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Abstract

This paper describes the Interactive Systems Lab’s Meet-
ing transcription system, which performs segmentation, speaker
clustering as well as transcriptions of conversational meeting
speech. The system described here was evaluated in NIST’s RT-
04S “Meeting” speech evaluation and reached the lowest word
error rates for the distant microphone conditions.

Also, we compare the performance of our Broadcast News
and the most recent Switchboard system on the Meeting data
and compare both with the newly-trained meeting recognizer.
Furthermore, we investigate the effects of automatic segmenta-
tion on adaptation. Our best meeting system achieves a WER of
44.5% on the “MDM” condition in NIST’s RT-04S evaluation.

1. Introduction
Automatic speech recognition is increasingly becoming a vi-
able modality of man-to-machine communication in many situ-
ations. Also, it is becoming the backbone for implicit services,
that do not require a user to issue a dedicated request for as-
sistance to a machine, but instead plays the role of a context-
aware “information butler”. In many of these “Meeting” sit-
uations however, it is impractical for potential users to wear
high-quality personal microphones, so the availability of distant
microphones only is a major issue for practical applications.

Even though many “Meeting”-type interactions will happen
in rooms, not all of these rooms will have dedicated microphone
arrays, the most popular technique to deal with the effects of
multiple speakers speaking at the same time. Another possible
scenario is to use a number of standard microphones distributed
on the meeting table, as this set-up is often in place for tele-
phone conferences anyway. Several sites have collected data
and NIST conducted the RT-04S evaluation of “Meeting” type
speech as part of the “Rich Transcription” series of evaluations.

In this paper, we present the Interactive Systems Lab’s
most recent speech-to-text system for “Meeting”-type speech,
which has evolved significantly over previous versions [1]
and which was evaluated in NIST’s RT-04S “Meeting” eval-
uation1 in the speaker segmentation, and single-distant chan-
nel (SDM), multiple-distant (MDM), and personal microphone
channel (IPM) speech-to-text conditions.

2. “Meeting” Data
The experiments presented in this paper were conducted on
“Meeting” data which has just recently become available to
the research community through LDC. Some of these data sets

1http://www.nist.gov/speech/tests/rt/rt2004/spring/
This site also contains further information about the data used in the
experiments presented

comprise parallel recordings of both personal (head-set or lapel)
microphones and room microphones, which were placed on
a conference table which the meeting participant were seated
around.

2.1. Training Data

All the acoustic data used in this work is in 16kHz, 16bit qual-
ity. For training, we merged this corpus with 180h of existing
Broadcast News data from the 1996 and 1997 training sets.

Corpus Duration Meetings Speakers Channels

CMU 11h 21 93 N/A
ICSI 72h 75 455 4HQ+2LQ
NIST 13h 15 77 7

Table 1: Meeting training data: all data sets contain a variable
number of personal microphone recordings (lapel/ head-set) in
addition to the above number of distant microphone recordings

A comprehensive description of each data set with record-
ing conditions and transcription conventions can be found in the
literature [2, 3, 4, 5, 6]. Parts of the data have already been used
in experiments on segmentation and distant speech recognition
[7]. Note that we did not work on the “PDA” low quality data
in the ICSI portion.

2.2. Development and Test Data

In addition to the data described above, 10-minute excerpts of
8 meetings, two per site, were transcribed for development pur-
poses and another 8 11-minute excerpts of different meetings
were used for testing. Each meeting has between 3 and 10 par-
ticipants while the number of distant channels recorded in paral-
lel varied between 1 (CMU data) and 10 (some LDCmeetings).

For the distant microphone conditions, crosstalk regions
are labeled in the reference and these are excluded from scor-
ing. Also, personal-microphone recordings contain a significant
amount of cross-talk from non-primary speakers.

3. Baseline Experiments
All experiments described in this paper were run using ISL’s
Janus toolkit and the Ibis decoder [8, 9].

Our first experiments were run with a speech recognizer
trained on BN96 training data, which has 2000 codebooks, 6000
distributions, a 42-dimensional feature space based on MFCCs
after LDA and global STC transforms [10] with utterance-based
CMS. The tri-gram language model was trained on BN96. This
system performed better on in-house meeting data than our stan-
dard BN recognizer [11]. First-pass decoding WER on NIST



data is 68.4% or 62.8% with VTLN, using both model-space
and feature-space MLLR reaches 59.9%.

Experiments with the “Switchboard” recognizer were con-
ducted with a simplified, 3-pass version of ISL’s system de-
scribed in [12]. This systems reaches a WER of 25.0% on the
RT-03S “Switchboard” test set. For these experiments, speech
was downsampled and passed through a telephony filter. A first-
pass decoding using completely unadapted models without even
VTLN on a single distant channel results in a word error rate of
64.2%, a system adapted with both model-space and feature-
space MLLR reaches 56.4% WER.

Using cross-adaptation between the two systems (which use
different language models, dictionaries, and phone sets), it was
possible to reduce the error rate to 52.3%, using the Switch-
board system for the final pass. All the above experiments were
run with manual speaker segmentation and clustering and show
performance comparable to previous systems [13].

4. Automatic Segmentation
Speaker segmentation and clustering consists of identifying
who spoke when in a long meeting conversation. Given a meet-
ing audio, ideally, it will discover how many people are in-
volved in the meeting, and output clusters with each cluster cor-
responding to an unique speaker.

The speaker segmentation and clustering system used for
speech recognition (“T2”) is based on CMUseg 0.5 [14]. Of
this software package, we used the segmenter part and added
a hierarchical, agglomerative clustering algorithm to group the
segments into clusters. Therefore, we first trained a Tied Gaus-
sian Mixture Model (TGMM) based on the entire speech seg-
ments. The GMM for each segment is generated by adapting
the TGMM on the segment. The Generalized Likelihood Ra-
tio (GLR) distance is computed between any two segments. At
each clustering step, the two segments with the smallest dis-
tance are merged. Bayesian Information Criterion (BIC) is used
as a stopping criterion for clustering [15].

The speaker segmentation and clustering system for the
MDM condition [15] contains two extra steps over the T2 sys-
tem: unification across multiple channels and speaker turn de-
tection in long segments. The speech recognition experiments
throughout this paper use the T2 system instead of the MDM
system, since unification and turn detection initially resulted in
frequent speaker changes and therefore a high fraction of very
short utterances which were detrimental to speech recognition
performance. The T2 segmentation is computed on the most
central channel (as defined before post-evaluation errata) per
meeting only; also, segments longer than 15s were cut at posi-
tions where an initial quick transcription pass generated noise
or silence tokens with a duration of more than 40ms.

Dataset Segmentation
T2 MDM

development set 50.26% 29.59%
evaluation set 52.54% 28.17%

Table 2: Speaker diarization error for the T2 and MDM seg-
mentation

For the IPM case, only segmentation is necessary. Opposed
to the SDM/MDM case however, mis-segmented parts, with no
speech from the primary speaker of that microphone result in
insertion errors and lost segments in deletion errors during STT

scoring. To deal with this situation, we used a completely dif-
ferent algorithm, which, in contrast to the other segmentations,
relies on activity detection instead of speech detection.

For activity detection in personal microphone audio, each
of N channels is first segmented into 300ms non-overlapping
frames and preemphasized using a high-pass filter (1−z−1). We
then compute all N·(N+1)

2
crosscorrelations φi,j for each pair of

channels {i, j} and computeN quantities Ξi =
P

i�=j
max φij
φii(0)

.
We declare the frame as speech for channel i if Ξi > 0.
Smoothing is applied independently for each channel over sin-
gle frame dropouts and padding is added to the beginning and
end of each hypothesized speech interval [16].

5. Training
5.1. Acoustic Model Training

As a first step, we generated time-alignments and warping fac-
tors for the close-talking part of three of the four data sets
(BN, CMU, ICSI, NIST) with the BN-based system mentioned
above. We then re-trained the BN system with 2k models on the
separate data sets.

Set BN96/97 CMU ICSI NIST Merged

WER 67.5% 68.9% 67.2% N/A 66.7%%

Table 3: Re-training on the different data sets (2k codebooks,
6k distributions, 100k Gaussians); test on pre-release of RT-04S
development data (≈ RT-02 Meeting test data)

Two extra iterations of Viterbi training of the “ICSI”-
trained system on all channels of the ICSI distant microphone
data resulted in a WER of 62.5%. Employing feature space
normalization (constrained MLLR) [17] and VTLN during test-
ing only reaches 58.6%. As an alternative to Viterbi training
we performed a combination of speaker-adaptive and channel-
adaptive (SAT/CAT) training also using constrained MLLR, by
estimating a normalization matrix for every speaker and every
recording channel. This resulted in a word error rate of 54.5%,
when testing this system with VTLN and normalization matri-
ces estimated on the “ICSI” system.

Performing SAT on the close-talking data alone did not
significantly decrease WER. Estimating the adaptation parame-
ters of the SAT/CAT system on the previously best hypotheses
(52.3% of the SWB system) yields an error rate of 51.4% with
roughly a third of the parameters.

As a next step, we re-trained the context decision tree on
the combined data sets, increased the model complexity to 6k
codebooks, 24k distributions, ∼300k Gaussians while also re-
training the STC transform. Re-running the training with these
extra parameters, while also adding the NIST distance data re-
duced the error rate by an extra 3.5% absolute, and the best per-
formance was delivered by a system using newly trained models
alone.

The experiments reported so far were run and scored on a
pre-release of the official RT-04S development data set, which
could not accomodate the Multiple Distant Microphone (MDM)
condition. Due to changes to both transcripts and data2, abso-
lute numbers cannot be compared before and after this point;
due to recent errata, future numbers will also be slightly off,

2Also published on the RT-04S web site



quantitative assessments of different methods’ merits as pre-
sented here should however be unaffected and valid.

5.2. Language Model Training

Language models were trained in analogy to the Switchboard
system. We trained a simple 3-gram LM and a 5-gram LM
with∼800 automatically introduced classes on a mixture of the
Switchboard and Meeting transcriptions and also a 4-gram BN
LM. All LMs were computed over a vocabulary of∼47k words
with an OOV rate of 0.6% on the development set. For the first
decoding passes only the 3-gram LM was used, later decoding
and CNC passes uses a 3-fold context dependent interpolation
of all three LMs. The perplexity on the development set of the
3-fold interpolated LM was 112.

6. Tests
The same meetings were processed by the recognizer in several
conditions. Here, the same acoustic and language models were
used in a similar manner for each condition to allow compar-
isons of the respective task’s “difficulty”.

All tests use a dictionary extended with vocabulary from
the meeting domain and the simple language model described
above unless stated otherwise. All models use ∼300k Gaus-
sians with diagonal covariances organized in 24k distributions
over 6k codebooks in a 42-dimensional feature space trained as
described above. Consensus lattice processing (CLP) [18] and
confusion network combination (CNC) was also performed in
later stages.

6.1. Individual Personal Microphone (IPM) Condition

For the IPM condition we used a reduced version of our Switch-
board system, extended by some close talking Meeting Sys-
tems. So the following acoustic models were tested:

PLAIN Merge-and-split training followed by Viterbi (2i)
on the Close-talking data, no VTLN

SAT ≡ PLAIN, but trained with VTLN

Tree6.8ms Our Tree6 Switchboard acoustic [12], decoded
with 8ms frame shift

Tree150.8ms Our Tree150 Switchboard acoustic [12], cross-
adapted on Tree6, decoded with 8ms frame shift

SAT.8ms Cross-adapted on Tree6, decoded with 8ms frame
shift

Models Segmentation
Manual IPM-SEG

PLAIN 39.6% 43.6%
SAT 33.8% 38.8%
Tree6.8ms 30.8% 35.0%
Tree150.8ms 29.9% 34.2%
SAT.8ms 30.2% 35.3%
CNC 28.0% 32.7%

Table 4: Results on the RT-04S development set, IPM condition,
CNC is between the last three passes

When comparing the CNC results of both segmentations, it
can be seen in table 4 that one of the main problems of the IPM
condition is the segmentation. The problem lies mainly in the
number of deletion errors, which increases from 9.8% to 14.7%.

6.2. Single Distant Microphone (SDM) Condition

The following acoustic models were tested on the SDM micro-
phone condition:

PLAIN Merge-and-Split training followed by Viterbi (2i)
on the Close-talking data only, no VTLN

SAT/CAT Extra 4i Viterbi training on the distant data, no
VTLN

SAT/CAT-VTLN ≡ SAT/CAT, but trained with VTLN

Models Segmentation
Manual SDM-SEG (T2)

PLAIN 59.5% 60.8%
SAT/CAT 53.2% 55.2%
SAT/CAT-VTLN 48.9% 53.1%
CNC 47.8% 51.5%

Table 5: Results on the RT-04S development set, SDM condi-
tion, CNC is between the last two passes

6.3. Multiple Distant Microphone (MDM) Condition

The decoding and adaptation strategy for the MDM condition
uses the same models as for the SDM case, but after every de-
coding step, CNC was performed over all available channels.

Models Segmentation
Manual SDM-SEG (T2)

PLAIN 53.4% (59.8%) 54.4% (60.8%)
SAT/CAT 46.6% (50.7%) 48.5% (51.9%)
SAT/CAT-VTLN 43.3% (47.7%) 45.5% (51.5%)
Multi-pass CNC 42.8% 45.0%

Table 6: Results on the RT-04S development set, MDM con-
dition; the number in brackets is the performance of a single
channel (#1) without CNC

6.4. RT04-S Evaluation Results

ISL’s primary submissions to the “sttul” condition of NIST’s
RT-04S Meeting STT evaluation reached a word error rate of
35.7% for the IHM condition, 49.5% for the SDM condition,
and 45.2% for the MDM condition. To investigate the influence
of improved speaker segmentation and clustering on speech-
to-text performance, the following table compares STT per-
formance with the “T2” segmentation with STT performance
based on the submitted MDM segmentation, i.e. a segmentation
which uses information from multiple channels and reaches an
improved segmentation score of 28.17% compared to 52.54%.
However, this segmentation only became available for ASR ex-
periments after the official deadline of the evaluation.

The distribution of errors across the different meetings in
the test set and the meeting sites as well as their relation to num-
ber of channels and number of speaker clusters generated by the
automatic segmentations are shown in table 8.

7. Conclusions
While these experiments, performed within the RT-04S evalua-
tion framework, are non-exhaustive by far, the results presented



Models Segmentation
SDM-SEG (T2) MDM-SEG

PLAIN 55.4% 53.7%
SAT/CAT 49.9% 48.1%
SAT/CAT-VTLN 47.6% 45.4%
Multi-pass CNC 45.2% 44.5%

Table 7: Results on the RT-04S evaluation set, MDM condition;
results with CNC of all available channels. The unification and
smoothing of the segmentation across channels results in lower
WERs already for the non-adapted case

Meeting # # SDM-SEG MDM-SEG
Site CHNS SPKS # S WER # S WER

CMU 1 6/4 2/2 47.4% 3/3 46.7%
ICSI 4 (HQ) 7/7 1/3 37.6% 3/4 33.7%
LDC 9/5 3/3 2/4 47.8% 3/2 48.8%
NIST 7 6/7 1/2 44.7% 3/3 43.8%

Table 8: Distribution of errors across the RT-04S Meeting eval-
uation set (MDM case, 2 meetings per site). Different segmen-
tation algorithms hypothesize a different number of speakers,
which has a large influence on the performance of adaptation

in this paper demonstrate a significant improvement over previ-
ous “Meeting” speech recognition systems, particularly when
using multiple distant microphones not arranged as a micro-
phone array.

A closer analysis of system errors is currently being car-
ried out, but it is clear that speaker segmentation and clustering
plays a vital role in improving the performance of adaptation
on this type of data; in the SDM case, VTLN works signifi-
cantly less well with automatic segmentation than with man-
ual segmentation, while CNC can compensate some of the loss.
Other approaches to channel combination (more suitable for
systems with constrained real-time requirements) will also be
investigated. To further improve segmentation, we are therefore
planning to use the present speech recognition system in multi-
modal rooms, which could combine acoustic and visual evi-
dence with context information, to improve segmentation and
adaptation.
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