using this pose tracker, the
head pose with respect to a magnetic field transmitter could
be collected in real-time. The user was asked to randomly
look around in the room and the perspective images of the
user were recorded together with the pose sensor readings.

3.2 Preprocessing of Images
To locate and extract the faces from the perspective user
views, the skin-color-based face detector [16] was again used.
We have then investigated two different image preprocessing
methods as input to the neural nets for pose estimation: 1)
Using normalized grayscale images of the user’s face as input
and 2) applying edge detection to the images before feeding
them into the nets.

In the first preprocessing approach, histogram normalization
is applied to the grayscale face images as a means of nor-
malizing against different lighting conditions. No additional
feature extraction is performed. The normalized grayscale
images are down-sampled to a fixed size of 20x30 pixels and
then are used as input to the nets. In the second approach,
a horizontal and a vertical edge operator plus thresholding
is applied to the facial grayscale images. The resulting edge
images are down-sampled to 20x30 pixels and are both used
as input to the neural nets. Since our previous experiments
showed that we obtain the best results when combining the
histogram-normalized and the edge images as input to the
neural nets , we are only presenting results using this com-
bination of preprocessed images as input to the neural net
here. Figure 3 shows the preprocessed images of a user’s
faces.

Figure 3: Preprocessed images: normalized
grayscale image, horizontal and vertical edge image
(from left to right)

3.3 Neural Net Architecture, Training and Re-
sults

We have trained separate nets to estimate head pan and tilt.
For each net, a multi-layer perceptron architecture with one
output unit (for pan or tilt), one hidden layer with 20 to
60 hidden units and an input retina of 20x90 units for the

three input images of size 20x30 pixels. Output activations
for pan and tilt were normalized to vary between zero and
one. Training of the neural net was done using standard
back-propagation.

3.3.1 Results
To train a multi-user neural network, we divided the data
set of 12 users into a training set consisting of 6080 images,
a cross-evaluation set of size 760 images and a test set with
a size of 760 images. After training, we achieved a mean
error of 7.8 degrees for pan and 5.4 degrees for tilt on the
test set.

To determine how well the neural nets can generalize to new
users, we have also evaluated the multi-user system on two
new users, that were not present in the training set. On the
two new users we obtained an average error of 9.9 degrees
for pan and 10.3 degrees for tilt. These results demonstrate
that the neural networks can generalize also to faces of new
users.

3.3.2 Adding Artificial Training Data
In order to obtain additional training data, we have artifi-
cially mirrored all of the images in the training set, as well as
the labels for head pan. As a result, the available amount of
data could be doubled without the effort of additional data
collection. Having more training data should be especially
helpful in order to get better generalization on images from
new, unseen users. Indeed, after training with the additional
data, we achieved an average error of only 9.5 degrees for
pan and 9.8 degrees for tilt on the two new users. Table 1
summarizes the results.

multi-user user-independent

basic data 7.8 / 5.4 9.9 / 10.3
+ artificial data 3.1 / 2.5 9.5 / 9.8

Table 1: Average error in degrees (pan/tilt) for
multi-user and user-independent head pose estima-
tion.

4. MODELING FOCUS OF ATTENTION
Gaze is a good indicator of a person’s attention on external
objects. When humans pay attention to an external object,
they usually orient themselves towards the object of interest
so as to have it in the center of their visual field.

Although the eyes are the primary source to detect a per-
son’s gaze during social interaction, gaze is not limited to
information from the eyes. The perception of someone elses
direction of attention also depends on the direction of their
head, body posture and other gestures, such as pointing
gestures. All theses cues are likely to be processed auto-
matically by observers and all make contributions to the
perceptions of another person’s attention [12]. In fact it has
been shown that head orientation strongly influences the
perception of gaze, even when the eyes are visible [10].

The idea of this research is to track at whom or what the
participants are paying attention to during the course of a
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Person 1 Person 2 Person 3 Person 4

Figure 4: Head pan distributions of four persons in a meeting.

meeting. In our approach we aim to estimate a person’s
focus of attention, based on his head orientation. To map
a person’s head orientation onto the focussed object in the
scene, a model of the scene and the interesting objects in it
are needed. In the case of a meeting scenario, clearly the
participants around the table are likely targets of interest.
Therefore, our approach to tracking at whom a participant
is looking is the following: 1) detect all participants in the
scene, 2) estimate each participant’s head orientation and
3) map each estimated head orientation to its likely targets
using a probabilistic framework.

Objects which draw a person’s attention can be external
stimuli such as pictures, sounds, etc. or internal stimuli
such as thoughts and attempts to retrieve information from
memory [8]. Clearly, visual attention is influenced by ex-
ternal stimuli, such as noises, movements or speech of other
persons. There is some evidence, for example, that two or
more people will orient themselves towards each other as
soon as they begin to interact. And it has been argued that
there is an orientation reflex to the source of a sound, caus-
ing interactors to line up the visual and auditory channel;
i.e., to look at the face which is the source of the sound [6]
(cf. [2]).

Therefore, another approach to estimate at whom or what
a person is paying attention to, could be to monitor ex-
ternal events in the meeting environment, such as sounds,
utterances, gestures, persons entering the room etc., and try
to make a prediction of the participants’ focus of attention
based on these external events.

Following this idea, we have also tried to predict at whom a
person is looking, based on who is speaking at the moment
and based on the temporal sequence of speakers.

In the remainder of this section, we will first describe how we
model focus based on head pose estimations. Then the ap-
proach to estimate a person’s focus based on sound; e.g., in-
formation about who is/was speaking, is described. Finally
we’ll present results obtained by combining head-pose-based
and sound-based focus estimation.

4.1 Meetings for Evaluation
To evaluate our system, several meetings were recorded. In
each of the meetings four participants were sitting around a
table and were discussing a freely chosen topic. Video was
captured with the panoramic camera and each participant
had one microphone in front of him to capture his speech.

Using this setup, we recorded audio streams for each of the
participants plus the panoramic view of the scene simultane-
ously to harddisk. The three recorded meetings varied from
5 minutes and 30 seconds to 8 minutes and 30 seconds and
contained between 870 to 1280 video frames.

In each frame of the recorded meetings, we labeled for each
of the participants at whom he was looking. These lables
could be one of ”Left”, “Right” or ”Straight”, meaning a
person was looking to the person to his left, to his right, or
to the person at the opposite. If the person wasn’t looking
at one of these targets; e.g., the person was looking down on
the table or was staring up to the ceiling, the label “Other”
was assigned.

In addition, labels indicating whether a person was speaking
or not, were assigned to each video frame. These labels could
be assigned by listening to the audio streams.

4.2 Modeling Focus Based on Head Rotation
Using a priori knowledge about the size of the table and
assuming that participants are located close to the table,
it is possible to compute the approximate 2D location of
each participant from the positions of the faces found in the
panoramic image.

A first, straightforward solution to find out at whom a per-
son S is looking could be, to use the measured head pose of
S and look which target person Ti sits nearest the position
to which S is looking.

Gaze is not only determined by head pose, however, but
also by the direction of eye gaze. People do not always com-
pletely turn their heads toward the person at which they are
looking. Instead, they also use their eye gaze direction. In
our meeting recordings we observed that some people turned
their heads more than others, who relied more on eye move-
ments instead and less head turning when looking at other
people. Figure 4 shows the head pan distributions of four
participants in one of our recorded meetings. The head rota-
tion of the user was estimated with the neural nets. It can be
seen, for example, for Person 1, the three class-conditionals
are well separated, whereas for Person 3 or Person 4, the
peaks of some distributions are much closer to each other,
and and a higher overlap of the distributions can be ob-
served.

Motivated by these observations, we have developed a
Bayesian approach to estimate at which target a person is
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a) b) c)

Figure 5: a) The distribution P (x) of all head pan observations for a person. Also the adapted mixture of
three Gaussians is plotted. b) True and estimated class-conditional distributions of head pan x for the same
person, when looking to three different targets. The adapted Gaussians, are taken from the adapted Gaussian
mixture model depicted in a). c) The posterior probability distributions P (Focus|x) for resulting from the
found mixture of Gaussians

looking, based on his observed head rotation. More pre-
cisely, we wish to find P (FocusS = T |xS), the probability
that a person S is looking towards a certain target person
T , given the person’s observed horizontal head rotation xS .
Using Bayes formula, this can of be decomposed to

P (Foc.S = T |xS) =
p(xS |Foc.S = T )P (Foc.S = T )

p(xS)
, (1)

where xs denotes the head pan of person S in degrees and
T is one of the other persons around the table.

Using this framework, given a pan observation for a person
S, it is then possible to compute the posterior probabili-
ties P (FocusS |Ti) for all targets Ti and choose the one with
highest posterior probability as the focus of attention target
in the current frame.

In order to compute P (FocusS = T |xS), however, it is nec-
essary to estimate the class-conditional probability density
function p(xS |FocusS = T ), the class prior P (FocusS = T )
and p(xS) for each person. Finding P (xS) is trivial and can
be done by just building a histogram of the observed head
rotations of a person over time.

One possibility to find the class-conditional pdf and the prior
would be to adjust them on a training set of similar meet-
ings. This, however, would require training data for any pos-
sible number of participants at the table and for any possible
combination of the participants’ locations around the table.
Furthermore, adapting on different meetings and different
persons would probably not model a certain person’s head
turning style very well, nor would the priors necessarily be
the same in different meetings.

We have therefore developed an unsupervised learning ap-
proach to find the head pan distributions of each participant
when looking at the others.

4.2.1 Unsupervised Adaptation of Model Parameters
In our approach, we assume that the class-conditional head
pan distributions, such as depicted in Figure 4, can be mod-

eled as Gaussian distributions. Then, the distribution of all
head pan observations from a person p(x) will result in a
mixture of Gaussians,

p(x) ≈
M∑

j=1

p(x|j)P (j), (2)

where the individual component densities p(x|j) are given
by Gaussian distributions Nj(µj , σ

2
j ).

In our approach, the number of Gaussians M is set to the
number of other participants at the table, because we as-
sume that these are the most likely targets that the person
has looked at during the meeting, and because we want to
find the individual Gaussian components that correspond to
looking at these target persons.

The model parameters of the mixture model can then be
adapted so as to maximize the likelihood of the pan ob-
servations given the mixture model. This is done using the
expectation-maximization algorithm by iteratively updating
the parameter values using the following update equations
[3]:

µnew
j =

∑
n P old(j|xn)xn∑

n P old(j|xn)
(3)

(σnew
j )2 =

1

d

∑
n P old(j|xn)||xn − µnew

j ||2∑
n P old(j|xn)

(4)

P (j)new =
1

N

∑
n

P old(j|xn). (5)

To initialize the means µj of the mixture model, kmeans
clustering was performed on the pan observations.

After adapting the mixture model to the data, the individual
Gaussian components can be used as an approximation of
the classconditionals p(x|Focus = T ), and the priors of the
mixture model P (j) can be used to approximate the focus
priors P (Focus = T ) of our model, described in equation
(1). Furthermore, the individual Gaussian components can
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be assigned to corresponding target persons based on their
relative position around the table.

Figure 5 shows an example of the adaptation on pan observa-
tions from one user. In Figure 5a) the distribution of all head
pan observations of the user is depicted together with the
Gaussian mixture that was adapted as described above. Fig-
ure 5b) depicts the real class-conditional head pan distribu-
tions of that person, together with the Gaussian components
taken from the Gaussian mixture model depicted in Figure
5a). As can be seen, the Gaussian components provide a
good approximation of the real class-conditional distribu-
tions of the person. Note that the real class-conditional dis-
tributions are just depicted for comparison and are of course
not necessary for the adaptation of the Gaussian compo-
nents. Figure 5c) depicts the posterior probability distribu-
tion resulting from the adapted class-conditionals and class
priors.

4.2.2 Experimental Results
We have evaluated this approach on three evaluation meet-
ings. In each meeting, the faces of the participants were
automatically tracked, and head pan was estimated using
the neural network-based approach. For each of the four
participants in each meeting, the class-conditional head pan
distribution p(x|Focus), the class-priors P (Focus) and the
observation distributions p(x) were automatically adapted
to compute the posterior probabilities p(Focus = Ti|x) for
each person. In each frame the target with the highest pos-
terior probability was chosen as the focus of attention target
of the person. For the twelve users in the three meetings,
the correct focus target could be detect on average in 73.9%
of the frames. Table 2 show the average results on the three
meetings.

P (Focus|Gaze)

Meeting A (4 participants) 68.8 %
Meeting B (4 participants) 73.4 %
Meeting C (4 participants) 79.5 %

Average 73.9 %

Table 2: Percentage of correct assigned focus targets
based on computing P (Focus|head pan).

4.3 Predicting Focus from Sound
As we have argued before, visual attention is influenced by
external stimuli. We have therefore investigated whether it
is possible to predict a person’s focus of attention based on
audio information.

In our first experiment to predict focus from sound we ana-
lyzed at whom the four participants in the recorded meetings
were looking during certain “speaking” conditions. Here,
“speaking” was treated as a binary variable; i.e., each of
the four participants, was either labeled as “speaking” or
“not speaking” in each video frame. Now, using this binary
“speaking” variable and having four participants, there ex-
ist 24 possible “speaking” conditions in each frame, ranging
from none of the participants is speaking to all of the par-
ticipants are speaking.

~A = (aSaLaCaR) Left Straight Right

0 0 0 0 0.26 0.49 0.23
0 0 0 1 0.11 0.27 0.60
0 0 1 0 0.12 0.74 0.11
0 0 1 1 0.07 0.49 0.40
0 1 0 0 0.59 0.28 0.11
0 1 0 1 0.35 0.24 0.37
0 1 1 0 0.33 0.60 0.05
0 1 1 1 0.21 0.41 0.38
1 0 0 0 0.24 0.48 0.25
1 0 0 1 0.09 0.34 0.53
1 0 1 0 0.18 0.61 0.18
1 0 1 1 0.08 0.59 0.30
1 1 0 0 0.60 0.24 0.11
1 1 0 1 0.29 0.44 0.26
1 1 1 0 0.35 0.56 0.08
1 1 1 1 0.50 0.50 0.00

all cases 0.26 0.44 0.26

Table 3: Table summarizes, how often people looked
to participants in certain directions, during the dif-
ferent speaking conditions. The speaking condition
is represented in the first row (see text).

Table 3 summarizes at whom participants in our three meet-
ings were looking, based on who was speaking. In the first
row, the speaking condition is represented as the binary
vector ~A, with entry as indicating whether the subject S
himself (“Self”) was speaking, the second entry aL indi-
cating whether the person to the subject’s left was speak-
ing, the third entry aC indicating whether the person oppo-
site (“Center”)to S was speaking, and entry aR indicating
whether the person to its right was speaking. For each per-
son and each case we counted how often the subjects looked
to the right, looked straight or looked to the person to their
right. For example, when only the person to the subject’s
left was speaking (entry “0 1 0 0”), in 59 % of the cases the
subject was looking to the left person (the speaker), in 28 %
of the cases he was looking straight to the opposite person
and in 11 % of the cases he was looking to the person to his
right.

Overall it can be seen that if there was only one speaker,
subjects most often looked to that speaker (percentages are
indicated in bold font in Table 3 for that person). This also
holds for cases were there was only one additional speaker
when the subject itself was speaking. The last row of Table
3 indicates in which direction subjects looked on average,
regardless of speaking conditions. It can be seen that there
is a bias towards looking straight; i.e., to the person opposite
to the subject.

The entries of Table 3 can be directly interpreted as the the
probability that a subject S was looking to a certain person
T , based on the binary audio-observation vector ~A:

p(Focus|Sound) = p(FocusS = Tj | ~A)

,where Tj , with j ∈ { “Left”, “Straight”, “Right” } denote
the possible persons to look at, and where

~A = (aSelf , aLeft, aCenter, aRight)
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denotes the audio-observation vector with binary compo-
nents ai, indicating whether the subject itself, the person to
his right, left, or the person opposite (center) to the subject
was speaking.

The probability P (Focus|Sound) can be used directly to pre-
dict at whom a participant is looking in a frame, based on
who was speaking during that video frame. In each frame,
for each subject S the person Ti was chosen as the focus of
person S, which maximized P (FocusS = Ti| ~A).

By using only the speaker labels to make a sound-based
focus prediction, the correct focus of each participants could
be predicted with an average accuracy of 54 % on three
evaluation meetings.

4.4 Combining Gaze and Sound to Predict Fo-
cus

In the previous section it was shown, how we can determine
the probability p(Focus|Sound); i.e., the probability that a
person is looking towards a certain other person, based on
the information, of whom is currently speaking. By choos-
ing in each frame the target person Ti which maximized
P (FocusS = Ti| ~A) as the focus of person S, a focus predic-
tion accuracy of 54 % could be achieved.

In section 4 we showed, how to compute P (FocusS = Ti|xS),
the posterior probability, that a person S is looking towards
person Ti, based on his estimated head rotation xS . There,
by again choosing in each frame the target person Ti which
maximized P (FocusS = Ti|xS) as the focus of person S, we
achieved correct focus prediction in 73.9 % of the frames.

These two independent predictions of a person’s focus –
p(Focus|Sound) and p(Focus|gaze) – can be combined in a
straightforward way to obtain a prediction of a person’s fo-
cus which is based on both, the observation, who is speak-
ing, and based on the estimation of the person’s head rota-
tion. The combined result can be obtained by computing
the weighted sum of both predictions:

p(Focus) = (1− α)P (Focus|Gaze) + αP (Focus|Sound).

We have evaluated the combined prediction results on our
meetings for different values of α, ranging from 0.0 to 1.0.
On the three meetings, the optimal values of α ranged from
0.3 to 0.6 By setting α to 0.6, good results could be achieved
on all meetings. Using this multimodal prediction, an accu-
racy of 74.8 % was achieved on the three meetings. Com-
pared to the prediction accuracy of 73.9 % using gaze only,
this corresponds to a relative error reduction of 3.4 %.

Gaze only Sound only Combined

Meeting A 68.8 57.7 % 69.7 %
Meeting B 73.4 57.6 % 75.3 %
Meeting C 79.5 46.9 % 79.5 %

Average 73.9 54.1 % 74.8 %

Table 4: Focus-prediction using gaze only, sound
only and prediction using both, gaze and sound.

4.5 Using the Sound History to Predict Focus
In the previous section, information about who is speaking
is used to predict p(Focus|Sound); i.e how likely it is for a
person to look at one of the others based on who is speaking.
The prediction, however, is only based the audio-observation
~At corresponding to the current video frame at time t.

This has several drawbacks: By using only audio-information
from one frame, no temporal information is taken into ac-
count for the prediction. Temporal information, however
might be very important.

A straightforward extension is, to use a history of audio-
events At, At−1, ..., At−N to predict the probability that a
person S is looking towards one of the others; i.e., to esti-
mate P (Focus|At, At−1, ..., At−N ).

In this work, we have chosen to use a neural network to
predict P (Focus|At, At−1, ..., At−N ). We have trained one
neural network to estimate the probabilities that a person
is looking to the person to his right, to his left, and to the
person opposite to himself, based on a history of ten audio-
observations. As audio-observations, we have again chosen
the binary audio-observation vector ~A = (aS, aL, aC, aR),
described in the previous section.

To evaluate the performance of the audio-history-based pre-
diction, we have trained networks round-robin; i.e., the neu-
ral nets were trained on data from two out of the three
meetings and were evaluated on the remaining third meet-
ing.

Using the audio-history based prediction of focus, an average
prediction accuracy of 63.5 % on the three meetings could
be achieved. Compared to the 54.1 % achieved with the
prediction based on a single audio-frame, this is a relative
error reduction of 20 %. The audio-based prediction results
are summarized in Table 5.

P (Focus|At) P (Focus|At, ..., At−9)

Meeting A 57.7 % 63.0 %
Meeting B 57.6 % 67.2 %
Meeting C 46.9 % 60.2 %

Average 54.1 % 63.5 %

Table 5: Focus-prediction using one frame and ten
frames of speaker information. Neural networks
were trained to predict P (Focus|At, At−1, ..., At−9).

Again we can compute a combined, gaze- and sound-based
prediction, by computing the weighted sum of P (Focus|Gaze)
and P (Focus|Sound):

P (Foc.) = (1− α)P (Foc.|Gaze) + αP (Foc.|At, ..., At−N ).

By setting α to 0.5, we achieved an average accuracy of
75.9% on the three meetings.

Table 6 summarizes the results we obtained by using sound-
only based focus prediction, gaze-only based focus estima-
tion and combined estimation.
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Gaze only Sound only Combined

Meeting A 68.8 63.0 % 71.4 %
Meeting B 73.4 67.2 % 77.1 %
Meeting C 79.5 60.2 % 80.5 %

Average 73.9 63.5 % 75.9 %

Table 6: Focus-prediction using gaze only, sound
only and prediction using both. Sound-based focus
prediction is done with a neural network, using ten
frames of speaker information as input.

5. CONCLUSION
We have presented a system to estimate visual focus of at-
tention of participants in a meeting from multiple cues. The
participants are simultaneously tracked in a panoramic view
and their head poses are estimated using neural networks.
For each participant, probability distributions of looking to-
wards other participants are estimated from head poses us-
ing an unsupervised learning approach. These distributions
are then used to predict focus of attention given a head pose.
The accuracy of such predication is 74 % accurate in detect-
ing the participants’ focus of attention on our test data.

Furthermore, we have demonstrated how focus of attention
can be predicted based on knowledge of who is currently
speaking, and how this audio-based prediction can be im-
proved by taking the history of utterances into account. On
the recorded meetings, participants’ focus of attention has
been predicted correctly in 63 % of the frames by using audio
information only.

Finally, we have shown how the audio- and the video-based
predictions can be fused to get a more accurate and robust
estimation of participants’ focus of attention. By using both
head pose and sound, focus of attention could be detected
in 76 % of the frames in recorded meetings.

Although moving participants can successfully be tracked
in the camera, the current system cannot handle signifi-
cant movements of the meeting participants. This limita-
tion comes from both the software and the hardware. The
current focus of attention model relies on probability distri-
butions related to participants’ locations. Significant move-
ments will change those distributions. An adaptive proce-
dure is needed to update the distributions when participants
are moving. This will be our future work. In addition, due
to the poor resolution of the omnidirectional camera that
we are using, it is expected that estimating head orientation
will not be possible when people are more than 2 meters
away from the camera. A higher resolution camera will be
helpful to solve this problem.
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