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Abstract 

In an intelligent working space, social robots 
should be capable of detecting and understanding 
human communicative cues. An important cue in hu- 
man communication is focus of attention expressed 
by gaze direction. We have been developing tech- 
nologies for gaze tracking and focus of attention mod- 
cling. In this paper we present our work on modeling 
focus of attention in meeting situations. We employ 
neural networks to estimate a persons head pose from 
camera images, and a probabilistic model to identify 
interesting targets in the scene based on the observed 
head pose. We are extending such technologies in 
building a gaze-aware human-friendly robot that is 
able to monitor a person's focus of attention. 

1 Introduction 

Recent development in humanoid robotics poses 
new challenges to both robotics and HCI communi- 

ties. A major challenge is to develop robots that 
can behave like and interact with humans. Much re- 

search has been directed to advancing human-robot 

interaction [11, 2, 10, 1, 20]. In this research, we are 

interested in making a robot track human gaze and 
focus of attention. 

Gaze plays an important role in human social in- 
teraction. During face-to-face communication peo- 

ple look at each other, monitor each other's lip- 
movements and facial expressions, and follow each 

other's gaze. In an intelligent working space, where 
humans and robots may interact with each other, 

gaze information could be used to detect what a per- 

son is looking at and paying attention to, to inter- 
pret what object or place a person is referring to 
when talking with a robot, or to determine whether 

a person is talking to the robot or not. 
In the past few years, we have developed technolo- 

gies for tracking and modeling human focus of at- 
tention. We are currently addressing the problem of 
tracking the visual focus of attention of participants 
in a meeting; i.e., tracking who is looking at whom 
during a meeting. Such information can be used to 
control interaction with a smart meeting room or to 

index and analyze multimedia meeting records [16]. 
In our system, an omni-directional camera is used 

to capture the scene around a meeting table. Par- 
ticipants are detected and tracked in the panoramic 
image using a real-time face tracker. Furthermore, 
neural networks are used to compute head pose of 
each person simultaneously from the panoramic im- 
age, We then use a Bayesian approach to estimate a 
person’s focus of attention from the computed head 
pose. We model the a-posteriori probability that 
a person is looking at a certain target, given the 
observed head pose. Using this approach, we have 
achieved 74 % accuracy in detecting the participants’ 
focus of attention on recorded evaluation meetings. 

In the recently started humanoid robot project 
sponsored by the German Government, we have 
started to work on adapting and extending to build 
a gaze-aware human-friendly robot which is able to 
monitor a person's focus of attention. We describe 
the system and discuss potential extensions. The 
remainder of this paper is organized as follows: In 
Section 2 we introduce an approach to estimate a 
person's head pose from facial images using neural 
networks. In Section 3 we describe our system to 
simultaneously track participants in a meeting and 
estimate their head poses. In Section 4 we introduce 
a probabilistic approach to determine at which tar- 
get a person is looking at based on his head pose and 
present experimental results on several meetings. In 
Section 5 we discuss how focus of attention tracking 
can be used to enhance human-robot communication 
and describe a demonstration system we built to ik 
lustrate the feasibility of our approach. We'll also 
discuss limitations of the current system and our fu- 
ture research directions. 

2 Estimating Head Pose Using Neu- 

ral Nets 

In this section we describe how we have designed 
and trained a neural network to estimate a person's 
head pan and tilt from facial images. 

The main advantage of using neural networks to 
estimate head pose as compared to using a model 
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Figure 1: Panoramic view of the scene around the table. Faces are automatically detected and tracked. 

based approach is its robustness: With model based 
approaches to head pose estimation [8, 15, 9], head 
pose is computed by finding correspondences be- 
tween facial landmarks points (such as eyes, nostrils, 
lip corners) in the image and their respective loca- 
tions in a head model. Therefore these approaches 
rely on tracking a minimum number of facial land- 
mark points in the image correctly, which is a dif- 
ficult task and is likely to fail. On the other hand, 
the neural network-based approach does not require 
tracking detailed facial features. Instead, the whole 
facial region is used for estimating the user's head 
pose. 

In our approach we are using neural networks to 
estimate pan and tilt of a person’s head, given auto- 
matically extracted and preprocessed facial images 
as input to the neural net. This approach is simi- 
lar to the approach described by Schiele ct. al. [13]. 
However, Schicle et. al.'s system estimated only head 
rotation in pan direction. In this research we use neu- 
ral network to estimate head rotation in both pan 
and tilt directions. In addition, we have studied two 
different image preprocessing approaches. Rae et. al. 
[12] describe a user dependent neural network based 
system to estimate head pan and tilt of a person. 
In their approach, color segmentation, ellipse fitting, 
and Gabor-filtering on a segmented face are used for 
preprocessing. They reported an average accuracy of 
9 degrees for pan and 7 degrees for tilt for one user 
with a user dependent system. 
We have trained neural networks to estimate a 

person’s head rotation from two kinds of camera im- 
ages: 1) images from a pan-tilt-zoom camera Canon 
VC-Cl) and 2) an omnidirectional camera. The main 
difference between the two kind of images is the much 
poorer resolution of facial images obtained from the 
omnidirectional camera. However, while the pan-tilt- 
zoom camera is well suited to track the face of one 
user and therefore is suitable for human-robot inter- 
action tasks, the omnidirectional camera has the ad- 
vantage that all participants sitting around a table 
can be tracked simultancously in one camera view 
and therefore is well suited for to simultaneous gaze 
tracking in meetings. 

In the remainder of this section we will describe 

details how we trained neural nets to estimate head 

pan and tilt from good resolution images. Since pre- 
processing, training and network architecture are the 
same for pose estimation from the lower resolution 

images, we will present the results obtained with 
those images in section 3. 
2.1 Training Networks with good resolu- 

tion images 

We collected training data from 14 persons in our 

lab. During data collection, users had to wear a head 

band with a sensor of a Polhemus pose tracker at- 

tached to it. Using the pose tracker, the head pose 
with respect to a magnetic transmitter could be col- 

lected in real-time. A camera was positioned ap- 
proximately 1.5 meters in front of the users head. 
The user was asked to randomly look around in the 

room and the images together with the pose sensor 
readings were recorded. Figure 2 shows two sample 
images from that were taken during data collection 
with the Canon VC-C1 camera. 

Figure 2: Two good resolution images taken with a 
pan-tilt-zoom camera during data collection. 

2.2 Preprocessing of Images 

To locate and extract the faces from the collected 

images, we use a statistical skin color model [19]. 
The largest skin colored region in the input image is 
selected as the face. 

We have investigated two different image prepro- 
cessing methods as input to the neural nets for pose 
estimation: 1) Using normalized grayscale images of 
the user’s face as input and 2) applying edge detec- 
tion to the images before feeding them into the nets. 
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In the first preprocessing approach, histogram 
normalization is applied to the grayscale face im- 
ages as a means towards normalizing against different 
lighting conditions. No additional feature extraction 
is performed. The normalized grayscale images are 
downsampled to a fixed size of 20x30 pixels and are 
then used as input to the nets. 

In the second approach, a horizontal and a ver- 
tical edge operator plus thresholding is applied to 
the facial grayscale images. The resulting edge im- 
ages are downsampled to 20x30 pixels and are both 
used as input to the neural nets. Figure 5 shows the 
corresponding preprocessed facial images of a user. 
From left to right, the normalized grayscale image, 
the horizontal and vertical edge images of a user's 
face are depicted. 

Figure 3: Preprocessed images: normalized 
grayscale, horizontal edge and vertical edge image 
(from left to right) 

2.3 Neural Net Architecture, Training 
and Results 

We have trained separate nets to estimate pan and 
tilt of the head. We have used a multilayer percep- 
tron architecture with one output units, one hidden 

layer with 20 to 100 units and an input retina of 

20x90 units for the three input images of size 20x30 

pixels. Output activations for pan and tilt were nor- 
malized to vary between zero and one. Training of 

the neural net was done using standard backpropa- 
gation. 

To train a multi-user neural network, the data set 

of 12 users was divided into a training set consisting 

of 4.750 images, a cross-evaluation set of 600 images 

and a test set with a size of 600 images. 

To determine how well the neural net based 

tem can generalize to new users, we have also eval- 
uated the performance of the neural network on the 

two remaining users whose images have not been in 
the training set. 

Table 2 shows the results that we obtained on the 

the multi-user test set and on the new users using 
the different preprocessing approaches. Each cell of 
the table indicates the mean difference between the 

true pan (tilt) and the estimated pan (tilt) over the 
whole test set. Results are given in degrees. 

[preprocessing [ multi — user [ newusers | 
histogram 38/30 | 94/109 

edges 16/36 | 101/99 
[isto + edges [ 3.5/2.8 [75/789 | 

Table 1: Head pose estimation accuracy from good 
resolution images on a multi-user test set and on 
two new users, Results for three different prepro- 
cessing methods are indicated: 1) using histogram- 
normalized images as input, 2) using edge images as 
input and 8) using both, histogram-normalized and 
edge images as input. The results indicate the mean 
error in degrees for pan/tilt. 

It can be seen, that the best results were obtained 
when using both, the histogram normalized images 
and the edge images as input to the neural networks. 
On the multi-user test set a mean error of 3.5 degrees 
for pan an 2.8 degrees for tilt was obtained. On new 
users the mean error was 7.5 degrees for pan and 8.9 
degrees for tilt. 

3 Simultaneous Tracking of Head 

Poses in a Panoramic View 

One focus of our research is to develop a multime- 

dia meeting browser to automatically transcribe and 

summarize mectings [18, 3]. Within this project we 
also aim to monitor at whom or what participants 
are looking during the meeting. This information is 
useful to get a better understanding of the meetings 
and can later be used for image retrieval. 

To simultaneously capture the participants of a 
meeting, we are using an omnidirectional camera 
set in the middle of the conference table. Com- 

pared to using multiple cameras to capture all par- 
ticipants, as described in our previous work [16], this 

has the advantage that only one video-stream has 

to be recorded, which eliminates the need for cam- 

era calibration, synchronization and camera control 
such as zooming on different participants. 

From the view of the camera, a panoramic view 
of the whole scene can be computed, as well as per- 
spective views of each user. Figure 1 shows the rec- 

tified panoramic image (with faces marked) that is 
computed from the camera view; see [17] for more 
details. To detect and track faces in the panoramic 

image, we use a statistical skin color detector and 

some movement information [19]. In addition, some 
heuristics are used to distinguish hands from faces; 

see [16] for details. 
Once a face is found in the panoramic view, a per- 

spective view of the person is computed, and the face 
is again detected in the perspective view using the 
face detector. Perspective views of two participants 
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are shown in Figure 4, The automatically detected 
faces are marked with boxes. Faces extracted from 
such perspective views are later used to estimate each 
participant's head pose with neural nets. 

Figure 4: Perspective Views of two participants. 

3.1. Neural Networks: Training and Re- 
sults 

Similar to the approach presented in section ??, 
we have trained networks to estimate pan and tilt 

from facial images that were taken with the omnidi- 

rectional camera. 

Here, again data from 14 users was collected. 

During data collection, the user was automatically 
tracked in the panoramic view and a perspective view 
of the user was generated; see Figure 4. During data 
collection users had to wear a head band with a Pol- 

hemus pose tracker sensor attached to it to deter- 
mine true head pose for training and evaluation of 

the networks. 

Figure 5: Preprocessed images: normalized grayscale 
image, horizontal and vertical edge image (from left 
to right) 

Neural networks were trained to estimate head 
pan and tilt from the preprocessed facial images, as 
described in section 2.1. As for the higher resolu- 
tion images from the pan-tilt-zoom camera, the best 
result was obtained using histogram-normalized and 
edge images as input to the neural net. Figure 5 
shows the preprocessed images for a face extracted 
from the panoramic view. 

On a multi-user test set containing images from 
twelve users a mean error of 7.9 degrees for pan and 
5.6 degrees for tilt was obtained. On a test set con- 
taining two new users, a mean error of 9.9 degrees 
for pan and 10.3 degrees for tilt was obtained. 

In order to obtain additional training data, we 
furthermore have artificially mirrored all of the im- 
ages in the training set, as well as the labels for head 
pan. As a result, the available amount of data could 
be doubled without the effort of additional data col- 
lection. After training with the additional data, we 
achieved an average error of only 9.5 degrees for pan 
and 9.8 degrees for tilt on the two new users. This is 
only slightly worse than the accuracy on new users 
obtained with good resolution images — 7.5 degrees 
for pan and 8.9 degrees for tilt — reported in section 
moe 

Table 2 summarizes the results. 

[ [nulthuser [| user-independent | 
Dasic data 78/54 99 [10-3 

+ artifical data [ 3.1 [25 95 798 

Table 2: Head pose estimation accuracy from fa- 
cial images taken with an omnidirectional camera. 
Results on a multi-user test set and on two new 
users for three different preprocessing methods are 
indicated: 1) using histogram-normalized images as 
input, 2) using edge images as input and 3) using 
both, histogram-normalized and edge images as in- 
put. The results indicate the mean error in degrees 
for pan/tilt. 

4 Modeling Focus of Attention 

Jaze is a good indicator of a person's attention 
on external objects. When humans pay attention 
to an external object, they usually orient themselves 
towards the object of interest so as to have it in the 
center of their visual field. Hence, the first step in 
determining a person’s focus of attention is to track 
his/her gaze. 

To map the person's gaze onto the focussed object 
in the scene, a model of the scene and the interesting 
objects in it are needed. In the case of a meeting sce- 
nario, clearly the participants around the table are 
likely targets of interest. Therefore, our approach 
to tracking at whom a participant is looking is the 
following: 1) detect all participants in the scene, 2) 
estimate each participant's gaze and 3) map cach es- 
timated gaze to its likely targets using a probabilistic 
framework. 

4.1 A Probabilistic Model of Focus 
Based on Head Rotation 

Using a priori knowledge about the size of the ta- 
ble and assuming that participants are located close 
to the table, it is possible to compute the approxi- 
mate 2D location of each participant from the posi- 
tions of the faces found in the panoramic image. 
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Person 1 Person 2 Person 3 

Figure 6: Head pan distributions of four persons in a meeting. 

A first, straightforward solution to find out at 
whom a person S is looking could be, to use the mea- 
sured head pose of S and look which target person 
T; sits nearest the position to which S is looking. 

Gaze is not only determined by head pose, how- 
ever, but also by the direction of eye gaze. People do 
not always completely turn their heads toward the 
person at which they are looking. Instead, they also 
use their eye gaze direction. In our meeting record- 
ings we observed that some people turned their heads 
more than others, who relied more on eye movements 
instead and less head turning when looking at other 
people. Figure 6 shows the head pan distributions 
of four participants in one of our recorded meetings. 
The head rotation of the user was estimated with 
the neural nets. It can be seen, for example, for Per- 
son 1, the three class-conditionals are well separated, 
whereas for Person 3 or Person 4, the peaks of some 
distributions are much closer to each other, and and 
a higher overlap of the distributions can be observed. 

Motivated by these observations, we have devel- 
oped a 
Bayesian approach to estimate at which target a per- 
son is looking, based on his observed head rotation. 
More precisely, we wish to find P(Focuss = T's), 
the probability that a person § is looking towards a 
certain target person J’, given the person’s observed 
horizontal head rotation zs. Using Bayes formula, 
this can of be decomposed to 

P(fve.s = Pjes) = BegslPoes = TP Foes = 7) 
P(zs) 

() 
where 2, denotes the head pan of person S in degrees 
and T is one of the other persons around the table. 

Using this framework, given a pan observation for 
a person S, it is then possible to compute the poste- 
rior probabilities P(Focuss|T}) for all targets T; and 
choose the one with highest posterior probability as 
the focus of attention target in the current frame. 

In order to compute P(Focuss = T|xs), however, 
ids necessary to estinate the -clawe-conditional prob: 
ability density function p(xs|Focuss = T), the class 

prior P(Focuss = T) and p(as) for each person. 
Finding P(ws) is trivial and can be done by just 
building a histogram of the observed head rotations 

of a person over time. 
One possibility to find the class-conditional pdf 

and the prior would be to adjust them on a train- 
ing set of similar mectings. This, however, would 
require training data for any possible number of par- 
ticipants at the table and for any possible combina- 
tion of the participants’ locations around the table. 
Furthermore, adapting on different meetings and dif. 
ferent persons would probably not model a certain 
person’s head turning style very well, nor would the 
priors necessarily be the same in different meetings. 
We have therefore developed an unsupervised 

learning approach to find the head pan distributions 
of each participant when looking at the others. 
4.2 Unsupervised adaptation of model 

parameters 

In our approach, we assume that the class- 
conditional head pan distributions, such as depicted 

in Figure 6, can be modeled as Gaussian distribu- 

tions. Then, the distribution of all head pan obser- 

vations from a person p(«) will result in a mixture of 
Gaussians, 

M 

P(x) & D> (als) PG), (2) 
j=l 

where the individual component densities p(a|j) are 
given by Gaussian distributions Nj(j1;, 03). 

In our approach, the number of Gaussians M is 
set to the number of other participants at the table, 
because we assume that these are the most likely ta 
gets that the person has looked at during the meet- 
ing, and because we want to find the individual Gaus- 
sian components that correspond to looking at these 
target persons. 

The model parameters of the mixture model can 
then be adapted so as to maximize the likelihood 
of the pan observations given the mixture model. 
This is done using the expectation-maximization al- 
gorithm by iteratively updating the parameter values 

Proceedings of the IEEE-RAS International Conference on Humanoid Robots 
Copyright © 2001



using the following update equations [4]: 

Da Pelle)" 
ape = ye, PMA") (3) 

n 

creeyt = 2 Ew PM Cleo” = AIP 
d ~ | d, Pie) 

Pare’ = Sy PM G|e”). (5) 
7” 

To initialize the means pj of the mixture model, 

k-means clustering was performed on the pan obser- 
vations. 

After adapting the mixture model to the data, the 
individual Gaussian components can be used as an 

approximation of the classconditonals p(x|Focus = 
T), and the priors of the mixture model P(j) can be 
used to approximate the focus priors P(Focus = T) 
of our model, described in equation (1). Further- 
more, the individual Gaussian components can be 
assigned to corresponding target persons based on 
their relative position around the table. 

Figure 7 shows an example of the adaptation on 
pan observations from one user. In Figure 7a) the 
distribution of all head pan observations of the user 

is depicted together with the Gaussian mixture that 

was adapted as described above. Figure 7b) depicts 

the real class-conditional head pan distributions of 

that person, together with the Gaussian components 
taken from the Gaussian mixture model depicted in 

Figure 7a). As can be seen, the Gaussian compo- 
nents provide a good approximation of the real class- 
conditional distributions of the person. Note that the 

real class-conditional distributions are just depicted 

for comparison and are of course not necessary for 
the adaptation of the Gaussian components. Figure 
Tc) depicts the posterior probabili 
sulting from the adapted class-conditionals and class 

priors. 
4.3 Experimental Results 

We have evaluated this approach on three meet- 
ings that we recorded in our lab. In each of the 

meetings four participants were sitting around a ta- 
ble and were discussing a freely chosen topic. Video 

was captured with the panoramic camera. To be 

y distribution re- 

able to evaluate our approach, we manually labeled 
for cach of the participants at whom he was looking 
in each frame, 

In each meeting, the faces of the participants were 
automatically tracked, and head pan was estimated 
using the neural network-based approach. For each 
of the four participants in each meeting, the class- 
conditional head pan distribution p(x|Focus), the 
class-priors P(Focus) and the observation distribu- 
tions p(x) were automatically adapted to compute 

the posterior probabilities p(Focus = T;|x) for each 
person. In each frame the target with the highest 
posterior probability was choosen as the focus of at- 
tention target of the person. For the twelve users in 
the three meetings, the correct focus target could be 
detect on average in 73.9% of the frames. Table 3 
show the average results on the three meetings. 

[ [Pocus|Gaze) | 
Meeting A Ci participants) 68.8 % 
Meeting B (4 participants) 73.4% 
Meeting © (4 participants) 79.5 % 

[ Average [739% | 

Table 3: Percentage of correct assigned focus targets 
based on computing P(Focus|head pan). 

5 Application to Human-Robot Com- 

munication 
Many tasks require that a robot can track human's 

focus of attention when it interacts socially with hu- 

mans. For example, a robot needs to identify mes- 
sage targets of a person in an intelligent space; i.c., a 
robot has to identify to whom a human is talking. We 

have applied focus of attention tracking technology 
to human-robot interaction. We have built a proto- 

type system to demonstrate gaze-aware interaction 
with a household robot and other smart appliances 
such as a speech-controlled VCR in a room. The 

robot can differentiate if a human is talking to it or 

other devices by tracking the human’s focus of at- 

tention. The system consists of the following main 

components: 

Robot Visualization For the demonstration we 
have simulated a robot using a 3D visualization 
toolkit and projected the robot onto one of the 
walls of our lab. 

Speech Recognition A speaker independent 
large-vocabulary continuous speech _recog- 
nizer was used for understanding the users’ 
commands [14]. 

Parser A parser based on the system described in 
[7] was used to analyze the hypothesis received 
from the speech recognition module and to gen- 
erate action commands that were sent to the 
robot visualization module. 

Dialog Manager This module enabled the virtual 
robot to lead simple clarification dialogues, if 
necessary information is missing. 

Speech Synthesis A Speech synthesis system [5] is 
used to provide spoken feedback to the user. 
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Figure 7: a) The distribution P(x) of all head pan observations for a person. Also the adapted mixture of three 
Gaussians is plotted. b) True and estimated class-conditional distributions of head pan x for the same person, 
when looking to three different targets. The adapted Gaussians, are taken from the adapted Gaussian mixture 
model depicted in a). ¢) The posterior probability distributions P(Focus|.x) for resulting from the found mixture 
of Gaussians 

Focus of Attention Tracker To observe the 
user's focus of attention, a pan-tilt-zoom cam- 
cra was placed next to the simulated robot. 
The face of the user was tracked in the camera 
image and the user’s head pose was estimated 
with a neural net as described in section 2.1. 

Communication of all the components - recording, 

speech recognizer, parser, dialogue manager, visual- 
ization and focus-of-attention-tracker - was done us- 

ing a client-server architecture that we adapted from 

(6). 
For the demonstration three focus-targets were 

chosen: a) the robot, b) the VCR and c) none of 
them. Whenever the user was looking towards where 

the VCR was placed, the focus of attention mod- 

ule identified the VCR as target and the output 

of the speech recognizer was sent to the the VCR. 

Whenever the user was looking towards the simu- 

lated robot, the robot was chosen as the focus tar- 

get, and therefore recognized speech was directed to 
the robot; i.e., the robot’s parser, dialogue and vi- 
sualization module, to generate appropriate actions 
of the robot simulation. Whenever the user was nei- 

ther looking at the VCR nor to the robot, the user’s 

speech was not recorded at all and neither the robot 

nor the VCR were responding. 

Discussion 

While this demonstration showed how gaze- 

awareness can enhance human-robot communica- 

tion, there are obviously many limitations with our 
current approach. First, within the current system 
no 3D information of the scene is used. The s: 

tem only works for a user standing within a certain 

region in front of an immobile robot and probabilis- 

tically maps the users head rotation to some fixed 
focus targets. 

A less restrictive system should allow both a user 
and a robot to move freely in a room. In such a 
case, the position of the robot and the user has to 
be determined in the scene and a 3D model of the 
scene and the objects in it would be necessary to map 
the user’s gaze direction onto one of the interesting 
objects. 

In the presented demonstration, a user’s gaze is 
only used to determine the current addressee of the 
user's speech. However, gaze could also be used dur- 
ing multimodal communication to determine to what 
object or place a person is referring to (“Put that 
there!”). We will address these issues in our future 
research, 

6 Conclusion 

In this paper we have described our work on esti- 
mating a person’s focus of attention. We have pre- 
sented a system to estimate visual focus of attention 
of participants in a meeting. The participants are si- 
multancously tracked in a panoramic view and their 
head poses are estimated using neural networks. For 
each participant, probability distributions of look- 
ing towards other participants are estimated from 
head poses using an unsupervised learning approach. 
These distributions are then used to predict focus of 
attention given a head pose. The focus of attention 
tracking technology can be used for a social robot. 
In an intelligent working space, a robot has to moni- 
tor shared attention of collaborators. We have devel- 
oped a prototype system to demonstrate the concept 
of a gaze-aware robot. In a new humanoid robot 
project sponsored by the German Government, we 
are adapting and extending focus of attention track- 
ing technology to allow a robot to monitor a person's 
focus of attention in an unconstrained environment. 
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